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Preface
About OpenStax
OpenStax is part of Rice University, which is a 501(c)(3) nonprofit charitable corporation. As an educational initiative, it's
our mission to transform learning so that education works for every student. Through our partnerships with
philanthropic organizations and our alliance with other educational resource companies, we're breaking down the most
common barriers to learning. Because we believe that everyone should and can have access to knowledge.

About OpenStax Resource
Customization
Algebra and Trigonometry 2e is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which
means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its
content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and
sections in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections
in the web view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be
made available to students in low-cost print or digital form through their campus bookstore. Visit your book page on
openstax.org for more information.

Art attribution
In Algebra and Trigonometry 2e, most photos and third-party illustrations contain attribution to their creator, rights
holder, host platform, and/or license within the caption. Because the art is openly licensed, anyone may reuse the art as
long as they provide the same attribution to its original source. To maximize readability and content flow, mathematical
expressions that are rendered as art do not include attribution in the text. This art can be assumed to be developed by
OpenStax and can be reused under the CC-BY license with attribution.

Errata
All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors
sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically
necessary. If you have a correction to suggest, submit it through the link on your book page on openstax.org. Subject
matter experts review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you
will also find a list of past errata changes on your book page on openstax.org.

Format
You can access this textbook for free in web view or PDF through openstax.org, and for a low cost in print.

About Algebra and Trigonometry 2e
Algebra and Trigonometry 2e provides a comprehensive exploration of algebraic principles and meets scope and
sequence requirements for a typical introductory algebra and trigonometry course. The modular approach and the
richness of content ensures that the book meets the needs of a variety of courses. Algebra and Trigonometry 2e offers a
wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking
students to apply what they’ve learned.

Coverage and Scope
In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a
range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount
of flexibility in instruction.

Chapters 1 and 2 provide both a review and foundation for study of functions that begins in Chapter 3. The authors
recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have
a cohort that needs the prerequisite skills built into the course.

• Chapter 1: Prerequisites
• Chapter 2: Equations and Inequalities

Chapters 3-6: The Algebraic Functions

• Chapter 3: Functions
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• Chapter 4: Linear Functions
• Chapter 5: Polynomial and Rational Functions
• Chapter 6: Exponential and Logarithm Functions

Chapters 7-10: A Study of Trigonometry

• Chapter 7: The Unit Circle: Sine and Cosine Functions
• Chapter 8: Periodic Functions
• Chapter 9: Trigonometric Identities and Equations
• Chapter 10: Further Applications of Trigonometry

Chapters 11-13: Further Study in Algebra and Trigonometry

• Chapter 11: Systems of Equations and Inequalities
• Chapter 12: Analytic Geometry
• Chapter 13: Sequences, Probability, and Counting Theory

Development Overview
OpenStax Algebra and Trigonometry 2e is the product of a collaborative effort by a group of dedicated authors, editors,
and instructors whose collective passion for this project has resulted in a text that is remarkably unified in purpose and
voice. Special thanks is due to our Lead Author, Jay Abramson of Arizona State University, who provided the overall vision
for the book and oversaw the development of each and every chapter, drawing up the initial blueprint, reading
numerous drafts, and assimilating field reviews into actionable revision plans for our authors and editors.

The collective experience of our author team allowed us to pinpoint the subtopics, exceptions, and individual
connections that give students the most trouble. The textbook is therefore replete with well-designed features and
highlights which help students overcome these barriers. As the students read and practice, they are coached in methods
of thinking through problems and internalizing mathematical processes.

Accuracy of the Content
We understand that precision and accuracy are imperatives in mathematics, and undertook a dedicated accuracy
program led by experienced faculty.Examples, art, problems, and solutions were reviewed by dedicated faculty, with a
separate team evaluating the answer key and solutions.

The text also benefits from years of usage by thousands of faculty and students. A core aspect of the second edition
revision process included consolidating and ensuring consistency with regard to any errata and corrections that have
been during in the series' extensive usage and incorporation into homework systems.

Changes to the Second Edition
The Algebra and Trigonometry 2e revision focused on mathematical clarity and accuracy as well as inclusivity. Examples,
Exercises, and Solutions were reviewed by multiple faculty experts. All improvement suggestions and errata updates,
driven by faculty and students from several thousand colleges, were considered and unified across the different formats
of the text.

OpenStax and our authors are aware of the difficulties posed by shifting problem and exercise numbers when textbooks
are revised. In an effort to make the transition to the 2nd edition as seamless as possible, we have minimized any
shifting of exercise numbers.

The revision also focused on supporting inclusive and welcoming learning experiences. The introductory narratives,
example and problem contexts, and even many of the names used for fictional people in the text were all reviewed using
a diversity, equity, and inclusion framework. Several hundred resulting revisions improve the balance and relevance to
the students using the text, while maintaining a variety of applications to diverse careers and academic fields. In
particular, explanations of scientific and historical aspects of mathematics have been expanded to include more
contributors. For example, the authors added additional historical and multicultural context regarding what is widely
known as Pascal’s Triangle, and similarly added details regarding the international process of decoding the Enigma
machine (including the role of Polish college students). Several chapter opening narratives and in-chapter references are
completely new, and contexts across all chapters were specifically reviewed for equity in gender representation and
connotation.

Finally, prior to the release of this edition, OpenStax published a series of Corequisite Skillsheets to support different
models and approaches to instruction. These remain available, and are described in more detail below.

2 Preface
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Pedagogical Foundations and Features
Learning Objectives
Each chapter is divided into multiple sections (or modules), each of which is organized around a set of learning
objectives. The learning objectives are listed explicitly at the beginning of each section and are the focal point of every
instructional element

Narrative text
Narrative text is used to introduce key concepts, terms, and definitions, to provide real-world context, and to provide
transitions between topics and examples. Throughout this book, we rely on a few basic conventions to highlight the
most important ideas:

• Key terms are boldfaced, typically when first introduced and/or when formally defined.
• Key concepts and definitions are called out in a blue box for easy reference.

Examples
Each learning objective is supported by one or more worked examples, that demonstrate the problem-solving
approaches that students must master. The multiple Examples model different approaches to the same type of problem,
or introduce similar problems of increasing complexity.

All Examples follow a simple two- or three-part format. The question clearly lays out a mathematical problem to solve.
The Solution walks through the steps, usually providing context for the approach—in other words, why the instructor is
solving the problem in a specific manner. Finally, the Analysis (for select Examples) reflects on the broader implications
of the Solution just shown. Examples are followed by a Try It question, as explained below.

Figures
Algebra and Trigonometry 2e contains more than 2000 figures and illustrations, the vast majority of which are graphs
and diagrams. Art throughout the text adheres to a clear, understated style, drawing the eye to the most important
information in each figure while minimizing visual distractions. Color contrast is employed with discretion to distinguish
between the different functions or features of a graph.

Supporting Features
Several elements contribute to and check understanding.

• A “How To” is a list of steps necessary to solve a certain type of problem. A How To typically precedes an Example
that proceeds to demonstrate the steps in action.

• A “Try It” exercise immediately follows an Example or a set of related Examples, providing the student with an
immediate opportunity to solve a similar problem. In the PDF and the Web View version of the text, answers to the
Try It exercises are located in the Answer Key.

• A Q&A may appear at any point in the narrative, but most often follows an Example. This feature pre-empts
misconceptions by posing a commonly asked yes/no question, followed by a detailed answer and explanation.

• The “Media” icon appears at the conclusion of each section, just prior to the Section Exercises. This icon marks a list
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of links to online video tutorials that reinforce the concepts and skills introduced in the section.

While we have selected tutorials that closely align to our learning objectives, we did not produce these tutorials, nor
were they specifically produced or tailored to accompany Algebra and Trigonometry 2e.

Section Exercises
Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used
selectively for guided practice. With over 6300 exercises across the 13 chapters, instructors should have plenty from
which to choose.

Section Exercises are organized by question type, and generally appear in the following order:

• Verbal questions assess conceptual understanding of key terms and concepts.
• Algebraic problems require students to apply algebraic manipulations demonstrated in the section.
• Graphical problems assess students’ ability to interpret or produce a graph.
• Numeric problems require the student to perform calculations or computations.
• Technology problems encourage exploration through use of a graphing utility, either to visualize or verify algebraic

results or to solve problems via an alternative to the methods demonstrated in the section.
• Extensions pose problems more challenging than the Examples demonstrated in the section. They require students

to synthesize multiple learning objectives or apply critical thinking to solve complex problems.
• Real-World Applications present realistic problem scenarios from fields such as physics, geology, biology, finance,

and the social sciences.

Chapter Review Features
Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that
students can use to prepare for exams.

• Key Terms provides a formal definition for each bold-faced term in the chapter.
• Key Equations presents a compilation of formulas, theorems, and standard-form equations.
• Key Concepts summarizes the most important ideas introduced in each section, linking back to the relevant

Example(s) in case students need to review.
• Chapter Review Exercises include 40-80 practice problems that recall the most important concepts from each

section.
• Practice Test includes 25-50 problems assessing the most important learning objectives from the chapter. Note

that the practice test is not organized by section, and may be more heavily weighted toward cumulative objectives
as opposed to the foundational objectives covered in the opening sections.

Corequisite Support
Each Algebra and Trigonometry 2e section is paired with a thoughtfully developed, topically aligned skills module that
prepares students for the course material. Sharon North (St. Louis Community College) developed a coordinated set of
support resources, which provide review, instruction, and practice for algebra students. The author team identified
foundational skills and concepts, then mapped them to each module. The corequisite sections include conceptual
overviews, worked examples, and guided practice; they incorporate relevant material from OpenStax’s Developmental
Math series. They are available as separate, openly accessible downloads from the student and instructor resources
pages accompanying the text.

Additional Resources

Student and Instructor Resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, instructor
solution manual, Corequisite skillsheets, and PowerPoint slides. Instructor resources require a verified instructor
account, which can be requested on your openstax.org log-in. Take advantage of these resources to supplement your
OpenStax book.

Community Hubs
OpenStax partners with the Institute for the Study of Knowledge Management in Education (ISKME) to offer Community
Hubs on OER Commons—a platform for instructors to share community-created resources that support OpenStax
books, free of charge. Through our Community Hubs, instructors can upload their own materials or download resources
to use in their own courses, including additional ancillaries, teaching material, multimedia, and relevant course content.
We encourage instructors to join the hubs for the subjects most relevant to your teaching and research as an
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opportunity both to enrich your courses and to engage with other faculty. To reach the Community Hubs, visit
www.oercommons.org/hubs/openstax.

Technology partners
As allies in making high-quality learning materials accessible, our technology partners offer optional low-cost tools that 
are integrated with OpenStax books. To access the technology options for your text, visit your book page on 
openstax.org.

About the Authors
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Jay Abramson, Arizona State University
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Credit: Andreas Kambanls

Chapter Outline
1.1 Real Numbers: Algebra Essentials
1.2 Exponents and Scientific Notation
1.3 Radicals and Rational Exponents
1.4 Polynomials
1.5 Factoring Polynomials
1.6 Rational Expressions

Introduction to Prerequisites
It’s a cold day in Antarctica. In fact, it’s always a cold day in Antarctica. Earth’s southernmost continent, Antarctica
experiences the coldest, driest, and windiest conditions known. The coldest temperature ever recorded, over one
hundred degrees below zero on the Celsius scale, was recorded by remote satellite. It is no surprise then, that no native
human population can survive the harsh conditions. Only explorers and scientists brave the environment for any length
of time.

Measuring and recording the characteristics of weather conditions in Antarctica requires a use of different kinds of
numbers. For tens of thousands of years, humans have undertaken methods to tally, track, and record numerical
information. While we don't know much about their usage, the Lebombo Bone (dated to about 35,000 BCE) and the
Ishango Bone (dated to about 20,000 BCE) are among the earliest mathematical artifacts. Found in Africa, their clearly
deliberate groupings of notches may have been used to track time, moon cycles, or other information. Performing
calculations with them and using the results to make predictions requires an understanding of relationships among
numbers. In this chapter, we will review sets of numbers and properties of operations used to manipulate numbers. This
understanding will serve as prerequisite knowledge throughout our study of algebra and trigonometry.

1.1 Real Numbers: Algebra Essentials
Learning Objectives
In this section, you will:

Classify a real number as a natural, whole, integer, rational, or irrational number.
Perform calculations using order of operations.
Use the following properties of real numbers: commutative, associative, distributive, inverse, and identity.
Evaluate algebraic expressions.
Simplify algebraic expressions.

PREREQUISITES1
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It is often said that mathematics is the language of science. If this is true, then an essential part of the language of
mathematics is numbers. The earliest use of numbers occurred 100 centuries ago in the Middle East to count, or
enumerate items. Farmers, cattle herders, and traders used tokens, stones, or markers to signify a single quantity—a
sheaf of grain, a head of livestock, or a fixed length of cloth, for example. Doing so made commerce possible, leading to
improved communications and the spread of civilization.

Three to four thousand years ago, Egyptians introduced fractions. They first used them to show reciprocals. Later, they
used them to represent the amount when a quantity was divided into equal parts.

But what if there were no cattle to trade or an entire crop of grain was lost in a flood? How could someone indicate the
existence of nothing? From earliest times, people had thought of a “base state” while counting and used various
symbols to represent this null condition. However, it was not until about the fifth century CE in India that zero was added
to the number system and used as a numeral in calculations.

Clearly, there was also a need for numbers to represent loss or debt. In India, in the seventh century CE, negative
numbers were used as solutions to mathematical equations and commercial debts. The opposites of the counting
numbers expanded the number system even further.

Because of the evolution of the number system, we can now perform complex calculations using these and other
categories of real numbers. In this section, we will explore sets of numbers, calculations with different kinds of numbers,
and the use of numbers in expressions.

Classifying a Real Number
The numbers we use for counting, or enumerating items, are the natural numbers: 1, 2, 3, 4, 5, and so on. We describe
them in set notation as where the ellipsis (…) indicates that the numbers continue to infinity. The natural
numbers are, of course, also called the counting numbers. Any time we enumerate the members of a team, count the
coins in a collection, or tally the trees in a grove, we are using the set of natural numbers. The set of whole numbers is
the set of natural numbers plus zero:

The set of integers adds the opposites of the natural numbers to the set of whole numbers:
It is useful to note that the set of integers is made up of three distinct subsets: negative

integers, zero, and positive integers. In this sense, the positive integers are just the natural numbers. Another way to
think about it is that the natural numbers are a subset of the integers.

The set of rational numbers is written as Notice from the definition that rational
numbers are fractions (or quotients) containing integers in both the numerator and the denominator, and the
denominator is never 0. We can also see that every natural number, whole number, and integer is a rational number
with a denominator of 1.

Because they are fractions, any rational number can also be expressed in decimal form. Any rational number can be
represented as either:

ⓐ a terminating decimal: or ⓑ a repeating decimal:
We use a line drawn over the repeating block of numbers instead of writing the group multiple times.

EXAMPLE 1

Writing Integers as Rational Numbers
Write each of the following as a rational number.

ⓐ 7 ⓑ 0 ⓒ –8
Solution

Write a fraction with the integer in the numerator and 1 in the denominator.

ⓐ ⓑ ⓒ

TRY IT #1 Write each of the following as a rational number.

ⓐ 11 ⓑ 3 ⓒ –4
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EXAMPLE 2

Identifying Rational Numbers
Write each of the following rational numbers as either a terminating or repeating decimal.

ⓐ ⓑ ⓒ
Solution

Write each fraction as a decimal by dividing the numerator by the denominator.

ⓐ a repeating decimal ⓑ (or 3.0), a terminating decimal

ⓒ a terminating decimal

TRY IT #2 Write each of the following rational numbers as either a terminating or repeating decimal.

ⓐ ⓑ ⓒ

Irrational Numbers
At some point in the ancient past, someone discovered that not all numbers are rational numbers. A builder, for
instance, may have found that the diagonal of a square with unit sides was not 2 or even but was something else. Or
a garment maker might have observed that the ratio of the circumference to the diameter of a roll of cloth was a little bit
more than 3, but still not a rational number. Such numbers are said to be irrational because they cannot be written as
fractions. These numbers make up the set of irrational numbers. Irrational numbers cannot be expressed as a fraction
of two integers. It is impossible to describe this set of numbers by a single rule except to say that a number is irrational if
it is not rational. So we write this as shown.

EXAMPLE 3

Differentiating Rational and Irrational Numbers
Determine whether each of the following numbers is rational or irrational. If it is rational, determine whether it is a
terminating or repeating decimal.

ⓐ ⓑ ⓒ ⓓ ⓔ
Solution

ⓐ This can be simplified as Therefore, is rational.

ⓑ Because it is a fraction of integers, is a rational number. Next, simplify and divide.

So, is rational and a repeating decimal.

ⓒ This cannot be simplified any further. Therefore, is an irrational number.

ⓓ Because it is a fraction of integers, is a rational number. Simplify and divide.

So, is rational and a terminating decimal.

ⓔ is not a terminating decimal. Also note that there is no repeating pattern because the group
of 3s increases each time. Therefore it is neither a terminating nor a repeating decimal and, hence, not a rational
number. It is an irrational number.
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TRY IT #3 Determine whether each of the following numbers is rational or irrational. If it is rational,
determine whether it is a terminating or repeating decimal.

ⓐ ⓑ ⓒ ⓓ ⓔ

Real Numbers
Given any number n, we know that n is either rational or irrational. It cannot be both. The sets of rational and irrational
numbers together make up the set of real numbers. As we saw with integers, the real numbers can be divided into
three subsets: negative real numbers, zero, and positive real numbers. Each subset includes fractions, decimals, and
irrational numbers according to their algebraic sign (+ or –). Zero is considered neither positive nor negative.

The real numbers can be visualized on a horizontal number line with an arbitrary point chosen as 0, with negative
numbers to the left of 0 and positive numbers to the right of 0. A fixed unit distance is then used to mark off each integer
(or other basic value) on either side of 0. Any real number corresponds to a unique position on the number line.The
converse is also true: Each location on the number line corresponds to exactly one real number. This is known as a one-
to-one correspondence. We refer to this as the real number line as shown in Figure 1.

Figure 1 The real number line

EXAMPLE 4

Classifying Real Numbers
Classify each number as either positive or negative and as either rational or irrational. Does the number lie to the left or
the right of 0 on the number line?

ⓐ ⓑ ⓒ ⓓ ⓔ
Solution

ⓐ is negative and rational. It lies to the left of 0 on the number line.

ⓑ is positive and irrational. It lies to the right of 0.

ⓒ is negative and rational. It lies to the left of 0.

ⓓ is negative and irrational. It lies to the left of 0.

ⓔ is a repeating decimal so it is rational and positive. It lies to the right of 0.

TRY IT #4 Classify each number as either positive or negative and as either rational or irrational. Does the
number lie to the left or the right of 0 on the number line?

ⓐ ⓑ ⓒ ⓓ ⓔ

Sets of Numbers as Subsets
Beginning with the natural numbers, we have expanded each set to form a larger set, meaning that there is a subset
relationship between the sets of numbers we have encountered so far. These relationships become more obvious when
seen as a diagram, such as Figure 2.
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Figure 2 Sets of numbers
N: the set of natural numbers
W: the set of whole numbers
I: the set of integers
Q: the set of rational numbers
Q´: the set of irrational numbers

Sets of Numbers

The set of natural numbers includes the numbers used for counting:

The set of whole numbers is the set of natural numbers plus zero:

The set of integers adds the negative natural numbers to the set of whole numbers:

The set of rational numbers includes fractions written as

The set of irrational numbers is the set of numbers that are not rational, are nonrepeating, and are nonterminating:

EXAMPLE 5

Differentiating the Sets of Numbers
Classify each number as being a natural number (N), whole number (W), integer (I), rational number (Q), and/or
irrational number (Q′).

ⓐ ⓑ ⓒ ⓓ ⓔ
Solution

N W I Q Q′

a. X X X X

b. X

c. X

d. –6 X X

e. 3.2121121112... X
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TRY IT #5 Classify each number as being a natural number (N), whole number (W), integer (I), rational
number (Q), and/or irrational number (Q′).

ⓐ ⓑ ⓒ ⓓ ⓔ

Performing Calculations Using the Order of Operations
When we multiply a number by itself, we square it or raise it to a power of 2. For example, We can raise
any number to any power. In general, the exponential notation means that the number or variable is used as a
factor times.

In this notation, is read as the nth power of or to the where is called the base and is called the exponent. A
term in exponential notation may be part of a mathematical expression, which is a combination of numbers and
operations. For example, is a mathematical expression.

To evaluate a mathematical expression, we perform the various operations. However, we do not perform them in any
random order. We use the order of operations. This is a sequence of rules for evaluating such expressions.

Recall that in mathematics we use parentheses ( ), brackets [ ], and braces { } to group numbers and expressions so that
anything appearing within the symbols is treated as a unit. Additionally, fraction bars, radicals, and absolute value bars
are treated as grouping symbols. When evaluating a mathematical expression, begin by simplifying expressions within
grouping symbols.

The next step is to address any exponents or radicals. Afterward, perform multiplication and division from left to right
and finally addition and subtraction from left to right.

Let’s take a look at the expression provided.

There are no grouping symbols, so we move on to exponents or radicals. The number 4 is raised to a power of 2, so
simplify as 16.

Next, perform multiplication or division, left to right.

Lastly, perform addition or subtraction, left to right.

Therefore,

For some complicated expressions, several passes through the order of operations will be needed. For instance, there
may be a radical expression inside parentheses that must be simplified before the parentheses are evaluated. Following
the order of operations ensures that anyone simplifying the same mathematical expression will get the same result.

Order of Operations

Operations in mathematical expressions must be evaluated in a systematic order, which can be simplified using the
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...

acronym PEMDAS:

P(arentheses)
E(xponents)
M(ultiplication) and D(ivision)
A(ddition) and S(ubtraction)

HOW TO

Given a mathematical expression, simplify it using the order of operations.

Step 1. Simplify any expressions within grouping symbols.
Step 2. Simplify any expressions containing exponents or radicals.
Step 3. Perform any multiplication and division in order, from left to right.
Step 4. Perform any addition and subtraction in order, from left to right.

EXAMPLE 6

Using the Order of Operations
Use the order of operations to evaluate each of the following expressions.

ⓐ ⓑ ⓒ ⓓ
ⓔ

Solution

ⓐ

ⓑ

Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third step, the
fraction bar is considered a grouping symbol so the numerator is considered to be grouped.

ⓒ
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ⓓ

In this example, the fraction bar separates the numerator and denominator, which we simplify separately until the
last step.

ⓔ

TRY IT #6 Use the order of operations to evaluate each of the following expressions.

ⓐ ⓑ ⓒ
ⓓ ⓔ

Using Properties of Real Numbers
For some activities we perform, the order of certain operations does not matter, but the order of other operations does.
For example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does
matter whether we put on shoes or socks first. The same thing is true for operations in mathematics.

Commutative Properties
The commutative property of addition states that numbers may be added in any order without affecting the sum.

We can better see this relationship when using real numbers.

Similarly, the commutative property of multiplication states that numbers may be multiplied in any order without
affecting the product.

Again, consider an example with real numbers.

It is important to note that neither subtraction nor division is commutative. For example, is not the same as
Similarly,

Associative Properties
The associative property of multiplication tells us that it does not matter how we group numbers when multiplying.
We can move the grouping symbols to make the calculation easier, and the product remains the same.

Consider this example.

The associative property of addition tells us that numbers may be grouped differently without affecting the sum.

This property can be especially helpful when dealing with negative integers. Consider this example.
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Are subtraction and division associative? Review these examples.

As we can see, neither subtraction nor division is associative.

Distributive Property
The distributive property states that the product of a factor times a sum is the sum of the factor times each term in the
sum.

This property combines both addition and multiplication (and is the only property to do so). Let us consider an example.

Note that 4 is outside the grouping symbols, so we distribute the 4 by multiplying it by 12, multiplying it by –7, and
adding the products.

To be more precise when describing this property, we say that multiplication distributes over addition. The reverse is not
true, as we can see in this example.

A special case of the distributive property occurs when a sum of terms is subtracted.

For example, consider the difference We can rewrite the difference of the two terms 12 and by
turning the subtraction expression into addition of the opposite. So instead of subtracting we add the opposite.

Now, distribute and simplify the result.

This seems like a lot of trouble for a simple sum, but it illustrates a powerful result that will be useful once we introduce
algebraic terms. To subtract a sum of terms, change the sign of each term and add the results. With this in mind, we can
rewrite the last example.

Identity Properties
The identity property of addition states that there is a unique number, called the additive identity (0) that, when added
to a number, results in the original number.

The identity property of multiplication states that there is a unique number, called the multiplicative identity (1) that,
when multiplied by a number, results in the original number.

For example, we have and There are no exceptions for these properties; they work for every
real number, including 0 and 1.
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Inverse Properties
The inverse property of addition states that, for every real number a, there is a unique number, called the additive
inverse (or opposite), denoted by (−a), that, when added to the original number, results in the additive identity, 0.

For example, if the additive inverse is 8, since

The inverse property of multiplication holds for all real numbers except 0 because the reciprocal of 0 is not defined.
The property states that, for every real number a, there is a unique number, called the multiplicative inverse (or
reciprocal), denoted that, when multiplied by the original number, results in the multiplicative identity, 1.

For example, if the reciprocal, denoted is because

Properties of Real Numbers

The following properties hold for real numbers a, b, and c.

Addition Multiplication

Commutative
Property

Associative
Property

Distributive
Property

Identity
Property

There exists a unique real number called the
additive identity, 0, such that, for any real

number a

There exists a unique real number called the
multiplicative identity, 1, such that, for any real

number a

Inverse
Property

Every real number a has an additive inverse,
or opposite, denoted –a, such that

Every nonzero real number a has a
multiplicative inverse, or reciprocal, denoted

such that

EXAMPLE 7

Using Properties of Real Numbers
Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.

ⓐ ⓑ ⓒ ⓓ ⓔ
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Solution

ⓐ

ⓑ

ⓒ

ⓓ

ⓔ

TRY IT #7 Use the properties of real numbers to rewrite and simplify each expression. State which
properties apply.

ⓐ ⓑ ⓒ
ⓓ ⓔ

Evaluating Algebraic Expressions
So far, the mathematical expressions we have seen have involved real numbers only. In mathematics, we may see
expressions such as or In the expression 5 is called a constant because it does not vary
and x is called a variable because it does. (In naming the variable, ignore any exponents or radicals containing the
variable.) An algebraic expression is a collection of constants and variables joined together by the algebraic operations
of addition, subtraction, multiplication, and division.

We have already seen some real number examples of exponential notation, a shorthand method of writing products of
the same factor. When variables are used, the constants and variables are treated the same way.

In each case, the exponent tells us how many factors of the base to use, whether the base consists of constants or
variables.

Any variable in an algebraic expression may take on or be assigned different values. When that happens, the value of the
algebraic expression changes. To evaluate an algebraic expression means to determine the value of the expression for a
given value of each variable in the expression. Replace each variable in the expression with the given value, then simplify
the resulting expression using the order of operations. If the algebraic expression contains more than one variable,
replace each variable with its assigned value and simplify the expression as before.
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EXAMPLE 8

Describing Algebraic Expressions
List the constants and variables for each algebraic expression.

ⓐ x + 5 ⓑ ⓒ
Solution

Constants Variables

a. x + 5 5 x

b.

c. 2

TRY IT #8 List the constants and variables for each algebraic expression.

ⓐ ⓑ 2(L + W) ⓒ

EXAMPLE 9

Evaluating an Algebraic Expression at Different Values
Evaluate the expression for each value for x.

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ Substitute 0 for ⓑ Substitute 1 for ⓒ Substitute for ⓓ Substitute for

TRY IT #9 Evaluate the expression for each value for y.

ⓐ ⓑ ⓒ ⓓ

EXAMPLE 10

Evaluating Algebraic Expressions
Evaluate each expression for the given values.

ⓐ for ⓑ for ⓒ for ⓓ for

ⓔ for
Solution

ⓐ Substitute for ⓑ Substitute 10 for ⓒ Substitute 5 for
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ⓓ Substitute 11 for and –8 for ⓔ Substitute 2 for and 3 for

TRY IT #10 Evaluate each expression for the given values.

ⓐ for ⓑ for ⓒ for

ⓓ for ⓔ for

Formulas
An equation is a mathematical statement indicating that two expressions are equal. The expressions can be numerical
or algebraic. The equation is not inherently true or false, but only a proposition. The values that make the equation true,
the solutions, are found using the properties of real numbers and other results. For example, the equation
has the solution of 3 because when we substitute 3 for in the equation, we obtain the true statement

A formula is an equation expressing a relationship between constant and variable quantities. Very often, the equation is
a means of finding the value of one quantity (often a single variable) in terms of another or other quantities. One of the
most common examples is the formula for finding the area of a circle in terms of the radius of the circle:
For any value of the area can be found by evaluating the expression

EXAMPLE 11

Using a Formula
A right circular cylinder with radius and height has the surface area (in square units) given by the formula

See Figure 3. Find the surface area of a cylinder with radius 6 in. and height 9 in. Leave the answer in
terms of

Figure 3 Right circular cylinder

Solution
Evaluate the expression for and

The surface area is square inches.

TRY IT #11 A photograph with length L and width W is placed in a mat of width 8 centimeters (cm). The area
of the mat (in square centimeters, or cm2) is found to be See
Figure 4. Find the area of a mat for a photograph with length 32 cm and width 24 cm.
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Figure 4

Simplifying Algebraic Expressions
Sometimes we can simplify an algebraic expression to make it easier to evaluate or to use in some other way. To do so,
we use the properties of real numbers. We can use the same properties in formulas because they contain algebraic
expressions.

EXAMPLE 12

Simplifying Algebraic Expressions
Simplify each algebraic expression.

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ

ⓑ

ⓒ

ⓓ

TRY IT #12 Simplify each algebraic expression.

ⓐ ⓑ ⓒ
ⓓ

EXAMPLE 13

Simplifying a Formula
A rectangle with length and width has a perimeter given by Simplify this expression.
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Solution

TRY IT #13 If the amount is deposited into an account paying simple interest for time the total value of
the deposit is given by Simplify the expression. (This formula will be explored in
more detail later in the course.)

MEDIA

Access these online resources for additional instruction and practice with real numbers.

Simplify an Expression. (http://openstax.org/l/simexpress)
Evaluate an Expression 1. (http://openstax.org/l/ordofoper1)
Evaluate an Expression 2. (http://openstax.org/l/ordofoper2)

1.1 SECTION EXERCISES
Verbal

1. Is an example of a
rational terminating,
rational repeating, or
irrational number? Tell why
it fits that category.

2. What is the order of
operations? What acronym
is used to describe the order
of operations, and what
does it stand for?

3. What do the Associative
Properties allow us to do
when following the order of
operations? Explain your
answer.

Numeric

For the following exercises, simplify the given expression.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.
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Algebraic

For the following exercises, evaluate the expressions using the given variable.

28. for 29. for 30. for

31. for 32. for 33. for

34. For the
for

35. for 36. for

37. for

For the following exercises, simplify the expression.

38. 39. 40.

41. 42. 43.

44. 45. 46.

47. 48. 49.

50. 51. 52.

Real-World Applications

For the following exercises, consider this scenario: Fred earns $40 at the community garden. He spends $10 on a
streaming subscription, puts half of what is left in a savings account, and gets another $5 for walking his neighbor’s dog.

53. Write the expression that represents the number
of dollars Fred keeps (and does not put in his
savings account). Remember the order of
operations.

54. How much money does Fred keep?

For the following exercises, solve the given problem.

55. According to the U.S. Mint, the diameter of a
quarter is 0.955 inches. The circumference of the
quarter would be the diameter multiplied by Is
the circumference of a quarter a whole number, a
rational number, or an irrational number?

56. Jessica and her roommate, Adriana, have decided
to share a change jar for joint expenses. Jessica
put her loose change in the jar first, and then
Adriana put her change in the jar. We know that it
does not matter in which order the change was
added to the jar. What property of addition
describes this fact?
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For the following exercises, consider this scenario: There is a mound of pounds of gravel in a quarry. Throughout the
day, 400 pounds of gravel is added to the mound. Two orders of 600 pounds are sold and the gravel is removed from the
mound. At the end of the day, the mound has 1,200 pounds of gravel.

57. Write the equation that describes the situation. 58. Solve for g.

For the following exercise, solve the given problem.

59. Ramon runs the marketing department at their
company. Their department gets a budget every
year, and every year, they must spend the entire
budget without going over. If they spend less than
the budget, then the department gets a smaller
budget the following year. At the beginning of this
year, Ramon got $2.5 million for the annual
marketing budget. They must spend the budget
such that What property of
addition tells us what the value of x must be?

Technology

For the following exercises, use a graphing calculator to solve for x. Round the answers to the nearest hundredth.

60. 61.

Extensions

62. If a whole number is not a
natural number, what must
the number be?

63. Determine whether the
statement is true or false:
The multiplicative inverse
of a rational number is also
rational.

64. Determine whether the
statement is true or false:
The product of a rational
and irrational number is
always irrational.

65. Determine whether the
simplified expression is
rational or irrational:

66. Determine whether the
simplified expression is
rational or irrational:

67. The division of two natural
numbers will always result
in what type of number?

68. What property of real
numbers would simplify
the following expression:
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1.2 Exponents and Scientific Notation
Learning Objectives
In this section, you will:

Use the product rule of exponents.
Use the quotient rule of exponents.
Use the power rule of exponents.
Use the zero exponent rule of exponents.
Use the negative rule of exponents.
Find the power of a product and a quotient.
Simplify exponential expressions.
Use scientific notation.

Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not be
obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be
perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536
pixels, which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits per
frame, and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information
used to film a one-hour (3,600-second) digital film is then an extremely large number.

Using a calculator, we enter and press ENTER. The calculator displays 1.304596316E13.
What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a maximum of
approximately bits of data in that one-hour film. In this section, we review rules of exponents first and then
apply them to calculations involving very large or small numbers.

Using the Product Rule of Exponents
Consider the product Both terms have the same base, x, but they are raised to different exponents. Expand each
expression, and then rewrite the resulting expression.

The result is that

Notice that the exponent of the product is the sum of the exponents of the terms. In other words, when multiplying
exponential expressions with the same base, we write the result with the common base and add the exponents. This is
the product rule of exponents.

Now consider an example with real numbers.

We can always check that this is true by simplifying each exponential expression. We find that is 8, is 16, and is
128. The product equals 128, so the relationship is true. We can use the product rule of exponents to simplify
expressions that are a product of two numbers or expressions with the same base but different exponents.

The Product Rule of Exponents

For any real number and natural numbers and the product rule of exponents states that

EXAMPLE 1

Using the Product Rule
Write each of the following products with a single base. Do not simplify further.
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ⓐ ⓑ ⓒ
Solution

Use the product rule to simplify each expression.

ⓐ ⓑ ⓒ
At first, it may appear that we cannot simplify a product of three factors. However, using the associative property of
multiplication, begin by simplifying the first two.

Notice we get the same result by adding the three exponents in one step.

TRY IT #1 Write each of the following products with a single base. Do not simplify further.

ⓐ ⓑ ⓒ

Using the Quotient Rule of Exponents
The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but

different exponents. In a similar way to the product rule, we can simplify an expression such as where

Consider the example Perform the division by canceling common factors.

Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend.

In other words, when dividing exponential expressions with the same base, we write the result with the common base
and subtract the exponents.

For the time being, we must be aware of the condition Otherwise, the difference could be zero or negative.
Those possibilities will be explored shortly. Also, instead of qualifying variables as nonzero each time, we will simplify
matters and assume from here on that all variables represent nonzero real numbers.

The Quotient Rule of Exponents

For any real number and natural numbers and such that the quotient rule of exponents states that

EXAMPLE 2

Using the Quotient Rule
Write each of the following products with a single base. Do not simplify further.
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ⓐ ⓑ ⓒ
Solution

Use the quotient rule to simplify each expression.

ⓐ ⓑ ⓒ

TRY IT #2 Write each of the following products with a single base. Do not simplify further.

ⓐ ⓑ ⓒ

Using the Power Rule of Exponents
Suppose an exponential expression is raised to some power. Can we simplify the result? Yes. To do this, we use the

power rule of exponents. Consider the expression The expression inside the parentheses is multiplied twice
because it has an exponent of 2. Then the result is multiplied three times because the entire expression has an exponent
of 3.

The exponent of the answer is the product of the exponents: In other words, when raising an
exponential expression to a power, we write the result with the common base and the product of the exponents.

Be careful to distinguish between uses of the product rule and the power rule. When using the product rule, different
terms with the same bases are raised to exponents. In this case, you add the exponents. When using the power rule, a
term in exponential notation is raised to a power. In this case, you multiply the exponents.

The Power Rule of Exponents

For any real number and positive integers and the power rule of exponents states that

EXAMPLE 3

Using the Power Rule
Write each of the following products with a single base. Do not simplify further.

ⓐ ⓑ ⓒ
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Solution
Use the power rule to simplify each expression.

ⓐ ⓑ ⓒ

TRY IT #3 Write each of the following products with a single base. Do not simplify further.

ⓐ ⓑ ⓒ

Using the Zero Exponent Rule of Exponents
Return to the quotient rule. We made the condition that so that the difference would never be zero or
negative. What would happen if In this case, we would use the zero exponent rule of exponents to simplify the
expression to 1. To see how this is done, let us begin with an example.

If we were to simplify the original expression using the quotient rule, we would have

If we equate the two answers, the result is This is true for any nonzero real number, or any variable representing
a real number.

The sole exception is the expression This appears later in more advanced courses, but for now, we will consider the
value to be undefined.

The Zero Exponent Rule of Exponents

For any nonzero real number the zero exponent rule of exponents states that

EXAMPLE 4

Using the Zero Exponent Rule
Simplify each expression using the zero exponent rule of exponents.

ⓐ ⓑ ⓒ ⓓ
Solution

Use the zero exponent and other rules to simplify each expression.

ⓐ

ⓑ
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ⓒ

ⓓ

TRY IT #4 Simplify each expression using the zero exponent rule of exponents.

ⓐ ⓑ ⓒ ⓓ

Using the Negative Rule of Exponents
Another useful result occurs if we relax the condition that in the quotient rule even further. For example, can we

simplify When —that is, where the difference is negative—we can use the negative rule of exponents to

simplify the expression to its reciprocal.

Divide one exponential expression by another with a larger exponent. Use our example,

If we were to simplify the original expression using the quotient rule, we would have

Putting the answers together, we have This is true for any nonzero real number, or any variable representing

a nonzero real number.
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A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction
bar—from numerator to denominator or vice versa.

We have shown that the exponential expression is defined when is a natural number, 0, or the negative of a natural
number. That means that is defined for any integer Also, the product and quotient rules and all of the rules we will
look at soon hold for any integer

The Negative Rule of Exponents

For any nonzero real number and natural number the negative rule of exponents states that

EXAMPLE 5

Using the Negative Exponent Rule
Write each of the following quotients with a single base. Do not simplify further. Write answers with positive exponents.

ⓐ ⓑ ⓒ
Solution

ⓐ ⓑ

ⓒ

TRY IT #5 Write each of the following quotients with a single base. Do not simplify further. Write answers
with positive exponents.

ⓐ ⓑ ⓒ

EXAMPLE 6

Using the Product and Quotient Rules
Write each of the following products with a single base. Do not simplify further. Write answers with positive exponents.

ⓐ ⓑ ⓒ
Solution

ⓐ ⓑ
ⓒ

TRY IT #6 Write each of the following products with a single base. Do not simplify further. Write answers
with positive exponents.

ⓐ ⓑ

Finding the Power of a Product
To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents,
which breaks up the power of a product of factors into the product of the powers of the factors. For instance, consider

We begin by using the associative and commutative properties of multiplication to regroup the factors.
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In other words,

The Power of a Product Rule of Exponents

For any real numbers and and any integer the power of a product rule of exponents states that

EXAMPLE 7

Using the Power of a Product Rule
Simplify each of the following products as much as possible using the power of a product rule. Write answers with
positive exponents.

ⓐ ⓑ ⓒ ⓓ ⓔ
Solution

Use the product and quotient rules and the new definitions to simplify each expression.

ⓐ ⓑ
ⓒ ⓓ
ⓔ

TRY IT #7 Simplify each of the following products as much as possible using the power of a product rule.
Write answers with positive exponents.

ⓐ ⓑ ⓒ ⓓ ⓔ

Finding the Power of a Quotient
To simplify the power of a quotient of two expressions, we can use the power of a quotient rule, which states that the
power of a quotient of factors is the quotient of the powers of the factors. For example, let’s look at the following
example.

Let’s rewrite the original problem differently and look at the result.

It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule.
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The Power of a Quotient Rule of Exponents

For any real numbers and and any integer the power of a quotient rule of exponents states that

EXAMPLE 8

Using the Power of a Quotient Rule
Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers with
positive exponents.

ⓐ ⓑ ⓒ ⓓ ⓔ
Solution

ⓐ ⓑ

ⓒ ⓓ

ⓔ

TRY IT #8 Simplify each of the following quotients as much as possible using the power of a quotient rule.
Write answers with positive exponents.

ⓐ ⓑ ⓒ ⓓ ⓔ

Simplifying Exponential Expressions
Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the
expression more simply with fewer terms. The rules for exponents may be combined to simplify expressions.

EXAMPLE 9

Simplifying Exponential Expressions
Simplify each expression and write the answer with positive exponents only.

ⓐ ⓑ ⓒ ⓓ

ⓔ ⓕ
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Solution

ⓐ

ⓑ

ⓒ

ⓓ

ⓔ

ⓕ

TRY IT #9 Simplify each expression and write the answer with positive exponents only.

ⓐ ⓑ ⓒ ⓓ

ⓔ ⓕ

Using Scientific Notation
Recall at the beginning of the section that we found the number when describing bits of information in digital
images. Other extreme numbers include the width of a human hair, which is about 0.00005 m, and the radius of an
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electron, which is about 0.00000000000047 m. How can we effectively work read, compare, and calculate with numbers
such as these?

A shorthand method of writing very small and very large numbers is called scientific notation, in which we express
numbers in terms of exponents of 10. To write a number in scientific notation, move the decimal point to the right of the
first digit in the number. Write the digits as a decimal number between 1 and 10. Count the number of places n that you
moved the decimal point. Multiply the decimal number by 10 raised to a power of n. If you moved the decimal left as in a
very large number, is positive. If you moved the decimal right as in a small large number, is negative.

For example, consider the number 2,780,418. Move the decimal left until it is to the right of the first nonzero digit, which
is 2.

We obtain 2.780418 by moving the decimal point 6 places to the left. Therefore, the exponent of 10 is 6, and it is positive
because we moved the decimal point to the left. This is what we should expect for a large number.

Working with small numbers is similar. Take, for example, the radius of an electron, 0.00000000000047 m. Perform the
same series of steps as above, except move the decimal point to the right.

Be careful not to include the leading 0 in your count. We move the decimal point 13 places to the right, so the exponent
of 10 is 13. The exponent is negative because we moved the decimal point to the right. This is what we should expect for
a small number.

Scientific Notation

A number is written in scientific notation if it is written in the form where and is an integer.

EXAMPLE 10

Converting Standard Notation to Scientific Notation
Write each number in scientific notation.

ⓐ Distance to Andromeda Galaxy from Earth: 24,000,000,000,000,000,000,000 m

ⓑ Diameter of Andromeda Galaxy: 1,300,000,000,000,000,000,000 m

ⓒ Number of stars in Andromeda Galaxy: 1,000,000,000,000

ⓓ Diameter of electron: 0.00000000000094 m

ⓔ Probability of being struck by lightning in any single year: 0.00000143

Solution

ⓐ

ⓑ
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ⓒ

ⓓ

ⓔ

Analysis
Observe that, if the given number is greater than 1, as in examples a–c, the exponent of 10 is positive; and if the number
is less than 1, as in examples d–e, the exponent is negative.

TRY IT #10 Write each number in scientific notation.

ⓐ U.S. national debt per taxpayer (April 2014): $152,000

ⓑ World population (April 2014): 7,158,000,000

ⓒ World gross national income (April 2014): $85,500,000,000,000

ⓓ Time for light to travel 1 m: 0.00000000334 s

ⓔ Probability of winning lottery (match 6 of 49 possible numbers): 0.0000000715

Converting from Scientific to Standard Notation
To convert a number in scientific notation to standard notation, simply reverse the process. Move the decimal places
to the right if is positive or places to the left if is negative and add zeros as needed. Remember, if is positive, the
value of the number is greater than 1, and if is negative, the value of the number is less than one.

EXAMPLE 11

Converting Scientific Notation to Standard Notation
Convert each number in scientific notation to standard notation.

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ ⓑ ⓒ ⓓ
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TRY IT #11 Convert each number in scientific notation to standard notation.

ⓐ ⓑ ⓒ ⓓ
Using Scientific Notation in Applications
Scientific notation, used with the rules of exponents, makes calculating with large or small numbers much easier than
doing so using standard notation. For example, suppose we are asked to calculate the number of atoms in 1 L of water.
Each water molecule contains 3 atoms (2 hydrogen and 1 oxygen). The average drop of water contains around

molecules of water and 1 L of water holds about average drops. Therefore, there are
approximately atoms in 1 L of water. We simply multiply the decimal
terms and add the exponents. Imagine having to perform the calculation without using scientific notation!

When performing calculations with scientific notation, be sure to write the answer in proper scientific notation. For
example, consider the product The answer is not in proper scientific notation
because 35 is greater than 10. Consider 35 as That adds a ten to the exponent of the answer.

EXAMPLE 12

Using Scientific Notation
Perform the operations and write the answer in scientific notation.

ⓐ ⓑ ⓒ
ⓓ ⓔ

Solution

ⓐ

ⓑ

ⓒ

ⓓ

ⓔ

TRY IT #12 Perform the operations and write the answer in scientific notation.
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ⓐ ⓑ
ⓒ ⓓ
ⓔ

EXAMPLE 13

Applying Scientific Notation to Solve Problems
In April 2014, the population of the United States was about 308,000,000 people. The national debt was about
$17,547,000,000,000. Write each number in scientific notation, rounding figures to two decimal places, and find the
amount of the debt per U.S. citizen. Write the answer in both scientific and standard notations.

Solution
The population was

The national debt was

To find the amount of debt per citizen, divide the national debt by the number of citizens.

The debt per citizen at the time was about or $57,000.

TRY IT #13 An average human body contains around 30,000,000,000,000 red blood cells. Each cell measures
approximately 0.000008 m long. Write each number in scientific notation and find the total length
if the cells were laid end-to-end. Write the answer in both scientific and standard notations.

MEDIA

Access these online resources for additional instruction and practice with exponents and scientific notation.

Exponential Notation (http://openstax.org/l/exponnot)
Properties of Exponents (http://openstax.org/l/exponprops)
Zero Exponent (http://openstax.org/l/zeroexponent)
Simplify Exponent Expressions (http://openstax.org/l/exponexpres)
Quotient Rule for Exponents (http://openstax.org/l/quotofexpon)
Scientific Notation (http://openstax.org/l/scientificnota)
Converting to Decimal Notation (http://openstax.org/l/decimalnota)

1.2 SECTION EXERCISES
Verbal

1. Is the same as
Explain.

2. When can you add two
exponents?

3. What is the purpose of
scientific notation?

4. Explain what a negative
exponent does.
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Numeric

For the following exercises, simplify the given expression. Write answers with positive exponents.

5. 6. 7.

8. 9. 10.

11. 12. 13.

14.

For the following exercises, write each expression with a single base. Do not simplify further. Write answers with positive
exponents.

15. 16. 17.

18. 19. 20.

For the following exercises, express the decimal in scientific notation.

21. 0.0000314 22. 148,000,000

For the following exercises, convert each number in scientific notation to standard notation.

23. 24.

Algebraic

For the following exercises, simplify the given expression. Write answers with positive exponents.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.
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43.

Real-World Applications

44. To reach escape velocity, a
rocket must travel at the
rate of ft/min.
Rewrite the rate in
standard notation.

45. A dime is the thinnest coin
in U.S. currency. A dime’s
thickness measures

m. Rewrite the
number in standard
notation.

46. The average distance
between Earth and the Sun
is 92,960,000 mi. Rewrite
the distance using scientific
notation.

47. A terabyte is made of
approximately
1,099,500,000,000 bytes.
Rewrite in scientific
notation.

48. The Gross Domestic
Product (GDP) for the
United States in the first
quarter of 2014 was

Rewrite
the GDP in standard
notation.

49. One picometer is
approximately

in. Rewrite
this length using standard
notation.

50. The value of the services
sector of the U.S. economy
in the first quarter of 2012
was $10,633.6 billion.
Rewrite this amount in
scientific notation.

Technology

For the following exercises, use a graphing calculator to simplify. Round the answers to the nearest hundredth.

51. 52.

Extensions

For the following exercises, simplify the given expression. Write answers with positive exponents.

53. 54. 55.

56. 57. 58. Avogadro’s constant is
used to calculate the
number of particles in a
mole. A mole is a basic unit
in chemistry to measure
the amount of a substance.
The constant is

Write
Avogadro’s constant in
standard notation.
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59. Planck’s constant is an
important unit of measure
in quantum physics. It
describes the relationship
between energy and
frequency. The constant is
written as

Write
Planck’s constant in
standard notation.

1.3 Radicals and Rational Exponents
Learning Objectives
In this section, you will:

Evaluate square roots.
Use the product rule to simplify square roots.
Use the quotient rule to simplify square roots.
Add and subtract square roots.
Rationalize denominators.
Use rational roots.

A hardware store sells 16-ft ladders and 24-ft ladders. A window is located 12 feet above the ground. A ladder needs to
be purchased that will reach the window from a point on the ground 5 feet from the building. To find out the length of
ladder needed, we can draw a right triangle as shown in Figure 1, and use the Pythagorean Theorem.

Figure 1

Now, we need to find out the length that, when squared, is 169, to determine which ladder to choose. In other words, we
need to find a square root. In this section, we will investigate methods of finding solutions to problems such as this one.

Evaluating Square Roots
When the square root of a number is squared, the result is the original number. Since the square root of is
The square root function is the inverse of the squaring function just as subtraction is the inverse of addition. To undo
squaring, we take the square root.

In general terms, if is a positive real number, then the square root of is a number that, when multiplied by itself,
gives The square root could be positive or negative because multiplying two negative numbers gives a positive
number. The principal square root is the nonnegative number that when multiplied by itself equals The square root
obtained using a calculator is the principal square root.

The principal square root of is written as The symbol is called a radical, the term under the symbol is called the
radicand, and the entire expression is called a radical expression.
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Principal Square Root

The principal square root of is the nonnegative number that, when multiplied by itself, equals It is written as a
radical expression, with a symbol called a radical over the term called the radicand:

Q&A Does

No. Although both and are the radical symbol implies only a nonnegative root, the principal
square root. The principal square root of 25 is

EXAMPLE 1

Evaluating Square Roots
Evaluate each expression.

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ because ⓑ because and

ⓒ because ⓓ because and

Q&A For can we find the square roots before adding?

No. This is not equivalent to The order of operations
requires us to add the terms in the radicand before finding the square root.

TRY IT #1 Evaluate each expression.

ⓐ ⓑ ⓒ ⓓ

Using the Product Rule to Simplify Square Roots
To simplify a square root, we rewrite it such that there are no perfect squares in the radicand. There are several
properties of square roots that allow us to simplify complicated radical expressions. The first rule we will look at is the
product rule for simplifying square roots, which allows us to separate the square root of a product of two numbers into
the product of two separate rational expressions. For instance, we can rewrite as We can also use the
product rule to express the product of multiple radical expressions as a single radical expression.

The Product Rule for Simplifying Square Roots

If and are nonnegative, the square root of the product is equal to the product of the square roots of and

HOW TO

Given a square root radical expression, use the product rule to simplify it.
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1. Factor any perfect squares from the radicand.
2. Write the radical expression as a product of radical expressions.
3. Simplify.

EXAMPLE 2

Using the Product Rule to Simplify Square Roots
Simplify the radical expression.

ⓐ ⓑ
Solution

ⓐ

ⓑ

TRY IT #2 Simplify

HOW TO

Given the product of multiple radical expressions, use the product rule to combine them into one radical
expression.

1. Express the product of multiple radical expressions as a single radical expression.
2. Simplify.

EXAMPLE 3

Using the Product Rule to Simplify the Product of Multiple Square Roots
Simplify the radical expression.

Solution

TRY IT #3 Simplify assuming

Using the Quotient Rule to Simplify Square Roots
Just as we can rewrite the square root of a product as a product of square roots, so too can we rewrite the square root of
a quotient as a quotient of square roots, using the quotient rule for simplifying square roots. It can be helpful to
separate the numerator and denominator of a fraction under a radical so that we can take their square roots separately.
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We can rewrite as

The Quotient Rule for Simplifying Square Roots

The square root of the quotient is equal to the quotient of the square roots of and where

HOW TO

Given a radical expression, use the quotient rule to simplify it.

1. Write the radical expression as the quotient of two radical expressions.
2. Simplify the numerator and denominator.

EXAMPLE 4

Using the Quotient Rule to Simplify Square Roots
Simplify the radical expression.

Solution

TRY IT #4 Simplify

EXAMPLE 5

Using the Quotient Rule to Simplify an Expression with Two Square Roots
Simplify the radical expression.

Solution

TRY IT #5 Simplify
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Adding and Subtracting Square Roots
We can add or subtract radical expressions only when they have the same radicand and when they have the same radical
type such as square roots. For example, the sum of and is However, it is often possible to simplify radical
expressions, and that may change the radicand. The radical expression can be written with a in the radicand, as

so

HOW TO

Given a radical expression requiring addition or subtraction of square roots, simplify.

1. Simplify each radical expression.
2. Add or subtract expressions with equal radicands.

EXAMPLE 6

Adding Square Roots
Add

Solution
We can rewrite as According the product rule, this becomes The square root of is 2, so the
expression becomes which is Now the terms have the same radicand so we can add.

TRY IT #6 Add

EXAMPLE 7

Subtracting Square Roots

Subtract

Solution
Rewrite each term so they have equal radicands.

Now the terms have the same radicand so we can subtract.

TRY IT #7 Subtract
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Rationalizing Denominators
When an expression involving square root radicals is written in simplest form, it will not contain a radical in the
denominator. We can remove radicals from the denominators of fractions using a process called rationalizing the
denominator.

We know that multiplying by 1 does not change the value of an expression. We use this property of multiplication to
change expressions that contain radicals in the denominator. To remove radicals from the denominators of fractions,
multiply by the form of 1 that will eliminate the radical.

For a denominator containing a single term, multiply by the radical in the denominator over itself. In other words, if the

denominator is multiply by

For a denominator containing the sum or difference of a rational and an irrational term, multiply the numerator and
denominator by the conjugate of the denominator, which is found by changing the sign of the radical portion of the
denominator. If the denominator is then the conjugate is

HOW TO

Given an expression with a single square root radical term in the denominator, rationalize the denominator.

a. Multiply the numerator and denominator by the radical in the denominator.
b. Simplify.

EXAMPLE 8

Rationalizing a Denominator Containing a Single Term

Write in simplest form.

Solution

The radical in the denominator is So multiply the fraction by Then simplify.

TRY IT #8 Write in simplest form.

HOW TO

Given an expression with a radical term and a constant in the denominator, rationalize the denominator.

1. Find the conjugate of the denominator.
2. Multiply the numerator and denominator by the conjugate.
3. Use the distributive property.
4. Simplify.
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EXAMPLE 9

Rationalizing a Denominator Containing Two Terms
Write in simplest form.

Solution
Begin by finding the conjugate of the denominator by writing the denominator and changing the sign. So the conjugate

of is Then multiply the fraction by

TRY IT #9 Write in simplest form.

Using Rational Roots
Although square roots are the most common rational roots, we can also find cube roots, 4th roots, 5th roots, and more.
Just as the square root function is the inverse of the squaring function, these roots are the inverse of their respective
power functions. These functions can be useful when we need to determine the number that, when raised to a certain
power, gives a certain number.

Understanding nth Roots
Suppose we know that We want to find what number raised to the 3rd power is equal to 8. Since we say
that 2 is the cube root of 8.

The nth root of is a number that, when raised to the nth power, gives For example, is the 5th root of
because If is a real number with at least one nth root, then the principal nth root of is the number
with the same sign as that, when raised to the nth power, equals

The principal nth root of is written as where is a positive integer greater than or equal to 2. In the radical
expression, is called the index of the radical.

Principal th Root

If is a real number with at least one nth root, then the principal nth root of written as is the number with
the same sign as that, when raised to the nth power, equals The index of the radical is

EXAMPLE 10

Simplifying nth Roots
Simplify each of the following:

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ because

ⓑ First, express the product as a single radical expression. because

ⓒ
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ⓓ

TRY IT #10 Simplify.

ⓐ ⓑ ⓒ

Using Rational Exponents
Radical expressions can also be written without using the radical symbol. We can use rational (fractional) exponents.
The index must be a positive integer. If the index is even, then cannot be negative.

We can also have rational exponents with numerators other than 1. In these cases, the exponent must be a fraction in
lowest terms. We raise the base to a power and take an nth root. The numerator tells us the power and the denominator
tells us the root.

All of the properties of exponents that we learned for integer exponents also hold for rational exponents.

Rational Exponents

Rational exponents are another way to express principal nth roots. The general form for converting between a radical
expression with a radical symbol and one with a rational exponent is

HOW TO

Given an expression with a rational exponent, write the expression as a radical.

1. Determine the power by looking at the numerator of the exponent.
2. Determine the root by looking at the denominator of the exponent.
3. Using the base as the radicand, raise the radicand to the power and use the root as the index.

EXAMPLE 11

Writing Rational Exponents as Radicals

Write as a radical. Simplify.

Solution
The 2 tells us the power and the 3 tells us the root.

We know that because Because the cube root is easy to find, it is easiest to find the cube root
before squaring for this problem. In general, it is easier to find the root first and then raise it to a power.
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TRY IT #11 Write as a radical. Simplify.

EXAMPLE 12

Writing Radicals as Rational Exponents
Write using a rational exponent.

Solution
The power is 2 and the root is 7, so the rational exponent will be We get Using properties of exponents, we get

TRY IT #12 Write using a rational exponent.

EXAMPLE 13

Simplifying Rational Exponents
Simplify:

ⓐ ⓑ
Solution

ⓐ

ⓑ
  

  

  

  

TRY IT #13 Simplify

MEDIA

Access these online resources for additional instruction and practice with radicals and rational exponents.

Radicals (http://openstax.org/l/introradical)
Rational Exponents (http://openstax.org/l/rationexpon)
Simplify Radicals (http://openstax.org/l/simpradical)
Rationalize Denominator (http://openstax.org/l/rationdenom)
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1.3 SECTION EXERCISES
Verbal

1. What does it mean when a
radical does not have an
index? Is the expression
equal to the radicand?
Explain.

2. Where would radicals come
in the order of operations?
Explain why.

3. Every number will have two
square roots. What is the
principal square root?

4. Can a radical with a negative
radicand have a real square
root? Why or why not?

Numeric

For the following exercises, simplify each expression.

5. 6. 7.

8. 9. 10.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33. 34.
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Algebraic

For the following exercises, simplify each expression.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44. 45. 46.

47. 48. 49.

50. 51. 52.

53. 54. 55.

56. 57. 58.

59. 60. 61.

62. 63. 64.

Real-World Applications

65. A guy wire for a suspension bridge runs from the
ground diagonally to the top of the closest pylon
to make a triangle. We can use the Pythagorean
Theorem to find the length of guy wire needed.
The square of the distance between the wire on
the ground and the pylon on the ground is 90,000
feet. The square of the height of the pylon is
160,000 feet. So the length of the guy wire can be
found by evaluating What is
the length of the guy wire?

66. A car accelerates at a rate of where

t is the time in seconds after the car moves from
rest. Simplify the expression.
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Extensions

For the following exercises, simplify each expression.

67. 68. 69.

70. 71. 72.

73.

1.4 Polynomials
Learning Objectives
In this section, you will:

Identify the degree and leading coefficient of polynomials.
Add and subtract polynomials.
Multiply polynomials.
Use FOIL to multiply binomials.
Perform operations with polynomials of several variables.

Maahi is building a little free library (a small house-shaped book repository), whose front is in the shape of a square
topped with a triangle. There will be a rectangular door through which people can take and donate books. Maahi wants
to find the area of the front of the library so that they can purchase the correct amount of paint. Using the
measurements of the front of the house, shown in Figure 1, we can create an expression that combines several variable
terms, allowing us to solve this problem and others like it.

Figure 1

First find the area of the square in square feet.

Then find the area of the triangle in square feet.

Next find the area of the rectangular door in square feet.
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The area of the front of the library can be found by adding the areas of the square and the triangle, and then subtracting
the area of the rectangle. When we do this, we get or ft2.

In this section, we will examine expressions such as this one, which combine several variable terms.

Identifying the Degree and Leading Coefficient of Polynomials
The formula just found is an example of a polynomial, which is a sum of or difference of terms, each consisting of a
variable raised to a nonnegative integer power. A number multiplied by a variable raised to an exponent, such as
is known as a coefficient. Coefficients can be positive, negative, or zero, and can be whole numbers, decimals, or
fractions. Each product such as is a term of a polynomial. If a term does not contain a variable, it is called
a constant.

A polynomial containing only one term, such as is called a monomial. A polynomial containing two terms, such as
is called a binomial. A polynomial containing three terms, such as is called a trinomial.

We can find the degree of a polynomial by identifying the highest power of the variable that occurs in the polynomial.
The term with the highest degree is called the leading term because it is usually written first. The coefficient of the
leading term is called the leading coefficient. When a polynomial is written so that the powers are descending, we say
that it is in standard form.

Polynomials

A polynomial is an expression that can be written in the form

Each real number ai is called a coefficient. The number that is not multiplied by a variable is called a constant.
Each product is a term of a polynomial. The highest power of the variable that occurs in the polynomial is called
the degree of a polynomial. The leading term is the term with the highest power, and its coefficient is called the
leading coefficient.

HOW TO

Given a polynomial expression, identify the degree and leading coefficient.

1. Find the highest power of x to determine the degree.
2. Identify the term containing the highest power of x to find the leading term.
3. Identify the coefficient of the leading term.

EXAMPLE 1

Identifying the Degree and Leading Coefficient of a Polynomial
For the following polynomials, identify the degree, the leading term, and the leading coefficient.

ⓐ ⓑ ⓒ
Solution

ⓐ The highest power of x is 3, so the degree is 3. The leading term is the term containing that degree, The
leading coefficient is the coefficient of that term,

ⓑ The highest power of t is so the degree is The leading term is the term containing that degree, The
leading coefficient is the coefficient of that term,
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ⓒ The highest power of p is so the degree is The leading term is the term containing that degree, The
leading coefficient is the coefficient of that term,

TRY IT #1 Identify the degree, leading term, and leading coefficient of the polynomial

Adding and Subtracting Polynomials
We can add and subtract polynomials by combining like terms, which are terms that contain the same variables raised to
the same exponents. For example, and are like terms, and can be added to get but and are not
like terms, and therefore cannot be added.

HOW TO

Given multiple polynomials, add or subtract them to simplify the expressions.

1. Combine like terms.
2. Simplify and write in standard form.

EXAMPLE 2

Adding Polynomials
Find the sum.

Solution

  

  

Analysis
We can check our answers to these types of problems using a graphing calculator. To check, graph the problem as given
along with the simplified answer. The two graphs should be equivalent. Be sure to use the same window to compare the
graphs. Using different windows can make the expressions seem equivalent when they are not.

TRY IT #2 Find the sum.

EXAMPLE 3

Subtracting Polynomials
Find the difference.

Solution

Analysis
Note that finding the difference between two polynomials is the same as adding the opposite of the second polynomial

52 1 • Prerequisites

Access for free at openstax.org



...

to the first.

TRY IT #3 Find the difference.

Multiplying Polynomials
Multiplying polynomials is a bit more challenging than adding and subtracting polynomials. We must use the distributive
property to multiply each term in the first polynomial by each term in the second polynomial. We then combine like
terms. We can also use a shortcut called the FOIL method when multiplying binomials. Certain special products follow
patterns that we can memorize and use instead of multiplying the polynomials by hand each time. We will look at a
variety of ways to multiply polynomials.

Multiplying Polynomials Using the Distributive Property
To multiply a number by a polynomial, we use the distributive property. The number must be distributed to each term of
the polynomial. We can distribute the in to obtain the equivalent expression When multiplying
polynomials, the distributive property allows us to multiply each term of the first polynomial by each term of the second.
We then add the products together and combine like terms to simplify.

HOW TO

Given the multiplication of two polynomials, use the distributive property to simplify the expression.

1. Multiply each term of the first polynomial by each term of the second.
2. Combine like terms.
3. Simplify.

EXAMPLE 4

Multiplying Polynomials Using the Distributive Property
Find the product.

Solution

  

  

  

  

Analysis
We can use a table to keep track of our work, as shown in Table 1. Write one polynomial across the top and the other
down the side. For each box in the table, multiply the term for that row by the term for that column. Then add all of the
terms together, combine like terms, and simplify.

Table 1
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Table 1

TRY IT #4 Find the product.

Using FOIL to Multiply Binomials
A shortcut called FOIL is sometimes used to find the product of two binomials. It is called FOIL because we multiply the
first terms, the outer terms, the inner terms, and then the last terms of each binomial.

The FOIL method arises out of the distributive property. We are simply multiplying each term of the first binomial by
each term of the second binomial, and then combining like terms.

HOW TO

Given two binomials, use FOIL to simplify the expression.

1. Multiply the first terms of each binomial.
2. Multiply the outer terms of the binomials.
3. Multiply the inner terms of the binomials.
4. Multiply the last terms of each binomial.
5. Add the products.
6. Combine like terms and simplify.

EXAMPLE 5

Using FOIL to Multiply Binomials
Use FOIL to find the product.

Solution
Find the product of the first terms.

Find the product of the outer terms.

Find the product of the inner terms.

Find the product of the last terms.
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TRY IT #5 Use FOIL to find the product.

Perfect Square Trinomials
Certain binomial products have special forms. When a binomial is squared, the result is called a perfect square
trinomial. We can find the square by multiplying the binomial by itself. However, there is a special form that each of
these perfect square trinomials takes, and memorizing the form makes squaring binomials much easier and faster. Let’s
look at a few perfect square trinomials to familiarize ourselves with the form.

Notice that the first term of each trinomial is the square of the first term of the binomial and, similarly, the last term of
each trinomial is the square of the last term of the binomial. The middle term is double the product of the two terms.
Lastly, we see that the first sign of the trinomial is the same as the sign of the binomial.

Perfect Square Trinomials

When a binomial is squared, the result is the first term squared added to double the product of both terms and the
last term squared.

HOW TO

Given a binomial, square it using the formula for perfect square trinomials.

1. Square the first term of the binomial.
2. Square the last term of the binomial.
3. For the middle term of the trinomial, double the product of the two terms.
4. Add and simplify.

EXAMPLE 6

Expanding Perfect Squares
Expand

Solution
Begin by squaring the first term and the last term. For the middle term of the trinomial, double the product of the two
terms.

Simplify.
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TRY IT #6 Expand

Difference of Squares
Another special product is called the difference of squares, which occurs when we multiply a binomial by another
binomial with the same terms but the opposite sign. Let’s see what happens when we multiply using the
FOIL method.

The middle term drops out, resulting in a difference of squares. Just as we did with the perfect squares, let’s look at a few
examples.

Because the sign changes in the second binomial, the outer and inner terms cancel each other out, and we are left only
with the square of the first term minus the square of the last term.

Q&A Is there a special form for the sum of squares?

No. The difference of squares occurs because the opposite signs of the binomials cause the middle terms
to disappear. There are no two binomials that multiply to equal a sum of squares.

Difference of Squares

When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the
square of the first term minus the square of the last term.

HOW TO

Given a binomial multiplied by a binomial with the same terms but the opposite sign, find the difference of
squares.

1. Square the first term of the binomials.
2. Square the last term of the binomials.
3. Subtract the square of the last term from the square of the first term.

EXAMPLE 7

Multiplying Binomials Resulting in a Difference of Squares
Multiply

Solution
Square the first term to get Square the last term to get Subtract the square of the last term from
the square of the first term to find the product of
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TRY IT #7 Multiply

Performing Operations with Polynomials of Several Variables
We have looked at polynomials containing only one variable. However, a polynomial can contain several variables. All of
the same rules apply when working with polynomials containing several variables. Consider an example:

EXAMPLE 8

Multiplying Polynomials Containing Several Variables
Multiply

Solution
Follow the same steps that we used to multiply polynomials containing only one variable.

TRY IT #8 Multiply

MEDIA

Access these online resources for additional instruction and practice with polynomials.

Adding and Subtracting Polynomials (http://openstax.org/l/addsubpoly)
Multiplying Polynomials (http://openstax.org/l/multiplpoly)
Special Products of Polynomials (http://openstax.org/l/specialpolyprod)

1.4 SECTION EXERCISES
Verbal

1. Evaluate the following
statement: The degree of a
polynomial in standard form
is the exponent of the
leading term. Explain why
the statement is true or
false.

2. Many times, multiplying two
binomials with two variables
results in a trinomial. This is
not the case when there is a
difference of two squares.
Explain why the product in
this case is also a binomial.

3. You can multiply
polynomials with any
number of terms and any
number of variables using
four basic steps over and
over until you reach the
expanded polynomial. What
are the four steps?

4. State whether the following
statement is true and
explain why or why not: A
trinomial is always a higher
degree than a monomial.
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Algebraic

For the following exercises, identify the degree of the polynomial.

5. 6. 7.

8. 9. 10.

For the following exercises, find the sum or difference.

11. 12.

13. 14.

15. 16.

For the following exercises, find the product.

17. 18. 19.

20. 21. 22.

23.

For the following exercises, expand the binomial.

24. 25. 26.

27. 28. 29.

30.

For the following exercises, multiply the binomials.

31. 32. 33.

34. 35. 36.

37.

For the following exercises, multiply the polynomials.

38. 39. 40.

41. 42. 43.

44. 45. 46.
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47. 48. 49.

50. 51. 52.

Real-World Applications

53. A developer wants to purchase a plot of land to
build a house. The area of the plot can be
described by the following expression:

where x is measured in meters.
Multiply the binomials to find the area of the plot
in standard form.

54. A prospective buyer wants to know how much
grain a specific silo can hold. The area of the floor
of the silo is The height of the silo is

where x is measured in feet. Expand the
square and multiply by the height to find the
expression that shows how much grain the silo
can hold.

Extensions

For the following exercises, perform the given operations.

55. 56. 57.

1.5 Factoring Polynomials
Learning Objectives
In this section, you will:

Factor the greatest common factor of a polynomial.
Factor a trinomial.
Factor by grouping.
Factor a perfect square trinomial.
Factor a difference of squares.
Factor the sum and difference of cubes.
Factor expressions using fractional or negative exponents.

Imagine that we are trying to find the area of a lawn so that we can determine how much grass seed to purchase. The
lawn is the green portion in Figure 1.

Figure 1

The area of the entire region can be found using the formula for the area of a rectangle.

The areas of the portions that do not require grass seed need to be subtracted from the area of the entire region. The
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two square regions each have an area of units2. The other rectangular region has one side of length
and one side of length giving an area of units2. So the region that must be

subtracted has an area of units2.

The area of the region that requires grass seed is found by subtracting units2. This area can also be
expressed in factored form as units2. We can confirm that this is an equivalent expression by multiplying.

Many polynomial expressions can be written in simpler forms by factoring. In this section, we will look at a variety of
methods that can be used to factor polynomial expressions.

Factoring the Greatest Common Factor of a Polynomial
When we study fractions, we learn that the greatest common factor (GCF) of two numbers is the largest number that
divides evenly into both numbers. For instance, is the GCF of and because it is the largest number that divides
evenly into both and The GCF of polynomials works the same way: is the GCF of and because it is the
largest polynomial that divides evenly into both and

When factoring a polynomial expression, our first step should be to check for a GCF. Look for the GCF of the coefficients,
and then look for the GCF of the variables.

Greatest Common Factor

The greatest common factor (GCF) of polynomials is the largest polynomial that divides evenly into the polynomials.

HOW TO

Given a polynomial expression, factor out the greatest common factor.

1. Identify the GCF of the coefficients.
2. Identify the GCF of the variables.
3. Combine to find the GCF of the expression.
4. Determine what the GCF needs to be multiplied by to obtain each term in the expression.
5. Write the factored expression as the product of the GCF and the sum of the terms we need to multiply by.

EXAMPLE 1

Factoring the Greatest Common Factor
Factor

Solution
First, find the GCF of the expression. The GCF of 6, 45, and 21 is 3. The GCF of , and is . (Note that the GCF of a
set of expressions in the form will always be the exponent of lowest degree.) And the GCF of , and is .
Combine these to find the GCF of the polynomial, .

Next, determine what the GCF needs to be multiplied by to obtain each term of the polynomial. We find that
, and

Finally, write the factored expression as the product of the GCF and the sum of the terms we needed to multiply by.

Analysis
After factoring, we can check our work by multiplying. Use the distributive property to confirm that

TRY IT #1 Factor by pulling out the GCF.
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Factoring a Trinomial with Leading Coefficient 1
Although we should always begin by looking for a GCF, pulling out the GCF is not the only way that polynomial
expressions can be factored. The polynomial has a GCF of 1, but it can be written as the product of the
factors and

Trinomials of the form can be factored by finding two numbers with a product of and a sum of The
trinomial for example, can be factored using the numbers and because the product of those numbers
is and their sum is The trinomial can be rewritten as the product of and

Factoring a Trinomial with Leading Coefficient 1

A trinomial of the form can be written in factored form as where and

Q&A Can every trinomial be factored as a product of binomials?

No. Some polynomials cannot be factored. These polynomials are said to be prime.

HOW TO

Given a trinomial in the form factor it.

1. List factors of
2. Find and a pair of factors of with a sum of
3. Write the factored expression

EXAMPLE 2

Factoring a Trinomial with Leading Coefficient 1
Factor

Solution
We have a trinomial with leading coefficient and We need to find two numbers with a product of
and a sum of In the table below, we list factors until we find a pair with the desired sum.

Factors of Sum of Factors

14

2

Now that we have identified and as and write the factored form as

Analysis
We can check our work by multiplying. Use FOIL to confirm that

Q&A Does the order of the factors matter?

No. Multiplication is commutative, so the order of the factors does not matter.
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TRY IT #2 Factor

Factoring by Grouping
Trinomials with leading coefficients other than 1 are slightly more complicated to factor. For these trinomials, we can
factor by grouping by dividing the x term into the sum of two terms, factoring each portion of the expression
separately, and then factoring out the GCF of the entire expression. The trinomial can be rewritten as

using this process. We begin by rewriting the original expression as and then factor
each portion of the expression to obtain We then pull out the GCF of to find the factored
expression.

Factor by Grouping

To factor a trinomial in the form by grouping, we find two numbers with a product of and a sum of
We use these numbers to divide the term into the sum of two terms and factor each portion of the expression
separately, then factor out the GCF of the entire expression.

HOW TO

Given a trinomial in the form factor by grouping.
1. List factors of
2. Find and a pair of factors of with a sum of
3. Rewrite the original expression as
4. Pull out the GCF of
5. Pull out the GCF of
6. Factor out the GCF of the expression.

EXAMPLE 3

Factoring a Trinomial by Grouping
Factor by grouping.

Solution
We have a trinomial with and First, determine We need to find two numbers with a
product of and a sum of In the table below, we list factors until we find a pair with the desired sum.

Factors of Sum of Factors

29

13

7

So and
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Analysis
We can check our work by multiplying. Use FOIL to confirm that

TRY IT #3 Factor

ⓐ ⓑ

Factoring a Perfect Square Trinomial
A perfect square trinomial is a trinomial that can be written as the square of a binomial. Recall that when a binomial is
squared, the result is the square of the first term added to twice the product of the two terms and the square of the last
term.

We can use this equation to factor any perfect square trinomial.

Perfect Square Trinomials

A perfect square trinomial can be written as the square of a binomial:

HOW TO

Given a perfect square trinomial, factor it into the square of a binomial.

1. Confirm that the first and last term are perfect squares.
2. Confirm that the middle term is twice the product of
3. Write the factored form as

EXAMPLE 4

Factoring a Perfect Square Trinomial
Factor

Solution
Notice that and are perfect squares because and Then check to see if the middle term is
twice the product of and The middle term is, indeed, twice the product: Therefore, the trinomial is
a perfect square trinomial and can be written as

TRY IT #4 Factor

Factoring a Difference of Squares
A difference of squares is a perfect square subtracted from a perfect square. Recall that a difference of squares can be
rewritten as factors containing the same terms but opposite signs because the middle terms cancel each other out when
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the two factors are multiplied.

We can use this equation to factor any differences of squares.

Differences of Squares

A difference of squares can be rewritten as two factors containing the same terms but opposite signs.

HOW TO

Given a difference of squares, factor it into binomials.

1. Confirm that the first and last term are perfect squares.
2. Write the factored form as

EXAMPLE 5

Factoring a Difference of Squares
Factor

Solution
Notice that and are perfect squares because and The polynomial represents a difference of
squares and can be rewritten as

TRY IT #5 Factor

Q&A Is there a formula to factor the sum of squares?

No. A sum of squares cannot be factored.

Factoring the Sum and Difference of Cubes
Now, we will look at two new special products: the sum and difference of cubes. Although the sum of squares cannot be
factored, the sum of cubes can be factored into a binomial and a trinomial.

Similarly, the difference of cubes can be factored into a binomial and a trinomial, but with different signs.

We can use the acronym SOAP to remember the signs when factoring the sum or difference of cubes. The first letter of
each word relates to the signs: Same Opposite Always Positive. For example, consider the following example.

The sign of the first 2 is the same as the sign between The sign of the term is opposite the sign between
And the sign of the last term, 4, is always positive.

Sum and Difference of Cubes

We can factor the sum of two cubes as
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We can factor the difference of two cubes as

HOW TO

Given a sum of cubes or difference of cubes, factor it.

1. Confirm that the first and last term are cubes, or
2. For a sum of cubes, write the factored form as For a difference of cubes, write the

factored form as

EXAMPLE 6

Factoring a Sum of Cubes
Factor

Solution
Notice that and are cubes because Rewrite the sum of cubes as

Analysis
After writing the sum of cubes this way, we might think we should check to see if the trinomial portion can be factored
further. However, the trinomial portion cannot be factored, so we do not need to check.

TRY IT #6 Factor the sum of cubes:

EXAMPLE 7

Factoring a Difference of Cubes
Factor

Solution
Notice that and are cubes because and Write the difference of cubes as

Analysis
Just as with the sum of cubes, we will not be able to further factor the trinomial portion.

TRY IT #7 Factor the difference of cubes:

Factoring Expressions with Fractional or Negative Exponents
Expressions with fractional or negative exponents can be factored by pulling out a GCF. Look for the variable or
exponent that is common to each term of the expression and pull out that variable or exponent raised to the lowest

power. These expressions follow the same factoring rules as those with integer exponents. For instance, can

be factored by pulling out and being rewritten as
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EXAMPLE 8

Factoring an Expression with Fractional or Negative Exponents

Factor

Solution

Factor out the term with the lowest value of the exponent. In this case, that would be

TRY IT #8 Factor

MEDIA

Access these online resources for additional instruction and practice with factoring polynomials.

Identify GCF (http://openstax.org/l/findgcftofact)
Factor Trinomials when a Equals 1 (http://openstax.org/l/facttrinom1)
Factor Trinomials when a is not equal to 1 (http://openstax.org/l/facttrinom2)
Factor Sum or Difference of Cubes (http://openstax.org/l/sumdifcube)

1.5 SECTION EXERCISES
Verbal

1. If the terms of a polynomial
do not have a GCF, does that
mean it is not factorable?
Explain.

2. A polynomial is factorable,
but it is not a perfect square
trinomial or a difference of
two squares. Can you factor
the polynomial without
finding the GCF?

3. How do you factor by
grouping?

Algebraic

For the following exercises, find the greatest common factor.

4. 5. 6.

7. 8. 9.

For the following exercises, factor by grouping.

10. 11. 12.

13. 14. 15.
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For the following exercises, factor the polynomial.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

For the following exercises, factor the polynomials.

37. 38. 39.

40. 41. 42.

43. 44. 45.

46. 47. 48.

49. 50.

Real-World Applications

For the following exercises, consider this scenario:

Charlotte has appointed a chairperson to lead a city beautification project. The first act is to install statues and fountains
in one of the city’s parks. The park is a rectangle with an area of m2, as shown in the figure below. The
length and width of the park are perfect factors of the area.

1.5 • Factoring Polynomials 67



51. Factor by grouping to find
the length and width of the
park.

52. A statue is to be placed in
the center of the park. The
area of the base of the
statue is
Factor the area to find the
lengths of the sides of the
statue.

53. At the northwest corner of
the park, the city is going
to install a fountain. The
area of the base of the
fountain is
Factor the area to find the
lengths of the sides of the
fountain.

For the following exercise, consider the following scenario:

A school is installing a flagpole in the central plaza. The plaza is a square with side length 100 yd. as shown in the figure
below. The flagpole will take up a square plot with area yd2.

54. Find the length of the base of the flagpole by
factoring.

Extensions

For the following exercises, factor the polynomials completely.

55. 56. 57.

58. 59.

1.6 Rational Expressions
Learning Objectives
In this section, you will:

Simplify rational expressions.
Multiply rational expressions.
Divide rational expressions.
Add and subtract rational expressions.
Simplify complex rational expressions.

A pastry shop has fixed costs of per week and variable costs of per box of pastries. The shop’s costs per week in
terms of the number of boxes made, is We can divide the costs per week by the number of boxes made to
determine the cost per box of pastries.

Notice that the result is a polynomial expression divided by a second polynomial expression. In this section, we will
explore quotients of polynomial expressions.

Simplifying Rational Expressions
The quotient of two polynomial expressions is called a rational expression. We can apply the properties of fractions to
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rational expressions, such as simplifying the expressions by canceling common factors from the numerator and the
denominator. To do this, we first need to factor both the numerator and denominator. Let’s start with the rational
expression shown.

We can factor the numerator and denominator to rewrite the expression.

Then we can simplify that expression by canceling the common factor

HOW TO

Given a rational expression, simplify it.

1. Factor the numerator and denominator.
2. Cancel any common factors.

EXAMPLE 1

Simplifying Rational Expressions

Simplify

Solution

Analysis
We can cancel the common factor because any expression divided by itself is equal to 1.

Q&A Can the term be cancelled in Example 1?

No. A factor is an expression that is multiplied by another expression. The term is not a factor of the
numerator or the denominator.

TRY IT #1 Simplify

Multiplying Rational Expressions
Multiplication of rational expressions works the same way as multiplication of any other fractions. We multiply the
numerators to find the numerator of the product, and then multiply the denominators to find the denominator of the
product. Before multiplying, it is helpful to factor the numerators and denominators just as we did when simplifying
rational expressions. We are often able to simplify the product of rational expressions.

HOW TO

Given two rational expressions, multiply them.

1. Factor the numerator and denominator.
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2. Multiply the numerators.
3. Multiply the denominators.
4. Simplify.

EXAMPLE 2

Multiplying Rational Expressions
Multiply the rational expressions and show the product in simplest form:

Solution

TRY IT #2 Multiply the rational expressions and show the product in simplest form:

Dividing Rational Expressions
Division of rational expressions works the same way as division of other fractions. To divide a rational expression by
another rational expression, multiply the first expression by the reciprocal of the second. Using this approach, we would

rewrite as the product Once the division expression has been rewritten as a multiplication expression,

we can multiply as we did before.

HOW TO

Given two rational expressions, divide them.

1. Rewrite as the first rational expression multiplied by the reciprocal of the second.
2. Factor the numerators and denominators.
3. Multiply the numerators.
4. Multiply the denominators.
5. Simplify.

EXAMPLE 3

Dividing Rational Expressions
Divide the rational expressions and express the quotient in simplest form:
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Solution

TRY IT #3 Divide the rational expressions and express the quotient in simplest form:

Adding and Subtracting Rational Expressions
Adding and subtracting rational expressions works just like adding and subtracting numerical fractions. To add fractions,
we need to find a common denominator. Let’s look at an example of fraction addition.

We have to rewrite the fractions so they share a common denominator before we are able to add. We must do the same
thing when adding or subtracting rational expressions.

The easiest common denominator to use will be the least common denominator, or LCD. The LCD is the smallest
multiple that the denominators have in common. To find the LCD of two rational expressions, we factor the expressions
and multiply all of the distinct factors. For instance, if the factored denominators were and
then the LCD would be

Once we find the LCD, we need to multiply each expression by the form of 1 that will change the denominator to the
LCD. We would need to multiply the expression with a denominator of by and the expression with a

denominator of by

HOW TO

Given two rational expressions, add or subtract them.

1. Factor the numerator and denominator.
2. Find the LCD of the expressions.
3. Multiply the expressions by a form of 1 that changes the denominators to the LCD.
4. Add or subtract the numerators.
5. Simplify.

EXAMPLE 4

Adding Rational Expressions
Add the rational expressions:

Solution
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First, we have to find the LCD. In this case, the LCD will be We then multiply each expression by the appropriate form
of 1 to obtain as the denominator for each fraction.

Now that the expressions have the same denominator, we simply add the numerators to find the sum.

Analysis
Multiplying by or does not change the value of the original expression because any number divided by itself is 1,

and multiplying an expression by 1 gives the original expression.

EXAMPLE 5

Subtracting Rational Expressions
Subtract the rational expressions:

Solution

Q&A Do we have to use the LCD to add or subtract rational expressions?

No. Any common denominator will work, but it is easiest to use the LCD.

TRY IT #4 Subtract the rational expressions:

Simplifying Complex Rational Expressions
A complex rational expression is a rational expression that contains additional rational expressions in the numerator, the
denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator as
single rational expressions and dividing. The complex rational expression can be simplified by rewriting the

numerator as the fraction and combining the expressions in the denominator as We can then rewrite the
expression as a multiplication problem using the reciprocal of the denominator. We get which is equal to

HOW TO

Given a complex rational expression, simplify it.

72 1 • Prerequisites

Access for free at openstax.org



1. Combine the expressions in the numerator into a single rational expression by adding or subtracting.
2. Combine the expressions in the denominator into a single rational expression by adding or subtracting.
3. Rewrite as the numerator divided by the denominator.
4. Rewrite as multiplication.
5. Multiply.
6. Simplify.

EXAMPLE 6

Simplifying Complex Rational Expressions

Simplify: .

Solution
Begin by combining the expressions in the numerator into one expression.

  

  

Now the numerator is a single rational expression and the denominator is a single rational expression.

We can rewrite this as division, and then multiplication.

TRY IT #5 Simplify:

Q&A Can a complex rational expression always be simplified?

Yes. We can always rewrite a complex rational expression as a simplified rational expression.

MEDIA

Access these online resources for additional instruction and practice with rational expressions.

Simplify Rational Expressions (http://openstax.org/l/simpratexpress)
Multiply and Divide Rational Expressions (http://openstax.org/l/multdivratex)
Add and Subtract Rational Expressions (http://openstax.org/l/addsubratex)
Simplify a Complex Fraction (http://openstax.org/l/complexfract)

1.6 • Rational Expressions 73

http://openstax.org/l/simpratexpress
http://openstax.org/l/multdivratex
http://openstax.org/l/addsubratex
http://openstax.org/l/complexfract


1.6 SECTION EXERCISES
Verbal

1. How can you use factoring
to simplify rational
expressions?

2. How do you use the LCD to
combine two rational
expressions?

3. Tell whether the following
statement is true or false
and explain why: You only
need to find the LCD when
adding or subtracting
rational expressions.

Algebraic

For the following exercises, simplify the rational expressions.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13.

For the following exercises, multiply the rational expressions and express the product in simplest form.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23.

For the following exercises, divide the rational expressions.

24. 25. 26.

27. 28. 29.

30. 31. 32.
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For the following exercises, add and subtract the rational expressions, and then simplify.

33. 34. 35.

36. 37. 38.

39. 40. 41.

For the following exercises, simplify the rational expression.

42. 43. 44.

45. 46. 47.

48. 49. 50.

Real-World Applications

51. Brenda is placing tile on her
bathroom floor. The area of the
floor is ft2. The area
of one tile is To find
the number of tiles needed,
simplify the rational expression:

52. The area of Lijuan's yard is
ft2. A patch of

sod has an area of
ft2. Divide

the two areas and simplify
to find how many pieces of
sod Lijuan needs to cover
her yard.

53. Elroi wants to mulch his
garden. His garden is

ft2. One bag
of mulch covers
ft2. Divide the expressions
and simplify to find how
many bags of mulch Elroi
needs to mulch his garden.

Extensions

For the following exercises, perform the given operations and simplify.

54. 55. 56.

57.
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Chapter Review
Key Terms
algebraic expression constants and variables combined using addition, subtraction, multiplication, and division
associative property of addition the sum of three numbers may be grouped differently without affecting the result;

in symbols,
associative property of multiplication the product of three numbers may be grouped differently without affecting

the result; in symbols,
base in exponential notation, the expression that is being multiplied
binomial a polynomial containing two terms
coefficient any real number in a polynomial in the form
commutative property of addition two numbers may be added in either order without affecting the result; in

symbols,
commutative property of multiplication two numbers may be multiplied in any order without affecting the result; in

symbols,
constant a quantity that does not change value
degree the highest power of the variable that occurs in a polynomial
difference of squares the binomial that results when a binomial is multiplied by a binomial with the same terms, but

the opposite sign
distributive property the product of a factor times a sum is the sum of the factor times each term in the sum; in

symbols,
equation a mathematical statement indicating that two expressions are equal
exponent in exponential notation, the raised number or variable that indicates how many times the base is being

multiplied
exponential notation a shorthand method of writing products of the same factor
factor by grouping a method for factoring a trinomial in the form by dividing the x term into the sum of

two terms, factoring each portion of the expression separately, and then factoring out the GCF of the entire
expression

formula an equation expressing a relationship between constant and variable quantities
greatest common factor the largest polynomial that divides evenly into each polynomial
identity property of addition there is a unique number, called the additive identity, 0, which, when added to a

number, results in the original number; in symbols,
identity property of multiplication there is a unique number, called the multiplicative identity, 1, which, when

multiplied by a number, results in the original number; in symbols,
index the number above the radical sign indicating the nth root
integers the set consisting of the natural numbers, their opposites, and 0:
inverse property of addition for every real number there is a unique number, called the additive inverse (or

opposite), denoted which, when added to the original number, results in the additive identity, 0; in symbols,

inverse property of multiplication for every non-zero real number there is a unique number, called the
multiplicative inverse (or reciprocal), denoted which, when multiplied by the original number, results in the
multiplicative identity, 1; in symbols,

irrational numbers the set of all numbers that are not rational; they cannot be written as either a terminating or
repeating decimal; they cannot be expressed as a fraction of two integers

leading coefficient the coefficient of the leading term
leading term the term containing the highest degree
least common denominator the smallest multiple that two denominators have in common
monomial a polynomial containing one term
natural numbers the set of counting numbers:
order of operations a set of rules governing how mathematical expressions are to be evaluated, assigning priorities to

operations
perfect square trinomial the trinomial that results when a binomial is squared
polynomial a sum of terms each consisting of a variable raised to a nonnegative integer power
principal nth root the number with the same sign as that when raised to the nth power equals
principal square root the nonnegative square root of a number that, when multiplied by itself, equals
radical the symbol used to indicate a root
radical expression an expression containing a radical symbol
radicand the number under the radical symbol
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rational expression the quotient of two polynomial expressions
rational numbers the set of all numbers of the form where and are integers and Any rational number

may be written as a fraction or a terminating or repeating decimal.
real number line a horizontal line used to represent the real numbers. An arbitrary fixed point is chosen to represent

0; positive numbers lie to the right of 0 and negative numbers to the left.
real numbers the sets of rational numbers and irrational numbers taken together
scientific notation a shorthand notation for writing very large or very small numbers in the form where

and is an integer
term of a polynomial any of a polynomial in the form
trinomial a polynomial containing three terms
variable a quantity that may change value
whole numbers the set consisting of 0 plus the natural numbers:

Key Equations

Rules of Exponents
For nonzero real numbers and and integers and

Product rule

Quotient rule

Power rule

Zero exponent rule

Negative rule

Power of a product rule

Power of a quotient rule

perfect square trinomial

difference of squares

difference of squares

perfect square trinomial

sum of cubes

difference of cubes

Key Concepts
1.1 Real Numbers: Algebra Essentials

• Rational numbers may be written as fractions or terminating or repeating decimals. See Example 1 and Example 2.
• Determine whether a number is rational or irrational by writing it as a decimal. See Example 3.
• The rational numbers and irrational numbers make up the set of real numbers. See Example 4. A number can be

classified as natural, whole, integer, rational, or irrational. See Example 5.
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• The order of operations is used to evaluate expressions. See Example 6.
• The real numbers under the operations of addition and multiplication obey basic rules, known as the properties of

real numbers. These are the commutative properties, the associative properties, the distributive property, the
identity properties, and the inverse properties. See Example 7.

• Algebraic expressions are composed of constants and variables that are combined using addition, subtraction,
multiplication, and division. See Example 8. They take on a numerical value when evaluated by replacing variables
with constants. See Example 9, Example 10, and Example 12

• Formulas are equations in which one quantity is represented in terms of other quantities. They may be simplified or
evaluated as any mathematical expression. See Example 11 and Example 13.

1.2 Exponents and Scientific Notation

• Products of exponential expressions with the same base can be simplified by adding exponents. See Example 1.
• Quotients of exponential expressions with the same base can be simplified by subtracting exponents. See Example

2.
• Powers of exponential expressions with the same base can be simplified by multiplying exponents. See Example 3.
• An expression with exponent zero is defined as 1. See Example 4.
• An expression with a negative exponent is defined as a reciprocal. See Example 5 and Example 6.
• The power of a product of factors is the same as the product of the powers of the same factors. See Example 7.
• The power of a quotient of factors is the same as the quotient of the powers of the same factors. See Example 8.
• The rules for exponential expressions can be combined to simplify more complicated expressions. See Example 9.
• Scientific notation uses powers of 10 to simplify very large or very small numbers. See Example 10 and Example 11.
• Scientific notation may be used to simplify calculations with very large or very small numbers. See Example 12 and

Example 13.

1.3 Radicals and Rational Exponents

• The principal square root of a number is the nonnegative number that when multiplied by itself equals See
Example 1.

• If and are nonnegative, the square root of the product is equal to the product of the square roots of and
See Example 2 and Example 3.

• If and are nonnegative, the square root of the quotient is equal to the quotient of the square roots of and
See Example 4 and Example 5.

• We can add and subtract radical expressions if they have the same radicand and the same index. See Example 6 and
Example 7.

• Radical expressions written in simplest form do not contain a radical in the denominator. To eliminate the square
root radical from the denominator, multiply both the numerator and the denominator by the conjugate of the
denominator. See Example 8 and Example 9.

• The principal nth root of is the number with the same sign as that when raised to the nth power equals These
roots have the same properties as square roots. See Example 10.

• Radicals can be rewritten as rational exponents and rational exponents can be rewritten as radicals. See Example 11
and Example 12.

• The properties of exponents apply to rational exponents. See Example 13.

1.4 Polynomials

• A polynomial is a sum of terms each consisting of a variable raised to a non-negative integer power. The degree is
the highest power of the variable that occurs in the polynomial. The leading term is the term containing the highest
degree, and the leading coefficient is the coefficient of that term. See Example 1.

• We can add and subtract polynomials by combining like terms. See Example 2 and Example 3.
• To multiply polynomials, use the distributive property to multiply each term in the first polynomial by each term in

the second. Then add the products. See Example 4.
• FOIL (First, Outer, Inner, Last) is a shortcut that can be used to multiply binomials. See Example 5.
• Perfect square trinomials and difference of squares are special products. See Example 6 and Example 7.
• Follow the same rules to work with polynomials containing several variables. See Example 8.

1.5 Factoring Polynomials

• The greatest common factor, or GCF, can be factored out of a polynomial. Checking for a GCF should be the first
step in any factoring problem. See Example 1.

• Trinomials with leading coefficient 1 can be factored by finding numbers that have a product of the third term and a
sum of the second term. See Example 2.
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• Trinomials can be factored using a process called factoring by grouping. See Example 3.
• Perfect square trinomials and the difference of squares are special products and can be factored using equations.

See Example 4 and Example 5.
• The sum of cubes and the difference of cubes can be factored using equations. See Example 6 and Example 7.
• Polynomials containing fractional and negative exponents can be factored by pulling out a GCF. See Example 8.

1.6 Rational Expressions

• Rational expressions can be simplified by cancelling common factors in the numerator and denominator. See
Example 1.

• We can multiply rational expressions by multiplying the numerators and multiplying the denominators. See
Example 2.

• To divide rational expressions, multiply by the reciprocal of the second expression. See Example 3.
• Adding or subtracting rational expressions requires finding a common denominator. See Example 4 and Example 5.
• Complex rational expressions have fractions in the numerator or the denominator. These expressions can be

simplified. See Example 6.

Exercises
Review Exercises
Real Numbers: Algebra Essentials

For the following exercises, perform the given operations.

1. 2. 3.

For the following exercises, solve the equation.

4. 5.

For the following exercises, simplify the expression.

6. 7.

For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive
answer.

8. 11 9. 0 10.

11.

Exponents and Scientific Notation

For the following exercises, simplify the expression.

12. 13. 14.

15. 16. 17.

18. 19. 20. Write the number in
standard notation:
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21. Write the number in
scientific notation:
16,340,000

Radicals and Rational Expressions

For the following exercises, find the principal square root.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34.

Polynomials

For the following exercises, perform the given operations and simplify.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44.

Factoring Polynomials

For the following exercises, find the greatest common factor.

45. 46. 47.

For the following exercises, factor the polynomial.

48. 49. 50.

51. 52. 53.

54. 55. 56.

57. 58. 59.
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60.

Rational Expressions

For the following exercises, simplify the expression.

61. 62. 63.

64. 65. 66.

67. 68. 69.

70.

Practice Test
For the following exercises, identify the number as rational, irrational, whole, or natural. Choose the most descriptive
answer.

1. 2.

For the following exercises, evaluate the expression.

3. 4. 5. Write the number in
standard notation:

6. Write the number in
scientific notation:
0.0000000212.

For the following exercises, simplify the expression.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20.
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21. 22.

For the following exercises, factor the polynomial.

23. 24. 25.

26.

For the following exercises, simplify the expression.

27. 28. 29.
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From the air, a landscape of circular crop fields may seem random, but they are laid out and irrigated very precisely.
Farmers and irrigation providers combining agricultural science, engineering, and mathematics to achieve the most
productive and efficient array. (Credit: Modification of "Aerial Phot of Center Pivot Irrigations Systems (1)" by Soil
Science/flickr)

Chapter Outline
2.1 The Rectangular Coordinate Systems and Graphs
2.2 Linear Equations in One Variable
2.3 Models and Applications
2.4 Complex Numbers
2.5 Quadratic Equations
2.6 Other Types of Equations
2.7 Linear Inequalities and Absolute Value Inequalities

Introduction to Equations and Inequalities
Irrigation is a critical aspect of agriculture, which can expand the yield of farms and enable farming in areas not naturally
viable for crops. But the materials, equipment, and the water itself are expensive and complex. To be efficient and
productive, farm owners and irrigation specialists must carefully lay out the network of pipes, pumps, and related
equipment. The available land can be divided into regular portions (similar to a grid), and the different sizes of irrigation
systems and conduits can be installed within the plotted area.

2.1 The Rectangular Coordinate Systems and Graphs
Learning Objectives
In this section, you will:

Plot ordered pairs in a Cartesian coordinate system.
Graph equations by plotting points.
Graph equations with a graphing utility.
Find x-intercepts and y-intercepts.
Use the distance formula.
Use the midpoint formula.

EQUATIONS AND INEQUALITIES2
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Figure 1

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each stop is
indicated by a red dot in Figure 1. Laying a rectangular coordinate grid over the map, we can see that each stop aligns
with an intersection of grid lines. In this section, we will learn how to use grid lines to describe locations and changes in
locations.

Plotting Ordered Pairs in the Cartesian Coordinate System
An old story describes how seventeenth-century philosopher/mathematician René Descartes, while sick in bed, invented
the system that has become the foundation of algebra. According to the story, Descartes was staring at a fly crawling on
the ceiling when he realized that he could describe the fly’s location in relation to the perpendicular lines formed by the
adjacent walls of his room. He viewed the perpendicular lines as horizontal and vertical axes. Further, by dividing each
axis into equal unit lengths, Descartes saw that it was possible to locate any object in a two-dimensional plane using just
two numbers—the displacement from the horizontal axis and the displacement from the vertical axis.

While there is evidence that ideas similar to Descartes’ grid system existed centuries earlier, it was Descartes who
introduced the components that comprise the Cartesian coordinate system, a grid system having perpendicular axes.
Descartes named the horizontal axis the x-axis and the vertical axis the y-axis.

The Cartesian coordinate system, also called the rectangular coordinate system, is based on a two-dimensional plane
consisting of the x-axis and the y-axis. Perpendicular to each other, the axes divide the plane into four sections. Each
section is called a quadrant; the quadrants are numbered counterclockwise as shown in Figure 2

Figure 2

The center of the plane is the point at which the two axes cross. It is known as the origin, or point From the origin,
each axis is further divided into equal units: increasing, positive numbers to the right on the x-axis and up the y-axis;
decreasing, negative numbers to the left on the x-axis and down the y-axis. The axes extend to positive and negative
infinity as shown by the arrowheads in Figure 3.
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Figure 3

Each point in the plane is identified by its x-coordinate, or horizontal displacement from the origin, and its
y-coordinate, or vertical displacement from the origin. Together, we write them as an ordered pair indicating the
combined distance from the origin in the form An ordered pair is also known as a coordinate pair because it
consists of x- and y-coordinates. For example, we can represent the point in the plane by moving three units to
the right of the origin in the horizontal direction, and one unit down in the vertical direction. See Figure 4.

Figure 4

When dividing the axes into equally spaced increments, note that the x-axis may be considered separately from the
y-axis. In other words, while the x-axis may be divided and labeled according to consecutive integers, the y-axis may be
divided and labeled by increments of 2, or 10, or 100. In fact, the axes may represent other units, such as years against
the balance in a savings account, or quantity against cost, and so on. Consider the rectangular coordinate system
primarily as a method for showing the relationship between two quantities.

Cartesian Coordinate System

A two-dimensional plane where the

• x-axis is the horizontal axis
• y-axis is the vertical axis

A point in the plane is defined as an ordered pair, such that x is determined by its horizontal distance from the
origin and y is determined by its vertical distance from the origin.

EXAMPLE 1

Plotting Points in a Rectangular Coordinate System
Plot the points and in the plane.

Solution
To plot the point begin at the origin. The x-coordinate is –2, so move two units to the left. The y-coordinate is 4,
so then move four units up in the positive y direction.
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To plot the point begin again at the origin. The x-coordinate is 3, so move three units to the right. The
y-coordinate is also 3, so move three units up in the positive y direction.

To plot the point begin again at the origin. The x-coordinate is 0. This tells us not to move in either direction
along the x-axis. The y-coordinate is –3, so move three units down in the negative y direction. See the graph in Figure 5.

Figure 5

Analysis
Note that when either coordinate is zero, the point must be on an axis. If the x-coordinate is zero, the point is on the
y-axis. If the y-coordinate is zero, the point is on the x-axis.

Graphing Equations by Plotting Points
We can plot a set of points to represent an equation. When such an equation contains both an x variable and a y
variable, it is called an equation in two variables. Its graph is called a graph in two variables. Any graph on a two-
dimensional plane is a graph in two variables.

Suppose we want to graph the equation We can begin by substituting a value for x into the equation and
determining the resulting value of y. Each pair of x- and y-values is an ordered pair that can be plotted. Table 1 lists
values of x from –3 to 3 and the resulting values for y.

Table 1

We can plot the points in the table. The points for this particular equation form a line, so we can connect them. See
Figure 6. This is not true for all equations.
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...

Figure 6

Note that the x-values chosen are arbitrary, regardless of the type of equation we are graphing. Of course, some
situations may require particular values of x to be plotted in order to see a particular result. Otherwise, it is logical to
choose values that can be calculated easily, and it is always a good idea to choose values that are both negative and
positive. There is no rule dictating how many points to plot, although we need at least two to graph a line. Keep in mind,
however, that the more points we plot, the more accurately we can sketch the graph.

HOW TO

Given an equation, graph by plotting points.

1. Make a table with one column labeled x, a second column labeled with the equation, and a third column listing
the resulting ordered pairs.

2. Enter x-values down the first column using positive and negative values. Selecting the x-values in numerical
order will make the graphing simpler.

3. Select x-values that will yield y-values with little effort, preferably ones that can be calculated mentally.
4. Plot the ordered pairs.
5. Connect the points if they form a line.

EXAMPLE 2

Graphing an Equation in Two Variables by Plotting Points
Graph the equation by plotting points.

Solution
First, we construct a table similar to Table 2. Choose x values and calculate y.

Table 2
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Table 2

Now, plot the points. Connect them if they form a line. See Figure 7

Figure 7

TRY IT #1 Construct a table and graph the equation by plotting points:

Graphing Equations with a Graphing Utility
Most graphing calculators require similar techniques to graph an equation. The equations sometimes have to be
manipulated so they are written in the style The TI-84 Plus, and many other calculator makes and models,
have a mode function, which allows the window (the screen for viewing the graph) to be altered so the pertinent parts of
a graph can be seen.

For example, the equation has been entered in the TI-84 Plus shown in Figure 8a. In Figure 8b, the resulting
graph is shown. Notice that we cannot see on the screen where the graph crosses the axes. The standard window screen
on the TI-84 Plus shows and See Figure 8c.

Figure 8 a. Enter the equation. b. This is the graph in the original window. c. These are the original settings.

By changing the window to show more of the positive x-axis and more of the negative y-axis, we have a much better
view of the graph and the x- and y-intercepts. See Figure 9a and Figure 9b.

Figure 9 a. This screen shows the new window settings. b. We can clearly view the intercepts in the new window.

88 2 • Equations and Inequalities

Access for free at openstax.org



EXAMPLE 3

Using a Graphing Utility to Graph an Equation
Use a graphing utility to graph the equation:

Solution
Enter the equation in the y= function of the calculator. Set the window settings so that both the x- and y- intercepts are
showing in the window. See Figure 10.

Figure 10

Finding x-intercepts and y-intercepts
The intercepts of a graph are points at which the graph crosses the axes. The x-intercept is the point at which the
graph crosses the x-axis. At this point, the y-coordinate is zero. The y-intercept is the point at which the graph crosses
the y-axis. At this point, the x-coordinate is zero.

To determine the x-intercept, we set y equal to zero and solve for x. Similarly, to determine the y-intercept, we set x
equal to zero and solve for y. For example, lets find the intercepts of the equation

To find the x-intercept, set

To find the y-intercept, set

We can confirm that our results make sense by observing a graph of the equation as in Figure 11. Notice that the graph
crosses the axes where we predicted it would.

Figure 11

Given an equation, find the intercepts.

• Find the x-intercept by setting and solving for
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• Find the y-intercept by setting and solving for

EXAMPLE 4

Finding the Intercepts of the Given Equation
Find the intercepts of the equation Then sketch the graph using only the intercepts.

Solution
Set to find the x-intercept.

Set to find the y-intercept.

Plot both points, and draw a line passing through them as in Figure 12.

Figure 12

TRY IT #2 Find the intercepts of the equation and sketch the graph:

Using the Distance Formula
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the
plane. The Pythagorean Theorem, is based on a right triangle where a and b are the lengths of the legs
adjacent to the right angle, and c is the length of the hypotenuse. See Figure 13.

Figure 13
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The relationship of sides and to side d is the same as that of sides a and b to side c. We use the
absolute value symbol to indicate that the length is a positive number because the absolute value of any number is
positive. (For example, ) The symbols and indicate that the lengths of the sides of the
triangle are positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.

It follows that the distance formula is given as

We do not have to use the absolute value symbols in this definition because any number squared is positive.

The Distance Formula

Given endpoints and the distance between two points is given by

EXAMPLE 5

Finding the Distance between Two Points
Find the distance between the points and

Solution
Let us first look at the graph of the two points. Connect the points to form a right triangle as in Figure 14.

Figure 14

Then, calculate the length of d using the distance formula.

TRY IT #3 Find the distance between two points: and

EXAMPLE 6

Finding the Distance between Two Locations
Let’s return to the situation introduced at the beginning of this section.

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each stop is
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indicated by a red dot in Figure 1. Find the total distance that Tracie traveled. Compare this with the distance between
her starting and final positions.

Solution
The first thing we should do is identify ordered pairs to describe each position. If we set the starting position at the
origin, we can identify each of the other points by counting units east (right) and north (up) on the grid. For example, the
first stop is 1 block east and 1 block north, so it is at The next stop is 5 blocks to the east, so it is at After
that, she traveled 3 blocks east and 2 blocks north to Lastly, she traveled 4 blocks north to We can label
these points on the grid as in Figure 15.

Figure 15

Next, we can calculate the distance. Note that each grid unit represents 1,000 feet.

• From her starting location to her first stop at Tracie might have driven north 1,000 feet and then east 1,000
feet, or vice versa. Either way, she drove 2,000 feet to her first stop.

• Her second stop is at So from to Tracie drove east 4,000 feet.
• Her third stop is at There are a number of routes from to Whatever route Tracie decided to use,

the distance is the same, as there are no angular streets between the two points. Let’s say she drove east 3,000 feet
and then north 2,000 feet for a total of 5,000 feet.

• Tracie’s final stop is at This is a straight drive north from for a total of 4,000 feet.

Next, we will add the distances listed in Table 3.

From/To Number of Feet Driven

to 2,000

to 4,000

to 5,000

to 4,000

Total 15,000

Table 3

The total distance Tracie drove is 15,000 feet, or 2.84 miles. This is not, however, the actual distance between her starting
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and ending positions. To find this distance, we can use the distance formula between the points and

At 1,000 feet per grid unit, the distance between Elmhurst, IL, to Franklin Park is 10,630.14 feet, or 2.01 miles. The
distance formula results in a shorter calculation because it is based on the hypotenuse of a right triangle, a straight
diagonal from the origin to the point Perhaps you have heard the saying “as the crow flies,” which means the
shortest distance between two points because a crow can fly in a straight line even though a person on the ground has
to travel a longer distance on existing roadways.

Using the Midpoint Formula
When the endpoints of a line segment are known, we can find the point midway between them. This point is known as
the midpoint and the formula is known as the midpoint formula. Given the endpoints of a line segment, and

the midpoint formula states how to find the coordinates of the midpoint

A graphical view of a midpoint is shown in Figure 16. Notice that the line segments on either side of the midpoint are
congruent.

Figure 16

EXAMPLE 7

Finding the Midpoint of the Line Segment
Find the midpoint of the line segment with the endpoints and

Solution
Use the formula to find the midpoint of the line segment.

TRY IT #4 Find the midpoint of the line segment with endpoints and

EXAMPLE 8

Finding the Center of a Circle
The diameter of a circle has endpoints and Find the center of the circle.

2.1 • The Rectangular Coordinate Systems and Graphs 93



Solution
The center of a circle is the center, or midpoint, of its diameter. Thus, the midpoint formula will yield the center point.

MEDIA

Access these online resources for additional instruction and practice with the Cartesian coordinate system.

Plotting points on the coordinate plane (http://openstax.org/l/coordplotpnts)
Find x and y intercepts based on the graph of a line (http://openstax.org/l/xyintsgraph)

2.1 SECTION EXERCISES
Verbal

1. Is it possible for a point
plotted in the Cartesian
coordinate system to not lie
in one of the four
quadrants? Explain.

2. Describe the process for
finding the x-intercept and
the y-intercept of a graph
algebraically.

3. Describe in your own words
what the y-intercept of a
graph is.

4. When using the distance
formula

explain the correct order of
operations that are to be
performed to obtain the
correct answer.

Algebraic

For each of the following exercises, find the x-intercept and the y-intercept without graphing. Write the coordinates of
each intercept.

5. 6. 7.

8. 9. 10.

For each of the following exercises, solve the equation for y in terms of x.

11. 12. 13.

14. 15. 16.

For each of the following exercises, find the distance between the two points. Simplify your answers, and write the exact
answer in simplest radical form for irrational answers.

17. and 18. and 19. and
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20. and 21. Find the distance between
the two points given using
your calculator, and round
your answer to the nearest
hundredth.

and

For each of the following exercises, find the coordinates of the midpoint of the line segment that joins the two given
points.

22. and 23. and 24. and

25. and 26. and

Graphical

For each of the following exercises, identify the information requested.

27. What are the coordinates
of the origin?

28. If a point is located on the
y-axis, what is the
x-coordinate?

29. If a point is located on the
x-axis, what is the
y-coordinate?

For each of the following exercises, plot the three points on the given coordinate plane. State whether the three points
you plotted appear to be collinear (on the same line).

30. 31. 32.

33. Name the coordinates of the
points graphed.

ⓐ ⓑ
ⓒ ⓓ
ⓔ

34. Name the quadrant in
which the following points
would be located. If the
point is on an axis, name
the axis.
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For each of the following exercises, construct a table and graph the equation by plotting at least three points.

35. 36. 37.

Numeric

For each of the following exercises, find and plot the x- and y-intercepts, and graph the straight line based on those two
points.

38. 39. 40.

41. 42.

For each of the following exercises, use the graph in the figure below.

43. Find the distance between
the two endpoints using
the distance formula.
Round to three decimal
places.

44. Find the coordinates of the
midpoint of the line
segment connecting the
two points.

45. Find the distance that
is from the origin.

46. Find the distance that
is from the origin. Round to
three decimal places.

47. Which point is closer to the
origin?

Technology

For the following exercises, use your graphing calculator to input the linear graphs in the Y= graph menu.

After graphing it, use the 2nd CALC button and 1:value button, hit enter. At the lower part of the screen you will see “x=”
and a blinking cursor. You may enter any number for x and it will display the y value for any x value you input. Use this
and plug in x = 0, thus finding the y-intercept, for each of the following graphs.

48. 49. 50.
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For the following exercises, use your graphing calculator to input the linear graphs in the Y= graph menu.

After graphing it, use the 2nd CALC button and 2:zero button, hit ENTER. At the lower part of the screen you will see “left
bound?” and a blinking cursor on the graph of the line. Move this cursor to the left of the x-intercept, hit ENTER. Now it
says “right bound?” Move the cursor to the right of the x-intercept, hit ENTER. Now it says “guess?” Move your cursor to
the left somewhere in between the left and right bound near the x-intercept. Hit ENTER. At the bottom of your screen it
will display the coordinates of the x-intercept or the “zero” to the y-value. Use this to find the x-intercept.

Note: With linear/straight line functions the zero is not really a “guess,” but it is necessary to enter a “guess” so it will
search and find the exact x-intercept between your right and left boundaries. With other types of functions (more than
one x-intercept), they may be irrational numbers so “guess” is more appropriate to give it the correct limits to find a very
close approximation between the left and right boundaries.

51. 52. 53. Round your
answer to the nearest
thousandth.

Extensions

54. Someone drove 10 mi
directly east from their
home, made a left turn at
an intersection, and then
traveled 5 mi north to their
place of work. If a road was
made directly from the
home to the place of work,
what would its distance be
to the nearest tenth of a
mile?

55. If the road was made in the
previous exercise, how
much shorter would the
person’s one-way trip be
every day?

56. Given these four points:
, , ,

and find the
coordinates of the
midpoint of line segments

and

57. After finding the two
midpoints in the previous
exercise, find the distance
between the two midpoints
to the nearest thousandth.

58. Given the graph of the rectangle
shown and the coordinates of its
vertices, prove that the diagonals of
the rectangle are of equal length.

59. In the previous exercise,
find the coordinates of the
midpoint for each
diagonal.
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Real-World Applications

60. The coordinates on a map
for San Francisco are

and those for
Sacramento are .
Note that coordinates
represent miles. Find the
distance between the cities
to the nearest mile.

61. If San Jose’s coordinates
are , where the
coordinates represent
miles, find the distance
between San Jose and San
Francisco to the nearest
mile.

62. A small craft in Lake
Ontario sends out a
distress signal. The
coordinates of the boat in
trouble were One
rescue boat is at the
coordinates and a
second Coast Guard craft is
at coordinates .
Assuming both rescue craft
travel at the same rate,
which one would get to the
distressed boat the fastest?

63. A person on the top of a
building wants to have a
guy wire extend to a point
on the ground 20 ft from
the building. To the nearest
foot, how long will the wire
have to be if the building is
50 ft tall?

64. If we rent a truck and pay a
$75/day fee plus $.20 for
every mile we travel, write
a linear equation that
would express the total
cost per day using to
represent the number of
miles we travel. Graph this
function on your graphing
calculator and find the total
cost for one day if we travel
70 mi.

2.2 Linear Equations in One Variable
Learning Objectives
In this section, you will:

Solve equations in one variable algebraically.
Solve a rational equation.
Find a linear equation.
Given the equations of two lines, determine whether their graphs are parallel or perpendicular.
Write the equation of a line parallel or perpendicular to a given line.

Caroline is a full-time college student planning a spring break vacation. To earn enough money for the trip, she has
taken a part-time job at the local bank that pays $15.00/hr, and she opened a savings account with an initial deposit of
$400 on January 15. She arranged for direct deposit of her payroll checks. If spring break begins March 20 and the trip
will cost approximately $2,500, how many hours will she have to work to earn enough to pay for her vacation? If she can
only work 4 hours per day, how many days per week will she have to work? How many weeks will it take? In this section,
we will investigate problems like this and others, which generate graphs like the line in Figure 1.
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Figure 1

Solving Linear Equations in One Variable
A linear equation is an equation of a straight line, written in one variable. The only power of the variable is 1. Linear
equations in one variable may take the form and are solved using basic algebraic operations.

We begin by classifying linear equations in one variable as one of three types: identity, conditional, or inconsistent. An
identity equation is true for all values of the variable. Here is an example of an identity equation.

The solution set consists of all values that make the equation true. For this equation, the solution set is all real numbers
because any real number substituted for will make the equation true.

A conditional equation is true for only some values of the variable. For example, if we are to solve the equation
we have the following:

The solution set consists of one number: It is the only solution and, therefore, we have solved a conditional
equation.

An inconsistent equation results in a false statement. For example, if we are to solve we have the
following:

Indeed, There is no solution because this is an inconsistent equation.

Solving linear equations in one variable involves the fundamental properties of equality and basic algebraic operations.
A brief review of those operations follows.

Linear Equation in One Variable

A linear equation in one variable can be written in the form

where a and b are real numbers,

HOW TO

Given a linear equation in one variable, use algebra to solve it.

The following steps are used to manipulate an equation and isolate the unknown variable, so that the last line reads
if x is the unknown. There is no set order, as the steps used depend on what is given:
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1. We may add, subtract, multiply, or divide an equation by a number or an expression as long as we do the same
thing to both sides of the equal sign. Note that we cannot divide by zero.

2. Apply the distributive property as needed:
3. Isolate the variable on one side of the equation.
4. When the variable is multiplied by a coefficient in the final stage, multiply both sides of the equation by the

reciprocal of the coefficient.

EXAMPLE 1

Solving an Equation in One Variable
Solve the following equation:

Solution
This equation can be written in the form by subtracting from both sides. However, we may proceed to
solve the equation in its original form by performing algebraic operations.

The solution is 6.

TRY IT #1 Solve the linear equation in one variable:

EXAMPLE 2

Solving an Equation Algebraically When the Variable Appears on Both Sides
Solve the following equation:

Solution
Apply standard algebraic properties.

Analysis
This problem requires the distributive property to be applied twice, and then the properties of algebra are used to reach
the final line,

TRY IT #2 Solve the equation in one variable:

Solving a Rational Equation
In this section, we look at rational equations that, after some manipulation, result in a linear equation. If an equation
contains at least one rational expression, it is a considered a rational equation.

Recall that a rational number is the ratio of two numbers, such as or A rational expression is the ratio, or quotient,
of two polynomials. Here are three examples.
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Rational equations have a variable in the denominator in at least one of the terms. Our goal is to perform algebraic
operations so that the variables appear in the numerator. In fact, we will eliminate all denominators by multiplying both
sides of the equation by the least common denominator (LCD).

Finding the LCD is identifying an expression that contains the highest power of all of the factors in all of the
denominators. We do this because when the equation is multiplied by the LCD, the common factors in the LCD and in
each denominator will equal one and will cancel out.

EXAMPLE 3

Solving a Rational Equation
Solve the rational equation:

Solution
We have three denominators; and 3. The LCD must contain and 3. An LCD of contains all three
denominators. In other words, each denominator can be divided evenly into the LCD. Next, multiply both sides of the
equation by the LCD

A common mistake made when solving rational equations involves finding the LCD when one of the denominators is a
binomial—two terms added or subtracted—such as Always consider a binomial as an individual factor—the
terms cannot be separated. For example, suppose a problem has three terms and the denominators are and

First, factor all denominators. We then have and as the denominators. (Note the parentheses
placed around the second denominator.) Only the last two denominators have a common factor of The in the
first denominator is separate from the in the denominators. An effective way to remember this is to write
factored and binomial denominators in parentheses, and consider each parentheses as a separate unit or a separate
factor. The LCD in this instance is found by multiplying together the one factor of and the 3. Thus, the LCD is
the following:

So, both sides of the equation would be multiplied by Leave the LCD in factored form, as this makes it easier
to see how each denominator in the problem cancels out.

Another example is a problem with two denominators, such as and Once the second denominator is factored
as there is a common factor of x in both denominators and the LCD is

Sometimes we have a rational equation in the form of a proportion; that is, when one fraction equals another fraction
and there are no other terms in the equation.

We can use another method of solving the equation without finding the LCD: cross-multiplication. We multiply terms by
crossing over the equal sign.
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Multiply and which results in

Any solution that makes a denominator in the original expression equal zero must be excluded from the possibilities.

Rational Equations

A rational equation contains at least one rational expression where the variable appears in at least one of the
denominators.

HOW TO

Given a rational equation, solve it.

1. Factor all denominators in the equation.
2. Find and exclude values that set each denominator equal to zero.
3. Find the LCD.
4. Multiply the whole equation by the LCD. If the LCD is correct, there will be no denominators left.
5. Solve the remaining equation.
6. Make sure to check solutions back in the original equations to avoid a solution producing zero in a denominator.

EXAMPLE 4

Solving a Rational Equation without Factoring
Solve the following rational equation:

Solution
We have three denominators: and No factoring is required. The product of the first two denominators is equal
to the third denominator, so, the LCD is Only one value is excluded from a solution set, 0. Next, multiply the whole
equation (both sides of the equal sign) by

The proposed solution is −1, which is not an excluded value, so the solution set contains one number, or
written in set notation.

TRY IT #3 Solve the rational equation:

EXAMPLE 5

Solving a Rational Equation by Factoring the Denominator
Solve the following rational equation:
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Solution
First find the common denominator. The three denominators in factored form are and The
smallest expression that is divisible by each one of the denominators is Only is an excluded value. Multiply
the whole equation by

The solution is

TRY IT #4 Solve the rational equation:

EXAMPLE 6

Solving Rational Equations with a Binomial in the Denominator
Solve the following rational equations and state the excluded values:

ⓐ ⓑ ⓒ
Solution

ⓐ
The denominators and have nothing in common. Therefore, the LCD is the product However, for
this problem, we can cross-multiply.

The solution is 15. The excluded values are and

ⓑ
The LCD is Multiply both sides of the equation by

The solution is The excluded value is
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ⓒ
The least common denominator is Multiply both sides of the equation by

The solution is 4. The excluded value is

TRY IT #5 Solve State the excluded values.

EXAMPLE 7

Solving a Rational Equation with Factored Denominators and Stating Excluded Values
Solve the rational equation after factoring the denominators: State the excluded values.

Solution
We must factor the denominator We recognize this as the difference of squares, and factor it as
Thus, the LCD that contains each denominator is Multiply the whole equation by the LCD, cancel out the
denominators, and solve the remaining equation.

The solution is The excluded values are and

TRY IT #6 Solve the rational equation:

Finding a Linear Equation
Perhaps the most familiar form of a linear equation is the slope-intercept form, written as where
and Let us begin with the slope.

The Slope of a Line
The slope of a line refers to the ratio of the vertical change in y over the horizontal change in x between any two points
on a line. It indicates the direction in which a line slants as well as its steepness. Slope is sometimes described as rise
over run.

If the slope is positive, the line slants to the right. If the slope is negative, the line slants to the left. As the slope
increases, the line becomes steeper. Some examples are shown in Figure 2. The lines indicate the following slopes:

and
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Figure 2

The Slope of a Line

The slope of a line, m, represents the change in y over the change in x. Given two points, and the
following formula determines the slope of a line containing these points:

EXAMPLE 8

Finding the Slope of a Line Given Two Points
Find the slope of a line that passes through the points and

Solution
We substitute the y-values and the x-values into the formula.

The slope is

Analysis

It does not matter which point is called or As long as we are consistent with the order of the y terms
and the order of the x terms in the numerator and denominator, the calculation will yield the same result.

TRY IT #7 Find the slope of the line that passes through the points and

EXAMPLE 9

Identifying the Slope and y-intercept of a Line Given an Equation
Identify the slope and y-intercept, given the equation
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Solution
As the line is in form, the given line has a slope of The y-intercept is

Analysis
The y-intercept is the point at which the line crosses the y-axis. On the y-axis, We can always identify the
y-intercept when the line is in slope-intercept form, as it will always equal b. Or, just substitute and solve for y.

The Point-Slope Formula
Given the slope and one point on a line, we can find the equation of the line using the point-slope formula.

This is an important formula, as it will be used in other areas of college algebra and often in calculus to find the equation
of a tangent line. We need only one point and the slope of the line to use the formula. After substituting the slope and
the coordinates of one point into the formula, we simplify it and write it in slope-intercept form.

The Point-Slope Formula

Given one point and the slope, the point-slope formula will lead to the equation of a line:

EXAMPLE 10

Finding the Equation of a Line Given the Slope and One Point
Write the equation of the line with slope and passing through the point Write the final equation in slope-
intercept form.

Solution
Using the point-slope formula, substitute for m and the point for

Analysis
Note that any point on the line can be used to find the equation. If done correctly, the same final equation will be
obtained.

TRY IT #8 Given find the equation of the line in slope-intercept form passing through the point

EXAMPLE 11

Finding the Equation of a Line Passing Through Two Given Points
Find the equation of the line passing through the points and Write the final equation in slope-intercept
form.

Solution
First, we calculate the slope using the slope formula and two points.
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Next, we use the point-slope formula with the slope of and either point. Let’s pick the point for

In slope-intercept form, the equation is written as

Analysis
To prove that either point can be used, let us use the second point and see if we get the same equation.

We see that the same line will be obtained using either point. This makes sense because we used both points to calculate
the slope.

Standard Form of a Line
Another way that we can represent the equation of a line is in standard form. Standard form is given as

where and are integers. The x- and y-terms are on one side of the equal sign and the constant term is on the
other side.

EXAMPLE 12

Finding the Equation of a Line and Writing It in Standard Form
Find the equation of the line with and passing through the point Write the equation in standard form.

Solution
We begin using the point-slope formula.

From here, we multiply through by 2, as no fractions are permitted in standard form, and then move both variables to
the left aside of the equal sign and move the constants to the right.

This equation is now written in standard form.

TRY IT #9 Find the equation of the line in standard form with slope and passing through the point

Vertical and Horizontal Lines
The equations of vertical and horizontal lines do not require any of the preceding formulas, although we can use the
formulas to prove that the equations are correct. The equation of a vertical line is given as

where c is a constant. The slope of a vertical line is undefined, and regardless of the y-value of any point on the line, the
x-coordinate of the point will be c.
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Suppose that we want to find the equation of a line containing the following points: and
First, we will find the slope.

Zero in the denominator means that the slope is undefined and, therefore, we cannot use the point-slope formula.
However, we can plot the points. Notice that all of the x-coordinates are the same and we find a vertical line through

See Figure 3.

The equation of a horizontal line is given as

where c is a constant. The slope of a horizontal line is zero, and for any x-value of a point on the line, the y-coordinate
will be c.

Suppose we want to find the equation of a line that contains the following set of points: and
We can use the point-slope formula. First, we find the slope using any two points on the line.

Use any point for in the formula, or use the y-intercept.

The graph is a horizontal line through Notice that all of the y-coordinates are the same. See Figure 3.

Figure 3 The line x = −3 is a vertical line. The line y = −2 is a horizontal line.

EXAMPLE 13

Finding the Equation of a Line Passing Through the Given Points
Find the equation of the line passing through the given points: and

Solution
The x-coordinate of both points is 1. Therefore, we have a vertical line,

TRY IT #10 Find the equation of the line passing through and

Determining Whether Graphs of Lines are Parallel or Perpendicular
Parallel lines have the same slope and different y-intercepts. Lines that are parallel to each other will never intersect. For
example, Figure 4 shows the graphs of various lines with the same slope,
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Figure 4 Parallel lines

All of the lines shown in the graph are parallel because they have the same slope and different y-intercepts.

Lines that are perpendicular intersect to form a -angle. The slope of one line is the negative reciprocal of the other.
We can show that two lines are perpendicular if the product of the two slopes is For example, Figure
5 shows the graph of two perpendicular lines. One line has a slope of 3; the other line has a slope of

Figure 5 Perpendicular lines

EXAMPLE 14

Graphing Two Equations, and Determining Whether the Lines are Parallel, Perpendicular, or Neither
Graph the equations of the given lines, and state whether they are parallel, perpendicular, or neither: and

Solution
The first thing we want to do is rewrite the equations so that both equations are in slope-intercept form.

First equation:
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Second equation:

See the graph of both lines in Figure 6

Figure 6

From the graph, we can see that the lines appear perpendicular, but we must compare the slopes.

The slopes are negative reciprocals of each other, confirming that the lines are perpendicular.

TRY IT #11 Graph the two lines and determine whether they are parallel, perpendicular, or neither:
and

Writing the Equations of Lines Parallel or Perpendicular to a Given Line
As we have learned, determining whether two lines are parallel or perpendicular is a matter of finding the slopes. To
write the equation of a line parallel or perpendicular to another line, we follow the same principles as we do for finding
the equation of any line. After finding the slope, use the point-slope formula to write the equation of the new line.

HOW TO

Given an equation for a line, write the equation of a line parallel or perpendicular to it.

1. Find the slope of the given line. The easiest way to do this is to write the equation in slope-intercept form.
2. Use the slope and the given point with the point-slope formula.
3. Simplify the line to slope-intercept form and compare the equation to the given line.

EXAMPLE 15

Writing the Equation of a Line Parallel to a Given Line Passing Through a Given Point
Write the equation of line parallel to a and passing through the point
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Solution
First, we will write the equation in slope-intercept form to find the slope.

The slope is The y-intercept is but that really does not enter into our problem, as the only thing we need for
two lines to be parallel is the same slope. The one exception is that if the y-intercepts are the same, then the two lines
are the same line. The next step is to use this slope and the given point with the point-slope formula.

The equation of the line is See Figure 7.

Figure 7

TRY IT #12 Find the equation of the line parallel to and passing through the point

EXAMPLE 16

Finding the Equation of a Line Perpendicular to a Given Line Passing Through a Given Point
Find the equation of the line perpendicular to and passing through the point

Solution
The first step is to write the equation in slope-intercept form.

We see that the slope is This means that the slope of the line perpendicular to the given line is the negative

reciprocal, or Next, we use the point-slope formula with this new slope and the given point.
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MEDIA

Access these online resources for additional instruction and practice with linear equations.

Solving rational equations (http://openstax.org/l/rationaleqs)
Equation of a line given two points (http://openstax.org/l/twopointsline)
Finding the equation of a line perpendicular to another line through a given point (http://openstax.org/l/
findperpline)
Finding the equation of a line parallel to another line through a given point (http://openstax.org/l/findparaline)

2.2 SECTION EXERCISES
Verbal

1. What does it mean when we
say that two lines are
parallel?

2. What is the relationship
between the slopes of
perpendicular lines
(assuming neither is
horizontal nor vertical)?

3. How do we recognize when
an equation, for example

will be a straight
line (linear) when graphed?

4. What does it mean when we
say that a linear equation is
inconsistent?

5. When solving the following
equation:

explain why we must
exclude and
as possible solutions from
the solution set.

Algebraic

For the following exercises, solve the equation for

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.

For the following exercises, solve each rational equation for State all x-values that are excluded from the solution set.

16. 17. 18.

19. 20. 21.
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For the following exercises, find the equation of the line using the point-slope formula. Write all the final equations using
the slope-intercept form.

22. with a slope of 23. with a slope of 24. x-intercept is 1, and

25. y-intercept is 2, and 26. and 27.

28. parallel to and
passes through the point

29. perpendicular to
and passes

through the point .

For the following exercises, find the equation of the line using the given information.

30. and 31. and 32. The slope is undefined and
it passes through the point

33. The slope equals zero and
it passes through the point

34. The slope is
and it passes through the point

.

35. and

Graphical

For the following exercises, graph the pair of equations on the same axes, and state whether they are parallel,
perpendicular, or neither.

36. 37. 38.

39.

Numeric

For the following exercises, find the slope of the line that passes through the given points.

40. and 41. and 42. and

43. and 44. and

For the following exercises, find the slope of the lines that pass through each pair of points and determine whether the
lines are parallel or perpendicular.

45. 46.
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Technology

For the following exercises, express the equations in slope intercept form (rounding each number to the thousandths
place). Enter this into a graphing calculator as Y1, then adjust the ymin and ymax values for your window to include
where the y-intercept occurs. State your ymin and ymax values.

47. 48. 49.

Extensions

50. Starting with the point-
slope formula

solve
this expression for in
terms of and .

51. Starting with the standard
form of an equation

solve this
expression for in terms of

and . Then put the
expression in slope-
intercept form.

52. Use the above derived
formula to put the
following standard
equation in slope intercept
form:

53. Given that the following
coordinates are the
vertices of a rectangle,
prove that this truly is a
rectangle by showing the
slopes of the sides that
meet are perpendicular.

and

54. Find the slopes of the
diagonals in the previous
exercise. Are they
perpendicular?

Real-World Applications

55. The slope for a wheelchair ramp for a home has to
be If the vertical distance from the ground to
the door bottom is 2.5 ft, find the distance the
ramp has to extend from the home in order to
comply with the needed slope.

56. If the profit equation for a small business selling
number of item one and number of item two is

find the value when

For the following exercises, use this scenario: The cost of renting a car is $45/wk plus $0.25/mi traveled during that week.
An equation to represent the cost would be where is the number of miles traveled.

57. What is your cost if you
travel 50 mi?

58. If your cost were
how many miles were you
charged for traveling?

59. Suppose you have a
maximum of $100 to spend
for the car rental. What
would be the maximum
number of miles you could
travel?
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2.3 Models and Applications
Learning Objectives
In this section, you will:

Set up a linear equation to solve a real-world application.
Use a formula to solve a real-world application.

Figure 1 Credit: Kevin Dooley

Neka is hoping to get an A in his college algebra class. He has scores of 75, 82, 95, 91, and 94 on his first five tests. Only
the final exam remains, and the maximum of points that can be earned is 100. Is it possible for Neka to end the course
with an A? A simple linear equation will give Neka his answer.

Many real-world applications can be modeled by linear equations. For example, a cell phone package may include a
monthly service fee plus a charge per minute of talk-time; it costs a widget manufacturer a certain amount to produce x
widgets per month plus monthly operating charges; a car rental company charges a daily fee plus an amount per mile
driven. These are examples of applications we come across every day that are modeled by linear equations. In this
section, we will set up and use linear equations to solve such problems.

Setting up a Linear Equation to Solve a Real-World Application
To set up or model a linear equation to fit a real-world application, we must first determine the known quantities and
define the unknown quantity as a variable. Then, we begin to interpret the words as mathematical expressions using
mathematical symbols. Let us use the car rental example above. In this case, a known cost, such as $0.10/mi, is
multiplied by an unknown quantity, the number of miles driven. Therefore, we can write This expression
represents a variable cost because it changes according to the number of miles driven.

If a quantity is independent of a variable, we usually just add or subtract it, according to the problem. As these amounts
do not change, we call them fixed costs. Consider a car rental agency that charges $0.10/mi plus a daily fee of $50. We
can use these quantities to model an equation that can be used to find the daily car rental cost

When dealing with real-world applications, there are certain expressions that we can translate directly into math. Table 1
lists some common verbal expressions and their equivalent mathematical expressions.

Verbal Translation to Math Operations

One number exceeds another by a

Twice a number

One number is a more than another number

One number is a less than twice another number

The product of a number and a, decreased by b

The quotient of a number and the number plus a is three times the number

Table 1
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Verbal Translation to Math Operations

The product of three times a number and the number decreased by b is c

Table 1

HOW TO

Given a real-world problem, model a linear equation to fit it.

1. Identify known quantities.
2. Assign a variable to represent the unknown quantity.
3. If there is more than one unknown quantity, find a way to write the second unknown in terms of the first.
4. Write an equation interpreting the words as mathematical operations.
5. Solve the equation. Be sure the solution can be explained in words, including the units of measure.

EXAMPLE 1

Modeling a Linear Equation to Solve an Unknown Number Problem
Find a linear equation to solve for the following unknown quantities: One number exceeds another number by and
their sum is Find the two numbers.

Solution
Let equal the first number. Then, as the second number exceeds the first by 17, we can write the second number as

The sum of the two numbers is 31. We usually interpret the word is as an equal sign.

The two numbers are and

TRY IT #1 Find a linear equation to solve for the following unknown quantities: One number is three more
than twice another number. If the sum of the two numbers is find the numbers.

EXAMPLE 2

Setting Up a Linear Equation to Solve a Real-World Application
There are two cell phone companies that offer different packages. Company A charges a monthly service fee of $34 plus
$.05/min talk-time. Company B charges a monthly service fee of $40 plus $.04/min talk-time.

ⓐ Write a linear equation that models the packages offered by both companies.

ⓑ If the average number of minutes used each month is 1,160, which company offers the better plan?

ⓒ If the average number of minutes used each month is 420, which company offers the better plan?

ⓓ How many minutes of talk-time would yield equal monthly statements from both companies?
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Solution

ⓐ The model for Company A can be written as This includes the variable cost of plus the
monthly service charge of $34. Company B’s package charges a higher monthly fee of $40, but a lower variable cost
of Company B’s model can be written as

ⓑ
If the average number of minutes used each month is 1,160, we have the following:

So, Company B offers the lower monthly cost of $86.40 as compared with the $92 monthly cost offered by Company A
when the average number of minutes used each month is 1,160.

ⓒ
If the average number of minutes used each month is 420, we have the following:

If the average number of minutes used each month is 420, then Company A offers a lower monthly cost of $55
compared to Company B’s monthly cost of $56.80.

ⓓ
To answer the question of how many talk-time minutes would yield the same bill from both companies, we should
think about the problem in terms of coordinates: At what point are both the x-value and the y-value equal? We
can find this point by setting the equations equal to each other and solving for x.

Check the x-value in each equation.

Therefore, a monthly average of 600 talk-time minutes renders the plans equal. See Figure 2
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Figure 2

TRY IT #2 Find a linear equation to model this real-world application: It costs ABC electronics company $2.50
per unit to produce a part used in a popular brand of desktop computers. The company has
monthly operating expenses of $350 for utilities and $3,300 for salaries. What are the company’s
monthly expenses?

Using a Formula to Solve a Real-World Application
Many applications are solved using known formulas. The problem is stated, a formula is identified, the known quantities
are substituted into the formula, the equation is solved for the unknown, and the problem’s question is answered.
Typically, these problems involve two equations representing two trips, two investments, two areas, and so on. Examples
of formulas include the area of a rectangular region, the perimeter of a rectangle, and the
volume of a rectangular solid, When there are two unknowns, we find a way to write one in terms of the
other because we can solve for only one variable at a time.

EXAMPLE 3

Solving an Application Using a Formula
It takes Andrew 30 min to drive to work in the morning. He drives home using the same route, but it takes 10 min longer,
and he averages 10 mi/h less than in the morning. How far does Andrew drive to work?

Solution
This is a distance problem, so we can use the formula where distance equals rate multiplied by time. Note that
when rate is given in mi/h, time must be expressed in hours. Consistent units of measurement are key to obtaining a
correct solution.

First, we identify the known and unknown quantities. Andrew’s morning drive to work takes 30 min, or h at rate His
drive home takes 40 min, or h, and his speed averages 10 mi/h less than the morning drive. Both trips cover distance

A table, such as Table 2, is often helpful for keeping track of information in these types of problems.

To Work

To Home

Table 2

Write two equations, one for each trip.
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As both equations equal the same distance, we set them equal to each other and solve for r.

We have solved for the rate of speed to work, 40 mph. Substituting 40 into the rate on the return trip yields 30 mi/h. Now
we can answer the question. Substitute the rate back into either equation and solve for d.

The distance between home and work is 20 mi.

Analysis
Note that we could have cleared the fractions in the equation by multiplying both sides of the equation by the LCD to
solve for

TRY IT #3 On Saturday morning, it took Jennifer 3.6 h to drive to her mother’s house for the weekend. On
Sunday evening, due to heavy traffic, it took Jennifer 4 h to return home. Her speed was 5 mi/h
slower on Sunday than on Saturday. What was her speed on Sunday?

EXAMPLE 4

Solving a Perimeter Problem
The perimeter of a rectangular outdoor patio is ft. The length is ft greater than the width. What are the dimensions
of the patio?

Solution
The perimeter formula is standard: We have two unknown quantities, length and width. However, we can
write the length in terms of the width as Substitute the perimeter value and the expression for length into
the formula. It is often helpful to make a sketch and label the sides as in Figure 3.

Figure 3

Now we can solve for the width and then calculate the length.
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The dimensions are ft and ft.

TRY IT #4 Find the dimensions of a rectangle given that the perimeter is cm and the length is 1 cm more
than twice the width.

EXAMPLE 5

Solving an Area Problem
The perimeter of a tablet of graph paper is 48 in. The length is in. more than the width. Find the area of the graph
paper.

Solution
The standard formula for area is however, we will solve the problem using the perimeter formula. The reason
we use the perimeter formula is because we know enough information about the perimeter that the formula will allow
us to solve for one of the unknowns. As both perimeter and area use length and width as dimensions, they are often
used together to solve a problem such as this one.

We know that the length is 6 in. more than the width, so we can write length as Substitute the value of the
perimeter and the expression for length into the perimeter formula and find the length.

Now, we find the area given the dimensions of in. and in.

The area is in.2.

TRY IT #5 A game room has a perimeter of 70 ft. The length is five more than twice the width. How many ft2

of new carpeting should be ordered?

EXAMPLE 6

Solving a Volume Problem
Find the dimensions of a shipping box given that the length is twice the width, the height is inches, and the volume is
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1,600 in.3.

Solution
The formula for the volume of a box is given as the product of length, width, and height. We are given that

and The volume is cubic inches.

The dimensions are in., in., and in.

Analysis
Note that the square root of would result in a positive and a negative value. However, because we are describing
width, we can use only the positive result.

MEDIA

Access these online resources for additional instruction and practice with models and applications of linear
equations.

Problem solving using linear equations (http://openstax.org/l/lineqprobsolve)
Problem solving using equations (http://openstax.org/l/equationprsolve)
Finding the dimensions of area given the perimeter (http://openstax.org/l/permareasolve)
Find the distance between the cities using the distance = rate * time formula (http://openstax.org/l/ratetimesolve)
Linear equation application (Write a cost equation) (http://openstax.org/l/lineqappl)

2.3 SECTION EXERCISES
Verbal

1. To set up a model linear
equation to fit real-world
applications, what should
always be the first step?

2. Use your own words to
describe this equation
where n is a number:

3. If the total amount of
money you had to invest
was $2,000 and you deposit

amount in one
investment, how can you
represent the remaining
amount?

4. If a carpenter sawed a 10-ft
board into two sections and
one section was ft long,
how long would the other
section be in terms of ?

5. If Bill was traveling mi/h,
how would you represent
Daemon’s speed if he was
traveling 10 mi/h faster?
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Real-World Applications

For the following exercises, use the information to find a linear algebraic equation model to use to answer the question
being asked.

6. Mark and Don are planning
to sell each of their marble
collections at a garage sale.
If Don has 1 more than 3
times the number of
marbles Mark has, how
many does each boy have to
sell if the total number of
marbles is 113?

7. Beth and Ann are joking that
their combined ages equal
Sam’s age. If Beth is twice
Ann’s age and Sam is 69 yr
old, what are Beth and
Ann’s ages?

8. Ruden originally filled out 8
more applications than
Hanh. Then each boy filled
out 3 additional
applications, bringing the
total to 28. How many
applications did each boy
originally fill out?

For the following exercises, use this scenario: Two different telephone carriers offer the following plans that a person is
considering. Company A has a monthly fee of $20 and charges of $.05/min for calls. Company B has a monthly fee of $5
and charges $.10/min for calls.

9. Find the model of the total
cost of Company A’s plan,
using for the minutes.

10. Find the model of the total
cost of Company B’s plan,
using for the minutes.

11. Find out how many
minutes of calling would
make the two plans equal.

12. If the person makes a
monthly average of 200
min of calls, which plan
should for the person
choose?

For the following exercises, use this scenario: A wireless carrier offers the following plans that a person is considering.
The Family Plan: $90 monthly fee, unlimited talk and text on up to 8 lines, and data charges of $40 for each device for up
to 2 GB of data per device. The Mobile Share Plan: $120 monthly fee for up to 10 devices, unlimited talk and text for all
the lines, and data charges of $35 for each device up to a shared total of 10 GB of data. Use for the number of devices
that need data plans as part of their cost.

13. Find the model of the total
cost of the Family Plan.

14. Find the model of the total
cost of the Mobile Share
Plan.

15. Assuming they stay under
their data limit, find the
number of devices that
would make the two plans
equal in cost.

16. If a family has 3 smart
phones, which plan should
they choose?
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For exercises 17 and 18, use this scenario: A retired woman has $50,000 to invest but needs to make $6,000 a year from
the interest to meet certain living expenses. One bond investment pays 15% annual interest. The rest of it she wants to
put in a CD that pays 7%.

17. If we let be the amount
the woman invests in the
15% bond, how much will
she be able to invest in the
CD?

18. Set up and solve the
equation for how much the
woman should invest in
each option to sustain a
$6,000 annual return.

19. Two planes fly in opposite
directions. One travels 450
mi/h and the other 550 mi/
h. How long will it take
before they are 4,000 mi
apart?

20. Ben starts walking along a
path at 4 mi/h. One and a
half hours after Ben leaves,
his sister Amanda begins
jogging along the same
path at 6 mi/h. How long
will it be before Amanda
catches up to Ben?

21. Fiora starts riding her bike
at 20 mi/h. After a while,
she slows down to 12 mi/h,
and maintains that speed
for the rest of the trip. The
whole trip of 70 mi takes
her 4.5 h. For what distance
did she travel at 20 mi/h?

22. A chemistry teacher needs
to mix a 30% salt solution
with a 70% salt solution to
make 20 qt of a 40% salt
solution. How many quarts
of each solution should the
teacher mix to get the
desired result?

23. Raúl has $20,000 to invest.
His intent is to earn 11%
interest on his investment.
He can invest part of his
money at 8% interest and
part at 12% interest. How
much does Raúl need to
invest in each option to
make get a total 11%
return on his $20,000?

For the following exercises, use this scenario: A truck rental agency offers two kinds of plans. Plan A charges $75/wk plus
$.10/mi driven. Plan B charges $100/wk plus $.05/mi driven.

24. Write the model equation
for the cost of renting a
truck with plan A.

25. Write the model equation
for the cost of renting a
truck with plan B.

26. Find the number of miles
that would generate the
same cost for both plans.

27. If Tim knows he has to
travel 300 mi, which plan
should he choose?

For the following exercises, use the formula given to solve for the required value.

28. is used to
find the principal amount P
deposited, earning r%
interest, for t years. Use
this to find what principal
amount P David invested at
a 3% rate for 20 yr if

29. The formula
relates force , velocity

, mass , and resistance
. Find when

and

30. indicates that
force (F) equals mass (m)
times acceleration (a). Find
the acceleration of a mass
of 50 kg if a force of 12 N is
exerted on it.
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31. is the formula
for an infinite series sum. If
the sum is 5, find

For the following exercises, solve for the given variable in the formula. After obtaining a new version of the formula, you
will use it to solve a question.

32. Solve for W: 33. Use the formula from the
previous question to find
the width, of a
rectangle whose length is
15 and whose perimeter is
58.

34. Solve for

35. Use the formula from the
previous question to find
when

36. Solve for in the slope-
intercept formula:

37. Use the formula from the
previous question to find
when the coordinates of
the point are and

38. The area of a trapezoid is
given by
Use the formula to find the
area of a trapezoid with

39. Solve for h: 40. Use the formula from the
previous question to find
the height of a trapezoid
with ,
and

41. Find the dimensions of an
American football field. The
length is 200 ft more than
the width, and the
perimeter is 1,040 ft. Find
the length and width. Use
the perimeter formula

42. Distance equals rate times
time, Find the
distance Tom travels if he is
moving at a rate of 55 mi/h
for 3.5 h.

43. Using the formula in the
previous exercise, find the
distance that Susan travels
if she is moving at a rate of
60 mi/h for 6.75 h.

44. What is the total distance
that two people travel in 3
h if one of them is riding a
bike at 15 mi/h and the
other is walking at 3 mi/h?

45. If the area model for a
triangle is find
the area of a triangle with a
height of 16 in. and a base
of 11 in.

46. Solve for h:

47. Use the formula from the
previous question to find
the height to the nearest
tenth of a triangle with a
base of 15 and an area of
215.

48. The volume formula for a
cylinder is Using
the symbol in your
answer, find the volume of
a cylinder with a radius,
of 4 cm and a height of 14
cm.

49. Solve for h:
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50. Use the formula from the
previous question to find
the height of a cylinder
with a radius of 8 and a
volume of

51. Solve for r: 52. Use the formula from the
previous question to find
the radius of a cylinder
with a height of 36 and a
volume of

53. The formula for the
circumference of a circle is

Find the
circumference of a circle
with a diameter of 12 in.
(diameter = 2r). Use the
symbol in your final
answer.

54. Solve the formula from the
previous question for
Notice why is sometimes
defined as the ratio of the
circumference to its
diameter.

2.4 Complex Numbers
Learning Objectives
In this section, you will:

Add and subtract complex numbers.
Multiply and divide complex numbers.
Simplify powers of

Figure 1

Discovered by Benoit Mandelbrot around 1980, the Mandelbrot Set is one of the most recognizable fractal images. The
image is built on the theory of self-similarity and the operation of iteration. Zooming in on a fractal image brings many
surprises, particularly in the high level of repetition of detail that appears as magnification increases. The equation that
generates this image turns out to be rather simple.

In order to better understand it, we need to become familiar with a new set of numbers. Keep in mind that the study of
mathematics continuously builds upon itself. Negative integers, for example, fill a void left by the set of positive integers.
The set of rational numbers, in turn, fills a void left by the set of integers. The set of real numbers fills a void left by the
set of rational numbers. Not surprisingly, the set of real numbers has voids as well. In this section, we will explore a set
of numbers that fills voids in the set of real numbers and find out how to work within it.

Expressing Square Roots of Negative Numbers as Multiples of
We know how to find the square root of any positive real number. In a similar way, we can find the square root of any
negative number. The difference is that the root is not real. If the value in the radicand is negative, the root is said to be
an imaginary number. The imaginary number is defined as the square root of

So, using properties of radicals,

We can write the square root of any negative number as a multiple of Consider the square root of
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We use and not because the principal root of is the positive root.

A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard
form when written where is the real part and is the imaginary part. For example, is a complex number.
So, too, is

Imaginary numbers differ from real numbers in that a squared imaginary number produces a negative real number.
Recall that when a positive real number is squared, the result is a positive real number and when a negative real number
is squared, the result is also a positive real number. Complex numbers consist of real and imaginary numbers.

Imaginary and Complex Numbers

A complex number is a number of the form where

• is the real part of the complex number.
• is the imaginary part of the complex number.

If then is a real number. If and is not equal to 0, the complex number is called a pure imaginary
number. An imaginary number is an even root of a negative number.

HOW TO

Given an imaginary number, express it in the standard form of a complex number.

1. Write as

2. Express as
3. Write in simplest form.

EXAMPLE 1

Expressing an Imaginary Number in Standard Form
Express in standard form.

Solution

In standard form, this is

TRY IT #1 Express in standard form.

Plotting a Complex Number on the Complex Plane
We cannot plot complex numbers on a number line as we might real numbers. However, we can still represent them
graphically. To represent a complex number, we need to address the two components of the number. We use the
complex plane, which is a coordinate system in which the horizontal axis represents the real component and the vertical
axis represents the imaginary component. Complex numbers are the points on the plane, expressed as ordered pairs
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where represents the coordinate for the horizontal axis and represents the coordinate for the vertical axis.

Let’s consider the number The real part of the complex number is and the imaginary part is 3. We plot the
ordered pair to represent the complex number as shown in Figure 2.

Figure 2

Complex Plane

In the complex plane, the horizontal axis is the real axis, and the vertical axis is the imaginary axis, as shown in Figure
3.

Figure 3

HOW TO

Given a complex number, represent its components on the complex plane.

1. Determine the real part and the imaginary part of the complex number.
2. Move along the horizontal axis to show the real part of the number.
3. Move parallel to the vertical axis to show the imaginary part of the number.
4. Plot the point.

EXAMPLE 2

Plotting a Complex Number on the Complex Plane
Plot the complex number on the complex plane.

Solution
The real part of the complex number is and the imaginary part is –4. We plot the ordered pair as shown in
Figure 4.
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Figure 4

TRY IT #2 Plot the complex number on the complex plane.

Adding and Subtracting Complex Numbers
Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract complex
numbers, we combine the real parts and then combine the imaginary parts.

Complex Numbers: Addition and Subtraction

Adding complex numbers:

Subtracting complex numbers:

HOW TO

Given two complex numbers, find the sum or difference.

1. Identify the real and imaginary parts of each number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

EXAMPLE 3

Adding and Subtracting Complex Numbers
Add or subtract as indicated.

ⓐ ⓑ
Solution

We add the real parts and add the imaginary parts.

ⓐ ⓑ
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TRY IT #3 Subtract from

Multiplying Complex Numbers
Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with the real and
imaginary parts separately.

Multiplying a Complex Number by a Real Number
Lets begin by multiplying a complex number by a real number. We distribute the real number just as we would with a
binomial. Consider, for example, :

HOW TO

Given a complex number and a real number, multiply to find the product.

1. Use the distributive property.
2. Simplify.

EXAMPLE 4

Multiplying a Complex Number by a Real Number
Find the product

Solution
Distribute the 4.

TRY IT #4 Find the product:

Multiplying Complex Numbers Together
Now, let’s multiply two complex numbers. We can use either the distributive property or more specifically the FOIL
method because we are dealing with binomials. Recall that FOIL is an acronym for multiplying First, Inner, Outer, and
Last terms together. The difference with complex numbers is that when we get a squared term, it equals

HOW TO

Given two complex numbers, multiply to find the product.

1. Use the distributive property or the FOIL method.
2. Remember that
3. Group together the real terms and the imaginary terms
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EXAMPLE 5

Multiplying a Complex Number by a Complex Number
Multiply:

Solution

TRY IT #5 Multiply:

Dividing Complex Numbers
Dividing two complex numbers is more complicated than adding, subtracting, or multiplying because we cannot divide
by an imaginary number, meaning that any fraction must have a real-number denominator to write the answer in
standard form We need to find a term by which we can multiply the numerator and the denominator that will
eliminate the imaginary portion of the denominator so that we end up with a real number as the denominator. This term
is called the complex conjugate of the denominator, which is found by changing the sign of the imaginary part of the
complex number. In other words, the complex conjugate of is For example, the product of and

is

The result is a real number.

Note that complex conjugates have an opposite relationship: The complex conjugate of is and the complex
conjugate of is Further, when a quadratic equation with real coefficients has complex solutions, the
solutions are always complex conjugates of one another.

Suppose we want to divide by where neither nor equals zero. We first write the division as a fraction,
then find the complex conjugate of the denominator, and multiply.

Multiply the numerator and denominator by the complex conjugate of the denominator.

Apply the distributive property.

Simplify, remembering that

The Complex Conjugate

The complex conjugate of a complex number is It is found by changing the sign of the imaginary part
of the complex number. The real part of the number is left unchanged.

• When a complex number is multiplied by its complex conjugate, the result is a real number.
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• When a complex number is added to its complex conjugate, the result is a real number.

EXAMPLE 6

Finding Complex Conjugates
Find the complex conjugate of each number.

ⓐ ⓑ
Solution

ⓐ The number is already in the form The complex conjugate is or

ⓑ We can rewrite this number in the form as The complex conjugate is or This can be
written simply as

Analysis
Although we have seen that we can find the complex conjugate of an imaginary number, in practice we generally find
the complex conjugates of only complex numbers with both a real and an imaginary component. To obtain a real
number from an imaginary number, we can simply multiply by

TRY IT #6 Find the complex conjugate of

HOW TO

Given two complex numbers, divide one by the other.

1. Write the division problem as a fraction.
2. Determine the complex conjugate of the denominator.
3. Multiply the numerator and denominator of the fraction by the complex conjugate of the denominator.
4. Simplify.

EXAMPLE 7

Dividing Complex Numbers
Divide: by

Solution
We begin by writing the problem as a fraction.

Then we multiply the numerator and denominator by the complex conjugate of the denominator.

To multiply two complex numbers, we expand the product as we would with polynomials (using FOIL).
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Note that this expresses the quotient in standard form.

Simplifying Powers of i
The powers of are cyclic. Let’s look at what happens when we raise to increasing powers.

We can see that when we get to the fifth power of it is equal to the first power. As we continue to multiply by
increasing powers, we will see a cycle of four. Let’s examine the next four powers of

The cycle is repeated continuously: every four powers.

EXAMPLE 8

Simplifying Powers of
Evaluate:

Solution
Since we can simplify the problem by factoring out as many factors of as possible. To do so, first determine
how many times 4 goes into 35:

TRY IT #7 Evaluate:

Q&A Can we write in other helpful ways?

As we saw in Example 8, we reduced to by dividing the exponent by 4 and using the remainder to
find the simplified form. But perhaps another factorization of may be more useful. Table 1 shows
some other possible factorizations.

Factorization of

Reduced form

Simplified form

Table 1

Each of these will eventually result in the answer we obtained above but may require several more steps
than our earlier method.

MEDIA

Access these online resources for additional instruction and practice with complex numbers.
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Adding and Subtracting Complex Numbers (http://openstax.org/l/addsubcomplex)
Multiply Complex Numbers (http://openstax.org/l/multiplycomplex)
Multiplying Complex Conjugates (http://openstax.org/l/multcompconj)
Raising i to Powers (http://openstax.org/l/raisingi)

2.4 SECTION EXERCISES
Verbal

1. Explain how to add complex
numbers.

2. What is the basic principle in
multiplication of complex
numbers?

3. Give an example to show
that the product of two
imaginary numbers is not
always imaginary.

4. What is a characteristic of
the plot of a real number in
the complex plane?

Algebraic

For the following exercises, evaluate the algebraic expressions.

5. If evaluate
given

6. If evaluate
given

7. If evaluate
given

8. If evaluate
given

9. If evaluate given 10. If evaluate
given

Graphical

For the following exercises, plot the complex numbers on the complex plane.

11. 12. 13.

14.

Numeric

For the following exercises, perform the indicated operation and express the result as a simplified complex number.

15. 16. 17.

18. 19. 20.

21. 22. 23.

24. 25. 26.
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27. 28. 29.

30. 31. 32.

33. 34. 35.

36. 37. 38.

39. 40. 41.

Technology

For the following exercises, use a calculator to help answer the questions.

42. Evaluate for
and . Predict

the value if

43. Evaluate for
and . Predict

the value if

44. Evaluate
for and . Predict
the value for

45. Show that a solution of

is

46. Show that a solution of

is

Extensions

For the following exercises, evaluate the expressions, writing the result as a simplified complex number.

47. 48. 49.

50. 51. 52.

53. 54. 55.

56.

2.5 Quadratic Equations
Learning Objectives
In this section, you will:

Solve quadratic equations by factoring.
Solve quadratic equations by the square root property.
Solve quadratic equations by completing the square.
Solve quadratic equations by using the quadratic formula.
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Figure 1

The computer monitor on the left in Figure 1 is a 23.6-inch model and the one on the right is a 27-inch model.
Proportionally, the monitors appear very similar. If there is a limited amount of space and we desire the largest monitor
possible, how do we decide which one to choose? In this section, we will learn how to solve problems such as this using
four different methods.

Solving Quadratic Equations by Factoring
An equation containing a second-degree polynomial is called a quadratic equation. For example, equations such as

and are quadratic equations. They are used in countless ways in the fields of engineering,
architecture, finance, biological science, and, of course, mathematics.

Often the easiest method of solving a quadratic equation is factoring. Factoring means finding expressions that can be
multiplied together to give the expression on one side of the equation.

If a quadratic equation can be factored, it is written as a product of linear terms. Solving by factoring depends on the
zero-product property, which states that if then or where a and b are real numbers or algebraic
expressions. In other words, if the product of two numbers or two expressions equals zero, then one of the numbers or
one of the expressions must equal zero because zero multiplied by anything equals zero.

Multiplying the factors expands the equation to a string of terms separated by plus or minus signs. So, in that sense, the
operation of multiplication undoes the operation of factoring. For example, expand the factored expression

by multiplying the two factors together.

The product is a quadratic expression. Set equal to zero, is a quadratic equation. If we were to factor the
equation, we would get back the factors we multiplied.

The process of factoring a quadratic equation depends on the leading coefficient, whether it is 1 or another integer. We
will look at both situations; but first, we want to confirm that the equation is written in standard form,
where a, b, and c are real numbers, and The equation is in standard form.

We can use the zero-product property to solve quadratic equations in which we first have to factor out the greatest
common factor (GCF), and for equations that have special factoring formulas as well, such as the difference of squares,
both of which we will see later in this section.

The Zero-Product Property and Quadratic Equations

The zero-product property states

where a and b are real numbers or algebraic expressions.

A quadratic equation is an equation containing a second-degree polynomial; for example

where a, b, and c are real numbers, and if it is in standard form.

Solving Quadratics with a Leading Coefficient of 1
In the quadratic equation the leading coefficient, or the coefficient of is 1. We have one method of
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factoring quadratic equations in this form.

HOW TO

Given a quadratic equation with the leading coefficient of 1, factor it.

1. Find two numbers whose product equals c and whose sum equals b.
2. Use those numbers to write two factors of the form where k is one of the numbers found in

step 1. Use the numbers exactly as they are. In other words, if the two numbers are 1 and the factors are

3. Solve using the zero-product property by setting each factor equal to zero and solving for the variable.

EXAMPLE 1

Factoring and Solving a Quadratic with Leading Coefficient of 1
Factor and solve the equation:

Solution
To factor we look for two numbers whose product equals and whose sum equals 1. Begin by looking
at the possible factors of

The last pair, sums to 1, so these are the numbers. Note that only one pair of numbers will work. Then, write the
factors.

To solve this equation, we use the zero-product property. Set each factor equal to zero and solve.

The two solutions are and We can see how the solutions relate to the graph in Figure 2. The solutions are the
x-intercepts of
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Figure 2

TRY IT #1 Factor and solve the quadratic equation:

EXAMPLE 2

Solve the Quadratic Equation by Factoring
Solve the quadratic equation by factoring:

Solution
Find two numbers whose product equals and whose sum equals List the factors of

The numbers that add to 8 are 3 and 5. Then, write the factors, set each factor equal to zero, and solve.

The solutions are and

TRY IT #2 Solve the quadratic equation by factoring:
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EXAMPLE 3

Using the Zero-Product Property to Solve a Quadratic Equation Written as the Difference of Squares
Solve the difference of squares equation using the zero-product property:

Solution
Recognizing that the equation represents the difference of squares, we can write the two factors by taking the square
root of each term, using a minus sign as the operator in one factor and a plus sign as the operator in the other. Solve
using the zero-factor property.

The solutions are and

TRY IT #3 Solve by factoring:

Solving a Quadratic Equation by Factoring when the Leading Coefficient is not 1
When the leading coefficient is not 1, we factor a quadratic equation using the method called grouping, which requires
four terms. With the equation in standard form, let’s review the grouping procedures:

1. With the quadratic in standard form, multiply
2. Find two numbers whose product equals and whose sum equals
3. Rewrite the equation replacing the term with two terms using the numbers found in step 1 as coefficients of x.
4. Factor the first two terms and then factor the last two terms. The expressions in parentheses must be exactly the

same to use grouping.
5. Factor out the expression in parentheses.
6. Set the expressions equal to zero and solve for the variable.

EXAMPLE 4

Solving a Quadratic Equation Using Grouping
Use grouping to factor and solve the quadratic equation:

Solution
First, multiply Then list the factors of

The only pair of factors that sums to is Rewrite the equation replacing the b term, with two terms using 3
and 12 as coefficients of x. Factor the first two terms, and then factor the last two terms.

Solve using the zero-product property.
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The solutions are and See Figure 3.

Figure 3

TRY IT #4 Solve using factoring by grouping:

EXAMPLE 5

Solving a Polynomial of Higher Degree by Factoring
Solve the equation by factoring:

Solution
This equation does not look like a quadratic, as the highest power is 3, not 2. Recall that the first thing we want to do
when solving any equation is to factor out the GCF, if one exists. And it does here. We can factor out from all of the
terms and then proceed with grouping.

Use grouping on the expression in parentheses.

Now, we use the zero-product property. Notice that we have three factors.
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The solutions are and

TRY IT #5 Solve by factoring:

Using the Square Root Property
When there is no linear term in the equation, another method of solving a quadratic equation is by using the square
root property, in which we isolate the term and take the square root of the number on the other side of the equals
sign. Keep in mind that sometimes we may have to manipulate the equation to isolate the term so that the square
root property can be used.

The Square Root Property

With the term isolated, the square root property states that:

where k is a nonzero real number.

HOW TO

Given a quadratic equation with an term but no term, use the square root property to solve it.

1. Isolate the term on one side of the equal sign.
2. Take the square root of both sides of the equation, putting a sign before the expression on the side opposite

the squared term.
3. Simplify the numbers on the side with the sign.

EXAMPLE 6

Solving a Simple Quadratic Equation Using the Square Root Property
Solve the quadratic using the square root property:

Solution
Take the square root of both sides, and then simplify the radical. Remember to use a sign before the radical symbol.

The solutions are
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EXAMPLE 7

Solving a Quadratic Equation Using the Square Root Property
Solve the quadratic equation:

Solution
First, isolate the term. Then take the square root of both sides.

The solutions are and

TRY IT #6 Solve the quadratic equation using the square root property:

Completing the Square
Not all quadratic equations can be factored or can be solved in their original form using the square root property. In
these cases, we may use a method for solving a quadratic equation known as completing the square. Using this
method, we add or subtract terms to both sides of the equation until we have a perfect square trinomial on one side of
the equal sign. We then apply the square root property. To complete the square, the leading coefficient, a, must equal 1.
If it does not, then divide the entire equation by a. Then, we can use the following procedures to solve a quadratic
equation by completing the square.

We will use the example to illustrate each step.

1. Given a quadratic equation that cannot be factored, and with first add or subtract the constant term to the
right side of the equal sign.

2. Multiply the b term by and square it.

3. Add to both sides of the equal sign and simplify the right side. We have

4. The left side of the equation can now be factored as a perfect square.

5. Use the square root property and solve.

6. The solutions are and
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EXAMPLE 8

Solving a Quadratic by Completing the Square
Solve the quadratic equation by completing the square:

Solution
First, move the constant term to the right side of the equal sign.

Then, take of the b term and square it.

Add the result to both sides of the equal sign.

Factor the left side as a perfect square and simplify the right side.

Use the square root property and solve.

The solutions are and .

TRY IT #7 Solve by completing the square:

Using the Quadratic Formula
The fourth method of solving a quadratic equation is by using the quadratic formula, a formula that will solve all
quadratic equations. Although the quadratic formula works on any quadratic equation in standard form, it is easy to
make errors in substituting the values into the formula. Pay close attention when substituting, and use parentheses
when inserting a negative number.

We can derive the quadratic formula by completing the square. We will assume that the leading coefficient is positive; if
it is negative, we can multiply the equation by and obtain a positive a. Given we will
complete the square as follows:

1. First, move the constant term to the right side of the equal sign:

2. As we want the leading coefficient to equal 1, divide through by a:

3. Then, find of the middle term, and add to both sides of the equal sign:

142 2 • Equations and Inequalities

Access for free at openstax.org



...

4. Next, write the left side as a perfect square. Find the common denominator of the right side and write it as a single
fraction:

5. Now, use the square root property, which gives

6. Finally, add to both sides of the equation and combine the terms on the right side. Thus,

The Quadratic Formula

Written in standard form, any quadratic equation can be solved using the quadratic formula:

where a, b, and c are real numbers and

HOW TO

Given a quadratic equation, solve it using the quadratic formula

1. Make sure the equation is in standard form:
2. Make note of the values of the coefficients and constant term, and
3. Carefully substitute the values noted in step 2 into the equation. To avoid needless errors, use parentheses

around each number input into the formula.
4. Calculate and solve.

EXAMPLE 9

Solve the Quadratic Equation Using the Quadratic Formula
Solve the quadratic equation:

Solution
Identify the coefficients: Then use the quadratic formula.

EXAMPLE 10

Solving a Quadratic Equation with the Quadratic Formula
Use the quadratic formula to solve
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Solution
First, we identify the coefficients: and

Substitute these values into the quadratic formula.

The solutions to the equation are and

TRY IT #8 Solve the quadratic equation using the quadratic formula:

The Discriminant
The quadratic formula not only generates the solutions to a quadratic equation, it tells us about the nature of the
solutions when we consider the discriminant, or the expression under the radical, The discriminant tells us
whether the solutions are real numbers or complex numbers, and how many solutions of each type to expect. Table 1
relates the value of the discriminant to the solutions of a quadratic equation.

Value of Discriminant Results

One rational solution (double solution)

perfect square Two rational solutions

not a perfect square Two irrational solutions

Two complex solutions

Table 1

The Discriminant

For , where , , and are real numbers, the discriminant is the expression under the radical in
the quadratic formula: It tells us whether the solutions are real numbers or complex numbers and how
many solutions of each type to expect.

EXAMPLE 11

Using the Discriminant to Find the Nature of the Solutions to a Quadratic Equation
Use the discriminant to find the nature of the solutions to the following quadratic equations:

ⓐ ⓑ ⓒ ⓓ
Solution

Calculate the discriminant for each equation and state the expected type of solutions.
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ⓐ

There will be one rational double solution.

ⓑ

As is a perfect square, there will be two rational solutions.

ⓒ

As is a perfect square, there will be two rational solutions.

ⓓ

There will be two complex solutions.

Using the Pythagorean Theorem
One of the most famous formulas in mathematics is the Pythagorean Theorem. It is based on a right triangle, and
states the relationship among the lengths of the sides as where and refer to the legs of a right triangle
adjacent to the angle, and refers to the hypotenuse. It has immeasurable uses in architecture, engineering, the
sciences, geometry, trigonometry, and algebra, and in everyday applications.

We use the Pythagorean Theorem to solve for the length of one side of a triangle when we have the lengths of the other
two. Because each of the terms is squared in the theorem, when we are solving for a side of a triangle, we have a
quadratic equation. We can use the methods for solving quadratic equations that we learned in this section to solve for
the missing side.

The Pythagorean Theorem is given as

where and refer to the legs of a right triangle adjacent to the angle, and refers to the hypotenuse, as shown in
Figure 4.

Figure 4

EXAMPLE 12

Finding the Length of the Missing Side of a Right Triangle
Find the length of the missing side of the right triangle in Figure 5.

Figure 5
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Solution
As we have measurements for side b and the hypotenuse, the missing side is a.

TRY IT #9 Use the Pythagorean Theorem to solve the right triangle problem: Leg a measures 4 units, leg b
measures 3 units. Find the length of the hypotenuse.

MEDIA

Access these online resources for additional instruction and practice with quadratic equations.

Solving Quadratic Equations by Factoring (http://openstax.org/l/quadreqfactor)
The Zero-Product Property (http://openstax.org/l/zeroprodprop)
Completing the Square (http://openstax.org/l/complthesqr)
Quadratic Formula with Two Rational Solutions (http://openstax.org/l/quadrformrat)
Length of a leg of a right triangle (http://openstax.org/l/leglengthtri)

2.5 SECTION EXERCISES
Verbal

1. How do we recognize when
an equation is quadratic?

2. When we solve a quadratic
equation, how many
solutions should we always
start out seeking? Explain
why when solving a
quadratic equation in the
form we
may graph the equation

and have
no zeroes (x-intercepts).

3. When we solve a quadratic
equation by factoring, why
do we move all terms to one
side, having zero on the
other side?

4. In the quadratic formula,
what is the name of the
expression under the radical
sign and how does
it determine the number of
and nature of our solutions?

5. Describe two scenarios
where using the square root
property to solve a
quadratic equation would
be the most efficient
method.

Algebraic

For the following exercises, solve the quadratic equation by factoring.

6. 7. 8.
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9. 10. 11.

12. 13. 14.

15. 16. 17.

18.

For the following exercises, solve the quadratic equation by using the square root property.

19. 20. 21.

22. 23. 24.

For the following exercises, solve the quadratic equation by completing the square. Show each step.

25. 26. 27.

28. 29. 30.

31.

For the following exercises, determine the discriminant, and then state how many solutions there are and the nature of
the solutions. Do not solve.

32. 33. 34.

35. 36. 37.

For the following exercises, solve the quadratic equation by using the quadratic formula. If the solutions are not real,
state No Real Solution.

38. 39. 40.

41. 42. 43.

Technology

For the following exercises, enter the expressions into your graphing utility and find the zeroes to the equation (the
x-intercepts) by using 2nd CALC 2:zero. Recall finding zeroes will ask left bound (move your cursor to the left of the
zero,enter), then right bound (move your cursor to the right of the zero,enter), then guess (move your cursor between
the bounds near the zero, enter). Round your answers to the nearest thousandth.

44. 45. 46.
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47. To solve the quadratic
equation
we can graph these two
equations

and find the points of
intersection. Recall 2nd

CALC 5:intersection. Do this
and find the solutions to
the nearest tenth.

48. To solve the quadratic
equation

we can
graph these two equations

and find the points of
intersection. Recall 2nd

CALC 5:intersection. Do this
and find the solutions to
the nearest tenth.

Extensions

49. Beginning with the general
form of a quadratic
equation,

solve for
x by using the completing
the square method, thus
deriving the quadratic
formula.

50. Show that the sum of the
two solutions to the
quadratic equation is .

51. A person has a garden that
has a length 10 feet longer
than the width. Set up a
quadratic equation to find
the dimensions of the
garden if its area is 119 ft.2.
Solve the quadratic
equation to find the length
and width.

52. Abercrombie and Fitch
stock had a price given as

where is the time in
months from 1999 to 2001.
( is January 1999).
Find the two months in
which the price of the stock
was $30.

53. Suppose that an equation
is given

where represents the
number of items sold at an
auction and is the profit
made by the business that
ran the auction. How many
items sold would make this
profit a maximum? Solve
this by graphing the
expression in your
graphing utility and finding
the maximum using 2nd

CALC maximum. To obtain
a good window for the
curve, set [0,200] and
[0,10000].
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Real-World Applications

54. A formula for the normal
systolic blood pressure for a
man age measured in
mmHg, is given as

Find the age to the nearest
year of a man whose normal
blood pressure measures
125 mmHg.

55. The cost function for a
certain company is

and the
revenue is given by

Recall
that profit is revenue
minus cost. Set up a
quadratic equation and
find two values of x
(production level) that will
create a profit of $300.

56. A falling object travels a
distance given by the
formula ft,
where is measured in
seconds. How long will it
take for the object to travel
74 ft?

57. A vacant lot is being converted
into a community garden. The
garden and the walkway around
its perimeter have an area of 378
ft2. Find the width of the walkway
if the garden is 12 ft. wide by 15
ft. long.

58. An epidemiological study
of the spread of a certain
influenza strain that hit a
small school population
found that the total
number of students, ,
who contracted the flu
days after it broke out is
given by the model

where Find the
day that 160 students had
the flu. Recall that the
restriction on is at most 6.

2.6 Other Types of Equations
Learning Objectives
In this section, you will:

Solve equations involving rational exponents.
Solve equations using factoring.
Solve radical equations.
Solve absolute value equations.
Solve other types of equations.

We have solved linear equations, rational equations, and quadratic equations using several methods. However, there are
many other types of equations, and we will investigate a few more types in this section. We will look at equations
involving rational exponents, polynomial equations, radical equations, absolute value equations, equations in quadratic
form, and some rational equations that can be transformed into quadratics. Solving any equation, however, employs the
same basic algebraic rules. We will learn some new techniques as they apply to certain equations, but the algebra never
changes.

Solving Equations Involving Rational Exponents
Rational exponents are exponents that are fractions, where the numerator is a power and the denominator is a root. For

example, is another way of writing is another way of writing The ability to work with rational

exponents is a useful skill, as it is highly applicable in calculus.

We can solve equations in which a variable is raised to a rational exponent by raising both sides of the equation to the
reciprocal of the exponent. The reason we raise the equation to the reciprocal of the exponent is because we want to
eliminate the exponent on the variable term, and a number multiplied by its reciprocal equals 1. For example,
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and so on.

Rational Exponents

A rational exponent indicates a power in the numerator and a root in the denominator. There are multiple ways of
writing an expression, a variable, or a number with a rational exponent:

EXAMPLE 1

Evaluating a Number Raised to a Rational Exponent

Evaluate

Solution
Whether we take the root first or the power first depends on the number. It is easy to find the cube root of 8, so rewrite

as

TRY IT #1 Evaluate

EXAMPLE 2

Solve the Equation Including a Variable Raised to a Rational Exponent

Solve the equation in which a variable is raised to a rational exponent:

Solution
The way to remove the exponent on x is by raising both sides of the equation to a power that is the reciprocal of
which is

TRY IT #2 Solve the equation

EXAMPLE 3

Solving an Equation Involving Rational Exponents and Factoring

Solve

150 2 • Equations and Inequalities

Access for free at openstax.org



Solution
This equation involves rational exponents as well as factoring rational exponents. Let us take this one step at a time.
First, put the variable terms on one side of the equal sign and set the equation equal to zero.

Now, it looks like we should factor the left side, but what do we factor out? We can always factor the term with the lowest

exponent. Rewrite as Then, factor out from both terms on the left.

Where did come from? Remember, when we multiply two numbers with the same base, we add the exponents.

Therefore, if we multiply back in using the distributive property, we get the expression we had before the factoring,
which is what should happen. We need an exponent such that when added to equals Thus, the exponent on x in
the parentheses is

Let us continue. Now we have two factors and can use the zero factor theorem.

The two solutions are and

TRY IT #3 Solve:

Solving Equations Using Factoring
We have used factoring to solve quadratic equations, but it is a technique that we can use with many types of polynomial
equations, which are equations that contain a string of terms including numerical coefficients and variables. When we
are faced with an equation containing polynomials of degree higher than 2, we can often solve them by factoring.

Polynomial Equations

A polynomial of degree n is an expression of the type

where n is a positive integer and are real numbers and
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Setting the polynomial equal to zero gives a polynomial equation. The total number of solutions (real and complex)
to a polynomial equation is equal to the highest exponent n.

EXAMPLE 4

Solving a Polynomial by Factoring
Solve the polynomial by factoring:

Solution
First, set the equation equal to zero. Then factor out what is common to both terms, the GCF.

Notice that we have the difference of squares in the factor which we will continue to factor and obtain two
solutions. The first term, generates, technically, two solutions as the exponent is 2, but they are the same solution.

The solutions are and

Analysis
We can see the solutions on the graph in Figure 1. The x-coordinates of the points where the graph crosses the x-axis are
the solutions—the x-intercepts. Notice on the graph that at the solution the graph touches the x-axis and bounces
back. It does not cross the x-axis. This is typical of double solutions.

Figure 1

TRY IT #4 Solve by factoring:
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EXAMPLE 5

Solve a Polynomial by Grouping
Solve a polynomial by grouping:

Solution
This polynomial consists of 4 terms, which we can solve by grouping. Grouping procedures require factoring the first two
terms and then factoring the last two terms. If the factors in the parentheses are identical, we can continue the process
and solve, unless more factoring is suggested.

The grouping process ends here, as we can factor using the difference of squares formula.

The solutions are and Note that the highest exponent is 3 and we obtained 3 solutions. We can see the
solutions, the x-intercepts, on the graph in Figure 2.

Figure 2

Analysis
We looked at solving quadratic equations by factoring when the leading coefficient is 1. When the leading coefficient is
not 1, we solved by grouping. Grouping requires four terms, which we obtained by splitting the linear term of quadratic
equations. We can also use grouping for some polynomials of degree higher than 2, as we saw here, since there were
already four terms.

Solving Radical Equations
Radical equations are equations that contain variables in the radicand (the expression under a radical symbol), such as

Radical equations may have one or more radical terms, and are solved by eliminating each radical, one at a time. We
have to be careful when solving radical equations, as it is not unusual to find extraneous solutions, roots that are not, in
fact, solutions to the equation. These solutions are not due to a mistake in the solving method, but result from the
process of raising both sides of an equation to a power. However, checking each answer in the original equation will
confirm the true solutions.
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Radical Equations

An equation containing terms with a variable in the radicand is called a radical equation.

HOW TO

Given a radical equation, solve it.

1. Isolate the radical expression on one side of the equal sign. Put all remaining terms on the other side.
2. If the radical is a square root, then square both sides of the equation. If it is a cube root, then raise both sides of

the equation to the third power. In other words, for an nth root radical, raise both sides to the nth power. Doing
so eliminates the radical symbol.

3. Solve the remaining equation.
4. If a radical term still remains, repeat steps 1–2.
5. Confirm solutions by substituting them into the original equation.

EXAMPLE 6

Solving an Equation with One Radical
Solve

Solution
The radical is already isolated on the left side of the equal side, so proceed to square both sides.

We see that the remaining equation is a quadratic. Set it equal to zero and solve.

The proposed solutions are and Let us check each solution back in the original equation. First, check

This is an extraneous solution. While no mistake was made solving the equation, we found a solution that does not
satisfy the original equation.

Check

The solution is
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TRY IT #5 Solve the radical equation:

EXAMPLE 7

Solving a Radical Equation Containing Two Radicals
Solve

Solution
As this equation contains two radicals, we isolate one radical, eliminate it, and then isolate the second radical.

Use the perfect square formula to expand the right side:

Now that both radicals have been eliminated, set the quadratic equal to zero and solve.

The proposed solutions are and Check each solution in the original equation.

One solution is

Check

The only solution is We see that is an extraneous solution.

TRY IT #6 Solve the equation with two radicals:
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Solving an Absolute Value Equation
Next, we will learn how to solve an absolute value equation. To solve an equation such as we notice that
the absolute value will be equal to 8 if the quantity inside the absolute value bars is or This leads to two different
equations we can solve independently.

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify
numbers or points on a line that are at a specified distance from a given reference point.

Absolute Value Equations

The absolute value of x is written as It has the following properties:

For real numbers and an equation of the form with will have solutions when or
If the equation has no solution.

An absolute value equation in the form has the following properties:

HOW TO

Given an absolute value equation, solve it.

1. Isolate the absolute value expression on one side of the equal sign.
2. If write and solve two equations: and

EXAMPLE 8

Solving Absolute Value Equations
Solve the following absolute value equations:

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ

Write two equations and solve each:

The two solutions are and

ⓑ

There is no solution as an absolute value cannot be negative.
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ⓒ

Isolate the absolute value expression and then write two equations.

There are two solutions: and

ⓓ
(d)

The equation is set equal to zero, so we have to write only one equation.

There is one solution:

TRY IT #7 Solve the absolute value equation:

Solving Other Types of Equations
There are many other types of equations in addition to the ones we have discussed so far. We will see more of them
throughout the text. Here, we will discuss equations that are in quadratic form, and rational equations that result in a
quadratic.

Solving Equations in Quadratic Form
Equations in quadratic form are equations with three terms. The first term has a power other than 2. The middle term
has an exponent that is one-half the exponent of the leading term. The third term is a constant. We can solve equations
in this form as if they were quadratic. A few examples of these equations include

and In each one, doubling the exponent of the middle term equals the exponent on the leading
term. We can solve these equations by substituting a variable for the middle term.

Quadratic Form

If the exponent on the middle term is one-half of the exponent on the leading term, we have an equation in
quadratic form, which we can solve as if it were a quadratic. We substitute a variable for the middle term to solve
equations in quadratic form.

HOW TO

Given an equation quadratic in form, solve it.

1. Identify the exponent on the leading term and determine whether it is double the exponent on the middle term.
2. If it is, substitute a variable, such as u, for the variable portion of the middle term.
3. Rewrite the equation so that it takes on the standard form of a quadratic.
4. Solve using one of the usual methods for solving a quadratic.
5. Replace the substitution variable with the original term.
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6. Solve the remaining equation.

EXAMPLE 9

Solving a Fourth-degree Equation in Quadratic Form
Solve this fourth-degree equation:

Solution
This equation fits the main criteria, that the power on the leading term is double the power on the middle term. Next, we
will make a substitution for the variable term in the middle. Let Rewrite the equation in u.

Now solve the quadratic.

Solve each factor and replace the original term for u.

The solutions are and

TRY IT #8 Solve using substitution:

EXAMPLE 10

Solving an Equation in Quadratic Form Containing a Binomial
Solve the equation in quadratic form:

Solution
This equation contains a binomial in place of the single variable. The tendency is to expand what is presented. However,
recognizing that it fits the criteria for being in quadratic form makes all the difference in the solving process. First, make
a substitution, letting Then rewrite the equation in u.

Solve using the zero-factor property and then replace u with the original expression.
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The second factor results in

We have two solutions: and

TRY IT #9 Solve:

Solving Rational Equations Resulting in a Quadratic
Earlier, we solved rational equations. Sometimes, solving a rational equation results in a quadratic. When this happens,
we continue the solution by simplifying the quadratic equation by one of the methods we have seen. It may turn out that
there is no solution.

EXAMPLE 11

Solving a Rational Equation Leading to a Quadratic
Solve the following rational equation:

Solution
We want all denominators in factored form to find the LCD. Two of the denominators cannot be factored further.
However, Then, the LCD is Next, we multiply the whole equation by the LCD.

In this case, either solution produces a zero in the denominator in the original equation. Thus, there is no solution.

TRY IT #10 Solve

MEDIA

Access these online resources for additional instruction and practice with different types of equations.

Rational Equation with no Solution (http://openstax.org/l/rateqnosoln)
Solving equations with rational exponents using reciprocal powers (http://openstax.org/l/ratexprecpexp)
Solving radical equations part 1 of 2 (http://openstax.org/l/radeqsolvepart1)
Solving radical equations part 2 of 2 (http://openstax.org/l/radeqsolvepart2)
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2.6 SECTION EXERCISES
Verbal

1. In a radical equation, what
does it mean if a number is
an extraneous solution?

2. Explain why possible
solutions must be checked
in radical equations.

3. Your friend tries to calculate

the value and keeps
getting an ERROR message.
What mistake are they
probably making?

4. Explain why
has no solutions.

5. Explain how to change a
rational exponent into the
correct radical expression.

Algebraic

For the following exercises, solve the rational exponent equation. Use factoring where necessary.

6. 7. 8.

9. 10. 11.

12.

For the following exercises, solve the following polynomial equations by grouping and factoring.

13. 14. 15.

16. 17. 18.

19.

For the following exercises, solve the radical equation. Be sure to check all solutions to eliminate extraneous solutions.

20. 21. 22.

23. 24. 25.

26. 27. 28.

For the following exercises, solve the equation involving absolute value.

29. 30. 31.

32. 33. 34.
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35. 36.

For the following exercises, solve the equation by identifying the quadratic form. Use a substitute variable and find all
real solutions by factoring.

37. 38. 39.

40. 41.

Extensions

For the following exercises, solve for the unknown variable.

42. 43. 44.

45.

Real-World Applications

For the following exercises, use the model for the period of a pendulum, such that where the length of

the pendulum is L and the acceleration due to gravity is

46. If the acceleration due to
gravity is 9.8 m/s2 and the
period equals 1 s, find the
length to the nearest cm
(100 cm = 1 m).

47. If the gravity is 32 ft/s2 and
the period equals 1 s, find
the length to the nearest
in. (12 in. = 1 ft). Round
your answer to the nearest
in.

For the following exercises, use a model for body surface area, BSA, such that where w = weight in kg

and h = height in cm.

48. Find the height of a 72-kg
female to the nearest cm
whose

49. Find the weight of a
177-cm male to the nearest
kg whose

2.7 Linear Inequalities and Absolute Value Inequalities
Learning Objectives
In this section, you will:

Use interval notation
Use properties of inequalities.
Solve inequalities in one variable algebraically.
Solve absolute value inequalities.
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Figure 1

It is not easy to make the honor roll at most top universities. Suppose students were required to carry a course load of at
least 12 credit hours and maintain a grade point average of 3.5 or above. How could these honor roll requirements be
expressed mathematically? In this section, we will explore various ways to express different sets of numbers,
inequalities, and absolute value inequalities.

Using Interval Notation
Indicating the solution to an inequality such as can be achieved in several ways.

We can use a number line as shown in Figure 2. The blue ray begins at and, as indicated by the arrowhead,
continues to infinity, which illustrates that the solution set includes all real numbers greater than or equal to 4.

Figure 2

We can use set-builder notation: which translates to “all real numbers x such that x is greater than or equal
to 4.” Notice that braces are used to indicate a set.

The third method is interval notation, in which solution sets are indicated with parentheses or brackets. The solutions

to are represented as ∞ This is perhaps the most useful method, as it applies to concepts studied later in

this course and to other higher-level math courses.

The main concept to remember is that parentheses represent solutions greater or less than the number, and brackets
represent solutions that are greater than or equal to or less than or equal to the number. Use parentheses to represent
infinity or negative infinity, since positive and negative infinity are not numbers in the usual sense of the word and,
therefore, cannot be “equaled.” A few examples of an interval, or a set of numbers in which a solution falls, are
or all numbers between and including but not including all real numbers between, but not including

and and ∞ all real numbers less than and including Table 1 outlines the possibilities.

Set Indicated Set-Builder Notation Interval Notation

All real numbers between a and b, but not including a or b

All real numbers greater than a, but not including a ∞

All real numbers less than b, but not including b ∞

All real numbers greater than a, including a ∞

All real numbers less than b, including b ∞

All real numbers between a and b, including a

All real numbers between a and b, including b

Table 1
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Set Indicated Set-Builder Notation Interval Notation

All real numbers between a and b, including a and b

All real numbers less than a or greater than b ∞ ∞

All real numbers ∞ ∞

Table 1

EXAMPLE 1

Using Interval Notation to Express All Real Numbers Greater Than or Equal to a
Use interval notation to indicate all real numbers greater than or equal to

Solution

Use a bracket on the left of and parentheses after infinity: ∞ The bracket indicates that is included in the

set with all real numbers greater than to infinity.

TRY IT #1 Use interval notation to indicate all real numbers between and including and

EXAMPLE 2

Using Interval Notation to Express All Real Numbers Less Than or Equal to a or Greater Than or Equal to b
Write the interval expressing all real numbers less than or equal to or greater than or equal to

Solution
We have to write two intervals for this example. The first interval must indicate all real numbers less than or equal to 1.

So, this interval begins at ∞ and ends at which is written as ∞

The second interval must show all real numbers greater than or equal to which is written as ∞ However, we

want to combine these two sets. We accomplish this by inserting the union symbol, between the two intervals.

∞ ∞

TRY IT #2 Express all real numbers less than or greater than or equal to 3 in interval notation.

Using the Properties of Inequalities
When we work with inequalities, we can usually treat them similarly to but not exactly as we treat equalities. We can use
the addition property and the multiplication property to help us solve them. The one exception is when we multiply or
divide by a negative number; doing so reverses the inequality symbol.

Properties of Inequalities

These properties also apply to and
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EXAMPLE 3

Demonstrating the Addition Property
Illustrate the addition property for inequalities by solving each of the following:

1. ⓐ
2. ⓑ
3. ⓒ

Solution
The addition property for inequalities states that if an inequality exists, adding or subtracting the same number on both
sides does not change the inequality.

ⓐ ⓑ

ⓒ

TRY IT #3 Solve:

EXAMPLE 4

Demonstrating the Multiplication Property
Illustrate the multiplication property for inequalities by solving each of the following:

1. ⓐ
2. ⓑ
3. ⓒ

Solution

ⓐ ⓑ

ⓒ

TRY IT #4 Solve:

Solving Inequalities in One Variable Algebraically
As the examples have shown, we can perform the same operations on both sides of an inequality, just as we do with
equations; we combine like terms and perform operations. To solve, we isolate the variable.
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EXAMPLE 5

Solving an Inequality Algebraically
Solve the inequality:

Solution
Solving this inequality is similar to solving an equation up until the last step.

The solution set is given by the interval ∞ or all real numbers less than and including 1.

TRY IT #5 Solve the inequality and write the answer using interval notation:

EXAMPLE 6

Solving an Inequality with Fractions
Solve the following inequality and write the answer in interval notation:

Solution
We begin solving in the same way we do when solving an equation.

The solution set is the interval ∞

TRY IT #6 Solve the inequality and write the answer in interval notation:

Understanding Compound Inequalities
A compound inequality includes two inequalities in one statement. A statement such as means and

There are two ways to solve compound inequalities: separating them into two separate inequalities or leaving the
compound inequality intact and performing operations on all three parts at the same time. We will illustrate both
methods.

EXAMPLE 7

Solving a Compound Inequality
Solve the compound inequality:

Solution
The first method is to write two separate inequalities: and We solve them independently.
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Then, we can rewrite the solution as a compound inequality, the same way the problem began.

In interval notation, the solution is written as

The second method is to leave the compound inequality intact, and perform solving procedures on the three parts at the
same time.

We get the same solution:

TRY IT #7 Solve the compound inequality:

EXAMPLE 8

Solving a Compound Inequality with the Variable in All Three Parts
Solve the compound inequality with variables in all three parts:

Solution
Let's try the first method. Write two inequalities:

The solution set is or in interval notation Notice that when we write the solution in interval
notation, the smaller number comes first. We read intervals from left to right, as they appear on a number line. See
Figure 3.

Figure 3

TRY IT #8 Solve the compound inequality:

Solving Absolute Value Inequalities
As we know, the absolute value of a quantity is a positive number or zero. From the origin, a point located at has
an absolute value of as it is x units away. Consider absolute value as the distance from one point to another point.
Regardless of direction, positive or negative, the distance between the two points is represented as a positive number or
zero.

An absolute value inequality is an equation of the form
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Where A, and sometimes B, represents an algebraic expression dependent on a variable x. Solving the inequality means
finding the set of all -values that satisfy the problem. Usually this set will be an interval or the union of two intervals
and will include a range of values.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage of the
graphical approach is we can read the solution by interpreting the graphs of two equations. The advantage of the
algebraic approach is that solutions are exact, as precise solutions are sometimes difficult to read from a graph.

Suppose we want to know all possible returns on an investment if we could earn some amount of money within $200 of
$600. We can solve algebraically for the set of x-values such that the distance between and 600 is less than or equal to
200. We represent the distance between and 600 as and therefore, or

This means our returns would be between $400 and $800.

To solve absolute value inequalities, just as with absolute value equations, we write two inequalities and then solve them
independently.

Absolute Value Inequalities

For an algebraic expression X, and an absolute value inequality is an inequality of the form

These statements also apply to and

EXAMPLE 9

Determining a Number within a Prescribed Distance
Describe all values within a distance of 4 from the number 5.

Solution
We want the distance between and 5 to be less than or equal to 4. We can draw a number line, such as in Figure 4, to
represent the condition to be satisfied.

Figure 4

The distance from to 5 can be represented using an absolute value symbol, Write the values of that satisfy
the condition as an absolute value inequality.

We need to write two inequalities as there are always two solutions to an absolute value equation.

If the solution set is and then the solution set is an interval including all real numbers between and
including 1 and 9.

So is equivalent to in interval notation.

TRY IT #9 Describe all x-values within a distance of 3 from the number 2.
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EXAMPLE 10

Solving an Absolute Value Inequality
Solve .

Solution

EXAMPLE 11

Using a Graphical Approach to Solve Absolute Value Inequalities
Given the equation determine the x-values for which the y-values are negative.

Solution
We are trying to determine where which is when We begin by isolating the absolute value.

Next, we solve for the equality

Now, we can examine the graph to observe where the y-values are negative. We observe where the branches are below
the x-axis. Notice that it is not important exactly what the graph looks like, as long as we know that it crosses the
horizontal axis at and and that the graph opens downward. See Figure 5.

Figure 5

TRY IT #10 Solve

MEDIA

Access these online resources for additional instruction and practice with linear inequalities and absolute value
inequalities.
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Interval notation (http://openstax.org/l/intervalnotn)
How to solve linear inequalities (http://openstax.org/l/solvelinineq)
How to solve an inequality (http://openstax.org/l/solveineq)
Absolute value equations (http://openstax.org/l/absvaleq)
Compound inequalities (http://openstax.org/l/compndineqs)
Absolute value inequalities (http://openstax.org/l/absvalineqs)

2.7 SECTION EXERCISES
Verbal

1. When solving an inequality,
explain what happened
from Step 1 to Step 2:

2. When solving an inequality,
we arrive at:

Explain what our solution
set is.

3. When writing our solution in
interval notation, how do we
represent all the real
numbers?

4. When solving an inequality,
we arrive at:

Explain what our solution
set is.

5. Describe how to graph

Algebraic

For the following exercises, solve the inequality. Write your final answer in interval notation.

6. 7. 8.

9. 10. 11.

12. 13. 14.

For the following exercises, solve the inequality involving absolute value. Write your final answer in interval notation.

15. 16. 17.

18. 19. 20.

21. 22. 23.

For the following exercises, describe all the x-values within or including a distance of the given values.

24. Distance of 5 units from
the number 7

25. Distance of 3 units from
the number 9

26. Distance of 10 units from
the number 4
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27. Distance of 11 units from
the number 1

For the following exercises, solve the compound inequality. Express your answer using inequality signs, and then write
your answer using interval notation.

28. 29. 30.

31. 32.

Graphical

For the following exercises, graph the function. Observe the points of intersection and shade the x-axis representing the
solution set to the inequality. Show your graph and write your final answer in interval notation.

33. 34. 35.

36. 37.

For the following exercises, graph both straight lines (left-hand side being y1 and right-hand side being y2) on the same
axes. Find the point of intersection and solve the inequality by observing where it is true comparing the y-values of the
lines.

38. 39. 40.

41. 42.

Numeric

For the following exercises, write the set in interval notation.

43. 44. 45.

46.

For the following exercises, write the interval in set-builder notation.

47. ∞ 48. ∞ 49.

50. ∞

For the following exercises, write the set of numbers represented on the number line in interval notation.

51. 52. 53.
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Technology

For the following exercises, input the left-hand side of the inequality as a Y1 graph in your graphing utility. Enter y2 = the
right-hand side. Entering the absolute value of an expression is found in the MATH menu, Num, 1:abs(. Find the points of
intersection, recall (2nd CALC 5:intersection, 1st curve, enter, 2nd curve, enter, guess, enter). Copy a sketch of the graph
and shade the x-axis for your solution set to the inequality. Write final answers in interval notation.

54. 55. 56.

57. 58.

Extensions

59. Solve 60. Solve 61.

62. is
a profit formula for a small
business. Find the set of
x-values that will keep this
profit positive.

Real-World Applications

63. In chemistry the volume
for a certain gas is given by

where V is
measured in cc and T is
temperature in ºC. If the
temperature varies
between 80ºC and 120ºC,
find the set of volume
values.

64. A basic cellular package
costs $20/mo. for 60 min of
calling, with an additional
charge of $.30/min beyond
that time.. The cost
formula would be

If
you have to keep your bill
no greater than $50, what
is the maximum calling
minutes you can use?
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Chapter Review
Key Terms
absolute value equation an equation in which the variable appears in absolute value bars, typically with two solutions,

one accounting for the positive expression and one for the negative expression
area in square units, the area formula used in this section is used to find the area of any two-dimensional rectangular

region:
Cartesian coordinate system a grid system designed with perpendicular axes invented by René Descartes
completing the square a process for solving quadratic equations in which terms are added to or subtracted from both

sides of the equation in order to make one side a perfect square
complex conjugate a complex number containing the same terms as another complex number, but with the opposite

operator. Multiplying a complex number by its conjugate yields a real number.
complex number the sum of a real number and an imaginary number; the standard form is where a is the real

part and is the complex part.
complex plane the coordinate plane in which the horizontal axis represents the real component of a complex number,

and the vertical axis represents the imaginary component, labeled i.
compound inequality a problem or a statement that includes two inequalities
conditional equation an equation that is true for some values of the variable
discriminant the expression under the radical in the quadratic formula that indicates the nature of the solutions, real

or complex, rational or irrational, single or double roots.
distance formula a formula that can be used to find the length of a line segment if the endpoints are known
equation in two variables a mathematical statement, typically written in x and y, in which two expressions are equal
equations in quadratic form equations with a power other than 2 but with a middle term with an exponent that is

one-half the exponent of the leading term
extraneous solutions any solutions obtained that are not valid in the original equation
graph in two variables the graph of an equation in two variables, which is always shown in two variables in the two-

dimensional plane
identity equation an equation that is true for all values of the variable
imaginary number the square root of :
inconsistent equation an equation producing a false result
intercepts the points at which the graph of an equation crosses the x-axis and the y-axis
interval an interval describes a set of numbers within which a solution falls
interval notation a mathematical statement that describes a solution set and uses parentheses or brackets to indicate

where an interval begins and ends
linear equation an algebraic equation in which each term is either a constant or the product of a constant and the first

power of a variable
linear inequality similar to a linear equation except that the solutions will include sets of numbers
midpoint formula a formula to find the point that divides a line segment into two parts of equal length
ordered pair a pair of numbers indicating horizontal displacement and vertical displacement from the origin; also

known as a coordinate pair,
origin the point where the two axes cross in the center of the plane, described by the ordered pair
perimeter in linear units, the perimeter formula is used to find the linear measurement, or outside length and width,

around a two-dimensional regular object; for a rectangle:
polynomial equation an equation containing a string of terms including numerical coefficients and variables raised to

whole-number exponents
Pythagorean Theorem a theorem that states the relationship among the lengths of the sides of a right triangle, used

to solve right triangle problems
quadrant one quarter of the coordinate plane, created when the axes divide the plane into four sections
quadratic equation an equation containing a second-degree polynomial; can be solved using multiple methods
quadratic formula a formula that will solve all quadratic equations
radical equation an equation containing at least one radical term where the variable is part of the radicand
rational equation an equation consisting of a fraction of polynomials
slope the change in y-values over the change in x-values
solution set the set of all solutions to an equation
square root property one of the methods used to solve a quadratic equation, in which the term is isolated so that

the square root of both sides of the equation can be taken to solve for x
volume in cubic units, the volume measurement includes length, width, and depth:
x-axis the common name of the horizontal axis on a coordinate plane; a number line increasing from left to right
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x-coordinate the first coordinate of an ordered pair, representing the horizontal displacement and direction from the
origin

x-intercept the point where a graph intersects the x-axis; an ordered pair with a y-coordinate of zero
y-axis the common name of the vertical axis on a coordinate plane; a number line increasing from bottom to top
y-coordinate the second coordinate of an ordered pair, representing the vertical displacement and direction from the

origin
y-intercept a point where a graph intercepts the y-axis; an ordered pair with an x-coordinate of zero
zero-product property the property that formally states that multiplication by zero is zero, so that each factor of a

quadratic equation can be set equal to zero to solve equations

Key Equations

quadratic formula

Key Concepts
2.1 The Rectangular Coordinate Systems and Graphs

• We can locate, or plot, points in the Cartesian coordinate system using ordered pairs, which are defined as
displacement from the x-axis and displacement from the y-axis. See Example 1.

• An equation can be graphed in the plane by creating a table of values and plotting points. See Example 2.
• Using a graphing calculator or a computer program makes graphing equations faster and more accurate. Equations

usually have to be entered in the form y=_____. See Example 3.
• Finding the x- and y-intercepts can define the graph of a line. These are the points where the graph crosses the

axes. See Example 4.
• The distance formula is derived from the Pythagorean Theorem and is used to find the length of a line segment. See

Example 5 and Example 6.
• The midpoint formula provides a method of finding the coordinates of the midpoint dividing the sum of the

x-coordinates and the sum of the y-coordinates of the endpoints by 2. See Example 7 and Example 8.

2.2 Linear Equations in One Variable

• We can solve linear equations in one variable in the form using standard algebraic properties. See
Example 1 and Example 2.

• A rational expression is a quotient of two polynomials. We use the LCD to clear the fractions from an equation. See
Example 3 and Example 4.

• All solutions to a rational equation should be verified within the original equation to avoid an undefined term, or
zero in the denominator. See Example 5 and Example 6 and Example 7.

• Given two points, we can find the slope of a line using the slope formula. See Example 8.
• We can identify the slope and y-intercept of an equation in slope-intercept form. See Example 9.
• We can find the equation of a line given the slope and a point. See Example 10.
• We can also find the equation of a line given two points. Find the slope and use the point-slope formula. See

Example 11.
• The standard form of a line has no fractions. See Example 12.
• Horizontal lines have a slope of zero and are defined as where c is a constant.
• Vertical lines have an undefined slope (zero in the denominator), and are defined as where c is a constant.

See Example 13.
• Parallel lines have the same slope and different y-intercepts. See Example 14 and Example 15.
• Perpendicular lines have slopes that are negative reciprocals of each other unless one is horizontal and the other is

vertical. See Example 16.

2.3 Models and Applications

• A linear equation can be used to solve for an unknown in a number problem. See Example 1.
• Applications can be written as mathematical problems by identifying known quantities and assigning a variable to

unknown quantities. See Example 2.
• There are many known formulas that can be used to solve applications. Distance problems, for example, are solved

using the formula. See Example 3.
• Many geometry problems are solved using the perimeter formula the area formula or the
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volume formula See Example 4, Example 5, and Example 6.

2.4 Complex Numbers

• The square root of any negative number can be written as a multiple of See Example 1.
• To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal axis is the

real axis, and the vertical axis is the imaginary axis. See Example 2.
• Complex numbers can be added and subtracted by combining the real parts and combining the imaginary parts.

See Example 3.
• Complex numbers can be multiplied and divided.

◦ To multiply complex numbers, distribute just as with polynomials. See Example 4 and Example 5.
◦ To divide complex numbers, multiply both numerator and denominator by the complex conjugate of the

denominator to eliminate the complex number from the denominator. See Example 6 and Example 7.

• The powers of are cyclic, repeating every fourth one. See Example 8.

2.5 Quadratic Equations

• Many quadratic equations can be solved by factoring when the equation has a leading coefficient of 1 or if the
equation is a difference of squares. The zero-product property is then used to find solutions. See Example 1,
Example 2, and Example 3.

• Many quadratic equations with a leading coefficient other than 1 can be solved by factoring using the grouping
method. See Example 4 and Example 5.

• Another method for solving quadratics is the square root property. The variable is squared. We isolate the squared
term and take the square root of both sides of the equation. The solution will yield a positive and negative solution.
See Example 6 and Example 7.

• Completing the square is a method of solving quadratic equations when the equation cannot be factored. See
Example 8.

• A highly dependable method for solving quadratic equations is the quadratic formula, based on the coefficients and
the constant term in the equation. See Example 9 and Example 10.

• The discriminant is used to indicate the nature of the roots that the quadratic equation will yield: real or complex,
rational or irrational, and how many of each. See Example 11.

• The Pythagorean Theorem, among the most famous theorems in history, is used to solve right-triangle problems
and has applications in numerous fields. Solving for the length of one side of a right triangle requires solving a
quadratic equation. See Example 12.

2.6 Other Types of Equations

• Rational exponents can be rewritten several ways depending on what is most convenient for the problem. To solve,
both sides of the equation are raised to a power that will render the exponent on the variable equal to 1. See
Example 1, Example 2, and Example 3.

• Factoring extends to higher-order polynomials when it involves factoring out the GCF or factoring by grouping. See
Example 4 and Example 5.

• We can solve radical equations by isolating the radical and raising both sides of the equation to a power that
matches the index. See Example 6 and Example 7.

• To solve absolute value equations, we need to write two equations, one for the positive value and one for the
negative value. See Example 8.

• Equations in quadratic form are easy to spot, as the exponent on the first term is double the exponent on the
second term and the third term is a constant. We may also see a binomial in place of the single variable. We use
substitution to solve. See Example 9 and Example 10.

• Solving a rational equation may also lead to a quadratic equation or an equation in quadratic form. See Example 11.

2.7 Linear Inequalities and Absolute Value Inequalities

• Interval notation is a method to indicate the solution set to an inequality. Highly applicable in calculus, it is a system
of parentheses and brackets that indicate what numbers are included in a set and whether the endpoints are
included as well. See Table 1 and Example 2.

• Solving inequalities is similar to solving equations. The same algebraic rules apply, except for one: multiplying or
dividing by a negative number reverses the inequality. See Example 3, Example 4, Example 5, and Example 6.

• Compound inequalities often have three parts and can be rewritten as two independent inequalities. Solutions are
given by boundary values, which are indicated as a beginning boundary or an ending boundary in the solutions to
the two inequalities. See Example 7 and Example 8.
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• Absolute value inequalities will produce two solution sets due to the nature of absolute value. We solve by writing
two equations: one equal to a positive value and one equal to a negative value. See Example 9 and Example 10.

• Absolute value inequalities can also be solved by graphing. At least we can check the algebraic solutions by
graphing, as we cannot depend on a visual for a precise solution. See Example 11.

Exercises
Review Exercises
The Rectangular Coordinate Systems and Graphs

For the following exercises, find the x-intercept and the y-intercept without graphing.

1. 2.

For the following exercises, solve for y in terms of x, putting the equation in slope–intercept form.

3. 4.

For the following exercises, find the distance between the two points.

5. 6. 7. Find the distance between
the two points
and using your
calculator, and round your
answer to the nearest
thousandth.

For the following exercises, find the coordinates of the midpoint of the line segment that joins the two given points.

8. and 9. and

For the following exercises, construct a table and graph the equation by plotting at least three points.

10. 11.

Linear Equations in One Variable

For the following exercises, solve for

12. 13. 14.

15. 16.

For the following exercises, solve for State all x-values that are excluded from the solution set.

17. 18.
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For the following exercises, find the equation of the line using the point-slope formula.

19. Passes through these two
points:

20. Passes through the point
and has a slope of

21. Passes through the point
and is parallel to

the graph

22. Passes through these two
points:

Models and Applications

For the following exercises, write and solve an equation to answer each question.

23. The number of male fish in
the tank is five more than
three times the number of
females. If the total
number of fish is 73, how
many of each sex are in the
tank?

24. A landscaper has 72 ft. of
fencing to put around a
rectangular garden. If the
length is 3 times the width,
find the dimensions of the
garden.

25. A truck rental is $25 plus
$.30/mi. Find out how
many miles Ken traveled if
his bill was $50.20.

Complex Numbers

For the following exercises, use the quadratic equation to solve.

26. 27.

For the following exercises, name the horizontal component and the vertical component.

28. 29.

For the following exercises, perform the operations indicated.

30. 31. 32.

33. 34. 35.

36. 37. 38.

39.

Quadratic Equations

For the following exercises, solve the quadratic equation by factoring.

40. 41. 42.

43.
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For the following exercises, solve the quadratic equation by using the square-root property.

44. 45.

For the following exercises, solve the quadratic equation by completing the square.

46. 47.

For the following exercises, solve the quadratic equation by using the quadratic formula. If the solutions are not real,
state No real solution.

48. 49.

For the following exercises, solve the quadratic equation by the method of your choice.

50. 51.

Other Types of Equations

For the following exercises, solve the equations.

52. 53. 54.

55. 56. 57.

58. 59.

Linear Inequalities and Absolute Value Inequalities

For the following exercises, solve the inequality. Write your final answer in interval notation.

60. 61. 62.

63. 64. 65.

For the following exercises, solve the compound inequality. Write your answer in interval notation.

66. 67.

2 • Exercises 177



For the following exercises, graph as described.

68. Graph the absolute value
function and graph the
constant function. Observe
the points of intersection
and shade the x-axis
representing the solution
set to the inequality. Show
your graph and write your
final answer in interval
notation.

69. Graph both straight lines
(left-hand side being y1
and right-hand side being
y2) on the same axes. Find
the point of intersection
and solve the inequality by
observing where it is true
comparing the y-values of
the lines. See the interval
where the inequality is
true.

Practice Test
1. Graph the following: 2. Find the x- and y-intercepts

for the following:
3. Find the x- and y-intercepts

of this equation, and sketch
the graph of the line using
just the intercepts plotted.

4. Find the exact distance
between and

Find the
coordinates of the midpoint
of the line segment joining
the two points.

5. Write the interval notation
for the set of numbers
represented by

6. Solve for x:

7. Solve for : 8. Solve for x: 9. Solve for x:

10. The perimeter of a triangle
is 30 in. The longest side is
2 less than 3 times the
shortest side and the other
side is 2 more than twice
the shortest side. Find the
length of each side.

11. Solve for x. Write the
answer in simplest radical
form.

12. Solve:

13. Solve: 14. Solve:

For the following exercises, find the equation of the line with the given information.

15. Passes through the points
and

16. Has an undefined slope
and passes through the
point

17. Passes through the point
and is perpendicular

to
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18. Add these complex
numbers:

19. Simplify: 20. Multiply:

21. Divide: 22. Solve this quadratic
equation and write the two
complex roots in
form:

23. Solve:

24. Solve: 25. Solve: 26. Solve:

27. Solve: 28. Solve:

For the following exercises, find the real solutions of each equation by factoring.

29. 30.
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Standard and Poor’s Index with dividends reinvested (credit "bull": modification of work by Prayitno Hadinata; credit
"graph": modification of work by MeasuringWorth)

Chapter Outline
3.1 Functions and Function Notation
3.2 Domain and Range
3.3 Rates of Change and Behavior of Graphs
3.4 Composition of Functions
3.5 Transformation of Functions
3.6 Absolute Value Functions
3.7 Inverse Functions

Introduction to Functions
Toward the end of the twentieth century, the values of stocks of Internet and technology companies rose dramatically.
As a result, the Standard and Poor’s stock market average rose as well. The graph above tracks the value of that initial
investment of just under $100 over the 40 years. It shows that an investment that was worth less than $500 until about
1995 skyrocketed up to about $1100 by the beginning of 2000. That five-year period became known as the “dot-com
bubble” because so many Internet startups were formed. As bubbles tend to do, though, the dot-com bubble eventually
burst. Many companies grew too fast and then suddenly went out of business. The result caused the sharp decline
represented on the graph beginning at the end of 2000.

Notice, as we consider this example, that there is a definite relationship between the year and stock market average. For
any year we choose, we can determine the corresponding value of the stock market average. In this chapter, we will
explore these kinds of relationships and their properties.

3.1 Functions and Function Notation
Learning Objectives
In this section, you will:

Determine whether a relation represents a function.
Find the value of a function.
Determine whether a function is one-to-one.
Use the vertical line test to identify functions.
Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child

FUNCTIONS3
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increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities
that we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining Whether a Relation Represents a Function
A relation is a set of ordered pairs. The set of the first components of each ordered pair is called the domain and the set
of the second components of each ordered pair is called the range. Consider the following set of ordered pairs. The first
numbers in each pair are the first five natural numbers. The second number in each pair is twice that of the first.

The domain is The range is

Note that each value in the domain is also known as an input value, or independent variable, and is often labeled with
the lowercase letter Each value in the range is also known as an output value, or dependent variable, and is often
labeled lowercase letter

A function is a relation that assigns a single value in the range to each value in the domain. In other words, no x-values
are repeated. For our example that relates the first five natural numbers to numbers double their values, this relation is
a function because each element in the domain, is paired with exactly one element in the range,

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It
would appear as

Notice that each element in the domain, is not paired with exactly one element in the range,
For example, the term “odd” corresponds to three values from the range, and the term

“even” corresponds to two values from the range, This violates the definition of a function, so this relation is not
a function.

Figure 1 compares relations that are functions and not functions.

Figure 1 (a) This relationship is a function because each input is associated with a single output. Note that input and
both give output (b) This relationship is also a function. In this case, each input is associated with a single output. (c)
This relationship is not a function because input is associated with two different outputs.

Function

A function is a relation in which each possible input value leads to exactly one output value. We say “the output is a
function of the input.”

The input values make up the domain, and the output values make up the range.

HOW TO

Given a relationship between two quantities, determine whether the relationship is a function.

1. Identify the input values.
2. Identify the output values.
3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads
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to two or more outputs, do not classify the relationship as a function.

EXAMPLE 1

Determining If Menu Price Lists Are Functions
The coffee shop menu, shown below, consists of items and their prices.

ⓐ Is price a function of the item?

ⓑ Is the item a function of the price?

Solution

ⓐ Let’s begin by considering the input as the items on the menu. The output values are then the prices.

Each item on the menu has only one price, so the price is a function of the item.

ⓑ Two items on the menu have the same price. If we consider the prices to be the input values and the items to be the
output, then the same input value could have more than one output associated with it. See the image below.

Therefore, the item is a not a function of price.

EXAMPLE 2

Determining If Class Grade Rules Are Functions
In a particular math class, the overall percent grade corresponds to a grade point average. Is grade point average a
function of the percent grade? Is the percent grade a function of the grade point average? Table 1 shows a possible rule
for assigning grade points.
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Percent grade 0–56 57–61 62–66 67–71 72–77 78–86 87–91 92–100

Grade point average 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Table 1

Solution
For any percent grade earned, there is an associated grade point average, so the grade point average is a function of the
percent grade. In other words, if we input the percent grade, the output is a specific grade point average.

In the grading system given, there is a range of percent grades that correspond to the same grade point average. For
example, students who receive a grade point average of 3.0 could have a variety of percent grades ranging from 78 all
the way to 86. Thus, percent grade is not a function of grade point average.

TRY IT #1 Table 21 lists the five greatest baseball players of all time in order of rank.

Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5

Table 2

ⓐ Is the rank a function of the player name? ⓑ Is the player name a function of the rank?

Using Function Notation
Once we determine that a relationship is a function, we need to display and define the functional relationships so that
we can understand and use them, and sometimes also so that we can program them into computers. There are various
ways of representing functions. A standard function notation is one representation that facilitates working with
functions.

To represent “height is a function of age,” we start by identifying the descriptive variables for height and for age. The
letters and are often used to represent functions just as we use and to represent numbers and
and to represent sets.

Remember, we can use any letter to name the function; the notation shows us that depends on The value
must be put into the function to get a result. The parentheses indicate that age is input into the function; they do not
indicate multiplication.

We can also give an algebraic expression as the input to a function. For example means “first add a and b, and
the result is the input for the function f.” The operations must be performed in this order to obtain the correct result.

1 http://www.baseball-almanac.com/legendary/lisn100.shtml. Accessed 3/24/2014.
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Function Notation

The notation defines a function named This is read as is a function of The letter represents the
input value, or independent variable. The letter or represents the output value, or dependent variable.

EXAMPLE 3

Using Function Notation for Days in a Month
Use function notation to represent a function whose input is the name of a month and output is the number of days in
that month. Assume that the domain does not include leap years.

Solution
The number of days in a month is a function of the name of the month, so if we name the function we write

or The name of the month is the input to a “rule” that associates a specific number (the
output) with each input.

Figure 2

For example, because March has 31 days. The notation reminds us that the number of days,
(the output), is dependent on the name of the month, (the input).

Analysis
Note that the inputs to a function do not have to be numbers; function inputs can be names of people, labels of
geometric objects, or any other element that determines some kind of output. However, most of the functions we will
work with in this book will have numbers as inputs and outputs.

EXAMPLE 4

Interpreting Function Notation
A function gives the number of police officers, in a town in year What does represent?

Solution
When we read we see that the input year is 2005. The value for the output, the number of police officers

is 300. Remember, The statement tells us that in the year 2005 there were 300 police
officers in the town.

TRY IT #2 Use function notation to express the weight of a pig in pounds as a function of its age in days

Q&A Instead of a notation such as could we use the same symbol for the output as for the
function, such as meaning “y is a function of x?”

Yes, this is often done, especially in applied subjects that use higher math, such as physics and
engineering. However, in exploring math itself we like to maintain a distinction between a function such
as which is a rule or procedure, and the output we get by applying to a particular input This is
why we usually use notation such as and so on.

Representing Functions Using Tables
A common method of representing functions is in the form of a table. The table rows or columns display the
corresponding input and output values. In some cases, these values represent all we know about the relationship; other
times, the table provides a few select examples from a more complete relationship.
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Table 3 lists the input number of each month (January = 1, February = 2, and so on) and the output value of the number
of days in that month. This information represents all we know about the months and days for a given year (that is not a
leap year). Note that, in this table, we define a days-in-a-month function where identifies months by an
integer rather than by name.

Month number, (input) 1 2 3 4 5 6 7 8 9 10 11 12

Days in month, (output) 31 28 31 30 31 30 31 31 30 31 30 31

Table 3

Table 4 defines a function Remember, this notation tells us that is the name of the function that takes the
input and gives the output

1 2 3 4 5

8 6 7 6 8

Table 4

Table 5 displays the age of children in years and their corresponding heights. This table displays just some of the data
available for the heights and ages of children. We can see right away that this table does not represent a function
because the same input value, 5 years, has two different output values, 40 in. and 42 in.

Age in years, (input) 5 5 6 7 8 9 10

Height in inches, (output) 40 42 44 47 50 52 54

Table 5

HOW TO

Given a table of input and output values, determine whether the table represents a function.

1. Identify the input and output values.
2. Check to see if each input value is paired with only one output value. If so, the table represents a function.

EXAMPLE 5

Identifying Tables that Represent Functions
Which table, Table 6, Table 7, or Table 8, represents a function (if any)?

Input Output

2 1

5 3

8 6

Table 6
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Input Output

–3 5

0 1

4 5

Table 7

Input Output

1 0

5 2

5 4

Table 8

Solution
Table 6 and Table 7 define functions. In both, each input value corresponds to exactly one output value. Table 8 does not
define a function because the input value of 5 corresponds to two different output values.

When a table represents a function, corresponding input and output values can also be specified using function
notation.

The function represented by Table 6 can be represented by writing

Similarly, the statements

represent the function in Table 7.

Table 8 cannot be expressed in a similar way because it does not represent a function.

TRY IT #3 Does Table 9 represent a function?

Input Output

1 10

2 100

3 1000

Table 9

Finding Input and Output Values of a Function
When we know an input value and want to determine the corresponding output value for a function, we evaluate the
function. Evaluating will always produce one result because each input value of a function corresponds to exactly one
output value.

When we know an output value and want to determine the input values that would produce that output value, we set
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the output equal to the function’s formula and solve for the input. Solving can produce more than one solution because
different input values can produce the same output value.

Evaluation of Functions in Algebraic Forms
When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the
function can be evaluated by squaring the input value, multiplying by 3, and then subtracting the
product from 5.

HOW TO

Given the formula for a function, evaluate.

1. Substitute the input variable in the formula with the value provided.
2. Calculate the result.

EXAMPLE 6

Evaluating Functions at Specific Values
Evaluate at:

ⓐ ⓑ ⓒ ⓓ Now evaluate
Solution

Replace the in the function with each specified value.

ⓐ Because the input value is a number, 2, we can use simple algebra to simplify.

ⓑ In this case, the input value is a letter so we cannot simplify the answer any further.

With an input value of we must use the distributive property.

ⓒ In this case, we apply the input values to the function more than once, and then perform algebraic operations on
the result. We already found that

and we know that

Now we combine the results and simplify.
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EXAMPLE 7

Evaluating Functions
Given the function evaluate

Solution
To evaluate we substitute the value 4 for the input variable in the given function.

Therefore, for an input of 4, we have an output of 24.

TRY IT #4 Given the function evaluate

EXAMPLE 8

Solving Functions
Given the function solve for

Solution

If either or (or both of them equal 0). We will set each factor equal to 0 and
solve for in each case.

This gives us two solutions. The output when the input is either or We can also verify by graphing
as in Figure 3. The graph verifies that and

Figure 3

TRY IT #5 Given the function solve

Evaluating Functions Expressed in Formulas
Some functions are defined by mathematical rules or procedures expressed in equation form. If it is possible to express
the function output with a formula involving the input quantity, then we can define a function in algebraic form. For
example, the equation expresses a functional relationship between and We can rewrite it to decide if
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is a function of

HOW TO

Given a function in equation form, write its algebraic formula.

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as an
expression that involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same quantity to or
from both sides, or multiplying or dividing both sides of the equation by the same quantity.

EXAMPLE 9

Finding an Equation of a Function
Express the relationship as a function if possible.

Solution
To express the relationship in this form, we need to be able to write the relationship where is a function of which
means writing it as

Therefore, as a function of is written as

Analysis
It is important to note that not every relationship expressed by an equation can also be expressed as a function with a
formula.

EXAMPLE 10

Expressing the Equation of a Circle as a Function
Does the equation represent a function with as input and as output? If so, express the relationship as a
function

Solution
First we subtract from both sides.

We now try to solve for in this equation.

We get two outputs corresponding to the same input, so this relationship cannot be represented as a single function

TRY IT #6 If express as a function of
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Q&A Are there relationships expressed by an equation that do represent a function but which still
cannot be represented by an algebraic formula?

Yes, this can happen. For example, given the equation if we want to express as a function of
there is no simple algebraic formula involving only that equals However, each does determine a

unique value for and there are mathematical procedures by which can be found to any desired
accuracy. In this case, we say that the equation gives an implicit (implied) rule for as a function of
even though the formula cannot be written explicitly.

Evaluating a Function Given in Tabular Form
As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write functions,
and we can evaluate functions using the tables. For example, how well do our pets recall the fond memories we share
with them? There is an urban legend that a goldfish has a memory of 3 seconds, but this is just a myth. Goldfish can
remember up to 3 months, while the beta fish has a memory of up to 5 months. And while a puppy’s memory span is no
longer than 30 seconds, the adult dog can remember for 5 minutes. This is meager compared to a cat, whose memory
span lasts for 16 hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of a
table. See Table 10.2

Pet Memory span in hours

Puppy 0.008

Adult dog 0.083

Cat 16

Goldfish 2160

Beta fish 3600

Table 10

At times, evaluating a function in table form may be more useful than using equations.Here let us call the function
The domain of the function is the type of pet and the range is a real number representing the number of hours the pet’s
memory span lasts. We can evaluate the function at the input value of “goldfish.” We would write
Notice that, to evaluate the function in table form, we identify the input value and the corresponding output value from
the pertinent row of the table. The tabular form for function seems ideally suited to this function, more so than writing
it in paragraph or function form.

HOW TO

Given a function represented by a table, identify specific output and input values.

1. Find the given input in the row (or column) of input values.
2. Identify the corresponding output value paired with that input value.
3. Find the given output values in the row (or column) of output values, noting every time that output value

appears.
4. Identify the input value(s) corresponding to the given output value.

2 http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590. Accessed 3/24/2014.
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EXAMPLE 11

Evaluating and Solving a Tabular Function
Using Table 11,

ⓐ Evaluate

ⓑ Solve

1 2 3 4 5

8 6 7 6 8

Table 11

Solution

ⓐ Evaluating means determining the output value of the function for the input value of The table output
value corresponding to is 7, so

ⓑ Solving means identifying the input values, that produce an output value of 6. The table below shows
two solutions: and

1 2 3 4 5

8 6 7 6 8

When we input 2 into the function our output is 6. When we input 4 into the function our output is also 6.

TRY IT #7 Using the table from Evaluating and Solving a Tabular Function above, evaluate

Finding Function Values from a Graph
Evaluating a function using a graph also requires finding the corresponding output value for a given input value, only in
this case, we find the output value by looking at the graph. Solving a function equation using a graph requires finding all
instances of the given output value on the graph and observing the corresponding input value(s).

EXAMPLE 12

Reading Function Values from a Graph
Given the graph in Figure 4,

ⓐ Evaluate

ⓑ Solve

Figure 4
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Solution

ⓐ To evaluate locate the point on the curve where then read the y-coordinate of that point. The point has
coordinates so See Figure 5.

Figure 5

ⓑ To solve we find the output value on the vertical axis. Moving horizontally along the line we
locate two points of the curve with output value and These points represent the two solutions to

or This means and or when the input is or the output is See Figure 6.

Figure 6

TRY IT #8 Using Figure 4, solve

Determining Whether a Function is One-to-One
Some functions have a given output value that corresponds to two or more input values. For example, in the stock chart
shown in the figure at the beginning of this chapter, the stock price was $1000 on five different dates, meaning that
there were five different input values that all resulted in the same output value of $1000.

However, some functions have only one input value for each output value, as well as having only one output for each
input. We call these functions one-to-one functions. As an example, consider a school that uses only letter grades and
decimal equivalents, as listed in Table 12.

Letter grade Grade point average

A 4.0

B 3.0

C 2.0

Table 12
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Letter grade Grade point average

D 1.0

Table 12

This grading system represents a one-to-one function, because each letter input yields one particular grade point
average output and each grade point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in Figure 1(a) and Figure 1(b). The
function in part (a) shows a relationship that is not a one-to-one function because inputs and both give output The
function in part (b) shows a relationship that is a one-to-one function because each input is associated with a single
output.

One-to-One Function

A one-to-one function is a function in which each output value corresponds to exactly one input value.

EXAMPLE 13

Determining Whether a Relationship Is a One-to-One Function
Is the area of a circle a function of its radius? If yes, is the function one-to-one?

Solution
A circle of radius has a unique area measure given by so for any input, there is only one output, The area
is a function of radius

If the function is one-to-one, the output value, the area, must correspond to a unique input value, the radius. Any area
measure is given by the formula Because areas and radii are positive numbers, there is exactly one solution:

So the area of a circle is a one-to-one function of the circle’s radius.

TRY IT #9 ⓐ Is a balance a function of the bank account number?

ⓑ Is a bank account number a function of the balance?

ⓒ Is a balance a one-to-one function of the bank account number?

TRY IT #10 Evaluate the following:

ⓐ If each percent grade earned in a course translates to one letter grade, is the letter grade a
function of the percent grade?

ⓑ If so, is the function one-to-one?

Using the Vertical Line Test
As we have seen in some examples above, we can represent a function using a graph. Graphs display a great many
input-output pairs in a small space. The visual information they provide often makes relationships easier to understand.
By convention, graphs are typically constructed with the input values along the horizontal axis and the output values
along the vertical axis.

The most common graphs name the input value and the output value and we say is a function of or
when the function is named The graph of the function is the set of all points in the plane that satisfies the
equation If the function is defined for only a few input values, then the graph of the function is only a few
points, where the x-coordinate of each point is an input value and the y-coordinate of each point is the corresponding
output value. For example, the black dots on the graph in Figure 7 tell us that and However, the set
of all points satisfying is a curve. The curve shown includes and because the curve passes
through those points.
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Figure 7

The vertical line test can be used to determine whether a graph represents a function. If we can draw any vertical line
that intersects a graph more than once, then the graph does not define a function because a function has only one
output value for each input value. See Figure 8.

Figure 8

HOW TO

Given a graph, use the vertical line test to determine if the graph represents a function.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2. If there is any such line, determine that the graph does not represent a function.

EXAMPLE 14

Applying the Vertical Line Test
Which of the graphs in Figure 9 represent(s) a function

Figure 9
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Solution
If any vertical line intersects a graph more than once, the relation represented by the graph is not a function. Notice that
any vertical line would pass through only one point of the two graphs shown in parts (a) and (b) of Figure 9. From this we
can conclude that these two graphs represent functions. The third graph does not represent a function because, at most
x-values, a vertical line would intersect the graph at more than one point, as shown in Figure 10.

Figure 10

TRY IT #11 Does the graph in Figure 11 represent a function?

Figure 11

Using the Horizontal Line Test
Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to
use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line intersects the graph more
than once, then the graph does not represent a one-to-one function.

HOW TO

Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-one
function.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
2. If there is any such line, determine that the function is not one-to-one.
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EXAMPLE 15

Applying the Horizontal Line Test
Consider the functions shown in Figure 9(a) and Figure 9(b). Are either of the functions one-to-one?

Solution
The function in Figure 9(a) is not one-to-one. The horizontal line shown in Figure 12 intersects the graph of the function
at two points (and we can even find horizontal lines that intersect it at three points.)

Figure 12

The function in Figure 9(b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

TRY IT #12 Is the graph shown in Figure 9 one-to-one?

Identifying Basic Toolkit Functions
In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic
formulas, and how to solve problems with them. When learning to read, we start with the alphabet. When learning to do
arithmetic, we start with numbers. When working with functions, it is similarly helpful to have a base set of building-
block elements. We call these our “toolkit functions,” which form a set of basic named functions for which we know the
graph, formula, and special properties. Some of these functions are programmed to individual buttons on many
calculators. For these definitions we will use as the input variable and as the output variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations frequently
throughout this book. It will be very helpful if we can recognize these toolkit functions and their features quickly by
name, formula, graph, and basic table properties. The graphs and sample table values are included with each function
shown in Table 13.

Toolkit Functions

Name Function Graph

Constant where is a constant

Table 13
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Toolkit Functions

Name Function Graph

Identity

Absolute value

Quadratic

Cubic

Reciprocal

Table 13
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Toolkit Functions

Name Function Graph

Reciprocal squared

Square root

Cube root

Table 13

MEDIA

Access the following online resources for additional instruction and practice with functions.

Determine if a Relation is a Function (http://openstax.org/l/relationfunction)
Vertical Line Test (http://openstax.org/l/vertlinetest)
Introduction to Functions (http://openstax.org/l/introtofunction)
Vertical Line Test on Graph (http://openstax.org/l/vertlinegraph)
One-to-one Functions (http://openstax.org/l/onetoone)
Graphs as One-to-one Functions (http://openstax.org/l/graphonetoone)

3.1 SECTION EXERCISES
Verbal

1. What is the difference
between a relation and a
function?

2. What is the difference
between the input and the
output of a function?

3. Why does the vertical line
test tell us whether the
graph of a relation
represents a function?
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4. How can you determine if a
relation is a one-to-one
function?

5. Why does the horizontal line
test tell us whether the
graph of a function is one-
to-one?

Algebraic

For the following exercises, determine whether the relation represents a function.

6. 7.

For the following exercises, determine whether the relation represents as a function of

8. 9. 10.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26.

For the following exercises, evaluate

27. 28. 29.

30. 31. 32. Given the function
evaluate

33. Given the function
evaluate

ⓐ Evaluate

ⓑ Solve

34. Given the function

ⓐ Evaluate

ⓑ Solve

35. Given the function

ⓐ Evaluate

ⓑ Solve

36. Given the function

ⓐ Evaluate

ⓑ Solve

37. Given the function

ⓐ Evaluate

ⓑ Solve

38. Given the function
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ⓐ Write the relationship
as a function

ⓑ Evaluate

ⓒ Solve

39. Consider the relationship

Graphical

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

40. 41. 42.

43. 44. 45.

46. 47. 48.
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49. 50. 51.

ⓐ Evaluate

ⓑ Solve for

52. Given the following graph,

ⓐ Evaluate

ⓑ Solve for

53. Given the following graph,

ⓐ Evaluate

ⓑ Solve for

54. Given the following graph,

For the following exercises, determine if the given graph is a one-to-one function.

55. 56. 57.
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58. 59.

Numeric

For the following exercises, determine whether the relation represents a function.

60. 61. 62.

For the following exercises, determine if the relation represented in table form represents as a function of

63.
5 10 15

3 8 14

64.
5 10 15

3 8 8

65.
5 10 10

3 8 14

For the following exercises, use the function represented in the table below.

0 1 2 3 4 5 6 7 8 9

74 28 1 53 56 3 36 45 14 47

Table 14

66. Evaluate 67. Solve

For the following exercises, evaluate the function at the values and

68. 69. 70.

71. 72. 73.

For the following exercises, evaluate the expressions, given functions and

74. 75.
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Technology

For the following exercises, graph on the given domain. Determine the corresponding range. Show each graph.

76. 77. 78.

For the following exercises, graph on the given domain. Determine the corresponding range. Show each graph.

79. 80.

81.

For the following exercises, graph on the given domain. Determine the corresponding range. Show each graph.

82. 83.

84.

For the following exercises, graph on the given domain. Determine the corresponding range. Show each graph.

85. 86.

87.

Real-World Applications

ⓐ The town of Tola has a
population of 40,000 and
produces 13 tons of
garbage each week.
Express this information in
terms of the function

ⓑ Explain the meaning of
the statement

88. The amount of garbage,
produced by a city with
population is given by

is measured
in tons per week, and is
measured in thousands of
people. ⓐ A garden with area

5000 ft2 requires 50 yd3 of
dirt. Express this
information in terms of the
function

ⓑ Explain the meaning of
the statement

89. The number of cubic yards
of dirt, needed to cover
a garden with area
square feet is given by

ⓐ
ⓑ

90. Let be the number of
ducks in a lake years after
1990. Explain the meaning
of each statement:

ⓐ
ⓑ

91. Let be the height
above ground, in feet, of a
rocket seconds after
launching. Explain the
meaning of each
statement:

92. Show that the function
is

not one-to-one.
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3.2 Domain and Range
Learning Objectives
In this section, you will:

Find the domain of a function defined by an equation.
Graph piecewise-defined functions.

Horror and thriller movies are both popular and, very often, extremely profitable. When big-budget actors, shooting
locations, and special effects are included, however, studios count on even more viewership to be successful. Consider
five major thriller/horror entries from the early 2000s—I am Legend, Hannibal, The Ring, The Grudge, and The Conjuring.
Figure 1 shows the amount, in dollars, each of those movies grossed when they were released as well as the ticket sales
for horror movies in general by year. Notice that we can use the data to create a function of the amount each movie
earned or the total ticket sales for all horror movies by year. In creating various functions using the data, we can identify
different independent and dependent variables, and we can analyze the data and the functions to determine the domain
and range. In this section, we will investigate methods for determining the domain and range of functions such as these.

Figure 1 Based on data compiled by www.the-numbers.com.3

Finding the Domain of a Function Defined by an Equation
In Functions and Function Notation, we were introduced to the concepts of domain and range. In this section, we will
practice determining domains and ranges for specific functions. Keep in mind that, in determining domains and ranges,
we need to consider what is physically possible or meaningful in real-world examples, such as tickets sales and year in
the horror movie example above. We also need to consider what is mathematically permitted. For example, we cannot
include any input value that leads us to take an even root of a negative number if the domain and range consist of real
numbers. Or in a function expressed as a formula, we cannot include any input value in the domain that would lead us to
divide by 0.

We can visualize the domain as a “holding area” that contains “raw materials” for a “function machine” and the range
as another “holding area” for the machine’s products. See Figure 2.

Figure 2

We can write the domain and range in interval notation, which uses values within brackets to describe a set of
numbers. In interval notation, we use a square bracket [ when the set includes the endpoint and a parenthesis ( to
indicate that the endpoint is either not included or the interval is unbounded. For example, if a person has $100 to
spend, they would need to express the interval that is more than 0 and less than or equal to 100 and write We
will discuss interval notation in greater detail later.

Let’s turn our attention to finding the domain of a function whose equation is provided. Oftentimes, finding the domain

3 The Numbers: Where Data and the Movie Business Meet. “Box Office History for Horror Movies.” http://www.the-numbers.com/market/

genre/Horror. Accessed 3/24/2014
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of such functions involves remembering three different forms. First, if the function has no denominator or an odd root,
consider whether the domain could be all real numbers. Second, if there is a denominator in the function’s equation,
exclude values in the domain that force the denominator to be zero. Third, if there is an even root, consider excluding
values that would make the radicand negative.

Before we begin, let us review the conventions of interval notation:

• The smallest number from the interval is written first.
• The largest number in the interval is written second, following a comma.
• Parentheses, ( or ), are used to signify that an endpoint value is not included, called exclusive.
• Brackets, [ or ], are used to indicate that an endpoint value is included, called inclusive.

See Figure 3 for a summary of interval notation.

Figure 3

EXAMPLE 1

Finding the Domain of a Function as a Set of Ordered Pairs
Find the domain of the following function: .
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...

...

Solution
First identify the input values. The input value is the first coordinate in an ordered pair. There are no restrictions, as the
ordered pairs are simply listed. The domain is the set of the first coordinates of the ordered pairs.

TRY IT #1 Find the domain of the function:

HOW TO

Given a function written in equation form, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input and exclude those values from the domain.
3. Write the domain in interval form, if possible.

EXAMPLE 2

Finding the Domain of a Function
Find the domain of the function

Solution
The input value, shown by the variable in the equation, is squared and then the result is lowered by one. Any real
number may be squared and then be lowered by one, so there are no restrictions on the domain of this function. The
domain is the set of real numbers.

In interval form, the domain of is ∞ ∞

TRY IT #2 Find the domain of the function:

HOW TO

Given a function written in an equation form that includes a fraction, find the domain.

1. Identify the input values.
2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the denominator

equal to zero and solve for . If the function’s formula contains an even root, set the radicand greater than or
equal to 0, and then solve.

3. Write the domain in interval form, making sure to exclude any restricted values from the domain.

EXAMPLE 3

Finding the Domain of a Function Involving a Denominator
Find the domain of the function

Solution
When there is a denominator, we want to include only values of the input that do not force the denominator to be zero.
So, we will set the denominator equal to 0 and solve for
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...

Now, we will exclude 2 from the domain. The answers are all real numbers where or as shown in Figure 4.
We can use a symbol known as the union, to combine the two sets. In interval notation, we write the solution:

∞

Figure 4

TRY IT #3 Find the domain of the function:

HOW TO

Given a function written in equation form including an even root, find the domain.

1. Identify the input values.
2. Since there is an even root, exclude any real numbers that result in a negative number in the radicand. Set the

radicand greater than or equal to zero and solve for
3. The solution(s) are the domain of the function. If possible, write the answer in interval form.

EXAMPLE 4

Finding the Domain of a Function with an Even Root
Find the domain of the function

Solution
When there is an even root in the formula, we exclude any real numbers that result in a negative number in the
radicand.

Set the radicand greater than or equal to zero and solve for

Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less than or equal

to or ∞

TRY IT #4 Find the domain of the function

Q&A Can there be functions in which the domain and range do not intersect at all?

Yes. For example, the function has the set of all positive real numbers as its domain but the

set of all negative real numbers as its range. As a more extreme example, a function’s inputs and outputs
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can be completely different categories (for example, names of weekdays as inputs and numbers as
outputs, as on an attendance chart), in such cases the domain and range have no elements in common.

Using Notations to Specify Domain and Range
In the previous examples, we used inequalities and lists to describe the domain of functions. We can also use
inequalities, or other statements that might define sets of values or data, to describe the behavior of the variable in set-
builder notation. For example, describes the behavior of in set-builder notation. The braces are
read as “the set of,” and the vertical bar | is read as “such that,” so we would read as “the set of
x-values such that 10 is less than or equal to and is less than 30.”

Figure 5 compares inequality notation, set-builder notation, and interval notation.

Figure 5

To combine two intervals using inequality notation or set-builder notation, we use the word “or.” As we saw in earlier
examples, we use the union symbol, to combine two unconnected intervals. For example, the union of the sets

and is the set It is the set of all elements that belong to one or the other (or both) of the
original two sets. For sets with a finite number of elements like these, the elements do not have to be listed in ascending
order of numerical value. If the original two sets have some elements in common, those elements should be listed only
once in the union set. For sets of real numbers on intervals, another example of a union is

∞ ∞

Set-Builder Notation and Interval Notation

Set-builder notation is a method of specifying a set of elements that satisfy a certain condition. It takes the form
which is read as, “the set of all such that the statement about is true.” For example,
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...

Interval notation is a way of describing sets that include all real numbers between a lower limit that may or may not
be included and an upper limit that may or may not be included. The endpoint values are listed between brackets or
parentheses. A square bracket indicates inclusion in the set, and a parenthesis indicates exclusion from the set. For
example,

HOW TO

Given a line graph, describe the set of values using interval notation.

1. Identify the intervals to be included in the set by determining where the heavy line overlays the real line.
2. At the left end of each interval, use [ with each end value to be included in the set (solid dot) or ( for each

excluded end value (open dot).
3. At the right end of each interval, use ] with each end value to be included in the set (filled dot) or ) for each

excluded end value (open dot).
4. Use the union symbol to combine all intervals into one set.

EXAMPLE 5

Describing Sets on the Real-Number Line
Describe the intervals of values shown in Figure 6 using inequality notation, set-builder notation, and interval notation.

Figure 6

Solution
To describe the values, included in the intervals shown, we would say, “ is a real number greater than or equal to 1
and less than or equal to 3, or a real number greater than 5.”

Inequality

Set-builder notation

Interval notation ∞

Remember that, when writing or reading interval notation, using a square bracket means the boundary is included in the
set. Using a parenthesis means the boundary is not included in the set.

TRY IT #5 Given Figure 7, specify the graphed set in

ⓐ words ⓑ set-builder notation ⓒ interval notation

Figure 7

Finding Domain and Range from Graphs
Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of
possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set of
possible output values, which are shown on the y-axis. Keep in mind that if the graph continues beyond the portion of
the graph we can see, the domain and range may be greater than the visible values. See Figure 8.
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Figure 8

We can observe that the graph extends horizontally from to the right without bound, so the domain is ∞ The

vertical extent of the graph is all range values and below, so the range is Note that the domain and range are
always written from smaller to larger values, or from left to right for domain, and from the bottom of the graph to the
top of the graph for range.

EXAMPLE 6

Finding Domain and Range from a Graph
Find the domain and range of the function whose graph is shown in Figure 9.

Figure 9

Solution
We can observe that the horizontal extent of the graph is –3 to 1, so the domain of is

The vertical extent of the graph is 0 to –4, so the range is See Figure 10.

Figure 10
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EXAMPLE 7

Finding Domain and Range from a Graph of Oil Production
Find the domain and range of the function whose graph is shown in Figure 11.

Figure 11 (credit: modification of work by the U.S. Energy Information Administration)4

Solution
The input quantity along the horizontal axis is “years,” which we represent with the variable for time. The output
quantity is “thousands of barrels of oil per day,” which we represent with the variable for barrels. The graph may
continue to the left and right beyond what is viewed, but based on the portion of the graph that is visible, we can
determine the domain as and the range as approximately

In interval notation, the domain is [1973, 2008], and the range is about [180, 2010]. For the domain and the range, we
approximate the smallest and largest values since they do not fall exactly on the grid lines.

TRY IT #6 Given Figure 12, identify the domain and range using interval notation.

Figure 12

Q&A Can a function’s domain and range be the same?

Yes. For example, the domain and range of the cube root function are both the set of all real numbers.

Finding Domains and Ranges of the Toolkit Functions
We will now return to our set of toolkit functions to determine the domain and range of each.

4 http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPAK2&f=A.
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Figure 13 For the constant function the domain consists of all real numbers; there are no restrictions on the
input. The only output value is the constant so the range is the set that contains this single element. In interval
notation, this is written as the interval that both begins and ends with

Figure 14 For the identity function there is no restriction on Both the domain and range are the set of all
real numbers.

Figure 15 For the absolute value function there is no restriction on However, because absolute value is
defined as a distance from 0, the output can only be greater than or equal to 0.

Figure 16 For the quadratic function the domain is all real numbers since the horizontal extent of the
graph is the whole real number line. Because the graph does not include any negative values for the range, the range is
only nonnegative real numbers.
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Figure 17 For the cubic function the domain is all real numbers because the horizontal extent of the graph
is the whole real number line. The same applies to the vertical extent of the graph, so the domain and range include all
real numbers.

Figure 18 For the reciprocal function we cannot divide by 0, so we must exclude 0 from the domain.
Further, 1 divided by any value can never be 0, so the range also will not include 0. In set-builder notation, we could also
write the set of all real numbers that are not zero.

Figure 19 For the reciprocal squared function we cannot divide by so we must exclude from the

domain. There is also no that can give an output of 0, so 0 is excluded from the range as well. Note that the output of
this function is always positive due to the square in the denominator, so the range includes only positive numbers.

Figure 20 For the square root function we cannot take the square root of a negative real number, so the
domain must be 0 or greater. The range also excludes negative numbers because the square root of a positive number
is defined to be positive, even though the square of the negative number also gives us
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...

Figure 21 For the cube root function the domain and range include all real numbers. Note that there is
no problem taking a cube root, or any odd-integer root, of a negative number, and the resulting output is negative (it is
an odd function).

HOW TO

Given the formula for a function, determine the domain and range.

1. Exclude from the domain any input values that result in division by zero.
2. Exclude from the domain any input values that have nonreal (or undefined) number outputs.
3. Use the valid input values to determine the range of the output values.
4. Look at the function graph and table values to confirm the actual function behavior.

EXAMPLE 8

Finding the Domain and Range Using Toolkit Functions
Find the domain and range of

Solution
There are no restrictions on the domain, as any real number may be cubed and then subtracted from the result.

The domain is ∞ ∞ and the range is also ∞ ∞

EXAMPLE 9

Finding the Domain and Range
Find the domain and range of

Solution

We cannot evaluate the function at because division by zero is undefined. The domain is ∞ ∞

Because the function is never zero, we exclude 0 from the range. The range is ∞ ∞

EXAMPLE 10

Finding the Domain and Range
Find the domain and range of

Solution
We cannot take the square root of a negative number, so the value inside the radical must be nonnegative.

The domain of is ∞
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We then find the range. We know that and the function value increases as increases without any upper

limit. We conclude that the range of is ∞

Analysis
Figure 22 represents the function

Figure 22

TRY IT #7 Find the domain and range of

Graphing Piecewise-Defined Functions
Sometimes, we come across a function that requires more than one formula in order to obtain the given output. For
example, in the toolkit functions, we introduced the absolute value function With a domain of all real
numbers and a range of values greater than or equal to 0, absolute value can be defined as the magnitude, or modulus,
of a real number value regardless of sign. It is the distance from 0 on the number line. All of these definitions require the
output to be greater than or equal to 0.

If we input 0, or a positive value, the output is the same as the input.

If we input a negative value, the output is the opposite of the input.

Because this requires two different processes or pieces, the absolute value function is an example of a piecewise
function. A piecewise function is a function in which more than one formula is used to define the output over different
pieces of the domain.

We use piecewise functions to describe situations in which a rule or relationship changes as the input value crosses
certain “boundaries.” For example, we often encounter situations in business for which the cost per piece of a certain
item is discounted once the number ordered exceeds a certain value. Tax brackets are another real-world example of
piecewise functions. For example, consider a simple tax system in which incomes up to $10,000 are taxed at 10%, and
any additional income is taxed at 20%. The tax on a total income would be if and

if

Piecewise Function

A piecewise function is a function in which more than one formula is used to define the output. Each formula has its
own domain, and the domain of the function is the union of all these smaller domains. We notate this idea like this:

In piecewise notation, the absolute value function is
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...
HOW TO

Given a piecewise function, write the formula and identify the domain for each interval.

1. Identify the intervals for which different rules apply.
2. Determine formulas that describe how to calculate an output from an input in each interval.
3. Use braces and if-statements to write the function.

EXAMPLE 11

Writing a Piecewise Function
A museum charges $5 per person for a guided tour with a group of 1 to 9 people or a fixed $50 fee for a group of 10 or
more people. Write a function relating the number of people, to the cost,

Solution
Two different formulas will be needed. For n-values under 10, For values of that are 10 or greater,

Analysis
The function is represented in Figure 23. The graph is a diagonal line from to and a constant after that. In
this example, the two formulas agree at the meeting point where but not all piecewise functions have this
property.

Figure 23

EXAMPLE 12

Working with a Piecewise Function
A cell phone company uses the function below to determine the cost, in dollars for gigabytes of data transfer.

Find the cost of using 1.5 gigabytes of data and the cost of using 4 gigabytes of data.

Solution
To find the cost of using 1.5 gigabytes of data, we first look to see which part of the domain our input falls in.
Because 1.5 is less than 2, we use the first formula.

To find the cost of using 4 gigabytes of data, we see that our input of 4 is greater than 2, so we use the second
formula.
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Analysis
The function is represented in Figure 24. We can see where the function changes from a constant to a shifted and
stretched identity at We plot the graphs for the different formulas on a common set of axes, making sure each
formula is applied on its proper domain.

Figure 24

HOW TO

Given a piecewise function, sketch a graph.

1. Indicate on the x-axis the boundaries defined by the intervals on each piece of the domain.
2. For each piece of the domain, graph on that interval using the corresponding equation pertaining to that piece.

Do not graph two functions over one interval because it would violate the criteria of a function.

EXAMPLE 13

Graphing a Piecewise Function
Sketch a graph of the function.

Solution
Each of the component functions is from our library of toolkit functions, so we know their shapes. We can imagine
graphing each function and then limiting the graph to the indicated domain. At the endpoints of the domain, we draw
open circles to indicate where the endpoint is not included because of a less-than or greater-than inequality; we draw a
closed circle where the endpoint is included because of a less-than-or-equal-to or greater-than-or-equal-to inequality.

Figure 25 shows the three components of the piecewise function graphed on separate coordinate systems.
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Figure 25 (a) (b) (c)

Now that we have sketched each piece individually, we combine them in the same coordinate plane. See Figure 26.

Figure 26

Analysis
Note that the graph does pass the vertical line test even at and because the points and are not
part of the graph of the function, though and are.

TRY IT #8 Graph the following piecewise function.

Q&A Can more than one formula from a piecewise function be applied to a value in the domain?

No. Each value corresponds to one equation in a piecewise formula.

MEDIA

Access these online resources for additional instruction and practice with domain and range.

Domain and Range of Square Root Functions (http://openstax.org/l/domainsqroot)
Determining Domain and Range (http://openstax.org/l/determinedomain)
Find Domain and Range Given the Graph (http://openstax.org/l/drgraph)
Find Domain and Range Given a Table (http://openstax.org/l/drtable)
Find Domain and Range Given Points on a Coordinate Plane (http://openstax.org/l/drcoordinate)
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3.2 SECTION EXERCISES
Verbal

1. Why does the domain differ
for different functions?

2. How do we determine the
domain of a function
defined by an equation?

3. Explain why the domain of
is different from

the domain of

4. When describing sets of
numbers using interval
notation, when do you use a
parenthesis and when do
you use a bracket?

5. How do you graph a
piecewise function?

Algebraic

For the following exercises, find the domain of each function using interval notation.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21. 22. 23.

24. 25.

ⓐ using algebra.

ⓑ graphing the function
in the radicand and
determining intervals on
the x-axis for which the
radicand is nonnegative.

26. Find the domain of the
function

by:
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Graphical

For the following exercises, write the domain and range of each function using interval notation.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36. 37.
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For the following exercises, sketch a graph of the piecewise function. Write the domain in interval notation.

38. 39. 40.

41. 42. 43.

44. 45.

Numeric

For the following exercises, given each function evaluate and

46. 47. 48.

For the following exercises, given each function evaluate and

49. 50. 51.

For the following exercises, write the domain for the piecewise function in interval notation.

52. 53.

54.

Technology

55. Graph on the viewing window

and Determine the
corresponding range for the viewing window.
Show the graphs.

56. Graph on the viewing window
and Determine the corresponding
range for the viewing window. Show the graphs.

Extension

57. Suppose the range of a
function is What
is the range of

58. Create a function in which
the range is all
nonnegative real numbers.

59. Create a function in which
the domain is
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Real-World Applications

60. The height of a projectile
is a function of the time it
is in the air. The height in
feet for seconds is given
by the function

What is
the domain of the
function? What does the
domain mean in the
context of the problem?

ⓐ The fixed cost is
determined when zero
items are produced. Find
the fixed cost for this item.

ⓑ What is the cost of
making 25 items?

ⓒ Suppose the maximum
cost allowed is $1500. What
are the domain and range
of the cost function,

61. The cost in dollars of
making items is given by
the function

3.3 Rates of Change and Behavior of Graphs
Learning Objectives
In this section, you will:

Find the average rate of change of a function.
Use a graph to determine where a function is increasing, decreasing, or constant.
Use a graph to locate local maxima and local minima.
Use a graph to locate the absolute maximum and absolute minimum.

Gasoline costs have experienced some wild fluctuations over the last several decades. Table 15 lists the average cost, in
dollars, of a gallon of gasoline for the years 2005–2012. The cost of gasoline can be considered as a function of year.

2005 2006 2007 2008 2009 2010 2011 2012

2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

Table 1

If we were interested only in how the gasoline prices changed between 2005 and 2012, we could compute that the cost
per gallon had increased from $2.31 to $3.68, an increase of $1.37. While this is interesting, it might be more useful to
look at how much the price changed per year. In this section, we will investigate changes such as these.

Finding the Average Rate of Change of a Function
The price change per year is a rate of change because it describes how an output quantity changes relative to the
change in the input quantity. We can see that the price of gasoline in Table 1 did not change by the same amount each
year, so the rate of change was not constant. If we use only the beginning and ending data, we would be finding the
average rate of change over the specified period of time. To find the average rate of change, we divide the change in
the output value by the change in the input value.

The Greek letter (delta) signifies the change in a quantity; we read the ratio as “delta-y over delta-x” or “the change in
divided by the change in ” Occasionally we write instead of which still represents the change in the function’s

5 http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524. Accessed 3/5/2014.
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output value resulting from a change to its input value. It does not mean we are changing the function into some other
function.

In our example, the gasoline price increased by $1.37 from 2005 to 2012. Over 7 years, the average rate of change was

On average, the price of gas increased by about 19.6¢ each year.

Other examples of rates of change include:

• A population of rats increasing by 40 rats per week
• A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as time passes)
• A car driving 27 miles per gallon (distance traveled changes by 27 miles for each gallon)
• The current through an electrical circuit increasing by 0.125 amperes for every volt of increased voltage
• The amount of money in a college account decreasing by $4,000 per quarter

Rate of Change

A rate of change describes how an output quantity changes relative to the change in the input quantity. The units on
a rate of change are “output units per input units.”

The average rate of change between two input values is the total change of the function values (output values)
divided by the change in the input values.

HOW TO

Given the value of a function at different points, calculate the average rate of change of a function for the
interval between two values and

1. Calculate the difference
2. Calculate the difference
3. Find the ratio

EXAMPLE 1

Computing an Average Rate of Change
Using the data in Table 1, find the average rate of change of the price of gasoline between 2007 and 2009.

Solution
In 2007, the price of gasoline was $2.84. In 2009, the cost was $2.41. The average rate of change is

Analysis
Note that a decrease is expressed by a negative change or “negative increase.” A rate of change is negative when the
output decreases as the input increases or when the output increases as the input decreases.
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TRY IT #1 Using the data in Table 1, find the average rate of change between 2005 and 2010.

EXAMPLE 2

Computing Average Rate of Change from a Graph
Given the function shown in Figure 1, find the average rate of change on the interval

Figure 1

Solution
At Figure 2 shows At the graph shows

Figure 2

The horizontal change is shown by the red arrow, and the vertical change is shown by the turquoise
arrow. The average rate of change is shown by the slope of the orange line segment. The output changes by –3 while the
input changes by 3, giving an average rate of change of

Analysis
Note that the order we choose is very important. If, for example, we use we will not get the correct answer.

Decide which point will be 1 and which point will be 2, and keep the coordinates fixed as and

EXAMPLE 3

Computing Average Rate of Change from a Table
After picking up a friend who lives 10 miles away and leaving on a trip, Anna records her distance from home over time.
The values are shown in Table 2. Find her average speed over the first 6 hours.
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t (hours) 0 1 2 3 4 5 6 7

D(t) (miles) 10 55 90 153 214 240 292 300

Table 2

Solution
Here, the average speed is the average rate of change. She traveled 282 miles in 6 hours.

The average speed is 47 miles per hour.

Analysis
Because the speed is not constant, the average speed depends on the interval chosen. For the interval [2,3], the average
speed is 63 miles per hour.

EXAMPLE 4

Computing Average Rate of Change for a Function Expressed as a Formula
Compute the average rate of change of on the interval

Solution
We can start by computing the function values at each endpoint of the interval.

Now we compute the average rate of change.

TRY IT #2 Find the average rate of change of on the interval

EXAMPLE 5

Finding the Average Rate of Change of a Force
The electrostatic force measured in newtons, between two charged particles can be related to the distance between
the particles in centimeters, by the formula Find the average rate of change of force if the distance

between the particles is increased from 2 cm to 6 cm.

Solution
We are computing the average rate of change of on the interval
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The average rate of change is newton per centimeter.

EXAMPLE 6

Finding an Average Rate of Change as an Expression
Find the average rate of change of on the interval The answer will be an expression involving
in simplest form.

Solution
We use the average rate of change formula.

This result tells us the average rate of change in terms of between and any other point For example, on the
interval the average rate of change would be

TRY IT #3 Find the average rate of change of on the interval in simplest forms in
terms
of

Using a Graph to Determine Where a Function is Increasing, Decreasing, or
Constant
As part of exploring how functions change, we can identify intervals over which the function is changing in specific ways.
We say that a function is increasing on an interval if the function values increase as the input values increase within that
interval. Similarly, a function is decreasing on an interval if the function values decrease as the input values increase over
that interval. The average rate of change of an increasing function is positive, and the average rate of change of a
decreasing function is negative. Figure 3 shows examples of increasing and decreasing intervals on a function.
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Figure 3 The function is increasing on ∞ ∞ and is decreasing on

While some functions are increasing (or decreasing) over their entire domain, many others are not. A value of the input
where a function changes from increasing to decreasing (as we go from left to right, that is, as the input variable
increases) is the location of a local maximum. The function value at that point is the local maximum. If a function has
more than one, we say it has local maxima. Similarly, a value of the input where a function changes from decreasing to
increasing as the input variable increases is the location of a local minimum. The function value at that point is the local
minimum. The plural form is “local minima.” Together, local maxima and minima are called local extrema, or local
extreme values, of the function. (The singular form is “extremum.”) Often, the term local is replaced by the term relative.
In this text, we will use the term local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A function is also neither
increasing nor decreasing at extrema. Note that we have to speak of local extrema, because any given local extremum as
defined here is not necessarily the highest maximum or lowest minimum in the function’s entire domain.

For the function whose graph is shown in Figure 4, the local maximum is 16, and it occurs at The local minimum
is and it occurs at

Figure 4

To locate the local maxima and minima from a graph, we need to observe the graph to determine where the graph
attains its highest and lowest points, respectively, within an open interval. Like the summit of a roller coaster, the graph
of a function is higher at a local maximum than at nearby points on both sides. The graph will also be lower at a local
minimum than at neighboring points. Figure 5 illustrates these ideas for a local maximum.
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Figure 5 Definition of a local maximum

These observations lead us to a formal definition of local extrema.

Local Minima and Local Maxima

A function is an increasing function on an open interval if for any two input values and in the
given interval where

A function is a decreasing function on an open interval if for any two input values and in the given
interval where

A function has a local maximum at if there exists an interval with such that, for any in the
interval Likewise, has a local minimum at if there exists an interval with
such that, for any in the interval

EXAMPLE 7

Finding Increasing and Decreasing Intervals on a Graph
Given the function in Figure 6, identify the intervals on which the function appears to be increasing.

Figure 6

Solution
We see that the function is not constant on any interval. The function is increasing where it slants upward as we move to
the right and decreasing where it slants downward as we move to the right. The function appears to be increasing from

to and from on.

In interval notation, we would say the function appears to be increasing on the interval (1,3) and the interval ∞

Analysis
Notice in this example that we used open intervals (intervals that do not include the endpoints), because the function is
neither increasing nor decreasing at , , and . These points are the local extrema (two minima and a
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maximum).

EXAMPLE 8

Finding Local Extrema from a Graph
Graph the function Then use the graph to estimate the local extrema of the function and to determine
the intervals on which the function is increasing.

Solution
Using technology, we find that the graph of the function looks like that in Figure 7. It appears there is a low point, or
local minimum, between and and a mirror-image high point, or local maximum, somewhere between

and

Figure 7

Analysis
Most graphing calculators and graphing utilities can estimate the location of maxima and minima. Figure 8 provides
screen images from two different technologies, showing the estimate for the local maximum and minimum.

Figure 8

Based on these estimates, the function is increasing on the interval ∞ and ∞ Notice that, while we

expect the extrema to be symmetric, the two different technologies agree only up to four decimals due to the differing
approximation algorithms used by each. (The exact location of the extrema is at but determining this requires
calculus.)

TRY IT #4 Graph the function to estimate the local extrema of the function.
Use these to determine the intervals on which the function is increasing and decreasing.
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EXAMPLE 9

Finding Local Maxima and Minima from a Graph
For the function whose graph is shown in Figure 9, find all local maxima and minima.

Figure 9

Solution
Observe the graph of The graph attains a local maximum at because it is the highest point in an open interval
around The local maximum is the -coordinate at which is

The graph attains a local minimum at because it is the lowest point in an open interval around The local
minimum is the y-coordinate at which is

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals
We will now return to our toolkit functions and discuss their graphical behavior in Figure 10, Figure 11, and Figure 12.

Figure 10
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Figure 11

Figure 12

Use A Graph to Locate the Absolute Maximum and Absolute Minimum
There is a difference between locating the highest and lowest points on a graph in a region around an open interval
(locally) and locating the highest and lowest points on the graph for the entire domain. The coordinates (output) at
the highest and lowest points are called the absolute maximum and absolute minimum, respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the graph
attains it highest and lowest points on the domain of the function. See Figure 13.
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Figure 13

Not every function has an absolute maximum or minimum value. The toolkit function is one such function.

Absolute Maxima and Minima

The absolute maximum of at is where for all in the domain of

The absolute minimum of at is where for all in the domain of

EXAMPLE 10

Finding Absolute Maxima and Minima from a Graph
For the function shown in Figure 14, find all absolute maxima and minima.

Figure 14

Solution
Observe the graph of The graph attains an absolute maximum in two locations, and because at these
locations, the graph attains its highest point on the domain of the function. The absolute maximum is the y-coordinate
at and which is

The graph attains an absolute minimum at because it is the lowest point on the domain of the function’s graph.
The absolute minimum is the y-coordinate at which is

MEDIA

Access this online resource for additional instruction and practice with rates of change.
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Average Rate of Change (http://openstax.org/l/aroc)

3.3 SECTION EXERCISES
Verbal

1. Can the average rate of
change of a function be
constant?

2. If a function is increasing
on and decreasing on

then what can be said
about the local extremum of

on

3. How are the absolute
maximum and minimum
similar to and different from
the local extrema?

4. How does the graph of the
absolute value function
compare to the graph of the
quadratic function,
in terms of increasing and
decreasing intervals?

Algebraic

For the following exercises, find the average rate of change of each function on the interval specified for real numbers
or in simplest form.

5. on 6. on 7. on

8. on 9. on 10. on

11. on 12. on 13. on

14. on 15. given
on
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Graphical

For the following exercises, consider the graph of shown in Figure 15.

Figure 15

16. Estimate the average rate
of change from to

17. Estimate the average rate
of change from to

For the following exercises, use the graph of each function to estimate the intervals on which the function is increasing
or decreasing.

18. 19. 20.

21.
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For the following exercises, consider the graph shown in Figure 16.

Figure 16

22. Estimate the intervals
where the function is
increasing or decreasing.

23. Estimate the point(s) at
which the graph of has a
local maximum or a local
minimum.

For the following exercises, consider the graph in Figure 17.

Figure 17

24. If the complete graph of
the function is shown,
estimate the intervals
where the function is
increasing or decreasing.

25. If the complete graph of
the function is shown,
estimate the absolute
maximum and absolute
minimum.
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Numeric

26. Table 3 gives the annual
sales (in millions of dollars)
of a product from 1998 to
2006. What was the
average rate of change of
annual sales (a) between
2001 and 2002, and (b)
between 2001 and 2004?

Year
Sales

(millions of
dollars)

1998 201

1999 219

2000 233

2001 243

2002 249

2003 251

2004 249

2005 243

2006 233

Table 3

27. Table 4 gives the population of a town (in
thousands) from 2000 to 2008. What was the
average rate of change of population (a) between
2002 and 2004, and (b) between 2002 and 2006?

Year
Population

(thousands)

2000 87

2001 84

2002 83

2003 80

2004 77

2005 76

2006 78

2007 81

2008 85

Table 4

For the following exercises, find the average rate of change of each function on the interval specified.

28. on 29. on 30. on

31. on 32. on 33. on

34. on

Technology

For the following exercises, use a graphing utility to estimate the local extrema of each function and to estimate the
intervals on which the function is increasing and decreasing.

35. 36.
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37. 38.

39. 40.

Extension

ⓐ a relative (local) maximum of the function

ⓑ the vertex of the function

ⓒ the absolute maximum of the function

ⓓ a zero of the function

41. The graph of the function is shown in Figure 18.

Figure 18

Based on the calculator screen shot, the point
is which of the following?

42. Let Find a
number such that the
average rate of change of
the function on the
interval is

43. Let . Find the
number such that the
average rate of change of

on the interval is

Real-World Applications

44. At the start of a trip, the
odometer on a car read
21,395. At the end of the
trip, 13.5 hours later, the
odometer read 22,125.
Assume the scale on the
odometer is in miles. What
is the average speed the
car traveled during this
trip?

45. A driver of a car stopped at
a gas station to fill up their
gas tank. They looked at
their watch, and the time
read exactly 3:40 p.m. At
this time, they started
pumping gas into the tank.
At exactly 3:44, the tank
was full and the driver
noticed that they had
pumped 10.7 gallons. What
is the average rate of flow
of the gasoline into the gas
tank?

46. Near the surface of the
moon, the distance that an
object falls is a function of
time. It is given by

where is
in seconds and is in
feet. If an object is dropped
from a certain height, find
the average velocity of the
object from to
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47. The graph in Figure 19 illustrates the decay of a
radioactive substance over days.

Figure 19

Use the graph to estimate the average decay rate
from to

3.4 Composition of Functions
Learning Objectives
In this section, you will:

Combine functions using algebraic operations.
Create a new function by composition of functions.
Evaluate composite functions.
Find the domain of a composite function.
Decompose a composite function into its component functions.

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house
will depend on the average daily temperature, and in turn, the average daily temperature depends on the particular day
of the year. Notice how we have just defined two relationships: The cost depends on the temperature, and the
temperature depends on the day.

Using descriptive variables, we can notate these two functions. The function gives the cost of heating a house
for a given average daily temperature in degrees Celsius. The function gives the average daily temperature on
day of the year. For any given day, means that the cost depends on the temperature, which in turns
depends on the day of the year. Thus, we can evaluate the cost function at the temperature For example, we could
evaluate to determine the average daily temperature on the 5th day of the year. Then, we could evaluate the cost
function at that temperature. We would write

By combining these two relationships into one function, we have performed function composition, which is the focus of
this section.

Combining Functions Using Algebraic Operations
Function composition is only one way to combine existing functions. Another way is to carry out the usual algebraic
operations on functions, such as addition, subtraction, multiplication and division. We do this by performing the
operations with the function outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual incomes over a
period of years, with the result being their total household income. We want to do this for every year, adding only that
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year’s incomes and then collecting all the data in a new column. If is the wife’s income and is the husband’s
income in year and we want to represent the total income, then we can define a new function.

If this holds true for every year, then we can focus on the relation between the functions without reference to a year and
write

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of functions that
have the same kinds of inputs (not necessarily numbers) and also the same kinds of outputs (which do have to be
numbers so that the usual operations of algebra can apply to them, and which also must have the same units or no units
when we add and subtract). In this way, we can think of adding, subtracting, multiplying, and dividing functions.

For two functions and with real number outputs, we define new functions and by the

relations

EXAMPLE 1

Performing Algebraic Operations on Functions

Find and simplify the functions and given and Are they the same

function?

Solution
Begin by writing the general form, and then substitute the given functions.

No, the functions are not the same.

Note: For the condition is necessary because when the denominator is equal to 0, which makes

the function undefined.

TRY IT #1 Find and simplify the functions and

Are they the same function?
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Create a Function by Composition of Functions
Performing algebraic operations on functions combines them into a new function, but we can also create functions by
composing functions. When we wanted to compute a heating cost from a day of the year, we created a new function that
takes a day as input and yields a cost as output. The process of combining functions so that the output of one function
becomes the input of another is known as a composition of functions. The resulting function is known as a composite
function. We represent this combination by the following notation:

We read the left-hand side as composed with at and the right-hand side as of of The two sides of the
equation have the same mathematical meaning and are equal. The open circle symbol is called the composition
operator. We use this operator mainly when we wish to emphasize the relationship between the functions themselves
without referring to any particular input value. Composition is a binary operation that takes two functions and forms a
new function, much as addition or multiplication takes two numbers and gives a new number. However, it is important
not to confuse function composition with multiplication because, as we learned above, in most cases

It is also important to understand the order of operations in evaluating a composite function. We follow the usual
convention with parentheses by starting with the innermost parentheses first, and then working to the outside. In the
equation above, the function takes the input first and yields an output Then the function takes as an
input and yields an output

In general, and are different functions. In other words, in many cases for all We will also
see that sometimes two functions can be composed only in one specific order.

For example, if and then

but

These expressions are not equal for all values of so the two functions are not equal. It is irrelevant that the
expressions happen to be equal for the single input value

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the
outside function. Less formally, the composition has to make sense in terms of inputs and outputs.

Composition of Functions

When the output of one function is used as the input of another, we call the entire operation a composition of
functions. For any input and functions and this action defines a composite function, which we write as
such that

The domain of the composite function is all such that is in the domain of and is in the domain of

It is important to realize that the product of functions is not the same as the function composition
because, in general,
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EXAMPLE 2

Determining whether Composition of Functions is Commutative
Using the functions provided, find and Determine whether the composition of the functions is
commutative.

Solution
Let’s begin by substituting into

Now we can substitute into

We find that so the operation of function composition is not commutative.

EXAMPLE 3

Interpreting Composite Functions
The function gives the number of calories burned completing sit-ups, and gives the number of sit-ups a person
can complete in minutes. Interpret

Solution
The inside expression in the composition is Because the input to the s-function is time, represents 3 minutes,
and is the number of sit-ups completed in 3 minutes.

Using as the input to the function gives us the number of calories burned during the number of sit-ups that can
be completed in 3 minutes, or simply the number of calories burned in 3 minutes (by doing sit-ups).

EXAMPLE 4

Investigating the Order of Function Composition
Suppose gives miles that can be driven in hours and gives the gallons of gas used in driving miles. Which of
these expressions is meaningful: or

Solution
The function is a function whose output is the number of miles driven corresponding to the number of hours
driven.

The function is a function whose output is the number of gallons used corresponding to the number of miles
driven. This means:

The expression takes miles as the input and a number of gallons as the output. The function requires a
number of hours as the input. Trying to input a number of gallons does not make sense. The expression is
meaningless.

The expression takes hours as input and a number of miles driven as the output. The function requires a
number of miles as the input. Using (miles driven) as an input value for where gallons of gas depends on
miles driven, does make sense. The expression makes sense, and will yield the number of gallons of gas used,
driving a certain number of miles, in hours.
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Q&A Are there any situations where and would both be meaningful or useful expressions?

Yes. For many pure mathematical functions, both compositions make sense, even though they usually
produce different new functions. In real-world problems, functions whose inputs and outputs have the
same units also may give compositions that are meaningful in either order.

TRY IT #2 The gravitational force on a planet a distance r from the sun is given by the function The
acceleration of a planet subjected to any force is given by the function Form a meaningful
composition of these two functions, and explain what it means.

Evaluating Composite Functions
Once we compose a new function from two existing functions, we need to be able to evaluate it for any input in its
domain. We will do this with specific numerical inputs for functions expressed as tables, graphs, and formulas and with
variables as inputs to functions expressed as formulas. In each case, we evaluate the inner function using the starting
input and then use the inner function’s output as the input for the outer function.

Evaluating Composite Functions Using Tables
When working with functions given as tables, we read input and output values from the table entries and always work
from the inside to the outside. We evaluate the inside function first and then use the output of the inside function as the
input to the outside function.

EXAMPLE 5

Using a Table to Evaluate a Composite Function
Using Table 1, evaluate and

1 6 3

2 8 5

3 3 2

4 1 7

Table 1

Solution
To evaluate we start from the inside with the input value 3. We then evaluate the inside expression using
the table that defines the function We can then use that result as the input to the function so is
replaced by 2 and we get Then, using the table that defines the function we find that

To evaluate we first evaluate the inside expression using the first table: Then, using the table for

  we can evaluate

Table 2 shows the composite functions and as tables.

Table 2
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3 2 8 3 2

Table 2

TRY IT #3 Using Table 1, evaluate and

Evaluating Composite Functions Using Graphs
When we are given individual functions as graphs, the procedure for evaluating composite functions is similar to the
process we use for evaluating tables. We read the input and output values, but this time, from the and axes of the
graphs.

HOW TO

Given a composite function and graphs of its individual functions, evaluate it using the information provided
by the graphs.

1. Locate the given input to the inner function on the axis of its graph.
2. Read off the output of the inner function from the axis of its graph.
3. Locate the inner function output on the axis of the graph of the outer function.
4. Read the output of the outer function from the axis of its graph. This is the output of the composite function.

EXAMPLE 6

Using a Graph to Evaluate a Composite Function
Using Figure 1, evaluate

Figure 1

Solution
To evaluate we start with the inside evaluation. See Figure 2.
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Figure 2

We evaluate using the graph of finding the input of 1 on the axis and finding the output value of the graph
at that input. Here, We use this value as the input to the function

We can then evaluate the composite function by looking to the graph of finding the input of 3 on the axis and
reading the output value of the graph at this input. Here, so

Analysis
Figure 3 shows how we can mark the graphs with arrows to trace the path from the input value to the output value.

Figure 3

TRY IT #4 Using Figure 1, evaluate

Evaluating Composite Functions Using Formulas
When evaluating a composite function where we have either created or been given formulas, the rule of working from
the inside out remains the same. The input value to the outer function will be the output of the inner function, which
may be a numerical value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula that
will calculate the result of a composition To do this, we will extend our idea of function evaluation. Recall that,
when we evaluate a function like we substitute the value inside the parentheses into the formula wherever
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we see the input variable.

HOW TO

Given a formula for a composite function, evaluate the function.

1. Evaluate the inside function using the input value or variable provided.
2. Use the resulting output as the input to the outside function.

EXAMPLE 7

Evaluating a Composition of Functions Expressed as Formulas with a Numerical Input
Given and evaluate

Solution
Because the inside expression is we start by evaluating at 1.

Then so we evaluate at an input of 5.

Analysis
It makes no difference what the input variables and were called in this problem because we evaluated for specific
numerical values.

TRY IT #5 Given and evaluate

ⓐ ⓑ

Finding the Domain of a Composite Function
As we discussed previously, the domain of a composite function such as is dependent on the domain of and the
domain of It is important to know when we can apply a composite function and when we cannot, that is, to know the
domain of a function such as Let us assume we know the domains of the functions and separately. If we write
the composite function for an input as we can see right away that must be a member of the domain of in
order for the expression to be meaningful, because otherwise we cannot complete the inner function evaluation.
However, we also see that must be a member of the domain of otherwise the second function evaluation in

cannot be completed, and the expression is still undefined. Thus the domain of consists of only those
inputs in the domain of that produce outputs from belonging to the domain of Note that the domain of
composed with is the set of all such that is in the domain of and is in the domain of

Domain of a Composite Function

The domain of a composite function is the set of those inputs in the domain of for which is in the
domain of

HOW TO

Given a function composition determine its domain.
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1. Find the domain of
2. Find the domain of
3. Find those inputs in the domain of for which is in the domain of That is, exclude those inputs from

the domain of for which is not in the domain of The resulting set is the domain of

EXAMPLE 8

Finding the Domain of a Composite Function
Find the domain of

Solution
The domain of consists of all real numbers except since that input value would cause us to divide by 0.
Likewise, the domain of consists of all real numbers except 1. So we need to exclude from the domain of that
value of for which

So the domain of is the set of all real numbers except and This means that

We can write this in interval notation as

∞ ∞

EXAMPLE 9

Finding the Domain of a Composite Function Involving Radicals
Find the domain of

Solution

Because we cannot take the square root of a negative number, the domain of is ∞ Now we check the domain

of the composite function

For since the radicand of a square root must be positive. Since square roots

are positive, or, which gives a domain of .

Analysis
This example shows that knowledge of the range of functions (specifically the inner function) can also be helpful in
finding the domain of a composite function. It also shows that the domain of can contain values that are not in the
domain of though they must be in the domain of

TRY IT #6 Find the domain of
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Decomposing a Composite Function into its Component Functions
In some cases, it is necessary to decompose a complicated function. In other words, we can write it as a composition of
two simpler functions. There may be more than one way to decompose a composite function, so we may choose the
decomposition that appears to be most expedient.

EXAMPLE 10

Decomposing a Function
Write as the composition of two functions.

Solution
We are looking for two functions, and so To do this, we look for a function inside a function in the
formula for As one possibility, we might notice that the expression is the inside of the square root. We could
then decompose the function as

We can check our answer by recomposing the functions.

TRY IT #7 Write as the composition of two functions.

MEDIA

Access these online resources for additional instruction and practice with composite functions.

Composite Functions (http://openstax.org/l/compfunction)
Composite Function Notation Application (http://openstax.org/l/compfuncnot)
Composite Functions Using Graphs (http://openstax.org/l/compfuncgraph)
Decompose Functions (http://openstax.org/l/decompfunction)
Composite Function Values (http://openstax.org/l/compfuncvalue)

3.4 SECTION EXERCISES
Verbal

1. How does one find the
domain of the quotient of
two functions,

2. What is the composition of
two functions,

3. If the order is reversed
when composing two
functions, can the result
ever be the same as the
answer in the original order
of the composition? If yes,
give an example. If no,
explain why not.

4. How do you find the domain
for the composition of two
functions,
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Algebraic

For the following exercises, determine the domain for each function in interval notation.

5. Given and find
and

6. Given and find
and

7. Given and find

and

8. Given and find

and

9. Given and find
and

10. Given and find

ⓐ ⓑ ⓒ
ⓓ ⓔ

11. For the following exercise, find the indicated
function given and

For the following exercises, use each pair of functions to find and Simplify your answers.

12. 13. 14.

15. 16. 17.

For the following exercises, use each set of functions to find Simplify your answers.

18.
and

19.
and

ⓐ
ⓑ the domain of
in interval notation

ⓒ
ⓓ the domain of

ⓔ

20. Given and
find the

following:

ⓐ
ⓑ the domain of

in interval
notation

21. Given and
find the

following:

ⓐ ⓑ

22. Given the functions

find the following:

ⓐ ⓑ
ⓒ

23. Given functions

and state
the domain of each of the
following functions using
interval notation:
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ⓐ ⓑ
ⓒ

24. Given functions

and state
the domain of each of the
following functions using
interval notation.

25. For and
write the

domain of in
interval notation.

For the following exercises, find functions and so the given function can be expressed as

26. 27. 28.

29. 30. 31.

32. 33. 34.

35. 36. 37.

38. 39. 40.

41.

Graphical

For the following exercises, use the graphs of shown in Figure 4, and shown in Figure 5, to evaluate the expressions.

Figure 4
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Figure 5

42. 43. 44.

45. 46. 47.

48. 49.

For the following exercises, use graphs of shown in Figure 6, shown in Figure 7, and shown in Figure 8,
to evaluate the expressions.

Figure 6

Figure 7
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Figure 8

50. 51. 52.

53. 54. 55.

56. 57.

Numeric

For the following exercises, use the function values for shown in Table 3 to evaluate each expression.

0 7 9

1 6 5

2 5 6

3 8 2

4 4 1

5 0 8

6 2 7

7 1 3

8 9 4

9 3 0

Table 3

58. 59. 60.

61. 62. 63.

64. 65.
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For the following exercises, use the function values for shown in Table 4 to evaluate the expressions.

11

9

7 0

0 5 1

1 3 0

2 1

3

Table 4

66. 67. 68.

69. 70. 71.

For the following exercises, use each pair of functions to find and

72. 73. 74.

75.

For the following exercises, use the functions and to evaluate or find the composite
function as indicated.

76. 77. 78.

79.

Extensions

For the following exercises, use and

80. Find and
Compare the

two answers.

81. Find and 82. What is the domain of
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83. What is the domain of

ⓐ Find

ⓑ Is for any
function the same result
as the answer to part (a)
for any function? Explain.

84. Let

For the following exercises, let and

85. True or False: 86. True or False:

For the following exercises, find the composition when for all and

87. 88. 89.

Real-World Applications

ⓐ Evaluate

ⓑ Evaluate

ⓒ Solve

ⓓ Solve

90. The function gives the
number of items that will
be demanded when the
price is The production
cost is the cost of
producing items. To
determine the cost of
production when the price
is $6, you would do which
of the following?

ⓐ Evaluate

ⓑ Evaluate

ⓒ Solve

ⓓ Solve

91. The function gives the
pain level on a scale of 0 to
10 experienced by a patient
with milligrams of a pain-
reducing drug in her
system. The milligrams of
the drug in the patient’s
system after minutes is
modeled by Which of
the following would you do
in order to determine
when the patient will be at
a pain level of 4?

92. A store offers customers a
30% discount on the price

of selected items. Then,
the store takes off an
additional 15% at the cash
register. Write a price
function that
computes the final price of
the item in terms of the
original price (Hint: Use
function composition to
find your answer.)

93. A rain drop hitting a lake
makes a circular ripple. If
the radius, in inches, grows
as a function of time in
minutes according to

find the
area of the ripple as a
function of time. Find the
area of the ripple at

94. A forest fire leaves behind
an area of grass burned in
an expanding circular
pattern. If the radius of the
circle of burning grass is
increasing with time
according to the formula

express the
area burned as a function
of time, (minutes).

95. Use the function you found
in the previous exercise to
find the total area burned
after 5 minutes.
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ⓐ Find the composite function

ⓑ Find the exact time when the radius reaches 10
inches.

96. The radius in inches, of a spherical balloon is

related to the volume, by Air is

pumped into the balloon, so the volume after
seconds is given by

ⓐ Find the composite function

ⓑ Find the time (round to two decimal places)
when the bacteria count reaches 6752.

97. The number of bacteria in a refrigerated food
product is given by

where is the temperature of the
food. When the food is removed from the
refrigerator, the temperature is given by

where is the time in hours.

3.5 Transformation of Functions
Learning Objectives
In this section, you will:

Graph functions using vertical and horizontal shifts.
Graph functions using reflections about the x-axis and the y-axis.
Determine whether a function is even, odd, or neither from its graph.
Graph functions using compressions and stretches.
Combine transformations.

Figure 1 (credit: "Misko"/Flickr)

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us. When we tilt
the mirror, the images we see may shift horizontally or vertically. But what happens when we bend a flexible mirror? Like
a carnival funhouse mirror, it presents us with a distorted image of ourselves, stretched or compressed horizontally or
vertically. In a similar way, we can distort or transform mathematical functions to better adapt them to describing
objects or processes in the real world. In this section, we will take a look at several kinds of transformations.

Graphing Functions Using Vertical and Horizontal Shifts
Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs, and
equations. One method we can employ is to adapt the basic graphs of the toolkit functions to build new models for a
given scenario. There are systematic ways to alter functions to construct appropriate models for the problems we are
trying to solve.

Identifying Vertical Shifts
One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left. The simplest
shift is a vertical shift, moving the graph up or down, because this transformation involves adding a positive or negative
constant to the function. In other words, we add the same constant to the output value of the function regardless of the
input. For a function the function is shifted vertically units. See Figure 2 for an example.
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Figure 2 Vertical shift by of the cube root function

To help you visualize the concept of a vertical shift, consider that Therefore, is equivalent to
Every unit of is replaced by so the y-value increases or decreases depending on the value of The result is a
shift upward or downward.

Vertical Shift

Given a function a new function where is a constant, is a vertical shift of the function
All the output values change by units. If is positive, the graph will shift up. If is negative, the graph will shift
down.

EXAMPLE 1

Adding a Constant to a Function
To regulate temperature in a green building, airflow vents near the roof open and close throughout the day. Figure 3
shows the area of open vents (in square feet) throughout the day in hours after midnight, During the summer, the
facilities manager decides to try to better regulate temperature by increasing the amount of open vents by 20 square
feet throughout the day and night. Sketch a graph of this new function.

Figure 3

Solution
We can sketch a graph of this new function by adding 20 to each of the output values of the original function. This will
have the effect of shifting the graph vertically up, as shown in Figure 4.
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Figure 4

Notice that in Figure 4, for each input value, the output value has increased by 20, so if we call the new function we
could write

This notation tells us that, for any value of can be found by evaluating the function at the same input and then
adding 20 to the result. This defines as a transformation of the function in this case a vertical shift up 20 units.
Notice that, with a vertical shift, the input values stay the same and only the output values change. See Table 1.

0 8 10 17 19 24

0 0 220 220 0 0

20 20 240 240 20 20

Table 1

HOW TO

Given a tabular function, create a new row to represent a vertical shift.

1. Identify the output row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each output cell. Add a positive value for up or a negative value for down.

EXAMPLE 2

Shifting a Tabular Function Vertically
A function is given in Table 2. Create a table for the function

2 4 6 8

1 3 7 11

Table 2

Solution
The formula tells us that we can find the output values of by subtracting 3 from the output values of
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For example:

Subtracting 3 from each value, we can complete a table of values for as shown in Table 3.

2 4 6 8

1 3 7 11

−2 0 4 8

Table 3

Analysis
As with the earlier vertical shift, notice the input values stay the same and only the output values change.

TRY IT #1 The function gives the height of a ball (in meters) thrown upward from the
ground after seconds. Suppose the ball was instead thrown from the top of a 10-m building.
Relate this new height function to and then find a formula for

Identifying Horizontal Shifts
We just saw that the vertical shift is a change to the output, or outside, of the function. We will now look at how changes
to input, on the inside of the function, change its graph and meaning. A shift to the input results in a movement of the
graph of the function left or right in what is known as a horizontal shift, shown in Figure 5.

Figure 5 Horizontal shift of the function Note that means , which shifts the graph to the left,
that is, towards negative values of

For example, if then is a new function. Each input is reduced by 2 prior to squaring the
function. The result is that the graph is shifted 2 units to the right, because we would need to increase the prior input by
2 units to yield the same output value as given in

Horizontal Shift

Given a function a new function where is a constant, is a horizontal shift of the function If
is positive, the graph will shift right. If is negative, the graph will shift left.
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EXAMPLE 3

Adding a Constant to an Input
Returning to our building airflow example from Figure 3, suppose that in autumn the facilities manager decides that the
original venting plan starts too late, and wants to begin the entire venting program 2 hours earlier. Sketch a graph of the
new function.

Solution
We can set to be the original program and to be the revised program.

In the new graph, at each time, the airflow is the same as the original function was 2 hours later. For example, in the
original function the airflow starts to change at 8 a.m., whereas for the function the airflow starts to change at 6
a.m. The comparable function values are See Figure 6. Notice also that the vents first opened to at
10 a.m. under the original plan, while under the new plan the vents reach at
8 a.m., so

In both cases, we see that, because starts 2 hours sooner, That means that the same output values are
reached when

Figure 6

Analysis
Note that has the effect of shifting the graph to the left.

Horizontal changes or “inside changes” affect the domain of a function (the input) instead of the range and often seem
counterintuitive. The new function uses the same outputs as but matches those outputs to inputs 2 hours
earlier than those of Said another way, we must add 2 hours to the input of to find the corresponding output for

HOW TO

Given a tabular function, create a new row to represent a horizontal shift.

1. Identify the input row or column.
2. Determine the magnitude of the shift.
3. Add the shift to the value in each input cell.
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EXAMPLE 4

Shifting a Tabular Function Horizontally
A function is given in Table 4. Create a table for the function

2 4 6 8

1 3 7 11

Table 4

Solution
The formula tells us that the output values of are the same as the output value of when the input
value is 3 less than the original value. For example, we know that To get the same output from the function
we will need an input value that is 3 larger. We input a value that is 3 larger for because the function takes 3 away
before evaluating the function

We continue with the other values to create Table 5.

5 7 9 11

2 4 6 8

1 3 7 11

1 3 7 11

Table 5

The result is that the function has been shifted to the right by 3. Notice the output values for remain the same
as the output values for but the corresponding input values, have shifted to the right by 3. Specifically, 2 shifted
to 5, 4 shifted to 7, 6 shifted to 9, and 8 shifted to 11.

Analysis
Figure 7 represents both of the functions. We can see the horizontal shift in each point.
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Figure 7

EXAMPLE 5

Identifying a Horizontal Shift of a Toolkit Function
Figure 8 represents a transformation of the toolkit function Relate this new function to and then
find a formula for

Figure 8

Solution
Notice that the graph is identical in shape to the function, but the x-values are shifted to the right 2 units. The
vertex used to be at (0,0), but now the vertex is at (2,0). The graph is the basic quadratic function shifted 2 units to the
right, so

Notice how we must input the value to get the output value the x-values must be 2 units larger because of
the shift to the right by 2 units. We can then use the definition of the function to write a formula for by
evaluating

Analysis
To determine whether the shift is or , consider a single reference point on the graph. For a quadratic, looking at
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the vertex point is convenient. In the original function, In our shifted function, To obtain the output
value of 0 from the function we need to decide whether a plus or a minus sign will work to satisfy

For this to work, we will need to subtract 2 units from our input values.

EXAMPLE 6

Interpreting Horizontal versus Vertical Shifts
The function gives the number of gallons of gas required to drive miles. Interpret and

Solution
can be interpreted as adding 10 to the output, gallons. This is the gas required to drive miles, plus another

10 gallons of gas. The graph would indicate a vertical shift.

can be interpreted as adding 10 to the input, miles. So this is the number of gallons of gas required to drive
10 miles more than miles. The graph would indicate a horizontal shift.

TRY IT #2 Given the function graph the original function and the transformation
on the same axes. Is this a horizontal or a vertical shift? Which way is the graph

shifted and by how many units?

Combining Vertical and Horizontal Shifts
Now that we have two transformations, we can combine them. Vertical shifts are outside changes that affect the output
(y-) values and shift the function up or down. Horizontal shifts are inside changes that affect the input (x-) values and
shift the function left or right. Combining the two types of shifts will cause the graph of a function to shift up or down
and left or right.

HOW TO

Given a function and both a vertical and a horizontal shift, sketch the graph.

1. Identify the vertical and horizontal shifts from the formula.
2. The vertical shift results from a constant added to the output. Move the graph up for a positive constant and

down for a negative constant.
3. The horizontal shift results from a constant added to the input. Move the graph left for a positive constant and

right for a negative constant.
4. Apply the shifts to the graph in either order.

EXAMPLE 7

Graphing Combined Vertical and Horizontal Shifts
Given sketch a graph of

Solution
The function is our toolkit absolute value function. We know that this graph has a V shape, with the point at the origin.
The graph of has transformed in two ways: is a change on the inside of the function, giving a horizontal
shift left by 1, and the subtraction by 3 in is a change to the outside of the function, giving a vertical shift
down by 3. The transformation of the graph is illustrated in Figure 9.

Let us follow one point of the graph of

• The point is transformed first by shifting left 1 unit:
• The point is transformed next by shifting down 3 units:
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Figure 9

Figure 10 shows the graph of

Figure 10

TRY IT #3 Given sketch a graph of

EXAMPLE 8

Identifying Combined Vertical and Horizontal Shifts
Write a formula for the graph shown in Figure 11, which is a transformation of the toolkit square root function.

3.5 • Transformation of Functions 263



Figure 11

Solution
The graph of the toolkit function starts at the origin, so this graph has been shifted 1 to the right and up 2. In function
notation, we could write that as

Using the formula for the square root function, we can write

Analysis

Note that this transformation has changed the domain and range of the function. This new graph has domain ∞ and

range ∞

TRY IT #4 Write a formula for a transformation of the toolkit reciprocal function that shifts the
function’s graph one unit to the right and one unit up.

Graphing Functions Using Reflections about the Axes
Another transformation that can be applied to a function is a reflection over the x- or y-axis. A vertical reflection reflects
a graph vertically across the x-axis, while a horizontal reflection reflects a graph horizontally across the y-axis. The
reflections are shown in Figure 12.

Figure 12 Vertical and horizontal reflections of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph about the

264 3 • Functions

Access for free at openstax.org



...

x-axis. The horizontal reflection produces a new graph that is a mirror image of the base or original graph about the
y-axis.

Reflections

Given a function a new function is a vertical reflection of the function sometimes called a
reflection about (or over, or through) the x-axis.

Given a function a new function is a horizontal reflection of the function sometimes called
a reflection about the y-axis.

HOW TO

Given a function, reflect the graph both vertically and horizontally.

1. Multiply all outputs by –1 for a vertical reflection. The new graph is a reflection of the original graph about the
x-axis.

2. Multiply all inputs by –1 for a horizontal reflection. The new graph is a reflection of the original graph about the
y-axis.

EXAMPLE 9

Reflecting a Graph Horizontally and Vertically
Reflect the graph of (a) vertically and (b) horizontally.

Solution

ⓐ
Reflecting the graph vertically means that each output value will be reflected over the horizontal t-axis as shown in
Figure 13.

Figure 13 Vertical reflection of the square root function

Because each output value is the opposite of the original output value, we can write

Notice that this is an outside change, or vertical shift, that affects the output values, so the negative sign belongs
outside of the function.
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ⓑ
Reflecting horizontally means that each input value will be reflected over the vertical axis as shown in Figure 14.

Figure 14 Horizontal reflection of the square root function

Because each input value is the opposite of the original input value, we can write

Notice that this is an inside change or horizontal change that affects the input values, so the negative sign is on the
inside of the function.

Note that these transformations can affect the domain and range of the functions. While the original square root

function has domain ∞ and range ∞ the vertical reflection gives the function the range ∞ and

the horizontal reflection gives the function the domain ∞

TRY IT #5 Reflect the graph of (a) vertically and (b) horizontally.

EXAMPLE 10

Reflecting a Tabular Function Horizontally and Vertically
A function is given as Table 6. Create a table for the functions below.

ⓐ ⓑ
2 4 6 8

1 3 7 11

Table 6
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Solution

ⓐ
For the negative sign outside the function indicates a vertical reflection, so the x-values stay the same and each
output value will be the opposite of the original output value. See Table 7.

2 4 6 8

–1 –3 –7 –11

Table 7

ⓑ
For the negative sign inside the function indicates a horizontal reflection, so each input value will be the
opposite of the original input value and the values stay the same as the values. See Table 8.

−2 −4 −6 −8

1 3 7 11

Table 8

TRY IT #6 A function is given as Table 9. Create a table for the functions below.

ⓐ ⓑ
−2 0 2 4

5 10 15 20

Table 9

EXAMPLE 11

Applying a Learning Model Equation
A common model for learning has an equation similar to where is the percentage of mastery that can
be achieved after practice sessions. This is a transformation of the function shown in Figure 15. Sketch a
graph of
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Figure 15

Solution
This equation combines three transformations into one equation.

• A horizontal reflection:
• A vertical reflection:
• A vertical shift:

We can sketch a graph by applying these transformations one at a time to the original function. Let us follow two points
through each of the three transformations. We will choose the points (0, 1) and (1, 2).

1. First, we apply a horizontal reflection: (0, 1) (–1, 2).
2. Then, we apply a vertical reflection: (0, -1) (-1, –2)
3. Finally, we apply a vertical shift: (0, 0) (-1, -1)).

This means that the original points, (0,1) and (1,2) become (0,0) and (-1,-1) after we apply the transformations.

In Figure 16, the first graph results from a horizontal reflection. The second results from a vertical reflection. The third
results from a vertical shift up 1 unit.

Figure 16

Analysis
As a model for learning, this function would be limited to a domain of with corresponding range

TRY IT #7 Given the toolkit function graph and Take note of any
surprising behavior for these functions.
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Determining Even and Odd Functions
Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting the
toolkit functions or will result in the original graph. We say that these types of graphs are
symmetric about the y-axis. A function whose graph is symmetric about the y-axis is called an even function.

If the graphs of or were reflected over both axes, the result would be the original graph, as shown
in Figure 17.

Figure 17 (a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function (c) Horizontal and vertical
reflections reproduce the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the origin is
called an odd function.

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example, is neither
even nor odd. Also, the only function that is both even and odd is the constant function

Even and Odd Functions

A function is called an even function if for every input

The graph of an even function is symmetric about the axis.

A function is called an odd function if for every input

The graph of an odd function is symmetric about the origin.

HOW TO

Given the formula for a function, determine if the function is even, odd, or neither.

1. Determine whether the function satisfies If it does, it is even.
2. Determine whether the function satisfies If it does, it is odd.
3. If the function does not satisfy either rule, it is neither even nor odd.

EXAMPLE 12

Determining whether a Function Is Even, Odd, or Neither
Is the function even, odd, or neither?
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Solution
Without looking at a graph, we can determine whether the function is even or odd by finding formulas for the reflections
and determining if they return us to the original function. Let’s begin with the rule for even functions.

This does not return us to the original function, so this function is not even. We can now test the rule for odd functions.

Because this is an odd function.

Analysis
Consider the graph of in Figure 18. Notice that the graph is symmetric about the origin. For every point on the
graph, the corresponding point is also on the graph. For example, (1, 3) is on the graph of and the
corresponding point is also on the graph.

Figure 18

TRY IT #8 Is the function even, odd, or neither?

Graphing Functions Using Stretches and Compressions
Adding a constant to the inputs or outputs of a function changed the position of a graph with respect to the axes, but it
did not affect the shape of a graph. We now explore the effects of multiplying the inputs or outputs by some quantity.

We can transform the inside (input values) of a function or we can transform the outside (output values) of a function.
Each change has a specific effect that can be seen graphically.

Vertical Stretches and Compressions
When we multiply a function by a positive constant, we get a function whose graph is stretched or compressed vertically
in relation to the graph of the original function. If the constant is greater than 1, we get a vertical stretch; if the
constant is between 0 and 1, we get a vertical compression. Figure 19 shows a function multiplied by constant factors 2
and 0.5 and the resulting vertical stretch and compression.
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Figure 19 Vertical stretch and compression

Vertical Stretches and Compressions

Given a function a new function where is a constant, is a vertical stretch or vertical
compression of the function

• If then the graph will be stretched.
• If then the graph will be compressed.
• If then there will be combination of a vertical stretch or compression with a vertical reflection.

HOW TO

Given a function, graph its vertical stretch.

1. Identify the value of
2. Multiply all range values by
3. If the graph is stretched by a factor of

If the graph is compressed by a factor of

If the graph is either stretched or compressed and also reflected about the x-axis.

EXAMPLE 13

Graphing a Vertical Stretch
A function models the population of fruit flies. The graph is shown in Figure 20.

3.5 • Transformation of Functions 271



Figure 20

A scientist is comparing this population to another population, whose growth follows the same pattern, but is twice
as large. Sketch a graph of this population.

Solution
Because the population is always twice as large, the new population’s output values are always twice the original
function’s output values. Graphically, this is shown in Figure 21.

If we choose four reference points, (0, 1), (3, 3), (6, 2) and (7, 0) we will multiply all of the outputs by 2.

The following shows where the new points for the new graph will be located.

Figure 21

Symbolically, the relationship is written as

This means that for any input the value of the function is twice the value of the function Notice that the effect on
the graph is a vertical stretching of the graph, where every point doubles its distance from the horizontal axis. The input
values, stay the same while the output values are twice as large as before.
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HOW TO

Given a tabular function and assuming that the transformation is a vertical stretch or compression, create a
table for a vertical compression.

1. Determine the value of
2. Multiply all of the output values by

EXAMPLE 14

Finding a Vertical Compression of a Tabular Function
A function is given as Table 10. Create a table for the function

2 4 6 8

1 3 7 11

Table 10

Solution
The formula tells us that the output values of are half of the output values of with the same inputs. For
example, we know that Then

We do the same for the other values to produce Table 11.

Table 11

Analysis
The result is that the function has been compressed vertically by Each output value is divided in half, so the
graph is half the original height.

TRY IT #9 A function is given as Table 12. Create a table for the function

2 4 6 8

12 16 20 0

Table 12

EXAMPLE 15

Recognizing a Vertical Stretch
The graph in Figure 22 is a transformation of the toolkit function Relate this new function to and
then find a formula for
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Figure 22

Solution
When trying to determine a vertical stretch or shift, it is helpful to look for a point on the graph that is relatively clear. In
this graph, it appears that With the basic cubic function at the same input, Based on that, it
appears that the outputs of are the outputs of the function because From this we can fairly safely
conclude that

We can write a formula for by using the definition of the function

TRY IT #10 Write the formula for the function that we get when we stretch the identity toolkit function by a
factor of 3, and then shift it down by 2 units.

Horizontal Stretches and Compressions
Now we consider changes to the inside of a function. When we multiply a function’s input by a positive constant, we get
a function whose graph is stretched or compressed horizontally in relation to the graph of the original function. If the
constant is between 0 and 1, we get a horizontal stretch; if the constant is greater than 1, we get a horizontal
compression of the function.
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Figure 23

Given a function the form results in a horizontal stretch or compression. Consider the function
Observe Figure 23. The graph of is a horizontal stretch of the graph of the function by a

factor of 2. The graph of is a horizontal compression of the graph of the function by a factor of .

Horizontal Stretches and Compressions

Given a function a new function where is a constant, is a horizontal stretch or horizontal
compression of the function

• If then the graph will be compressed by
• If then the graph will be stretched by
• If then there will be combination of a horizontal stretch or compression with a horizontal reflection.

HOW TO

Given a description of a function, sketch a horizontal compression or stretch.

1. Write a formula to represent the function.
2. Set where for a compression or for a stretch.

EXAMPLE 16

Graphing a Horizontal Compression
Suppose a scientist is comparing a population of fruit flies to a population that progresses through its lifespan twice as
fast as the original population. In other words, this new population, will progress in 1 hour the same amount as the
original population does in 2 hours, and in 2 hours, it will progress as much as the original population does in 4 hours.
Sketch a graph of this population.

Solution
Symbolically, we could write
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See Figure 24 for a graphical comparison of the original population and the compressed population.

Figure 24 (a) Original population graph (b) Compressed population graph

Analysis
Note that the effect on the graph is a horizontal compression where all input values are half of their original distance
from the vertical axis.

EXAMPLE 17

Finding a Horizontal Stretch for a Tabular Function
A function is given as Table 13. Create a table for the function

2 4 6 8

1 3 7 11

Table 13

Solution
The formula tells us that the output values for are the same as the output values for the function at
an input half the size. Notice that we do not have enough information to determine because

and we do not have a value for in our table. Our input values to will need to be twice as
large to get inputs for that we can evaluate. For example, we can determine

We do the same for the other values to produce Table 14.

4 8 12 16

Table 14
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1 3 7 11

Table 14

Figure 25 shows the graphs of both of these sets of points.

Figure 25

Analysis
Because each input value has been doubled, the result is that the function has been stretched horizontally by a
factor of 2.

EXAMPLE 18

Recognizing a Horizontal Compression on a Graph
Relate the function to in Figure 26.

Figure 26

Solution
The graph of looks like the graph of horizontally compressed. Because ends at and ends at

we can see that the values have been compressed by because We might also notice that
and Either way, we can describe this relationship as This is a horizontal

compression by

Analysis
Notice that the coefficient needed for a horizontal stretch or compression is the reciprocal of the stretch or compression.
So to stretch the graph horizontally by a scale factor of 4, we need a coefficient of in our function: This means
that the input values must be four times larger to produce the same result, requiring the input to be larger, causing the
horizontal stretching.
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TRY IT #11 Write a formula for the toolkit square root function horizontally stretched by a factor of 3.

Performing a Sequence of Transformations
When combining transformations, it is very important to consider the order of the transformations. For example,
vertically shifting by 3 and then vertically stretching by 2 does not create the same graph as vertically stretching by 2 and
then vertically shifting by 3, because when we shift first, both the original function and the shift get stretched, while only
the original function gets stretched when we stretch first.

When we see an expression such as which transformation should we start with? The answer here follows
nicely from the order of operations. Given the output value of we first multiply by 2, causing the vertical stretch,
and then add 3, causing the vertical shift. In other words, multiplication before addition.

Horizontal transformations are a little trickier to think about. When we write for example, we have to
think about how the inputs to the function relate to the inputs to the function Suppose we know What
input to would produce that output? In other words, what value of will allow We would need

To solve for we would first subtract 3, resulting in a horizontal shift, and then divide by 2, causing a
horizontal compression.

This format ends up being very difficult to work with, because it is usually much easier to horizontally stretch a graph
before shifting. We can work around this by factoring inside the function.

Let’s work through an example.

We can factor out a 2.

Now we can more clearly observe a horizontal shift to the left 2 units and a horizontal compression. Factoring in this way
allows us to horizontally stretch first and then shift horizontally.

Combining Transformations

When combining vertical transformations written in the form first vertically stretch by and then vertically
shift by

When combining horizontal transformations written in the form first horizontally shift by and then
horizontally stretch by

When combining horizontal transformations written in the form first horizontally stretch by and then
horizontally shift by

Horizontal and vertical transformations are independent. It does not matter whether horizontal or vertical
transformations are performed first.

EXAMPLE 19

Finding a Triple Transformation of a Tabular Function
Given Table 15 for the function create a table of values for the function

6 12 18 24

10 14 15 17

Table 15
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Solution
There are three steps to this transformation, and we will work from the inside out. Starting with the horizontal
transformations, is a horizontal compression by which means we multiply each value by See Table 16.

2 4 6 8

10 14 15 17

Table 16

Looking now to the vertical transformations, we start with the vertical stretch, which will multiply the output values by 2.
We apply this to the previous transformation. See Table 17.

2 4 6 8

20 28 30 34

Table 17

Finally, we can apply the vertical shift, which will add 1 to all the output values. See Table 18.

2 4 6 8

21 29 31 35

Table 18

EXAMPLE 20

Finding a Triple Transformation of a Graph
Use the graph of in Figure 27 to sketch a graph of

Figure 27

Solution
To simplify, let’s start by factoring out the inside of the function.
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By factoring the inside, we can first horizontally stretch by 2, as indicated by the on the inside of the function.
Remember that twice the size of 0 is still 0, so the point (0,2) remains at (0,2) while the point (2,0) will stretch to (4,0). See
Figure 28.

Figure 28

Next, we horizontally shift left by 2 units, as indicated by See Figure 29.

Figure 29

Last, we vertically shift down by 3 to complete our sketch, as indicated by the on the outside of the function. See
Figure 30.
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Figure 30

MEDIA

Access this online resource for additional instruction and practice with transformation of functions.

Function Transformations (http://openstax.org/l/functrans)

3.5 SECTION EXERCISES
Verbal

1. When examining the
formula of a function that is
the result of multiple
transformations, how can
you tell a horizontal shift
from a vertical shift?

2. When examining the
formula of a function that is
the result of multiple
transformations, how can
you tell a horizontal stretch
from a vertical stretch?

3. When examining the
formula of a function that is
the result of multiple
transformations, how can
you tell a horizontal
compression from a vertical
compression?

4. When examining the
formula of a function that is
the result of multiple
transformations, how can
you tell a reflection with
respect to the x-axis from a
reflection with respect to the
y-axis?

5. How can you determine
whether a function is odd or
even from the formula of
the function?

Algebraic

For the following exercises, write a formula for the function obtained when the graph is shifted as described.

6. is shifted up 1
unit and to the left 2 units.

7. is shifted down 3
units and to the right 1 unit.

8. is shifted down 4
units and to the right 3
units.
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9. is shifted up 2

units and to the left 4 units.

For the following exercises, describe how the graph of the function is a transformation of the graph of the original
function

10. 11. 12.

13. 14. 15.

16. 17. 18.

19.

For the following exercises, determine the interval(s) on which the function is increasing and decreasing.

20. 21. 22.

23.

Graphical

For the following exercises, use the graph of shown in Figure 31 to sketch a graph of each transformation of

Figure 31

24. 25. 26.

For the following exercises, sketch a graph of the function as a transformation of the graph of one of the toolkit
functions.

27. 28. 29.

30.
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Numeric

31. Tabular representations for the
functions and are given
below. Write and as
transformations of

−2 −1 0 1 2

−2 −1 −3 1 2

−1 0 1 2 3

−2 −1 −3 1 2

−2 −1 0 1 2

−1 0 −2 2 3

32. Tabular representations for the functions
and are given below. Write and as
transformations of

−2 −1 0 1 2

−1 −3 4 2 1

−3 −2 −1 0 1

−1 −3 4 2 1

−2 −1 0 1 2

−2 −4 3 1 0

For the following exercises, write an equation for each graphed function by using transformations of the graphs of one
of the toolkit functions.

33. 34. 35.
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36. 37. 38.

39. 40.

For the following exercises, use the graphs of transformations of the square root function to find a formula for each of
the functions.

41. 42.
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For the following exercises, use the graphs of the transformed toolkit functions to write a formula for each of the
resulting functions.

43. 44. 45.

46.

For the following exercises, determine whether the function is odd, even, or neither.

47. 48. 49.

50. 51. 52.

For the following exercises, describe how the graph of each function is a transformation of the graph of the original
function

53. 54. 55.

56. 57. 58.

59. 60. 61.

62.
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For the following exercises, write a formula for the function that results when the graph of a given toolkit function is
transformed as described.

63. The graph of is
reflected over the -axis
and horizontally
compressed by a factor of

.

64. The graph of is
reflected over the -axis
and horizontally stretched
by a factor of 2.

65. The graph of is

vertically compressed by a
factor of then shifted to
the left 2 units and down 3
units.

66. The graph of is
vertically stretched by a
factor of 8, then shifted to
the right 4 units and up 2
units.

67. The graph of is
vertically compressed by a
factor of then shifted to
the right 5 units and up 1
unit.

68. The graph of is
horizontally stretched by a
factor of 3, then shifted to
the left 4 units and down 3
units.

For the following exercises, describe how the formula is a transformation of a toolkit function. Then sketch a graph of
the transformation.

69. 70. 71.

72. 73. 74.

75. 76. 77.

For the following exercises, use the graph in Figure 32 to sketch the given transformations.

Figure 32

78. 79. 80.

81.
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3.6 Absolute Value Functions
Learning Objectives
In this section, you will:

Graph an absolute value function.
Solve an absolute value equation.

Figure 1 Distances in deep space can be measured in all directions. As such, it is useful to consider distance in terms of
absolute values. (credit: "s58y"/Flickr)

Until the 1920s, the so-called spiral nebulae were believed to be clouds of dust and gas in our own galaxy, some tens of
thousands of light years away. Then, astronomer Edwin Hubble proved that these objects are galaxies in their own right,
at distances of millions of light years. Today, astronomers can detect galaxies that are billions of light years away.
Distances in the universe can be measured in all directions. As such, it is useful to consider distance as an absolute value
function. In this section, we will continue our investigation of absolute value functions.

Understanding Absolute Value
Recall that in its basic form the absolute value function is one of our toolkit functions. The absolute value
function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for
whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value
functions to solve some kinds of real-world problems.

Absolute Value Function

The absolute value function can be defined as a piecewise function

EXAMPLE 1

Using Absolute Value to Determine Resistance
Electrical parts, such as resistors and capacitors, come with specified values of their operating parameters: resistance,
capacitance, etc. However, due to imprecision in manufacturing, the actual values of these parameters vary somewhat
from piece to piece, even when they are supposed to be the same. The best that manufacturers can do is to try to
guarantee that the variations will stay within a specified range, often or

Suppose we have a resistor rated at 680 ohms, Use the absolute value function to express the range of possible
values of the actual resistance.

Solution
We can find that 5% of 680 ohms is 34 ohms. The absolute value of the difference between the actual and nominal
resistance should not exceed the stated variability, so, with the resistance in ohms,
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TRY IT #1 Students who score within 20 points of 80 will pass a test. Write this as a distance from 80 using
absolute value notation.

Graphing an Absolute Value Function
The most significant feature of the absolute value graph is the corner point at which the graph changes direction. This
point is shown at the origin in Figure 2.

Figure 2

Figure 3 shows the graph of The graph of has been shifted right 3 units, vertically stretched by a
factor of 2, and shifted up 4 units. This means that the corner point is located at for this transformed function.

Figure 3

EXAMPLE 2

Writing an Equation for an Absolute Value Function Given a Graph
Write an equation for the function graphed in Figure 4.
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Figure 4

Solution
The basic absolute value function changes direction at the origin, so this graph has been shifted to the right 3 units and
down 2 units from the basic toolkit function. See Figure 5.

Figure 5

We also notice that the graph appears vertically stretched, because the width of the final graph on a horizontal line is not
equal to 2 times the vertical distance from the corner to this line, as it would be for an unstretched absolute value
function. Instead, the width is equal to 1 times the vertical distance as shown in Figure 6.
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Figure 6

From this information we can write the equation

Analysis
Note that these equations are algebraically equivalent—the stretch for an absolute value function can be written
interchangeably as a vertical or horizontal stretch or compression. Note also that if the vertical stretch factor is negative,
there is also a reflection about the x-axis.

Q&A If we couldn’t observe the stretch of the function from the graphs, could we algebraically
determine it?

Yes. If we are unable to determine the stretch based on the width of the graph, we can solve for the
stretch factor by putting in a known pair of values for and

Now substituting in the point (1, 2)

TRY IT #2 Write the equation for the absolute value function that is horizontally shifted left 2 units, is
vertically flipped, and vertically shifted up 3 units.

Q&A Do the graphs of absolute value functions always intersect the vertical axis? The horizontal axis?

Yes, they always intersect the vertical axis. The graph of an absolute value function will intersect the
vertical axis when the input is zero.

No, they do not always intersect the horizontal axis. The graph may or may not intersect the horizontal
axis, depending on how the graph has been shifted and reflected. It is possible for the absolute value
function to intersect the horizontal axis at zero, one, or two points (see Figure 7).
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Figure 7 (a) The absolute value function does not intersect the horizontal axis. (b) The absolute value function
intersects the horizontal axis at one point. (c) The absolute value function intersects the horizontal axis at two points.

Solving an Absolute Value Equation
In Other Type of Equations, we touched on the concepts of absolute value equations. Now that we understand a little
more about their graphs, we can take another look at these types of equations. Now that we can graph an absolute
value function, we will learn how to solve an absolute value equation. To solve an equation such as we
notice that the absolute value will be equal to 8 if the quantity inside the absolute value is 8 or -8. This leads to two
different equations we can solve independently.

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify
numbers or points on a line that are at a specified distance from a given reference point.

An absolute value equation is an equation in which the unknown variable appears in absolute value bars. For example,

Solutions to Absolute Value Equations

For real numbers and , an equation of the form with will have solutions when or
If the equation has no solution.

HOW TO

Given the formula for an absolute value function, find the horizontal intercepts of its graph.

1. Isolate the absolute value term.
2. Use to write or assuming
3. Solve for

EXAMPLE 3

Finding the Zeros of an Absolute Value Function
For the function find the values of such that
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Solution

The function outputs 0 when or See Figure 8.

Figure 8

TRY IT #3 For the function find the values of such that

Q&A Should we always expect two answers when solving

No. We may find one, two, or even no answers. For example, there is no solution to

MEDIA

Access these online resources for additional instruction and practice with absolute value.

Graphing Absolute Value Functions (http://openstax.org/l/graphabsvalue)
Graphing Absolute Value Functions 2 (http://openstax.org/l/graphabsvalue2)
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3.6 SECTION EXERCISES
Verbal

1. How do you solve an
absolute value equation?

2. How can you tell whether an
absolute value function has
two x-intercepts without
graphing the function?

3. When solving an absolute
value function, the isolated
absolute value term is equal
to a negative number. What
does that tell you about the
graph of the absolute value
function?

4. How can you use the graph
of an absolute value
function to determine the
x-values for which the
function values are
negative?

Algebraic

5. Describe all numbers that
are at a distance of 4 from
the number 8. Express this
set of numbers using
absolute value notation.

6. Describe all numbers that
are at a distance of from
the number −4. Express this
set of numbers using
absolute value notation.

7. Describe the situation in
which the distance that
point is from 10 is at least
15 units. Express this set of
numbers using absolute
value notation.

8. Find all function values
such that the distance from

to the value 8 is less
than 0.03 units. Express this
set of numbers using
absolute value notation.

For the following exercises, find the x- and y-intercepts of the graphs of each function.

9. 10. 11.

12. 13. 14.

15.

Graphical

For the following exercises, graph the absolute value function. Plot at least five points by hand for each graph.

16. 17. 18.
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For the following exercises, graph the given functions by hand.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31.

Technology

32. Use a graphing utility to
graph on
the viewing window
Identify the corresponding
range. Show the graph.

33. Use a graphing utility to
graph

on
the viewing window

Identify the
corresponding range.
Show the graph.

For the following exercises, graph each function using a graphing utility. Specify the viewing window.

34. 35.

Extensions

For the following exercises, solve the inequality.

36. If possible, find all values of such that there are
no intercepts for

37. If possible, find all values of such that there are
no -intercepts for

Real-World Applications

38. Cities A and B are on the
same east-west line.
Assume that city A is
located at the origin. If the
distance from city A to city
B is at least 100 miles and
represents the distance
from city B to city A,
express this using absolute
value notation.

39. The true proportion of
people who give a
favorable rating to
Congress is 8% with a
margin of error of 1.5%.
Describe this statement
using an absolute value
equation.

40. Students who score within
18 points of the number 82
will pass a particular test.
Write this statement using
absolute value notation
and use the variable for
the score.
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41. A machinist must produce
a bearing that is within
0.01 inches of the correct
diameter of 5.0 inches.
Using as the diameter of
the bearing, write this
statement using absolute
value notation.

42. The tolerance for a ball
bearing is 0.01. If the true
diameter of the bearing is
to be 2.0 inches and the
measured value of the
diameter is inches,
express the tolerance using
absolute value notation.

3.7 Inverse Functions
Learning Objectives
In this section, you will:

Verify inverse functions.
Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-
one.
Find or evaluate the inverse of a function.
Use the graph of a one-to-one function to graph its inverse function on the same axes.

A reversible heat pump is a climate-control system that is an air conditioner and a heater in a single device. Operated in
one direction, it pumps heat out of a house to provide cooling. Operating in reverse, it pumps heat into the building
from the outside, even in cool weather, to provide heating. As a heater, a heat pump is several times more efficient than
conventional electrical resistance heating.

If some physical machines can run in two directions, we might ask whether some of the function “machines” we have
been studying can also run backwards. Figure 1 provides a visual representation of this question. In this section, we will
consider the reverse nature of functions.

Figure 1 Can a function “machine” operate in reverse?

Verifying That Two Functions Are Inverse Functions
Betty is traveling to Milan for a fashion show and wants to know what the temperature will be. She is not familiar with
the Celsius scale. To get an idea of how temperature measurements are related, Betty wants to convert 75 degrees
Fahrenheit to degrees Celsius using the formula

and substitutes 75 for to calculate

Knowing that a comfortable 75 degrees Fahrenheit is about 24 degrees Celsius, Betty gets the week’s weather forecast
from Figure 2 for Milan, and wants to convert all of the temperatures to degrees Fahrenheit.
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Figure 2

At first, Betty considers using the formula she has already found to complete the conversions. After all, she knows her
algebra, and can easily solve the equation for after substituting a value for For example, to convert 26 degrees
Celsius, she could write

After considering this option for a moment, however, she realizes that solving the equation for each of the temperatures
will be awfully tedious. She realizes that since evaluation is easier than solving, it would be much more convenient to
have a different formula, one that takes the Celsius temperature and outputs the Fahrenheit temperature.

The formula for which Betty is searching corresponds to the idea of an inverse function, which is a function for which
the input of the original function becomes the output of the inverse function and the output of the original function
becomes the input of the inverse function.

Given a function we represent its inverse as read as inverse of The raised is part of the notation.
It is not an exponent; it does not imply a power of . In other words, does not mean because is the

reciprocal of and not the inverse.

The “exponent-like” notation comes from an analogy between function composition and multiplication: just as
(1 is the identity element for multiplication) for any nonzero number so equals the identity function, that is,

This holds for all in the domain of Informally, this means that inverse functions “undo” each other. However, just as
zero does not have a reciprocal, some functions do not have inverses.

Given a function we can verify whether some other function is the inverse of by checking whether either
or is true. We can test whichever equation is more convenient to work with because they are

logically equivalent (that is, if one is true, then so is the other.)

For example, and are inverse functions.

and

A few coordinate pairs from the graph of the function are (−2, −8), (0, 0), and (2, 8). A few coordinate pairs from
the graph of the function are (−8, −2), (0, 0), and (8, 2). If we interchange the input and output of each coordinate
pair of a function, the interchanged coordinate pairs would appear on the graph of the inverse function.

Inverse Function

For any one-to-one function a function is an inverse function of if This can also be
written as for all in the domain of It also follows that for all in the domain of
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if is the inverse of

The notation is read inverse.” Like any other function, we can use any variable name as the input for so
we will often write which we read as inverse of Keep in mind that

and not all functions have inverses.

EXAMPLE 1

Identifying an Inverse Function for a Given Input-Output Pair
If for a particular one-to-one function and what are the corresponding input and output values for
the inverse function?

Solution
The inverse function reverses the input and output quantities, so if

Alternatively, if we want to name the inverse function then and

Analysis
Notice that if we show the coordinate pairs in a table form, the input and output are clearly reversed. See Table 1.

Table 1

TRY IT #1 Given that what are the corresponding input and output values of the original
function

HOW TO

Given two functions and test whether the functions are inverses of each other.

1. Determine whether or
2. If either statement is true, then both are true, and and If either statement is false, then both

are false, and and

EXAMPLE 2

Testing Inverse Relationships Algebraically
If and is
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Solution

so

This is enough to answer yes to the question, but we can also verify the other formula.

Analysis
Notice the inverse operations are in reverse order of the operations from the original function.

TRY IT #2 If and is

EXAMPLE 3

Determining Inverse Relationships for Power Functions
If (the cube function) and is

Solution

No, the functions are not inverses.

Analysis

The correct inverse to the cube is, of course, the cube root that is, the one-third is an exponent, not a
multiplier.

TRY IT #3 If is

Finding Domain and Range of Inverse Functions
The outputs of the function are the inputs to so the range of is also the domain of Likewise, because the
inputs to are the outputs of the domain of is the range of We can visualize the situation as in Figure 3.

Figure 3 Domain and range of a function and its inverse

When a function has no inverse function, it is possible to create a new function where that new function on a limited
domain does have an inverse function. For example, the inverse of is because a square

“undoes” a square root; but the square is only the inverse of the square root on the domain ∞ since that is the
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range of

We can look at this problem from the other side, starting with the square (toolkit quadratic) function If we
want to construct an inverse to this function, we run into a problem, because for every given output of the quadratic
function, there are two corresponding inputs (except when the input is 0). For example, the output 9 from the quadratic
function corresponds to the inputs 3 and –3. But an output from a function is an input to its inverse; if this inverse input
corresponds to more than one inverse output (input of the original function), then the “inverse” is not a function at all!
To put it differently, the quadratic function is not a one-to-one function; it fails the horizontal line test, so it does not have
an inverse function. In order for a function to have an inverse, it must be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict the function to a part of its domain on which it is one-
to-one. For example, we can make a restricted version of the square function with its domain limited to

∞ which is a one-to-one function (it passes the horizontal line test) and which has an inverse (the square-root

function).

If on ∞ then the inverse function is

• The domain of = range of = ∞

• The domain of = range of = ∞

Q&A Is it possible for a function to have more than one inverse?

No. If two supposedly different functions, say, and both meet the definition of being inverses of
another function then you can prove that We have just seen that some functions only have
inverses if we restrict the domain of the original function. In these cases, there may be more than one way
to restrict the domain, leading to different inverses. However, on any one domain, the original function
still has only one unique inverse.

Domain and Range of Inverse Functions

The range of a function is the domain of the inverse function

The domain of is the range of

HOW TO

Given a function, find the domain and range of its inverse.

1. If the function is one-to-one, write the range of the original function as the domain of the inverse, and write the
domain of the original function as the range of the inverse.

2. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted domain
becomes the range of the inverse function.

EXAMPLE 4

Finding the Inverses of Toolkit Functions
Identify which of the toolkit functions besides the quadratic function are not one-to-one, and find a restricted domain on
which each function is one-to-one, if any. The toolkit functions are reviewed in Table 2. We restrict the domain in such a
fashion that the function assumes all y-values exactly once.
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Constant Identity Quadratic Cubic Reciprocal

Reciprocal squared Cube root Square root Absolute value

Table 2

Solution
The constant function is not one-to-one, and there is no domain (except a single point) on which it could be one-to-one,
so the constant function has no inverse.

The absolute value function can be restricted to the domain ∞ where it is equal to the identity function.

The reciprocal-squared function can be restricted to the domain ∞

Analysis
We can see that these functions (if unrestricted) are not one-to-one by looking at their graphs, shown in Figure 4. They
both would fail the horizontal line test. However, if a function is restricted to a certain domain so that it passes the
horizontal line test, then in that restricted domain, it can have an inverse.

Figure 4 (a) Absolute value (b) Reciprocal square

TRY IT #4 The domain of function is ∞ and the range of function is Find the domain and

range of the inverse function.

Finding and Evaluating Inverse Functions
Once we have a one-to-one function, we can evaluate its inverse at specific inverse function inputs or construct a
complete representation of the inverse function in many cases.

Inverting Tabular Functions
Suppose we want to find the inverse of a function represented in table form. Remember that the domain of a function is
the range of the inverse and the range of the function is the domain of the inverse. So we need to interchange the
domain and range.

Each row (or column) of inputs becomes the row (or column) of outputs for the inverse function. Similarly, each row (or
column) of outputs becomes the row (or column) of inputs for the inverse function.
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EXAMPLE 5

Interpreting the Inverse of a Tabular Function
A function is given in Table 3, showing distance in miles that a car has traveled in minutes. Find and interpret

30 50 70 90

20 40 60 70

Table 3

Solution
The inverse function takes an output of and returns an input for So in the expression 70 is an output value
of the original function, representing 70 miles. The inverse will return the corresponding input of the original function
90 minutes, so The interpretation of this is that, to drive 70 miles, it took 90 minutes.

Alternatively, recall that the definition of the inverse was that if then By this definition, if we are
given then we are looking for a value so that In this case, we are looking for a so that

which is when

TRY IT #5 Using Table 4, find and interpret ⓐ and ⓑ
30 50 60 70 90

20 40 50 60 70

Table 4

Evaluating the Inverse of a Function, Given a Graph of the Original Function
We saw in Functions and Function Notation that the domain of a function can be read by observing the horizontal extent
of its graph. We find the domain of the inverse function by observing the vertical extent of the graph of the original
function, because this corresponds to the horizontal extent of the inverse function. Similarly, we find the range of the
inverse function by observing the horizontal extent of the graph of the original function, as this is the vertical extent of
the inverse function. If we want to evaluate an inverse function, we find its input within its domain, which is all or part of
the vertical axis of the original function’s graph.

HOW TO

Given the graph of a function, evaluate its inverse at specific points.

1. Find the desired input on the y-axis of the given graph.
2. Read the inverse function’s output from the x-axis of the given graph.

EXAMPLE 6

Evaluating a Function and Its Inverse from a Graph at Specific Points
A function is given in Figure 5. Find and
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Figure 5

Solution
To evaluate we find 3 on the x-axis and find the corresponding output value on the y-axis. The point tells us
that

To evaluate recall that by definition means the value of x for which By looking for the output
value 3 on the vertical axis, we find the point on the graph, which means so by definition, See
Figure 6.

Figure 6

TRY IT #6 Using the graph in Figure 6, ⓐ find and ⓑ estimate

Finding Inverses of Functions Represented by Formulas
Sometimes we will need to know an inverse function for all elements of its domain, not just a few. If the original function
is given as a formula—for example, as a function of we can often find the inverse function by solving to obtain as
a function of

HOW TO

Given a function represented by a formula, find the inverse.

1. Make sure is a one-to-one function.
2. Solve for
3. Interchange and

EXAMPLE 7

Inverting the Fahrenheit-to-Celsius Function
Find a formula for the inverse function that gives Fahrenheit temperature as a function of Celsius temperature.
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Solution

By solving in general, we have uncovered the inverse function. If

then

In this case, we introduced a function to represent the conversion because the input and output variables are
descriptive, and writing could get confusing.

TRY IT #7 Solve for in terms of given

EXAMPLE 8

Solving to Find an Inverse Function
Find the inverse of the function

Solution

So or

Analysis
The domain and range of exclude the values 3 and 4, respectively. and are equal at two points but are not the
same function, as we can see by creating Table 5.

1 2 5

3 2 5

Table 5

EXAMPLE 9

Solving to Find an Inverse with Radicals
Find the inverse of the function
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Solution

So

The domain of is ∞ Notice that the range of is ∞ so this means that the domain of the inverse function

is also ∞

Analysis
The formula we found for looks like it would be valid for all real However, itself must have an inverse

(namely, ) so we have to restrict the domain of to ∞ in order to make a one-to-one function. This domain

of is exactly the range of

TRY IT #8 What is the inverse of the function State the domains of both the function and
the inverse function.

Finding Inverse Functions and Their Graphs
Now that we can find the inverse of a function, we will explore the graphs of functions and their inverses. Let us return to

the quadratic function restricted to the domain ∞ on which this function is one-to-one, and graph it as in

Figure 7.

Figure 7 Quadratic function with domain restricted to [0, ∞).

Restricting the domain to ∞ makes the function one-to-one (it will obviously pass the horizontal line test), so it has

an inverse on this restricted domain.

We already know that the inverse of the toolkit quadratic function is the square root function, that is,
What happens if we graph both and on the same set of axes, using the axis for the input to both

We notice a distinct relationship: The graph of is the graph of reflected about the diagonal line which
we will call the identity line, shown in Figure 8.
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Figure 8 Square and square-root functions on the non-negative domain

This relationship will be observed for all one-to-one functions, because it is a result of the function and its inverse
swapping inputs and outputs. This is equivalent to interchanging the roles of the vertical and horizontal axes.

EXAMPLE 10

Finding the Inverse of a Function Using Reflection about the Identity Line
Given the graph of in Figure 9, sketch a graph of

Figure 9

Solution
This is a one-to-one function, so we will be able to sketch an inverse. Note that the graph shown has an apparent domain

of ∞ and range of ∞ ∞ so the inverse will have a domain of ∞ ∞ and range of ∞

If we reflect this graph over the line the point reflects to and the point reflects to
Sketching the inverse on the same axes as the original graph gives Figure 10.
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Figure 10 The function and its inverse, showing reflection about the identity line

TRY IT #9 Draw graphs of the functions and from Example 8.

Q&A Is there any function that is equal to its own inverse?

Yes. If then and we can think of several functions that have this property. The
identity function does, and so does the reciprocal function, because

Any function where is a constant, is also equal to its own inverse.

MEDIA

Access these online resources for additional instruction and practice with inverse functions.

Inverse Functions (http://openstax.org/l/inversefunction)
One-to-one Functions (http://openstax.org/l/onetoone)
Inverse Function Values Using Graph (http://openstax.org/l/inversfuncgraph)
Restricting the Domain and Finding the Inverse (http://openstax.org/l/restrictdomain)

3.7 SECTION EXERCISES
Verbal

1. Describe why the horizontal
line test is an effective way
to determine whether a
function is one-to-one?

2. Why do we restrict the
domain of the function

to find the
function’s inverse?

3. Can a function be its own
inverse? Explain.

4. Are one-to-one functions
either always increasing or
always decreasing? Why or
why not?

5. How do you find the inverse
of a function algebraically?
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Algebraic

6. Show that the function is its own
inverse for all real numbers

For the following exercises, find for each function.

7. 8. 9.

10. 11. 12.

For the following exercises, find a domain on which each function is one-to-one and non-decreasing. Write the domain
in interval notation. Then find the inverse of restricted to that domain.

13. 14. 15.

ⓐ Find and

ⓑ What does the answer tell us about the
relationship between and

16. Given and

For the following exercises, use function composition to verify that and are inverse functions.

17. and 18. and

Graphical

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

19. 20. 21.

22.

For the following exercises, determine whether the graph represents a one-to-one function.

23. 24.
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For the following exercises, use the graph of shown in Figure 11.

Figure 11

25. Find 26. Solve 27. Find

28. Solve

For the following exercises, use the graph of the one-to-one function shown in Figure 12.

Figure 12

29. Sketch the graph of 30. Find 31. If the complete graph of
is shown, find the domain
of

32. If the complete graph of
is shown, find the range of

Numeric

For the following exercises, evaluate or solve, assuming that the function is one-to-one.

33. If find 34. If find 35. If find
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36. If find

For the following exercises, use the values listed in Table 6 to evaluate or solve.

0 1 2 3 4 5 6 7 8 9

8 0 7 4 2 6 5 3 9 1

Table 6

37. Find 38. Solve 39. Find

40. Solve 41. Use the tabular representation
of in Table 7 to create a table
for

3 6 9 13 14

1 4 7 12 16

Table 7

Technology

For the following exercises, find the inverse function. Then, graph the function and its inverse.

42. 43. 44. Find the inverse function of
Use a

graphing utility to find its
domain and range. Write
the domain and range in
interval notation.

Real-World Applications

45. To convert from degrees
Celsius to degrees
Fahrenheit, we use the
formula
Find the inverse function, if
it exists, and explain its
meaning.

46. The circumference of a
circle is a function of its
radius given by
Express the radius of a
circle as a function of its
circumference. Call this
function Find
and interpret its meaning.

47. A car travels at a constant
speed of 50 miles per hour.
The distance the car travels
in miles is a function of
time, in hours given by

Find the inverse
function by expressing the
time of travel in terms of
the distance traveled. Call
this function Find

and interpret its
meaning.
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Chapter Review
Key Terms
absolute maximum the greatest value of a function over an interval
absolute minimum the lowest value of a function over an interval
average rate of change the difference in the output values of a function found for two values of the input divided by

the difference between the inputs
composite function the new function formed by function composition, when the output of one function is used as the

input of another
decreasing function a function is decreasing in some open interval if for any two input values and in

the given interval where
dependent variable an output variable
domain the set of all possible input values for a relation
even function a function whose graph is unchanged by horizontal reflection, and is symmetric about

the axis
function a relation in which each input value yields a unique output value
horizontal compression a transformation that compresses a function’s graph horizontally, by multiplying the input by

a constant
horizontal line test a method of testing whether a function is one-to-one by determining whether any horizontal line

intersects the graph more than once
horizontal reflection a transformation that reflects a function’s graph across the y-axis by multiplying the input by
horizontal shift a transformation that shifts a function’s graph left or right by adding a positive or negative constant

to the input
horizontal stretch a transformation that stretches a function’s graph horizontally by multiplying the input by a

constant
increasing function a function is increasing in some open interval if for any two input values and in

the given interval where
independent variable an input variable
input each object or value in a domain that relates to another object or value by a relationship known as a function
interval notation a method of describing a set that includes all numbers between a lower limit and an upper limit; the

lower and upper values are listed between brackets or parentheses, a square bracket indicating inclusion in the set,
and a parenthesis indicating exclusion

inverse function for any one-to-one function the inverse is a function such that for all
in the domain of this also implies that for all in the domain of

local extrema collectively, all of a function's local maxima and minima
local maximum a value of the input where a function changes from increasing to decreasing as the input value

increases.
local minimum a value of the input where a function changes from decreasing to increasing as the input value

increases.
odd function a function whose graph is unchanged by combined horizontal and vertical reflection,

and is symmetric about the origin
one-to-one function a function for which each value of the output is associated with a unique input value
output each object or value in the range that is produced when an input value is entered into a function
piecewise function a function in which more than one formula is used to define the output
range the set of output values that result from the input values in a relation
rate of change the change of an output quantity relative to the change of the input quantity
relation a set of ordered pairs
set-builder notation a method of describing a set by a rule that all of its members obey; it takes the form

vertical compression a function transformation that compresses the function’s graph vertically by multiplying the
output by a constant

vertical line test a method of testing whether a graph represents a function by determining whether a vertical line
intersects the graph no more than once

vertical reflection a transformation that reflects a function’s graph across the x-axis by multiplying the output by
vertical shift a transformation that shifts a function’s graph up or down by adding a positive or negative constant to

the output
vertical stretch a transformation that stretches a function’s graph vertically by multiplying the output by a constant
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Key Equations

Constant function where is a constant

Identity function

Absolute value function

Quadratic function

Cubic function

Reciprocal function

Reciprocal squared function

Square root function

Cube root function

Average rate of change

Composite function

Vertical shift (up for )

Horizontal shift (right for )

Vertical reflection

Horizontal reflection

Vertical stretch ( )

Vertical compression

Horizontal stretch

Horizontal compression. ( )

Key Concepts
3.1 Functions and Function Notation

• A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value, or input,
leads to exactly one range value, or output. See Example 1 and Example 2.

• Function notation is a shorthand method for relating the input to the output in the form See Example 3
and Example 4.

• In tabular form, a function can be represented by rows or columns that relate to input and output values. See
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Example 5.
• To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of a function

can be evaluated by replacing the input variable with a given value. See Example 6 and Example 7.
• To solve for a specific function value, we determine the input values that yield the specific output value. See

Example 8.
• An algebraic form of a function can be written from an equation. See Example 9 and Example 10.
• Input and output values of a function can be identified from a table. See Example 11.
• Relating input values to output values on a graph is another way to evaluate a function. See Example 12.
• A function is one-to-one if each output value corresponds to only one input value. See Example 13.
• A graph represents a function if any vertical line drawn on the graph intersects the graph at no more than one

point. See Example 14.
• The graph of a one-to-one function passes the horizontal line test. See Example 15.

3.2 Domain and Range

• The domain of a function includes all real input values that would not cause us to attempt an undefined
mathematical operation, such as dividing by zero or taking the square root of a negative number.

• The domain of a function can be determined by listing the input values of a set of ordered pairs. See Example 1.
• The domain of a function can also be determined by identifying the input values of a function written as an

equation. See Example 2, Example 3, and Example 4.
• Interval values represented on a number line can be described using inequality notation, set-builder notation, and

interval notation. See Example 5.
• For many functions, the domain and range can be determined from a graph. See Example 6 and Example 7.
• An understanding of toolkit functions can be used to find the domain and range of related functions. See Example 8,

Example 9, and Example 10.
• A piecewise function is described by more than one formula. See Example 11 and Example 12.
• A piecewise function can be graphed using each algebraic formula on its assigned subdomain. See Example 13.

3.3 Rates of Change and Behavior of Graphs

• A rate of change relates a change in an output quantity to a change in an input quantity. The average rate of change
is determined using only the beginning and ending data. See Example 1.

• Identifying points that mark the interval on a graph can be used to find the average rate of change. See Example 2.
• Comparing pairs of input and output values in a table can also be used to find the average rate of change. See

Example 3.
• An average rate of change can also be computed by determining the function values at the endpoints of an interval

described by a formula. See Example 4 and Example 5.
• The average rate of change can sometimes be determined as an expression. See Example 6.
• A function is increasing where its rate of change is positive and decreasing where its rate of change is negative. See

Example 7.
• A local maximum is where a function changes from increasing to decreasing and has an output value larger (more

positive or less negative) than output values at neighboring input values.
• A local minimum is where the function changes from decreasing to increasing (as the input increases) and has an

output value smaller (more negative or less positive) than output values at neighboring input values.
• Minima and maxima are also called extrema.
• We can find local extrema from a graph. See Example 8 and Example 9.
• The highest and lowest points on a graph indicate the maxima and minima. See Example 10.

3.4 Composition of Functions

• We can perform algebraic operations on functions. See Example 1.
• When functions are combined, the output of the first (inner) function becomes the input of the second (outer)

function.
• The function produced by combining two functions is a composite function. See Example 2 and Example 3.
• The order of function composition must be considered when interpreting the meaning of composite functions. See

Example 4.
• A composite function can be evaluated by evaluating the inner function using the given input value and then

evaluating the outer function taking as its input the output of the inner function.
• A composite function can be evaluated from a table. See Example 5.
• A composite function can be evaluated from a graph. See Example 6.
• A composite function can be evaluated from a formula. See Example 7.
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• The domain of a composite function consists of those inputs in the domain of the inner function that correspond to
outputs of the inner function that are in the domain of the outer function. See Example 8 and Example 9.

• Just as functions can be combined to form a composite function, composite functions can be decomposed into
simpler functions.

• Functions can often be decomposed in more than one way. See Example 10.

3.5 Transformation of Functions

• A function can be shifted vertically by adding a constant to the output. See Example 1 and Example 2.
• A function can be shifted horizontally by adding a constant to the input. See Example 3, Example 4, and Example 5.
• Relating the shift to the context of a problem makes it possible to compare and interpret vertical and horizontal

shifts. See Example 6.
• Vertical and horizontal shifts are often combined. See Example 7 and Example 8.
• A vertical reflection reflects a graph about the axis. A graph can be reflected vertically by multiplying the output

by –1.
• A horizontal reflection reflects a graph about the axis. A graph can be reflected horizontally by multiplying the

input by –1.
• A graph can be reflected both vertically and horizontally. The order in which the reflections are applied does not

affect the final graph. See Example 9.
• A function presented in tabular form can also be reflected by multiplying the values in the input and output rows or

columns accordingly. See Example 10.
• A function presented as an equation can be reflected by applying transformations one at a time. See Example 11.
• Even functions are symmetric about the axis, whereas odd functions are symmetric about the origin.
• Even functions satisfy the condition
• Odd functions satisfy the condition
• A function can be odd, even, or neither. See Example 12.
• A function can be compressed or stretched vertically by multiplying the output by a constant. See Example 13,

Example 14, and Example 15.
• A function can be compressed or stretched horizontally by multiplying the input by a constant. See Example 16,

Example 17, and Example 18.
• The order in which different transformations are applied does affect the final function. Both vertical and horizontal

transformations must be applied in the order given. However, a vertical transformation may be combined with a
horizontal transformation in any order. See Example 19 and Example 20.

3.6 Absolute Value Functions

• Applied problems, such as ranges of possible values, can also be solved using the absolute value function. See
Example 1.

• The graph of the absolute value function resembles a letter V. It has a corner point at which the graph changes
direction. See Example 2.

• In an absolute value equation, an unknown variable is the input of an absolute value function.
• If the absolute value of an expression is set equal to a positive number, expect two solutions for the unknown

variable. See Example 3.

3.7 Inverse Functions

• If is the inverse of then See Example 1, Example 2, and Example 3.
• Only some of the toolkit functions have an inverse. See Example 4.
• For a function to have an inverse, it must be one-to-one (pass the horizontal line test).
• A function that is not one-to-one over its entire domain may be one-to-one on part of its domain.
• For a tabular function, exchange the input and output rows to obtain the inverse. See Example 5.
• The inverse of a function can be determined at specific points on its graph. See Example 6.
• To find the inverse of a formula, solve the equation for as a function of Then exchange the labels

and See Example 7, Example 8, and Example 9.
• The graph of an inverse function is the reflection of the graph of the original function across the line See

Example 10.
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Exercises
Review Exercises
Functions and Function Notation

For the following exercises, determine whether the relation is a function.

1. 2. 3. for the
independent variable and
the dependent variable

4. Is the graph in Figure 1 a
function?

Figure 1

For the following exercises, evaluate

5. 6.

For the following exercises, determine whether the functions are one-to-one.

7. 8.

For the following exercises, use the vertical line test to determine if the relation whose graph is provided is a function.

9. 10.
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11.

For the following exercises, graph the functions.

12. 13.

For the following exercises, use Figure 2 to approximate the values.

Figure 2

14. 15. 16. If then solve for

17. If then solve for

For the following exercises, use the function to find the values in simplest form.

18. 19.

Domain and Range

For the following exercises, find the domain of each function, expressing answers using interval notation.

20. 21. 22.
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23. Graph this piecewise
function:

Rates of Change and Behavior of Graphs

For the following exercises, find the average rate of change of the functions from

24. 25. 26.

For the following exercises, use the graphs to determine the intervals on which the functions are increasing, decreasing,
or constant.

27. 28.

29. 30. Find the local minimum of
the function graphed in
Exercise 3.27.
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31. Find the local extrema for
the function graphed in
Exercise 3.28.

32. For the graph in Figure 3,
the domain of the function
is The range is

Find the
absolute minimum of the
function on this interval.

33. Find the absolute maximum of the
function graphed in Figure 3.

Figure 3

Composition of Functions

For the following exercises, find and for each pair of functions.

34. 35. 36.

37. 38.

For the following exercises, find and the domain for for each pair of functions.

39. 40. 41.

42.

For the following exercises, express each function as a composition of two functions and where

43. 44.

Transformation of Functions

For the following exercises, sketch a graph of the given function.

45. 46. 47.

48. 49. 50.

51. 52.
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For the following exercises, sketch the graph of the function if the graph of the function is shown in Figure 4.

Figure 4

53. 54.

For the following exercises, write the equation for the standard function represented by each of the graphs below.

55. 56.

For the following exercises, determine whether each function below is even, odd, or neither.

57. 58. 59.

For the following exercises, analyze the graph and determine whether the graphed function is even, odd, or neither.

60. 61. 62.
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Absolute Value Functions

For the following exercises, write an equation for the transformation of

63. 64. 65.

For the following exercises, graph the absolute value function.

66. 67. 68.

Inverse Functions

For the following exercises, find for each function.

69. 70.

For the following exercise, find a domain on which the function is one-to-one and non-decreasing. Write the domain in
interval notation. Then find the inverse of restricted to that domain.

71.

ⓐ Find and

ⓑ What does the answer
tell us about the
relationship between
and

72. Given and

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

73. 74. 75. If find

76. If find

Practice Test
For the following exercises, determine whether each of the following relations is a function.

1. 2.
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For the following exercises, evaluate the function at the given input.

3. 4. 5. Show that the function
is

not one-to-one.

6. Write the domain of the
function in
interval notation.

7. Given find
in simplest

form.

8. Graph the function

9. Find the average rate of
change of the function

by
finding in simplest
form.

For the following exercises, use the functions to find the composite functions.

10. 11. 12. Express

as a
composition of two
functions, and where

For the following exercises, graph the functions by translating, stretching, and/or compressing a toolkit function.

13. 14.

For the following exercises, determine whether the functions are even, odd, or neither.

15. 16. 17.

18. Graph the absolute value
function

For the following exercises, find the inverse of the function.

19. 20.
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For the following exercises, use the graph of shown in Figure 1.

Figure 1

21. On what intervals is the
function increasing?

22. On what intervals is the
function decreasing?

23. Approximate the local
minimum of the function.
Express the answer as an
ordered pair.

24. Approximate the local
maximum of the function.
Express the answer as an
ordered pair.

For the following exercises, use the graph of the piecewise function shown in Figure 2.

Figure 2

25. Find 26. Find 27. Write an equation for the
piecewise function.

For the following exercises, use the values listed in Table 1.

0 1 2 3 4 5 6 7 8

1 3 5 7 9 11 13 15 17

Table 1
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28. Find 29. Solve the equation 30. Is the graph increasing or
decreasing on its domain?

31. Is the function represented
by the graph one-to-one?

32. Find 33. Given
find
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A bamboo forest in China (credit: "JFXie"/Flickr)

Chapter Outline
4.1 Linear Functions
4.2 Modeling with Linear Functions
4.3 Fitting Linear Models to Data

Introduction to Linear Functions
Imagine placing a plant in the ground one day and finding that it has doubled its height just a few days later. Although it
may seem incredible, this can happen with certain types of bamboo species. These members of the grass family are the
fastest-growing plants in the world. One species of bamboo has been observed to grow nearly 1.5 inches every hour. 1

In a twenty-four hour period, this bamboo plant grows about 36 inches, or an incredible 3 feet! A constant rate of
change, such as the growth cycle of this bamboo plant, is a linear function.

Recall from Functions and Function Notation that a function is a relation that assigns to every element in the domain
exactly one element in the range. Linear functions are a specific type of function that can be used to model many real-
world applications, such as plant growth over time. In this chapter, we will explore linear functions, their graphs, and
how to relate them to data.

4.1 Linear Functions
Learning Objectives
In this section, you will:

Represent a linear function.
Determine whether a linear function is increasing, decreasing, or constant.
Interpret slope as a rate of change.
Write and interpret an equation for a linear function.
Graph linear functions.
Determine whether lines are parallel or perpendicular.
Write the equation of a line parallel or perpendicular to a given line.

LINEAR FUNCTIONS4

1 http://www.guinnessworldrecords.com/records-3000/fastest-growing-plant/
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Figure 1 Shanghai MagLev Train (credit: "kanegen"/Flickr)

Just as with the growth of a bamboo plant, there are many situations that involve constant change over time. Consider,
for example, the first commercial maglev train in the world, the Shanghai MagLev Train (Figure 1). It carries passengers
comfortably for a 30-kilometer trip from the airport to the subway station in only eight minutes2 .

Suppose a maglev train travels a long distance, and maintains a constant speed of 83 meters per second for a period of
time once it is 250 meters from the station. How can we analyze the train’s distance from the station as a function of
time? In this section, we will investigate a kind of function that is useful for this purpose, and use it to investigate real-
world situations such as the train’s distance from the station at a given point in time.

Representing Linear Functions
The function describing the train’s motion is a linear function, which is defined as a function with a constant rate of
change. This is a polynomial of degree 1. There are several ways to represent a linear function, including word form,
function notation, tabular form, and graphical form. We will describe the train’s motion as a function using each method.

Representing a Linear Function in Word Form
Let’s begin by describing the linear function in words. For the train problem we just considered, the following word
sentence may be used to describe the function relationship.

• The train’s distance from the station is a function of the time during which the train moves at a constant speed plus
its original distance from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of how quickly the dependent variable changes
with respect to the independent variable. The rate of change for this example is constant, which means that it is the
same for each input value. As the time (input) increases by 1 second, the corresponding distance (output) increases by
83 meters. The train began moving at this constant speed at a distance of 250 meters from the station.

Representing a Linear Function in Function Notation
Another approach to representing linear functions is by using function notation. One example of function notation is an
equation written in the slope-intercept form of a line, where is the input value, is the rate of change, and is the
initial value of the dependent variable.

In the example of the train, we might use the notation where the total distance is a function of the time The
rate, is 83 meters per second. The initial value of the dependent variable is the original distance from the station,
250 meters. We can write a generalized equation to represent the motion of the train.

Representing a Linear Function in Tabular Form
A third method of representing a linear function is through the use of a table. The relationship between the distance
from the station and the time is represented in Figure 2. From the table, we can see that the distance changes by 83
meters for every 1 second increase in time.

2 http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm
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Figure 2 Tabular representation of the function showing selected input and output values

Q&A Can the input in the previous example be any real number?

No. The input represents time so while nonnegative rational and irrational numbers are possible, negative
real numbers are not possible for this example. The input consists of non-negative real numbers.

Representing a Linear Function in Graphical Form
Another way to represent linear functions is visually, using a graph. We can use the function relationship from above,

to draw a graph as represented in Figure 3. Notice the graph is a line. When we plot a linear function,
the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the line. The point at which the input value is zero
is the vertical intercept, or y-intercept, of the line. We can see from the graph that the y-intercept in the train example we
just saw is and represents the distance of the train from the station when it began moving at a constant speed.

Figure 3 The graph of . Graphs of linear functions are lines because the rate of change is constant.

Notice that the graph of the train example is restricted, but this is not always the case. Consider the graph of the line
Ask yourself what numbers can be input to the function. In other words, what is the domain of the

function? The domain is comprised of all real numbers because any number may be doubled, and then have one added
to the product.

Linear Function

A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form of a
line

where is the initial or starting value of the function (when input, ), and is the constant rate of change, or
slope of the function. The y-intercept is at

EXAMPLE 1

Using a Linear Function to Find the Pressure on a Diver
The pressure, in pounds per square inch (PSI) on the diver in Figure 4 depends upon her depth below the water
surface, in feet. This relationship may be modeled by the equation, Restate this function in
words.
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Figure 4 (credit: Ilse Reijs and Jan-Noud Hutten)

Solution
To restate the function in words, we need to describe each part of the equation. The pressure as a function of depth
equals four hundred thirty-four thousandths times depth plus fourteen and six hundred ninety-six thousandths.

Analysis
The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0 feet, which is the surface of the water. The rate
of change, or slope, is 0.434 PSI per foot. This tells us that the pressure on the diver increases 0.434 PSI for each foot her
depth increases.

Determining Whether a Linear Function Is Increasing, Decreasing, or Constant
The linear functions we used in the two previous examples increased over time, but not every linear function does. A
linear function may be increasing, decreasing, or constant. For an increasing function, as with the train example, the
output values increase as the input values increase. The graph of an increasing function has a positive slope. A line with
a positive slope slants upward from left to right as in Figure 5(a). For a decreasing function, the slope is negative. The
output values decrease as the input values increase. A line with a negative slope slants downward from left to right as in
Figure 5(b). If the function is constant, the output values are the same for all input values so the slope is zero. A line with
a slope of zero is horizontal as in Figure 5(c).

Figure 5

Increasing and Decreasing Functions

The slope determines if the function is an increasing linear function, a decreasing linear function, or a constant

326 4 • Linear Functions

Access for free at openstax.org



function.

is an increasing function if
is a decreasing function if
is a constant function if

EXAMPLE 2

Deciding Whether a Function Is Increasing, Decreasing, or Constant
Studies from the early 2010s indicated that teens sent about 60 texts a day, while more recent data indicates much
higher messaging rates among all users, particularly considering the various apps with which people can
communicate.3 . For each of the following scenarios, find the linear function that describes the relationship between the
input value and the output value. Then, determine whether the graph of the function is increasing, decreasing, or
constant.

ⓐ The total number of texts a teen sends is considered a function of time in days. The input is the number of days,
and output is the total number of texts sent.

ⓑ A person has a limit of 500 texts per month in their data plan. The input is the number of days, and output is the
total number of texts remaining for the month.

ⓒ A person has an unlimited number of texts in their data plan for a cost of $50 per month. The input is the number
of days, and output is the total cost of texting each month.

Solution
Analyze each function.

ⓐ The function can be represented as where is the number of days. The slope, 60, is positive so the
function is increasing. This makes sense because the total number of texts increases with each day.

ⓑ The function can be represented as where is the number of days. In this case, the slope is
negative so the function is decreasing. This makes sense because the number of texts remaining decreases each day
and this function represents the number of texts remaining in the data plan after days.

ⓒ The cost function can be represented as because the number of days does not affect the total cost. The
slope is 0 so the function is constant.

Interpreting Slope as a Rate of Change
In the examples we have seen so far, the slope was provided to us. However, we often need to calculate the slope given
input and output values. Recall that given two values for the input, and and two corresponding values for the
output, and —which can be represented by a set of points, and —we can calculate the slope

Note that in function notation we can obtain two corresponding values for the output and for the function
and so we could equivalently write

Figure 6 indicates how the slope of the line between the points, and is calculated. Recall that the slope
measures steepness, or slant. The greater the absolute value of the slope, the steeper the slant is.

3 http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/
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Figure 6 The slope of a function is calculated by the change in divided by the change in It does not matter which
coordinate is used as the and which is the as long as each calculation is started with the elements from
the same coordinate pair.

Q&A Are the units for slope always

Yes. Think of the units as the change of output value for each unit of change in input value. An example of
slope could be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output
per units for the input.

Calculate Slope

The slope, or rate of change, of a function can be calculated according to the following:

where and are input values, and are output values.

HOW TO

Given two points from a linear function, calculate and interpret the slope.

1. Determine the units for output and input values.
2. Calculate the change of output values and change of input values.
3. Interpret the slope as the change in output values per unit of the input value.

EXAMPLE 3

Finding the Slope of a Linear Function
If is a linear function, and and are points on the line, find the slope. Is this function increasing or
decreasing?

Solution
The coordinate pairs are and To find the rate of change, we divide the change in output by the change in
input.

We could also write the slope as The function is increasing because
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Analysis
As noted earlier, the order in which we write the points does not matter when we compute the slope of the line as long
as the first output value, or y-coordinate, used corresponds with the first input value, or x-coordinate, used. Note that if
we had reversed them, we would have obtained the same slope.

TRY IT #1 If is a linear function, and and are points on the line, find the slope. Is this
function increasing or decreasing?

EXAMPLE 4

Finding the Population Change from a Linear Function
The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population per year
if we assume the change was constant from 2008 to 2012.

Solution
The rate of change relates the change in population to the change in time. The population increased by

people over the four-year time interval. To find the rate of change, divide the change in the
number of people by the number of years.

So the population increased by 1,100 people per year.

Analysis
Because we are told that the population increased, we would expect the slope to be positive. This positive slope we
calculated is therefore reasonable.

TRY IT #2 The population of a small town increased from 1,442 to 1,868 between 2009 and 2012. Find the
change of population per year if we assume the change was constant from 2009 to 2012.

Writing and Interpreting an Equation for a Linear Function
Recall from Equations and Inequalities that we wrote equations in both the slope-intercept form and the point-slope
form. Now we can choose which method to use to write equations for linear functions based on the information we are
given. That information may be provided in the form of a graph, a point and a slope, two points, and so on. Look at the
graph of the function in Figure 7.

Figure 7
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We are not given the slope of the line, but we can choose any two points on the line to find the slope. Let’s choose
and

Now we can substitute the slope and the coordinates of one of the points into the point-slope form.

If we want to rewrite the equation in the slope-intercept form, we would find

If we want to find the slope-intercept form without first writing the point-slope form, we could have recognized that the
line crosses the y-axis when the output value is 7. Therefore, We now have the initial value and the slope so
we can substitute and into the slope-intercept form of a line.

So the function is and the linear equation would be

HOW TO

Given the graph of a linear function, write an equation to represent the function.

1. Identify two points on the line.
2. Use the two points to calculate the slope.
3. Determine where the line crosses the y-axis to identify the y-intercept by visual inspection.
4. Substitute the slope and y-intercept into the slope-intercept form of a line equation.

EXAMPLE 5

Writing an Equation for a Linear Function
Write an equation for a linear function given a graph of shown in Figure 8.
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Figure 8

Solution
Identify two points on the line, such as and Use the points to calculate the slope.

Substitute the slope and the coordinates of one of the points into the point-slope form.

We can use algebra to rewrite the equation in the slope-intercept form.

Analysis
This makes sense because we can see from Figure 9 that the line crosses the y-axis at the point which is the
y-intercept, so
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Figure 9

EXAMPLE 6

Writing an Equation for a Linear Cost Function
Suppose Ben starts a company in which he incurs a fixed cost of $1,250 per month for the overhead, which includes his
office rent. His production costs are $37.50 per item. Write a linear function where is the cost for items
produced in a given month.

Solution
The fixed cost is present every month, $1,250. The costs that can vary include the cost to produce each item, which is
$37.50. The variable cost, called the marginal cost, is represented by The cost Ben incurs is the sum of these two
costs, represented by

Analysis
If Ben produces 100 items in a month, his monthly cost is found by substituting 100 for

So his monthly cost would be $5,000.

EXAMPLE 7

Writing an Equation for a Linear Function Given Two Points
If is a linear function, with and find an equation for the function in slope-intercept form.

Solution
We can write the given points using coordinates.

We can then use the points to calculate the slope.

Substitute the slope and the coordinates of one of the points into the point-slope form.
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We can use algebra to rewrite the equation in the slope-intercept form.

TRY IT #3 If is a linear function, with and write an equation for the function in
slope-intercept form.

Modeling Real-World Problems with Linear Functions
In the real world, problems are not always explicitly stated in terms of a function or represented with a graph.
Fortunately, we can analyze the problem by first representing it as a linear function and then interpreting the
components of the function. As long as we know, or can figure out, the initial value and the rate of change of a linear
function, we can solve many different kinds of real-world problems.

HOW TO

Given a linear function and the initial value and rate of change, evaluate

1. Determine the initial value and the rate of change (slope).
2. Substitute the values into
3. Evaluate the function at

EXAMPLE 8

Using a Linear Function to Determine the Number of Songs in a Music Collection
Marcus currently has 200 songs in his music collection. Every month, he adds 15 new songs. Write a formula for the
number of songs, in his collection as a function of time, the number of months. How many songs will he own at the
end of one year?

Solution
The initial value for this function is 200 because he currently owns 200 songs, so which means that

The number of songs increases by 15 songs per month, so the rate of change is 15 songs per month. Therefore we know
that We can substitute the initial value and the rate of change into the slope-intercept form of a line.

Figure 10

We can write the formula

With this formula, we can then predict how many songs Marcus will have at the end of one year (12 months). In other
words, we can evaluate the function at
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Marcus will have 380 songs in 12 months.

Analysis
Notice that N is an increasing linear function. As the input (the number of months) increases, the output (number of
songs) increases as well.

EXAMPLE 9

Using a Linear Function to Calculate Salary Based on Commission
Working as an insurance salesperson, Ilya earns a base salary plus a commission on each new policy. Therefore, Ilya’s
weekly income depends on the number of new policies, he sells during the week. Last week he sold 3 new policies,
and earned $760 for the week. The week before, he sold 5 new policies and earned $920. Find an equation for and
interpret the meaning of the components of the equation.

Solution
The given information gives us two input-output pairs: and We start by finding the rate of change.

Keeping track of units can help us interpret this quantity. Income increased by $160 when the number of policies
increased by 2, so the rate of change is $80 per policy. Therefore, Ilya earns a commission of $80 for each policy sold
during the week.

We can then solve for the initial value.

 

The value of is the starting value for the function and represents Ilya’s income when or when no new policies
are sold. We can interpret this as Ilya’s base salary for the week, which does not depend upon the number of policies
sold.

We can now write the final equation.

Our final interpretation is that Ilya’s base salary is $520 per week and he earns an additional $80 commission for each
policy sold.

EXAMPLE 10

Using Tabular Form to Write an Equation for a Linear Function
Table 1 relates the number of rats in a population to time, in weeks. Use the table to write a linear equation.

number of weeks, w 0 2 4 6

number of rats, P(w) 1000 1080 1160 1240

Table 1

Solution
We can see from the table that the initial value for the number of rats is 1000, so
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Rather than solving for we can tell from looking at the table that the population increases by 80 for every 2 weeks that
pass. This means that the rate of change is 80 rats per 2 weeks, which can be simplified to 40 rats per week.

If we did not notice the rate of change from the table we could still solve for the slope using any two points from the
table. For example, using and

Q&A Is the initial value always provided in a table of values like Table 1?

No. Sometimes the initial value is provided in a table of values, but sometimes it is not. If you see an input
of 0, then the initial value would be the corresponding output. If the initial value is not provided because
there is no value of input on the table equal to 0, find the slope, substitute one coordinate pair and the
slope into and solve for

TRY IT #4 A new plant food was introduced to a young tree to test its effect on the height of the tree. Table 2
shows the height of the tree, in feet, months since the measurements began. Write a linear
function, where is the number of months since the start of the experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5

Table 2

Graphing Linear Functions
Now that we’ve seen and interpreted graphs of linear functions, let’s take a look at how to create the graphs. There are
three basic methods of graphing linear functions. The first is by plotting points and then drawing a line through the
points. The second is by using the y-intercept and slope. And the third method is by using transformations of the identity
function

Graphing a Function by Plotting Points
To find points of a function, we can choose input values, evaluate the function at these input values, and calculate output
values. The input values and corresponding output values form coordinate pairs. We then plot the coordinate pairs on a
grid. In general, we should evaluate the function at a minimum of two inputs in order to find at least two points on the
graph. For example, given the function, we might use the input values 1 and 2. Evaluating the function for an
input value of 1 yields an output value of 2, which is represented by the point Evaluating the function for an input
value of 2 yields an output value of 4, which is represented by the point Choosing three points is often advisable
because if all three points do not fall on the same line, we know we made an error.

HOW TO

Given a linear function, graph by plotting points.

1. Choose a minimum of two input values.
2. Evaluate the function at each input value.
3. Use the resulting output values to identify coordinate pairs.
4. Plot the coordinate pairs on a grid.
5. Draw a line through the points.
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EXAMPLE 11

Graphing by Plotting Points
Graph by plotting points.

Solution
Begin by choosing input values. This function includes a fraction with a denominator of 3, so let’s choose multiples of 3
as input values. We will choose 0, 3, and 6.

Evaluate the function at each input value, and use the output value to identify coordinate pairs.

Plot the coordinate pairs and draw a line through the points. Figure 11 represents the graph of the function

Figure 11 The graph of the linear function

Analysis
The graph of the function is a line as expected for a linear function. In addition, the graph has a downward slant, which
indicates a negative slope. This is also expected from the negative, constant rate of change in the equation for the
function.

TRY IT #5 Graph by plotting points.

Graphing a Function Using y-intercept and Slope
Another way to graph linear functions is by using specific characteristics of the function rather than plotting points. The
first characteristic is its y-intercept, which is the point at which the input value is zero. To find the y-intercept, we can set

in the equation.

The other characteristic of the linear function is its slope.

Let’s consider the following function.

The slope is Because the slope is positive, we know the graph will slant upward from left to right. The y-intercept is
the point on the graph when The graph crosses the y-axis at Now we know the slope and the y-intercept.
We can begin graphing by plotting the point We know that the slope is the change in the y-coordinate over the
change in the x-coordinate. This is commonly referred to as rise over run, From our example, we have
which means that the rise is 1 and the run is 2. So starting from our y-intercept we can rise 1 and then run 2, or
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run 2 and then rise 1. We repeat until we have a few points, and then we draw a line through the points as shown in
Figure 12.

Figure 12

Graphical Interpretation of a Linear Function

In the equation

• is the y-intercept of the graph and indicates the point at which the graph crosses the y-axis.
• is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement (run)

between each successive pair of points. Recall the formula for the slope:

Q&A Do all linear functions have y-intercepts?

Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line is parallel to
the y-axis does not have a y-intercept, but it is not a function.)

HOW TO

Given the equation for a linear function, graph the function using the y-intercept and slope.

1. Evaluate the function at an input value of zero to find the y-intercept.
2. Identify the slope as the rate of change of the input value.
3. Plot the point represented by the y-intercept.
4. Use to determine at least two more points on the line.
5. Sketch the line that passes through the points.

EXAMPLE 12

Graphing by Using the y-intercept and Slope
Graph using the y-intercept and slope.

Solution
Evaluate the function at to find the y-intercept. The output value when is 5, so the graph will cross the y-axis
at

According to the equation for the function, the slope of the line is This tells us that for each vertical decrease in the
“rise” of units, the “run” increases by 3 units in the horizontal direction. We can now graph the function by first
plotting the y-intercept on the graph in Figure 13. From the initial value we move down 2 units and to the right 3
units. We can extend the line to the left and right by repeating, and then drawing a line through the points.
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Figure 13 Graph of and shows how to calculate the rise over run for the slope.

Analysis
The graph slants downward from left to right, which means it has a negative slope as expected.

TRY IT #6 Find a point on the graph we drew in Example 12 that has a negative x-value.

Graphing a Function Using Transformations
Another option for graphing is to use a transformation of the identity function A function may be transformed
by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Vertical Stretch or Compression
In the equation the is acting as the vertical stretch or compression of the identity function. When is
negative, there is also a vertical reflection of the graph. Notice in Figure 14 that multiplying the equation of by

stretches the graph of by a factor of units if and compresses the graph of by a factor of units if
This means the larger the absolute value of the steeper the slope.

Figure 14 Vertical stretches and compressions and reflections on the function

Vertical Shift
In the acts as the vertical shift, moving the graph up and down without affecting the slope of the line.
Notice in Figure 15 that adding a value of to the equation of shifts the graph of a total of units up if is
positive and units down if is negative.
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Figure 15 This graph illustrates vertical shifts of the function

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types of
linear functions. Although this may not be the easiest way to graph this type of function, it is still important to practice
each method.

HOW TO

Given the equation of a linear function, use transformations to graph the linear function in the form

1. Graph
2. Vertically stretch or compress the graph by a factor
3. Shift the graph up or down units.

EXAMPLE 13

Graphing by Using Transformations
Graph using transformations.

Solution
The equation for the function shows that so the identity function is vertically compressed by The equation for
the function also shows that so the identity function is vertically shifted down 3 units. First, graph the identity
function, and show the vertical compression as in Figure 16.

Figure 16 The function, compressed by a factor of .

Then show the vertical shift as in Figure 17.
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Figure 17 The function shifted down 3 units.

TRY IT #7 Graph using transformations.

Q&A In Example 15, could we have sketched the graph by reversing the order of the transformations?

No. The order of the transformations follows the order of operations. When the function is evaluated at a
given input, the corresponding output is calculated by following the order of operations. This is why we
performed the compression first. For example, following the order: Let the input be 2.

Writing the Equation for a Function from the Graph of a Line
Earlier, we wrote the equation for a linear function from a graph. Now we can extend what we know about graphing
linear functions to analyze graphs a little more closely. Begin by taking a look at Figure 18. We can see right away that
the graph crosses the y-axis at the point so this is the y-intercept.

Figure 18

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at the point
To get from this point to the y-intercept, we must move up 4 units (rise) and to the right 2 units (run). So the

slope must be

Substituting the slope and y-intercept into the slope-intercept form of a line gives
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HOW TO

Given a graph of linear function, find the equation to describe the function.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.
3. Substitute the y-intercept and slope into the slope-intercept form of a line.

EXAMPLE 14

Matching Linear Functions to Their Graphs
Match each equation of the linear functions with one of the lines in Figure 19.

ⓐ ⓑ ⓒ ⓓ

Figure 19

Solution
Analyze the information for each function.

ⓐ This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3) and slant upward from
left to right. We can use two points to find the slope, or we can compare it with the other functions listed. Function
has the same slope, but a different y-intercept. Lines I and III have the same slant because they have the same slope.
Line III does not pass through so must be represented by line I.

ⓑ This function also has a slope of 2, but a y-intercept of It must pass through the point and slant
upward from left to right. It must be represented by line III.

ⓒ This function has a slope of –2 and a y-intercept of 3. This is the only function listed with a negative slope, so it
must be represented by line IV because it slants downward from left to right.

ⓓ This function has a slope of and a y-intercept of 3. It must pass through the point (0, 3) and slant upward from
left to right. Lines I and II pass through but the slope of is less than the slope of so the line for must be
flatter. This function is represented by Line II.

Now we can re-label the lines as in Figure 20.
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Figure 20

Finding the x-intercept of a Line
So far we have been finding the y-intercepts of a function: the point at which the graph of the function crosses the y-axis.
Recall that a function may also have an x-intercept, which is the x-coordinate of the point where the graph of the
function crosses the x-axis. In other words, it is the input value when the output value is zero.

To find the x-intercept, set a function equal to zero and solve for the value of For example, consider the function
shown.

Set the function equal to 0 and solve for

The graph of the function crosses the x-axis at the point

Q&A Do all linear functions have x-intercepts?

No. However, linear functions of the form where is a nonzero real number are the only examples
of linear functions with no x-intercept. For example, is a horizontal line 5 units above the x-axis. This
function has no x-intercepts, as shown in Figure 21.
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Figure 21

x-intercept

The x-intercept of the function is value of when It can be solved by the equation

EXAMPLE 15

Finding an x-intercept
Find the x-intercept of

Solution
Set the function equal to zero to solve for

The graph crosses the x-axis at the point

Analysis
A graph of the function is shown in Figure 22. We can see that the x-intercept is as we expected.
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Figure 22

TRY IT #8 Find the x-intercept of

Describing Horizontal and Vertical Lines
There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line indicates a constant
output, or y-value. In Figure 23, we see that the output has a value of 2 for every input value. The change in outputs
between any two points, therefore, is 0. In the slope formula, the numerator is 0, so the slope is 0. If we use in the
equation the equation simplifies to In other words, the value of the function is a constant. This
graph represents the function

Figure 23 A horizontal line representing the function

A vertical line indicates a constant input, or x-value. We can see that the input value for every point on the line is 2, but
the output value varies. Because this input value is mapped to more than one output value, a vertical line does not
represent a function. Notice that between any two points, the change in the input values is zero. In the slope formula,
the denominator will be zero, so the slope of a vertical line is undefined.
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Figure 24 Example of how a line has a vertical slope. 0 in the denominator of the slope.

A vertical line, such as the one in Figure 25, has an x-intercept, but no y-intercept unless it’s the line This graph
represents the line

Figure 25 The vertical line, which does not represent a function

Horizontal and Vertical Lines

Lines can be horizontal or vertical.

A horizontal line is a line defined by an equation in the form

A vertical line is a line defined by an equation in the form

EXAMPLE 16

Writing the Equation of a Horizontal Line
Write the equation of the line graphed in Figure 26.
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Figure 26

Solution
For any x-value, the y-value is so the equation is

EXAMPLE 17

Writing the Equation of a Vertical Line
Write the equation of the line graphed in Figure 27.

Figure 27

Solution
The constant x-value is so the equation is

Determining Whether Lines are Parallel or Perpendicular
The two lines in Figure 28 are parallel lines: they will never intersect. They have exactly the same steepness, which means
their slopes are identical. The only difference between the two lines is the y-intercept. If we shifted one line vertically
toward the other, they would become coincident.
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Figure 28 Parallel lines

We can determine from their equations whether two lines are parallel by comparing their slopes. If the slopes are the
same and the y-intercepts are different, the lines are parallel. If the slopes are different, the lines are not parallel.

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-degree, angle. The two lines
in Figure 29 are perpendicular.

Figure 29 Perpendicular lines

Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from one another in a
specific way. The slope of one line is the negative reciprocal of the slope of the other line. The product of a number and
its reciprocal is So, if are negative reciprocals of one another, they can be multiplied together to yield

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is and the reciprocal of is 8. To
find the negative reciprocal, first find the reciprocal and then change the sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their slopes, assuming that
the lines are neither horizontal nor vertical. The slope of each line below is the negative reciprocal of the other so the
lines are perpendicular.
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The product of the slopes is –1.

Parallel and Perpendicular Lines

Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.

If and only if and we say the lines coincide. Coincident lines are the same line.

Two lines are perpendicular lines if they intersect to form a right angle.

EXAMPLE 18

Identifying Parallel and Perpendicular Lines
Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of perpendicular
lines.

Solution
Parallel lines have the same slope. Because the functions and each have a slope of 2, they
represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because −2 and are negative reciprocals,
the functions and represent perpendicular lines.

Analysis
A graph of the lines is shown in Figure 30.

Figure 30

The graph shows that the lines and are parallel, and the lines and
are perpendicular.

Writing the Equation of a Line Parallel or Perpendicular to a Given Line
If we know the equation of a line, we can use what we know about slope to write the equation of a line that is either
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parallel or perpendicular to the given line.

Writing Equations of Parallel Lines
Suppose for example, we are given the equation shown.

We know that the slope of the line formed by the function is 3. We also know that the y-intercept is Any other line
with a slope of 3 will be parallel to So the lines formed by all of the following functions will be parallel to

Suppose then we want to write the equation of a line that is parallel to and passes through the point This type of
problem is often described as a point-slope problem because we have a point and a slope. In our example, we know that
the slope is 3. We need to determine which value of will give the correct line. We can begin with the point-slope form of
an equation for a line, and then rewrite it in the slope-intercept form.

So is parallel to and passes through the point

HOW TO

Given the equation of a function and a point through which its graph passes, write the equation of a line
parallel to the given line that passes through the given point.

1. Find the slope of the function.
2. Substitute the given values into either the general point-slope equation or the slope-intercept equation for a line.
3. Simplify.

EXAMPLE 19

Finding a Line Parallel to a Given Line
Find a line parallel to the graph of that passes through the point

Solution
The slope of the given line is 3. If we choose the slope-intercept form, we can substitute and into
the slope-intercept form to find the y-intercept.

The line parallel to that passes through is

Analysis
We can confirm that the two lines are parallel by graphing them. Figure 31 shows that the two lines will never intersect.
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Figure 31

Writing Equations of Perpendicular Lines
We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of using the same
slope, however, we use the negative reciprocal of the given slope. Suppose we are given the function shown.

The slope of the line is 2, and its negative reciprocal is Any function with a slope of will be perpendicular to
So the lines formed by all of the following functions will be perpendicular to

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes through a given
point. Suppose then we want to write the equation of a line that is perpendicular to and passes through the point

We already know that the slope is Now we can use the point to find the y-intercept by substituting the given
values into the slope-intercept form of a line and solving for

The equation for the function with a slope of and a y-intercept of 2 is

So is perpendicular to and passes through the point Be aware that perpendicular
lines may not look obviously perpendicular on a graphing calculator unless we use the square zoom feature.

Q&A A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are
perpendicular, but the product of their slopes is not –1. Doesn’t this fact contradict the definition of
perpendicular lines?

No. For two perpendicular linear functions, the product of their slopes is –1. However, a vertical line is not
a function so the definition is not contradicted.

HOW TO

Given the equation of a function and a point through which its graph passes, write the equation of a line
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perpendicular to the given line.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for and from the coordinate pair provided into
4. Solve for
5. Write the equation of the line.

EXAMPLE 20

Finding the Equation of a Perpendicular Line
Find the equation of a line perpendicular to that passes through the point

Solution
The original line has slope so the slope of the perpendicular line will be its negative reciprocal, or Using this
slope and the given point, we can find the equation of the line.

The line perpendicular to that passes through is

Analysis
A graph of the two lines is shown in Figure 32.

Figure 32

Note that that if we graph perpendicular lines on a graphing calculator using standard zoom, the lines may not appear
to be perpendicular. Adjusting the window will make it possible to zoom in further to see the intersection more closely.

TRY IT #9 Given the function write an equation for the line passing through that is

ⓐ parallel to ⓑ perpendicular to

HOW TO

Given two points on a line and a third point, write the equation of the perpendicular line that passes through
the point.

1. Determine the slope of the line passing through the points.
2. Find the negative reciprocal of the slope.
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3. Use the slope-intercept form or point-slope form to write the equation by substituting the known values.
4. Simplify.

EXAMPLE 21

Finding the Equation of a Line Perpendicular to a Given Line Passing through a Point
A line passes through the points and Find the equation of a perpendicular line that passes through the
point

Solution
From the two points of the given line, we can calculate the slope of that line.

Find the negative reciprocal of the slope.

We can then solve for the y-intercept of the line passing through the point

The equation for the line that is perpendicular to the line passing through the two given points and also passes through
point is

TRY IT #10 A line passes through the points, and Find the equation of a perpendicular line
that passes through the point,

MEDIA

Access this online resource for additional instruction and practice with linear functions.

Linear Functions (http://openstax.org/l/linearfunctions)
Finding Input of Function from the Output and Graph (http://openstax.org/l/findinginput)
Graphing Functions using Tables (http://openstax.org/l/graphwithtable)
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4.1 SECTION EXERCISES
Verbal

1. Terry is skiing down a steep
hill. Terry's elevation,
in feet after seconds is
given by
Write a complete sentence
describing Terry’s starting
elevation and how it is
changing over time.

2. Jessica is walking home
from a friend’s house. After
2 minutes she is 1.4 miles
from home. Twelve minutes
after leaving, she is 0.9 miles
from home. What is her rate
in miles per hour?

3. A boat is 100 miles away
from the marina, sailing
directly toward it at 10 miles
per hour. Write an equation
for the distance of the boat
from the marina after t
hours.

4. If the graphs of two linear
functions are perpendicular,
describe the relationship
between the slopes and the
y-intercepts.

5. If a horizontal line has the
equation and a
vertical line has the
equation what is the
point of intersection?
Explain why what you found
is the point of intersection.

Algebraic

For the following exercises, determine whether the equation of the curve can be written as a linear function.

6. 7. 8.

9. 10. 11.

12. 13.

For the following exercises, determine whether each function is increasing or decreasing.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23.

For the following exercises, find the slope of the line that passes through the two given points.

24. and 25. and 26. and

27. and 28. and
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For the following exercises, given each set of information, find a linear equation satisfying the conditions, if possible.

29. and 30. and 31. Passes through and

32. Passes through and 33. Passes through and 34. Passes through and

35. x intercept at and y
intercept at

36. x intercept at and y
intercept at

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither.

37. 38. 39.

40.

For the following exercises, find the x- and y-intercepts of each equation.

41. 42. 43.

44. 45. 46.

For the following exercises, use the descriptions of each pair of lines given below to find the slopes of Line 1 and Line 2.
Is each pair of lines parallel, perpendicular, or neither?

47. Line 1: Passes through
and

Line 2: Passes through
and

48. Line 1: Passes through
and

Line 2: Passes through
and

49. Line 1: Passes through
and

Line 2: Passes through
and

50. Line 1: Passes through
and

Line 2: Passes through
and

51. Line 1: Passes through
and

Line 2: Passes through
and

For the following exercises, write an equation for the line described.

52. Write an equation for a line
parallel to
and passing through the
point

53. Write an equation for a line
parallel to
and passing through the
point

54. Write an equation for a line
perpendicular to

and passing
through the point

55. Write an equation for a line
perpendicular to

and passing
through the point
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Graphical

For the following exercises, find the slope of the line graphed.

56. 57.

For the following exercises, write an equation for the line graphed.

58. 59. 60.

61. 62. 63.
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For the following exercises, match the given linear equation with its graph in Figure 33.

Figure 33

64. 65. 66.

67. 68. 69.

For the following exercises, sketch a line with the given features.

70. An x-intercept of
and y-intercept of

71. An x-intercept and
y-intercept of

72. A y-intercept of and
slope

73. A y-intercept of and
slope

74. Passing through the points
and

75. Passing through the points
and

For the following exercises, sketch the graph of each equation.

76. 77. 78.

79. 80. 81.

82. 83. 84.
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For the following exercises, write the equation of the line shown in the graph.

85. 86. 87.

88.

Numeric

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a
linear equation that models the data.

89.
0 5 10 15

5 –10 –25 –40

90.
0 5 10 15

5 30 105 230

91.
0 5 10 15

–5 20 45 70

92.
5 10 20 25

13 28 58 73

93.
0 2 4 6

6 –19 –44 –69

94.
2 4 8 10

13 23 43 53

95.
2 4 6 8

–4 16 36 56

96.
0 2 6 8

6 31 106 231
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Technology

For the following exercises, use a calculator or graphing technology to complete the task.

97. If is a linear function,
, and
, find an

equation for the function.

98. Graph the function on a
domain of

Enter the function in a graphing
utility. For the viewing window,
set the minimum value of to
be and the maximum
value of to be .

99. Graph the function on a
domain of

ⓐ Fill in the missing values of
the table.

ⓑ Write the linear function

100. Table 3 shows the input,
and output, for a linear
function

round to 3 decimal places.

w –10 5.5 67.5 b

k 30 –26 a –44

Table 3

ⓐ Fill in the missing values of the
table.

ⓑ Write the linear function

101. Table 4 shows the input, and
output, for a linear function

p 0.5 0.8 12 b

q 400 700 a 1,000,000

Table 4

102. Graph the linear function
on a domain of

for the function
whose slope is and

y-intercept is Label
the points for the input
values of and

103. Graph the linear function
on a domain of

for the
function whose slope is 75
and y-intercept is
Label the points for the
input values of and ⓐ

ⓑ
ⓒ
ⓓ

104. Graph the linear function
where

on the same set of axes
on a domain of for
the following values of
and

Extensions

105. Find the value of if a
linear function goes
through the following
points and has the
following slope:

106. Find the value of y if a
linear function goes
through the following
points and has the
following slope:

107. Find the equation of the
line that passes through
the following points:

and

108. Find the equation of the
line that passes through
the following points:

and

109. Find the equation of the
line that passes through
the following points:

and

110. Find the equation of the
line parallel to the line

through the point
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111. Find the equation of the
line perpendicular to the
line
through the point

For the following exercises, use the functions

112. Find the point of
intersection of the lines
and

113. Where is greater
than Where is
greater than

Real-World Applications

114. At noon, a barista notices
that they have $20 in her
tip jar. If they maks an
average of $0.50 from
each customer, how much
will the barista have in the
tip jar if they serve more
customers during the
shift?

115. A gym membership with
two personal training
sessions costs $125, while
gym membership with
five personal training
sessions costs $260. What
is cost per session?

116. A clothing business finds
there is a linear
relationship between the
number of shirts, it can
sell and the price, it can
charge per shirt. In
particular, historical data
shows that 1,000 shirts
can be sold at a price of

while 3,000 shirts can
be sold at a price of $22.
Find a linear equation in
the form
that gives the price they
can charge for shirts.

117. A phone company
charges for service
according to the formula:

where
is the number of

minutes talked, and
is the monthly charge, in
dollars. Find and interpret
the rate of change and
initial value.

118. A farmer finds there is a
linear relationship
between the number of
bean stalks, she plants
and the yield, each
plant produces. When she
plants 30 stalks, each
plant yields 30 oz of
beans. When she plants
34 stalks, each plant
produces 28 oz of beans.
Find a linear relationships
in the form
that gives the yield when

stalks are planted.

119. A city’s population in the
year 1960 was 287,500. In
1989 the population was
275,900. Compute the rate
of growth of the
population and make a
statement about the
population rate of change
in people per year.
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120. A town’s population has
been growing linearly. In
2003, the population was
45,000, and the
population has been
growing by 1,700 people
each year. Write an
equation, for the
population years after
2003.

ⓐ As of 1990, average
annual income was
$23,286.

ⓑ In the ten-year period
from 1990–1999, average
annual income increased
by a total of $1,054.

ⓒ Each year in the
decade of the 1990s,
average annual income
increased by $1,054.

ⓓ Average annual
income rose to a level of
$23,286 by the end of
1999.

121. Suppose that average
annual income (in dollars)
for the years 1990
through 1999 is given by
the linear function:

,
where is the number of
years after 1990. Which of
the following interprets
the slope in the context of
the problem?

ⓐ Find the rate of
change of Fahrenheit
temperature for each unit
change temperature of
Celsius.

ⓑ Find and interpret

ⓒ Find and interpret

122. When temperature is 0
degrees Celsius, the
Fahrenheit temperature is
32. When the Celsius
temperature is 100, the
corresponding Fahrenheit
temperature is 212.
Express the Fahrenheit
temperature as a linear
function of the Celsius
temperature,

4.2 Modeling with Linear Functions
Learning Objectives
In this section, you will:

Build linear models from verbal descriptions.
Model a set of data with a linear function.

Figure 1 (credit: EEK Photography/Flickr)

Elan is a college student who plans to spend a summer in Seattle. Elan has saved $3,500 for their trip and anticipates
spending $400 each week on rent, food, and activities. How can we write a linear model to represent this situation? What
would be the x-intercept, and what can Elan learn from it? To answer these and related questions, we can create a model
using a linear function. Models such as this one can be extremely useful for analyzing relationships and making
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predictions based on those relationships. In this section, we will explore examples of linear function models.

Building Linear Models from Verbal Descriptions
When building linear models to solve problems involving quantities with a constant rate of change, we typically follow
the same problem strategies that we would use for any type of function. Let’s briefly review them:

1. Identify changing quantities, and then define descriptive variables to represent those quantities. When appropriate,
sketch a picture or define a coordinate system.

2. Carefully read the problem to identify important information. Look for information that provides values for the
variables or values for parts of the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.
4. Identify a solution pathway from the provided information to what we are trying to find. Often this will involve

checking and tracking units, building a table, or even finding a formula for the function being used to model the
problem.

5. When needed, write a formula for the function.
6. Solve or evaluate the function using the formula.
7. Reflect on whether your answer is reasonable for the given situation and whether it makes sense mathematically.
8. Clearly convey your result using appropriate units, and answer in full sentences when necessary.

Now let’s take a look at the student in Seattle. In Elan’s situation, there are two changing quantities: time and money.
The amount of money they have remaining while on vacation depends on how long they stay. We can use this
information to define our variables, including units.

So, the amount of money remaining depends on the number of weeks: .

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable. Also,
because the slope is negative, the linear function is decreasing. This should make sense because she is spending money
each week.

The rate of change is constant, so we can start with the linear model Then we can substitute the
intercept and slope provided.

To find the t-intercept (horizontal axis intercept), we set the output to zero, and solve for the input.

The t-intercept (horizontal axis intercept) is 8.75 weeks. Because this represents the input value when the output will be
zero, we could say that Elan will have no money left after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a limited domain over which that model will be
valid—almost no trend continues indefinitely. Here the domain refers to the number of weeks. In this case, it doesn’t
make sense to talk about input values less than zero. A negative input value could refer to a number of weeks before
Elan saved $3,500, but the scenario discussed poses the question once they saved $3,500 because this is when the trip
and subsequent spending starts. It is also likely that this model is not valid after the t-intercept (horizontal axis
intercept), unless Elan uses a credit card and goes into debt. The domain represents the set of input values, so the
reasonable domain for this function is

In this example, we were given a written description of the situation. We followed the steps of modeling a problem to
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analyze the information. However, the information provided may not always be the same. Sometimes we might be
provided with an intercept. Other times we might be provided with an output value. We must be careful to analyze the
information we are given, and use it appropriately to build a linear model.

Using a Given Intercept to Build a Model
Some real-world problems provide the vertical axis intercept, which is the constant or initial value. Once the vertical axis
intercept is known, the t-intercept (horizontal axis intercept) can be calculated. Suppose, for example, that Hannah plans
to pay off a no-interest loan from her parents. Her loan balance is $1,000. She plans to pay $250 per month until her
balance is $0. The y-intercept is the initial amount of her debt, or $1,000. The rate of change, or slope, is -$250 per
month. We can then use the slope-intercept form and the given information to develop a linear model.

Now we can set the function equal to 0, and solve for to find the x-intercept.

The x-intercept is the number of months it takes her to reach a balance of $0. The x-intercept is 4 months, so it will take
Hannah four months to pay off her loan.

Using a Given Input and Output to Build a Model
Many real-world applications are not as direct as the ones we just considered. Instead they require us to identify some
aspect of a linear function. We might sometimes instead be asked to evaluate the linear model at a given input or set the
equation of the linear model equal to a specified output.

HOW TO

Given a word problem that includes two pairs of input and output values, use the linear function to solve a
problem.

1. Identify the input and output values.
2. Convert the data to two coordinate pairs.
3. Find the slope.
4. Write the linear model.
5. Use the model to make a prediction by evaluating the function at a given x-value.
6. Use the model to identify an x-value that results in a given y-value.
7. Answer the question posed.

EXAMPLE 1

Using a Linear Model to Investigate a Town’s Population
A town’s population has been growing linearly. In 2004, the population was 6,200. By 2009, the population had grown to
8,100. Assume this trend continues.

ⓐ Predict the population in 2013. ⓑ Identify the year in which the population will reach 15,000.
Solution

The two changing quantities are the population size and time. While we could use the actual year value as the input
quantity, doing so tends to lead to very cumbersome equations because the y-intercept would correspond to the year 0,
more than 2000 years ago!

To make computation a little nicer, we will define our input as the number of years since 2004.
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To predict the population in 2013 ( ), we would first need an equation for the population. Likewise, to find when the
population would reach 15,000, we would need to solve for the input that would provide an output of 15,000. To write an
equation, we need the initial value and the rate of change, or slope.

To determine the rate of change, we will use the change in output per change in input.

The problem gives us two input-output pairs. Converting them to match our defined variables, the year 2004 would
correspond to giving the point Notice that through our clever choice of variable definition, we have
“given” ourselves the y-intercept of the function. The year 2009 would correspond to giving the point

The two coordinate pairs are and Recall that we encountered examples in which we were provided
two points earlier in the chapter. We can use these values to calculate the slope.

We already know the y-intercept of the line, so we can immediately write the equation:

To predict the population in 2013, we evaluate our function at

If the trend continues, our model predicts a population of 9,620 in 2013.

To find when the population will reach 15,000, we can set and solve for

Our model predicts the population will reach 15,000 in a little more than 23 years after 2004, or somewhere around the
year 2027.

TRY IT #1 A company sells doughnuts. They incur a fixed cost of $25,000 for rent, insurance, and other
expenses. It costs $0.25 to produce each doughnut.

ⓐ Write a linear model to represent the cost of the company as a function of the number of
doughnuts produced.

ⓑ Find and interpret the y-intercept.

TRY IT #2 A city’s population has been growing linearly. In 2008, the population was 28,200. By 2012, the
population was 36,800. Assume this trend continues.

ⓐ Predict the population in 2014.

ⓑ Identify the year in which the population will reach 54,000.

Using a Diagram to Build a Model
It is useful for many real-world applications to draw a picture to gain a sense of how the variables representing the input
and output may be used to answer a question. To draw the picture, first consider what the problem is asking for. Then,
determine the input and the output. The diagram should relate the variables. Often, geometrical shapes or figures are
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drawn. Distances are often traced out. If a right triangle is sketched, the Pythagorean Theorem relates the sides. If a
rectangle is sketched, labeling width and height is helpful.

EXAMPLE 2

Using a Diagram to Model Distance Walked
Anna and Emanuel start at the same intersection. Anna walks east at 4 miles per hour while Emanuel walks south at 3
miles per hour. They are communicating with a two-way radio that has a range of 2 miles. How long after they start
walking will they fall out of radio contact?

Solution
In essence, we can partially answer this question by saying they will fall out of radio contact when they are 2 miles apart,
which leads us to ask a new question:

"How long will it take them to be 2 miles apart"?

In this problem, our changing quantities are time and position, but ultimately we need to know how long will it take for
them to be 2 miles apart. We can see that time will be our input variable, so we’ll define our input and output variables.

Because it is not obvious how to define our output variable, we’ll start by drawing a picture such as Figure 2.

Figure 2

Initial Value: They both start at the same intersection so when the distance traveled by each person should also be
0. Thus the initial value for each is 0.

Rate of Change: Anna is walking 4 miles per hour and Emanuel is walking 3 miles per hour, which are both rates of
change. The slope for is 4 and the slope for is 3.

Using those values, we can write formulas for the distance each person has walked.

For this problem, the distances from the starting point are important. To notate these, we can define a coordinate
system, identifying the “starting point” at the intersection where they both started. Then we can use the variable,
which we introduced above, to represent Anna’s position, and define it to be a measurement from the starting point in
the eastward direction. Likewise, can use the variable, to represent Emanuel’s position, measured from the starting
point in the southward direction. Note that in defining the coordinate system, we specified both the starting point of the
measurement and the direction of measure.

We can then define a third variable, to be the measurement of the distance between Anna and Emanuel. Showing the
variables on the diagram is often helpful, as we can see from Figure 3.

Recall that we need to know how long it takes for the distance between them, to equal 2 miles. Notice that for any
given input the outputs and represent distances.
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Figure 3

Figure 2 shows us that we can use the Pythagorean Theorem because we have drawn a right angle.

Using the Pythagorean Theorem, we get:

In this scenario we are considering only positive values of so our distance will always be positive. We can simplify
this answer to This means that the distance between Anna and Emanuel is also a linear function. Because is
a linear function, we can now answer the question of when the distance between them will reach 2 miles. We will set the
output and solve for

They will fall out of radio contact in 0.4 hour, or 24 minutes.

Q&A Should I draw diagrams when given information based on a geometric shape?

Yes. Sketch the figure and label the quantities and unknowns on the sketch.

EXAMPLE 3

Using a Diagram to Model Distance Between Cities
There is a straight road leading from the town of Westborough to Agritown 30 miles east and 10 miles north. Partway
down this road, it junctions with a second road, perpendicular to the first, leading to the town of Eastborough. If the
town of Eastborough is located 20 miles directly east of the town of Westborough, how far is the road junction from
Westborough?

Solution
It might help here to draw a picture of the situation. See Figure 4. It would then be helpful to introduce a coordinate
system. While we could place the origin anywhere, placing it at Westborough seems convenient. This puts Agritown at
coordinates and Eastborough at
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Figure 4

Using this point along with the origin, we can find the slope of the line from Westborough to Agritown.

Now we can write an equation to describe the road from Westborough to Agritown.

From this, we can determine the perpendicular road to Eastborough will have slope Because the town of
Eastborough is at the point (20, 0), we can find the equation.

We can now find the coordinates of the junction of the roads by finding the intersection of these lines. Setting them
equal,

The roads intersect at the point (18, 6). Using the distance formula, we can now find the distance from Westborough to
the junction.

Analysis
One nice use of linear models is to take advantage of the fact that the graphs of these functions are lines. This means
real-world applications discussing maps need linear functions to model the distances between reference points.

TRY IT #3 There is a straight road leading from the town of Timpson to Ashburn 60 miles east and 12 miles
north. Partway down the road, it junctions with a second road, perpendicular to the first, leading
to the town of Garrison. If the town of Garrison is located 22 miles directly east of the town of
Timpson, how far is the road junction from Timpson?

Modeling a Set of Data with Linear Functions
Real-world situations including two or more linear functions may be modeled with a system of linear equations.
Remember, when solving a system of linear equations, we are looking for points the two lines have in common. Typically,
there are three types of answers possible, as shown in Figure 5.
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Figure 5

HOW TO

Given a situation that represents a system of linear equations, write the system of equations and identify the
solution.

1. Identify the input and output of each linear model.
2. Identify the slope and y-intercept of each linear model.
3. Find the solution by setting the two linear functions equal to another and solving for or find the point of

intersection on a graph.

EXAMPLE 4

Building a System of Linear Models to Choose a Truck Rental Company
Jamal is choosing between two truck-rental companies. The first, Keep on Trucking, Inc., charges an up-front fee of $20,
then 59 cents a mile. The second, Move It Your Way, charges an up-front fee of $16, then 63 cents a mile4 . When will
Keep on Trucking, Inc. be the better choice for Jamal?

Solution
The two important quantities in this problem are the cost and the number of miles driven. Because we have two
companies to consider, we will define two functions in Table 1.

Input distance driven in miles

Outputs cost, in dollars, for renting from Keep on Trucking

cost, in dollars, for renting from Move It Your Way

Initial Value Up-front fee: and

Rate of Change /mile and /mile

Table 1

A linear function is of the form Using the rates of change and initial charges, we can write the equations

Using these equations, we can determine when Keep on Trucking, Inc., will be the better choice. Because all we have to
make that decision from is the costs, we are looking for when Move It Your Way, will cost less, or when
The solution pathway will lead us to find the equations for the two functions, find the intersection, and then see where

4 Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/
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the function is smaller.

These graphs are sketched in Figure 6, with in blue.

Figure 6

To find the intersection, we set the equations equal and solve:

This tells us that the cost from the two companies will be the same if 100 miles are driven. Either by looking at the graph,
or noting that is growing at a slower rate, we can conclude that Keep on Trucking, Inc. will be the cheaper price
when more than 100 miles are driven, that is .

MEDIA

Access this online resource for additional instruction and practice with linear function models.

Interpreting a Linear Function (http://openstax.org/l/interpretlinear)

4.2 SECTION EXERCISES
Verbal

1. Explain how to find the
input variable in a word
problem that uses a linear
function.

2. Explain how to find the
output variable in a word
problem that uses a linear
function.

3. Explain how to interpret the
initial value in a word
problem that uses a linear
function.

4. Explain how to determine
the slope in a word problem
that uses a linear function.
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Algebraic

5. Find the area of a
parallelogram bounded by
the y-axis, the line the
line and the
line parallel to passing
through

6. Find the area of a triangle
bounded by the x-axis, the
line and the
line perpendicular to
that passes through the
origin.

7. Find the area of a triangle
bounded by the y-axis, the
line and the
line perpendicular to
that passes through the
origin.

8. Find the area of a parallelogram bounded by the
x-axis, the line the line and the
line parallel to passing through

For the following exercises, consider this scenario: A town’s population has been decreasing at a constant rate. In 2010
the population was 5,900. By 2012 the population had dropped to 4,700. Assume this trend continues.

9. Predict the population in
2016.

10. Identify the year in which
the population will reach 0.

For the following exercises, consider this scenario: A town’s population has been increased at a constant rate. In 2010
the population was 46,020. By 2012 the population had increased to 52,070. Assume this trend continues.

11. Predict the population in
2016.

12. Identify the year in which
the population will reach
75,000.

For the following exercises, consider this scenario: A town has an initial population of 75,000. It grows at a constant rate
of 2,500 per year for 5 years.

13. Find the linear function
that models the town’s
population as a function
of the year, where is the
number of years since the
model began.

14. Find a reasonable domain
and range for the function

15. If the function is
graphed, find and interpret
the x- and y-intercepts.

16. If the function is
graphed, find and interpret
the slope of the function.

17. When will the population
reach 100,000?

18. What is the population in
the year 12 years from the
onset of the model?

For the following exercises, consider this scenario: The weight of a newborn is 7.5 pounds. The baby gained one-half
pound a month for its first year.

19. Find the linear function
that models the baby’s
weight as a function of
the age of the baby, in
months,

20. Find a reasonable domain
and range for the function

21. If the function is
graphed, find and interpret
the x- and y-intercepts.

22. If the function W is
graphed, find and interpret
the slope of the function.

23. When did the baby weight
10.4 pounds?

24. What is the output when
the input is 6.2?
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For the following exercises, consider this scenario: The number of people afflicted with the common cold in the winter
months steadily decreased by 205 each year from 2005 until 2010. In 2005, 12,025 people were inflicted.

25. Find the linear function
that models the number of
people inflicted with the
common cold as a
function of the year,

26. Find a reasonable domain
and range for the function

27. If the function is
graphed, find and interpret
the x- and y-intercepts.

28. If the function is
graphed, find and interpret
the slope of the function.

29. When will the output reach
0?

30. In what year will the
number of people be
9,700?

Graphical

For the following exercises, use the graph in Figure 7, which shows the profit, in thousands of dollars, of a company in
a given year, where represents the number of years since 1980.

Figure 7

31. Find the linear function
where depends on the
number of years since
1980.

32. Find and interpret the
y-intercept.

33. Find and interpret the
x-intercept.

34. Find and interpret the
slope.

For the following exercises, use the graph in Figure 8, which shows the profit, in thousands of dollars, of a company in
a given year, where represents the number of years since 1980.

Figure 8
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35. Find the linear function
where depends on the
number of years since
1980.

36. Find and interpret the
y-intercept.

37. Find and interpret the
x-intercept.

38. Find and interpret the
slope.

Numeric

For the following exercises, use the median home values in Mississippi and Hawaii (adjusted for inflation) shown in Table
2. Assume that the house values are changing linearly.

Year Mississippi Hawaii

1950 $25,200 $74,400

2000 $71,400 $272,700

Table 2

39. In which state have home
values increased at a
higher rate?

40. If these trends were to
continue, what would be
the median home value in
Mississippi in 2010?

41. If we assume the linear
trend existed before 1950
and continues after 2000,
the two states’ median
house values will be (or
were) equal in what year?
(The answer might be
absurd.)

For the following exercises, use the median home values in Indiana and Alabama (adjusted for inflation) shown in Table
3. Assume that the house values are changing linearly.

Year Indiana Alabama

1950 $37,700 $27,100

2000 $94,300 $85,100

Table 3

42. In which state have home
values increased at a
higher rate?

43. If these trends were to
continue, what would be
the median home value in
Indiana in 2010?

44. If we assume the linear
trend existed before 1950
and continues after 2000,
the two states’ median
house values will be (or
were) equal in what year?
(The answer might be
absurd.)
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Real-World Applications

ⓐ How much did the
population grow between
the year 2004 and 2008?

ⓑ How long did it take the
population to grow from
1001 students to 1697
students?

ⓒ What is the average
population growth per
year?

ⓓ What was the
population in the year
2000?

ⓔ Find an equation for the
population, of the
school t years after 2000.

ⓕ Using your equation,
predict the population of
the school in 2011.

45. In 2004, a school
population was 1001. By
2008 the population had
grown to 1697. Assume the
population is changing
linearly.

ⓐ How much did the
population grow between
the year 2003 and 2007?

ⓑ How long did it take the
population to grow from
1431 people to 2134
people?

ⓒ What is the average
population growth per
year?

ⓓ What was the
population in the year
2000?

ⓔ Find an equation for the
population, of the town

years after 2000.

ⓕ Using your equation,
predict the population of
the town in 2014.

46. In 2003, a town’s
population was 1431. By
2007 the population had
grown to 2134. Assume the
population is changing
linearly.

ⓐ Find a linear equation
for the monthly cost of the
cell plan as a function of x,
the number of monthly
minutes used.

ⓑ Interpret the slope and
y-intercept of the equation.

ⓒ Use your equation to
find the total monthly cost
if 687 minutes are used.

47. A phone company has a
monthly cellular plan
where a customer pays a
flat monthly fee and then a
certain amount of money
per minute used for voice
or video calling. If a
customer uses 410
minutes, the monthly cost
will be $71.50. If the
customer uses 720
minutes, the monthly cost
will be $118.

ⓐ Find a linear equation
for the monthly cost of the
data plan as a function of

the number of MB used.

ⓑ Interpret the slope and
y-intercept of the equation.

ⓒ Use your equation to
find the total monthly cost
if 250 MB are used.

48. A phone company has a
monthly cellular data plan
where a customer pays a
flat monthly fee of $10 and
then a certain amount of
money per megabyte (MB)
of data used on the phone.
If a customer uses 20 MB,
the monthly cost will be
$11.20. If the customer
uses 130 MB, the monthly
cost will be $17.80.

ⓐ Find a formula for the
moose population, P since
1990.

ⓑ What does your model
predict the moose
population to be in 2003?

49. In 1991, the moose
population in a park was
measured to be 4,360. By
1999, the population was
measured again to be
5,880. Assume the
population continues to
change linearly.

ⓐ Find a formula for the
owl population, Let the
input be years since 2003.

ⓑ What does your model
predict the owl population
to be in 2012?

50. In 2003, the owl population
in a park was measured to
be 340. By 2007, the
population was measured
again to be 285. The
population changes
linearly. Let the input be
years since 2003.

372 4 • Linear Functions

Access for free at openstax.org



ⓐ Give a linear equation
for the remaining federal
helium reserves, in
terms of the number of
years since 2010.

ⓑ In 2015, what will the
helium reserves be?

ⓒ If the rate of depletion
doesn’t change, in what
year will the Federal
Helium Reserve be
depleted?

51. The Federal Helium
Reserve held about 16
billion cubic feet of helium
in 2010 and is being
depleted by about 2.1
billion cubic feet each year.

ⓐ Give a linear equation
for the remaining oil
reserves, in terms of
the number of years since
now.

ⓑ Seven years from now,
what will the oil reserves
be?

ⓒ If the rate at which the
reserves are decreasing is
constant, when will the
world’s oil reserves be
depleted?

52. Suppose the world’s oil
reserves in 2014 are 1,820
billion barrels. If, on
average, the total reserves
are decreasing by 25 billion
barrels of oil each year:

53. You are choosing between
two different prepaid cell
phone plans. The first plan
charges a rate of 26 cents
per minute. The second
plan charges a monthly fee
of $19.95 plus 11 cents per
minute. How many
minutes would you have to
use in a month in order for
the second plan to be
preferable?

54. You are choosing between
two different window
washing companies. The
first charges $5 per
window. The second
charges a base fee of $40
plus $3 per window. How
many windows would you
need to have for the
second company to be
preferable?

55. When hired at a new job
selling jewelry, you are
given two pay options:

Option A: Base salary of
$17,000 a year with a
commission of 12% of your
sales

Option B: Base salary of
$20,000 a year with a
commission of 5% of your
sales

How much jewelry would
you need to sell for option
A to produce a larger
income?

56. When hired at a new job
selling electronics, you are
given two pay options:

Option A: Base salary of
$14,000 a year with a
commission of 10% of your
sales

Option B: Base salary of
$19,000 a year with a
commission of 4% of your
sales

How much electronics
would you need to sell for
option A to produce a
larger income?

57. When hired at a new job
selling electronics, you are
given two pay options:

Option A: Base salary of
$20,000 a year with a
commission of 12% of your
sales

Option B: Base salary of
$26,000 a year with a
commission of 3% of your
sales

How much electronics
would you need to sell for
option A to produce a
larger income?

58. When hired at a new job
selling electronics, you are
given two pay options:

Option A: Base salary of
$10,000 a year with a
commission of 9% of your
sales

Option B: Base salary of
$20,000 a year with a
commission of 4% of your
sales

How much electronics
would you need to sell for
option A to produce a
larger income?
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4.3 Fitting Linear Models to Data
Learning Objectives
In this section, you will:

Draw and interpret scatter diagrams.
Use a graphing utility to find the line of best fit.
Distinguish between linear and nonlinear relations.
Fit a regression line to a set of data and use the linear model to make predictions.

A professor is attempting to identify trends among final exam scores. His class has a mixture of students, so he wonders
if there is any relationship between age and final exam scores. One way for him to analyze the scores is by creating a
diagram that relates the age of each student to the exam score received. In this section, we will examine one such
diagram known as a scatter plot.

Drawing and Interpreting Scatter Plots
A scatter plot is a graph of plotted points that may show a relationship between two sets of data. If the relationship is
from a linear model, or a model that is nearly linear, the professor can draw conclusions using his knowledge of linear
functions. Figure 1 shows a sample scatter plot.

Figure 1 A scatter plot of age and final exam score variables

Notice this scatter plot does not indicate a linear relationship. The points do not appear to follow a trend. In other words,
there does not appear to be a relationship between the age of the student and the score on the final exam.

EXAMPLE 1

Using a Scatter Plot to Investigate Cricket Chirps
Table 1 shows the number of cricket chirps in 15 seconds, for several different air temperatures, in degrees Fahrenheit5 .
Plot this data, and determine whether the data appears to be linearly related.

Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Table 1 Cricket Chirps vs Air Temperature

Solution
Plotting this data, as depicted in Figure 2 suggests that there may be a trend. We can see from the trend in the data that
the number of chirps increases as the temperature increases. The trend appears to be roughly linear, though certainly
not perfectly so.

5 Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010
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Figure 2

Finding the Line of Best Fit
Once we recognize a need for a linear function to model that data, the natural follow-up question is “what is that linear
function?” One way to approximate our linear function is to sketch the line that seems to best fit the data. Then we can
extend the line until we can verify the y-intercept. We can approximate the slope of the line by extending it until we can
estimate the

EXAMPLE 2

Finding a Line of Best Fit
Find a linear function that fits the data in Table 1 by “eyeballing” a line that seems to fit.

Solution
On a graph, we could try sketching a line. Using the starting and ending points of our hand drawn line, points (0, 30) and
(50, 90), this graph has a slope of

and a y-intercept at 30. This gives an equation of

where is the number of chirps in 15 seconds, and is the temperature in degrees Fahrenheit. The resulting
equation is represented in Figure 3.
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Figure 3

Analysis
This linear equation can then be used to approximate answers to various questions we might ask about the trend.

Recognizing Interpolation or Extrapolation
While the data for most examples does not fall perfectly on the line, the equation is our best guess as to how the
relationship will behave outside of the values for which we have data. We use a process known as interpolation when
we predict a value inside the domain and range of the data. The process of extrapolation is used when we predict a
value outside the domain and range of the data.

Figure 4 compares the two processes for the cricket-chirp data addressed in Example 2. We can see that interpolation
would occur if we used our model to predict temperature when the values for chirps are between 18.5 and 44.
Extrapolation would occur if we used our model to predict temperature when the values for chirps are less than 18.5 or
greater than 44.

There is a difference between making predictions inside the domain and range of values for which we have data and
outside that domain and range. Predicting a value outside of the domain and range has its limitations. When our model
no longer applies after a certain point, it is sometimes called model breakdown. For example, predicting a cost function
for a period of two years may involve examining the data where the input is the time in years and the output is the cost.
But if we try to extrapolate a cost when that is in 50 years, the model would not apply because we could not
account for factors fifty years in the future.
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Figure 4 Interpolation occurs within the domain and range of the provided data whereas extrapolation occurs outside.

Interpolation and Extrapolation

Different methods of making predictions are used to analyze data.

The method of interpolation involves predicting a value inside the domain and/or range of the data.
The method of extrapolation involves predicting a value outside the domain and/or range of the data.
Model breakdown occurs at the point when the model no longer applies.

EXAMPLE 3

Understanding Interpolation and Extrapolation
Use the cricket data from Table 1 to answer the following questions:

ⓐ Would predicting the temperature when crickets are chirping 30 times in 15 seconds be interpolation or
extrapolation? Make the prediction, and discuss whether it is reasonable.

ⓑ Would predicting the number of chirps crickets will make at 40 degrees be interpolation or extrapolation? Make
the prediction, and discuss whether it is reasonable.

Solution

ⓐ The number of chirps in the data provided varied from 18.5 to 44. A prediction at 30 chirps per 15 seconds is
inside the domain of our data, so would be interpolation. Using our model:

Based on the data we have, this value seems reasonable.

ⓑ The temperature values varied from 52 to 80.5. Predicting the number of chirps at 40 degrees is extrapolation
because 40 is outside the range of our data. Using our model:

We can compare the regions of interpolation and extrapolation using Figure 5.
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Figure 5

Analysis
Our model predicts the crickets would chirp 8.33 times in 15 seconds. While this might be possible, we have no reason to
believe our model is valid outside the domain and range. In fact, generally crickets stop chirping altogether below
around 50 degrees.

TRY IT #1 According to the data from Table 1, what temperature can we predict it is if we counted 20 chirps
in 15 seconds?

Finding the Line of Best Fit Using a Graphing Utility
While eyeballing a line works reasonably well, there are statistical techniques for fitting a line to data that minimize the
differences between the line and data values6 . One such technique is called least squares regression and can be
computed by many graphing calculators, spreadsheet software, statistical software, and many web-based calculators7 .
Least squares regression is one means to determine the line that best fits the data, and here we will refer to this method
as linear regression.

HOW TO

Given data of input and corresponding outputs from a linear function, find the best fit line using linear
regression.

1. Enter the input in List 1 (L1).
2. Enter the output in List 2 (L2).
3. On a graphing utility, select Linear Regression (LinReg).

EXAMPLE 4

Finding a Least Squares Regression Line
Find the least squares regression line using the cricket-chirp data in Table 2.

Solution
1. Enter the input (chirps) in List 1 (L1).

6 Technically, the method minimizes the sum of the squared differences in the vertical direction between the line and the data values.

7 For example, http://www.shodor.org/unchem/math/lls/leastsq.html
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2. Enter the output (temperature) in List 2 (L2). See Table 2.

L1 44 35 20.4 33 31 35 18.5 37 26

L2 80.5 70.5 57 66 68 72 52 73.5 53

Table 2

3. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data from earlier, with technology
we obtain the equation:

Analysis
Notice that this line is quite similar to the equation we “eyeballed” but should fit the data better. Notice also that using
this equation would change our prediction for the temperature when hearing 30 chirps in 15 seconds from 66 degrees
to:

The graph of the scatter plot with the least squares regression line is shown in Figure 6.

Figure 6

Q&A Will there ever be a case where two different lines will serve as the best fit for the data?

No. There is only one best fit line.

Distinguishing Between Linear and Nonlinear Models
As we saw above with the cricket-chirp model, some data exhibit strong linear trends, but other data, like the final exam
scores plotted by age, are clearly nonlinear. Most calculators and computer software can also provide us with the
correlation coefficient, which is a measure of how closely the line fits the data. Many graphing calculators require the
user to turn a "diagnostic on" selection to find the correlation coefficient, which mathematicians label as The
correlation coefficient provides an easy way to get an idea of how close to a line the data falls.

We should compute the correlation coefficient only for data that follows a linear pattern or to determine the degree to
which a data set is linear. If the data exhibits a nonlinear pattern, the correlation coefficient for a linear regression is
meaningless. To get a sense for the relationship between the value of and the graph of the data, Figure 7 shows some
large data sets with their correlation coefficients. Remember, for all plots, the horizontal axis shows the input and the
vertical axis shows the output.
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Figure 7 Plotted data and related correlation coefficients. (credit: “DenisBoigelot,” Wikimedia Commons)

Correlation Coefficient

The correlation coefficient is a value, between –1 and 1.

• suggests a positive (increasing) relationship
• suggests a negative (decreasing) relationship
• The closer the value is to 0, the more scattered the data.
• The closer the value is to 1 or –1, the less scattered the data is.

EXAMPLE 5

Finding a Correlation Coefficient
Calculate the correlation coefficient for cricket-chirp data in Table 1.

Solution
Because the data appear to follow a linear pattern, we can use technology to calculate Enter the inputs and
corresponding outputs and select the Linear Regression. The calculator will also provide you with the correlation
coefficient, This value is very close to 1, which suggests a strong increasing linear relationship.

Note: For some calculators, the Diagnostics must be turned "on" in order to get the correlation coefficient when linear
regression is performed: [2nd]>[0]>[alpha][x–1], then scroll to DIAGNOSTICSON.

Fitting a Regression Line to a Set of Data
Once we determine that a set of data is linear using the correlation coefficient, we can use the regression line to make
predictions. As we learned above, a regression line is a line that is closest to the data in the scatter plot, which means
that only one such line is a best fit for the data.

EXAMPLE 6

Using a Regression Line to Make Predictions
Gasoline consumption in the United States has been steadily increasing. Consumption data from 1994 to 2004 is shown
in Table 3.8 Determine whether the trend is linear, and if so, find a model for the data. Use the model to predict the
consumption in 2008.

8 http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html

380 4 • Linear Functions

Access for free at openstax.org



Year '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04

Consumption (billions of gallons) 113 116 118 119 123 125 126 128 131 133 136

Table 3

The scatter plot of the data, including the least squares regression line, is shown in Figure 8.

Figure 8

Solution
We can introduce a new input variable, representing years since 1994.

The least squares regression equation is:

Using technology, the correlation coefficient was calculated to be 0.9965, suggesting a very strong increasing linear
trend.

Using this to predict consumption in 2008

The model predicts 144.244 billion gallons of gasoline consumption in 2008.

TRY IT #2 Use the model we created using technology in Example 6 to predict the gas consumption in 2011.
Is this an interpolation or an extrapolation?

MEDIA

Access these online resources for additional instruction and practice with fitting linear models to data.

Introduction to Regression Analysis (http://openstax.org/l/introregress)
Linear Regression (http://openstax.org/l/linearregress)
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4.3 SECTION EXERCISES
Verbal

1. Describe what it means if
there is a model breakdown
when using a linear model.

2. What is interpolation when
using a linear model?

3. What is extrapolation when
using a linear model?

4. Explain the difference
between a positive and a
negative correlation
coefficient.

5. Explain how to interpret the
absolute value of a
correlation coefficient.

Algebraic

6. A regression was run to determine whether there is
a relationship between hours of TV watched per
day and number of sit-ups a person can do
The results of the regression are given below. Use
this to predict the number of sit-ups a person who
watches 11 hours of TV can do.

7. A regression was run to determine whether there is
a relationship between the diameter of a tree ( ,
in inches) and the tree’s age ( , in years). The
results of the regression are given below. Use this
to predict the age of a tree with diameter 10 inches.

For the following exercises, draw a scatter plot for the data provided. Does the data appear to be linearly related?

8.
0 2 4 6 8 10

–22 –19 –15 –11 –6 –2

9.
1 2 3 4 5 6

46 50 59 75 100 136

10.
100 250 300 450 600 750

12 12.6 13.1 14 14.5 15.2

11.
1 3 5 7 9 11

1 9 28 65 125 216
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12. For the following data, draw a scatter plot. If we
wanted to know when the population would reach
15,000, would the answer involve interpolation or
extrapolation? Eyeball the line, and estimate the
answer.

Year Population

1990 11,500

1995 12,100

2000 12,700

2005 13,000

2010 13,750

13. For the following data, draw a scatter plot. If
we wanted to know when the temperature
would reach 28°F, would the answer involve
interpolation or extrapolation? Eyeball the line
and estimate the answer.

Temperature,°F 16 18 20 25 30

Time, seconds 46 50 54 55 62

Graphical

For the following exercises, match each scatterplot with one of the four specified correlations in Figure 9 and Figure 10.

Figure 9

Figure 10

14. 15. 16.

17.
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For the following exercises, draw a best-fit line for the plotted data.

18.

19.

20.

21.
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Numeric

22. The U.S. Census tracks the
percentage of persons 25
years or older who are
college graduates. That
data for several years is
given in Table 4.9

Determine whether the
trend appears linear. If so,
and assuming the trend
continues, in what year will
the percentage exceed
35%?

Year
Percent

Graduates

1990 21.3

1992 21.4

1994 22.2

1996 23.6

1998 24.4

2000 25.6

2002 26.7

2004 27.7

2006 28

2008 29.4

Table 4

23. The U.S. import of wine (in
hectoliters) for several
years is given in Table 5.
Determine whether the
trend appears linear. If so,
and assuming the trend
continues, in what year will
imports exceed 12,000
hectoliters?

Year Imports

1992 2665

1994 2688

1996 3565

1998 4129

2000 4584

2002 5655

2004 6549

2006 7950

2008 8487

2009 9462

Table 5

24. Table 6 shows the year and
the number of people
unemployed in a particular
city for several years.
Determine whether the
trend appears linear. If so,
and assuming the trend
continues, in what year will
the number of unemployed
reach 5?

Year
Number

Unemployed

1990 750

1992 670

1994 650

1996 605

1998 550

2000 510

2002 460

2004 420

2006 380

2008 320

Table 6

Technology

For the following exercises, use each set of data to calculate the regression line using a calculator or other technology
tool, and determine the correlation coefficient to 3 decimal places of accuracy.

25.
8 15 26 31 56

23 41 53 72 103

26.
5 7 10 12 15

4 12 17 22 24

9 Based on data from http://www.census.gov/hhes/socdemo/education/data/cps/historical/index.html. Accessed 5/1/2014.
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27.

3 21.9 10 18.54

4 22.22 11 15.76

5 22.74 12 13.68

6 22.26 13 14.1

7 20.78 14 14.02

8 17.6 15 11.94

9 16.52 16 12.76

28.

4 44.8

5 43.1

6 38.8

7 39

8 38

9 32.7

10 30.1

11 29.3

12 27

13 25.8

29.
21 25 30 31 40 50

17 11 2 –1 –18 –40

30.

100 2000

80 1798

60 1589

55 1580

40 1390

20 1202

31.
900 988 1000 1010 1200 1205

70 80 82 84 105 108
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Extensions

32. Graph Pick a set of five ordered
pairs using inputs and use linear
regression to verify that the function is a good fit
for the data.

33. Graph Pick a set of five ordered
pairs using inputs and use linear
regression to verify the function.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The
following ordered pairs shows dollars and the number of units sold in hundreds and the profit in thousands of over the
ten-year span, (number of units sold, profit) for specific recorded years:

34. Use linear regression to
determine a function
where the profit in
thousands of dollars
depends on the number of
units sold in hundreds.

35. Find to the nearest tenth
and interpret the
x-intercept.

36. Find to the nearest tenth
and interpret the
y-intercept.

Real-World Applications

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The
following ordered pairs shows the population and the year over the ten-year span, (population, year) for specific
recorded years:

37. Use linear regression to determine a function
where the year depends on the population. Round
to three decimal places of accuracy.

38. Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The profit of a company increased steadily over a ten-year span. The
following ordered pairs show the number of units sold in hundreds and the profit in thousands of over the ten year
span, (number of units sold, profit) for specific recorded years:

39. Use linear regression to determine a function y,
where the profit in thousands of dollars depends
on the number of units sold in hundreds.

40. Predict when the profit will exceed one million
dollars.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. The
following ordered pairs show dollars and the number of units sold in hundreds and the profit in thousands of over the
ten-year span (number of units sold, profit) for specific recorded years:

41. Use linear regression to determine a function y,
where the profit in thousands of dollars depends
on the number of units sold in hundreds.

42. Predict when the profit will dip below the $25,000
threshold.
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Chapter Review
Key Terms
correlation coefficient a value, between –1 and 1 that indicates the degree of linear correlation of variables, or how

closely a regression line fits a data set.
decreasing linear function a function with a negative slope: If
extrapolation predicting a value outside the domain and range of the data
horizontal line a line defined by where is a real number. The slope of a horizontal line is 0.
increasing linear function a function with a positive slope: If
interpolation predicting a value inside the domain and range of the data
least squares regression a statistical technique for fitting a line to data in a way that minimizes the differences

between the line and data values
linear function a function with a constant rate of change that is a polynomial of degree 1, and whose graph is a

straight line
model breakdown when a model no longer applies after a certain point
parallel lines two or more lines with the same slope
perpendicular lines two lines that intersect at right angles and have slopes that are negative reciprocals of each other
point-slope form the equation for a line that represents a linear function of the form
slope the ratio of the change in output values to the change in input values; a measure of the steepness of a line
slope-intercept form the equation for a line that represents a linear function in the form
vertical line a line defined by where is a real number. The slope of a vertical line is undefined.

Key Concepts
4.1 Linear Functions

• Linear functions can be represented in words, function notation, tabular form, and graphical form. See Example 1.
• An increasing linear function results in a graph that slants upward from left to right and has a positive slope. A

decreasing linear function results in a graph that slants downward from left to right and has a negative slope. A
constant linear function results in a graph that is a horizontal line. See Example 2.

• Slope is a rate of change. The slope of a linear function can be calculated by dividing the difference between
y-values by the difference in corresponding x-values of any two points on the line. See Example 3 and Example 4.

• An equation for a linear function can be written from a graph. See Example 5.
• The equation for a linear function can be written if the slope and initial value are known. See Example 6 and

Example 7.
• A linear function can be used to solve real-world problems given information in different forms. See Example 8,

Example 9, and Example 10.
• Linear functions can be graphed by plotting points or by using the y-intercept and slope. See Example 11 and

Example 12.
• Graphs of linear functions may be transformed by using shifts up, down, left, or right, as well as through stretches,

compressions, and reflections. See Example 13.
• The equation for a linear function can be written by interpreting the graph. See Example 14.
• The x-intercept is the point at which the graph of a linear function crosses the x-axis. See Example 15.
• Horizontal lines are written in the form, See Example 16.
• Vertical lines are written in the form, See Example 17.
• Parallel lines have the same slope. Perpendicular lines have negative reciprocal slopes, assuming neither is vertical.

See Example 18.
• A line parallel to another line, passing through a given point, may be found by substituting the slope value of the

line and the x- and y-values of the given point into the equation, and using the that results.
Similarly, the point-slope form of an equation can also be used. See Example 19.

• A line perpendicular to another line, passing through a given point, may be found in the same manner, with the
exception of using the negative reciprocal slope. See Example 20 and Example 21.

4.2 Modeling with Linear Functions

• We can use the same problem strategies that we would use for any type of function.
• When modeling and solving a problem, identify the variables and look for key values, including the slope and

y-intercept. See Example 1.
• Draw a diagram, where appropriate. See Example 2 and Example 3.
• Check for reasonableness of the answer.
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• Linear models may be built by identifying or calculating the slope and using the y-intercept.
◦ The x-intercept may be found by setting which is setting the expression equal to 0.
◦ The point of intersection of a system of linear equations is the point where the x- and y-values are the same. See

Example 4.
◦ A graph of the system may be used to identify the points where one line falls below (or above) the other line.

4.3 Fitting Linear Models to Data

• Scatter plots show the relationship between two sets of data. See Example 1.
• Scatter plots may represent linear or non-linear models.
• The line of best fit may be estimated or calculated, using a calculator or statistical software. See Example 2.
• Interpolation can be used to predict values inside the domain and range of the data, whereas extrapolation can be

used to predict values outside the domain and range of the data. See Example 3.
• The correlation coefficient, indicates the degree of linear relationship between data. See Example 4.
• A regression line best fits the data. See Example 5.
• The least squares regression line is found by minimizing the squares of the distances of points from a line passing

through the data and may be used to make predictions regarding either of the variables. See Example 6.

Exercises
Review Exercises
Linear Functions
1. Determine whether the

algebraic equation is linear.
2. Determine whether the

algebraic equation is linear.
3. Determine whether the

function is increasing or
decreasing.

4. Determine whether the
function is increasing or
decreasing.

5. Given each set of
information, find a linear
equation that satisfies the
given conditions, if possible.

Passes through and

6. Given each set of
information, find a linear
equation that satisfies the
given conditions, if possible.

x-intercept at and
y-intercept at

7. Find the slope of the line shown in the graph. 8. Find the slope of the line graphed.
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9. Write an equation in slope-intercept form for the
line shown.

10. Does the following table
represent a linear function? If
so, find the linear equation
that models the data.

x –4 0 2 10

g(x) 18 –2 –12 –52

11. Does the following table
represent a linear function? If
so, find the linear equation that
models the data.

x 6 8 12 26

g(x) –8 –12 –18 –46

12. On June 1st, a company has
$4,000,000 profit. If the
company then loses
150,000 dollars per day
thereafter in the month of
June, what is the
company’s profit nth day
after June 1st?

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither parallel nor perpendicular:

13. 14.

For the following exercises, find the x- and y- intercepts of the given equation

15. 16.

For the following exercises, use the descriptions of the pairs of lines to find the slopes of Line 1 and Line 2. Is each pair of
lines parallel, perpendicular, or neither?

17. Line 1: Passes through
and

Line 2: Passes through
and

18. Line 1: Passes through
and

Line 2: Passes through
and

19. Write an equation for a line
perpendicular to

and passing
through the point (5, 20).
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20. Find the equation of a line
with a y- intercept of
and slope

21. Sketch a graph of the linear
function

22. Find the point of
intersection for the 2 linear

functions:

23. A car rental company
offers two plans for renting
a car.

Plan A: 25 dollars per day
and 10 cents per mile

Plan B: 50 dollars per day
with free unlimited mileage

How many miles would you
need to drive for plan B to
save you money?

Modeling with Linear Functions
24. Find the area of a triangle

bounded by the y axis, the
line and
the line perpendicular to
that passes through the
origin.

25. A town’s population
increases at a constant
rate. In 2010 the
population was 55,000. By
2012 the population had
increased to 76,000. If this
trend continues, predict
the population in 2016.

26. The number of people
afflicted with the common
cold in the winter months
dropped steadily by 50
each year since 2004 until
2010. In 2004, 875 people
were inflicted.

Find the linear function
that models the number of
people afflicted with the
common cold C as a
function of the year,
When will no one be
afflicted?

For the following exercises, use the graph in Figure 1 showing the profit, in thousands of dollars, of a company in a
given year, where represents years since 1980.

Figure 1

27. Find the linear function y, where y depends on
the number of years since 1980.

28. Find and interpret the y-intercept.
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For the following exercise, consider this scenario: In 2004, a school population was 1,700. By 2012 the population had
grown to 2,500.

ⓐ How much did the population grow between
the year 2004 and 2012?

ⓑ What is the average population growth per
year?

ⓒ Find an equation for the population, P, of the
school t years after 2004.

29. Assume the population is changing linearly.

For the following exercises, consider this scenario: In 2000, the moose population in a park was measured to be 6,500. By
2010, the population was measured to be 12,500. Assume the population continues to change linearly.

30. Find a formula for the
moose population, .

31. What does your model
predict the moose
population to be in 2020?

For the following exercises, consider this scenario: The median home values in subdivisions Pima Central and East Valley
(adjusted for inflation) are shown in Table 1. Assume that the house values are changing linearly.

Year Pima Central East Valley

1970 32,000 120,250

2010 85,000 150,000

Table 1

32. In which subdivision have
home values increased at a
higher rate?

33. If these trends were to
continue, what would be
the median home value in
Pima Central in 2015?
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Fitting Linear Models to Data
34. Draw a scatter plot for the

data in Table 2. Then
determine whether the
data appears to be linearly
related.

0 -105

2 -50

4 1

6 55

8 105

10 160

Table 2

35. Draw a scatter plot for the
data in Table 3. If we
wanted to know when the
population would reach
15,000, would the answer
involve interpolation or
extrapolation?

Year Population

1990 5,600

1995 5,950

2000 6,300

2005 6,600

2010 6,900

Table 3

36. Eight students were asked
to estimate their score on a
10-point quiz. Their
estimated and actual
scores are given in Table 4.
Plot the points, then sketch
a line that fits the data.

Predicted Actual

6 6

7 7

7 8

8 8

7 9

9 10

10 10

10 9

Table 4

37. Draw a best-fit line for the plotted
data.

For the following exercises, consider the data in Table 5, which shows the percent of unemployed in a city of people 25
years or older who are college graduates is given below, by year.

Year 2000 2002 2005 2007 2010

Percent Graduates 6.5 7.0 7.4 8.2 9.0

Table 5
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38. Determine whether the
trend appears to be linear.
If so, and assuming the
trend continues, find a
linear regression model to
predict the percent of
unemployed in a given
year to three decimal
places.

39. In what year will the
percentage exceed 12%?

40. Based on the set of data given
in Table 6, calculate the
regression line using a
calculator or other technology
tool, and determine the
correlation coefficient to three
decimal places.

17 20 23 26 29

15 25 31 37 40

Table 6

41. Based on the set of data given
in Table 7, calculate the
regression line using a
calculator or other technology
tool, and determine the
correlation coefficient to three
decimal places.

10 12 15 18 20

36 34 30 28 22

Table 7

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The
following ordered pairs show the population and the year over the ten-year span (population, year) for specific recorded
years:

42. Use linear regression to
determine a function
where the year depends on
the population, to three
decimal places of accuracy.

43. Predict when the
population will hit 12,000.

44. What is the correlation
coefficient for this model to
three decimal places of
accuracy?

45. According to the model,
what is the population in
2014?

Practice Test
1. Determine whether the

following algebraic equation
can be written as a linear
function.

2. Determine whether the
following function is
increasing or decreasing.

3. Determine whether the
following function is
increasing or decreasing.
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4. Find a linear equation that
passes through (5, 1) and (3,
–9), if possible.

5. Find a linear equation, that
has an x intercept at (–4, 0)
and a y-intercept at (0, –6), if
possible.

6. Find the slope of the line in Figure
1.

Figure 1

7. Write an equation for line in Figure 2.

Figure 2

8. Does Table 1 represent a linear function? If so, find
a linear equation that models the data.

–6 0 2 4

14 32 38 44

Table 1

9. Does Table 2 represent a linear function? If so, find
a linear equation that models the data.

x 1 3 7 11

g(x) 4 9 19 12

Table 2

10. At 6 am, an online
company has sold 120
items that day. If the
company sells an average
of 30 items per hour for
the remainder of the day,
write an expression to
represent the number of
items that were sold after
6 am.
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For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or
neither parallel nor perpendicular.

11. 12. 13. Find the x- and y-intercepts
of the equation

14. Given below are
descriptions of two lines.
Find the slopes of Line 1
and Line 2. Is the pair of
lines parallel,
perpendicular, or neither?

Line 1: Passes through
and

Line 2: Passes through
and

15. Write an equation for a line
perpendicular to

and passing
through the point

16. Sketch a line with a
y-intercept of and
slope

17. Graph of the linear
function

18. For the two linear
functions, find the point of
intersection:

19. A car rental company
offers two plans for renting
a car.

Plan A: $25 per day and
$0.10 per mile

Plan B: $40 per day with
free unlimited mileage

How many miles would you
need to drive for plan B to
save you money?

20. Find the area of a triangle
bounded by the y axis, the
line and
the line perpendicular to
that passes through the
origin.

21. A town’s population
increases at a constant
rate. In 2010 the
population was 65,000. By
2012 the population had
increased to 90,000.
Assuming this trend
continues, predict the
population in 2018.

22. The number of people
afflicted with the common
cold in the winter months
dropped steadily by 25
each year since 2002 until
2012. In 2002, 8,040 people
were inflicted. Find the
linear function that models
the number of people
afflicted with the common
cold as a function of the
year, When will less than
6,000 people be afflicted?
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For the following exercises, use the graph in Figure 3, showing the profit, in thousands of dollars, of a company in a
given year, where represents years since 1980.

Figure 3

23. Find the linear function
where depends on the
number of years since
1980.

24. Find and interpret the
y-intercept.

ⓐ How much did the
population drop between
the year 2004 and 2012?

ⓑ What is the average
population decline per
year?

ⓒ Find an equation for the
population, P, of the school
t years after 2004.

25. In 2004, a school
population was 1250. By
2012 the population had
dropped to 875. Assume
the population is changing
linearly.

26. Draw a scatter plot for the data provided in Table
3. Then determine whether the data appears to be
linearly related.

0 2 4 6 8 10

–450 –200 10 265 500 755

Table 3

27. Draw a best-fit line for the plotted data.

For the following exercises, use Table 4, which shows the percent of unemployed persons 25 years or older who are
college graduates in a particular city, by year.

Year 2000 2002 2005 2007 2010

Percent Graduates 8.5 8.0 7.2 6.7 6.4

Table 4
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28. Determine whether the
trend appears linear. If so,
and assuming the trend
continues, find a linear
regression model to
predict the percent of
unemployed in a given
year to three decimal
places.

29. In what year will the
percentage drop below
4%?

30. Based on the set of data given in
Table 5, calculate the regression line
using a calculator or other
technology tool, and determine the
correlation coefficient. Round to
three decimal places of accuracy.

x 16 18 20 24 26

y 106 110 115 120 125

Table 5

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The
following ordered pairs shows the population (in hundreds) and the year over the ten-year span, (population, year) for
specific recorded years:

31. Use linear regression to
determine a function y,
where the year depends on
the population. Round to
three decimal places of
accuracy.

32. Predict when the
population will hit 20,000.

33. What is the correlation
coefficient for this model?
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Whether they think about it in mathematical terms or not, scuba divers must consider the impact of functional
relationships in order to remain safe. The gas laws, which are a series of relations and equations that describe the
behavior of most gases, play a core role in diving. This diver, near the wreck of a World War II Japanese ocean liner
turned troop transport, must remain attentive to gas laws during their dive and as they ascend to the surface. (credit:
"Aikoku - Aft Gun": modification of work by montereydiver/flickr)

Chapter Outline
5.1 Quadratic Functions
5.2 Power Functions and Polynomial Functions
5.3 Graphs of Polynomial Functions
5.4 Dividing Polynomials
5.5 Zeros of Polynomial Functions
5.6 Rational Functions
5.7 Inverses and Radical Functions
5.8 Modeling Using Variation

Introduction to Polynomial and Rational Functions
You don't need to dive very deep to feel the effects of pressure. As a person in their neighborhood pool moves eight,
ten, twelve feet down, they often feel pain in their ears as a result of water and air pressure differentials. Pressure plays
a much greater role at ocean diving depths.

id="scuban">Scuba and free divers are constantly negotiating the effects of pressure in order to experience enjoyable,
safe, and productive dives. Gases in a person's respiratory system and diving apparatus interact according to certain
physical properties, which upon discovery and evaluation are collectively known as the gas laws. Some are conceptually
simple, such as the inverse relationship regarding pressure and volume, and others are more complex. While their
formulas seem more straightforward than many you will encounter in this chapter, the gas laws are generally
polynomial expressions.

POLYNOMIAL AND RATIONAL FUNCTIONS5
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5.1 Quadratic Functions
Learning Objectives
In this section, you will:

Recognize characteristics of parabolas.
Understand how the graph of a parabola is related to its quadratic function.
Determine a quadratic function’s minimum or maximum value.
Solve problems involving a quadratic function’s minimum or maximum value.

Figure 1 An array of satellite dishes. (credit: Matthew Colvin de Valle, Flickr)

Curved antennas, such as the ones shown in Figure 1, are commonly used to focus microwaves and radio waves to
transmit television and telephone signals, as well as satellite and spacecraft communication. The cross-section of the
antenna is in the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model problems involving area and projectile
motion. Working with quadratic functions can be less complex than working with higher degree functions, so they
provide a good opportunity for a detailed study of function behavior.

Recognizing Characteristics of Parabolas
The graph of a quadratic function is a U-shaped curve called a parabola. One important feature of the graph is that it has
an extreme point, called the vertex. If the parabola opens up, the vertex represents the lowest point on the graph, or
the minimum value of the quadratic function. If the parabola opens down, the vertex represents the highest point on the
graph, or the maximum value. In either case, the vertex is a turning point on the graph. The graph is also symmetric with
a vertical line drawn through the vertex, called the axis of symmetry. These features are illustrated in Figure 2.

Figure 2

The y-intercept is the point at which the parabola crosses the y-axis. The x-intercepts are the points at which the
parabola crosses the x-axis. If they exist, the x-intercepts represent the zeros, or roots, of the quadratic function, the
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values of at which

EXAMPLE 1

Identifying the Characteristics of a Parabola
Determine the vertex, axis of symmetry, zeros, and intercept of the parabola shown in Figure 3.

Figure 3

Solution
The vertex is the turning point of the graph. We can see that the vertex is at Because this parabola opens upward,
the axis of symmetry is the vertical line that intersects the parabola at the vertex. So the axis of symmetry is This
parabola does not cross the axis, so it has no zeros. It crosses the axis at so this is the y-intercept.

Understanding How the Graphs of Parabolas are Related to Their Quadratic
Functions
The general form of a quadratic function presents the function in the form

where and are real numbers and If the parabola opens upward. If the parabola opens
downward. We can use the general form of a parabola to find the equation for the axis of symmetry.

The axis of symmetry is defined by If we use the quadratic formula, to solve

for the intercepts, or zeros, we find the value of halfway between them is always the
equation for the axis of symmetry.

Figure 4 represents the graph of the quadratic function written in general form as In this form,
and Because the parabola opens upward. The axis of symmetry is This also

makes sense because we can see from the graph that the vertical line divides the graph in half. The vertex
always occurs along the axis of symmetry. For a parabola that opens upward, the vertex occurs at the lowest point on
the graph, in this instance, The intercepts, those points where the parabola crosses the axis, occur at

and
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Figure 4

The standard form of a quadratic function presents the function in the form

where is the vertex. Because the vertex appears in the standard form of the quadratic function, this form is also
known as the vertex form of a quadratic function.

As with the general form, if the parabola opens upward and the vertex is a minimum. If the parabola opens
downward, and the vertex is a maximum. Figure 5 represents the graph of the quadratic function written in standard
form as Since in this example, In this form, and
Because the parabola opens downward. The vertex is at

Figure 5

The standard form is useful for determining how the graph is transformed from the graph of Figure 6 is the
graph of this basic function.

Figure 6

If the graph shifts upward, whereas if the graph shifts downward. In Figure 5, so the graph is shifted
4 units upward. If the graph shifts toward the right and if the graph shifts to the left. In Figure 5, so
the graph is shifted 2 units to the left. The magnitude of indicates the stretch of the graph. If the point
associated with a particular value shifts farther from the x-axis, so the graph appears to become narrower, and there
is a vertical stretch. But if the point associated with a particular value shifts closer to the x-axis, so the graph
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...

appears to become wider, but in fact there is a vertical compression. In Figure 5, so the graph becomes
narrower.

The standard form and the general form are equivalent methods of describing the same function. We can see this by
expanding out the general form and setting it equal to the standard form.

For the linear terms to be equal, the coefficients must be equal.

This is the axis of symmetry we defined earlier. Setting the constant terms equal:

In practice, though, it is usually easier to remember that k is the output value of the function when the input is so

Forms of Quadratic Functions

A quadratic function is a polynomial function of degree two. The graph of a quadratic function is a parabola.

The general form of a quadratic function is where and are real numbers and

The standard form of a quadratic function is where

The vertex is located at

HOW TO

Given a graph of a quadratic function, write the equation of the function in general form.

1. Identify the horizontal shift of the parabola; this value is Identify the vertical shift of the parabola; this value is

2. Substitute the values of the horizontal and vertical shift for and in the function
3. Substitute the values of any point, other than the vertex, on the graph of the parabola for and
4. Solve for the stretch factor,
5. Expand and simplify to write in general form.

EXAMPLE 2

Writing the Equation of a Quadratic Function from the Graph
Write an equation for the quadratic function in Figure 7 as a transformation of and then expand the
formula, and simplify terms to write the equation in general form.
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Figure 7

Solution
We can see the graph of g is the graph of shifted to the left 2 and down 3, giving a formula in the form

Substituting the coordinates of a point on the curve, such as we can solve for the stretch factor.

In standard form, the algebraic model for this graph is

To write this in general polynomial form, we can expand the formula and simplify terms.

Notice that the horizontal and vertical shifts of the basic graph of the quadratic function determine the location of the
vertex of the parabola; the vertex is unaffected by stretches and compressions.

Analysis
We can check our work using the table feature on a graphing utility. First enter Next, select

then use and and select See Table 1.

–6 –4 –2 0 2

5 –1 –3 –1 5

Table 1

The ordered pairs in the table correspond to points on the graph.

TRY IT #1 A coordinate grid has been superimposed over the quadratic path of a basketball in Figure 8. Find
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an equation for the path of the ball. Does the shooter make the basket?

Figure 8 (credit: modification of work by Dan Meyer)

HOW TO

Given a quadratic function in general form, find the vertex of the parabola.

1. Identify
2. Find the x-coordinate of the vertex, by substituting and into

3. Find the y-coordinate of the vertex, by evaluating

EXAMPLE 3

Finding the Vertex of a Quadratic Function
Find the vertex of the quadratic function Rewrite the quadratic in standard form (vertex form).

Solution

Rewriting into standard form, the stretch factor will be the same as the in the original quadratic. First, find the
horizontal coordinate of the vertex. Then find the vertical coordinate of the vertex. Substitute the values into standard
form, using the " " from the general form.
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The standard form of a quadratic function prior to writing the function then becomes the following:

Analysis
One reason we may want to identify the vertex of the parabola is that this point will inform us where the maximum or
minimum value of the output occurs, and where it occurs,

TRY IT #2 Given the equation write the equation in general form and then in standard
form.

Finding the Domain and Range of a Quadratic Function
Any number can be the input value of a quadratic function. Therefore, the domain of any quadratic function is all real
numbers. Because parabolas have a maximum or a minimum point, the range is restricted. Since the vertex of a
parabola will be either a maximum or a minimum, the range will consist of all y-values greater than or equal to the
y-coordinate at the turning point or less than or equal to the y-coordinate at the turning point, depending on whether
the parabola opens up or down.

Domain and Range of a Quadratic Function

The domain of any quadratic function is all real numbers unless the context of the function presents some
restrictions.

The range of a quadratic function written in general form with a positive value is

or ∞ the range of a quadratic function written in general form with a negative value

is or ∞

The range of a quadratic function written in standard form with a positive value is
the range of a quadratic function written in standard form with a negative value is

HOW TO

Given a quadratic function, find the domain and range.

1. Identify the domain of any quadratic function as all real numbers.
2. Determine whether is positive or negative. If is positive, the parabola has a minimum. If is negative, the

parabola has a maximum.
3. Determine the maximum or minimum value of the parabola,

4. If the parabola has a minimum, the range is given by or ∞ If the parabola has a maximum, the

range is given by or ∞

EXAMPLE 4

Finding the Domain and Range of a Quadratic Function
Find the domain and range of
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Solution
As with any quadratic function, the domain is all real numbers.

Because is negative, the parabola opens downward and has a maximum value. We need to determine the maximum
value. We can begin by finding the value of the vertex.

The maximum value is given by

The range is or ∞

TRY IT #3 Find the domain and range of

Determining the Maximum and Minimum Values of Quadratic Functions
The output of the quadratic function at the vertex is the maximum or minimum value of the function, depending on the
orientation of the parabola. We can see the maximum and minimum values in Figure 9.

Figure 9

There are many real-world scenarios that involve finding the maximum or minimum value of a quadratic function, such
as applications involving area and revenue.

EXAMPLE 5

Finding the Maximum Value of a Quadratic Function
A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard. She has
purchased 80 feet of wire fencing to enclose three sides, and she will use a section of the backyard fence as the fourth
side.

ⓐ Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence have
length

ⓑ What dimensions should she make her garden to maximize the enclosed area?
Solution

Let’s use a diagram such as Figure 10 to record the given information. It is also helpful to introduce a temporary
variable, to represent the width of the garden and the length of the fence section parallel to the backyard fence.
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Figure 10

ⓐ We know we have only 80 feet of fence available, and or more simply, This
allows us to represent the width, in terms of

Now we are ready to write an equation for the area the fence encloses. We know the area of a rectangle is length
multiplied by width, so

This formula represents the area of the fence in terms of the variable length The function, written in general form,
is

ⓑ The quadratic has a negative leading coefficient, so the graph will open downward, and the vertex will be the
maximum value for the area. In finding the vertex, we must be careful because the equation is not written in standard
polynomial form with decreasing powers. This is why we rewrote the function in general form above. Since is the
coefficient of the squared term, and

To find the vertex:

The maximum value of the function is an area of 800 square feet, which occurs when feet. When the shorter
sides are 20 feet, there is 40 feet of fencing left for the longer side. To maximize the area, she should enclose the garden
so the two shorter sides have length 20 feet and the longer side parallel to the existing fence has length 40 feet.

Analysis
This problem also could be solved by graphing the quadratic function. We can see where the maximum area occurs on a
graph of the quadratic function in Figure 11.
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Figure 11

HOW TO

Given an application involving revenue, use a quadratic equation to find the maximum.

1. Write a quadratic equation for a revenue function.
2. Find the vertex of the quadratic equation.
3. Determine the y-value of the vertex.

EXAMPLE 6

Finding Maximum Revenue
The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will
usually decrease. For example, a local newspaper currently has 84,000 subscribers at a quarterly charge of $30. Market
research has suggested that if the owners raise the price to $32, they would lose 5,000 subscribers. Assuming that
subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to
maximize their revenue?

Solution
Revenue is the amount of money a company brings in. In this case, the revenue can be found by multiplying the price
per subscription times the number of subscribers, or quantity. We can introduce variables, for price per subscription
and for quantity, giving us the equation

Because the number of subscribers changes with the price, we need to find a relationship between the variables. We
know that currently and We also know that if the price rises to $32, the newspaper would lose 5,000
subscribers, giving a second pair of values, and From this we can find a linear equation relating the
two quantities. The slope will be

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price. We can then solve for the
y-intercept.

This gives us the linear equation relating cost and subscribers. We now return to our revenue
equation.
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We now have a quadratic function for revenue as a function of the subscription charge. To find the price that will
maximize revenue for the newspaper, we can find the vertex.

The model tells us that the maximum revenue will occur if the newspaper charges $31.80 for a subscription. To find what
the maximum revenue is, we evaluate the revenue function.

Analysis
This could also be solved by graphing the quadratic as in Figure 12. We can see the maximum revenue on a graph of the
quadratic function.

Figure 12

Finding the x- and y-Intercepts of a Quadratic Function
Much as we did in the application problems above, we also need to find intercepts of quadratic equations for graphing
parabolas. Recall that we find the intercept of a quadratic by evaluating the function at an input of zero, and we find
the intercepts at locations where the output is zero. Notice in Figure 13 that the number of intercepts can vary
depending upon the location of the graph.

Figure 13 Number of x-intercepts of a parabola

HOW TO

Given a quadratic function find the and x-intercepts.

1. Evaluate to find the y-intercept.
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2. Solve the quadratic equation to find the x-intercepts.

EXAMPLE 7

Finding the y- and x-Intercepts of a Parabola
Find the y- and x-intercepts of the quadratic

Solution
We find the y-intercept by evaluating

So the y-intercept is at

For the x-intercepts, we find all solutions of

In this case, the quadratic can be factored easily, providing the simplest method for solution.

So the x-intercepts are at and

Analysis
By graphing the function, we can confirm that the graph crosses the y-axis at We can also confirm that the graph
crosses the x-axis at and See Figure 14

Figure 14

Rewriting Quadratics in Standard Form
In Example 7, the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored.
We can solve these quadratics by first rewriting them in standard form.

HOW TO

Given a quadratic function, find the intercepts by rewriting in standard form.

1. Substitute and into

2. Substitute into the general form of the quadratic function to find
3. Rewrite the quadratic in standard form using and
4. Solve for when the output of the function will be zero to find the intercepts.
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EXAMPLE 8

Finding the x-Intercepts of a Parabola
Find the intercepts of the quadratic function

Solution
We begin by solving for when the output will be zero.

Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic in
standard form.

We know that Then we solve for and

So now we can rewrite in standard form.

We can now solve for when the output will be zero.

The graph has x-intercepts at and

We can check our work by graphing the given function on a graphing utility and observing the intercepts. See Figure
15.

Figure 15

Analysis
We could have achieved the same results using the quadratic formula. Identify and
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So the x-intercepts occur at and

TRY IT #4 In a Try It, we found the standard and general form for the function Now
find the y- and x-intercepts (if any).

EXAMPLE 9

Applying the Vertex and x-Intercepts of a Parabola
A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height above
ground can be modeled by the equation

ⓐ When does the ball reach the maximum height? ⓑ What is the maximum height of the ball?

ⓒ When does the ball hit the ground?
Solution

ⓐ The ball reaches the maximum height at the vertex of the parabola.

The ball reaches a maximum height after 2.5 seconds.

ⓑ To find the maximum height, find the coordinate of the vertex of the parabola.

The ball reaches a maximum height of 140 feet.
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ⓒ To find when the ball hits the ground, we need to determine when the height is zero,
We use the quadratic formula.

Because the square root does not simplify nicely, we can use a calculator to approximate the values of the solutions.

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground after
about 5.458 seconds. See Figure 16.

Figure 16

Note that the graph does not represent the physical path of the ball upward and downward. Keep the quantities on
each axis in mind while interpreting the graph.

TRY IT #5 A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of
96 feet per second. The rock’s height above ocean can be modeled by the equation

ⓐ When does the rock reach the maximum height?

ⓑ What is the maximum height of the rock? ⓒ When does the rock hit the ocean?

MEDIA

Access these online resources for additional instruction and practice with quadratic equations.

Graphing Quadratic Functions in General Form (http://openstax.org/l/graphquadgen)
Graphing Quadratic Functions in Standard Form (http://openstax.org/l/graphquadstan)
Quadratic Function Review (http://openstax.org/l/quadfuncrev)
Characteristics of a Quadratic Function (http://openstax.org/l/characterquad)
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5.1 SECTION EXERCISES
Verbal

1. Explain the advantage of
writing a quadratic function
in standard form.

2. How can the vertex of a
parabola be used in solving
real-world problems?

3. Explain why the condition of
is imposed in the

definition of the quadratic
function.

4. What is another name for
the standard form of a
quadratic function?

5. What two algebraic methods
can be used to find the
horizontal intercepts of a
quadratic function?

Algebraic

For the following exercises, rewrite the quadratic functions in standard form and give the vertex.

6. 7. 8.

9. 10. 11.

12. 13.

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find
the value and the axis of symmetry.

14. 15. 16.

17. 18. 19.

20.

For the following exercises, determine the domain and range of the quadratic function.

21. 22. 23.

24. 25.

For the following exercises, use the vertex and a point on the graph to find the general form of the equation
of the quadratic function.

26. 27. 28.

29. 30. 31.

32. 33.
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Graphical

For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and
intercepts.

34. 35. 36.

37. 38. 39.

For the following exercises, write the equation for the graphed quadratic function.

40. 41. 42.

43. 44. 45.

Numeric

For the following exercises, use the table of values that represent points on the graph of a quadratic function. By
determining the vertex and axis of symmetry, find the general form of the equation of the quadratic function.

46.
–2 –1 0 1 2

5 2 1 2 5

47.
–2 –1 0 1 2

1 0 1 4 9

48.
–2 –1 0 1 2

–2 1 2 1 –2
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49.
–2 –1 0 1 2

–8 –3 0 1 0

50.
–2 –1 0 1 2

8 2 0 2 8

Technology

For the following exercises, use a calculator to find the answer.

51. Graph on the same set of axes the functions
, , and .

What appears to be the effect of changing the
coefficient?

52. Graph on the same set of axes
and
and

What appears to be the effect of adding a
constant?

53. Graph on the same set of axes
, and

What appears to be the effect of adding or
subtracting those numbers?

54. The path of an object projected at a 45 degree
angle with initial velocity of 80 feet per second is
given by the function where

is the horizontal distance traveled and is the
height in feet. Use the TRACE feature of your
calculator to determine the height of the object
when it has traveled 100 feet away horizontally.

55. A suspension bridge can be modeled by the
quadratic function with

where is the number of
feet from the center and is height in feet.
Use the TRACE feature of your calculator to
estimate how far from the center does the bridge
have a height of 100 feet.

Extensions

For the following exercises, use the vertex of the graph of the quadratic function and the direction the graph opens to
find the domain and range of the function.

56. Vertex opens up. 57. Vertex opens down. 58. Vertex opens
down.

59. Vertex opens
up.

For the following exercises, write the equation of the quadratic function that contains the given point and has the same
shape as the given function.

60. Contains and has
shape of
Vertex is on the axis.

61. Contains and has
the shape of
Vertex is on the axis.

62. Contains and has the
shape of
Vertex is on the axis.
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63. Contains and has
the shape of
Vertex is on the axis.

64. Contains and has the
shape of
Vertex is on the axis.

65. Contains has the
shape of
Vertex has x-coordinate of

Real-World Applications

66. Find the dimensions of the
rectangular dog park
producing the greatest
enclosed area given 200
feet of fencing.

67. Find the dimensions of the
rectangular dog park split
into 2 pens of the same
size producing the greatest
possible enclosed area
given 300 feet of fencing.

68. Find the dimensions of the
rectangular dog park
producing the greatest
enclosed area split into 3
sections of the same size
given 500 feet of fencing.

69. Among all of the pairs of
numbers whose sum is 6,
find the pair with the
largest product. What is
the product?

70. Among all of the pairs of
numbers whose difference
is 12, find the pair with the
smallest product. What is
the product?

71. Suppose that the price per
unit in dollars of a cell
phone production is
modeled by

where
is in thousands of phones

produced, and the revenue
represented by thousands
of dollars is Find
the production level that
will maximize revenue.

72. A rocket is launched in the
air. Its height, in meters
above sea level, as a
function of time, in seconds,
is given by

Find the maximum height
the rocket attains.

73. A ball is thrown in the air
from the top of a building.
Its height, in meters above
ground, as a function of
time, in seconds, is given
by
How long does it take to
reach maximum height?

74. A soccer stadium holds
62,000 spectators. With a
ticket price of $11, the
average attendance has
been 26,000. When the
price dropped to $9, the
average attendance rose to
31,000. Assuming that
attendance is linearly
related to ticket price, what
ticket price would
maximize revenue?

75. A farmer finds that if she
plants 75 trees per acre,
each tree will yield 20
bushels of fruit. She
estimates that for each
additional tree planted per
acre, the yield of each tree
will decrease by 3 bushels.
How many trees should
she plant per acre to
maximize her harvest?
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5.2 Power Functions and Polynomial Functions
Learning Objectives
In this section, you will:

Identify power functions.
Identify end behavior of power functions.
Identify polynomial functions.
Identify the degree and leading coefficient of polynomial functions.

Figure 1 (credit: Jason Bay, Flickr)

Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown in Table 1.

Year

Bird Population

Table 1

The population can be estimated using the function where represents the bird
population on the island years after 2009. We can use this model to estimate the maximum bird population and when it
will occur. We can also use this model to predict when the bird population will disappear from the island. In this section,
we will examine functions that we can use to estimate and predict these types of changes.

Identifying Power Functions
Before we can understand the bird problem, it will be helpful to understand a different type of function. A power
function is a function with a single term that is the product of a real number, a coefficient, and a variable raised to a
fixed real number.

As an example, consider functions for area or volume. The function for the area of a circle with radius is

and the function for the volume of a sphere with radius is

Both of these are examples of power functions because they consist of a coefficient, or multiplied by a variable
raised to a power.

Power Function

A power function is a function that can be represented in the form
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where and are real numbers, and is known as the coefficient.

Q&A Is a power function?

No. A power function contains a variable base raised to a fixed power. This function has a constant base
raised to a variable power. This is called an exponential function, not a power function.

EXAMPLE 1

Identifying Power Functions
Which of the following functions are power functions?

Solution
All of the listed functions are power functions.

The constant and identity functions are power functions because they can be written as and
respectively.

The quadratic and cubic functions are power functions with whole number powers and

The reciprocal and reciprocal squared functions are power functions with negative whole number powers because they
can be written as and

The square and cube root functions are power functions with fractional powers because they can be written as

or

TRY IT #1 Which functions are power functions?

Identifying End Behavior of Power Functions
Figure 2 shows the graphs of and which are all power functions with even, whole-
number powers. Notice that these graphs have similar shapes, very much like that of the quadratic function in the
toolkit. However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from
the origin.
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Figure 2 Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol ∞ for

positive infinity and for negative infinity. When we say that “ approaches infinity,” which can be symbolically

written as ∞ we are describing a behavior; we are saying that is increasing without bound.

With the positive even-power function, as the input increases or decreases without bound, the output values become
very large, positive numbers. Equivalently, we could describe this behavior by saying that as approaches positive or
negative infinity, the values increase without bound. In symbolic form, we could write

∞ ∞

Figure 3 shows the graphs of and which are all power functions with odd, whole-
number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases,
the graphs flatten near the origin and become steeper away from the origin.

Figure 3 Odd-power functions

These examples illustrate that functions of the form reveal symmetry of one kind or another. First, in Figure 2
we see that even functions of the form even, are symmetric about the axis. In Figure 3 we see that odd
functions of the form odd, are symmetric about the origin.

For these odd power functions, as approaches negative infinity, decreases without bound. As approaches
positive infinity, increases without bound. In symbolic form we write

∞ ∞

∞ ∞

The behavior of the graph of a function as the input values get very small ( ∞ ) and get very large ( ∞ ) is

referred to as the end behavior of the function. We can use words or symbols to describe end behavior.

Figure 4 shows the end behavior of power functions in the form where is a non-negative integer
depending on the power and the constant.
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Figure 4

HOW TO

Given a power function where is a non-negative integer, identify the end behavior.

1. Determine whether the power is even or odd.
2. Determine whether the constant is positive or negative.
3. Use Figure 4 to identify the end behavior.

EXAMPLE 2

Identifying the End Behavior of a Power Function
Describe the end behavior of the graph of

Solution
The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As approaches infinity, the

output (value of ) increases without bound. We write as ∞ ∞ As approaches negative infinity, the

output increases without bound. In symbolic form, as ∞ ∞ We can graphically represent the function as

shown in Figure 5.
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Figure 5

EXAMPLE 3

Identifying the End Behavior of a Power Function.
Describe the end behavior of the graph of

Solution
The exponent of the power function is 9 (an odd number). Because the coefficient is (negative), the graph is the
reflection about the axis of the graph of Figure 6 shows that as approaches infinity, the output decreases
without bound. As approaches negative infinity, the output increases without bound. In symbolic form, we would write

∞ ∞

∞ ∞

Figure 6

Analysis
We can check our work by using the table feature on a graphing utility.

–10 1,000,000,000

Table 2
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–5 1,953,125

0 0

5 –1,953,125

10 –1,000,000,000

Table 2

We can see from Table 2 that, when we substitute very small values for the output is very large, and when we
substitute very large values for the output is very small (meaning that it is a very large negative value).

TRY IT #2 Describe in words and symbols the end behavior of

Identifying Polynomial Functions
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular shape. The slick is currently 24 miles
in radius, but that radius is increasing by 8 miles each week. We want to write a formula for the area covered by the oil
slick by combining two functions. The radius of the spill depends on the number of weeks that have passed. This
relationship is linear.

We can combine this with the formula for the area of a circle.

Composing these functions gives a formula for the area in terms of weeks.

Multiplying gives the formula.

This formula is an example of a polynomial function. A polynomial function consists of either zero or the sum of a finite
number of non-zero terms, each of which is a product of a number, called the coefficient of the term, and a variable
raised to a non-negative integer power.

Polynomial Functions

Let be a non-negative integer. A polynomial function is a function that can be written in the form

This is called the general form of a polynomial function. Each is a coefficient and can be any real number, but ≠ .

Each expression is a term of a polynomial function.

EXAMPLE 4

Identifying Polynomial Functions
Which of the following are polynomial functions?
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Solution
The first two functions are examples of polynomial functions because they can be written in the form

where the powers are non-negative integers and the coefficients are real
numbers.

• can be written as
• can be written as
• cannot be written in this form and is therefore not a polynomial function.

Identifying the Degree and Leading Coefficient of a Polynomial Function
Because of the form of a polynomial function, we can see an infinite variety in the number of terms and the power of the
variable. Although the order of the terms in the polynomial function is not important for performing operations, we
typically arrange the terms in descending order of power, or in general form. The degree of the polynomial is the
highest power of the variable that occurs in the polynomial; it is the power of the first variable if the function is in
general form. The leading term is the term containing the highest power of the variable, or the term with the highest
degree. The leading coefficient is the coefficient of the leading term.

Terminology of Polynomial Functions

We often rearrange polynomials so that the powers are descending.

When a polynomial is written in this way, we say that it is in general form.

HOW TO

Given a polynomial function, identify the degree and leading coefficient.

1. Find the highest power of to determine the degree of the function.
2. Identify the term containing the highest power of to find the leading term.
3. Identify the coefficient of the leading term.

EXAMPLE 5

Identifying the Degree and Leading Coefficient of a Polynomial Function
Identify the degree, leading term, and leading coefficient of the following polynomial functions.

Solution
For the function the highest power of is 3, so the degree is 3. The leading term is the term containing that
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degree, The leading coefficient is the coefficient of that term,

For the function the highest power of is so the degree is The leading term is the term containing that degree,
The leading coefficient is the coefficient of that term,

For the function the highest power of is so the degree is The leading term is the term containing that
degree, The leading coefficient is the coefficient of that term,

TRY IT #3 Identify the degree, leading term, and leading coefficient of the polynomial

Identifying End Behavior of Polynomial Functions
Knowing the degree of a polynomial function is useful in helping us predict its end behavior. To determine its end
behavior, look at the leading term of the polynomial function. Because the power of the leading term is the highest, that
term will grow significantly faster than the other terms as gets very large or very small, so its behavior will dominate
the graph. For any polynomial, the end behavior of the polynomial will match the end behavior of the power function
consisting of the leading term. See Table 3.

Polynomial Function Leading Term Graph of Polynomial Function

Table 3
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Polynomial Function Leading Term Graph of Polynomial Function

Table 3

EXAMPLE 6

Identifying End Behavior and Degree of a Polynomial Function
Describe the end behavior and determine a possible degree of the polynomial function in Figure 7.
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Figure 7

Solution
As the input values get very large, the output values increase without bound. As the input values get very small,
the output values decrease without bound. We can describe the end behavior symbolically by writing

∞ ∞

∞ ∞

In words, we could say that as values approach infinity, the function values approach infinity, and as values approach
negative infinity, the function values approach negative infinity.

We can tell this graph has the shape of an odd degree power function that has not been reflected, so the degree of the
polynomial creating this graph must be odd and the leading coefficient must be positive.

TRY IT #4 Describe the end behavior, and determine a possible degree of the polynomial function in Figure
8.

Figure 8

EXAMPLE 7

Identifying End Behavior and Degree of a Polynomial Function
Given the function express the function as a polynomial in general form, and determine the
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leading term, degree, and end behavior of the function.

Solution
Obtain the general form by expanding the given expression for

The general form is The leading term is therefore, the degree of the polynomial is 4.
The degree is even (4) and the leading coefficient is negative (–3), so the end behavior is

∞ ∞

∞ ∞

TRY IT #5 Given the function express the function as a polynomial in
general form and determine the leading term, degree, and end behavior of the function.

Identifying Local Behavior of Polynomial Functions
In addition to the end behavior of polynomial functions, we are also interested in what happens in the “middle” of the
function. In particular, we are interested in locations where graph behavior changes. A turning point is a point at which
the function values change from increasing to decreasing or decreasing to increasing.

We are also interested in the intercepts. As with all functions, the y-intercept is the point at which the graph intersects
the vertical axis. The point corresponds to the coordinate pair in which the input value is zero. Because a polynomial is a
function, only one output value corresponds to each input value so there can be only one y-intercept The
x-intercepts occur at the input values that correspond to an output value of zero. It is possible to have more than one
x-intercept. See Figure 9.

Figure 9

Intercepts and Turning Points of Polynomial Functions

A turning point of a graph is a point at which the graph changes direction from increasing to decreasing or
decreasing to increasing. The y-intercept is the point at which the function has an input value of zero. The x-intercepts
are the points at which the output value is zero.
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HOW TO

Given a polynomial function, determine the intercepts.

1. Determine the y-intercept by setting and finding the corresponding output value.
2. Determine the x-intercepts by solving for the input values that yield an output value of zero.

EXAMPLE 8

Determining the Intercepts of a Polynomial Function
Given the polynomial function written in factored form for your convenience, determine
the y- and x-intercepts.

Solution
The y-intercept occurs when the input is zero so substitute 0 for

The y-intercept is (0, 8).

The x-intercepts occur when the output is zero.

The x-intercepts are and

We can see these intercepts on the graph of the function shown in Figure 10.

Figure 10

EXAMPLE 9

Determining the Intercepts of a Polynomial Function with Factoring
Given the polynomial function determine the y- and x-intercepts.
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Solution
The y-intercept occurs when the input is zero.

The y-intercept is

The x-intercepts occur when the output is zero. To determine when the output is zero, we will need to factor the
polynomial.

The x-intercepts are and

We can see these intercepts on the graph of the function shown in Figure 11. We can see that the function is even
because

Figure 11

TRY IT #6 Given the polynomial function determine the y- and x-intercepts.

Comparing Smooth and Continuous Graphs
The degree of a polynomial function helps us to determine the number of x-intercepts and the number of turning points.
A polynomial function of degree is the product of factors, so it will have at most roots or zeros, or x-intercepts.
The graph of the polynomial function of degree must have at most turning points. This means the graph has at
most one fewer turning point than the degree of the polynomial or one fewer than the number of factors.

A continuous function has no breaks in its graph: the graph can be drawn without lifting the pen from the paper. A
smooth curve is a graph that has no sharp corners. The turning points of a smooth graph must always occur at rounded
curves. The graphs of polynomial functions are both continuous and smooth.

Intercepts and Turning Points of Polynomials

A polynomial of degree will have, at most, x-intercepts and turning points.
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EXAMPLE 10

Determining the Number of Intercepts and Turning Points of a Polynomial
Without graphing the function, determine the local behavior of the function by finding the maximum number of
x-intercepts and turning points for

Solution
The polynomial has a degree of so there are at most 10 x-intercepts and at most 9 turning points.

TRY IT #7 Without graphing the function, determine the maximum number of x-intercepts and turning
points for

EXAMPLE 11

Drawing Conclusions about a Polynomial Function from the Graph
What can we conclude about the polynomial represented by the graph shown in Figure 12 based on its intercepts and
turning points?

Figure 12

Solution
The end behavior of the graph tells us this is the graph of an even-degree polynomial. See Figure 13.

Figure 13

The graph has 2 x-intercepts, suggesting a degree of 2 or greater, and 3 turning points, suggesting a degree of 4 or
greater. Based on this, it would be reasonable to conclude that the degree is even and at least 4.
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TRY IT #8 What can we conclude about the polynomial represented by the graph shown in Figure 14 based
on its intercepts and turning points?

Figure 14

EXAMPLE 12

Drawing Conclusions about a Polynomial Function from the Factors
Given the function determine the local behavior.

Solution
The y-intercept is found by evaluating

The y-intercept is

The x-intercepts are found by determining the zeros of the function.

The x-intercepts are and

The degree is 3 so the graph has at most 2 turning points.

TRY IT #9 Given the function determine the local behavior.

MEDIA

Access these online resources for additional instruction and practice with power and polynomial functions.

Find Key Information about a Given Polynomial Function (http://openstax.org/l/keyinfopoly)
End Behavior of a Polynomial Function (http://openstax.org/l/endbehavior)
Turning Points and intercepts of Polynomial Functions (http://openstax.org/l/turningpoints)
Least Possible Degree of a Polynomial Function (http://openstax.org/l/leastposdegree)
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5.2 SECTION EXERCISES
Verbal

1. Explain the difference
between the coefficient of a
power function and its
degree.

2. If a polynomial function is in
factored form, what would
be a good first step in order
to determine the degree of
the function?

3. In general, explain the end
behavior of a power
function with odd degree if
the leading coefficient is
positive.

4. What is the relationship
between the degree of a
polynomial function and the
maximum number of
turning points in its graph?

5. What can we conclude if, in
general, the graph of a
polynomial function exhibits
the following end behavior?

As ∞ ∞
and as

∞ ∞

Algebraic

For the following exercises, identify the function as a power function, a polynomial function, or neither.

6. 7. 8.

9. 10. 11.

For the following exercises, find the degree and leading coefficient for the given polynomial.

12. 13. 14.

15. 16.

For the following exercises, determine the end behavior of the functions.

17. 18. 19.

20. 21. 22.

23. 24.

For the following exercises, find the intercepts of the functions.

25. 26. 27.

28. 29. 30.
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Graphical

For the following exercises, determine the least possible degree of the polynomial function shown.

31. 32. 33.

34. 35. 36.

37. 38.
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For the following exercises, determine whether the graph of the function provided is a graph of a polynomial function. If
so, determine the number of turning points and the least possible degree for the function.

39. 40. 41.

42. 43. 44.

45.

Numeric

For the following exercises, make a table to confirm the end behavior of the function.

46. 47. 48.

49. 50.
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Technology

For the following exercises, graph the polynomial functions using a calculator. Based on the graph, determine the
intercepts and the end behavior.

51. 52. 53.

54. 55. 56.

57. 58. 59.

60.

Extensions

For the following exercises, use the information about the graph of a polynomial function to determine the function.
Assume the leading coefficient is 1 or –1. There may be more than one correct answer.

61. The intercept is The intercepts are
, Degree is 2.

End behavior: as ∞ , ∞ ; as ∞ ,

∞

62. The intercept is The intercepts are
, Degree is 2.

End behavior: as ∞ , ∞ , as

∞ , ∞

63. The intercept is The intercepts are
, Degree is 3.

End behavior: as ∞ , ∞ , as

∞ , ∞

64. The intercept is The intercept is
Degree is 3.

End behavior: as ∞ , ∞ , as ∞ ,

∞

65. The intercept is There is no intercept.
Degree is 4.

End behavior: as ∞ , ∞ , as ∞ ,

∞

Real-World Applications

For the following exercises, use the written statements to construct a polynomial function that represents the required
information.

66. An oil slick is expanding as
a circle. The radius of the
circle is increasing at the
rate of 20 meters per day.
Express the area of the
circle as a function of the
number of days elapsed.

67. A cube has an edge of 3
feet. The edge is increasing
at the rate of 2 feet per
minute. Express the
volume of the cube as a
function of the number
of minutes elapsed.

68. A rectangle has a length of
10 inches and a width of 6
inches. If the length is
increased by inches and
the width increased by
twice that amount, express
the area of the rectangle as
a function of
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69. An open box is to be
constructed by cutting out
square corners of inch
sides from a piece of
cardboard 8 inches by 8
inches and then folding up
the sides. Express the
volume of the box as a
function of

70. A rectangle is twice as long
as it is wide. Squares of
side 2 feet are cut out from
each corner. Then the sides
are folded up to make an
open box. Express the
volume of the box as a
function of the width ( ).

5.3 Graphs of Polynomial Functions
Learning Objectives
In this section, you will:

Recognize characteristics of graphs of polynomial functions.
Use factoring to find zeros of polynomial functions.
Identify zeros and their multiplicities.
Determine end behavior.
Understand the relationship between degree and turning points.
Graph polynomial functions.
Use the Intermediate Value Theorem.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in Table 1.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

Table 1

The revenue can be modeled by the polynomial function

where represents the revenue in millions of dollars and represents the year, with corresponding to 2006. Over
which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company
decreasing? These questions, along with many others, can be answered by examining the graph of the polynomial
function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we will
explore the local behavior of polynomials in general.

Recognizing Characteristics of Graphs of Polynomial Functions
Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs
are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are called
continuous. Figure 1 shows a graph that represents a polynomial function and a graph that represents a function that is
not a polynomial.
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Figure 1

EXAMPLE 1

Recognizing Polynomial Functions
Which of the graphs in Figure 2 represents a polynomial function?

Figure 2
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Solution
The graphs of and are graphs of polynomial functions. They are smooth and continuous.

The graphs of and are graphs of functions that are not polynomials. The graph of function has a sharp corner. The
graph of function is not continuous.

Q&A Do all polynomial functions have as their domain all real numbers?

Yes. Any real number is a valid input for a polynomial function.

Using Factoring to Find Zeros of Polynomial Functions
Recall that if is a polynomial function, the values of for which are called zeros of If the equation of the
polynomial function can be factored, we can set each factor equal to zero and solve for the zeros.

We can use this method to find intercepts because at the intercepts we find the input values when the output value
is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively
simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not simple enough
to remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will limit ourselves to
three cases:

1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.
2. The polynomial is given in factored form.
3. Technology is used to determine the intercepts.

HOW TO

Given a polynomial function find the x-intercepts by factoring.

1. Set
2. If the polynomial function is not given in factored form:
a. Factor out any common monomial factors.
b. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to find the intercepts.

EXAMPLE 2

Finding the x-Intercepts of a Polynomial Function by Factoring
Find the x-intercepts of

Solution
We can attempt to factor this polynomial to find solutions for

This gives us five x-intercepts: and See Figure 3. We can see that this is an even
function because it is symmetric about the y-axis.
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Figure 3

EXAMPLE 3

Finding the x-Intercepts of a Polynomial Function by Factoring
Find the x-intercepts of

Solution
Find solutions for by factoring.

There are three x-intercepts: and See Figure 4.

Figure 4
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EXAMPLE 4

Finding the y- and x-Intercepts of a Polynomial in Factored Form
Find the y- and x-intercepts of

Solution
The y-intercept can be found by evaluating

So the y-intercept is

The x-intercepts can be found by solving

So the x-intercepts are and

Analysis
We can always check that our answers are reasonable by using a graphing calculator to graph the polynomial as shown
in Figure 5.

Figure 5

EXAMPLE 5

Finding the x-Intercepts of a Polynomial Function Using a Graph
Find the x-intercepts of

Solution
This polynomial is not in factored form, has no common factors, and does not appear to be factorable using techniques
previously discussed. Fortunately, we can use technology to find the intercepts. Keep in mind that some values make
graphing difficult by hand. In these cases, we can take advantage of graphing utilities.

Looking at the graph of this function, as shown in Figure 6, it appears that there are x-intercepts at and
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Figure 6

We can check whether these are correct by substituting these values for and verifying that

Since we have:

Each x-intercept corresponds to a zero of the polynomial function and each zero yields a factor, so we can now write the
polynomial in factored form.

TRY IT #1 Find the y- and x-intercepts of the function

Identifying Zeros and Their Multiplicities
Graphs behave differently at various x-intercepts. Sometimes, the graph will cross over the horizontal axis at an
intercept. Other times, the graph will touch the horizontal axis and "bounce" off.

Suppose, for example, we graph the function shown.

Notice in Figure 7 that the behavior of the function at each of the x-intercepts is different.
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Figure 7 Identifying the behavior of the graph at an x-intercept by examining the multiplicity of the zero.

The x-intercept is the solution of equation The graph passes directly through the x-intercept at
The factor is linear (has a degree of 1), so the behavior near the intercept is like that of a line—it passes directly

through the intercept. We call this a single zero because the zero corresponds to a single factor of the function.

The x-intercept is the repeated solution of equation The graph touches the axis at the intercept and
changes direction. The factor is quadratic (degree 2), so the behavior near the intercept is like that of a quadratic—it
bounces off of the horizontal axis at the intercept.

The factor is repeated, that is, the factor appears twice. The number of times a given factor appears in the
factored form of the equation of a polynomial is called the multiplicity. The zero associated with this factor, has
multiplicity 2 because the factor occurs twice.

The x-intercept is the repeated solution of factor The graph passes through the axis at the
intercept, but flattens out a bit first. This factor is cubic (degree 3), so the behavior near the intercept is like that of a
cubic—with the same S-shape near the intercept as the toolkit function We call this a triple zero, or a zero
with multiplicity 3.

For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with odd multiplicities, the
graphs cross or intersect the x-axis. See Figure 8 for examples of graphs of polynomial functions with multiplicity 1, 2,
and 3.

Figure 8

For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce off of the horizontal axis but, for each
increasing even power, the graph will appear flatter as it approaches and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis, but for each increasing
odd power, the graph will appear flatter as it approaches and leaves the x-axis.
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Graphical Behavior of Polynomials at x-Intercepts

If a polynomial contains a factor of the form the behavior near the intercept is determined by the power
We say that is a zero of multiplicity

The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The graph will cross the
x-axis at zeros with odd multiplicities.

The sum of the multiplicities is the degree of the polynomial function.

HOW TO

Given a graph of a polynomial function of degree identify the zeros and their multiplicities.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.
2. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity.
3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.
4. The sum of the multiplicities is

EXAMPLE 6

Identifying Zeros and Their Multiplicities
Use the graph of the function of degree 6 in Figure 9 to identify the zeros of the function and their possible multiplicities.

Figure 9

Solution
The polynomial function is of degree 6. The sum of the multiplicities must be 6.

Starting from the left, the first zero occurs at The graph touches the x-axis, so the multiplicity of the zero must
be even. The zero of most likely has multiplicity

The next zero occurs at The graph looks almost linear at this point. This is a single zero of multiplicity 1.

The last zero occurs at The graph crosses the x-axis, so the multiplicity of the zero must be odd. We know that the
multiplicity is likely 3 and that the sum of the multiplicities is 6.

TRY IT #2 Use the graph of the function of degree 9 in Figure 10 to identify the zeros of the function and
their multiplicities.
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Figure 10

Determining End Behavior
As we have already learned, the behavior of a graph of a polynomial function of the form

will either ultimately rise or fall as increases without bound and will either rise or fall as decreases without bound.
This is because for very large inputs, say 100 or 1,000, the leading term dominates the size of the output. The same is
true for very small inputs, say –100 or –1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when discussing quadratic equations,
when the leading term of a polynomial function, is an even power function, as increases or decreases without
bound, increases without bound. When the leading term is an odd power function, as decreases without bound,

also decreases without bound; as increases without bound, also increases without bound. If the leading
term is negative, it will change the direction of the end behavior. Figure 11 summarizes all four cases.
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Figure 11

Understanding the Relationship between Degree and Turning Points
In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior. It may have a turning
point where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling to
rising). Look at the graph of the polynomial function in Figure 12. The graph has three
turning points.
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Figure 12

This function is a 4th degree polynomial function and has 3 turning points. The maximum number of turning points of
a polynomial function is always one less than the degree of the function.

Interpreting Turning Points

A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to falling) or
decreasing to increasing (falling to rising).

A polynomial of degree will have at most turning points.

EXAMPLE 7

Finding the Maximum Number of Turning Points Using the Degree of a Polynomial Function
Find the maximum number of turning points of each polynomial function.

ⓐ ⓑ
Solution

ⓐ
First, rewrite the polynomial function in descending order:

Identify the degree of the polynomial function. This polynomial function is of degree 5.

The maximum number of turning points is

ⓑ
First, identify the leading term of the polynomial function if the function were expanded.

Then, identify the degree of the polynomial function. This polynomial function is of degree 4.

The maximum number of turning points is

Graphing Polynomial Functions
We can use what we have learned about multiplicities, end behavior, and turning points to sketch graphs of polynomial
functions. Let us put this all together and look at the steps required to graph polynomial functions.
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HOW TO

Given a polynomial function, sketch the graph.

1. Find the intercepts.
2. Check for symmetry. If the function is an even function, its graph is symmetrical about the axis, that is,

If a function is an odd function, its graph is symmetrical about the origin, that is,

3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the intercepts.
4. Determine the end behavior by examining the leading term.
5. Use the end behavior and the behavior at the intercepts to sketch a graph.
6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.
7. Optionally, use technology to check the graph.

EXAMPLE 8

Sketching the Graph of a Polynomial Function
Sketch a graph of

Solution
This graph has two x-intercepts. At the factor is squared, indicating a multiplicity of 2. The graph will bounce at
this x-intercept. At the function has a multiplicity of one, indicating the graph will cross through the axis at this
intercept.

The y-intercept is found by evaluating

The y-intercept is

Additionally, we can see the leading term, if this polynomial were multiplied out, would be so the end behavior is
that of a vertically reflected cubic, with the outputs decreasing as the inputs approach infinity, and the outputs
increasing as the inputs approach negative infinity. See Figure 13.

Figure 13

To sketch this, we consider that:

• As ∞ the function ∞ so we know the graph starts in the second quadrant and is decreasing toward

the axis.
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• Since is not equal to the graph does not display symmetry.
• At the graph bounces off of the x-axis, so the function must start increasing.

At the graph crosses the y-axis at the y-intercept. See Figure 14.

Figure 14

Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal axis because the
graph passes through the next intercept at See Figure 15.

Figure 15

As ∞ the function so we know the graph continues to decrease, and we can stop drawing the graph in

the fourth quadrant.

Using technology, we can create the graph for the polynomial function, shown in Figure 16, and verify that the resulting
graph looks like our sketch in Figure 15.
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Figure 16 The complete graph of the polynomial function

TRY IT #3 Sketch a graph of

Using the Intermediate Value Theorem
In some situations, we may know two points on a graph but not the zeros. If those two points are on opposite sides of
the x-axis, we can confirm that there is a zero between them. Consider a polynomial function whose graph is smooth
and continuous. The Intermediate Value Theorem states that for two numbers and in the domain of if and

then the function takes on every value between and (While the theorem is intuitive, the
proof is actually quite complicated and requires higher mathematics.) We can apply this theorem to a special case that is
useful in graphing polynomial functions. If a point on the graph of a continuous function at lies above the axis
and another point at lies below the axis, there must exist a third point between and where the
graph crosses the axis. Call this point This means that we are assured there is a solution where

In other words, the Intermediate Value Theorem tells us that when a polynomial function changes from a negative value
to a positive value, the function must cross the axis. Figure 17 shows that there is a zero between and

Figure 17 Using the Intermediate Value Theorem to show there exists a zero.

Intermediate Value Theorem

Let be a polynomial function. The Intermediate Value Theorem states that if and have opposite signs,
then there exists at least one value between and for which
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EXAMPLE 9

Using the Intermediate Value Theorem
Show that the function has at least two real zeros between and

Solution
As a start, evaluate at the integer values and See Table 2.

1 2 3 4

5 0 –3 2

Table 2

We see that one zero occurs at Also, since is negative and is positive, by the Intermediate Value
Theorem, there must be at least one real zero between 3 and 4.

We have shown that there are at least two real zeros between and

Analysis
We can also see on the graph of the function in Figure 18 that there are two real zeros between and

Figure 18

TRY IT #4 Show that the function has at least one real zero between and

Writing Formulas for Polynomial Functions
Now that we know how to find zeros of polynomial functions, we can use them to write formulas based on graphs.
Because a polynomial function written in factored form will have an x-intercept where each factor is equal to zero, we
can form a function that will pass through a set of x-intercepts by introducing a corresponding set of factors.

Factored Form of Polynomials

If a polynomial of lowest degree has horizontal intercepts at then the polynomial can be written
in the factored form: where the powers on each factor can be
determined by the behavior of the graph at the corresponding intercept, and the stretch factor can be determined
given a value of the function other than the x-intercept.

HOW TO

Given a graph of a polynomial function, write a formula for the function.
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1. Identify the x-intercepts of the graph to find the factors of the polynomial.
2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each factor.
3. Find the polynomial of least degree containing all the factors found in the previous step.
4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch factor.

EXAMPLE 10

Writing a Formula for a Polynomial Function from the Graph
Write a formula for the polynomial function shown in Figure 19.

Figure 19

Solution
This graph has three x-intercepts: and The y-intercept is located at At and the graph
passes through the axis linearly, suggesting the corresponding factors of the polynomial will be linear. At the
graph bounces at the intercept, suggesting the corresponding factor of the polynomial will be second degree
(quadratic). Together, this gives us

To determine the stretch factor, we utilize another point on the graph. We will use the intercept to solve for

The graphed polynomial appears to represent the function

TRY IT #5 Given the graph shown in Figure 20, write a formula for the function shown.
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Figure 20

Using Local and Global Extrema
With quadratics, we were able to algebraically find the maximum or minimum value of the function by finding the vertex.
For general polynomials, finding these turning points is not possible without more advanced techniques from calculus.
Even then, finding where extrema occur can still be algebraically challenging. For now, we will estimate the locations of
turning points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the highest or lowest point
on the entire graph. In these cases, we say that the turning point is a global maximum or a global minimum. These are
also referred to as the absolute maximum and absolute minimum values of the function.

Local and Global Extrema

A local maximum or local minimum at (sometimes called the relative maximum or minimum, respectively) is
the output at the highest or lowest point on the graph in an open interval around If a function has a local
maximum at then for all in an open interval around If a function has a local minimum at
then for all in an open interval around

A global maximum or global minimum is the output at the highest or lowest point of the function. If a function has
a global maximum at then for all If a function has a global minimum at then for all

We can see the difference between local and global extrema in Figure 21.

Figure 21

Q&A Do all polynomial functions have a global minimum or maximum?

No. Only polynomial functions of even degree have a global minimum or maximum. For example,
has neither a global maximum nor a global minimum.
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EXAMPLE 11

Using Local Extrema to Solve Applications
An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by 20 cm sheet of plastic and
then folding up the sides. Find the size of squares that should be cut out to maximize the volume enclosed by the box.

Solution
We will start this problem by drawing a picture like that in Figure 22, labeling the width of the cut-out squares with a
variable,

Figure 22

Notice that after a square is cut out from each end, it leaves a cm by cm rectangle for the base of
the box, and the box will be cm tall. This gives the volume

Notice, since the factors are and the three zeros are 10, 7, and 0, respectively. Because a height of 0
cm is not reasonable, we consider the only the zeros 10 and 7. The shortest side is 14 and we are cutting off two squares,
so values may take on are greater than zero or less than 7. This means we will restrict the domain of this function to

Using technology to sketch the graph of on this reasonable domain, we get a graph like that in Figure
23. We can use this graph to estimate the maximum value for the volume, restricted to values for that are reasonable
for this problem—values from 0 to 7.

Figure 23

From this graph, we turn our focus to only the portion on the reasonable domain, We can estimate the
maximum value to be around 340 cubic cm, which occurs when the squares are about 2.75 cm on each side. To improve
this estimate, we could use advanced features of our technology, if available, or simply change our window to zoom in
on our graph to produce Figure 24.
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Figure 24

From this zoomed-in view, we can refine our estimate for the maximum volume to about 339 cubic cm, when the squares
measure approximately 2.7 cm on each side.

TRY IT #6 Use technology to find the maximum and minimum values on the interval of the function

MEDIA

Access the following online resource for additional instruction and practice with graphing polynomial functions.

Intermediate Value Theorem (http://openstax.org/l/ivt)

5.3 SECTION EXERCISES
Verbal

1. What is the difference
between an intercept and
a zero of a polynomial
function

2. If a polynomial function of
degree has distinct
zeros, what do you know
about the graph of the
function?

3. Explain how the
Intermediate Value
Theorem can assist us in
finding a zero of a function.

4. Explain how the factored
form of the polynomial
helps us in graphing it.

5. If the graph of a polynomial
just touches the x-axis and
then changes direction,
what can we conclude about
the factored form of the
polynomial?
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Algebraic

For the following exercises, find the or t-intercepts of the polynomial functions.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21. 22. 23.

For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least one
zero within the given interval.

24. between
and

25. between
and

26. between
and

27. between
and .

28. between
and

29.
between and

For the following exercises, find the zeros and give the multiplicity of each.

30. 31. 32.

33. 34. 35.

36. 37.

38. 39. 40.

41.

Graphical

For the following exercises, graph the polynomial functions. Note and intercepts, multiplicity, and end behavior.

42. 43. 44.

45. 46. 47.
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For the following exercises, use the graphs to write the formula for a polynomial function of least degree.

48. 49. 50.

51. 52.

For the following exercises, use the graph to identify zeros and multiplicity.

53. 54. 55.
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56.

For the following exercises, use the given information about the polynomial graph to write the equation.

57. Degree 3. Zeros at
and

y-intercept at

58. Degree 3. Zeros at
and

y-intercept at

59. Degree 5. Roots of
multiplicity 2 at and

, and a root of
multiplicity 1 at
y-intercept at

60. Degree 4. Root of
multiplicity 2 at and
a roots of multiplicity 1 at

and
y-intercept at

61. Degree 5. Double zero at
and triple zero at
Passes through the

point

62. Degree 3. Zeros at
and

y-intercept at

63. Degree 3. Zeros at
and

y-intercept at

64. Degree 5. Roots of
multiplicity 2 at and

and a root of
multiplicity 1 at

y-intercept at

65. Degree 4. Roots of
multiplicity 2 at and
roots of multiplicity 1 at

and

y-intercept at

66. Double zero at and
triple zero at Passes
through the point

Technology

For the following exercises, use a calculator to approximate local minima and maxima or the global minimum and
maximum.

67. 68. 69.

70. 71.
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Extensions

For the following exercises, use the graphs to write a polynomial function of least degree.

72. 73. 74.

Real-World Applications

For the following exercises, write the polynomial function that models the given situation.

75. A rectangle has a length of
10 units and a width of 8
units. Squares of by
units are cut out of each
corner, and then the sides
are folded up to create an
open box. Express the
volume of the box as a
polynomial function in
terms of

76. Consider the same
rectangle of the preceding
problem. Squares of by

units are cut out of each
corner. Express the volume
of the box as a polynomial
in terms of

77. A square has sides of 12
units. Squares by

units are cut out of
each corner, and then the
sides are folded up to
create an open box.
Express the volume of the
box as a function in terms
of

78. A cylinder has a radius of
units and a height of

3 units greater. Express the
volume of the cylinder as a
polynomial function.

79. A right circular cone has a
radius of and a
height 3 units less. Express
the volume of the cone as a
polynomial function. The
volume of a cone is

for radius
and height

5.4 Dividing Polynomials
Learning Objectives
In this section, you will:

Use long division to divide polynomials.
Use synthetic division to divide polynomials.
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Figure 1 Lincoln Memorial, Washington, D.C. (credit: Ron Cogswell, Flickr)

The exterior of the Lincoln Memorial in Washington, D.C., is a large rectangular solid with length 61.5 meters (m), width
40 m, and height 30 m.1 We can easily find the volume using elementary geometry.

So the volume is 73,800 cubic meters Suppose we knew the volume, length, and width. We could divide to find the
height.

As we can confirm from the dimensions above, the height is 30 m. We can use similar methods to find any of the missing
dimensions. We can also use the same method if any, or all, of the measurements contain variable expressions. For
example, suppose the volume of a rectangular solid is given by the polynomial The length of
the solid is given by the width is given by To find the height of the solid, we can use polynomial division, which
is the focus of this section.

Using Long Division to Divide Polynomials
We are familiar with the long division algorithm for ordinary arithmetic. We begin by dividing into the digits of the
dividend that have the greatest place value. We divide, multiply, subtract, include the digit in the next place value
position, and repeat. For example, let’s divide 178 by 3 using long division.

Another way to look at the solution is as a sum of parts. This should look familiar, since it is the same method used to
check division in elementary arithmetic.

We call this the Division Algorithm and will discuss it more formally after looking at an example.

Division of polynomials that contain more than one term has similarities to long division of whole numbers. We can write

1 National Park Service. "Lincoln Memorial Building Statistics." http://www.nps.gov/linc/historyculture/lincoln-memorial-building-statistics.htm.

Accessed 4/3/2014
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a polynomial dividend as the product of the divisor and the quotient added to the remainder. The terms of the
polynomial division correspond to the digits (and place values) of the whole number division. This method allows us to
divide two polynomials. For example, if we were to divide by using the long division algorithm,
it would look like this:

We have found

or

We can identify the dividend, the divisor, the quotient, and the remainder.

Writing the result in this manner illustrates the Division Algorithm.

The Division Algorithm

The Division Algorithm states that, given a polynomial dividend and a non-zero polynomial divisor where
the degree of is less than or equal to the degree of , there exist unique polynomials and such that

is the quotient and is the remainder. The remainder is either equal to zero or has degree strictly less than

If then divides evenly into This means that, in this case, both and are factors of
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HOW TO

Given a polynomial and a binomial, use long division to divide the polynomial by the binomial.

1. Set up the division problem.
2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term of the

divisor.
3. Multiply the answer by the divisor and write it below the like terms of the dividend.
4. Subtract the bottom binomial from the top binomial.
5. Bring down the next term of the dividend.
6. Repeat steps 2–5 until reaching the last term of the dividend.
7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

EXAMPLE 1

Using Long Division to Divide a Second-Degree Polynomial
Divide by

Solution

The quotient is The remainder is 0. We write the result as

or

Analysis
This division problem had a remainder of 0. This tells us that the dividend is divided evenly by the divisor, and that the
divisor is a factor of the dividend.

EXAMPLE 2

Using Long Division to Divide a Third-Degree Polynomial
Divide by
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Solution

There is a remainder of 1. We can express the result as:

Analysis
We can check our work by using the Division Algorithm to rewrite the solution. Then multiply.

Notice, as we write our result,

• the dividend is
• the divisor is
• the quotient is
• the remainder is

TRY IT #1 Divide by

Using Synthetic Division to Divide Polynomials
As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic division is a
shorthand method of dividing polynomials for the special case of dividing by a linear factor whose leading coefficient is
1.

To illustrate the process, recall the example at the beginning of the section.

Divide by using the long division algorithm.

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in columns
under the division sign and also eliminate the partial products, we already have a simpler version of the entire problem.

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the rows up to
fill any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers, then multiplying and
subtracting the middle product, we change the sign of the “divisor” to –2, multiply and add. The process starts by
bringing down the leading coefficient.
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We then multiply it by the “divisor” and add, repeating this process column by column, until there are no entries left. The
bottom row represents the coefficients of the quotient; the last entry of the bottom row is the remainder. In this case,
the quotient is and the remainder is The process will be made more clear in Example 3.

Synthetic Division

Synthetic division is a shortcut that can be used when the divisor is a binomial in the form where is a real
number. In synthetic division, only the coefficients are used in the division process.

HOW TO

Given two polynomials, use synthetic division to divide.

1. Write for the divisor.
2. Write the coefficients of the dividend.
3. Bring the lead coefficient down.
4. Multiply the lead coefficient by Write the product in the next column.
5. Add the terms of the second column.
6. Multiply the result by Write the product in the next column.
7. Repeat steps 5 and 6 for the remaining columns.
8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and has degree

0, the next number from the right has degree 1, the next number from the right has degree 2, and so on.

EXAMPLE 3

Using Synthetic Division to Divide a Second-Degree Polynomial
Use synthetic division to divide by

Solution
Begin by setting up the synthetic division. Write and the coefficients.

Bring down the lead coefficient. Multiply the lead coefficient by

Continue by adding the numbers in the second column. Multiply the resulting number by Write the result in the next
column. Then add the numbers in the third column.

The result is The remainder is 0. So is a factor of the original polynomial.

Analysis
Just as with long division, we can check our work by multiplying the quotient by the divisor and adding the remainder.
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EXAMPLE 4

Using Synthetic Division to Divide a Third-Degree Polynomial
Use synthetic division to divide by

Solution
The binomial divisor is so Add each column, multiply the result by –2, and repeat until the last column is
reached.

The result is The remainder is 0. Thus, is a factor of

Analysis
The graph of the polynomial function in Figure 2 shows a zero at This
confirms that is a factor of

Figure 2

EXAMPLE 5

Using Synthetic Division to Divide a Fourth-Degree Polynomial
Use synthetic division to divide by

Solution
Notice there is no x-term. We will use a zero as the coefficient for that term.

The result is
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TRY IT #2 Use synthetic division to divide by

Using Polynomial Division to Solve Application Problems
Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. We
looked at an application at the beginning of this section. Now we will solve that problem in the following example.

EXAMPLE 6

Using Polynomial Division in an Application Problem
The volume of a rectangular solid is given by the polynomial The length of the solid is given by

and the width is given by Find the height, of the solid.

Solution
There are a few ways to approach this problem. We need to divide the expression for the volume of the solid by the
expressions for the length and width. Let us create a sketch as in Figure 3.

Figure 3

We can now write an equation by substituting the known values into the formula for the volume of a rectangular solid.

To solve for first divide both sides by

Now solve for using synthetic division.

The quotient is and the remainder is 0. The height of the solid is

TRY IT #3 The area of a rectangle is given by The width of the rectangle is given by
Find an expression for the length of the rectangle.

MEDIA

Access these online resources for additional instruction and practice with polynomial division.

Dividing a Trinomial by a Binomial Using Long Division (http://openstax.org/l/dividetribild)
Dividing a Polynomial by a Binomial Using Long Division (http://openstax.org/l/dividepolybild)
Ex 2: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstax.org/l/dividepolybisd2)
Ex 4: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstax.org/l/dividepolybisd4)
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5.4 SECTION EXERCISES
Verbal

1. If division of a polynomial by a binomial results in a
remainder of zero, what can be conclude?

2. If a polynomial of degree is divided by a binomial
of degree 1, what is the degree of the quotient?

Algebraic

For the following exercises, use long division to divide. Specify the quotient and the remainder.

3. 4. 5.

6. 7. 8.

9. 10. 11.

12. 13.

For the following exercises, use synthetic division to find the quotient. Ensure the equation is in the form required by
synthetic division. (Hint: divide the dividend and divisor by the coefficient of the linear term in the divisor.)

14. 15. 16.

17. 18.

19. 20. 21.

22. 23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37.
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For the following exercises, use synthetic division to determine whether the first expression is a factor of the second. If it
is, indicate the factorization.

38. 39. 40.

41. 42. 43.

Graphical

For the following exercises, use the graph of the third-degree polynomial and one factor to write the factored form of
the polynomial suggested by the graph. The leading coefficient is one.

44. Factor is 45. Factor is 46. Factor is

47. Factor is 48. Factor is

For the following exercises, use synthetic division to find the quotient and remainder.

49. 50. 51.

52. 53.

Technology

For the following exercises, use a calculator with CAS to answer the questions.

54. Consider with What do you
expect the result to be if

55. Consider for What do you
expect the result to be if
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56. Consider for What do you
expect the result to be if

57. Consider with What do you
expect the result to be if

58. Consider with What do you
expect the result to be if

Extensions

For the following exercises, use synthetic division to determine the quotient involving a complex number.

59. 60. 61.

62. 63.

Real-World Applications

For the following exercises, use the given length and area of a rectangle to express the width algebraically.

64. Length is area is 65. Length is area is 66. Length is area is

For the following exercises, use the given volume of a box and its length and width to express the height of the box
algebraically.

67. Volume is length is
width is

68. Volume is length is
width is

69. Volume is length is
width is

70. Volume is length is
width is

For the following exercises, use the given volume and radius of a cylinder to express the height of the cylinder
algebraically.

71. Volume is radius is 72. Volume is radius is

73. Volume is
radius is
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5.5 Zeros of Polynomial Functions
Learning Objectives
In this section, you will:

Evaluate a polynomial using the Remainder Theorem.
Use the Factor Theorem to solve a polynomial equation.
Use the Rational Zero Theorem to find rational zeros.
Find zeros of a polynomial function.
Use the Linear Factorization Theorem to find polynomials with given zeros.
Use Descartes’ Rule of Signs.
Solve real-world applications of polynomial equations

A new bakery offers decorated, multi-tiered cakes for display and cutting at Quinceañera and wedding celebrations, as
well as sheet cakes for children’s birthday parties and other special occasions to serve most of the guests. The bakery
wants the volume of a small sheet cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want
the length of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of
the width. What should the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In this
section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

Evaluating a Polynomial Using the Remainder Theorem
In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials
using the Remainder Theorem. If the polynomial is divided by the remainder may be found quickly by evaluating
the polynomial function at that is, Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend and a non-zero polynomial divisor ,
there exist unique polynomials and such that

and either or the degree of is less than the degree of . In practice divisors, will have degrees less
than or equal to the degree of . If the divisor, is this takes the form

Since the divisor is linear, the remainder will be a constant, And, if we evaluate this for we have

In other words, is the remainder obtained by dividing by

The Remainder Theorem

If a polynomial is divided by then the remainder is the value

HOW TO

Given a polynomial function evaluate at using the Remainder Theorem.

1. Use synthetic division to divide the polynomial by
2. The remainder is the value

EXAMPLE 1

Using the Remainder Theorem to Evaluate a Polynomial
Use the Remainder Theorem to evaluate at
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Solution
To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by

The remainder is 25. Therefore,

Analysis
We can check our answer by evaluating

TRY IT #1 Use the Remainder Theorem to evaluate at

Using the Factor Theorem to Solve a Polynomial Equation
The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a
polynomial are related to the factors. Recall that the Division Algorithm.

If is a zero, then the remainder is and or

Notice, written in this form, is a factor of We can conclude if is a zero of then is a factor of

Similarly, if is a factor of then the remainder of the Division Algorithm is 0. This tells
us that is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a polynomial of degree in the complex number
system will have zeros. We can use the Factor Theorem to completely factor a polynomial into the product of factors.
Once the polynomial has been completely factored, we can easily determine the zeros of the polynomial.

The Factor Theorem

According to the Factor Theorem, is a zero of if and only if is a factor of

HOW TO

Given a factor and a third-degree polynomial, use the Factor Theorem to factor the polynomial.

1. Use synthetic division to divide the polynomial by
2. Confirm that the remainder is 0.
3. Write the polynomial as the product of and the quadratic quotient.
4. If possible, factor the quadratic.
5. Write the polynomial as the product of factors.

EXAMPLE 2

Using the Factor Theorem to Find the Zeros of a Polynomial Expression
Show that is a factor of Find the remaining factors. Use the factors to determine the zeros of
the polynomial.
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Solution
We can use synthetic division to show that is a factor of the polynomial.

The remainder is zero, so is a factor of the polynomial. We can use the Division Algorithm to write the polynomial
as the product of the divisor and the quotient:

We can factor the quadratic factor to write the polynomial as

By the Factor Theorem, the zeros of are –2, 3, and 5.

TRY IT #2 Use the Factor Theorem to find the zeros of given that is a
factor of the polynomial.

Using the Rational Zero Theorem to Find Rational Zeros
Another use for the Remainder Theorem is to test whether a rational number is a zero for a given polynomial. But first
we need a pool of rational numbers to test. The Rational Zero Theorem helps us to narrow down the number of
possible rational zeros using the ratio of the factors of the constant term and factors of the leading coefficient of the
polynomial

Consider a quadratic function with two zeros, and By the Factor Theorem, these zeros have factors
associated with them. Let us set each factor equal to 0, and then construct the original quadratic function absent its
stretching factor.

Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots: 2 and 3.
Similarly, two of the factors from the leading coefficient, 20, are the two denominators from the original rational roots: 5
and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the denominators
will be factors of the leading coefficient. This is the essence of the Rational Zero Theorem; it is a means to give us a pool
of possible rational zeros.

The Rational Zero Theorem

The Rational Zero Theorem states that, if the polynomial has integer
coefficients, then every rational zero of has the form where is a factor of the constant term and is a

factor of the leading coefficient

When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
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HOW TO

Given a polynomial function use the Rational Zero Theorem to find rational zeros.

1. Determine all factors of the constant term and all factors of the leading coefficient.
2. Determine all possible values of where is a factor of the constant term and is a factor of the leading

coefficient. Be sure to include both positive and negative candidates.
3. Determine which possible zeros are actual zeros by evaluating each case of

EXAMPLE 3

Listing All Possible Rational Zeros
List all possible rational zeros of

Solution
The only possible rational zeros of are the quotients of the factors of the last term, –4, and the factors of the leading
coefficient, 2.

The constant term is –4; the factors of –4 are

The leading coefficient is 2; the factors of 2 are

If any of the four real zeros are rational zeros, then they will be of one of the following factors of –4 divided by one of the
factors of 2.

Note that and which have already been listed. So we can shorten our list.

EXAMPLE 4

Using the Rational Zero Theorem to Find Rational Zeros
Use the Rational Zero Theorem to find the rational zeros of

Solution
The Rational Zero Theorem tells us that if is a zero of then is a factor of 1 and is a factor of 2.

The factors of 1 are and the factors of 2 are and The possible values for are and These are the

possible rational zeros for the function. We can determine which of the possible zeros are actual zeros by substituting
these values for in

Of those, are not zeros of 1 is the only rational zero of

TRY IT #3 Use the Rational Zero Theorem to find the rational zeros of
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Finding the Zeros of Polynomial Functions
The Rational Zero Theorem helps us to narrow down the list of possible rational zeros for a polynomial function. Once
we have done this, we can use synthetic division repeatedly to determine all of the zeros of a polynomial function.

HOW TO

Given a polynomial function use synthetic division to find its zeros.

1. Use the Rational Zero Theorem to list all possible rational zeros of the function.
2. Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the

polynomial. If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the candidate.
3. Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient is a

quadratic.
4. Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring and using the

quadratic formula.

EXAMPLE 5

Finding the Zeros of a Polynomial Function with Repeated Real Zeros
Find the zeros of

Solution
The Rational Zero Theorem tells us that if is a zero of then is a factor of –1 and is a factor of 4.

The factors of are and the factors of are and The possible values for are and These

are the possible rational zeros for the function. We will use synthetic division to evaluate each possible zero until we find
one that gives a remainder of 0. Let’s begin with 1.

Dividing by gives a remainder of 0, so 1 is a zero of the function. The polynomial can be written as

The quadratic is a perfect square. can be written as

We already know that 1 is a zero. The other zero will have a multiplicity of 2 because the factor is squared. To find the
other zero, we can set the factor equal to 0.

The zeros of the function are 1 and with multiplicity 2.

Analysis
Look at the graph of the function in Figure 1. Notice, at the graph bounces off the x-axis, indicating the even
multiplicity (2,4,6…) for the zero At the graph crosses the x-axis, indicating the odd multiplicity (1,3,5…) for
the zero
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Figure 1

Using the Fundamental Theorem of Algebra
Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number of
complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial function
has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose is a polynomial function of degree four, and The Fundamental Theorem of Algebra states that there
is at least one complex solution, call it By the Factor Theorem, we can write as a product of and a
polynomial quotient. Since is linear, the polynomial quotient will be of degree three. Now we apply the
Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call it

So we can write the polynomial quotient as a product of and a new polynomial quotient of degree two.
Continue to apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them and
each one will yield a factor of

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra states that, if is a polynomial of degree n > 0, then has at least one
complex zero.

We can use this theorem to argue that, if is a polynomial of degree and is a non-zero real number, then
has exactly linear factors

where are complex numbers. Therefore, has roots if we allow for multiplicities.

Q&A Does every polynomial have at least one imaginary zero?

No. Real numbers are a subset of complex numbers, but not the other way around. A complex number is
not necessarily imaginary. Real numbers are also complex numbers.

EXAMPLE 6

Finding the Zeros of a Polynomial Function with Complex Zeros
Find the zeros of

Solution
The Rational Zero Theorem tells us that if is a zero of then is a factor of 3 and is a factor of 3.
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The factors of 3 are and The possible values for and therefore the possible rational zeros for the function, are

We will use synthetic division to evaluate each possible zero until we find one that gives a remainder of
0. Let’s begin with –3.

Dividing by gives a remainder of 0, so –3 is a zero of the function. The polynomial can be written as

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

The zeros of are –3 and

Analysis
Look at the graph of the function in Figure 2. Notice that, at the graph crosses the x-axis, indicating an odd
multiplicity (1) for the zero Also note the presence of the two turning points. This means that, since there is a 3rd

degree polynomial, we are looking at the maximum number of turning points. So, the end behavior of increasing
without bound to the right and decreasing without bound to the left will continue. Thus, all the x-intercepts for the
function are shown. So either the multiplicity of is 1 and there are two complex solutions, which is what we
found, or the multiplicity at is three. Either way, our result is correct.

Figure 2

TRY IT #4 Find the zeros of

Using the Linear Factorization Theorem to Find Polynomials with Given Zeros
A vital implication of the Fundamental Theorem of Algebra, as we stated above, is that a polynomial function of degree
will have zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the
polynomial function into factors. The Linear Factorization Theorem tells us that a polynomial function will have the
same number of factors as its degree, and that each factor will be in the form where is a complex number.

Let be a polynomial function with real coefficients, and suppose is a zero of Then, by the Factor
Theorem, is a factor of For to have real coefficients, must also be a factor of This is
true because any factor other than when multiplied by will leave imaginary components in the
product. Only multiplication with conjugate pairs will eliminate the imaginary parts and result in real coefficients. In
other words, if a polynomial function with real coefficients has a complex zero then the complex conjugate

must also be a zero of This is called the Complex Conjugate Theorem.

5.5 • Zeros of Polynomial Functions 477



...

Complex Conjugate Theorem

According to the Linear Factorization Theorem, a polynomial function will have the same number of factors as its
degree, and each factor will be in the form , where is a complex number.

If the polynomial function has real coefficients and a complex zero in the form then the complex conjugate
of the zero, is also a zero.

HOW TO

Given the zeros of a polynomial function and a point (c, f(c)) on the graph of use the Linear Factorization
Theorem to find the polynomial function.

1. Use the zeros to construct the linear factors of the polynomial.
2. Multiply the linear factors to expand the polynomial.
3. Substitute into the function to determine the leading coefficient.
4. Simplify.

EXAMPLE 7

Using the Linear Factorization Theorem to Find a Polynomial with Given Zeros
Find a fourth degree polynomial with real coefficients that has zeros of –3, 2, such that

Solution
Because is a zero, by the Complex Conjugate Theorem is also a zero. The polynomial must have factors of

and Since we are looking for a degree 4 polynomial, and now have four zeros, we have
all four factors. Let’s begin by multiplying these factors.

We need to find a to ensure Substitute and into

So the polynomial function is

or

Analysis
We found that both and were zeros, but only one of these zeros needed to be given. If is a zero of a polynomial
with real coefficients, then must also be a zero of the polynomial because is the complex conjugate of

Q&A If were given as a zero of a polynomial with real coefficients, would also need to be a
zero?

Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real
coefficients, the conjugate must also be a zero of the polynomial.
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TRY IT #5 Find a third degree polynomial with real coefficients that has zeros of 5 and such that

Using Descartes’ Rule of Signs
There is a straightforward way to determine the possible numbers of positive and negative real zeros for any polynomial
function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a relationship between the
number of sign changes in and the number of positive real zeros. For example, the polynomial function below has
one sign change.

This tells us that the function must have 1 positive real zero.

There is a similar relationship between the number of sign changes in and the number of negative real zeros.

In this case, has 3 sign changes. This tells us that could have 3 or 1 negative real zeros.

Descartes’ Rule of Signs

According to Descartes’ Rule of Signs, if we let be a polynomial function
with real coefficients:

• The number of positive real zeros is either equal to the number of sign changes of or is less than the
number of sign changes by an even integer.

• The number of negative real zeros is either equal to the number of sign changes of or is less than the
number of sign changes by an even integer.

EXAMPLE 8

Using Descartes’ Rule of Signs
Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for

Solution
Begin by determining the number of sign changes.

Figure 3

There are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine to determine the
number of negative real roots.

Figure 4

Again, there are two sign changes, so there are either 2 or 0 negative real roots.

There are four possibilities, as we can see in Table 1.

5.5 • Zeros of Polynomial Functions 479



Positive Real Zeros Negative Real Zeros Complex Zeros Total Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4

Table 1

Analysis
We can confirm the numbers of positive and negative real roots by examining a graph of the function. See Figure 5. We
can see from the graph that the function has 0 positive real roots and 2 negative real roots.

Figure 5

TRY IT #6 Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and
negative real zeros for Use a graph to verify the numbers
of positive and negative real zeros for the function.

Solving Real-World Applications
We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve the bakery
problem from the beginning of the section.

EXAMPLE 9

Solving Polynomial Equations
A new bakery offers decorated, multi-tiered cakes for display and cutting at Quinceañera and wedding celebrations, as
well as sheet cakes for children’s birthday parties and other special occasions to serve most of the guests. The bakery
wants the volume of a small sheet cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want
the length of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of
the width. What should the dimensions of the cake pan be?

Solution
Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by We were
given that the length must be four inches longer than the width, so we can express the length of the cake as
We were given that the height of the cake is one-third of the width, so we can express the height of the cake as
Let’s write the volume of the cake in terms of width of the cake.
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Substitute the given volume into this equation.

Descartes' rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the possible
rational zeros are and We can use synthetic division to
test these possible zeros. Only positive numbers make sense as dimensions for a cake, so we need not test any negative
values. Let’s begin by testing values that make the most sense as dimensions for a small sheet cake. Use synthetic
division to check

Since 1 is not a solution, we will check

Since 3 is not a solution either, we will test

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between the
width and the other dimensions to determine the length and height of the sheet cake pan.

The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

TRY IT #7 A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters.
The client tells the manufacturer that, because of the contents, the length of the container must
be one meter longer than the width, and the height must be one meter greater than twice the
width. What should the dimensions of the container be?

MEDIA

Access these online resources for additional instruction and practice with zeros of polynomial functions.

Real Zeros, Factors, and Graphs of Polynomial Functions (http://openstax.org/l/realzeros)
Complex Factorization Theorem (http://openstax.org/l/factortheorem)
Find the Zeros of a Polynomial Function (http://openstax.org/l/findthezeros)
Find the Zeros of a Polynomial Function 2 (http://openstax.org/l/findthezeros2)
Find the Zeros of a Polynomial Function 3 (http://openstax.org/l/findthezeros3)
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5.5 SECTION EXERCISES
Verbal

1. Describe a use for the
Remainder Theorem.

2. Explain why the Rational
Zero Theorem does not
guarantee finding zeros of a
polynomial function.

3. What is the difference
between rational and real
zeros?

4. If Descartes’ Rule of Signs
reveals a no change of signs
or one sign of changes,
what specific conclusion can
be drawn?

5. If synthetic division reveals a
zero, why should we try that
value again as a possible
solution?

Algebraic

For the following exercises, use the Remainder Theorem to find the remainder.

6. 7. 8.

9. 10.

11. 12.

13.

For the following exercises, use the Factor Theorem to find all real zeros for the given polynomial function and one
factor.

14. 15.

16. 17.

18. 19.

20. 21.

For the following exercises, use the Rational Zero Theorem to find the real solution(s) to each equation.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.
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34. 35. 36.

37. 38. 39.

For the following exercises, find all complex solutions (real and non-real).

40. 41. 42.

43. 44. 45.

Graphical

For the following exercises, use Descartes’ Rule to determine the possible number of positive and negative solutions.
Confirm with the given graph.

46. 47. 48.

49. 50. 51.

52. 53.

54. 55.

Numeric

For the following exercises, list all possible rational zeros for the functions.

56. 57. 58.

59. 60.

Technology

For the following exercises, use your calculator to graph the polynomial function. Based on the graph, find the rational
zeros. All real solutions are rational.

61. 62. 63.

64. 65.

Extensions

For the following exercises, construct a polynomial function of least degree possible using the given information.

66. Real roots: –1, 1, 3 and 67. Real roots: –1, 1 (with
multiplicity 2 and 1) and

68. Real roots: –2, (with
multiplicity 2) and

5.5 • Zeros of Polynomial Functions 483



69. Real roots: , 0, and 70. Real roots: –4, –1, 1, 4 and

Real-World Applications

For the following exercises, find the dimensions of the box described.

71. The length is twice as long
as the width. The height is
2 inches greater than the
width. The volume is 192
cubic inches.

72. The length, width, and
height are consecutive
whole numbers. The
volume is 120 cubic inches.

73. The length is one inch
more than the width, which
is one inch more than the
height. The volume is
86.625 cubic inches.

74. The length is three times
the height and the height
is one inch less than the
width. The volume is 108
cubic inches.

75. The length is 3 inches more
than the width. The width
is 2 inches more than the
height. The volume is 120
cubic inches.

For the following exercises, find the dimensions of the right circular cylinder described.

76. The radius is 3 inches more
than the height. The
volume is cubic
meters.

77. The height is one less than
one half the radius. The
volume is cubic
meters.

78. The radius and height
differ by one meter. The
radius is larger and the
volume is cubic
meters.

79. The radius and height
differ by two meters. The
height is greater and the
volume is cubic
meters.

80. The radius is meter
greater than the height.
The volume is cubic
meters.

5.6 Rational Functions
Learning Objectives
In this section, you will:

Use arrow notation.
Solve applied problems involving rational functions.
Find the domains of rational functions.
Identify vertical asymptotes.
Identify horizontal asymptotes.
Graph rational functions.

Suppose we know that the cost of making a product is dependent on the number of items, produced. This is given by
the equation If we want to know the average cost for producing items, we would
divide the cost function by the number of items,

The average cost function, which yields the average cost per item for items produced, is

Many other application problems require finding an average value in a similar way, giving us variables in the
denominator. Written without a variable in the denominator, this function will contain a negative integer power.
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In the last few sections, we have worked with polynomial functions, which are functions with non-negative integers for
exponents. In this section, we explore rational functions, which have variables in the denominator.

Using Arrow Notation
We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our study of toolkit
functions. Examine these graphs, as shown in Figure 1, and notice some of their features.

Figure 1

Several things are apparent if we examine the graph of

1. On the left branch of the graph, the curve approaches the x-axis ∞
2. As the graph approaches from the left, the curve drops, but as we approach zero from the right, the curve

rises.

3. Finally, on the right branch of the graph, the curves approaches the x-axis ∞

To summarize, we use arrow notation to show that or is approaching a particular value. See Table 1.

Symbol Meaning

approaches from the left ( but close to )

approaches from the right ( but close to )

∞ approaches infinity ( increases without bound)

∞ approaches negative infinity ( decreases without bound)

∞ the output approaches infinity (the output increases without bound)

∞ the output approaches negative infinity (the output decreases without bound)

the output approaches

Table 1
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Local Behavior of
Let’s begin by looking at the reciprocal function, We cannot divide by zero, which means the function is
undefined at so zero is not in the domain. As the input values approach zero from the left side (becoming very
small, negative values), the function values decrease without bound (in other words, they approach negative infinity). We
can see this behavior in Table 2.

–0.1 –0.01 –0.001 –0.0001

–10 –100 –1000 –10,000

Table 2

We write in arrow notation

∞

As the input values approach zero from the right side (becoming very small, positive values), the function values increase
without bound (approaching infinity). We can see this behavior in Table 3.

0.1 0.01 0.001 0.0001

10 100 1000 10,000

Table 3

We write in arrow notation

∞

See Figure 2.

Figure 2

This behavior creates a vertical asymptote, which is a vertical line that the graph approaches but never crosses. In this
case, the graph is approaching the vertical line as the input becomes close to zero. See Figure 3.
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Figure 3

Vertical Asymptote

A vertical asymptote of a graph is a vertical line where the graph tends toward positive or negative infinity as
the inputs approach We write

∞

End Behavior of
As the values of approach infinity, the function values approach 0. As the values of approach negative infinity, the
function values approach 0. See Figure 4. Symbolically, using arrow notation

∞ ∞

Figure 4

Based on this overall behavior and the graph, we can see that the function approaches 0 but never actually reaches 0; it
seems to level off as the inputs become large. This behavior creates a horizontal asymptote, a horizontal line that the
graph approaches as the input increases or decreases without bound. In this case, the graph is approaching the
horizontal line See Figure 5.
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Figure 5

Horizontal Asymptote

A horizontal asymptote of a graph is a horizontal line where the graph approaches the line as the inputs
increase or decrease without bound. We write

∞ ∞

EXAMPLE 1

Using Arrow Notation
Use arrow notation to describe the end behavior and local behavior of the function graphed in Figure 6.

Figure 6

Solution
Notice that the graph is showing a vertical asymptote at which tells us that the function is undefined at

∞ ∞

And as the inputs decrease without bound, the graph appears to be leveling off at output values of 4, indicating a
horizontal asymptote at As the inputs increase without bound, the graph levels off at 4.

∞ ∞
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TRY IT #1 Use arrow notation to describe the end behavior and local behavior for the reciprocal squared
function.

EXAMPLE 2

Using Transformations to Graph a Rational Function
Sketch a graph of the reciprocal function shifted two units to the left and up three units. Identify the horizontal and
vertical asymptotes of the graph, if any.

Solution
Shifting the graph left 2 and up 3 would result in the function

or equivalently, by giving the terms a common denominator,

The graph of the shifted function is displayed in Figure 7.

Figure 7

Notice that this function is undefined at and the graph also is showing a vertical asymptote at

∞ ∞

As the inputs increase and decrease without bound, the graph appears to be leveling off at output values of 3, indicating
a horizontal asymptote at

∞

Analysis
Notice that horizontal and vertical asymptotes are shifted left 2 and up 3 along with the function.

TRY IT #2 Sketch the graph, and find the horizontal and vertical asymptotes of the reciprocal squared
function that has been shifted right 3 units and down 4 units.

Solving Applied Problems Involving Rational Functions
In Example 2, we shifted a toolkit function in a way that resulted in the function This is an example of a
rational function. A rational function is a function that can be written as the quotient of two polynomial functions. Many
real-world problems require us to find the ratio of two polynomial functions. Problems involving rates and
concentrations often involve rational functions.
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Rational Function

A rational function is a function that can be written as the quotient of two polynomial functions

EXAMPLE 3

Solving an Applied Problem Involving a Rational Function
After running out of pre-packaged supplies, a nurse in a refugee camp is preparing an intravenous sugar solution for
patients in the camp hospital. A large mixing tank currently contains 100 gallons of distilled water into which 5 pounds of
sugar have been mixed. A tap will open pouring 10 gallons per minute of water into the tank at the same time sugar is
poured into the tank at a rate of 1 pound per minute. Find the ratio of sugar to water, in pounds per gallon in the tank
after 12 minutes. Is that a greater ratio of sugar to water, in pounds per gallon than at the beginning?

Solution
Let be the number of minutes since the tap opened. Since the water increases at 10 gallons per minute, and the sugar
increases at 1 pound per minute, these are constant rates of change. This tells us the amount of water in the tank is
changing linearly, as is the amount of sugar in the tank. We can write an equation independently for each:

The ratio of sugar to water, in pounds per gallon, , will be the ratio of pounds of sugar to gallons of water

The ratio of sugar to water, in pounds per gallon after 12 minutes is given by evaluating at

This means the ratio of sugar to water, in pounds per gallon is 17 pounds of sugar to 220 gallons of water.

At the beginning, the ratio of sugar to water, in pounds per gallon is

Since the ratio of sugar to water, in pounds per gallon is greater after 12 minutes than at the
beginning.

TRY IT #3 There are 1,200 first-year and 1,500 second-year students at a rally at noon. After 12 p.m., 20 first-
year students arrive at the rally every five minutes while 15 second-year students leave the rally.
Find the ratio of first-year to second-year students at 1 p.m.

Finding the Domains of Rational Functions
A vertical asymptote represents a value at which a rational function is undefined, so that value is not in the domain of
the function. A reciprocal function cannot have values in its domain that cause the denominator to equal zero. In
general, to find the domain of a rational function, we need to determine which inputs would cause division by zero.

Domain of a Rational Function

The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.
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...
HOW TO

Given a rational function, find the domain.

1. Set the denominator equal to zero.
2. Solve to find the x-values that cause the denominator to equal zero.
3. The domain is all real numbers except those found in Step 2.

EXAMPLE 4

Finding the Domain of a Rational Function
Find the domain of

Solution
Begin by setting the denominator equal to zero and solving.

The denominator is equal to zero when The domain of the function is all real numbers except

Analysis
A graph of this function, as shown in Figure 8, confirms that the function is not defined when

Figure 8

There is a vertical asymptote at and a hole in the graph at We will discuss these types of holes in greater
detail later in this section.

TRY IT #4 Find the domain of

Identifying Vertical Asymptotes of Rational Functions
By looking at the graph of a rational function, we can investigate its local behavior and easily see whether there are
asymptotes. We may even be able to approximate their location. Even without the graph, however, we can still
determine whether a given rational function has any asymptotes, and calculate their location.

Vertical Asymptotes
The vertical asymptotes of a rational function may be found by examining the factors of the denominator that are not
common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.
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...
HOW TO

Given a rational function, identify any vertical asymptotes of its graph.

1. Factor the numerator and denominator.
2. Note any restrictions in the domain of the function.
3. Reduce the expression by canceling common factors in the numerator and the denominator.
4. Note any values that cause the denominator to be zero in this simplified version. These are where the vertical

asymptotes occur.
5. Note any restrictions in the domain where asymptotes do not occur. These are removable discontinuities, or

“holes.”

EXAMPLE 5

Identifying Vertical Asymptotes

Find the vertical asymptotes of the graph of

Solution
First, factor the numerator and denominator.

To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator equal to
zero:

Neither nor are zeros of the numerator, so the two values indicate two vertical asymptotes. The graph in
Figure 9 confirms the location of the two vertical asymptotes.

Figure 9

Removable Discontinuities
Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open circle. We
call such a hole a removable discontinuity.

For example, the function may be re-written by factoring the numerator and the denominator.
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Notice that is a common factor to the numerator and the denominator. The zero of this factor, is the
location of the removable discontinuity. Notice also that is not a factor in both the numerator and denominator. The
zero of this factor, is the vertical asymptote. See Figure 10. [Note that removable discontinuities may not be visible
when we use a graphing calculator, depending upon the window selected.]

Figure 10

Removable Discontinuities of Rational Functions

A removable discontinuity occurs in the graph of a rational function at if is a zero for a factor in the
denominator that is common with a factor in the numerator. We factor the numerator and denominator and check
for common factors. If we find any, we set the common factor equal to 0 and solve. This is the location of the
removable discontinuity. This is true if the multiplicity of this factor is greater than or equal to that in the
denominator. If the multiplicity of this factor is greater in the denominator, then there is still an asymptote at that
value.

EXAMPLE 6

Identifying Vertical Asymptotes and Removable Discontinuities for a Graph
Find the vertical asymptotes and removable discontinuities of the graph of

Solution
Factor the numerator and the denominator.

Notice that there is a common factor in the numerator and the denominator, The zero for this factor is This
is the location of the removable discontinuity.

Notice that there is a factor in the denominator that is not in the numerator, The zero for this factor is The
vertical asymptote is See Figure 11.
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Figure 11

The graph of this function will have the vertical asymptote at but at the graph will have a hole.

TRY IT #5 Find the vertical asymptotes and removable discontinuities of the graph of

Identifying Horizontal Asymptotes of Rational Functions
While vertical asymptotes describe the behavior of a graph as the output gets very large or very small, horizontal
asymptotes help describe the behavior of a graph as the input gets very large or very small. Recall that a polynomial’s
end behavior will mirror that of the leading term. Likewise, a rational function’s end behavior will mirror that of the ratio
of the function that is the ratio of the leading terms.

There are three distinct outcomes when checking for horizontal asymptotes:

Case 1: If the degree of the denominator > degree of the numerator, there is a horizontal asymptote at

In this case, the end behavior is This tells us that, as the inputs increase or decrease without bound, this

function will behave similarly to the function and the outputs will approach zero, resulting in a horizontal
asymptote at See Figure 12. Note that this graph crosses the horizontal asymptote.

Figure 12 Horizontal asymptote when

Case 2: If the degree of the denominator < degree of the numerator by one, we get a slant asymptote.
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In this case, the end behavior is This tells us that as the inputs increase or decrease without bound,
this function will behave similarly to the function As the inputs grow large, the outputs will grow and not level
off, so this graph has no horizontal asymptote. However, the graph of looks like a diagonal line, and since
will behave similarly to it will approach a line close to This line is a slant asymptote.

To find the equation of the slant asymptote, divide The quotient is and the remainder is 2. The slant
asymptote is the graph of the line See Figure 13.

Figure 13 Slant asymptote when where degree of

Case 3: If the degree of the denominator = degree of the numerator, there is a horizontal asymptote at where

and are the leading coefficients of and for

In this case, the end behavior is This tells us that as the inputs grow large, this function will behave like

the function which is a horizontal line. As ∞ resulting in a horizontal asymptote at See

Figure 14. Note that this graph crosses the horizontal asymptote.

Figure 14 Horizontal asymptote when
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Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or may not cross a
horizontal or slant asymptote. Also, although the graph of a rational function may have many vertical asymptotes, the
graph will have at most one horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more than one,
the end behavior of the graph will mimic the behavior of the reduced end behavior fraction. For instance, if we had the
function

with end behavior

the end behavior of the graph would look similar to that of an even polynomial with a positive leading coefficient.

∞ ∞

Horizontal Asymptotes of Rational Functions

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and
denominator.

• Degree of numerator is less than degree of denominator: horizontal asymptote at
• Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote.
• Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.

EXAMPLE 7

Identifying Horizontal and Slant Asymptotes
For the functions listed, identify the horizontal or slant asymptote.

ⓐ ⓑ ⓒ
Solution

For these solutions, we will use

ⓐ The degree of so we can find the horizontal asymptote by taking the ratio

of the leading terms. There is a horizontal asymptote at or

ⓑ The degree of and degree of Since by 1, there is a slant asymptote found at

The quotient is and the remainder is 13. There is a slant asymptote at

ⓒ The degree of degree of so there is a horizontal asymptote

EXAMPLE 8

Identifying Horizontal Asymptotes
In the sugar concentration problem earlier, we created the equation

Find the horizontal asymptote and interpret it in context of the problem.
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Solution
Both the numerator and denominator are linear (degree 1). Because the degrees are equal, there will be a horizontal
asymptote at the ratio of the leading coefficients. In the numerator, the leading term is with coefficient 1. In the
denominator, the leading term is with coefficient 10. The horizontal asymptote will be at the ratio of these values:

∞

This function will have a horizontal asymptote at

This tells us that as the values of t increase, the values of will approach In context, this means that, as more time

goes by, the concentration of sugar in the tank will approach one-tenth of a pound of sugar per gallon of water or
pounds per gallon.

EXAMPLE 9

Identifying Horizontal and Vertical Asymptotes
Find the horizontal and vertical asymptotes of the function

Solution
First, note that this function has no common factors, so there are no potential removable discontinuities.

The function will have vertical asymptotes when the denominator is zero, causing the function to be undefined. The
denominator will be zero at indicating vertical asymptotes at these values.

The numerator has degree 2, while the denominator has degree 3. Since the degree of the denominator is greater than
the degree of the numerator, the denominator will grow faster than the numerator, causing the outputs to tend towards

zero as the inputs get large, and so as ∞ This function will have a horizontal asymptote at See

Figure 15.

Figure 15

TRY IT #6 Find the vertical and horizontal asymptotes of the function:
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Intercepts of Rational Functions

A rational function will have a y-intercept at , if the function is defined at zero. A rational function will not have a
y-intercept if the function is not defined at zero.

Likewise, a rational function will have x-intercepts at the inputs that cause the output to be zero. Since a fraction is
only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator of the rational
function is equal to zero.

EXAMPLE 10

Finding the Intercepts of a Rational Function
Find the intercepts of

Solution
We can find the y-intercept by evaluating the function at zero

The x-intercepts will occur when the function is equal to zero:

The y-intercept is the x-intercepts are and See Figure 16.

Figure 16
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TRY IT #7 Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a
rational function. Then, find the x- and y-intercepts and the horizontal and vertical asymptotes.

Graphing Rational Functions
In Example 9, we see that the numerator of a rational function reveals the x-intercepts of the graph, whereas the
denominator reveals the vertical asymptotes of the graph. As with polynomials, factors of the numerator may have
integer powers greater than one. Fortunately, the effect on the shape of the graph at those intercepts is the same as we
saw with polynomials.

The vertical asymptotes associated with the factors of the denominator will mirror one of the two toolkit reciprocal
functions. When the degree of the factor in the denominator is odd, the distinguishing characteristic is that on one side
of the vertical asymptote the graph heads towards positive infinity, and on the other side the graph heads towards
negative infinity. See Figure 17.

Figure 17

When the degree of the factor in the denominator is even, the distinguishing characteristic is that the graph either heads
toward positive infinity on both sides of the vertical asymptote or heads toward negative infinity on both sides. See
Figure 18.

Figure 18

For example, the graph of is shown in Figure 19.
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Figure 19

• At the x-intercept corresponding to the factor of the numerator, the graph "bounces", consistent
with the quadratic nature of the factor.

• At the x-intercept corresponding to the factor of the numerator, the graph passes through the axis as
we would expect from a linear factor.

• At the vertical asymptote corresponding to the factor of the denominator, the graph heads towards
positive infinity on both sides of the asymptote, consistent with the behavior of the function

• At the vertical asymptote corresponding to the factor of the denominator, the graph heads towards
positive infinity on the left side of the asymptote and towards negative infinity on the right side.

HOW TO

Given a rational function, sketch a graph.

1. Evaluate the function at 0 to find the y-intercept.
2. Factor the numerator and denominator.
3. For factors in the numerator not common to the denominator, determine where each factor of the numerator is

zero to find the x-intercepts.
4. Find the multiplicities of the x-intercepts to determine the behavior of the graph at those points.
5. For factors in the denominator, note the multiplicities of the zeros to determine the local behavior. For those

factors not common to the numerator, find the vertical asymptotes by setting those factors equal to zero and
then solve.

6. For factors in the denominator common to factors in the numerator, find the removable discontinuities by
setting those factors equal to 0 and then solve.

7. Compare the degrees of the numerator and the denominator to determine the horizontal or slant asymptotes.
8. Sketch the graph.
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EXAMPLE 11

Graphing a Rational Function
Sketch a graph of

Solution
We can start by noting that the function is already factored, saving us a step.

Next, we will find the intercepts. Evaluating the function at zero gives the y-intercept:

To find the x-intercepts, we determine when the numerator of the function is zero. Setting each factor equal to zero, we
find x-intercepts at and At each, the behavior will be linear (multiplicity 1), with the graph passing through
the intercept.

We have a y-intercept at and x-intercepts at and

To find the vertical asymptotes, we determine when the denominator is equal to zero. This occurs when and
when giving us vertical asymptotes at and

There are no common factors in the numerator and denominator. This means there are no removable discontinuities.

Finally, the degree of denominator is larger than the degree of the numerator, telling us this graph has a horizontal
asymptote at

To sketch the graph, we might start by plotting the three intercepts. Since the graph has no x-intercepts between the
vertical asymptotes, and the y-intercept is positive, we know the function must remain positive between the asymptotes,
letting us fill in the middle portion of the graph as shown in Figure 20.

Figure 20

The factor associated with the vertical asymptote at was squared, so we know the behavior will be the same on
both sides of the asymptote. The graph heads toward positive infinity as the inputs approach the asymptote on the right,
so the graph will head toward positive infinity on the left as well.

For the vertical asymptote at the factor was not squared, so the graph will have opposite behavior on either side
of the asymptote. See Figure 21. After passing through the x-intercepts, the graph will then level off toward an output of
zero, as indicated by the horizontal asymptote.
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Figure 21

TRY IT #8 Given the function use the characteristics of polynomials and rational

functions to describe its behavior and sketch the function.

Writing Rational Functions
Now that we have analyzed the equations for rational functions and how they relate to a graph of the function, we can
use information given by a graph to write the function. A rational function written in factored form will have an
x-intercept where each factor of the numerator is equal to zero. (An exception occurs in the case of a removable
discontinuity.) As a result, we can form a numerator of a function whose graph will pass through a set of x-intercepts by
introducing a corresponding set of factors. Likewise, because the function will have a vertical asymptote where each
factor of the denominator is equal to zero, we can form a denominator that will produce the vertical asymptotes by
introducing a corresponding set of factors.

Writing Rational Functions from Intercepts and Asymptotes

If a rational function has x-intercepts at vertical asymptotes at and no
then the function can be written in the form:

where the powers or on each factor can be determined by the behavior of the graph at the corresponding
intercept or asymptote, and the stretch factor can be determined given a value of the function other than the
x-intercept or by the horizontal asymptote if it is nonzero.

HOW TO

Given a graph of a rational function, write the function.

1. Determine the factors of the numerator. Examine the behavior of the graph at the x-intercepts to determine the
zeroes and their multiplicities. (This is easy to do when finding the “simplest” function with small
multiplicities—such as 1 or 3—but may be difficult for larger multiplicities—such as 5 or 7, for example.)

2. Determine the factors of the denominator. Examine the behavior on both sides of each vertical asymptote to
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determine the factors and their powers.
3. Use any clear point on the graph to find the stretch factor.

EXAMPLE 12

Writing a Rational Function from Intercepts and Asymptotes
Write an equation for the rational function shown in Figure 22.

Figure 22

Solution
The graph appears to have x-intercepts at and At both, the graph passes through the intercept,
suggesting linear factors. The graph has two vertical asymptotes. The one at seems to exhibit the basic behavior
similar to with the graph heading toward positive infinity on one side and heading toward negative infinity on the
other. The asymptote at is exhibiting a behavior similar to with the graph heading toward negative infinity on

both sides of the asymptote. See Figure 23.

Figure 23

We can use this information to write a function of the form

To find the stretch factor, we can use another clear point on the graph, such as the y-intercept
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This gives us a final function of

MEDIA

Access these online resources for additional instruction and practice with rational functions.

Graphing Rational Functions (http://openstax.org/l/graphrational)
Find the Equation of a Rational Function (http://openstax.org/l/equatrational)
Determining Vertical and Horizontal Asymptotes (http://openstax.org/l/asymptote)
Find the Intercepts, Asymptotes, and Hole of a Rational Function (http://openstax.org/l/interasymptote)

5.6 SECTION EXERCISES
Verbal

1. What is the fundamental
difference in the algebraic
representation of a
polynomial function and a
rational function?

2. What is the fundamental
difference in the graphs of
polynomial functions and
rational functions?

3. If the graph of a rational
function has a removable
discontinuity, what must be
true of the functional rule?

4. Can a graph of a rational
function have no vertical
asymptote? If so, how?

5. Can a graph of a rational
function have no
x-intercepts? If so, how?

Algebraic

For the following exercises, find the domain of the rational functions.

6. 7. 8.

9.

For the following exercises, find the domain, vertical asymptotes, and horizontal asymptotes of the functions.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19.
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For the following exercises, find the x- and y-intercepts for the functions.

20. 21. 22.

23. 24.

For the following exercises, describe the local and end behavior of the functions.

25. 26. 27.

28. 29.

For the following exercises, find the slant asymptote of the functions.

30. 31. 32.

33. 34.

Graphical

For the following exercises, use the given transformation to graph the function. Note the vertical and horizontal
asymptotes.

35. The reciprocal function
shifted up two units.

36. The reciprocal function
shifted down one unit and
left three units.

37. The reciprocal squared
function shifted to the
right 2 units.

38. The reciprocal squared
function shifted down 2
units and right 1 unit.

For the following exercises, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, and the
horizontal or slant asymptote of the functions. Use that information to sketch a graph.

39. 40. 41.

42. 43. 44.

45. 46. 47.

48. 49. 50.
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For the following exercises, write an equation for a rational function with the given characteristics.

51. Vertical asymptotes at and
x-intercepts at and y-intercept at

52. Vertical asymptotes at and
x-intercepts at and y-intercept at

53. Vertical asymptotes at and
x-intercepts at and Horizontal
asymptote at

54. Vertical asymptotes at and
x-intercepts at and Horizontal
asymptote at

55. Vertical asymptote at Double zero at
y-intercept at

56. Vertical asymptote at Double zero at
y-intercept at

For the following exercises, use the graphs to write an equation for the function.

57. 58. 59.

60. 61. 62.

63. 64.
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Numeric

For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting
the horizontal asymptote

65. 66. 67.

68. 69.

Technology

For the following exercises, use a calculator to graph Use the graph to solve

70. 71. 72.

73. 74.

Extensions

For the following exercises, identify the removable discontinuity.

75. 76. 77.

78. 79.

Real-World Applications

For the following exercises, express a rational function that describes the situation.

80. In the refugee camp hospital, a large mixing tank
currently contains 200 gallons of water, into which
10 pounds of sugar have been mixed. A tap will
open, pouring 10 gallons of water per minute into
the tank at the same time sugar is poured into the
tank at a rate of 3 pounds per minute. Find the
concentration (pounds per gallon) of sugar in the
tank after minutes.

81. In the refugee camp hospital, a large mixing tank
currently contains 300 gallons of water, into which
8 pounds of sugar have been mixed. A tap will
open, pouring 20 gallons of water per minute into
the tank at the same time sugar is poured into the
tank at a rate of 2 pounds per minute. Find the
concentration (pounds per gallon) of sugar in the
tank after minutes.

For the following exercises, use the given rational function to answer the question.

82. The concentration of a drug in a patient’s
bloodstream hours after injection is given by

What happens to the concentration

of the drug as increases?

83. The concentration of a drug in a patient’s
bloodstream hours after injection is given by

Use a calculator to approximate

the time when the concentration is highest.
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For the following exercises, construct a rational function that will help solve the problem. Then, use a calculator to
answer the question.

84. An open box with a square
base is to have a volume of
108 cubic inches. Find the
dimensions of the box that
will have minimum surface
area. Let = length of the
side of the base.

85. A rectangular box with a
square base is to have a
volume of 20 cubic feet.
The material for the base
costs 30 cents/ square foot.
The material for the sides
costs 10 cents/square foot.
The material for the top
costs 20 cents/square foot.
Determine the dimensions
that will yield minimum
cost. Let = length of the
side of the base.

86. A right circular cylinder has
volume of 100 cubic inches.
Find the radius and height
that will yield minimum
surface area. Let =
radius.

87. A right circular cylinder
with no top has a volume
of 50 cubic meters. Find the
radius that will yield
minimum surface area. Let

= radius.

88. A right circular cylinder is
to have a volume of 40
cubic inches. It costs 4
cents/square inch to
construct the top and
bottom and 1 cent/square
inch to construct the rest of
the cylinder. Find the
radius to yield minimum
cost. Let = radius.

5.7 Inverses and Radical Functions
Learning Objectives
In this section, you will:

Find the inverse of an invertible polynomial function.
Restrict the domain to find the inverse of a polynomial function.

Park rangers and other trail managers may construct rock piles, stacks, or other arrangements, usually called cairns, to
mark trails or other landmarks. (Rangers and environmental scientists discourage hikers from doing the same, in order
to avoid confusion and preserve the habitats of plants and animals.) A cairn in the form of a mound of gravel is in the
shape of a cone with the height equal to twice the radius.

Figure 1
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The volume is found using a formula from elementary geometry.

We have written the volume in terms of the radius However, in some cases, we may start out with the volume and
want to find the radius. For example: A customer purchases 100 cubic feet of gravel to construct a cone shape mound
with a height twice the radius. What are the radius and height of the new cone? To answer this question, we use the
formula

This function is the inverse of the formula for in terms of

In this section, we will explore the inverses of polynomial and rational functions and in particular the radical functions we
encounter in the process.

Finding the Inverse of a Polynomial Function
Two functions and are inverse functions if for every coordinate pair in there exists a corresponding
coordinate pair in the inverse function, In other words, the coordinate pairs of the inverse functions have the
input and output interchanged. Only one-to-one functions have inverses. Recall that a one-to-one function has a unique
output value for each input value and passes the horizontal line test.

For example, suppose the Sustainability Club builds a water runoff collector in the shape of a parabolic trough as shown
in Figure 2. We can use the information in the figure to find the surface area of the water in the trough as a function of
the depth of the water.

Figure 2

Because it will be helpful to have an equation for the parabolic cross-sectional shape, we will impose a coordinate system
at the cross section, with measured horizontally and measured vertically, with the origin at the vertex of the
parabola. See Figure 3.
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Figure 3

From this we find an equation for the parabolic shape. We placed the origin at the vertex of the parabola, so we know
the equation will have form Our equation will need to pass through the point (6, 18), from which we can
solve for the stretch factor

Our parabolic cross section has the equation

We are interested in the surface area of the water, so we must determine the width at the top of the water as a function
of the water depth. For any depth the width will be given by so we need to solve the equation above for and find
the inverse function. However, notice that the original function is not one-to-one, and indeed, given any output there are
two inputs that produce the same output, one positive and one negative.

To find an inverse, we can restrict our original function to a limited domain on which it is one-to-one. In this case, it
makes sense to restrict ourselves to positive values. On this domain, we can find an inverse by solving for the input
variable:

This is not a function as written. We are limiting ourselves to positive values, so we eliminate the negative solution,
giving us the inverse function we’re looking for.

Because is the distance from the center of the parabola to either side, the entire width of the water at the top will be
The trough is 3 feet (36 inches) long, so the surface area will then be:

This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit ourselves to a domain on which the function is one-to-one.
2. The inverse of a quadratic function is a square root function. Both are toolkit functions and different types of power
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functions.

Functions involving roots are often called radical functions. While it is not possible to find an inverse of most polynomial
functions, some basic polynomials do have inverses. Such functions are called invertible functions, and we use the
notation

Warning: is not the same as the reciprocal of the function This use of “–1” is reserved to denote inverse
functions. To denote the reciprocal of a function we would need to write

An important relationship between inverse functions is that they “undo” each other. If is the inverse of a function
then is the inverse of the function In other words, whatever the function does to undoes it—and vice-
versa.

and

Note that the inverse switches the domain and range of the original function.

Verifying Two Functions Are Inverses of One Another

Two functions, and are inverses of one another if for all in the domain of and

HOW TO

Given a polynomial function, find the inverse of the function by restricting the domain in such a way that the
new function is one-to-one.

1. Replace with
2. Interchange and
3. Solve for and rename the function

EXAMPLE 1

Verifying Inverse Functions
Show that and are inverses, for .

Solution
We must show that and
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Therefore, and are inverses.

TRY IT #1 Show that and are inverses.

EXAMPLE 2

Finding the Inverse of a Cubic Function
Find the inverse of the function

Solution
This is a transformation of the basic cubic toolkit function, and based on our knowledge of that function, we know it is
one-to-one. Solving for the inverse by solving for

Analysis
Look at the graph of and Notice that one graph is the reflection of the other about the line This is always
the case when graphing a function and its inverse function.

Also, since the method involved interchanging and notice corresponding points. If is on the graph of then
is on the graph of Since is on the graph of then is on the graph of Similarly, since is

on the graph of then is on the graph of See Figure 4.

Figure 4

TRY IT #2 Find the inverse function of

Restricting the Domain to Find the Inverse of a Polynomial Function
So far, we have been able to find the inverse functions of cubic functions without having to restrict their domains.
However, as we know, not all cubic polynomials are one-to-one. Some functions that are not one-to-one may have their
domain restricted so that they are one-to-one, but only over that domain. The function over the restricted domain would
then have an inverse function. Since quadratic functions are not one-to-one, we must restrict their domain in order to
find their inverses.
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Restricting the Domain

If a function is not one-to-one, it cannot have an inverse. If we restrict the domain of the function so that it becomes
one-to-one, thus creating a new function, this new function will have an inverse.

HOW TO

Given a polynomial function, restrict the domain of a function that is not one-to-one and then find the inverse.

1. Restrict the domain by determining a domain on which the original function is one-to-one.
2. Replace with
3. Interchange and
4. Solve for and rename the function or pair of function
5. Revise the formula for by ensuring that the outputs of the inverse function correspond to the restricted

domain of the original function.

EXAMPLE 3

Restricting the Domain to Find the Inverse of a Polynomial Function
Find the inverse function of

ⓐ ⓑ
Solution

The original function is not one-to-one, but the function is restricted to a domain of or on
which it is one-to-one. See Figure 5.

Figure 5

To find the inverse, start by replacing with the simple variable

This is not a function as written. We need to examine the restrictions on the domain of the original function to determine
the inverse. Since we reversed the roles of and for the original we looked at the domain: the values could
assume. When we reversed the roles of and this gave us the values could assume. For this function, so for
the inverse, we should have which is what our inverse function gives.

ⓐ The domain of the original function was restricted to so the outputs of the inverse need to be the same,
and we must use the + case:
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ⓑ The domain of the original function was restricted to so the outputs of the inverse need to be the same,
and we must use the – case:

Analysis
On the graphs in Figure 6, we see the original function graphed on the same set of axes as its inverse function. Notice
that together the graphs show symmetry about the line The coordinate pair is on the graph of and the
coordinate pair is on the graph of For any coordinate pair, if is on the graph of then is on the
graph of Finally, observe that the graph of intersects the graph of on the line Points of intersection for
the graphs of and will always lie on the line

Figure 6

EXAMPLE 4

Finding the Inverse of a Quadratic Function When the Restriction Is Not Specified
Restrict the domain and then find the inverse of

Solution
We can see this is a parabola with vertex at that opens upward. Because the graph will be decreasing on one side
of the vertex and increasing on the other side, we can restrict this function to a domain on which it will be one-to-one by
limiting the domain to

To find the inverse, we will use the vertex form of the quadratic. We start by replacing with a simple variable, then
solve for

  

  

  

  

  

Now we need to determine which case to use. Because we restricted our original function to a domain of the
outputs of the inverse should be the same, telling us to utilize the + case

If the quadratic had not been given in vertex form, rewriting it into vertex form would be the first step. This way we may
easily observe the coordinates of the vertex to help us restrict the domain.
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Analysis
Notice that we arbitrarily decided to restrict the domain on We could just have easily opted to restrict the domain
on in which case Observe the original function graphed on the same set of axes as its
inverse function in Figure 7. Notice that both graphs show symmetry about the line The coordinate pair
is on the graph of and the coordinate pair is on the graph of Observe from the graph of both functions
on the same set of axes that

∞

and

∞

Finally, observe that the graph of intersects the graph of along the line

Figure 7

TRY IT #3 Find the inverse of the function on the domain

Solving Applications of Radical Functions
Notice that the functions from previous examples were all polynomials, and their inverses were radical functions. If we
want to find the inverse of a radical function, we will need to restrict the domain of the answer because the range of the
original function is limited.

HOW TO

Given a radical function, find the inverse.

1. Determine the range of the original function.
2. Replace with then solve for
3. If necessary, restrict the domain of the inverse function to the range of the original function.

EXAMPLE 5

Finding the Inverse of a Radical Function
Restrict the domain of the function and then find the inverse.

Solution
Note that the original function has range Replace with then solve for
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Recall that the domain of this function must be limited to the range of the original function.

Analysis
Notice in Figure 8 that the inverse is a reflection of the original function over the line Because the original function
has only positive outputs, the inverse function has only positive inputs.

Figure 8

TRY IT #4 Restrict the domain and then find the inverse of the function

Solving Applications of Radical Functions
Radical functions are common in physical models, as we saw in the section opener. We now have enough tools to be
able to solve the problem posed at the start of the section.

EXAMPLE 6

Solving an Application with a Cubic Function
Park rangers construct a mound of gravel in the shape of a cone with the height equal to twice the radius. The volume of
the cone in terms of the radius is given by

Find the inverse of the function that determines the volume of a cone and is a function of the radius
Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use

Solution
Start with the given function for Notice that the meaningful domain for the function is since negative radii
would not make sense in this context nor would a radius of 0. Also note the range of the function (hence, the domain of
the inverse function) is Solve for in terms of using the method outlined previously. Note that in real-world
applications, we do not swap the variables when finding inverses. Instead, we change which variable is considered to be
the independent variable.
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This is the result stated in the section opener. Now evaluate this for and

Therefore, the radius is about 3.63 ft.

Determining the Domain of a Radical Function Composed with Other Functions
When radical functions are composed with other functions, determining domain can become more complicated.

EXAMPLE 7

Finding the Domain of a Radical Function Composed with a Rational Function

Find the domain of the function

Solution
Because a square root is only defined when the quantity under the radical is non-negative, we need to determine where

The output of a rational function can change signs (change from positive to negative or vice versa) at

x-intercepts and at vertical asymptotes. For this equation, the graph could change signs at

To determine the intervals on which the rational expression is positive, we could test some values in the expression or
sketch a graph. While both approaches work equally well, for this example we will use a graph as shown in Figure 9.

Figure 9

This function has two x-intercepts, both of which exhibit linear behavior near the x-intercepts. There is one vertical
asymptote, corresponding to a linear factor; this behavior is similar to the basic reciprocal toolkit function, and there is
no horizontal asymptote because the degree of the numerator is larger than the degree of the denominator. There is a
y-intercept at

From the y-intercept and x-intercept at we can sketch the left side of the graph. From the behavior at the
asymptote, we can sketch the right side of the graph.
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From the graph, we can now tell on which intervals the outputs will be non-negative, so that we can be sure that the

original function will be defined. has domain or in interval notation, ∞

Finding Inverses of Rational Functions
As with finding inverses of quadratic functions, it is sometimes desirable to find the inverse of a rational function,
particularly of rational functions that are the ratio of linear functions, such as in concentration applications.

EXAMPLE 8

Finding the Inverse of a Rational Function
The function represents the concentration of an acid solution after mL of 40% solution has been added
to 100 mL of a 20% solution. First, find the inverse of the function; that is, find an expression for in terms of Then
use your result to determine how much of the 40% solution should be added so that the final mixture is a 35% solution.

Solution
We first want the inverse of the function in order to determine how many mL we need for a given concentration. We will
solve for in terms of

Now evaluate this function at 35%, which is

We can conclude that 300 mL of the 40% solution should be added.

TRY IT #5 Find the inverse of the function

MEDIA

Access these online resources for additional instruction and practice with inverses and radical functions.

Graphing the Basic Square Root Function (http://openstax.org/l/graphsquareroot)
Find the Inverse of a Square Root Function (http://openstax.org/l/inversesquare)
Find the Inverse of a Rational Function (http://openstax.org/l/inverserational)
Find the Inverse of a Rational Function and an Inverse Function Value (http://openstax.org/l/rationalinverse)
Inverse Functions (http://openstax.org/l/inversefunction)
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5.7 SECTION EXERCISES
Verbal

1. Explain why we cannot find
inverse functions for all
polynomial functions.

2. Why must we restrict the
domain of a quadratic
function when finding its
inverse?

3. When finding the inverse of
a radical function, what
restriction will we need to
make?

4. The inverse of a quadratic
function will always take
what form?

Algebraic

For the following exercises, find the inverse of the function on the given domain.

5. ∞ 6. ∞ 7. ∞

8. ∞ 9. ∞ 10. ∞

11. ∞

For the following exercises, find the inverse of the functions.

12. 13. 14.

15.

For the following exercises, find the inverse of the functions.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. ∞ 29. ∞ 30. ∞
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Graphical

For the following exercises, find the inverse of the function and graph both the function and its inverse.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40.

For the following exercises, use a graph to help determine the domain of the functions.

41. 42. 43.

44. 45.

Technology

For the following exercises, use a calculator to graph the function. Then, using the graph, give three points on the graph
of the inverse with y-coordinates given.

46. 47. 48.

49. 50.

Extensions

For the following exercises, find the inverse of the functions with positive real numbers.

51. 52. 53.

54. 55.

Real-World Applications

For the following exercises, determine the function described and then use it to answer the question.

56. An object dropped from a height of 200 meters
has a height, in meters after seconds have
lapsed, such that Express as
a function of height, and find the time to reach
a height of 50 meters.

57. An object dropped from a height of 600 feet has a
height, in feet after seconds have elapsed,
such that Express as a
function of height and find the time to reach a
height of 400 feet.
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58. The volume, of a sphere in terms of its radius,
is given by Express as a function

of and find the radius of a sphere with volume
of 200 cubic feet.

59. The surface area, of a sphere in terms of its
radius, is given by Express as a
function of and find the radius of a sphere with
a surface area of 1000 square inches.

60. A container holds 100 mL of a solution that is 25
mL acid. If mL of a solution that is 60% acid is
added, the function gives the
concentration, as a function of the number of
mL added, Express as a function of and
determine the number of mL that need to be
added to have a solution that is 50% acid.

61. The period in seconds, of a simple pendulum as
a function of its length in feet, is given by

. Express as a function of and

determine the length of a pendulum with period
of 2 seconds.

62. The volume of a cylinder , in terms of radius,
and height, is given by If a cylinder
has a height of 6 meters, express the radius as a
function of and find the radius of a cylinder with
volume of 300 cubic meters.

63. The surface area, of a cylinder in terms of its
radius, and height, is given by

If the height of the cylinder is 4
feet, express the radius as a function of and find
the radius if the surface area is 200 square feet.

64. The volume of a right circular cone, in terms of
its radius, and its height, is given by

Express in terms of if the height
of the cone is 12 feet and find the radius of a cone
with volume of 50 cubic inches.

65. Consider a cone with height of 30 feet. Express the
radius, in terms of the volume, and find the
radius of a cone with volume of 1000 cubic feet.

5.8 Modeling Using Variation
Learning Objectives
In this section, you will:

Solve direct variation problems.
Solve inverse variation problems.
Solve problems involving joint variation.

A pre-owned car dealer has just offered their best candidate, Nicole, a position in sales. The position offers 16%
commission on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a vehicle for $4,600,
she will earn $736. As she considers the offer, she takes into account the typical price of the dealer's cars, the overall
market, and how many she can reasonably expect to sell. In this section, we will look at relationships, such as this one,
between earnings, sales, and commission rate.

Solving Direct Variation Problems
In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula
tells us her earnings, come from the product of 0.16, her commission, and the sale price of the vehicle. If we create a
table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive. See Table 1.

, sales price Interpretation

$4,600 A sale of a $4,600 vehicle results in $736 earnings.

$9,200 A sale of a $9,200 vehicle results in $1472 earnings.

$18,400 A sale of a $18,400 vehicle results in $2944 earnings.

Table 1

Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of
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the vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As the input increases, the output
increases as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity is
called direct variation. Each variable in this type of relationship varies directly with the other.

Figure 1 represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of the
car. The formula is used for direct variation. The value is a nonzero constant greater than zero and is called
the constant of variation. In this case, and We saw functions like this one when we discussed power
functions.

Figure 1

Direct Variation

If are related by an equation of the form

then we say that the relationship is direct variation and varies directly with, or is proportional to, the th power of
In direct variation relationships, there is a nonzero constant ratio where is called the constant of

variation, which help defines the relationship between the variables.

HOW TO

Given a description of a direct variation problem, solve for an unknown.

1. Identify the input, and the output,
2. Determine the constant of variation. You may need to divide by the specified power of to determine the

constant of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

EXAMPLE 1

Solving a Direct Variation Problem
The quantity varies directly with the cube of If when find when is 6.
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Solution
The general formula for direct variation with a cube is The constant can be found by dividing by the cube of

Now use the constant to write an equation that represents this relationship.

Substitute and solve for

Analysis
The graph of this equation is a simple cubic, as shown in Figure 2.

Figure 2

Q&A Do the graphs of all direct variation equations look like Example 1?

No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical,
etc. But all of the graphs pass through

TRY IT #1 The quantity varies directly with the square of If when find when is 4.

Solving Inverse Variation Problems
Water temperature in an ocean varies inversely to the water’s depth. The formula gives us the temperature
in degrees Fahrenheit at a depth in feet below Earth’s surface. Consider the Atlantic Ocean, which covers 22% of Earth’s
surface. At a certain location, at the depth of 500 feet, the temperature may be 28°F.

If we create Table 2, we observe that, as the depth increases, the water temperature decreases.

depth Interpretation

500 ft At a depth of 500 ft, the water temperature is 28° F.

Table 2
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depth Interpretation

1000 ft At a depth of 1,000 ft, the water temperature is 14° F.

2000 ft At a depth of 2,000 ft, the water temperature is 7° F.

Table 2

We notice in the relationship between these variables that, as one quantity increases, the other decreases. The two
quantities are said to be inversely proportional and each term varies inversely with the other. Inversely proportional
relationships are also called inverse variations.

For our example, Figure 3 depicts the inverse variation. We say the water temperature varies inversely with the depth of
the water because, as the depth increases, the temperature decreases. The formula for inverse variation in this
case uses

Figure 3

Inverse Variation

If and are related by an equation of the form

where is a nonzero constant, then we say that varies inversely with the power of In inversely
proportional relationships, or inverse variations, there is a constant multiple

EXAMPLE 2

Writing a Formula for an Inversely Proportional Relationship
A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed the tourist
drives.

Solution
Recall that multiplying speed by time gives distance. If we let represent the drive time in hours, and represent the
velocity (speed or rate) at which the tourist drives, then Because the distance is fixed at 100 miles,

so Because time is a function of velocity, we can write

We can see that the constant of variation is 100 and, although we can write the relationship using the negative exponent,
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it is more common to see it written as a fraction. We say that time varies inversely with velocity.

HOW TO

Given a description of an indirect variation problem, solve for an unknown.

1. Identify the input, and the output,
2. Determine the constant of variation. You may need to multiply by the specified power of to determine the

constant of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

EXAMPLE 3

Solving an Inverse Variation Problem
A quantity varies inversely with the cube of If when find when is 6.

Solution
The general formula for inverse variation with a cube is The constant can be found by multiplying by the cube

of

Now we use the constant to write an equation that represents this relationship.

Substitute and solve for

Analysis
The graph of this equation is a rational function, as shown in Figure 4.

Figure 4

TRY IT #2 A quantity varies inversely with the square of If when find when is 4.
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Solving Problems Involving Joint Variation
Many situations are more complicated than a basic direct variation or inverse variation model. One variable often
depends on multiple other variables. When a variable is dependent on the product or quotient of two or more variables,
this is called joint variation. For example, the cost of busing students for each school trip varies with the number of
students attending and the distance from the school. The variable cost, varies jointly with the number of students,
and the distance,

Joint Variation

Joint variation occurs when a variable varies directly or inversely with multiple variables.

For instance, if varies directly with both and we have If varies directly with and inversely with we
have Notice that we only use one constant in a joint variation equation.

EXAMPLE 4

Solving Problems Involving Joint Variation
A quantity varies directly with the square of and inversely with the cube root of If when and find

when and

Solution
Begin by writing an equation to show the relationship between the variables.

Substitute and to find the value of the constant

Now we can substitute the value of the constant into the equation for the relationship.

To find when and we will substitute values for and into our equation.

TRY IT #3 A quantity varies directly with the square of and inversely with If when and
find when and

MEDIA

Access these online resources for additional instruction and practice with direct and inverse variation.

Direct Variation (http://openstax.org/l/directvariation)
Inverse Variation (http://openstax.org/l/inversevariatio)
Direct and Inverse Variation (http://openstax.org/l/directinverse)
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5.8 SECTION EXERCISES
Verbal

1. What is true of the
appearance of graphs that
reflect a direct variation
between two variables?

2. If two variables vary
inversely, what will an
equation representing their
relationship look like?

3. Is there a limit to the
number of variables that
can vary jointly? Explain.

Algebraic

For the following exercises, write an equation describing the relationship of the given variables.

4. varies directly as and
when

5. varies directly as the
square of and when

 

6. varies directly as the
square root of and when

7. varies directly as the cube
of and when

8. varies directly as the cube
root of and when

9. varies directly as the
fourth power of and when

10. varies inversely as and
when

11. varies inversely as the
square of and when

12. varies inversely as the
cube of and when

13. varies inversely as the
fourth power of and
when

14. varies inversely as the
square root of and when

15. varies inversely as the
cube root of and when

16. varies jointly with and
and when and

17. varies jointly as and
and when

then

18. varies jointly as the
square of and the square
of and when and

then

19. varies jointly as and the
square root of and when

and then

20. varies jointly as the
square of the cube of
and the square root of
When and

then

21. varies jointly as and
and inversely as . When

, and ,
then

22. varies jointly as the
square of and the square
root of and inversely as

the cube of   When

and
then

23. varies jointly as and
and inversely as the square
root of and the square of

When
and

then
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Numeric

For the following exercises, use the given information to find the unknown value.

24. varies directly as When then
Find wneh

25. varies directly as the square of When
then Find when

26. varies directly as the cube of When
then Find when

27. varies directly as the square root of When
then Find when

28. varies directly as the cube root of When
then Find when

29. varies inversely with When then
Find when

30. varies inversely with the square of When
then Find when

31. varies inversely with the cube of When
then Find when

32. varies inversely with the square root of When
then Find when

33. varies inversely with the cube root of When
then Find when

34. varies jointly as When and
then Find when and

35. varies jointly as When
and then Find when

and

36. varies jointly as and the square of When
and then Find when

and

37. varies jointly as the square of and the square
root of When and then
Find when and

38. varies jointly as and and inversely as
When and then Find

when and and

39. varies jointly as the square of and the cube of

and inversely as the square root of   When

and then Find
when and

40. varies jointly as the square of and of and
inversely as the square root of and of When

and then Find
when and

Technology

For the following exercises, use a calculator to graph the equation implied by the given variation.

41. varies directly with the
square of and when

42. varies directly as the
cube of and when

43. varies directly as the
square root of and when

44. varies inversely with
and when

45. varies inversely as the
square of and when
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Extensions

For the following exercises, use Kepler’s Law, which states that the square of the time, required for a planet to orbit
the Sun varies directly with the cube of the mean distance, that the planet is from the Sun.

46. Using Earth’s time of 1
year and mean distance of
93 million miles, find the
equation relating and

47. Use the result from the
previous exercise to
determine the time
required for Mars to orbit
the Sun if its mean distance
is 142 million miles.

48. Using Earth’s distance of
150 million kilometers, find
the equation relating
and

49. Use the result from the
previous exercise to
determine the time
required for Venus to orbit
the Sun if its mean distance
is 108 million kilometers.

50. Using Earth’s distance of 1
astronomical unit (A.U.),
determine the time for
Saturn to orbit the Sun if its
mean distance is 9.54 A.U.

Real-World Applications

For the following exercises, use the given information to answer the questions.

51. The distance that an
object falls varies directly
with the square of the
time, of the fall. If an
object falls 16 feet in one
second, how long for it to
fall 144 feet?

52. The velocity of a falling
object varies directly to the
time, , of the fall. If after 2
seconds, the velocity of the
object is 64 feet per
second, what is the velocity
after 5 seconds?

53. The rate of vibration of a
string under constant
tension varies inversely
with the length of the
string. If a string is 24
inches long and vibrates
128 times per second, what
is the length of a string
that vibrates 64 times per
second?

54. The volume of a gas held at
constant temperature
varies indirectly as the
pressure of the gas. If the
volume of a gas is 1200
cubic centimeters when
the pressure is 200
millimeters of mercury,
what is the volume when
the pressure is 300
millimeters of mercury?

55. The weight of an object
above the surface of Earth
varies inversely with the
square of the distance
from the center of Earth. If
a body weighs 50 pounds
when it is 3960 miles from
Earth’s center, what would
it weigh it were 3970 miles
from Earth’s center?

56. The intensity of light
measured in foot-candles
varies inversely with the
square of the distance
from the light source.
Suppose the intensity of a
light bulb is 0.08 foot-
candles at a distance of 3
meters. Find the intensity
level at 8 meters.
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57. The current in a circuit
varies inversely with its
resistance measured in
ohms. When the current in
a circuit is 40 amperes, the
resistance is 10 ohms. Find
the current if the resistance
is 12 ohms.

58. The force exerted by the
wind on a plane surface
varies jointly with the
square of the velocity of
the wind and with the area
of the plane surface. If the
area of the surface is 40
square feet surface and the
wind velocity is 20 miles
per hour, the resulting
force is 15 pounds. Find the
force on a surface of 65
square feet with a velocity
of 30 miles per hour.

59. The horsepower (hp) that a
shaft can safely transmit
varies jointly with its speed
(in revolutions per minute
(rpm) and the cube of the
diameter. If the shaft of a
certain material 3 inches in
diameter can transmit 45
hp at 100 rpm, what must
the diameter be in order to
transmit 60 hp at 150 rpm?

60. The kinetic energy of a
moving object varies jointly
with its mass and the
square of its velocity If
an object weighing 40
kilograms with a velocity of
15 meters per second has a
kinetic energy of 1000
joules, find the kinetic
energy if the velocity is
increased to 20 meters per
second.

530 5 • Polynomial and Rational Functions

Access for free at openstax.org



Chapter Review
Key Terms
arrow notation a way to represent symbolically the local and end behavior of a function by using arrows to indicate

that an input or output approaches a value
axis of symmetry a vertical line drawn through the vertex of a parabola, that opens up or down, around which the

parabola is symmetric; it is defined by
coefficient a nonzero real number multiplied by a variable raised to an exponent
constant of variation the non-zero value that helps define the relationship between variables in direct or inverse

variation
continuous function a function whose graph can be drawn without lifting the pen from the paper because there are

no breaks in the graph
degree the highest power of the variable that occurs in a polynomial
Descartes’ Rule of Signs a rule that determines the maximum possible numbers of positive and negative real zeros

based on the number of sign changes of and
direct variation the relationship between two variables that are a constant multiple of each other; as one quantity

increases, so does the other
Division Algorithm given a polynomial dividend and a non-zero polynomial divisor where the degree of

is less than or equal to the degree of , there exist unique polynomials and such that
where is the quotient and is the remainder. The remainder is either equal to zero or

has degree strictly less than
end behavior the behavior of the graph of a function as the input decreases without bound and increases without

bound
Factor Theorem is a zero of polynomial function if and only if is a factor of
Fundamental Theorem of Algebra a polynomial function with degree greater than 0 has at least one complex zero
general form of a quadratic function the function that describes a parabola, written in the form ,

where and are real numbers and
global maximum highest turning point on a graph; where for all
global minimum lowest turning point on a graph; where for all
horizontal asymptote a horizontal line where the graph approaches the line as the inputs increase or decrease

without bound.
Intermediate Value Theorem for two numbers and in the domain of if and then the

function takes on every value between and ; specifically, when a polynomial function changes from a
negative value to a positive value, the function must cross the axis

inverse variation the relationship between two variables in which the product of the variables is a constant
inversely proportional a relationship where one quantity is a constant divided by the other quantity; as one quantity

increases, the other decreases
invertible function any function that has an inverse function
joint variation a relationship where a variable varies directly or inversely with multiple variables
leading coefficient the coefficient of the leading term
leading term the term containing the highest power of the variable
Linear Factorization Theorem allowing for multiplicities, a polynomial function will have the same number of factors

as its degree, and each factor will be in the form , where is a complex number
multiplicity the number of times a given factor appears in the factored form of the equation of a polynomial; if a

polynomial contains a factor of the form , is a zero of multiplicity
polynomial function a function that consists of either zero or the sum of a finite number of non-zero terms, each of

which is a product of a number, called the coefficient of the term, and a variable raised to a non-negative integer
power.

power function a function that can be represented in the form where is a constant, the base is a
variable, and the exponent, , is a constant

rational function a function that can be written as the ratio of two polynomials
Rational Zero Theorem the possible rational zeros of a polynomial function have the form where is a factor of the

constant term and is a factor of the leading coefficient.
Remainder Theorem if a polynomial is divided by , then the remainder is equal to the value
removable discontinuity a single point at which a function is undefined that, if filled in, would make the function

continuous; it appears as a hole on the graph of a function
roots in a given function, the values of at which , also called zeros
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smooth curve a graph with no sharp corners
standard form of a quadratic function the function that describes a parabola, written in the form

, where is the vertex
synthetic division a shortcut method that can be used to divide a polynomial by a binomial of the form
term of a polynomial function any of a polynomial function in the form
turning point the location at which the graph of a function changes direction
varies directly a relationship where one quantity is a constant multiplied by the other quantity
varies inversely a relationship where one quantity is a constant divided by the other quantity
vertex the point at which a parabola changes direction, corresponding to the minimum or maximum value of the

quadratic function
vertex form of a quadratic function another name for the standard form of a quadratic function
vertical asymptote a vertical line where the graph tends toward positive or negative infinity as the inputs

approach
zeros in a given function, the values of at which , also called roots

Key Equations

general form of a quadratic function

standard form of a quadratic function

general form of a polynomial function

Division Algorithm

Rational Function

Direct variation is a nonzero constant.

Inverse variation is a nonzero constant.

Key Concepts
5.1 Quadratic Functions

• A polynomial function of degree two is called a quadratic function.
• The graph of a quadratic function is a parabola. A parabola is a U-shaped curve that can open either up or down.
• The axis of symmetry is the vertical line passing through the vertex. The zeros, or intercepts, are the points at

which the parabola crosses the axis. The intercept is the point at which the parabola crosses the axis. See
Example 1, Example 7, and Example 8.

• Quadratic functions are often written in general form. Standard or vertex form is useful to easily identify the vertex
of a parabola. Either form can be written from a graph. See Example 2.

• The vertex can be found from an equation representing a quadratic function. See Example 3.
• The domain of a quadratic function is all real numbers. The range varies with the function. See Example 4.
• A quadratic function’s minimum or maximum value is given by the value of the vertex.
• The minimum or maximum value of a quadratic function can be used to determine the range of the function and to

solve many kinds of real-world problems, including problems involving area and revenue. See Example 5 and
Example 6.

• The vertex and the intercepts can be identified and interpreted to solve real-world problems. See Example 9.

532 5 • Chapter Review

Access for free at openstax.org



5.2 Power Functions and Polynomial Functions

• A power function is a variable base raised to a number power. See Example 1.
• The behavior of a graph as the input decreases beyond bound and increases beyond bound is called the end

behavior.
• The end behavior depends on whether the power is even or odd. See Example 2 and Example 3.
• A polynomial function is the sum of terms, each of which consists of a transformed power function with positive

whole number power. See Example 4.
• The degree of a polynomial function is the highest power of the variable that occurs in a polynomial. The term

containing the highest power of the variable is called the leading term. The coefficient of the leading term is called
the leading coefficient. See Example 5.

• The end behavior of a polynomial function is the same as the end behavior of the power function represented by
the leading term of the function. See Example 6 and Example 7.

• A polynomial of degree will have at most x-intercepts and at most turning points. See Example 8, Example
9, Example 10, Example 11, and Example 12.

5.3 Graphs of Polynomial Functions

• Polynomial functions of degree 2 or more are smooth, continuous functions. See Example 1.
• To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero.

See Example 2, Example 3, and Example 4.
• Another way to find the intercepts of a polynomial function is to graph the function and identify the points at

which the graph crosses the axis. See Example 5.
• The multiplicity of a zero determines how the graph behaves at the intercepts. See Example 6.
• The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.
• The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.
• The end behavior of a polynomial function depends on the leading term.
• The graph of a polynomial function changes direction at its turning points.
• A polynomial function of degree has at most turning points. See Example 7.
• To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that

the final graph has at most turning points. See Example 8 and Example 10.
• Graphing a polynomial function helps to estimate local and global extremas. See Example 11.
• The Intermediate Value Theorem tells us that if have opposite signs, then there exists at least one

value between and for which See Example 9.

5.4 Dividing Polynomials

• Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See
Example 1 and Example 2.

• The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the
quotient added to the remainder.

• Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form See Example
3, Example 4, and Example 5.

• Polynomial division can be used to solve application problems, including area and volume. See Example 6.

5.5 Zeros of Polynomial Functions

• To find determine the remainder of the polynomial when it is divided by This is known as the
Remainder Theorem. See Example 1.

• According to the Factor Theorem, is a zero of if and only if is a factor of See Example 2.
• According to the Rational Zero Theorem, each rational zero of a polynomial function with integer coefficients will be

equal to a factor of the constant term divided by a factor of the leading coefficient. See Example 3 and Example 4.
• When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.
• Synthetic division can be used to find the zeros of a polynomial function. See Example 5.
• According to the Fundamental Theorem, every polynomial function has at least one complex zero. See Example 6.
• Every polynomial function with degree greater than 0 has at least one complex zero.
• Allowing for multiplicities, a polynomial function will have the same number of factors as its degree. Each factor will

be in the form where is a complex number. See Example 7.
• The number of positive real zeros of a polynomial function is either the number of sign changes of the function or

less than the number of sign changes by an even integer.
• The number of negative real zeros of a polynomial function is either the number of sign changes of or less
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than the number of sign changes by an even integer. See Example 8.
• Polynomial equations model many real-world scenarios. Solving the equations is easiest done by synthetic division.

See Example 9.

5.6 Rational Functions

• We can use arrow notation to describe local behavior and end behavior of the toolkit functions and
See Example 1.

• A function that levels off at a horizontal value has a horizontal asymptote. A function can have more than one
vertical asymptote. See Example 2.

• Application problems involving rates and concentrations often involve rational functions. See Example 3.
• The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.

See Example 4.
• The vertical asymptotes of a rational function will occur where the denominator of the function is equal to zero and

the numerator is not zero. See Example 5.
• A removable discontinuity might occur in the graph of a rational function if an input causes both numerator and

denominator to be zero. See Example 6.
• A rational function’s end behavior will mirror that of the ratio of the leading terms of the numerator and

denominator functions. See Example 7, Example 8, Example 9, and Example 10.
• Graph rational functions by finding the intercepts, behavior at the intercepts and asymptotes, and end behavior. See

Example 11.
• If a rational function has x-intercepts at vertical asymptotes at and no

then the function can be written in the form

See Example 12.

5.7 Inverses and Radical Functions

• The inverse of a quadratic function is a square root function.
• If is the inverse of a function then is the inverse of the function See Example 1.
• While it is not possible to find an inverse of most polynomial functions, some basic polynomials are invertible. See

Example 2.
• To find the inverse of certain functions, we must restrict the function to a domain on which it will be one-to-one. See

Example 3 and Example 4.
• When finding the inverse of a radical function, we need a restriction on the domain of the answer. See Example 5

and Example 7.
• Inverse and radical and functions can be used to solve application problems. See Example 6 and Example 8.

5.8 Modeling Using Variation

• A relationship where one quantity is a constant multiplied by another quantity is called direct variation. See Example
1.

• Two variables that are directly proportional to one another will have a constant ratio.
• A relationship where one quantity is a constant divided by another quantity is called inverse variation. See Example

2.
• Two variables that are inversely proportional to one another will have a constant multiple. See Example 3.
• In many problems, a variable varies directly or inversely with multiple variables. We call this type of relationship joint

variation. See Example 4.
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Exercises
Review Exercises
Quadratic Functions

For the following exercises, write the quadratic function in standard form. Then give the vertex and axes intercepts.
Finally, graph the function.

1. 2.

For the following exercises, find the equation of the quadratic function using the given information.

3. The vertex is and a
point on the graph is

4. The vertex is and a
point on the graph is

For the following exercises, complete the task.

5. A rectangular plot of land is to be enclosed by
fencing. One side is along a river and so needs no
fence. If the total fencing available is 600 meters,
find the dimensions of the plot to have maximum
area.

6. An object projected from the ground at a 45 degree
angle with initial velocity of 120 feet per second has
height, in terms of horizontal distance traveled,

given by Find the

maximum height the object attains.

Power Functions and Polynomial Functions

For the following exercises, determine if the function is a polynomial function and, if so, give the degree and leading
coefficient.

7. 8. 9.

For the following exercises, determine end behavior of the polynomial function.

10. 11. 12.

Graphs of Polynomial Functions

For the following exercises, find all zeros of the polynomial function, noting multiplicities.

13. 14. 15.
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For the following exercises, based on the given graph, determine the zeros of the function and note multiplicity.

16. 17. 18. Use the Intermediate Value
Theorem to show that at
least one zero lies between
2 and 3 for the function

Dividing Polynomials

For the following exercises, use long division to find the quotient and remainder.

19. 20.

For the following exercises, use synthetic division to find the quotient. If the divisor is a factor, then write the factored
form.

21. 22. 23.

24.

Zeros of Polynomial Functions

For the following exercises, use the Rational Zero Theorem to help you solve the polynomial equation.

25. 26. 27.

28.

For the following exercises, use Descartes’ Rule of Signs to find the possible number of positive and negative solutions.

29. 30.

Rational Functions

For the following exercises, find the intercepts and the vertical and horizontal asymptotes, and then use them to sketch a
graph of the function.

31. 32. 33.
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34.

For the following exercises, find the slant asymptote.

35. 36.

Inverses and Radical Functions

For the following exercises, find the inverse of the function with the domain given.

37. 38. 39.

40. 41. 42.

Modeling Using Variation

For the following exercises, find the unknown value.

43. varies directly as the
square of If when

find if

44. varies inversely as the
square root of If when

find if

45. varies jointly as the cube
of and as If when

and
find if and

46. varies jointly as and the
square of and inversely
as the cube of If when

and
find if

and

For the following exercises, solve the application problem.

47. The weight of an object above the surface of the
earth varies inversely with the distance from the
center of the earth. If a person weighs 150 pounds
when he is on the surface of the earth (3,960 miles
from center), find the weight of the person if he is
20 miles above the surface.

48. The volume of an ideal gas varies directly with
the temperature and inversely with the
pressure P. A cylinder contains oxygen at a
temperature of 310 degrees K and a pressure of
18 atmospheres in a volume of 120 liters. Find the
pressure if the volume is decreased to 100 liters
and the temperature is increased to 320 degrees
K.

Practice Test
Give the degree and leading coefficient of the following polynomial function.

1.

Determine the end behavior of the polynomial function.

2. 3.
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Write the quadratic function in standard form. Determine the vertex and axes intercepts and graph the function.

4.

Given information about the graph of a quadratic function, find its equation.

5. Vertex and point on
graph

Solve the following application problem.

6. A rectangular field is to be
enclosed by fencing. In
addition to the enclosing
fence, another fence is to
divide the field into two
parts, running parallel to
two sides. If 1,200 feet of
fencing is available, find the
maximum area that can be
enclosed.

Find all zeros of the following polynomial functions, noting multiplicities.

7. 8.

Based on the graph, determine the zeros of the function and multiplicities.

9.

Use long division to find the quotient.

10.

Use synthetic division to find the quotient. If the divisor is a factor, write the factored form.

11. 12.

Use the Rational Zero Theorem to help you find the zeros of the polynomial functions.

13. 14.
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15. 16.

Given the following information about a polynomial function, find the function.

17. It has a double zero at
and zeros at

and . Its y-intercept
is

18. It has a zero of multiplicity
3 at and another
zero at . It contains
the point

Use Descartes’ Rule of Signs to determine the possible number of positive and negative solutions.

19.

For the following rational functions, find the intercepts and horizontal and vertical asymptotes, and sketch a graph.

20. 21.

Find the slant asymptote of the rational function.

22.

Find the inverse of the function.

23. 24. 25.

Find the unknown value.

26. varies inversely as the
square of and when

Find if

27. varies jointly with and
the cube root of If when

and
find if and

Solve the following application problem.

28. The distance a body falls
varies directly as the
square of the time it falls. If
an object falls 64 feet in 2
seconds, how long will it
take to fall 256 feet?
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Electron micrograph of E.Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)

Chapter Outline
6.1 Exponential Functions
6.2 Graphs of Exponential Functions
6.3 Logarithmic Functions
6.4 Graphs of Logarithmic Functions
6.5 Logarithmic Properties
6.6 Exponential and Logarithmic Equations
6.7 Exponential and Logarithmic Models
6.8 Fitting Exponential Models to Data

Introduction to Exponential and Logarithmic Functions
Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you would see
hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on your skin, but in your
mouth, nose, and even your intestines. In fact, the bacterial cells in your body at any given moment outnumber your
own cells. But that is no reason to feel bad about yourself. While some bacteria can cause illness, many are healthy and
even essential to the body.

Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits into two.
When conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex organisms, the time
required to form a new generation of bacteria is often a matter of minutes or hours, as opposed to days or years.1

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. Table 1 shows the
number of bacterial cells at the end of each subsequent hour. We see that the single bacterial cell leads to over one
thousand bacterial cells in just ten hours! And if we were to extrapolate the table to twenty-four hours, we would have
over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10

Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Table 1

EXPONENTIAL AND LOGARITHMIC FUNCTIONS6

1 Todar, PhD, Kenneth. Todar's Online Textbook of Bacteriology. http://textbookofbacteriology.net/growth_3.html.
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In this chapter, we will explore exponential functions, which can be used for, among other things, modeling growth
patterns such as those found in bacteria. We will also investigate logarithmic functions, which are closely related to
exponential functions. Both types of functions have numerous real-world applications when it comes to modeling and
interpreting data.

6.1 Exponential Functions
Learning Objectives
In this section, you will:

Evaluate exponential functions.
Find the equation of an exponential function.
Use compound interest formulas.
Evaluate exponential functions with base .

India is the second most populous country in the world with a population of about billion people in 2021. The
population is growing at a rate of about each year2 . If this rate continues, the population of India will exceed
China’s population by the year When populations grow rapidly, we often say that the growth is “exponential,”
meaning that something is growing very rapidly. To a mathematician, however, the term exponential growth has a very
specific meaning. In this section, we will take a look at exponential functions, which model this kind of rapid growth.

Identifying Exponential Functions
When exploring linear growth, we observed a constant rate of change—a constant number by which the output
increased for each unit increase in input. For example, in the equation the slope tells us the output
increases by 3 each time the input increases by 1. The scenario in the India population example is different because we
have a percent change per unit time (rather than a constant change) in the number of people.

Defining an Exponential Function
A study found that the percent of the population who are vegans in the United States doubled from 2009 to 2011. In
2011, 2.5% of the population was vegan, adhering to a diet that does not include any animal products—no meat, poultry,
fish, dairy, or eggs. If this rate continues, vegans will make up 10% of the U.S. population in 2015, 40% in 2019, and 80%
in 2021.

What exactly does it mean to grow exponentially? What does the word double have in common with percent increase?
People toss these words around errantly. Are these words used correctly? The words certainly appear frequently in the
media.

• Percent change refers to a change based on a percent of the original amount.
• Exponential growth refers to an increase based on a constant multiplicative rate of change over equal increments

of time, that is, a percent increase of the original amount over time.
• Exponential decay refers to a decrease based on a constant multiplicative rate of change over equal increments of

time, that is, a percent decrease of the original amount over time.

For us to gain a clear understanding of exponential growth, let us contrast exponential growth with linear growth. We
will construct two functions. The first function is exponential. We will start with an input of 0, and increase each input by
1. We will double the corresponding consecutive outputs. The second function is linear. We will start with an input of 0,
and increase each input by 1. We will add 2 to the corresponding consecutive outputs. See Table 1.

0 1 0

1 2 2

2 4 4

3 8 6

Table 1

2 http://www.worldometers.info/world-population/. Accessed February 24, 2014.
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4 16 8

5 32 10

6 64 12

Table 1

From Table 1 we can infer that for these two functions, exponential growth dwarfs linear growth.

• Exponential growth refers to the original value from the range increases by the same percentage over equal
increments found in the domain.

• Linear growth refers to the original value from the range increases by the same amount over equal increments
found in the domain.

Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For exponential
growth, over equal increments, the constant multiplicative rate of change resulted in doubling the output whenever the
input increased by one. For linear growth, the constant additive rate of change over equal increments resulted in adding
2 to the output whenever the input was increased by one.

The general form of the exponential function is where is any nonzero number, is a positive real number
not equal to 1.

• If the function grows at a rate proportional to its size.
• If the function decays at a rate proportional to its size.

Let’s look at the function from our example. We will create a table (Table 2) to determine the corresponding
outputs over an interval in the domain from to

Table 2

Let us examine the graph of by plotting the ordered pairs we observe on the table in Figure 1, and then make a few
observations.

Figure 1

Let’s define the behavior of the graph of the exponential function and highlight some its key characteristics.

• the domain is ∞ ∞

• the range is ∞

• as ∞ ∞
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• as ∞
• is always increasing,
• the graph of will never touch the x-axis because base two raised to any exponent never has the result of zero.
• is the horizontal asymptote.
• the y-intercept is 1.

Exponential Function

For any real number an exponential function is a function with the form

where

• is a non-zero real number called the initial value and
• is any positive real number such that
• The domain of is all real numbers.
• The range of is all positive real numbers if
• The range of is all negative real numbers if
• The y-intercept is and the horizontal asymptote is

EXAMPLE 1

Identifying Exponential Functions
Which of the following equations are not exponential functions?

•
•
•
•

Solution
By definition, an exponential function has a constant as a base and an independent variable as an exponent. Thus,

does not represent an exponential function because the base is an independent variable. In fact, is
a power function.

Recall that the base b of an exponential function is always a positive constant, and Thus, does not
represent an exponential function because the base, is less than

TRY IT #1 Which of the following equations represent exponential functions?

•
•
•
•

Evaluating Exponential Functions
Recall that the base of an exponential function must be a positive real number other than Why do we limit the base
to positive values? To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:

• Let and Then which is not a real number.

Why do we limit the base to positive values other than Because base results in the constant function. Observe what
happens if the base is

• Let Then for any value of

To evaluate an exponential function with the form we simply substitute with the given value, and calculate
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the resulting power. For example:

Let What is

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of
operations. For example:

Let What is

Note that if the order of operations were not followed, the result would be incorrect:

EXAMPLE 2

Evaluating Exponential Functions
Let Evaluate without using a calculator.

Solution
Follow the order of operations. Be sure to pay attention to the parentheses.

TRY IT #2 Let Evaluate using a calculator. Round to four decimal places.

Defining Exponential Growth
Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in
everyday language to describe anything that grows or increases rapidly. However, exponential growth can be defined
more precisely in a mathematical sense. If the growth rate is proportional to the amount present, the function models
exponential growth.

Exponential Growth

A function that models exponential growth grows by a rate proportional to the amount present. For any real
number and any positive real numbers and such that an exponential growth function has the form

where

• is the initial or starting value of the function.
• is the growth factor or growth multiplier per unit .

In more general terms, we have an exponential function, in which a constant base is raised to a variable exponent. To
differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100
stores and expands by opening 50 new stores a year, so its growth can be represented by the function
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Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its
growth can be represented by the function

A few years of growth for these companies are illustrated in Table 3.

Year, Stores, Company A Stores, Company B

Table 3

The graphs comparing the number of stores for each company over a five-year period are shown in Figure 2. We can see
that, with exponential growth, the number of stores increases much more rapidly than with linear growth.

Figure 2 The graph shows the numbers of stores Companies A and B opened over a five-year period.
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...

Notice that the domain for both functions is ∞ and the range for both functions is ∞ After year 1, Company B

always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B,
In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and

represents the growth factor. Generalizing further, we can write this function as where
100 is the initial value, is called the base, and is called the exponent.

EXAMPLE 3

Evaluating a Real-World Exponential Model
At the beginning of this section, we learned that the population of India was about billion in the year 2013, with an
annual growth rate of about This situation is represented by the growth function where is
the number of years since To the nearest thousandth, what will the population of India be in

Solution
To estimate the population in 2031, we evaluate the models for because 2031 is years after 2013. Rounding to
the nearest thousandth,

There will be about 1.549 billion people in India in the year 2031.

TRY IT #3 The population of China was about 1.39 billion in the year 2013, with an annual growth rate of
about This situation is represented by the growth function where is
the number of years since To the nearest thousandth, what will the population of China be
for the year 2031? How does this compare to the population prediction we made for India in
Example 3?

Finding Equations of Exponential Functions
In the previous examples, we were given an exponential function, which we then evaluated for a given input. Sometimes
we are given information about an exponential function without knowing the function explicitly. We must use the
information to first write the form of the function, then determine the constants and and evaluate the function.

HOW TO

Given two data points, write an exponential model.

1. If one of the data points has the form then is the initial value. Using substitute the second point into
the equation and solve for

2. If neither of the data points have the form substitute both points into two equations with the form
Solve the resulting system of two equations in two unknowns to find and

3. Using the and found in the steps above, write the exponential function in the form

EXAMPLE 4

Writing an Exponential Model When the Initial Value Is Known
In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population
was growing exponentially. Write an exponential function representing the population of deer over time

Solution
We let our independent variable be the number of years after 2006. Thus, the information given in the problem can be
written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be measured as years
after 2006, we have given ourselves the initial value for the function, We can now substitute the second point
into the equation to find
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NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places
for the remainder of this section.

The exponential model for the population of deer is (Note that this exponential function models
short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may not
be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph in
Figure 3 passes through the initial points given in the problem, and We can also see that the domain for

the function is ∞ and the range for the function is ∞

Figure 3 Graph showing the population of deer over time, years after 2006

TRY IT #4 A wolf population is growing exponentially. In 2011, wolves were counted. By the
population had reached 236 wolves. What two points can be used to derive an exponential
equation modeling this situation? Write the equation representing the population of wolves
over time

EXAMPLE 5

Writing an Exponential Model When the Initial Value is Not Known
Find an exponential function that passes through the points and

Solution
Because we don’t have the initial value, we substitute both points into an equation of the form and then
solve the system for and

• Substituting gives
• Substituting gives

Use the first equation to solve for in terms of
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Substitute in the second equation, and solve for

Use the value of in the first equation to solve for the value of

Thus, the equation is

We can graph our model to check our work. Notice that the graph in Figure 4 passes through the initial points given in
the problem, and The graph is an example of an exponential decay function.

Figure 4 The graph of models exponential decay.

TRY IT #5 Given the two points and find the equation of the exponential function that passes
through these two points.

Q&A Do two points always determine a unique exponential function?

Yes, provided the two points are either both above the x-axis or both below the x-axis and have different
x-coordinates. But keep in mind that we also need to know that the graph is, in fact, an exponential
function. Not every graph that looks exponential really is exponential. We need to know the graph is
based on a model that shows the same percent growth with each unit increase in which in many real
world cases involves time.
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HOW TO

Given the graph of an exponential function, write its equation.

1. First, identify two points on the graph. Choose the y-intercept as one of the two points whenever possible. Try to
choose points that are as far apart as possible to reduce round-off error.

2. If one of the data points is the y-intercept , then is the initial value. Using substitute the second point
into the equation and solve for

3. If neither of the data points have the form substitute both points into two equations with the form
Solve the resulting system of two equations in two unknowns to find and

4. Write the exponential function,

EXAMPLE 6

Writing an Exponential Function Given Its Graph
Find an equation for the exponential function graphed in Figure 5.

Figure 5

Solution
We can choose the y-intercept of the graph, as our first point. This gives us the initial value, Next, choose a
point on the curve some distance away from that has integer coordinates. One such point is

Because we restrict ourselves to positive values of we will use Substitute and into the standard form to yield
the equation

TRY IT #6 Find an equation for the exponential function graphed in Figure 6.
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Figure 6

HOW TO

Given two points on the curve of an exponential function, use a graphing calculator to find the equation.

1. Press [STAT].
2. Clear any existing entries in columns L1 or L2.
3. In L1, enter the x-coordinates given.
4. In L2, enter the corresponding y-coordinates.
5. Press [STAT] again. Cursor right to CALC, scroll down to ExpReg (Exponential Regression), and press [ENTER].
6. The screen displays the values of a and b in the exponential equation .

EXAMPLE 7

Using a Graphing Calculator to Find an Exponential Function
Use a graphing calculator to find the exponential equation that includes the points and

Solution
Follow the guidelines above. First press [STAT], [EDIT], [1: Edit…], and clear the lists L1 and L2. Next, in the L1 column,
enter the x-coordinates, 2 and 5. Do the same in the L2 column for the y-coordinates, 24.8 and 198.4.

Now press [STAT], [CALC], [0: ExpReg] and press [ENTER]. The values and will be displayed. The
exponential equation is

TRY IT #7 Use a graphing calculator to find the exponential equation that includes the points (3, 75.98) and
(6, 481.07).

Applying the Compound-Interest Formula
Savings instruments in which earnings are continually reinvested, such as mutual funds and retirement accounts, use
compound interest. The term compounding refers to interest earned not only on the original value, but on the
accumulated value of the account.

The annual percentage rate (APR) of an account, also called the nominal rate, is the yearly interest rate earned by an
investment account. The term nominal is used when the compounding occurs a number of times other than once per
year. In fact, when interest is compounded more than once a year, the effective interest rate ends up being greater than
the nominal rate! This is a powerful tool for investing.
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We can calculate the compound interest using the compound interest formula, which is an exponential function of the
variables time principal APR and number of compounding periods in a year

For example, observe Table 4, which shows the result of investing $1,000 at 10% for one year. Notice how the value of the
account increases as the compounding frequency increases.

Frequency Value after 1 year

Annually $1100

Semiannually $1102.50

Quarterly $1103.81

Monthly $1104.71

Daily $1105.16

Table 4

The Compound Interest Formula

Compound interest can be calculated using the formula

where

• is the account value,
• is measured in years,
• is the starting amount of the account, often called the principal, or more generally present value,
• is the annual percentage rate (APR) expressed as a decimal, and
• is the number of compounding periods in one year.

EXAMPLE 8

Calculating Compound Interest
If we invest $3,000 in an investment account paying 3% interest compounded quarterly, how much will the account be
worth in 10 years?

Solution
Because we are starting with $3,000, Our interest rate is 3%, so Because we are compounding
quarterly, we are compounding 4 times per year, so We want to know the value of the account in 10 years, so we
are looking for the value when

The account will be worth about $4,045.05 in 10 years.

TRY IT #8 An initial investment of $100,000 at 12% interest is compounded weekly (use 52 weeks in a year).
What will the investment be worth in 30 years?
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EXAMPLE 9

Using the Compound Interest Formula to Solve for the Principal
A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child’s future college tuition; the
account grows tax-free. Lily wants to set up a 529 account for her new granddaughter and wants the account to grow to
$40,000 over 18 years. She believes the account will earn 6% compounded semi-annually (twice a year). To the nearest
dollar, how much will Lily need to invest in the account now?

Solution
The nominal interest rate is 6%, so Interest is compounded twice a year, so

We want to find the initial investment, needed so that the value of the account will be worth $40,000 in years.
Substitute the given values into the compound interest formula, and solve for

Lily will need to invest $13,801 to have $40,000 in 18 years.

TRY IT #9 Refer to Example 9. To the nearest dollar, how much would Lily need to invest if the account is
compounded quarterly?

Evaluating Functions with Base e
As we saw earlier, the amount earned on an account increases as the compounding frequency increases. Table 5 shows
that the increase from annual to semi-annual compounding is larger than the increase from monthly to daily
compounding. This might lead us to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year, compounded at various frequencies, listed in Table 5.

Frequency Value

Annually $2

Semiannually $2.25

Quarterly $2.441406

Monthly $2.613035

Daily $2.714567

Hourly $2.718127

Once per minute $2.718279

Once per second $2.718282

Table 5
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These values appear to be approaching a limit as increases without bound. In fact, as gets larger and larger, the
expression approaches a number used so frequently in mathematics that it has its own name: the letter This
value is an irrational number, which means that its decimal expansion goes on forever without repeating. Its
approximation to six decimal places is shown below.

The Number

The letter e represents the irrational number

The letter e is used as a base for many real-world exponential models. To work with base e, we use the
approximation, The constant was named by the Swiss mathematician Leonhard Euler (1707–1783) who
first investigated and discovered many of its properties.

EXAMPLE 10

Using a Calculator to Find Powers of e
Calculate Round to five decimal places.

Solution
On a calculator, press the button labeled The window shows Type and then close parenthesis,
Press [ENTER]. Rounding to decimal places, Caution: Many scientific calculators have an “Exp”
button, which is used to enter numbers in scientific notation. It is not used to find powers of

TRY IT #10 Use a calculator to find Round to five decimal places.

Investigating Continuous Growth
So far we have worked with rational bases for exponential functions. For most real-world phenomena, however, e is used
as the base for exponential functions. Exponential models that use as the base are called continuous growth or decay
models. We see these models in finance, computer science, and most of the sciences, such as physics, toxicology, and
fluid dynamics.

The Continuous Growth/Decay Formula

For all real numbers and all positive numbers and continuous growth or decay is represented by the formula

where

• is the initial value,
• is the continuous growth rate per unit time,
• and is the elapsed time.

If , then the formula represents continuous growth. If , then the formula represents continuous decay.

For business applications, the continuous growth formula is called the continuous compounding formula and takes
the form

where

• is the principal or the initial invested,
• is the growth or interest rate per unit time,
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• and is the period or term of the investment.

HOW TO

Given the initial value, rate of growth or decay, and time solve a continuous growth or decay function.

1. Use the information in the problem to determine , the initial value of the function.
2. Use the information in the problem to determine the growth rate

a. If the problem refers to continuous growth, then
b. If the problem refers to continuous decay, then

3. Use the information in the problem to determine the time
4. Substitute the given information into the continuous growth formula and solve for

EXAMPLE 11

Calculating Continuous Growth
A person invested $1,000 in an account earning a nominal 10% per year compounded continuously. How much was in
the account at the end of one year?

Solution
Since the account is growing in value, this is a continuous compounding problem with growth rate The initial
investment was $1,000, so We use the continuous compounding formula to find the value after year:

The account is worth $1,105.17 after one year.

TRY IT #11 A person invests $100,000 at a nominal 12% interest per year compounded continuously. What
will be the value of the investment in 30 years?

EXAMPLE 12

Calculating Continuous Decay
Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay to in 3 days?

Solution
Since the substance is decaying, the rate, , is negative. So, The initial amount of radon-222 was

mg, so We use the continuous decay formula to find the value after days:

So 59.5115 mg of radon-222 will remain.

TRY IT #12 Using the data in Example 12, how much radon-222 will remain after one year?

MEDIA

Access these online resources for additional instruction and practice with exponential functions.
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Exponential Growth Function (http://openstax.org/l/expgrowth)
Compound Interest (http://openstax.org/l/compoundint)

6.1 SECTION EXERCISES
Verbal

1. Explain why the values of an
increasing exponential
function will eventually
overtake the values of an
increasing linear function.

2. Given a formula for an
exponential function, is it
possible to determine
whether the function grows
or decays exponentially just
by looking at the formula?
Explain.

3. The Oxford Dictionary
defines the word nominal as
a value that is “stated or
expressed but not
necessarily corresponding
exactly to the real value.”3

Develop a reasonable
argument for why the term
nominal rate is used to
describe the annual
percentage rate of an
investment account that
compounds interest.

Algebraic

For the following exercises, identify whether the statement represents an exponential function. Explain.

4. The average annual
population increase of a
pack of wolves is 25.

5. A population of bacteria
decreases by a factor of
every hours.

6. The value of a coin collection
has increased by
annually over the last
years.

7. For each training session, a
personal trainer charges his
clients less than the
previous training session.

8. The height of a projectile at
time is represented by the
function

For the following exercises, consider this scenario: For each year the population of a forest of trees is represented by
the function In a neighboring forest, the population of the same type of tree is represented by the
function (Round answers to the nearest whole number.)

9. Which forest’s population is
growing at a faster rate?

10. Which forest had a greater
number of trees initially?
By how many?

11. Assuming the population
growth models continue to
represent the growth of
the forests, which forest
will have a greater number
of trees after years? By
how many?

3 Oxford Dictionary. http://oxforddictionaries.com/us/definition/american_english/nomina.
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12. Assuming the population
growth models continue to
represent the growth of
the forests, which forest
will have a greater number
of trees after years? By
how many?

13. Discuss the above results
from the previous four
exercises. Assuming the
population growth models
continue to represent the
growth of the forests,
which forest will have the
greater number of trees in
the long run? Why? What
are some factors that
might influence the long-
term validity of the
exponential growth model?

For the following exercises, determine whether the equation represents exponential growth, exponential decay, or
neither. Explain.

14. 15. 16.

17.

For the following exercises, find the formula for an exponential function that passes through the two points given.

18. and 19. and 20. and

21. and 22. and

For the following exercises, determine whether the table could represent a function that is linear, exponential, or
neither. If it appears to be exponential, find a function that passes through the points.

23.
1 2 3 4

70 40 10 -20

24.
1 2 3 4

70 49 34.3 24.01

25.
1 2 3 4

80 61 42.9 25.61

26.
1 2 3 4

10 20 40 80

27.
1 2 3 4

-3.25 2 7.25 12.5
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For the following exercises, use the compound interest formula,

28. After a certain number of
years, the value of an
investment account is
represented by the
equation

What is the value of the
account?

29. What was the initial deposit
made to the account in the
previous exercise?

30. How many years had the
account from the previous
exercise been
accumulating interest?

31. An account is opened with
an initial deposit of $6,500
and earns interest
compounded semi-
annually. What will the
account be worth in
years?

32. How much more would the
account in the previous
exercise have been worth if
the interest were
compounding weekly?

33. Solve the compound
interest formula for the
principal, .

34. Use the formula found in
the previous exercise to
calculate the initial deposit
of an account that is worth

after earning
interest compounded

monthly for years.
(Round to the nearest
dollar.)

35. How much more would the
account in the previous
two exercises be worth if it
were earning interest for
more years?

36. Use properties of rational
exponents to solve the
compound interest formula
for the interest rate,

37. Use the formula found in
the previous exercise to
calculate the interest rate
for an account that was
compounded semi-
annually, had an initial
deposit of $9,000 and was
worth $13,373.53 after 10
years.

38. Use the formula found in
the previous exercise to
calculate the interest rate
for an account that was
compounded monthly, had
an initial deposit of $5,500,
and was worth $38,455
after 30 years.

For the following exercises, determine whether the equation represents continuous growth, continuous decay, or
neither. Explain.

39. 40. 41.

42. Suppose an investment
account is opened with an
initial deposit of
earning interest
compounded continuously.
How much will the account
be worth after years?

43. How much less would the
account from Exercise 42
be worth after years if it
were compounded
monthly instead?
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Numeric

For the following exercises, evaluate each function. Round answers to four decimal places, if necessary.

44. for 45. for 46. for

47. for 48.
for

49. for

50. for

Technology

For the following exercises, use a graphing calculator to find the equation of an exponential function given the points on
the curve.

51. and 52. and 53. and

54. and 55. and

Extensions

56. The annual percentage
yield (APY) of an
investment account is a
representation of the
actual interest rate earned
on a compounding
account. It is based on a
compounding period of
one year. Show that the
APY of an account that
compounds monthly can
be found with the formula

57. Repeat the previous
exercise to find the formula
for the APY of an account
that compounds daily. Use
the results from this and
the previous exercise to
develop a function for
the APY of any account that
compounds times per
year.

58. Recall that an exponential
function is any equation
written in the form

such that
and are positive
numbers and Any
positive number can be
written as for
some value of . Use this
fact to rewrite the formula
for an exponential function
that uses the number as
a base.
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59. In an exponential decay
function, the base of the
exponent is a value
between 0 and 1. Thus, for
some number the
exponential decay function
can be written as

Use this
formula, along with the
fact that to show
that an exponential decay
function takes the form

for some
positive number .

60. The formula for the
amount in an investment
account with a nominal
interest rate at any time
is given by
where is the amount of
principal initially deposited
into an account that
compounds continuously.
Prove that the percentage
of interest earned to
principal at any time can
be calculated with the
formula

Real-World Applications

61. The fox population in a
certain region has an
annual growth rate of 9%
per year. In the year 2012,
there were 23,900 fox
counted in the area. What
is the fox population
predicted to be in the year
2020?

62. A scientist begins with 100
milligrams of a radioactive
substance that decays
exponentially. After 35
hours, 50mg of the
substance remains. How
many milligrams will
remain after 54 hours?

63. In the year 1985, a house
was valued at $110,000. By
the year 2005, the value
had appreciated to
$145,000. What was the
annual growth rate
between 1985 and 2005?
Assume that the value
continued to grow by the
same percentage. What
was the value of the house
in the year 2010?

64. A car was valued at $38,000
in the year 2007. By 2013,
the value had depreciated
to $11,000 If the car’s value
continues to drop by the
same percentage, what will
it be worth by 2017?

65. Jaylen wants to save
$54,000 for a down
payment on a home. How
much will he need to invest
in an account with 8.2%
APR, compounding daily, in
order to reach his goal in 5
years?

66. Kyoko has $10,000 that she
wants to invest. Her bank
has several investment
accounts to choose from,
all compounding daily. Her
goal is to have $15,000 by
the time she finishes
graduate school in 6 years.
To the nearest hundredth
of a percent, what should
her minimum annual
interest rate be in order to
reach her goal? (Hint: solve
the compound interest
formula for the interest
rate.)
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67. Alyssa opened a retirement
account with 7.25% APR in
the year 2000. Her initial
deposit was $13,500. How
much will the account be
worth in 2025 if interest
compounds monthly? How
much more would she
make if interest
compounded
continuously?

68. An investment account
with an annual interest
rate of 7% was opened with
an initial deposit of $4,000
Compare the values of the
account after 9 years when
the interest is compounded
annually, quarterly,
monthly, and continuously.

6.2 Graphs of Exponential Functions
Learning Objectives

Graph exponential functions.
Graph exponential functions using transformations.

As we discussed in the previous section, exponential functions are used for many real-world applications such as finance,
forensics, computer science, and most of the life sciences. Working with an equation that describes a real-world situation
gives us a method for making predictions. Most of the time, however, the equation itself is not enough. We learn a lot
about things by seeing their pictorial representations, and that is exactly why graphing exponential equations is a
powerful tool. It gives us another layer of insight for predicting future events.

Graphing Exponential Functions
Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of values for a
function of the form whose base is greater than one. We’ll use the function Observe how the
output values in Table 1 change as the input increases by

Table 1

Each output value is the product of the previous output and the base, We call the base the constant ratio. In fact, for
any exponential function with the form is the constant ratio of the function. This means that as the input
increases by 1, the output value will be the product of the base and the previous output, regardless of the value of

Notice from the table that

• the output values are positive for all values of
• as increases, the output values increase without bound; and
• as decreases, the output values grow smaller, approaching zero.

Figure 1 shows the exponential growth function
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Figure 1 Notice that the graph gets close to the x-axis, but never touches it.

The domain of is all real numbers, the range is ∞ and the horizontal asymptote is

To get a sense of the behavior of exponential decay, we can create a table of values for a function of the form
whose base is between zero and one. We’ll use the function Observe how the output values in

Table 2 change as the input increases by

Table 2

Again, because the input is increasing by 1, each output value is the product of the previous output and the base, or
constant ratio

Notice from the table that

• the output values are positive for all values of
• as increases, the output values grow smaller, approaching zero; and
• as decreases, the output values grow without bound.

Figure 2 shows the exponential decay function,
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Figure 2

The domain of is all real numbers, the range is ∞ and the horizontal asymptote is

Characteristics of the Graph of the Parent Function

An exponential function with the form has these characteristics:

• one-to-one function
• horizontal asymptote:

• domain: ∞ ∞
• range: ∞
• x-intercept: none
• y-intercept:
• increasing if
• decreasing if

Figure 3 compares the graphs of exponential growth and decay functions.

Figure 3
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HOW TO

Given an exponential function of the form graph the function.

1. Create a table of points.
2. Plot at least point from the table, including the y-intercept
3. Draw a smooth curve through the points.

4. State the domain, ∞ ∞ the range, ∞ and the horizontal asymptote,

EXAMPLE 1

Sketching the Graph of an Exponential Function of the Form f(x) = bx

Sketch a graph of State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and create a table of points for the graph.

• Since is between zero and one, we know the function is decreasing. The left tail of the graph will increase
without bound, and the right tail will approach the asymptote

• Create a table of points as in Table 3.

Table 3

• Plot the y-intercept, along with two other points. We can use and

Draw a smooth curve connecting the points as in Figure 4.

Figure 4

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #1 Sketch the graph of State the domain, range, and asymptote.

Graphing Transformations of Exponential Functions
Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions,
we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function

without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when shifted,
reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of the
transformations applied.
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Graphing a Vertical Shift
The first transformation occurs when we add a constant to the parent function giving us a vertical shift
units in the same direction as the sign. For example, if we begin by graphing a parent function, we can then
graph two vertical shifts alongside it, using the upward shift, and the downward shift,

Both vertical shifts are shown in Figure 5.

Figure 5

Observe the results of shifting vertically:

• The domain, ∞ ∞ remains unchanged.

• When the function is shifted up units to
◦ The y-intercept shifts up units to
◦ The asymptote shifts up units to

◦ The range becomes ∞

• When the function is shifted down units to
◦ The y-intercept shifts down units to
◦ The asymptote also shifts down units to

◦ The range becomes ∞

Graphing a Horizontal Shift
The next transformation occurs when we add a constant to the input of the parent function giving us a
horizontal shift units in the opposite direction of the sign. For example, if we begin by graphing the parent function

we can then graph two horizontal shifts alongside it, using the shift left, and the shift
right, Both horizontal shifts are shown in Figure 6.

Figure 6

Observe the results of shifting horizontally:

• The domain, ∞ ∞ remains unchanged.

• The asymptote, remains unchanged.
• The y-intercept shifts such that:

◦ When the function is shifted left units to the y-intercept becomes This is because
so the initial value of the function is

◦ When the function is shifted right units to the y-intercept becomes Again, see that

so the initial value of the function is
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Shifts of the Parent Function f(x) = b x

For any constants and the function shifts the parent function

• vertically units, in the same direction of the sign of
• horizontally units, in the opposite direction of the sign of
• The y-intercept becomes
• The horizontal asymptote becomes

• The range becomes ∞

• The domain, ∞ ∞ remains unchanged.

HOW TO

Given an exponential function with the form graph the translation.

1. Draw the horizontal asymptote
2. Identify the shift as Shift the graph of left units if is positive, and right units if is

negative.
3. Shift the graph of up units if is positive, and down units if is negative.

4. State the domain, ∞ ∞ the range, ∞ and the horizontal asymptote

EXAMPLE 2

Graphing a Shift of an Exponential Function
Graph State the domain, range, and asymptote.

Solution
We have an exponential equation of the form with and

Draw the horizontal asymptote , so draw

Identify the shift as so the shift is

Shift the graph of left 1 units and down 3 units.

Figure 7

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #2 Graph State domain, range, and asymptote.
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...
HOW TO

Given an equation of the form for use a graphing calculator to approximate the solution.

• Press [Y=]. Enter the given exponential equation in the line headed “Y1=”.
• Enter the given value for in the line headed “Y2=”.
• Press [WINDOW]. Adjust the y-axis so that it includes the value entered for “Y2=”.
• Press [GRAPH] to observe the graph of the exponential function along with the line for the specified value of

• To find the value of we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect” and
press [ENTER] three times. The point of intersection gives the value of x for the indicated value of the function.

EXAMPLE 3

Approximating the Solution of an Exponential Equation
Solve graphically. Round to the nearest thousandth.

Solution
Press [Y=] and enter next to Y1=. Then enter 42 next to Y2=. For a window, use the values –3 to 3 for and
–5 to 55 for Press [GRAPH]. The graphs should intersect somewhere near

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as 2.1661943. (Your answer may be different if you use a different
window or use a different value for Guess?) To the nearest thousandth,

TRY IT #3 Solve graphically. Round to the nearest thousandth.

Graphing a Stretch or Compression
While horizontal and vertical shifts involve adding constants to the input or to the function itself, a stretch or
compression occurs when we multiply the parent function by a constant For example, if we begin by
graphing the parent function we can then graph the stretch, using to get as shown on
the left in Figure 8, and the compression, using to get as shown on the right in Figure 8.

Figure 8 (a) stretches the graph of vertically by a factor of (b) compresses the

graph of vertically by a factor of
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Stretches and Compressions of the Parent Function

For any factor the function

• is stretched vertically by a factor of if
• is compressed vertically by a factor of if
• has a y-intercept of

• has a horizontal asymptote at a range of ∞ and a domain of ∞ ∞ which are unchanged from

the parent function.

EXAMPLE 4

Graphing the Stretch of an Exponential Function

Sketch a graph of State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and key points on the graph.

• Since is between zero and one, the left tail of the graph will increase without bound as decreases, and the
right tail will approach the x-axis as increases.

• Since the graph of will be stretched by a factor of
• Create a table of points as shown in Table 4.

Table 4

• Plot the y-intercept, along with two other points. We can use and

Draw a smooth curve connecting the points, as shown in Figure 9.

Figure 9

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #4 Sketch the graph of State the domain, range, and asymptote.

Graphing Reflections
In addition to shifting, compressing, and stretching a graph, we can also reflect it about the x-axis or the y-axis. When we
multiply the parent function by we get a reflection about the x-axis. When we multiply the input by we
get a reflection about the y-axis. For example, if we begin by graphing the parent function we can then graph
the two reflections alongside it. The reflection about the x-axis, is shown on the left side of Figure 10, and
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the reflection about the y-axis is shown on the right side of Figure 10.

Figure 10 (a) reflects the graph of about the x-axis. (b) reflects the graph of
about the y-axis.

Reflections of the Parent Function

The function

• reflects the parent function about the x-axis.
• has a y-intercept of

• has a range of ∞

• has a horizontal asymptote at and domain of ∞ ∞ which are unchanged from the parent function.

The function

• reflects the parent function about the y-axis.

• has a y-intercept of a horizontal asymptote at a range of ∞ and a domain of ∞ ∞ which

are unchanged from the parent function.

EXAMPLE 5

Writing and Graphing the Reflection of an Exponential Function
Find and graph the equation for a function, that reflects about the x-axis. State its domain, range, and
asymptote.

Solution
Since we want to reflect the parent function about the x-axis, we multiply by to get,
Next we create a table of points as in Table 5.

Table 5

Plot the y-intercept, along with two other points. We can use and

Draw a smooth curve connecting the points:
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Figure 11

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #5 Find and graph the equation for a function, that reflects about the y-axis. State
its domain, range, and asymptote.

Summarizing Translations of the Exponential Function
Now that we have worked with each type of translation for the exponential function, we can summarize them in Table 6
to arrive at the general equation for translating exponential functions.

Translations of the Parent Function

Translation Form

Shift
• Horizontally units to the left

• Vertically units up

Stretch and Compress
• Stretch if

• Compression if

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations

Table 6

Translations of Exponential Functions

A translation of an exponential function has the form

Where the parent function, is

• shifted horizontally units to the left.
• stretched vertically by a factor of if
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• compressed vertically by a factor of if
• shifted vertically units.
• reflected about the x-axis when

Note the order of the shifts, transformations, and reflections follow the order of operations.

EXAMPLE 6

Writing a Function from a Description

Write the equation for the function described below. Give the horizontal asymptote, the domain, and the range.

• is vertically stretched by a factor of , reflected across the y-axis, and then shifted up units.

Solution
We want to find an equation of the general form We use the description provided to find and

• We are given the parent function so
• The function is stretched by a factor of , so
• The function is reflected about the y-axis. We replace with to get:
• The graph is shifted vertically 4 units, so

Substituting in the general form we get,

The domain is ∞ ∞ the range is ∞ the horizontal asymptote is

TRY IT #6 Write the equation for function described below. Give the horizontal asymptote, the domain, and
the range.

• is compressed vertically by a factor of reflected across the x-axis and then

shifted down units.

MEDIA

Access this online resource for additional instruction and practice with graphing exponential functions.

Graph Exponential Functions (http://openstax.org/l/graphexpfunc)

6.2 SECTION EXERCISES
Verbal

1. What role does the
horizontal asymptote of an
exponential function play in
telling us about the end
behavior of the graph?

2. What is the advantage of
knowing how to recognize
transformations of the
graph of a parent function
algebraically?
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Algebraic

3. The graph of is
reflected about the y-axis
and stretched vertically by a
factor of What is the
equation of the new
function, State its
y-intercept, domain, and
range.

4. The graph of
is reflected about the y-axis
and compressed vertically
by a factor of What is the
equation of the new
function, State its
y-intercept, domain, and
range.

5. The graph of is
reflected about the x-axis
and shifted upward units.
What is the equation of the
new function, State its
y-intercept, domain, and
range.

6. The graph of
is shifted right units,
stretched vertically by a
factor of reflected about
the x-axis, and then shifted
downward units. What is
the equation of the new
function, State its
y-intercept (to the nearest
thousandth), domain, and
range.

7. The graph of

is
shifted downward units,
and then shifted left units,
stretched vertically by a
factor of and reflected
about the x-axis. What is the
equation of the new
function, State its
y-intercept, domain, and
range.

Graphical

For the following exercises, graph the function and its reflection about the y-axis on the same axes, and give the
y-intercept.

8. 9. 10.

For the following exercises, graph each set of functions on the same axes.

11.
and

12. and

For the following exercises, match each function with one of the graphs in Figure 12.

Figure 12

572 6 • Exponential and Logarithmic Functions

Access for free at openstax.org



13. 14. 15.

16. 17. 18.

For the following exercises, use the graphs shown in Figure 13. All have the form

Figure 13

19. Which graph has the
largest value for

20. Which graph has the
smallest value for

21. Which graph has the
largest value for

22. Which graph has the
smallest value for

For the following exercises, graph the function and its reflection about the x-axis on the same axes.

23. 24. 25.

For the following exercises, graph the transformation of Give the horizontal asymptote, the domain, and the
range.

26. 27. 28.

For the following exercises, describe the end behavior of the graphs of the functions.

29. 30. 31.

For the following exercises, start with the graph of Then write a function that results from the given
transformation.

32. Shift 4 units upward 33. Shift 3 units
downward

34. Shift 2 units left

35. Shift 5 units right 36. Reflect about the
x-axis

37. Reflect about the
y-axis
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For the following exercises, each graph is a transformation of Write an equation describing the transformation.

38. 39. 40.

For the following exercises, find an exponential equation for the graph.

41. 42.

Numeric

For the following exercises, evaluate the exponential functions for the indicated value of

43. for 44. for 45. for

Technology

For the following exercises, use a graphing calculator to approximate the solutions of the equation. Round to the nearest
thousandth.

46. 47. 48.

49. 50.
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Extensions

51. Explore and discuss the graphs of
and Then make a conjecture about
the relationship between the graphs of the
functions and for any real number

52. Prove the conjecture made in the previous
exercise.

53. Explore and discuss the graphs of
and Then make a

conjecture about the relationship between the
graphs of the functions and for any

real number n and real number

54. Prove the conjecture made in the previous
exercise.

6.3 Logarithmic Functions
Learning Objectives
In this section, you will:

Convert from logarithmic to exponential form.
Convert from exponential to logarithmic form.
Evaluate logarithms.
Use common logarithms.
Use natural logarithms.

Figure 1 Devastation of March 11, 2011 earthquake in Honshu, Japan. (credit: Daniel Pierce)

In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes4 . One year later, another,
stronger earthquake devastated Honshu, Japan, destroying or damaging over 332,000 buildings,5 like those shown in
Figure 1. Even though both caused substantial damage, the earthquake in 2011 was 100 times stronger than the
earthquake in Haiti. How do we know? The magnitudes of earthquakes are measured on a scale known as the Richter
Scale. The Haitian earthquake registered a 7.0 on the Richter Scale6 whereas the Japanese earthquake registered a 9.0.7

The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice as great as
an earthquake of magnitude 4. It is times as great! In this lesson, we will investigate the nature of
the Richter Scale and the base-ten function upon which it depends.

Converting from Logarithmic to Exponential Form
In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes, we need to
be able to convert between logarithmic and exponential form. For example, suppose the amount of energy released

4 http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary. Accessed 3/4/2013.

5 http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary. Accessed 3/4/2013.

6 http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/. Accessed 3/4/2013.

7 http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#details. Accessed 3/4/2013.
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from one earthquake were 500 times greater than the amount of energy released from another. We want to calculate
the difference in magnitude. The equation that represents this problem is where represents the difference
in magnitudes on the Richter Scale. How would we solve for

We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed so far is
sufficient to solve We know that and so it is clear that must be some value between
2 and 3, since is increasing. We can examine a graph, as in Figure 2, to better estimate the solution.

Figure 2

Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new function.
Observe that the graph in Figure 2 passes the horizontal line test. The exponential function is one-to-one, so its
inverse, is also a function. As is the case with all inverse functions, we simply interchange and and solve for
to find the inverse function. To represent as a function of we use a logarithmic function of the form
The base logarithm of a number is the exponent by which we must raise to get that number.

We read a logarithmic expression as, “The logarithm with base of is equal to ” or, simplified, “log base of is ”
We can also say, “ raised to the power of is ” because logs are exponents. For example, the base 2 logarithm of 32
is 5, because 5 is the exponent we must apply to 2 to get 32. Since we can write We read this as “log
base 2 of 32 is 5.”

We can express the relationship between logarithmic form and its corresponding exponential form as follows:

Note that the base is always positive.

Because logarithm is a function, it is most correctly written as using parentheses to denote function evaluation,
just as we would with However, when the input is a single variable or number, it is common to see the parentheses
dropped and the expression written without parentheses, as Note that many calculators require parentheses
around the

We can illustrate the notation of logarithms as follows:

Notice that, comparing the logarithm function and the exponential function, the input and the output are switched. This
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means and are inverse functions.

Definition of the Logarithmic Function

A logarithm base of a positive number satisfies the following definition.

For

where,

• we read as, “the logarithm with base of ” or the “log base of
• the logarithm is the exponent to which must be raised to get

Also, since the logarithmic and exponential functions switch the and values, the domain and range of the
exponential function are interchanged for the logarithmic function. Therefore,

• the domain of the logarithm function with base ∞
• the range of the logarithm function with base ∞ ∞

Q&A Can we take the logarithm of a negative number?

No. Because the base of an exponential function is always positive, no power of that base can ever be
negative. We can never take the logarithm of a negative number. Also, we cannot take the logarithm of
zero. Calculators may output a log of a negative number when in complex mode, but the log of a negative
number is not a real number.

HOW TO

Given an equation in logarithmic form convert it to exponential form.

1. Examine the equation and identify
2. Rewrite as

EXAMPLE 1

Converting from Logarithmic Form to Exponential Form
Write the following logarithmic equations in exponential form.

ⓐ ⓑ
Solution

First, identify the values of Then, write the equation in the form

ⓐ
Here, Therefore, the equation is equivalent to

ⓑ
Here, Therefore, the equation is equivalent to

TRY IT #1 Write the following logarithmic equations in exponential form.

ⓐ ⓑ
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Converting from Exponential to Logarithmic Form
To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base exponent and
output Then we write

EXAMPLE 2

Converting from Exponential Form to Logarithmic Form
Write the following exponential equations in logarithmic form.

a.
b.
c.

Solution
First, identify the values of Then, write the equation in the form

a.
Here, and Therefore, the equation is equivalent to

b.
Here, and Therefore, the equation is equivalent to

c.

Here, and Therefore, the equation is equivalent to

TRY IT #2 Write the following exponential equations in logarithmic form.

ⓐ ⓑ ⓒ

Evaluating Logarithms
Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example,
consider We ask, “To what exponent must be raised in order to get 8?” Because we already know it
follows that

Now consider solving and mentally.

• We ask, “To what exponent must 7 be raised in order to get 49?” We know Therefore,
• We ask, “To what exponent must 3 be raised in order to get 27?” We know Therefore,

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate
mentally.

• We ask, “To what exponent must be raised in order to get ” We know and so

Therefore,

HOW TO

Given a logarithm of the form evaluate it mentally.

1. Rewrite the argument as a power of
2. Use previous knowledge of powers of identify by asking, “To what exponent should be raised in order to get

”
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EXAMPLE 3

Solving Logarithms Mentally
Solve without using a calculator.

Solution
First we rewrite the logarithm in exponential form: Next, we ask, “To what exponent must 4 be raised in order
to get 64?”

We know

Therefore,

TRY IT #3 Solve without using a calculator.

EXAMPLE 4

Evaluating the Logarithm of a Reciprocal
Evaluate without using a calculator.

Solution
First we rewrite the logarithm in exponential form: Next, we ask, “To what exponent must 3 be raised in order

to get ”

We know but what must we do to get the reciprocal, Recall from working with exponents that

We use this information to write

Therefore,

TRY IT #4 Evaluate without using a calculator.

Using Common Logarithms
Sometimes we may see a logarithm written without a base. In this case, we assume that the base is 10. In other words,
the expression means We call a base-10 logarithm a common logarithm. Common logarithms are
used to measure the Richter Scale mentioned at the beginning of the section. Scales for measuring the brightness of
stars and the pH of acids and bases also use common logarithms.

Definition of the Common Logarithm

A common logarithm is a logarithm with base We write simply as The common logarithm of a
positive number satisfies the following definition.

For

We read as, “the logarithm with base of ” or “log base 10 of ”

The logarithm is the exponent to which must be raised to get
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HOW TO

Given a common logarithm of the form evaluate it mentally.

1. Rewrite the argument as a power of
2. Use previous knowledge of powers of to identify by asking, “To what exponent must be raised in order to

get ”

EXAMPLE 5

Finding the Value of a Common Logarithm Mentally
Evaluate without using a calculator.

Solution
First we rewrite the logarithm in exponential form: Next, we ask, “To what exponent must be raised in
order to get 1000?” We know

Therefore,

TRY IT #5 Evaluate

HOW TO

Given a common logarithm with the form evaluate it using a calculator.

1. Press [LOG].
2. Enter the value given for followed by [ ) ].
3. Press [ENTER].

EXAMPLE 6

Finding the Value of a Common Logarithm Using a Calculator
Evaluate to four decimal places using a calculator.

Solution
• Press [LOG].
• Enter 321, followed by [ ) ].
• Press [ENTER].

Rounding to four decimal places,

Analysis
Note that and that Since 321 is between 100 and 1000, we know that must be between

and This gives us the following:

TRY IT #6 Evaluate to four decimal places using a calculator.
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EXAMPLE 7

Rewriting and Solving a Real-World Exponential Model
The amount of energy released from one earthquake was 500 times greater than the amount of energy released from
another. The equation represents this situation, where is the difference in magnitudes on the Richter Scale.
To the nearest thousandth, what was the difference in magnitudes?

Solution
We begin by rewriting the exponential equation in logarithmic form.

Next we evaluate the logarithm using a calculator:

• Press [LOG].
• Enter followed by [ ) ].
• Press [ENTER].
• To the nearest thousandth,

The difference in magnitudes was about

TRY IT #7 The amount of energy released from one earthquake was times greater than the amount of
energy released from another. The equation represents this situation, where is the
difference in magnitudes on the Richter Scale. To the nearest thousandth, what was the difference
in magnitudes?

Using Natural Logarithms
The most frequently used base for logarithms is Base logarithms are important in calculus and some scientific
applications; they are called natural logarithms. The base logarithm, has its own notation,

Most values of can be found only using a calculator. The major exception is that, because the logarithm of 1 is
always 0 in any base, For other natural logarithms, we can use the key that can be found on most scientific
calculators. We can also find the natural logarithm of any power of using the inverse property of logarithms.

Definition of the Natural Logarithm

A natural logarithm is a logarithm with base We write simply as The natural logarithm of a positive
number satisfies the following definition.

For

We read as, “the logarithm with base of ” or “the natural logarithm of ”

The logarithm is the exponent to which must be raised to get

Since the functions and are inverse functions, for all and for

HOW TO

Given a natural logarithm with the form evaluate it using a calculator.

1. Press [LN].
2. Enter the value given for followed by [ ) ].
3. Press [ENTER].
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EXAMPLE 8

Evaluating a Natural Logarithm Using a Calculator
Evaluate to four decimal places using a calculator.

Solution
• Press [LN].
• Enter followed by [ ) ].
• Press [ENTER].

Rounding to four decimal places,

TRY IT #8 Evaluate

MEDIA

Access this online resource for additional instruction and practice with logarithms.

Introduction to Logarithms (http://openstax.org/l/intrologarithms)

6.3 SECTION EXERCISES
Verbal

1. What is a base logarithm?
Discuss the meaning by
interpreting each part of the
equivalent equations
and for

2. How is the logarithmic
function
related to the exponential
function What is
the result of composing
these two functions?

3. How can the logarithmic
equation be
solved for using the
properties of exponents?

4. Discuss the meaning of the
common logarithm. What is
its relationship to a
logarithm with base and
how does the notation
differ?

5. Discuss the meaning of the
natural logarithm. What is
its relationship to a
logarithm with base and
how does the notation
differ?

Algebraic

For the following exercises, rewrite each equation in exponential form.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.
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For the following exercises, rewrite each equation in logarithmic form.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.

For the following exercises, solve for by converting the logarithmic equation to exponential form.

26. 27. 28.

29. 30. 31.

32. 33. 34.

35.

For the following exercises, use the definition of common and natural logarithms to simplify.

36. 37. 38.

39. 40. 41.

Numeric

For the following exercises, evaluate the base logarithmic expression without using a calculator.

42. 43. 44.

45.

For the following exercises, evaluate the common logarithmic expression without using a calculator.

46. 47. 48.

49.

For the following exercises, evaluate the natural logarithmic expression without using a calculator.

50. 51. 52.

53.
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Technology

For the following exercises, evaluate each expression using a calculator. Round to the nearest thousandth.

54. 55. 56.

57. 58.

Extensions

59. Is in the domain of
the function
If so, what is the value of
the function when
Verify the result.

60. Is in the range of
the function
If so, for what value of
Verify the result.

61. Is there a number such
that If so, what is
that number? Verify the
result.

62. Is the following true:

Verify the

result.

63. Is the following true:

Verify

the result.

Real-World Applications

64. The exposure index for
a camera is a
measurement of the
amount of light that hits
the image receptor. It is
determined by the
equation

where

is the “f-stop” setting on
the camera, and is the
exposure time in seconds.
Suppose the f-stop setting
is and the desired
exposure time is seconds.
What will the resulting
exposure index be?

65. Refer to the previous
exercise. Suppose the light
meter on a camera
indicates an of and
the desired exposure time
is 16 seconds. What should
the f-stop setting be?

66. The intensity levels I of two
earthquakes measured on
a seismograph can be
compared by the formula

where

is the magnitude given
by the Richter Scale. In
August 2009, an
earthquake of magnitude
6.1 hit Honshu, Japan. In
March 2011, that same
region experienced yet
another, more devastating
earthquake, this time with
a magnitude of 9.0.8 How
many times greater was
the intensity of the 2011
earthquake? Round to the
nearest whole number.

6.4 Graphs of Logarithmic Functions
Learning Objectives
In this section, you will:

Identify the domain of a logarithmic function.
Graph logarithmic functions.

8 http://earthquake.usgs.gov/earthquakes/world/historical.php. Accessed 3/4/2014.
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In Graphs of Exponential Functions, we saw how creating a graphical representation of an exponential model gives us
another layer of insight for predicting future events. How do logarithmic graphs give us insight into situations? Because
every logarithmic function is the inverse function of an exponential function, we can think of every output on a
logarithmic graph as the input for the corresponding inverse exponential equation. In other words, logarithms give the
cause for an effect.

To illustrate, suppose we invest in an account that offers an annual interest rate of compounded
continuously. We already know that the balance in our account for any year can be found with the equation

But what if we wanted to know the year for any balance? We would need to create a corresponding new function by
interchanging the input and the output; thus we would need to create a logarithmic model for this situation. By
graphing the model, we can see the output (year) for any input (account balance). For instance, what if we wanted to
know how many years it would take for our initial investment to double? Figure 1 shows this point on the logarithmic
graph.

Figure 1

In this section we will discuss the values for which a logarithmic function is defined, and then turn our attention to
graphing the family of logarithmic functions.

Finding the Domain of a Logarithmic Function
Before working with graphs, we will take a look at the domain (the set of input values) for which the logarithmic function
is defined.

Recall that the exponential function is defined as for any real number and constant where

• The domain of is ∞ ∞

• The range of is ∞

In the last section we learned that the logarithmic function is the inverse of the exponential function
So, as inverse functions:

• The domain of is the range of ∞

• The range of is the domain of ∞ ∞

Transformations of the parent function behave similarly to those of other functions. Just as with other
parent functions, we can apply the four types of transformations—shifts, stretches, compressions, and reflections—to
the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of Similarly,
applying transformations to the parent function can change the domain. When finding the domain of a
logarithmic function, therefore, it is important to remember that the domain consists only of positive real numbers. That
is, the argument of the logarithmic function must be greater than zero.
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For example, consider This function is defined for any values of such that the argument, in this
case is greater than zero. To find the domain, we set up an inequality and solve for

In interval notation, the domain of is ∞

HOW TO

Given a logarithmic function, identify the domain.

1. Set up an inequality showing the argument greater than zero.
2. Solve for
3. Write the domain in interval notation.

EXAMPLE 1

Identifying the Domain of a Logarithmic Shift
What is the domain of

Solution
The logarithmic function is defined only when the input is positive, so this function is defined when Solving
this inequality,

The domain of is ∞

TRY IT #1 What is the domain of

EXAMPLE 2

Identifying the Domain of a Logarithmic Shift and Reflection
What is the domain of

Solution
The logarithmic function is defined only when the input is positive, so this function is defined when Solving
this inequality,

The domain of is ∞

TRY IT #2 What is the domain of

Graphing Logarithmic Functions
Now that we have a feel for the set of values for which a logarithmic function is defined, we move on to graphing
logarithmic functions. The family of logarithmic functions includes the parent function along with all its
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transformations: shifts, stretches, compressions, and reflections.

We begin with the parent function Because every logarithmic function of this form is the inverse of an
exponential function with the form their graphs will be reflections of each other across the line To
illustrate this, we can observe the relationship between the input and output values of and its equivalent

in Table 1.

Table 1

Using the inputs and outputs from Table 1, we can build another table to observe the relationship between points on the
graphs of the inverse functions and See Table 2.

Table 2

As we’d expect, the x- and y-coordinates are reversed for the inverse functions. Figure 2 shows the graph of and

Figure 2 Notice that the graphs of and are reflections about the line

Observe the following from the graph:

• has a y-intercept at and has an x- intercept at

• The domain of ∞ ∞ is the same as the range of

• The range of ∞ is the same as the domain of

Characteristics of the Graph of the Parent Function,

For any real number and constant we can see the following characteristics in the graph of
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• one-to-one function
• vertical asymptote:

• domain: ∞
• range: ∞ ∞
• x-intercept: and key point
• y-intercept: none
• increasing if
• decreasing if

See Figure 3.

Figure 3

Figure 4 shows how changing the base in can affect the graphs. Observe that the graphs compress
vertically as the value of the base increases. (Note: recall that the function has base

Figure 4 The graphs of three logarithmic functions with different bases, all greater than 1.

HOW TO

Given a logarithmic function with the form graph the function.

1. Draw and label the vertical asymptote,
2. Plot the x-intercept,
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3. Plot the key point
4. Draw a smooth curve through the points.

5. State the domain, ∞ the range, ∞ ∞ and the vertical asymptote,

EXAMPLE 3

Graphing a Logarithmic Function with the Form f(x) = logb(x).
Graph State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and key points for the graph.

• Since is greater than one, we know the function is increasing. The left tail of the graph will approach the
vertical asymptote and the right tail will increase slowly without bound.

• The x-intercept is
• The key point is on the graph.
• We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points (see

Figure 5).

Figure 5

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #3 Graph State the domain, range, and asymptote.

Graphing Transformations of Logarithmic Functions
As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to those of
other parent functions. We can shift, stretch, compress, and reflect the parent function without loss of
shape.

Graphing a Horizontal Shift of f(x) = logb(x)
When a constant is added to the input of the parent function the result is a horizontal shift units in
the opposite direction of the sign on To visualize horizontal shifts, we can observe the general graph of the parent
function and for alongside the shift left, and the shift right,

See Figure 6.
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Figure 6

Horizontal Shifts of the Parent Function

For any constant the function

• shifts the parent function left units if
• shifts the parent function right units if
• has the vertical asymptote

• has domain ∞

• has range ∞ ∞

HOW TO

Given a logarithmic function with the form graph the translation.

1. Identify the horizontal shift:
a. If shift the graph of left units.
b. If shift the graph of right units.

2. Draw the vertical asymptote
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by subtracting

from the coordinate.
4. Label the three points.

5. The Domain is ∞ the range is ∞ ∞ and the vertical asymptote is
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EXAMPLE 4

Graphing a Horizontal Shift of the Parent Function y = logb(x)
Sketch the horizontal shift alongside its parent function. Include the key points and asymptotes on
the graph. State the domain, range, and asymptote.

Solution
Since the function is we notice

Thus so This means we will shift the function right 2 units.

The vertical asymptote is or

Consider the three key points from the parent function, and

The new coordinates are found by adding 2 to the coordinates.

Label the points and

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

Figure 7

TRY IT #4 Sketch a graph of alongside its parent function. Include the key points and
asymptotes on the graph. State the domain, range, and asymptote.

Graphing a Vertical Shift of y = logb(x)
When a constant is added to the parent function the result is a vertical shift units in the direction of
the sign on To visualize vertical shifts, we can observe the general graph of the parent function
alongside the shift up, and the shift down, See Figure 8.
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Figure 8

Vertical Shifts of the Parent Function

For any constant the function

• shifts the parent function up units if
• shifts the parent function down units if
• has the vertical asymptote

• has domain ∞

• has range ∞ ∞

HOW TO

Given a logarithmic function with the form graph the translation.

1. Identify the vertical shift:
◦ If shift the graph of up units.
◦ If shift the graph of down units.

2. Draw the vertical asymptote
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by adding to

the coordinate.
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4. Label the three points.

5. The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

EXAMPLE 5

Graphing a Vertical Shift of the Parent Function y = logb(x)
Sketch a graph of alongside its parent function. Include the key points and asymptote on the graph.
State the domain, range, and asymptote.

Solution
Since the function is we will notice Thus

This means we will shift the function down 2 units.

The vertical asymptote is

Consider the three key points from the parent function, and

The new coordinates are found by subtracting 2 from the y coordinates.

Label the points and

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

Figure 9

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #5 Sketch a graph of alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.

Graphing Stretches and Compressions of y = logb(x)
When the parent function is multiplied by a constant the result is a vertical stretch or compression
of the original graph. To visualize stretches and compressions, we set and observe the general graph of the parent
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function alongside the vertical stretch, and the vertical compression,
See Figure 10.

Figure 10

Vertical Stretches and Compressions of the Parent Function

For any constant the function

• stretches the parent function vertically by a factor of if
• compresses the parent function vertically by a factor of if
• has the vertical asymptote
• has the x-intercept

• has domain ∞

• has range ∞ ∞

HOW TO

Given a logarithmic function with the form graph the translation.

1. Identify the vertical stretch or compressions:
◦ If the graph of is stretched by a factor of units.
◦ If the graph of is compressed by a factor of units.
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2. Draw the vertical asymptote
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by multiplying

the coordinates by
4. Label the three points.

5. The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

EXAMPLE 6

Graphing a Stretch or Compression of the Parent Function y = logb(x)
Sketch a graph of alongside its parent function. Include the key points and asymptote on the graph.
State the domain, range, and asymptote.

Solution
Since the function is we will notice

This means we will stretch the function by a factor of 2.

The vertical asymptote is

Consider the three key points from the parent function, and

The new coordinates are found by multiplying the coordinates by 2.

Label the points and

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is See Figure 11.

Figure 11

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #6 Sketch a graph of alongside its parent function. Include the key points and
asymptote on the graph. State the domain, range, and asymptote.

EXAMPLE 7

Combining a Shift and a Stretch
Sketch a graph of State the domain, range, and asymptote.
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Solution
Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch the
function vertically by a factor of 5, as in Figure 12. The vertical asymptote will be shifted to The x-intercept will be

The domain will be ∞ Two points will help give the shape of the graph: and We chose

as the x-coordinate of one point to graph because when the base of the common logarithm.

Figure 12

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #7 Sketch a graph of the function State the domain, range, and asymptote.

Graphing Reflections of f(x) = logb(x)
When the parent function is multiplied by the result is a reflection about the x-axis. When the input is
multiplied by the result is a reflection about the y-axis. To visualize reflections, we restrict and observe the
general graph of the parent function alongside the reflection about the x-axis, and the
reflection about the y-axis,
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Figure 13

Reflections of the Parent Function

The function

• reflects the parent function about the x-axis.

• has domain, ∞ range, ∞ ∞ and vertical asymptote, which are unchanged from the parent

function.

The function

• reflects the parent function about the y-axis.

• has domain ∞

• has range, ∞ ∞ and vertical asymptote, which are unchanged from the parent function.

HOW TO

Given a logarithmic function with the parent function graph a translation.
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1. Draw the vertical asymptote, 1. Draw the vertical asymptote,

2. Plot the x-intercept, 2. Plot the x-intercept,

3. Reflect the graph of the parent function
about the x-axis.

3. Reflect the graph of the parent function
about the y-axis.

4. Draw a smooth curve through the points. 4. Draw a smooth curve through the points.

5. State the domain, (0, ∞), the range, (−∞, ∞), and the
vertical asymptote .

5. State the domain, (−∞, 0) the range, (−∞, ∞) and the
vertical asymptote

Table 3

EXAMPLE 8

Graphing a Reflection of a Logarithmic Function
Sketch a graph of alongside its parent function. Include the key points and asymptote on the graph.
State the domain, range, and asymptote.

Solution
Before graphing identify the behavior and key points for the graph.

• Since is greater than one, we know that the parent function is increasing. Since the input value is multiplied
by is a reflection of the parent graph about the y-axis. Thus, will be decreasing as moves
from negative infinity to zero, and the right tail of the graph will approach the vertical asymptote

• The x-intercept is
• We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points.

Figure 14

The domain is ∞ the range is ∞ ∞ and the vertical asymptote is

TRY IT #8 Graph State the domain, range, and asymptote.
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HOW TO

Given a logarithmic equation, use a graphing calculator to approximate solutions.

1. Press [Y=]. Enter the given logarithm equation or equations as Y1= and, if needed, Y2=.
2. Press [GRAPH] to observe the graphs of the curves and use [WINDOW] to find an appropriate view of the

graphs, including their point(s) of intersection.
3. To find the value of we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect” and

press [ENTER] three times. The point of intersection gives the value of for the point(s) of intersection.

EXAMPLE 9

Approximating the Solution of a Logarithmic Equation
Solve graphically. Round to the nearest thousandth.

Solution
Press [Y=] and enter next to Y1=. Then enter next to Y2=. For a window, use the values 0 to 5 for

and –10 to 10 for Press [GRAPH]. The graphs should intersect somewhere a little to right of

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as 1.3385297. (Your answer may be different if you use a different
window or use a different value for Guess?) So, to the nearest thousandth,

TRY IT #9 Solve graphically. Round to the nearest thousandth.

Summarizing Translations of the Logarithmic Function
Now that we have worked with each type of translation for the logarithmic function, we can summarize each in Table 4 to
arrive at the general equation for translating exponential functions.

Translations of the Parent Function

Translation Form

Shift
• Horizontally units to the left

• Vertically units up

Stretch and Compress
• Stretch if

• Compression if

Reflect about the x-axis

Reflect about the y-axis

General equation for all translations

Table 4
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Translations of Logarithmic Functions

All translations of the parent logarithmic function, have the form

where the parent function, is

• shifted vertically up units.
• shifted horizontally to the left units.
• stretched vertically by a factor of if
• compressed vertically by a factor of if
• reflected about the x-axis when

For the graph of the parent function is reflected about the y-axis.

EXAMPLE 10

Finding the Vertical Asymptote of a Logarithm Graph
What is the vertical asymptote of

Solution
The vertical asymptote is at

Analysis
The coefficient, the base, and the upward translation do not affect the asymptote. The shift of the curve 4 units to the left
shifts the vertical asymptote to

TRY IT #10 What is the vertical asymptote of

EXAMPLE 11

Finding the Equation from a Graph
Find a possible equation for the common logarithmic function graphed in Figure 15.

Figure 15

Solution
This graph has a vertical asymptote at and has been vertically reflected. We do not know yet the vertical shift or
the vertical stretch. We know so far that the equation will have form:
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It appears the graph passes through the points and Substituting

Next, substituting in ,

This gives us the equation

Analysis
We can verify this answer by comparing the function values in Table 5 with the points on the graph in Figure 15.

−1 0 1 2 3

1 0 −0.58496 −1 −1.3219

4 5 6 7 8

−1.5850 −1.8074 −2 −2.1699 −2.3219

Table 5

TRY IT #11 Give the equation of the natural logarithm graphed in Figure 16.

Figure 16

Q&A Is it possible to tell the domain and range and describe the end behavior of a function just by
looking at the graph?

Yes, if we know the function is a general logarithmic function. For example, look at the graph in Figure 16.
The graph approaches (or thereabouts) more and more closely, so is, or is very close to,
the vertical asymptote. It approaches from the right, so the domain is all points to the right,
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The range, as with all general logarithmic functions, is all real numbers. And we can see
the end behavior because the graph goes down as it goes left and up as it goes right. The end behavior is

that as ∞ and as ∞ ∞

MEDIA

Access these online resources for additional instruction and practice with graphing logarithms.

Graph an Exponential Function and Logarithmic Function (http://openstax.org/l/graphexplog)
Match Graphs with Exponential and Logarithmic Functions (http://openstax.org/l/matchexplog)
Find the Domain of Logarithmic Functions (http://openstax.org/l/domainlog)

6.4 SECTION EXERCISES
Verbal

1. The inverse of every
logarithmic function is an
exponential function and
vice-versa. What does this
tell us about the relationship
between the coordinates of
the points on the graphs of
each?

2. What type(s) of
translation(s), if any, affect
the range of a logarithmic
function?

3. What type(s) of
translation(s), if any, affect
the domain of a logarithmic
function?

4. Consider the general
logarithmic function

Why can’t
be zero?

5. Does the graph of a general
logarithmic function have a
horizontal asymptote?
Explain.

Algebraic

For the following exercises, state the domain and range of the function.

6. 7. 8.

9. 10.

For the following exercises, state the domain and the vertical asymptote of the function.

11. 12. 13.

14. 15.

For the following exercises, state the domain, vertical asymptote, and end behavior of the function.

16. 17. 18.

19. 20.
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For the following exercises, state the domain, range, and x- and y-intercepts, if they exist. If they do not exist, write DNE.

21. 22. 23.

24. 25.

Graphical

For the following exercises, match each function in Figure 17 with the letter corresponding to its graph.

Figure 17

26. 27. 28.

29. 30.

For the following exercises, match each function in Figure 18 with the letter corresponding to its graph.

Figure 18
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31. 32. 33.

For the following exercises, sketch the graphs of each pair of functions on the same axis.

34. and 35. and 36. and

37. and

For the following exercises, match each function in Figure 19 with the letter corresponding to its graph.

Figure 19

38. 39. 40.

For the following exercises, sketch the graph of the indicated function.

41. 42. 43.

44. 45. 46.

604 6 • Exponential and Logarithmic Functions

Access for free at openstax.org



For the following exercises, write a logarithmic equation corresponding to the graph shown.

47. Use as the parent
function.

48. Use as the parent
function.

49. Use as the parent
function.

50. Use as the parent
function.

Technology

For the following exercises, use a graphing calculator to find approximate solutions to each equation.

51. 52.

53. 54. 55.

Extensions

56. Let be any positive real
number such that
What must be equal
to? Verify the result.

57. Explore and discuss the
graphs of

and
Make a conjecture based
on the result.

58. Prove the conjecture made
in the previous exercise.
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59. What is the domain of the
function
Discuss the result.

60. Use properties of
exponents to find the
x-intercepts of the function

algebraically. Show the
steps for solving, and then
verify the result by
graphing the function.

6.5 Logarithmic Properties
Learning Objectives
In this section, you will:

Use the product rule for logarithms.
Use the quotient rule for logarithms.
Use the power rule for logarithms.
Expand logarithmic expressions.
Condense logarithmic expressions.
Use the change-of-base formula for logarithms.

Figure 1 The pH of hydrochloric acid is tested with litmus paper. (credit: David Berardan)

In chemistry, pH is used as a measure of the acidity or alkalinity of a substance. The pH scale runs from 0 to 14.
Substances with a pH less than 7 are considered acidic, and substances with a pH greater than 7 are said to be basic. Our
bodies, for instance, must maintain a pH close to 7.35 in order for enzymes to work properly. To get a feel for what is
acidic and what is basic, consider the following pH levels of some common substances:

• Battery acid: 0.8
• Stomach acid: 2.7
• Orange juice: 3.3
• Pure water: 7 (at 25° C)
• Human blood: 7.35
• Fresh coconut: 7.8
• Sodium hydroxide (lye): 14

To determine whether a solution is acidic or basic, we find its pH, which is a measure of the number of active positive
hydrogen ions in the solution. The pH is defined by the following formula, where is the concentration of hydrogen
ion in the solution

The equivalence of and is one of the logarithm properties we will examine in this section.
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Using the Product Rule for Logarithms
Recall that the logarithmic and exponential functions “undo” each other. This means that logarithms have similar
properties to exponents. Some important properties of logarithms are given here. First, the following properties are easy
to prove.

For example, since And since

Next, we have the inverse property.

For example, to evaluate we can rewrite the logarithm as and then apply the inverse property
to get

To evaluate we can rewrite the logarithm as and then apply the inverse property to get

Finally, we have the one-to-one property.

We can use the one-to-one property to solve the equation for Since the bases are the same,
we can apply the one-to-one property by setting the arguments equal and solving for

But what about the equation The one-to-one property does not help us in this instance.
Before we can solve an equation like this, we need a method for combining terms on the left side of the equation.

Recall that we use the product rule of exponents to combine the product of powers by adding exponents:
We have a similar property for logarithms, called the product rule for logarithms, which says that the logarithm of a
product is equal to a sum of logarithms. Because logs are exponents, and we multiply like bases, we can add the
exponents. We will use the inverse property to derive the product rule below.

Given any real number and positive real numbers and where we will show

Let and In exponential form, these equations are and It follows that

Note that repeated applications of the product rule for logarithms allow us to simplify the logarithm of the product of
any number of factors. For example, consider Using the product rule for logarithms, we can rewrite this
logarithm of a product as the sum of logarithms of its factors:

The Product Rule for Logarithms

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of
individual logarithms.
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HOW TO

Given the logarithm of a product, use the product rule of logarithms to write an equivalent sum of logarithms.

1. Factor the argument completely, expressing each whole number factor as a product of primes.
2. Write the equivalent expression by summing the logarithms of each factor.

EXAMPLE 1

Using the Product Rule for Logarithms
Expand

Solution
We begin by factoring the argument completely, expressing as a product of primes.

Next we write the equivalent equation by summing the logarithms of each factor.

TRY IT #1 Expand

Using the Quotient Rule for Logarithms
For quotients, we have a similar rule for logarithms. Recall that we use the quotient rule of exponents to combine the
quotient of exponents by subtracting: The quotient rule for logarithms says that the logarithm of a

quotient is equal to a difference of logarithms. Just as with the product rule, we can use the inverse property to derive
the quotient rule.

Given any real number and positive real numbers and where we will show

Let and In exponential form, these equations are and It follows that

For example, to expand we must first express the quotient in lowest terms. Factoring and canceling we

get,

Next we apply the quotient rule by subtracting the logarithm of the denominator from the logarithm of the numerator.
Then we apply the product rule.
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The Quotient Rule for Logarithms

The quotient rule for logarithms can be used to simplify a logarithm or a quotient by rewriting it as the difference of
individual logarithms.

HOW TO

Given the logarithm of a quotient, use the quotient rule of logarithms to write an equivalent difference of
logarithms.

1. Express the argument in lowest terms by factoring the numerator and denominator and canceling common
terms.

2. Write the equivalent expression by subtracting the logarithm of the denominator from the logarithm of the
numerator.

3. Check to see that each term is fully expanded. If not, apply the product rule for logarithms to expand completely.

EXAMPLE 2

Using the Quotient Rule for Logarithms

Expand

Solution
First we note that the quotient is factored and in lowest terms, so we apply the quotient rule.

Notice that the resulting terms are logarithms of products. To expand completely, we apply the product rule, noting that
the prime factors of the factor 15 are 3 and 5.

Analysis
There are exceptions to consider in this and later examples. First, because denominators must never be zero, this
expression is not defined for and Also, since the argument of a logarithm must be positive, we note as we

observe the expanded logarithm, that and Combining these conditions is beyond the
scope of this section, and we will not consider them here or in subsequent exercises.

TRY IT #2 Expand

Using the Power Rule for Logarithms
We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such as One
method is as follows:

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have
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derived the power rule for logarithms, which says that the log of a power is equal to the exponent times the log of the
base. Keep in mind that, although the input to a logarithm may not be written as a power, we may be able to change it to
a power. For example,

The Power Rule for Logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of the
exponent times the logarithm of the base.

HOW TO

Given the logarithm of a power, use the power rule of logarithms to write an equivalent product of a factor
and a logarithm.

1. Express the argument as a power, if needed.
2. Write the equivalent expression by multiplying the exponent times the logarithm of the base.

EXAMPLE 3

Expanding a Logarithm with Powers
Expand

Solution
The argument is already written as a power, so we identify the exponent, 5, and the base, and rewrite the equivalent
expression by multiplying the exponent times the logarithm of the base.

TRY IT #3 Expand

EXAMPLE 4

Rewriting an Expression as a Power before Using the Power Rule
Expand using the power rule for logs.

Solution
Expressing the argument as a power, we get

Next we identify the exponent, 2, and the base, 5, and rewrite the equivalent expression by multiplying the exponent
times the logarithm of the base.

TRY IT #4 Expand
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EXAMPLE 5

Using the Power Rule in Reverse
Rewrite using the power rule for logs to a single logarithm with a leading coefficient of 1.

Solution
Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows that the
product of a number and a logarithm can be written as a power. For the expression we identify the factor, 4, as
the exponent and the argument, as the base, and rewrite the product as a logarithm of a power:

TRY IT #5 Rewrite using the power rule for logs to a single logarithm with a leading coefficient of 1.

Expanding Logarithmic Expressions
Taken together, the product rule, quotient rule, and power rule are often called “laws of logs.” Sometimes we apply
more than one rule in order to simplify an expression. For example:

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an
alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer. Remember,
however, that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside
the argument of the logarithm.

EXAMPLE 6

Expanding Logarithms Using Product, Quotient, and Power Rules

Rewrite as a sum or difference of logs.

Solution
First, because we have a quotient of two expressions, we can use the quotient rule:

Then seeing the product in the first term, we use the product rule:

Finally, we use the power rule on the first term:

TRY IT #6 Expand
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EXAMPLE 7

Using the Power Rule for Logarithms to Simplify the Logarithm of a Radical Expression
Expand

Solution

TRY IT #7 Expand

Q&A Can we expand

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

EXAMPLE 8

Expanding Complex Logarithmic Expressions

Expand

Solution
We can expand by applying the Product and Quotient Rules.

TRY IT #8 Expand

Condensing Logarithmic Expressions
We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base as a
single logarithm. It is important to remember that the logarithms must have the same base to be combined. We will
learn later how to change the base of any logarithm before condensing.

HOW TO

Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a
single logarithm.

1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite each as
the logarithm of a power.

2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.
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EXAMPLE 9

Using the Product and Quotient Rules to Combine Logarithms
Write as a single logarithm.

Solution
Using the product and quotient rules

This reduces our original expression to

Then, using the quotient rule

TRY IT #9 Condense

EXAMPLE 10

Condensing Complex Logarithmic Expressions
Condense

Solution
We apply the power rule first:

Next we apply the product rule to the sum:

Finally, we apply the quotient rule to the difference:

TRY IT #10 Rewrite as a single logarithm.

EXAMPLE 11

Rewriting as a Single Logarithm
Rewrite as a single logarithm.

Solution
We apply the power rule first:

Next we rearrange and apply the product rule to the sum:
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Finally, we apply the quotient rule to the difference:

TRY IT #11 Condense

EXAMPLE 12

Applying of the Laws of Logs
Recall that, in chemistry, If the concentration of hydrogen ions in a liquid is doubled, what is the effect
on pH?

Solution
Suppose is the original concentration of hydrogen ions, and is the original pH of the liquid. Then If the
concentration is doubled, the new concentration is Then the pH of the new liquid is

Using the product rule of logs

Since the new pH is

When the concentration of hydrogen ions is doubled, the pH decreases by about 0.301.

TRY IT #12 How does the pH change when the concentration of positive hydrogen ions is decreased by half?

Using the Change-of-Base Formula for Logarithms
Most calculators can evaluate only common and natural logs. In order to evaluate logarithms with a base other than 10
or we use the change-of-base formula to rewrite the logarithm as the quotient of logarithms of any other base; when
using a calculator, we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.

Given any positive real numbers and where and we show

Let By exponentiating both sides with base , we arrive at an exponential form, namely It follows
that

For example, to evaluate using a calculator, we must first rewrite the expression as a quotient of common or
natural logs. We will use the common log.
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The Change-of-Base Formula

The change-of-base formula can be used to evaluate a logarithm with any base.

For any positive real numbers and where and

It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient of
common or natural logs.

and

HOW TO

Given a logarithm with the form use the change-of-base formula to rewrite it as a quotient of logs with
any positive base where

1. Determine the new base remembering that the common log, has base 10, and the natural log,
has base

2. Rewrite the log as a quotient using the change-of-base formula
a. The numerator of the quotient will be a logarithm with base and argument
b. The denominator of the quotient will be a logarithm with base and argument

EXAMPLE 13

Changing Logarithmic Expressions to Expressions Involving Only Natural Logs
Change to a quotient of natural logarithms.

Solution
Because we will be expressing as a quotient of natural logarithms, the new base,

We rewrite the log as a quotient using the change-of-base formula. The numerator of the quotient will be the natural log
with argument 3. The denominator of the quotient will be the natural log with argument 5.

TRY IT #13 Change to a quotient of natural logarithms.

Q&A Can we change common logarithms to natural logarithms?

Yes. Remember that means So,
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EXAMPLE 14

Using the Change-of-Base Formula with a Calculator
Evaluate using the change-of-base formula with a calculator.

Solution
According to the change-of-base formula, we can rewrite the log base 2 as a logarithm of any other base. Since our
calculators can evaluate the natural log, we might choose to use the natural logarithm, which is the log base

TRY IT #14 Evaluate using the change-of-base formula.

MEDIA

Access these online resources for additional instruction and practice with laws of logarithms.

The Properties of Logarithms (http://openstax.org/l/proplog)
Expand Logarithmic Expressions (http://openstax.org/l/expandlog)
Evaluate a Natural Logarithmic Expression (http://openstax.org/l/evaluatelog)

6.5 SECTION EXERCISES
Verbal

1. How does the power rule for logarithms help when
solving logarithms with the form

2. What does the change-of-base formula do? Why is
it useful when using a calculator?

Algebraic

For the following exercises, expand each logarithm as much as possible. Rewrite each expression as a sum, difference, or
product of logs.

3. 4. 5.

6. 7. 8.

For the following exercises, condense to a single logarithm if possible.

9. 10.

11. 12. 13.

14.

616 6 • Exponential and Logarithmic Functions

Access for free at openstax.org

http://openstax.org/l/proplog
http://openstax.org/l/expandlog
http://openstax.org/l/evaluatelog


For the following exercises, use the properties of logarithms to expand each logarithm as much as possible. Rewrite
each expression as a sum, difference, or product of logs.

15. 16. 17.

18. 19.

For the following exercises, condense each expression to a single logarithm using the properties of logarithms.

20. 21. 22.

23. 24.

For the following exercises, rewrite each expression as an equivalent ratio of logs using the indicated base.

25. to base 26. to base

For the following exercises, suppose and Use the change-of-base formula along with
properties of logarithms to rewrite each expression in terms of and Show the steps for solving.

27. 28. 29.

Numeric

For the following exercises, use properties of logarithms to evaluate without using a calculator.

30. 31. 32.

For the following exercises, use the change-of-base formula to evaluate each expression as a quotient of natural logs.
Use a calculator to approximate each to five decimal places.

33. 34. 35.

36. 37.

Extensions

38. Use the product rule for logarithms to find all
values such that

Show the steps
for solving.

39. Use the quotient rule for logarithms to find all
values such that
Show the steps for solving.
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40. Can the power property of
logarithms be derived from
the power property of
exponents using the
equation If not,
explain why. If so, show the
derivation.

41. Prove that
for any

positive integers and

42. Does

Verify the claim
algebraically.

6.6 Exponential and Logarithmic Equations
Learning Objectives
In this section, you will:

Use like bases to solve exponential equations.
Use logarithms to solve exponential equations.
Use the definition of a logarithm to solve logarithmic equations.
Use the one-to-one property of logarithms to solve logarithmic equations.
Solve applied problems involving exponential and logarithmic equations.

Figure 1 Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as
the “rabbit plague.” (credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because Australia
had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit population
numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions.
Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential
growth. In this section, we will learn techniques for solving exponential functions.

Using Like Bases to Solve Exponential Equations
The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions
tells us that, for any real numbers and where if and only if

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also
applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the
rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions
are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation To solve for we use the division property of exponents to rewrite
the right side so that both sides have the common base, Then we apply the one-to-one property of exponents by
setting the exponents equal to one another and solving for :
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Using the One-to-One Property of Exponential Functions to Solve Exponential Equations

For any algebraic expressions and any positive real number

HOW TO

Given an exponential equation with the form where and are algebraic expressions with an
unknown, solve for the unknown.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form
2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation, for the unknown.

EXAMPLE 1

Solving an Exponential Equation with a Common Base
Solve

Solution

TRY IT #1 Solve

Rewriting Equations So All Powers Have the Same Base
Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite the
terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation We can rewrite both sides of this equation as a power of Then we
apply the rules of exponents, along with the one-to-one property, to solve for
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HOW TO

Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1. Rewrite each side in the equation as a power with a common base.
2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form
3. Use the one-to-one property to set the exponents equal.
4. Solve the resulting equation, for the unknown.

EXAMPLE 2

Solving Equations by Rewriting Them to Have a Common Base
Solve

Solution

TRY IT #2 Solve

EXAMPLE 3

Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base
Solve

Solution

TRY IT #3 Solve

Q&A Do all exponential equations have a solution? If not, how can we tell if there is a solution during the
problem-solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may
obtain an expression that is undefined.

EXAMPLE 4

Solving an Equation with Positive and Negative Powers
Solve

Solution
This equation has no solution. There is no real value of that will make the equation a true statement because any
power of a positive number is positive.
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Analysis
Figure 2 shows that the two graphs do not cross so the left side is never equal to the right side. Thus the equation has no
solution.

Figure 2

TRY IT #4 Solve

Solving Exponential Equations Using Logarithms
Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by
taking the logarithm of each side. Recall, since is equivalent to we may apply logarithms with the
same base on both sides of an exponential equation.

HOW TO

Given an exponential equation in which a common base cannot be found, solve for the unknown.

1. Apply the logarithm of both sides of the equation.
a. If one of the terms in the equation has base 10, use the common logarithm.
b. If none of the terms in the equation has base 10, use the natural logarithm.

2. Use the rules of logarithms to solve for the unknown.

EXAMPLE 5

Solving an Equation Containing Powers of Different Bases
Solve

Solution
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TRY IT #5 Solve

Q&A Is there any way to solve

Yes. The solution is

Equations Containing e
One common type of exponential equations are those with base This constant occurs again and again in nature, in
mathematics, in science, in engineering, and in finance. When we have an equation with a base on either side, we can
use the natural logarithm to solve it.

HOW TO

Given an equation of the form solve for

1. Divide both sides of the equation by
2. Apply the natural logarithm of both sides of the equation.
3. Divide both sides of the equation by

EXAMPLE 6

Solve an Equation of the Form y = Aekt

Solve

Solution

Analysis
Using laws of logs, we can also write this answer in the form If we want a decimal approximation of the
answer, we use a calculator.

TRY IT #6 Solve

Q&A Does every equation of the form have a solution?

No. There is a solution when and when and are either both 0 or neither 0, and they have the
same sign. An example of an equation with this form that has no solution is

EXAMPLE 7

Solving an Equation That Can Be Simplified to the Form y = Aekt

Solve
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Solution

TRY IT #7 Solve

Extraneous Solutions
Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct
algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the
logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be
positive. If the number we are evaluating in a logarithm function is negative, there is no output.

EXAMPLE 8

Solving Exponential Functions in Quadratic Form
Solve

Solution

Analysis
When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because zero has the
unique property that when a product is zero, one or both of the factors must be zero. We reject the equation
because a positive number never equals a negative number. The solution is not a real number, and in the real
number system this solution is rejected as an extraneous solution.

TRY IT #8 Solve

Q&A Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous
solutions.

Using the Definition of a Logarithm to Solve Logarithmic Equations
We have already seen that every logarithmic equation is equivalent to the exponential equation We
can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic
expression.

For example, consider the equation To solve this equation, we can use rules of logarithms
to rewrite the left side in compact form and then apply the definition of logs to solve for
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Using the Definition of a Logarithm to Solve Logarithmic Equations

For any algebraic expression and real numbers and where

EXAMPLE 9

Using Algebra to Solve a Logarithmic Equation
Solve

Solution

TRY IT #9 Solve

EXAMPLE 10

Using Algebra Before and After Using the Definition of the Natural Logarithm
Solve

Solution

TRY IT #10 Solve

EXAMPLE 11

Using a Graph to Understand the Solution to a Logarithmic Equation
Solve

Solution
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Figure 3 represents the graph of the equation. On the graph, the x-coordinate of the point at which the two graphs
intersect is close to 20. In other words A calculator gives a better approximation:

Figure 3 The graphs of and cross at the point which is approximately (20.0855, 3).

TRY IT #11 Use a graphing calculator to estimate the approximate solution to the logarithmic equation
to 2 decimal places.

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations
As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one
property of logarithmic functions tells us that, for any real numbers and any positive real number
where

For example,

So, if then we can solve for and we get To check, we can substitute into the original equation:
In other words, when a logarithmic equation has the same base on each side, the arguments

must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation with
logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then we
use the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the
unknown.

For example, consider the equation To solve this equation, we can use the rules of
logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for

To check the result, substitute into

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

For any algebraic expressions and and any positive real number where
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Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an
extraneous solution.

HOW TO

Given an equation containing logarithms, solve it using the one-to-one property.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form

2. Use the one-to-one property to set the arguments equal.
3. Solve the resulting equation, for the unknown.

EXAMPLE 12

Solving an Equation Using the One-to-One Property of Logarithms
Solve

Solution

Analysis
There are two solutions: or The solution is negative, but it checks when substituted into the original equation
because the argument of the logarithm functions is still positive.

TRY IT #12 Solve

Solving Applied Problems Using Exponential and Logarithmic Equations
In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen
that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve
logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve
equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a
radioactive substance to decay, called its half-life. Table 1 lists the half-life for several of the more common radioactive
substances.

Substance Use Half-life

gallium-67 nuclear medicine 80 hours

cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours

Table 1
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Substance Use Half-life

americium-241 construction 432 years

carbon-14 archeological dating 5,715 years

uranium-235 atomic power 703,800,000 years

Table 1

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to
calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

where

• is the amount initially present
• is the half-life of the substance
• is the time period over which the substance is studied
• is the amount of the substance present after time

EXAMPLE 13

Using the Formula for Radioactive Decay to Find the Quantity of a Substance
How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?

Solution

Analysis
Ten percent of 1000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 grams.

TRY IT #13 How long will it take before twenty percent of our 1000-gram sample of uranium-235 has
decayed?

MEDIA

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

Solving Logarithmic Equations (http://openstax.org/l/solvelogeq)
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Solving Exponential Equations with Logarithms (http://openstax.org/l/solveexplog)

6.6 SECTION EXERCISES
Verbal

1. How can an exponential
equation be solved?

2. When does an extraneous
solution occur? How can an
extraneous solution be
recognized?

3. When can the one-to-one
property of logarithms be
used to solve an equation?
When can it not be used?

Algebraic

For the following exercises, use like bases to solve the exponential equation.

4. 5. 6.

7. 8. 9.

10.

For the following exercises, use logarithms to solve.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.

29. 30.

For the following exercises, use the definition of a logarithm to solve the equation.

31. 32. 33.

34. 35.
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For the following exercises, use the one-to-one property of logarithms to solve.

36. 37. 38.

39. 40. 41.

42. 43.

For the following exercises, solve each equation for

44. 45. 46.

47. 48. 49.

50.

Graphical

For the following exercises, solve the equation for if there is a solution. Then graph both sides of the equation, and
observe the point of intersection (if it exists) to verify the solution.

51. 52. 53.

54. 55. 56.

57. 58. 59.

60. 61. 62.

63. 64.

For the following exercises, solve for the indicated value, and graph the situation showing the solution point.

65. An account with an initial
deposit of earns

annual interest,
compounded continuously.
How much will the account
be worth after 20 years?

66. The formula for measuring
sound intensity in decibels

is defined by the
equation

where

is the intensity of the
sound in watts per square
meter and is
the lowest level of sound
that the average person
can hear. How many
decibels are emitted from a
jet plane with a sound
intensity of watts
per square meter?

67. The population of a small
town is modeled by the
equation
where is measured in
years. In approximately
how many years will the
town’s population reach
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Technology

For the following exercises, solve each equation by rewriting the exponential expression using the indicated logarithm.
Then use a calculator to approximate the variable to 3 decimal places.

68. using
the common log.

69. using the natural
log

70. using the
common log

71. using the
common log

72. using the
natural log

For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to the
nearest ten-thousandth.

73. 74. 75.

76. Atmospheric pressure in pounds per square
inch is represented by the formula

where is the number of miles
above sea level. To the nearest foot, how high is
the peak of a mountain with an atmospheric
pressure of pounds per square inch? (Hint:
there are 5280 feet in a mile)

77. The magnitude M of an earthquake is represented

by the equation where is the

amount of energy released by the earthquake in
joules and is the assigned minimal
measure released by an earthquake. To the
nearest hundredth, what would the magnitude be
of an earthquake releasing joules of
energy?

Extensions

78. Use the definition of a
logarithm along with the
one-to-one property of
logarithms to prove that

79. Recall the formula for
continually compounding
interest, Use the
definition of a logarithm
along with properties of
logarithms to solve the
formula for time such
that is equal to a single
logarithm.

80. Recall the compound
interest formula

Use the
definition of a logarithm
along with properties of
logarithms to solve the
formula for time

81. Newton’s Law of Cooling states that the
temperature of an object at any time t can be
described by the equation

where is the
temperature of the surrounding environment,
is the initial temperature of the object, and is the
cooling rate. Use the definition of a logarithm
along with properties of logarithms to solve the
formula for time such that is equal to a single
logarithm.
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6.7 Exponential and Logarithmic Models
Learning Objectives
In this section, you will:

Model exponential growth and decay.
Use Newton’s Law of Cooling.
Use logistic-growth models.
Choose an appropriate model for data.
Express an exponential model in base .

Figure 1 A nuclear research reactor inside the Neely Nuclear Research Center on the Georgia Institute of Technology
campus (credit: Georgia Tech Research Institute)

We have already explored some basic applications of exponential and logarithmic functions. In this section, we explore
some important applications in more depth, including radioactive isotopes and Newton’s Law of Cooling.

Modeling Exponential Growth and Decay
In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a familiar
general function with properties that suggest that it will model the real-world phenomenon we wish to analyze. In the
case of rapid growth, we may choose the exponential growth function:

where is equal to the value at time zero, is Euler’s constant, and is a positive constant that determines the rate
(percentage) of growth. We may use the exponential growth function in applications involving doubling time, the time it
takes for a quantity to double. Such phenomena as wildlife populations, financial investments, biological samples, and
natural resources may exhibit growth based on a doubling time. In some applications, however, as we will see when we
discuss the logistic equation, the logistic model sometimes fits the data better than the exponential model.

On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should probably
choose the exponential decay model. Again, we have the form where is the starting value, and is
Euler’s constant. Now is a negative constant that determines the rate of decay. We may use the exponential decay
model when we are calculating half-life, or the time it takes for a substance to exponentially decay to half of its original
quantity. We use half-life in applications involving radioactive isotopes.

In our choice of a function to serve as a mathematical model, we often use data points gathered by careful observation
and measurement to construct points on a graph and hope we can recognize the shape of the graph. Exponential
growth and decay graphs have a distinctive shape, as we can see in Figure 2 and Figure 3. It is important to remember
that, although parts of each of the two graphs seem to lie on the x-axis, they are really a tiny distance above the x-axis.
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Figure 2 A graph showing exponential growth. The equation is

Figure 3 A graph showing exponential decay. The equation is

Exponential growth and decay often involve very large or very small numbers. To describe these numbers, we often use
orders of magnitude. The order of magnitude is the power of ten, when the number is expressed in scientific notation,
with one digit to the left of the decimal. For example, the distance to the nearest star, Proxima Centauri, measured in
kilometers, is 40,113,497,200,000 kilometers. Expressed in scientific notation, this is So, we could
describe this number as having order of magnitude

Characteristics of the Exponential Function,

An exponential function with the form has the following characteristics:

• one-to-one function
• horizontal asymptote:

• domain: ∞ ∞
• range: ∞
• x intercept: none
• y-intercept:
• increasing if (see Figure 4)
• decreasing if (see Figure 4)
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Figure 4 An exponential function models exponential growth when and exponential decay when

EXAMPLE 1

Graphing Exponential Growth
A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as a function of
time.

Solution
When an amount grows at a fixed percent per unit time, the growth is exponential. To find we use the fact that is
the amount at time zero, so To find use the fact that after one hour the population doubles from
to The formula is derived as follows

so Thus the equation we want to graph is The graph is shown in Figure 5.

Figure 5 The graph of

Analysis
The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order of magnitude

The population of bacteria after twenty hours is 10,485,760 which is of the order of magnitude so we could say
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that the population has increased by three orders of magnitude in ten hours.

Half-Life
We now turn to exponential decay. One of the common terms associated with exponential decay, as stated above, is
half-life, the length of time it takes an exponentially decaying quantity to decrease to half its original amount. Every
radioactive isotope has a half-life, and the process describing the exponential decay of an isotope is called radioactive
decay.

To find the half-life of a function describing exponential decay, solve the following equation:

We find that the half-life depends only on the constant and not on the starting quantity

The formula is derived as follows

Since the time, is positive, must, as expected, be negative. This gives us the half-life formula

HOW TO

Given the half-life, find the decay rate.

1. Write
2. Replace by and replace by the given half-life.
3. Solve to find Express as an exact value (do not round).

Note: It is also possible to find the decay rate using

EXAMPLE 2

Finding the Function that Describes Radioactive Decay
The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of time,

Solution
This formula is derived as follows.

The function that describes this continuous decay is We observe that the coefficient of
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is negative, as expected in the case of exponential decay.

TRY IT #1 The half-life of plutonium-244 is 80,000,000 years. Find a function that gives the amount of
plutonium-244 remaining as a function of time, measured in years.

Radiocarbon Dating
The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the approximate date a
plant or animal died. Radiocarbon dating was discovered in 1949 by Willard Libby, who won a Nobel Prize for his
discovery. It compares the difference between the ratio of two isotopes of carbon in an organic artifact or fossil to the
ratio of those two isotopes in the air. It is believed to be accurate to within about 1% error for plants or animals that died
within the last 60,000 years.

Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities in the carbon
dioxide in the air we breathe. Most of the carbon on Earth is carbon-12, which has an atomic weight of 12 and is not
radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air for the last 60,000 years, using tree
rings and other organic samples of known dates—although the ratio has changed slightly over the centuries.

As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in the
atmosphere. When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio of carbon-14 to
carbon-12 in a decaying sample to the known ratio in the atmosphere, the date the plant or animal died can be
approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after years is

where

• is the amount of carbon-14 remaining
• is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:

To find the age of an object, we solve this equation for

Out of necessity, we neglect here the many details that a scientist takes into consideration when doing carbon-14 dating,
and we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the atmosphere is approximately
0.0000000001%. Let be the ratio of carbon-14 to carbon-12 in the organic artifact or fossil to be dated, determined by a
method called liquid scintillation. From the equation we know the ratio of the percentage of
carbon-14 in the object we are dating to the initial amount of carbon-14 in the object when it was formed is

We solve this equation for to get
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HOW TO

Given the percentage of carbon-14 in an object, determine its age.

1. Express the given percentage of carbon-14 as an equivalent decimal,
2. Substitute for k in the equation and solve for the age,

EXAMPLE 3

Finding the Age of a Bone
A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the bone?

Solution
We substitute for in the equation and solve for

The bone fragment is about 13,301 years old.

Analysis
The instruments that measure the percentage of carbon-14 are extremely sensitive and, as we mention above, a scientist
will need to do much more work than we did in order to be satisfied. Even so, carbon dating is only accurate to about 1%,
so this age should be given as

TRY IT #2 Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take
more or less than 230 years until only 1 milligram remains?

Calculating Doubling Time
For decaying quantities, we determined how long it took for half of a substance to decay. For growing quantities, we
might want to find out how long it takes for a quantity to double. As we mentioned above, the time it takes for a quantity
to double is called the doubling time.

Given the basic exponential growth equation doubling time can be found by solving for when the original
quantity has doubled, that is, by solving

The formula is derived as follows:

Thus the doubling time is

EXAMPLE 4

Finding a Function That Describes Exponential Growth
According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is
approximately two years. Give a function that describes this behavior.
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Solution
The formula is derived as follows:

The function is

TRY IT #3 Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer
holds. Growth has slowed to a doubling time of approximately three years. Find the new function
that takes that longer doubling time into account.

Using Newton’s Law of Cooling
Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower
temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air
temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the
temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of the
generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for
temperature as a function of time as an object’s temperature is equalized with the ambient temperature

This formula is derived as follows:

Newton’s Law of Cooling

The temperature of an object, in surrounding air with temperature will behave according to the formula

where

• is time
• is the difference between the initial temperature of the object and the surroundings
• is a constant, the continuous rate of cooling of the object

HOW TO

Given a set of conditions, apply Newton’s Law of Cooling.

1. Set equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
2. Substitute the given values into the continuous growth formula to find the parameters and

3. Substitute in the desired time to find the temperature or the desired temperature to find the time.
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EXAMPLE 5

Using Newton’s Law of Cooling
A cheesecake is taken out of the oven with an ideal internal temperature of and is placed into a refrigerator.
After 10 minutes, the cheesecake has cooled to If we must wait until the cheesecake has cooled to before we
eat it, how long will we have to wait?

Solution
Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay
exponentially toward 35, following the equation

We know the initial temperature was 165, so

We were given another data point, which we can use to solve for

This gives us the equation for the cooling of the cheesecake:

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to

TRY IT #4 A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the
temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60
degrees?

Using Logistic Growth Models
Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to fall
apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double the
number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines, or one-
half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time.
Eventually, an exponential model must begin to approach some limiting value, and then the growth is forced to slow. For
this reason, it is often better to use a model with an upper bound instead of an exponential growth model, though the
exponential growth model is still useful over a short term, before approaching the limiting value.

The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output
approaches the model’s upper bound, called the carrying capacity. For constants and the logistic growth of a
population over time is represented by the model
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The graph in Figure 6 shows how the growth rate changes over time. The graph increases from left to right, but the
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase
decreases.

Figure 6

Logistic Growth

The logistic growth model is

where

• is the initial value

• is the carrying capacity, or limiting value
• is a constant determined by the rate of growth.

EXAMPLE 6

Using the Logistic-Growth Model
An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more people
who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more rapidly it
spreads. These two factors make the logistic model a good one to study the spread of communicable diseases. And,
clearly, there is a maximum value for the number of people infected: the entire population.

For example, at time there is one person in a community of 1,000 people who has the flu. So, in that community, at
most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the logistic growth constant
is Estimate the number of people in this community who will have had this flu after ten days. Predict how
many people in this community will have had this flu after a long period of time has passed.

Solution
We substitute the given data into the logistic growth model

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting value is
To find we use the formula that the number of cases at time is from which it follows that

This model predicts that, after ten days, the number of people who have had the flu is
Because the actual number must be a whole number (a person has either had the flu or
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not) we round to 294. In the long term, the number of people who will contract the flu is the limiting value,

Analysis
Remember that, because we are dealing with a virus, we cannot predict with certainty the number of people infected.
The model only approximates the number of people infected and will not give us exact or actual values.

The graph in Figure 7 gives a good picture of how this model fits the data.

Figure 7 The graph of

TRY IT #5 Using the model in Example 6, estimate the number of cases of flu on day 15.

Choosing an Appropriate Model for Data
Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model for
the raw data we have. Many factors influence the choice of a mathematical model, among which are experience,
scientific laws, and patterns in the data itself. Not all data can be described by elementary functions. Sometimes, a
function is chosen that approximates the data over a given interval. For instance, suppose data were gathered on the
number of homes bought in the United States from the years 1960 to 2013. After plotting these data in a scatter plot, we
notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve. We could restrict the interval
from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to predict the number of home buyers
for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and
logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a linear model
may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though other models, such
as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called
the concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies
above that line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore
cannot hold water. If all (or most) of the data between those two points lies below the line, we say the curve is concave
up. In this case, we can think of a bowl that bends upward and can therefore hold water. An exponential curve, whether
rising or falling, whether representing growth or decay, is always concave up away from its horizontal asymptote. A
logarithmic curve is always concave away from its vertical asymptote. In the case of positive data, which is the most
common case, an exponential curve is always concave up, and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point,
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called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the
parameters. We reduce round-off error by choosing points as far apart as possible.

EXAMPLE 7

Choosing a Mathematical Model
Does a linear, exponential, logarithmic, or logistic model best fit the values listed in Table 1? Find the model, and use a
graph to check your choice.

1 2 3 4 5 6 7 8 9

0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Table 1

Solution
First, plot the data on a graph as in Figure 8. For the purpose of graphing, round the data to two decimal places.

Figure 8

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two of the
points, most or all of the points between those two points lie above the line, so the graph is concave down, suggesting a
logarithmic model. We can try Plugging in the first point, gives We reject the case that

(if it were, all outputs would be 0), so we know Thus and Next we can use the point
to solve for

Because an appropriate model for the data is

To check the accuracy of the model, we graph the function together with the given points as in Figure 9.
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Figure 9 The graph of

We can conclude that the model is a good fit to the data.

Compare Figure 9 to the graph of shown in Figure 10.

Figure 10 The graph of

The graphs appear to be identical when A quick check confirms this conclusion: for

However, if the graph of includes a “extra” branch, as shown in Figure 11. This occurs because, while
cannot have negative values in the domain (as such values would force the argument to be negative), the

function can have negative domain values.
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Figure 11

TRY IT #6 Does a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.

1 2 3 4 5 6 7 8 9

3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Table 2

Expressing an Exponential Model in Base
While powers and logarithms of any base can be used in modeling, the two most common bases are and In science
and mathematics, the base is often preferred. We can use laws of exponents and laws of logarithms to change any
base to base

HOW TO

Given a model with the form change it to the form

1. Rewrite as
2. Use the power rule of logarithms to rewrite y as
3. Note that and in the equation

EXAMPLE 8

Changing to base e
Change the function so that this same function is written in the form

Solution
The formula is derived as follows

TRY IT #7 Change the function to one having as the base.

MEDIA

Access these online resources for additional instruction and practice with exponential and logarithmic models.
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Logarithm Application – pH (http://openstax.org/l/logph)
Exponential Model – Age Using Half-Life (http://openstax.org/l/expmodelhalf)
Newton’s Law of Cooling (http://openstax.org/l/newtoncooling)
Exponential Growth Given Doubling Time (http://openstax.org/l/expgrowthdbl)
Exponential Growth – Find Initial Amount Given Doubling Time (http://openstax.org/l/initialdouble)

6.7 SECTION EXERCISES
Verbal

1. With what kind of
exponential model would
half-life be associated? What
role does half-life play in
these models?

2. What is carbon dating? Why
does it work? Give an
example in which carbon
dating would be useful.

3. With what kind of
exponential model would
doubling time be
associated? What role does
doubling time play in these
models?

4. Define Newton’s Law of
Cooling. Then name at least
three real-world situations
where Newton’s Law of
Cooling would be applied.

5. What is an order of
magnitude? Why are orders
of magnitude useful? Give
an example to explain.

Numeric

6. The temperature of an
object in degrees Fahrenheit
after t minutes is
represented by the equation

To
the nearest degree, what is
the temperature of the
object after one and a half
hours?

For the following exercises, use the logistic growth model

7. Find and interpret
Round to the nearest tenth.

8. Find and interpret
Round to the nearest tenth.

9. Find the carrying capacity.
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10. Graph the model. 11. Determine whether the
data from the table could
best be represented as a
function that is linear,
exponential, or
logarithmic. Then write a
formula for a model that
represents the data.

–2 0.694

–1 0.833

0 1

1 1.2

2 1.44

3 1.728

4 2.074

5 2.488

12. Rewrite
as an exponential equation
with base to five decimal
places.
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Technology

For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table could represent a function that is linear, exponential, or logarithmic.

13.

1 2

2 4.079

3 5.296

4 6.159

5 6.828

6 7.375

7 7.838

8 8.238

9 8.592

10 8.908

14.

1 2.4

2 2.88

3 3.456

4 4.147

5 4.977

6 5.972

7 7.166

8 8.6

9 10.32

10 12.383

15.

4 9.429

5 9.972

6 10.415

7 10.79

8 11.115

9 11.401

10 11.657

11 11.889

12 12.101

13 12.295

16.

1.25 5.75

2.25 8.75

3.56 12.68

4.2 14.6

5.65 18.95

6.75 22.25

7.25 23.75

8.6 27.8

9.25 29.75

10.5 33.5
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For the following exercises, use a graphing calculator and this scenario: the population of a fish farm in years is
modeled by the equation

17. Graph the function. 18. What is the initial
population of fish?

19. To the nearest tenth, what
is the doubling time for the
fish population?

20. To the nearest whole
number, what will the fish
population be after
years?

21. To the nearest tenth, how
long will it take for the
population to reach

22. What is the carrying
capacity for the fish
population? Justify your
answer using the graph of

Extensions

23. A substance has a half-life
of 2.045 minutes. If the
initial amount of the
substance was 132.8
grams, how many half-lives
will have passed before the
substance decays to 8.3
grams? What is the total
time of decay?

24. The formula for an
increasing population is
given by
where is the initial
population and
Derive a general formula
for the time t it takes for
the population to increase
by a factor of M.

25. Recall the formula for
calculating the magnitude
of an earthquake,

Show

each step for solving this
equation algebraically for
the seismic moment

26. What is the y-intercept of
the logistic growth model

Show the

steps for calculation. What
does this point tell us
about the population?

27. Prove that for
positive

Real-World Applications

For the following exercises, use this scenario: A doctor prescribes 125 milligrams of a therapeutic drug that decays by
about 30% each hour.

28. To the nearest hour, what
is the half-life of the drug?

29. Write an exponential
model representing the
amount of the drug
remaining in the patient’s
system after hours. Then
use the formula to find the
amount of the drug that
would remain in the
patient’s system after 3
hours. Round to the
nearest milligram.

30. Using the model found in
the previous exercise, find

and interpret the
result. Round to the
nearest hundredth.
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For the following exercises, use this scenario: A tumor is injected with grams of Iodine-125, which has a decay rate of
per day.

31. To the nearest day, how
long will it take for half of
the Iodine-125 to decay?

32. Write an exponential
model representing the
amount of Iodine-125
remaining in the tumor
after days. Then use the
formula to find the amount
of Iodine-125 that would
remain in the tumor after
60 days. Round to the
nearest tenth of a gram.

33. A scientist begins with
grams of a radioactive
substance. After
minutes, the sample has
decayed to grams.
Rounding to five decimal
places, write an
exponential equation
representing this situation.
To the nearest minute,
what is the half-life of this
substance?

34. The half-life of Radium-226
is years. What is the
annual decay rate? Express
the decimal result to four
decimal places and the
percentage to two decimal
places.

35. The half-life of Erbium-165
is hours. What is the
hourly decay rate? Express
the decimal result to four
decimal places and the
percentage to two decimal
places.

36. A wooden artifact from an
archeological dig contains
60 percent of the
carbon-14 that is present in
living trees. To the nearest
year, about how many
years old is the artifact?
(The half-life of carbon-14
is years.)

37. A research student is
working with a culture of
bacteria that doubles in
size every twenty minutes.
The initial population count
was bacteria.
Rounding to five decimal
places, write an
exponential equation
representing this situation.
To the nearest whole
number, what is the
population size after
hours?

For the following exercises, use this scenario: A biologist recorded a count of bacteria present in a culture after 5
minutes and 1000 bacteria present after 20 minutes.

38. To the nearest whole
number, what was the
initial population in the
culture?

39. Rounding to six decimal
places, write an
exponential equation
representing this situation.
To the nearest minute, how
long did it take the
population to double?
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For the following exercises, use this scenario: A pot of warm soup with an internal temperature of Fahrenheit was
taken off the stove to cool in a room. After fifteen minutes, the internal temperature of the soup was

40. Use Newton’s Law of
Cooling to write a formula
that models this situation.

41. To the nearest minute, how
long will it take the soup to
cool to

42. To the nearest degree,
what will the temperature
be after and a half hours?

For the following exercises, use this scenario: A turkey is taken out of the oven with an internal temperature of
and is allowed to cool in a room. After half an hour, the internal temperature of the turkey is

43. Write a formula that
models this situation.

44. To the nearest degree,
what will the temperature
be after 50 minutes?

45. To the nearest minute, how
long will it take the turkey
to cool to

For the following exercises, find the value of the number shown on each logarithmic scale. Round all answers to the
nearest thousandth.

46. 47.

48. Plot each set of approximate values of intensity of
sounds on a logarithmic scale: Whisper:

Vacuum: Jet:

49. Recall the formula for calculating the magnitude

of an earthquake, One

earthquake has magnitude on the MMS scale.
If a second earthquake has times as much
energy as the first, find the magnitude of the
second quake. Round to the nearest hundredth.

For the following exercises, use this scenario: The equation models the number of people in a town

who have heard a rumor after t days.

50. How many people started
the rumor?

51. To the nearest whole
number, how many people
will have heard the rumor
after 3 days?

52. As increases without
bound, what value does

approach? Interpret
your answer.

For the following exercise, choose the correct answer choice.

ⓐ ⓑ
ⓒ
ⓓ

53. A doctor injects a patient with 13 milligrams of
radioactive dye that decays exponentially. After 12
minutes, there are 4.75 milligrams of dye
remaining in the patient’s system. Which is an
appropriate model for this situation?
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6.8 Fitting Exponential Models to Data
Learning Objectives
In this section, you will:

Build an exponential model from data.
Build a logarithmic model from data.
Build a logistic model from data.

In previous sections of this chapter, we were either given a function explicitly to graph or evaluate, or we were given a
set of points that were guaranteed to lie on the curve. Then we used algebra to find the equation that fit the points
exactly. In this section, we use a modeling technique called regression analysis to find a curve that models data collected
from real-world observations. With regression analysis, we don’t expect all the points to lie perfectly on the curve. The
idea is to find a model that best fits the data. Then we use the model to make predictions about future events.

Do not be confused by the word model. In mathematics, we often use the terms function, equation, and model
interchangeably, even though they each have their own formal definition. The term model is typically used to indicate
that the equation or function approximates a real-world situation.

We will concentrate on three types of regression models in this section: exponential, logarithmic, and logistic. Having
already worked with each of these functions gives us an advantage. Knowing their formal definitions, the behavior of
their graphs, and some of their real-world applications gives us the opportunity to deepen our understanding. As each
regression model is presented, key features and definitions of its associated function are included for review. Take a
moment to rethink each of these functions, reflect on the work we’ve done so far, and then explore the ways regression
is used to model real-world phenomena.

Building an Exponential Model from Data
As we’ve learned, there are a multitude of situations that can be modeled by exponential functions, such as investment
growth, radioactive decay, atmospheric pressure changes, and temperatures of a cooling object. What do these
phenomena have in common? For one thing, all the models either increase or decrease as time moves forward. But
that’s not the whole story. It’s the way data increase or decrease that helps us determine whether it is best modeled by
an exponential equation. Knowing the behavior of exponential functions in general allows us to recognize when to use
exponential regression, so let’s review exponential growth and decay.

Recall that exponential functions have the form or When performing regression analysis, we use the
form most commonly used on graphing utilities, Take a moment to reflect on the characteristics we’ve already
learned about the exponential function (assume

• must be greater than zero and not equal to one.
• The initial value of the model is

◦ If the function models exponential growth. As increases, the outputs of the model increase slowly at
first, but then increase more and more rapidly, without bound.

◦ If the function models exponential decay. As increases, the outputs for the model decrease rapidly
at first and then level off to become asymptotic to the x-axis. In other words, the outputs never become equal to
or less than zero.

As part of the results, your calculator will display a number known as the correlation coefficient, labeled by the variable
or (You may have to change the calculator’s settings for these to be shown.) The values are an indication of the
“goodness of fit” of the regression equation to the data. We more commonly use the value of instead of but the
closer either value is to 1, the better the regression equation approximates the data.

Exponential Regression

Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly
without bound, or where decay begins rapidly and then slows down to get closer and closer to zero. We use the
command “ExpReg” on a graphing utility to fit an exponential function to a set of data points. This returns an
equation of the form,

Note that:

• must be non-negative.
• when we have an exponential growth model.
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• when we have an exponential decay model.

HOW TO

Given a set of data, perform exponential regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow an exponential pattern.

3. Find the equation that models the data.
a. Select “ExpReg” from the STAT then CALC menu.
b. Use the values returned for a and b to record the model,

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 1

Using Exponential Regression to Fit a Model to Data
In 2007, a university study was published investigating the crash risk of alcohol impaired driving. Data from 2,871
crashes were used to measure the association of a person’s blood alcohol level (BAC) with the risk of being in an
accident. Table 1 shows results from the study 9 . The relative risk is a measure of how many times more likely a person is
to crash. So, for example, a person with a BAC of 0.09 is 3.54 times as likely to crash as a person who has not been
drinking alcohol.

BAC 0 0.01 0.03 0.05 0.07 0.09

Relative Risk of Crashing 1 1.03 1.06 1.38 2.09 3.54

BAC 0.11 0.13 0.15 0.17 0.19 0.21

Relative Risk of Crashing 6.41 12.6 22.1 39.05 65.32 99.78

Table 1

a. Let represent the BAC level, and let represent the corresponding relative risk. Use exponential regression to fit a
model to these data.

b. After 6 drinks, a person weighing 160 pounds will have a BAC of about How many times more likely is a person
with this weight to crash if they drive after having a 6-pack of beer? Round to the nearest hundredth.

Solution
a. Using the STAT then EDIT menu on a graphing utility, list the BAC values in L1 and the relative risk values in L2.

Then use the STATPLOT feature to verify that the scatterplot follows the exponential pattern shown in Figure 1:

9 Source: Indiana University Center for Studies of Law in Action, 2007
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Figure 1

Use the “ExpReg” command from the STAT then CALC menu to obtain the exponential model,

Converting from scientific notation, we have:

Notice that which indicates the model is a good fit to the data. To see this, graph the model in the same
window as the scatterplot to verify it is a good fit as shown in Figure 2:

Figure 2

b. Use the model to estimate the risk associated with a BAC of Substitute for in the model and solve for
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If a 160-pound person drives after having 6 drinks, they are about 26.35 times more likely to crash than if driving
while sober.

TRY IT #1 Table 2 shows a recent graduate’s credit card balance each month after graduation.

Month 1 2 3 4 5 6 7 8

Debt ($) 620.00 761.88 899.80 1039.93 1270.63 1589.04 1851.31 2154.92

Table 2

ⓐ Use exponential regression to fit a model to these data.

ⓑ If spending continues at this rate, what will the graduate’s credit card debt be one year after
graduating?

Q&A Is it reasonable to assume that an exponential regression model will represent a situation
indefinitely?

No. Remember that models are formed by real-world data gathered for regression. It is usually
reasonable to make estimates within the interval of original observation (interpolation). However, when a
model is used to make predictions, it is important to use reasoning skills to determine whether the model
makes sense for inputs far beyond the original observation interval (extrapolation).

Building a Logarithmic Model from Data
Just as with exponential functions, there are many real-world applications for logarithmic functions: intensity of sound,
pH levels of solutions, yields of chemical reactions, production of goods, and growth of infants. As with exponential
models, data modeled by logarithmic functions are either always increasing or always decreasing as time moves
forward. Again, it is the way they increase or decrease that helps us determine whether a logarithmic model is best.

Recall that logarithmic functions increase or decrease rapidly at first, but then steadily slow as time moves on. By
reflecting on the characteristics we’ve already learned about this function, we can better analyze real world situations
that reflect this type of growth or decay. When performing logarithmic regression analysis, we use the form of the
logarithmic function most commonly used on graphing utilities, For this function

• All input values, must be greater than zero.
• The point is on the graph of the model.
• If the model is increasing. Growth increases rapidly at first and then steadily slows over time.
• If the model is decreasing. Decay occurs rapidly at first and then steadily slows over time.

Logarithmic Regression

Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows
over time. We use the command “LnReg” on a graphing utility to fit a logarithmic function to a set of data points. This
returns an equation of the form,

Note that

• all input values, must be non-negative.
• when the model is increasing.
• when the model is decreasing.
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HOW TO

Given a set of data, perform logarithmic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow a logarithmic pattern.

3. Find the equation that models the data.
a. Select “LnReg” from the STAT then CALC menu.
b. Use the values returned for a and b to record the model,

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 2

Using Logarithmic Regression to Fit a Model to Data
Due to advances in medicine and higher standards of living, life expectancy has been increasing in most developed
countries since the beginning of the 20th century.

Table 3 shows the average life expectancies, in years, of Americans from 1900–201010 .

Year 1900 1910 1920 1930 1940 1950

Life Expectancy(Years) 47.3 50.0 54.1 59.7 62.9 68.2

Year 1960 1970 1980 1990 2000 2010

Life Expectancy(Years) 69.7 70.8 73.7 75.4 76.8 78.7

Table 3

ⓐ Let represent time in decades starting with for the year 1900, for the year 1910, and so on. Let
represent the corresponding life expectancy. Use logarithmic regression to fit a model to these data.

ⓑ Use the model to predict the average American life expectancy for the year 2030.

10 Source: Center for Disease Control and Prevention, 2013
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Solution

ⓐ Using the STAT then EDIT menu on a graphing utility, list the years using values 1–12 in L1 and the
corresponding life expectancy in L2. Then use the STATPLOT feature to verify that the scatterplot follows a
logarithmic pattern as shown in Figure 3:

Figure 3

Use the “LnReg” command from the STAT then CALC menu to obtain the logarithmic model,

Next, graph the model in the same window as the scatterplot to verify it is a good fit as shown in Figure 4:

Figure 4

ⓑ To predict the life expectancy of an American in the year 2030, substitute for the in the model and solve
for

If life expectancy continues to increase at this pace, the average life expectancy of an American will be 79.1 by the
year 2030.
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TRY IT #2 Sales of a video game released in the year 2000 took off at first, but then steadily slowed as time
moved on. Table 4 shows the number of games sold, in thousands, from the years 2000–2010.

Year 2000 2001 2002 2003 2004 2005

Number Sold (thousands) 142 149 154 155 159 161

Year 2006 2007 2008 2009 2010 -

Number Sold (thousands) 163 164 164 166 167 -

Table 4

ⓐ Let represent time in years starting with for the year 2000. Let represent the
number of games sold in thousands. Use logarithmic regression to fit a model to these data.

ⓑ If games continue to sell at this rate, how many games will sell in 2015? Round to the nearest
thousand.

Building a Logistic Model from Data
Like exponential and logarithmic growth, logistic growth increases over time. One of the most notable differences with
logistic growth models is that, at a certain point, growth steadily slows and the function approaches an upper bound, or
limiting value. Because of this, logistic regression is best for modeling phenomena where there are limits in expansion,
such as availability of living space or nutrients.

It is worth pointing out that logistic functions actually model resource-limited exponential growth. There are many
examples of this type of growth in real-world situations, including population growth and spread of disease, rumors, and
even stains in fabric. When performing logistic regression analysis, we use the form most commonly used on graphing
utilities:

Recall that:

• is the initial value of the model.

• when the model increases rapidly at first until it reaches its point of maximum growth rate, At

that point, growth steadily slows and the function becomes asymptotic to the upper bound
• is the limiting value, sometimes called the carrying capacity, of the model.

Logistic Regression

Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows to an
upper limit. We use the command “Logistic” on a graphing utility to fit a logistic function to a set of data points. This
returns an equation of the form

Note that

• The initial value of the model is

• Output values for the model grow closer and closer to as time increases.
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HOW TO

Given a set of data, perform logistic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow a logistic pattern.

3. Find the equation that models the data.
a. Select “Logistic” from the STAT then CALC menu.
b. Use the values returned for and to record the model,

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

EXAMPLE 3

Using Logistic Regression to Fit a Model to Data
Mobile telephone service has increased rapidly in America since the mid 1990s. Today, almost all residents have cellular
service. Table 5 shows the percentage of Americans with cellular service between the years 1995 and 2012 11 .

Year Americans with Cellular Service (%) Year Americans with Cellular Service (%)

1995 12.69 2004 62.852

1996 16.35 2005 68.63

1997 20.29 2006 76.64

1998 25.08 2007 82.47

1999 30.81 2008 85.68

2000 38.75 2009 89.14

2001 45.00 2010 91.86

2002 49.16 2011 95.28

2003 55.15 2012 98.17

Table 5

ⓐ Let represent time in years starting with for the year 1995. Let represent the corresponding percentage of
residents with cellular service. Use logistic regression to fit a model to these data.

ⓑ Use the model to calculate the percentage of Americans with cell service in the year 2013. Round to the nearest
tenth of a percent.

ⓒ Discuss the value returned for the upper limit, What does this tell you about the model? What would the limiting

11 Source: The World Bank, 2013
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value be if the model were exact?

Solution

ⓐ Using the STAT then EDIT menu on a graphing utility, list the years using values 0–15 in L1 and the corresponding
percentage in L2. Then use the STATPLOT feature to verify that the scatterplot follows a logistic pattern as shown in
Figure 5:

Figure 5

Use the “Logistic” command from the STAT then CALC menu to obtain the logistic model,

Next, graph the model in the same window as shown in Figure 6 the scatterplot to verify it is a good fit:

Figure 6

ⓑ
To approximate the percentage of Americans with cellular service in the year 2013, substitute for the in the model

658 6 • Exponential and Logarithmic Functions

Access for free at openstax.org



and solve for

According to the model, about 99.3% of Americans had cellular service in 2013.

ⓒ
The model gives a limiting value of about 105. This means that the maximum possible percentage of Americans with
cellular service would be 105%, which is impossible. (How could over 100% of a population have cellular service?) If the
model were exact, the limiting value would be and the model’s outputs would get very close to, but never
actually reach 100%. After all, there will always be someone out there without cellular service!

TRY IT #3 Table 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years
1997 to 2012.

Year Seal Population (Thousands) Year Seal Population (Thousands)

1997 3.493 2005 19.590

1998 5.282 2006 21.955

1999 6.357 2007 22.862

2000 9.201 2008 23.869

2001 11.224 2009 24.243

2002 12.964 2010 24.344

2003 16.226 2011 24.919

2004 18.137 2012 25.108

Table 6

ⓐ Let represent time in years starting with for the year 1997. Let represent the
number of seals in thousands. Use logistic regression to fit a model to these data.

ⓑ Use the model to predict the seal population for the year 2020.

ⓒ To the nearest whole number, what is the limiting value of this model?

MEDIA

Access this online resource for additional instruction and practice with exponential function models.

Exponential Regression on a Calculator (https://openstax.org/l/pregresscalc)
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6.8 SECTION EXERCISES
Verbal

1. What situations are best
modeled by a logistic
equation? Give an example,
and state a case for why the
example is a good fit.

2. What is a carrying capacity?
What kind of model has a
carrying capacity built into
its formula? Why does this
make sense?

3. What is regression analysis?
Describe the process of
performing regression
analysis on a graphing
utility.

4. What might a scatterplot of
data points look like if it
were best described by a
logarithmic model?

5. What does the y-intercept
on the graph of a logistic
equation correspond to for
a population modeled by
that equation?

Graphical

For the following exercises, match the given function of best fit with the appropriate scatterplot in Figure 7 through
Figure 11. Answer using the letter beneath the matching graph.

Figure 7

Figure 8
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Figure 9

Figure 10

Figure 11
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6. 7. 8.

9. 10.

Numeric

11. To the nearest whole
number, what is the initial
value of a population
modeled by the logistic
equation

What is the carrying
capacity?

12. Rewrite the exponential
model

as an
equivalent model with base

Express the exponent to
four significant digits.

13. A logarithmic model is given
by the equation

To the nearest hundredth,
for what value of does

14. A logistic model is given by
the equation

To the

nearest hundredth, for
what value of t does

15. What is the y-intercept on
the graph of the logistic
model given in the
previous exercise?

Technology

For the following exercises, use this scenario: The population of a koi pond over months is modeled by the function

16. Graph the population
model to show the
population over a span of
years.

17. What was the initial
population of koi?

18. How many koi will the
pond have after one and a
half years?

19. How many months will it
take before there are
koi in the pond?

20. Use the intersect feature to
approximate the number
of months it will take
before the population of
the pond reaches half its
carrying capacity.

For the following exercises, use this scenario: The population of an endangered species habitat for wolves is modeled
by the function where is given in years.

21. Graph the population
model to show the
population over a span of

years.

22. What was the initial
population of wolves
transported to the habitat?

23. How many wolves will the
habitat have after years?
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24. How many years will it take
before there are
wolves in the habitat?

25. Use the intersect feature to
approximate the number
of years it will take before
the population of the
habitat reaches half its
carrying capacity.

For the following exercises, refer to Table 7.

x 1 2 3 4 5 6

f(x) 1125 1495 2310 3294 4650 6361

Table 7

26. Use a graphing calculator
to create a scatter diagram
of the data.

27. Use the regression feature
to find an exponential
function that best fits the
data in the table.

28. Write the exponential
function as an exponential
equation with base

29. Graph the exponential
equation on the scatter
diagram.

30. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 8.

x 1 2 3 4 5 6

f(x) 555 383 307 210 158 122

Table 8

31. Use a graphing calculator
to create a scatter diagram
of the data.

32. Use the regression feature
to find an exponential
function that best fits the
data in the table.

33. Write the exponential
function as an exponential
equation with base

34. Graph the exponential
equation on the scatter
diagram.

35. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 9.

x 1 2 3 4 5 6

f(x) 5.1 6.3 7.3 7.7 8.1 8.6

Table 9
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36. Use a graphing calculator
to create a scatter diagram
of the data.

37. Use the LOGarithm option
of the REGression feature
to find a logarithmic
function of the form

that best
fits the data in the table.

38. Use the logarithmic
function to find the value
of the function when

39. Graph the logarithmic
equation on the scatter
diagram.

40. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 10.

x 1 2 3 4 5 6 7 8

f(x) 7.5 6 5.2 4.3 3.9 3.4 3.1 2.9

Table 10

41. Use a graphing calculator
to create a scatter diagram
of the data.

42. Use the LOGarithm option
of the REGression feature
to find a logarithmic
function of the form

that best
fits the data in the table.

43. Use the logarithmic
function to find the value
of the function when

44. Graph the logarithmic
equation on the scatter
diagram.

45. Use the intersect feature to
find the value of for
which

For the following exercises, refer to Table 11.

x 1 2 3 4 5 6 7 8 9 10

f(x) 8.7 12.3 15.4 18.5 20.7 22.5 23.3 24 24.6 24.8

Table 11

46. Use a graphing calculator
to create a scatter diagram
of the data.

47. Use the LOGISTIC
regression option to find a
logistic growth model of
the form that

best fits the data in the
table.

48. Graph the logistic equation
on the scatter diagram.

49. To the nearest whole
number, what is the
predicted carrying capacity
of the model?

50. Use the intersect feature to
find the value of for
which the model reaches
half its carrying capacity.
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For the following exercises, refer to Table 12.

0 2 4 5 7 8 10 11 15 17

12 28.6 52.8 70.3 99.9 112.5 125.8 127.9 135.1 135.9

Table 12

51. Use a graphing calculator
to create a scatter diagram
of the data.

52. Use the LOGISTIC
regression option to find a
logistic growth model of
the form that

best fits the data in the
table.

53. Graph the logistic equation
on the scatter diagram.

54. To the nearest whole
number, what is the
predicted carrying capacity
of the model?

55. Use the intersect feature to
find the value of for
which the model reaches
half its carrying capacity.

Extensions

56. Recall that the general form of a logistic equation
for a population is given by such

that the initial population at time is
Show algebraically that

57. Use a graphing utility to find an exponential
regression formula and a logarithmic
regression formula for the points
and Round all numbers to 6 decimal
places. Graph the points and both formulas along
with the line on the same axis. Make a
conjecture about the relationship of the
regression formulas.

58. Verify the conjecture made in the previous
exercise. Round all numbers to six decimal places
when necessary.

59. Find the inverse function for the logistic
function Show all steps.

60. Use the result from the previous exercise to graph
the logistic model along with its

inverse on the same axis. What are the intercepts
and asymptotes of each function?
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Chapter Review
Key Terms
annual percentage rate (APR) the yearly interest rate earned by an investment account, also called nominal rate
carrying capacity in a logistic model, the limiting value of the output
change-of-base formula a formula for converting a logarithm with any base to a quotient of logarithms with any

other base.
common logarithm the exponent to which 10 must be raised to get is written simply as
compound interest interest earned on the total balance, not just the principal
doubling time the time it takes for a quantity to double
exponential growth a model that grows by a rate proportional to the amount present
extraneous solution a solution introduced while solving an equation that does not satisfy the conditions of the

original equation
half-life the length of time it takes for a substance to exponentially decay to half of its original quantity
logarithm the exponent to which must be raised to get written
logistic growth model a function of the form where is the initial value, is the carrying capacity,

or limiting value, and is a constant determined by the rate of growth
natural logarithm the exponent to which the number must be raised to get is written as
Newton’s Law of Cooling the scientific formula for temperature as a function of time as an object’s temperature is

equalized with the ambient temperature
nominal rate the yearly interest rate earned by an investment account, also called annual percentage rate
order of magnitude the power of ten, when a number is expressed in scientific notation, with one non-zero digit to

the left of the decimal
power rule for logarithms a rule of logarithms that states that the log of a power is equal to the product of the

exponent and the log of its base
product rule for logarithms a rule of logarithms that states that the log of a product is equal to a sum of logarithms
quotient rule for logarithms a rule of logarithms that states that the log of a quotient is equal to a difference of

logarithms

Key Equations

definition of the exponential
function

definition of exponential
growth

compound interest formula

continuous growth formula
is the number of unit time periods of growth

is the starting amount (in the continuous compounding formula a is replaced
with P, the principal)

is the mathematical constant,

General Form for the Translation of the Parent Function
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Definition of the logarithmic function
For

if and only if

Definition of the common logarithm For if and only if

Definition of the natural logarithm For if and only if

General Form for the Translation of the Parent Logarithmic Function

The Product Rule for Logarithms

The Quotient Rule for Logarithms

The Power Rule for Logarithms

The Change-of-Base Formula

One-to-one property for exponential
functions

For any algebraic expressions and and any positive real number
where

if and only if

Definition of a logarithm
For any algebraic expression S and positive real numbers and where

if and only if

One-to-one property for logarithmic
functions

For any algebraic expressions S and T and any positive real number
where

if and only if

Half-life formula If the half-life is

Carbon-14 dating is the amount of carbon-14 when the plant or animal died
is the amount of carbon-14 remaining today

is the age of the fossil in years

Doubling time
formula

If the doubling time is

Newton’s Law of
Cooling

where is the ambient temperature, and is the
continuous rate of cooling.

Key Concepts
6.1 Exponential Functions

• An exponential function is defined as a function with a positive constant other than raised to a variable exponent.
See Example 1.
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• A function is evaluated by solving at a specific value. See Example 2 and Example 3.
• An exponential model can be found when the growth rate and initial value are known. See Example 4.
• An exponential model can be found when the two data points from the model are known. See Example 5.
• An exponential model can be found using two data points from the graph of the model. See Example 6.
• An exponential model can be found using two data points from the graph and a calculator. See Example 7.
• The value of an account at any time can be calculated using the compound interest formula when the principal,

annual interest rate, and compounding periods are known. See Example 8.
• The initial investment of an account can be found using the compound interest formula when the value of the

account, annual interest rate, compounding periods, and life span of the account are known. See Example 9.
• The number is a mathematical constant often used as the base of real world exponential growth and decay

models. Its decimal approximation is
• Scientific and graphing calculators have the key or for calculating powers of See Example 10.
• Continuous growth or decay models are exponential models that use as the base. Continuous growth and decay

models can be found when the initial value and growth or decay rate are known. See Example 11 and Example 12.

6.2 Graphs of Exponential Functions

• The graph of the function has a y-intercept at domain ∞ ∞ range ∞ and horizontal

asymptote See Example 1.
• If the function is increasing. The left tail of the graph will approach the asymptote and the right tail will

increase without bound.
• If the function is decreasing. The left tail of the graph will increase without bound, and the right tail will

approach the asymptote
• The equation represents a vertical shift of the parent function
• The equation represents a horizontal shift of the parent function See Example 2.
• Approximate solutions of the equation can be found using a graphing calculator. See Example 3.
• The equation where represents a vertical stretch if or compression if of the

parent function See Example 4.
• When the parent function is multiplied by the result, is a reflection about the x-axis.

When the input is multiplied by the result, is a reflection about the y-axis. See Example 5.
• All translations of the exponential function can be summarized by the general equation See Table

3.
• Using the general equation we can write the equation of a function given its description. See

Example 6.

6.3 Logarithmic Functions

• The inverse of an exponential function is a logarithmic function, and the inverse of a logarithmic function is an
exponential function.

• Logarithmic equations can be written in an equivalent exponential form, using the definition of a logarithm. See
Example 1.

• Exponential equations can be written in their equivalent logarithmic form using the definition of a logarithm See
Example 2.

• Logarithmic functions with base can be evaluated mentally using previous knowledge of powers of See Example
3 and Example 4.

• Common logarithms can be evaluated mentally using previous knowledge of powers of See Example 5.
• When common logarithms cannot be evaluated mentally, a calculator can be used. See Example 6.
• Real-world exponential problems with base can be rewritten as a common logarithm and then evaluated using a

calculator. See Example 7.
• Natural logarithms can be evaluated using a calculator Example 8.

6.4 Graphs of Logarithmic Functions

• To find the domain of a logarithmic function, set up an inequality showing the argument greater than zero, and
solve for See Example 1 and Example 2

• The graph of the parent function has an x-intercept at domain ∞ range ∞ ∞
vertical asymptote and
◦ if the function is increasing.
◦ if the function is decreasing.
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See Example 3.
• The equation shifts the parent function horizontally

◦ left units if
◦ right units if

See Example 4.
• The equation shifts the parent function vertically

◦ up units if
◦ down units if

See Example 5.
• For any constant the equation

◦ stretches the parent function vertically by a factor of if
◦ compresses the parent function vertically by a factor of if

See Example 6 and Example 7.
• When the parent function is multiplied by the result is a reflection about the x-axis. When the input

is multiplied by the result is a reflection about the y-axis.
◦ The equation represents a reflection of the parent function about the x-axis.
◦ The equation represents a reflection of the parent function about the y-axis.

See Example 8.
◦ A graphing calculator may be used to approximate solutions to some logarithmic equations See Example 9.

• All translations of the logarithmic function can be summarized by the general equation
See Table 4.

• Given an equation with the general form we can identify the vertical asymptote for
the transformation. See Example 10.

• Using the general equation we can write the equation of a logarithmic function given its
graph. See Example 11.

6.5 Logarithmic Properties

• We can use the product rule of logarithms to rewrite the log of a product as a sum of logarithms. See Example 1.
• We can use the quotient rule of logarithms to rewrite the log of a quotient as a difference of logarithms. See

Example 2.
• We can use the power rule for logarithms to rewrite the log of a power as the product of the exponent and the log

of its base. See Example 3, Example 4, and Example 5.
• We can use the product rule, the quotient rule, and the power rule together to combine or expand a logarithm with

a complex input. See Example 6, Example 7, and Example 8.
• The rules of logarithms can also be used to condense sums, differences, and products with the same base as a

single logarithm. See Example 9, Example 10, Example 11, and Example 12.
• We can convert a logarithm with any base to a quotient of logarithms with any other base using the change-of-base

formula. See Example 13.
• The change-of-base formula is often used to rewrite a logarithm with a base other than 10 and as the quotient of

natural or common logs. That way a calculator can be used to evaluate. See Example 14.

6.6 Exponential and Logarithmic Equations

• We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the
same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one
another and solve for the unknown.

• When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents
equal to one another and solve for the unknown. See Example 1.

• When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite each
side of the equation as powers of the same base, then set the exponents equal to one another and solve for the
unknown. See Example 2, Example 3, and Example 4.

• When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side.
See Example 5.

• We can solve exponential equations with base by applying the natural logarithm of both sides because
exponential and logarithmic functions are inverses of each other. See Example 6 and Example 7.

• After solving an exponential equation, check each solution in the original equation to find and eliminate any
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extraneous solutions. See Example 8.
• When given an equation of the form where is an algebraic expression, we can use the definition of a

logarithm to rewrite the equation as the equivalent exponential equation and solve for the unknown. See
Example 9 and Example 10.

• We can also use graphing to solve equations with the form We graph both equations and
on the same coordinate plane and identify the solution as the x-value of the intersecting point. See Example

11.
• When given an equation of the form where and are algebraic expressions, we can use the one-

to-one property of logarithms to solve the equation for the unknown. See Example 12.
• Combining the skills learned in this and previous sections, we can solve equations that model real world situations,

whether the unknown is in an exponent or in the argument of a logarithm. See Example 13.

6.7 Exponential and Logarithmic Models

• The basic exponential function is If we have exponential growth; if we have
exponential decay.

• We can also write this formula in terms of continuous growth as where is the starting value. If is
positive, then we have exponential growth when and exponential decay when See Example 1.

• In general, we solve problems involving exponential growth or decay in two steps. First, we set up a model and use
the model to find the parameters. Then we use the formula with these parameters to predict growth and decay. See
Example 2.

• We can find the age, of an organic artifact by measuring the amount, of carbon-14 remaining in the artifact and
using the formula to solve for See Example 3.

• Given a substance’s doubling time or half-time, we can find a function that represents its exponential growth or
decay. See Example 4.

• We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired
temperature, or to find what temperature an object will be after a given time. See Example 5.

• We can use logistic growth functions to model real-world situations where the rate of growth changes over time,
such as population growth, spread of disease, and spread of rumors. See Example 6.

• We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential, logarithmic,
and logistic graphs help us to develop models that best fit our data. See Example 7.

• Any exponential function with the form can be rewritten as an equivalent exponential function with the
form where See Example 8.

6.8 Fitting Exponential Models to Data

• Exponential regression is used to model situations where growth begins slowly and then accelerates rapidly without
bound, or where decay begins rapidly and then slows down to get closer and closer to zero.

• We use the command “ExpReg” on a graphing utility to fit function of the form to a set of data points. See
Example 1.

• Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows
over time.

• We use the command “LnReg” on a graphing utility to fit a function of the form to a set of data
points. See Example 2.

• Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows as
the function approaches an upper limit.

• We use the command “Logistic” on a graphing utility to fit a function of the form to a set of data

points. See Example 3.
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Exercises
Review Exercises
Exponential Functions
1. Determine whether the

function
represents exponential
growth, exponential decay,
or neither. Explain

2. The population of a herd of
deer is represented by the
function
where is given in years. To
the nearest whole number,
what will the herd
population be after years?

3. Find an exponential
equation that passes
through the points
and

4. Determine whether Table 1
could represent a function that
is linear, exponential, or neither.
If it appears to be exponential,
find a function that passes
through the points.

x 1 2 3 4

f(x) 3 0.9 0.27 0.081

Table 1

5. A retirement account is
opened with an initial
deposit of $8,500 and earns

interest compounded
monthly. What will the
account be worth in
years?

6. Hsu-Mei wants to save
$5,000 for a down payment
on a car. To the nearest
dollar, how much will she
need to invest in an account
now with APR,
compounded daily, in order
to reach her goal in years?

7. Does the equation
represent

continuous growth,
continuous decay, or
neither? Explain.

8. Suppose an investment
account is opened with an
initial deposit of
earning interest,
compounded continuously.
How much will the account
be worth after years?

Graphs of Exponential Functions
9. Graph the function State the

domain and range and give the y-intercept.
10. Graph the function and its

reflection about the y-axis on the same axes, and
give the y-intercept.
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11. The graph of is reflected about the
y-axis and stretched vertically by a factor of
What is the equation of the new function,
State its y-intercept, domain, and range.

12. The graph below shows transformations of the
graph of What is the equation for the
transformation?

Figure 1

Logarithmic Functions

13. Rewrite
as an equivalent
exponential equation.

14. Rewrite as an
equivalent exponential
equation.

15. Rewrite as an
equivalent logarithmic
equation.

16. Rewrite as an
equivalent logarithmic
equation.

17. Solve for x if by converting the

logarithmic equation to exponential
form.

18. Evaluate
without using a calculator.

19. Evaluate without using a calculator.

20. Evaluate using a
calculator. Round to the
nearest thousandth.

21. Evaluate
without using a calculator.

22. Evaluate using a

calculator. Round to the
nearest thousandth.

Graphs of Logarithmic Functions
23. Graph the function 24. Graph the function

25. State the domain, vertical asymptote, and end
behavior of the function

Logarithmic Properties
26. Rewrite in expanded form. 27. Rewrite

in compact form.
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28. Rewrite in expanded form. 29. Rewrite in compact form.

30. Rewrite as a product. 31. Rewrite as a single logarithm.

32. Use properties of logarithms to expand 33. Use properties of logarithms to expand

34. Condense the expression
to a single logarithm.

35. Condense the expression

to a single logarithm.

36. Rewrite to base 37. Rewrite as a logarithm. Then apply
the change of base formula to solve for using
the common log. Round to the nearest
thousandth.

Exponential and Logarithmic Equations
38. Solve

by
rewriting each side with a
common base.

39. Solve by

rewriting each side with a
common base.

40. Use logarithms to find the
exact solution for

If there
is no solution, write no
solution.

41. Use logarithms to find the
exact solution for

If there
is no solution, write no
solution.

42. Find the exact solution for
. If there is no

solution, write no solution.

43. Find the exact solution for
If there

is no solution, write no
solution.

44. Find the exact solution for
If there is

no solution, write no
solution.

45. Find the exact solution for
If

there is no solution, write
no solution.

46. Use the definition of a
logarithm to solve.

47. Use the definition of a
logarithm to find the exact
solution for

48. Use the one-to-one property of
logarithms to find an exact
solution for

If there is no solution, write no
solution.

49. Use the one-to-one property
of logarithms to find an exact
solution for

If there is no solution, write no
solution.

50. The formula for measuring sound intensity in
decibels is defined by the equation

where is the intensity of the

sound in watts per square meter and
is the lowest level of sound that the average
person can hear. How many decibels are emitted
from a large orchestra with a sound intensity of

watts per square meter?

51. The population of a city is modeled by the
equation where is
measured in years. If the city continues to grow at
this rate, how many years will it take for the
population to reach one million?
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52. Find the inverse function for the exponential
function

53. Find the inverse function for the logarithmic
function

Exponential and Logarithmic Models

For the following exercises, use this scenario: A doctor prescribes milligrams of a therapeutic drug that decays by
about each hour.

54. To the nearest minute, what is the half-life of the
drug?

55. Write an exponential model representing the
amount of the drug remaining in the patient’s
system after hours. Then use the formula to find
the amount of the drug that would remain in the
patient’s system after hours. Round to the
nearest hundredth of a gram.

For the following exercises, use this scenario: A soup with an internal temperature of Fahrenheit was taken off the
stove to cool in a room. After fifteen minutes, the internal temperature of the soup was

56. Use Newton’s Law of
Cooling to write a formula
that models this situation.

57. How many minutes will it
take the soup to cool to

For the following exercises, use this scenario: The equation models the number of people in a

school who have heard a rumor after days.

58. How many people started
the rumor?

59. To the nearest tenth, how
many days will it be before
the rumor spreads to half
the carrying capacity?

60. What is the carrying
capacity?
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For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table would likely represent a function that is linear, exponential, or
logarithmic.

61.
x f(x)

1 3.05

2 4.42

3 6.4

4 9.28

5 13.46

6 19.52

7 28.3

8 41.04

9 59.5

10 86.28

62.
x f(x)

0.5 18.05

1 17

3 15.33

5 14.55

7 14.04

10 13.5

12 13.22

13 13.1

15 12.88

17 12.69

20 12.45

63. Find a formula for an
exponential equation that
goes through the points

and Then
express the formula as an
equivalent equation with
base e.

Fitting Exponential Models to Data
64. What is the carrying capacity for a population

modeled by the logistic equation
What is the initial population

for the model?

65. The population of a culture of bacteria is modeled
by the logistic equation

where is in days. To the nearest tenth, how many
days will it take the culture to reach of its
carrying capacity?
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For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the
shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic
model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round
values to five decimal places.

66.
x f(x)

1 409.4

2 260.7

3 170.4

4 110.6

5 74

6 44.7

7 32.4

8 19.5

9 12.7

10 8.1

67.
x f(x)

0.15 36.21

0.25 28.88

0.5 24.39

0.75 18.28

1 16.5

1.5 12.99

2 9.91

2.25 8.57

2.75 7.23

3 5.99

3.5 4.81

68.
x f(x)

0 9

2 22.6

4 44.2

5 62.1

7 96.9

8 113.4

10 133.4

11 137.6

15 148.4

17 149.3

Practice Test
1. The population of a pod of

bottlenose dolphins is
modeled by the function

where is
given in years. To the
nearest whole number, what
will the pod population be
after years?

2. Find an exponential
equation that passes
through the points
and

3. Drew wants to save $2,500
to go to the next World Cup.
To the nearest dollar, how
much will he need to invest
in an account now with

APR, compounding
daily, in order to reach his
goal in years?
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4. An investment account was
opened with an initial
deposit of $9,600 and earns

interest, compounded
continuously. How much will
the account be worth after

years?

5. Graph the function
and its

reflection across the y-axis
on the same axes, and give
the y-intercept.

6. The graph shows transformations
of the graph of What
is the equation for the
transformation?

7. Rewrite
as an equivalent exponential
equation.

8. Rewrite as an
equivalent logarithmic
equation.

9. Solve for by converting the
logarithmic equation

to exponential

form.

10. Evaluate
without using a calculator.

11. Evaluate using a
calculator. Round to the
nearest thousandth.

12. Graph the function

13. State the domain, vertical
asymptote, and end
behavior of the function

14. Rewrite as a
sum.

15. Rewrite
in compact form.

16. Rewrite as a

product.

17. Use properties of
logarithm to expand

18. Condense the expression
to a single

logarithm.

19. Rewrite as
a logarithm. Then apply the
change of base formula to
solve for using the
natural log. Round to the
nearest thousandth.

20. Solve by rewriting each
side with a common base.

21. Use logarithms to find the
exact solution for

. If
there is no solution, write
no solution.
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22. Find the exact solution for
If there

is no solution, write no
solution.

23. Find the exact solution for
If

there is no solution, write
no solution.

24. Find the exact solution for
If there is

no solution, write no
solution.

25. Find the exact solution for
If there

is no solution, write no
solution.

26. Use the definition of a
logarithm to find the exact
solution for

27. Use the one-to-one property of logarithms to find
an exact solution for

If there is no
solution, write no solution.

28. The formula for measuring
sound intensity in decibels

is defined by the
equation

where

is the intensity of the
sound in watts per square
meter and is
the lowest level of sound
that the average person
can hear. How many
decibels are emitted from a
rock concert with a sound
intensity of
watts per square meter?

29. A radiation safety officer is
working with grams of
a radioactive substance.
After days, the sample
has decayed to grams.
Rounding to five significant
digits, write an exponential
equation representing this
situation. To the nearest
day, what is the half-life of
this substance?

30. Write the formula found in
the previous exercise as an
equivalent equation with
base Express the
exponent to five significant
digits.

31. A bottle of soda with a
temperature of
Fahrenheit was taken off a
shelf and placed in a
refrigerator with an
internal temperature of

After ten minutes,
the internal temperature of
the soda was Use
Newton’s Law of Cooling to
write a formula that
models this situation. To
the nearest degree, what
will the temperature of the
soda be after one hour?
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32. The population of a wildlife
habitat is modeled by the
equation

where

is given in years. How
many animals were
originally transported to
the habitat? How many
years will it take before the
habitat reaches half its
capacity?

33. Enter the data from Table 1
into a graphing calculator
and graph the resulting
scatter plot. Determine
whether the data from the
table would likely
represent a function that is
linear, exponential, or
logarithmic.

x f(x)

1 3

2 8.55

3 11.79

4 14.09

5 15.88

6 17.33

7 18.57

8 19.64

9 20.58

10 21.42

Table 1

34. The population of a lake of
fish is modeled by the
logistic equation

where

is time in years. To the
nearest hundredth, how
many years will it take the
lake to reach of its
carrying capacity?
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For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe the
shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or logistic
model. Then use the appropriate regression feature to find an equation that models the data. When necessary, round
values to five decimal places.

35.
x f(x)

1 20

2 21.6

3 29.2

4 36.4

5 46.6

6 55.7

7 72.6

8 87.1

9 107.2

10 138.1

36.
x f(x)

3 13.98

4 17.84

5 20.01

6 22.7

7 24.1

8 26.15

9 27.37

10 28.38

11 29.97

12 31.07

13 31.43

37.
x f(x)

0 2.2

0.5 2.9

1 3.9

1.5 4.8

2 6.4

3 9.3

4 12.3

5 15

6 16.2

7 17.3

8 17.9
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The tide rises and falls at regular, predictable intervals. (credit: Andrea Schaffer, Flickr)

Chapter Outline
7.1 Angles
7.2 Right Triangle Trigonometry
7.3 Unit Circle
7.4 The Other Trigonometric Functions

Introduction to The Unit Circle: Sine and Cosine Functions
Life is dense with phenomena that repeat in regular intervals. Each day, for example, the tides rise and fall in response to
the gravitational pull of the moon. And as a result of the motion of the moon itself, the tides occur with different
strengths. Throughout history, many Indigenous peoples have used this regularity to build cultural narratives and direct
key activities, such as agriculture, hunting, and fishing. Aboriginal people in the Torres Strait area (the northern tip) of
Australia used the tidal peaks to determine the best times to fish. Their elders explain that the stronger spring tides
stirred up sediment and obscured fish vision, leaving them more likely to take in lures and resulting in a larger catch.1

In mathematics, a function that repeats its values in regular intervals is known as a periodic function. The graphs of such
functions show a general shape reflective of a pattern that keeps repeating. This means the graph of the function has
the same output at exactly the same place in every cycle. And this translates to all the cycles of the function
having exactly the same length. So, if we know all the details of one full cycle of a true periodic function, then we know
the state of the function’s outputs at all times, future and past. In this chapter, we will investigate various examples of
periodic functions.

THE UNIT CIRCLE: SINE AND COSINE FUNCTIONS7

1 Hamacher, D.W., Tapim, A., Passi, S., and Barsa, J. (2018). Dancing with the stars – astronomy and music in the Torres Strait. In Imagining

Other Worlds: Explorations in Astronomy and Culture.
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7.1 Angles
Learning Objectives
In this section you will:

Draw angles in standard position.
Convert between degrees and radians.
Find coterminal angles.
Find the length of a circular arc.
Use linear and angular speed to describe motion on a circular path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow
runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so
do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we
estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure
in many undertakings. In this section, we will examine properties of angles.

Drawing Angles in Standard Position
Properly defining an angle first requires that we define a ray. A ray is a directed line segment. It consists of one point on
a line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can
refer to a specific ray by stating its endpoint and any other point on it. The ray in Figure 1 can be named as ray EF, or in
symbol form

Figure 1

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the
two rays are the sides of the angle. The angle in Figure 2 is formed from and . Angles can be named using a
point on each ray and the vertex, such as angle DEF, or in symbol form

Figure 2

Greek letters are often used as variables for the measure of an angle. Table 1 is a list of Greek letters commonly used to
represent angles, and a sample angle is shown in Figure 3.

or

theta phi alpha beta gamma

Table 1
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Figure 3 Angle theta, shown as

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and
rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the
different sides, we indicate the rotation with a small arrow close to the vertex as in Figure 4.

Figure 4

As we discussed at the beginning of the section, there are many applications for angles, but in order to use them
correctly, we must be able to measure them. The measure of an angle is the amount of rotation from the initial side to
the terminal side. Probably the most familiar unit of angle measurement is the degree. One degree is of a circular
rotation, so a complete circular rotation contains degrees. An angle measured in degrees should always include the
unit “degrees” after the number, or include the degree symbol For example,

To formalize our work, we will begin by drawing angles on an x-y coordinate plane. Angles can occur in any position on
the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position
whenever possible. An angle is in standard position if its vertex is located at the origin, and its initial side extends along
the positive x-axis. See Figure 5.

Figure 5

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to be a
positive angle. If the angle is measured in a clockwise direction, the angle is said to be a negative angle.
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Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-axis. To
place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by
dividing the angle measure in degrees by For example, to draw a angle, we calculate that So, the
terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive x-axis. To draw
a angle, we calculate that So the terminal side will be 1 complete rotation around the circle, moving
counterclockwise from the positive x-axis. In this case, the initial side and the terminal side overlap. See Figure 6.

Figure 6

Since we define an angle in standard position by its terminal side, we have a special type of angle whose terminal side
lies on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°, 270°, or 360°. See Figure 7.

Figure 7 Quadrantal angles have a terminal side that lies along an axis. Examples are shown.

Quadrantal Angles

An angle is a quadrantal angle if its terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360°.

HOW TO

Given an angle measure in degrees, draw the angle in standard position.

1. Express the angle measure as a fraction of
2. Reduce the fraction to simplest form.
3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and moving

counterclockwise for positive angles and clockwise for negative angles.
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EXAMPLE 1

Drawing an Angle in Standard Position Measured in Degrees

ⓐ Sketch an angle of in standard position. ⓑ Sketch an angle of in standard position.
Solution

ⓐ
Divide the angle measure by

To rewrite the fraction in a more familiar fraction, we can recognize that

One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at as
in Figure 8.

Figure 8
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ⓑ
Divide the angle measure by

In this case, we can recognize that

Three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter and one-
half of another quarter, as in Figure 9.

Figure 9

TRY IT #1 Show an angle of on a circle in standard position.

Converting Between Degrees and Radians
Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may
choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop
before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a
full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire
circle is called the circumference of that circle.

The circumference of a circle is If we divide both sides of this equation by we create the ratio of the
circumference, which is always to the radius, regardless of the length of the radius. So the circumference of any circle
is times the length of the radius. That means that if we took a string as long as the radius and used it to
measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more
than a quarter of a seventh, as shown in Figure 10.
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Figure 10

This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts an arc
equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii.
Because the total circumference equals times the radius, a full circular rotation is radians.

See Figure 11. Note that when an angle is described without a specific unit, it refers to radian measure. For example, an
angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length
(circumference) divided by a length (radius) and the length units cancel.

Figure 11 The angle sweeps out a measure of one radian. Note that the length of the intercepted arc is the same as
the length of the radius of the circle.

Relating Arc Lengths to Radius
An arc length is the length of the curve along the arc. Just as the full circumference of a circle always has a constant
ratio to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of
the length of the radius.

This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle.
This property allows us to define a measure of any angle as the ratio of the arc length to the radius r. See Figure 12.

If then
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Figure 12 (a) In an angle of 1 radian, the arc length equals the radius (b) An angle of 2 radians has an arc length
(c) A full revolution is or about 6.28 radians.

To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference of
a circle is where is the radius. The smaller circle then has circumference and the larger has
circumference Now we draw a angle on the two circles, as in Figure 13.

Figure 13 A angle contains one-eighth of the circumference of a circle, regardless of the radius.

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.

Since both ratios are the angle measures of both circles are the same, even though the arc length and radius differ.

Radians

One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and
the terminal side is equal to the radius of the circle. A full revolution equals radians. A half revolution
is equivalent to radians.

The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the circle.
In other words, if is the length of an arc of a circle, and is the radius of the circle, then the central angle containing
that arc measures radians. In a circle of radius 1, the radian measure corresponds to the length of the arc.
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Q&A A measure of 1 radian looks to be about Is that correct?

Yes. It is approximately Because radians equals radian equals

Using Radians
Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 12, suppose the
radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the
angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians”
after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume
that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees,
We can also track one rotation around a circle by finding the circumference, and for the unit circle
These two different ways to rotate around a circle give us a way to convert from degrees to radians.

Identifying Special Angles Measured in Radians
In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full
revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar.
It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in Figure 14. Memorizing
these angles will be very useful as we study the properties associated with angles.

Figure 14 Commonly encountered angles measured in degrees

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in
Figure 14, which are shown in Figure 15. Be sure you can verify each of these measures.
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Figure 15 Commonly encountered angles measured in radians

EXAMPLE 2

Finding a Radian Measure
Find the radian measure of one-third of a full rotation.

Solution
For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

So,

The radian measure would be the arc length divided by the radius.

TRY IT #2 Find the radian measure of three-fourths of a full rotation.

Converting Between Radians and Degrees
Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so
using a proportion where is the measure of the angle in degrees and is the measure of the angle in radians.

This proportion shows that the measure of angle in degrees divided by 180 equals the measure of angle in radians
divided by Or, phrased another way, degrees is to 180 as radians is to
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Converting between Radians and Degrees

To convert between degrees and radians, use the proportion

EXAMPLE 3

Converting Radians to Degrees
Convert each radian measure to degrees.

ⓐ ⓑ 3

Solution
Because we are given radians and we want degrees, we should set up a proportion and solve it.

ⓐ We use the proportion, substituting the given information.

ⓑ We use the proportion, substituting the given information.

TRY IT #3 Convert radians to degrees.

EXAMPLE 4

Converting Degrees to Radians
Convert degrees to radians.

Solution
In this example, we start with degrees and want radians, so we again set up a proportion, but we substitute the given
information into a different part of the proportion.

Analysis
Another way to think about this problem is by remembering that Because we can find that

is

TRY IT #4 Convert to radians.
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Finding Coterminal Angles
Converting between degrees and radians can make working with angles easier in some applications. For other
applications, we may need another type of conversion. Negative angles and angles greater than a full revolution are
more awkward to work with than those in the range of to or to It would be convenient to replace those
out-of-range angles with a corresponding angle within the range of a single revolution.

It is possible for more than one angle to have the same terminal side. Look at Figure 16. The angle of is a positive
angle, measured counterclockwise. The angle of is a negative angle, measured clockwise. But both angles have
the same terminal side. If two angles in standard position have the same terminal side, they are coterminal angles. Every
angle greater than or less than is coterminal with an angle between and and it is often more convenient
to find the coterminal angle within the range of to than to work with an angle that is outside that range.

Figure 16 An angle of and an angle of are coterminal angles.

Any angle has infinitely many coterminal angles because each time we add to that angle—or subtract from
it—the resulting value has a terminal side in the same location. For example, and are coterminal for this
reason, as is

An angle’s reference angle is the measure of the smallest, positive, acute angle formed by the terminal side of the
angle and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can
be used as models for angles in other quadrants. See Figure 17 for examples of reference angles for angles in different
quadrants.

Figure 17

Coterminal and Reference Angles

Coterminal angles are two angles in standard position that have the same terminal side.
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An angle’s reference angle is the size of the smallest acute angle, formed by the terminal side of the angle and
the horizontal axis.

HOW TO

Given an angle greater than find a coterminal angle between and

1. Subtract from the given angle.
2. If the result is still greater than subtract again till the result is between and
3. The resulting angle is coterminal with the original angle.

EXAMPLE 5

Finding an Angle Coterminal with an Angle of Measure Greater Than
Find the least positive angle that is coterminal with an angle measuring where

Solution
An angle with measure is coterminal with an angle with measure but is still greater than

so we subtract again to find another coterminal angle:

The angle is coterminal with To put it another way, equals plus two full rotations, as shown in
Figure 18.

Figure 18

TRY IT #5 Find an angle that is coterminal with an angle measuring where

HOW TO

Given an angle with measure less than find a coterminal angle having a measure between and

1. Add to the given angle.
2. If the result is still less than add again until the result is between and
3. The resulting angle is coterminal with the original angle.
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EXAMPLE 6

Finding an Angle Coterminal with an Angle Measuring Less Than
Show the angle with measure on a circle and find a positive coterminal angle such that

Solution
Since is half of we can start at the positive horizontal axis and measure clockwise half of a angle.

Because we can find coterminal angles by adding or subtracting a full rotation of we can find a positive coterminal
angle here by adding

We can then show the angle on a circle, as in Figure 19.

Figure 19

TRY IT #6 Find an angle that is coterminal with an angle measuring such that

Finding Coterminal Angles Measured in Radians
We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In
both cases, we find coterminal angles by adding or subtracting one or more full rotations.

HOW TO

Given an angle greater than find a coterminal angle between 0 and

1. Subtract from the given angle.
2. If the result is still greater than subtract again until the result is between and
3. The resulting angle is coterminal with the original angle.

EXAMPLE 7

Finding Coterminal Angles Using Radians
Find an angle that is coterminal with where

Solution
When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. Likewise, in
radians, we can find coterminal angles by adding or subtracting full rotations of radians:

The angle is coterminal, but not less than so we subtract another rotation.
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The angle is coterminal with as shown in Figure 20.

Figure 20

TRY IT #7 Find an angle of measure that is coterminal with an angle of measure where

Determining the Length of an Arc
Recall that the radian measure of an angle was defined as the ratio of the arc length of a circular arc to the radius of
the circle, From this relationship, we can find arc length along a circle, given an angle.

Arc Length on a Circle

In a circle of radius r, the length of an arc subtended by an angle with measure in radians, shown in Figure 21, is

Figure 21

HOW TO

Given a circle of radius calculate the length of the arc subtended by a given angle of measure

1. If necessary, convert to radians.
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2. Multiply the radius

EXAMPLE 8

Finding the Length of an Arc
Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the sun.

ⓐ In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?

ⓑ Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.
Solution

ⓐ Let’s begin by finding the circumference of Mercury’s orbit.

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled.

ⓑ Now, we convert to radians.

TRY IT #8 Find the arc length along a circle of radius 10 units subtended by an angle of

Finding the Area of a Sector of a Circle
In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle
bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius can
be found using the formula If the two radii form an angle of measured in radians, then is the ratio of the
angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the area of
the circle. Thus, the area of a sector is the fraction multiplied by the entire area. (Always remember that this formula
only applies if is in radians.)

Area of a Sector

The area of a sector of a circle with radius subtended by an angle measured in radians, is

See Figure 22.
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Figure 22 The area of the sector equals half the square of the radius times the central angle measured in radians.

HOW TO

Given a circle of radius find the area of a sector defined by a given angle

1. If necessary, convert to radians.

2. Multiply half the radian measure of by the square of the radius

EXAMPLE 9

Finding the Area of a Sector
An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in Figure 23. What is the
area of the sector of grass the sprinkler waters?

Figure 23 The sprinkler sprays 20 ft within an arc of

Solution
First, we need to convert the angle measure into radians. Because 30 degrees is one of our special angles, we already
know the equivalent radian measure, but we can also convert:

The area of the sector is then

So the area is about
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TRY IT #9 In central pivot irrigation, which creates the field shapes similar to the image at the beginning of
Equations and Inequalities, a large irrigation pipe on wheels rotates around a center point. A
farmer has a central pivot system with a radius of 400 meters. If water restrictions only allow her
to water 150 thousand square meters a day, what angle should she set the system to cover? Write
the answer in radian measure to two decimal places.

Use Linear and Angular Speed to Describe Motion on a Circular Path
In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object
traveling in a circular path has two types of speed. Linear speed is speed along a straight path and can be determined
by the distance it moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches
rotates once a second, a point on the edge of the wheel moves a distance equal to the circumference, or inches,
every second. So the linear speed of the point is in./s. The equation for linear speed is as follows where is linear
speed, is displacement, and is time.

Angular speed results from circular motion and can be determined by the angle through which a point rotates in a given
time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes a full
rotation every 4 seconds, we can calculate its angular speed as 90 degrees per second. Angular speed can
be given in radians per second, rotations per minute, or degrees per hour for example. The equation for angular speed
is as follows, where (read as omega) is angular speed, is the angle traversed, and is time.

Combining the definition of angular speed with the arc length equation, we can find a relationship between
angular and linear speeds. The angular speed equation can be solved for giving Substituting this into the arc
length equation gives:

Substituting this into the linear speed equation gives:

Angular and Linear Speed

As a point moves along a circle of radius its angular speed, is the angular rotation per unit time,

The linear speed, of the point can be found as the distance traveled, arc length per unit time,

When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the
equation

This equation states that the angular speed in radians, representing the amount of rotation occurring in a unit of
time, can be multiplied by the radius to calculate the total arc length traveled in a unit of time, which is the definition
of linear speed.
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HOW TO

Given the amount of angle rotation and the time elapsed, calculate the angular speed.

1. If necessary, convert the angle measure to radians.
2. Divide the angle in radians by the number of time units elapsed:
3. The resulting speed will be in radians per time unit.

Water wheels have been used for thousands of years to transfer the power of flowing water to other devices. The image
below depicts the design of the the 3rd century Roman water wheel in Hierapolis, a city in what is now Turkey. Water
turned the wheel, which in turn rotated a crank connected to two saws used to cut blocks. These design elements were
used in water wheel applications throughout the world, and even provided the underlying principle for the steam
engine, invented about 1500 years later.

EXAMPLE 10

Finding Angular Speed
A water wheel, shown in Figure 24, completes 1 rotation every 5 seconds. Find the angular speed in radians per second.

Figure 24

Solution
The wheel completes 1 rotation, or passes through an angle of radians in 5 seconds, so the angular speed would be

radians per second.

TRY IT #10 A vintage vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per
minute. Find the angular speed in radians per second.

HOW TO

Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.

1. Convert the total rotation to radians if necessary.
2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply
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3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the length
unit used for the radius and the time unit used for the elapsed time: apply

EXAMPLE 11

Finding a Linear Speed
A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions per
minute). Find the speed the bicycle is traveling down the road.

Solution
Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of the outside
of the tires is the speed at which the bicycle travels down the road.

We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to make
this conversion:

Using the formula from above along with the radius of the wheels, we can find the linear speed:

Remember that radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

TRY IT #11 A satellite is rotating around Earth at 0.25 radian per hour at an altitude of 242 km above Earth. If
the radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.

MEDIA

Access these online resources for additional instruction and practice with angles, arc length, and areas of sectors.

Angles in Standard Position (http://openstax.org/l/standardpos)
Angle of Rotation (http://openstax.org/l/angleofrotation)
Coterminal Angles (http://openstax.org/l/coterminal)
Determining Coterminal Angles (http://openstax.org/l/detcoterm)
Positive and Negative Coterminal Angles (http://openstax.org/l/posnegcoterm)
Radian Measure (http://openstax.org/l/radianmeas)
Coterminal Angles in Radians (http://openstax.org/l/cotermrad)
Arc Length and Area of a Sector (http://openstax.org/l/arclength)

7.1 SECTION EXERCISES
Verbal

1. Draw an angle in standard
position. Label the vertex,
initial side, and terminal
side.

2. Explain why there are an
infinite number of angles
that are coterminal to a
certain angle.

3. State what a positive or
negative angle signifies, and
explain how to draw each.
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4. How does radian measure
of an angle compare to the
degree measure? Include an
explanation of 1 radian in
your paragraph.

5. Explain the differences
between linear speed and
angular speed when
describing motion along a
circular path.

Graphical

For the following exercises, draw an angle in standard position with the given measure.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21.

For the following exercises, refer to Figure 25. Round to two decimal places.

Figure 25

22. Find the arc length. 23. Find the area of the sector.
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For the following exercises, refer to Figure 26. Round to two decimal places.

Figure 26

24. Find the arc length. 25. Find the area of the sector.

Algebraic

For the following exercises, convert angles in radians to degrees.

26. radians 27. radians 28. radians

29. radians 30. radians 31. radians

32. radians

For the following exercises, convert angles in degrees to radians.

33. 34. 35.

36. 37. 38.

39.

For the following exercises, use the given information to find the length of a circular arc. Round to two decimal places.

40. Find the length of the arc
of a circle of radius 12
inches subtended by a
central angle of radians.

41. Find the length of the arc
of a circle of radius 5.02
miles subtended by the
central angle of

42. Find the length of the arc
of a circle of diameter 14
meters subtended by the
central angle of

43. Find the length of the arc
of a circle of radius 10
centimeters subtended by
the central angle of

44. Find the length of the arc
of a circle of radius 5
inches subtended by the
central angle of

45. Find the length of the arc
of a circle of diameter 12
meters subtended by the
central angle is
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For the following exercises, use the given information to find the area of the sector. Round to four decimal places.

46. A sector of a circle has a
central angle of and a
radius 6 cm.

47. A sector of a circle has a
central angle of and a
radius of 20 cm.

48. A sector of a circle with
diameter 10 feet and an
angle of radians.

49. A sector of a circle with
radius of 0.7 inches and an
angle of radians.

For the following exercises, find the angle between and that is coterminal to the given angle.

50. 51. 52.

53.

For the following exercises, find the angle between 0 and in radians that is coterminal to the given angle.

54. 55. 56.

57.

Real-World Applications

58. A truck with 32-inch
diameter wheels is
traveling at 60 mi/h. Find
the angular speed of the
wheels in rad/min. How
many revolutions per
minute do the wheels
make?

59. A bicycle with 24-inch
diameter wheels is
traveling at 15 mi/h. Find
the angular speed of the
wheels in rad/min. How
many revolutions per
minute do the wheels
make?

60. A wheel of radius 8 inches
is rotating 15°/s. What is
the linear speed the
angular speed in RPM, and
the angular speed in rad/s?

61. A wheel of radius inches
is rotating rad/s. What
is the linear speed the
angular speed in RPM, and
the angular speed in deg/
s?

62. A computer hard drive disc
has diameter of 120
millimeters. When playing
audio, the angular speed
varies to keep the linear
speed constant where the
disc is being read. When
reading along the outer
edge of the disc, the
angular speed is about 200
RPM (revolutions per
minute). Find the linear
speed.

63. When being burned in a
writable CD-R drive, the
angular speed of a CD is
often much faster than
when playing audio, but
the angular speed still
varies to keep the linear
speed constant where the
disc is being written. When
writing along the outer
edge of the disc, the
angular speed of one drive
is about 4800 RPM
(revolutions per minute).
Find the linear speed if the
CD has diameter of 120
millimeters.
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64. A person is standing on the
equator of Earth (radius
3960 miles). What are their
linear and angular speeds?

65. Find the distance along an
arc on the surface of Earth
that subtends a central
angle of 5 minutes

.
The radius of Earth is 3960
miles.

66. Find the distance along an
arc on the surface of Earth
that subtends a central
angle of 7 minutes

.
The radius of Earth is
miles.

67. Consider a clock with an
hour hand and minute
hand. What is the measure
of the angle the minute
hand traces in minutes?

Extensions

68. Two cities have the same
longitude. The latitude of
city A is 9.00 degrees north
and the latitude of city B is
30.00 degree north.
Assume the radius of the
earth is 3960 miles. Find
the distance between the
two cities.

69. A city is located at 40
degrees north latitude.
Assume the radius of the
earth is 3960 miles and the
earth rotates once every 24
hours. Find the linear
speed of a person who
resides in this city.

70. A city is located at 75
degrees north latitude.
Assume the radius of the
earth is 3960 miles and the
earth rotates once every 24
hours. Find the linear
speed of a person who
resides in this city.

71. Find the linear speed of the
moon if the average
distance between the earth
and moon is 239,000 miles,
assuming the orbit of the
moon is circular and
requires about 28 days.
Express answer in miles
per hour.

72. A bicycle has wheels 28
inches in diameter. A
tachometer determines
that the wheels are
rotating at 180 RPM
(revolutions per minute).
Find the speed the bicycle
is travelling down the road.

73. A car travels 3 miles. Its
tires make 2640
revolutions. What is the
radius of a tire in inches?

74. A wheel on a tractor has a
24-inch diameter. How
many revolutions does the
wheel make if the tractor
travels 4 miles?

7.2 Right Triangle Trigonometry
Learning Objectives
In this section you will:

Use right triangles to evaluate trigonometric functions.
Find function values for and
Use equal cofunctions of complementary angles.
Use the definitions of trigonometric functions of any angle.
Use right-triangle trigonometry to solve applied problems.

Mt. Everest, which straddles the border between China and Nepal, is the tallest mountain in the world. Measuring its
height is no easy task. In fact, the actual measurement has been a source of controversy for hundreds of years. The
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measurement process involves the use of triangles and a branch of mathematics known as trigonometry. In this section,
we will define a new group of functions known as trigonometric functions, and find out how they can be used to
measure heights, such as those of the tallest mountains.

Using Right Triangles to Evaluate Trigonometric Functions
Figure 1 shows a right triangle with a vertical side of length and a horizontal side has length Notice that the triangle
is inscribed in a circle of radius 1. Such a circle, with a center at the origin and a radius of 1, is known as a unit circle.

Figure 1

We can define the trigonometric functions in terms an angle t and the lengths of the sides of the triangle. The adjacent
side is the side closest to the angle, x. (Adjacent means “next to.”) The opposite side is the side across from the angle, y.
The hypotenuse is the side of the triangle opposite the right angle, 1. These sides are labeled in Figure 2.

Figure 2 The sides of a right triangle in relation to angle

Given a right triangle with an acute angle of the first three trigonometric functions are listed.

A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “Sine is
opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.”

For the triangle shown in Figure 1, we have the following.

HOW TO

Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and tangent of that
angle.

1. Find the sine as the ratio of the opposite side to the hypotenuse.
2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
3. Find the tangent as the ratio of the opposite side to the adjacent side.
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EXAMPLE 1

Evaluating a Trigonometric Function of a Right Triangle
Given the triangle shown in Figure 3, find the value of

Figure 3

Solution
The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17.

TRY IT #1 Given the triangle shown in Figure 4, find the value of

Figure 4

Reciprocal Functions
In addition to sine, cosine, and tangent, there are three more functions. These too are defined in terms of the sides of
the triangle.

Take another look at these definitions. These functions are the reciprocals of the first three functions.

When working with right triangles, keep in mind that the same rules apply regardless of the orientation of the triangle.
In fact, we can evaluate the six trigonometric functions of either of the two acute angles in the triangle in Figure 5. The
side opposite one acute angle is the side adjacent to the other acute angle, and vice versa.
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Figure 5 The side adjacent to one angle is opposite the other angle.

Many problems ask for all six trigonometric functions for a given angle in a triangle. A possible strategy to use is to find
the sine, cosine, and tangent of the angles first. Then, find the other trigonometric functions easily using the reciprocals.

HOW TO

Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute angles.

1. If needed, draw the right triangle and label the angle provided.
2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.
3. Find the required function:

◦ sine as the ratio of the opposite side to the hypotenuse
◦ cosine as the ratio of the adjacent side to the hypotenuse
◦ tangent as the ratio of the opposite side to the adjacent side
◦ secant as the ratio of the hypotenuse to the adjacent side
◦ cosecant as the ratio of the hypotenuse to the opposite side
◦ cotangent as the ratio of the adjacent side to the opposite side

EXAMPLE 2

Evaluating Trigonometric Functions of Angles Not in Standard Position
Using the triangle shown in Figure 6, evaluate

Figure 6

Solution

Analysis
Another approach would have been to find sine, cosine, and tangent first. Then find their reciprocals to determine the
other functions.
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TRY IT #2 Using the triangle shown in Figure 7,evaluate

Figure 7

Finding Trigonometric Functions of Special Angles Using Side Lengths
It is helpful to evaluate the trigonometric functions as they relate to the special angles—multiples of and
Remember, however, that when dealing with right triangles, we are limited to angles between

Suppose we have a triangle, which can also be described as a triangle. The sides have lengths in

the relation The sides of a triangle, which can also be described as a triangle, have

lengths in the relation These relations are shown in Figure 8.

Figure 8 Side lengths of special triangles

We can then use the ratios of the side lengths to evaluate trigonometric functions of special angles.

HOW TO

Given trigonometric functions of a special angle, evaluate using side lengths.

1. Use the side lengths shown in Figure 8 for the special angle you wish to evaluate.
2. Use the ratio of side lengths appropriate to the function you wish to evaluate.
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EXAMPLE 3

Evaluating Trigonometric Functions of Special Angles Using Side Lengths
Find the exact value of the trigonometric functions of using side lengths.

Solution

TRY IT #3 Find the exact value of the trigonometric functions of using side lengths.

Using Equal Cofunction of Complements
If we look more closely at the relationship between the sine and cosine of the special angles, we notice a pattern. In a

right triangle with angles of and we see that the sine of namely is also the cosine of while the sine of

namely is also the cosine of

See Figure 9.

Figure 9 The sine of equals the cosine of and vice versa.

This result should not be surprising because, as we see from Figure 9, the side opposite the angle of is also the side

adjacent to so and are exactly the same ratio of the same two sides, and Similarly,

and are also the same ratio using the same two sides, and

The interrelationship between the sines and cosines of and also holds for the two acute angles in any right triangle,
since in every case, the ratio of the same two sides would constitute the sine of one angle and the cosine of the other.
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Since the three angles of a triangle add to and the right angle is the remaining two angles must also add up to
That means that a right triangle can be formed with any two angles that add to —in other words, any two
complementary angles. So we may state a cofunction identity: If any two angles are complementary, the sine of one is
the cosine of the other, and vice versa. This identity is illustrated in Figure 10.

Figure 10 Cofunction identity of sine and cosine of complementary angles

Using this identity, we can state without calculating, for instance, that the sine of equals the cosine of and that

the sine of equals the cosine of We can also state that if, for a given angle then as
well.

Cofunction Identities

The cofunction identities in radians are listed in Table 1.

Table 1

HOW TO

Given the sine and cosine of an angle, find the sine or cosine of its complement.

1. To find the sine of the complementary angle, find the cosine of the original angle.
2. To find the cosine of the complementary angle, find the sine of the original angle.

EXAMPLE 4

Using Cofunction Identities
If find

Solution
According to the cofunction identities for sine and cosine, we have the following.
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So

TRY IT #4 If find

Using Trigonometric Functions
In previous examples, we evaluated the sine and cosine in triangles where we knew all three sides. But the real power of
right-triangle trigonometry emerges when we look at triangles in which we know an angle but do not know all the sides.

HOW TO

Given a right triangle, the length of one side, and the measure of one acute angle, find the remaining sides.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or the
denominator. The known side will in turn be the denominator or the numerator.

2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding sides.
3. Using the value of the trigonometric function and the known side length, solve for the missing side length.

EXAMPLE 5

Finding Missing Side Lengths Using Trigonometric Ratios
Find the unknown sides of the triangle in Figure 11.

Figure 11

Solution
We know the angle and the opposite side, so we can use the tangent to find the adjacent side.

We rearrange to solve for

We can use the sine to find the hypotenuse.

Again, we rearrange to solve for
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TRY IT #5 A right triangle has one angle of and a hypotenuse of 20. Find the unknown sides and angle of

the triangle.

Using Right Triangle Trigonometry to Solve Applied Problems
Right-triangle trigonometry has many practical applications. For example, the ability to compute the lengths of sides of a
triangle makes it possible to find the height of a tall object without climbing to the top or having to extend a tape
measure along its height. We do so by measuring a distance from the base of the object to a point on the ground some
distance away, where we can look up to the top of the tall object at an angle. The angle of elevation of an object above
an observer relative to the observer is the angle between the horizontal and the line from the object to the observer's
eye. The right triangle this position creates has sides that represent the unknown height, the measured distance from
the base, and the angled line of sight from the ground to the top of the object. Knowing the measured distance to the
base of the object and the angle of the line of sight, we can use trigonometric functions to calculate the unknown height.

Similarly, we can form a triangle from the top of a tall object by looking downward. The angle of depression of an object
below an observer relative to the observer is the angle between the horizontal and the line from the object to the
observer's eye. See Figure 12.

Figure 12

HOW TO

Given a tall object, measure its height indirectly.

1. Make a sketch of the problem situation to keep track of known and unknown information.
2. Lay out a measured distance from the base of the object to a point where the top of the object is clearly visible.
3. At the other end of the measured distance, look up to the top of the object. Measure the angle the line of sight

makes with the horizontal.
4. Write an equation relating the unknown height, the measured distance, and the tangent of the angle of the line

of sight.
5. Solve the equation for the unknown height.

EXAMPLE 6

Measuring a Distance Indirectly
To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of
between a line of sight to the top of the tree and the ground, as shown in Figure 13. Find the height of the tree.
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Figure 13

Solution
We know that the angle of elevation is and the adjacent side is 30 ft long. The opposite side is the unknown height.

The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the tangent. So we
will state our information in terms of the tangent of letting be the unknown height.

The tree is approximately 46 feet tall.

TRY IT #6 How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests
against the building making an angle of with the ground? Round to the nearest foot.

MEDIA

Access these online resources for additional instruction and practice with right triangle trigonometry.

Finding Trig Functions on Calculator (http://openstax.org/l/findtrigcal)
Finding Trig Functions Using a Right Triangle (http://openstax.org/l/trigrttri)
Relate Trig Functions to Sides of a Right Triangle (http://openstax.org/l/reltrigtri)
Determine Six Trig Functions from a Triangle (http://openstax.org/l/sixtrigfunc)
Determine Length of Right Triangle Side (http://openstax.org/l/rttriside)

7.2 SECTION EXERCISES
Verbal

1. For the given right triangle, label the adjacent side,
opposite side, and hypotenuse for the indicated
angle.

2. When a right triangle with a hypotenuse of 1 is
placed in a circle of radius 1, which sides of the
triangle correspond to the x- and y-coordinates?
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3. The tangent of an angle
compares which sides of the
right triangle?

4. What is the relationship
between the two acute
angles in a right triangle?

5. Explain the cofunction
identity.

Algebraic

For the following exercises, use cofunctions of complementary angles.

6. 7. 8.

9.

For the following exercises, find the lengths of the missing sides if side is opposite angle side is opposite angle
and side is the hypotenuse.

10. 11. 12.

13. 14. 15.

16.

Graphical

For the following exercises, use Figure 14 to evaluate each trigonometric function of angle

Figure 14

17. 18. 19.

20. 21. 22.
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For the following exercises, use Figure 15 to evaluate each trigonometric function of angle

Figure 15

23. 24. 25.

26. 27. 28.

For the following exercises, solve for the unknown sides of the given triangle.

29. 30. 31.

Technology

For the following exercises, use a calculator to find the length of each side to four decimal places.

32. 33. 34.

35. 36.

37. 38. 39.

40. 41.
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Extensions

42. Find 43. Find 44. Find

45. Find 46. A radio tower is located 400
feet from a building. From
a window in the building, a
person determines that the
angle of elevation to the
top of the tower is and
that the angle of
depression to the bottom
of the tower is How
tall is the tower?

47. A radio tower is located 325
feet from a building. From
a window in the building, a
person determines that the
angle of elevation to the
top of the tower is and
that the angle of
depression to the bottom
of the tower is How
tall is the tower?

48. A 200-foot tall monument
is located in the distance.
From a window in a
building, a person
determines that the angle
of elevation to the top of
the monument is and
that the angle of
depression to the bottom
of the monument is
How far is the person from
the monument?

49. A 400-foot tall monument
is located in the distance.
From a window in a
building, a person
determines that the angle
of elevation to the top of
the monument is and
that the angle of
depression to the bottom
of the monument is
How far is the person from
the monument?

50. There is an antenna on the
top of a building. From a
location 300 feet from the
base of the building, the
angle of elevation to the
top of the building is
measured to be From
the same location, the
angle of elevation to the
top of the antenna is
measured to be Find
the height of the antenna.

51. There is lightning rod on
the top of a building. From
a location 500 feet from the
base of the building, the
angle of elevation to the
top of the building is
measured to be From
the same location, the
angle of elevation to the
top of the lightning rod is
measured to be Find
the height of the lightning
rod.
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Real-World Applications

52. A 33-ft ladder leans against
a building so that the angle
between the ground and
the ladder is How high
does the ladder reach up
the side of the building?

53. A 23-ft ladder leans against
a building so that the angle
between the ground and
the ladder is How high
does the ladder reach up
the side of the building?

54. The angle of elevation to
the top of a building in
Charlotte is found to be 9
degrees from the ground
at a distance of 1 mile from
the base of the building.
Using this information, find
the height of the building.

55. The angle of elevation to
the top of a building in
Seattle is found to be 2
degrees from the ground
at a distance of 2 miles
from the base of the
building. Using this
information, find the
height of the building.

56. Assuming that a 370-foot
tall giant redwood grows
vertically, if I walk a certain
distance from the tree and
measure the angle of
elevation to the top of the
tree to be how far
from the base of the tree
am I?

7.3 Unit Circle
Learning Objectives
In this section you will:

Find function values for the sine and cosine of and

Identify the domain and range of sine and cosine functions.
Find reference angles.
Use reference angles to evaluate trigonometric functions.

Figure 1 The Singapore Flyer was the world’s tallest Ferris wheel until being overtaken by the High Roller in Las Vegas
and the Ain Dubai in Dubai. (credit: ʺVibin JKʺ/Flickr)

Looking for a thrill? Then consider a ride on the Ain Dubai, the world's tallest Ferris wheel. Located in Dubai, the most
populous city and the financial and tourism hub of the United Arab Emirates, the wheel soars to 820 feet, about 1.5
tenths of a mile. Described as an observation wheel, riders enjoy spectacular views of the Burj Khalifa (the world's tallest
building) and the Palm Jumeirah (a human-made archipelago home to over 10,000 people and 20 resorts) as they travel
from the ground to the peak and down again in a repeating pattern. In this section, we will examine this type of
revolving motion around a circle. To do so, we need to define the type of circle first, and then place that circle on a
coordinate system. Then we can discuss circular motion in terms of the coordinate pairs.

Finding Trigonometric Functions Using the Unit Circle
We have already defined the trigonometric functions in terms of right triangles. In this section, we will redefine them in
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terms of the unit circle. Recall that a unit circle is a circle centered at the origin with radius 1, as shown in Figure 2. The
angle (in radians) that intercepts forms an arc of length Using the formula and knowing that we see
that for a unit circle,

The x- and y-axes divide the coordinate plane into four quarters called quadrants. We label these quadrants to mimic the
direction a positive angle would sweep. The four quadrants are labeled I, II, III, and IV.

For any angle we can label the intersection of the terminal side and the unit circle as by its coordinates, The
coordinates and will be the outputs of the trigonometric functions and respectively. This
means and

Figure 2 Unit circle where the central angle is radians

Unit Circle

A unit circle has a center at and radius In a unit circle, the length of the intercepted arc is equal to the radian
measure of the central angle

Let be the endpoint on the unit circle of an arc of arc length The coordinates of this point can be
described as functions of the angle.

Defining Sine and Cosine Functions from the Unit Circle
The sine function relates a real number to the y-coordinate of the point where the corresponding angle intercepts the
unit circle. More precisely, the sine of an angle equals the y-value of the endpoint on the unit circle of an arc of length
In Figure 2, the sine is equal to Like all functions, the sine function has an input and an output. Its input is the
measure of the angle; its output is the y-coordinate of the corresponding point on the unit circle.

The cosine function of an angle equals the x-value of the endpoint on the unit circle of an arc of length In Figure 3,
the cosine is equal to

Figure 3

Because it is understood that sine and cosine are functions, we do not always need to write them with parentheses:
is the same as and is the same as Likewise, is a commonly used shorthand notation for
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Be aware that many calculators and computers do not recognize the shorthand notation. When in doubt, use the extra
parentheses when entering calculations into a calculator or computer.

Sine and Cosine Functions

If is a real number and a point on the unit circle corresponds to a central angle then

HOW TO

Given a point P on the unit circle corresponding to an angle of find the sine and cosine.

1. The sine of is equal to the y-coordinate of point
2. The cosine of is equal to the x-coordinate of point

EXAMPLE 1

Finding Function Values for Sine and Cosine
Point is a point on the unit circle corresponding to an angle of as shown in Figure 4. Find and

Figure 4

Solution

We know that is the x-coordinate of the corresponding point on the unit circle and is the y-coordinate of the
corresponding point on the unit circle. So:

TRY IT #1 A certain angle corresponds to a point on the unit circle at as shown in Figure 5.

Find and
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Figure 5

Finding Sines and Cosines of Angles on an Axis
For quadrantral angles, the corresponding point on the unit circle falls on the x- or y-axis. In that case, we can easily
calculate cosine and sine from the values of and

EXAMPLE 2

Calculating Sines and Cosines along an Axis
Find and

Solution
Moving counterclockwise around the unit circle from the positive x-axis brings us to the top of the circle, where the

coordinates are as shown in Figure 6.

Figure 6

We can then use our definitions of cosine and sine.

The cosine of is 0; the sine of is 1.

TRY IT #2 Find cosine and sine of the angle
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The Pythagorean Identity
Now that we can define sine and cosine, we will learn how they relate to each other and the unit circle. Recall that the
equation for the unit circle is Because and we can substitute for and to get

This equation, is known as the Pythagorean Identity. See Figure 7.

Figure 7

We can use the Pythagorean Identity to find the cosine of an angle if we know the sine, or vice versa. However, because
the equation yields two solutions, we need additional knowledge of the angle to choose the solution with the correct
sign. If we know the quadrant where the angle is, we can easily choose the correct solution.

Pythagorean Identity

The Pythagorean Identity states that, for any real number

HOW TO

Given the sine of some angle and its quadrant location, find the cosine of

1. Substitute the known value of into the Pythagorean Identity.
2. Solve for
3. Choose the solution with the appropriate sign for the x-values in the quadrant where is located.

EXAMPLE 3

Finding a Cosine from a Sine or a Sine from a Cosine
If and is in the second quadrant, find

Solution
If we drop a vertical line from the point on the unit circle corresponding to we create a right triangle, from which we
can see that the Pythagorean Identity is simply one case of the Pythagorean Theorem. See Figure 8.
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Figure 8

Substituting the known value for sine into the Pythagorean Identity,

Because the angle is in the second quadrant, we know the x-value is a negative real number, so the cosine is also
negative.

TRY IT #3 If and is in the fourth quadrant, find

Finding Sines and Cosines of Special Angles
We have already learned some properties of the special angles, such as the conversion from radians to degrees, and we
found their sines and cosines using right triangles. We can also calculate sines and cosines of the special angles using
the Pythagorean Identity.

Finding Sines and Cosines of Angles
First, we will look at angles of or as shown in Figure 9. A triangle is an isosceles triangle, so the x-
and y-coordinates of the corresponding point on the circle are the same. Because the x- and y-values are the same, the
sine and cosine values will also be equal.

Figure 9

At which is 45 degrees, the radius of the unit circle bisects the first quadrantal angle. This means the radius lies
along the line A unit circle has a radius equal to 1 so the right triangle formed below the line has sides
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and and radius = 1. See Figure 10.

Figure 10

From the Pythagorean Theorem we get

We can then substitute

Next we combine like terms.

And solving for we get

In quadrant I,

At or 45 degrees,

If we then rationalize the denominators, we get

Therefore, the coordinates of a point on a circle of radius at an angle of are

Finding Sines and Cosines of and Angles
Next, we will find the cosine and sine at an angle of or First, we will draw a triangle inside a circle with one side at
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an angle of and another at an angle of as shown in Figure 11. If the resulting two right triangles are combined
into one large triangle, notice that all three angles of this larger triangle will be as shown in Figure 12.

Figure 11

Figure 12

Because all the angles are equal, the sides are also equal. The vertical line has length and since the sides are all
equal, we can also conclude that or Since

And since in our unit circle,

Using the Pythagorean Identity, we can find the cosine value.

The coordinates for the point on a circle of radius at an angle of are At the radius of

the unit circle, 1, serves as the hypotenuse of a 30-60-90 degree right triangle, as shown in Figure 13. Angle has
measure At point we draw an angle with measure of We know the angles in a triangle sum to so
the measure of angle is also Now we have an equilateral triangle. Because each side of the equilateral triangle

is the same length, and we know one side is the radius of the unit circle, all sides must be of length 1.
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Figure 13

The measure of angle is 30°. Angle is double angle so its measure is 60°. is the perpendicular
bisector of so it cuts in half. This means that is the radius, or Notice that is the x-coordinate of
point which is at the intersection of the 60° angle and the unit circle. This gives us a triangle with hypotenuse of
1 and side of length

From the Pythagorean Theorem, we get

Substituting we get

Solving for we get

Since has the terminal side in quadrant I where the y-coordinate is positive, we choose the positive value.

At (60°), the coordinates for the point on a circle of radius at an angle of are so we can find

the sine and cosine.

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of
the unit circle. Table 1 summarizes these values.

Angle or or or or

Table 1
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Cosine 1 0

Sine 0 1

Table 1

Figure 14 shows the common angles in the first quadrant of the unit circle.

Figure 14

Using a Calculator to Find Sine and Cosine
To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be aware: Most
calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we
evaluate on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the
cosine of 30 radians if the calculator is in radian mode.

HOW TO

Given an angle in radians, use a graphing calculator to find the cosine.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Press the COS key.
3. Enter the radian value of the angle and press the close-parentheses key ")".
4. Press ENTER.

EXAMPLE 4

Using a Graphing Calculator to Find Sine and Cosine
Evaluate using a graphing calculator or computer.

Solution
Enter the following keystrokes:
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Analysis
We can find the cosine or sine of an angle in degrees directly on a calculator with degree mode. For calculators or
software that use only radian mode, we can find the sine of for example, by including the conversion factor to
radians as part of the input:

TRY IT #4 Evaluate

Identifying the Domain and Range of Sine and Cosine Functions
Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the
domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the
functions? Because angles smaller than and angles larger than can still be graphed on the unit circle and have real
values of and there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions.
The input to the sine and cosine functions is the rotation from the positive x-axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output?
We can see the answers by examining the unit circle, as shown in Figure 15. The bounds of the x-coordinate are
The bounds of the y-coordinate are also Therefore, the range of both the sine and cosine functions is

Figure 15

Finding Reference Angles
We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another
quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value.
Because the sine value is the y-coordinate on the unit circle, the other angle with the same sine will share the same
y-value, but have the opposite x-value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Likewise, there will be an angle in the fourth quadrant with the same cosine as the original angle. The angle with the
same cosine will share the same x-value but will have the opposite y-value. Therefore, its sine value will be the opposite
of the original angle’s sine value.

As shown in Figure 16, angle has the same sine value as angle the cosine values are opposites. Angle has the same
cosine value as angle the sine values are opposites.
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Figure 16

Recall that an angle’s reference angle is the acute angle, formed by the terminal side of the angle and the horizontal
axis. A reference angle is always an angle between and or and radians. As we can see from Figure 17, for any
angle in quadrants II, III, or IV, there is a reference angle in quadrant I.

Figure 17

HOW TO

Given an angle between and find its reference angle.

1. An angle in the first quadrant is its own reference angle.
2. For an angle in the second or third quadrant, the reference angle is or
3. For an angle in the fourth quadrant, the reference angle is or
4. If an angle is less than or greater than add or subtract as many times as needed to find an equivalent

angle between and

EXAMPLE 5

Finding a Reference Angle
Find the reference angle of as shown in Figure 18.
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Figure 18

Solution
Because is in the third quadrant, the reference angle is

TRY IT #5 Find the reference angle of

Using Reference Angles
Now let’s take a moment to reconsider the Ferris wheel introduced at the beginning of this section. Suppose a rider
snaps a photograph while stopped twenty feet above ground level. The rider then rotates three-quarters of the way
around the circle. What is the rider’s new elevation? To answer questions such as this one, we need to evaluate the sine
or cosine functions at angles that are greater than 90 degrees or at a negative angle. Reference angles make it possible
to evaluate trigonometric functions for angles outside the first quadrant. They can also be used to find coordinates
for those angles. We will use the reference angle of the angle of rotation combined with the quadrant in which the
terminal side of the angle lies.

Using Reference Angles to Evaluate Trigonometric Functions
We can find the cosine and sine of any angle in any quadrant if we know the cosine or sine of its reference angle. The
absolute values of the cosine and sine of an angle are the same as those of the reference angle. The sign depends on the
quadrant of the original angle. The cosine will be positive or negative depending on the sign of the x-values in that
quadrant. The sine will be positive or negative depending on the sign of the y-values in that quadrant.

Using Reference Angles to Find Cosine and Sine

Angles have cosines and sines with the same absolute value as their reference angles. The sign (positive or negative)
can be determined from the quadrant of the angle.

HOW TO

Given an angle in standard position, find the reference angle, and the cosine and sine of the original angle.

1. Measure the angle between the terminal side of the given angle and the horizontal axis. That is the reference
angle.

2. Determine the values of the cosine and sine of the reference angle.
3. Give the cosine the same sign as the x-values in the quadrant of the original angle.
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4. Give the sine the same sign as the y-values in the quadrant of the original angle.

EXAMPLE 6

Using Reference Angles to Find Sine and Cosine

ⓐ Using a reference angle, find the exact value of and

ⓑ Using the reference angle, find and
Solution

ⓐ is located in the second quadrant. The angle it makes with the x-axis is so the reference
angle is
This tells us that has the same sine and cosine values as except for the sign.

Since is in the second quadrant, the x-coordinate of the point on the circle is negative, so the cosine value is
negative. The y-coordinate is positive, so the sine value is positive.

ⓑ is in the third quadrant. Its reference angle is The cosine and sine of are both In the third
quadrant, both and are negative, so:

TRY IT #6 ⓐ Use the reference angle of to find and

ⓑ Use the reference angle of to find and

Using Reference Angles to Find Coordinates
Now that we have learned how to find the cosine and sine values for special angles in the first quadrant, we can use
symmetry and reference angles to fill in cosine and sine values for the rest of the special angles on the unit circle. They
are shown in Figure 19. Take time to learn the coordinates of all of the major angles in the first quadrant.

Figure 19 Special angles and coordinates of corresponding points on the unit circle

In addition to learning the values for special angles, we can use reference angles to find coordinates of any point
on the unit circle, using what we know of reference angles along with the identities
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First we find the reference angle corresponding to the given angle. Then we take the sine and cosine values of the
reference angle, and give them the signs corresponding to the y- and x-values of the quadrant.

HOW TO

Given the angle of a point on a circle and the radius of the circle, find the coordinates of the point.

1. Find the reference angle by measuring the smallest angle to the x-axis.
2. Find the cosine and sine of the reference angle.
3. Determine the appropriate signs for and in the given quadrant.

EXAMPLE 7

Using the Unit Circle to Find Coordinates
Find the coordinates of the point on the unit circle at an angle of

Solution
We know that the angle is in the third quadrant.

First, let’s find the reference angle by measuring the angle to the x-axis. To find the reference angle of an angle whose
terminal side is in quadrant III, we find the difference of the angle and

Next, we will find the cosine and sine of the reference angle.

We must determine the appropriate signs for x and y in the given quadrant. Because our original angle is in the third
quadrant, where both and are negative, both cosine and sine are negative.

Now we can calculate the coordinates using the identities and

The coordinates of the point are on the unit circle.

TRY IT #7 Find the coordinates of the point on the unit circle at an angle of

MEDIA

Access these online resources for additional instruction and practice with sine and cosine functions.

Trigonometric Functions Using the Unit Circle (http://openstax.org/l/trigunitcir)
Sine and Cosine from the Unit (http://openstax.org/l/sincosuc)
Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Six (http://openstax.org/l/sincosmult)
Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Four (http://openstax.org/l/sincosmult4)
Trigonometric Functions Using Reference Angles (http://openstax.org/l/trigrefang)
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7.3 SECTION EXERCISES
Verbal

1. Describe the unit circle. 2. What do the x- and
y-coordinates of the points
on the unit circle represent?

3. Discuss the difference
between a coterminal angle
and a reference angle.

4. Explain how the cosine of an
angle in the second
quadrant differs from the
cosine of its reference angle
in the unit circle.

5. Explain how the sine of an
angle in the second
quadrant differs from the
sine of its reference angle in
the unit circle.

Algebraic

For the following exercises, use the given sign of the sine and cosine functions to find the quadrant in which the terminal
point determined by lies.

6. and 7. and 8. and

9. and

For the following exercises, find the exact value of each trigonometric function.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22.

Numeric

For the following exercises, state the reference angle for the given angle.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33.
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For the following exercises, find the reference angle, the quadrant of the terminal side, and the sine and cosine of each
angle. If the angle is not one of the angles on the unit circle, use a calculator and round to three decimal places.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43. 44. 45.

46. 47. 48.

49.

For the following exercises, find the requested value.

50. If and is in the
fourth quadrant, find

51. If and is in the
first quadrant, find

52. If and is in the
second quadrant, find

53. If and is in
the third quadrant, find

54. Find the coordinates of the
point on a circle with radius
15 corresponding to an
angle of

55. Find the coordinates of the
point on a circle with radius
20 corresponding to an
angle of

56. Find the coordinates of the
point on a circle with radius
8 corresponding to an
angle of

57. Find the coordinates of the
point on a circle with radius
16 corresponding to an
angle of

58. State the domain of the
sine and cosine functions.

59. State the range of the sine
and cosine functions.

Graphical

For the following exercises, use the given point on the unit circle to find the value of the sine and cosine of

60. 61. 62.
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63. 64. 65.

66. 67. 68.

69. 70. 71.

72. 73. 74.

75. 76. 77.
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78. 79.

Technology

For the following exercises, use a graphing calculator to evaluate.

80. 81. 82.

83. 84. 85.

86. 87. 88.

89.

Extensions

For the following exercises, evaluate.

90. 91. 92.

93. 94. 95.

96. 97. 98.

99.

Real-World Applications

For the following exercises, use this scenario: A child enters a carousel that takes one minute to revolve once around.
The child enters at the point that is, on the due north position. Assume the carousel revolves counter clockwise.

100. What are the coordinates
of the child after 45
seconds?

101. What are the coordinates
of the child after 90
seconds?

102. What are the coordinates
of the child after 125
seconds?
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103. When will the child have
coordinates

if the ride
lasts 6 minutes? (There
are multiple answers.)

104. When will the child have
coordinates
if the ride lasts 6 minutes?

7.4 The Other Trigonometric Functions
Learning Objectives
In this section you will:

Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of and
Use reference angles to evaluate the trigonometric functions secant, tangent, and cotangent.
Use properties of even and odd trigonometric functions.
Recognize and use fundamental identities.
Evaluate trigonometric functions with a calculator.

A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground
whose tangent is or less, regardless of its length. A tangent represents a ratio, so this means that for every 1 inch of
rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and proportions of
objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though
sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of
six trigonometric functions. In this section, we will investigate the remaining functions.

Finding Exact Values of the Trigonometric Functions Secant, Cosecant, Tangent,
and Cotangent
We can also define the remaining functions in terms of the unit circle with a point corresponding to an angle of
as shown in Figure 1. As with the sine and cosine, we can use the coordinates to find the other functions.

Figure 1

The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-value of the
corresponding point on the unit circle. In Figure 1, the tangent of angle is equal to Because the y-value is
equal to the sine of and the x-value is equal to the cosine of the tangent of angle can also be defined as

The tangent function is abbreviated as The remaining three functions can all be expressed as
reciprocals of functions we have already defined.

• The secant function is the reciprocal of the cosine function. In Figure 1, the secant of angle is equal to
The secant function is abbreviated as

• The cotangent function is the reciprocal of the tangent function. In Figure 1, the cotangent of angle is equal to
The cotangent function is abbreviated as

• The cosecant function is the reciprocal of the sine function. In Figure 1, the cosecant of angle is equal to
The cosecant function is abbreviated as

Tangent, Secant, Cosecant, and Cotangent Functions

If is a real number and is a point where the terminal side of an angle of radians intercepts the unit circle, then
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EXAMPLE 1

Finding Trigonometric Functions from a Point on the Unit Circle

The point is on the unit circle, as shown in Figure 2. Find and

Figure 2

Solution
Because we know the coordinates of the point on the unit circle indicated by angle we can use those coordinates
to find the six functions:

TRY IT #1 The point is on the unit circle, as shown in Figure 3. Find

and
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Figure 3

EXAMPLE 2

Finding the Trigonometric Functions of an Angle
Find and when

Solution

We have previously used the properties of equilateral triangles to demonstrate that and We
can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and cosine to
find the remaining function values.

TRY IT #2 Find and when

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function
values for those angles as well by setting equal to the cosine and equal to the sine and then using the definitions of
tangent, secant, cosecant, and cotangent. The results are shown in Table 1.
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Angle

Cosine 1 0

Sine 0 1

Tangent 0 1 Undefined

Secant 1 2 Undefined

Cosecant Undefined 2 1

Cotangent Undefined 1 0

Table 1

Using Reference Angles to Evaluate Tangent, Secant, Cosecant, and Cotangent
We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already
done with the sine and cosine functions. The procedure is the same: Find the reference angle formed by the terminal
side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same
as those for the reference angle, except for the positive or negative sign, which is determined by x- and y-values in the
original quadrant. Figure 4 shows which functions are positive in which quadrant.

To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic
phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting
with quadrant I and rotating counterclockwise. In quadrant I, which is “A,” all of the six trigonometric functions are
positive. In quadrant II, “Smart,” only sine and its reciprocal function, cosecant, are positive. In quadrant III, “Trig,” only
tangent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “Class,” only cosine and its reciprocal
function, secant, are positive.

Figure 4 The trigonometric functions are each listed in the quadrants in which they are positive.

HOW TO

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference
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angle.
2. Evaluate the function at the reference angle.
3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine

whether the output is positive or negative.

EXAMPLE 3

Using Reference Angles to Find Trigonometric Functions
Use reference angles to find all six trigonometric functions of

Solution
The angle between this angle’s terminal side and the x-axis is so that is the reference angle. Since is in the third
quadrant, where both and are negative, cosine, sine, secant, and cosecant will be negative, while tangent and
cotangent will be positive.

TRY IT #3 Use reference angles to find all six trigonometric functions of

Using Even and Odd Trigonometric Functions
To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine
how each function treats a negative input. As it turns out, there is an important difference among the functions in this
regard.

Consider the function shown in Figure 5. The graph of the function is symmetrical about the y-axis. All along
the curve, any two points with opposite x-values have the same function value. This matches the result of calculation:

and so on. So is an even function, a function such that two inputs that are
opposites have the same output. That means

Figure 5 The function is an even function.

Now consider the function shown in Figure 6. The graph is not symmetrical about the y-axis. All along the
graph, any two points with opposite x-values also have opposite y-values. So is an odd function, one such that
two inputs that are opposites have outputs that are also opposites. That means
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Figure 6 The function is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle,
as in Figure 7. The sine of the positive angle is The sine of the negative angle is The sine function, then, is an odd
function. We can test each of the six trigonometric functions in this fashion. The results are shown in Table 2.

Figure 7

Table 2

Even and Odd Trigonometric Functions

An even function is one in which

An odd function is one in which

Cosine and secant are even:

Sine, tangent, cosecant, and cotangent are odd:
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EXAMPLE 4

Using Even and Odd Properties of Trigonometric Functions
If the secant of angle is 2, what is the secant of

Solution
Secant is an even function. The secant of an angle is the same as the secant of its opposite. So if the secant of angle is
2, the secant of is also 2.

TRY IT #4 If the cotangent of angle is what is the cotangent of

Recognizing and Using Fundamental Identities
We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further,
and derive some fundamental identities. Identities are statements that are true for all values of the input on which they
are defined. Usually, identities can be derived from definitions and relationships we already know. For example, the
Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and the definitions of sine and
cosine.

Fundamental Identities

We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions
can be related back to the sine and cosine functions using these basic relationships:

EXAMPLE 5

Using Identities to Evaluate Trigonometric Functions

ⓐ Given evaluate

ⓑ Given evaluate

Solution
Because we know the sine and cosine values for these angles, we can use identities to evaluate the other functions.
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ⓐ
ⓑ

TRY IT #5 Evaluate

EXAMPLE 6

Using Identities to Simplify Trigonometric Expressions
Simplify

Solution
We can simplify this by rewriting both functions in terms of sine and cosine.

By showing that can be simplified to we have, in fact, established a new identity.

TRY IT #6 Simplify

Alternate Forms of the Pythagorean Identity
We can use these fundamental identities to derive alternate forms of the Pythagorean Identity, One
form is obtained by dividing both sides by

The other form is obtained by dividing both sides by

Alternate Forms of the Pythagorean Identity
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EXAMPLE 7

Using Identities to Relate Trigonometric Functions
If and is in quadrant IV, as shown in Figure 8, find the values of the other five trigonometric functions.

Figure 8

Solution
We can find the sine using the Pythagorean Identity, and the remaining functions by relating them to
sine and cosine.

The sign of the sine depends on the y-values in the quadrant where the angle is located. Since the angle is in quadrant
IV, where the y-values are negative, its sine is negative,

The remaining functions can be calculated using identities relating them to sine and cosine.

TRY IT #7 If and find the values of the other five functions.

As we discussed at the beginning of the chapter, a function that repeats its values in regular intervals is known as a
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periodic function. The trigonometric functions are periodic. For the four trigonometric functions, sine, cosine, cosecant
and secant, a revolution of one circle, or will result in the same outputs for these functions. And for tangent and
cotangent, only a half a revolution will result in the same outputs.

Other functions can also be periodic. For example, the lengths of months repeat every four years. If represents the
length time, measured in years, and represents the number of days in February, then This pattern
repeats over and over through time. In other words, every four years, February is guaranteed to have the same number
of days as it did 4 years earlier. The positive number 4 is the smallest positive number that satisfies this condition and is
called the period. A period is the shortest interval over which a function completes one full cycle—in this example, the
period is 4 and represents the time it takes for us to be certain February has the same number of days.

Period of a Function

The period of a repeating function is the number representing the interval such that for any
value of

The period of the cosine, sine, secant, and cosecant functions is

The period of the tangent and cotangent functions is

EXAMPLE 8

Finding the Values of Trigonometric Functions
Find the values of the six trigonometric functions of angle based on Figure 9.

Figure 9

Solution
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TRY IT #8 Find the values of the six trigonometric functions of angle based on Figure 10.

Figure 10

EXAMPLE 9

Finding the Value of Trigonometric Functions

If

Solution

TRY IT #9

Evaluating Trigonometric Functions with a Calculator
We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to use them
as reference angles for angles in other quadrants. To evaluate trigonometric functions of other angles, we use a
scientific or graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm
the correct mode is chosen before making a calculation.

Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer algebra
system is like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal functions, there may
not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal of a
sine, cosine, or tangent.

If we need to work with degrees and our calculator or software does not have a degree mode, we can enter the degrees
multiplied by the conversion factor to convert the degrees to radians. To find the secant of we could press
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HOW TO

Given an angle measure in radians, use a scientific calculator to find the cosecant.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Enter:
3. Enter the value of the angle inside parentheses.
4. Press the SIN key.
5. Press the = key.

HOW TO

Given an angle measure in radians, use a graphing utility/calculator to find the cosecant.

• If the graphing utility has degree mode and radian mode, set it to radian mode.
• Enter:
• Press the SIN key.
• Enter the value of the angle inside parentheses.
• Press the ENTER key.

EXAMPLE 10

Evaluating the Cosecant Using Technology
Evaluate the cosecant of

Solution
For a scientific calculator, enter information as follows:

TRY IT #10 Evaluate the cotangent of

MEDIA

Access these online resources for additional instruction and practice with other trigonometric functions.

Determing Trig Function Values (http://openstax.org/l/trigfuncval)
More Examples of Determining Trig Functions (http://openstax.org/l/moretrigfun)
Pythagorean Identities (http://openstax.org/l/pythagiden)
Trig Functions on a Calculator (http://openstax.org/l/trigcalc)
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7.4 SECTION EXERCISES
Verbal

1. On an interval of
can the sine and cosine
values of a radian measure
ever be equal? If so, where?

2. What would you estimate
the cosine of degrees to
be? Explain your reasoning.

3. For any angle in quadrant II,
if you knew the sine of the
angle, how could you
determine the cosine of the
angle?

4. Describe the secant
function.

5. Tangent and cotangent have
a period of What does
this tell us about the output
of these functions?

Algebraic

For the following exercises, find the exact value of each expression.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

For the following exercises, use reference angles to evaluate the expression.

18. 19. 20.

21. 22. 23.

24. 25. 26.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36. 37. 38. If and is in
quadrant II, find

and
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39. If and is in
quadrant III, find

and

40. If , and , find 41. If and
find

and

42. If and
find

and

43. If what is the 44. If what is the

45. If what is the 46. If what is the 47. If what is the

48. If what is the

Graphical

For the following exercises, use the angle in the unit circle to find the value of the each of the six trigonometric functions.

49. 50. 51.

Technology

For the following exercises, use a graphing calculator to evaluate to three decimal places.

52. 53. 54.

55. 56. 57.

58. 59. 60.

61.
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Extensions

For the following exercises, use identities to evaluate the expression.

62. If and
find

63. If and
find

64. If and
find

65. If and
find

66. Determine whether the function
is even, odd, or neither.

67. Determine whether the function
is even, odd, or

neither.

68. Determine whether the function
is even, odd, or neither.

69. Determine whether the function
is even, odd, or neither.

For the following exercises, use identities to simplify the expression.

70. 71.

Real-World Applications

72. The amount of sunlight in a
certain city can be modeled
by the function

where
represents the hours of

sunlight, and is the day
of the year. Use the
equation to find how many
hours of sunlight there are
on February 11, the 42nd

day of the year. State the
period of the function.

73. The amount of sunlight in a
certain city can be modeled
by the function

where
represents the hours of

sunlight, and is the day
of the year. Use the
equation to find how many
hours of sunlight there are
on September 24, the
267th day of the year. State
the period of the function.

74. The equation

models the blood pressure,
where represents time

in seconds. (a) Find the
blood pressure after 15
seconds. (b) What are the
maximum and minimum
blood pressures?

75. The height of a piston, in
inches, can be modeled by
the equation

where
represents the crank angle.
Find the height of the
piston when the crank
angle is

76. The height of a piston, in
inches, can be modeled by
the equation

where
represents the crank angle.
Find the height of the
piston when the crank
angle is
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Chapter Review
Key Terms
adjacent side in a right triangle, the side between a given angle and the right angle
angle the union of two rays having a common endpoint
angle of depression the angle between the horizontal and the line from the object to the observer’s eye, assuming the

object is positioned lower than the observer
angle of elevation the angle between the horizontal and the line from the object to the observer’s eye, assuming the

object is positioned higher than the observer
angular speed the angle through which a rotating object travels in a unit of time
arc length the length of the curve formed by an arc
area of a sector area of a portion of a circle bordered by two radii and the intercepted arc; the fraction multiplied

by the area of the entire circle
cosecant the reciprocal of the sine function: on the unit circle,

cosine function the x-value of the point on a unit circle corresponding to a given angle
cotangent the reciprocal of the tangent function: on the unit circle,

coterminal angles description of positive and negative angles in standard position sharing the same terminal side
degree a unit of measure describing the size of an angle as one-360th of a full revolution of a circle
hypotenuse the side of a right triangle opposite the right angle
identities statements that are true for all values of the input on which they are defined
initial side the side of an angle from which rotation begins
linear speed the distance along a straight path a rotating object travels in a unit of time; determined by the arc length
measure of an angle the amount of rotation from the initial side to the terminal side
negative angle description of an angle measured clockwise from the positive x-axis
opposite side in a right triangle, the side most distant from a given angle
period the smallest interval of a repeating function such that
positive angle description of an angle measured counterclockwise from the positive x-axis
Pythagorean Identity a corollary of the Pythagorean Theorem stating that the square of the cosine of a given angle

plus the square of the sine of that angle equals 1
quadrantal angle an angle whose terminal side lies on an axis
radian the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle
radian measure the ratio of the arc length formed by an angle divided by the radius of the circle
ray one point on a line and all points extending in one direction from that point; one side of an angle
reference angle the measure of the acute angle formed by the terminal side of the angle and the horizontal axis
secant the reciprocal of the cosine function: on the unit circle,
sine function the y-value of the point on a unit circle corresponding to a given angle
standard position the position of an angle having the vertex at the origin and the initial side along the positive x-axis
tangent the quotient of the sine and cosine: on the unit circle,
terminal side the side of an angle at which rotation ends
unit circle a circle with a center at and radius 1
vertex the common endpoint of two rays that form an angle

Key Equations

arc length

area of a sector

angular speed

linear speed

linear speed related to angular speed
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Trigonometric Functions

Reciprocal Trigonometric Functions

Cofunction Identities

Cosine

Sine

Pythagorean Identity

Tangent function

Secant function

Cosecant function

Cotangent function

Key Concepts
7.1 Angles

• An angle is formed from the union of two rays, by keeping the initial side fixed and rotating the terminal side. The
amount of rotation determines the measure of the angle.

• An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis. A positive
angle is measured counterclockwise from the initial side and a negative angle is measured clockwise.

• To draw an angle in standard position, draw the initial side along the positive x-axis and then place the terminal side
according to the fraction of a full rotation the angle represents. See Example 1.

• In addition to degrees, the measure of an angle can be described in radians. See Example 2.

• To convert between degrees and radians, use the proportion See Example 3 and Example 4.
• Two angles that have the same terminal side are called coterminal angles.
• We can find coterminal angles by adding or subtracting or See Example 5 and Example 6.
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• Coterminal angles can be found using radians just as they are for degrees. See Example 7.
• The length of a circular arc is a fraction of the circumference of the entire circle. See Example 8.
• The area of sector is a fraction of the area of the entire circle. See Example 9.
• An object moving in a circular path has both linear and angular speed.
• The angular speed of an object traveling in a circular path is the measure of the angle through which it turns in a

unit of time. See Example 10.
• The linear speed of an object traveling along a circular path is the distance it travels in a unit of time. See Example

11.

7.2 Right Triangle Trigonometry

• We can define trigonometric functions as ratios of the side lengths of a right triangle. See Example 1.
• The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a right triangle.

See Example 2.
• We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles in which

they occur. See Example 3.
• Any two complementary angles could be the two acute angles of a right triangle.
• If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other

and vice versa. See Example 4.
• We can use trigonometric functions of an angle to find unknown side lengths.
• Select the trigonometric function representing the ratio of the unknown side to the known side. See Example 5.
• Right-triangle trigonometry facilitates the measurement of inaccessible heights and distances.
• The unknown height or distance can be found by creating a right triangle in which the unknown height or distance

is one of the sides, and another side and angle are known. See Example 6.

7.3 Unit Circle

• Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the origin
and has a radius of 1 unit.

• Using the unit circle, the sine of an angle equals the y-value of the endpoint on the unit circle of an arc of length
whereas the cosine of an angle equals the x-value of the endpoint. See Example 1.

• The sine and cosine values are most directly determined when the corresponding point on the unit circle falls on an
axis. See Example 2.

• When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity
is also useful for determining the sines and cosines of special angles. See Example 3.

• Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering
information is known. See Example 4.

• The domain of the sine and cosine functions is all real numbers.
• The range of both the sine and cosine functions is
• The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.
• The signs of the sine and cosine are determined from the x- and y-values in the quadrant of the original angle.
• An angle’s reference angle is the size angle, formed by the terminal side of the angle and the horizontal axis. See

Example 5.
• Reference angles can be used to find the sine and cosine of the original angle. See Example 6.
• Reference angles can also be used to find the coordinates of a point on a circle. See Example 7.

7.4 The Other Trigonometric Functions

• The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle.
• The secant, cotangent, and cosecant are all reciprocals of other functions. The secant is the reciprocal of the cosine

function, the cotangent is the reciprocal of the tangent function, and the cosecant is the reciprocal of the sine
function.

• The six trigonometric functions can be found from a point on the unit circle. See Example 1.
• Trigonometric functions can also be found from an angle. See Example 2.
• Trigonometric functions of angles outside the first quadrant can be determined using reference angles. See

Example 3.
• A function is said to be even if and odd if for all x in the domain of f.
• Cosine and secant are even; sine, tangent, cosecant, and cotangent are odd.
• Even and odd properties can be used to evaluate trigonometric functions. See Example 4.
• The Pythagorean Identity makes it possible to find a cosine from a sine or a sine from a cosine.
• Identities can be used to evaluate trigonometric functions. See Example 5 and Example 6.
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• Fundamental identities such as the Pythagorean Identity can be manipulated algebraically to produce new
identities. See Example 7.

• The trigonometric functions repeat at regular intervals.
• The period of a repeating function is the smallest interval such that for any value of
• The values of trigonometric functions can be found by mathematical analysis. See Example 8 and Example 9.
• To evaluate trigonometric functions of other angles, we can use a calculator or computer software. See Example 10.

Exercises
Review Exercises
Angles

For the following exercises, convert the angle measures to degrees.

1. 2.

For the following exercises, convert the angle measures to radians.

3. 4. 5. Find the length of an arc in a
circle of radius 7 meters
subtended by the central
angle of

6. Find the area of the sector
of a circle with diameter 32
feet and an angle of
radians.

For the following exercises, find the angle between and that is coterminal with the given angle.

7. 8.

For the following exercises, find the angle between 0 and in radians that is coterminal with the given angle.

9. 10.

For the following exercises, draw the angle provided in standard position on the Cartesian plane.

11. 12. 13.

14. 15. Find the linear speed of a
point on the equator of the
earth if the earth has a
radius of 3,960 miles and
the earth rotates on its axis
every 24 hours. Express
answer in miles per hour.
Round to the nearest
hundredth.

16. A car wheel with a
diameter of 18 inches spins
at the rate of 10
revolutions per second.
What is the car's speed in
miles per hour? Round to
the nearest hundredth.
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Right Triangle Trigonometry

For the following exercises, use side lengths to evaluate.

17. 18. 19.

20. 21.

For the following exercises, use the given information to find the lengths of the other two sides of the right triangle.

22. 23.

For the following exercises, use Figure 1 to evaluate each trigonometric function.

Figure 1

24. 25.

For the following exercises, solve for the unknown sides of the given triangle.

26. 27. 28. A 15-ft ladder leans against
a building so that the angle
between the ground and
the ladder is How high
does the ladder reach up
the side of the building?
Find the answer to four
decimal places.

29. The angle of elevation to
the top of a building in
Baltimore is found to be 4
degrees from the ground
at a distance of 1 mile from
the base of the building.
Using this information, find
the height of the building.
Find the answer to four
decimal places.

Unit Circle
30. Find the exact value of 31. Find the exact value of 32. Find the exact value of
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33. State the reference angle
for

34. State the reference angle
for

35. Compute cosine of

36. Compute sine of 37. State the domain of the
sine and cosine functions.

38. State the range of the sine
and cosine functions.

The Other Trigonometric Functions

For the following exercises, find the exact value of the given expression.

39. 40. 41.

42.

For the following exercises, use reference angles to evaluate the given expression.

43. 44. 45. If what is
the

46. If what is the 47. If find 48. If find
There are two

possible solutions.

49. Which trigonometric
functions are even?

50. Which trigonometric
functions are odd?

Practice Test
1. Convert radians to

degrees.
2. Convert to radians. 3. Find the length of a circular

arc with a radius 12
centimeters subtended by
the central angle of

4. Find the area of the sector
with radius of 8 feet and an
angle of radians.

5. Find the angle between
and that is coterminal
with

6. Find the angle between 0
and in radians that is
coterminal with

7. Draw the angle in
standard position on the
Cartesian plane.

8. Draw the angle in
standard position on the
Cartesian plane.

9. A carnival has a Ferris wheel
with a diameter of 80 feet.
The time for the Ferris wheel
to make one revolution is 75
seconds. What is the linear
speed in feet per second of
a point on the Ferris wheel?
What is the angular speed in
radians per second?
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10. Find the missing sides of
the triangle

11. Find the missing sides of
the triangle.

12. The angle of elevation to
the top of a building in
Chicago is found to be 9
degrees from the ground
at a distance of 2000 feet
from the base of the
building. Using this
information, find the
height of the building.

13. Find the exact value of 14. Compute sine of 15. State the domain of the
sine and cosine functions.

16. State the range of the sine
and cosine functions.

17. Find the exact value of 18. Find the exact value of

19. Use reference angles to
evaluate

20. Use reference angles to
evaluate

21. If what is the

22. If find 23. Find the missing angle:
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Dawn colors the sky over the Olare Motorgi Conservancy bordering tha Masai Mara National Reserve in Kenya. (Credit:
Modification of "KenyaLive_Day_#02" by Make it Kenya/flickr)

Chapter Outline
8.1 Graphs of the Sine and Cosine Functions
8.2 Graphs of the Other Trigonometric Functions
8.3 Inverse Trigonometric Functions

Introduction to Periodic Functions
The sun has played a core role in many religions. The ancient Egyptian culture portrayed the sun god, Ra (sometimes
written as Re), as undertaking a two-part daily journey, with one portion in the sky (day) and the other through the
underworld (night). Surya, the Hindu sun god, traces a similar path through the sky on a chariot pulled by seven horses.
While their origins and associated narratives are quite different, both Ra and Surya are primary deities and seen as
creators and preservers of life. In many Native American cultures, the sun is core to spiritual and religious practice, but is
not always a deity. The Sun Dance, practiced differently by many Native American tribes, was a ceremony that generally
paid homage to the sun and, in many cases, tested or expressed the strength of the tribe's people.

As one of the most most prominent natural phenomena and with its close association to giving life, the sun was an
obvious subject for reverence. And its regularity, even in ancient times, made it the primary determinant of time. Each
day, the sun rises in an easterly direction, approaches some maximum height relative to the celestial equator, and sets in
a westerly direction. The celestial equator is an imaginary line that divides the visible universe into two halves in much
the same way Earth’s equator is an imaginary line that divides the planet into two halves. The exact path the sun
appears to follow depends on the exact location on Earth, but each location observes a predictable pattern over time.

The pattern of the sun’s motion throughout the course of a year is a periodic function. Creating a visual representation
of a periodic function in the form of a graph can help us analyze the properties of the function. In this chapter, we will
investigate graphs of sine, cosine, and other trigonometric functions.

8.1 Graphs of the Sine and Cosine Functions
Learning Objectives
In this section, you will:

Graph variations of and .
Use phase shifts of sine and cosine curves.

PERIODIC FUNCTIONS8
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Figure 1 Light can be separated into colors because of its wavelike properties. (credit: "wonderferret"/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the
rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism
that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions
(http://openstax.org/books/precalculus-2e/pages/5-introduction-to-trigonometric-functions), we examined
trigonometric functions such as the sine function. In this section, we will interpret and create graphs of sine and cosine
functions.

Graphing Sine and Cosine Functions
Recall that the sine and cosine functions relate real number values to the x- and y-coordinates of a point on the unit
circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine function. We can create a
table of values and use them to sketch a graph. Table 1 lists some of the values for the sine function on a unit circle.

Table 1

Plotting the points from the table and continuing along the x-axis gives the shape of the sine function. See Figure 2.

Figure 2 The sine function

Notice how the sine values are positive between 0 and which correspond to the values of the sine function in
quadrants I and II on the unit circle, and the sine values are negative between and which correspond to the values
of the sine function in quadrants III and IV on the unit circle. See Figure 3.
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Figure 3 Plotting values of the sine function

Now let’s take a similar look at the cosine function. Again, we can create a table of values and use them to sketch a
graph. Table 2 lists some of the values for the cosine function on a unit circle.

Table 2

As with the sine function, we can plots points to create a graph of the cosine function as in Figure 4.

Figure 4 The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real
numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the
range of both functions must be the interval

In both graphs, the shape of the graph repeats after which means the functions are periodic with a period of A
periodic function is a function for which a specific horizontal shift, P, results in a function equal to the original function:

for all values of in the domain of When this occurs, we call the smallest such horizontal shift with
the period of the function. Figure 5 shows several periods of the sine and cosine functions.
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Figure 5

Looking again at the sine and cosine functions on a domain centered at the y-axis helps reveal symmetries. As we can
see in Figure 6, the sine function is symmetric about the origin. Recall from The Other Trigonometric Functions that we
determined from the unit circle that the sine function is an odd function because Now we can clearly
see this property from the graph.

Figure 6 Odd symmetry of the sine function

Figure 7 shows that the cosine function is symmetric about the y-axis. Again, we determined that the cosine function is
an even function. Now we can see from the graph that

Figure 7 Even symmetry of the cosine function

Characteristics of Sine and Cosine Functions

The sine and cosine functions have several distinct characteristics:

• They are periodic functions with a period of

• The domain of each function is ∞ ∞ and the range is

• The graph of is symmetric about the origin, because it is an odd function.
• The graph of is symmetric about the -axis, because it is an even function.
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Investigating Sinusoidal Functions
As we can see, sine and cosine functions have a regular period and range. If we watch ocean waves or ripples on a pond,
we will see that they resemble the sine or cosine functions. However, they are not necessarily identical. Some are taller
or longer than others. A function that has the same general shape as a sine or cosine function is known as a sinusoidal
function. The general forms of sinusoidal functions are

Determining the Period of Sinusoidal Functions
Looking at the forms of sinusoidal functions, we can see that they are transformations of the sine and cosine functions.
We can use what we know about transformations to determine the period.

In the general formula, is related to the period by If then the period is less than and the function

undergoes a horizontal compression, whereas if then the period is greater than and the function undergoes
a horizontal stretch. For example, so the period is which we knew. If then

so the period is and the graph is compressed. If then so the period is and the graph
is stretched. Notice in Figure 8 how the period is indirectly related to

Figure 8

Period of Sinusoidal Functions

If we let and in the general form equations of the sine and cosine functions, we obtain the forms

The period is

EXAMPLE 1

Identifying the Period of a Sine or Cosine Function
Determine the period of the function

Solution
Let’s begin by comparing the equation to the general form

In the given equation, so the period will be
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TRY IT #1 Determine the period of the function

Determining Amplitude
Returning to the general formula for a sinusoidal function, we have analyzed how the variable relates to the period.
Now let’s turn to the variable so we can analyze how it is related to the amplitude, or greatest distance from rest.
represents the vertical stretch factor, and its absolute value is the amplitude. The local maxima will be a distance
above the horizontal midline of the graph, which is the line because in this case, the midline is the x-axis.
The local minima will be the same distance below the midline. If the function is stretched. For example, the
amplitude of is twice the amplitude of If the function is compressed. Figure 9
compares several sine functions with different amplitudes.

Figure 9

Amplitude of Sinusoidal Functions

If we let and in the general form equations of the sine and cosine functions, we obtain the forms

The amplitude is which is the vertical height from the midline In addition, notice in the example that

EXAMPLE 2

Identifying the Amplitude of a Sine or Cosine Function
What is the amplitude of the sinusoidal function Is the function stretched or compressed vertically?

Solution
Let’s begin by comparing the function to the simplified form

In the given function, so the amplitude is The function is stretched.
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Analysis
The negative value of results in a reflection across the x-axis of the sine function, as shown in Figure 10.

Figure 10

TRY IT #2 What is the amplitude of the sinusoidal function Is the function stretched or
compressed vertically?

Analyzing Graphs of Variations of y = sin x and y = cos x
Now that we understand how and relate to the general form equation for the sine and cosine functions, we will
explore the variables and Recall the general form:

The value for a sinusoidal function is called the phase shift, or the horizontal displacement of the basic sine or cosine
function. If the graph shifts to the right. If the graph shifts to the left. The greater the value of the
more the graph is shifted. Figure 11 shows that the graph of shifts to the right by units, which is
more than we see in the graph of which shifts to the right by units.

Figure 11

While relates to the horizontal shift, indicates the vertical shift from the midline in the general formula for a
sinusoidal function. See Figure 12. The function has its midline at
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Figure 12

Any value of other than zero shifts the graph up or down. Figure 13 compares with
which is shifted 2 units up on a graph.

Figure 13

Variations of Sine and Cosine Functions

Given an equation in the form or is the phase shift and
is the vertical shift.

EXAMPLE 3

Identifying the Phase Shift of a Function
Determine the direction and magnitude of the phase shift for

Solution
Let’s begin by comparing the equation to the general form

In the given equation, notice that and So the phase shift is

or units to the left.

Analysis
We must pay attention to the sign in the equation for the general form of a sinusoidal function. The equation shows a
minus sign before Therefore can be rewritten as If the value of

is negative, the shift is to the left.

TRY IT #3 Determine the direction and magnitude of the phase shift for
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EXAMPLE 4

Identifying the Vertical Shift of a Function
Determine the direction and magnitude of the vertical shift for

Solution
Let’s begin by comparing the equation to the general form

In the given equation, so the shift is 3 units downward.

TRY IT #4 Determine the direction and magnitude of the vertical shift for

HOW TO

Given a sinusoidal function in the form identify the midline, amplitude, period, and
phase shift.

1. Determine the amplitude as
2. Determine the period as

3. Determine the phase shift as
4. Determine the midline as

EXAMPLE 5

Identifying the Variations of a Sinusoidal Function from an Equation
Determine the midline, amplitude, period, and phase shift of the function

Solution
Let’s begin by comparing the equation to the general form

so the amplitude is

Next, so the period is

There is no added constant inside the parentheses, so and the phase shift is

Finally, so the midline is

Analysis
Inspecting the graph, we can determine that the period is the midline is and the amplitude is 3. See Figure 14.

Figure 14

TRY IT #5 Determine the midline, amplitude, period, and phase shift of the function
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EXAMPLE 6

Identifying the Equation for a Sinusoidal Function from a Graph
Determine the formula for the cosine function in Figure 15.

Figure 15

Solution
To determine the equation, we need to identify each value in the general form of a sinusoidal function.

The graph could represent either a sine or a cosine function that is shifted and/or reflected. When the graph has
an extreme point, Since the cosine function has an extreme point for let us write our equation in terms of a
cosine function.

Let’s start with the midline. We can see that the graph rises and falls an equal distance above and below This
value, which is the midline, is in the equation, so

The greatest distance above and below the midline is the amplitude. The maxima are 0.5 units above the midline and the
minima are 0.5 units below the midline. So Another way we could have determined the amplitude is by
recognizing that the difference between the height of local maxima and minima is 1, so Also, the graph is
reflected about the x-axis so that

The graph is not horizontally stretched or compressed, so and the graph is not shifted horizontally, so

Putting this all together,

TRY IT #6 Determine the formula for the sine function in Figure 16.

Figure 16

EXAMPLE 7

Identifying the Equation for a Sinusoidal Function from a Graph
Determine the equation for the sinusoidal function in Figure 17.
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Figure 17

Solution
With the highest value at 1 and the lowest value at the midline will be halfway between at So

The distance from the midline to the highest or lowest value gives an amplitude of

The period of the graph is 6, which can be measured from the peak at to the next peak at or from the
distance between the lowest points. Therefore, Using the positive value for we find that

So far, our equation is either or For the shape and shift, we have more
than one option. We could write this as any one of the following:

• a cosine shifted to the right
• a negative cosine shifted to the left
• a sine shifted to the left
• a negative sine shifted to the right

While any of these would be correct, the cosine shifts are easier to work with than the sine shifts in this case because
they involve integer values. So our function becomes

Again, these functions are equivalent, so both yield the same graph.

TRY IT #7 Write a formula for the function graphed in Figure 18.

Figure 18

Graphing Variations of y = sin x and y = cos x
Throughout this section, we have learned about types of variations of sine and cosine functions and used that
information to write equations from graphs. Now we can use the same information to create graphs from equations.

Instead of focusing on the general form equations
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we will let and and work with a simplified form of the equations in the following examples.

HOW TO

Given the function sketch its graph.

1. Identify the amplitude,
2. Identify the period,

3. Start at the origin, with the function increasing to the right if is positive or decreasing if is negative.
4. At there is a local maximum for or a minimum for with

5. The curve returns to the x-axis at

6. There is a local minimum for (maximum for ) at with

7. The curve returns again to the x-axis at

EXAMPLE 8

Graphing a Function and Identifying the Amplitude and Period
Sketch a graph of

Solution
Let’s begin by comparing the equation to the form

Step 1. We can see from the equation that so the amplitude is 2.

Step 2. The equation shows that so the period is

Step 3. Because is negative, the graph descends as we move to the right of the origin.
Step 4–7. The x-intercepts are at the beginning of one period, the horizontal midpoints are at and at the end
of one period at

The quarter points include the minimum at and the maximum at A local minimum will occur 2 units below
the midline, at and a local maximum will occur at 2 units above the midline, at Figure 19 shows the graph
of the function.

Figure 19

TRY IT #8 Sketch a graph of Determine the midline, amplitude, period, and phase
shift.
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...
HOW TO

Given a sinusoidal function with a phase shift and a vertical shift, sketch its graph.

1. Express the function in the general form
2. Identify the amplitude,
3. Identify the period,

4. Identify the phase shift,
5. Draw the graph of shifted to the right or left by and up or down by

EXAMPLE 9

Graphing a Transformed Sinusoid
Sketch a graph of

Solution
Step 1. The function is already written in general form: This graph will have the shape of a sine
function, starting at the midline and increasing to the right.
Step 2. The amplitude is 3.
Step 3. Since we determine the period as follows.

The period is 8.

Step 4. Since the phase shift is

The phase shift is 1 unit.

Step 5. Figure 20 shows the graph of the function.

Figure 20 A horizontally compressed, vertically stretched, and horizontally shifted sinusoid

TRY IT #9 Draw a graph of Determine the midline, amplitude, period, and phase

shift.
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EXAMPLE 10

Identifying the Properties of a Sinusoidal Function
Given determine the amplitude, period, phase shift, and vertical shift. Then graph the
function.

Solution
Begin by comparing the equation to the general form and use the steps outlined in Example 9.

Step 1. The function is already written in general form.
Step 2. Since the amplitude is
Step 3. so the period is The period is 4.

Step 4. so we calculate the phase shift as The phase shift is

Step 5. so the midline is   and the vertical shift is up 3.

Since is negative, the graph of the cosine function has been reflected about the x-axis.

Figure 21 shows one cycle of the graph of the function.

Figure 21

Using Transformations of Sine and Cosine Functions
We can use the transformations of sine and cosine functions in numerous applications. As mentioned at the beginning
of the chapter, circular motion can be modeled using either the sine or cosine function.

EXAMPLE 11

Finding the Vertical Component of Circular Motion
A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the point as a
function of the angle of rotation.

Solution
Recall that, for a point on a circle of radius r, the y-coordinate of the point is so in this case, we get the
equation The constant 3 causes a vertical stretch of the y-values of the function by a factor of 3, which
we can see in the graph in Figure 22.
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Figure 22

Analysis
Notice that the period of the function is still as we travel around the circle, we return to the point for

Because the outputs of the graph will now oscillate between and the amplitude of the sine wave
is

TRY IT #10 What is the amplitude of the function Sketch a graph of this function.

EXAMPLE 12

Finding the Vertical Component of Circular Motion
A circle with radius 3 ft is mounted with its center 4 ft off the ground. The point closest to the ground is labeled P, as
shown in Figure 23. Sketch a graph of the height above the ground of the point as the circle is rotated; then find a
function that gives the height in terms of the angle of rotation.

Figure 23

Solution
Sketching the height, we note that it will start 1 ft above the ground, then increase up to 7 ft above the ground, and
continue to oscillate 3 ft above and below the center value of 4 ft, as shown in Figure 24.
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Figure 24

Although we could use a transformation of either the sine or cosine function, we start by looking for characteristics that
would make one function easier to use than the other. Let’s use a cosine function because it starts at the highest or
lowest value, while a sine function starts at the middle value. A standard cosine starts at the highest value, and this
graph starts at the lowest value, so we need to incorporate a vertical reflection.

Second, we see that the graph oscillates 3 above and below the center, while a basic cosine has an amplitude of 1, so this
graph has been vertically stretched by 3, as in the last example.

Finally, to move the center of the circle up to a height of 4, the graph has been vertically shifted up by 4. Putting these
transformations together, we find that

TRY IT #11 A weight is attached to a spring that is then hung from a board, as shown in Figure 25. As the
spring oscillates up and down, the position of the weight relative to the board ranges from
in. (at time to in. (at time below the board. Assume the position of is given as a
sinusoidal function of Sketch a graph of the function, and then find a cosine function that gives
the position in terms of

Figure 25
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EXAMPLE 13

Determining a Rider’s Height on a Ferris Wheel
The London Eye is a huge Ferris wheel with a diameter of 135 meters (443 feet). It completes one rotation every 30
minutes. Riders board from a platform 2 meters above the ground. Express a rider’s height above ground as a function
of time in minutes.

Solution
With a diameter of 135 m, the wheel has a radius of 67.5 m. The height will oscillate with amplitude 67.5 m above and
below the center.

Passengers board 2 m above ground level, so the center of the wheel must be located m above ground
level. The midline of the oscillation will be at 69.5 m.

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with a period of 30 minutes.

Lastly, because the rider boards at the lowest point, the height will start at the smallest value and increase, following the
shape of a vertically reflected cosine curve.

• Amplitude: so
• Midline: so
• Period: so
• Shape:

An equation for the rider’s height would be

where is in minutes and is measured in meters.

MEDIA

Access these online resources for additional instruction and practice with graphs of sine and cosine functions.

Amplitude and Period of Sine and Cosine (http://openstax.org/l/ampperiod)
Translations of Sine and Cosine (http://openstax.org/l/translasincos)
Graphing Sine and Cosine Transformations (http://openstax.org/l/transformsincos)
Graphing the Sine Function (http://openstax.org/l/graphsinefunc)

8.1 SECTION EXERCISES
Verbal

1. Why are the sine and cosine
functions called periodic
functions?

2. How does the graph of
compare with the

graph of Explain
how you could horizontally
translate the graph of

to obtain

3. For the equation
what

constants affect the range
of the function and how do
they affect the range?

4. How does the range of a
translated sine function
relate to the equation

5. How can the unit circle be
used to construct the graph
of
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Graphical

For the following exercises, graph two full periods of each function and state the amplitude, period, and midline. State
the maximum and minimum y-values and their corresponding x-values on one period for Round answers to two
decimal places if necessary.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

For the following exercises, graph one full period of each function, starting at For each function, state the
amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one
period for State the phase shift and vertical translation, if applicable. Round answers to two decimal places if
necessary.

18. 19. 20.

21. 22. 23. Determine the amplitude, midline,
period, and an equation involving
the sine function for the graph
shown in Figure 26.

Figure 26
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24. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 27.

Figure 27

25. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 28.

Figure 28

26. Determine the amplitude, period,
midline, and an equation involving
sine for the graph shown in Figure
29.

Figure 29

27. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 30.

Figure 30

28. Determine the amplitude, period,
midline, and an equation involving
sine for the graph shown in Figure
31.

Figure 31

29. Determine the amplitude, period,
midline, and an equation involving
cosine for the graph shown in
Figure 32.

Figure 32

30. Determine the amplitude, period,
midline, and an equation involving
sine for the graph shown in Figure
33.

Figure 33
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Algebraic

For the following exercises, let

31. On solve 32. On solve 33. Evaluate

34. On
Find all values of

35. On the maximum
value(s) of the function
occur(s) at what x-value(s)?

36. On the minimum
value(s) of the function
occur(s) at what x-value(s)?

37. Show that
This means that

is an odd
function and possesses
symmetry with respect to
________________.

For the following exercises, let

38. On solve the
equation

39. On solve 40. On find the
x-intercepts of

41. On find the
x-values at which the
function has a maximum or
minimum value.

42. On solve the

equation

Technology

43. Graph on
Explain why the

graph appears as it does.

44. Graph on
Did the graph

appear as predicted in the
previous exercise?

45. Graph on
and verbalize how

the graph varies from the
graph of

46. Graph on
the window and
explain what the graph
shows.

47. Graph on the
window and
explain what the graph
shows.
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Real-World Applications

ⓐ Find the amplitude,
midline, and period of

ⓑ Find a formula for the
height function

ⓒ How high off the
ground is a person after 5
minutes?

48. A Ferris wheel is 25 meters
in diameter and boarded
from a platform that is 1
meter above the ground.
The six o’clock position on
the Ferris wheel is level
with the loading platform.
The wheel completes 1 full
revolution in 10 minutes.
The function gives a
person’s height in meters
above the ground t
minutes after the wheel
begins to turn.

8.2 Graphs of the Other Trigonometric Functions
Learning Objectives
In this section, you will:

Analyze the graph of y=tan x.
Graph variations of y=tan x.
Analyze the graphs of y=sec x and y=csc x.
Graph variations of y=sec x and y=csc x.
Analyze the graph of y=cot x.
Graph variations of y=cot x.

We know the tangent function can be used to find distances, such as the height of a building, mountain, or flagpole. But
what if we want to measure repeated occurrences of distance? Imagine, for example, a fire truck parked next to a
warehouse. The rotating light from the truck would travel across the wall of the warehouse in regular intervals. If the
input is time, the output would be the distance the beam of light travels. The beam of light would repeat the distance at
regular intervals. The tangent function can be used to approximate this distance. Asymptotes would be needed to
illustrate the repeated cycles when the beam runs parallel to the wall because, seemingly, the beam of light could
appear to extend forever. The graph of the tangent function would clearly illustrate the repeated intervals. In this
section, we will explore the graphs of the tangent and other trigonometric functions.

Analyzing the Graph of y = tan x
We will begin with the graph of the tangent function, plotting points as we did for the sine and cosine functions. Recall
that

The period of the tangent function is because the graph repeats itself on intervals of where is a constant. If we
graph the tangent function on to we can see the behavior of the graph on one complete cycle. If we look at any
larger interval, we will see that the characteristics of the graph repeat.

We can determine whether tangent is an odd or even function by using the definition of tangent.
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Therefore, tangent is an odd function. We can further analyze the graphical behavior of the tangent function by looking
at values for some of the special angles, as listed in Table 1.

0

undefined –1 0 1 undefined

Table 1

These points will help us draw our graph, but we need to determine how the graph behaves where it is undefined. If we
look more closely at values when we can use a table to look for a trend. Because and
we will evaluate at radian measures as shown in Table 2.

1.3 1.5 1.55 1.56

3.6 14.1 48.1 92.6

Table 2

As approaches the outputs of the function get larger and larger. Because is an odd function, we see the
corresponding table of negative values in Table 3.

−1.3 −1.5 −1.55 −1.56

−3.6 −14.1 −48.1 −92.6

Table 3

We can see that, as approaches the outputs get smaller and smaller. Remember that there are some values of
for which For example, and At these values, the tangent function is undefined, so
the graph of has discontinuities at At these values, the graph of the tangent has vertical
asymptotes. Figure 1 represents the graph of The tangent is positive from 0 to and from to
corresponding to quadrants I and III of the unit circle.

Figure 1 Graph of the tangent function
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Graphing Variations of y = tan x
As with the sine and cosine functions, the tangent function can be described by a general equation.

We can identify horizontal and vertical stretches and compressions using values of and The horizontal stretch can
typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a vertical
stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted as
it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring to
the constant

Features of the Graph of y = Atan(Bx)

• The stretching factor is
• The period is

• The domain is all real numbers where such that is an integer.

• The range is ∞
• The asymptotes occur at where is an integer.

• is an odd function.

Graphing One Period of a Stretched or Compressed Tangent Function
We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/or
compressed tangent function of the form We focus on a single period of the function including the
origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we wish. Our
limited domain is then the interval and the graph has vertical asymptotes at where On
the graph will come up from the left asymptote at cross through the origin, and continue to increase as it
approaches the right asymptote at To make the function approach the asymptotes at the correct rate, we also
need to set the vertical scale by actually evaluating the function for at least one point that the graph will pass through.
For example, we can use

because

HOW TO

Given the function graph one period.

1. Identify the stretching factor,
2. Identify and determine the period,

3. Draw vertical asymptotes at and
4. For the graph approaches the left asymptote at negative output values and the right asymptote at

positive output values (reverse for ).
5. Plot reference points at and and draw the graph through these points.

EXAMPLE 1

Sketching a Compressed Tangent
Sketch a graph of one period of the function
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Solution
First, we identify and

Because and we can find the stretching/compressing factor and period. The period is so the

asymptotes are at At a quarter period from the origin, we have

This means the curve must pass through the points and The only inflection point is at the
origin. Figure 2 shows the graph of one period of the function.

Figure 2

TRY IT #1 Sketch a graph of

Graphing One Period of a Shifted Tangent Function
Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or
phase) shift. In this case, we add and to the general form of the tangent function.

The graph of a transformed tangent function is different from the basic tangent function in several ways:

Features of the Graph of y = Atan(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞
• The vertical asymptotes occur at where is an odd integer.

• There is no amplitude.
• is an odd function because it is the quotient of odd and even functions (sine and cosine

respectively).
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HOW TO

Given the function sketch the graph of one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Identify and determine the phase shift,
5. Draw the graph of shifted to the right by and up by
6. Sketch the vertical asymptotes, which occur at where is an odd integer.

7. Plot any three reference points and draw the graph through these points.

EXAMPLE 2

Graphing One Period of a Shifted Tangent Function
Graph one period of the function

Solution
Step 1. The function is already written in the form
Step 2. so the stretching factor is
Step 3. so the period is

Step 4. so the phase shift is
Step 5-7. The asymptotes are at and and the three recommended reference points are

and The graph is shown in Figure 3.

Figure 3

Analysis
Note that this is a decreasing function because

TRY IT #2 How would the graph in Example 2 look different if we made instead of

HOW TO

Given the graph of a tangent function, identify horizontal and vertical stretches.

1. Find the period from the spacing between successive vertical asymptotes or x-intercepts.
2. Write
3. Determine a convenient point on the given graph and use it to determine
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EXAMPLE 3

Identifying the Graph of a Stretched Tangent
Find a formula for the function graphed in Figure 4.

Figure 4 A stretched tangent function

Solution
The graph has the shape of a tangent function.

Step 1. One cycle extends from –4 to 4, so the period is Since we have

Step 2. The equation must have the form
Step 3. To find the vertical stretch we can use the point

Because

This function would have a formula

TRY IT #3 Find a formula for the function in Figure 5.

Figure 5

Analyzing the Graphs of y = sec x and y = cscx
The secant was defined by the reciprocal identity Notice that the function is undefined when the cosine is
0, leading to vertical asymptotes at etc. Because the cosine is never more than 1 in absolute value, the secant,
being the reciprocal, will never be less than 1 in absolute value.

We can graph by observing the graph of the cosine function because these two functions are reciprocals of
one another. See Figure 6. The graph of the cosine is shown as a dashed orange wave so we can see the relationship.
Where the graph of the cosine function decreases, the graph of the secant function increases. Where the graph of the
cosine function increases, the graph of the secant function decreases. When the cosine function is zero, the secant is
undefined.
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The secant graph has vertical asymptotes at each value of where the cosine graph crosses the x-axis; we show these in
the graph below with dashed vertical lines, but will not show all the asymptotes explicitly on all later graphs involving the
secant and cosecant.

Note that, because cosine is an even function, secant is also an even function. That is,

Figure 6 Graph of the secant function,

As we did for the tangent function, we will again refer to the constant as the stretching factor, not the amplitude.

Features of the Graph of y = Asec(Bx)

• The stretching factor is
• The period is

• The domain is where is an odd integer.

• The range is ∞ ∞
• The vertical asymptotes occur at where is an odd integer.

• There is no amplitude.
• is an even function because cosine is an even function.

Similar to the secant, the cosecant is defined by the reciprocal identity Notice that the function is
undefined when the sine is 0, leading to a vertical asymptote in the graph at etc. Since the sine is never more than 1
in absolute value, the cosecant, being the reciprocal, will never be less than 1 in absolute value.

We can graph by observing the graph of the sine function because these two functions are reciprocals of one
another. See Figure 7. The graph of sine is shown as a dashed orange wave so we can see the relationship. Where the
graph of the sine function decreases, the graph of the cosecant function increases. Where the graph of the sine function
increases, the graph of the cosecant function decreases.

The cosecant graph has vertical asymptotes at each value of where the sine graph crosses the x-axis; we show these in
the graph below with dashed vertical lines.

Note that, since sine is an odd function, the cosecant function is also an odd function. That is,

The graph of cosecant, which is shown in Figure 7, is similar to the graph of secant.
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Figure 7 The graph of the cosecant function,

Features of the Graph of y = Acsc(Bx)

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞ ∞
• The asymptotes occur at where is an integer.

• is an odd function because sine is an odd function.

Graphing Variations of y = sec x and y= csc x
For shifted, compressed, and/or stretched versions of the secant and cosecant functions, we can follow similar methods
to those we used for tangent and cotangent. That is, we locate the vertical asymptotes and also evaluate the functions
for a few points (specifically the local extrema). If we want to graph only a single period, we can choose the interval for
the period in more than one way. The procedure for secant is very similar, because the cofunction identity means that
the secant graph is the same as the cosecant graph shifted half a period to the left. Vertical and phase shifts may be
applied to the cosecant function in the same way as for the secant and other functions.The equations become the
following.

Features of the Graph of y = Asec(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an odd integer.

• The range is ∞ ∞
• The vertical asymptotes occur at where is an odd integer.

• There is no amplitude.
• is an even function because cosine is an even function.
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Features of the Graph of y = Acsc(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞ ∞
• The vertical asymptotes occur at where is an integer.

• There is no amplitude.
• is an odd function because sine is an odd function.

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Sketch the graph of
5. Use the reciprocal relationship between and to draw the graph of
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

EXAMPLE 4

Graphing a Variation of the Secant Function
Graph one period of

Solution
Step 1. The given function is already written in the general form,
Step 2. so the stretching factor is
Step 3. so The period is units.
Step 4. Sketch the graph of the function
Step 5. Use the reciprocal relationship of the cosine and secant functions to draw the cosecant function.
Steps 6–7. Sketch two asymptotes at and We can use two reference points, the local minimum at

and the local maximum at Figure 8 shows the graph.

Figure 8

TRY IT #4 Graph one period of
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Q&A Do the vertical shift and stretch/compression affect the secant’s range?

Yes. The range of is ∞ ∞

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Identify and determine the phase shift,
5. Draw the graph of , but shift it to the right by and up by
6. Sketch the vertical asymptotes, which occur at where is an odd integer.

EXAMPLE 5

Graphing a Variation of the Secant Function
Graph one period of

Solution
Step 1. Express the function given in the form
Step 2. The stretching/compressing factor is
Step 3. The period is

Step 4. The phase shift is

Step 5. Draw the graph of but shift it to the right by and up by
Step 6. Sketch the vertical asymptotes, which occur at and There is a local minimum at and a
local maximum at Figure 9 shows the graph.

Figure 9
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TRY IT #5 Graph one period of

Q&A The domain of was given to be all such that for any integer Would the domain of

Yes. The excluded points of the domain follow the vertical asymptotes. Their locations show the horizontal
shift and compression or expansion implied by the transformation to the original function’s input.

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2.
3. Identify and determine the period,

4. Draw the graph of
5. Use the reciprocal relationship between and to draw the graph of
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

EXAMPLE 6

Graphing a Variation of the Cosecant Function
Graph one period of

Solution
Step 1. The given function is already written in the general form,
Step 2. so the stretching factor is 3.
Step 3. so The period is units.
Step 4. Sketch the graph of the function
Step 5. Use the reciprocal relationship of the sine and cosecant functions to draw the cosecant function.
Steps 6–7. Sketch three asymptotes at and We can use two reference points, the local maximum at

and the local minimum at Figure 10 shows the graph.
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Figure 10

TRY IT #6 Graph one period of

HOW TO

Given a function of the form graph one period.

1. Express the function given in the form
2. Identify the stretching/compressing factor,
3. Identify and determine the period,

4. Identify and determine the phase shift,
5. Draw the graph of but shift it to the right by and up by
6. Sketch the vertical asymptotes, which occur at where is an integer.

EXAMPLE 7

Graphing a Vertically Stretched, Horizontally Compressed, and Vertically Shifted Cosecant
Sketch a graph of What are the domain and range of this function?

Solution
Step 1. Express the function given in the form
Step 2. Identify the stretching/compressing factor,
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Step 3. The period is

Step 4. The phase shift is

Step 5. Draw the graph of but shift it up
Step 6. Sketch the vertical asymptotes, which occur at

The graph for this function is shown in Figure 11.

Figure 11 A transformed cosecant function

Analysis
The vertical asymptotes shown on the graph mark off one period of the function, and the local extrema in this interval
are shown by dots. Notice how the graph of the transformed cosecant relates to the graph of
shown as the orange dashed wave.

TRY IT #7 Given the graph of shown in Figure 12, sketch the graph of
on the same axes.

Figure 12

Analyzing the Graph of y = cot x
The last trigonometric function we need to explore is cotangent. The cotangent is defined by the reciprocal identity

Notice that the function is undefined when the tangent function is 0, leading to a vertical asymptote in
the graph at etc. Since the output of the tangent function is all real numbers, the output of the cotangent function is
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also all real numbers.

We can graph by observing the graph of the tangent function because these two functions are reciprocals of
one another. See Figure 13. Where the graph of the tangent function decreases, the graph of the cotangent function
increases. Where the graph of the tangent function increases, the graph of the cotangent function decreases.

The cotangent graph has vertical asymptotes at each value of where we show these in the graph below with
dashed lines. Since the cotangent is the reciprocal of the tangent, has vertical asymptotes at all values of where

and at all values of where has its vertical asymptotes.

Figure 13 The cotangent function

Features of the Graph of y = Acot(Bx)

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞ ∞
• The asymptotes occur at where is an integer.

• is an odd function.

Graphing Variations of y = cot x
We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation becomes
the following.

Features of the Graph of y = Acot(Bx−C)+D

• The stretching factor is
• The period is

• The domain is where is an integer.

• The range is ∞
• The vertical asymptotes occur at where is an integer.

• There is no amplitude.
• is an odd function because it is the quotient of even and odd functions (cosine and sine,

respectively)

HOW TO

Given a modified cotangent function of the form graph one period.
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1. Express the function in the form
2. Identify the stretching factor,
3. Identify the period,

4. Draw the graph of
5. Plot any two reference points.
6. Use the reciprocal relationship between tangent and cotangent to draw the graph of
7. Sketch the asymptotes.

EXAMPLE 8

Graphing Variations of the Cotangent Function
Determine the stretching factor, period, and phase shift of and then sketch a graph.

Solution
Step 1. Expressing the function in the form gives
Step 2. The stretching factor is
Step 3. The period is
Step 4. Sketch the graph of
Step 5. Plot two reference points. Two such points are and
Step 6. Use the reciprocal relationship to draw
Step 7. Sketch the asymptotes,

The blue graph in Figure 14 shows and the green graph shows

Figure 14

HOW TO

Given a modified cotangent function of the form graph one period.

1. Express the function in the form
2. Identify the stretching factor,
3. Identify the period,

4. Identify the phase shift,
5. Draw the graph of shifted to the right by and up by
6. Sketch the asymptotes where is an integer.

7. Plot any three reference points and draw the graph through these points.
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EXAMPLE 9

Graphing a Modified Cotangent
Sketch a graph of one period of the function

Solution
Step 1. The function is already written in the general form
Step 2. so the stretching factor is 4.
Step 3. so the period is

Step 4. so the phase shift is

Step 5. We draw
Step 6-7. Three points we can use to guide the graph are and We use the reciprocal relationship
of tangent and cotangent to draw
Step 8. The vertical asymptotes are and

The graph is shown in Figure 15.

Figure 15 One period of a modified cotangent function

Using the Graphs of Trigonometric Functions to Solve Real-World Problems
Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example,
let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a
fire truck and wondered about the movement of the light beam itself across the wall? The periodic behavior of the
distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent
function.

EXAMPLE 10

Using Trigonometric Functions to Solve Real-World Scenarios
Suppose the function marks the distance in the movement of a light beam from the top of a police car
across a wall where is the time in seconds and is the distance in feet from a point on the wall directly across from the
police car.

ⓐ Find and interpret the stretching factor and period. ⓑ Graph on the interval

ⓒ Evaluate and discuss the function’s value at that input.
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Solution

ⓐ We know from the general form of that is the stretching factor and is the period.

Figure 16

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

The period is This means that every 4 seconds, the beam of light sweeps the wall. The distance from

the spot across from the police car grows larger as the police car approaches.

ⓑ To graph the function, we draw an asymptote at and use the stretching factor and period. See Figure 17

Figure 17

ⓒ period: after 1 second, the beam of has moved 5 ft from the spot across from
the police car.

MEDIA

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

Graphing the Tangent (http://openstax.org/l/graphtangent)
Graphing Cosecant and Secant (http://openstax.org/l/graphcscsec)
Graphing the Cotangent (http://openstax.org/l/graphcot)

8.2 SECTION EXERCISES
Verbal

1. Explain how the graph of
the sine function can be
used to graph

2. How can the graph of
be used to

construct the graph of

3. Explain why the period of
is equal to

4. Why are there no intercepts
on the graph of

5. How does the period of
compare with the

period of
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Algebraic

For the following exercises, match each trigonometric function with one of the following graphs.

Figure 18

6. 7. 8.

9.

For the following exercises, find the period and horizontal shift of each of the functions.

10. 11. 12.

13. If find 14. If find 15. If find

16. If find

For the following exercises, rewrite each expression such that the argument is positive.

17. 18.

Graphical

For the following exercises, sketch two periods of the graph for each of the following functions. Identify the stretching
factor, period, and asymptotes.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.
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31. 32. 33.

34. 35. 36.

For the following exercises, find and graph two periods of the periodic function with the given stretching factor,
period, and phase shift.

37. A tangent curve, period of and phase
shift

38. A tangent curve, period of and phase
shift

For the following exercises, find an equation for the graph of each function.

39. 40.

41. 42.
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43. 44.

45.

Technology

For the following exercises, use a graphing calculator to graph two periods of the given function. Note: most graphing
calculators do not have a cosecant button; therefore, you will need to input as

46. 47. 48.

49. 50. Graph

What is the function shown in
the graph?

51.

52. 53.
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Real-World Applications

ⓐ Graph on the interval

ⓑ Find and interpret the stretching factor,
period, and asymptote.

ⓒ Evaluate and and discuss the
function’s values at those inputs.

54. The function marks the
distance in the movement of a light beam from a
police car across a wall for time in seconds, and
distance in feet.

ⓐ What is a reasonable domain for

ⓑ Graph on this domain.

ⓒ Find and discuss the meaning of any vertical
asymptotes on the graph of

ⓓ Calculate and interpret Round to the
second decimal place.

ⓔ Calculate and interpret Round to the second
decimal place.

ⓕ What is the minimum distance between the
fisherman and the boat? When does this occur?

55. Standing on the shore of a lake, a fisherman sights a
boat far in the distance to his left. Let measured in
radians, be the angle formed by the line of sight to the
ship and a line due north from his position. Assume due
north is 0 and is measured negative to the left and
positive to the right. (See Figure 19.) The boat travels
from due west to due east and, ignoring the curvature
of the Earth, the distance in kilometers, from the
fisherman to the boat is given by the function

Figure 19

ⓐ Graph on the interval

ⓑ Evaluate and interpret the information.

ⓒ What is the minimum distance between the
comet and Earth? When does this occur? To which
constant in the equation does this correspond?

ⓓ Find and discuss the meaning of any vertical
asymptotes.

56. A laser rangefinder is locked on a comet
approaching Earth. The distance in
kilometers, of the comet after days, for in the
interval 0 to 30 days, is given by
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ⓐ Write a function expressing the altitude
in miles, of the rocket above the ground after
seconds. Ignore the curvature of the Earth.

ⓑ Graph on the interval

ⓒ Evaluate and interpret the values and

ⓓ What happens to the values of as
approaches 60 seconds? Interpret the meaning of
this in terms of the problem.

57. A video camera is focused on a rocket on a
launching pad 2 miles from the camera. The angle
of elevation from the ground to the rocket after
seconds is

8.3 Inverse Trigonometric Functions
Learning Objectives
In this section, you will:

Understand and use the inverse sine, cosine, and tangent functions.
Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
Use a calculator to evaluate inverse trigonometric functions.
Find exact values of composite functions with inverse trigonometric functions.

For any right triangle, given one other angle and the length of one side, we can figure out what the other angles and
sides are. But what if we are given only two sides of a right triangle? We need a procedure that leads us from a ratio of
sides to an angle. This is where the notion of an inverse to a trigonometric function comes into play. In this section, we
will explore the inverse trigonometric functions.

Understanding and Using the Inverse Sine, Cosine, and Tangent Functions
In order to use inverse trigonometric functions, we need to understand that an inverse trigonometric function “undoes”
what the original trigonometric function “does,” as is the case with any other function and its inverse. In other words,
the domain of the inverse function is the range of the original function, and vice versa, as summarized in Figure 1.

Figure 1

For example, if then we would write Be aware that does not mean The
following examples illustrate the inverse trigonometric functions:

• Since then

• Since then
• Since then

In previous sections, we evaluated the trigonometric functions at various angles, but at times we need to know what
angle would yield a specific sine, cosine, or tangent value. For this, we need inverse functions. Recall that, for a one-to-
one function, if then an inverse function would satisfy

Bear in mind that the sine, cosine, and tangent functions are not one-to-one functions. The graph of each function would
fail the horizontal line test. In fact, no periodic function can be one-to-one because each output in its range corresponds
to at least one input in every period, and there are an infinite number of periods. As with other functions that are not
one-to-one, we will need to restrict the domain of each function to yield a new function that is one-to-one. We choose a
domain for each function that includes the number 0. Figure 2 shows the graph of the sine function limited to
and the graph of the cosine function limited to
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Figure 2 (a) Sine function on a restricted domain of (b) Cosine function on a restricted domain of

Figure 3 shows the graph of the tangent function limited to

Figure 3 Tangent function on a restricted domain of

These conventional choices for the restricted domain are somewhat arbitrary, but they have important, helpful
characteristics. Each domain includes the origin and some positive values, and most importantly, each results in a one-
to-one function that is invertible. The conventional choice for the restricted domain of the tangent function also has the
useful property that it extends from one vertical asymptote to the next instead of being divided into two parts by an
asymptote.

On these restricted domains, we can define the inverse trigonometric functions.

• The inverse sine function means The inverse sine function is sometimes called the arcsine
function, and notated

• The inverse cosine function means The inverse cosine function is sometimes called the
arccosine function, and notated

• The inverse tangent function means The inverse tangent function is sometimes called the
arctangent function, and notated

∞

The graphs of the inverse functions are shown in Figure 4, Figure 5, and Figure 6. Notice that the output of each of these
inverse functions is a number, an angle in radian measure. We see that has domain and range

has domain and range and has domain of all real numbers and range To find the
domain and range of inverse trigonometric functions, switch the domain and range of the original functions. Each graph
of the inverse trigonometric function is a reflection of the graph of the original function about the line
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Figure 4 The sine function and inverse sine (or arcsine) function

Figure 5 The cosine function and inverse cosine (or arccosine) function

Figure 6 The tangent function and inverse tangent (or arctangent) function
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Relations for Inverse Sine, Cosine, and Tangent Functions

For angles in the interval if then

For angles in the interval if then

For angles in the interval if then

EXAMPLE 1

Writing a Relation for an Inverse Function
Given write a relation involving the inverse sine.

Solution
Use the relation for the inverse sine. If then .

In this problem, and

TRY IT #1 Given write a relation involving the inverse cosine.

Finding the Exact Value of Expressions Involving the Inverse Sine, Cosine, and
Tangent Functions
Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains, we must
evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or using some other
numerical technique. Just as we did with the original trigonometric functions, we can give exact values for the inverse
functions when we are using the special angles, specifically (30°), (45°), and (60°), and their reflections into other
quadrants.

HOW TO

Given a “special” input value, evaluate an inverse trigonometric function.

1. Find angle for which the original trigonometric function has an output equal to the given input for the inverse
trigonometric function.

2. If is not in the defined range of the inverse, find another angle that is in the defined range and has the same
sine, cosine, or tangent as depending on which corresponds to the given inverse function.

EXAMPLE 2

Evaluating Inverse Trigonometric Functions for Special Input Values
Evaluate each of the following.

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ Evaluating is the same as determining the angle that would have a sine value of In other words,
what angle would satisfy There are multiple values that would satisfy this relationship, such as and

but we know we need the angle in the interval so the answer will be Remember that
the inverse is a function, so for each input, we will get exactly one output.
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ⓑ To evaluate we know that and both have a sine value of but neither is in the

interval For that, we need the negative angle coterminal with

ⓒ To evaluate we are looking for an angle in the interval with a cosine value of The

angle that satisfies this is

ⓓ Evaluating we are looking for an angle in the interval with a tangent value of 1. The correct
angle is

TRY IT #2 Evaluate each of the following.

ⓐ ⓑ ⓒ ⓓ

Using a Calculator to Evaluate Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not involve the special angles discussed previously, we will need to
use a calculator or other type of technology. Most scientific calculators and calculator-emulating applications have
specific keys or buttons for the inverse sine, cosine, and tangent functions. These may be labeled, for example, SIN ,
ARCSIN, or ASIN.

In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle given one
side and an additional angle. Using the inverse trigonometric functions, we can solve for the angles of a right triangle
given two sides, and we can use a calculator to find the values to several decimal places.

In these examples and exercises, the answers will be interpreted as angles and we will use as the independent
variable. The value displayed on the calculator may be in degrees or radians, so be sure to set the mode appropriate to
the application.

EXAMPLE 3

Evaluating the Inverse Sine on a Calculator
Evaluate using a calculator.

Solution
Because the output of the inverse function is an angle, the calculator will give us a degree value if in degree mode and a
radian value if in radian mode. Calculators also use the same domain restrictions on the angles as we are using.

In radian mode, In degree mode, Note that in calculus and beyond we will
use radians in almost all cases.

TRY IT #3 Evaluate using a calculator.

HOW TO

Given two sides of a right triangle like the one shown in Figure 7, find an angle.
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Figure 7

1. If one given side is the hypotenuse of length and the side of length adjacent to the desired angle is given, use
the equation

2. If one given side is the hypotenuse of length and the side of length opposite to the desired angle is given, use
the equation

3. If the two legs (the sides adjacent to the right angle) are given, then use the equation

EXAMPLE 4

Applying the Inverse Cosine to a Right Triangle
Solve the triangle in Figure 8 for the angle

Figure 8

Solution
Because we know the hypotenuse and the side adjacent to the angle, it makes sense for us to use the cosine function.

TRY IT #4 Solve the triangle in Figure 9 for the angle

Figure 9

Finding Exact Values of Composite Functions with Inverse Trigonometric
Functions
There are times when we need to compose a trigonometric function with an inverse trigonometric function. In these
cases, we can usually find exact values for the resulting expressions without resorting to a calculator. Even when the
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input to the composite function is a variable or an expression, we can often find an expression for the output. To help
sort out different cases, let and be two different trigonometric functions belonging to the set

and let and be their inverses.

Evaluating Compositions of the Form f(f−1(y)) and f−1(f(x))
For any trigonometric function, for all in the proper domain for the given function. This follows from
the definition of the inverse and from the fact that the range of was defined to be identical to the domain of
However, we have to be a little more careful with expressions of the form

Compositions of a trigonometric function and its inverse

∞ ∞

Q&A Is it correct that

No. This equation is correct if belongs to the restricted domain but sine is defined for all real
input values, and for outside the restricted interval, the equation is not correct because its inverse
always returns a value in The situation is similar for cosine and tangent and their inverses. For
example,

HOW TO

Given an expression of the form f−1(f(θ)) where evaluate.

1. If is in the restricted domain of
2. If not, then find an angle within the restricted domain of such that Then

EXAMPLE 5

Using Inverse Trigonometric Functions
Evaluate the following:

ⓐ ⓑ ⓒ ⓓ
Solution

ⓐ so

ⓑ but so

ⓒ so

ⓓ but because cosine is an even function. so

TRY IT #5 Evaluate
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Evaluating Compositions of the Form f−1(g(x))
Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a
trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form

For special values of we can exactly evaluate the inner function and then the outer, inverse function.
However, we can find a more general approach by considering the relation between the two acute angles of a right
triangle where one is making the other Consider the sine and cosine of each angle of the right triangle in
Figure 10.

Figure 10 Right triangle illustrating the cofunction relationships

Because we have if If is not in this domain, then we need
to find another angle that has the same cosine as and does belong to the restricted domain; we then subtract this
angle from Similarly, so if These are just the function-
cofunction relationships presented in another way.

HOW TO

Given functions of the form and evaluate them.

1. If then
2. If then find another angle such that

3. If then
4. If then find another angle such that

EXAMPLE 6

Evaluating the Composition of an Inverse Sine with a Cosine
Evaluate

ⓐ by direct evaluation. ⓑ by the method described previously.
Solution

ⓐ Here, we can directly evaluate the inside of the composition.

Now, we can evaluate the inverse function as we did earlier. ⓑ We have and
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TRY IT #6 Evaluate

Evaluating Compositions of the Form f(g−1(x))
To evaluate compositions of the form where and are any two of the functions sine, cosine, or tangent

and is any input in the domain of we have exact formulas, such as When we need to use
them, we can derive these formulas by using the trigonometric relations between the angles and sides of a right
triangle, together with the use of Pythagoras’s relation between the lengths of the sides. We can use the Pythagorean
identity, to solve for one when given the other. We can also use the inverse trigonometric functions
to find compositions involving algebraic expressions.

EXAMPLE 7

Evaluating the Composition of a Sine with an Inverse Cosine
Find an exact value for

Solution
Beginning with the inside, we can say there is some angle such that which means and we
are looking for We can use the Pythagorean identity to do this.

Since is in quadrant I, must be positive, so the solution is See Figure 11.

Figure 11 Right triangle illustrating that if then

We know that the inverse cosine always gives an angle on the interval so we know that the sine of that angle must
be positive; therefore

TRY IT #7 Evaluate

EXAMPLE 8

Evaluating the Composition of a Sine with an Inverse Tangent
Find an exact value for

Solution
While we could use a similar technique as in Example 6, we will demonstrate a different technique here. From the inside,
we know there is an angle such that We can envision this as the opposite and adjacent sides on a right
triangle, as shown in Figure 12.
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Figure 12 A right triangle with two sides known

Using the Pythagorean Theorem, we can find the hypotenuse of this triangle.

Now, we can evaluate the sine of the angle as the opposite side divided by the hypotenuse.

This gives us our desired composition.

TRY IT #8 Evaluate

EXAMPLE 9

Finding the Cosine of the Inverse Sine of an Algebraic Expression
Find a simplified expression for for

Solution
We know there is an angle such that

Because we know that the inverse sine must give an angle on the interval we can deduce that the cosine of
that angle must be positive.

TRY IT #9 Find a simplified expression for for

MEDIA

Access this online resource for additional instruction and practice with inverse trigonometric functions.
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Evaluate Expressions Involving Inverse Trigonometric Functions (http://openstax.org/l/evalinverstrig)

8.3 SECTION EXERCISES
Verbal

1. Why do the functions
and
have

different ranges?

2. Since the functions
and

are inverse functions, why is
not

equal to

3. Explain the meaning of

4. Most calculators do not
have a key to evaluate

Explain how this
can be done using the
cosine function or the
inverse cosine function.

5. Why must the domain of the
sine function, be
restricted to for the
inverse sine function to
exist?

6. Discuss why this statement
is incorrect:

for all

7. Determine whether the
following statement is true
or false and explain your
answer:

Algebraic

For the following exercises, evaluate the expressions.

8. 9. 10.

11. 12. 13.

14. 15. 16.

For the following exercises, use a calculator to evaluate each expression. Express answers to the nearest hundredth.

17. 18. 19.

20. 21.
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For the following exercises, find the angle in the given right triangle. Round answers to the nearest hundredth.

22. 23.

For the following exercises, find the exact value, if possible, without a calculator. If it is not possible, explain why.

24. 25. 26.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36.

For the following exercises, find the exact value of the expression in terms of with the help of a reference triangle.

37. 38. 39.

40. 41.

Extensions

For the following exercises, evaluate the expression without using a calculator. Give the exact value.

42.

For the following exercises, find the function if

43. 44. 45.

46. 47.
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Graphical

48. Graph and
state the domain and
range of the function.

49. Graph and
state the domain and
range of the function.

50. Graph one cycle of
and state the

domain and range of the
function.

51. For what value of does
Use a

graphing calculator to
approximate the answer.

52. For what value of does
Use a

graphing calculator to
approximate the answer.

Real-World Applications

53. Suppose a 13-foot ladder is
leaning against a building,
reaching to the bottom of a
second-floor window 12
feet above the ground.
What angle, in radians,
does the ladder make with
the building?

54. Suppose you drive 0.6
miles on a road so that the
vertical distance changes
from 0 to 150 feet. What is
the angle of elevation of
the road?

55. An isosceles triangle has
two congruent sides of
length 9 inches. The
remaining side has a
length of 8 inches. Find the
angle that a side of 9
inches makes with the
8-inch side.

56. Without using a calculator,
approximate the value of

Explain
why your answer is
reasonable.

57. A truss (interior beam
structure) for the roof of a
house is constructed from
two identical right
triangles. Each has a base
of 12 feet and height of 4
feet. Find the measure of
the acute angle adjacent to
the 4-foot side.

58. The line passes
through the origin in the
x,y-plane. What is the
measure of the angle that
the line makes with the
positive x-axis?

59. The line passes
through the origin in the
x,y-plane. What is the
measure of the angle that
the line makes with the
negative x-axis?

60. What percentage grade
should a road have if the
angle of elevation of the
road is 4 degrees? (The
percentage grade is
defined as the change in
the altitude of the road
over a 100-foot horizontal
distance. For example a 5%
grade means that the road
rises 5 feet for every 100
feet of horizontal distance.)

61. A 20-foot ladder leans up
against the side of a
building so that the foot of
the ladder is 10 feet from
the base of the building. If
specifications call for the
ladder's angle of elevation
to be between 35 and 45
degrees, does the
placement of this ladder
satisfy safety
specifications?

62. Suppose a 15-foot ladder
leans against the side of a
house so that the angle of
elevation of the ladder is 42
degrees. How far is the
foot of the ladder from the
side of the house?
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Chapter Review
Key Terms
amplitude the vertical height of a function; the constant appearing in the definition of a sinusoidal function
arccosine another name for the inverse cosine;
arcsine another name for the inverse sine;
arctangent another name for the inverse tangent;
inverse cosine function the function which is the inverse of the cosine function and the angle that has a

cosine equal to a given number
inverse sine function the function which is the inverse of the sine function and the angle that has a sine equal

to a given number
inverse tangent function the function which is the inverse of the tangent function and the angle that has a

tangent equal to a given number
midline the horizontal line where appears in the general form of a sinusoidal function
periodic function a function that satisfies for a specific constant and any value of
phase shift the horizontal displacement of the basic sine or cosine function; the constant
sinusoidal function any function that can be expressed in the form or

Key Equations

Sinusoidal functions

Shifted, compressed, and/or stretched tangent function

Shifted, compressed, and/or stretched secant function

Shifted, compressed, and/or stretched cosecant function

Shifted, compressed, and/or stretched cotangent function

Key Concepts
8.1 Graphs of the Sine and Cosine Functions

• Periodic functions repeat after a given value. The smallest such value is the period. The basic sine and cosine
functions have a period of

• The function is odd, so its graph is symmetric about the origin. The function is even, so its graph is
symmetric about the y-axis.

• The graph of a sinusoidal function has the same general shape as a sine or cosine function.
• In the general formula for a sinusoidal function, the period is See Example 1.

• In the general formula for a sinusoidal function, represents amplitude. If the function is stretched,
whereas if the function is compressed. See Example 2.

• The value in the general formula for a sinusoidal function indicates the phase shift. See Example 3.
• The value in the general formula for a sinusoidal function indicates the vertical shift from the midline. See

Example 4.
• Combinations of variations of sinusoidal functions can be detected from an equation. See Example 5.
• The equation for a sinusoidal function can be determined from a graph. See Example 6 and Example 7.
• A function can be graphed by identifying its amplitude and period. See Example 8 and Example 9.
• A function can also be graphed by identifying its amplitude, period, phase shift, and horizontal shift. See Example

10.
• Sinusoidal functions can be used to solve real-world problems. See Example 11, Example 12, and Example 13.
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8.2 Graphs of the Other Trigonometric Functions

• The tangent function has period
• is a tangent with vertical and/or horizontal stretch/compression and shift. See Example

1, Example 2, and Example 3.
• The secant and cosecant are both periodic functions with a period of gives a shifted,

compressed, and/or stretched secant function graph. See Example 4 and Example 5.
• gives a shifted, compressed, and/or stretched cosecant function graph. See Example 6

and Example 7.
• The cotangent function has period and vertical asymptotes at

• The range of cotangent is ∞ ∞ and the function is decreasing at each point in its range.

• The cotangent is zero at
• is a cotangent with vertical and/or horizontal stretch/compression and shift. See

Example 8 and Example 9.
• Real-world scenarios can be solved using graphs of trigonometric functions. See Example 10.

8.3 Inverse Trigonometric Functions

• An inverse function is one that “undoes” another function. The domain of an inverse function is the range of the
original function and the range of an inverse function is the domain of the original function.

• Because the trigonometric functions are not one-to-one on their natural domains, inverse trigonometric functions
are defined for restricted domains.

• For any trigonometric function if then However, only implies if is
in the restricted domain of See Example 1.

• Special angles are the outputs of inverse trigonometric functions for special input values; for example,
See Example 2.

• A calculator will return an angle within the restricted domain of the original trigonometric function. See Example 3.
• Inverse functions allow us to find an angle when given two sides of a right triangle. See Example 4.
• In function composition, if the inside function is an inverse trigonometric function, then there are exact expressions;

for example, See Example 5.
• If the inside function is a trigonometric function, then the only possible combinations are if

and if See Example 6 and Example 7.
• When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw a

reference triangle to assist in determining the ratio of sides that represents the output of the trigonometric
function. See Example 8.

• When evaluating the composition of a trigonometric function with an inverse trigonometric function, you may use
trig identities to assist in determining the ratio of sides. See Example 9.

Exercises
Review Exercises
Graphs of the Sine and Cosine Functions

For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor,
period, midline equation, and asymptotes.

1. 2. 3.

4. 5. 6.

7. 8.
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Graphs of the Other Trigonometric Functions

For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor,
period, midline equation, and asymptotes.

9. 10. 11.

12.

For the following exercises, graph two full periods. Identify the period, the phase shift, the amplitude, and asymptotes.

13. 14. 15.

16. 17. 18.

For the following exercises, use this scenario: The population of a city has risen and fallen over a 20-year interval. Its
population may be modeled by the following function: where the domain is the years
since 1980 and the range is the population of the city.

19. What is the largest and
smallest population the city
may have?

20. Graph the function on the
domain of .

21. What are the amplitude,
period, and phase shift for
the function?

22. Over this domain, when
does the population reach
18,000? 13,000?

23. What is the predicted
population in 2007? 2010?
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For the following exercises, suppose a weight is attached to a spring and bobs up and down, exhibiting symmetry.

24. Suppose the graph of the displacement function is
shown in Figure 1, where the values on the x-axis
represent the time in seconds and the y-axis
represents the displacement in inches. Give the
equation that models the vertical displacement of
the weight on the spring.

Figure 1

25. At time = 0, what is the displacement of the
weight?

26. At what time does the displacement from the
equilibrium point equal zero?

27. What is the time required for the weight to return
to its initial height of 5 inches? In other words,
what is the period for the displacement function?

Inverse Trigonometric Functions

For the following exercises, find the exact value without the aid of a calculator.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39. Graph and
on the

interval and explain
any observations.
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40. Graph and
and explain

any observations.

41. Graph the function

on the interval and
compare the graph to the
graph of on
the same interval. Describe
any observations.

Practice Test
For the following exercises, sketch the graph of each function for two full periods. Determine the amplitude, the period,
and the equation for the midline.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13.

For the following exercises, determine the amplitude, period, and midline of the graph, and then find a formula for the
function.

14. Give in terms of a sine function. 15. Give in terms of a sine function.
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16. Give in terms of a tangent
function.

For the following exercises, find the amplitude, period, phase shift, and midline.

17. 18.

19. The outside temperature over the course of a day
can be modeled as a sinusoidal function. Suppose
you know the temperature is 68°F at midnight and
the high and low temperatures during the day are
80°F and 56°F, respectively. Assuming is the
number of hours since midnight, find a function
for the temperature, in terms of

20. Water is pumped into a storage bin and empties
according to a periodic rate. The depth of the
water is 3 feet at its lowest at 2:00 a.m. and 71 feet
at its highest, which occurs every 5 hours. Write a
cosine function that models the depth of the
water as a function of time, and then graph the
function for one period.

For the following exercises, find the period and horizontal shift of each function.

21. 22.

23. Write the equation for the graph in Figure 1 in
terms of the secant function and give the period
and phase shift.

Figure 1

24. If find

25. If find
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For the following exercises, graph the functions on the specified window and answer the questions.

26. Graph

on the viewing window
by

Approximate the graph’s
period.

27. Graph
on

the following domains in
and

Suppose this function
models sound waves. Why
would these views look so
different?

28. Graph on
and explain any

observations.

For the following exercises, let

29. What is the largest possible
value for

30. What is the smallest
possible value for

31. Where is the function
increasing on the interval

For the following exercises, find and graph one period of the periodic function with the given amplitude, period, and
phase shift.

32. Sine curve with amplitude
3, period and phase
shift

33. Cosine curve with
amplitude 2, period and
phase shift

For the following exercises, graph the function. Describe the graph and, wherever applicable, any periodic behavior,
amplitude, asymptotes, or undefined points.

34. 35.

For the following exercises, find the exact value.

36. 37. 38.

39. 40. 41.

42. 43.

For the following exercises, suppose Evaluate the following expressions.

44. 45.
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46. Given Figure 2, find the measure of angle to
three decimal places. Answer in radians.

Figure 2

For the following exercises, determine whether the equation is true or false.

47. 48. 49. The grade of a road is 7%.
This means that for every
horizontal distance of 100
feet on the road, the
vertical rise is 7 feet. Find
the angle the road makes
with the horizontal in
radians.
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Tennis players can create advantages by changing the angles of their shots. The technology used to decide close calls
also relies heavily on mathematics. (credit: modification of "From the 2013 US Open" by Edwin Martinez/flickr)

Chapter Outline
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions
9.2 Sum and Difference Identities
9.3 Double-Angle, Half-Angle, and Reduction Formulas
9.4 Sum-to-Product and Product-to-Sum Formulas
9.5 Solving Trigonometric Equations

Introduction to Trigonometric Identities and Equations
When we think of tennis as a game of angles, we may imagine players racing up to the net, creating options to deliver
powerful cross shots that will leave their opponent stumbling toward the line. This is an exciting and effective method of
play, though it brings greater risk.

But while the excitement of the game interplays with all types of geometry, some of the newest innovations make even
more use of mathematics. With balls traveling well over 100 miles per hour judges cannot always discern the centimeter
or millimeters of difference between a ball that is in or out of bounds. Professional tennis was among the first sports to
rely on an advanced tracking system called Hawk-Eye to help make close calls. The system uses several high-resolution
cameras that are able to monitor and the ball's movement and its position on the court. Using the images from several
cameras at once, the system's computers use trigonometric calculations to triangulate the ball's exact position and,
essentially, turn a series of two-dimensional images into a three-dimensional one. Also, since the ball travels faster than
the cameras' frame rate, the system also must make predictions to show where a ball is at all times. These technologies
generally provide a more accurate game that builds more confidence and fairness. Similar technologies are used for
baseball, and automated strike-calling is under discussion.

9.1 Verifying Trigonometric Identities and Using Trigonometric
Identities to Simplify Trigonometric Expressions
Learning Objectives
In this section, you will:

Verify the fundamental trigonometric identities.
Simplify trigonometric expressions using algebra and the identities.

TRIGONOMETRIC IDENTITIES AND EQUATIONS9
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Figure 1 International passports and travel documents

In espionage movies, we see international spies with multiple passports, each claiming a different identity. However, we
know that each of those passports represents the same person. The trigonometric identities act in a similar manner to
multiple passports—there are many ways to represent the same trigonometric expression. Just as a spy will choose an
Italian passport when traveling to Italy, we choose the identity that applies to the given scenario when solving a
trigonometric equation.

In this section, we will begin an examination of the fundamental trigonometric identities, including how we can verify
them and how we can use them to simplify trigonometric expressions.

Verifying the Fundamental Trigonometric Identities
Identities enable us to simplify complicated expressions. They are the basic tools of trigonometry used in solving
trigonometric equations, just as factoring, finding common denominators, and using special formulas are the basic tools
of solving algebraic equations. In fact, we use algebraic techniques constantly to simplify trigonometric expressions.
Basic properties and formulas of algebra, such as the difference of squares formula and the perfect squares formula, will
simplify the work involved with trigonometric expressions and equations. We already know that all of the trigonometric
functions are related because they all are defined in terms of the unit circle. Consequently, any trigonometric identity
can be written in many ways.

To verify the trigonometric identities, we usually start with the more complicated side of the equation and essentially
rewrite the expression until it has been transformed into the same expression as the other side of the equation.
Sometimes we have to factor expressions, expand expressions, find common denominators, or use other algebraic
strategies to obtain the desired result. In this first section, we will work with the fundamental identities: the Pythagorean
identities, the even-odd identities, the reciprocal identities, and the quotient identities.

We will begin with the Pythagorean identities (see Table 1), which are equations involving trigonometric functions
based on the properties of a right triangle. We have already seen and used the first of these identifies, but now we will
also use additional identities.

Pythagorean Identities

Table 1

The second and third identities can be obtained by manipulating the first. The identity is found by
rewriting the left side of the equation in terms of sine and cosine.

Prove:
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Similarly, can be obtained by rewriting the left side of this identity in terms of sine and cosine. This
gives

Recall that we determined which trigonometric functions are odd and which are even. The next set of fundamental
identities is the set of even-odd identities. The even-odd identities relate the value of a trigonometric function at a
given angle to the value of the function at the opposite angle. (See Table 2).

Even-Odd Identities

Table 2

Recall that an odd function is one in which for all in the domain of The sine function is an odd
function because The graph of an odd function is symmetric about the origin. For example, consider
corresponding inputs of and The output of is opposite the output of Thus,

This is shown in Figure 2.

Figure 2 Graph of

Recall that an even function is one in which

The graph of an even function is symmetric about the y-axis. The cosine function is an even function because
For example, consider corresponding inputs and The output of is the same as the
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output of Thus,

See Figure 3.

Figure 3 Graph of

For all in the domain of the sine and cosine functions, respectively, we can state the following:

• Since sine is an odd function.
• Since, cosine is an even function.

The other even-odd identities follow from the even and odd nature of the sine and cosine functions. For example,
consider the tangent identity, We can interpret the tangent of a negative angle as

Tangent is therefore an odd function, which means that for

all in the domain of the tangent function.

The cotangent identity, also follows from the sine and cosine identities. We can interpret the
cotangent of a negative angle as Cotangent is therefore an odd function, which

means that for all in the domain of the cotangent function.

The cosecant function is the reciprocal of the sine function, which means that the cosecant of a negative angle will be
interpreted as The cosecant function is therefore odd.

Finally, the secant function is the reciprocal of the cosine function, and the secant of a negative angle is interpreted as
The secant function is therefore even.

To sum up, only two of the trigonometric functions, cosine and secant, are even. The other four functions are odd,
verifying the even-odd identities.

The next set of fundamental identities is the set of reciprocal identities, which, as their name implies, relate
trigonometric functions that are reciprocals of each other. See Table 3. Recall that we first encountered these identities
when defining trigonometric functions from right angles in Right Angle Trigonometry.

Reciprocal Identities

Table 3

The final set of identities is the set of quotient identities, which define relationships among certain trigonometric
functions and can be very helpful in verifying other identities. See Table 4.
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Quotient Identities

Table 4

The reciprocal and quotient identities are derived from the definitions of the basic trigonometric functions.

Summarizing Trigonometric Identities

The Pythagorean identities are based on the properties of a right triangle.

The even-odd identities relate the value of a trigonometric function at a given angle to the value of the function at
the opposite angle.

The reciprocal identities define reciprocals of the trigonometric functions.

The quotient identities define the relationship among the trigonometric functions.

EXAMPLE 1

Graphing the Equations of an Identity
Graph both sides of the identity In other words, on the graphing calculator, graph and
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Solution
See Figure 4.

Figure 4

Analysis
We see only one graph because both expressions generate the same image. One is on top of the other. This is a good
way to confirm an identity verified with analytical means. If both expressions give the same graph, then they are most
likely identities.

HOW TO

Given a trigonometric identity, verify that it is true.

1. Work on one side of the equation. It is usually better to start with the more complex side, as it is easier to
simplify than to build.

2. Look for opportunities to factor expressions, square a binomial, or add fractions.
3. Noting which functions are in the final expression, look for opportunities to use the identities and make the

proper substitutions.
4. If these steps do not yield the desired result, try converting all terms to sines and cosines.

EXAMPLE 2

Verifying a Trigonometric Identity
Verify

Solution
We will start on the left side, as it is the more complicated side:

Analysis
This identity was fairly simple to verify, as it only required writing in terms of and

TRY IT #1 Verify the identity
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EXAMPLE 3

Verifying the Equivalency Using the Even-Odd Identities
Verify the following equivalency using the even-odd identities:

Solution
Working on the left side of the equation, we have

EXAMPLE 4

Verifying a Trigonometric Identity Involving sec2θ

Verify the identity

Solution
As the left side is more complicated, let’s begin there.

There is more than one way to verify an identity. Here is another possibility. Again, we can start with the left side.

Analysis
In the first method, we used the identity and continued to simplify. In the second method, we split the
fraction, putting both terms in the numerator over the common denominator. This problem illustrates that there are
multiple ways we can verify an identity. Employing some creativity can sometimes simplify a procedure. As long as the
substitutions are correct, the answer will be the same.

TRY IT #2 Show that

EXAMPLE 5

Creating and Verifying an Identity
Create an identity for the expression by rewriting strictly in terms of sine.
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Solution
There are a number of ways to begin, but here we will use the quotient and reciprocal identities to rewrite the
expression:

Thus,

EXAMPLE 6

Verifying an Identity Using Algebra and Even/Odd Identities
Verify the identity:

Solution
Let’s start with the left side and simplify:

TRY IT #3 Verify the identity

EXAMPLE 7

Verifying an Identity Involving Cosines and Cotangents
Verify the identity:

Solution
We will work on the left side of the equation.
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Using Algebra to Simplify Trigonometric Expressions
We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying
trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as the
difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with
trigonometric expressions and equations.

For example, the equation resembles the equation which uses the
factored form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can
set each factor equal to zero and solve. This is one example of recognizing algebraic patterns in trigonometric
expressions or equations.

Another example is the difference of squares formula, which is widely used in many areas
other than mathematics, such as engineering, architecture, and physics. We can also create our own identities by
continually expanding an expression and making the appropriate substitutions. Using algebraic properties and formulas
makes many trigonometric equations easier to understand and solve.

EXAMPLE 8

Writing the Trigonometric Expression as an Algebraic Expression
Write the following trigonometric expression as an algebraic expression:

Solution
Notice that the pattern displayed has the same form as a standard quadratic expression, Letting

we can rewrite the expression as follows:

This expression can be factored as If it were set equal to zero and we wanted to solve the equation, we
would use the zero factor property and solve each factor for At this point, we would replace with and solve for

EXAMPLE 9

Rewriting a Trigonometric Expression Using the Difference of Squares
Rewrite the trigonometric expression using the difference of squares:

Solution
Notice that both the coefficient and the trigonometric expression in the first term are squared, and the square of the
number 1 is 1. This is the difference of squares.

Analysis
If this expression were written in the form of an equation set equal to zero, we could solve each factor using the zero
factor property. We could also use substitution like we did in the previous problem and let rewrite the
expression as and factor Then replace with and solve for the angle.

TRY IT #4 Rewrite the trigonometric expression using the difference of squares:

EXAMPLE 10

Simplify by Rewriting and Using Substitution
Simplify the expression by rewriting and using identities:
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Solution
We can start with the Pythagorean identity.

Now we can simplify by substituting for We have

TRY IT #5 Use algebraic techniques to verify the identity:

(Hint: Multiply the numerator and denominator on the left side by

MEDIA

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

Fundamental Trigonometric Identities (http://openstax.org/l/funtrigiden)
Verifying Trigonometric Identities (http://openstax.org/l/verifytrigiden)

9.1 SECTION EXERCISES
Verbal

1. We know is an
even function, and

and
are odd

functions. What about

and Are they
even, odd, or neither? Why?

2. Examine the graph of
on the interval

How can we tell
whether the function is even
or odd by only observing the
graph of

3. After examining the
reciprocal identity for
explain why the function is
undefined at certain points.

4. All of the Pythagorean
identities are related.
Describe how to manipulate
the equations to get from

to the
other forms.

Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

5. 6. 7.

8. 9.

10. 11.

12. 13.
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14. 15.

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the
second expression.

16. 17. 18.

19. 20.

21. 22.

23. 24.

25. 26. 27.

28.

For the following exercises, verify the identity.

29. 30.

31. 32.

33.

Extensions

For the following exercises, prove or disprove the identity.

34. 35.

36. 37.

38. 39.

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent
expression.

40. 41. 42.
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9.2 Sum and Difference Identities
Learning Objectives
In this section, you will:

Use sum and difference formulas for cosine.
Use sum and difference formulas for sine.
Use sum and difference formulas for tangent.
Use sum and difference formulas for cofunctions.
Use sum and difference formulas to verify identities.

Figure 1 Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level. It is the highest
peak in North America. (credit: Daniel A. Leifheit, Flickr)

How can the height of a mountain be measured? What about the distance from Earth to the sun? Like many seemingly
impossible problems, we rely on mathematical formulas to find the answers. The trigonometric identities, commonly
used in mathematical proofs, have had real-world applications for centuries, including their use in calculating long
distances.

The trigonometric identities we will examine in this section can be traced to a Persian astronomer who lived around 950
AD, but the ancient Greeks discovered these same formulas much earlier and stated them in terms of chords. These are
special equations or postulates, true for all values input to the equations, and with innumerable applications.

In this section, we will learn techniques that will enable us to solve problems such as the ones presented above. The
formulas that follow will simplify many trigonometric expressions and equations. Keep in mind that, throughout this
section, the term formula is used synonymously with the word identity.

Using the Sum and Difference Formulas for Cosine
Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite the given angle in
terms of two angles that have known trigonometric values. We can use the special angles, which we can review in the
unit circle shown in Figure 2.

Figure 2 The Unit Circle
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We will begin with the sum and difference formulas for cosine, so that we can find the cosine of a given angle if we can
break it up into the sum or difference of two of the special angles. See Table 1.

Sum formula for cosine

Difference formula for cosine

Table 1

First, we will prove the difference formula for cosines. Let’s consider two points on the unit circle. See Figure 3. Point is
at an angle from the positive x-axis with coordinates and point is at an angle of from the positive
x-axis with coordinates Note the measure of angle is

Label two more points: at an angle of from the positive x-axis with coordinates and
point with coordinates Triangle is a rotation of triangle and thus the distance from to is the
same as the distance from to

Figure 3

We can find the distance from to using the distance formula.

Then we apply the Pythagorean identity and simplify.

Similarly, using the distance formula we can find the distance from to

Applying the Pythagorean identity and simplifying we get:

Because the two distances are the same, we set them equal to each other and simplify.
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Finally we subtract from both sides and divide both sides by

Thus, we have the difference formula for cosine. We can use similar methods to derive the cosine of the sum of two
angles.

Sum and Difference Formulas for Cosine

These formulas can be used to calculate the cosine of sums and differences of angles.

HOW TO

Given two angles, find the cosine of the difference between the angles.

1. Write the difference formula for cosine.
2. Substitute the values of the given angles into the formula.
3. Simplify.

EXAMPLE 1

Finding the Exact Value Using the Formula for the Cosine of the Difference of Two Angles
Using the formula for the cosine of the difference of two angles, find the exact value of

Solution
Begin by writing the formula for the cosine of the difference of two angles. Then substitute the given values.

Keep in mind that we can always check the answer using a graphing calculator in radian mode.

TRY IT #1 Find the exact value of

EXAMPLE 2

Finding the Exact Value Using the Formula for the Sum of Two Angles for Cosine
Find the exact value of

Solution
As we can evaluate as
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Keep in mind that we can always check the answer using a graphing calculator in degree mode.

Analysis
Note that we could have also solved this problem using the fact that

TRY IT #2 Find the exact value of

Using the Sum and Difference Formulas for Sine
The sum and difference formulas for sine can be derived in the same manner as those for cosine, and they resemble the
cosine formulas.

Sum and Difference Formulas for Sine

These formulas can be used to calculate the sines of sums and differences of angles.

HOW TO

Given two angles, find the sine of the difference between the angles.

1. Write the difference formula for sine.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 3

Using Sum and Difference Identities to Evaluate the Difference of Angles
Use the sum and difference identities to evaluate the difference of the angles and show that part a equals part b.

ⓐ ⓑ
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Solution

ⓐ Let’s begin by writing the formula and substitute the given angles.

Next, we need to find the values of the trigonometric expressions.

Now we can substitute these values into the equation and simplify.

ⓑ Again, we write the formula and substitute the given angles.

Next, we find the values of the trigonometric expressions.

Now we can substitute these values into the equation and simplify.

EXAMPLE 4

Finding the Exact Value of an Expression Involving an Inverse Trigonometric Function
Find the exact value of Then check the answer with a graphing calculator.

Solution
The pattern displayed in this problem is Let and Then we can write

We will use the Pythagorean identities to find and
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Using the sum formula for sine,

Using the Sum and Difference Formulas for Tangent
Finding exact values for the tangent of the sum or difference of two angles is a little more complicated, but again, it is a
matter of recognizing the pattern.

Finding the sum of two angles formula for tangent involves taking quotient of the sum formulas for sine and cosine and
simplifying. Recall,

Let’s derive the sum formula for tangent.

We can derive the difference formula for tangent in a similar way.

Sum and Difference Formulas for Tangent

The sum and difference formulas for tangent are:
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HOW TO

Given two angles, find the tangent of the sum of the angles.

1. Write the sum formula for tangent.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 5

Finding the Exact Value of an Expression Involving Tangent
Find the exact value of

Solution
Let’s first write the sum formula for tangent and then substitute the given angles into the formula.

Next, we determine the individual function values within the formula:

So we have

TRY IT #3 Find the exact value of

EXAMPLE 6

Finding Multiple Sums and Differences of Angles
Given find

ⓐ ⓑ ⓒ ⓓ
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Solution
We can use the sum and difference formulas to identify the sum or difference of angles when the ratio of sine, cosine, or
tangent is provided for each of the individual angles. To do so, we construct what is called a reference triangle to help
find each component of the sum and difference formulas.

ⓐ To find we begin with and The side opposite has length 3, the hypotenuse has
length 5, and is in the first quadrant. See Figure 4. Using the Pythagorean Theorem, we can find the length of side

Figure 4

Since and the side adjacent to is the hypotenuse is 13, and is in the third quadrant.
See Figure 5. Again, using the Pythagorean Theorem, we have

Since is in the third quadrant,
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Figure 5

The next step is finding the cosine of and the sine of The cosine of is the adjacent side over the hypotenuse. We
can find it from the triangle in Figure 5: We can also find the sine of from the triangle in Figure 5, as

opposite side over the hypotenuse: Now we are ready to evaluate

ⓑ We can find in a similar manner. We substitute the values according to the formula.

ⓒ For if and then

If and then

Then,
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ⓓ To find we have the values we need. We can substitute them in and evaluate.

Analysis
A common mistake when addressing problems such as this one is that we may be tempted to think that and are
angles in the same triangle, which of course, they are not. Also note that

Using Sum and Difference Formulas for Cofunctions
Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can use them to
do the same for their cofunctions. You may recall from Right Triangle Trigonometry that, if the sum of two positive
angles is those two angles are complements, and the sum of the two acute angles in a right triangle is so they are
also complements. In Figure 6, notice that if one of the acute angles is labeled as then the other acute angle must be
labeled

Notice also that which is opposite over hypotenuse. Thus, when two angles are complementary,
we can say that the sine of equals the cofunction of the complement of Similarly, tangent and cotangent are
cofunctions, and secant and cosecant are cofunctions.

Figure 6

From these relationships, the cofunction identities are formed. Recall that you first encountered these identities in The
Unit Circle: Sine and Cosine Functions.
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Cofunction Identities

The cofunction identities are summarized in Table 2.

Table 2

Notice that the formulas in the table may also justified algebraically using the sum and difference formulas. For example,
using

we can write

EXAMPLE 7

Finding a Cofunction with the Same Value as the Given Expression
Write in terms of its cofunction.

Solution
The cofunction of Thus,

TRY IT #4 Write in terms of its cofunction.

Using the Sum and Difference Formulas to Verify Identities
Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be very
familiar with the identities or to have a list of them accessible while working the problems. Reviewing the general rules
presented earlier may help simplify the process of verifying an identity.

HOW TO

Given an identity, verify using sum and difference formulas.

1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that expression until
it matches the other side of the equal sign. Occasionally, we might have to alter both sides, but working on only
one side is the most efficient.

2. Look for opportunities to use the sum and difference formulas.
3. Rewrite sums or differences of quotients as single quotients.
4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.
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EXAMPLE 8

Verifying an Identity Involving Sine
Verify the identity

Solution
We see that the left side of the equation includes the sines of the sum and the difference of angles.

We can rewrite each using the sum and difference formulas.

We see that the identity is verified.

EXAMPLE 9

Verifying an Identity Involving Tangent
Verify the following identity.

Solution
We can begin by rewriting the numerator on the left side of the equation.

We see that the identity is verified. In many cases, verifying tangent identities can successfully be accomplished by
writing the tangent in terms of sine and cosine.

TRY IT #5 Verify the identity:

EXAMPLE 10

Using Sum and Difference Formulas to Solve an Application Problem
Let and denote two non-vertical intersecting lines, and let denote the acute angle between and See
Figure 7. Show that

where and are the slopes of and respectively. (Hint: Use the fact that and )
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Figure 7

Solution
Using the difference formula for tangent, this problem does not seem as daunting as it might.

EXAMPLE 11

Investigating a Guy-wire Problem
For a climbing wall, a guy-wire is attached 47 feet high on a vertical pole. Added support is provided by another guy-
wire attached 40 feet above ground on the same pole. If the wires are attached to the ground 50 feet from the pole,
find the angle between the wires. See Figure 8.

Figure 8

Solution
Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the right angle are
known, we can use the tangent function. Notice that and We can then use difference
formula for tangent.

Now, substituting the values we know into the formula, we have

Use the distributive property, and then simplify the functions.
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Now we can calculate the angle in degrees.

Analysis

Occasionally, when an application appears that includes a right triangle, we may think that solving is a matter of
applying the Pythagorean Theorem. That may be partially true, but it depends on what the problem is asking and what
information is given.

MEDIA

Access these online resources for additional instruction and practice with sum and difference identities.

Sum and Difference Identities for Cosine (http://openstax.org/l/sumdifcos)
Sum and Difference Identities for Sine (http://openstax.org/l/sumdifsin)
Sum and Difference Identities for Tangent (http://openstax.org/l/sumdiftan)

9.2 SECTION EXERCISES
Verbal

1. Explain the basis for the
cofunction identities and
when they apply.

2. Is there only one way to
evaluate Explain
how to set up the solution in
two different ways, and then
compute to make sure they
give the same answer.

3. Explain to someone who has
forgotten the even-odd
properties of sinusoidal
functions how the addition
and subtraction formulas
can determine this
characteristic for

and
(Hint:

)

Algebraic

For the following exercises, find the exact value.

4. 5. 6.

7. 8. 9.

For the following exercises, rewrite in terms of and

10. 11. 12.
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13.

For the following exercises, simplify the given expression.

14. 15. 16.

17. 18. 19.

For the following exercises, find the requested information.

20. Given that and

with and
both in the interval
find and

21. Given that and

with and
both in the interval
find and

For the following exercises, find the exact value of each expression.

22. 23. 24.

Graphical

For the following exercises, simplify the expression, and then graph both expressions as functions to verify the graphs
are identical. Confirm your answer using a graphing calculator.

25. 26. 27.

28. 29. 30.

31. 32.

For the following exercises, use a graph to determine whether the functions are the same or different. If they are the
same, show why. If they are different, replace the second function with one that is identical to the first. (Hint: think

)

33.

34.

35. 36.

37. 38.

39.
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40. 41.

Technology

For the following exercises, find the exact value algebraically, and then confirm the answer with a calculator to the fourth
decimal point.

42. 43. 44.

45. 46.

Extensions

For the following exercises, prove the identities provided.

47. 48. 49.

50. 51.

For the following exercises, prove or disprove the statements.

52. 53.

54. 55. If and are angles in the same triangle, then
prove or disprove

56. If and are angles in the same
triangle, then prove or disprove

9.3 Double-Angle, Half-Angle, and Reduction Formulas
Learning Objectives
In this section, you will:

Use double-angle formulas to find exact values.
Use double-angle formulas to verify identities.
Use reduction formulas to simplify an expression.
Use half-angle formulas to find exact values.
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Figure 1 Bicycle and skateboard ramps for advanced riders have a steeper incline than those designed for novices.

Bicycle and skateboard ramps made for competition (see Figure 1) must vary in height depending on the skill level of the
competitors. For advanced competitors, the angle formed by the ramp and the ground should be such that
The angle is divided in half for novices. What is the steepness of the ramp for novices? In this section, we will investigate
three additional categories of identities that we can use to answer questions such as this one.

Using Double-Angle Formulas to Find Exact Values
In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another
look at those same formulas. The double-angle formulas are a special case of the sum formulas, where Deriving
the double-angle formula for sine begins with the sum formula,

If we let then we have

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula,
and letting we have

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more variations. The
first variation is:

The second variation is:

Similarly, to derive the double-angle formula for tangent, replacing in the sum formula gives

Double-Angle Formulas

The double-angle formulas are summarized as follows:
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HOW TO

Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find
the exact value.

1. Draw a triangle to reflect the given information.
2. Determine the correct double-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

EXAMPLE 1

Using a Double-Angle Formula to Find the Exact Value Involving Tangent
Given that and is in quadrant II, find the following:

ⓐ ⓑ ⓒ
Solution

If we draw a triangle to reflect the information given, we can find the values needed to solve the problems on the image.
We are given such that is in quadrant II. The tangent of an angle is equal to the opposite side over the
adjacent side, and because is in the second quadrant, the adjacent side is on the x-axis and is negative. Use the
Pythagorean Theorem to find the length of the hypotenuse:

Now we can draw a triangle similar to the one shown in Figure 2.

Figure 2
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ⓐ Let’s begin by writing the double-angle formula for sine.

We see that we to need to find and Based on Figure 2, we see that the hypotenuse equals 5, so
and Substitute these values into the equation, and simplify.

Thus,

ⓑ Write the double-angle formula for cosine.

Again, substitute the values of the sine and cosine into the equation, and simplify.

ⓒ Write the double-angle formula for tangent.

In this formula, we need the tangent, which we were given as Substitute this value into the equation,
and simplify.

TRY IT #1 Given with in quadrant I, find

EXAMPLE 2

Using the Double-Angle Formula for Cosine without Exact Values
Use the double-angle formula for cosine to write in terms of

Solution

Analysis
This example illustrates that we can use the double-angle formula without having exact values. It emphasizes that the
pattern is what we need to remember and that identities are true for all values in the domain of the trigonometric
function.

Using Double-Angle Formulas to Verify Identities
Establishing identities using the double-angle formulas is performed using the same steps we used to derive the sum
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and difference formulas. Choose the more complicated side of the equation and rewrite it until it matches the other side.

EXAMPLE 3

Using the Double-Angle Formulas to Verify an Identity
Verify the following identity using double-angle formulas:

Solution
We will work on the right side of the equal sign and rewrite the expression until it matches the left side.

Analysis
This process is not complicated, as long as we recall the perfect square formula from algebra:

where and Part of being successful in mathematics is the ability to recognize patterns. While the
terms or symbols may change, the algebra remains consistent.

TRY IT #2 Verify the identity:

EXAMPLE 4

Verifying a Double-Angle Identity for Tangent
Verify the identity:

Solution
In this case, we will work with the left side of the equation and simplify or rewrite until it equals the right side of the
equation.

Analysis
Here is a case where the more complicated side of the initial equation appeared on the right, but we chose to work the
left side. However, if we had chosen the left side to rewrite, we would have been working backwards to arrive at the
equivalency. For example, suppose that we wanted to show

Let’s work on the right side.
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When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there are usually
several paths to a desired result. There is no set rule as to what side should be manipulated. However, we should begin
with the guidelines set forth earlier.

TRY IT #3 Verify the identity:

Use Reduction Formulas to Simplify an Expression
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the
power of a given expression involving even powers of sine or cosine. They allow us to rewrite the even powers of sine or
cosine in terms of the first power of cosine. These formulas are especially important in higher-level math courses,
calculus in particular. Also called the power-reducing formulas, three identities are included and are easily derived from
the double-angle formulas.

We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and cosine. Let’s
begin with Solve for

Next, we use the formula Solve for

The last reduction formula is derived by writing tangent in terms of sine and cosine:

Reduction Formulas

The reduction formulas are summarized as follows:
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EXAMPLE 5

Writing an Equivalent Expression Not Containing Powers Greater Than 1
Write an equivalent expression for that does not involve any powers of sine or cosine greater than 1.

Solution
We will apply the reduction formula for cosine twice.

Analysis
The solution is found by using the reduction formula twice, as noted, and the perfect square formula from algebra.

EXAMPLE 6

Using the Power-Reducing Formulas to Prove an Identity
Use the power-reducing formulas to prove

Solution
We will work on simplifying the left side of the equation:

Analysis
Note that in this example, we substituted

for The formula states

We let so

TRY IT #4 Use the power-reducing formulas to prove that

Using Half-Angle Formulas to Find Exact Values
The next set of identities is the set of half-angle formulas, which can be derived from the reduction formulas and we
can use when we have an angle that is half the size of a special angle. If we replace with the half-angle formula for
sine is found by simplifying the equation and solving for Note that the half-angle formulas are preceded by a
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sign. This does not mean that both the positive and negative expressions are valid. Rather, it depends on the quadrant in
which terminates.

The half-angle formula for sine is derived as follows:

To derive the half-angle formula for cosine, we have

For the tangent identity, we have

Half-Angle Formulas

The half-angle formulas are as follows:

EXAMPLE 7

Using a Half-Angle Formula to Find the Exact Value of a Sine Function
Find using a half-angle formula.

Solution
Since we use the half-angle formula for sine:
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Remember that we can check the answer with a graphing calculator.

Analysis
Notice that we used only the positive root because is positive.

HOW TO

Given the tangent of an angle and the quadrant in which the angle lies, find the exact values of trigonometric
functions of half of the angle.

1. Draw a triangle to represent the given information.
2. Determine the correct half-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

EXAMPLE 8

Finding Exact Values Using Half-Angle Identities
Given that and lies in quadrant III, find the exact value of the following:

ⓐ ⓑ ⓒ
Solution

Using the given information, we can draw the triangle shown in Figure 3. Using the Pythagorean Theorem, we find the
hypotenuse to be 17. Therefore, we can calculate and

Figure 3
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ⓐ Before we start, we must remember that if is in quadrant III, then so This
means that the terminal side of is in quadrant II, since
To find we begin by writing the half-angle formula for sine. Then we substitute the value of the cosine we
found from the triangle in Figure 3 and simplify.

We choose the positive value of because the angle terminates in quadrant II and sine is positive in quadrant II.

ⓑ To find we will write the half-angle formula for cosine, substitute the value of the cosine we found from
the triangle in Figure 3, and simplify.

We choose the negative value of because the angle is in quadrant II because cosine is negative in quadrant II.

ⓒ To find we write the half-angle formula for tangent. Again, we substitute the value of the cosine we found
from the triangle in Figure 3 and simplify.

We choose the negative value of because lies in quadrant II, and tangent is negative in quadrant II.
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TRY IT #5 Given that and lies in quadrant IV, find the exact value of

EXAMPLE 9

Finding the Measurement of a Half Angle
Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for high-level
competition with an angle of formed by the ramp and the ground. Another ramp is to be constructed half as steep for
novice competition. If for higher-level competition, what is the measurement of the angle for novice
competition?

Solution
Since the angle for novice competition measures half the steepness of the angle for the high level competition, and

for high competition, we can find from the right triangle and the Pythagorean theorem so that we can
use the half-angle identities. See Figure 4.

Figure 4

We see that We can use the half-angle formula for tangent: Since is in

the first quadrant, so is

We can take the inverse tangent to find the angle: So the angle of the ramp for novice competition
is

MEDIA

Access these online resources for additional instruction and practice with double-angle, half-angle, and reduction
formulas.

Double-Angle Identities (http://openstax.org/l/doubleangiden)
Half-Angle Identities (http://openstax.org/l/halfangleident)
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9.3 SECTION EXERCISES
Verbal

1. Explain how to determine the reduction identities
from the double-angle identity

2. Explain how to determine the double-angle
formula for using the double-angle
formulas for and

3. We can determine the half-angle formula for

by dividing the formula for

by Explain how to determine two
formulas for that do not involve any square
roots.

4. For the half-angle formula given in the previous
exercise for explain why dividing by 0 is
not a concern. (Hint: examine the values of
necessary for the denominator to be 0.)

Algebraic

For the following exercises, find the exact values of a) b) and c) without solving for

5. If and is in quadrant I. 6. If and is in quadrant I.

7. If and   is in quadrant III. 8. If and is in quadrant IV.

For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.

9. and 10. and

For the following exercises, simplify to one trigonometric expression.

11. 12.

For the following exercises, find the exact value using half-angle formulas.

13. 14. 15.

16. 17. 18.

19.

For the following exercises, find the exact values of a) b) and c) without solving for when

20. If and is in
quadrant IV.

21. If and is in
quadrant III.

22. If and     is in

quadrant II.

858 9 • Trigonometric Identities and Equations

Access for free at openstax.org



23. If and is in
quadrant II.

For the following exercises, use Figure 5 to find the requested half and double angles.

Figure 5

24. Find and 25. Find and

26. Find and 27. Find and

For the following exercises, simplify each expression. Do not evaluate.

28. 29. 30.

31. 32. 33.

For the following exercises, prove the given identity.

34. 35. 36.

37.

For the following exercises, rewrite the expression with an exponent no higher than 1.

38. 39. 40.

41. 42. 43.

44.

Technology

For the following exercises, reduce the equations to powers of one, and then check the answer graphically.

45. 46. 47.

48. 49. 50.

51. 52.
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For the following exercises, algebraically find an equivalent function, only in terms of and/or and then check
the answer by graphing both functions.

53. 54.

Extensions

For the following exercises, prove the identities.

55. 56. 57.

58. 59.

60. 61.

62.

63.

9.4 Sum-to-Product and Product-to-Sum Formulas
Learning Objectives
In this section, you will:

Express products as sums.
Express sums as products.

Figure 1 The UCLA marching band (credit: Eric Chan, Flickr).

A band marches down the field creating an amazing sound that bolsters the crowd. That sound travels as a wave that
can be interpreted using trigonometric functions. For example, Figure 2 represents a sound wave for the musical note A.
In this section, we will investigate trigonometric identities that are the foundation of everyday phenomena such as
sound waves.
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Figure 2

Expressing Products as Sums
We have already learned a number of formulas useful for expanding or simplifying trigonometric expressions, but
sometimes we may need to express the product of cosine and sine as a sum. We can use the product-to-sum formulas,
which express products of trigonometric functions as sums. Let’s investigate the cosine identity first and then the sine
identity.

Expressing Products as Sums for Cosine
We can derive the product-to-sum formula from the sum and difference identities for cosine. If we add the two
equations, we get:

Then, we divide by to isolate the product of cosines:

HOW TO

Given a product of cosines, express as a sum.

1. Write the formula for the product of cosines.
2. Substitute the given angles into the formula.
3. Simplify.

EXAMPLE 1

Writing the Product as a Sum Using the Product-to-Sum Formula for Cosine
Write the following product of cosines as a sum:

Solution
We begin by writing the formula for the product of cosines:

We can then substitute the given angles into the formula and simplify.

TRY IT #1 Use the product-to-sum formula to write the product as a sum or difference:

Expressing the Product of Sine and Cosine as a Sum
Next, we will derive the product-to-sum formula for sine and cosine from the sum and difference formulas for sine. If we
add the sum and difference identities, we get:
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Then, we divide by 2 to isolate the product of cosine and sine:

EXAMPLE 2

Writing the Product as a Sum Containing only Sine or Cosine
Express the following product as a sum containing only sine or cosine and no products:

Solution
Write the formula for the product of sine and cosine. Then substitute the given values into the formula and simplify.

TRY IT #2 Use the product-to-sum formula to write the product as a sum:

Expressing Products of Sines in Terms of Cosine
Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for cosine. In
this case, we will first subtract the two cosine formulas:

Then, we divide by 2 to isolate the product of sines:

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

The Product-to-Sum Formulas

The product-to-sum formulas are as follows:

EXAMPLE 3

Express the Product as a Sum or Difference
Write as a sum or difference.
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Solution
We have the product of cosines, so we begin by writing the related formula. Then we substitute the given angles and
simplify.

TRY IT #3 Use the product-to-sum formula to evaluate

Expressing Sums as Products
Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to express sums
of sine or cosine as products. These formulas can be derived from the product-to-sum identities. For example, with a few
substitutions, we can derive the sum-to-product identity for sine. Let and

Then,

Thus, replacing and in the product-to-sum formula with the substitute expressions, we have

The other sum-to-product identities are derived similarly.

Sum-to-Product Formulas

The sum-to-product formulas are as follows:

EXAMPLE 4

Writing the Difference of Sines as a Product
Write the following difference of sines expression as a product:

9.4 • Sum-to-Product and Product-to-Sum Formulas 863



Solution
We begin by writing the formula for the difference of sines.

Substitute the values into the formula, and simplify.

TRY IT #4 Use the sum-to-product formula to write the sum as a product:

EXAMPLE 5

Evaluating Using the Sum-to-Product Formula
Evaluate Check the answer with a graphing calculator.

Solution
We begin by writing the formula for the difference of cosines.

Then we substitute the given angles and simplify.

EXAMPLE 6

Proving an Identity
Prove the identity:

Solution
We will start with the left side, the more complicated side of the equation, and rewrite the expression until it matches the
right side.
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Analysis

Recall that verifying trigonometric identities has its own set of rules. The procedures for solving an equation are not the
same as the procedures for verifying an identity. When we prove an identity, we pick one side to work on and make
substitutions until that side is transformed into the other side.

EXAMPLE 7

Verifying the Identity Using Double-Angle Formulas and Reciprocal Identities
Verify the identity

Solution
For verifying this equation, we are bringing together several of the identities. We will use the double-angle formula and
the reciprocal identities. We will work with the right side of the equation and rewrite it until it matches the left side.

TRY IT #5 Verify the identity

MEDIA

Access these online resources for additional instruction and practice with the product-to-sum and sum-to-product
identities.

Sum to Product Identities (http://openstax.org/l/sumtoprod)
Sum to Product and Product to Sum Identities (http://openstax.org/l/sumtpptsum)

9.4 SECTION EXERCISES
Verbal

1. Starting with the product to sum formula
explain

how to determine the formula for

2. Provide two different methods of calculating
one of which uses the product

to sum. Which method is easier?

3. Describe a situation where we would convert an
equation from a sum to a product and give an
example.

4. Describe a situation where we would convert an
equation from a product to a sum, and give an
example.

Algebraic

For the following exercises, rewrite the product as a sum or difference.

5. 6. 7.

8. 9. 10.
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For the following exercises, rewrite the sum or difference as a product.

11. 12. 13.

14. 15. 16.

For the following exercises, evaluate the product for the following using a sum or difference of two functions. Evaluate
exactly.

17. 18. 19.

20. 21.

For the following exercises, evaluate the product using a sum or difference of two functions. Leave in terms of sine and
cosine.

22. 23. 24.

25. 26.

For the following exercises, rewrite the sum as a product of two functions. Leave in terms of sine and cosine.

27. 28. 29.

30. 31.

For the following exercises, prove the identity.

32. 33.

34. 35.

36. 37.

38.

Numeric

For the following exercises, rewrite the sum as a product of two functions or the product as a sum of two functions. Give
your answer in terms of sines and cosines. Then evaluate the final answer numerically, rounded to four decimal places.

39. 40. 41.

42. 43.
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Technology

For the following exercises, algebraically determine whether each of the given equation is an identity. If it is not an
identity, replace the right-hand side with an expression equivalent to the left side. Verify the results by graphing both
expressions on a calculator.

44. 45.

46. 47.

48.

For the following exercises, simplify the expression to one term, then graph the original function and your simplified
version to verify they are identical.

49. 50.

51. 52.

53.

Extensions

For the following exercises, prove the following sum-to-product formulas.

54. 55.

For the following exercises, prove the identity.

56. 57.

58. 59.

60. 61.

62.

63.
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9.5 Solving Trigonometric Equations
Learning Objectives
In this section, you will:

Solve linear trigonometric equations in sine and cosine.
Solve equations involving a single trigonometric function.
Solve trigonometric equations using a calculator.
Solve trigonometric equations that are quadratic in form.
Solve trigonometric equations using fundamental identities.
Solve trigonometric equations with multiple angles.
Solve right triangle problems.

Figure 1 Egyptian pyramids standing near a modern city. (credit: Oisin Mulvihill)

Thales of Miletus (circa 625–547 BC) is known as the founder of geometry. The legend is that he calculated the height of
the Great Pyramid of Giza in Egypt using the theory of similar triangles, which he developed by measuring the shadow of
his staff. He reasoned that when the height of his staff's shadow was exactly equal to the actual height of the staff, then
the height of the nearby pyramid's shadow must also be equal to the height of the actual pyramid. Since the structures
and their shadows were creating a right triangle with two equal sides, they were similar triangles. By measuring the
length of the pyramid's shadow at that moment, he could obtain the height of the pyramid. Based on proportions, this
theory has applications in a number of areas, including fractal geometry, engineering, and architecture. Often, the angle
of elevation and the angle of depression are found using similar triangles.

In earlier sections of this chapter, we looked at trigonometric identities. Identities are true for all values in the domain of
the variable. In this section, we begin our study of trigonometric equations to study real-world scenarios such as the
finding the dimensions of the pyramids.

Solving Linear Trigonometric Equations in Sine and Cosine
Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in many ways
to solving polynomial equations or rational equations, only specific values of the variable will be solutions, if there are
solutions at all. Often we will solve a trigonometric equation over a specified interval. However, just as often, we will be
asked to find all possible solutions, and as trigonometric functions are periodic, solutions are repeated within each
period. In other words, trigonometric equations may have an infinite number of solutions. Additionally, like rational
equations, the domain of the function must be considered before we assume that any solution is valid. The period of
both the sine function and the cosine function is In other words, every units, the y-values repeat. If we need to
find all possible solutions, then we must add where is an integer, to the initial solution. Recall the rule that gives
the format for stating all possible solutions for a function where the period is

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving trigonometric
equations requires the same techniques as solving algebraic equations. We read the equation from left to right,
horizontally, like a sentence. We look for known patterns, factor, find common denominators, and substitute certain
expressions with a variable to make solving a more straightforward process. However, with trigonometric equations, we
also have the advantage of using the identities we developed in the previous sections.
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EXAMPLE 1

Solving a Linear Trigonometric Equation Involving the Cosine Function
Find all possible exact solutions for the equation

Solution
From the unit circle, we know that

These are the solutions in the interval All possible solutions are given by

where is an integer.

EXAMPLE 2

Solving a Linear Equation Involving the Sine Function
Find all possible exact solutions for the equation

Solution
Solving for all possible values of t means that solutions include angles beyond the period of From Figure 2, we can
see that the solutions are and But the problem is asking for all possible values that solve the equation.
Therefore, the answer is

where is an integer.

HOW TO

Given a trigonometric equation, solve using algebra.

1. Look for a pattern that suggests an algebraic property, such as the difference of squares or a factoring
opportunity.

2. Substitute the trigonometric expression with a single variable, such as or
3. Solve the equation the same way an algebraic equation would be solved.
4. Substitute the trigonometric expression back in for the variable in the resulting expressions.
5. Solve for the angle.

EXAMPLE 3

Solve the Linear Trigonometric Equation
Solve the equation exactly:

Solution
Use algebraic techniques to solve the equation.
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TRY IT #1 Solve exactly the following linear equation on the interval

Solving Equations Involving a Single Trigonometric Function
When we are given equations that involve only one of the six trigonometric functions, their solutions involve using
algebraic techniques and the unit circle (see Figure 2). We need to make several considerations when the equation
involves trigonometric functions other than sine and cosine. Problems involving the reciprocals of the primary
trigonometric functions need to be viewed from an algebraic perspective. In other words, we will write the reciprocal
function, and solve for the angles using the function. Also, an equation involving the tangent function is slightly different
from one containing a sine or cosine function. First, as we know, the period of tangent is not Further, the domain
of tangent is all real numbers with the exception of odd integer multiples of unless, of course, a problem places its
own restrictions on the domain.

EXAMPLE 4

Solving a Problem Involving a Single Trigonometric Function
Solve the problem exactly:

Solution
As this problem is not easily factored, we will solve using the square root property. First, we use algebra to isolate
Then we will find the angles.

EXAMPLE 5

Solving a Trigonometric Equation Involving Cosecant
Solve the following equation exactly:

Solution
We want all values of for which over the interval

Analysis
As notice that all four solutions are in the third and fourth quadrants.
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EXAMPLE 6

Solving an Equation Involving Tangent
Solve the equation exactly:

Solution
Recall that the tangent function has a period of On the interval and at the angle of the tangent has a value
of 1. However, the angle we want is Thus, if then

Over the interval we have two solutions:

TRY IT #2 Find all solutions for

EXAMPLE 7

Identify all Solutions to the Equation Involving Tangent
Identify all exact solutions to the equation

Solution
We can solve this equation using only algebra. Isolate the expression on the left side of the equals sign.

There are two angles on the unit circle that have a tangent value of and

Solve Trigonometric Equations Using a Calculator
Not all functions can be solved exactly using only the unit circle. When we must solve an equation involving an angle
other than one of the special angles, we will need to use a calculator. Make sure it is set to the proper mode, either
degrees or radians, depending on the criteria of the given problem.

EXAMPLE 8

Using a Calculator to Solve a Trigonometric Equation Involving Sine
Use a calculator to solve the equation where is in radians.

Solution
Make sure mode is set to radians. To find use the inverse sine function. On most calculators, you will need to push the
2ND button and then the SIN button to bring up the function. What is shown on the screen is The
calculator is ready for the input within the parentheses. For this problem, we enter and press ENTER. Thus,
to four decimals places,

The solution is

The angle measurement in degrees is
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Analysis
Note that a calculator will only return an angle in quadrants I or IV for the sine function, since that is the range of the
inverse sine. The other angle is obtained by using Thus, the additional solution is

EXAMPLE 9

Using a Calculator to Solve a Trigonometric Equation Involving Secant
Use a calculator to solve the equation giving your answer in radians.

Solution
We can begin with some algebra.

Check that the MODE is in radians. Now use the inverse cosine function.

Since and 1.8235 is between these two numbers, thus is in quadrant II. Cosine is also
negative in quadrant III. Note that a calculator will only return an angle in quadrants I or II for the cosine function, since
that is the range of the inverse cosine. See Figure 2.

Figure 2

So, we also need to find the measure of the angle in quadrant III. In quadrant II, the reference angle is

The other solution in quadrant III is

The solutions are and

TRY IT #3 Solve

Solving Trigonometric Equations in Quadratic Form
Solving a quadratic equation may be more complicated, but once again, we can use algebra as we would for any
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quadratic equation. Look at the pattern of the equation. Is there more than one trigonometric function in the equation,
or is there only one? Which trigonometric function is squared? If there is only one function represented and one of the
terms is squared, think about the standard form of a quadratic. Replace the trigonometric function with a variable such
as or If substitution makes the equation look like a quadratic equation, then we can use the same methods for
solving quadratics to solve the trigonometric equations.

EXAMPLE 10

Solving a Trigonometric Equation in Quadratic Form
Solve the equation exactly:

Solution
We begin by using substitution and replacing cos with It is not necessary to use substitution, but it may make the
problem easier to solve visually. Let We have

The equation cannot be factored, so we will use the quadratic formula

Replace with and solve.

Note that only the + sign is used. This is because we get an error when we solve on a calculator,

since the domain of the inverse cosine function is However, there is a second solution:

This terminal side of the angle lies in quadrant I. Since cosine is also positive in quadrant IV, the second solution is

EXAMPLE 11

Solving a Trigonometric Equation in Quadratic Form by Factoring
Solve the equation exactly:

Solution
Using grouping, this quadratic can be factored. Either make the real substitution, or imagine it, as we factor:

Now set each factor equal to zero.
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Next solve for as the range of the sine function is However, giving the solution

Analysis
Make sure to check all solutions on the given domain as some factors have no solution.

TRY IT #4 Solve [Hint: Make a substitution to express the equation only in
terms of cosine.]

EXAMPLE 12

Solving a Trigonometric Equation Using Algebra
Solve exactly:

Solution
This problem should appear familiar as it is similar to a quadratic. Let The equation becomes
We begin by factoring:

Set each factor equal to zero.

Then, substitute back into the equation the original expression for Thus,

The solutions within the domain are

If we prefer not to substitute, we can solve the equation by following the same pattern of factoring and setting each
factor equal to zero.
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Analysis
We can see the solutions on the graph in Figure 3. On the interval the graph crosses the x-axis four times, at
the solutions noted. Notice that trigonometric equations that are in quadratic form can yield up to four solutions instead
of the expected two that are found with quadratic equations. In this example, each solution (angle) corresponding to a
positive sine value will yield two angles that would result in that value.

Figure 3

We can verify the solutions on the unit circle in Figure 2 as well.

EXAMPLE 13

Solving a Trigonometric Equation Quadratic in Form
Solve the equation quadratic in form exactly:

Solution
We can factor using grouping. Solution values of can be found on the unit circle.

TRY IT #5 Solve the quadratic equation

Solving Trigonometric Equations Using Fundamental Identities
While algebra can be used to solve a number of trigonometric equations, we can also use the fundamental identities
because they make solving equations simpler. Remember that the techniques we use for solving are not the same as
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those for verifying identities. The basic rules of algebra apply here, as opposed to rewriting one side of the identity to
match the other side. In the next example, we use two identities to simplify the equation.

EXAMPLE 14

Use Identities to Solve an Equation
Use identities to solve exactly the trigonometric equation over the interval

Solution
Notice that the left side of the equation is the difference formula for cosine.

From the unit circle in Figure 2, we see that when

EXAMPLE 15

Solving the Equation Using a Double-Angle Formula
Solve the equation exactly using a double-angle formula:

Solution
We have three choices of expressions to substitute for the double-angle of cosine. As it is simpler to solve for one
trigonometric function at a time, we will choose the double-angle identity involving only cosine:

So, if then and if then

EXAMPLE 16

Solving an Equation Using an Identity
Solve the equation exactly using an identity:

Solution
If we rewrite the right side, we can write the equation in terms of cosine:
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Our solutions are

Solving Trigonometric Equations with Multiple Angles
Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such as
or When confronted with these equations, recall that is a horizontal compression by a factor of 2 of
the function On an interval of we can graph two periods of as opposed to one cycle of

This compression of the graph leads us to believe there may be twice as many x-intercepts or solutions to
compared to This information will help us solve the equation.

EXAMPLE 17

Solving a Multiple Angle Trigonometric Equation
Solve exactly: on

Solution
We can see that this equation is the standard equation with a multiple of an angle. If we know is in
quadrants I and IV. While will only yield solutions in quadrants I and II, we recognize that the solutions to
the equation will be in quadrants I and IV.

Therefore, the possible angles are and So, or which means that or Does

this make sense? Yes, because

Are there any other possible answers? Let us return to our first step.

In quadrant I, so as noted. Let us revolve around the circle again:

so

One more rotation yields

so this value for is larger than so it is not a solution on

In quadrant IV, so as noted. Let us revolve around the circle again:
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so

One more rotation yields

so this value for is larger than so it is not a solution on

Our solutions are . Note that whenever we solve a problem in the form of we must
go around the unit circle times.

Solving Right Triangle Problems
We can now use all of the methods we have learned to solve problems that involve applying the properties of right
triangles and the Pythagorean Theorem. We begin with the familiar Pythagorean Theorem, and model an
equation to fit a situation.

EXAMPLE 18

Using the Pythagorean Theorem to Model an Equation
Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the problem.

One of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced. The center of
the Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is 23 meters from the base of
the Ferris wheel. Approximately how long is the cable, and what is the angle of elevation (from ground up to the center
of the Ferris wheel)? See Figure 4.

Figure 4

Solution
Using the information given, we can draw a right triangle. We can find the length of the cable with the Pythagorean
Theorem.

The angle of elevation is formed by the second anchor on the ground and the cable reaching to the center of the
wheel. We can use the tangent function to find its measure. Round to two decimal places.
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The angle of elevation is approximately and the length of the cable is 73.2 meters.

EXAMPLE 19

Using the Pythagorean Theorem to Model an Abstract Problem
OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall for every 4 feet of ladder length.
Find the angle that a ladder of any length forms with the ground and the height at which the ladder touches the wall.

Solution
For any length of ladder, the base needs to be a distance from the wall equal to one fourth of the ladder’s length.
Equivalently, if the base of the ladder is “a” feet from the wall, the length of the ladder will be 4a feet. See Figure 5.

Figure 5

The side adjacent to is a and the hypotenuse is Thus,

The elevation of the ladder forms an angle of with the ground. The height at which the ladder touches the wall can
be found using the Pythagorean Theorem:

Thus, the ladder touches the wall at feet from the ground.

MEDIA

Access these online resources for additional instruction and practice with solving trigonometric equations.

Solving Trigonometric Equations I (http://openstax.org/l/solvetrigeqI)
Solving Trigonometric Equations II (http://openstax.org/l/solvetrigeqII)
Solving Trigonometric Equations III (http://openstax.org/l/solvetrigeqIII)
Solving Trigonometric Equations IV (http://openstax.org/l/solvetrigeqIV)
Solving Trigonometric Equations V (http://openstax.org/l/solvetrigeqV)
Solving Trigonometric Equations VI (http://openstax.org/l/solvetrigeqVI)
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9.5 SECTION EXERCISES
Verbal

1. Will there always be
solutions to trigonometric
function equations? If not,
describe an equation that
would not have a solution.
Explain why or why not.

2. When solving a
trigonometric equation
involving more than one trig
function, do we always want
to try to rewrite the
equation so it is expressed
in terms of one
trigonometric function? Why
or why not?

3. When solving linear trig
equations in terms of only
sine or cosine, how do we
know whether there will be
solutions?

Algebraic

For the following exercises, find all solutions exactly on the interval

4. 5. 6.

7. 8. 9.

10. 11. 12.

For the following exercises, solve exactly on

13. 14. 15.

16. 17. 18.

19. 20. 21.

22.

For the following exercises, find all exact solutions on

23. 24. 25.

26. 27.

28. 29. 30.

31. 32.

For the following exercises, solve with the methods shown in this section exactly on the interval

33. 34.
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35. 36.

37. 38. 39.

40.

For the following exercises, solve exactly on the interval Use the quadratic formula if the equations do not factor.

41. 42. 43.

44. 45. 46.

47. 48. 49.

For the following exercises, find exact solutions on the interval Look for opportunities to use trigonometric
identities.

50. 51. 52.

53. 54. 55.

56. 57. 58.

59. 60. 61.

62. 63. 64.

65.

Graphical

For the following exercises, algebraically determine all solutions of the trigonometric equation exactly, then verify the
results by graphing the equation and finding the zeros.

66. 67. 68.

69. 70.

71. 72.

Technology

For the following exercises, use a calculator to find all solutions to four decimal places.

73. 74. 75.
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76.

For the following exercises, solve the equations algebraically, and then use a calculator to find the values on the interval
Round to four decimal places.

77. 78. 79.

80. 81. 82.

Extensions

For the following exercises, find all solutions exactly to the equations on the interval

83. 84.

85. 86.

87. 88.

89. 90.

91. 92.

Real-World Applications

93. An airplane has only
enough gas to fly to a city
200 miles northeast of its
current location. If the pilot
knows that the city is 25
miles north, how many
degrees north of east
should the airplane fly?

94. If a loading ramp is placed
next to a truck, at a height
of 4 feet, and the ramp is
15 feet long, what angle
does the ramp make with
the ground?

95. If a loading ramp is placed
next to a truck, at a height
of 2 feet, and the ramp is
20 feet long, what angle
does the ramp make with
the ground?

96. A woman is watching a
launched rocket currently
11 miles in altitude. If she
is standing 4 miles from
the launch pad, at what
angle is she looking up
from horizontal?

97. An astronaut is in a
launched rocket currently
15 miles in altitude. If a
man is standing 2 miles
from the launch pad, at
what angle is the astronaut
looking down at him from
horizontal? (Hint: this is
called the angle of
depression.)

98. A woman is standing 8
meters away from a
10-meter tall building. At
what angle is she looking
to the top of the building?
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99. Issa is standing 10 meters
away from a 6-meter tall
building. Travis is at the top
of the building looking
down at Issa. At what angle
is Travis looking at Issa?

100. A 20-foot tall building has
a shadow that is 55 feet
long. What is the angle of
elevation of the sun?

101. A 90-foot tall building has
a shadow that is 2 feet
long. What is the angle of
elevation of the sun?

102. A spotlight on the ground
3 meters from a 2-meter
tall man casts a 6 meter
shadow on a wall 6
meters from the man. At
what angle is the light?

103. A spotlight on the ground
3 feet from a 5-foot tall
woman casts a 15-foot tall
shadow on a wall 6 feet
from the woman. At what
angle is the light?

For the following exercises, find a solution to the following word problem algebraically. Then use a calculator to verify
the result. Round the answer to the nearest tenth of a degree.

104. A person does a
handstand with their feet
touching a wall and their
hands 1.5 feet away from
the wall. If the person is 6
feet tall, what angle do
their feet make with the
wall?

105. A person does a
handstand with her feet
touching a wall and her
hands 3 feet away from
the wall. If the person is 5
feet tall, what angle do
her feet make with the
wall?

106. A 23-foot ladder is
positioned next to a
house. If the ladder slips
at 7 feet from the house
when there is not enough
traction, what angle
should the ladder make
with the ground to avoid
slipping?
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Chapter Review
Key Terms
double-angle formulas identities derived from the sum formulas for sine, cosine, and tangent in which the angles are

equal
even-odd identities set of equations involving trigonometric functions such that if the identity is

odd, and if the identity is even
half-angle formulas identities derived from the reduction formulas and used to determine half-angle values of

trigonometric functions
product-to-sum formula a trigonometric identity that allows the writing of a product of trigonometric functions as a

sum or difference of trigonometric functions
Pythagorean identities set of equations involving trigonometric functions based on the right triangle properties
quotient identities pair of identities based on the fact that tangent is the ratio of sine and cosine, and cotangent is the

ratio of cosine and sine
reciprocal identities set of equations involving the reciprocals of basic trigonometric definitions
reduction formulas identities derived from the double-angle formulas and used to reduce the power of a

trigonometric function
sum-to-product formula a trigonometric identity that allows, by using substitution, the writing of a sum of

trigonometric functions as a product of trigonometric functions

Key Equations

Pythagorean identities

Even-odd identities

Reciprocal identities

Quotient identities

Sum Formula for Cosine

Difference Formula for Cosine

Sum Formula for Sine

Difference Formula for Sine
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Sum Formula for Tangent

Difference Formula for Tangent

Cofunction identities

Double-angle formulas

Reduction formulas

Half-angle formulas

Product-to-sum Formulas

Sum-to-product Formulas
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Key Concepts
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify
Trigonometric Expressions

• There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions
can be rewritten to simplify a problem.

• Graphing both sides of an identity will verify it. See Example 1.
• Simplifying one side of the equation to equal the other side is another method for verifying an identity. See Example

2 and Example 3.
• The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more

complex side of the equation. See Example 4.
• We can create an identity and then verify it. See Example 5.
• Verifying an identity may involve algebra with the fundamental identities. See Example 6 and Example 7.
• Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout

this text, as they consist of the fundamental rules of mathematics. See Example 8, Example 9, and Example 10.

9.2 Sum and Difference Identities

• The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of the
angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine of the
difference of two angles equals the product of the cosines of the angles plus the product of the sines of the angles.

• The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. See
Example 1 and Example 2.

• The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first
angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second
angle. The difference formula for sines states that the sine of the difference of two angles equals the product of the
sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the sine
of the second angle. See Example 3.

• The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See
Example 4.

• The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of the
angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states that
the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 plus the
product of the tangents of the angles. See Example 5.

• The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and
differences of angles. See Example 6.

• The cofunction identities apply to complementary angles and pairs of reciprocal functions. See Example 7.
• Sum and difference formulas are useful in verifying identities. See Example 8 and Example 9.
• Application problems are often easier to solve by using sum and difference formulas. See Example 10 and Example

11.

9.3 Double-Angle, Half-Angle, and Reduction Formulas

• Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions: sine,
cosine, and tangent. See Example 1, Example 2, Example 3, and Example 4.

• Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the trigonometric term.
See Example 5 and Example 6.

• Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether the original
angle is known or not. See Example 7, Example 8, and Example 9.

9.4 Sum-to-Product and Product-to-Sum Formulas

• From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product
formulas for sine and cosine.

• We can use the product-to-sum formulas to rewrite products of sines, products of cosines, and products of sine and
cosine as sums or differences of sines and cosines. See Example 1, Example 2, and Example 3.

• We can also derive the sum-to-product identities from the product-to-sum identities using substitution.
• We can use the sum-to-product formulas to rewrite sum or difference of sines, cosines, or products sine and cosine

as products of sines and cosines. See Example 4.
• Trigonometric expressions are often simpler to evaluate using the formulas. See Example 5.
• The identities can be verified using other formulas or by converting the expressions to sines and cosines. To verify
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an identity, we choose the more complicated side of the equals sign and rewrite it until it is transformed into the
other side. See Example 6 and Example 7.

9.5 Solving Trigonometric Equations

• When solving linear trigonometric equations, we can use algebraic techniques just as we do solving algebraic
equations. Look for patterns, like the difference of squares, quadratic form, or an expression that lends itself well to
substitution. See Example 1, Example 2, and Example 3.

• Equations involving a single trigonometric function can be solved or verified using the unit circle. See Example 4,
Example 5, and Example 6, and Example 7.

• We can also solve trigonometric equations using a graphing calculator. See Example 8 and Example 9.
• Many equations appear quadratic in form. We can use substitution to make the equation appear simpler, and then

use the same techniques we use solving an algebraic quadratic: factoring, the quadratic formula, etc. See Example
10, Example 11, Example 12, and Example 13.

• We can also use the identities to solve trigonometric equation. See Example 14, Example 15, and Example 16.
• We can use substitution to solve a multiple-angle trigonometric equation, which is a compression of a standard

trigonometric function. We will need to take the compression into account and verify that we have found all
solutions on the given interval. See Example 17.

• Real-world scenarios can be modeled and solved using the Pythagorean Theorem and trigonometric functions. See
Example 18.

Exercises
Review Exercises
Solving Trigonometric Equations with Identities

For the following exercises, find all solutions exactly that exist on the interval

1. 2. 3.

4. 5. 6.

For the following exercises, use basic identities to simplify the expression.

7. 8.

For the following exercises, determine if the given identities are equivalent.

9. 10.

Sum and Difference Identities

For the following exercises, find the exact value.

11. 12.

13. 14.

For the following exercises, prove the identity.

15. 16.
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For the following exercise, simplify the expression.

17.

For the following exercises, find the exact value.

18. 19.

Double-Angle, Half-Angle, and Reduction Formulas

For the following exercises, find the exact value.

20. Find and given
and is in the interval

21. Find and given
and is in the interval

22. 23.

For the following exercises, use Figure 1 to find the desired quantities.

Figure 1

24.

25.

For the following exercises, prove the identity.

26. 27.

For the following exercises, rewrite the expression with no powers.

28. 29.

Sum-to-Product and Product-to-Sum Formulas

For the following exercises, evaluate the product for the given expression using a sum or difference of two functions.
Write the exact answer.

30. 31. 32.

For the following exercises, evaluate the sum by using a product formula. Write the exact answer.

33. 34.
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For the following exercises, change the functions from a product to a sum or a sum to a product.

35. 36. 37.

38.

Solving Trigonometric Equations

For the following exercises, find all exact solutions on the interval

39. 40.

For the following exercises, find all exact solutions on the interval

41. 42. 43.

44. 45.

For the following exercises, simplify the equation algebraically as much as possible. Then use a calculator to find the
solutions on the interval Round to four decimal places.

46. 47.

For the following exercises, graph each side of the equation to find the approximate solutions on the interval

48. 49.

Practice Test
For the following exercises, simplify the given expression.

1. 2.

3. 4.

For the following exercises, find the exact value.

5. 6. 7.

8. 9. 10.

For the following exercises, simplify each expression. Do not evaluate.

11. 12.

For the following exercises, find all exact solutions to the equation on

13. 14.
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15. 16.

17. Rewrite the expression as a product instead of a
sum:

For the following exercise, rewrite the product as a sum or difference.

18.

For the following exercise, rewrite the sum or difference as a product.

19. 20. Find all solutions of 21. Find the solutions of
on

the interval
algebraically; then graph
both sides of the equation
to determine the answer.

For the following exercises, find all solutions exactly on the interval

22. 23. 24. Find and
given

and is on the interval

25. Find and
given

and is in quadrant IV.

26. Rewrite the expression
with no powers

greater than 1.

For the following exercises, prove the identity.

27. 28.

29. 30. Plot the points and find a function of the form
that fits the given data.
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31. The displacement in
centimeters of a mass
suspended by a spring is
modeled by the function

where
is measured in seconds.

Find the amplitude, period,
and frequency of this
displacement.

32. A woman is standing 300
feet away from a 2000-foot
building. If she looks to the
top of the building, at what
angle above horizontal is
she looking? A worker
looks down at her from the
15th floor (1500 feet above
her). At what angle is he
looking down at her?
Round to the nearest tenth
of a degree.

33. Two frequencies of sound are
played on an instrument
governed by the equation

What are the period and
frequency of the “fast” and
“slow” oscillations? What is the
amplitude?

34. The average monthly
snowfall in a small village
in the Himalayas is 6
inches, with the low of 1
inch occurring in July.
Construct a function that
models this behavior.
During what period is there
more than 10 inches of
snowfall?

35. A spring attached to a
ceiling is pulled down 20
cm. After 3 seconds,
wherein it completes 6 full
periods, the amplitude is
only 15 cm. Find the
function modeling the
position of the spring
seconds after being
released. At what time will
the spring come to rest? In
this case, use 1 cm
amplitude as rest.

36. Water levels near a glacier
currently average 9 feet,
varying seasonally by 2
inches above and below
the average and reaching
their highest point in
January. Due to global
warming, the glacier has
begun melting faster than
normal. Every year, the
water levels rise by a
steady 3 inches. Find a
function modeling the
depth of the water
months from now. If the
docks are 2 feet above
current water levels, at
what point will the water
first rise above the docks?
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General Sherman, the world’s largest living tree. (credit: Mike Baird, Flickr)

Chapter Outline
10.1 Non-right Triangles: Law of Sines
10.2 Non-right Triangles: Law of Cosines
10.3 Polar Coordinates
10.4 Polar Coordinates: Graphs
10.5 Polar Form of Complex Numbers
10.6 Parametric Equations
10.7 Parametric Equations: Graphs
10.8 Vectors

Introduction to Further Applications of Trigonometry
The world’s largest tree by volume, named General Sherman, stands 274.9 feet tall and resides in Northern California.1

Just how do scientists know its true height? A common way to measure the height involves determining the angle of
elevation, which is formed by the tree and the ground at a point some distance away from the base of the tree. This
method is much more practical than climbing the tree and dropping a very long tape measure.

In this chapter, we will explore applications of trigonometry that will enable us to solve many different kinds of
problems, including finding the height of a tree. We extend topics we introduced in Trigonometric Functions
(http://openstax.org/books/precalculus-2e/pages/5-introduction-to-trigonometric-functions) and investigate
applications more deeply and meaningfully.

10.1 Non-right Triangles: Law of Sines
Learning Objectives
In this section, you will:

Use the Law of Sines to solve oblique triangles.
Find the area of an oblique triangle using the sine function.
Solve applied problems using the Law of Sines.

To ensure the safety of over 5,000 U.S. aircraft flying simultaneously during peak times, air traffic controllers monitor and
communicate with them after receiving data from the robust radar beacon system. Suppose two radar stations located
20 miles apart each detect an aircraft between them. The angle of elevation measured by the first station is 35 degrees,

FURTHER APPLICATIONS OF TRIGONOMETRY10

1 Source: National Park Service. "The General Sherman Tree." http://www.nps.gov/seki/naturescience/sherman.htm. Accessed April 25, 2014.
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whereas the angle of elevation measured by the second station is 15 degrees. How can we determine the altitude of the
aircraft? We see in Figure 1 that the triangle formed by the aircraft and the two stations is not a right triangle, so we
cannot use what we know about right triangles. In this section, we will find out how to solve problems involving non-
right triangles.

Figure 1

Using the Law of Sines to Solve Oblique Triangles
In any triangle, we can draw an altitude, a perpendicular line from one vertex to the opposite side, forming two right
triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first
having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle. Solving an oblique triangle means finding the
measurements of all three angles and all three sides. To do so, we need to start with at least three of these values,
including at least one of the sides. We will investigate three possible oblique triangle problem situations:

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See Figure 2.

Figure 2

2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known
angles. See Figure 3.

Figure 3

3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides.
See Figure 4.

Figure 4

Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a
perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the
angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see
how this statement is derived by considering the triangle shown in Figure 5.
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Figure 5

Using the right triangle relationships, we know that and Solving both equations for gives two
different expressions for

We then set the expressions equal to each other.

Similarly, we can compare the other ratios.

Collectively, these relationships are called the Law of Sines.

Note the standard way of labeling triangles: angle (alpha) is opposite side angle (beta) is opposite side and
angle (gamma) is opposite side See Figure 6.

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers
are rounded to the nearest tenth, unless otherwise specified.

Figure 6

Law of Sines

Given a triangle with angles and opposite sides labeled as in Figure 6, the ratio of the measurement of an angle to the
length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions will
be equal. The Law of Sines is based on proportions and is presented symbolically two ways.

To solve an oblique triangle, use any pair of applicable ratios.
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EXAMPLE 1

Solving for Two Unknown Sides and Angle of an AAS Triangle
Solve the triangle shown in Figure 7 to the nearest tenth.

Figure 7

Solution
The three angles must add up to 180 degrees. From this, we can determine that

To find an unknown side, we need to know the corresponding angle and a known ratio. We know that angle and
its corresponding side We can use the following proportion from the Law of Sines to find the length of

Similarly, to solve for we set up another proportion.

Therefore, the complete set of angles and sides is

TRY IT #1 Solve the triangle shown in Figure 8 to the nearest tenth.
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Figure 8

Using The Law of Sines to Solve SSA Triangles
We can use the Law of Sines to solve any oblique triangle, but some solutions may not be straightforward. In some
cases, more than one triangle may satisfy the given criteria, which we describe as an ambiguous case. Triangles
classified as SSA, those in which we know the lengths of two sides and the measurement of the angle opposite one of
the given sides, may result in one or two solutions, or even no solution.

Possible Outcomes for SSA Triangles

Oblique triangles in the category SSA may have four different outcomes. Figure 9 illustrates the solutions with the
known sides and and known angle

Figure 9

EXAMPLE 2

Solving an Oblique SSA Triangle
Solve the triangle in Figure 10 for the missing side and find the missing angle measures to the nearest tenth.

Figure 10

Solution
Use the Law of Sines to find angle and angle and then side Solving for we have the proportion
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However, in the diagram, angle appears to be an obtuse angle and may be greater than 90°. How did we get an acute
angle, and how do we find the measurement of Let’s investigate further. Dropping a perpendicular from and
viewing the triangle from a right angle perspective, we have Figure 11. It appears that there may be a second triangle
that will fit the given criteria.

Figure 11

The angle supplementary to is approximately equal to 49.9°, which means that (Remember
that the sine function is positive in both the first and second quadrants.) Solving for we have

We can then use these measurements to solve the other triangle. Since is supplementary to the sum of and we
have

Now we need to find and

We have

Finally,

To summarize, there are two triangles with an angle of 35°, an adjacent side of 8, and an opposite side of 6, as shown in
Figure 12.
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Figure 12

However, we were looking for the values for the triangle with an obtuse angle We can see them in the first triangle (a)
in Figure 12.

TRY IT #2 Given and find the missing side and angles. If there is more than one
possible solution, show both.

EXAMPLE 3

Solving for the Unknown Sides and Angles of a SSA Triangle
In the triangle shown in Figure 13, solve for the unknown side and angles. Round your answers to the nearest tenth.

Figure 13

Solution
In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we know the angle

and its corresponding side and we know side We will use this proportion to solve for

To find apply the inverse sine function. The inverse sine will produce a single result, but keep in mind that there may
be two values for It is important to verify the result, as there may be two viable solutions, only one solution (the usual
case), or no solutions.

In this case, if we subtract from 180°, we find that there may be a second possible solution. Thus,
To check the solution, subtract both angles, 131.7° and 85°, from 180°. This gives

which is impossible, and so
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To find the remaining missing values, we calculate Now, only side is needed. Use the
Law of Sines to solve for by one of the proportions.

The complete set of solutions for the given triangle is

TRY IT #3 Given find the missing side and angles. If there is more than one
possible solution, show both. Round your answers to the nearest tenth.

EXAMPLE 4

Finding the Triangles That Meet the Given Criteria
Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length 10.

Solution
Using the given information, we can solve for the angle opposite the side of length 10. See Figure 14.

Figure 14

We can stop here without finding the value of Because the range of the sine function is it is impossible for the
sine value to be 1.915. In fact, inputting in a graphing calculator generates an ERROR DOMAIN. Therefore,
no triangles can be drawn with the provided dimensions.

TRY IT #4 Determine the number of triangles possible given

Finding the Area of an Oblique Triangle Using the Sine Function
Now that we can solve a triangle for missing values, we can use some of those values and the sine function to find the
area of an oblique triangle. Recall that the area formula for a triangle is given as where is base and is
height. For oblique triangles, we must find before we can use the area formula. Observing the two triangles in Figure
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15, one acute and one obtuse, we can drop a perpendicular to represent the height and then apply the trigonometric
property to write an equation for area in oblique triangles. In the acute triangle, we have

or However, in the obtuse triangle, we drop the perpendicular outside the triangle and extend the base to
form a right triangle. The angle used in calculation is or

Figure 15

Thus,

Similarly,

Area of an Oblique Triangle

The formula for the area of an oblique triangle is given by

This is equivalent to one-half of the product of two sides and the sine of their included angle.

EXAMPLE 5

Finding the Area of an Oblique Triangle
Find the area of a triangle with sides and angle Round the area to the nearest integer.

Solution
Using the formula, we have

TRY IT #5 Find the area of the triangle given Round the area to the nearest
tenth.

Solving Applied Problems Using the Law of Sines
The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat,
diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and
motion.
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EXAMPLE 6

Finding an Altitude
Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in Figure 16. Round the
altitude to the nearest tenth of a mile.

Figure 16

Solution
To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side and then
use right triangle relationships to find the height of the aircraft,

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°−35°=130°. This angle is
opposite the side of length 20, allowing us to set up a Law of Sines relationship.

The distance from one station to the aircraft is about 14.98 miles.

Now that we know we can use right triangle relationships to solve for

The aircraft is at an altitude of approximately 3.9 miles.

TRY IT #6 The diagram shown in Figure 17 represents the height of a blimp flying over a football stadium.
Find the height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the
angle of elevation from the northern end zone, point is 62°, and the distance between the
viewing points of the two end zones is 145 yards.
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Figure 17

MEDIA

Access these online resources for additional instruction and practice with trigonometric applications.

Law of Sines: The Basics (http://openstax.org/l/sinesbasic)
Law of Sines: The Ambiguous Case (http://openstax.org/l/sinesambiguous)

10.1 SECTION EXERCISES
Verbal

1. Describe the altitude of a
triangle.

2. Compare right triangles and
oblique triangles.

3. When can you use the Law
of Sines to find a missing
angle?

4. In the Law of Sines, what is
the relationship between
the angle in the numerator
and the side in the
denominator?

5. What type of triangle results
in an ambiguous case?

Algebraic

For the following exercises, assume is opposite side is opposite side and is opposite side Solve each triangle,
if possible. Round each answer to the nearest tenth.

6. 7. 8.

9. 10.
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For the following exercises, use the Law of Sines to solve for the missing side for each oblique triangle. Round each
answer to the nearest hundredth. Assume that angle is opposite side angle is opposite side and angle is
opposite side

11. Find side when 12. Find side when 13. Find side when

For the following exercises, assume is opposite side is opposite side and is opposite side Determine whether
there is no triangle, one triangle, or two triangles. Then solve each triangle, if possible. Round each answer to the
nearest tenth.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23.

For the following exercises, use the Law of Sines to solve, if possible, the missing side or angle for each triangle or
triangles in the ambiguous case. Round each answer to the nearest tenth.

24. Find angle when 25. Find angle when 26. Find angle when

For the following exercises, find the area of the triangle with the given measurements. Round each answer to the
nearest tenth.

27. 28. 29.

30.

Graphical

For the following exercises, find the length of side Round to the nearest tenth.

31. 32. 33.
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34. 35. 36.

For the following exercises, find the measure of angle if possible. Round to the nearest tenth.

37. 38. 39.

40. 41. Notice that is an obtuse
angle.

42.

For the following exercise, solve the triangle. Round each answer to the nearest tenth.

43. 44. For the following exercises, find
the area of each triangle. Round
each answer to the nearest tenth.

45.
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46. 47. 48.

49.

Extensions

50. Find the radius of the circle
in Figure 18. Round to the
nearest tenth.

Figure 18

51. Find the diameter of the
circle in Figure 19. Round
to the nearest tenth.

Figure 19

52. Find in Figure 20.
Round to the nearest tenth.

Figure 20

53. Find in Figure 21. Round to the
nearest tenth.

Figure 21

54. Solve both triangles in Figure 22.
Round each answer to the nearest
tenth.

Figure 22

55. Find in the
parallelogram shown in
Figure 23.

Figure 23
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56. Solve the triangle in Figure 24. (Hint:
Draw a perpendicular from to

Round each answer to the
nearest tenth.

Figure 24

57. Solve the triangle in Figure
25. (Hint: Draw a
perpendicular from to

Round each answer
to the nearest tenth.

Figure 25

58. In Figure 26, is not a
parallelogram. is obtuse. Solve
both triangles. Round each answer
to the nearest tenth.

Figure 26

Real-World Applications

59. A pole leans away from the sun at an angle of
to the vertical, as shown in Figure 27. When the
elevation of the sun is the pole casts a
shadow 42 feet long on the level ground. How
long is the pole? Round the answer to the nearest
tenth.

Figure 27

60. To determine how far a boat is from shore, two
radar stations 500 feet apart find the angles out to
the boat, as shown in Figure 28. Determine the
distance of the boat from station and the
distance of the boat from shore. Round your
answers to the nearest whole foot.

Figure 28
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61. Figure 29 shows a satellite orbiting Earth. The
satellite passes directly over two tracking stations

and which are 69 miles apart. When the
satellite is on one side of the two stations, the
angles of elevation at and are measured to be

and respectively. How far is the
satellite from station and how high is the
satellite above the ground? Round answers to the
nearest whole mile.

Figure 29

62. A communications tower is located at the top of a
steep hill, as shown in Figure 30. The angle of
inclination of the hill is A guy wire is to be
attached to the top of the tower and to the
ground, 165 meters downhill from the base of the
tower. The angle formed by the guy wire and the
hill is Find the length of the cable required for
the guy wire to the nearest whole meter.

Figure 30

63. The roof of a house is at a angle. An 8-foot solar
panel is to be mounted on the roof and should be
angled relative to the horizontal for optimal
results. (See Figure 31). How long does the vertical
support holding up the back of the panel need to be?
Round to the nearest tenth.

Figure 31
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64. Similar to an angle of elevation, an angle of
depression is the acute angle formed by a
horizontal line and an observer’s line of sight to
an object below the horizontal. A pilot is flying
over a straight highway. He determines the angles
of depression to two mileposts, 6.6 km apart, to
be and as shown in Figure 32. Find the
distance of the plane from point to the nearest
tenth of a kilometer.

Figure 32

65. A pilot is flying over a straight highway. He
determines the angles of depression to two
mileposts, 4.3 km apart, to be 32° and 56°, as
shown in Figure 33. Find the distance of the plane
from point to the nearest tenth of a kilometer.

Figure 33

66. In order to estimate the height of a building, two
students stand at a certain distance from the
building at street level. From this point, they find
the angle of elevation from the street to the top of
the building to be 39°. They then move 300 feet
closer to the building and find the angle of
elevation to be 50°. Assuming that the street is
level, estimate the height of the building to the
nearest foot.

67. In order to estimate the
height of a building, two
students stand at a certain
distance from the building
at street level. From this
point, they find the angle
of elevation from the street
to the top of the building
to be 35°. They then move
250 feet closer to the
building and find the angle
of elevation to be 53°.
Assuming that the street is
level, estimate the height
of the building to the
nearest foot.

68. Points and are on
opposite sides of a lake.
Point is 97 meters from

The measure of angle
is determined to be

101°, and the measure of
angle is determined
to be 53°. What is the
distance from to
rounded to the nearest
whole meter?

69. A man and a woman
standing miles apart
spot a hot air balloon at
the same time. If the angle
of elevation from the man
to the balloon is 27°, and
the angle of elevation from
the woman to the balloon
is 41°, find the altitude of
the balloon to the nearest
foot.

70. Two search teams spot a
stranded climber on a
mountain. The first search
team is 0.5 miles from the
second search team, and
both teams are at an
altitude of 1 mile. The
angle of elevation from the
first search team to the
stranded climber is 15°.
The angle of elevation from
the second search team to
the climber is 22°. What is
the altitude of the climber?
Round to the nearest tenth
of a mile.
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71. A street light is mounted
on a pole. A 6-foot-tall man
is standing on the street a
short distance from the
pole, casting a shadow. The
angle of elevation from the
tip of the man’s shadow to
the top of his head of 28°.
A 6-foot-tall woman is
standing on the same
street on the opposite side
of the pole from the man.
The angle of elevation from
the tip of her shadow to
the top of her head is 28°.
If the man and woman are
20 feet apart, how far is the
street light from the tip of
the shadow of each
person? Round the
distance to the nearest
tenth of a foot.

72. Three cities, and
are located so that city is
due east of city If city
is located 35° west of north
from city and is 100 miles
from city and 70 miles
from city how far is city

from city Round the
distance to the nearest
tenth of a mile.

73. Two streets meet at an 80° angle. At the corner, a
park is being built in the shape of a triangle. Find
the area of the park if, along one road, the park
measures 180 feet, and along the other road, the
park measures 215 feet.

74. Brian’s house is on a corner lot. Find the area of the
front yard if the edges measure 40 and 56 feet, as
shown in Figure 34.

Figure 34

75. The Bermuda triangle is a
region of the Atlantic
Ocean that connects
Bermuda, Florida, and
Puerto Rico. Find the area
of the Bermuda triangle if
the distance from Florida
to Bermuda is 1030 miles,
the distance from Puerto
Rico to Bermuda is 980
miles, and the angle
created by the two
distances is 62°.
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76. A yield sign measures 30
inches on all three sides.
What is the area of the
sign?

77. Naomi bought a dining table whose
top is in the shape of a triangle. Find
the area of the table top if two of
the sides measure 4 feet and 4.5
feet, and the smaller angles
measure 32° and 42°, as shown in
Figure 35.

Figure 35

10.2 Non-right Triangles: Law of Cosines
Learning Objectives
In this section, you will:

Use the Law of Cosines to solve oblique triangles.
Solve applied problems using the Law of Cosines.
Use Heron’s formula to find the area of a triangle.

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles as shown in Figure 1. How far
from port is the boat?

Figure 1

Unfortunately, while the Law of Sines enables us to address many non-right triangle cases, it does not help us with
triangles where the known angle is between two known sides, a SAS (side-angle-side) triangle, or when all three sides
are known, but no angles are known, a SSS (side-side-side) triangle. In this section, we will investigate another tool for
solving oblique triangles described by these last two cases.

Using the Law of Cosines to Solve Oblique Triangles
The tool we need to solve the problem of the boat’s distance from the port is the Law of Cosines, which defines the
relationship among angle measurements and side lengths in oblique triangles. Three formulas make up the Law of
Cosines. At first glance, the formulas may appear complicated because they include many variables. However, once the
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pattern is understood, the Law of Cosines is easier to work with than most formulas at this mathematical level.

Understanding how the Law of Cosines is derived will be helpful in using the formulas. The derivation begins with the
Generalized Pythagorean Theorem, which is an extension of the Pythagorean Theorem to non-right triangles. Here is
how it works: An arbitrary non-right triangle is placed in the coordinate plane with vertex at the origin, side
drawn along the x-axis, and vertex located at some point in the plane, as illustrated in Figure 2. Generally,
triangles exist anywhere in the plane, but for this explanation we will place the triangle as noted.

Figure 2

We can drop a perpendicular from to the x-axis (this is the altitude or height). Recalling the basic trigonometric
identities, we know that

In terms of and The point located at has coordinates Using the
side as one leg of a right triangle and as the second leg, we can find the length of hypotenuse using the
Pythagorean Theorem. Thus,

The formula derived is one of the three equations of the Law of Cosines. The other equations are found in a similar
fashion.

Keep in mind that it is always helpful to sketch the triangle when solving for angles or sides. In a real-world scenario, try
to draw a diagram of the situation. As more information emerges, the diagram may have to be altered. Make those
alterations to the diagram and, in the end, the problem will be easier to solve.

Law of Cosines

The Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other two
sides minus twice the product of the other two sides and the cosine of the included angle. For triangles labeled as in
Figure 3, with angles and and opposite corresponding sides and respectively, the Law of Cosines is
given as three equations.
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...

Figure 3

To solve for a missing side measurement, the corresponding opposite angle measure is needed.

When solving for an angle, the corresponding opposite side measure is needed. We can use another version of the
Law of Cosines to solve for an angle.

HOW TO

Given two sides and the angle between them (SAS), find the measures of the remaining side and angles of a
triangle.

1. Sketch the triangle. Identify the measures of the known sides and angles. Use variables to represent the
measures of the unknown sides and angles.

2. Apply the Law of Cosines to find the length of the unknown side or angle.
3. Apply the Law of Sines or Cosines to find the measure of a second angle.
4. Compute the measure of the remaining angle.

EXAMPLE 1

Finding the Unknown Side and Angles of a SAS Triangle
Find the unknown side and angles of the triangle in Figure 4.

Figure 4

Solution
First, make note of what is given: two sides and the angle between them. This arrangement is classified as SAS and
supplies the data needed to apply the Law of Cosines.
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Each one of the three laws of cosines begins with the square of an unknown side opposite a known angle. For this
example, the first side to solve for is side as we know the measurement of the opposite angle

Because we are solving for a length, we use only the positive square root. Now that we know the length we can use
the Law of Sines to fill in the remaining angles of the triangle. Solving for angle we have

The other possibility for would be In the original diagram, is adjacent to the longest side,
so is an acute angle and, therefore, does not make sense. Notice that if we choose to apply the Law of Cosines,
we arrive at a unique answer. We do not have to consider the other possibilities, as cosine is unique for angles between

and Proceeding with we can then find the third angle of the triangle.

The complete set of angles and sides is

TRY IT #1 Find the missing side and angles of the given triangle:

EXAMPLE 2

Solving for an Angle of a SSS Triangle
Find the angle for the given triangle if side side and side

Solution
For this example, we have no angles. We can solve for any angle using the Law of Cosines. To solve for angle we have
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See Figure 5.

Figure 5

Analysis
Because the inverse cosine can return any angle between 0 and 180 degrees, there will not be any ambiguous cases
using this method.

TRY IT #2 Given and find the missing angles.

Solving Applied Problems Using the Law of Cosines
Just as the Law of Sines provided the appropriate equations to solve a number of applications, the Law of Cosines is
applicable to situations in which the given data fits the cosine models. We may see these in the fields of navigation,
surveying, astronomy, and geometry, just to name a few.

EXAMPLE 3

Using the Law of Cosines to Solve a Communication Problem
On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is
accomplished through a process called triangulation, which works by using the distances from two known points.
Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6000 feet apart along
a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal delay, it can be
determined that the signal is 5,050 feet from the first tower and 2,420 feet from the second tower. Determine the
position of the cell phone north and east of the first tower, and determine how far it is from the highway.

Solution
For simplicity, we start by drawing a diagram similar to Figure 6 and labeling our given information.
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Figure 6

Using the Law of Cosines, we can solve for the angle Remember that the Law of Cosines uses the square of one side to
find the cosine of the opposite angle. For this example, let and Thus, corresponds to
the opposite side

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway, drop a
perpendicular from the position of the cell phone, as in Figure 7. This forms two right triangles, although we only need
the right triangle that includes the first tower for this problem.

Figure 7

Using the angle and the basic trigonometric identities, we can find the solutions. Thus

The cell phone is approximately 4,638 feet east and 1998 feet north of the first tower, and 1998 feet from the highway.

EXAMPLE 4

Calculating Distance Traveled Using a SAS Triangle
Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20 degrees,
and travels another 8 miles. How far from port is the boat? The diagram is repeated here in Figure 8.
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Figure 8

Solution
The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle,
With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle—the distance of the boat to
the port.

The boat is about 17.7 miles from port.

Using Heron’s Formula to Find the Area of a Triangle
We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the
formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use
Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century
A.D. He discovered a formula for finding the area of oblique triangles when three sides are known.

Heron’s Formula

Heron’s formula finds the area of oblique triangles in which sides and are known.

where is one half of the perimeter of the triangle, sometimes called the semi-perimeter.

EXAMPLE 5

Using Heron’s Formula to Find the Area of a Given Triangle
Find the area of the triangle in Figure 9 using Heron’s formula.
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Figure 9

Solution
First, we calculate

Then we apply the formula.

The area is approximately 29.4 square units.

TRY IT #3 Use Heron’s formula to find the area of a triangle with sides of lengths
and

EXAMPLE 6

Applying Heron’s Formula to a Real-World Problem
A Chicago city developer wants to construct a building consisting of artist’s lofts on a triangular lot bordered by Rush
Street, Wabash Avenue, and Pearson Street. The frontage along Rush Street is approximately 62.4 meters, along Wabash
Avenue it is approximately 43.5 meters, and along Pearson Street it is approximately 34.1 meters. How many square
meters are available to the developer? See Figure 10 for a view of the city property.

Figure 10
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Solution
Find the measurement for which is one-half of the perimeter.

Apply Heron’s formula.

The developer has about 711.4 square meters.

TRY IT #4 Find the area of a triangle given and

MEDIA

Access these online resources for additional instruction and practice with the Law of Cosines.

Law of Cosines (http://openstax.org/l/lawcosines)
Law of Cosines: Applications (http://openstax.org/l/cosineapp)
Law of Cosines: Applications 2 (http://openstax.org/l/cosineapp2)

10.2 SECTION EXERCISES
Verbal

1. If you are looking for a
missing side of a triangle,
what do you need to know
when using the Law of
Cosines?

2. If you are looking for a
missing angle of a triangle,
what do you need to know
when using the Law of
Cosines?

3. Explain what represents in
Heron’s formula.

4. Explain the relationship
between the Pythagorean
Theorem and the Law of
Cosines.

5. When must you use the Law
of Cosines instead of the
Pythagorean Theorem?

Algebraic

For the following exercises, assume is opposite side is opposite side and is opposite side If possible, solve
each triangle for the unknown side. Round to the nearest tenth.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.
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For the following exercises, use the Law of Cosines to solve for the missing angle of the oblique triangle. Round to the
nearest tenth.

16. find
angle

17.
find angle

18. find
angle

19.
find angle

20.
find angle

For the following exercises, solve the triangle. Round to the nearest tenth.

21. 22. 23.

24. 25. 26.

For the following exercises, use Heron’s formula to find the area of the triangle. Round to the nearest hundredth.

27. Find the area of a triangle
with sides of length 18 in,
21 in, and 32 in. Round to
the nearest tenth.

28. Find the area of a triangle
with sides of length 20 cm,
26 cm, and 37 cm. Round to
the nearest tenth.

29.

30. 31.

Graphical

For the following exercises, find the length of side Round to the nearest tenth.

32. 33. 34.

35. 36. 37.
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For the following exercises, find the measurement of angle

38. 39. 40.

41. 42. Find the measure of each angle in
the triangle shown in Figure 11.
Round to the nearest tenth.

Figure 11

For the following exercises, solve for the unknown side. Round to the nearest tenth.

43. 44. 45.

46.
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For the following exercises, find the area of the triangle. Round to the nearest hundredth.

47. 48. 49.

50. 51.

Extensions

52. A parallelogram has sides
of length 16 units and 10
units. The shorter diagonal
is 12 units. Find the
measure of the longer
diagonal.

53. The sides of a
parallelogram are 11 feet
and 17 feet. The longer
diagonal is 22 feet. Find the
length of the shorter
diagonal.

54. The sides of a
parallelogram are 28
centimeters and 40
centimeters. The measure
of the larger angle is 100°.
Find the length of the
shorter diagonal.

55. A regular octagon is
inscribed in a circle with a
radius of 8 inches. (See
Figure 12.) Find the
perimeter of the octagon.

Figure 12

56. A regular pentagon is
inscribed in a circle of
radius 12 cm. (See Figure
13.) Find the perimeter of
the pentagon. Round to
the nearest tenth of a
centimeter.

Figure 13
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For the following exercises, suppose that represents the relationship of three sides of a
triangle and the cosine of an angle.

57. Draw the triangle. 58. Find the length of the third
side.

For the following exercises, find the area of the triangle.

59. 60. 61.

Real-World Applications

62. A surveyor has taken the
measurements shown in Figure 14.
Find the distance across the lake.
Round answers to the nearest tenth.

Figure 14

63. A satellite calculates the distances
and angle shown in Figure 15 (not
to scale). Find the distance between
the two cities. Round answers to the
nearest tenth.

Figure 15

64. An airplane flies 220 miles
with a heading of 40°, and
then flies 180 miles with a
heading of 170°. How far is
the plane from its starting
point, and at what
heading? Round answers
to the nearest tenth.
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65. A 113-foot tower is located on a hill
that is inclined 34° to the horizontal,
as shown in Figure 16. A guy-wire is
to be attached to the top of the
tower and anchored at a point 98
feet uphill from the base of the
tower. Find the length of wire
needed.

Figure 16

66. Two ships left a port at the
same time. One ship
traveled at a speed of 18
miles per hour at a
heading of 320°. The other
ship traveled at a speed of
22 miles per hour at a
heading of 194°. Find the
distance between the two
ships after 10 hours of
travel.

67. The graph in Figure 17 represents
two boats departing at the same
time from the same dock. The first
boat is traveling at 18 miles per
hour at a heading of 327° and the
second boat is traveling at 4 miles
per hour at a heading of 60°. Find
the distance between the two boats
after 2 hours.

Figure 17

68. A triangular swimming
pool measures 40 feet on
one side and 65 feet on
another side. These sides
form an angle that
measures 50°. How long is
the third side (to the
nearest tenth)?

69. A pilot flies in a straight
path for 1 hour 30 min. She
then makes a course
correction, heading 10° to
the right of her original
course, and flies 2 hours in
the new direction. If she
maintains a constant speed
of 680 miles per hour, how
far is she from her starting
position?

70. Los Angeles is 1,744 miles
from Chicago, Chicago is
714 miles from New York,
and New York is 2,451
miles from Los Angeles.
Draw a triangle connecting
these three cities, and find
the angles in the triangle.

71. Philadelphia is 140 miles
from Washington, D.C.,
Washington, D.C. is 442
miles from Boston, and
Boston is 315 miles from
Philadelphia. Draw a
triangle connecting these
three cities and find the
angles in the triangle.

72. Two planes leave the same
airport at the same time.
One flies at 20° east of
north at 500 miles per
hour. The second flies at
30° east of south at 600
miles per hour. How far
apart are the planes after 2
hours?

73. Two airplanes take off in
different directions. One
travels 300 mph due west
and the other travels 25°
north of west at 420 mph.
After 90 minutes, how far
apart are they, assuming
they are flying at the same
altitude?

74. A parallelogram has sides
of length 15.4 units and 9.8
units. Its area is 72.9
square units. Find the
measure of the longer
diagonal.

75. The four sequential sides
of a quadrilateral have
lengths 4.5 cm, 7.9 cm, 9.4
cm, and 12.9 cm. The angle
between the two smallest
sides is 117°. What is the
area of this quadrilateral?

76. The four sequential sides
of a quadrilateral have
lengths 5.7 cm, 7.2 cm, 9.4
cm, and 12.8 cm. The angle
between the two smallest
sides is 106°. What is the
area of this quadrilateral?
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77. Find the area of a
triangular piece of land
that measures 30 feet on
one side and 42 feet on
another; the included
angle measures 132°.
Round to the nearest
whole square foot.

78. Find the area of a
triangular piece of land
that measures 110 feet on
one side and 250 feet on
another; the included
angle measures 85°. Round
to the nearest whole
square foot.

10.3 Polar Coordinates
Learning Objectives
In this section, you will:

Plot points using polar coordinates.
Convert from polar coordinates to rectangular coordinates.
Convert from rectangular coordinates to polar coordinates.
Transform equations between polar and rectangular forms.
Identify and graph polar equations by converting to rectangular equations.

Over 12 kilometers from port, a sailboat encounters rough weather and is blown off course by a 16-knot wind (see Figure
1). How can the sailor indicate his location to the Coast Guard? In this section, we will investigate a method of
representing location that is different from a standard coordinate grid.

Figure 1

Plotting Points Using Polar Coordinates
When we think about plotting points in the plane, we usually think of rectangular coordinates in the Cartesian
coordinate plane. However, there are other ways of writing a coordinate pair and other types of grid systems. In this
section, we introduce to polar coordinates, which are points labeled and plotted on a polar grid. The polar grid is
represented as a series of concentric circles radiating out from the pole, or the origin of the coordinate plane.

The polar grid is scaled as the unit circle with the positive x-axis now viewed as the polar axis and the origin as the pole.
The first coordinate is the radius or length of the directed line segment from the pole. The angle measured in
radians, indicates the direction of We move counterclockwise from the polar axis by an angle of and measure a
directed line segment the length of in the direction of Even though we measure first and then the polar point is
written with the r-coordinate first. For example, to plot the point we would move units in the counterclockwise
direction and then a length of 2 from the pole. This point is plotted on the grid in Figure 2.
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Figure 2

EXAMPLE 1

Plotting a Point on the Polar Grid
Plot the point on the polar grid.

Solution
The angle is found by sweeping in a counterclockwise direction 90° from the polar axis. The point is located at a length
of 3 units from the pole in the direction, as shown in Figure 3.

Figure 3

TRY IT #1 Plot the point in the polar grid.

EXAMPLE 2

Plotting a Point in the Polar Coordinate System with a Negative Component
Plot the point on the polar grid.

Solution
We know that is located in the first quadrant. However, We can approach plotting a point with a negative in
two ways:
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1. Plot the point by moving in the counterclockwise direction and extending a directed line segment 2 units
into the first quadrant. Then retrace the directed line segment back through the pole, and continue 2 units into the
third quadrant;

2. Move in the counterclockwise direction, and draw the directed line segment from the pole 2 units in the negative
direction, into the third quadrant.

See Figure 4(a). Compare this to the graph of the polar coordinate shown in Figure 4(b).

Figure 4

TRY IT #2 Plot the points and on the same polar grid.

Converting from Polar Coordinates to Rectangular Coordinates
When given a set of polar coordinates, we may need to convert them to rectangular coordinates. To do so, we can recall
the relationships that exist among the variables and

Dropping a perpendicular from the point in the plane to the x-axis forms a right triangle, as illustrated in Figure 5. An
easy way to remember the equations above is to think of as the adjacent side over the hypotenuse and as
the opposite side over the hypotenuse.

Figure 5

Converting from Polar Coordinates to Rectangular Coordinates

To convert polar coordinates to rectangular coordinates let
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HOW TO

Given polar coordinates, convert to rectangular coordinates.

1. Given the polar coordinate write and
2. Evaluate and
3. Multiply by to find the x-coordinate of the rectangular form.
4. Multiply by to find the y-coordinate of the rectangular form.

EXAMPLE 3

Writing Polar Coordinates as Rectangular Coordinates
Write the polar coordinates as rectangular coordinates.

Solution
Use the equivalent relationships.

The rectangular coordinates are See Figure 6.

Figure 6

EXAMPLE 4

Writing Polar Coordinates as Rectangular Coordinates
Write the polar coordinates as rectangular coordinates.
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Solution
See Figure 7. Writing the polar coordinates as rectangular, we have

The rectangular coordinates are also

Figure 7

TRY IT #3 Write the polar coordinates as rectangular coordinates.

Converting from Rectangular Coordinates to Polar Coordinates
To convert rectangular coordinates to polar coordinates, we will use two other familiar relationships. With this
conversion, however, we need to be aware that a set of rectangular coordinates will yield more than one polar point.

Converting from Rectangular Coordinates to Polar Coordinates

Converting from rectangular coordinates to polar coordinates requires the use of one or more of the relationships
illustrated in Figure 8.
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Figure 8

EXAMPLE 5

Writing Rectangular Coordinates as Polar Coordinates
Convert the rectangular coordinates to polar coordinates.

Solution
We see that the original point is in the first quadrant. To find use the formula This gives

To find we substitute the values for and into the formula We know that must be positive, as is
in the first quadrant. Thus

So, and giving us the polar point See Figure 9.

Figure 9

Analysis
There are other sets of polar coordinates that will be the same as our first solution. For example, the points
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and will coincide with the original solution of The point

indicates a move further counterclockwise by which is directly opposite The radius is expressed as

However, the angle is located in the third quadrant and, as is negative, we extend the directed line segment in the

opposite direction, into the first quadrant. This is the same point as The point is a move

further clockwise by from The radius, is the same.

Transforming Equations between Polar and Rectangular Forms
We can now convert coordinates between polar and rectangular form. Converting equations can be more difficult, but it
can be beneficial to be able to convert between the two forms. Since there are a number of polar equations that cannot
be expressed clearly in Cartesian form, and vice versa, we can use the same procedures we used to convert points
between the coordinate systems. We can then use a graphing calculator to graph either the rectangular form or the
polar form of the equation.

HOW TO

Given an equation in polar form, graph it using a graphing calculator.

1. Change the MODE to POL, representing polar form.
2. Press the Y= button to bring up a screen allowing the input of six equations:
3. Enter the polar equation, set equal to
4. Press GRAPH.

EXAMPLE 6

Writing a Cartesian Equation in Polar Form
Write the Cartesian equation in polar form.

Solution
The goal is to eliminate and from the equation and introduce and Ideally, we would write the equation as a
function of To obtain the polar form, we will use the relationships between and Since and

we can substitute and solve for

Thus, and should generate the same graph. See Figure 10.
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Figure 10 (a) Cartesian form (b) Polar form

To graph a circle in rectangular form, we must first solve for

Note that this is two separate functions, since a circle fails the vertical line test. Therefore, we need to enter the positive
and negative square roots into the calculator separately, as two equations in the form and

Press GRAPH.

EXAMPLE 7

Rewriting a Cartesian Equation as a Polar Equation
Rewrite the Cartesian equation as a polar equation.

Solution
This equation appears similar to the previous example, but it requires different steps to convert the equation.

We can still follow the same procedures we have already learned and make the following substitutions:

Therefore, the equations and should give us the same graph. See Figure 11.
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Figure 11 (a) Cartesian form (b) polar form

The Cartesian or rectangular equation is plotted on the rectangular grid, and the polar equation is plotted on the polar
grid. Clearly, the graphs are identical.

EXAMPLE 8

Rewriting a Cartesian Equation in Polar Form
Rewrite the Cartesian equation as a polar equation.

Solution
We will use the relationships and

TRY IT #4 Rewrite the Cartesian equation in polar form.

Identify and Graph Polar Equations by Converting to Rectangular Equations
We have learned how to convert rectangular coordinates to polar coordinates, and we have seen that the points are
indeed the same. We have also transformed polar equations to rectangular equations and vice versa. Now we will
demonstrate that their graphs, while drawn on different grids, are identical.

EXAMPLE 9

Graphing a Polar Equation by Converting to a Rectangular Equation
Covert the polar equation to a rectangular equation, and draw its corresponding graph.

Solution
The conversion is

Notice that the equation drawn on the polar grid is clearly the same as the vertical line drawn on the
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rectangular grid (see Figure 12). Just as is the standard form for a vertical line in rectangular form, is
the standard form for a vertical line in polar form.

Figure 12 (a) Polar grid (b) Rectangular coordinate system

A similar discussion would demonstrate that the graph of the function will be the horizontal line In
fact, is the standard form for a horizontal line in polar form, corresponding to the rectangular form

EXAMPLE 10

Rewriting a Polar Equation in Cartesian Form
Rewrite the polar equation as a Cartesian equation.

Solution
The goal is to eliminate and and introduce and We clear the fraction, and then use substitution. In order to
replace with and we must use the expression

The Cartesian equation is However, to graph it, especially using a graphing calculator or computer
program, we want to isolate

When our entire equation has been changed from and to and we can stop, unless asked to solve for or simplify.
See Figure 13.
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Figure 13

The “hour-glass” shape of the graph is called a hyperbola. Hyperbolas have many interesting geometric features and
applications, which we will investigate further in Analytic Geometry.

Analysis
In this example, the right side of the equation can be expanded and the equation simplified further, as shown above.
However, the equation cannot be written as a single function in Cartesian form. We may wish to write the rectangular
equation in the hyperbola’s standard form. To do this, we can start with the initial equation.

TRY IT #5 Rewrite the polar equation in Cartesian form.

EXAMPLE 11

Rewriting a Polar Equation in Cartesian Form
Rewrite the polar equation in Cartesian form.

Solution

This equation can also be written as
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MEDIA

Access these online resources for additional instruction and practice with polar coordinates.

Introduction to Polar Coordinates (http://openstax.org/l/intropolar)
Comparing Polar and Rectangular Coordinates (http://openstax.org/l/polarrect)

10.3 SECTION EXERCISES
Verbal

1. How are polar coordinates
different from rectangular
coordinates?

2. How are the polar axes
different from the x- and
y-axes of the Cartesian
plane?

3. Explain how polar
coordinates are graphed.

4. How are the points
and related?

5. Explain why the points
and are

the same.

Algebraic

For the following exercises, convert the given polar coordinates to Cartesian coordinates. Remember to consider the
quadrant in which the given point is located when determining for the point.

6. 7. 8.

9. 10.

For the following exercises, convert the given Cartesian coordinates to polar coordinates with
Remember to consider the quadrant in which the given point is located.

11. 12. 13.

14. 15.

For the following exercises, convert the given Cartesian equation to a polar equation.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.
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For the following exercises, convert the given polar equation to a Cartesian equation. Write in the standard form of a
conic if possible, and identify the conic section represented.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

Graphical

For the following exercises, find the polar coordinates of the point.

40. 41. 42.

43. 44.

For the following exercises, plot the points.

45. 46. 47.

48. 49. 50.
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51. 52. 53.

54.

For the following exercises, convert the equation from rectangular to polar form and graph on the polar axis.

55. 56. 57.

58. 59. 60.

61.

For the following exercises, convert the equation from polar to rectangular form and graph on the rectangular plane.

62. 63. 64.

65. 66. 67.

68.

Technology

69. Use a graphing calculator
to find the rectangular
coordinates of
Round to the nearest
thousandth.

70. Use a graphing calculator
to find the rectangular
coordinates of
Round to the nearest
thousandth.

71. Use a graphing calculator
to find the polar
coordinates of in
degrees. Round to the
nearest thousandth.

72. Use a graphing calculator
to find the polar
coordinates of in
degrees. Round to the
nearest hundredth.

73. Use a graphing calculator
to find the polar
coordinates of in
radians. Round to the
nearest hundredth.

Extensions

74. Describe the graph of 75. Describe the graph of 76. Describe the graph of

77. Describe the graph of 78. What polar equations will
give an oblique line?

For the following exercise, graph the polar inequality.

79. 80. 81.
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82. 83. 84.

10.4 Polar Coordinates: Graphs
Learning Objectives
In this section you will:

Test polar equations for symmetry.
Graph polar equations by plotting points.

The planets move through space in elliptical, periodic orbits about the sun, as shown in Figure 1. They are in constant
motion, so fixing an exact position of any planet is valid only for a moment. In other words, we can fix only a planet’s
instantaneous position. This is one application of polar coordinates, represented as We interpret as the distance
from the sun and as the planet’s angular bearing, or its direction from a fixed point on the sun. In this section, we will
focus on the polar system and the graphs that are generated directly from polar coordinates.

Figure 1 Planets follow elliptical paths as they orbit around the Sun. (credit: modification of work by NASA/JPL-Caltech)

Testing Polar Equations for Symmetry
Just as a rectangular equation such as describes the relationship between and on a Cartesian grid, a polar
equation describes a relationship between and on a polar grid. Recall that the coordinate pair indicates that we
move counterclockwise from the polar axis (positive x-axis) by an angle of and extend a ray from the pole (origin)
units in the direction of All points that satisfy the polar equation are on the graph.

Symmetry is a property that helps us recognize and plot the graph of any equation. If an equation has a graph that is
symmetric with respect to an axis, it means that if we folded the graph in half over that axis, the portion of the graph on
one side would coincide with the portion on the other side. By performing three tests, we will see how to apply the
properties of symmetry to polar equations. Further, we will use symmetry (in addition to plotting key points, zeros, and
maximums of to determine the graph of a polar equation.

In the first test, we consider symmetry with respect to the line (y-axis). We replace with to determine
if the new equation is equivalent to the original equation. For example, suppose we are given the equation

This equation exhibits symmetry with respect to the line

In the second test, we consider symmetry with respect to the polar axis ( -axis). We replace with or
to determine equivalency between the tested equation and the original. For example, suppose we are given

the equation
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The graph of this equation exhibits symmetry with respect to the polar axis.

In the third test, we consider symmetry with respect to the pole (origin). We replace with to determine if the
tested equation is equivalent to the original equation. For example, suppose we are given the equation

The equation has failed the symmetry test, but that does not mean that it is not symmetric with respect to the pole.
Passing one or more of the symmetry tests verifies that symmetry will be exhibited in a graph. However, failing the
symmetry tests does not necessarily indicate that a graph will not be symmetric about the line the polar axis, or
the pole. In these instances, we can confirm that symmetry exists by plotting reflecting points across the apparent axis
of symmetry or the pole. Testing for symmetry is a technique that simplifies the graphing of polar equations, but its
application is not perfect.

Symmetry Tests

A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for three types
of symmetry, as shown in Figure 2.

Figure 2 (a) A graph is symmetric with respect to the line (y-axis) if replacing with yields an
equivalent equation. (b) A graph is symmetric with respect to the polar axis (x-axis) if replacing with or

yields an equivalent equation. (c) A graph is symmetric with respect to the pole (origin) if replacing
with yields an equivalent equation.

HOW TO

Given a polar equation, test for symmetry.

1. Substitute the appropriate combination of components for for symmetry; for polar
axis symmetry; and for symmetry with respect to the pole.

2. If the resulting equations are equivalent in one or more of the tests, the graph produces the expected symmetry.

EXAMPLE 1

Testing a Polar Equation for Symmetry
Test the equation for symmetry.
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Solution
Test for each of the three types of symmetry.

1) Replacing with yields the same result. Thus, the graph
is symmetric with respect to the line

2) Replacing with does not yield the same equation. Therefore,
the graph fails the test and may or may not be symmetric with respect

to the polar axis.

3) Replacing with changes the equation and fails the test. The
graph may or may not be symmetric with respect to the pole.

Table 1

Analysis
Using a graphing calculator, we can see that the equation is a circle centered at with radius and is
indeed symmetric to the line We can also see that the graph is not symmetric with the polar axis or the pole. See
Figure 3.

Figure 3

TRY IT #1 Test the equation for symmetry:

Graphing Polar Equations by Plotting Points
To graph in the rectangular coordinate system we construct a table of and values. To graph in the polar coordinate
system we construct a table of and values. We enter values of into a polar equation and calculate However, using
the properties of symmetry and finding key values of and means fewer calculations will be needed.

Finding Zeros and Maxima
To find the zeros of a polar equation, we solve for the values of that result in Recall that, to find the zeros of
polynomial functions, we set the equation equal to zero and then solve for We use the same process for polar
equations. Set and solve for

For many of the forms we will encounter, the maximum value of a polar equation is found by substituting those values
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of into the equation that result in the maximum value of the trigonometric functions. Consider the
maximum distance between the curve and the pole is 5 units. The maximum value of the cosine function is 1 when

so our polar equation is and the value will yield the maximum

Similarly, the maximum value of the sine function is 1 when and if our polar equation is the value
will yield the maximum We may find additional information by calculating values of when These

points would be polar axis intercepts, which may be helpful in drawing the graph and identifying the curve of a polar
equation.

EXAMPLE 2

Finding Zeros and Maximum Values for a Polar Equation
Using the equation in Example 1, find the zeros and maximum and, if necessary, the polar axis intercepts of

Solution
To find the zeros, set equal to zero and solve for

Substitute any one of the values into the equation. We will use

The points and are the zeros of the equation. They all coincide, so only one point is visible on the graph.
This point is also the only polar axis intercept.

To find the maximum value of the equation, look at the maximum value of the trigonometric function which
occurs when resulting in Substitute for

Analysis
The point will be the maximum value on the graph. Let’s plot a few more points to verify the graph of a circle. See
Table 2 and Figure 4.

0

Table 2
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Table 2

Figure 4

TRY IT #2 Without converting to Cartesian coordinates, test the given equation for symmetry and find the
zeros and maximum values of

Investigating Circles
Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation
was used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted
points that produced the graphs. However, the circle is only one of many shapes in the set of polar curves.

There are five classic polar curves: cardioids, limaҫons, lemniscates, rose curves, and Archimedes’ spirals. We will
briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations.

Formulas for the Equation of a Circle

Some of the formulas that produce the graph of a circle in polar coordinates are given by and
where is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The

radius is or one-half the diameter. For   the center is For the center is

Figure 5 shows the graphs of these four circles.

Figure 5
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EXAMPLE 3

Sketching the Graph of a Polar Equation for a Circle
Sketch the graph of

Solution
First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we find the zeros
and maximum for First, set and solve for . Thus, a zero occurs at A key point to plot

is

To find the maximum value of note that the maximum value of the cosine function is 1 when Substitute
into the equation:

The maximum value of the equation is 4. A key point to plot is

As is symmetric with respect to the polar axis, we only need to calculate r-values for over the interval
Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values similar to Table 3. The
graph is shown in Figure 6.

0

4 3.46 2.83 2 0 −2 −2.83 −3.46 −4

Table 3

Figure 6

Investigating Cardioids
While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the
classic curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart.
This shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

Formulas for a Cardioid

The formulas that produce the graphs of a cardioid are given by and where
and The cardioid graph passes through the pole, as we can see in Figure 7.
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Figure 7

HOW TO

Given the polar equation of a cardioid, sketch its graph.

1. Check equation for the three types of symmetry.
2. Find the zeros. Set
3. Find the maximum value of the equation according to the maximum value of the trigonometric expression.
4. Make a table of values for and
5. Plot the points and sketch the graph.

EXAMPLE 4

Sketching the Graph of a Cardioid
Sketch the graph of

Solution
First, testing the equation for symmetry, we find that the graph of this equation will be symmetric about the polar axis.
Next, we find the zeros and maximums. Setting we have The zero of the equation is located at
The graph passes through this point.

The maximum value of occurs when is a maximum, which is when or when
Substitute into the equation, and solve for

The point is the maximum value on the graph.

We found that the polar equation is symmetric with respect to the polar axis, but as it extends to all four quadrants, we
need to plot values over the interval The upper portion of the graph is then reflected over the polar axis. Next, we
make a table of values, as in Table 4, and then we plot the points and draw the graph. See Figure 8.

4 3.41 2 1 0

Table 4
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Figure 8

Investigating Limaçons
The word limaçon is Old French for “snail,” a name that describes the shape of the graph. As mentioned earlier, the
cardioid is a member of the limaçon family, and we can see the similarities in the graphs. The other images in this
category include the one-loop limaçon and the two-loop (or inner-loop) limaçon. One-loop limaçons are sometimes
referred to as dimpled limaçons when and convex limaçons when

Formulas for One-Loop Limaçons

The formulas that produce the graph of a dimpled one-loop limaçon are given by and
where All four graphs are shown in Figure 9.

Figure 9 Dimpled limaçons

HOW TO

Given a polar equation for a one-loop limaçon, sketch the graph.

1. Test the equation for symmetry. Remember that failing a symmetry test does not mean that the shape will not
exhibit symmetry. Often the symmetry may reveal itself when the points are plotted.

2. Find the zeros.
3. Find the maximum values according to the trigonometric expression.
4. Make a table.
5. Plot the points and sketch the graph.
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EXAMPLE 5

Sketching the Graph of a One-Loop Limaçon
Graph the equation

Solution
First, testing the equation for symmetry, we find that it fails all three symmetry tests, meaning that the graph may or
may not exhibit symmetry, so we cannot use the symmetry to help us graph it. However, this equation has a graph that
clearly displays symmetry with respect to the line yet it fails all the three symmetry tests. A graphing calculator
will immediately illustrate the graph’s reflective quality.

Next, we find the zeros and maximum, and plot the reflecting points to verify any symmetry. Setting results in
being undefined. What does this mean? How could be undefined? The angle is undefined for any value of
Therefore, is undefined because there is no value of for which Consequently, the graph does not pass
through the pole. Perhaps the graph does cross the polar axis, but not at the pole. We can investigate other intercepts
by calculating when

So, there is at least one polar axis intercept at

Next, as the maximum value of the sine function is 1 when we will substitute into the equation and solve
for Thus,

Make a table of the coordinates similar to Table 5.

4 2.5 1.4 1 1.4 2.5 4 5.5 6.6 7 6.6 5.5 4

Table 5

The graph is shown in Figure 10.

Figure 10 One-loop limaçon

Analysis
This is an example of a curve for which making a table of values is critical to producing an accurate graph. The symmetry
tests fail; the zero is undefined. While it may be apparent that an equation involving is likely symmetric with
respect to the line evaluating more points helps to verify that the graph is correct.
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TRY IT #3 Sketch the graph of

Another type of limaçon, the inner-loop limaçon, is named for the loop formed inside the general limaçon shape. It was
discovered by the German artist Albrecht Dürer(1471-1528), who revealed a method for drawing the inner-loop limaçon
in his 1525 book Underweysung der Messing. A century later, the father of mathematician Blaise Pascal, Étienne
Pascal(1588-1651), rediscovered it.

Formulas for Inner-Loop Limaçons

The formulas that generate the inner-loop limaçons are given by and where
and The graph of the inner-loop limaçon passes through the pole twice: once for the outer loop, and

once for the inner loop. See Figure 11 for the graphs.

Figure 11

EXAMPLE 6

Sketching the Graph of an Inner-Loop Limaçon
Sketch the graph of

Solution
Testing for symmetry, we find that the graph of the equation is symmetric about the polar axis. Next, finding the zeros
reveals that when The maximum is found when or when Thus, the maximum is
found at the point (7, 0).

Even though we have found symmetry, the zero, and the maximum, plotting more points will help to define the shape,
and then a pattern will emerge.

See Table 6.

7 6.3 4.5 2 −0.5 −2.3 −3 −2.3 −0.5 2 4.5 6.3 7

Table 6

As expected, the values begin to repeat after The graph is shown in Figure 12.
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Figure 12 Inner-loop limaçon

Investigating Lemniscates
The lemniscate is a polar curve resembling the infinity symbol ∞ or a figure 8. Centered at the pole, a lemniscate is

symmetrical by definition.

Formulas for Lemniscates

The formulas that generate the graph of a lemniscate are given by and where
The formula is symmetric with respect to the pole. The formula is symmetric with
respect to the pole, the line and the polar axis. See Figure 13 for the graphs.

Figure 13

EXAMPLE 7

Sketching the Graph of a Lemniscate
Sketch the graph of

Solution
The equation exhibits symmetry with respect to the line the polar axis, and the pole.

Let’s find the zeros. It should be routine by now, but we will approach this equation a little differently by making the
substitution
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So, the point is a zero of the equation.

Now let’s find the maximum value. Since the maximum of when the maximum when
Thus,

We have a maximum at (2, 0). Since this graph is symmetric with respect to the pole, the line and the polar axis,
we only need to plot points in the first quadrant.

Make a table similar to Table 7.

0

0

Table 7

Plot the points on the graph, such as the one shown in Figure 14.

Figure 14 Lemniscate

Analysis
Making a substitution such as is a common practice in mathematics because it can make calculations simpler.
However, we must not forget to replace the substitution term with the original term at the end, and then solve for the
unknown.

Some of the points on this graph may not show up using the Trace function on the TI-84 graphing calculator, and the
calculator table may show an error for these same points of This is because there are no real square roots for these
values of In other words, the corresponding r-values of are complex numbers because there is a negative
number under the radical.

Investigating Rose Curves
The next type of polar equation produces a petal-like shape called a rose curve. Although the graphs look complex, a
simple polar equation generates the pattern.
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Rose Curves

The formulas that generate the graph of a rose curve are given by and where If is
even, the curve has petals. If is odd, the curve has petals. See Figure 15.

Figure 15

EXAMPLE 8

Sketching the Graph of a Rose Curve (n Even)
Sketch the graph of

Solution
Testing for symmetry, we find again that the symmetry tests do not tell the whole story. The graph is not only symmetric
with respect to the polar axis, but also with respect to the line and the pole.

Now we will find the zeros. First make the substitution

The zero is The point is on the curve.

Next, we find the maximum We know that the maximum value of when Thus,

The point is on the curve.

The graph of the rose curve has unique properties, which are revealed in Table 8.

0

2 0 −2 0 2 0 −2

Table 8
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As when it makes sense to divide values in the table by units. A definite pattern emerges. Look at the
range of r-values: 2, 0, −2, 0, 2, 0, −2, and so on. This represents the development of the curve one petal at a time.
Starting at each petal extends out a distance of and then turns back to zero times for a total of eight
petals. See the graph in Figure 16.

Figure 16 Rose curve, even

Analysis
When these curves are drawn, it is best to plot the points in order, as in the Table 8. This allows us to see how the graph
hits a maximum (the tip of a petal), loops back crossing the pole, hits the opposite maximum, and loops back to the pole.
The action is continuous until all the petals are drawn.

TRY IT #4 Sketch the graph of

EXAMPLE 9

Sketching the Graph of a Rose Curve (n Odd)
Sketch the graph of

Solution
The graph of the equation shows symmetry with respect to the line Next, find the zeros and maximum. We will
want to make the substitution

The maximum value is calculated at the angle where is a maximum. Therefore,

Thus, the maximum value of the polar equation is 2. This is the length of each petal. As the curve for odd yields the
same number of petals as there will be five petals on the graph. See Figure 17.
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Figure 17 Rose curve, odd

Create a table of values similar to Table 9.

0

0 1 −1.73 2 −1.73 1 0

Table 9

TRY IT #5 Sketch the graph of

Investigating the Archimedes’ Spiral
The final polar equation we will discuss is the Archimedes’ spiral, named for its discoverer, the Greek mathematician
Archimedes (c. 287 BCE-c. 212 BCE), who is credited with numerous discoveries in the fields of geometry and mechanics.

Archimedes’ Spiral

The formula that generates the graph of the Archimedes’ spiral is given by for As increases,
increases at a constant rate in an ever-widening, never-ending, spiraling path. See Figure 18.

Figure 18

HOW TO

Given an Archimedes’ spiral over sketch the graph.
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1. Make a table of values for and over the given domain.
2. Plot the points and sketch the graph.

EXAMPLE 10

Sketching the Graph of an Archimedes’ Spiral
Sketch the graph of over

Solution
As is equal to the plot of the Archimedes’ spiral begins at the pole at the point (0, 0). While the graph hints of
symmetry, there is no formal symmetry with regard to passing the symmetry tests. Further, there is no maximum value,
unless the domain is restricted.

Create a table such as Table 10.

0.785 1.57 3.14 4.71 5.50 6.28

Table 10

Notice that the r-values are just the decimal form of the angle measured in radians. We can see them on a graph in
Figure 19.

Figure 19 Archimedes’ spiral

Analysis

The domain of this polar curve is In general, however, the domain of this function is ∞ ∞ Graphing the

equation of the Archimedes’ spiral is rather simple, although the image makes it seem like it would be complex.

TRY IT #6 Sketch the graph of over the interval

Summary of Curves
We have explored a number of seemingly complex polar curves in this section. Figure 20 and Figure 21 summarize the
graphs and equations for each of these curves.
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Figure 20

Figure 21

MEDIA

Access these online resources for additional instruction and practice with graphs of polar coordinates.

Graphing Polar Equations Part 1 (http://openstax.org/l/polargraph1)
Graphing Polar Equations Part 2 (http://openstax.org/l/polargraph2)
Animation: The Graphs of Polar Equations (http://openstax.org/l/polaranim)
Graphing Polar Equations on the TI-84 (http://openstax.org/l/polarTI84)

10.4 SECTION EXERCISES
Verbal

1. Describe the three types of
symmetry in polar graphs,
and compare them to the
symmetry of the Cartesian
plane.

2. Which of the three types of
symmetries for polar graphs
correspond to the
symmetries with respect to
the x-axis, y-axis, and
origin?

3. What are the steps to follow
when graphing polar
equations?

4. Describe the shapes of the
graphs of cardioids,
limaçons, and lemniscates.

5. What part of the equation
determines the shape of the
graph of a polar equation?
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Graphical

For the following exercises, test the equation for symmetry.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.

For the following exercises, graph the polar equation. Identify the name of the shape.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43.

Technology

For the following exercises, use a graphing calculator to sketch the graph of the polar equation.

44. 45. 46. a cissoid

47. , a
hippopede

48. 49.

50. 51. 52.

53.
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For the following exercises, use a graphing utility to graph each pair of polar equations on a domain of and then
explain the differences shown in the graphs.

54. 55. 56.

57. 58. 59. On a graphing utility,
graph on ,

, , , , , and
, Describe the

effect of increasing the
width of the domain.

60. On a graphing utility,
graph and sketch

on

61. On a graphing utility,
graph each polar equation.
Explain the similarities and
differences you observe in
the graphs.

62. On a graphing utility,
graph each polar equation.
Explain the similarities and
differences you observe in
the graphs.

63. On a graphing utility,
graph each polar equation.
Explain the similarities and
differences you observe in
the graphs.

Extensions

For the following exercises, draw each polar equation on the same set of polar axes, and find the points of intersection.

64. 65. 66.

67. 68. 69. ,

70. 71. 72. ,
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10.5 Polar Form of Complex Numbers
Learning Objectives
In this section, you will:

Plot complex numbers in the complex plane.
Find the absolute value of a complex number.
Write complex numbers in polar form.
Convert a complex number from polar to rectangular form.
Find products of complex numbers in polar form.
Find quotients of complex numbers in polar form.
Find powers of complex numbers in polar form.
Find roots of complex numbers in polar form.

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German
mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex
numbers were invented by people and represent over a thousand years of continuous investigation and struggle by
mathematicians such as Pythagoras, Descartes, De Moivre, Euler, Gauss, and others. Complex numbers answered
questions that for centuries had puzzled the greatest minds in science.

We first encountered complex numbers in Complex Numbers. In this section, we will focus on the mechanics of working
with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa,
interpretation of complex numbers in the scheme of applications, and application of De Moivre’s Theorem.

Plotting Complex Numbers in the Complex Plane
Plotting a complex number is similar to plotting a real number, except that the horizontal axis represents the real
part of the number, and the vertical axis represents the imaginary part of the number,

HOW TO

Given a complex number plot it in the complex plane.

1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.
2. Plot the point in the complex plane by moving units in the horizontal direction and units in the vertical

direction.

EXAMPLE 1

Plotting a Complex Number in the Complex Plane
Plot the complex number in the complex plane.

Solution
From the origin, move two units in the positive horizontal direction and three units in the negative vertical direction. See
Figure 1.

958 10 • Further Applications of Trigonometry

Access for free at openstax.org



Figure 1

TRY IT #1 Plot the point in the complex plane.

Finding the Absolute Value of a Complex Number
The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of a
complex number is the same as its magnitude, or It measures the distance from the origin to a point in the plane.
For example, the graph of in Figure 2, shows

Figure 2

Absolute Value of a Complex Number

Given a complex number, the absolute value of is defined as

It is the distance from the origin to the point

Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value of a
complex number gives the distance of the number from the origin,
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EXAMPLE 2

Finding the Absolute Value of a Complex Number with a Radical
Find the absolute value of

Solution
Using the formula, we have

See Figure 3.

Figure 3

TRY IT #2 Find the absolute value of the complex number

EXAMPLE 3

Finding the Absolute Value of a Complex Number
Given find

Solution
Using the formula, we have

The absolute value is 5. See Figure 4.
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Figure 4

TRY IT #3 Given find

Writing Complex Numbers in Polar Form
The polar form of a complex number expresses a number in terms of an angle and its distance from the origin
Given a complex number in rectangular form expressed as we use the same conversion formulas as we do to
write the number in trigonometric form:

We review these relationships in Figure 5.

Figure 5

We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the
point The modulus, then, is the same as the radius in polar form. We use to indicate the angle of direction
(just as with polar coordinates). Substituting, we have

Polar Form of a Complex Number

Writing a complex number in polar form involves the following conversion formulas:
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Making a direct substitution, we have

where is the modulus and is the argument. We often use the abbreviation to represent

EXAMPLE 4

Expressing a Complex Number Using Polar Coordinates
Express the complex number using polar coordinates.

Solution
On the complex plane, the number is the same as Writing it in polar form, we have to calculate first.

Next, we look at If and then In polar coordinates, the complex number can be
written as or See Figure 6.

Figure 6

TRY IT #4 Express as in polar form.

EXAMPLE 5

Finding the Polar Form of a Complex Number
Find the polar form of

Solution
First, find the value of
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Find the angle using the formula:

Thus, the solution is

TRY IT #5 Write in polar form.

Converting a Complex Number from Polar to Rectangular Form
Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using the
distributive property. In other words, given first evaluate the trigonometric functions and

Then, multiply through by

EXAMPLE 6

Converting from Polar to Rectangular Form
Convert the polar form of the given complex number to rectangular form:

Solution
We begin by evaluating the trigonometric expressions.

After substitution, the complex number is

We apply the distributive property:

The rectangular form of the given point in complex form is
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EXAMPLE 7

Finding the Rectangular Form of a Complex Number
Find the rectangular form of the complex number given and

Solution

If and we first determine We then find and

The rectangular form of the given number in complex form is

TRY IT #6 Convert the complex number to rectangular form:

Finding Products of Complex Numbers in Polar Form
Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers
in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham De
Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex
numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.

Products of Complex Numbers in Polar Form

If and then the product of these numbers is given as:

Notice that the product calls for multiplying the moduli and adding the angles.

EXAMPLE 8

Finding the Product of Two Complex Numbers in Polar Form
Find the product of given and

Solution
Follow the formula

Finding Quotients of Complex Numbers in Polar Form
The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two
arguments.
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Quotients of Complex Numbers in Polar Form

If and then the quotient of these numbers is

Notice that the moduli are divided, and the angles are subtracted.

HOW TO

Given two complex numbers in polar form, find the quotient.

1. Divide

2. Find
3. Substitute the results into the formula: Replace with and replace with

4. Calculate the new trigonometric expressions and multiply through by

EXAMPLE 9

Finding the Quotient of Two Complex Numbers
Find the quotient of and

Solution
Using the formula, we have

TRY IT #7 Find the product and the quotient of and

Finding Powers of Complex Numbers in Polar Form
Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a positive
integer is found by raising the modulus to the power and multiplying the argument by It is the standard
method used in modern mathematics.

De Moivre’s Theorem

If is a complex number, then

where is a positive integer.
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EXAMPLE 10

Evaluating an Expression Using De Moivre’s Theorem
Evaluate the expression using De Moivre’s Theorem.

Solution
Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write in polar form.
Let us find

Then we find Using the formula gives

Use De Moivre’s Theorem to evaluate the expression.

Finding Roots of Complex Numbers in Polar Form
To find the nth root of a complex number in polar form, we use the Root Theorem or De Moivre’s Theorem and raise
the complex number to a power with a rational exponent. There are several ways to represent a formula for finding
roots of complex numbers in polar form.

The nth Root Theorem

To find the root of a complex number in polar form, use the formula given as

where We add to in order to obtain the periodic roots.

EXAMPLE 11

Finding the nth Root of a Complex Number
Evaluate the cube roots of

Solution
We have

966 10 • Further Applications of Trigonometry

Access for free at openstax.org



There will be three roots: When we have

When we have

When we have

Remember to find the common denominator to simplify fractions in situations like this one. For the angle
simplification is

TRY IT #8 Find the four fourth roots of

MEDIA

Access these online resources for additional instruction and practice with polar forms of complex numbers.

The Product and Quotient of Complex Numbers in Trigonometric Form (http://openstax.org/l/prodquocomplex)
De Moivre’s Theorem (http://openstax.org/l/demoivre)

10.5 SECTION EXERCISES
Verbal

1. A complex number is
Explain each part.

2. What does the absolute
value of a complex number
represent?

3. How is a complex number
converted to polar form?

4. How do we find the product
of two complex numbers?

5. What is De Moivre’s
Theorem and what is it used
for?
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Algebraic

For the following exercises, find the absolute value of the given complex number.

6. 7. 8.

9. 10. 11.

For the following exercises, write the complex number in polar form.

12. 13. 14.

15. 16.

For the following exercises, convert the complex number from polar to rectangular form.

17. 18. 19.

20. 21. 22.

For the following exercises, find in polar form.

23. 24.

25. 26.

27. 28.

For the following exercises, find in polar form.

29. 30.

31. 32.

33. 34.

For the following exercises, find the powers of each complex number in polar form.

35. Find when 36. Find when 37. Find when

38. Find when 39. Find when 40. Find when
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For the following exercises, evaluate each root.

41. Evaluate the cube root of
when

42. Evaluate the square root of
when

43. Evaluate the cube root of
when

44. Evaluate the square root of
when

45. Evaluate the square root of
when

Graphical

For the following exercises, plot the complex number in the complex plane.

46. 47. 48.

49. 50. 51.

52. 53. 54.

55.

Technology

For the following exercises, find all answers rounded to the nearest hundredth.

56. Use the rectangular to
polar feature on the
graphing calculator to
change to polar
form.

57. Use the rectangular to
polar feature on the
graphing calculator to
change to polar
form.

58. Use the rectangular to
polar feature on the
graphing calculator to
change to polar
form.

59. Use the polar to
rectangular feature on the
graphing calculator to
change to
rectangular form.

60. Use the polar to
rectangular feature on the
graphing calculator to
change to
rectangular form.

61. Use the polar to
rectangular feature on the
graphing calculator to
change to
rectangular form.

10.6 Parametric Equations
Learning Objectives
In this section, you will:

Parameterize a curve.
Eliminate the parameter.
Find a rectangular equation for a curve defined parametrically.
Find parametric equations for curves defined by rectangular equations.

Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in Figure 1.
At any moment, the moon is located at a particular spot relative to the planet. But how do we write and solve the
equation for the position of the moon when the distance from the planet, the speed of the moon’s orbit around the
planet, and the speed of rotation around the sun are all unknowns? We can solve only for one variable at a time.
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Figure 1

In this section, we will consider sets of equations given by and where is the independent variable of time. We
can use these parametric equations in a number of applications when we are looking for not only a particular position
but also the direction of the movement. As we trace out successive values of the orientation of the curve becomes
clear. This is one of the primary advantages of using parametric equations: we are able to trace the movement of an
object along a path according to time. We begin this section with a look at the basic components of parametric
equations and what it means to parameterize a curve. Then we will learn how to eliminate the parameter, translate the
equations of a curve defined parametrically into rectangular equations, and find the parametric equations for curves
defined by rectangular equations.

Parameterizing a Curve
When an object moves along a curve—or curvilinear path—in a given direction and in a given amount of time, the
position of the object in the plane is given by the x-coordinate and the y-coordinate. However, both and vary over
time and so are functions of time. For this reason, we add another variable, the parameter, upon which both and are
dependent functions. In the example in the section opener, the parameter is time, The position of the moon at time,

is represented as the function and the position of the moon at time, is represented as the function
Together, and are called parametric equations, and generate an ordered pair Parametric equations
primarily describe motion and direction.

When we parameterize a curve, we are translating a single equation in two variables, such as and   into an

equivalent pair of equations in three variables, and One of the reasons we parameterize a curve is because the
parametric equations yield more information: specifically, the direction of the object’s motion over time.

When we graph parametric equations, we can observe the individual behaviors of and of There are a number of
shapes that cannot be represented in the form meaning that they are not functions. For example, consider the
graph of a circle, given as Solving for gives or two equations: and

If we graph and together, the graph will not pass the vertical line test, as shown in Figure 2.
Thus, the equation for the graph of a circle is not a function.

Figure 2

970 10 • Further Applications of Trigonometry

Access for free at openstax.org



However, if we were to graph each equation on its own, each one would pass the vertical line test and therefore would
represent a function. In some instances, the concept of breaking up the equation for a circle into two functions is similar
to the concept of creating parametric equations, as we use two functions to produce a non-function. This will become
clearer as we move forward.

Parametric Equations

Suppose is a number on an interval, The set of ordered pairs, where and forms a
plane curve based on the parameter The equations and are the parametric equations.

EXAMPLE 1

Parameterizing a Curve
Parameterize the curve letting Graph both equations.

Solution
If then to find we replace the variable with the expression given in In other words,
Make a table of values similar to Table 1, and sketch the graph.

Table 1

See the graphs in Figure 3. It may be helpful to use the TRACE feature of a graphing calculator to see how the points are
generated as increases.
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Figure 3 (a) Parametric (b) Rectangular

Analysis
The arrows indicate the direction in which the curve is generated. Notice the curve is identical to the curve of

TRY IT #1 Construct a table of values and plot the parametric equations:

EXAMPLE 2

Finding a Pair of Parametric Equations
Find a pair of parametric equations that models the graph of using the parameter Plot some points
and sketch the graph.

Solution
If and we substitute for into the equation, then Our pair of parametric equations is

To graph the equations, first we construct a table of values like that in Table 2. We can choose values around from
to The values in the column will be the same as those in the column because Calculate

values for the column

Table 2
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The graph of is a parabola facing downward, as shown in Figure 4. We have mapped the curve over the
interval shown as a solid line with arrows indicating the orientation of the curve according to Orientation
refers to the path traced along the curve in terms of increasing values of As this parabola is symmetric with respect to
the line the values of are reflected across the y-axis.

Figure 4

TRY IT #2 Parameterize the curve given by

EXAMPLE 3

Finding Parametric Equations That Model Given Criteria
An object travels at a steady rate along a straight path to in the same plane in four seconds. The
coordinates are measured in meters. Find parametric equations for the position of the object.

Solution
The parametric equations are simple linear expressions, but we need to view this problem in a step-by-step fashion. The
x-value of the object starts at meters and goes to 3 meters. This means the distance x has changed by 8 meters in 4
seconds, which is a rate of or We can write the x-coordinate as a linear function with respect to time as

In the linear function template and

Similarly, the y-value of the object starts at 3 and goes to which is a change in the distance y of −4 meters in 4
seconds, which is a rate of or We can also write the y-coordinate as the linear function
Together, these are the parametric equations for the position of the object, where and are expressed in meters and
represents time:

Using these equations, we can build a table of values for and (see Table 3). In this example, we limited values of
to non-negative numbers. In general, any value of can be used.

Table 3
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Table 3

From this table, we can create three graphs, as shown in Figure 5.

Figure 5 (a) A graph of vs. representing the horizontal position over time. (b) A graph of vs. representing the
vertical position over time. (c) A graph of vs. representing the position of the object in the plane at time

Analysis
Again, we see that, in Figure 5(c), when the parameter represents time, we can indicate the movement of the object
along the path with arrows.

Eliminating the Parameter
In many cases, we may have a pair of parametric equations but find that it is simpler to draw a curve if the equation
involves only two variables, such as and Eliminating the parameter is a method that may make graphing some
curves easier. However, if we are concerned with the mapping of the equation according to time, then it will be
necessary to indicate the orientation of the curve as well. There are various methods for eliminating the parameter
from a set of parametric equations; not every method works for every type of equation. Here we will review the methods
for the most common types of equations.

Eliminating the Parameter from Polynomial, Exponential, and Logarithmic Equations
For polynomial, exponential, or logarithmic equations expressed as two parametric equations, we choose the equation
that is most easily manipulated and solve for We substitute the resulting expression for into the second equation.
This gives one equation in and

EXAMPLE 4

Eliminating the Parameter in Polynomials
Given and eliminate the parameter, and write the parametric equations as a Cartesian
equation.

Solution
We will begin with the equation for because the linear equation is easier to solve for

Next, substitute for in
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The Cartesian form is

Analysis
This is an equation for a parabola in which, in rectangular terms, is dependent on From the curve’s vertex at
the graph sweeps out to the right. See Figure 6. In this section, we consider sets of equations given by the functions
and where is the independent variable of time. Notice, both and are functions of time; so in general is not a
function of

Figure 6

TRY IT #3 Given the equations below, eliminate the parameter and write as a rectangular equation for as a
function of

EXAMPLE 5

Eliminating the Parameter in Exponential Equations
Eliminate the parameter and write as a Cartesian equation: and

Solution
Isolate

Substitute the expression into

The Cartesian form is
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Analysis
The graph of the parametric equation is shown in Figure 7(a). The domain is restricted to The Cartesian equation,

is shown in Figure 7(b) and has only one restriction on the domain,

Figure 7

EXAMPLE 6

Eliminating the Parameter in Logarithmic Equations
Eliminate the parameter and write as a Cartesian equation: and

Solution
Solve the first equation for

Then, substitute the expression for into the equation.

The Cartesian form is

Analysis
To be sure that the parametric equations are equivalent to the Cartesian equation, check the domains. The parametric
equations restrict the domain on to we restrict the domain on to The domain for the
parametric equation is restricted to we limit the domain on to

TRY IT #4 Eliminate the parameter and write as a rectangular equation.

Eliminating the Parameter from Trigonometric Equations
Eliminating the parameter from trigonometric equations is a straightforward substitution. We can use a few of the
familiar trigonometric identities and the Pythagorean Theorem.

First, we use the identities:

Solving for and we have
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Then, use the Pythagorean Theorem:

Substituting gives

EXAMPLE 7

Eliminating the Parameter from a Pair of Trigonometric Parametric Equations
Eliminate the parameter from the given pair of trigonometric equations where and sketch the graph.

Solution
Solving for and we have

Next, use the Pythagorean identity and make the substitutions.

The graph for the equation is shown in Figure 8.

Figure 8

Analysis

Applying the general equations for conic sections (introduced in Analytic Geometry, we can identify as an
ellipse centered at Notice that when the coordinates are and when the coordinates are
This shows the orientation of the curve with increasing values of

TRY IT #5 Eliminate the parameter from the given pair of parametric equations and write as a Cartesian

10.6 • Parametric Equations 977



equation: and

Finding Cartesian Equations from Curves Defined Parametrically
When we are given a set of parametric equations and need to find an equivalent Cartesian equation, we are essentially
“eliminating the parameter.” However, there are various methods we can use to rewrite a set of parametric equations as
a Cartesian equation. The simplest method is to set one equation equal to the parameter, such as In this case,

can be any expression. For example, consider the following pair of equations.

Rewriting this set of parametric equations is a matter of substituting for Thus, the Cartesian equation is

EXAMPLE 8

Finding a Cartesian Equation Using Alternate Methods
Use two different methods to find the Cartesian equation equivalent to the given set of parametric equations.

Solution
Method 1. First, let’s solve the equation for Then we can substitute the result into the equation.

Now substitute the expression for into the equation.

Method 2. Solve the equation for and substitute this expression in the equation.

Make the substitution and then solve for

TRY IT #6 Write the given parametric equations as a Cartesian equation: and

Finding Parametric Equations for Curves Defined by Rectangular Equations
Although we have just shown that there is only one way to interpret a set of parametric equations as a rectangular
equation, there are multiple ways to interpret a rectangular equation as a set of parametric equations. Any strategy we
may use to find the parametric equations is valid if it produces equivalency. In other words, if we choose an expression
to represent and then substitute it into the equation, and it produces the same graph over the same domain as the
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rectangular equation, then the set of parametric equations is valid. If the domain becomes restricted in the set of
parametric equations, and the function does not allow the same values for as the domain of the rectangular equation,
then the graphs will be different.

EXAMPLE 9

Finding a Set of Parametric Equations for Curves Defined by Rectangular Equations
Find a set of equivalent parametric equations for

Solution
An obvious choice would be to let Then But let’s try something more interesting. What if we
let Then we have

The set of parametric equations is

See Figure 9.

Figure 9

MEDIA

Access these online resources for additional instruction and practice with parametric equations.

Introduction to Parametric Equations (http://openstax.org/l/introparametric)
Converting Parametric Equations to Rectangular Form (http://openstax.org/l/convertpara)
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10.6 SECTION EXERCISES
Verbal

1. What is a system of
parametric equations?

2. Some examples of a third
parameter are time, length,
speed, and scale. Explain
when time is used as a
parameter.

3. Explain how to eliminate a
parameter given a set of
parametric equations.

4. What is a benefit of writing a
system of parametric
equations as a Cartesian
equation?

5. What is a benefit of using
parametric equations?

6. Why are there many sets of
parametric equations to
represent on Cartesian
function?

Algebraic

For the following exercises, eliminate the parameter to rewrite the parametric equation as a Cartesian equation.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25.

For the following exercises, rewrite the parametric equation as a Cartesian equation by building an table.

26. 27. 28.

29.
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For the following exercises, parameterize (write parametric equations for) each Cartesian equation by setting or
by setting

30. 31. 32.

33.

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by using
and Identify the curve.

34. 35. 36.

37. 38. Parameterize the line from
to so that

the line is at at
and at at

39. Parameterize the line from
to so that

the line is at at
and at at

40. Parameterize the line from
to so that the

line is at at
and at at

41. Parameterize the line from
to so that the

line is at at and
at at

Technology

For the following exercises, use the table feature in the graphing calculator to determine whether the graphs intersect.

42. 43.

For the following exercises, use a graphing calculator to complete the table of values for each set of parametric
equations.

44.

–1

0

1

45.

1

2

3

46.

-1

0

1

2
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Extensions

47. Find two different sets of
parametric equations for

48. Find two different sets of
parametric equations for

49. Find two different sets of
parametric equations for

10.7 Parametric Equations: Graphs
Learning Objectives
In this section you will:

Graph plane curves described by parametric equations by plotting points.
Graph parametric equations.

While not every fan (or team manager) appreciates it, baseball and many other sports have become dependent on
analytics, which involve complex data recording and quantitative evaluation used to understand and predict behavior.
The earliest influence of analytics was mostly statistical; more recently, physics and other sciences have come into play.
Foremost among these is the focus on launch angle and exit velocity, which when at certain values can almost guarantee
a home run. On the other hand, emphasis on launch angle and focusing on home runs rather than overall hitting results
in far more outs. Consider the following situation: it is the bottom of the ninth inning, with two outs and two players on
base. The home team is losing by two runs. The batter swings and hits the baseball at 140 feet per second and at an
angle of approximately to the horizontal. How far will the ball travel? Will it clear the fence for a game-winning home
run? The outcome may depend partly on other factors (for example, the wind), but mathematicians can model the path
of a projectile and predict approximately how far it will travel using parametric equations. In this section, we’ll discuss
parametric equations and some common applications, such as projectile motion problems.

Figure 1 Parametric equations can model the path of a projectile. (credit: Paul Kreher, Flickr)

Graphing Parametric Equations by Plotting Points
In lieu of a graphing calculator or a computer graphing program, plotting points to represent the graph of an equation is
the standard method. As long as we are careful in calculating the values, point-plotting is highly dependable.

HOW TO

Given a pair of parametric equations, sketch a graph by plotting points.

1. Construct a table with three columns:
2. Evaluate and for values of over the interval for which the functions are defined.
3. Plot the resulting pairs
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EXAMPLE 1

Sketching the Graph of a Pair of Parametric Equations by Plotting Points
Sketch the graph of the parametric equations

Solution
Construct a table of values for and as in Table 1, and plot the points in a plane.

Table 1

The graph is a parabola with vertex at the point opening to the right. See Figure 2.

Figure 2

Analysis
As values for progress in a positive direction from 0 to 5, the plotted points trace out the top half of the parabola. As
values of become negative, they trace out the lower half of the parabola. There are no restrictions on the domain. The
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arrows indicate direction according to increasing values of The graph does not represent a function, as it will fail the
vertical line test. The graph is drawn in two parts: the positive values for and the negative values for

TRY IT #1 Sketch the graph of the parametric equations

EXAMPLE 2

Sketching the Graph of Trigonometric Parametric Equations
Construct a table of values for the given parametric equations and sketch the graph:

Solution
Construct a table like that in Table 2 using angle measure in radians as inputs for and evaluating and Using angles
with known sine and cosine values for makes calculations easier.

0

Table 2

Figure 3 shows the graph.
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Figure 3

By the symmetry shown in the values of and we see that the parametric equations represent an ellipse. The ellipse is
mapped in a counterclockwise direction as shown by the arrows indicating increasing values.

Analysis
We have seen that parametric equations can be graphed by plotting points. However, a graphing calculator will save
some time and reveal nuances in a graph that may be too tedious to discover using only hand calculations.

Make sure to change the mode on the calculator to parametric (PAR). To confirm, the window should show

instead of

TRY IT #2 Graph the parametric equations:

EXAMPLE 3

Graphing Parametric Equations and Rectangular Form Together
Graph the parametric equations and First, construct the graph using data points generated from
the parametric form. Then graph the rectangular form of the equation. Compare the two graphs.

Solution
Construct a table of values like that in Table 3.

Table 3
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Table 3

Plot the values from the table. See Figure 4.

Figure 4

Next, translate the parametric equations to rectangular form. To do this, we solve for in either or and then
substitute the expression for in the other equation. The result will be a function if solving for as a function of
or if solving for as a function of

Then, use the Pythagorean Theorem.

Analysis
In Figure 5, the data from the parametric equations and the rectangular equation are plotted together. The parametric
equations are plotted in blue; the graph for the rectangular equation is drawn on top of the parametric in a dashed style
colored red. Clearly, both forms produce the same graph.
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Figure 5

EXAMPLE 4

Graphing Parametric Equations and Rectangular Equations on the Coordinate System
Graph the parametric equations and and the rectangular equivalent on the same
coordinate system.

Solution
Construct a table of values for the parametric equations, as we did in the previous example, and graph on
the same grid, as in Figure 6.

Figure 6

Analysis
With the domain on restricted, we only plot positive values of The parametric data is graphed in blue and the graph
of the rectangular equation is dashed in red. Once again, we see that the two forms overlap.

TRY IT #3 Sketch the graph of the parametric equations along with the
rectangular equation on the same grid.

Applications of Parametric Equations
Many of the advantages of parametric equations become obvious when applied to solving real-world problems.
Although rectangular equations in x and y give an overall picture of an object's path, they do not reveal the position of
an object at a specific time. Parametric equations, however, illustrate how the values of x and y change depending on t,
as the location of a moving object at a particular time.

A common application of parametric equations is solving problems involving projectile motion. In this type of motion, an
object is propelled forward in an upward direction forming an angle of to the horizontal, with an initial speed of
and at a height above the horizontal.
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The path of an object propelled at an inclination of to the horizontal, with initial speed and at a height above the
horizontal, is given by

where accounts for the effects of gravity and is the initial height of the object. Depending on the units involved in the
problem, use or The equation for gives horizontal distance, and the equation for gives the
vertical distance.

HOW TO

Given a projectile motion problem, use parametric equations to solve.

1. The horizontal distance is given by Substitute the initial speed of the object for
2. The expression indicates the angle at which the object is propelled. Substitute that angle in degrees for

3. The vertical distance is given by the formula The term represents the effect
of gravity. Depending on units involved, use or Again, substitute the initial speed for

and the height at which the object was propelled for
4. Proceed by calculating each term to solve for

EXAMPLE 5

Finding the Parametric Equations to Describe the Motion of a Baseball
Solve the problem presented at the beginning of this section. Does the batter hit the game-winning home run? Assume
that the ball is hit with an initial velocity of 140 feet per second at an angle of to the horizontal, making contact 3 feet
above the ground.

ⓐ Find the parametric equations to model the path of the baseball. ⓑ Where is the ball after 2 seconds?

ⓒ How long is the ball in the air? ⓓ Is it a home run?
Solution

ⓐ
Use the formulas to set up the equations. The horizontal position is found using the parametric equation for Thus,

The vertical position is found using the parametric equation for Thus,

ⓑ
Substitute 2 into the equations to find the horizontal and vertical positions of the ball.

After 2 seconds, the ball is 198 feet away from the batter’s box and 137 feet above the ground.
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ⓒ
To calculate how long the ball is in the air, we have to find out when it will hit ground, or when Thus,

When seconds, the ball has hit the ground. (The quadratic equation can be solved in various ways, but this
problem was solved using a computer math program.)

ⓓ
We cannot confirm that the hit was a home run without considering the size of the outfield, which varies from field to
field. However, for simplicity’s sake, let’s assume that the outfield wall is 400 feet from home plate in the deepest part
of the park. Let’s also assume that the wall is 10 feet high. In order to determine whether the ball clears the wall, we
need to calculate how high the ball is when x = 400 feet. So we will set x = 400, solve for and input into

The ball is 141.8 feet in the air when it soars out of the ballpark. It was indeed a home run. See Figure 7.

Figure 7

MEDIA

Access the following online resource for additional instruction and practice with graphs of parametric equations.

Graphing Parametric Equations on the TI-84 (http://openstax.org/l/graphpara84)

10.7 SECTION EXERCISES
Verbal

1. What are two methods used
to graph parametric
equations?

2. What is one difference in
point-plotting parametric
equations compared to
Cartesian equations?

3. Why are some graphs drawn
with arrows?

4. Name a few common types
of graphs of parametric
equations.

5. Why are parametric graphs
important in understanding
projectile motion?
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Graphical

For the following exercises, graph each set of parametric equations by making a table of values. Include the orientation
on the graph.

6. 7.

8. 9. 10.

11.

For the following exercises, sketch the curve and include the orientation.

12. 13. 14.

15. 16. 17.

18. 19. 20.

21. 22.
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For the following exercises, graph the equation and include the orientation. Then, write the Cartesian equation.

23. 24. 25.

26. 27.

For the following exercises, graph the equation and include the orientation.

28. 29. 30.

31. 32. 33.

For the following exercises, use the parametric equations for integers a and b:

34. Graph on the domain
where and

and include the
orientation.

35. Graph on the domain
where and

, and include the
orientation.

36. Graph on the domain
where and

, and include the
orientation.

37. Graph on the domain
where and

, and include the
orientation.

38. If is 1 more than
describe the effect the
values of and have on
the graph of the
parametric equations.

39. Describe the graph if
and

40. What happens if is 1
more than Describe the
graph.

41. If the parametric equations
and

have the graph of a
horizontal parabola
opening to the right, what
would change the direction
of the curve?

For the following exercises, describe the graph of the set of parametric equations.

42. and is
linear

43. and is linear 44. and is
linear

45. Write the parametric
equations of a circle with
center radius 5, and
a counterclockwise
orientation.

46. Write the parametric
equations of an ellipse with
center major axis of
length 10, minor axis of
length 6, and a
counterclockwise
orientation.
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For the following exercises, use a graphing utility to graph on the window by on the domain for the
following values of and , and include the orientation.

47. 48. 49.

50. 51. 52.

Technology

For the following exercises, look at the graphs that were created by parametric equations of the form

Use the parametric mode on the graphing calculator to find the values of and to achieve each graph.

53.

54.
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55.

56.

For the following exercises, use a graphing utility to graph the given parametric equations.

a.

b.

c.

57. Graph all three sets of
parametric equations on
the domain

58. Graph all three sets of
parametric equations on
the domain

59. Graph all three sets of
parametric equations on
the domain
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60. The graph of each set of
parametric equations
appears to “creep” along
one of the axes. What
controls which axis the
graph creeps along?

61. Explain the effect on the
graph of the parametric
equation when we
switched and .

62. Explain the effect on the
graph of the parametric
equation when we
changed the domain.

Extensions

63. An object is thrown in the air with vertical velocity
of 20 ft/s and horizontal velocity of 15 ft/s. The
object’s height can be described by the equation

, while the object moves
horizontally with constant velocity 15 ft/s. Write
parametric equations for the object’s position,
and then eliminate time to write height as a
function of horizontal position.

64. A skateboarder riding on a level surface at a
constant speed of 9 ft/s throws a ball in the air,
the height of which can be described by the
equation Write
parametric equations for the ball’s position, and
then eliminate time to write height as a function
of horizontal position.

For the following exercises, use this scenario: A dart is thrown upward with an initial velocity of 65 ft/s at an angle of
elevation of 52°. Consider the position of the dart at any time Neglect air resistance.

65. Find parametric equations
that model the problem
situation.

66. Find all possible values of
that represent the
situation.

67. When will the dart hit the
ground?

68. Find the maximum height
of the dart.

69. At what time will the dart
reach maximum height?

For the following exercises, look at the graphs of each of the four parametric equations. Although they look unusual and
beautiful, they are so common that they have names, as indicated in each exercise. Use a graphing utility to graph each
on the indicated domain.

70. An epicycloid: on the

domain .

71. A hypocycloid: on the

domain .

72. A hypotrochoid: on

the domain .

73. A rose: on the domain

.

10.8 Vectors
Learning Objectives
In this section you will:

View vectors geometrically.
Find magnitude and direction.
Perform vector addition and scalar multiplication.
Find the component form of a vector.
Find the unit vector in the direction of .
Perform operations with vectors in terms of and .
Find the dot product of two vectors.

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north to
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south) is blowing at 16.2 miles per hour, as shown in Figure 1. What are the ground speed and actual bearing of the
plane?

Figure 1

Ground speed refers to the speed of a plane relative to the ground. Airspeed refers to the speed a plane can travel
relative to its surrounding air mass. These two quantities are not the same because of the effect of wind. In an earlier
section, we used triangles to solve a similar problem involving the movement of boats. Later in this section, we will find
the airplane’s groundspeed and bearing, while investigating another approach to problems of this type. First, however,
let’s examine the basics of vectors.

A Geometric View of Vectors
A vector is a specific quantity drawn as a line segment with an arrowhead at one end. It has an initial point, where it
begins, and a terminal point, where it ends. A vector is defined by its magnitude, or the length of the line, and its
direction, indicated by an arrowhead at the terminal point. Thus, a vector is a directed line segment. There are various
symbols that distinguish vectors from other quantities:

• Lower case, boldfaced type, with or without an arrow on top such as
• Given initial point and terminal point a vector can be represented as The arrowhead on top is what

indicates that it is not just a line, but a directed line segment.
• Given an initial point of and terminal point a vector may be represented as

This last symbol has special significance. It is called the standard position. The position vector has an initial point
and a terminal point To change any vector into the position vector, we think about the change in the

x-coordinates and the change in the y-coordinates. Thus, if the initial point of a vector is and the terminal
point is then the position vector is found by calculating

In Figure 2, we see the original vector and the position vector

Figure 2
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Properties of Vectors

A vector is a directed line segment with an initial point and a terminal point. Vectors are identified by magnitude, or
the length of the line, and direction, represented by the arrowhead pointing toward the terminal point. The position
vector has an initial point at and is identified by its terminal point

EXAMPLE 1

Find the Position Vector
Consider the vector whose initial point is and terminal point is Find the position vector.

Solution
The position vector is found by subtracting one x-coordinate from the other x-coordinate, and one y-coordinate from the
other y-coordinate. Thus

The position vector begins at and terminates at The graphs of both vectors are shown in Figure 3.

Figure 3

We see that the position vector is

EXAMPLE 2

Drawing a Vector with the Given Criteria and Its Equivalent Position Vector
Find the position vector given that vector has an initial point at and a terminal point at then graph both
vectors in the same plane.

Solution
The position vector is found using the following calculation:

Thus, the position vector begins at and terminates at See Figure 4.
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Figure 4

TRY IT #1 Draw a vector that connects from the origin to the point

Finding Magnitude and Direction
To work with a vector, we need to be able to find its magnitude and its direction. We find its magnitude using the
Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent function.

Magnitude and Direction of a Vector

Given a position vector the magnitude is found by The direction is equal to the angle
formed with the x-axis, or with the y-axis, depending on the application. For a position vector, the direction is found
by as illustrated in Figure 5.

Figure 5

Two vectors v and u are considered equal if they have the same magnitude and the same direction. Additionally, if
both vectors have the same position vector, they are equal.

EXAMPLE 3

Finding the Magnitude and Direction of a Vector
Find the magnitude and direction of the vector with initial point and terminal point Draw the
vector.

Solution
First, find the position vector.
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We use the Pythagorean Theorem to find the magnitude.

The direction is given as

However, the angle terminates in the fourth quadrant, so we add 360° to obtain a positive angle. Thus,
See Figure 6.

Figure 6

EXAMPLE 4

Showing That Two Vectors Are Equal
Show that vector v with initial point at and terminal point at is equal to vector u with initial point at

and terminal point at Draw the position vector on the same grid as v and u. Next, find the magnitude
and direction of each vector.

Solution
As shown in Figure 7, draw the vector starting at initial and terminal point Draw the vector with initial
point and terminal point Find the standard position for each.

Next, find and sketch the position vector for v and u. We have

Since the position vectors are the same, v and u are the same.

An alternative way to check for vector equality is to show that the magnitude and direction are the same for both
vectors. To show that the magnitudes are equal, use the Pythagorean Theorem.
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As the magnitudes are equal, we now need to verify the direction. Using the tangent function with the position vector
gives

However, we can see that the position vector terminates in the second quadrant, so we add Thus, the direction is

Figure 7

Performing Vector Addition and Scalar Multiplication
Now that we understand the properties of vectors, we can perform operations involving them. While it is convenient to
think of the vector as an arrow or directed line segment from the origin to the point vectors can be
situated anywhere in the plane. The sum of two vectors u and v, or vector addition, produces a third vector u+ v, the
resultant vector.

To find u + v, we first draw the vector u, and from the terminal end of u, we drawn the vector v. In other words, we have
the initial point of v meet the terminal end of u. This position corresponds to the notion that we move along the first
vector and then, from its terminal point, we move along the second vector. The sum u + v is the resultant vector because
it results from addition or subtraction of two vectors. The resultant vector travels directly from the beginning of u to the
end of v in a straight path, as shown in Figure 8.

Figure 8

Vector subtraction is similar to vector addition. To find u − v, view it as u + (−v). Adding −v is reversing direction of v and
adding it to the end of u. The new vector begins at the start of u and stops at the end point of −v. See Figure 9 for a
visual that compares vector addition and vector subtraction using parallelograms.
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Figure 9

EXAMPLE 5

Adding and Subtracting Vectors
Given and find two new vectors u + v, and u − v.

Solution
To find the sum of two vectors, we add the components. Thus,

See Figure 10(a).

To find the difference of two vectors, add the negative components of to Thus,

See Figure 10(b).

Figure 10 (a) Sum of two vectors (b) Difference of two vectors

Multiplying By a Scalar
While adding and subtracting vectors gives us a new vector with a different magnitude and direction, the process of
multiplying a vector by a scalar, a constant, changes only the magnitude of the vector or the length of the line. Scalar
multiplication has no effect on the direction unless the scalar is negative, in which case the direction of the resulting
vector is opposite the direction of the original vector.

Scalar Multiplication

Scalar multiplication involves the product of a vector and a scalar. Each component of the vector is multiplied by the
scalar. Thus, to multiply by , we have

Only the magnitude changes, unless is negative, and then the vector reverses direction.
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EXAMPLE 6

Performing Scalar Multiplication
Given vector find 3v, and −v.

Solution
See Figure 11 for a geometric interpretation. If then

Figure 11

Analysis
Notice that the vector 3v is three times the length of v, is half the length of v, and –v is the same length of v, but in
the opposite direction.

TRY IT #2 Find the scalar multiple 3 given

EXAMPLE 7

Using Vector Addition and Scalar Multiplication to Find a New Vector
Given and find a new vector w = 3u + 2v.

Solution
First, we must multiply each vector by the scalar.

Then, add the two together.
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So,

Finding Component Form
In some applications involving vectors, it is helpful for us to be able to break a vector down into its components. Vectors
are comprised of two components: the horizontal component is the direction, and the vertical component is the
direction. For example, we can see in the graph in Figure 12 that the position vector comes from adding the
vectors v1 and v2. We have v1 with initial point and terminal point

We also have v2 with initial point and terminal point

Therefore, the position vector is

Using the Pythagorean Theorem, the magnitude of v1 is 2, and the magnitude of v2 is 3. To find the magnitude of v, use
the formula with the position vector.

The magnitude of v is To find the direction, we use the tangent function

Figure 12

Thus, the magnitude of is and the direction is off the horizontal.
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EXAMPLE 8

Finding the Components of the Vector
Find the components of the vector with initial point and terminal point

Solution
First find the standard position.

See the illustration in Figure 13.

Figure 13

The horizontal component is and the vertical component is

Finding the Unit Vector in the Direction of v
In addition to finding a vector’s components, it is also useful in solving problems to find a vector in the same direction as
the given vector, but of magnitude 1. We call a vector with a magnitude of 1 a unit vector. We can then preserve the
direction of the original vector while simplifying calculations.

Unit vectors are defined in terms of components. The horizontal unit vector is written as and is directed along
the positive horizontal axis. The vertical unit vector is written as and is directed along the positive vertical axis.
See Figure 14.

Figure 14

The Unit Vectors

If is a nonzero vector, then is a unit vector in the direction of Any vector divided by its magnitude is a unit

vector. Notice that magnitude is always a scalar, and dividing by a scalar is the same as multiplying by the reciprocal
of the scalar.
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EXAMPLE 9

Finding the Unit Vector in the Direction of v
Find a unit vector in the same direction as

Solution
First, we will find the magnitude.

Then we divide each component by which gives a unit vector in the same direction as v:

or, in component form

See Figure 15.

Figure 15

Verify that the magnitude of the unit vector equals 1. The magnitude of is given as

The vector u i j is the unit vector in the same direction as v

Performing Operations with Vectors in Terms of i and j
So far, we have investigated the basics of vectors: magnitude and direction, vector addition and subtraction, scalar
multiplication, the components of vectors, and the representation of vectors geometrically. Now that we are familiar
with the general strategies used in working with vectors, we will represent vectors in rectangular coordinates in terms of
i and j.
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Vectors in the Rectangular Plane

Given a vector with initial point and terminal point v is written as

The position vector from to where and is written as v = ai + bj. This vector
sum is called a linear combination of the vectors i and j.

The magnitude of v = ai + bj is given as See Figure 16.

Figure 16

EXAMPLE 10

Writing a Vector in Terms of i and j
Given a vector with initial point and terminal point write the vector in terms of and

Solution
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

EXAMPLE 11

Writing a Vector in Terms of i and j Using Initial and Terminal Points
Given initial point and terminal point write the vector in terms of and

Solution
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

TRY IT #3 Write the vector with initial point and terminal point in terms of and

Performing Operations on Vectors in Terms of i and j
When vectors are written in terms of and we can carry out addition, subtraction, and scalar multiplication by
performing operations on corresponding components.
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Adding and Subtracting Vectors in Rectangular Coordinates

Given v = ai + bj and u = ci + dj, then

EXAMPLE 12

Finding the Sum of the Vectors
Find the sum of and

Solution
According to the formula, we have

Calculating the Component Form of a Vector: Direction
We have seen how to draw vectors according to their initial and terminal points and how to find the position vector. We
have also examined notation for vectors drawn specifically in the Cartesian coordinate plane using For any of
these vectors, we can calculate the magnitude. Now, we want to combine the key points, and look further at the ideas of
magnitude and direction.

Calculating direction follows the same straightforward process we used for polar coordinates. We find the direction of
the vector by finding the angle to the horizontal. We do this by using the basic trigonometric identities, but with
replacing

Vector Components in Terms of Magnitude and Direction

Given a position vector and a direction angle

Thus, and magnitude is expressed as

EXAMPLE 13

Writing a Vector in Terms of Magnitude and Direction
Write a vector with length 7 at an angle of 135° to the positive x-axis in terms of magnitude and direction.

Solution
Using the conversion formulas and we find that

This vector can be written as or simplified as
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TRY IT #4 A vector travels from the origin to the point Write the vector in terms of magnitude and
direction.

Finding the Dot Product of Two Vectors
As we discussed earlier in the section, scalar multiplication involves multiplying a vector by a scalar, and the result is a
vector. As we have seen, multiplying a vector by a number is called scalar multiplication. If we multiply a vector by a
vector, there are two possibilities: the dot product and the cross product. We will only examine the dot product here; you
may encounter the cross product in more advanced mathematics courses.

The dot product of two vectors involves multiplying two vectors together, and the result is a scalar.

Dot Product

The dot product of two vectors and is the sum of the product of the horizontal components and
the product of the vertical components.

To find the angle between the two vectors, use the formula below.

EXAMPLE 14

Finding the Dot Product of Two Vectors
Find the dot product of and

Solution
Using the formula, we have

EXAMPLE 15

Finding the Dot Product of Two Vectors and the Angle between Them
Find the dot product of v1 = 5i + 2j and v2 = 3i + 7j. Then, find the angle between the two vectors.

Solution
Finding the dot product, we multiply corresponding components.

To find the angle between them, we use the formula
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See Figure 17.

Figure 17

EXAMPLE 16

Finding the Angle between Two Vectors
Find the angle between and

Solution
Using the formula, we have

See Figure 18.
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Figure 18

EXAMPLE 17

Finding Ground Speed and Bearing Using Vectors
We now have the tools to solve the problem we introduced in the opening of the section.

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north to
south) is blowing at 16.2 miles per hour. What are the ground speed and actual bearing of the plane? See Figure 19.

Figure 19

Solution
The ground speed is represented by in the diagram, and we need to find the angle in order to calculate the adjusted
bearing, which will be

Notice in Figure 19, that angle must be equal to angle by the rule of alternating interior angles, so angle
is 140°. We can find by the Law of Cosines:

The ground speed is approximately 213 miles per hour. Now we can calculate the bearing using the Law of Sines.
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Therefore, the plane has a SE bearing of 140°+2.8°=142.8°. The ground speed is 212.7 miles per hour.

MEDIA

Access these online resources for additional instruction and practice with vectors.

Introduction to Vectors (http://openstax.org/l/introvectors)
Vector Operations (http://openstax.org/l/vectoroperation)
The Unit Vector (http://openstax.org/l/unitvector)

10.8 SECTION EXERCISES
Verbal

1. What are the characteristics
of the letters that are
commonly used to
represent vectors?

2. How is a vector more
specific than a line
segment?

3. What are and and what
do they represent?

4. What is component form? 5. When a unit vector is
expressed as which
letter is the coefficient of the

and which the

Algebraic

6. Given a vector with initial
point and terminal
point find an
equivalent vector whose
initial point is Write
the vector in component
form

7. Given a vector with initial
point and terminal
point find an
equivalent vector whose
initial point is Write
the vector in component
form

8. Given a vector with initial
point and terminal
point find an
equivalent vector whose
initial point is Write
the vector in component
form

For the following exercises, determine whether the two vectors and are equal, where has an initial point and a
terminal point and has an initial point and a terminal point .

9. and 10. and

11. and 12. and

13. and 14. Given initial point and terminal point
write the vector in terms of and
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15. Given initial point and terminal point
write the vector in terms of and

For the following exercises, use the vectors u = i + 5j, v = −2i− 3j, and w = 4i − j.

16. Find u + (v − w) 17. Find 4v + 2u

For the following exercises, use the given vectors to compute u + v, u − v, and 2u − 3v.

18. 19. 20. Let v = −4i + 3j. Find a
vector that is half the
length and points in the
same direction as

21. Let v = 5i + 2j. Find a vector
that is twice the length and
points in the opposite
direction as

For the following exercises, find a unit vector in the same direction as the given vector.

22. a = 3i + 4j 23. b = −2i + 5j 24. c = 10i – j

25. 26. u = 100i + 200j 27. u = −14i + 2j

For the following exercises, find the magnitude and direction of the vector,

28. 29. 30.

31. 32. Given u = 3i − 4j and v = −2i
+ 3j, calculate

33. Given u = −i − j and v = i +
5j, calculate

34. Given and
calculate

35. Given u and v
calculate

Graphical

For the following exercises, given draw 3v and

36. 37. 38.
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For the following exercises, use the vectors shown to sketch u + v, u − v, and 2u.

39. 40. 41.

For the following exercises, use the vectors shown to sketch 2u + v.

42. 43.

For the following exercises, use the vectors shown to sketch u − 3v.

44. 45.
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For the following exercises, write the vector shown in component form.

46. 47. 48. Given initial point
and terminal

point write
the vector in terms of
and then draw the vector
on the graph.

49. Given initial point
and terminal

point write
the vector in terms of
and Draw the points and
the vector on the graph.

50. Given initial point
and terminal

point write
the vector in terms of
and Draw the points and
the vector on the graph.

Extensions

For the following exercises, use the given magnitude and direction in standard position, write the vector in component
form.

51. 52. 53.

54.

ⓐ Find the magnitude of
the normal (perpendicular)
component of the force.

ⓑ Find the magnitude of
the component of the force
that is parallel to the ramp.

55. A 60-pound box is resting
on a ramp that is inclined
12°. Rounding to the
nearest tenth,

ⓐ Find the magnitude of
the normal (perpendicular)
component of the force.

ⓑ Find the magnitude of
the component of the force
that is parallel to the ramp.

56. A 25-pound box is resting
on a ramp that is inclined
8°. Rounding to the nearest
tenth,

57. Find the magnitude of the
horizontal and vertical
components of a vector
with magnitude 8 pounds
pointed in a direction of
27° above the horizontal.
Round to the nearest
hundredth.

58. Find the magnitude of the
horizontal and vertical
components of the vector
with magnitude 4 pounds
pointed in a direction of
127° above the horizontal.
Round to the nearest
hundredth.

59. Find the magnitude of the
horizontal and vertical
components of a vector
with magnitude 5 pounds
pointed in a direction of
55° above the horizontal.
Round to the nearest
hundredth.

60. Find the magnitude of the
horizontal and vertical
components of the vector
with magnitude 1 pound
pointed in a direction of 8°
above the horizontal.
Round to the nearest
hundredth.
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Real-World Applications

61. A woman leaves home and
walks 3 miles west, then 2
miles southwest. How far
from home is she, and in
what direction must she
walk to head directly
home?

62. A boat leaves the marina
and sails 6 miles north,
then 2 miles northeast.
How far from the marina is
the boat, and in what
direction must it sail to
head directly back to the
marina?

63. A man starts walking from
home and walks 4 miles
east, 2 miles southeast, 5
miles south, 4 miles
southwest, and 2 miles
east. How far has he
walked? If he walked
straight home, how far
would he have to walk?

64. A woman starts walking
from home and walks 4
miles east, 7 miles
southeast, 6 miles south, 5
miles southwest, and 3
miles east. How far has she
walked? If she walked
straight home, how far
would she have to walk?

65. A man starts walking from
home and walks 3 miles at
20° north of west, then 5
miles at 10° west of south,
then 4 miles at 15° north of
east. If he walked straight
home, how far would he
have to the walk, and in
what direction?

66. A woman starts walking
from home and walks 6
miles at 40° north of east,
then 2 miles at 15° east of
south, then 5 miles at 30°
south of west. If she
walked straight home, how
far would she have to walk,
and in what direction?

67. An airplane is heading
north at an airspeed of 600
km/hr, but there is a wind
blowing from the
southwest at 80 km/hr.
How many degrees off
course will the plane end
up flying, and what is the
plane’s speed relative to
the ground?

68. An airplane is heading
north at an airspeed of 500
km/hr, but there is a wind
blowing from the
northwest at 50 km/hr.
How many degrees off
course will the plane end
up flying, and what is the
plane’s speed relative to
the ground?

69. An airplane needs to head
due north, but there is a
wind blowing from the
southwest at 60 km/hr. The
plane flies with an airspeed
of 550 km/hr. To end up
flying due north, how many
degrees west of north will
the pilot need to fly the
plane?

70. An airplane needs to head
due north, but there is a
wind blowing from the
northwest at 80 km/hr. The
plane flies with an airspeed
of 500 km/hr. To end up
flying due north, how many
degrees west of north will
the pilot need to fly the
plane?

71. As part of a video game,
the point is rotated
counterclockwise about the
origin through an angle of
35°. Find the new
coordinates of this point.

72. As part of a video game,
the point is rotated
counterclockwise about the
origin through an angle of
40°. Find the new
coordinates of this point.
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73. Two children are throwing
a ball back and forth
straight across the back
seat of a car. The ball is
being thrown 10 mph
relative to the car, and the
car is traveling 25 mph
down the road. If one child
doesn't catch the ball, and
it flies out the window, in
what direction does the
ball fly (ignoring wind
resistance)?

74. Two children are throwing
a ball back and forth
straight across the back
seat of a car. The ball is
being thrown 8 mph
relative to the car, and the
car is traveling 45 mph
down the road. If one child
doesn't catch the ball, and
it flies out the window, in
what direction does the
ball fly (ignoring wind
resistance)?

75. A 50-pound object rests on
a ramp that is inclined 19°.
Find the magnitude of the
components of the force
parallel to and
perpendicular to (normal)
the ramp to the nearest
tenth of a pound.

76. Suppose a body has a force
of 10 pounds acting on it to
the right, 25 pounds acting
on it upward, and 5 pounds
acting on it 45° from the
horizontal. What single
force is the resultant force
acting on the body?

77. Suppose a body has a force
of 10 pounds acting on it to
the right, 25 pounds acting
on it ─135° from the
horizontal, and 5 pounds
acting on it directed 150°
from the horizontal. What
single force is the resultant
force acting on the body?

78. The condition of
equilibrium is when the
sum of the forces acting on
a body is the zero vector.
Suppose a body has a force
of 2 pounds acting on it to
the right, 5 pounds acting
on it upward, and 3 pounds
acting on it 45° from the
horizontal. What single
force is needed to produce
a state of equilibrium on
the body?

79. Suppose a body has a force
of 3 pounds acting on it to
the left, 4 pounds acting on
it upward, and 2 pounds
acting on it 30° from the
horizontal. What single
force is needed to produce
a state of equilibrium on
the body? Draw the vector.
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Chapter Review
Key Terms
altitude a perpendicular line from one vertex of a triangle to the opposite side, or in the case of an obtuse triangle, to

the line containing the opposite side, forming two right triangles
ambiguous case a scenario in which more than one triangle is a valid solution for a given oblique SSA triangle
Archimedes’ spiral a polar curve given by When multiplied by a constant, the equation appears as As

the curve continues to widen in a spiral path over the domain.
argument the angle associated with a complex number; the angle between the line from the origin to the point and

the positive real axis
cardioid a member of the limaçon family of curves, named for its resemblance to a heart; its equation is given as

and where
convex limaҫon a type of one-loop limaçon represented by and such that
De Moivre’s Theorem formula used to find the power or nth roots of a complex number; states that, for a positive

integer is found by raising the modulus to the power and multiplying the angles by
dimpled limaҫon a type of one-loop limaçon represented by and such that
dot product given two vectors, the sum of the product of the horizontal components and the product of the vertical

components
Generalized Pythagorean Theorem an extension of the Law of Cosines; relates the sides of an oblique triangle and is

used for SAS and SSS triangles
initial point the origin of a vector
inner-loop limaçon a polar curve similar to the cardioid, but with an inner loop; passes through the pole twice;

represented by and where
Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other two sides

minus twice the product of the other two sides and the cosine of the included angle
Law of Sines states that the ratio of the measurement of one angle of a triangle to the length of its opposite side is

equal to the remaining two ratios of angle measure to opposite side; any pair of proportions may be used to solve for
a missing angle or side

lemniscate a polar curve resembling a figure 8 and given by the equation and
magnitude the length of a vector; may represent a quantity such as speed, and is calculated using the Pythagorean

Theorem
modulus the absolute value of a complex number, or the distance from the origin to the point also called the

amplitude
oblique triangle any triangle that is not a right triangle
one-loop limaҫon a polar curve represented by and such that and

may be dimpled or convex; does not pass through the pole
parameter a variable, often representing time, upon which and are both dependent
polar axis on the polar grid, the equivalent of the positive x-axis on the rectangular grid
polar coordinates on the polar grid, the coordinates of a point labeled where indicates the angle of rotation

from the polar axis and represents the radius, or the distance of the point from the pole in the direction of
polar equation an equation describing a curve on the polar grid.
polar form of a complex number a complex number expressed in terms of an angle and its distance from the origin

can be found by using conversion formulas and
pole the origin of the polar grid
resultant a vector that results from addition or subtraction of two vectors, or from scalar multiplication
rose curve a polar equation resembling a flower, given by the equations and when is even

there are petals, and the curve is highly symmetrical; when is odd there are petals.
scalar a quantity associated with magnitude but not direction; a constant
scalar multiplication the product of a constant and each component of a vector
standard position the placement of a vector with the initial point at and the terminal point represented by

the change in the x-coordinates and the change in the y-coordinates of the original vector
terminal point the end point of a vector, usually represented by an arrow indicating its direction
unit vector a vector that begins at the origin and has magnitude of 1; the horizontal unit vector runs along the x-axis

and is defined as the vertical unit vector runs along the y-axis and is defined as
vector a quantity associated with both magnitude and direction, represented as a directed line segment with a starting

point (initial point) and an end point (terminal point)
vector addition the sum of two vectors, found by adding corresponding components
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Key Equations

Law of Sines

Area for oblique triangles

Law of Cosines

Heron’s formula

Conversion formulas

Key Concepts
10.1 Non-right Triangles: Law of Sines

• The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
• According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side

equals the other two ratios of angle measure to opposite side.
• There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate

equation to find the requested solution. See Example 1.
• The ambiguous case arises when an oblique triangle can have different outcomes.
• There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no

solution. See Example 2 and Example 3.
• The Law of Sines can be used to solve triangles with given criteria. See Example 4.
• The general area formula for triangles translates to oblique triangles by first finding the appropriate height value.

See Example 5.
• There are many trigonometric applications. They can often be solved by first drawing a diagram of the given

information and then using the appropriate equation. See Example 6.

10.2 Non-right Triangles: Law of Cosines

• The Law of Cosines defines the relationship among angle measurements and lengths of sides in oblique triangles.
• The Generalized Pythagorean Theorem is the Law of Cosines for two cases of oblique triangles: SAS and SSS.

Dropping an imaginary perpendicular splits the oblique triangle into two right triangles or forms one right triangle,
which allows sides to be related and measurements to be calculated. See Example 1 and Example 2.

• The Law of Cosines is useful for many types of applied problems. The first step in solving such problems is generally
to draw a sketch of the problem presented. If the information given fits one of the three models (the three
equations), then apply the Law of Cosines to find a solution. See Example 3 and Example 4.

• Heron’s formula allows the calculation of area in oblique triangles. All three sides must be known to apply Heron’s
formula. See Example 5 and See Example 6.
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10.3 Polar Coordinates

• The polar grid is represented as a series of concentric circles radiating out from the pole, or origin.
• To plot a point in the form move in a counterclockwise direction from the polar axis by an angle of

and then extend a directed line segment from the pole the length of in the direction of If is negative, move in a
clockwise direction, and extend a directed line segment the length of in the direction of See Example 1.

• If is negative, extend the directed line segment in the opposite direction of See Example 2.
• To convert from polar coordinates to rectangular coordinates, use the formulas and See

Example 3 and Example 4.
• To convert from rectangular coordinates to polar coordinates, use one or more of the formulas:

and See Example 5.
• Transforming equations between polar and rectangular forms means making the appropriate substitutions based

on the available formulas, together with algebraic manipulations. See Example 6, Example 7, and Example 8.
• Using the appropriate substitutions makes it possible to rewrite a polar equation as a rectangular equation, and

then graph it in the rectangular plane. See Example 9, Example 10, and Example 11.

10.4 Polar Coordinates: Graphs

• It is easier to graph polar equations if we can test the equations for symmetry with respect to the line the
polar axis, or the pole.

• There are three symmetry tests that indicate whether the graph of a polar equation will exhibit symmetry. If an
equation fails a symmetry test, the graph may or may not exhibit symmetry. See Example 1.

• Polar equations may be graphed by making a table of values for and
• The maximum value of a polar equation is found by substituting the value that leads to the maximum value of the

trigonometric expression.
• The zeros of a polar equation are found by setting and solving for See Example 2.
• Some formulas that produce the graph of a circle in polar coordinates are given by and See

Example 3.
• The formulas that produce the graphs of a cardioid are given by and for

and See Example 4.
• The formulas that produce the graphs of a one-loop limaçon are given by and for

See Example 5.
• The formulas that produce the graphs of an inner-loop limaçon are given by and for

and See Example 6.
• The formulas that produce the graphs of a lemniscates are given by and where

See Example 7.
• The formulas that produce the graphs of rose curves are given by and where if is

even, there are petals, and if is odd, there are petals. See Example 8 and Example 9.
• The formula that produces the graph of an Archimedes’ spiral is given by See Example 10.

10.5 Polar Form of Complex Numbers

• Complex numbers in the form are plotted in the complex plane similar to the way rectangular coordinates are
plotted in the rectangular plane. Label the x-axis as the real axis and the y-axis as the imaginary axis. See Example 1.

• The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point:
See Example 2 and Example 3.

• To write complex numbers in polar form, we use the formulas and Then,
See Example 4 and Example 5.

• To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through
by See Example 6 and Example 7.

• To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the
trigonometric functions, and multiply using the distributive property. See Example 8.

• To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference
of the two angles. See Example 9.

• To find the power of a complex number raise to the power and multiply by See Example 10.
• Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational

exponent. See Example 11.
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10.6 Parametric Equations

• Parameterizing a curve involves translating a rectangular equation in two variables, and into two equations in
three variables, x, y, and t. Often, more information is obtained from a set of parametric equations. See Example 1,
Example 2, and Example 3.

• Sometimes equations are simpler to graph when written in rectangular form. By eliminating an equation in and
is the result.

• To eliminate solve one of the equations for and substitute the expression into the second equation. See
Example 4, Example 5, Example 6, and Example 7.

• Finding the rectangular equation for a curve defined parametrically is basically the same as eliminating the
parameter. Solve for in one of the equations, and substitute the expression into the second equation. See Example
8.

• There are an infinite number of ways to choose a set of parametric equations for a curve defined as a rectangular
equation.

• Find an expression for such that the domain of the set of parametric equations remains the same as the original
rectangular equation. See Example 9.

10.7 Parametric Equations: Graphs

• When there is a third variable, a third parameter on which and depend, parametric equations can be used.
• To graph parametric equations by plotting points, make a table with three columns labeled and Choose

values for in increasing order. Plot the last two columns for and See Example 1 and Example 2.
• When graphing a parametric curve by plotting points, note the associated t-values and show arrows on the graph

indicating the orientation of the curve. See Example 3 and Example 4.
• Parametric equations allow the direction or the orientation of the curve to be shown on the graph. Equations that

are not functions can be graphed and used in many applications involving motion. See Example 5.
• Projectile motion depends on two parametric equations: and Initial

velocity is symbolized as represents the initial angle of the object when thrown, and represents the height at
which the object is propelled.

10.8 Vectors

• The position vector has its initial point at the origin. See Example 1.
• If the position vector is the same for two vectors, they are equal. See Example 2.
• Vectors are defined by their magnitude and direction. See Example 3.
• If two vectors have the same magnitude and direction, they are equal. See Example 4.
• Vector addition and subtraction result in a new vector found by adding or subtracting corresponding elements. See

Example 5.
• Scalar multiplication is multiplying a vector by a constant. Only the magnitude changes; the direction stays the

same. See Example 6 and Example 7.
• Vectors are comprised of two components: the horizontal component along the positive x-axis, and the vertical

component along the positive y-axis. See Example 8.
• The unit vector in the same direction of any nonzero vector is found by dividing the vector by its magnitude.
• The magnitude of a vector in the rectangular coordinate system is See Example 9.
• In the rectangular coordinate system, unit vectors may be represented in terms of and where represents the

horizontal component and represents the vertical component. Then, v = ai + bj is a scalar multiple of by real
numbers See Example 10 and Example 11.

• Adding and subtracting vectors in terms of i and j consists of adding or subtracting corresponding coefficients of i
and corresponding coefficients of j. See Example 12.

• A vector v = ai + bj is written in terms of magnitude and direction as See Example 13.
• The dot product of two vectors is the product of the terms plus the product of the terms. See Example 14.
• We can use the dot product to find the angle between two vectors. Example 15 and Example 16.
• Dot products are useful for many types of physics applications. See Example 17.
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Exercises
Review Exercises
Non-right Triangles: Law of Sines

For the following exercises, assume is opposite side is opposite side and is opposite side Solve each triangle,
if possible. Round each answer to the nearest tenth.

1. 2. 3. Solve the triangle.

4. Find the area of the triangle. 5. A pilot is flying over a straight
highway. He determines the angles
of depression to two mileposts, 2.1
km apart, to be 25° and 49°, as
shown in Figure 1. Find the
distance of the plane from point
and the elevation of the plane.

Figure 1

Non-right Triangles: Law of Cosines
6. Solve the triangle, rounding

to the nearest tenth,
assuming is opposite side

is opposite side and
s opposite side

7. Solve the triangle in Figure
2, rounding to the nearest
tenth.

Figure 2

8. Find the area of a triangle
with sides of length 8.3, 6.6,
and 9.1.
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9. To find the distance between two
cities, a satellite calculates the
distances and angle shown in
Figure 3 (not to scale). Find the
distance between the cities. Round
answers to the nearest tenth.

Figure 3

Polar Coordinates
10. Plot the point with polar

coordinates
11. Plot the point with polar

coordinates
12. Convert to

rectangular coordinates.

13. Convert to
rectangular coordinates.

14. Convert to polar
coordinates.

15. Convert to polar
coordinates.

For the following exercises, convert the given Cartesian equation to a polar equation.

16. 17. 18.

For the following exercises, convert the given polar equation to a Cartesian equation.

19. 20.

For the following exercises, convert to rectangular form and graph.

21. 22.

Polar Coordinates: Graphs

For the following exercises, test each equation for symmetry.

23. 24. 25. Sketch a graph of the polar
equation
Label the axis intercepts.

26. Sketch a graph of the polar
equation

27. Sketch a graph of the polar
equation
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Polar Form of Complex Numbers

For the following exercises, find the absolute value of each complex number.

28. 29.

Write the complex number in polar form.

30. 31.

For the following exercises, convert the complex number from polar to rectangular form.

32. 33.

For the following exercises, find the product in polar form.

34. 35.

For the following exercises, find the quotient in polar form.

36. 37.

For the following exercises, find the powers of each complex number in polar form.

38. Find when 39. Find when

For the following exercises, evaluate each root.

40. Evaluate the cube root of
when

41. Evaluate the square root of
when

For the following exercises, plot the complex number in the complex plane.

42. 43.
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Parametric Equations

For the following exercises, eliminate the parameter to rewrite the parametric equation as a Cartesian equation.

44. 45. 46. Parameterize (write a
parametric equation for)
each Cartesian equation by
using and

for

47. Parameterize the line from
to so that the

line is at at
and at

Parametric Equations: Graphs

For the following exercises, make a table of values for each set of parametric equations, graph the equations, and
include an orientation; then write the Cartesian equation.

48. 49. 50.

ⓐ Find the parametric equations to model the
path of the ball.

ⓑ Where is the ball after 3 seconds?

ⓒ How long is the ball in the air?

51. A ball is launched with an initial velocity of 80 feet
per second at an angle of 40° to the horizontal.
The ball is released at a height of 4 feet above the
ground.

Vectors

For the following exercises, determine whether the two vectors, and are equal, where has an initial point and a
terminal point and has an initial point and a terminal point

52. and 53. and

For the following exercises, use the vectors and to evaluate the expression.

54. u − v 55. 2v − u + w

For the following exercises, find a unit vector in the same direction as the given vector.

56. a = 8i − 6j 57. b = −3i − j
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For the following exercises, find the magnitude and direction of the vector.

58. 59.

For the following exercises, calculate

60. u = −2i + j and v = 3i + 7j 61. u = i + 4j and v = 4i + 3j 62. Given v draw v,
2v, and v.

63. Given the vectors shown in Figure 4,
sketch u + v, u − v and 3v.

Figure 4

64. Given initial point
and terminal

point write
the vector in terms of
and Draw the points and
the vector on the graph.

Practice Test
1. Assume is opposite side

is opposite side and
is opposite side Solve the
triangle, if possible, and
round each answer to the
nearest tenth, given

2. Find the area of the triangle
in Figure 1. Round each
answer to the nearest tenth.

Figure 1

3. A pilot flies in a straight path
for 2 hours. He then makes
a course correction, heading
15° to the right of his
original course, and flies 1
hour in the new direction. If
he maintains a constant
speed of 575 miles per hour,
how far is he from his
starting position?

4. Convert to polar
coordinates, and then plot
the point.

5. Convert to
rectangular coordinates.

6. Convert the polar equation
to a Cartesian equation:

7. Convert to rectangular form
and graph:

8. Test the equation for
symmetry:

9. Graph

10. Graph 11. Find the absolute value of
the complex number

12. Write the complex number
in polar form:
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13. Convert the complex
number from polar to
rectangular form:

Given and evaluate each expression.

14. 15. 16.

17. 18. Plot the complex number
in the complex

plane.

19. Eliminate the parameter
to rewrite the following
parametric equations as a
Cartesian equation:

20. Parameterize (write a
parametric equation for)
the following Cartesian
equation by using

and

21. Graph the set of
parametric equations and
find the Cartesian
equation:

ⓐ Find the parametric
equations to model the
path of the ball.

ⓑ Where is the ball after 2
seconds?

ⓒ How long is the ball in
the air?

22. A ball is launched with an
initial velocity of 95 feet per
second at an angle of 52°
to the horizontal. The ball
is released at a height of
3.5 feet above the ground.

For the following exercises, use the vectors u = i − 3j and v = 2i + 3j.

23. Find 2u − 3v. 24. Calculate 25. Find a unit vector in the
same direction as

26. Given vector has an initial
point and
terminal point

write the
vector in terms of and
On the graph, draw and
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Enigma machines like this one were used by government and military officials for enciphering and deciphering top-
secret communications during World War II. By varying the combinations of the plugboard and the settings of the
rotors, encoders could add complex encryption to their messages. Notice that the three rotors each contain 26 pins, one
for each letter of the alphabet; later versions had four and five rotors. (credit: modification of "Enigma Machine" by
School of Mathematics, University of Manchester/flickr)

Chapter Outline
11.1 Systems of Linear Equations: Two Variables
11.2 Systems of Linear Equations: Three Variables
11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
11.4 Partial Fractions
11.5 Matrices and Matrix Operations
11.6 Solving Systems with Gaussian Elimination
11.7 Solving Systems with Inverses
11.8 Solving Systems with Cramer's Rule

Introduction to Systems of Equations and Inequalities
At the start of the Second World War, British military and intelligence officers recognized that defeating Nazi Germany
would require the Allies to know what the enemy was planning. This task was complicated by the fact that the German
military transmitted all of its communications through a presumably uncrackable code created by a machine called
Enigma. The Germans had been encoding their messages with this machine since the early 1930s, and were so confident
in its security that they used it for everyday military communications as well as highly important strategic messages.
Concerned about the increasing military threat, other European nations began working to decipher the Enigma codes.
Poland was the first country to make significant advances when it trained and recruited a new group of codebreakers:
math students from Poznań University. With the help of intelligence obtained by French spies, Polish mathematicians,
led by Marian Rejewski, were able to decipher initial codes and later to understand the wiring of the machines;
eventually they create replicas. However, the German military eventually increased the complexity of the machines by
adding additional rotors, requiring a new method of decryption.

The machine attached letters on a keyboard to three, four, or five rotors (depending on the version), each with 26
starting positions that could be set prior to encoding; a decryption code (called a cipher key) essentially conveyed these
settings to the message recipient, and allowed people to interpret the message using another Enigma machine. Even
with the simpler three-rotor scrambler, there were 17,576 different combinations of starting positions (26 x 26 x 26); plus
the machine had numerous other methods of introducing variation. Not long after the war started, the British recruited
a team of brilliant codebreakers to crack the Enigma code. The codebreakers, led by Alan Turing, used what they knew

SYSTEMS OF EQUATIONS AND INEQUALITIES11
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about the Enigma machine to build a mechanical computer that could crack the code. And that knowledge of what the
Germans were planning proved to be a key part of the ultimate Allied victory of Nazi Germany in 1945.

The Enigma is perhaps the most famous cryptographic device ever known. It stands as an example of the pivotal role
cryptography has played in society. Now, technology has moved cryptanalysis to the digital world.

Many ciphers are designed using invertible matrices as the method of message transference, as finding the inverse of a
matrix is generally part of the process of decoding. In addition to knowing the matrix and its inverse, the receiver must
also know the key that, when used with the matrix inverse, will allow the message to be read.

In this chapter, we will investigate matrices and their inverses, and various ways to use matrices to solve systems of
equations. First, however, we will study systems of equations on their own: linear and nonlinear, and then partial
fractions. We will not be breaking any secret codes here, but we will lay the foundation for future courses.

11.1 Systems of Linear Equations: Two Variables
Learning Objectives
In this section, you will:

Solve systems of equations by graphing.
Solve systems of equations by substitution.
Solve systems of equations by addition.
Identify inconsistent systems of equations containing two variables.
Express the solution of a system of dependent equations containing two variables.

Figure 1 (credit: Thomas Sørenes)

A skateboard manufacturer introduces a new line of boards. The manufacturer tracks its costs, which is the amount it
spends to produce the boards, and its revenue, which is the amount it earns through sales of its boards. How can the
company determine if it is making a profit with its new line? How many skateboards must be produced and sold before a
profit is possible? In this section, we will consider linear equations with two variables to answer these and similar
questions.

Introduction to Systems of Equations
In order to investigate situations such as that of the skateboard manufacturer, we need to recognize that we are dealing
with more than one variable and likely more than one equation. A system of linear equations consists of two or more
linear equations made up of two or more variables such that all equations in the system are considered simultaneously.
To find the unique solution to a system of linear equations, we must find a numerical value for each variable in the
system that will satisfy all equations in the system at the same time. Some linear systems may not have a solution and
others may have an infinite number of solutions. In order for a linear system to have a unique solution, there must be at
least as many equations as there are variables. Even so, this does not guarantee a unique solution.

In this section, we will look at systems of linear equations in two variables, which consist of two equations that contain
two different variables. For example, consider the following system of linear equations in two variables.

The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation
independently. In this example, the ordered pair (4, 7) is the solution to the system of linear equations. We can verify the
solution by substituting the values into each equation to see if the ordered pair satisfies both equations. Shortly we will
investigate methods of finding such a solution if it exists.
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In addition to considering the number of equations and variables, we can categorize systems of linear equations by the
number of solutions. A consistent system of equations has at least one solution. A consistent system is considered to
be an independent system if it has a single solution, such as the example we just explored. The two lines have different
slopes and intersect at one point in the plane. A consistent system is considered to be a dependent system if the
equations have the same slope and the same y-intercepts. In other words, the lines coincide so the equations represent
the same line. Every point on the line represents a coordinate pair that satisfies the system. Thus, there are an infinite
number of solutions.

Another type of system of linear equations is an inconsistent system, which is one in which the equations represent
two parallel lines. The lines have the same slope and different y-intercepts. There are no points common to both lines;
hence, there is no solution to the system.

Types of Linear Systems

There are three types of systems of linear equations in two variables, and three types of solutions.

• An independent system has exactly one solution pair The point where the two lines intersect is the only
solution.

• An inconsistent system has no solution. Notice that the two lines are parallel and will never intersect.
• A dependent system has infinitely many solutions. The lines are coincident. They are the same line, so every

coordinate pair on the line is a solution to both equations.

Figure 2 compares graphical representations of each type of system.

Figure 2

HOW TO

Given a system of linear equations and an ordered pair, determine whether the ordered pair is a solution.

1. Substitute the ordered pair into each equation in the system.
2. Determine whether true statements result from the substitution in both equations; if so, the ordered pair is a

solution.

EXAMPLE 1

Determining Whether an Ordered Pair Is a Solution to a System of Equations
Determine whether the ordered pair is a solution to the given system of equations.
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Solution
Substitute the ordered pair into both equations.

The ordered pair satisfies both equations, so it is the solution to the system.

Analysis
We can see the solution clearly by plotting the graph of each equation. Since the solution is an ordered pair that satisfies
both equations, it is a point on both of the lines and thus the point of intersection of the two lines. See Figure 3.

Figure 3

TRY IT #1 Determine whether the ordered pair is a solution to the following system.

Solving Systems of Equations by Graphing
There are multiple methods of solving systems of linear equations. For a system of linear equations in two variables, we
can determine both the type of system and the solution by graphing the system of equations on the same set of axes.

EXAMPLE 2

Solving a System of Equations in Two Variables by Graphing
Solve the following system of equations by graphing. Identify the type of system.

Solution
Solve the first equation for

Solve the second equation for
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Graph both equations on the same set of axes as in Figure 4.

Figure 4

The lines appear to intersect at the point We can check to make sure that this is the solution to the system by
substituting the ordered pair into both equations.

The solution to the system is the ordered pair so the system is independent.

TRY IT #2 Solve the following system of equations by graphing.

Q&A Can graphing be used if the system is inconsistent or dependent?

Yes, in both cases we can still graph the system to determine the type of system and solution. If the two
lines are parallel, the system has no solution and is inconsistent. If the two lines are identical, the system
has infinite solutions and is a dependent system.

Solving Systems of Equations by Substitution
Solving a linear system in two variables by graphing works well when the solution consists of integer values, but if our
solution contains decimals or fractions, it is not the most precise method. We will consider two more methods of solving
a system of linear equations that are more precise than graphing. One such method is solving a system of equations by
the substitution method, in which we solve one of the equations for one variable and then substitute the result into the
second equation to solve for the second variable. Recall that we can solve for only one variable at a time, which is the
reason the substitution method is both valuable and practical.

HOW TO

Given a system of two equations in two variables, solve using the substitution method.

1. Solve one of the two equations for one of the variables in terms of the other.
2. Substitute the expression for this variable into the second equation, then solve for the remaining variable.
3. Substitute that solution into either of the original equations to find the value of the first variable. If possible,

write the solution as an ordered pair.
4. Check the solution in both equations.
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EXAMPLE 3

Solving a System of Equations in Two Variables by Substitution
Solve the following system of equations by substitution.

Solution
First, we will solve the first equation for

Now we can substitute the expression for in the second equation.

Now, we substitute into the first equation and solve for

Our solution is

Check the solution by substituting into both equations.

TRY IT #3 Solve the following system of equations by substitution.

Q&A Can the substitution method be used to solve any linear system in two variables?

Yes, but the method works best if one of the equations contains a coefficient of 1 or –1 so that we do not
have to deal with fractions.

Solving Systems of Equations in Two Variables by the Addition Method
A third method of solving systems of linear equations is the addition method. In this method, we add two terms with
the same variable, but opposite coefficients, so that the sum is zero. Of course, not all systems are set up with the two
terms of one variable having opposite coefficients. Often we must adjust one or both of the equations by multiplication
so that one variable will be eliminated by addition.

HOW TO

Given a system of equations, solve using the addition method.

1. Write both equations with x- and y-variables on the left side of the equal sign and constants on the right.
2. Write one equation above the other, lining up corresponding variables. If one of the variables in the top equation
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has the opposite coefficient of the same variable in the bottom equation, add the equations together, eliminating
one variable. If not, use multiplication by a nonzero number so that one of the variables in the top equation has
the opposite coefficient of the same variable in the bottom equation, then add the equations to eliminate the
variable.

3. Solve the resulting equation for the remaining variable.
4. Substitute that value into one of the original equations and solve for the second variable.
5. Check the solution by substituting the values into the other equation.

EXAMPLE 4

Solving a System by the Addition Method
Solve the given system of equations by addition.

Solution
Both equations are already set equal to a constant. Notice that the coefficient of in the second equation, –1, is the
opposite of the coefficient of in the first equation, 1. We can add the two equations to eliminate without needing to
multiply by a constant.

Now that we have eliminated we can solve the resulting equation for

Then, we substitute this value for into one of the original equations and solve for

The solution to this system is

Check the solution in the first equation.

Analysis
We gain an important perspective on systems of equations by looking at the graphical representation. See Figure 5 to
find that the equations intersect at the solution. We do not need to ask whether there may be a second solution because
observing the graph confirms that the system has exactly one solution.
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Figure 5

EXAMPLE 5

Using the Addition Method When Multiplication of One Equation Is Required
Solve the given system of equations by the addition method.

Solution
Adding these equations as presented will not eliminate a variable. However, we see that the first equation has in it
and the second equation has So if we multiply the second equation by the x-terms will add to zero.

Now, let’s add them.

For the last step, we substitute into one of the original equations and solve for

Our solution is the ordered pair See Figure 6. Check the solution in the original second equation.
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Figure 6

TRY IT #4 Solve the system of equations by addition.

EXAMPLE 6

Using the Addition Method When Multiplication of Both Equations Is Required
Solve the given system of equations in two variables by addition.

Solution
One equation has and the other has The least common multiple is so we will have to multiply both equations
by a constant in order to eliminate one variable. Let’s eliminate by multiplying the first equation by and the second
equation by

Then, we add the two equations together.

Substitute into the original first equation.

The solution is Check it in the other equation.
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See Figure 7.

Figure 7

EXAMPLE 7

Using the Addition Method in Systems of Equations Containing Fractions
Solve the given system of equations in two variables by addition.

Solution
First clear each equation of fractions by multiplying both sides of the equation by the least common denominator.

Now multiply the second equation by so that we can eliminate the x-variable.

Add the two equations to eliminate the x-variable and solve the resulting equation.

Substitute into the first equation.

1036 11 • Systems of Equations and Inequalities

Access for free at openstax.org



The solution is Check it in the other equation.

TRY IT #5 Solve the system of equations by addition.

Identifying Inconsistent Systems of Equations Containing Two Variables
Now that we have several methods for solving systems of equations, we can use the methods to identify inconsistent
systems. Recall that an inconsistent system consists of parallel lines that have the same slope but different -intercepts.
They will never intersect. When searching for a solution to an inconsistent system, we will come up with a false
statement, such as

EXAMPLE 8

Solving an Inconsistent System of Equations
Solve the following system of equations.

Solution
We can approach this problem in two ways. Because one equation is already solved for the most obvious step is to use
substitution.

Clearly, this statement is a contradiction because Therefore, the system has no solution.

The second approach would be to first manipulate the equations so that they are both in slope-intercept form. We
manipulate the first equation as follows.

We then convert the second equation expressed to slope-intercept form.

Comparing the equations, we see that they have the same slope but different y-intercepts. Therefore, the lines are
parallel and do not intersect.
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Analysis
Writing the equations in slope-intercept form confirms that the system is inconsistent because all lines will intersect
eventually unless they are parallel. Parallel lines will never intersect; thus, the two lines have no points in common. The
graphs of the equations in this example are shown in Figure 8.

Figure 8

TRY IT #6 Solve the following system of equations in two variables.

Expressing the Solution of a System of Dependent Equations Containing Two
Variables
Recall that a dependent system of equations in two variables is a system in which the two equations represent the same
line. Dependent systems have an infinite number of solutions because all of the points on one line are also on the other
line. After using substitution or addition, the resulting equation will be an identity, such as

EXAMPLE 9

Finding a Solution to a Dependent System of Linear Equations
Find a solution to the system of equations using the addition method.

Solution
With the addition method, we want to eliminate one of the variables by adding the equations. In this case, let’s focus on
eliminating If we multiply both sides of the first equation by then we will be able to eliminate the -variable.

Now add the equations.

We can see that there will be an infinite number of solutions that satisfy both equations.
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Analysis
If we rewrote both equations in the slope-intercept form, we might know what the solution would look like before
adding. Let’s look at what happens when we convert the system to slope-intercept form.

See Figure 9. Notice the results are the same. The general solution to the system is

Figure 9

TRY IT #7 Solve the following system of equations in two variables.

Using Systems of Equations to Investigate Profits
Using what we have learned about systems of equations, we can return to the skateboard manufacturing problem at the
beginning of the section. The skateboard manufacturer’s revenue function is the function used to calculate the amount
of money that comes into the business. It can be represented by the equation where quantity and price.
The revenue function is shown in orange in Figure 10.

The cost function is the function used to calculate the costs of doing business. It includes fixed costs, such as rent and
salaries, and variable costs, such as utilities. The cost function is shown in blue in Figure 10. The -axis represents
quantity in hundreds of units. The y-axis represents either cost or revenue in hundreds of dollars.
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Figure 10

The point at which the two lines intersect is called the break-even point. We can see from the graph that if 700 units are
produced, the cost is $3,300 and the revenue is also $3,300. In other words, the company breaks even if they produce
and sell 700 units. They neither make money nor lose money.

The shaded region to the right of the break-even point represents quantities for which the company makes a profit. The
shaded region to the left represents quantities for which the company suffers a loss. The profit function is the revenue
function minus the cost function, written as Clearly, knowing the quantity for which the cost equals
the revenue is of great importance to businesses.

EXAMPLE 10

Finding the Break-Even Point and the Profit Function Using Substitution
Given the cost function and the revenue function find the break-even point and
the profit function.

Solution
Write the system of equations using to replace function notation.

Substitute the expression from the first equation into the second equation and solve for

Then, we substitute into either the cost function or the revenue function.

The break-even point is

The profit function is found using the formula

The profit function is

Analysis
The cost to produce 50,000 units is $77,500, and the revenue from the sales of 50,000 units is also $77,500. To make a
profit, the business must produce and sell more than 50,000 units. See Figure 11.
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Figure 11

We see from the graph in Figure 12 that the profit function has a negative value until when the graph
crosses the x-axis. Then, the graph emerges into positive y-values and continues on this path as the profit function is a
straight line. This illustrates that the break-even point for businesses occurs when the profit function is 0. The area to the
left of the break-even point represents operating at a loss.

Figure 12

EXAMPLE 11

Writing and Solving a System of Equations in Two Variables
The cost of a ticket to the circus is for children and for adults. On a certain day, attendance at the circus is

and the total gate revenue is How many children and how many adults bought tickets?

Solution
Let c = the number of children and a = the number of adults in attendance.

The total number of people is We can use this to write an equation for the number of people at the circus that
day.

The revenue from all children can be found by multiplying by the number of children, The revenue from all
adults can be found by multiplying by the number of adults, The total revenue is We can use this to
write an equation for the revenue.

We now have a system of linear equations in two variables.

In the first equation, the coefficient of both variables is 1. We can quickly solve the first equation for either or We will
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solve for

Substitute the expression in the second equation for and solve for

Substitute into the first equation to solve for

We find that children and adults bought tickets to the circus that day.

TRY IT #8 Meal tickets at the circus cost for children and for adults. If meal tickets were
bought for a total of how many children and how many adults bought meal tickets?

MEDIA

Access these online resources for additional instruction and practice with systems of linear equations.

Solving Systems of Equations Using Substitution (http://openstax.org/l/syssubst)
Solving Systems of Equations Using Elimination (http://openstax.org/l/syselim)
Applications of Systems of Equations (http://openstax.org/l/sysapp)

11.1 SECTION EXERCISES
Verbal

1. Can a system of linear
equations have exactly two
solutions? Explain why or
why not.

2. If you are performing a
break-even analysis for a
business and their cost and
revenue equations are
dependent, explain what
this means for the
company’s profit margins.

3. If you are solving a break-
even analysis and get a
negative break-even point,
explain what this signifies
for the company?

4. If you are solving a break-
even analysis and there is
no break-even point, explain
what this means for the
company. How should they
ensure there is a break-even
point?

5. Given a system of equations,
explain at least two different
methods of solving that
system.
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Algebraic

For the following exercises, determine whether the given ordered pair is a solution to the system of equations.

6. and 7. and 8. and

9. and 10. and

For the following exercises, solve each system by substitution.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20.

For the following exercises, solve each system by addition.

21. 22. 23.

24. 25. 26.

27. 28. 29.

30.

For the following exercises, solve each system by any method.

31. 32. 33.

34. 35. 36.
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37. 38. 39.

40.

Graphical

For the following exercises, graph the system of equations and state whether the system is consistent, inconsistent, or
dependent and whether the system has one solution, no solution, or infinite solutions.

41. 42. 43.

44. 45.

Technology

For the following exercises, use the intersect function on a graphing device to solve each system. Round all answers to
the nearest hundredth.

46. 47. 48.

49. 50.

Extensions

For the following exercises, solve each system in terms of and where are nonzero numbers. Note
that and

51. 52. 53.

54. 55.
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Real-World Applications

For the following exercises, solve for the desired quantity.

56. A stuffed animal business
has a total cost of
production
and a revenue function

Find the break-
even point.

57. An Ethiopian restaurant
has a cost of production

and a
revenue function

When does the
company start to turn a
profit?

58. A cell phone factory has a
cost of production

and
a revenue function

What is the
break-even point?

59. A musician charges

where is the total
number of attendees at the
concert. The venue charges
$80 per ticket. After how
many people buy tickets
does the venue break even,
and what is the value of
the total tickets sold at that
point?

60. A guitar factory has a cost
of production

If
the company needs to
break even after 150 units
sold, at what price should
they sell each guitar?
Round up to the nearest
dollar, and write the
revenue function.

For the following exercises, use a system of linear equations with two variables and two equations to solve.

61. Find two numbers whose
sum is 28 and difference is
13.

62. A number is 9 more than
another number. Twice the
sum of the two numbers is
10. Find the two numbers.

63. The startup cost for a
restaurant is $120,000, and
each meal costs $10 for the
restaurant to make. If each
meal is then sold for $15,
after how many meals
does the restaurant break
even?

64. A moving company
charges a flat rate of $150,
and an additional $5 for
each box. If a taxi service
would charge $20 for each
box, how many boxes
would you need for it to be
cheaper to use the moving
company, and what would
be the total cost?

65. A total of 1,595 first- and
second-year college
students gathered at a pep
rally. The number of first-
years exceeded the
number of second-years by
15. How many students
from each year group were
in attendance?

66. 276 students enrolled in an
introductory chemistry
class. By the end of the
semester, 5 times the
number of students passed
as failed. Find the number
of students who passed,
and the number of
students who failed.
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67. There were 130 faculty at a
conference. If there were
18 more women than men
attending, how many of
each gender attended the
conference?

68. A jeep and a pickup truck
enter a highway running
east-west at the same exit
heading in opposite
directions. The jeep
entered the highway 30
minutes before the pickup
did, and traveled 7 mph
slower than the pickup.
After 2 hours from the time
the pickup entered the
highway, the cars were
306.5 miles apart. Find the
speed of each car,
assuming they were driven
on cruise control and
retained the same speed.

69. If a scientist mixed 10%
saline solution with 60%
saline solution to get 25
gallons of 40% saline
solution, how many gallons
of 10% and 60% solutions
were mixed?

70. An investor earned triple
the profits of what they
earned last year. If they
made $500,000.48 total for
both years, how much did
the investor earn in profits
each year?

71. An investor invested 1.1
million dollars into two
land investments. On the
first investment, Swan
Peak, her return was a
110% increase on the
money she invested. On
the second investment,
Riverside Community, she
earned 50% over what she
invested. If she earned $1
million in profits, how
much did she invest in
each of the land deals?

72. If an investor invests a total
of $25,000 into two bonds,
one that pays 3% simple
interest, and the other that
pays interest, and the
investor earns $737.50
annual interest, how much
was invested in each
account?

73. If an investor invests
$23,000 into two bonds,
one that pays 4% in simple
interest, and the other
paying 2% simple interest,
and the investor earns
$710.00 annual interest,
how much was invested in
each account?

74. Blu-rays cost $5.96 more
than regular DVDs at All
Bets Are Off Electronics.
How much would 6 Blu-
rays and 2 DVDs cost if 5
Blu-rays and 2 DVDs cost
$127.73?

75. A store clerk sold 60 pairs
of sneakers. The high-tops
sold for $98.99 and the
low-tops sold for $129.99. If
the receipts for the two
types of sales totaled
$6,404.40, how many of
each type of sneaker were
sold?

76. A concert manager
counted 350 ticket receipts
the day after a concert. The
price for a student ticket
was $12.50, and the price
for an adult ticket was
$16.00. The register
confirms that $5,075 was
taken in. How many
student tickets and adult
tickets were sold?

77. Admission into an
amusement park for 4
children and 2 adults is
$116.90. For 6 children and
3 adults, the admission is
$175.35. Assuming a
different price for children
and adults, what is the
price of the child’s ticket
and the price of the adult
ticket?
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11.2 Systems of Linear Equations: Three Variables
Learning Objectives
In this section, you will:

Solve systems of three equations in three variables.
Identify inconsistent systems of equations containing three variables.
Express the solution of a system of dependent equations containing three variables.

Figure 1 (credit: “Elembis,” Wikimedia Commons)

Jordi received an inheritance of $12,000 that he divided into three parts and invested in three ways: in a money-market
fund paying 3% annual interest; in municipal bonds paying 4% annual interest; and in mutual funds paying 7% annual
interest. Jordi invested $4,000 more in municipal funds than in municipal bonds. He earned $670 in interest the first year.
How much did Jordi invest in each type of fund?

Understanding the correct approach to setting up problems such as this one makes finding a solution a matter of
following a pattern. We will solve this and similar problems involving three equations and three variables in this section.
Doing so uses similar techniques as those used to solve systems of two equations in two variables. However, finding
solutions to systems of three equations requires a bit more organization and a touch of visualization.

Solving Systems of Three Equations in Three Variables
In order to solve systems of equations in three variables, known as three-by-three systems, the primary tool we will be
using is called Gaussian elimination, named after the prolific German mathematician Karl Friedrich Gauss. While there is
no definitive order in which operations are to be performed, there are specific guidelines as to what type of moves can
be made. We may number the equations to keep track of the steps we apply. The goal is to eliminate one variable at a
time to achieve upper triangular form, the ideal form for a three-by-three system because it allows for straightforward
back-substitution to find a solution which we call an ordered triple. A system in upper triangular form looks like
the following:

The third equation can be solved for and then we back-substitute to find and To write the system in upper
triangular form, we can perform the following operations:

1. Interchange the order of any two equations.
2. Multiply both sides of an equation by a nonzero constant.
3. Add a nonzero multiple of one equation to another equation.

The solution set to a three-by-three system is an ordered triple Graphically, the ordered triple defines the
point that is the intersection of three planes in space. You can visualize such an intersection by imagining any corner in a
rectangular room. A corner is defined by three planes: two adjoining walls and the floor (or ceiling). Any point where two
walls and the floor meet represents the intersection of three planes.
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Number of Possible Solutions

Figure 2 and Figure 3 illustrate possible solution scenarios for three-by-three systems.

• Systems that have a single solution are those which, after elimination, result in a solution set consisting of an
ordered triple Graphically, the ordered triple defines a point that is the intersection of three planes in
space.

• Systems that have an infinite number of solutions are those which, after elimination, result in an expression that
is always true, such as Graphically, an infinite number of solutions represents a line or coincident plane
that serves as the intersection of three planes in space.

• Systems that have no solution are those that, after elimination, result in a statement that is a contradiction, such
as Graphically, a system with no solution is represented by three planes with no point in common.

Figure 2 (a)Three planes intersect at a single point, representing a three-by-three system with a single solution. (b)
Three planes intersect in a line, representing a three-by-three system with infinite solutions.

Figure 3 All three figures represent three-by-three systems with no solution. (a) The three planes intersect with each
other, but not at a common point. (b) Two of the planes are parallel and intersect with the third plane, but not with
each other. (c) All three planes are parallel, so there is no point of intersection.

EXAMPLE 1

Determining Whether an Ordered Triple Is a Solution to a System
Determine whether the ordered triple is a solution to the system.

Solution
We will check each equation by substituting in the values of the ordered triple for and

The ordered triple is indeed a solution to the system.
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...
HOW TO

Given a linear system of three equations, solve for three unknowns.

1. Pick any pair of equations and solve for one variable.
2. Pick another pair of equations and solve for the same variable.
3. You have created a system of two equations in two unknowns. Solve the resulting two-by-two system.
4. Back-substitute known variables into any one of the original equations and solve for the missing variable.

EXAMPLE 2

Solving a System of Three Equations in Three Variables by Elimination
Find a solution to the following system:

Solution
There will always be several choices as to where to begin, but the most obvious first step here is to eliminate by adding
equations (1) and (2).

The second step is multiplying equation (1) by and adding the result to equation (3). These two steps will eliminate
the variable

In equations (4) and (5), we have created a new two-by-two system. We can solve for by adding the two equations.

Choosing one equation from each new system, we obtain the upper triangular form:

Next, we back-substitute into equation (4) and solve for

Finally, we can back-substitute and into equation (1). This will yield the solution for
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The solution is the ordered triple See Figure 4.

Figure 4

EXAMPLE 3

Solving a Real-World Problem Using a System of Three Equations in Three Variables
In the problem posed at the beginning of the section, Jordi invested his inheritance of $12,000 in three different funds:
part in a money-market fund paying 3% interest annually; part in municipal bonds paying 4% annually; and the rest in
mutual funds paying 7% annually. Jordi invested $4,000 more in mutual funds than he invested in municipal bonds. The
total interest earned in one year was $670. How much did he invest in each type of fund?

Solution
To solve this problem, we use all of the information given and set up three equations. First, we assign a variable to each
of the three investment amounts:

The first equation indicates that the sum of the three principal amounts is $12,000.

We form the second equation according to the information that Jordi invested $4,000 more in mutual funds than he
invested in municipal bonds.

The third equation shows that the total amount of interest earned from each fund equals $670.

Then, we write the three equations as a system.

To make the calculations simpler, we can multiply the third equation by 100. Thus,

Step 1. Interchange equation (2) and equation (3) so that the two equations with three variables will line up.

Step 2. Multiply equation (1) by and add to equation (2). Write the result as row 2.
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Step 3. Add equation (2) to equation (3) and write the result as equation (3).

Step 4. Solve for in equation (3). Back-substitute that value in equation (2) and solve for Then, back-substitute the
values for and into equation (1) and solve for

Jordi invested $2,000 in a money-market fund, $3,000 in municipal bonds, and $7,000 in mutual funds.

TRY IT #1 Solve the system of equations in three variables.

Identifying Inconsistent Systems of Equations Containing Three Variables
Just as with systems of equations in two variables, we may come across an inconsistent system of equations in three
variables, which means that it does not have a solution that satisfies all three equations. The equations could represent
three parallel planes, two parallel planes and one intersecting plane, or three planes that intersect the other two but not
at the same location. The process of elimination will result in a false statement, such as or some other
contradiction.

EXAMPLE 4

Solving an Inconsistent System of Three Equations in Three Variables
Solve the following system.

Solution
Looking at the coefficients of we can see that we can eliminate by adding equation (1) to equation (2).

Next, we multiply equation (1) by and add it to equation (3).
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Then, we multiply equation (4) by 2 and add it to equation (5).

The final equation is a contradiction, so we conclude that the system of equations in inconsistent and, therefore,
has no solution.

Analysis
In this system, each plane intersects the other two, but not at the same location. Therefore, the system is inconsistent.

TRY IT #2 Solve the system of three equations in three variables.

Expressing the Solution of a System of Dependent Equations Containing Three
Variables
We know from working with systems of equations in two variables that a dependent system of equations has an infinite
number of solutions. The same is true for dependent systems of equations in three variables. An infinite number of
solutions can result from several situations. The three planes could be the same, so that a solution to one equation will
be the solution to the other two equations. All three equations could be different but they intersect on a line, which has
infinite solutions. Or two of the equations could be the same and intersect the third on a line.

EXAMPLE 5

Finding the Solution to a Dependent System of Equations
Find the solution to the given system of three equations in three variables.

Solution
First, we can multiply equation (1) by and add it to equation (2).

We do not need to proceed any further. The result we get is an identity, which tells us that this system has an
infinite number of solutions. There are other ways to begin to solve this system, such as multiplying equation (3) by
and adding it to equation (1). We then perform the same steps as above and find the same result,

When a system is dependent, we can find general expressions for the solutions. Adding equations (1) and (3), we have
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We then solve the resulting equation for

We back-substitute the expression for into one of the equations and solve for

So the general solution is In this solution, can be any real number. The values of and are dependent
on the value selected for

Analysis
As shown in Figure 5, two of the planes are the same and they intersect the third plane on a line. The solution set is
infinite, as all points along the intersection line will satisfy all three equations.

Figure 5

Q&A Does the generic solution to a dependent system always have to be written in terms of

No, you can write the generic solution in terms of any of the variables, but it is common to write it in
terms of x and if needed and

TRY IT #3 Solve the following system.

MEDIA

Access these online resources for additional instruction and practice with systems of equations in three variables.

Ex 1: System of Three Equations with Three Unknowns Using Elimination (http://openstax.org/l/systhree)
Ex. 2: System of Three Equations with Three Unknowns Using Elimination (http://openstax.org/l/systhelim)
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11.2 SECTION EXERCISES
Verbal

1. Can a linear system of three
equations have exactly two
solutions? Explain why or
why not

2. If a given ordered triple
solves the system of
equations, is that solution
unique? If so, explain why. If
not, give an example where
it is not unique.

3. If a given ordered triple
does not solve the system of
equations, is there no
solution? If so, explain why.
If not, give an example.

4. Using the method of
addition, is there only one
way to solve the system?

5. Can you explain whether
there can be only one
method to solve a linear
system of equations? If yes,
give an example of such a
system of equations. If not,
explain why not.

Algebraic

For the following exercises, determine whether the ordered triple given is the solution to the system of equations.

6. and 7. and

8. and 9. and

10. and

For the following exercises, solve each system by elimination.

11. 12. 13.

14. 15. 16.

For the following exercises, solve each system by Gaussian elimination.

17. 18. 19.
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20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33. 34.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44. 45.
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Extensions

For the following exercises, solve the system for and

46. 47. 48.

49. 50.

Real-World Applications

51. Three even numbers sum
up to 108. The smaller is
half the larger and the
middle number is the
larger. What are the three
numbers?

52. Three numbers sum up to
147. The smallest number
is half the middle number,
which is half the largest
number. What are the
three numbers?

53. At a family reunion, there
were only blood relatives,
consisting of children,
parents, and grandparents,
in attendance. There were
400 people total. There
were twice as many
parents as grandparents,
and 50 more children than
parents. How many
children, parents, and
grandparents were in
attendance?

54. An animal shelter has a
total of 350 animals
comprised of cats, dogs,
and rabbits. If the number
of rabbits is 5 less than
one-half the number of
cats, and there are 20 more
cats than dogs, how many
of each animal are at the
shelter?

55. Your roommate, Shani,
offered to buy groceries for
you and your other
roommate. The total bill
was $82. She forgot to save
the individual receipts but
remembered that your
groceries were $0.05
cheaper than half of her
groceries, and that your
other roommate’s
groceries were $2.10 more
than your groceries. How
much was each of your
share of the groceries?

56. Your roommate, John,
offered to buy household
supplies for you and your
other roommate. You live
near the border of three
states, each of which has a
different sales tax. The
total amount of money
spent was $100.75. Your
supplies were bought with
5% tax, John’s with 8% tax,
and your third roommate’s
with 9% sales tax. The total
amount of money spent
without taxes is $93.50. If
your supplies before tax
were $1 more than half of
what your third
roommate’s supplies were
before tax, how much did
each of you spend? Give
your answer both with and
without taxes.
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57. Three coworkers work for
the same employer. Their
jobs are warehouse
manager, office manager,
and truck driver. The sum
of the annual salaries of
the warehouse manager
and office manager is
$82,000. The office
manager makes $4,000
more than the truck driver
annually. The annual
salaries of the warehouse
manager and the truck
driver total $78,000. What
is the annual salary of each
of the co-workers?

58. At a carnival, $2,914.25 in
receipts were taken at the
end of the day. The cost of
a child’s ticket was $20.50,
an adult ticket was $29.75,
and a senior citizen ticket
was $15.25. There were
twice as many senior
citizens as adults in
attendance, and 20 more
children than senior
citizens. How many
children, adult, and senior
citizen tickets were sold?

59. A local band sells out for
their concert. They sell all
1,175 tickets for a total
purse of $28,112.50. The
tickets were priced at $20
for student tickets, $22.50
for children, and $29 for
adult tickets. If the band
sold twice as many adult as
children tickets, how many
of each type was sold?

60. In a bag, a child has 325
coins worth $19.50. There
were three types of coins:
pennies, nickels, and
dimes. If the bag contained
the same number of
nickels as dimes, how
many of each type of coin
was in the bag?

61. Last year, at Haven’s Pond
Car Dealership, for a
particular model of BMW,
Jeep, and Toyota, one could
purchase all three cars for
a total of $140,000. This
year, due to inflation, the
same cars would cost
$151,830. The cost of the
BMW increased by 8%, the
Jeep by 5%, and the Toyota
by 12%. If the price of last
year’s Jeep was $7,000 less
than the price of last year’s
BMW, what was the price
of each of the three cars
last year?

62. When his youngest child
moved out, Deandre sold
his home and made three
investments using gains
from the sale. He invested
$80,500 into three
accounts, one that paid 4%
simple interest, one that
paid simple interest,

and one that paid
simple interest. He earned
$2,670 interest at the end
of one year. If the amount
of the money invested in
the second account was
four times the amount
invested in the third
account, how much was
invested in each account?
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63. You inherit one million
dollars. You invest it all in
three accounts for one
year. The first account pays
3% compounded annually,
the second account pays
4% compounded annually,
and the third account pays
2% compounded annually.
After one year, you earn
$34,000 in interest. If you
invest four times the
money into the account
that pays 3% compared to
2%, how much did you
invest in each account?

64. An entrepreneur sells a
portion of their business
for one hundred thousand
dollars and invests it all in
three accounts for one
year. The first account pays
4% compounded annually,
the second account pays
3% compounded annually,
and the third account pays
2% compounded annually.
After one year, the
entrepreneur earns $3,650
in interest. If they invested
five times the money in the
account that pays 4%
compared to 3%, how
much did they invest in
each account?

65. The top three countries in
oil consumption in a
certain year are as follows:
the United States, Japan,
and China. In millions of
barrels per day, the three
top countries consumed
39.8% of the world’s
consumed oil. The United
States consumed 0.7%
more than four times
China’s consumption. The
United States consumed
5% more than triple
Japan’s consumption. What
percent of the world oil
consumption did the
United States, Japan, and
China consume?1

66. The top three countries in
oil production in the same
year are Saudi Arabia, the
United States, and Russia.
In millions of barrels per
day, the top three
countries produced 31.4%
of the world’s produced oil.
Saudi Arabia and the
United States combined for
22.1% of the world’s
production, and Saudi
Arabia produced 2% more
oil than Russia. What
percent of the world oil
production did Saudi
Arabia, the United States,
and Russia produce?2

67. The top three sources of oil
imports for the United
States in the same year
were Saudi Arabia, Mexico,
and Canada. The three top
countries accounted for
47% of oil imports. The
United States imported
1.8% more from Saudi
Arabia than they did from
Mexico, and 1.7% more
from Saudi Arabia than
they did from Canada.
What percent of the United
States oil imports were
from these three
countries?3

68. The top three oil producers
in the United States in a
certain year are the Gulf of
Mexico, Texas, and Alaska.
The three regions were
responsible for 64% of the
United States oil
production. The Gulf of
Mexico and Texas
combined for 47% of oil
production. Texas
produced 3% more than
Alaska. What percent of
United States oil
production came from
these regions?4

1 “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.

2 “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.

3 “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.

4 “USA: The coming global oil crisis,” accessed April 6, 2014, http://www.oilcrisis.com/us/.
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69. At one time, in the United
States, 398 species of
animals were on the
endangered species list.
The top groups were
mammals, birds, and fish,
which comprised 55% of
the endangered species.
Birds accounted for 0.7%
more than fish, and fish
accounted for 1.5% more
than mammals. What
percent of the endangered
species came from
mammals, birds, and fish?

70. Meat consumption in the
United States can be
broken into three
categories: red meat,
poultry, and fish. If fish
makes up 4% less than
one-quarter of poultry
consumption, and red
meat consumption is 18.2%
higher than poultry
consumption, what are the
percentages of meat
consumption?5

11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
Learning Objectives
In this section, you will:

Solve a system of nonlinear equations using substitution.
Solve a system of nonlinear equations using elimination.
Graph a nonlinear inequality.
Graph a system of nonlinear inequalities.

Halley’s Comet (Figure 1) orbits the sun about once every 75 years. Its path can be considered to be a very elongated
ellipse. Other comets follow similar paths in space. These orbital paths can be studied using systems of equations. These
systems, however, are different from the ones we considered in the previous section because the equations are not
linear.

Figure 1 Halley’s Comet (credit: "NASA Blueshift"/Flickr)

In this section, we will consider the intersection of a parabola and a line, a circle and a line, and a circle and an ellipse.
The methods for solving systems of nonlinear equations are similar to those for linear equations.

Solving a System of Nonlinear Equations Using Substitution
A system of nonlinear equations is a system of two or more equations in two or more variables containing at least one
equation that is not linear. Recall that a linear equation can take the form Any equation that cannot
be written in this form in nonlinear. The substitution method we used for linear systems is the same method we will use
for nonlinear systems. We solve one equation for one variable and then substitute the result into the second equation to
solve for another variable, and so on. There is, however, a variation in the possible outcomes.

Intersection of a Parabola and a Line
There are three possible types of solutions for a system of nonlinear equations involving a parabola and a line.

5 “The United States Meat Industry at a Glance,” accessed April 6, 2014, http://www.meatami.com/ht/d/sp/i/47465/pid/47465.
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Possible Types of Solutions for Points of Intersection of a Parabola and a Line

Figure 2 illustrates possible solution sets for a system of equations involving a parabola and a line.

• No solution. The line will never intersect the parabola.
• One solution. The line is tangent to the parabola and intersects the parabola at exactly one point.
• Two solutions. The line crosses on the inside of the parabola and intersects the parabola at two points.

Figure 2

HOW TO

Given a system of equations containing a line and a parabola, find the solution.

1. Solve the linear equation for one of the variables.
2. Substitute the expression obtained in step one into the parabola equation.
3. Solve for the remaining variable.
4. Check your solutions in both equations.

EXAMPLE 1

Solving a System of Nonlinear Equations Representing a Parabola and a Line
Solve the system of equations.

Solution
Solve the first equation for and then substitute the resulting expression into the second equation.

Expand the equation and set it equal to zero.

1060 11 • Systems of Equations and Inequalities

Access for free at openstax.org



Solving for gives and Next, substitute each value for into the first equation to solve for Always
substitute the value into the linear equation to check for extraneous solutions.

The solutions are and which can be verified by substituting these values into both of the original
equations. See Figure 3.

Figure 3

Q&A Could we have substituted values for into the second equation to solve for in Example 1?

Yes, but because is squared in the second equation this could give us extraneous solutions for

For

This gives us the same value as in the solution.

For

Notice that is an extraneous solution.

TRY IT #1 Solve the given system of equations by substitution.

Intersection of a Circle and a Line
Just as with a parabola and a line, there are three possible outcomes when solving a system of equations representing a
circle and a line.
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Possible Types of Solutions for the Points of Intersection of a Circle and a Line

Figure 4 illustrates possible solution sets for a system of equations involving a circle and a line.

• No solution. The line does not intersect the circle.
• One solution. The line is tangent to the circle and intersects the circle at exactly one point.
• Two solutions. The line crosses the circle and intersects it at two points.

Figure 4

HOW TO

Given a system of equations containing a line and a circle, find the solution.

1. Solve the linear equation for one of the variables.
2. Substitute the expression obtained in step one into the equation for the circle.
3. Solve for the remaining variable.
4. Check your solutions in both equations.

EXAMPLE 2

Finding the Intersection of a Circle and a Line by Substitution
Find the intersection of the given circle and the given line by substitution.

Solution
One of the equations has already been solved for We will substitute into the equation for the circle.

Now, we factor and solve for

Substitute the two x-values into the original linear equation to solve for
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The line intersects the circle at and which can be verified by substituting these values into both of
the original equations. See Figure 5.

Figure 5

TRY IT #2 Solve the system of nonlinear equations.

Solving a System of Nonlinear Equations Using Elimination
We have seen that substitution is often the preferred method when a system of equations includes a linear equation and
a nonlinear equation. However, when both equations in the system have like variables of the second degree, solving
them using elimination by addition is often easier than substitution. Generally, elimination is a far simpler method when
the system involves only two equations in two variables (a two-by-two system), rather than a three-by-three system, as
there are fewer steps. As an example, we will investigate the possible types of solutions when solving a system of
equations representing a circle and an ellipse.

Possible Types of Solutions for the Points of Intersection of a Circle and an Ellipse

Figure 6 illustrates possible solution sets for a system of equations involving a circle and an ellipse.

• No solution. The circle and ellipse do not intersect. One shape is inside the other or the circle and the ellipse are
a distance away from the other.

• One solution. The circle and ellipse are tangent to each other, and intersect at exactly one point.
• Two solutions. The circle and the ellipse intersect at two points.
• Three solutions. The circle and the ellipse intersect at three points.
• Four solutions. The circle and the ellipse intersect at four points.
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Figure 6

EXAMPLE 3

Solving a System of Nonlinear Equations Representing a Circle and an Ellipse
Solve the system of nonlinear equations.

Solution
Let’s begin by multiplying equation (1) by and adding it to equation (2).

After we add the two equations together, we solve for

Substitute into one of the equations and solve for

There are four solutions: See Figure 7.
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Figure 7

TRY IT #3 Find the solution set for the given system of nonlinear equations.

Graphing a Nonlinear Inequality
All of the equations in the systems that we have encountered so far have involved equalities, but we may also encounter
systems that involve inequalities. We have already learned to graph linear inequalities by graphing the corresponding
equation, and then shading the region represented by the inequality symbol. Now, we will follow similar steps to graph a
nonlinear inequality so that we can learn to solve systems of nonlinear inequalities. A nonlinear inequality is an
inequality containing a nonlinear expression. Graphing a nonlinear inequality is much like graphing a linear inequality.

Recall that when the inequality is greater than, or less than, the graph is drawn with a dashed line. When
the inequality is greater than or equal to, or less than or equal to, the graph is drawn with a solid line. The
graphs will create regions in the plane, and we will test each region for a solution. If one point in the region works, the
whole region works. That is the region we shade. See Figure 8.

Figure 8 (a) an example of (b) an example of (c) an example of (d) an example of
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HOW TO

Given an inequality bounded by a parabola, sketch a graph.

1. Graph the parabola as if it were an equation. This is the boundary for the region that is the solution set.
2. If the boundary is included in the region (the operator is or ), the parabola is graphed as a solid line.
3. If the boundary is not included in the region (the operator is < or >), the parabola is graphed as a dashed line.
4. Test a point in one of the regions to determine whether it satisfies the inequality statement. If the statement is

true, the solution set is the region including the point. If the statement is false, the solution set is the region on
the other side of the boundary line.

5. Shade the region representing the solution set.

EXAMPLE 4

Graphing an Inequality for a Parabola
Graph the inequality

Solution

First, graph the corresponding equation Since has a greater than symbol, we draw the graph
with a dashed line. Then we choose points to test both inside and outside the parabola. Let’s test the points

and One point is clearly inside the parabola and the other point is clearly outside.

The graph is shown in Figure 9. We can see that the solution set consists of all points inside the parabola, but not on the
graph itself.

Figure 9

Graphing a System of Nonlinear Inequalities
Now that we have learned to graph nonlinear inequalities, we can learn how to graph systems of nonlinear inequalities.
A system of nonlinear inequalities is a system of two or more inequalities in two or more variables containing at least
one inequality that is not linear. Graphing a system of nonlinear inequalities is similar to graphing a system of linear
inequalities. The difference is that our graph may result in more shaded regions that represent a solution than we find in
a system of linear inequalities. The solution to a nonlinear system of inequalities is the region of the graph where the
shaded regions of the graph of each inequality overlap, or where the regions intersect, called the feasible region.
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HOW TO

Given a system of nonlinear inequalities, sketch a graph.

1. Find the intersection points by solving the corresponding system of nonlinear equations.
2. Graph the nonlinear equations.
3. Find the shaded regions of each inequality.
4. Identify the feasible region as the intersection of the shaded regions of each inequality or the set of points

common to each inequality.

EXAMPLE 5

Graphing a System of Inequalities
Graph the given system of inequalities.

Solution
These two equations are clearly parabolas. We can find the points of intersection by the elimination process: Add both
equations and the variable will be eliminated. Then we solve for

Substitute the x-values into one of the equations and solve for

The two points of intersection are and Notice that the equations can be rewritten as follows.

Graph each inequality. See Figure 10. The feasible region is the region between the two equations bounded by
on the top and on the bottom.
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Figure 10

TRY IT #4 Graph the given system of inequalities.

MEDIA

Access these online resources for additional instruction and practice with nonlinear equations.

Solve a System of Nonlinear Equations Using Substitution (http://openstax.org/l/nonlinsub)
Solve a System of Nonlinear Equations Using Elimination (http://openstax.org/l/nonlinelim)

11.3 SECTION EXERCISES
Verbal

1. Explain whether a system of
two nonlinear equations can
have exactly two solutions.
What about exactly three? If
not, explain why not. If so,
give an example of such a
system, in graph form, and
explain why your choice
gives two or three answers.

2. When graphing an
inequality, explain why we
only need to test one point
to determine whether an
entire region is the solution?

3. When you graph a system of
inequalities, will there
always be a feasible region?
If so, explain why. If not,
give an example of a graph
of inequalities that does not
have a feasible region. Why
does it not have a feasible
region?

4. If you graph a revenue and
cost function, explain how to
determine in what regions
there is profit.

5. If you perform your break-
even analysis and there is
more than one solution,
explain how you would
determine which x-values
are profit and which are not.

Algebraic

For the following exercises, solve the system of nonlinear equations using substitution.

6. 7. 8.
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9. 10.

For the following exercises, solve the system of nonlinear equations using elimination.

11. 12. 13.

14. 15.

For the following exercises, use any method to solve the system of nonlinear equations.

16. 17. 18.

19. 20. 21.

22. 23.

For the following exercises, use any method to solve the nonlinear system.

24. 25. 26.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36. 37. 38.

Graphical

For the following exercises, graph the inequality.

39. 40.
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For the following exercises, graph the system of inequalities. Label all points of intersection.

41. 42. 43.

44. 45.

Extensions

For the following exercises, graph the inequality.

46. 47.

For the following exercises, find the solutions to the nonlinear equations with two variables.

48. 49. 50.

51. 52.

Technology

For the following exercises, solve the system of inequalities. Use a calculator to graph the system to confirm the answer.

53. 54.

Real-World Applications

For the following exercises, construct a system of nonlinear equations to describe the given behavior, then solve for the
requested solutions.

55. Two numbers add up to
300. One number is twice
the square of the other
number. What are the
numbers?

56. The squares of two
numbers add to 360. The
second number is half the
value of the first number
squared. What are the
numbers?

57. A laptop company has discovered their cost and
revenue functions for each day:

and
If they want to make a

profit, what is the range of laptops per day that
they should produce? Round to the nearest
number which would generate profit.

58. A cell phone company has the following cost and
revenue functions:
and What is the range of
cell phones they should produce each day so
there is profit? Round to the nearest number that
generates profit.
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11.4 Partial Fractions
Learning Objectives
In this section, you will:

Decompose , where has only nonrepeated linear factors.

Decompose , where has repeated linear factors.

Decompose , where has a nonrepeated irreducible quadratic factor.

Decompose , where has a repeated irreducible quadratic factor.

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three
variables, and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the
decomposition of rational expressions.

Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied in
this section will help simplify the concept of a rational expression.

Decomposing Where Q(x) Has Only Nonrepeated Linear Factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on finding a
common denominator so that we can write the sum or difference as a single, simplified rational expression. In this
section, we will look at partial fraction decomposition, which is the undoing of the procedure to add or subtract rational
expressions. In other words, it is a return from the single simplified rational expression to the original expressions, called
the partial fraction.

For example, suppose we add the following fractions:

We would first need to find a common denominator,

Next, we would write each expression with this common denominator and find the sum of the terms.

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite
(decompose) it as the sum of two fractions.

We will investigate rational expressions with linear factors and quadratic factors in the denominator where the degree of
the numerator is less than the degree of the denominator. Regardless of the type of expression we are decomposing,
the first and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the original
rational expressions, which were added or subtracted, had one of the linear factors as the denominator. In other words,
using the example above, the factors of are the denominators of the decomposed rational
expression. So we will rewrite the simplified form as the sum of individual fractions and use a variable for each
numerator. Then, we will solve for each numerator using one of several methods available for partial fraction
decomposition.

Partial Fraction Decomposition of Has Nonrepeated Linear Factors

The partial fraction decomposition of when has nonrepeated linear factors and the degree of is less

than the degree of is
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HOW TO

Given a rational expression with distinct linear factors in the denominator, decompose it.

1. Use a variable for the original numerators, usually   or depending on the number of factors, placing

each variable over a single factor. For the purpose of this definition, we use for each numerator

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system

of equations to solve for the numerators.

EXAMPLE 1

Decomposing a Rational Function with Distinct Linear Factors
Decompose the given rational expression with distinct linear factors.

Solution
We will separate the denominator factors and give each numerator a symbolic label, like or

Multiply both sides of the equation by the common denominator to eliminate the fractions:

The resulting equation is

Expand the right side of the equation and collect like terms.

Set up a system of equations associating corresponding coefficients.

Add the two equations and solve for

Substitute into one of the original equations in the system.
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Thus, the partial fraction decomposition is

Another method to use to solve for or is by considering the equation that resulted from eliminating the fractions
and substituting a value for that will make either the A- or B-term equal 0. If we let the

term becomes 0 and we can simply solve for

Next, either substitute into the equation and solve for or make the B-term 0 by substituting into the
equation.

We obtain the same values for and using either method, so the decompositions are the same using either method.

Although this method is not seen very often in textbooks, we present it here as an alternative that may make some
partial fraction decompositions easier. It is known as the Heaviside method, named after Charles Heaviside, a pioneer in
the study of electronics.

TRY IT #1 Find the partial fraction decomposition of the following expression.

Decomposing Where Q(x) Has Repeated Linear Factors

Some fractions we may come across are special cases that we can decompose into partial fractions with repeated linear
factors. We must remember that we account for repeated factors by writing each factor in increasing powers.

Partial Fraction Decomposition of Has Repeated Linear Factors

The partial fraction decomposition of when has a repeated linear factor occurring times and the degree

of is less than the degree of is

Write the denominator powers in increasing order.
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HOW TO

Given a rational expression with repeated linear factors, decompose it.

1. Use a variable like or for the numerators and account for increasing powers of the denominators.

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system

of equations to solve for the numerators.

EXAMPLE 2

Decomposing with Repeated Linear Factors
Decompose the given rational expression with repeated linear factors.

Solution
The denominator factors are To allow for the repeated factor of the decomposition will include three
denominators: and Thus,

Next, we multiply both sides by the common denominator.

On the right side of the equation, we expand and collect like terms.

Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

Solving for , we have

Substitute into equation (1).

Then, to solve for substitute the values for and into equation (2).
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Thus,

TRY IT #2 Find the partial fraction decomposition of the expression with repeated linear factors.

Decomposing Where Q(x) Has a Nonrepeated Irreducible Quadratic Factor

So far, we have performed partial fraction decomposition with expressions that have had linear factors in the
denominator, and we applied numerators or representing constants. Now we will look at an example where
one of the factors in the denominator is a quadratic expression that does not factor. This is referred to as an irreducible
quadratic factor. In cases like this, we use a linear numerator such as etc.

Decomposition of Has a Nonrepeated Irreducible Quadratic Factor

The partial fraction decomposition of such that has a nonrepeated irreducible quadratic factor and

the degree of is less than the degree of is written as

The decomposition may contain more rational expressions if there are linear factors. Each linear factor will have a
different constant numerator: and so on.

HOW TO

Given a rational expression where the factors of the denominator are distinct, irreducible quadratic factors,
decompose it.

1. Use variables such as or for the constant numerators over linear factors, and linear expressions
such as etc., for the numerators of each quadratic factor in the denominator.

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system

of equations to solve for the numerators.
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EXAMPLE 3

Decomposing When Q(x) Contains a Nonrepeated Irreducible Quadratic Factor

Find a partial fraction decomposition of the given expression.

Solution
We have one linear factor and one irreducible quadratic factor in the denominator, so one numerator will be a constant
and the other numerator will be a linear expression. Thus,

We follow the same steps as in previous problems. First, clear the fractions by multiplying both sides of the equation by
the common denominator.

Notice we could easily solve for by choosing a value for that will make the term equal 0. Let
and substitute it into the equation.

Now that we know the value of substitute it back into the equation. Then expand the right side and collect like
terms.

Setting the coefficients of terms on the right side equal to the coefficients of terms on the left side gives the system of
equations.

Solve for using equation (1) and solve for using equation (3).

Thus, the partial fraction decomposition of the expression is
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Q&A Could we have just set up a system of equations to solve Example 3?

Yes, we could have solved it by setting up a system of equations without solving for first. The
expansion on the right would be:

So the system of equations would be:

TRY IT #3 Find the partial fraction decomposition of the expression with a nonrepeating irreducible
quadratic factor.

Decomposing When Q(x) Has a Repeated Irreducible Quadratic Factor

Now that we can decompose a simplified rational expression with an irreducible quadratic factor, we will learn how to do
partial fraction decomposition when the simplified rational expression has repeated irreducible quadratic factors. The
decomposition will consist of partial fractions with linear numerators over each irreducible quadratic factor represented
in increasing powers.

Decomposition of When Q(x) Has a Repeated Irreducible Quadratic Factor

The partial fraction decomposition of when has a repeated irreducible quadratic factor and the

degree of is less than the degree of is

Write the denominators in increasing powers.

HOW TO

Given a rational expression that has a repeated irreducible factor, decompose it.

1. Use variables like or for the constant numerators over linear factors, and linear expressions such as
etc., for the numerators of each quadratic factor in the denominator written in

increasing powers, such as

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system

of equations to solve for the numerators.
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EXAMPLE 4

Decomposing a Rational Function with a Repeated Irreducible Quadratic Factor in the Denominator
Decompose the given expression that has a repeated irreducible factor in the denominator.

Solution

The factors of the denominator are and Recall that, when a factor in the denominator is a
quadratic that includes at least two terms, the numerator must be of the linear form So, let’s begin the
decomposition.

We eliminate the denominators by multiplying each term by Thus,

Expand the right side.

Now we will collect like terms.

Set up the system of equations matching corresponding coefficients on each side of the equal sign.

We can use substitution from this point. Substitute into the first equation.

Substitute and into the third equation.

Substitute into the fourth equation.

Now we have solved for all of the unknowns on the right side of the equal sign. We have
and We can write the decomposition as follows:

TRY IT #4 Find the partial fraction decomposition of the expression with a repeated irreducible quadratic
factor.
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MEDIA

Access these online resources for additional instruction and practice with partial fractions.

Partial Fraction Decomposition (http://openstax.org/l/partdecomp)
Partial Fraction Decomposition With Repeated Linear Factors (http://openstax.org/l/partdecomprlf)
Partial Fraction Decomposition With Linear and Quadratic Factors (http://openstax.org/l/partdecomlqu)

11.4 SECTION EXERCISES
Verbal

1. Can any quotient of
polynomials be decomposed
into at least two partial
fractions? If so, explain why,
and if not, give an example
of such a fraction

2. Can you explain why a
partial fraction
decomposition is unique?
(Hint: Think about it as a
system of equations.)

3. Can you explain how to
verify a partial fraction
decomposition graphically?

4. You are unsure if you correctly decomposed the
partial fraction correctly. Explain how you could
double-check your answer.

5. Once you have a system of equations generated by
the partial fraction decomposition, can you explain
another method to solve it? For example if you had

, we eventually simplify

to Explain how
you could intelligently choose an -value that will
eliminate either or and solve for and

Algebraic

For the following exercises, find the decomposition of the partial fraction for the nonrepeating linear factors.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.

18. 19.

For the following exercises, find the decomposition of the partial fraction for the repeating linear factors.

20. 21. 22.
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23. 24. 25.

26. 27. 28.

29. 30.

For the following exercises, find the decomposition of the partial fraction for the irreducible nonrepeating quadratic
factor.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43.

For the following exercises, find the decomposition of the partial fraction for the irreducible repeating quadratic factor.

44. 45. 46.

47. 48. 49.

50. 51. 52.

53. 54.

Extensions

For the following exercises, find the partial fraction expansion.

55. 56.
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For the following exercises, perform the operation and then find the partial fraction decomposition.

57. 58. 59.

11.5 Matrices and Matrix Operations
Learning Objectives
In this section, you will:

Find the sum and difference of two matrices.
Find scalar multiples of a matrix.
Find the product of two matrices.

Figure 1 (credit: “SD Dirk,” Flickr)

Two club soccer teams, the Wildcats and the Mud Cats, are hoping to obtain new equipment for an upcoming season.
Table 1 shows the needs of both teams.

Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

Table 1

A goal costs $300; a ball costs $10; and a jersey costs $30. How can we find the total cost for the equipment needed for
each team? In this section, we discover a method in which the data in the soccer equipment table can be displayed and
used for calculating other information. Then, we will be able to calculate the cost of the equipment.

Finding the Sum and Difference of Two Matrices
To solve a problem like the one described for the soccer teams, we can use a matrix, which is a rectangular array of
numbers. A row in a matrix is a set of numbers that are aligned horizontally. A column in a matrix is a set of numbers
that are aligned vertically. Each number is an entry, sometimes called an element, of the matrix. Matrices (plural) are
enclosed in [ ] or ( ), and are usually named with capital letters. For example, three matrices named and are
shown below.
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Describing Matrices
A matrix is often referred to by its size or dimensions: indicating rows and columns. Matrix entries are defined
first by row and then by column. For example, to locate the entry in matrix identified as we look for the entry in

row column In matrix   shown below, the entry in row 2, column 3 is

A square matrix is a matrix with dimensions meaning that it has the same number of rows as columns. The
matrix above is an example of a square matrix.

A row matrix is a matrix consisting of one row with dimensions

A column matrix is a matrix consisting of one column with dimensions

A matrix may be used to represent a system of equations. In these cases, the numbers represent the coefficients of the
variables in the system. Matrices often make solving systems of equations easier because they are not encumbered with
variables. We will investigate this idea further in the next section, but first we will look at basic matrix operations.

Matrices

A matrix is a rectangular array of numbers that is usually named by a capital letter: and so on. Each entry in
a matrix is referred to as such that represents the row and represents the column. Matrices are often referred
to by their dimensions: indicating rows and columns.

EXAMPLE 1

Finding the Dimensions of the Given Matrix and Locating Entries
Given matrix

ⓐ What are the dimensions of matrix ⓑ What are the entries at and

Solution

ⓐ The dimensions are because there are three rows and three columns.

ⓑ Entry is the number at row 3, column 1, which is 3. The entry is the number at row 2, column 2, which is 4.
Remember, the row comes first, then the column.

Adding and Subtracting Matrices
We use matrices to list data or to represent systems. Because the entries are numbers, we can perform operations on
matrices. We add or subtract matrices by adding or subtracting corresponding entries.

In order to do this, the entries must correspond. Therefore, addition and subtraction of matrices is only possible when
the matrices have the same dimensions. We can add or subtract a matrix and another matrix, but we cannot
add or subtract a matrix and a matrix because some entries in one matrix will not have a corresponding
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entry in the other matrix.

Adding and Subtracting Matrices

Given matrices and of like dimensions, addition and subtraction of and will produce matrix or
matrix of the same dimension.

Matrix addition is commutative.

It is also associative.

EXAMPLE 2

Finding the Sum of Matrices
Find the sum of and given

Solution
Add corresponding entries.

EXAMPLE 3

Adding Matrix A and Matrix B
Find the sum of and

Solution
Add corresponding entries. Add the entry in row 1, column 1, of matrix to the entry in row 1, column 1, of
Continue the pattern until all entries have been added.
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EXAMPLE 4

Finding the Difference of Two Matrices
Find the difference of and

Solution
We subtract the corresponding entries of each matrix.

EXAMPLE 5

Finding the Sum and Difference of Two 3 x 3 Matrices
Given and

ⓐ Find the sum. ⓑ Find the difference.

Solution

ⓐ Add the corresponding entries. ⓑ Subtract the corresponding entries.

TRY IT #1 Add matrix and matrix

Finding Scalar Multiples of a Matrix
Besides adding and subtracting whole matrices, there are many situations in which we need to multiply a matrix by a
constant called a scalar. Recall that a scalar is a real number quantity that has magnitude, but not direction. For example,
time, temperature, and distance are scalar quantities. The process of scalar multiplication involves multiplying each
entry in a matrix by a scalar. A scalar multiple is any entry of a matrix that results from scalar multiplication.

Consider a real-world scenario in which a university needs to add to its inventory of computers, computer tables, and
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chairs in two of the campus labs due to increased enrollment. They estimate that 15% more equipment is needed in both
labs. The school’s current inventory is displayed in Table 2.

Lab A Lab B

Computers 15 27

Computer Tables 16 34

Chairs 16 34

Table 2

Converting the data to a matrix, we have

To calculate how much computer equipment will be needed, we multiply all entries in matrix by 0.15.

We must round up to the next integer, so the amount of new equipment needed is

Adding the two matrices as shown below, we see the new inventory amounts.

This means

Thus, Lab A will have 18 computers, 19 computer tables, and 19 chairs; Lab B will have 32 computers, 40 computer tables,
and 40 chairs.

Scalar Multiplication

Scalar multiplication involves finding the product of a constant by each entry in the matrix. Given

the scalar multiple is

Scalar multiplication is distributive. For the matrices and with scalars and
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EXAMPLE 6

Multiplying the Matrix by a Scalar
Multiply matrix by the scalar 3.

Solution
Multiply each entry in by the scalar 3.

TRY IT #2 Given matrix find where

EXAMPLE 7

Finding the Sum of Scalar Multiples
Find the sum

Solution
First, find then
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Now, add

Finding the Product of Two Matrices
In addition to multiplying a matrix by a scalar, we can multiply two matrices. Finding the product of two matrices is only
possible when the inner dimensions are the same, meaning that the number of columns of the first matrix is equal to
the number of rows of the second matrix. If is an matrix and is an matrix, then the product matrix is
an matrix. For example, the product is possible because the number of columns in is the same as the
number of rows in If the inner dimensions do not match, the product is not defined.

We multiply entries of with entries of according to a specific pattern as outlined below. The process of matrix
multiplication becomes clearer when working a problem with real numbers.

To obtain the entries in row of we multiply the entries in row of by column in and add. For example, given
matrices and where the dimensions of are and the dimensions of are the product of will be a

matrix.

Multiply and add as follows to obtain the first entry of the product matrix

1. To obtain the entry in row 1, column 1 of multiply the first row in by the first column in and add.

2. To obtain the entry in row 1, column 2 of multiply the first row of by the second column in and add.
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3. To obtain the entry in row 1, column 3 of multiply the first row of by the third column in and add.

We proceed the same way to obtain the second row of In other words, row 2 of times column 1 of row 2 of
times column 2 of row 2 of times column 3 of When complete, the product matrix will be

Properties of Matrix Multiplication

For the matrices and the following properties hold.

• Matrix multiplication is associative:

• Matrix multiplication is distributive:

Note that matrix multiplication is not commutative.

EXAMPLE 8

Multiplying Two Matrices
Multiply matrix and matrix

Solution
First, we check the dimensions of the matrices. Matrix has dimensions and matrix has dimensions The
inner dimensions are the same so we can perform the multiplication. The product will have the dimensions

We perform the operations outlined previously.

EXAMPLE 9

Multiplying Two Matrices
Given and

ⓐ Find ⓑ Find
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Solution

ⓐ As the dimensions of are and the dimensions of are these matrices can be multiplied together
because the number of columns in matches the number of rows in The resulting product will be a matrix,
the number of rows in by the number of columns in

ⓑ The dimensions of are and the dimensions of are The inner dimensions match so the product is
defined and will be a matrix.

Analysis
Notice that the products and are not equal.

This illustrates the fact that matrix multiplication is not commutative.

Q&A Is it possible for AB to be defined but not BA?

Yes, consider a matrix A with dimension and matrix B with dimension For the product AB the
inner dimensions are 4 and the product is defined, but for the product BA the inner dimensions are 2 and
3 so the product is undefined.

EXAMPLE 10

Using Matrices in Real-World Problems
Let’s return to the problem presented at the opening of this section. We have Table 3, representing the equipment
needs of two soccer teams.

Wildcats Mud Cats

Goals 6 10

Table 3
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Wildcats Mud Cats

Balls 30 24

Jerseys 14 20

Table 3

We are also given the prices of the equipment, as shown in Table 4.

Goal $300

Ball $10

Jersey $30

Table 4

We will convert the data to matrices. Thus, the equipment need matrix is written as

The cost matrix is written as

We perform matrix multiplication to obtain costs for the equipment.

The total cost for equipment for the Wildcats is $2,520, and the total cost for equipment for the Mud Cats is $3,840.

HOW TO

Given a matrix operation, evaluate using a calculator.

1. Save each matrix as a matrix variable
2. Enter the operation into the calculator, calling up each matrix variable as needed.
3. If the operation is defined, the calculator will present the solution matrix; if the operation is undefined, it will

display an error message.
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EXAMPLE 11

Using a Calculator to Perform Matrix Operations
Find given

Solution
On the matrix page of the calculator, we enter matrix above as the matrix variable matrix above as the matrix
variable and matrix above as the matrix variable

On the home screen of the calculator, we type in the problem and call up each matrix variable as needed.

The calculator gives us the following matrix.

MEDIA

Access these online resources for additional instruction and practice with matrices and matrix operations.

Dimensions of a Matrix (http://openstax.org/l/matrixdimen)
Matrix Addition and Subtraction (http://openstax.org/l/matrixaddsub)
Matrix Operations (http://openstax.org/l/matrixoper)
Matrix Multiplication (http://openstax.org/l/matrixmult)

11.5 SECTION EXERCISES
Verbal

1. Can we add any two
matrices together? If so,
explain why; if not, explain
why not and give an
example of two matrices
that cannot be added
together.

2. Can we multiply any column
matrix by any row matrix?
Explain why or why not.

3. Can both the products
and be defined? If so,
explain how; if not, explain
why.

4. Can any two matrices of the
same size be multiplied? If
so, explain why, and if not,
explain why not and give an
example of two matrices of
the same size that cannot be
multiplied together.

5. Does matrix multiplication
commute? That is, does

If so, prove why
it does. If not, explain why it
does not.
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Algebraic

For the following exercises, use the matrices below and perform the matrix addition or subtraction. Indicate if the
operation is undefined.

6. 7. 8.

9. 10. 11.

For the following exercises, use the matrices below to perform scalar multiplication.

12. 13. 14.

15. 16. 17.

For the following exercises, use the matrices below to perform matrix multiplication.

18. 19. 20.

21. 22. 23.

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain
why the operation cannot be performed.

24. 25. 26.

27. 28. 29.

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain
why the operation cannot be performed. (Hint: )

30. 31. 32.
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33. 34. 35.

36. 37. 38.

39. 40.

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain
why the operation cannot be performed. (Hint: )

41. 42. 43.

44. 45. 46.

47. 48. 49.

Technology

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, explain
why the operation cannot be performed. Use a calculator to verify your solution.

50. 51. 52.

53. 54.

Extensions

For the following exercises, use the matrix below to perform the indicated operation on the given matrix.

55. 56. 57.

58. 59. Using the above questions,
find a formula for Test
the formula for and

using a calculator.
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11.6 Solving Systems with Gaussian Elimination
Learning Objectives
In this section, you will:

Write the augmented matrix of a system of equations.
Write the system of equations from an augmented matrix.
Perform row operations on a matrix.
Solve a system of linear equations using matrices.

Figure 1 German mathematician Carl Friedrich Gauss (1777–1855).

Carl Friedrich Gauss lived during the late 18th century and early 19th century, but he is still considered one of the most
prolific mathematicians in history. His contributions to the science of mathematics and physics span fields such as
algebra, number theory, analysis, differential geometry, astronomy, and optics, among others. His discoveries regarding
matrix theory changed the way mathematicians have worked for the last two centuries.

We first encountered Gaussian elimination in Systems of Linear Equations: Two Variables. In this section, we will revisit
this technique for solving systems, this time using matrices.

Writing the Augmented Matrix of a System of Equations
A matrix can serve as a device for representing and solving a system of equations. To express a system in matrix form,
we extract the coefficients of the variables and the constants, and these become the entries of the matrix. We use a
vertical line to separate the coefficient entries from the constants, essentially replacing the equal signs. When a system is
written in this form, we call it an augmented matrix.

For example, consider the following system of equations.

We can write this system as an augmented matrix:

We can also write a matrix containing just the coefficients. This is called the coefficient matrix.

A three-by-three system of equations such as

has a coefficient matrix
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and is represented by the augmented matrix

Notice that the matrix is written so that the variables line up in their own columns: x-terms go in the first column,
y-terms in the second column, and z-terms in the third column. It is very important that each equation is written in
standard form so that the variables line up. When there is a missing variable term in an equation, the
coefficient is 0.

HOW TO

Given a system of equations, write an augmented matrix.

1. Write the coefficients of the x-terms as the numbers down the first column.
2. Write the coefficients of the y-terms as the numbers down the second column.
3. If there are z-terms, write the coefficients as the numbers down the third column.
4. Draw a vertical line and write the constants to the right of the line.

EXAMPLE 1

Writing the Augmented Matrix for a System of Equations
Write the augmented matrix for the given system of equations.

Solution
The augmented matrix displays the coefficients of the variables, and an additional column for the constants.

TRY IT #1 Write the augmented matrix of the given system of equations.

Writing a System of Equations from an Augmented Matrix
We can use augmented matrices to help us solve systems of equations because they simplify operations when the
systems are not encumbered by the variables. However, it is important to understand how to move back and forth
between formats in order to make finding solutions smoother and more intuitive. Here, we will use the information in an
augmented matrix to write the system of equations in standard form.

EXAMPLE 2

Writing a System of Equations from an Augmented Matrix Form
Find the system of equations from the augmented matrix.
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Solution
When the columns represent the variables and

TRY IT #2 Write the system of equations from the augmented matrix.

Performing Row Operations on a Matrix
Now that we can write systems of equations in augmented matrix form, we will examine the various row operations
that can be performed on a matrix, such as addition, multiplication by a constant, and interchanging rows.

Performing row operations on a matrix is the method we use for solving a system of equations. In order to solve the
system of equations, we want to convert the matrix to row-echelon form, in which there are ones down the main
diagonal from the upper left corner to the lower right corner, and zeros in every position below the main diagonal as
shown.

We use row operations corresponding to equation operations to obtain a new matrix that is row-equivalent in a simpler
form. Here are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called a leading 1.
2. Any all-zero rows are placed at the bottom on the matrix.
3. Any leading 1 is below and to the right of a previous leading 1.
4. Any column containing a leading 1 has zeros in all other positions in the column.

To solve a system of equations we can perform the following row operations to convert the coefficient matrix to row-
echelon form and do back-substitution to find the solution.

1. Interchange rows. (Notation: )
2. Multiply a row by a constant. (Notation: )
3. Add the product of a row multiplied by a constant to another row. (Notation:

Each of the row operations corresponds to the operations we have already learned to solve systems of equations in
three variables. With these operations, there are some key moves that will quickly achieve the goal of writing a matrix in
row-echelon form. To obtain a matrix in row-echelon form for finding solutions, we use Gaussian elimination, a method
that uses row operations to obtain a 1 as the first entry so that row 1 can be used to convert the remaining rows.

Gaussian Elimination

The Gaussian elimination method refers to a strategy used to obtain the row-echelon form of a matrix. The goal is
to write matrix with the number 1 as the entry down the main diagonal and have all zeros below.
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The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used to alter the
rows below.

HOW TO

Given an augmented matrix, perform row operations to achieve row-echelon form.

1. The first equation should have a leading coefficient of 1. Interchange rows or multiply by a constant, if necessary.
2. Use row operations to obtain zeros down the first column below the first entry of 1.
3. Use row operations to obtain a 1 in row 2, column 2.
4. Use row operations to obtain zeros down column 2, below the entry of 1.
5. Use row operations to obtain a 1 in row 3, column 3.
6. Continue this process for all rows until there is a 1 in every entry down the main diagonal and there are only

zeros below.
7. If any rows contain all zeros, place them at the bottom.

EXAMPLE 3

Solving a System by Gaussian Elimination
Solve the given system by Gaussian elimination.

Solution
First, we write this as an augmented matrix.

We want a 1 in row 1, column 1. This can be accomplished by interchanging row 1 and row 2.

We now have a 1 as the first entry in row 1, column 1. Now let’s obtain a 0 in row 2, column 1. This can be accomplished
by multiplying row 1 by and then adding the result to row 2.

We only have one more step, to multiply row 2 by

Use back-substitution. The second row of the matrix represents Back-substitute into the first equation.
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The solution is the point

TRY IT #3 Solve the given system by Gaussian elimination.

EXAMPLE 4

Using Gaussian Elimination to Solve a System of Equations
Use Gaussian elimination to solve the given system of equations.

Solution
Write the system as an augmented matrix.

Obtain a 1 in row 1, column 1. This can be accomplished by multiplying the first row by

Next, we want a 0 in row 2, column 1. Multiply row 1 by and add row 1 to row 2.

The second row represents the equation Therefore, the system is inconsistent and has no solution.

EXAMPLE 5

Solving a Dependent System
Solve the system of equations.

Solution
Perform row operations on the augmented matrix to try and achieve row-echelon form.

The matrix ends up with all zeros in the last row: Thus, there are an infinite number of solutions and the system
is classified as dependent. To find the generic solution, return to one of the original equations and solve for

1098 11 • Systems of Equations and Inequalities

Access for free at openstax.org



So the solution to this system is

EXAMPLE 6

Performing Row Operations on a 3×3 Augmented Matrix to Obtain Row-Echelon Form
Perform row operations on the given matrix to obtain row-echelon form.

Solution
The first row already has a 1 in row 1, column 1. The next step is to multiply row 1 by and add it to row 2. Then replace
row 2 with the result.

Next, obtain a zero in row 3, column 1.

Next, obtain a zero in row 3, column 2.

The last step is to obtain a 1 in row 3, column 3.

TRY IT #4 Write the system of equations in row-echelon form.

Solving a System of Linear Equations Using Matrices
We have seen how to write a system of equations with an augmented matrix, and then how to use row operations and
back-substitution to obtain row-echelon form. Now, we will take row-echelon form a step farther to solve a 3 by 3 system
of linear equations. The general idea is to eliminate all but one variable using row operations and then back-substitute to
solve for the other variables.
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EXAMPLE 7

Solving a System of Linear Equations Using Matrices
Solve the system of linear equations using matrices.

Solution
First, we write the augmented matrix.

Next, we perform row operations to obtain row-echelon form.

The easiest way to obtain a 1 in row 2 of column 1 is to interchange and

Then

The last matrix represents the equivalent system.

Using back-substitution, we obtain the solution as

EXAMPLE 8

Solving a Dependent System of Linear Equations Using Matrices
Solve the following system of linear equations using matrices.

Solution
Write the augmented matrix.
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First, multiply row 1 by to get a 1 in row 1, column 1. Then, perform row operations to obtain row-echelon form.

The last matrix represents the following system.

We see by the identity that this is a dependent system with an infinite number of solutions. We then find the
generic solution. By solving the second equation for and substituting it into the first equation we can solve for in
terms of

Now we substitute the expression for into the second equation to solve for in terms of

The generic solution is

TRY IT #5 Solve the system using matrices.

Q&A Can any system of linear equations be solved by Gaussian elimination?

Yes, a system of linear equations of any size can be solved by Gaussian elimination.
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HOW TO

Given a system of equations, solve with matrices using a calculator.

1. Save the augmented matrix as a matrix variable
2. Use the ref( function in the calculator, calling up each matrix variable as needed.

EXAMPLE 9

Solving Systems of Equations with Matrices Using a Calculator
Solve the system of equations.

Solution
Write the augmented matrix for the system of equations.

On the matrix page of the calculator, enter the augmented matrix above as the matrix variable

Use the ref( function in the calculator, calling up the matrix variable

Evaluate.

Using back-substitution, the solution is

EXAMPLE 10

Applying 2 × 2 Matrices to Finance
Carolyn invests a total of $12,000 in two municipal bonds, one paying 10.5% interest and the other paying 12% interest.
The annual interest earned on the two investments last year was $1,335. How much was invested at each rate?

Solution
We have a system of two equations in two variables. Let the amount invested at 10.5% interest, and the amount
invested at 12% interest.

As a matrix, we have
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Multiply row 1 by and add the result to row 2.

Then,

So

Thus, $5,000 was invested at 12% interest and $7,000 at 10.5% interest.

EXAMPLE 11

Applying 3 × 3 Matrices to Finance
Ava invests a total of $10,000 in three accounts, one paying 5% interest, another paying 8% interest, and the third paying
9% interest. The annual interest earned on the three investments last year was $770. The amount invested at 9% was
twice the amount invested at 5%. How much was invested at each rate?

Solution
We have a system of three equations in three variables. Let be the amount invested at 5% interest, let be the amount
invested at 8% interest, and let be the amount invested at 9% interest. Thus,

As a matrix, we have

Now, we perform Gaussian elimination to achieve row-echelon form.

The third row tells us thus

The second row tells us Substituting we get

11.6 • Solving Systems with Gaussian Elimination 1103



The first row tells us Substituting and we get

The answer is $3,000 invested at 5% interest, $1,000 invested at 8%, and $6,000 invested at 9% interest.

TRY IT #6 A small shoe company took out a loan of $1,500,000 to expand their inventory. Part of the money
was borrowed at 7%, part was borrowed at 8%, and part was borrowed at 10%. The amount
borrowed at 10% was four times the amount borrowed at 7%, and the annual interest on all three
loans was $130,500. Use matrices to find the amount borrowed at each rate.

MEDIA

Access these online resources for additional instruction and practice with solving systems of linear equations using
Gaussian elimination.

Solve a System of Two Equations Using an Augmented Matrix (http://openstax.org/l/system2augmat)
Solve a System of Three Equations Using an Augmented Matrix (http://openstax.org/l/system3augmat)
Augmented Matrices on the Calculator (http://openstax.org/l/augmatcalc)

11.6 SECTION EXERCISES
Verbal

1. Can any system of linear
equations be written as an
augmented matrix? Explain
why or why not. Explain how
to write that augmented
matrix.

2. Can any matrix be written as
a system of linear
equations? Explain why or
why not. Explain how to
write that system of
equations.

3. Is there only one correct
method of using row
operations on a matrix? Try
to explain two different row
operations possible to solve
the augmented matrix

4. Can a matrix whose entry is
0 on the diagonal be solved?
Explain why or why not.
What would you do to
remedy the situation?

5. Can a matrix that has 0
entries for an entire row
have one solution? Explain
why or why not.

Algebraic

For the following exercises, write the augmented matrix for the linear system.

6. 7. 8.
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9. 10.

For the following exercises, write the linear system from the augmented matrix.

11. 12. 13.

14. 15.

For the following exercises, solve the system by Gaussian elimination.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.
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43. 44. 45.

46.

Extensions

For the following exercises, use Gaussian elimination to solve the system.

47. 48. 49.

50. 51.

Real-World Applications

For the following exercises, set up the augmented matrix that describes the situation, and solve for the desired solution.

52. Every day, Angeni's
cupcake store sells 5,000
cupcakes in chocolate and
vanilla flavors. If the
chocolate flavor is 3 times
as popular as the vanilla
flavor, how many of each
cupcake does the store sell
per day?

53. At Bakari's competing
cupcake store, $4,520
worth of cupcakes are sold
daily. The chocolate
cupcakes cost $2.25 and
the red velvet cupcakes
cost $1.75. If the total
number of cupcakes sold
per day is 2,200, how many
of each flavor are sold each
day?

54. You invested $10,000 into
two accounts: one that has
simple 3% interest, the
other with 2.5% interest. If
your total interest payment
after one year was $283.50,
how much was in each
account after the year
passed?
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55. You invested $2,300 into
account 1, and $2,700 into
account 2. If the total
amount of interest after
one year is $254, and
account 2 has 1.5 times the
interest rate of account 1,
what are the interest rates?
Assume simple interest
rates.

56. Bikes’R’Us manufactures
bikes, which sell for $250. It
costs the manufacturer
$180 per bike, plus a
startup fee of $3,500. After
how many bikes sold will
the manufacturer break
even?

57. A major appliance store
has agreed to order
vacuums from a startup
founded by college
engineering students. The
store would be able to
purchase the vacuums for
$86 each, with a delivery
fee of $9,200, regardless of
how many vacuums are
sold. If the store needs to
start seeing a profit after
230 units are sold, how
much should they charge
for the vacuums?

58. The three most popular ice
cream flavors are
chocolate, strawberry, and
vanilla, comprising 83% of
the flavors sold at an ice
cream shop. If vanilla sells
1% more than twice
strawberry, and chocolate
sells 11% more than vanilla,
how much of the total ice
cream consumption are
the vanilla, chocolate, and
strawberry flavors?

59. At an ice cream shop, three
flavors are increasing in
demand. Last year,
banana, pumpkin, and
rocky road ice cream made
up 12% of total ice cream
sales. This year, the same
three ice creams made up
16.9% of ice cream sales.
The rocky road sales
doubled, the banana sales
increased by 50%, and the
pumpkin sales increased
by 20%. If the rocky road
ice cream had one less
percent of sales than the
banana ice cream, find out
the percentage of ice
cream sales each individual
ice cream made last year.

60. A bag of mixed nuts
contains cashews,
pistachios, and almonds.
There are 1,000 total nuts
in the bag, and there are
100 less almonds than
pistachios. The cashews
weigh 3 g, pistachios weigh
4 g, and almonds weigh 5
g. If the bag weighs 3.7 kg,
find out how many of each
type of nut is in the bag.

61. A bag of mixed nuts
contains cashews,
pistachios, and almonds.
Originally there were 900
nuts in the bag. 30% of the
almonds, 20% of the
cashews, and 10% of the
pistachios were eaten, and
now there are 770 nuts left
in the bag. Originally, there
were 100 more cashews
than almonds. Figure out
how many of each type of
nut was in the bag to begin
with.
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11.7 Solving Systems with Inverses
Learning Objectives
In this section, you will:

Find the inverse of a matrix.
Solve a system of linear equations using an inverse matrix.

Soriya plans to invest $10,500 into two different bonds to spread out her risk. The first bond has an annual return of 10%,
and the second bond has an annual return of 6%. In order to receive an 8.5% return from the two bonds, how much
should Soriya invest in each bond? What is the best method to solve this problem?

There are several ways we can solve this problem. As we have seen in previous sections, systems of equations and
matrices are useful in solving real-world problems involving finance. After studying this section, we will have the tools to
solve the bond problem using the inverse of a matrix.

Finding the Inverse of a Matrix
We know that the multiplicative inverse of a real number is and For example,
and The multiplicative inverse of a matrix is similar in concept, except that the product of matrix and its
inverse equals the identity matrix. The identity matrix is a square matrix containing ones down the main diagonal
and zeros everywhere else. We identify identity matrices by where represents the dimension of the matrix. Observe
the following equations.

The identity matrix acts as a 1 in matrix algebra. For example,

A matrix that has a multiplicative inverse has the properties

A matrix that has a multiplicative inverse is called an invertible matrix. Only a square matrix may have a multiplicative
inverse, as the reversibility, is a requirement. Not all square matrices have an inverse, but if is
invertible, then is unique. We will look at two methods for finding the inverse of a matrix and a third method
that can be used on both and matrices.

The Identity Matrix and Multiplicative Inverse

The identity matrix, is a square matrix containing ones down the main diagonal and zeros everywhere else.

If is an matrix and is an matrix such that then the multiplicative
inverse of a matrix

EXAMPLE 1

Showing That the Identity Matrix Acts as a 1
Given matrix A, show that
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Solution
Use matrix multiplication to show that the product of and the identity is equal to the product of the identity and A.

HOW TO

Given two matrices, show that one is the multiplicative inverse of the other.

1. Given matrix of order and matrix of order multiply
2. If then find the product If then and

EXAMPLE 2

Showing That Matrix A Is the Multiplicative Inverse of Matrix B
Show that the given matrices are multiplicative inverses of each other.

Solution
Multiply and If both products equal the identity, then the two matrices are inverses of each other.

and are inverses of each other.

TRY IT #1 Show that the following two matrices are inverses of each other.

Finding the Multiplicative Inverse Using Matrix Multiplication
We can now determine whether two matrices are inverses, but how would we find the inverse of a given matrix? Since
we know that the product of a matrix and its inverse is the identity matrix, we can find the inverse of a matrix by setting
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up an equation using matrix multiplication.

EXAMPLE 3

Finding the Multiplicative Inverse Using Matrix Multiplication
Use matrix multiplication to find the inverse of the given matrix.

Solution
For this method, we multiply by a matrix containing unknown constants and set it equal to the identity.

Find the product of the two matrices on the left side of the equal sign.

Next, set up a system of equations with the entry in row 1, column 1 of the new matrix equal to the first entry of the
identity, 1. Set the entry in row 2, column 1 of the new matrix equal to the corresponding entry of the identity, which is 0.

Using row operations, multiply and add as follows: Add the equations, and solve for

Back-substitute to solve for

Write another system of equations setting the entry in row 1, column 2 of the new matrix equal to the corresponding
entry of the identity, 0. Set the entry in row 2, column 2 equal to the corresponding entry of the identity.

Using row operations, multiply and add as follows: Add the two equations and solve for

Once more, back-substitute and solve for

Finding the Multiplicative Inverse by Augmenting with the Identity
Another way to find the multiplicative inverse is by augmenting with the identity. When matrix is transformed into
the augmented matrix transforms into
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For example, given

augment with the identity

Perform row operations with the goal of turning into the identity.

1. Switch row 1 and row 2.

2. Multiply row 2 by and add to row 1.

3. Multiply row 1 by and add to row 2.

4. Add row 2 to row 1.

5. Multiply row 2 by

The matrix we have found is

Finding the Multiplicative Inverse of 2×2 Matrices Using a Formula
When we need to find the multiplicative inverse of a matrix, we can use a special formula instead of using matrix
multiplication or augmenting with the identity.

If is a matrix, such as

the multiplicative inverse of is given by the formula

where If then has no inverse.

EXAMPLE 4

Using the Formula to Find the Multiplicative Inverse of Matrix A
Use the formula to find the multiplicative inverse of

Solution
Using the formula, we have
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Analysis
We can check that our formula works by using one of the other methods to calculate the inverse. Let’s augment with
the identity.

Perform row operations with the goal of turning into the identity.

1. Multiply row 1 by and add to row 2.

2. Multiply row 1 by 2 and add to row 1.

So, we have verified our original solution.

TRY IT #2 Use the formula to find the inverse of matrix Verify your answer by augmenting with the
identity matrix.

EXAMPLE 5

Finding the Inverse of the Matrix, If It Exists
Find the inverse, if it exists, of the given matrix.

Solution

We will use the method of augmenting with the identity.

1. Switch row 1 and row 2.

2. Multiply row 1 by −3 and add it to row 2.

3. There is nothing further we can do. The zeros in row 2 indicate that this matrix has no inverse.
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Finding the Multiplicative Inverse of 3×3 Matrices
Unfortunately, we do not have a formula similar to the one for a matrix to find the inverse of a matrix.
Instead, we will augment the original matrix with the identity matrix and use row operations to obtain the inverse.

Given a matrix

augment with the identity matrix

To begin, we write the augmented matrix with the identity on the right and on the left. Performing elementary row
operations so that the identity matrix appears on the left, we will obtain the inverse matrix on the right. We will find the
inverse of this matrix in the next example.

HOW TO

Given a matrix, find the inverse

1. Write the original matrix augmented with the identity matrix on the right.
2. Use elementary row operations so that the identity appears on the left.
3. What is obtained on the right is the inverse of the original matrix.
4. Use matrix multiplication to show that and

EXAMPLE 6

Finding the Inverse of a 3 × 3 Matrix
Given the matrix find the inverse.

Solution
Augment with the identity matrix, and then begin row operations until the identity matrix replaces The matrix on
the right will be the inverse of
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Thus,

Analysis

To prove that let’s multiply the two matrices together to see if the product equals the identity, if
and

TRY IT #3 Find the inverse of the matrix.

Solving a System of Linear Equations Using the Inverse of a Matrix
Solving a system of linear equations using the inverse of a matrix requires the definition of two new matrices: is the
matrix representing the variables of the system, and is the matrix representing the constants. Using matrix
multiplication, we may define a system of equations with the same number of equations as variables as
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To solve a system of linear equations using an inverse matrix, let be the coefficient matrix, let be the variable
matrix, and let be the constant matrix. Thus, we want to solve a system For example, look at the following
system of equations.

From this system, the coefficient matrix is

The variable matrix is

And the constant matrix is

Then looks like

Recall the discussion earlier in this section regarding multiplying a real number by its inverse, To
solve a single linear equation for we would simply multiply both sides of the equation by the multiplicative
inverse (reciprocal) of Thus,

The only difference between a solving a linear equation and a system of equations written in matrix form is that finding
the inverse of a matrix is more complicated, and matrix multiplication is a longer process. However, the goal is the
same—to isolate the variable.

We will investigate this idea in detail, but it is helpful to begin with a system and then move on to a system.

Solving a System of Equations Using the Inverse of a Matrix

Given a system of equations, write the coefficient matrix the variable matrix and the constant matrix Then

Multiply both sides by the inverse of to obtain the solution.

Q&A If the coefficient matrix does not have an inverse, does that mean the system has no solution?

No, if the coefficient matrix is not invertible, the system could be inconsistent and have no solution, or be
dependent and have infinitely many solutions.
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EXAMPLE 7

Solving a 2 × 2 System Using the Inverse of a Matrix
Solve the given system of equations using the inverse of a matrix.

Solution
Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

Then

First, we need to calculate Using the formula to calculate the inverse of a 2 by 2 matrix, we have:

So,

Now we are ready to solve. Multiply both sides of the equation by

The solution is

Q&A Can we solve for by finding the product

No, recall that matrix multiplication is not commutative, so Consider our steps for solving
the matrix equation.

Notice in the first step we multiplied both sides of the equation by but the was to the left of
on the left side and to the left of on the right side. Because matrix multiplication is not commutative,
order matters.
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EXAMPLE 8

Solving a 3 × 3 System Using the Inverse of a Matrix
Solve the following system using the inverse of a matrix.

Solution
Write the equation

First, we will find the inverse of by augmenting with the identity.

Multiply row 1 by

Multiply row 1 by 4 and add to row 2.

Add row 1 to row 3.

Multiply row 2 by −3 and add to row 1.

Multiply row 3 by 5.

Multiply row 3 by and add to row 1.
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...

Multiply row 3 by and add to row 2.

So,

Multiply both sides of the equation by We want

Thus,

The solution is

TRY IT #4 Solve the system using the inverse of the coefficient matrix.

HOW TO

Given a system of equations, solve with matrix inverses using a calculator.

1. Save the coefficient matrix and the constant matrix as matrix variables and
2. Enter the multiplication into the calculator, calling up each matrix variable as needed.
3. If the coefficient matrix is invertible, the calculator will present the solution matrix; if the coefficient matrix is not

invertible, the calculator will present an error message.

EXAMPLE 9

Using a Calculator to Solve a System of Equations with Matrix Inverses
Solve the system of equations with matrix inverses using a calculator

Solution
On the matrix page of the calculator, enter the coefficient matrix as the matrix variable and enter the constant
matrix as the matrix variable
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On the home screen of the calculator, type in the multiplication to solve for calling up each matrix variable as needed.

Evaluate the expression.

MEDIA

Access these online resources for additional instruction and practice with solving systems with inverses.

The Identity Matrix (http://openstax.org/l/identmatrix)
Determining Inverse Matrices (http://openstax.org/l/inversematrix)
Using a Matrix Equation to Solve a System of Equations (http://openstax.org/l/matrixsystem)

11.7 SECTION EXERCISES
Verbal

1. In a previous section, we
showed that matrix
multiplication is not
commutative, that is,

in most cases.
Can you explain why matrix
multiplication is
commutative for matrix
inverses, that is,

2. Does every matrix
have an inverse? Explain
why or why not. Explain
what condition is necessary
for an inverse to exist.

3. Can you explain whether a
matrix with an entire

row of zeros can have an
inverse?

4. Can a matrix with an entire
column of zeros have an
inverse? Explain why or why
not.

5. Can a matrix with zeros on
the diagonal have an
inverse? If so, find an
example. If not, prove why
not. For simplicity, assume a

matrix.

Algebraic

In the following exercises, show that matrix is the inverse of matrix

6. 7.

8. 9.
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10. 11.

12.

For the following exercises, find the multiplicative inverse of each matrix, if it exists.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26.

For the following exercises, solve the system using the inverse of a matrix.

27. 28. 29.

30. 31. 32.

33. 34.

For the following exercises, solve a system using the inverse of a matrix.

35. 36. 37.
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38. 39. 40.

41. 42.

Technology

For the following exercises, use a calculator to solve the system of equations with matrix inverses.

43. 44. 45.

46.

Extensions

For the following exercises, find the inverse of the given matrix.

47. 48. 49.

50. 51.

11.7 • Solving Systems with Inverses 1121



Real-World Applications

For the following exercises, write a system of equations that represents the situation. Then, solve the system using the
inverse of a matrix.

52. 2,400 tickets were sold for
a basketball game. If the
prices for floor 1 and floor
2 were different, and the
total amount of money
brought in is $64,000, how
much was the price of each
ticket?

53. In the previous exercise, if
you were told there were
400 more tickets sold for
floor 2 than floor 1, how
much was the price of each
ticket?

54. A food drive collected two
different types of canned
goods, green beans and
kidney beans. The total
number of collected cans
was 350 and the total
weight of all donated food
was 348 lb, 12 oz. If the
green bean cans weigh 2
oz less than the kidney
bean cans, how many of
each can was donated?

55. Students were asked to
bring their favorite fruit to
class. 95% of the fruits
consisted of banana, apple,
and oranges. If oranges
were twice as popular as
bananas, and apples were
5% less popular than
bananas, what are the
percentages of each
individual fruit?

56. The nursing club held a
bake sale to raise money
and sold brownies and
chocolate chip cookies.
They priced the brownies
at $1 and the chocolate
chip cookies at $0.75. They
raised $700 and sold 850
items. How many brownies
and how many cookies
were sold?

57. A clothing store needs to
order new inventory. It has
three different types of
hats for sale: straw hats,
beanies, and cowboy hats.
The straw hat is priced at
$13.99, the beanie at $7.99,
and the cowboy hat at
$14.49. If 100 hats were
sold this past quarter,
$1,119 was taken in by
sales, and the amount of
beanies sold was 10 more
than cowboy hats, how
many of each should the
clothing store order to
replace those already sold?

58. Anna, Percy, and Morgan
weigh a combined 370 lb. If
Morgan weighs 20 lb more
than Percy, and Anna
weighs 1.5 times as much
as Percy, how much does
each person weigh?

59. Three roommates shared a
package of 12 ice cream
bars, but no one
remembers who ate how
many. If Micah ate twice as
many ice cream bars as
Joe, and Albert ate three
less than Micah, how many
ice cream bars did each
roommate eat?

60. A farmer constructed a
chicken coop out of
chicken wire, wood, and
plywood. The chicken wire
cost $2 per square foot, the
wood $10 per square foot,
and the plywood $5 per
square foot. The farmer
spent a total of $51, and
the total amount of
materials used was
He used more chicken
wire than plywood. How
much of each material in
did the farmer use?
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61. Jay has lemon, orange, and
pomegranate trees in his
backyard. An orange
weighs 8 oz, a lemon 5 oz,
and a pomegranate 11 oz.
Jay picked 142 pieces of
fruit weighing a total of 70
lb, 10 oz. He picked 15.5
times more oranges than
pomegranates. How many
of each fruit did Jay pick?

11.8 Solving Systems with Cramer's Rule
Learning Objectives
In this section, you will:

Evaluate 2 × 2 determinants.
Use Cramer’s Rule to solve a system of equations in two variables.
Evaluate 3 × 3 determinants.
Use Cramer’s Rule to solve a system of three equations in three variables.
Know the properties of determinants.

We have learned how to solve systems of equations in two variables and three variables, and by multiple methods:
substitution, addition, Gaussian elimination, using the inverse of a matrix, and graphing. Some of these methods are
easier to apply than others and are more appropriate in certain situations. In this section, we will study two more
strategies for solving systems of equations.

Evaluating the Determinant of a 2×2 Matrix
A determinant is a real number that can be very useful in mathematics because it has multiple applications, such as
calculating area, volume, and other quantities. Here, we will use determinants to reveal whether a matrix is invertible by
using the entries of a square matrix to determine whether there is a solution to the system of equations. Perhaps one of
the more interesting applications, however, is their use in cryptography. Secure signals or messages are sometimes sent
encoded in a matrix. The data can only be decrypted with an invertible matrix and the determinant. For our purposes,
we focus on the determinant as an indication of the invertibility of the matrix. Calculating the determinant of a matrix
involves following the specific patterns that are outlined in this section.

Find the Determinant of a 2 × 2 Matrix

The determinant of a matrix, given

is defined as

Notice the change in notation. There are several ways to indicate the determinant, including and replacing the
brackets in a matrix with straight lines,

EXAMPLE 1

Finding the Determinant of a 2 × 2 Matrix
Find the determinant of the given matrix.
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Solution

Using Cramer’s Rule to Solve a System of Two Equations in Two Variables
We will now introduce a final method for solving systems of equations that uses determinants. Known as Cramer’s Rule,
this technique dates back to the middle of the 18th century and is named for its innovator, the Swiss mathematician
Gabriel Cramer (1704-1752), who introduced it in 1750 in Introduction à l'Analyse des lignes Courbes algébriques.
Cramer’s Rule is a viable and efficient method for finding solutions to systems with an arbitrary number of unknowns,
provided that we have the same number of equations as unknowns.

Cramer’s Rule will give us the unique solution to a system of equations, if it exists. However, if the system has no
solution or an infinite number of solutions, this will be indicated by a determinant of zero. To find out if the system is
inconsistent or dependent, another method, such as elimination, will have to be used.

To understand Cramer’s Rule, let’s look closely at how we solve systems of linear equations using basic row operations.
Consider a system of two equations in two variables.

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for If equation (2) is
multiplied by the opposite of the coefficient of in equation (1), equation (1) is multiplied by the coefficient of in
equation (2), and we add the two equations, the variable will be eliminated.

Now, solve for

Similarly, to solve for we will eliminate

Solving for gives
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Notice that the denominator for both and is the determinant of the coefficient matrix.

We can use these formulas to solve for and but Cramer’s Rule also introduces new notation:

• determinant of the coefficient matrix
• determinant of the numerator in the solution of

• determinant of the numerator in the solution of

The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the
determinants. We can then express and as a quotient of two determinants.

Cramer’s Rule for 2×2 Systems

Cramer’s Rule is a method that uses determinants to solve systems of equations that have the same number of
equations as variables.

Consider a system of two linear equations in two variables.

The solution using Cramer’s Rule is given as

If we are solving for the column is replaced with the constant column. If we are solving for the column is
replaced with the constant column.

EXAMPLE 2

Using Cramer’s Rule to Solve a 2 × 2 System
Solve the following system using Cramer’s Rule.

Solution
Solve for

Solve for
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The solution is

TRY IT #1 Use Cramer’s Rule to solve the 2 × 2 system of equations.

Evaluating the Determinant of a 3 × 3 Matrix
Finding the determinant of a 2×2 matrix is straightforward, but finding the determinant of a 3×3 matrix is more
complicated. One method is to augment the 3×3 matrix with a repetition of the first two columns, giving a 3×5 matrix.
Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower right), and
subtract the products of entries up each of the three diagonals (lower left to upper right). This is more easily understood
with a visual and an example.

Find the determinant of the 3×3 matrix.

1. Augment with the first two columns.

2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of entries
down the second diagonal. Add this result to the product of the entries down the third diagonal.

3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the
product of entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

The algebra is as follows:

EXAMPLE 3

Finding the Determinant of a 3 × 3 Matrix
Find the determinant of the 3 × 3 matrix given

Solution
Augment the matrix with the first two columns and then follow the formula. Thus,
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TRY IT #2 Find the determinant of the 3 × 3 matrix.

Q&A Can we use the same method to find the determinant of a larger matrix?

No, this method only works for and matrices. For larger matrices it is best to use a graphing
utility or computer software.

Using Cramer’s Rule to Solve a System of Three Equations in Three Variables
Now that we can find the determinant of a 3 × 3 matrix, we can apply Cramer’s Rule to solve a system of three equations
in three variables. Cramer’s Rule is straightforward, following a pattern consistent with Cramer’s Rule for 2 × 2 matrices.
As the order of the matrix increases to 3 × 3, however, there are many more calculations required.

When we calculate the determinant to be zero, Cramer’s Rule gives no indication as to whether the system has no
solution or an infinite number of solutions. To find out, we have to perform elimination on the system.

Consider a 3 × 3 system of equations.

where

If we are writing the determinant we replace the column with the constant column. If we are writing the
determinant we replace the column with the constant column. If we are writing the determinant we replace
the column with the constant column. Always check the answer.

EXAMPLE 4

Solving a 3 × 3 System Using Cramer’s Rule
Find the solution to the given 3 × 3 system using Cramer’s Rule.
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Solution
Use Cramer’s Rule.

Then,

The solution is

TRY IT #3 Use Cramer’s Rule to solve the 3 × 3 matrix.

EXAMPLE 5

Using Cramer’s Rule to Solve an Inconsistent System
Solve the system of equations using Cramer’s Rule.

 

 

Solution
We begin by finding the determinants

We know that a determinant of zero means that either the system has no solution or it has an infinite number of
solutions. To see which one, we use the process of elimination. Our goal is to eliminate one of the variables.

1. Multiply equation (1) by
2. Add the result to equation

We obtain the equation which is false. Therefore, the system has no solution. Graphing the system reveals two
parallel lines. See Figure 1.
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Figure 1

EXAMPLE 6

Use Cramer’s Rule to Solve a Dependent System
Solve the system with an infinite number of solutions.

Solution

Let’s find the determinant first. Set up a matrix augmented by the first two columns.

Then,

As the determinant equals zero, there is either no solution or an infinite number of solutions. We have to perform
elimination to find out.

1. Multiply equation (1) by and add the result to equation (3):

2. Obtaining an answer of a statement that is always true, means that the system has an infinite number of
solutions. Graphing the system, we can see that two of the planes are the same and they both intersect the third
plane on a line. See Figure 2.

Figure 2

Understanding Properties of Determinants
There are many properties of determinants. Listed here are some properties that may be helpful in calculating the
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determinant of a matrix.

Properties of Determinants

1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
2. When two rows are interchanged, the determinant changes sign.
3. If either two rows or two columns are identical, the determinant equals zero.
4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
5. The determinant of an inverse matrix is the reciprocal of the determinant of the matrix
6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

EXAMPLE 7

Illustrating Properties of Determinants
Illustrate each of the properties of determinants.

Solution
Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries down the
main diagonal.

Augment with the first two columns.

Then

Property 2 states that interchanging rows changes the sign. Given

Property 3 states that if two rows or two columns are identical, the determinant equals zero.

Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,

Property 5 states that the determinant of an inverse matrix is the reciprocal of the determinant Thus,
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Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is multiplied by the
same factor. Thus,

EXAMPLE 8

Using Cramer’s Rule and Determinant Properties to Solve a System
Find the solution to the given 3 × 3 system.

Solution
Using Cramer’s Rule, we have

Notice that the second and third columns are identical. According to Property 3, the determinant will be zero, so there is
either no solution or an infinite number of solutions. We have to perform elimination to find out.

1. Multiply equation (3) by –2 and add the result to equation (1).

Obtaining a statement that is a contradiction means that the system has no solution.

MEDIA

Access these online resources for additional instruction and practice with Cramer’s Rule.

Solve a System of Two Equations Using Cramer's Rule (http://openstax.org/l/system2cramer)
Solve a Systems of Three Equations using Cramer's Rule (http://openstax.org/l/system3cramer)

11.8 • Solving Systems with Cramer's Rule 1131

http://openstax.org/l/system2cramer
http://openstax.org/l/system3cramer


11.8 SECTION EXERCISES
Verbal

1. Explain why we can always
evaluate the determinant of
a square matrix.

2. Examining Cramer’s Rule,
explain why there is no
unique solution to the
system when the
determinant of your matrix
is 0. For simplicity, use a

matrix.

3. Explain what it means in
terms of an inverse for a
matrix to have a 0
determinant.

4. The determinant of
matrix is 3. If you switch
the rows and multiply the
first row by 6 and the
second row by 2, explain
how to find the determinant
and provide the answer.

Algebraic

For the following exercises, find the determinant.

5. 6. 7.

8. 9. 10.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21. 22.

23. 24.
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For the following exercises, solve the system of linear equations using Cramer’s Rule.

25. 26. 27.

28. 29. 30.

31. 32. 33.

34.

For the following exercises, solve the system of linear equations using Cramer’s Rule.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44.

Technology

For the following exercises, use the determinant function on a graphing utility.

45. 46. 47.

48.
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Real-World Applications

For the following exercises, create a system of linear equations to describe the behavior. Then, calculate the
determinant. Will there be a unique solution? If so, find the unique solution.

49. Two numbers add up to 56.
One number is 20 less than
the other.

50. Two numbers add up to
104. If you add two times
the first number plus two
times the second number,
your total is 208

51. Three numbers add up to
106. The first number is 3
less than the second
number. The third number
is 4 more than the first
number.

52. Three numbers add to 216.
The sum of the first two
numbers is 112. The third
number is 8 less than the
first two numbers
combined.

For the following exercises, create a system of linear equations to describe the behavior. Then, solve the system for all
solutions using Cramer’s Rule.

53. You invest $10,000 into two
accounts, which receive 8%
interest and 5% interest. At
the end of a year, you had
$10,710 in your combined
accounts. How much was
invested in each account?

54. You invest $80,000 into two
accounts, $22,000 in one
account, and $58,000 in the
other account. At the end
of one year, assuming
simple interest, you have
earned $2,470 in interest.
The second account
receives half a percent less
than twice the interest on
the first account. What are
the interest rates for your
accounts?

55. A theater needs to know
how many adult tickets and
children tickets were sold
out of the 1,200 total
tickets. If children’s tickets
are $5.95, adult tickets are
$11.15, and the total
amount of revenue was
$12,756, how many
children’s tickets and adult
tickets were sold?

56. A concert venue sells single
tickets for $40 each and
couple’s tickets for $65. If
the total revenue was
$18,090 and the 321 tickets
were sold, how many
single tickets and how
many couple’s tickets were
sold?

57. You decide to paint your
kitchen green. You create
the color of paint by mixing
yellow and blue paints. You
cannot remember how
many gallons of each color
went into your mix, but you
know there were 10 gal
total. Additionally, you kept
your receipt, and know the
total amount spent was
$29.50. If each gallon of
yellow costs $2.59, and
each gallon of blue costs
$3.19, how many gallons of
each color go into your
green mix?

58. You sold two types of
scarves at a farmers’
market and would like to
know which one was more
popular. The total number
of scarves sold was 56, the
yellow scarf cost $10, and
the purple scarf cost $11. If
you had total revenue of
$583, how many yellow
scarves and how many
purple scarves were sold?
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59. Your garden produced two
types of tomatoes, one
green and one red. The red
weigh 10 oz, and the green
weigh 4 oz. You have 30
tomatoes, and a total
weight of 13 lb, 14 oz. How
many of each type of
tomato do you have?

60. At a market, the three most
popular vegetables make
up 53% of vegetable sales.
Corn has 4% higher sales
than broccoli, which has 5%
more sales than onions.
What percentage does
each vegetable have in the
market share?

61. At the same market, the
three most popular fruits
make up 37% of the total
fruit sold. Strawberries sell
twice as much as oranges,
and kiwis sell one more
percentage point than
oranges. For each fruit,
find the percentage of total
fruit sold.

62. Three artists performed at
a concert venue. The first
one charged $15 per ticket,
the second artist charged
$45 per ticket, and the final
one charged $22 per ticket.
There were 510 tickets sold,
for a total of $12,700. If the
first band had 40 more
audience members than
the second band, how
many tickets were sold for
each band?

63. A movie theatre sold
tickets to three movies. The
tickets to the first movie
were $5, the tickets to the
second movie were $11,
and the third movie was
$12. 100 tickets were sold
to the first movie. The total
number of tickets sold was
642, for a total revenue of
$6,774. How many tickets
for each movie were sold?

For the following exercises, use this scenario: A health-conscious company decides to make a trail mix out of almonds,
dried cranberries, and chocolate-covered cashews. The nutritional information for these items is shown in Table 1.

Fat (g) Protein (g) Carbohydrates (g)

Almonds (10) 6 2 3

Cranberries (10) 0.02 0 8

Cashews (10) 7 3.5 5.5

Table 1

64. For the special “low-
carb”trail mix, there are
1,000 pieces of mix. The
total number of
carbohydrates is 425 g, and
the total amount of fat is
570.2 g. If there are 200
more pieces of cashews
than cranberries, how
many of each item is in the
trail mix?

65. For the “hiking” mix, there
are 1,000 pieces in the mix,
containing 390.8 g of fat,
and 165 g of protein. If
there is the same amount
of almonds as cashews,
how many of each item is
in the trail mix?

66. For the “energy-booster”
mix, there are 1,000 pieces
in the mix, containing 145 g
of protein and 625 g of
carbohydrates. If the
number of almonds and
cashews summed together
is equivalent to the amount
of cranberries, how many
of each item is in the trail
mix?
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Chapter Review
Key Terms
addition method an algebraic technique used to solve systems of linear equations in which the equations are added in

a way that eliminates one variable, allowing the resulting equation to be solved for the remaining variable;
substitution is then used to solve for the first variable

augmented matrix a coefficient matrix adjoined with the constant column separated by a vertical line within the
matrix brackets

break-even point the point at which a cost function intersects a revenue function; where profit is zero
coefficient matrix a matrix that contains only the coefficients from a system of equations
column a set of numbers aligned vertically in a matrix
consistent system a system for which there is a single solution to all equations in the system and it is an independent

system, or if there are an infinite number of solutions and it is a dependent system
cost function the function used to calculate the costs of doing business; it usually has two parts, fixed costs and

variable costs
Cramer’s Rule a method for solving systems of equations that have the same number of equations as variables using

determinants
dependent system a system of linear equations in which the two equations represent the same line; there are an

infinite number of solutions to a dependent system
determinant a number calculated using the entries of a square matrix that determines such information as whether

there is a solution to a system of equations
entry an element, coefficient, or constant in a matrix
feasible region the solution to a system of nonlinear inequalities that is the region of the graph where the shaded

regions of each inequality intersect
Gaussian elimination using elementary row operations to obtain a matrix in row-echelon form
identity matrix a square matrix containing ones down the main diagonal and zeros everywhere else; it acts as a 1 in

matrix algebra
inconsistent system a system of linear equations with no common solution because they represent parallel lines,

which have no point or line in common
independent system a system of linear equations with exactly one solution pair
main diagonal entries from the upper left corner diagonally to the lower right corner of a square matrix
matrix a rectangular array of numbers
multiplicative inverse of a matrix a matrix that, when multiplied by the original, equals the identity matrix
nonlinear inequality an inequality containing a nonlinear expression
partial fraction decomposition the process of returning a simplified rational expression to its original form, a sum or

difference of simpler rational expressions
partial fractions the individual fractions that make up the sum or difference of a rational expression before combining

them into a simplified rational expression
profit function the profit function is written as revenue minus cost
revenue function the function that is used to calculate revenue, simply written as where quantity and

price
row a set of numbers aligned horizontally in a matrix
row operations adding one row to another row, multiplying a row by a constant, interchanging rows, and so on, with

the goal of achieving row-echelon form
row-echelon form after performing row operations, the matrix form that contains ones down the main diagonal and

zeros at every space below the diagonal
row-equivalent two matrices and are row-equivalent if one can be obtained from the other by performing basic

row operations
scalar multiple an entry of a matrix that has been multiplied by a scalar
solution set the set of all ordered pairs or triples that satisfy all equations in a system of equations
substitution method an algebraic technique used to solve systems of linear equations in which one of the two

equations is solved for one variable and then substituted into the second equation to solve for the second variable
system of linear equations a set of two or more equations in two or more variables that must be considered

simultaneously.
system of nonlinear equations a system of equations containing at least one equation that is of degree larger than

one
system of nonlinear inequalities a system of two or more inequalities in two or more variables containing at least

one inequality that is not linear
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Key Equations

Identity matrix for a matrix

Identity matrix for a matrix

Multiplicative inverse of a matrix

Key Concepts
11.1 Systems of Linear Equations: Two Variables

• A system of linear equations consists of two or more equations made up of two or more variables such that all
equations in the system are considered simultaneously.

• The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation
independently. See Example 1.

• Systems of equations are classified as independent with one solution, dependent with an infinite number of
solutions, or inconsistent with no solution.

• One method of solving a system of linear equations in two variables is by graphing. In this method, we graph the
equations on the same set of axes. See Example 2.

• Another method of solving a system of linear equations is by substitution. In this method, we solve for one variable
in one equation and substitute the result into the second equation. See Example 3.

• A third method of solving a system of linear equations is by addition, in which we can eliminate a variable by adding
opposite coefficients of corresponding variables. See Example 4.

• It is often necessary to multiply one or both equations by a constant to facilitate elimination of a variable when
adding the two equations together. See Example 5, Example 6, and Example 7.

• Either method of solving a system of equations results in a false statement for inconsistent systems because they
are made up of parallel lines that never intersect. See Example 8.

• The solution to a system of dependent equations will always be true because both equations describe the same line.
See Example 9.

• Systems of equations can be used to solve real-world problems that involve more than one variable, such as those
relating to revenue, cost, and profit. See Example 10 and Example 11.

11.2 Systems of Linear Equations: Three Variables

• A solution set is an ordered triple that represents the intersection of three planes in space. See
Example 1.

• A system of three equations in three variables can be solved by using a series of steps that forces a variable to be
eliminated. The steps include interchanging the order of equations, multiplying both sides of an equation by a
nonzero constant, and adding a nonzero multiple of one equation to another equation. See Example 2.

• Systems of three equations in three variables are useful for solving many different types of real-world problems. See
Example 3.

• A system of equations in three variables is inconsistent if no solution exists. After performing elimination
operations, the result is a contradiction. See Example 4.

• Systems of equations in three variables that are inconsistent could result from three parallel planes, two parallel
planes and one intersecting plane, or three planes that intersect the other two but not at the same location.

• A system of equations in three variables is dependent if it has an infinite number of solutions. After performing
elimination operations, the result is an identity. See Example 5.

• Systems of equations in three variables that are dependent could result from three identical planes, three planes
intersecting at a line, or two identical planes that intersect the third on a line.

11.3 Systems of Nonlinear Equations and Inequalities: Two Variables

• There are three possible types of solutions to a system of equations representing a line and a parabola: (1) no
solution, the line does not intersect the parabola; (2) one solution, the line is tangent to the parabola; and (3) two
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solutions, the line intersects the parabola in two points. See Example 1.
• There are three possible types of solutions to a system of equations representing a circle and a line: (1) no solution,

the line does not intersect the circle; (2) one solution, the line is tangent to the circle; (3) two solutions, the line
intersects the circle in two points. See Example 2.

• There are five possible types of solutions to the system of nonlinear equations representing an ellipse and a circle:
(1) no solution, the circle and the ellipse do not intersect; (2) one solution, the circle and the ellipse are tangent to
each other; (3) two solutions, the circle and the ellipse intersect in two points; (4) three solutions, the circle and
ellipse intersect in three places; (5) four solutions, the circle and the ellipse intersect in four points. See Example 3.

• An inequality is graphed in much the same way as an equation, except for > or <, we draw a dashed line and shade
the region containing the solution set. See Example 4.

• Inequalities are solved the same way as equalities, but solutions to systems of inequalities must satisfy both
inequalities. See Example 5.

11.4 Partial Fractions

• Decompose by writing the partial fractions as Solve by clearing the fractions, expanding the

right side, collecting like terms, and setting corresponding coefficients equal to each other, then setting up and
solving a system of equations. See Example 1.

• The decomposition of with repeated linear factors must account for the factors of the denominator in

increasing powers. See Example 2.
• The decomposition of with a nonrepeated irreducible quadratic factor needs a linear numerator over the

quadratic factor, as in See Example 3.

• In the decomposition of where has a repeated irreducible quadratic factor, when the irreducible

quadratic factors are repeated, powers of the denominator factors must be represented in increasing powers as

See Example 4.

11.5 Matrices and Matrix Operations

• A matrix is a rectangular array of numbers. Entries are arranged in rows and columns.
• The dimensions of a matrix refer to the number of rows and the number of columns. A matrix has three rows

and two columns. See Example 1.
• We add and subtract matrices of equal dimensions by adding and subtracting corresponding entries of each matrix.

See Example 2, Example 3, Example 4, and Example 5.
• Scalar multiplication involves multiplying each entry in a matrix by a constant. See Example 6.
• Scalar multiplication is often required before addition or subtraction can occur. See Example 7.
• Multiplying matrices is possible when inner dimensions are the same—the number of columns in the first matrix

must match the number of rows in the second.
• The product of two matrices, and is obtained by multiplying each entry in row 1 of by each entry in column 1

of then multiply each entry of row 1 of by each entry in columns 2 of and so on. See Example 8 and Example
9.

• Many real-world problems can often be solved using matrices. See Example 10.
• We can use a calculator to perform matrix operations after saving each matrix as a matrix variable. See Example 11.

11.6 Solving Systems with Gaussian Elimination

• An augmented matrix is one that contains the coefficients and constants of a system of equations. See Example 1.
• A matrix augmented with the constant column can be represented as the original system of equations. See Example

2.
• Row operations include multiplying a row by a constant, adding one row to another row, and interchanging rows.
• We can use Gaussian elimination to solve a system of equations. See Example 3, Example 4, and Example 5.
• Row operations are performed on matrices to obtain row-echelon form. See Example 6.
• To solve a system of equations, write it in augmented matrix form. Perform row operations to obtain row-echelon

form. Back-substitute to find the solutions. See Example 7 and Example 8.
• A calculator can be used to solve systems of equations using matrices. See Example 9.
• Many real-world problems can be solved using augmented matrices. See Example 10 and Example 11.
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11.7 Solving Systems with Inverses

• An identity matrix has the property See Example 1.
• An invertible matrix has the property See Example 2.
• Use matrix multiplication and the identity to find the inverse of a matrix. See Example 3.
• The multiplicative inverse can be found using a formula. See Example 4.
• Another method of finding the inverse is by augmenting with the identity. See Example 5.
• We can augment a matrix with the identity on the right and use row operations to turn the original matrix into

the identity, and the matrix on the right becomes the inverse. See Example 6.
• Write the system of equations as and multiply both sides by the inverse of See

Example 7 and Example 8.
• We can also use a calculator to solve a system of equations with matrix inverses. See Example 9.

11.8 Solving Systems with Cramer's Rule

• The determinant for is See Example 1.

• Cramer’s Rule replaces a variable column with the constant column. Solutions are See Example 2.
• To find the determinant of a 3×3 matrix, augment with the first two columns. Add the three diagonal entries (upper

left to lower right) and subtract the three diagonal entries (lower left to upper right). See Example 3.
• To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column with the

constant column for each desired solution: See Example 4.
• Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite solutions.

See Example 5 and Example 6.
• Certain properties of determinants are useful for solving problems. For example:

◦ If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.
◦ When two rows are interchanged, the determinant changes sign.
◦ If either two rows or two columns are identical, the determinant equals zero.
◦ If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
◦ The determinant of an inverse matrix is the reciprocal of the determinant of the matrix
◦ If any row or column is multiplied by a constant, the determinant is multiplied by the same factor. See Example 7

and Example 8.

Exercises
Review Exercises
Systems of Linear Equations: Two Variables

For the following exercises, determine whether the ordered pair is a solution to the system of equations.

1. and 2. and

For the following exercises, use substitution to solve the system of equations.

3. 4. 5.

For the following exercises, use addition to solve the system of equations.

6. 7. 8.
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For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

9. A factory has a cost of
production

and a
revenue function

What is the
break-even point?

10. A performer charges

where is the total
number of attendees at a
show. The venue charges
$75 per ticket. After how
many people buy tickets
does the venue break even,
and what is the value of
the total tickets sold at that
point?

Systems of Linear Equations: Three Variables

For the following exercises, solve the system of three equations using substitution or addition.

11. 12. 13.

14. 15. 16.

17. 18.

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

19. Three odd numbers sum
up to 61. The smaller is
one-third the larger and
the middle number is 16
less than the larger. What
are the three numbers?

20. A local theatre sells out for
their show. They sell all 500
tickets for a total purse of
$8,070.00. The tickets were
priced at $15 for students,
$12 for children, and $18
for adults. If the band sold
three times as many adult
tickets as children’s tickets,
how many of each type
was sold?

Systems of Nonlinear Equations and Inequalities: Two Variables

For the following exercises, solve the system of nonlinear equations.

21. 22. 23.
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24. 25.

For the following exercises, graph the inequality.

26. 27.

For the following exercises, graph the system of inequalities.

28. 29. 30.

Partial Fractions

For the following exercises, decompose into partial fractions.

31. 32. 33.

34. 35. 36.

37. 38.

Matrices and Matrix Operations

For the following exercises, perform the requested operations on the given matrices.

39. 40. 41.

42. 43. 44.

45. 46. 47.

48. 49. 50.

Solving Systems with Gaussian Elimination

For the following exercises, write the system of linear equations from the augmented matrix. Indicate whether there will
be a unique solution.

51. 52.
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For the following exercises, write the augmented matrix from the system of linear equations.

53. 54. 55.

For the following exercises, solve the system of linear equations using Gaussian elimination.

56. 57. 58.

59. 60.

Solving Systems with Inverses

For the following exercises, find the inverse of the matrix.

61. 62. 63.

64.

For the following exercises, find the solutions by computing the inverse of the matrix.

65. 66. 67.

68.

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

69. Students were asked to bring their favorite fruit to
class. 90% of the fruits consisted of banana, apple,
and oranges. If oranges were half as popular as
bananas and apples were 5% more popular than
bananas, what are the percentages of each
individual fruit?

70. A school club held a bake sale to raise money and
sold brownies and chocolate chip cookies. They
priced the brownies at $2 and the chocolate chip
cookies at $1. They raised $250 and sold 175
items. How many brownies and how many cookies
were sold?
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Solving Systems with Cramer's Rule

For the following exercises, find the determinant.

71. 72. 73.

74.

For the following exercises, use Cramer’s Rule to solve the linear systems of equations.

75. 76. 77.

78. 79. 80.

Practice Test
Is the following ordered pair a solution to the system of equations?

1. with

For the following exercises, solve the systems of linear and nonlinear equations using substitution or elimination.
Indicate if no solution exists.

2. 3. 4.

5. 6. 7.

8. 9.

For the following exercises, graph the following inequalities.

10. 11.
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For the following exercises, write the partial fraction decomposition.

12. 13. 14.

For the following exercises, perform the given matrix operations.

15. 16. 17.

18. 19. 20. If what would
be the determinant if you
switched rows 1 and 3,
multiplied the second row
by 12, and took the
inverse?

21. Rewrite the system of
linear equations as an
augmented matrix.

22. Rewrite the augmented
matrix as a system of linear
equations.

For the following exercises, use Gaussian elimination to solve the systems of equations.

23. 24.

For the following exercises, use the inverse of a matrix to solve the systems of equations.

25. 26.

For the following exercises, use Cramer’s Rule to solve the systems of equations.

27. 28.

1144 11 • Exercises

Access for free at openstax.org



For the following exercises, solve using a system of linear equations.

29. A factory producing cell phones has the following
cost and revenue functions:

and
What is the range of cell phones they should
produce each day so there is profit? Round to the
nearest number that generates profit.

30. A small fair charges $1.50 for students, $1 for
children, and $2 for adults. In one day, three times
as many children as adults attended. A total of 800
tickets were sold for a total revenue of $1,050.
How many of each type of ticket was sold?
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The rings of Saturn have produced wonder, as well as misunderstanding, since Galileo first discovered them (he initially
thought they were moons). Though they appear to be a series of solid discs even in this 2004 closeup from the Cassini
probe, 19th century mathematicians proved that they are made up of billions of small objects clustered together. (credit:
modificaion of "Saturn" by NASA/JPL-Caltech/SSI/Kevin M. Gill/flickr)

Chapter Outline
12.1 The Ellipse
12.2 The Hyperbola
12.3 The Parabola
12.4 Rotation of Axes
12.5 Conic Sections in Polar Coordinates

Introduction to Analytic Geometry
The Greek mathematician Menaechmus (c. 380–c. 320 BCE) is generally credited with discovering the shapes formed by
the intersection of a plane and a right circular cone. Depending on how he tilted the plane when it intersected the cone,
he formed different shapes at the intersection–beautiful shapes with near-perfect symmetry.

It was also said that Aristotle may have had an intuitive understanding of these shapes, as he observed the orbit of the
planet to be circular. He presumed that the planets moved in circular orbits around Earth, and for nearly 2000 years this
was the commonly held belief.

It was not until the Renaissance movement that Johannes Kepler noticed that the orbits of the planet were not circular in
nature. His published law of planetary motion in the 1600s changed our view of the solar system forever. He claimed that
the sun was at one end of the orbits, and the planets revolved around the sun in an oval-shaped path.

Other objects in the solar system (and perhaps other systems) follow a similar elliptical path, including the spectacular
rings of Saturn. Using this understanding as a basis, 19th century mathematicians like James Clerk Maxwell and Sofya
Kovalevskaya showed that despite their appearance through the telescopes of the day (and even in current telescopes),
the rings are not solid and continuous, but are rather composed of small particles. Even after the Voyager and Cassini
missions have provided close-up and detailed data regarding the ring structures, full understanding of their construction
relies heavily on mathematical analysis. Of particular interest are the influences of Saturn's moons and moonlets, and
the ways they both disrupt and preserve the ring structure.

In this chapter, we will investigate the two-dimensional figures that are formed when a right circular cone is intersected
by a plane. We will begin by studying each of three figures created in this manner. We will develop defining equations for
each figure and then learn how to use these equations to solve a variety of problems.

ANALYTIC GEOMETRY12
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12.1 The Ellipse
Learning Objectives
In this section, you will:

Write equations of ellipses in standard form.
Graph ellipses centered at the origin.
Graph ellipses not centered at the origin.
Solve applied problems involving ellipses.

Figure 1 The National Statuary Hall in Washington, D.C. (credit: Greg Palmer, Flickr)

Can you imagine standing at one end of a large room and still being able to hear a whisper from a person standing at
the other end? The National Statuary Hall in Washington, D.C., shown in Figure 1, is such a room.1 It is an semi-circular
room called a whispering chamber because the shape makes it possible for sound to travel along the walls and dome. In
this section, we will investigate the shape of this room and its real-world applications, including how far apart two people
in Statuary Hall can stand and still hear each other whisper.

Writing Equations of Ellipses in Standard Form
A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the
plane intersects the cone determines the shape, as shown in Figure 2.

Figure 2

Conic sections can also be described by a set of points in the coordinate plane. Later in this chapter, we will see that the
graph of any quadratic equation in two variables is a conic section. The signs of the equations and the coefficients of the
variable terms determine the shape. This section focuses on the four variations of the standard form of the equation for
the ellipse. An ellipse is the set of all points in a plane such that the sum of their distances from two fixed points is
a constant. Each fixed point is called a focus (plural: foci).

1 Architect of the Capitol. http://www.aoc.gov. Accessed April 15, 2014.
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We can draw an ellipse using a piece of cardboard, two thumbtacks, a pencil, and string. Place the thumbtacks in the
cardboard to form the foci of the ellipse. Cut a piece of string longer than the distance between the two thumbtacks (the
length of the string represents the constant in the definition). Tack each end of the string to the cardboard, and trace a
curve with a pencil held taut against the string. The result is an ellipse. See Figure 3.

Figure 3

Every ellipse has two axes of symmetry. The longer axis is called the major axis, and the shorter axis is called the minor
axis. Each endpoint of the major axis is the vertex of the ellipse (plural: vertices), and each endpoint of the minor axis is
a co-vertex of the ellipse. The center of an ellipse is the midpoint of both the major and minor axes. The axes are
perpendicular at the center. The foci always lie on the major axis, and the sum of the distances from the foci to any point
on the ellipse (the constant sum) is greater than the distance between the foci. See Figure 4.

Figure 4

In this section, we restrict ellipses to those that are positioned vertically or horizontally in the coordinate plane. That is,
the axes will either lie on or be parallel to the x- and y-axes. Later in the chapter, we will see ellipses that are rotated in
the coordinate plane.

To work with horizontal and vertical ellipses in the coordinate plane, we consider two cases: those that are centered at
the origin and those that are centered at a point other than the origin. First we will learn to derive the equations of
ellipses, and then we will learn how to write the equations of ellipses in standard form. Later we will use what we learn to
draw the graphs.

Deriving the Equation of an Ellipse Centered at the Origin
To derive the equation of an ellipse centered at the origin, we begin with the foci and The ellipse is the set
of all points such that the sum of the distances from to the foci is constant, as shown in Figure 5.
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Figure 5

If is a vertex of the ellipse, the distance from to is The distance from to is
. The sum of the distances from the foci to the vertex is

If is a point on the ellipse, then we can define the following variables:

By the definition of an ellipse, is constant for any point on the ellipse. We know that the sum of these
distances is for the vertex It follows that for any point on the ellipse. We will begin the derivation
by applying the distance formula. The rest of the derivation is algebraic.

Thus, the standard equation of an ellipse is This equation defines an ellipse centered at the origin. If

the ellipse is stretched further in the horizontal direction, and if the ellipse is stretched further in the
vertical direction.

Writing Equations of Ellipses Centered at the Origin in Standard Form
Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the standard forms of
equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic, and so on. By learning to
interpret standard forms of equations, we are bridging the relationship between algebraic and geometric
representations of mathematical phenomena.
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The key features of the ellipse are its center, vertices, co-vertices, foci, and lengths and positions of the major and minor
axes. Just as with other equations, we can identify all of these features just by looking at the standard form of the
equation. There are four variations of the standard form of the ellipse. These variations are categorized first by the
location of the center (the origin or not the origin), and then by the position (horizontal or vertical). Each is presented
along with a description of how the parts of the equation relate to the graph. Interpreting these parts allows us to form
a mental picture of the ellipse.

Standard Forms of the Equation of an Ellipse with Center (0,0)

The standard form of the equation of an ellipse with center and major axis on the x-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are , where See Figure 6 a

The standard form of the equation of an ellipse with center and major axis on the y-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are , where See Figure 6 b

Note that the vertices, co-vertices, and foci are related by the equation When we are given the
coordinates of the foci and vertices of an ellipse, we can use this relationship to find the equation of the ellipse in
standard form.

Figure 6 (a) Horizontal ellipse with center (b) Vertical ellipse with center

12.1 • The Ellipse 1151



...
HOW TO

Given the vertices and foci of an ellipse centered at the origin, write its equation in standard form.

1. Determine whether the major axis lies on the x- or y-axis.
a. If the given coordinates of the vertices and foci have the form and respectively, then the

major axis is the x-axis. Use the standard form

b. If the given coordinates of the vertices and foci have the form and respectively, then the

major axis is the y-axis. Use the standard form

2. Use the equation along with the given coordinates of the vertices and foci, to solve for
3. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 1

Writing the Equation of an Ellipse Centered at the Origin in Standard Form
What is the standard form equation of the ellipse that has vertices and foci

Solution
The foci are on the x-axis, so the major axis is the x-axis. Thus, the equation will have the form

The vertices are so and

The foci are so and

We know that the vertices and foci are related by the equation Solving for we have:

Now we need only substitute and into the standard form of the equation. The equation of the ellipse is

TRY IT #1 What is the standard form equation of the ellipse that has vertices and foci

Q&A Can we write the equation of an ellipse centered at the origin given coordinates of just one focus
and vertex?

Yes. Ellipses are symmetrical, so the coordinates of the vertices of an ellipse centered around the origin
will always have the form or Similarly, the coordinates of the foci will always have the
form or Knowing this, we can use and from the given points, along with the equation

to find

Writing Equations of Ellipses Not Centered at the Origin
Like the graphs of other equations, the graph of an ellipse can be translated. If an ellipse is translated units
horizontally and units vertically, the center of the ellipse will be This translation results in the standard form of
the equation we saw previously, with replaced by and y replaced by
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Standard Forms of the Equation of an Ellipse with Center (h, k)

The standard form of the equation of an ellipse with center and major axis parallel to the x-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are where See Figure 7a

The standard form of the equation of an ellipse with center and major axis parallel to the y-axis is

where

•
• the length of the major axis is
• the coordinates of the vertices are
• the length of the minor axis is
• the coordinates of the co-vertices are
• the coordinates of the foci are where See Figure 7b

Just as with ellipses centered at the origin, ellipses that are centered at a point have vertices, co-vertices, and
foci that are related by the equation We can use this relationship along with the midpoint and distance
formulas to find the equation of the ellipse in standard form when the vertices and foci are given.

Figure 7 (a) Horizontal ellipse with center (b) Vertical ellipse with center

HOW TO

Given the vertices and foci of an ellipse not centered at the origin, write its equation in standard form.

1. Determine whether the major axis is parallel to the x- or y-axis.
a. If the y-coordinates of the given vertices and foci are the same, then the major axis is parallel to the x-axis.
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Use the standard form

b. If the x-coordinates of the given vertices and foci are the same, then the major axis is parallel to the y-axis.

Use the standard form

2. Identify the center of the ellipse using the midpoint formula and the given coordinates for the vertices.
3. Find by solving for the length of the major axis, which is the distance between the given vertices.
4. Find using and found in Step 2, along with the given coordinates for the foci.
5. Solve for using the equation
6. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 2

Writing the Equation of an Ellipse Centered at a Point Other Than the Origin
What is the standard form equation of the ellipse that has vertices and

and foci and

Solution
The x-coordinates of the vertices and foci are the same, so the major axis is parallel to the y-axis. Thus, the equation of
the ellipse will have the form

First, we identify the center, The center is halfway between the vertices, and Applying the
midpoint formula, we have:

Next, we find The length of the major axis, is bounded by the vertices. We solve for by finding the distance
between the y-coordinates of the vertices.

So

Now we find The foci are given by So, and We substitute
using either of these points to solve for

So

Next, we solve for using the equation

Finally, we substitute the values found for and into the standard form equation for an ellipse:
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...

TRY IT #2 What is the standard form equation of the ellipse that has vertices and and foci

and

Graphing Ellipses Centered at the Origin
Just as we can write the equation for an ellipse given its graph, we can graph an ellipse given its equation. To graph

ellipses centered at the origin, we use the standard form for horizontal ellipses and

for vertical ellipses.

HOW TO

Given the standard form of an equation for an ellipse centered at sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the major axis, vertices, co-vertices, and foci.

a. If the equation is in the form where then

▪ the major axis is the x-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

b. If the equation is in the form where then

▪ the major axis is the y-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

2. Solve for using the equation
3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the

ellipse.

EXAMPLE 3

Graphing an Ellipse Centered at the Origin

Graph the ellipse given by the equation, Identify and label the center, vertices, co-vertices, and foci.

Solution
First, we determine the position of the major axis. Because the major axis is on the y-axis. Therefore, the

equation is in the form where and It follows that:

• the center of the ellipse is

• the coordinates of the vertices are

• the coordinates of the co-vertices are

• the coordinates of the foci are where Solving for we have:

Therefore, the coordinates of the foci are
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Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse. See Figure
8.

Figure 8

TRY IT #3 Graph the ellipse given by the equation Identify and label the center, vertices, co-

vertices, and foci.

EXAMPLE 4

Graphing an Ellipse Centered at the Origin from an Equation Not in Standard Form
Graph the ellipse given by the equation Rewrite the equation in standard form. Then identify and
label the center, vertices, co-vertices, and foci.

Solution
First, use algebra to rewrite the equation in standard form.

Next, we determine the position of the major axis. Because the major axis is on the x-axis. Therefore, the

equation is in the form where and It follows that:

• the center of the ellipse is

• the coordinates of the vertices are

• the coordinates of the co-vertices are

• the coordinates of the foci are where Solving for we have:

Therefore the coordinates of the foci are

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.
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...

Figure 9

TRY IT #4 Graph the ellipse given by the equation Rewrite the equation in standard
form. Then identify and label the center, vertices, co-vertices, and foci.

Graphing Ellipses Not Centered at the Origin
When an ellipse is not centered at the origin, we can still use the standard forms to find the key features of the graph.

When the ellipse is centered at some point, we use the standard forms for horizontal

ellipses and for vertical ellipses. From these standard equations, we can easily determine

the center, vertices, co-vertices, foci, and positions of the major and minor axes.

HOW TO

Given the standard form of an equation for an ellipse centered at sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the center, position of the major axis,
vertices, co-vertices, and foci.

a. If the equation is in the form where then

▪ the center is
▪ the major axis is parallel to the x-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

b. If the equation is in the form where then

▪ the center is
▪ the major axis is parallel to the y-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are

2. Solve for using the equation
3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the

ellipse.

EXAMPLE 5

Graphing an Ellipse Centered at (h, k)

Graph the ellipse given by the equation, Identify and label the center, vertices, co-vertices, and foci.
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Solution
First, we determine the position of the major axis. Because the major axis is parallel to the y-axis. Therefore, the

equation is in the form where and It follows that:

• the center of the ellipse is
• the coordinates of the vertices are or and
• the coordinates of the co-vertices are or and
• the coordinates of the foci are where Solving for we have:

Therefore, the coordinates of the foci are and

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.

Figure 10

TRY IT #5 Graph the ellipse given by the equation Identify and label the center,

vertices, co-vertices, and foci.

HOW TO

Given the general form of an equation for an ellipse centered at (h, k), express the equation in standard form.

1. Recognize that an ellipse described by an equation in the form is in general form.
2. Rearrange the equation by grouping terms that contain the same variable. Move the constant term to the

opposite side of the equation.
3. Factor out the coefficients of the and terms in preparation for completing the square.
4. Complete the square for each variable to rewrite the equation in the form of the sum of multiples of two

binomials squared set equal to a constant, where and are constants.
5. Divide both sides of the equation by the constant term to express the equation in standard form.

EXAMPLE 6

Graphing an Ellipse Centered at (h, k) by First Writing It in Standard Form
Graph the ellipse given by the equation Identify and label the center, vertices, co-
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vertices, and foci.

Solution
We must begin by rewriting the equation in standard form.

Group terms that contain the same variable, and move the constant to the opposite side of the equation.

Factor out the coefficients of the squared terms.

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

Rewrite as perfect squares.

Divide both sides by the constant term to place the equation in standard form.

Now that the equation is in standard form, we can determine the position of the major axis. Because the major

axis is parallel to the x-axis. Therefore, the equation is in the form where and It

follows that:

• the center of the ellipse is

• the coordinates of the vertices are or and

• the coordinates of the co-vertices are or and

• the coordinates of the foci are where Solving for we have:

Therefore, the coordinates of the foci are and

Next we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse as shown in
Figure 11.

Figure 11

TRY IT #6 Express the equation of the ellipse given in standard form. Identify the center, vertices, co-
vertices, and foci of the ellipse.
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Solving Applied Problems Involving Ellipses
Many real-world situations can be represented by ellipses, including orbits of planets, satellites, moons and comets, and
shapes of boat keels, rudders, and some airplane wings. A medical device called a lithotripter uses elliptical reflectors to
break up kidney stones by generating sound waves. Some buildings, called whispering chambers, are designed with
elliptical domes so that a person whispering at one focus can easily be heard by someone standing at the other focus.
This occurs because of the acoustic properties of an ellipse. When a sound wave originates at one focus of a whispering
chamber, the sound wave will be reflected off the elliptical dome and back to the other focus. See Figure 12. In the
whisper chamber at the Museum of Science and Industry in Chicago, two people standing at the foci—about 43 feet
apart—can hear each other whisper. When these chambers are placed in unexpected places, such as the ones inside
Bush International Airport in Houston and Grand Central Terminal in New York City, they can induce surprised reactions
among travelers.

Figure 12 Sound waves are reflected between foci in an elliptical room, called a whispering chamber.

EXAMPLE 7

Locating the Foci of a Whispering Chamber
A large room in an art gallery is a whispering chamber. Its dimensions are 46 feet wide by 96 feet long as shown in
Figure 13.

a. What is the standard form of the equation of the ellipse representing the outline of the room? Hint: assume a
horizontal ellipse, and let the center of the room be the point

b. If two visitors standing at the foci of this room can hear each other whisper, how far apart are the two visitors?
Round to the nearest foot.

Figure 13

Solution

a. We are assuming a horizontal ellipse with center so we need to find an equation of the form

where We know that the length of the major axis, is longer than the length of the minor axis, So the
length of the room, 96, is represented by the major axis, and the width of the room, 46, is represented by the minor
axis.
◦ Solving for we have so and
◦ Solving for we have so and

Therefore, the equation of the ellipse is

b. To find the distance between the senators, we must find the distance between the foci, where

1160 12 • Analytic Geometry

Access for free at openstax.org



Solving for we have:

The points represent the foci. Thus, the distance between the senators is feet.

TRY IT #7 Suppose a whispering chamber is 480 feet long and 320 feet wide.

ⓐ What is the standard form of the equation of the ellipse representing the room? Hint: assume
a horizontal ellipse, and let the center of the room be the point

ⓑ If two people are standing at the foci of this room and can hear each other whisper, how far
apart are the people? Round to the nearest foot.

MEDIA

Access these online resources for additional instruction and practice with ellipses.

Conic Sections: The Ellipse (http://openstax.org/l/conicellipse)
Graph an Ellipse with Center at the Origin (http://openstax.org/l/grphellorigin)
Graph an Ellipse with Center Not at the Origin (http://openstax.org/l/grphellnot)

12.1 SECTION EXERCISES
Verbal

1. Define an ellipse in terms of
its foci.

2. Where must the foci of an
ellipse lie?

3. What special case of the
ellipse do we have when the
major and minor axis are of
the same length?

4. For the special case
mentioned in the previous
question, what would be
true about the foci of that
ellipse?

5. What can be said about the
symmetry of the graph of an
ellipse with center at the
origin and foci along the
y-axis?

Algebraic

For the following exercises, determine whether the given equations represent ellipses. If yes, write in standard form.

6. 7. 8.

9. 10.
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For the following exercises, write the equation of an ellipse in standard form, and identify the end points of the major
and minor axes as well as the foci.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21.

22. 23.

24. 25.

26.

For the following exercises, find the foci for the given ellipses.

27. 28. 29.

30. 31.

Graphical

For the following exercises, graph the given ellipses, noting center, vertices, and foci.

32. 33. 34.

35. 36. 37.

38. 39. 40.

41. 42.

43. 44.

45.
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For the following exercises, use the given information about the graph of each ellipse to determine its equation.

46. Center at the origin,
symmetric with respect to
the x- and y-axes, focus at

and point on graph

47. Center at the origin,
symmetric with respect to
the x- and y-axes, focus at

and point on graph

48. Center at the origin,
symmetric with respect to
the x- and y-axes, focus at

and major axis is
twice as long as minor axis.

49. Center ; vertex ;

one focus: .

50. Center ; vertex

; one focus:

51. Center ; vertex
; one focus:

For the following exercises, given the graph of the ellipse, determine its equation.

52. 53. 54.

55. 56.

Extensions

For the following exercises, find the area of the ellipse. The area of an ellipse is given by the formula

57. 58. 59.

60. 61.
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Real-World Applications

62. Find the equation of the
ellipse that will just fit
inside a box that is 8 units
wide and 4 units high.

63. Find the equation of the
ellipse that will just fit
inside a box that is four
times as wide as it is high.
Express in terms of the
height.

64. An arch has the shape of a
semi-ellipse (the top half of
an ellipse). The arch has a
height of 8 feet and a span
of 20 feet. Find an equation
for the ellipse, and use that
to find the height to the
nearest 0.01 foot of the
arch at a distance of 4 feet
from the center.

65. An arch has the shape of a
semi-ellipse. The arch has a
height of 12 feet and a
span of 40 feet. Find an
equation for the ellipse,
and use that to find the
distance from the center to
a point at which the height
is 6 feet. Round to the
nearest hundredth.

66. A bridge is to be built in the
shape of a semi-elliptical
arch and is to have a span
of 120 feet. The height of
the arch at a distance of 40
feet from the center is to
be 8 feet. Find the height of
the arch at its center.

67. A person in a whispering
gallery standing at one
focus of the ellipse can
whisper and be heard by a
person standing at the
other focus because all the
sound waves that reach the
ceiling are reflected to the
other person. If a
whispering gallery has a
length of 120 feet, and the
foci are located 30 feet
from the center, find the
height of the ceiling at the
center.

68. A person is standing 8 feet
from the nearest wall in a
whispering gallery. If that
person is at one focus, and
the other focus is 80 feet
away, what is the length
and height at the center of
the gallery?

12.2 The Hyperbola
Learning Objectives
In this section, you will:

Locate a hyperbola’s vertices and foci.
Write equations of hyperbolas in standard form.
Graph hyperbolas centered at the origin.
Graph hyperbolas not centered at the origin.
Solve applied problems involving hyperbolas.

What do paths of comets, supersonic booms, ancient Grecian pillars, and natural draft cooling towers have in common?
They can all be modeled by the same type of conic. For instance, when something moves faster than the speed of sound,
a shock wave in the form of a cone is created. A portion of a conic is formed when the wave intersects the ground,
resulting in a sonic boom. See Figure 1.
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Figure 1 A shock wave intersecting the ground forms a portion of a conic and results in a sonic boom.

Most people are familiar with the sonic boom created by supersonic aircraft, but humans were breaking the sound
barrier long before the first supersonic flight. The crack of a whip occurs because the tip is exceeding the speed of
sound. The bullets shot from many firearms also break the sound barrier, although the bang of the gun usually
supersedes the sound of the sonic boom.

Locating the Vertices and Foci of a Hyperbola
In analytic geometry, a hyperbola is a conic section formed by intersecting a right circular cone with a plane at an angle
such that both halves of the cone are intersected. This intersection produces two separate unbounded curves that are
mirror images of each other. See Figure 2.

Figure 2 A hyperbola

Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is the set of all
points in a plane such that the difference of the distances between and the foci is a positive constant.

Notice that the definition of a hyperbola is very similar to that of an ellipse. The distinction is that the hyperbola is
defined in terms of the difference of two distances, whereas the ellipse is defined in terms of the sum of two distances.

As with the ellipse, every hyperbola has two axes of symmetry. The transverse axis is a line segment that passes
through the center of the hyperbola and has vertices as its endpoints. The foci lie on the line that contains the transverse
axis. The conjugate axis is perpendicular to the transverse axis and has the co-vertices as its endpoints. The center of a
hyperbola is the midpoint of both the transverse and conjugate axes, where they intersect. Every hyperbola also has
two asymptotes that pass through its center. As a hyperbola recedes from the center, its branches approach these
asymptotes. The central rectangle of the hyperbola is centered at the origin with sides that pass through each vertex
and co-vertex; it is a useful tool for graphing the hyperbola and its asymptotes. To sketch the asymptotes of the
hyperbola, simply sketch and extend the diagonals of the central rectangle. See Figure 3.
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Figure 3 Key features of the hyperbola

In this section, we will limit our discussion to hyperbolas that are positioned vertically or horizontally in the coordinate
plane; the axes will either lie on or be parallel to the x- and y-axes. We will consider two cases: those that are centered at
the origin, and those that are centered at a point other than the origin.

Deriving the Equation of a Hyperbola Centered at the Origin
Let and be the foci of a hyperbola centered at the origin. The hyperbola is the set of all points such
that the difference of the distances from to the foci is constant. See Figure 4.

Figure 4

If is a vertex of the hyperbola, the distance from to is The distance from to
is The difference of the distances from the foci to the vertex is

If is a point on the hyperbola, we can define the following variables:

By definition of a hyperbola, is constant for any point on the hyperbola. We know that the difference of
these distances is for the vertex It follows that for any point on the hyperbola. As with the
derivation of the equation of an ellipse, we will begin by applying the distance formula. The rest of the derivation is
algebraic. Compare this derivation with the one from the previous section for ellipses.
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This equation defines a hyperbola centered at the origin with vertices and co-vertices

Standard Forms of the Equation of a Hyperbola with Center (0,0)

The standard form of the equation of a hyperbola with center and transverse axis on the x-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
• the distance between the foci is where
• the coordinates of the foci are
• the equations of the asymptotes are

See Figure 5a.

The standard form of the equation of a hyperbola with center and transverse axis on the y-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
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• the distance between the foci is where
• the coordinates of the foci are
• the equations of the asymptotes are

See Figure 5b.

Note that the vertices, co-vertices, and foci are related by the equation When we are given the equation
of a hyperbola, we can use this relationship to identify its vertices and foci.

Figure 5 (a) Horizontal hyperbola with center (b) Vertical hyperbola with center

HOW TO

Given the equation of a hyperbola in standard form, locate its vertices and foci.

1. Determine whether the transverse axis lies on the x- or y-axis. Notice that is always under the variable with
the positive coefficient. So, if you set the other variable equal to zero, you can easily find the intercepts. In the
case where the hyperbola is centered at the origin, the intercepts coincide with the vertices.

a. If the equation has the form then the transverse axis lies on the x-axis. The vertices are

located at and the foci are located at

b. If the equation has the form then the transverse axis lies on the y-axis. The vertices are

located at and the foci are located at

2. Solve for using the equation
3. Solve for using the equation

EXAMPLE 1

Locating a Hyperbola’s Vertices and Foci

Identify the vertices and foci of the hyperbola with equation

Solution

The equation has the form so the transverse axis lies on the y-axis. The hyperbola is centered at the
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origin, so the vertices serve as the y-intercepts of the graph. To find the vertices, set and solve for

The foci are located at Solving for

Therefore, the vertices are located at and the foci are located at

TRY IT #1 Identify the vertices and foci of the hyperbola with equation

Writing Equations of Hyperbolas in Standard Form
Just as with ellipses, writing the equation for a hyperbola in standard form allows us to calculate the key features: its
center, vertices, co-vertices, foci, asymptotes, and the lengths and positions of the transverse and conjugate axes.
Conversely, an equation for a hyperbola can be found given its key features. We begin by finding standard equations for
hyperbolas centered at the origin. Then we will turn our attention to finding standard equations for hyperbolas centered
at some point other than the origin.

Hyperbolas Centered at the Origin
Reviewing the standard forms given for hyperbolas centered at we see that the vertices, co-vertices, and foci are
related by the equation Note that this equation can also be rewritten as This relationship is
used to write the equation for a hyperbola when given the coordinates of its foci and vertices.

HOW TO

Given the vertices and foci of a hyperbola centered at write its equation in standard form.

1. Determine whether the transverse axis lies on the x- or y-axis.
a. If the given coordinates of the vertices and foci have the form and respectively, then the

transverse axis is the x-axis. Use the standard form

b. If the given coordinates of the vertices and foci have the form and respectively, then the

transverse axis is the y-axis. Use the standard form

2. Find using the equation
3. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 2

Finding the Equation of a Hyperbola Centered at (0,0) Given its Foci and Vertices

What is the standard form equation of the hyperbola that has vertices and foci

Solution

The vertices and foci are on the x-axis. Thus, the equation for the hyperbola will have the form

The vertices are so and
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The foci are so and

Solving for we have

Finally, we substitute and into the standard form of the equation, The equation of the

hyperbola is as shown in Figure 6.

Figure 6

TRY IT #2 What is the standard form equation of the hyperbola that has vertices and foci

Hyperbolas Not Centered at the Origin
Like the graphs for other equations, the graph of a hyperbola can be translated. If a hyperbola is translated units
horizontally and units vertically, the center of the hyperbola will be This translation results in the standard form
of the equation we saw previously, with replaced by and replaced by

Standard Forms of the Equation of a Hyperbola with Center (h, k)

The standard form of the equation of a hyperbola with center and transverse axis parallel to the x-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
• the distance between the foci is where
• the coordinates of the foci are

The asymptotes of the hyperbola coincide with the diagonals of the central rectangle. The length of the rectangle is
and its width is The slopes of the diagonals are and each diagonal passes through the center Using

the point-slope formula, it is simple to show that the equations of the asymptotes are See Figure
7a
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The standard form of the equation of a hyperbola with center and transverse axis parallel to the y-axis is

where

• the length of the transverse axis is
• the coordinates of the vertices are
• the length of the conjugate axis is
• the coordinates of the co-vertices are
• the distance between the foci is where
• the coordinates of the foci are

Using the reasoning above, the equations of the asymptotes are See Figure 7b.

Figure 7 (a) Horizontal hyperbola with center (b) Vertical hyperbola with center

Like hyperbolas centered at the origin, hyperbolas centered at a point have vertices, co-vertices, and foci that are
related by the equation We can use this relationship along with the midpoint and distance formulas to find
the standard equation of a hyperbola when the vertices and foci are given.

HOW TO

Given the vertices and foci of a hyperbola centered at write its equation in standard form.

1. Determine whether the transverse axis is parallel to the x- or y-axis.
a. If the y-coordinates of the given vertices and foci are the same, then the transverse axis is parallel to the

x-axis. Use the standard form

b. If the x-coordinates of the given vertices and foci are the same, then the transverse axis is parallel to the

y-axis. Use the standard form

2. Identify the center of the hyperbola, using the midpoint formula and the given coordinates for the
vertices.

3. Find by solving for the length of the transverse axis, , which is the distance between the given vertices.
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4. Find using and found in Step 2 along with the given coordinates for the foci.
5. Solve for using the equation
6. Substitute the values for and into the standard form of the equation determined in Step 1.

EXAMPLE 3

Finding the Equation of a Hyperbola Centered at (h, k) Given its Foci and Vertices
What is the standard form equation of the hyperbola that has vertices at and and foci at and

Solution
The y-coordinates of the vertices and foci are the same, so the transverse axis is parallel to the x-axis. Thus, the equation
of the hyperbola will have the form

First, we identify the center, The center is halfway between the vertices and Applying the midpoint
formula, we have

Next, we find The length of the transverse axis, is bounded by the vertices. So, we can find by finding the
distance between the x-coordinates of the vertices.

Now we need to find The coordinates of the foci are So and We
can use the x-coordinate from either of these points to solve for Using the point and substituting

Next, solve for using the equation

Finally, substitute the values found for and into the standard form of the equation.

TRY IT #3 What is the standard form equation of the hyperbola that has vertices and and foci
and

Graphing Hyperbolas Centered at the Origin
When we have an equation in standard form for a hyperbola centered at the origin, we can interpret its parts to identify
the key features of its graph: the center, vertices, co-vertices, asymptotes, foci, and lengths and positions of the

transverse and conjugate axes. To graph hyperbolas centered at the origin, we use the standard form for
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horizontal hyperbolas and the standard form for vertical hyperbolas.

HOW TO

Given a standard form equation for a hyperbola centered at sketch the graph.

1. Determine which of the standard forms applies to the given equation.
2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the

vertices, co-vertices, and foci; and the equations for the asymptotes.

a. If the equation is in the form then

▪ the transverse axis is on the x-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are

b. If the equation is in the form then

▪ the transverse axis is on the y-axis
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are

3. Solve for the coordinates of the foci using the equation
4. Plot the vertices, co-vertices, foci, and asymptotes in the coordinate plane, and draw a smooth curve to form the

hyperbola.

EXAMPLE 4

Graphing a Hyperbola Centered at (0, 0) Given an Equation in Standard Form

Graph the hyperbola given by the equation Identify and label the vertices, co-vertices, foci, and
asymptotes.

Solution

The standard form that applies to the given equation is Thus, the transverse axis is on the y-axis

The coordinates of the vertices are

The coordinates of the co-vertices are

The coordinates of the foci are where Solving for we have

Therefore, the coordinates of the foci are

The equations of the asymptotes are

Plot and label the vertices and co-vertices, and then sketch the central rectangle. Sides of the rectangle are parallel to the
axes and pass through the vertices and co-vertices. Sketch and extend the diagonals of the central rectangle to show the
asymptotes. The central rectangle and asymptotes provide the framework needed to sketch an accurate graph of the
hyperbola. Label the foci and asymptotes, and draw a smooth curve to form the hyperbola, as shown in Figure 8.
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Figure 8

TRY IT #4 Graph the hyperbola given by the equation Identify and label the vertices, co-

vertices, foci, and asymptotes.

Graphing Hyperbolas Not Centered at the Origin
Graphing hyperbolas centered at a point other than the origin is similar to graphing ellipses centered at a point

other than the origin. We use the standard forms for horizontal hyperbolas, and

for vertical hyperbolas. From these standard form equations we can easily calculate and plot key

features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; and
the positions of the transverse and conjugate axes.

HOW TO

Given a general form for a hyperbola centered at sketch the graph.

1. Convert the general form to that standard form. Determine which of the standard forms applies to the given
equation.

2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the
center, vertices, co-vertices, foci; and equations for the asymptotes.

a. If the equation is in the form then

▪ the transverse axis is parallel to the x-axis
▪ the center is
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are
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b. If the equation is in the form then

▪ the transverse axis is parallel to the y-axis
▪ the center is
▪ the coordinates of the vertices are
▪ the coordinates of the co-vertices are
▪ the coordinates of the foci are
▪ the equations of the asymptotes are

3. Solve for the coordinates of the foci using the equation
4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve to

form the hyperbola.

EXAMPLE 5

Graphing a Hyperbola Centered at (h, k) Given an Equation in General Form
Graph the hyperbola given by the equation Identify and label the center, vertices, co-
vertices, foci, and asymptotes.

Solution
Start by expressing the equation in standard form. Group terms that contain the same variable, and move the constant
to the opposite side of the equation.

Factor the leading coefficient of each expression.

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

Rewrite as perfect squares.

Divide both sides by the constant term to place the equation in standard form.

The standard form that applies to the given equation is where and or and

Thus, the transverse axis is parallel to the x-axis. It follows that:

• the center of the ellipse is
• the coordinates of the vertices are or and
• the coordinates of the co-vertices are or and
• the coordinates of the foci are where Solving for we have

Therefore, the coordinates of the foci are and

The equations of the asymptotes are

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the
hyperbola, as shown in Figure 9.
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Figure 9

TRY IT #5 Graph the hyperbola given by the standard form of an equation Identify and

label the center, vertices, co-vertices, foci, and asymptotes.

Solving Applied Problems Involving Hyperbolas
As we discussed at the beginning of this section, hyperbolas have real-world applications in many fields, such as
astronomy, physics, engineering, and architecture. The design efficiency of hyperbolic cooling towers is particularly
interesting. Cooling towers are used to transfer waste heat to the atmosphere and are often touted for their ability to
generate power efficiently. Because of their hyperbolic form, these structures are able to withstand extreme winds while
requiring less material than any other forms of their size and strength. See Figure 10. For example, a 500-foot tower can
be made of a reinforced concrete shell only 6 or 8 inches wide!

Figure 10 Cooling towers at the Drax power station in North Yorkshire, United Kingdom (credit: Les Haines, Flickr)

The first hyperbolic towers were designed in 1914 and were 35 meters high. Today, the tallest cooling towers are in
France, standing a remarkable 170 meters tall. In Example 6 we will use the design layout of a cooling tower to find a
hyperbolic equation that models its sides.
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EXAMPLE 6

Solving Applied Problems Involving Hyperbolas
The design layout of a cooling tower is shown in Figure 11. The tower stands 179.6 meters tall. The diameter of the top is
72 meters. At their closest, the sides of the tower are 60 meters apart.

Figure 11 Project design for a natural draft cooling tower

Find the equation of the hyperbola that models the sides of the cooling tower. Assume that the center of the
hyperbola—indicated by the intersection of dashed perpendicular lines in the figure—is the origin of the coordinate
plane. Round final values to four decimal places.

Solution
We are assuming the center of the tower is at the origin, so we can use the standard form of a horizontal hyperbola

centered at the origin: where the branches of the hyperbola form the sides of the cooling tower. We must

find the values of and to complete the model.

First, we find Recall that the length of the transverse axis of a hyperbola is This length is represented by the
distance where the sides are closest, which is given as meters. So, Therefore, and

To solve for we need to substitute for and in our equation using a known point. To do this, we can use the
dimensions of the tower to find some point that lies on the hyperbola. We will use the top right corner of the tower
to represent that point. Since the y-axis bisects the tower, our x-value can be represented by the radius of the top, or 36
meters. The y-value is represented by the distance from the origin to the top, which is given as 79.6 meters. Therefore,

The sides of the tower can be modeled by the hyperbolic equation

TRY IT #6 A design for a cooling tower project is shown in Figure 12. Find the equation of the hyperbola that
models the sides of the cooling tower. Assume that the center of the hyperbola—indicated by the
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intersection of dashed perpendicular lines in the figure—is the origin of the coordinate plane.
Round final values to four decimal places.

Figure 12

MEDIA

Access these online resources for additional instruction and practice with hyperbolas.

Conic Sections: The Hyperbola Part 1 of 2 (http://openstax.org/l/hyperbola1)
Conic Sections: The Hyperbola Part 2 of 2 (http://openstax.org/l/hyperbola2)
Graph a Hyperbola with Center at Origin (http://openstax.org/l/hyperbolaorigin)
Graph a Hyperbola with Center not at Origin (http://openstax.org/l/hbnotorigin)

12.2 SECTION EXERCISES
Verbal

1. Define a hyperbola in terms
of its foci.

2. What can we conclude
about a hyperbola if its
asymptotes intersect at the
origin?

3. What must be true of the
foci of a hyperbola?

4. If the transverse axis of a
hyperbola is vertical, what
do we know about the
graph?

5. Where must the center of
hyperbola be relative to its
foci?

Algebraic

For the following exercises, determine whether the following equations represent hyperbolas. If so, write in standard
form.

6. 7. 8.

9. 10.
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For the following exercises, write the equation for the hyperbola in standard form if it is not already, and identify the
vertices and foci, and write equations of asymptotes.

11. 12. 13.

14. 15. 16.

17. 18. 19.

20. 21.

22. 23.

24. 25.

For the following exercises, find the equations of the asymptotes for each hyperbola.

26. 27. 28.

29. 30.

Graphical

For the following exercises, sketch a graph of the hyperbola, labeling vertices and foci.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41.

42. 43.

44.

For the following exercises, given information about the graph of the hyperbola, find its equation.

45. Vertices at and
and one focus at

46. Vertices at and
and one focus at

47. Vertices at and
and one focus at
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48. Center: vertex:
one focus:

49. Center: vertex:
one focus:

50. Center: vertex:
one focus:

For the following exercises, given the graph of the hyperbola, find its equation.

51. 52. 53.

54. 55.

Extensions

For the following exercises, express the equation for the hyperbola as two functions, with as a function of Express as
simply as possible. Use a graphing calculator to sketch the graph of the two functions on the same axes.

56. 57. 58.

59. 60.

Real-World Applications

For the following exercises, a hedge is to be constructed in the shape of a hyperbola near a fountain at the center of the
yard. Find the equation of the hyperbola and sketch the graph.

61. The hedge will follow the
asymptotes

and its
closest distance to the
center fountain is 5 yards.

62. The hedge will follow the
asymptotes

and
its closest distance to the
center fountain is 6 yards.

63. The hedge will follow the
asymptotes and

and its closest
distance to the center
fountain is 10 yards.
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64. The hedge will follow the
asymptotes and

and its closest
distance to the center
fountain is 12 yards.

65. The hedge will follow the
asymptotes and

and its closest
distance to the center
fountain is 20 yards.

For the following exercises, assume an object enters our solar system and we want to graph its path on a coordinate
system with the sun at the origin and the x-axis as the axis of symmetry for the object's path. Give the equation of the
flight path of each object using the given information.

66. The object enters along a
path approximated by the
line and passes
within 1 au (astronomical
unit) of the sun at its
closest approach, so that
the sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

67. The object enters along a
path approximated by the
line and passes
within 0.5 au of the sun at
its closest approach, so the
sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

68. The object enters along a
path approximated by the
line and
passes within 1 au of the
sun at its closest approach,
so the sun is one focus of
the hyperbola. It then
departs the solar system
along a path approximated
by the line

69. The object enters along a
path approximated by the
line and passes
within 1 au of the sun at its
closest approach, so the
sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

70. The object enters along a
path approximated by the
line and passes
within 1 au of the sun at its
closest approach, so the
sun is one focus of the
hyperbola. It then departs
the solar system along a
path approximated by the
line

12.3 The Parabola
Learning Objectives
In this section, you will:

Graph parabolas with vertices at the origin.
Write equations of parabolas in standard form.
Graph parabolas with vertices not at the origin.
Solve applied problems involving parabolas.
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Figure 1 Katherine Johnson's pioneering mathematical work in the area of parabolic and other orbital calculations
played a significant role in the development of U.S space flight. (credit: NASA)

Katherine Johnson is the pioneering NASA mathematician who was integral to the successful and safe flight and return
of many human missions as well as satellites. Prior to the work featured in the movie Hidden Figures, she had already
made major contributions to the space program. She provided trajectory analysis for the Mercury mission, in which Alan
Shepard became the first American to reach space, and she and engineer Ted Sopinski authored a monumental paper
regarding placing an object in a precise orbital position and having it return safely to Earth. Many of the orbits she
determined were made up of parabolas, and her ability to combine different types of math enabled an unprecedented
level of precision. Johnson said, "You tell me when you want it and where you want it to land, and I'll do it backwards and
tell you when to take off."

Johnson's work on parabolic orbits and other complex mathematics resulted in successful orbits, Moon landings, and
the development of the Space Shuttle program. Applications of parabolas are also critical to other areas of science.
Parabolic mirrors (or reflectors) are able to capture energy and focus it to a single point. The advantages of this property
are evidenced by the vast list of parabolic objects we use every day: satellite dishes, suspension bridges, telescopes,
microphones, spotlights, and car headlights, to name a few. Parabolic reflectors are also used in alternative energy
devices, such as solar cookers and water heaters, because they are inexpensive to manufacture and need little
maintenance. In this section we will explore the parabola and its uses, including low-cost, energy-efficient solar designs.

Graphing Parabolas with Vertices at the Origin
In The Ellipse, we saw that an ellipse is formed when a plane cuts through a right circular cone. If the plane is parallel to
the edge of the cone, an unbounded curve is formed. This curve is a parabola. See Figure 2.
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Figure 2 Parabola

Like the ellipse and hyperbola, the parabola can also be defined by a set of points in the coordinate plane. A parabola is
the set of all points in a plane that are the same distance from a fixed line, called the directrix, and a fixed point
(the focus) not on the directrix.

In Quadratic Functions (http://openstax.org/books/precalculus-2e/pages/3-3-power-functions-and-polynomial-
functions), we learned about a parabola’s vertex and axis of symmetry. Now we extend the discussion to include other
key features of the parabola. See Figure 3. Notice that the axis of symmetry passes through the focus and vertex and is
perpendicular to the directrix. The vertex is the midpoint between the directrix and the focus.

The line segment that passes through the focus and is parallel to the directrix is called the latus rectum. The endpoints
of the latus rectum lie on the curve. By definition, the distance from the focus to any point on the parabola is equal
to the distance from to the directrix.

Figure 3 Key features of the parabola

To work with parabolas in the coordinate plane, we consider two cases: those with a vertex at the origin and those with a
vertex at a point other than the origin. We begin with the former.
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Figure 4

Let be a point on the parabola with vertex focus and directrix as shown in Figure 4. The
distance from point to point on the directrix is the difference of the y-values: The distance from
the focus to the point is also equal to and can be expressed using the distance formula.

Set the two expressions for equal to each other and solve for to derive the equation of the parabola. We do this
because the distance from to equals the distance from to

We then square both sides of the equation, expand the squared terms, and simplify by combining like terms.

The equations of parabolas with vertex are when the x-axis is the axis of symmetry and when
the y-axis is the axis of symmetry. These standard forms are given below, along with their general graphs and key
features.

Standard Forms of Parabolas with Vertex (0, 0)

Table 1 and Figure 5 summarize the standard features of parabolas with a vertex at the origin.

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

x-axis

y-axis

Table 1
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Figure 5 (a) When and the axis of symmetry is the x-axis, the parabola opens right. (b) When and the
axis of symmetry is the x-axis, the parabola opens left. (c) When and the axis of symmetry is the y-axis, the
parabola opens up. (d) When and the axis of symmetry is the y-axis, the parabola opens down.

The key features of a parabola are its vertex, axis of symmetry, focus, directrix, and latus rectum. See Figure 5. When
given a standard equation for a parabola centered at the origin, we can easily identify the key features to graph the
parabola.

A line is said to be tangent to a curve if it intersects the curve at exactly one point. If we sketch lines tangent to the
parabola at the endpoints of the latus rectum, these lines intersect on the axis of symmetry, as shown in Figure 6.

12.3 • The Parabola 1185



...

Figure 6

HOW TO

Given a standard form equation for a parabola centered at (0, 0), sketch the graph.

1. Determine which of the standard forms applies to the given equation: or
2. Use the standard form identified in Step 1 to determine the axis of symmetry, focus, equation of the directrix,

and endpoints of the latus rectum.
a. If the equation is in the form then

▪ the axis of symmetry is the x-axis,
▪ set equal to the coefficient of x in the given equation to solve for If the parabola opens right.

If the parabola opens left.
▪ use to find the coordinates of the focus,
▪ use to find the equation of the directrix,
▪ use to find the endpoints of the latus rectum, Alternately, substitute into the original

equation.

b. If the equation is in the form then
▪ the axis of symmetry is the y-axis,
▪ set equal to the coefficient of y in the given equation to solve for If the parabola opens up. If

the parabola opens down.
▪ use to find the coordinates of the focus,
▪ use to find equation of the directrix,
▪ use to find the endpoints of the latus rectum,

3. Plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

EXAMPLE 1

Graphing a Parabola with Vertex (0, 0) and the x-axis as the Axis of Symmetry
Graph Identify and label the focus, directrix, and endpoints of the latus rectum.
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Solution
The standard form that applies to the given equation is Thus, the axis of symmetry is the x-axis. It follows that:

• so Since the parabola opens right
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum have the same x-coordinate at the focus. To find the endpoints, substitute

into the original equation:

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola. Figure 7

Figure 7

TRY IT #1 Graph Identify and label the focus, directrix, and endpoints of the latus rectum.

EXAMPLE 2

Graphing a Parabola with Vertex (0, 0) and the y-axis as the Axis of Symmetry
Graph Identify and label the focus, directrix, and endpoints of the latus rectum.

Solution
The standard form that applies to the given equation is Thus, the axis of symmetry is the y-axis. It follows that:

• so Since the parabola opens down.
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum can be found by substituting into the original equation,

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.
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Figure 8

TRY IT #2 Graph Identify and label the focus, directrix, and endpoints of the latus rectum.

Writing Equations of Parabolas in Standard Form
In the previous examples, we used the standard form equation of a parabola to calculate the locations of its key features.
We can also use the calculations in reverse to write an equation for a parabola when given its key features.

HOW TO

Given its focus and directrix, write the equation for a parabola in standard form.

1. Determine whether the axis of symmetry is the x- or y-axis.
a. If the given coordinates of the focus have the form then the axis of symmetry is the x-axis. Use the

standard form
b. If the given coordinates of the focus have the form then the axis of symmetry is the y-axis. Use the

standard form

2. Multiply
3. Substitute the value from Step 2 into the equation determined in Step 1.

EXAMPLE 3

Writing the Equation of a Parabola in Standard Form Given its Focus and Directrix
What is the equation for the parabola with focus and directrix

Solution
The focus has the form so the equation will have the form

• Multiplying we have
• Substituting for we have

Therefore, the equation for the parabola is

TRY IT #3 What is the equation for the parabola with focus and directrix

Graphing Parabolas with Vertices Not at the Origin
Like other graphs we’ve worked with, the graph of a parabola can be translated. If a parabola is translated units
horizontally and units vertically, the vertex will be This translation results in the standard form of the equation
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we saw previously with replaced by and replaced by

To graph parabolas with a vertex other than the origin, we use the standard form for
parabolas that have an axis of symmetry parallel to the x-axis, and for parabolas that have an axis
of symmetry parallel to the y-axis. These standard forms are given below, along with their general graphs and key
features.

Standard Forms of Parabolas with Vertex (h, k)

Table 2 and Figure 9 summarize the standard features of parabolas with a vertex at a point

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

Table 2
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Figure 9 (a) When the parabola opens right. (b) When the parabola opens left. (c) When the
parabola opens up. (d) When the parabola opens down.

HOW TO

Given a standard form equation for a parabola centered at (h, k), sketch the graph.

1. Determine which of the standard forms applies to the given equation: or

2. Use the standard form identified in Step 1 to determine the vertex, axis of symmetry, focus, equation of the
directrix, and endpoints of the latus rectum.
a. If the equation is in the form then:

▪ use the given equation to identify and for the vertex,
▪ use the value of to determine the axis of symmetry,
▪ set equal to the coefficient of in the given equation to solve for If the parabola opens

right. If the parabola opens left.
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▪ use and to find the coordinates of the focus,
▪ use and to find the equation of the directrix,
▪ use and to find the endpoints of the latus rectum,

b. If the equation is in the form then:
▪ use the given equation to identify and for the vertex,
▪ use the value of to determine the axis of symmetry,
▪ set equal to the coefficient of in the given equation to solve for If the parabola opens

up. If the parabola opens down.
▪ use and to find the coordinates of the focus,
▪ use and to find the equation of the directrix,
▪ use and to find the endpoints of the latus rectum,

3. Plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola.

EXAMPLE 4

Graphing a Parabola with Vertex (h, k) and Axis of Symmetry Parallel to the x-axis
Graph Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the latus
rectum.

Solution
The standard form that applies to the given equation is Thus, the axis of symmetry is parallel to
the x-axis. It follows that:

• the vertex is
• the axis of symmetry is
• so Since the parabola opens left.
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum are or and

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola. See Figure 10.

Figure 10
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TRY IT #4 Graph Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.

EXAMPLE 5

Graphing a Parabola from an Equation Given in General Form
Graph Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the
latus rectum.

Solution
Start by writing the equation of the parabola in standard form. The standard form that applies to the given equation is

Thus, the axis of symmetry is parallel to the y-axis. To express the equation of the parabola in this
form, we begin by isolating the terms that contain the variable in order to complete the square.

It follows that:

• the vertex is
• the axis of symmetry is
• since and so the parabola opens up
• the coordinates of the focus are
• the equation of the directrix is
• the endpoints of the latus rectum are or and

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola. See Figure 11.

Figure 11

TRY IT #5 Graph Identify and label the vertex, axis of symmetry, focus, directrix, and
endpoints of the latus rectum.

Solving Applied Problems Involving Parabolas
As we mentioned at the beginning of the section, parabolas are used to design many objects we use every day, such as
telescopes, suspension bridges, microphones, and radar equipment. Parabolic mirrors, such as the one used to light the
Olympic torch, have a very unique reflecting property. When rays of light parallel to the parabola’s axis of symmetry are
directed toward any surface of the mirror, the light is reflected directly to the focus. See Figure 12. This is why the
Olympic torch is ignited when it is held at the focus of the parabolic mirror.
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Figure 12 Reflecting property of parabolas

Parabolic mirrors have the ability to focus the sun’s energy to a single point, raising the temperature hundreds of
degrees in a matter of seconds. Thus, parabolic mirrors are featured in many low-cost, energy efficient solar products,
such as solar cookers, solar heaters, and even travel-sized fire starters.

EXAMPLE 6

Solving Applied Problems Involving Parabolas
A cross-section of a design for a travel-sized solar fire starter is shown in Figure 13. The sun’s rays reflect off the
parabolic mirror toward an object attached to the igniter. Because the igniter is located at the focus of the parabola, the
reflected rays cause the object to burn in just seconds.

ⓐ Find the equation of the parabola that models the fire starter. Assume that the vertex of the parabolic mirror is the
origin of the coordinate plane.

ⓑ Use the equation found in part ⓐ to find the depth of the fire starter.

Figure 13 Cross-section of a travel-sized solar fire starter

Solution

ⓐ The vertex of the dish is the origin of the coordinate plane, so the parabola will take the standard form
where The igniter, which is the focus, is 1.7 inches above the vertex of the dish. Thus we have

ⓑ The dish extends inches on either side of the origin. We can substitute 2.25 for in the equation from
part (a) to find the depth of the dish.

The dish is about 0.74 inches deep.
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TRY IT #6 Balcony-sized solar cookers have been designed for families living in India. The top of a dish has a
diameter of 1600 mm. The sun’s rays reflect off the parabolic mirror toward the “cooker,” which is
placed 320 mm from the base.

ⓐ Find an equation that models a cross-section of the solar cooker. Assume that the vertex of
the parabolic mirror is the origin of the coordinate plane, and that the parabola opens to the right
(i.e., has the x-axis as its axis of symmetry).

ⓑ Use the equation found in part ⓐ to find the depth of the cooker.

MEDIA

Access these online resources for additional instruction and practice with parabolas.

Conic Sections: The Parabola Part 1 of 2 (http://openstax.org/l/parabola1)
Conic Sections: The Parabola Part 2 of 2 (http://openstax.org/l/parabola2)
Parabola with Vertical Axis (http://openstax.org/l/parabolavertcal)
Parabola with Horizontal Axis (http://openstax.org/l/parabolahoriz)

12.3 SECTION EXERCISES
Verbal

1. Define a parabola in terms
of its focus and directrix.

2. If the equation of a parabola
is written in standard form
and is positive and the
directrix is a vertical line,
then what can we conclude
about its graph?

3. If the equation of a parabola
is written in standard form
and is negative and the
directrix is a horizontal line,
then what can we conclude
about its graph?

4. What is the effect on the
graph of a parabola if its
equation in standard form
has increasing values of

5. As the graph of a parabola
becomes wider, what will
happen to the distance
between the focus and
directrix?

Algebraic

For the following exercises, determine whether the given equation is a parabola. If so, rewrite the equation in standard
form.

6. 7. 8.

9. 10.

For the following exercises, rewrite the given equation in standard form, and then determine the vertex focus
and directrix of the parabola.

11. 12. 13.

14. 15. 16.
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17. 18. 19.

20. 21. 22.

23. 24. 25.

26. 27. 28.

29. 30.

Graphical

For the following exercises, graph the parabola, labeling the focus and the directrix.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

43. 44.

For the following exercises, find the equation of the parabola given information about its graph.

45. Vertex is directrix is
focus is

46. Vertex is directrix is
focus is

47. Vertex is directrix is
focus is

48. Vertex is directrix
is focus is

49. Vertex is

directrix is focus

is

50. Vertex is directrix is
focus is
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For the following exercises, determine the equation for the parabola from its graph.

51. 52. 53.

54. 55.

Extensions

For the following exercises, the vertex and endpoints of the latus rectum of a parabola are given. Find the equation.

56. , Endpoints , 57. , Endpoints , 58. , Endpoints ,

59. , Endpoints
,

60. , Endpoints
,

Real-World Applications

61. The mirror in an
automobile headlight has a
parabolic cross-section
with the light bulb at the
focus. On a schematic, the
equation of the parabola is
given as At what
coordinates should you
place the light bulb?

62. If we want to construct the
mirror from the previous
exercise such that the
focus is located at

what should the
equation of the parabola
be?

63. A satellite dish is shaped
like a paraboloid of
revolution. This means that
it can be formed by
rotating a parabola around
its axis of symmetry. The
receiver is to be located at
the focus. If the dish is 12
feet across at its opening
and 4 feet deep at its
center, where should the
receiver be placed?
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64. Consider the satellite dish
from the previous exercise.
If the dish is 8 feet across
at the opening and 2 feet
deep, where should we
place the receiver?

65. The reflector in a
searchlight is shaped like a
paraboloid of revolution. A
light source is located 1
foot from the base along
the axis of symmetry. If the
opening of the searchlight
is 3 feet across, find the
depth.

66. If the reflector in the
searchlight from the
previous exercise has the
light source located 6
inches from the base along
the axis of symmetry and
the opening is 4 feet, find
the depth.

67. An arch is in the shape of a
parabola. It has a span of
100 feet and a maximum
height of 20 feet. Find the
equation of the parabola,
and determine the height
of the arch 40 feet from the
center.

68. If the arch from the
previous exercise has a
span of 160 feet and a
maximum height of 40
feet, find the equation of
the parabola, and
determine the distance
from the center at which
the height is 20 feet.

69. An object is projected so as
to follow a parabolic path
given by
where is the horizontal
distance traveled in feet
and is the height.
Determine the maximum
height the object reaches.

70. For the object from the
previous exercise, assume
the path followed is given
by
Determine how far along
the horizontal the object
traveled to reach
maximum height.

12.4 Rotation of Axes
Learning Objectives
In this section, you will:

Identify nondegenerate conic sections given their general form equations.
Use rotation of axes formulas.
Write equations of rotated conics in standard form.
Identify conics without rotating axes.

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and
extending infinitely far in opposite directions, which we also call a cone. The way in which we slice the cone will
determine the type of conic section formed at the intersection. A circle is formed by slicing a cone with a plane
perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane not
perpendicular to the axis of symmetry. A parabola is formed by slicing the plane through the top or bottom of the
double-cone, whereas a hyperbola is formed when the plane slices both the top and bottom of the cone. See Figure 1.
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Figure 1 The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections, in contrast to the
degenerate conic sections, which are shown in Figure 2. A degenerate conic results when a plane intersects the double
cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are
possible: a point, a line, or two intersecting lines.
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Figure 2 Degenerate conic sections

Identifying Nondegenerate Conics in General Form
In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections.
In this section, we will shift our focus to the general form equation, which can be used for any conic. The general form is
set equal to zero, and the terms and coefficients are given in a particular order, as shown below.

where and are not all zero. We can use the values of the coefficients to identify which type conic is represented
by a given equation.

You may notice that the general form equation has an term that we have not seen in any of the standard form
equations. As we will discuss later, the term rotates the conic whenever is not equal to zero.

Conic Sections Example

ellipse

circle

hyperbola

parabola

one line

Table 1
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Conic Sections Example

intersecting lines

parallel lines

a point

no graph

Table 1

General Form of Conic Sections

A conic section has the general form

where and are not all zero.

Table 2 summarizes the different conic sections where and and are nonzero real numbers. This indicates
that the conic has not been rotated.

ellipse

circle

hyperbola where and are positive

parabola

Table 2

HOW TO

Given the equation of a conic, identify the type of conic.

1. Rewrite the equation in the general form,
2. Identify the values of and from the general form.

a. If and are nonzero, have the same sign, and are not equal to each other, then the graph may be an
ellipse.

b. If and are equal and nonzero and have the same sign, then the graph may be a circle.
c. If and are nonzero and have opposite signs, then the graph may be a hyperbola.
d. If either or is zero, then the graph may be a parabola.

If B = 0, the conic section will have a vertical and/or horizontal axes. If B does not equal 0, as shown below, the
conic section is rotated. Notice the phrase “may be” in the definitions. That is because the equation may not
represent a conic section at all, depending on the values of A, B, C, D, E, and F. For example, the degenerate case
of a circle or an ellipse is a point:

when A and B have the same sign.
The degenerate case of a hyperbola is two intersecting straight lines: when A and B have
opposite signs.
On the other hand, the equation, when A and B are positive does not represent a graph at
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all, since there are no real ordered pairs which satisfy it.

EXAMPLE 1

Identifying a Conic from Its General Form
Identify the graph of each of the following nondegenerate conic sections.

ⓐ ⓑ ⓒ
ⓓ

Solution

ⓐ Rewriting the general form, we have
and so we observe that and have opposite signs. The graph of this equation is a hyperbola.

ⓑ Rewriting the general form, we have
and We can determine that the equation is a parabola, since is zero.

ⓒ Rewriting the general form, we have
and Because the graph of this equation is a circle.

ⓓ Rewriting the general form, we have
and Because and the graph of this equation is an ellipse.

TRY IT #1 Identify the graph of each of the following nondegenerate conic sections.

ⓐ ⓑ
Finding a New Representation of the Given Equation after Rotating through a Given Angle
Until now, we have looked at equations of conic sections without an term, which aligns the graphs with the x- and
y-axes. When we add an term, we are rotating the conic about the origin. If the x- and y-axes are rotated through an
angle, say then every point on the plane may be thought of as having two representations: on the Cartesian
plane with the original x-axis and y-axis, and on the new plane defined by the new, rotated axes, called the
x'-axis and y'-axis. See Figure 3.

Figure 3 The graph of the rotated ellipse
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We will find the relationships between and on the Cartesian plane with and on the new rotated plane. See
Figure 4.

Figure 4 The Cartesian plane with x- and y-axes and the resulting x′− and y′−axes formed by a rotation by an angle

The original coordinate x- and y-axes have unit vectors and The rotated coordinate axes have unit vectors and
The angle is known as the angle of rotation. See Figure 5. We may write the new unit vectors in terms of the original
ones.

Figure 5 Relationship between the old and new coordinate planes.

Consider a vector in the new coordinate plane. It may be represented in terms of its coordinate axes.

Because we have representations of and in terms of the new coordinate system.
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Equations of Rotation

If a point on the Cartesian plane is represented on a new coordinate plane where the axes of rotation are
formed by rotating an angle from the positive x-axis, then the coordinates of the point with respect to the new axes
are We can use the following equations of rotation to define the relationship between and

and

HOW TO

Given the equation of a conic, find a new representation after rotating through an angle.

1. Find and where and
2. Substitute the expression for and into in the given equation, then simplify.
3. Write the equations with and in standard form.

EXAMPLE 2

Finding a New Representation of an Equation after Rotating through a Given Angle
Find a new representation of the equation after rotating through an angle of

Solution
Find and where and

Because

and

Substitute and into

Simplify.
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Write the equations with and in the standard form.

This equation is an ellipse. Figure 6 shows the graph.

Figure 6

Writing Equations of Rotated Conics in Standard Form
Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how to
transform the equation of a conic given in the form into standard form by
rotating the axes. To do so, we will rewrite the general form as an equation in the and coordinate system without
the term, by rotating the axes by a measure of that satisfies

We have learned already that any conic may be represented by the second degree equation

where and are not all zero. However, if then we have an term that prevents us from rewriting the
equation in standard form. To eliminate it, we can rotate the axes by an acute angle where

• If then is in the first quadrant, and is between
• If then is in the second quadrant, and is between
• If then
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HOW TO

Given an equation for a conic in the system, rewrite the equation without the term in terms of and
where the and axes are rotations of the standard axes by degrees.

1. Find
2. Find and
3. Substitute and into and
4. Substitute the expression for and into in the given equation, and then simplify.
5. Write the equations with and in the standard form with respect to the rotated axes.

EXAMPLE 3

Rewriting an Equation with respect to the x′ and y′ axes without the x′y′ Term
Rewrite the equation in the system without an term.

Solution
First, we find See Figure 7.

Figure 7

So the hypotenuse is

Next, we find and
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Substitute the values of and into and

and

Substitute the expressions for and into in the given equation, and then simplify.

Write the equations with and in the standard form with respect to the new coordinate system.

Figure 8 shows the graph of the ellipse.

Figure 8
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TRY IT #2 Rewrite the in the system without the term.

EXAMPLE 4

Graphing an Equation That Has No x′y′ Terms
Graph the following equation relative to the system:

Solution
First, we find

Because we can draw a reference triangle as in Figure 9.

Figure 9

Thus, the hypotenuse is

Next, we find and We will use half-angle identities.
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Now we find and  

and

Now we substitute and into

Figure 10 shows the graph of the hyperbola

Figure 10
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Identifying Conics without Rotating Axes
Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the
axes are rotated? Recall, the general form of a conic is

If we apply the rotation formulas to this equation we get the form

It may be shown that The expression does not vary after rotation, so we call the expression
invariant. The discriminant, is invariant and remains unchanged after rotation. Because the discriminant
remains unchanged, observing the discriminant enables us to identify the conic section.

Using the Discriminant to Identify a Conic

If the equation is transformed by rotating axes into the equation
then

The equation is an ellipse, a parabola, or a hyperbola, or a degenerate case of
one of these.

If the discriminant, is

• the conic section is an ellipse
• the conic section is a parabola
• the conic section is a hyperbola

EXAMPLE 5

Identifying the Conic without Rotating Axes
Identify the conic for each of the following without rotating axes.

ⓐ ⓑ
Solution

ⓐ Let’s begin by determining and

Now, we find the discriminant.

Therefore, represents an ellipse.

ⓑ Again, let’s begin by determining and

Now, we find the discriminant.
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Therefore, represents an ellipse.

TRY IT #3 Identify the conic for each of the following without rotating axes.

ⓐ ⓑ
MEDIA

Access this online resource for additional instruction and practice with conic sections and rotation of axes.

Introduction to Conic Sections (http://openstax.org/l/introconic)

12.4 SECTION EXERCISES
Verbal

1. What effect does the term have on the graph of
a conic section?

2. If the equation of a conic section is written in the
form and
what can we conclude?

3. If the equation of a conic section is written in the
form and

what can we conclude?

4. Given the equation what
can we conclude if

5. For the equation
the value

of that satisfies gives us what
information?

Algebraic

For the following exercises, determine which conic section is represented based on the given equation.

6. 7. 8.

9. 10. 11.

12. 13.

14. 15.

16. 17.
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For the following exercises, find a new representation of the given equation after rotating through the given angle.

18. 19. 20.

21. 22.

For the following exercises, determine the angle that will eliminate the term and write the corresponding equation
without the term.

23. 24.

25. 26.

27. 28.

29. 30.

Graphical

For the following exercises, rotate through the given angle based on the given equation. Give the new equation and
graph the original and rotated equation.

31. 32. 33.

34. 35. 36.

37. 38.

For the following exercises, graph the equation relative to the system in which the equation has no term.

39. 40. 41.

42. 43. 44.

45. 46.

47. 48.

49.

For the following exercises, determine the angle of rotation in order to eliminate the term. Then graph the new set of
axes.

50. 51.
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52. 53.

54. 55.

For the following exercises, determine the value of based on the given equation.

56. Given
find for the graph to be a parabola.

57. Given
find for the graph to be an ellipse.

58. Given
find for the graph to be a hyperbola.

59. Given
find for the graph to be a parabola.

60. Given
find for the graph to be an ellipse.

12.5 Conic Sections in Polar Coordinates
Learning Objectives
In this section, you will:

Identify a conic in polar form.
Graph the polar equations of conics.
Define conics in terms of a focus and a directrix.

Figure 1 Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around an
atomic nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial body are
often elliptical. Comets, however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the characteristics
of the planets’ orbits may vary over time. Each orbit is tied to the location of the celestial body being orbited and the
distance and direction of the planet or other object from that body. As a result, we tend to use polar coordinates to
represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which
they are farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis and
decrease as it approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. These
bodies exhibit either a parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial body’s
gravitational pull and fires off into space. Each of these orbits can be modeled by a conic section in the polar coordinate
system.

Identifying a Conic in Polar Form
Any conic may be determined by three characteristics: a single focus, a fixed line called the directrix, and the ratio of the
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distances of each to a point on the graph. Consider the parabola shown in Figure 2.

Figure 2

In The Parabola, we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In this
section, we will learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus at
the pole, and a line, the directrix, which is perpendicular to the polar axis.

If is a fixed point, the focus, and is a fixed line, the directrix, then we can let be a fixed positive number, called the
eccentricity, which we can define as the ratio of the distances from a point on the graph to the focus and the point on
the graph to the directrix. Then the set of all points such that is a conic. In other words, we can define a conic
as the set of all points with the property that the ratio of the distance from to to the distance from to is equal
to the constant

For a conic with eccentricity

• if the conic is an ellipse
• if the conic is a parabola
• if the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, the eccentricity and the angle Thus,
each conic may be written as a polar equation, an equation written in terms of and

The Polar Equation for a Conic

For a conic with a focus at the origin, if the directrix is where is a positive real number, and the eccentricity
is a positive real number the conic has a polar equation

For a conic with a focus at the origin, if the directrix is where is a positive real number, and the eccentricity
is a positive real number the conic has a polar equation

HOW TO

Given the polar equation for a conic, identify the type of conic, the directrix, and the eccentricity.

1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite the
equation in standard form.

2. Identify the eccentricity as the coefficient of the trigonometric function in the denominator.
3. Compare with 1 to determine the shape of the conic.
4. Determine the directrix as if cosine is in the denominator and if sine is in the denominator. Set
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equal to the numerator in standard form to solve for or

EXAMPLE 1

Identifying a Conic Given the Polar Form
For each of the following equations, identify the conic with focus at the origin, the directrix, and the eccentricity.

a.

b.

c.

Solution
For each of the three conics, we will rewrite the equation in standard form. Standard form has a 1 as the constant in the
denominator. Therefore, in all three parts, the first step will be to multiply the numerator and denominator by the
reciprocal of the constant of the original equation, where is that constant.

a. Multiply the numerator and denominator by

Because is in the denominator, the directrix is Comparing to standard form, note that Therefore,
from the numerator,

Since the conic is an ellipse. The eccentricity is and the directrix is

b. Multiply the numerator and denominator by

Because is in the denominator, the directrix is Comparing to standard form, Therefore, from
the numerator,

Since the conic is a hyperbola. The eccentricity is and the directrix is

c. Multiply the numerator and denominator by
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Because sine is in the denominator, the directrix is Comparing to standard form, Therefore, from the
numerator,

Because the conic is a parabola. The eccentricity is and the directrix is

TRY IT #1 Identify the conic with focus at the origin, the directrix, and the eccentricity for

Graphing the Polar Equations of Conics
When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case when graphing in
polar coordinates. We must use the eccentricity of a conic section to determine which type of curve to graph, and then
determine its specific characteristics. The first step is to rewrite the conic in standard form as we have done in the
previous example. In other words, we need to rewrite the equation so that the denominator begins with 1. This enables
us to determine and, therefore, the shape of the curve. The next step is to substitute values for and solve for to plot
a few key points. Setting equal to and provides the vertices so we can create a rough sketch of the graph.

EXAMPLE 2

Graphing a Parabola in Polar Form
Graph

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 3, which
is

Because we will graph a parabola with a focus at the origin. The function has a and there is an addition
sign in the denominator, so the directrix is
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The directrix is

Plotting a few key points as in Table 1 will enable us to see the vertices. See Figure 3.

A B C D

undefined

Table 1

Figure 3

Analysis
We can check our result with a graphing utility. See Figure 4.

Figure 4

EXAMPLE 3

Graphing a Hyperbola in Polar Form
Graph
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Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 2, which
is

Because so we will graph a hyperbola with a focus at the origin. The function has a term and there is
a subtraction sign in the denominator, so the directrix is

The directrix is

Plotting a few key points as in Table 2 will enable us to see the vertices. See Figure 5.

A B C D

Table 2

Figure 5
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EXAMPLE 4

Graphing an Ellipse in Polar Form
Graph

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 5, which
is

Because so we will graph an ellipse with a focus at the origin. The function has a and there is a
subtraction sign in the denominator, so the directrix is

The directrix is

Plotting a few key points as in Table 3 will enable us to see the vertices. See Figure 6.

A B C D

Table 3

Figure 6
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Analysis
We can check our result using a graphing utility. See Figure 7.

Figure 7 graphed on a viewing window of by and

TRY IT #2 Graph

Defining Conics in Terms of a Focus and a Directrix
So far we have been using polar equations of conics to describe and graph the curve. Now we will work in reverse; we
will use information about the origin, eccentricity, and directrix to determine the polar equation.

HOW TO

Given the focus, eccentricity, and directrix of a conic, determine the polar equation.

1. Determine whether the directrix is horizontal or vertical. If the directrix is given in terms of we use the general
polar form in terms of sine. If the directrix is given in terms of we use the general polar form in terms of
cosine.

2. Determine the sign in the denominator. If use subtraction. If use addition.
3. Write the coefficient of the trigonometric function as the given eccentricity.
4. Write the absolute value of in the numerator, and simplify the equation.

EXAMPLE 5

Finding the Polar Form of a Vertical Conic Given a Focus at the Origin and the Eccentricity and Directrix
Find the polar form of the conic given a focus at the origin, and directrix

Solution
The directrix is so we know the trigonometric function in the denominator is sine.

Because so we know there is a subtraction sign in the denominator. We use the standard form of

and and
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Therefore,

EXAMPLE 6

Finding the Polar Form of a Horizontal Conic Given a Focus at the Origin and the Eccentricity and Directrix
Find the polar form of a conic given a focus at the origin, and directrix

Solution
Because the directrix is we know the function in the denominator is cosine. Because so we know
there is an addition sign in the denominator. We use the standard form of

and and

Therefore,

TRY IT #3 Find the polar form of the conic given a focus at the origin, and directrix

EXAMPLE 7

Converting a Conic in Polar Form to Rectangular Form
Convert the conic to rectangular form.

Solution
We will rearrange the formula to use the identities
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TRY IT #4 Convert the conic to rectangular form.

MEDIA

Access these online resources for additional instruction and practice with conics in polar coordinates.

Polar Equations of Conic Sections (http://openstax.org/l/determineconic)
Graphing Polar Equations of Conics - 1 (http://openstax.org/l/graphconic1)
Graphing Polar Equations of Conics - 2 (http://openstax.org/l/graphconic2)

12.5 SECTION EXERCISES
Verbal

1. Explain how eccentricity
determines which conic
section is given.

2. If a conic section is written
as a polar equation, what
must be true of the
denominator?

3. If a conic section is written
as a polar equation, and the
denominator involves
what conclusion can be
drawn about the directrix?

4. If the directrix of a conic
section is perpendicular to
the polar axis, what do we
know about the equation of
the graph?

5. What do we know about the
focus/foci of a conic section
if it is written as a polar
equation?

Algebraic

For the following exercises, identify the conic with a focus at the origin, and then give the directrix and eccentricity.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15. 16. 17.
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For the following exercises, convert the polar equation of a conic section to a rectangular equation.

18. 19. 20.

21. 22. 23.

24. 25. 26.

27. 28. 29.

30.

For the following exercises, graph the given conic section. If it is a parabola, label the vertex, focus, and directrix. If it is
an ellipse, label the vertices and foci. If it is a hyperbola, label the vertices and foci.

31. 32. 33.

34. 35. 36.

37. 38. 39.

40. 41. 42.

For the following exercises, find the polar equation of the conic with focus at the origin and the given eccentricity and
directrix.

43. Directrix: 44. Directrix: 45. Directrix:

46. Directrix: 47. Directrix: 48. Directrix:

49. Directrix: 50. Directrix: 51. Directrix:

52. Directrix: 53. Directrix: 54. Directrix:

55. Directrix:

Extensions

Recall from Rotation of Axes that equations of conics with an term have rotated graphs. For the following exercises,
express each equation in polar form with as a function of

56. 57. 58.

59. 60.
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Chapter Review
Key Terms
angle of rotation an acute angle formed by a set of axes rotated from the Cartesian plane where, if then

is between if then is between and if then
center of a hyperbola the midpoint of both the transverse and conjugate axes of a hyperbola
center of an ellipse the midpoint of both the major and minor axes
conic section any shape resulting from the intersection of a right circular cone with a plane
conjugate axis the axis of a hyperbola that is perpendicular to the transverse axis and has the co-vertices as its

endpoints
degenerate conic sections any of the possible shapes formed when a plane intersects a double cone through the

apex. Types of degenerate conic sections include a point, a line, and intersecting lines.
directrix a line perpendicular to the axis of symmetry of a parabola; a line such that the ratio of the distance between

the points on the conic and the focus to the distance to the directrix is constant
eccentricity the ratio of the distances from a point on the graph to the focus and to the directrix represented

by where is a positive real number
ellipse the set of all points in a plane such that the sum of their distances from two fixed points is a constant
foci plural of focus
focus (of a parabola) a fixed point in the interior of a parabola that lies on the axis of symmetry
focus (of an ellipse) one of the two fixed points on the major axis of an ellipse such that the sum of the distances from

these points to any point on the ellipse is a constant
hyperbola the set of all points in a plane such that the difference of the distances between and the foci is a

positive constant
latus rectum the line segment that passes through the focus of a parabola parallel to the directrix, with endpoints on

the parabola
major axis the longer of the two axes of an ellipse
minor axis the shorter of the two axes of an ellipse
nondegenerate conic section a shape formed by the intersection of a plane with a double right cone such that the

plane does not pass through the apex; nondegenerate conics include circles, ellipses, hyperbolas, and parabolas
parabola the set of all points in a plane that are the same distance from a fixed line, called the directrix, and a

fixed point (the focus) not on the directrix
polar equation an equation of a curve in polar coordinates and
transverse axis the axis of a hyperbola that includes the foci and has the vertices as its endpoints

Key Equations

Horizontal ellipse, center at origin

Vertical ellipse, center at origin

Horizontal ellipse, center

Vertical ellipse, center

Hyperbola, center at origin, transverse axis on x-axis

Hyperbola, center at origin, transverse axis on y-axis

Hyperbola, center at transverse axis parallel to x-axis
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Hyperbola, center at transverse axis parallel to y-axis

Parabola, vertex at origin, axis of symmetry on x-axis

Parabola, vertex at origin, axis of symmetry on y-axis

Parabola, vertex at axis of symmetry on x-axis

Parabola, vertex at axis of symmetry on y-axis

General Form equation of a conic section

Rotation of a conic section

Angle of rotation

Key Concepts
12.1 The Ellipse

• An ellipse is the set of all points in a plane such that the sum of their distances from two fixed points is a
constant. Each fixed point is called a focus (plural: foci).

• When given the coordinates of the foci and vertices of an ellipse, we can write the equation of the ellipse in standard
form. See Example 1 and Example 2.

• When given an equation for an ellipse centered at the origin in standard form, we can identify its vertices, co-
vertices, foci, and the lengths and positions of the major and minor axes in order to graph the ellipse. See Example 3
and Example 4.

• When given the equation for an ellipse centered at some point other than the origin, we can identify its key features
and graph the ellipse. See Example 5 and Example 6.

• Real-world situations can be modeled using the standard equations of ellipses and then evaluated to find key
features, such as lengths of axes and distance between foci. See Example 7.

12.2 The Hyperbola

• A hyperbola is the set of all points in a plane such that the difference of the distances between and the
foci is a positive constant.

• The standard form of a hyperbola can be used to locate its vertices and foci. See Example 1.
• When given the coordinates of the foci and vertices of a hyperbola, we can write the equation of the hyperbola in

standard form. See Example 2 and Example 3.
• When given an equation for a hyperbola, we can identify its vertices, co-vertices, foci, asymptotes, and lengths and

positions of the transverse and conjugate axes in order to graph the hyperbola. See Example 4 and Example 5.
• Real-world situations can be modeled using the standard equations of hyperbolas. For instance, given the

dimensions of a natural draft cooling tower, we can find a hyperbolic equation that models its sides. See Example 6.

12.3 The Parabola

• A parabola is the set of all points in a plane that are the same distance from a fixed line, called the directrix,
and a fixed point (the focus) not on the directrix.

• The standard form of a parabola with vertex and the x-axis as its axis of symmetry can be used to graph the
parabola. If the parabola opens right. If the parabola opens left. See Example 1.

• The standard form of a parabola with vertex and the y-axis as its axis of symmetry can be used to graph the
parabola. If the parabola opens up. If the parabola opens down. See Example 2.

• When given the focus and directrix of a parabola, we can write its equation in standard form. See Example 3.
• The standard form of a parabola with vertex and axis of symmetry parallel to the x-axis can be used to graph
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the parabola. If the parabola opens right. If the parabola opens left. See Example 4.
• The standard form of a parabola with vertex and axis of symmetry parallel to the y-axis can be used to graph

the parabola. If the parabola opens up. If the parabola opens down. See Example 5.
• Real-world situations can be modeled using the standard equations of parabolas. For instance, given the diameter

and focus of a cross-section of a parabolic reflector, we can find an equation that models its sides. See Example 6.

12.4 Rotation of Axes

• Four basic shapes can result from the intersection of a plane with a pair of right circular cones connected tail to tail.
They include an ellipse, a circle, a hyperbola, and a parabola.

• A nondegenerate conic section has the general form where and are
not all zero. The values of and determine the type of conic. See Example 1.

• Equations of conic sections with an term have been rotated about the origin. See Example 2.
• The general form can be transformed into an equation in the and coordinate system without the term.

See Example 3 and Example 4.
• An expression is described as invariant if it remains unchanged after rotating. Because the discriminant is invariant,

observing it enables us to identify the conic section. See Example 5.

12.5 Conic Sections in Polar Coordinates

• Any conic may be determined by a single focus, the corresponding eccentricity, and the directrix. We can also define
a conic in terms of a fixed point, the focus at the pole, and a line, the directrix, which is perpendicular to the
polar axis.

• A conic is the set of all points where eccentricity is a positive real number. Each conic may be written in
terms of its polar equation. See Example 1.

• The polar equations of conics can be graphed. See Example 2, Example 3, and Example 4.
• Conics can be defined in terms of a focus, a directrix, and eccentricity. See Example 5 and Example 6.
• We can use the identities and to convert the equation for a conic from

polar to rectangular form. See Example 7.

Exercises
Review Exercises
The Ellipse

For the following exercises, write the equation of the ellipse in standard form. Then identify the center, vertices, and foci.

1. 2. 3.

4.

For the following exercises, graph the ellipse, noting center, vertices, and foci.

5. 6. 7.

8.
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For the following exercises, use the given information to find the equation for the ellipse.

9. Center at focus at
vertex at

10. Center at vertex at
focus at

11. A whispering gallery is to
be constructed such that
the foci are located 35 feet
from the center. If the
length of the gallery is to
be 100 feet, what should
the height of the ceiling
be?

The Hyperbola

For the following exercises, write the equation of the hyperbola in standard form. Then give the center, vertices, and foci.

12. 13. 14.

15.

For the following exercises, graph the hyperbola, labeling vertices and foci.

16. 17. 18.

19.

For the following exercises, find the equation of the hyperbola.

20. Center at vertex at
focus at

21. Foci at and
vertex at

The Parabola

For the following exercises, write the equation of the parabola in standard form. Then give the vertex, focus, and
directrix.

22. 23. 24.

25.

For the following exercises, graph the parabola, labeling vertex, focus, and directrix.

26. 27. 28.

29.
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For the following exercises, write the equation of the parabola using the given information.

30. Focus at directrix
is

31. Focus at directrix is 32. A cable TV receiving dish is
the shape of a paraboloid
of revolution. Find the
location of the receiver,
which is placed at the
focus, if the dish is 5 feet
across at its opening and
1.5 feet deep.

Rotation of Axes

For the following exercises, determine which of the conic sections is represented.

33. 34.

35.

For the following exercises, determine the angle that will eliminate the term, and write the corresponding equation
without the term.

36. 37.

For the following exercises, graph the equation relative to the system in which the equation has no term.

38. 39.

40.

Conic Sections in Polar Coordinates

For the following exercises, given the polar equation of the conic with focus at the origin, identify the eccentricity and
directrix.

41. 42. 43.

44.

For the following exercises, graph the conic given in polar form. If it is a parabola, label the vertex, focus, and directrix. If
it is an ellipse or a hyperbola, label the vertices and foci.

45. 46. 47.

48.
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For the following exercises, given information about the graph of a conic with focus at the origin, find the equation in
polar form.

49. Directrix is and
eccentricity

50. Directrix is and
eccentricity

Practice Test
For the following exercises, write the equation in standard form and state the center, vertices, and foci.

1. 2.

For the following exercises, sketch the graph, identifying the center, vertices, and foci.

3. 4. 5. Write the standard form
equation of an ellipse with a
center at vertex at

and focus at

6. A whispering gallery is to be
constructed with a length of
150 feet. If the foci are to be
located 20 feet away from
the wall, how high should
the ceiling be?

For the following exercises, write the equation of the hyperbola in standard form, and give the center, vertices, foci, and
asymptotes.

7. 8.

For the following exercises, graph the hyperbola, noting its center, vertices, and foci. State the equations of the
asymptotes.

9. 10. 11. Write the standard form
equation of a hyperbola
with foci at and

and a vertex at

For the following exercises, write the equation of the parabola in standard form, and give the vertex, focus, and equation
of the directrix.

12. 13.

For the following exercises, graph the parabola, labeling the vertex, focus, and directrix.

14. 15. 16. Write the equation of a
parabola with a focus at

and directrix
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17. A searchlight is shaped like
a paraboloid of revolution.
If the light source is
located 1.5 feet from the
base along the axis of
symmetry, and the depth
of the searchlight is 3 feet,
what should the width of
the opening be?

For the following exercises, determine which conic section is represented by the given equation, and then determine the
angle that will eliminate the term.

18. 19.

For the following exercises, rewrite in the system without the term, and graph the rotated graph.

20. 21.

For the following exercises, identify the conic with focus at the origin, and then give the directrix and eccentricity.

22. 23.

For the following exercises, graph the given conic section. If it is a parabola, label vertex, focus, and directrix. If it is an
ellipse or a hyperbola, label vertices and foci.

24. 25. 26. Find a polar equation of
the conic with focus at the
origin, eccentricity of
and directrix:
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(credit: Robert Couse-Baker, Flickr.)

Chapter Outline
13.1 Sequences and Their Notations
13.2 Arithmetic Sequences
13.3 Geometric Sequences
13.4 Series and Their Notations
13.5 Counting Principles
13.6 Binomial Theorem
13.7 Probability

Introduction to Sequences, Probability and Counting Theory
A lottery winner has some big decisions to make regarding what to do with the winnings. Buy a new home? A luxury
convertible? A cruise around the world?

The likelihood of winning the lottery is slim, but we all love to fantasize about what we could buy with the winnings. One
of the first things a lottery winner has to decide is whether to take the winnings in the form of a lump sum or as a series
of regular payments, called an annuity, over an extended period of time.

This decision is often based on many factors, such as tax implications, interest rates, and investment strategies. There
are also personal reasons to consider when making the choice, and one can make many arguments for either decision.
However, most lottery winners opt for the lump sum.

In this chapter, we will explore the mathematics behind situations such as these. We will take an in-depth look at
annuities. We will also look at the branch of mathematics that would allow us to calculate the number of ways to choose
lottery numbers and the probability of winning.

13.1 Sequences and Their Notations
Learning Objectives
In this section, you will:

Write the terms of a sequence defined by an explicit formula.
Write the terms of a sequence defined by a recursive formula.
Use factorial notation.

A video game company launches an exciting new advertising campaign. They predict the number of online visits to their
website, or hits, will double each day. The model they are using shows 2 hits the first day, 4 hits the second day, 8 hits the
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third day, and so on. See Table 1.

Day 1 2 3 4 5 …

Hits 2 4 8 16 32 …

Table 1

If their model continues, how many hits will there be at the end of the month? To answer this question, we’ll first need to
know how to determine a list of numbers written in a specific order. In this section, we will explore these kinds of
ordered lists.

Writing the Terms of a Sequence Defined by an Explicit Formula
One way to describe an ordered list of numbers is as a sequence. A sequence is a function whose domain is a subset of
the counting numbers. The sequence established by the number of hits on the website is

The ellipsis (…) indicates that the sequence continues indefinitely. Each number in the sequence is called a term. The
first five terms of this sequence are 2, 4, 8, 16, and 32.

Listing all of the terms for a sequence can be cumbersome. For example, finding the number of hits on the website at
the end of the month would require listing out as many as 31 terms. A more efficient way to determine a specific term is
by writing a formula to define the sequence.

One type of formula is an explicit formula, which defines the terms of a sequence using their position in the sequence.
Explicit formulas are helpful if we want to find a specific term of a sequence without finding all of the previous terms. We
can use the formula to find the nth term of the sequence, where is any positive number. In our example, each number
in the sequence is double the previous number, so we can use powers of 2 to write a formula for the term.

The first term of the sequence is the second term is the third term is and so on. The term of
the sequence can be found by raising 2 to the power. An explicit formula for a sequence is named by a lower case
letter with the subscript The explicit formula for this sequence is

Now that we have a formula for the term of the sequence, we can answer the question posed at the beginning of this
section. We were asked to find the number of hits at the end of the month, which we will take to be 31 days. To find the
number of hits on the last day of the month, we need to find the 31st term of the sequence. We will substitute 31 for in
the formula.

If the doubling trend continues, the company will get hits on the last day of the month. That is over 2.1
billion hits! The huge number is probably a little unrealistic because it does not take consumer interest and competition
into account. It does, however, give the company a starting point from which to consider business decisions.

Another way to represent the sequence is by using a table. The first five terms of the sequence and the term of the
sequence are shown in Table 2.

1 2 3 4 5

term of the sequence, 2 4 8 16 32

Table 2

Graphing provides a visual representation of the sequence as a set of distinct points. We can see from the graph in
Figure 1 that the number of hits is rising at an exponential rate. This particular sequence forms an exponential function.
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Figure 1

Lastly, we can write this particular sequence as

A sequence that continues indefinitely is called an infinite sequence. The domain of an infinite sequence is the set of
counting numbers. If we consider only the first 10 terms of the sequence, we could write

This sequence is called a finite sequence because it does not continue indefinitely.

Sequence

A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence whose domain
consists of only the first positive integers. The numbers in a sequence are called terms. The variable with a
number subscript is used to represent the terms in a sequence and to indicate the position of the term in the
sequence.

We call the first term of the sequence, the second term of the sequence, the third term of the sequence, and
so on. The term is called the nth term of the sequence, or the general term of the sequence. An explicit formula
defines the term of a sequence using the position of the term. A sequence that continues indefinitely is an
infinite sequence.

Q&A Does a sequence always have to begin with

No. In certain problems, it may be useful to define the initial term as instead of In these problems,
the domain of the function includes 0.

HOW TO

Given an explicit formula, write the first terms of a sequence.

1. Substitute each value of into the formula. Begin with to find the first term,
2. To find the second term, use
3. Continue in the same manner until you have identified all terms.
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EXAMPLE 1

Writing the Terms of a Sequence Defined by an Explicit Formula
Write the first five terms of the sequence defined by the explicit formula

Solution
Substitute into the formula. Repeat with values 2 through 5 for

The first five terms are

Analysis
The sequence values can be listed in a table. A table, such as Table 3, is a convenient way to input the function into a
graphing utility.

1 2 3 4 5

5 2 –1 –4 –7

Table 3

A graph can be made from this table of values. From the graph in Figure 2, we can see that this sequence represents a
linear function, but notice the graph is not continuous because the domain is over the positive integers only.

Figure 2

TRY IT #1 Write the first five terms of the sequence defined by the explicit formula

Investigating Alternating Sequences
Sometimes sequences have terms that are alternate. In fact, the terms may actually alternate in sign. The steps to
finding terms of the sequence are the same as if the signs did not alternate. However, the resulting terms will not show
increase or decrease as increases. Let’s take a look at the following sequence.

Notice the first term is greater than the second term, the second term is less than the third term, and the third term is
greater than the fourth term. This trend continues forever. Do not rearrange the terms in numerical order to interpret
the sequence.
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HOW TO

Given an explicit formula with alternating terms, write the first terms of a sequence.

1. Substitute each value of into the formula. Begin with to find the first term, The sign of the term is
given by the in the explicit formula.

2. To find the second term, use
3. Continue in the same manner until you have identified all terms.

EXAMPLE 2

Writing the Terms of an Alternating Sequence Defined by an Explicit Formula
Write the first five terms of the sequence.

Solution
Substitute and so on in the formula.

The first five terms are

Analysis
The graph of this function, shown in Figure 3, looks different from the ones we have seen previously in this section
because the terms of the sequence alternate between positive and negative values.

Figure 3

Q&A In Example 2, does the (–1) to the power of account for the oscillations of signs?
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Yes, the power might be and so on, but any odd powers will result in a negative term, and
any even power will result in a positive term.

TRY IT #2 Write the first five terms of the sequence.

Investigating Piecewise Explicit Formulas
We’ve learned that sequences are functions whose domain is over the positive integers. This is true for other types of
functions, including some piecewise functions. Recall that a piecewise function is a function defined by multiple
subsections. A different formula might represent each individual subsection.

HOW TO

Given an explicit formula for a piecewise function, write the first terms of a sequence

1. Identify the formula to which applies.
2. To find the first term, use in the appropriate formula.
3. Identify the formula to which applies.
4. To find the second term, use in the appropriate formula.
5. Continue in the same manner until you have identified all terms.

EXAMPLE 3

Writing the Terms of a Sequence Defined by a Piecewise Explicit Formula
Write the first six terms of the sequence.

Solution
Substitute and so on in the appropriate formula. Use when is not a multiple of 3. Use when is a
multiple of 3.

The first six terms are

Analysis
Every third point on the graph shown in Figure 4 stands out from the two nearby points. This occurs because the
sequence was defined by a piecewise function.
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Figure 4

TRY IT #3 Write the first six terms of the sequence.

Finding an Explicit Formula
Thus far, we have been given the explicit formula and asked to find a number of terms of the sequence. Sometimes, the
explicit formula for the term of a sequence is not given. Instead, we are given several terms from the sequence.
When this happens, we can work in reverse to find an explicit formula from the first few terms of a sequence. The key to
finding an explicit formula is to look for a pattern in the terms. Keep in mind that the pattern may involve alternating
terms, formulas for numerators, formulas for denominators, exponents, or bases.

HOW TO

Given the first few terms of a sequence, find an explicit formula for the sequence.

1. Look for a pattern among the terms.
2. If the terms are fractions, look for a separate pattern among the numerators and denominators.
3. Look for a pattern among the signs of the terms.
4. Write a formula for in terms of Test your formula for and

EXAMPLE 4

Writing an Explicit Formula for the nth Term of a Sequence
Write an explicit formula for the term of each sequence.

ⓐ ⓑ ⓒ
Solution

Look for the pattern in each sequence.

ⓐ The terms alternate between positive and negative. We can use to make the terms alternate. The
numerator can be represented by The denominator can be represented by
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ⓑ
The terms are all negative.

So we know that the fraction is negative, the numerator is 2, and the denominator can be represented by

ⓒ
The terms are powers of For the first term is so the exponent must be

TRY IT #4 Write an explicit formula for the term of the sequence.

TRY IT #5 Write an explicit formula for the term of the sequence.

TRY IT #6 Write an explicit formula for the term of the sequence.

Writing the Terms of a Sequence Defined by a Recursive Formula
Sequences occur naturally in the growth patterns of nautilus shells, pinecones, tree branches, and many other natural
structures. We may see the sequence in the leaf or branch arrangement, the number of petals of a flower, or the pattern
of the chambers in a nautilus shell. Their growth follows the Fibonacci sequence, a famous sequence in which each term
can be found by adding the preceding two terms. The numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34,…. Other
examples from the natural world that exhibit the Fibonacci sequence are the Calla Lily, which has just one petal, the
Black-Eyed Susan with 13 petals, and different varieties of daisies that may have 21 or 34 petals.

Each term of the Fibonacci sequence depends on the terms that come before it. The Fibonacci sequence cannot easily be
written using an explicit formula. Instead, we describe the sequence using a recursive formula, a formula that defines
the terms of a sequence using previous terms.

A recursive formula always has two parts: the value of an initial term (or terms), and an equation defining in terms of
preceding terms. For example, suppose we know the following:

We can find the subsequent terms of the sequence using the first term.

So the first four terms of the sequence are .

The recursive formula for the Fibonacci sequence states the first two terms and defines each successive term as the sum
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of the preceding two terms.

To find the tenth term of the sequence, for example, we would need to add the eighth and ninth terms. We were told
previously that the eighth and ninth terms are 21 and 34, so

Recursive Formula

A recursive formula is a formula that defines each term of a sequence using preceding term(s). Recursive formulas
must always state the initial term, or terms, of the sequence.

Q&A Must the first two terms always be given in a recursive formula?

No. The Fibonacci sequence defines each term using the two preceding terms, but many recursive
formulas define each term using only one preceding term. These sequences need only the first term to be
defined.

HOW TO

Given a recursive formula with only the first term provided, write the first terms of a sequence.

1. Identify the initial term, which is given as part of the formula. This is the first term.
2. To find the second term, substitute the initial term into the formula for Solve.
3. To find the third term, substitute the second term into the formula. Solve.
4. Repeat until you have solved for the term.

EXAMPLE 5

Writing the Terms of a Sequence Defined by a Recursive Formula
Write the first five terms of the sequence defined by the recursive formula.

Solution
The first term is given in the formula. For each subsequent term, we replace with the value of the preceding term.

The first five terms are See Figure 5.
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Figure 5

TRY IT #7 Write the first five terms of the sequence defined by the recursive formula.

HOW TO

Given a recursive formula with two initial terms, write the first terms of a sequence.

1. Identify the initial term, which is given as part of the formula.
2. Identify the second term, which is given as part of the formula.
3. To find the third term, substitute the initial term and the second term into the formula. Evaluate.
4. Repeat until you have evaluated the term.

EXAMPLE 6

Writing the Terms of a Sequence Defined by a Recursive Formula
Write the first six terms of the sequence defined by the recursive formula.

Solution
The first two terms are given. For each subsequent term, we replace and with the values of the two preceding
terms.

The first six terms are See Figure 6.
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Figure 6

TRY IT #8 Write the first 8 terms of the sequence defined by the recursive formula.

Using Factorial Notation
The formulas for some sequences include products of consecutive positive integers. factorial, written as is the
product of the positive integers from 1 to For example,

An example of formula containing a factorial is The sixth term of the sequence can be found by
substituting 6 for

The factorial of any whole number is We can therefore also think of as

n Factorial

n factorial is a mathematical operation that can be defined using a recursive formula. The factorial of denoted
is defined for a positive integer as:

The special case is defined as

Q&A Can factorials always be found using a calculator?

No. Factorials get large very quickly—faster than even exponential functions! When the output gets too
large for the calculator, it will not be able to calculate the factorial.
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EXAMPLE 7

Writing the Terms of a Sequence Using Factorials
Write the first five terms of the sequence defined by the explicit formula

Solution
Substitute and so on in the formula.

The first five terms are

Analysis
Figure 7 shows the graph of the sequence. Notice that, since factorials grow very quickly, the presence of the factorial
term in the denominator results in the denominator becoming much larger than the numerator as increases. This
means the quotient gets smaller and, as the plot of the terms shows, the terms are decreasing and nearing zero.

Figure 7

TRY IT #9 Write the first five terms of the sequence defined by the explicit formula

MEDIA

Access this online resource for additional instruction and practice with sequences.

Finding Terms in a Sequence (http://openstax.org/l/findingterms)
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13.1 SECTION EXERCISES
Verbal

1. Discuss the meaning of a
sequence. If a finite
sequence is defined by a
formula, what is its domain?
What about an infinite
sequence?

2. Describe three ways that a
sequence can be defined.

3. Is the ordered set of even
numbers an infinite
sequence? What about the
ordered set of odd
numbers? Explain why or
why not.

4. What happens to the terms
of a sequence when

there is a negative factor in
the formula that is raised to
a power that includes
What is the term used to
describe this phenomenon?

5. What is a factorial, and how
is it denoted? Use an
example to illustrate how
factorial notation can be
beneficial.

Algebraic

For the following exercises, write the first four terms of the sequence.

6. 7. 8.

9. 10. 11.

12. 13. 14.

15.

For the following exercises, write the first eight terms of the piecewise sequence.

16. 17.

18. 19.

20.

For the following exercises, write an explicit formula for each sequence.

21. 22. 23.
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24. 25.

For the following exercises, write the first five terms of the sequence.

26. 27. 28.

29. 30.

For the following exercises, write the first eight terms of the sequence.

31. 32.

33.

For the following exercises, write a recursive formula for each sequence.

34. 35. 36.

37. 38.

For the following exercises, evaluate the factorial.

39. 40. 41.

42.

For the following exercises, write the first four terms of the sequence.

43. 44. 45.

46.

Graphical

For the following exercises, graph the first five terms of the indicated sequence

47. 48. 49.

50. 51.
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For the following exercises, write an explicit formula for the sequence using the first five points shown on the graph.

52. 53. 54.

For the following exercises, write a recursive formula for the sequence using the first five points shown on the graph.

55. 56.

Technology

Follow these steps to evaluate a sequence defined recursively using a graphing calculator:

• On the home screen, key in the value for the initial term and press [ENTER].

• Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes [2ND]
ANS for the previous term Press [ENTER].

• Continue pressing [ENTER] to calculate the values for each successive term.

For the following exercises, use the steps above to find the indicated term or terms for the sequence.

57. Find the first five terms of
the sequence ,

Use the
>Frac feature to give
fractional results.

58. Find the 15th term of the
sequence ,

59. Find the first five terms of
the sequence ,

60. Find the first ten terms of
the sequence ,

61. Find the tenth term of the
sequence ,

Follow these steps to evaluate a finite sequence defined by an explicit formula. Using a TI-84, do the following.

• In the home screen, press [2ND] LIST.

• Scroll over to OPS and choose “seq(” from the dropdown list. Press [ENTER].

• In the line headed “Expr:” type in the explicit formula, using the button for
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• In the line headed “Variable:” type in the variable used on the previous step.

• In the line headed “start:” key in the value of that begins the sequence.

• In the line headed “end:” key in the value of that ends the sequence.

• Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press [ENTER]
to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the list of terms.

Using a TI-83, do the following.

• In the home screen, press [2ND] LIST.

• Scroll over to OPS and choose “seq(” from the dropdown list. Press [ENTER].

• Enter the items in the order “Expr”, “Variable”, “start”, “end” separated by commas. See the instructions above
for the description of each item.

• Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the
list of terms.

For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest
thousandth when necessary.

62. List the first five terms of
the sequence

63. List the first six terms of
the sequence

64. List the first five terms of
the sequence

65. List the first four terms of
the sequence

66. List the first six terms of
the sequence

Extensions

67. Consider the sequence
defined by
Is a term in the
sequence? Verify the
result.

68. What term in the sequence

has the

value Verify the result.

69. Find a recursive formula
for the sequence 1, 0, −1,
−1, 0, 1, 1, 0, −1, −1, 0, 1, 1,
.... (Hint: find a pattern for

based on the first two
terms.)

70. Calculate the first eight terms of the sequences
and and then

make a conjecture about the relationship between
these two sequences.

71. Prove the conjecture made in the preceding
exercise.

13.2 Arithmetic Sequences
Learning Objectives
In this section, you will:

Find the common difference for an arithmetic sequence.
Write terms of an arithmetic sequence.
Use a recursive formula for an arithmetic sequence.
Use an explicit formula for an arithmetic sequence.

Companies often make large purchases, such as computers and vehicles, for business use. The book-value of these
supplies decreases each year for tax purposes. This decrease in value is called depreciation. One method of calculating
depreciation is straight-line depreciation, in which the value of the asset decreases by the same amount each year.
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As an example, consider a woman who starts a small contracting business. She purchases a new truck for $25,000. After
five years, she estimates that she will be able to sell the truck for $8,000. The loss in value of the truck will therefore be
$17,000, which is $3,400 per year for five years. The truck will be worth $21,600 after the first year; $18,200 after two
years; $14,800 after three years; $11,400 after four years; and $8,000 at the end of five years. In this section, we will
consider specific kinds of sequences that will allow us to calculate depreciation, such as the truck’s value.

Finding Common Differences
The values of the truck in the example are said to form an arithmetic sequence because they change by a constant
amount each year. Each term increases or decreases by the same constant value called the common difference of the
sequence. For this sequence, the common difference is –3,400.

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is 3. You can
choose any term of the sequence, and add 3 to find the subsequent term.

Arithmetic Sequence

An arithmetic sequence is a sequence that has the property that the difference between any two consecutive terms
is a constant. This constant is called the common difference. If is the first term of an arithmetic sequence and is
the common difference, the sequence will be:

EXAMPLE 1

Finding Common Differences
Is each sequence arithmetic? If so, find the common difference.

ⓐ ⓑ
Solution

Subtract each term from the subsequent term to determine whether a common difference exists.

ⓐ The sequence is not arithmetic because there is no common difference.

ⓑ The sequence is arithmetic because there is a common difference. The common difference is 4.

Analysis
The graph of each of these sequences is shown in Figure 1. We can see from the graphs that, although both sequences
show growth, is not linear whereas is linear. Arithmetic sequences have a constant rate of change so their graphs will
always be points on a line.
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Figure 1

Q&A If we are told that a sequence is arithmetic, do we have to subtract every term from the following
term to find the common difference?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and subtract
it from the subsequent term to find the common difference.

TRY IT #1 Is the given sequence arithmetic? If so, find the common difference.

TRY IT #2 Is the given sequence arithmetic? If so, find the common difference.

Writing Terms of Arithmetic Sequences
Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and the common
difference. The terms can be found by beginning with the first term and adding the common difference repeatedly. In
addition, any term can also be found by plugging in the values of and into formula below.

HOW TO

Given the first term and the common difference of an arithmetic sequence, find the first several terms.

1. Add the common difference to the first term to find the second term.
2. Add the common difference to the second term to find the third term.
3. Continue until all of the desired terms are identified.
4. Write the terms separated by commas within brackets.

EXAMPLE 2

Writing Terms of Arithmetic Sequences
Write the first five terms of the arithmetic sequence with and .

Solution
Adding is the same as subtracting 3. Beginning with the first term, subtract 3 from each term to find the next term.

The first five terms are
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Analysis
As expected, the graph of the sequence consists of points on a line as shown in Figure 2.

Figure 2

TRY IT #3 List the first five terms of the arithmetic sequence with and .

HOW TO

Given any first term and any other term in an arithmetic sequence, find a given term.

1. Substitute the values given for into the formula to solve for
2. Find a given term by substituting the appropriate values for and into the formula

EXAMPLE 3

Writing Terms of Arithmetic Sequences
Given and , find .

Solution
The sequence can be written in terms of the initial term 8 and the common difference .

We know the fourth term equals 14; we know the fourth term has the form .

We can find the common difference .

Find the fifth term by adding the common difference to the fourth term.

Analysis
Notice that the common difference is added to the first term once to find the second term, twice to find the third term,
three times to find the fourth term, and so on. The tenth term could be found by adding the common difference to the
first term nine times or by using the equation

TRY IT #4 Given and , find .
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Using Recursive Formulas for Arithmetic Sequences
Some arithmetic sequences are defined in terms of the previous term using a recursive formula. The formula provides
an algebraic rule for determining the terms of the sequence. A recursive formula allows us to find any term of an
arithmetic sequence using a function of the preceding term. Each term is the sum of the previous term and the common
difference. For example, if the common difference is 5, then each term is the previous term plus 5. As with any recursive
formula, the first term must be given.

Recursive Formula for an Arithmetic Sequence

The recursive formula for an arithmetic sequence with common difference is:

HOW TO

Given an arithmetic sequence, write its recursive formula.

1. Subtract any term from the subsequent term to find the common difference.
2. State the initial term and substitute the common difference into the recursive formula for arithmetic sequences.

EXAMPLE 4

Writing a Recursive Formula for an Arithmetic Sequence
Write a recursive formula for the arithmetic sequence.

Solution
The first term is given as . The common difference can be found by subtracting the first term from the second term.

Substitute the initial term and the common difference into the recursive formula for arithmetic sequences.

Analysis
We see that the common difference is the slope of the line formed when we graph the terms of the sequence, as shown
in Figure 3. The growth pattern of the sequence shows the constant difference of 11 units.

Figure 3

Q&A Do we have to subtract the first term from the second term to find the common difference?
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No. We can subtract any term in the sequence from the subsequent term. It is, however, most common to
subtract the first term from the second term because it is often the easiest method of finding the
common difference.

TRY IT #5 Write a recursive formula for the arithmetic sequence.

Using Explicit Formulas for Arithmetic Sequences
We can think of an arithmetic sequence as a function on the domain of the natural numbers; it is a linear function
because it has a constant rate of change. The common difference is the constant rate of change, or the slope of the
function. We can construct the linear function if we know the slope and the vertical intercept.

To find the y-intercept of the function, we can subtract the common difference from the first term of the sequence.
Consider the following sequence.

The common difference is , so the sequence represents a linear function with a slope of . To find the
-intercept, we subtract from . You can also find the -intercept by graphing
the function and determining where a line that connects the points would intersect the vertical axis. The graph is shown
in Figure 4.

Figure 4

Recall the slope-intercept form of a line is When dealing with sequences, we use in place of and in
place of If we know the slope and vertical intercept of the function, we can substitute them for and in the slope-
intercept form of a line. Substituting for the slope and for the vertical intercept, we get the following equation:

We do not need to find the vertical intercept to write an explicit formula for an arithmetic sequence. Another explicit
formula for this sequence is , which simplifies to

Explicit Formula for an Arithmetic Sequence

An explicit formula for the term of an arithmetic sequence is given by

HOW TO

Given the first several terms for an arithmetic sequence, write an explicit formula.

1. Find the common difference,
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2. Substitute the common difference and the first term into

EXAMPLE 5

Writing the nth Term Explicit Formula for an Arithmetic Sequence
Write an explicit formula for the arithmetic sequence.

Solution
The common difference can be found by subtracting the first term from the second term.

The common difference is 10. Substitute the common difference and the first term of the sequence into the formula and
simplify.

Analysis
The graph of this sequence, represented in Figure 5, shows a slope of 10 and a vertical intercept of .

Figure 5

TRY IT #6 Write an explicit formula for the following arithmetic sequence.

Finding the Number of Terms in a Finite Arithmetic Sequence
Explicit formulas can be used to determine the number of terms in a finite arithmetic sequence. We need to find the
common difference, and then determine how many times the common difference must be added to the first term to
obtain the final term of the sequence.

HOW TO

Given the first three terms and the last term of a finite arithmetic sequence, find the total number of terms.

1. Find the common difference
2. Substitute the common difference and the first term into
3. Substitute the last term for and solve for
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EXAMPLE 6

Finding the Number of Terms in a Finite Arithmetic Sequence
Find the number of terms in the finite arithmetic sequence.

Solution
The common difference can be found by subtracting the first term from the second term.

The common difference is . Substitute the common difference and the initial term of the sequence into the term
formula and simplify.

Substitute for and solve for

There are eight terms in the sequence.

TRY IT #7 Find the number of terms in the finite arithmetic sequence.

Solving Application Problems with Arithmetic Sequences
In many application problems, it often makes sense to use an initial term of instead of In these problems, we alter
the explicit formula slightly to account for the difference in initial terms. We use the following formula:

EXAMPLE 7

Solving Application Problems with Arithmetic Sequences
A five-year old child receives an allowance of $1 each week. His parents promise him an annual increase of $2 per week.

ⓐ Write a formula for the child’s weekly allowance in a given year.

ⓑ What will the child’s allowance be when he is 16 years old?
Solution

ⓐ
The situation can be modeled by an arithmetic sequence with an initial term of 1 and a common difference of 2.

Let be the amount of the allowance and be the number of years after age 5. Using the altered explicit formula for
an arithmetic sequence we get:

ⓑ
We can find the number of years since age 5 by subtracting.

We are looking for the child’s allowance after 11 years. Substitute 11 into the formula to find the child’s allowance at
age 16.

The child’s allowance at age 16 will be $23 per week.
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TRY IT #8 A woman decides to go for a 10-minute run every day this week and plans to increase the time of
her daily run by 4 minutes each week. Write a formula for the time of her run after n weeks. How
long will her daily run be 8 weeks from today?

MEDIA

Access this online resource for additional instruction and practice with arithmetic sequences.

Arithmetic Sequences (http://openstax.org/l/arithmeticseq)

13.2 SECTION EXERCISES
Verbal

1. What is an arithmetic
sequence?

2. How is the common
difference of an arithmetic
sequence found?

3. How do we determine
whether a sequence is
arithmetic?

4. What are the main
differences between using a
recursive formula and using
an explicit formula to
describe an arithmetic
sequence?

5. Describe how linear
functions and arithmetic
sequences are similar. How
are they different?

Algebraic

For the following exercises, find the common difference for the arithmetic sequence provided.

6. 7.

For the following exercises, determine whether the sequence is arithmetic. If so find the common difference.

8. 9.

For the following exercises, write the first five terms of the arithmetic sequence given the first term and common
difference.

10. , 11. ,

For the following exercises, write the first five terms of the arithmetic series given two terms.

12. 13.

For the following exercises, find the specified term for the arithmetic sequence given the first term and common
difference.

14. First term is 3, common
difference is 4, find the 5th

term.

15. First term is 4, common
difference is 5, find the 4th

term.

16. First term is 5, common
difference is 6, find the 8th

term.
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17. First term is 6, common
difference is 7, find the 6th

term.

18. First term is 7, common
difference is 8, find the 7th

term.

For the following exercises, find the first term given two terms from an arithmetic sequence.

19. Find the first term or of
an arithmetic sequence if

and

20. Find the first term or of
an arithmetic sequence if

and

21. Find the first term or of
an arithmetic sequence if

and

22. Find the first term or of
an arithmetic sequence if

and

23. Find the first term or of
an arithmetic sequence if

and

For the following exercises, find the specified term given two terms from an arithmetic sequence.

24. and
Find

25. and
Find

For the following exercises, use the recursive formula to write the first five terms of the arithmetic sequence.

26. 27.

For the following exercises, write a recursive formula for each arithmetic sequence.

28. 29. 30.

31. 32. 33.

34. 35. 36.

37.

For the following exercises, write a recursive formula for the given arithmetic sequence, and then find the specified term.

38. Find the
17th term.

39. Find
the 14th term.

40. Find the
12th term.

For the following exercises, use the explicit formula to write the first five terms of the arithmetic sequence.

41. 42.

For the following exercises, write an explicit formula for each arithmetic sequence.

43. 44. 45.

46. 47. 48.

49. 50. 51.
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52.

For the following exercises, find the number of terms in the given finite arithmetic sequence.

53. 54. 55.

Graphical

For the following exercises, determine whether the graph shown represents an arithmetic sequence.

56.

1256 13 • Sequences, Probability, and Counting Theory

Access for free at openstax.org



57.

For the following exercises, use the information provided to graph the first 5 terms of the arithmetic sequence.

58. 59. 60.

Technology

For the following exercises, follow the steps to work with the arithmetic sequence using a graphing
calculator:

• Press [MODE]

◦ Select SEQ in the fourth line

◦ Select DOT in the fifth line

◦ Press [ENTER]

• Press [Y=]

◦ is the first counting number for the sequence. Set

◦ is the pattern for the sequence. Set

◦ is the first number in the sequence. Set

• Press [2ND] then [WINDOW] to go to TBLSET

◦ Set

◦ Set

◦ Set Indpnt: Auto and Depend: Auto

• Press [2ND] then [GRAPH] to go to the TABLE
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61. What are the first seven
terms shown in the column
with the heading

62. Use the scroll-down arrow
to scroll to What
value is given for

63. Press [WINDOW]. Set
, ,
, ,

, and
Then press

[GRAPH]. Graph the
sequence as it appears on
the graphing calculator.

For the following exercises, follow the steps given above to work with the arithmetic sequence using a
graphing calculator.

64. What are the first seven
terms shown in the column
with the heading in
the TABLE feature?

65. Graph the sequence as it
appears on the graphing
calculator. Be sure to
adjust the WINDOW
settings as needed.

Extensions

66. Give two examples of
arithmetic sequences
whose 4th terms are

67. Give two examples of
arithmetic sequences
whose 10th terms are

68. Find the 5th term of the
arithmetic sequence

69. Find the 11th term of the
arithmetic sequence

70. At which term does the
sequence

exceed
151?

71. At which term does the
sequence
begin to have negative
values?

72. For which terms does the
finite arithmetic sequence

have
integer values?

73. Write an arithmetic
sequence using a recursive
formula. Show the first 4
terms, and then find the
31st term.

74. Write an arithmetic
sequence using an explicit
formula. Show the first 4
terms, and then find the
28th term.

13.3 Geometric Sequences
Learning Objectives
In this section, you will:

Find the common ratio for a geometric sequence.
List the terms of a geometric sequence.
Use a recursive formula for a geometric sequence.
Use an explicit formula for a geometric sequence.

Many jobs offer an annual cost-of-living increase to keep salaries consistent with inflation. Suppose, for example, a
recent college graduate finds a position as a sales manager earning an annual salary of $26,000. He is promised a 2%
cost of living increase each year. His annual salary in any given year can be found by multiplying his salary from the
previous year by 102%. His salary will be $26,520 after one year; $27,050.40 after two years; $27,591.41 after three years;
and so on. When a salary increases by a constant rate each year, the salary grows by a constant factor. In this section, we
will review sequences that grow in this way.

Finding Common Ratios
The yearly salary values described form a geometric sequence because they change by a constant factor each year.
Each term of a geometric sequence increases or decreases by a constant factor called the common ratio. The sequence
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below is an example of a geometric sequence because each term increases by a constant factor of 6. Multiplying any
term of the sequence by the common ratio 6 generates the subsequent term.

Definition of a Geometric Sequence

A geometric sequence is one in which any term divided by the previous term is a constant. This constant is called the
common ratio of the sequence. The common ratio can be found by dividing any term in the sequence by the
previous term. If is the initial term of a geometric sequence and is the common ratio, the sequence will be

HOW TO

Given a set of numbers, determine if they represent a geometric sequence.

1. Divide each term by the previous term.
2. Compare the quotients. If they are the same, a common ratio exists and the sequence is geometric.

EXAMPLE 1

Finding Common Ratios
Is the sequence geometric? If so, find the common ratio.

ⓐ ⓑ
Solution

Divide each term by the previous term to determine whether a common ratio exists.

ⓐ
The sequence is geometric because there is a common ratio. The common ratio is 2.

ⓑ
The sequence is not geometric because there is not a common ratio.

Analysis
The graph of each sequence is shown in Figure 1. It seems from the graphs that both (a) and (b) appear have the form of
the graph of an exponential function in this viewing window. However, we know that (a) is geometric and so this
interpretation holds, but (b) is not.

Figure 1
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Q&A If you are told that a sequence is geometric, do you have to divide every term by the previous term
to find the common ratio?

No. If you know that the sequence is geometric, you can choose any one term in the sequence and divide
it by the previous term to find the common ratio.

TRY IT #1 Is the sequence geometric? If so, find the common ratio.

TRY IT #2 Is the sequence geometric? If so, find the common ratio.

Writing Terms of Geometric Sequences
Now that we can identify a geometric sequence, we will learn how to find the terms of a geometric sequence if we are
given the first term and the common ratio. The terms of a geometric sequence can be found by beginning with the first
term and multiplying by the common ratio repeatedly. For instance, if the first term of a geometric sequence is
and the common ratio is we can find subsequent terms by multiplying to get then multiplying the result

to get and so on.

The first four terms are

HOW TO

Given the first term and the common factor, find the first four terms of a geometric sequence.

1. Multiply the initial term, by the common ratio to find the next term,
2. Repeat the process, using to find and then to find until all four terms have been identified.
3. Write the terms separated by commons within brackets.

EXAMPLE 2

Writing the Terms of a Geometric Sequence
List the first four terms of the geometric sequence with and

Solution
Multiply by to find Repeat the process, using to find and so on.

The first four terms are

TRY IT #3 List the first five terms of the geometric sequence with and
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Using Recursive Formulas for Geometric Sequences
A recursive formula allows us to find any term of a geometric sequence by using the previous term. Each term is the
product of the common ratio and the previous term. For example, suppose the common ratio is 9. Then each term is
nine times the previous term. As with any recursive formula, the initial term must be given.

Recursive Formula for a Geometric Sequence

The recursive formula for a geometric sequence with common ratio and first term is

HOW TO

Given the first several terms of a geometric sequence, write its recursive formula.

1. State the initial term.
2. Find the common ratio by dividing any term by the preceding term.
3. Substitute the common ratio into the recursive formula for a geometric sequence.

EXAMPLE 3

Using Recursive Formulas for Geometric Sequences
Write a recursive formula for the following geometric sequence.

Solution
The first term is given as 6. The common ratio can be found by dividing the second term by the first term.

Substitute the common ratio into the recursive formula for geometric sequences and define

Analysis
The sequence of data points follows an exponential pattern. The common ratio is also the base of an exponential
function as shown in Figure 2

Figure 2

Q&A Do we have to divide the second term by the first term to find the common ratio?

No. We can divide any term in the sequence by the previous term. It is, however, most common to divide
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the second term by the first term because it is often the easiest method of finding the common ratio.

TRY IT #4 Write a recursive formula for the following geometric sequence.

Using Explicit Formulas for Geometric Sequences
Because a geometric sequence is an exponential function whose domain is the set of positive integers, and the common
ratio is the base of the function, we can write explicit formulas that allow us to find particular terms.

Let’s take a look at the sequence This is a geometric sequence with a common ratio of 2 and
an exponential function with a base of 2. An explicit formula for this sequence is

The graph of the sequence is shown in Figure 3.

Figure 3

Explicit Formula for a Geometric Sequence

The th term of a geometric sequence is given by the explicit formula:

EXAMPLE 4

Writing Terms of Geometric Sequences Using the Explicit Formula
Given a geometric sequence with and find

Solution
The sequence can be written in terms of the initial term and the common ratio

Find the common ratio using the given fourth term.
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Find the second term by multiplying the first term by the common ratio.

Analysis
The common ratio is multiplied by the first term once to find the second term, twice to find the third term, three times to
find the fourth term, and so on. The tenth term could be found by multiplying the first term by the common ratio nine
times or by multiplying by the common ratio raised to the ninth power.

TRY IT #5 Given a geometric sequence with and , find

EXAMPLE 5

Writing an Explicit Formula for the th Term of a Geometric Sequence
Write an explicit formula for the term of the following geometric sequence.

Solution
The first term is 2. The common ratio can be found by dividing the second term by the first term.

The common ratio is 5. Substitute the common ratio and the first term of the sequence into the formula.

The graph of this sequence in Figure 4 shows an exponential pattern.

Figure 4

TRY IT #6 Write an explicit formula for the following geometric sequence.
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Solving Application Problems with Geometric Sequences
In real-world scenarios involving geometric sequences, we may need to use an initial term of instead of In these
problems, we can alter the explicit formula slightly by using the following formula:

EXAMPLE 6

Solving Application Problems with Geometric Sequences
In 2013, the number of students in a small school is 284. It is estimated that the student population will increase by 4%
each year.

ⓐ Write a formula for the student population. ⓑ Estimate the student population in 2020.
Solution

ⓐ
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be
104% of the prior year, so the common ratio is 1.04.

Let be the student population and be the number of years after 2013. Using the explicit formula for a geometric
sequence we get

ⓑ
We can find the number of years since 2013 by subtracting.

We are looking for the population after 7 years. We can substitute 7 for to estimate the population in 2020.

The student population will be about 374 in 2020.

TRY IT #7 A business starts a new website. Initially the number of hits is 293 due to the curiosity factor. The
business estimates the number of hits will increase by 2.6% per week.

ⓐ Write a formula for the number of hits. ⓑ Estimate the number of hits in 5 weeks.

MEDIA

Access these online resources for additional instruction and practice with geometric sequences.

Geometric Sequences (http://openstax.org/l/geometricseq)
Determine the Type of Sequence (http://openstax.org/l/sequencetype)
Find the Formula for a Sequence (http://openstax.org/l/sequenceformula)

13.3 SECTION EXERCISES
Verbal

1. What is a geometric
sequence?

2. How is the common ratio of
a geometric sequence
found?

3. What is the procedure for
determining whether a
sequence is geometric?

4. What is the difference
between an arithmetic
sequence and a geometric
sequence?

5. Describe how exponential
functions and geometric
sequences are similar. How
are they different?
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Algebraic

For the following exercises, find the common ratio for the geometric sequence.

6. 7. 8.

For the following exercises, determine whether the sequence is geometric. If so, find the common ratio.

9. 10. 11.

12. 13.

For the following exercises, write the first five terms of the geometric sequence, given the first term and common ratio.

14. 15.

For the following exercises, write the first five terms of the geometric sequence, given any two terms.

16. 17.

For the following exercises, find the specified term for the geometric sequence, given the first term and common ratio.

18. The first term is and the
common ratio is Find the
5th term.

19. The first term is 16 and the
common ratio is Find
the 4th term.

For the following exercises, find the specified term for the geometric sequence, given the first four terms.

20.
Find

21.
Find

For the following exercises, write the first five terms of the geometric sequence.

22. 23.

For the following exercises, write a recursive formula for each geometric sequence.

24. 25. 26.

27. 28. 29.

30. 31.

For the following exercises, write the first five terms of the geometric sequence.

32. 33.
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For the following exercises, write an explicit formula for each geometric sequence.

34. 35. 36.

37. 38. 39.

40. 41.

For the following exercises, find the specified term for the geometric sequence given.

42. Let
Find

43. Let Find

For the following exercises, find the number of terms in the given finite geometric sequence.

44. 45.

Graphical

For the following exercises, determine whether the graph shown represents a geometric sequence.

46. 47.

For the following exercises, use the information provided to graph the first five terms of the geometric sequence.

48. 49. 50.

Extensions

51. Use recursive formulas to
give two examples of
geometric sequences
whose 3rd terms are

52. Use explicit formulas to
give two examples of
geometric sequences
whose 7th terms are

53. Find the 5th term of the
geometric sequence
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54. Find the 7th term of the geometric
sequence

55. At which term does the
sequence

exceed

56. At which term does the
sequence

begin to have integer
values?

57. For which term does the
geometric sequence

first have
a non-integer value?

58. Use the recursive formula
to write a geometric
sequence whose common
ratio is an integer. Show
the first four terms, and
then find the 10th term.

59. Use the explicit formula to
write a geometric
sequence whose common
ratio is a decimal number
between 0 and 1. Show the
first 4 terms, and then find
the 8th term.

60. Is it possible for a
sequence to be both
arithmetic and geometric?
If so, give an example.

13.4 Series and Their Notations
Learning Objectives
In this section, you will:

Use summation notation.
Use the formula for the sum of the first n terms of an arithmetic series.
Use the formula for the sum of the first n terms of a geometric series.
Use the formula for the sum of an infinite geometric series.
Solve annuity problems.

A parent decides to start a college fund for their daughter. They plan to invest $50 in the fund each month. The fund
pays 6% annual interest, compounded monthly. How much money will they have saved when their daughter is ready to
start college in 6 years? In this section, we will learn how to answer this question. To do so, we need to consider the
amount of money invested and the amount of interest earned.

Using Summation Notation
To find the total amount of money in the college fund and the sum of the amounts deposited, we need to add the
amounts deposited each month and the amounts earned monthly. The sum of the terms of a sequence is called a series.
Consider, for example, the following series.

The nth partial sum of a series is the sum of a finite number of consecutive terms beginning with the first term. The
notation represents the partial sum.

Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses
the Greek capital letter sigma, to represent the sum. Summation notation includes an explicit formula and specifies
the first and last terms in the series. An explicit formula for each term of the series is given to the right of the sigma. A
variable called the index of summation is written below the sigma. The index of summation is set equal to the lower
limit of summation, which is the number used to generate the first term in the series. The number above the sigma,
called the upper limit of summation, is the number used to generate the last term in a series.
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If we interpret the given notation, we see that it asks us to find the sum of the terms in the series for
through We can begin by substituting the terms for and listing out the terms of this series.

We can find the sum of the series by adding the terms:

Summation Notation

The sum of the first terms of a series can be expressed in summation notation as follows:

This notation tells us to find the sum of from to

is called the index of summation, 1 is the lower limit of summation, and is the upper limit of summation.

Q&A Does the lower limit of summation have to be 1?

No. The lower limit of summation can be any number, but 1 is frequently used. We will look at examples
with lower limits of summation other than 1.

HOW TO

Given summation notation for a series, evaluate the value.

1. Identify the lower limit of summation.
2. Identify the upper limit of summation.
3. Substitute each value of from the lower limit to the upper limit into the formula.
4. Add to find the sum.

EXAMPLE 1

Using Summation Notation

Evaluate

Solution
According to the notation, the lower limit of summation is 3 and the upper limit is 7. So we need to find the sum of
from to We find the terms of the series by substituting and into the function We add the
terms to find the sum.
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TRY IT #1 Evaluate

Using the Formula for Arithmetic Series
Just as we studied special types of sequences, we will look at special types of series. Recall that an arithmetic sequence is
a sequence in which the difference between any two consecutive terms is the common difference, The sum of the
terms of an arithmetic sequence is called an arithmetic series. We can write the sum of the first terms of an
arithmetic series as:

We can also reverse the order of the terms and write the sum as

If we add these two expressions for the sum of the first terms of an arithmetic series, we can derive a formula for the
sum of the first terms of any arithmetic series.

Because there are terms in the series, we can simplify this sum to

We divide by 2 to find the formula for the sum of the first terms of an arithmetic series.

Formula for the Sum of the First n Terms of an Arithmetic Series

An arithmetic series is the sum of the terms of an arithmetic sequence. The formula for the sum of the first terms
of an arithmetic sequence is

HOW TO

Given terms of an arithmetic series, find the sum of the first terms.

1. Identify and
2. Determine

3. Substitute values for and into the formula
4. Simplify to find
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EXAMPLE 2

Finding the First n Terms of an Arithmetic Series
Find the sum of each arithmetic series.

ⓐ ⓑ ⓒ
Solution

ⓐ
We are given and

Count the number of terms in the sequence to find

Substitute values for and into the formula and simplify.

ⓑ
We are given and

Use the formula for the general term of an arithmetic sequence to find

Substitute values for into the formula and simplify.

ⓒ
To find substitute into the given explicit formula.

We are given that To find substitute into the given explicit formula.

Substitute values for and into the formula and simplify.

Use the formula to find the sum of each arithmetic series.

TRY IT #2

TRY IT #3
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TRY IT #4

EXAMPLE 3

Solving Application Problems with Arithmetic Series
On the Sunday after a minor surgery, a woman is able to walk a half-mile. Each Sunday, she walks an additional quarter-
mile. After 8 weeks, what will be the total number of miles she has walked?

Solution
This problem can be modeled by an arithmetic series with and We are looking for the total number of
miles walked after 8 weeks, so we know that and we are looking for To find we can use the explicit formula
for an arithmetic sequence.

We can now use the formula for arithmetic series.

She will have walked a total of 11 miles.

TRY IT #5 A man earns $100 in the first week of June. Each week, he earns $12.50 more than the previous
week. After 12 weeks, how much has he earned?

Using the Formula for Geometric Series
Just as the sum of the terms of an arithmetic sequence is called an arithmetic series, the sum of the terms in a geometric
sequence is called a geometric series. Recall that a geometric sequence is a sequence in which the ratio of any two
consecutive terms is the common ratio, We can write the sum of the first terms of a geometric series as

Just as with arithmetic series, we can do some algebraic manipulation to derive a formula for the sum of the first terms
of a geometric series. We will begin by multiplying both sides of the equation by

Next, we subtract this equation from the original equation.

Notice that when we subtract, all but the first term of the top equation and the last term of the bottom equation cancel
out. To obtain a formula for divide both sides by

Formula for the Sum of the First n Terms of a Geometric Series

A geometric series is the sum of the terms in a geometric sequence. The formula for the sum of the first terms of a
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geometric sequence is represented as

HOW TO

Given a geometric series, find the sum of the first n terms.
1. Identify

2. Substitute values for and into the formula
3. Simplify to find

EXAMPLE 4

Finding the First n Terms of a Geometric Series
Use the formula to find the indicated partial sum of each geometric series.

ⓐ for the series ⓑ
Solution

ⓐ
and we are given that

We can find by dividing the second term of the series by the first.

Substitute values for into the formula and simplify.

ⓑ
Find by substituting into the given explicit formula.

We can see from the given explicit formula that The upper limit of summation is 6, so

Substitute values for and into the formula, and simplify.

Use the formula to find the indicated partial sum of each geometric series.

TRY IT #6 for the series

TRY IT #7
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EXAMPLE 5

Solving an Application Problem with a Geometric Series
At a new job, an employee’s starting salary is $26,750. He receives a 1.6% annual raise. Find his total earnings at the end
of 5 years.

Solution
The problem can be represented by a geometric series with and Substitute values for

and into the formula and simplify to find the total amount earned at the end of 5 years.

He will have earned a total of $138,099.03 by the end of 5 years.

TRY IT #8 At a new job, an employee’s starting salary is $32,100. She receives a 2% annual raise. How much
will she have earned by the end of 8 years?

Using the Formula for the Sum of an Infinite Geometric Series
Thus far, we have looked only at finite series. Sometimes, however, we are interested in the sum of the terms of an
infinite sequence rather than the sum of only the first terms. An infinite series is the sum of the terms of an infinite
sequence. An example of an infinite series is

This series can also be written in summation notation as

∞

where the upper limit of summation is infinity. Because

the terms are not tending to zero, the sum of the series increases without bound as we add more terms. Therefore, the
sum of this infinite series is not defined. When the sum is not a real number, we say the series diverges.

Determining Whether the Sum of an Infinite Geometric Series is Defined
If the terms of an infinite geometric sequence approach 0, the sum of an infinite geometric series can be defined. The
terms in this series approach 0:

The common ratio As gets very large, the values of get very small and approach 0. Each successive term
affects the sum less than the preceding term. As each succeeding term gets closer to 0, the sum of the terms
approaches a finite value. The terms of any infinite geometric series with approach 0; the sum of a geometric
series is defined when

Determining Whether the Sum of an Infinite Geometric Series is Defined

The sum of an infinite series is defined if the series is geometric and

HOW TO

Given the first several terms of an infinite series, determine if the sum of the series exists.

1. Find the ratio of the second term to the first term.
2. Find the ratio of the third term to the second term.
3. Continue this process to ensure the ratio of a term to the preceding term is constant throughout. If so, the series

is geometric.
4. If a common ratio, was found in step 3, check to see if . If so, the sum is defined. If not, the sum is

not defined.
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EXAMPLE 6

Determining Whether the Sum of an Infinite Series is Defined
Determine whether the sum of each infinite series is defined.

ⓐ ⓑ ⓒ
∞

ⓓ
∞

Solution

ⓐ The ratio of the second term to the first is which is not the same as the ratio of the third term to the second,
The series is not geometric.

ⓑ The ratio of the second term to the first is the same as the ratio of the third term to the second. The series is
geometric with a common ratio of The sum of the infinite series is defined.

ⓒ The given formula is exponential with a base of the series is geometric with a common ratio of The sum of
the infinite series is defined.

ⓓ The given formula is not exponential; the series is not geometric because the terms are increasing, and so cannot
yield a finite sum.

Determine whether the sum of the infinite series is defined.

TRY IT #9

TRY IT #10

TRY IT #11
∞

Finding Sums of Infinite Series
When the sum of an infinite geometric series exists, we can calculate the sum. The formula for the sum of an infinite
series is related to the formula for the sum of the first terms of a geometric series.

We will examine an infinite series with What happens to as increases?

The value of decreases rapidly. What happens for greater values of

As gets very large, gets very small. We say that, as increases without bound, approaches 0. As approaches 0,
approaches 1. When this happens, the numerator approaches This give us a formula for the sum of an infinite

geometric series.
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Formula for the Sum of an Infinite Geometric Series

The formula for the sum of an infinite geometric series with is

HOW TO

Given an infinite geometric series, find its sum.

1. Identify and
2. Confirm that
3. Substitute values for and into the formula,

4. Simplify to find

EXAMPLE 7

Finding the Sum of an Infinite Geometric Series
Find the sum, if it exists, for the following:

ⓐ ⓑ ⓒ
∞

ⓓ
∞

Solution

ⓐ There is not a constant ratio; the series is not geometric.

ⓑ
There is a constant ratio; the series is geometric. and so the sum exists. Substitute

and into the formula and simplify to find the sum:

ⓒ
The formula is exponential, so the series is geometric with Find by substituting into the given explicit
formula:

Substitute and into the formula, and simplify to find the sum:

ⓓ The formula is exponential, so the series is geometric, but The sum does not exist.

EXAMPLE 8

Finding an Equivalent Fraction for a Repeating Decimal
Find an equivalent fraction for the repeating decimal
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Solution
We notice the repeating decimal so we can rewrite the repeating decimal as a sum of terms.

Looking for a pattern, we rewrite the sum, noticing that we see the first term multiplied to 0.1 in the second term, and
the second term multiplied to 0.1 in the third term.

Notice the pattern; we multiply each consecutive term by a common ratio of 0.1 starting with the first term of 0.3. So,
substituting into our formula for an infinite geometric sum, we have

Find the sum, if it exists.

TRY IT #12

TRY IT #13

∞

TRY IT #14

∞

Solving Annuity Problems
At the beginning of the section, we looked at a problem in which a parent invested a set amount of money each month
into a college fund for six years. An annuity is an investment in which the purchaser makes a sequence of periodic,
equal payments. To find the amount of an annuity, we need to find the sum of all the payments and the interest earned.
In the example, the parent invests $50 each month. This is the value of the initial deposit. The account paid 6% annual
interest, compounded monthly. To find the interest rate per payment period, we need to divide the 6% annual
percentage interest (APR) rate by 12. So the monthly interest rate is 0.5%. We can multiply the amount in the account
each month by 100.5% to find the value of the account after interest has been added.

We can find the value of the annuity right after the last deposit by using a geometric series with and
After the first deposit, the value of the annuity will be $50. Let us see if we can determine the

amount in the college fund and the interest earned.

We can find the value of the annuity after deposits using the formula for the sum of the first terms of a geometric
series. In 6 years, there are 72 months, so We can substitute into the formula,
and simplify to find the value of the annuity after 6 years.

After the last deposit, the parent will have a total of $4,320.44 in the account. Notice, the parent made 72 payments of
$50 each for a total of This means that because of the annuity, the parent earned $720.44 interest in
their college fund.

HOW TO

Given an initial deposit and an interest rate, find the value of an annuity.
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1. Determine the value of the initial deposit.
2. Determine the number of deposits.
3. Determine

a. Divide the annual interest rate by the number of times per year that interest is compounded.
b. Add 1 to this amount to find

4. Substitute values for into the formula for the sum of the first terms of a geometric series,

5. Simplify to find the value of the annuity after deposits.

EXAMPLE 9

Solving an Annuity Problem
A deposit of $100 is placed into a college fund at the beginning of every month for 10 years. The fund earns 9% annual
interest, compounded monthly, and paid at the end of the month. How much is in the account right after the last
deposit?

Solution
The value of the initial deposit is $100, so A total of 120 monthly deposits are made in the 10 years, so
To find divide the annual interest rate by 12 to find the monthly interest rate and add 1 to represent the new monthly
deposit.

Substitute into the formula for the sum of the first terms of a geometric series,
and simplify to find the value of the annuity.

So the account has $19,351.43 after the last deposit is made.

TRY IT #15 At the beginning of each month, $200 is deposited into a retirement fund. The fund earns 6%
annual interest, compounded monthly, and paid into the account at the end of the month. How
much is in the account if deposits are made for 10 years?

MEDIA

Access these online resources for additional instruction and practice with series.

Arithmetic Series (http://openstax.org/l/arithmeticser)
Geometric Series (http://openstax.org/l/geometricser)
Summation Notation (http://openstax.org/l/sumnotation)

13.4 SECTION EXERCISES
Verbal

1. What is an partial sum? 2. What is the difference
between an arithmetic
sequence and an arithmetic
series?

3. What is a geometric series?
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4. How is finding the sum of an
infinite geometric series
different from finding the

partial sum?

5. What is an annuity?

Algebraic

For the following exercises, express each description of a sum using summation notation.

6. The sum of terms
from to

7. The sum from of to
of

8. The sum of from
to

9. The sum that results from
adding the number 4 five
times

For the following exercises, express each arithmetic sum using summation notation.

10. 11.

12.

For the following exercises, use the formula for the sum of the first terms of each arithmetic sequence.

13. 14. 15.

For the following exercises, express each geometric sum using summation notation.

16. 17.

18.

For the following exercises, use the formula for the sum of the first terms of each geometric sequence, and then state
the indicated sum.

19. 20. 21.

For the following exercises, determine whether the infinite series has a sum. If so, write the formula for the sum. If not,
state the reason.

22. 23. 24.

∞

25. ∞
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Graphical

For the following exercises, use the following scenario. Javier makes monthly deposits into a savings account. He opened
the account with an initial deposit of $50. Each month thereafter he increased the previous deposit amount by $20.

26. Graph the arithmetic
sequence showing one
year of Javier’s deposits.

27. Graph the arithmetic series
showing the monthly sums
of one year of Javier’s
deposits.

For the following exercises, use the geometric series

∞

28. Graph the first 7 partial
sums of the series.

29. What number does
seem to be approaching in
the graph? Find the sum to
explain why this makes
sense.

Numeric

For the following exercises, find the indicated sum.

30. 31. 32.

33.

For the following exercises, use the formula for the sum of the first terms of an arithmetic series to find the sum.

34. 35.

36. 37.

For the following exercises, use the formula for the sum of the first terms of a geometric series to find the partial sum.

38. for the series 39. for the series 40.

41.
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For the following exercises, find the sum of the infinite geometric series.

42. 43. 44. ∞

45.

∞

For the following exercises, determine the value of the annuity for the indicated monthly deposit amount, the number of
deposits, and the interest rate.

46. Deposit amount: total
deposits: interest rate:

compounded monthly

47. Deposit amount:
total deposits: interest
rate: compounded
monthly

48. Deposit amount:
total deposits: interest
rate: compounded
quarterly

49. Deposit amount:
total deposits: interest
rate: compounded
semi-annually

Extensions

50. The sum of terms
from through is

What is x?

51. Write an explicit formula
for such that

Assume this

is an arithmetic series.

52. Find the smallest value of n
such that

53. How many terms must be
added before the series

has a
sum less than

54. Write as an infinite
geometric series using
summation notation. Then
use the formula for finding
the sum of an infinite
geometric series to convert

to a fraction.

55. The sum of an infinite
geometric series is five
times the value of the first
term. What is the common
ratio of the series?
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56. To get the best loan rates
available, the Coleman
family want to save enough
money to place 20% down
on a $160,000 home. They
plan to make monthly
deposits of $125 in an
investment account that
offers 8.5% annual interest
compounded semi-
annually. Will the Colemans
have enough for a 20%
down payment after five
years of saving? How much
money will they have
saved?

57. Karl has two years to save
to buy a used car

when he graduates. To the
nearest dollar, what would
his monthly deposits need
to be if he invests in an
account offering a 4.2%
annual interest rate that
compounds monthly?

Real-World Applications

58. Keisha devised a week-long
study plan to prepare for
finals. On the first day, she
plans to study for hour,
and each successive day
she will increase her study
time by minutes. How
many hours will Keisha
have studied after one
week?

59. A boulder rolled down a
mountain, traveling 6 feet
in the first second. Each
successive second, its
distance increased by 8
feet. How far did the
boulder travel after 10
seconds?

60. A scientist places 50 cells in
a petri dish. Every hour, the
population increases by
1.5%. What will the cell
count be after 1 day?

61. A pendulum travels a
distance of 3 feet on its
first swing. On each
successive swing, it travels

the distance of the
previous swing. What is the
total distance traveled by
the pendulum when it
stops swinging?

62. Rachael deposits $1,500
into a retirement fund each
year. The fund earns 8.2%
annual interest,
compounded monthly. If
she opened her account
when she was 19 years old,
how much will she have by
the time she is 55? How
much of that amount will
be interest earned?

13.5 Counting Principles
Learning Objectives
In this section, you will:

Solve counting problems using the Addition Principle.
Solve counting problems using the Multiplication Principle.
Solve counting problems using permutations involving n distinct objects.
Solve counting problems using combinations.
Find the number of subsets of a given set.
Solve counting problems using permutations involving n non-distinct objects.

A new company sells customizable cases for tablets and smartphones. Each case comes in a variety of colors and can be
personalized for an additional fee with images or a monogram. A customer can choose not to personalize or could
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choose to have one, two, or three images or a monogram. The customer can choose the order of the images and the
letters in the monogram. The company is working with an agency to develop a marketing campaign with a focus on the
huge number of options they offer. Counting the possibilities is challenging!

We encounter a wide variety of counting problems every day. There is a branch of mathematics devoted to the study of
counting problems such as this one. Other applications of counting include secure passwords, horse racing outcomes,
and college scheduling choices. We will examine this type of mathematics in this section.

Using the Addition Principle
The company that sells customizable cases offers cases for tablets and smartphones. There are 3 supported tablet
models and 5 supported smartphone models. The Addition Principle tells us that we can add the number of tablet
options to the number of smartphone options to find the total number of options. By the Addition Principle, there are 8
total options, as we can see in Figure 1.

Figure 1

The Addition Principle

According to the Addition Principle, if one event can occur in ways and a second event with no common outcomes
can occur in ways, then the first or second event can occur in ways.

EXAMPLE 1

Using the Addition Principle
There are 2 vegetarian entrée options and 5 meat entrée options on a dinner menu. What is the total number of entrée
options?

Solution
We can add the number of vegetarian options to the number of meat options to find the total number of entrée options.

There are 7 total options.

TRY IT #1 A student is shopping for a new computer. He is deciding among 3 desktop computers and 4
laptop computers. What is the total number of computer options?

Using the Multiplication Principle
The Multiplication Principle applies when we are making more than one selection. Suppose we are choosing an
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appetizer, an entrée, and a dessert. If there are 2 appetizer options, 3 entrée options, and 2 dessert options on a fixed-
price dinner menu, there are a total of 12 possible choices of one each as shown in the tree diagram in Figure 2.

Figure 2

The possible choices are:

1. soup, chicken, cake
2. soup, chicken, pudding
3. soup, fish, cake
4. soup, fish, pudding
5. soup, steak, cake
6. soup, steak, pudding
7. salad, chicken, cake
8. salad, chicken, pudding
9. salad, fish, cake

10. salad, fish, pudding
11. salad, steak, cake
12. salad, steak, pudding

We can also find the total number of possible dinners by multiplying.

We could also conclude that there are 12 possible dinner choices simply by applying the Multiplication Principle.

The Multiplication Principle

According to the Multiplication Principle, if one event can occur in ways and a second event can occur in ways
after the first event has occurred, then the two events can occur in ways. This is also known as the
Fundamental Counting Principle.

EXAMPLE 2

Using the Multiplication Principle
Diane packed 2 skirts, 4 blouses, and a sweater for her business trip. She will need to choose a skirt and a blouse for
each outfit and decide whether to wear the sweater. Use the Multiplication Principle to find the total number of possible
outfits.

Solution
To find the total number of outfits, find the product of the number of skirt options, the number of blouse options, and
the number of sweater options.
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There are 16 possible outfits.

TRY IT #2 A restaurant offers a breakfast special that includes a breakfast sandwich, a side dish, and a
beverage. There are 3 types of breakfast sandwiches, 4 side dish options, and 5 beverage choices.
Find the total number of possible breakfast specials.

Finding the Number of Permutations of n Distinct Objects
The Multiplication Principle can be used to solve a variety of problem types. One type of problem involves placing objects
in order. We arrange letters into words and digits into numbers, line up for photographs, decorate rooms, and more. An
ordering of objects is called a permutation.

Finding the Number of Permutations of n Distinct Objects Using the Multiplication Principle
To solve permutation problems, it is often helpful to draw line segments for each option. That enables us to determine
the number of each option so we can multiply. For instance, suppose we have four paintings, and we want to find the
number of ways we can hang three of the paintings in order on the wall. We can draw three lines to represent the three
places on the wall.

There are four options for the first place, so we write a 4 on the first line.

After the first place has been filled, there are three options for the second place so we write a 3 on the second line.

After the second place has been filled, there are two options for the third place so we write a 2 on the third line. Finally,
we find the product.

There are 24 possible permutations of the paintings.

HOW TO

Given distinct options, determine how many permutations there are.

1. Determine how many options there are for the first situation.
2. Determine how many options are left for the second situation.
3. Continue until all of the spots are filled.
4. Multiply the numbers together.

EXAMPLE 3

Finding the Number of Permutations Using the Multiplication Principle
At a swimming competition, nine swimmers compete in a race.

ⓐ How many ways can they place first, second, and third?

ⓑ How many ways can they place first, second, and third if a swimmer named Ariel wins first place? (Assume there
is only one contestant named Ariel.)

ⓒ How many ways can all nine swimmers line up for a photo?
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Solution

ⓐ Draw lines for each place.

There are 9 options for first place. Once someone has won first place, there are 8 remaining options for second place.
Once first and second place have been won, there are 7 remaining options for third place.

Multiply to find that there are 504 ways for the swimmers to place.

ⓑ Draw lines for describing each place.

We know Ariel must win first place, so there is only 1 option for first place. There are 8 remaining options for second
place, and then 7 remaining options for third place.

Multiply to find that there are 56 ways for the swimmers to place if Ariel wins first.

ⓒ
Draw lines for describing each place in the photo.

There are 9 choices for the first spot, then 8 for the second, 7 for the third, 6 for the fourth, and so on until only 1 person
remains for the last spot.

There are 362,880 possible permutations for the swimmers to line up.

Analysis
Note that in part c, we found there were 9! ways for 9 people to line up. The number of permutations of distinct objects
can always be found by

A family of five is having portraits taken. Use the Multiplication Principle to find the following.

TRY IT #3 How many ways can the family line up for the portrait?

TRY IT #4 How many ways can the photographer line up 3 family members?

TRY IT #5 How many ways can the family line up for the portrait if the parents are required to stand on each
end?

Finding the Number of Permutations of n Distinct Objects Using a Formula
For some permutation problems, it is inconvenient to use the Multiplication Principle because there are so many
numbers to multiply. Fortunately, we can solve these problems using a formula. Before we learn the formula, let’s look
at two common notations for permutations. If we have a set of objects and we want to choose objects from the set in
order, we write Another way to write this is a notation commonly seen on computers and calculators. To
calculate we begin by finding the number of ways to line up all objects. We then divide by to cancel
out the items that we do not wish to line up.

Let’s see how this works with a simple example. Imagine a club of six people. They need to elect a president, a vice
president, and a treasurer. Six people can be elected president, any one of the five remaining people can be elected vice
president, and any of the remaining four people could be elected treasurer. The number of ways this may be done is

Using factorials, we get the same result.
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There are 120 ways to select 3 officers in order from a club with 6 members. We refer to this as a permutation of 6 taken
3 at a time. The general formula is as follows.

Note that the formula stills works if we are choosing all objects and placing them in order. In that case we would be
dividing by or which we said earlier is equal to 1. So the number of permutations of objects taken at a
time is or just

Formula for Permutations of n Distinct Objects

Given distinct objects, the number of ways to select objects from the set in order is

HOW TO

Given a word problem, evaluate the possible permutations.

1. Identify from the given information.
2. Identify from the given information.
3. Replace and in the formula with the given values.
4. Evaluate.

EXAMPLE 4

Finding the Number of Permutations Using the Formula
A professor is creating an exam of 9 questions from a test bank of 12 questions. How many ways can she select and
arrange the questions?

Solution
Substitute and into the permutation formula and simplify.

There are 79,833,600 possible permutations of exam questions!

Analysis
We can also use a calculator to find permutations. For this problem, we would enter 12, press the function, enter 9,
and then press the equal sign. The function may be located under the MATH menu with probability commands.

Q&A Could we have solved Example 4 using the Multiplication Principle?

Yes. We could have multiplied to find the same answer.

A play has a cast of 7 actors preparing to make their curtain call. Use the permutation formula to find the following.

TRY IT #6 How many ways can the 7 actors line up?

TRY IT #7 How many ways can 5 of the 7 actors be chosen to line up?
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Find the Number of Combinations Using the Formula
So far, we have looked at problems asking us to put objects in order. There are many problems in which we want to
select a few objects from a group of objects, but we do not care about the order. When we are selecting objects and the
order does not matter, we are dealing with combinations. A selection of objects from a set of objects where the
order does not matter can be written as Just as with permutations, can also be written as In this
case, the general formula is as follows.

An earlier problem considered choosing 3 of 4 possible paintings to hang on a wall. We found that there were 24 ways to
select 3 of the 4 paintings in order. But what if we did not care about the order? We would expect a smaller number
because selecting paintings 1, 2, 3 would be the same as selecting paintings 2, 3, 1. To find the number of ways to select
3 of the 4 paintings, disregarding the order of the paintings, divide the number of permutations by the number of ways
to order 3 paintings. There are ways to order 3 paintings. There are or 4 ways to select 3 of the 4
paintings. This number makes sense because every time we are selecting 3 paintings, we are not selecting 1 painting.
There are 4 paintings we could choose not to select, so there are 4 ways to select 3 of the 4 paintings.

Formula for Combinations of n Distinct Objects

Given distinct objects, the number of ways to select objects from the set is

HOW TO

Given a number of options, determine the possible number of combinations.

1. Identify from the given information.
2. Identify from the given information.
3. Replace and in the formula with the given values.
4. Evaluate.

EXAMPLE 5

Finding the Number of Combinations Using the Formula
A fast food restaurant offers five side dish options. Your meal comes with two side dishes.

ⓐ How many ways can you select your side dishes? ⓑ How many ways can you select 3 side dishes?
Solution

ⓐ We want to choose 2 side dishes from 5 options. ⓑ We want to choose 3 side dishes from 5 options.

Analysis
We can also use a graphing calculator to find combinations. Enter 5, then press enter 3, and then press the equal
sign. The function may be located under the MATH menu with probability commands.

Q&A Is it a coincidence that parts (a) and (b) in Example 5 have the same answers?

No. When we choose r objects from n objects, we are not choosing objects. Therefore,
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TRY IT #8 An ice cream shop offers 10 flavors of ice cream. How many ways are there to choose 3 flavors for
a banana split?

Finding the Number of Subsets of a Set
We have looked only at combination problems in which we chose exactly objects. In some problems, we want to
consider choosing every possible number of objects. Consider, for example, a pizza restaurant that offers 5 toppings.
Any number of toppings can be ordered. How many different pizzas are possible?

To answer this question, we need to consider pizzas with any number of toppings. There is way to order a
pizza with no toppings. There are ways to order a pizza with exactly one topping. If we continue this process,
we get

There are 32 possible pizzas. This result is equal to

We are presented with a sequence of choices. For each of the objects we have two choices: include it in the subset or
not. So for the whole subset we have made choices, each with two options. So there are a total of
possible resulting subsets, all the way from the empty subset, which we obtain when we say “no” each time, to the
original set itself, which we obtain when we say “yes” each time.

Formula for the Number of Subsets of a Set

A set containing n distinct objects has subsets.

EXAMPLE 6

Finding the Number of Subsets of a Set
A restaurant offers butter, cheese, chives, and sour cream as toppings for a baked potato. How many different ways are
there to order a potato?

Solution
We are looking for the number of subsets of a set with 4 objects. Substitute into the formula.

There are 16 possible ways to order a potato.

TRY IT #9 A sundae bar at a wedding has 6 toppings to choose from. Any number of toppings can be
chosen. How many different sundaes are possible?

Finding the Number of Permutations of n Non-Distinct Objects
We have studied permutations where all of the objects involved were distinct. What happens if some of the objects are
indistinguishable? For example, suppose there is a sheet of 12 stickers. If all of the stickers were distinct, there would be

ways to order the stickers. However, 4 of the stickers are identical stars, and 3 are identical moons. Because all of the
objects are not distinct, many of the permutations we counted are duplicates. The general formula for this situation
is as follows.

In this example, we need to divide by the number of ways to order the 4 stars and the ways to order the 3 moons to find
the number of unique permutations of the stickers. There are ways to order the stars and ways to order the moon.

There are 3,326,400 ways to order the sheet of stickers.
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Formula for Finding the Number of Permutations of n Non-Distinct Objects

If there are elements in a set and are alike, are alike, are alike, and so on through the number of
permutations can be found by

EXAMPLE 7

Finding the Number of Permutations of n Non-Distinct Objects
Find the number of rearrangements of the letters in the word DISTINCT.

Solution
There are 8 letters. Both I and T are repeated 2 times. Substitute and into the formula.

There are 10,080 arrangements.

TRY IT #10 Find the number of rearrangements of the letters in the word CARRIER.

MEDIA

Access these online resources for additional instruction and practice with combinations and permutations.

Combinations (http://openstax.org/l/combinations)
Permutations (http://openstax.org/l/permutations)

13.5 SECTION EXERCISES
Verbal

For the following exercises, assume that there are ways an event can happen, ways an event can happen, and
that are non-overlapping.

1. Use the Addition Principle of
counting to explain how
many ways event
can occur.

2. Use the Multiplication
Principle of counting to
explain how many ways
event can occur.

Answer the following questions.

3. When given two separate
events, how do we know
whether to apply the
Addition Principle or the
Multiplication Principle
when calculating possible
outcomes? What
conjunctions may help to
determine which operations
to use?

4. Describe how the
permutation of objects
differs from the
permutation of choosing
objects from a set of
objects. Include how each is
calculated.

5. What is the term for the
arrangement that selects
objects from a set of
objects when the order of
the objects is not
important? What is the
formula for calculating the
number of possible
outcomes for this type of
arrangement?
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Numeric

For the following exercises, determine whether to use the Addition Principle or the Multiplication Principle. Then perform
the calculations.

6. Let the set

How many ways are there to
choose a negative or an even
number from

7. Let the set
How many ways are there to choose a positive or
an odd number from

8. How many ways are there to
pick a red ace or a club from
a standard card playing
deck?

9. How many ways are there to
pick a paint color from 5
shades of green, 4 shades of
blue, or 7 shades of yellow?

10. How many outcomes are
possible from tossing a
pair of coins?

11. How many outcomes are
possible from tossing a
coin and rolling a 6-sided
die?

12. How many two-letter
strings—the first letter
from and the second
letter from can be
formed from the sets

and

13. How many ways are there
to construct a string of 3
digits if numbers can be
repeated?

14. How many ways are there
to construct a string of 3
digits if numbers cannot be
repeated?

For the following exercises, compute the value of the expression.

15. 16. 17.

18. 19. 20.

21. 22. 23.

24.

For the following exercises, find the number of subsets in each given set.

25. 26. 27. A set containing 5 distinct
numbers, 4 distinct letters,
and 3 distinct symbols

28. The set of even numbers
from 2 to 28

29. The set of two-digit
numbers between 1 and
100 containing the digit 0
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For the following exercises, find the distinct number of arrangements.

30. The letters in the word
“juggernaut”

31. The letters in the word
“academia”

32. The letters in the word
“academia” that begin and
end in “a”

33. The symbols in the string
#,#,#,@,@,$,$,$,%,%,%,%

34. The symbols in the string
#,#,#,@,@,$,$,$,%,%,%,%
that begin and end with
“%”

Extensions

35. The set, consists of
whole

numbers, each being the
same number of digits
long. How many digits long
is a number from (Hint:
use the fact that a whole
number cannot start with
the digit 0.)

36. The number of 5-element
subsets from a set
containing elements is
equal to the number of
6-element subsets from
the same set. What is the
value of (Hint: the order
in which the elements for
the subsets are chosen is
not important.)

37. Can ever equal
Explain.

38. Suppose a set has 2,048
subsets. How many distinct
objects are contained in

39. How many arrangements
can be made from the
letters of the word
“mountains” if all the
vowels must form a string?

Real-World Applications

ⓐ How many
arrangements are possible
with no restrictions?

ⓑ How many
arrangements are possible
if the parents must sit in
the front?

ⓒ How many
arrangements are possible
if the parents must be next
to each other?

40. A family consisting of 2
parents and 3 children is to
pose for a picture with 2
family members in the
front and 3 in the back.

41. A cell phone company
offers 6 different voice
packages and 8 different
data packages. Of those, 3
packages include both
voice and data. How many
ways are there to choose
either voice or data, but
not both?

42. In horse racing, a “trifecta”
occurs when a bettor wins
by selecting the first three
finishers in the exact order
(1st place, 2nd place, and
3rd place). How many
different trifectas are
possible if there are 14
horses in a race?
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43. A wholesale T-shirt
company offers sizes small,
medium, large, and extra-
large in organic or non-
organic cotton and colors
white, black, gray, blue,
and red. How many
different T-shirts are there
to choose from?

44. Hector wants to place
billboard advertisements
throughout the county for
his new business. How
many ways can Hector
choose 15 neighborhoods
to advertise in if there are
30 neighborhoods in the
county?

45. An art store has 4 brands
of paint pens in 12
different colors and 3 types
of ink. How many paint
pens are there to choose
from?

46. How many ways can a
committee of 3 freshmen
and 4 juniors be formed
from a group of
freshmen and juniors?

47. How many ways can a
baseball coach arrange the
order of 9 batters if there
are 15 players on the
team?

48. A conductor needs 5
cellists and 5 violinists to
play at a diplomatic event.
To do this, he ranks the
orchestra’s 10 cellists and
16 violinists in order of
musical proficiency. What
is the ratio of the total
cellist rankings possible to
the total violinist rankings
possible?

49. A motorcycle shop has 10
choppers, 6 bobbers, and 5
café racers—different
types of vintage
motorcycles. How many
ways can the shop choose
3 choppers, 5 bobbers, and
2 café racers for a weekend
showcase?

50. A skateboard shop stocks
10 types of board decks, 3
types of trucks, and 4 types
of wheels. How many
different skateboards can
be constructed?

51. Just-For-Kicks Sneaker
Company offers an online
customizing service. How
many ways are there to
design a custom pair of
Just-For-Kicks sneakers if a
customer can choose from
a basic shoe up to 11
customizable options?

52. A car wash offers the
following optional services
to the basic wash: clear
coat wax, triple foam
polish, undercarriage
wash, rust inhibitor, wheel
brightener, air freshener,
and interior shampoo. How
many washes are possible
if any number of options
can be added to the basic
wash?

53. Suni bought 20 plants to
arrange along the border
of her garden. How many
distinct arrangements can
she make if the plants are
comprised of 6 tulips, 6
roses, and 8 daisies?

54. How many unique ways
can a string of Christmas
lights be arranged from 9
red, 10 green, 6 white, and
12 gold color bulbs?

13.6 Binomial Theorem
Learning Objectives
In this section, you will:

Apply the Binomial Theorem.

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials
to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss a
shortcut that will allow us to find without multiplying the binomial by itself times.
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Identifying Binomial Coefficients
In Counting Principles, we studied combinations. In the shortcut to finding we will need to use combinations to

find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation instead of

but it can be calculated in the same way. So

The combination is called a binomial coefficient. An example of a binomial coefficient is

Binomial Coefficients

If and are integers greater than or equal to 0 with then the binomial coefficient is

Q&A Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will
always be a whole number.

EXAMPLE 1

Finding Binomial Coefficients
Find each binomial coefficient.

ⓐ ⓑ ⓒ
Solution

Use the formula to calculate each binomial coefficient. You can also use the function on your calculator.

ⓐ ⓑ ⓒ
Analysis

Notice that we obtained the same result for parts (b) and (c). If you look closely at the solution for these two parts, you
will see that you end up with the same two factorials in the denominator, but the order is reversed, just as with
combinations.

TRY IT #1 Find each binomial coefficient.

ⓐ ⓑ

Using the Binomial Theorem
When we expand by multiplying, the result is called a binomial expansion, and it includes binomial coefficients.
If we wanted to expand we might multiply by itself fifty-two times. This could take hours! If we
examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding more
complicated binomial expansions.
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First, let’s examine the exponents. With each successive term, the exponent for decreases and the exponent for
increases. The sum of the two exponents is for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. The
coefficients follow a pattern:

These patterns lead us to the Binomial Theorem, which can be used to expand any binomial.

Another way to see the coefficients is to examine the expansion of a binomial in general form, to successive
powers 1, 2, 3, and 4.

Can you guess the next expansion for the binomial

Figure 1

See Figure 1, which illustrates the following:

• There are terms in the expansion of
• The degree (or sum of the exponents) for each term is
• The powers on begin with and decrease to 0.
• The powers on begin with 0 and increase to
• The coefficients are symmetric.

To determine the expansion on we see thus, there will be 5+1 = 6 terms. Each term has a combined
degree of 5. In descending order for powers of the pattern is as follows:

• Introduce and then for each successive term reduce the exponent on by 1 until is reached.
• Introduce and then increase the exponent on by 1 until is reached.
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The next expansion would be

But where do those coefficients come from? The binomial coefficients are symmetric. We can see these coefficients in an
array known as Pascal's Triangle, shown in Figure 2. Pascal didn't invent the triangle. The underlying principles had been
developed and written about for over 1500 years, first by the Indian mathematician (and poet) Pingala in the second
century BCE. Others throughout Asia and Europe worked with the concepts throughout, and the triangle was first
published in its graphical form by Omar Khayyam, an Iranian mathematician and astronomer, for whom the triangle is
named in Iran. French mathematician Blaise Pascal repopularized it when he republished it and used it to solve a
number of probability problems.

Figure 2

To generate Pascal’s Triangle, we start by writing a 1. In the row below, row 2, we write two 1’s. In the 3rd row, flank the
ends of the rows with 1’s, and add to find the middle number, 2. In the row, flank the ends of the row with 1’s.
Each element in the triangle is the sum of the two elements immediately above it.

To see the connection between Pascal’s Triangle and binomial coefficients, let us revisit the expansion of the binomials
in general form.

The Binomial Theorem

The Binomial Theorem is a formula that can be used to expand any binomial.

HOW TO

Given a binomial, write it in expanded form.

1. Determine the value of according to the exponent.
2. Evaluate the through using the Binomial Theorem formula.
3. Simplify.
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EXAMPLE 2

Expanding a Binomial
Write in expanded form.

ⓐ ⓑ
Solution

ⓐ Substitute into the formula. Evaluate the through terms. Simplify.

ⓑ Substitute into the formula. Evaluate the through terms. Notice that is in the place that was
occupied by and that is in the place that was occupied by So we substitute them. Simplify.

Analysis
Notice the alternating signs in part b. This happens because raised to odd powers is negative, but raised to
even powers is positive. This will occur whenever the binomial contains a subtraction sign.

TRY IT #2 Write in expanded form.

ⓐ ⓑ

Using the Binomial Theorem to Find a Single Term
Expanding a binomial with a high exponent such as can be a lengthy process.

Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand a binomial
to find a single specific term.

Note the pattern of coefficients in the expansion of

The second term is The third term is We can generalize this result.

The (r+1)th Term of a Binomial Expansion

The term of the binomial expansion of is:

HOW TO

Given a binomial, write a specific term without fully expanding.

1. Determine the value of according to the exponent.
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2. Determine
3. Determine
4. Replace in the formula for the term of the binomial expansion.

EXAMPLE 3

Writing a Given Term of a Binomial Expansion
Find the tenth term of without fully expanding the binomial.

Solution
Because we are looking for the tenth term, we will use in our calculations.

TRY IT #3 Find the sixth term of without fully expanding the binomial.

MEDIA

Access these online resources for additional instruction and practice with binomial expansion.

The Binomial Theorem (http://openstax.org/l/binomialtheorem)
Binomial Theorem Example (http://openstax.org/l/btexample)

13.6 SECTION EXERCISES
Verbal

1. What is a binomial
coefficient, and how it is
calculated?

2. What role do binomial
coefficients play in a
binomial expansion? Are
they restricted to any type of
number?

3. What is the Binomial
Theorem and what is its
use?

4. When is it an advantage to
use the Binomial Theorem?
Explain.

Algebraic

For the following exercises, evaluate the binomial coefficient.

5. 6. 7.

8. 9. 10.
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11. 12.

For the following exercises, use the Binomial Theorem to expand each binomial.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22.

For the following exercises, use the Binomial Theorem to write the first three terms of each binomial.

23. 24. 25.

26. 27. 28.

29.

For the following exercises, find the indicated term of each binomial without fully expanding the binomial.

30. The fourth term of 31. The fourth term of 32. The third term of

33. The eighth term of 34. The seventh term of 35. The fifth term of

36. The tenth term of 37. The ninth term of 38. The fourth term of

39. The eighth term of

Graphical

For the following exercises, use the Binomial Theorem to expand the binomial Then find and graph
each indicated sum on one set of axes.

40. Find and graph such
that is the first term
of the expansion.

41. Find and graph such
that is the sum of the
first two terms of the
expansion.

42. Find and graph such
that is the sum of the
first three terms of the
expansion.
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43. Find and graph such
that is the sum of the
first four terms of the
expansion.

44. Find and graph such
that is the sum of the
first five terms of the
expansion.

Extensions

45. In the expansion of each term has the

form , where successively takes on

the value If what is

the corresponding term?

46. In the expansion of
the coefficient of

is the same as the
coefficient of which other
term?

47. Consider the expansion of
What is the

exponent of in the
term?

48. Find

and write the answer as a
binomial coefficient in the

form Prove it.

Hint: Use the fact that, for
any integer such that

49. Which expression cannot
be expanded using the
Binomial Theorem?
Explain.

•

•

•

•

13.7 Probability
Learning Objectives
In this section, you will:

Construct probability models.
Compute probabilities of equally likely outcomes.
Compute probabilities of the union of two events.
Use the complement rule to find probabilities.
Compute probability using counting theory.

Figure 1 An example of a “spaghetti model,” which can be used to predict possible paths of a tropical storm.1
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Residents of the Southeastern United States are all too familiar with charts, known as spaghetti models, such as the one
in Figure 1. They combine a collection of weather data to predict the most likely path of a hurricane. Each colored line
represents one possible path. The group of squiggly lines can begin to resemble strands of spaghetti, hence the name.
In this section, we will investigate methods for making these types of predictions.

Constructing Probability Models
Suppose we roll a six-sided number cube. Rolling a number cube is an example of an experiment, or an activity with an
observable result. The numbers on the cube are possible results, or outcomes, of this experiment. The set of all possible
outcomes of an experiment is called the sample space of the experiment. The sample space for this experiment is

An event is any subset of a sample space.

The likelihood of an event is known as probability. The probability of an event is a number that always satisfies
where 0 indicates an impossible event and 1 indicates a certain event. A probability model is a mathematical

description of an experiment listing all possible outcomes and their associated probabilities. For instance, if there is a 1%
chance of winning a raffle and a 99% chance of losing the raffle, a probability model would look much like Table 1.

Outcome Probability

Winning the raffle 1%

Losing the raffle 99%

Table 1

The sum of the probabilities listed in a probability model must equal 1, or 100%.

HOW TO

Given a probability event where each event is equally likely, construct a probability model.

1. Identify every outcome.
2. Determine the total number of possible outcomes.
3. Compare each outcome to the total number of possible outcomes.

EXAMPLE 1

Constructing a Probability Model
Construct a probability model for rolling a single, fair die, with the event being the number shown on the die.

Solution
Begin by making a list of all possible outcomes for the experiment. The possible outcomes are the numbers that can be
rolled: 1, 2, 3, 4, 5, and 6. There are six possible outcomes that make up the sample space.

Assign probabilities to each outcome in the sample space by determining a ratio of the outcome to the number of
possible outcomes. There is one of each of the six numbers on the cube, and there is no reason to think that any
particular face is more likely to show up than any other one, so the probability of rolling any number is

Outcome Roll of 1 Roll of 2 Roll of 3 Roll of 4 Roll of 5 Roll of 6

Probability

Table 2

1 The figure is for illustrative purposes only and does not model any particular storm.
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Q&A Do probabilities always have to be expressed as fractions?

No. Probabilities can be expressed as fractions, decimals, or percents. Probability must always be a
number between 0 and 1, inclusive of 0 and 1.

TRY IT #1 Construct a probability model for tossing a fair coin.

Computing Probabilities of Equally Likely Outcomes
Let be a sample space for an experiment. When investigating probability, an event is any subset of When the
outcomes of an experiment are all equally likely, we can find the probability of an event by dividing the number of
outcomes in the event by the total number of outcomes in Suppose a number cube is rolled, and we are interested in
finding the probability of the event “rolling a number less than or equal to 4.” There are 4 possible outcomes in the
event and 6 possible outcomes in so the probability of the event is

Computing the Probability of an Event with Equally Likely Outcomes

The probability of an event in an experiment with sample space with equally likely outcomes is given by

is a subset of so it is always true that

EXAMPLE 2

Computing the Probability of an Event with Equally Likely Outcomes
A six-sided number cube is rolled. Find the probability of rolling an odd number.

Solution
The event “rolling an odd number” contains three outcomes. There are 6 equally likely outcomes in the sample space.
Divide to find the probability of the event.

TRY IT #2 A number cube is rolled. Find the probability of rolling a number greater than 2.

Computing the Probability of the Union of Two Events
We are often interested in finding the probability that one of multiple events occurs. Suppose we are playing a card
game, and we will win if the next card drawn is either a heart or a king. We would be interested in finding the probability
of the next card being a heart or a king. The union of two events is the event that occurs if
either or both events occur.

Suppose the spinner in Figure 2 is spun. We want to find the probability of spinning orange or spinning a
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Figure 2

There are a total of 6 sections, and 3 of them are orange. So the probability of spinning orange is There are a

total of 6 sections, and 2 of them have a So the probability of spinning a is If we added these two
probabilities, we would be counting the sector that is both orange and a twice. To find the probability of spinning an
orange or a we need to subtract the probability that the sector is both orange and has a

The probability of spinning orange or a is

Probability of the Union of Two Events

The probability of the union of two events and (written ) equals the sum of the probability of and the
probability of minus the probability of and occurring together which is called the intersection of and and
is written as ).

EXAMPLE 3

Computing the Probability of the Union of Two Events
A card is drawn from a standard deck. Find the probability of drawing a heart or a 7.

Solution
A standard deck contains an equal number of hearts, diamonds, clubs, and spades. So the probability of drawing a heart
is There are four 7s in a standard deck, and there are a total of 52 cards. So the probability of drawing a 7 is

The only card in the deck that is both a heart and a 7 is the 7 of hearts, so the probability of drawing both a heart and a 7
is Substitute into the formula.

The probability of drawing a heart or a 7 is

TRY IT #3 A card is drawn from a standard deck. Find the probability of drawing a red card or an ace.

Computing the Probability of Mutually Exclusive Events
Suppose the spinner in Figure 2 is spun again, but this time we are interested in the probability of spinning an orange or
a There are no sectors that are both orange and contain a so these two events have no outcomes in common.
Events are said to be mutually exclusive events when they have no outcomes in common. Because there is no overlap,
there is nothing to subtract, so the general formula is
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Notice that with mutually exclusive events, the intersection of and is the empty set. The probability of spinning an
orange is and the probability of spinning a is We can find the probability of spinning an orange or a simply
by adding the two probabilities.

The probability of spinning an orange or a is

Probability of the Union of Mutually Exclusive Events

The probability of the union of two mutually exclusive events is given by

HOW TO

Given a set of events, compute the probability of the union of mutually exclusive events.

1. Determine the total number of outcomes for the first event.
2. Find the probability of the first event.
3. Determine the total number of outcomes for the second event.
4. Find the probability of the second event.
5. Add the probabilities.

EXAMPLE 4

Computing the Probability of the Union of Mutually Exclusive Events
A card is drawn from a standard deck. Find the probability of drawing a heart or a spade.

Solution
The events “drawing a heart” and “drawing a spade” are mutually exclusive because they cannot occur at the same
time. The probability of drawing a heart is and the probability of drawing a spade is also so the probability of
drawing a heart or a spade is

TRY IT #4 A card is drawn from a standard deck. Find the probability of drawing an ace or a king.

Using the Complement Rule to Compute Probabilities
We have discussed how to calculate the probability that an event will happen. Sometimes, we are interested in finding
the probability that an event will not happen. The complement of an event denoted is the set of outcomes in the
sample space that are not in For example, suppose we are interested in the probability that a horse will lose a race. If
event is the horse winning the race, then the complement of event is the horse losing the race.

To find the probability that the horse loses the race, we need to use the fact that the sum of all probabilities in a
probability model must be 1.

The probability of the horse winning added to the probability of the horse losing must be equal to 1. Therefore, if the
probability of the horse winning the race is the probability of the horse losing the race is simply
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The Complement Rule

The probability that the complement of an event will occur is given by

EXAMPLE 5

Using the Complement Rule to Calculate Probabilities
Two six-sided number cubes are rolled.

ⓐ Find the probability that the sum of the numbers rolled is less than or equal to 3.

ⓑ Find the probability that the sum of the numbers rolled is greater than 3.
Solution

The first step is to identify the sample space, which consists of all the possible outcomes. There are two number cubes,
and each number cube has six possible outcomes. Using the Multiplication Principle, we find that there are or
total possible outcomes. So, for example, 1-1 represents a 1 rolled on each number cube.

Table 3

ⓐ We need to count the number of ways to roll a sum of 3 or less. These would include the following outcomes: 1-1,
1-2, and 2-1. So there are only three ways to roll a sum of 3 or less. The probability is

ⓑ Rather than listing all the possibilities, we can use the Complement Rule. Because we have already found the
probability of the complement of this event, we can simply subtract that probability from 1 to find the probability that
the sum of the numbers rolled is greater than 3.

TRY IT #5 Two number cubes are rolled. Use the Complement Rule to find the probability that the sum is
less than 10.

Computing Probability Using Counting Theory
Many interesting probability problems involve counting principles, permutations, and combinations. In these problems,
we will use permutations and combinations to find the number of elements in events and sample spaces. These
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problems can be complicated, but they can be made easier by breaking them down into smaller counting problems.

Assume, for example, that a store has 8 cellular phones and that 3 of those are defective. We might want to find the
probability that a couple purchasing 2 phones receives 2 phones that are not defective. To solve this problem, we need
to calculate all of the ways to select 2 phones that are not defective as well as all of the ways to select 2 phones. There
are 5 phones that are not defective, so there are ways to select 2 phones that are not defective. There are 8
phones, so there are ways to select 2 phones. The probability of selecting 2 phones that are not defective is:

EXAMPLE 6

Computing Probability Using Counting Theory
A child randomly selects 5 toys from a bin containing 3 bunnies, 5 dogs, and 6 bears.

ⓐ Find the probability that only bears are chosen. ⓑ Find the probability that 2 bears and 3 dogs are chosen.

ⓒ Find the probability that at least 2 dogs are chosen.
Solution

ⓐ We need to count the number of ways to choose only bears and the total number of possible ways to select 5
toys. There are 6 bears, so there are ways to choose 5 bears. There are 14 toys, so there are ways to
choose any 5 toys.

ⓑ We need to count the number of ways to choose 2 bears and 3 dogs and the total number of possible ways to
select 5 toys. There are 6 bears, so there are ways to choose 2 bears. There are 5 dogs, so there are
ways to choose 3 dogs. Since we are choosing both bears and dogs at the same time, we will use the Multiplication
Principle. There are ways to choose 2 bears and 3 dogs. We can use this result to find the probability.

ⓒ It is often easiest to solve “at least” problems using the Complement Rule. We will begin by finding the
probability that fewer than 2 dogs are chosen. If less than 2 dogs are chosen, then either no dogs could be chosen, or
1 dog could be chosen.
When no dogs are chosen, all 5 toys come from the 9 toys that are not dogs. There are ways to choose toys
from the 9 toys that are not dogs. Since there are 14 toys, there are ways to choose the 5 toys from all of the
toys.

If there is 1 dog chosen, then 4 toys must come from the 9 toys that are not dogs, and 1 must come from the 5 dogs.
Since we are choosing both dogs and other toys at the same time, we will use the Multiplication Principle. There are

ways to choose 1 dog and 1 other toy.

Because these events would not occur together and are therefore mutually exclusive, we add the probabilities to find
the probability that fewer than 2 dogs are chosen.

We then subtract that probability from 1 to find the probability that at least 2 dogs are chosen.
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TRY IT #6 A child randomly selects 3 gumballs from a container holding 4 purple gumballs, 8 yellow
gumballs, and 2 green gumballs.

ⓐ Find the probability that all 3 gumballs selected are purple.

ⓑ Find the probability that no yellow gumballs are selected.

ⓒ Find the probability that at least 1 yellow gumball is selected.

MEDIA

Access these online resources for additional instruction and practice with probability.

Introduction to Probability (http://openstax.org/l/introprob)
Determining Probability (http://openstax.org/l/determineprob)

13.7 SECTION EXERCISES
Verbal

1. What term is used to
express the likelihood of an
event occurring? Are there
restrictions on its values? If
so, what are they? If not,
explain.

2. What is a sample space? 3. What is an experiment?

4. What is the difference
between events and
outcomes? Give an example
of both using the sample
space of tossing a coin 50
times.

5. The union of two sets is
defined as a set of elements
that are present in at least
one of the sets. How is this
similar to the definition used
for the union of two events
from a probability model?
How is it different?

Numeric

For the following exercises, use the spinner shown in Figure 3 to find the probabilities indicated.

Figure 3

6. Landing on red 7. Landing on a vowel 8. Not landing on blue

9. Landing on purple or a
vowel

10. Landing on blue or a vowel 11. Landing on green or blue
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12. Landing on yellow or a
consonant

13. Not landing on yellow or a
consonant

For the following exercises, two coins are tossed.

14. What is the sample space? 15. Find the probability of
tossing two heads.

16. Find the probability of
tossing exactly one tail.

17. Find the probability of
tossing at least one tail.

For the following exercises, four coins are tossed.

18. What is the sample space? 19. Find the probability of
tossing exactly two heads.

20. Find the probability of
tossing exactly three
heads.

21. Find the probability of
tossing four heads or four
tails.

22. Find the probability of
tossing all tails.

23. Find the probability of
tossing not all tails.

24. Find the probability of
tossing exactly two heads
or at least two tails.

25. Find the probability of
tossing either two heads or
three heads.

For the following exercises, one card is drawn from a standard deck of cards. Find the probability of drawing the
following:

26. A club 27. A two 28. Six or seven

29. Red six 30. An ace or a diamond 31. A non-ace

32. A heart or a non-jack

For the following exercises, two dice are rolled, and the results are summed.

33. Construct a table showing the sample space of
outcomes and sums.

34. Find the probability of rolling a sum of

35. Find the probability of rolling at least one four or a
sum of

36. Find the probability of rolling an odd sum less
than

37. Find the probability of rolling a sum greater than
or equal to

38. Find the probability of
rolling a sum less than

39. Find the probability of
rolling a sum less than or
greater than

40. Find the probability of
rolling a sum between
and inclusive.

41. Find the probability of
rolling a sum of or
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42. Find the probability of
rolling any sum other than

or

For the following exercises, a coin is tossed, and a card is pulled from a standard deck. Find the probability of the
following:

43. A head on the coin or a
club

44. A tail on the coin or red ace 45. A head on the coin or a
face card

46. No aces

For the following exercises, use this scenario: a bag of M&Ms contains blue, brown, orange, yellow, red, and
green M&Ms. Reaching into the bag, a person grabs 5 M&Ms.

47. What is the probability of
getting all blue M&Ms?

48. What is the probability of
getting blue M&Ms?

49. What is the probability of
getting blue M&Ms?

50. What is the probability of
getting no brown M&Ms?

Extensions

Use the following scenario for the exercises that follow: In the game of Keno, a player starts by selecting numbers
from the numbers to After the player makes his selections, winning numbers are randomly selected from
numbers to A win occurs if the player has correctly selected or of the winning numbers. (Round all
answers to the nearest hundredth of a percent.)

51. What is the percent chance
that a player selects exactly
3 winning numbers?

52. What is the percent chance
that a player selects exactly
4 winning numbers?

53. What is the percent chance
that a player selects all 5
winning numbers?

54. What is the percent chance
of winning?

55. How much less is a player’s
chance of selecting 3
winning numbers than the
chance of selecting either 4
or 5 winning numbers?

Real-World Applications

Use this data for the exercises that follow: In 2013, there were roughly 317 million citizens in the United States, and
about 40 million were elderly (aged 65 and over).2

56. If you meet a U.S. citizen,
what is the percent chance
that the person is elderly?
(Round to the nearest
tenth of a percent.)

57. If you meet five U.S.
citizens, what is the
percent chance that exactly
one is elderly? (Round to
the nearest tenth of a
percent.)

58. If you meet five U.S.
citizens, what is the
percent chance that three
are elderly? (Round to the
nearest tenth of a percent.)

2 United States Census Bureau. http://www.census.gov
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59. If you meet five U.S.
citizens, what is the
percent chance that four
are elderly? (Round to the
nearest thousandth of a
percent.)

60. It is predicted that by 2030,
one in five U.S. citizens will
be elderly. How much
greater will the chances of
meeting an elderly person
be at that time? What
policy changes do you
foresee if these statistics
hold true?
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Chapter Review
Key Terms
Addition Principle if one event can occur in ways and a second event with no common outcomes can occur in

ways, then the first or second event can occur in ways
annuity an investment in which the purchaser makes a sequence of periodic, equal payments
arithmetic sequence a sequence in which the difference between any two consecutive terms is a constant
arithmetic series the sum of the terms in an arithmetic sequence
binomial coefficient the number of ways to choose r objects from n objects where order does not matter; equivalent

to denoted

binomial expansion the result of expanding by multiplying
Binomial Theorem a formula that can be used to expand any binomial
combination a selection of objects in which order does not matter
common difference the difference between any two consecutive terms in an arithmetic sequence
common ratio the ratio between any two consecutive terms in a geometric sequence
complement of an event the set of outcomes in the sample space that are not in the event
diverge a series is said to diverge if the sum is not a real number
event any subset of a sample space
experiment an activity with an observable result
explicit formula a formula that defines each term of a sequence in terms of its position in the sequence
finite sequence a function whose domain consists of a finite subset of the positive integers for some

positive integer
Fundamental Counting Principle if one event can occur in ways and a second event can occur in ways after the

first event has occurred, then the two events can occur in ways; also known as the Multiplication Principle
geometric sequence a sequence in which the ratio of a term to a previous term is a constant
geometric series the sum of the terms in a geometric sequence
index of summation in summation notation, the variable used in the explicit formula for the terms of a series and

written below the sigma with the lower limit of summation
infinite sequence a function whose domain is the set of positive integers
infinite series the sum of the terms in an infinite sequence
lower limit of summation the number used in the explicit formula to find the first term in a series
Multiplication Principle if one event can occur in ways and a second event can occur in ways after the first event

has occurred, then the two events can occur in ways; also known as the Fundamental Counting Principle
mutually exclusive events events that have no outcomes in common
n factorial the product of all the positive integers from 1 to
nth partial sum the sum of the first terms of a sequence
nth term of a sequence a formula for the general term of a sequence
outcomes the possible results of an experiment
permutation a selection of objects in which order matters
probability a number from 0 to 1 indicating the likelihood of an event
probability model a mathematical description of an experiment listing all possible outcomes and their associated

probabilities
recursive formula a formula that defines each term of a sequence using previous term(s)
sample space the set of all possible outcomes of an experiment
sequence a function whose domain is a subset of the positive integers
series the sum of the terms in a sequence
summation notation a notation for series using the Greek letter sigma; it includes an explicit formula and specifies

the first and last terms in the series
term a number in a sequence
union of two events the event that occurs if either or both events occur
upper limit of summation the number used in the explicit formula to find the last term in a series
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Key Equations

Formula for a factorial

recursive formula for nth term of an arithmetic sequence

explicit formula for nth term of an arithmetic sequence

recursive formula for term of a geometric sequence

explicit formula for term of a geometric sequence

sum of the first terms of an arithmetic series

sum of the first terms of a geometric series

sum of an infinite geometric series with

number of permutations of distinct objects taken at a time

number of combinations of distinct objects taken at a time

number of permutations of non-distinct objects

Binomial Theorem

term of a binomial expansion

probability of an event with equally likely outcomes

probability of the union of two events

probability of the union of mutually exclusive events

probability of the complement of an event
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Key Concepts
13.1 Sequences and Their Notations

• A sequence is a list of numbers, called terms, written in a specific order.
• Explicit formulas define each term of a sequence using the position of the term. See Example 1, Example 2, and

Example 3.
• An explicit formula for the term of a sequence can be written by analyzing the pattern of several terms. See

Example 4.
• Recursive formulas define each term of a sequence using previous terms.
• Recursive formulas must state the initial term, or terms, of a sequence.
• A set of terms can be written by using a recursive formula. See Example 5 and Example 6.
• A factorial is a mathematical operation that can be defined recursively.
• The factorial of is the product of all integers from 1 to See Example 7.

13.2 Arithmetic Sequences

• An arithmetic sequence is a sequence where the difference between any two consecutive terms is a constant.
• The constant between two consecutive terms is called the common difference.
• The common difference is the number added to any one term of an arithmetic sequence that generates the

subsequent term. See Example 1.
• The terms of an arithmetic sequence can be found by beginning with the initial term and adding the common

difference repeatedly. See Example 2 and Example 3.
• A recursive formula for an arithmetic sequence with common difference is given by See

Example 4.
• As with any recursive formula, the initial term of the sequence must be given.
• An explicit formula for an arithmetic sequence with common difference is given by See

Example 5.
• An explicit formula can be used to find the number of terms in a sequence. See Example 6.
• In application problems, we sometimes alter the explicit formula slightly to See Example 7.

13.3 Geometric Sequences

• A geometric sequence is a sequence in which the ratio between any two consecutive terms is a constant.
• The constant ratio between two consecutive terms is called the common ratio.
• The common ratio can be found by dividing any term in the sequence by the previous term. See Example 1.
• The terms of a geometric sequence can be found by beginning with the first term and multiplying by the common

ratio repeatedly. See Example 2 and Example 4.
• A recursive formula for a geometric sequence with common ratio is given by for .
• As with any recursive formula, the initial term of the sequence must be given. See Example 3.
• An explicit formula for a geometric sequence with common ratio is given by See Example 5.
• In application problems, we sometimes alter the explicit formula slightly to See Example 6.

13.4 Series and Their Notations

• The sum of the terms in a sequence is called a series.
• A common notation for series is called summation notation, which uses the Greek letter sigma to represent the

sum. See Example 1.
• The sum of the terms in an arithmetic sequence is called an arithmetic series.
• The sum of the first terms of an arithmetic series can be found using a formula. See Example 2 and Example 3.
• The sum of the terms in a geometric sequence is called a geometric series.
• The sum of the first terms of a geometric series can be found using a formula. See Example 4 and Example 5.
• The sum of an infinite series exists if the series is geometric with
• If the sum of an infinite series exists, it can be found using a formula. See Example 6, Example 7, and Example 8.
• An annuity is an account into which the investor makes a series of regularly scheduled payments. The value of an

annuity can be found using geometric series. See Example 9.

13.5 Counting Principles

• If one event can occur in ways and a second event with no common outcomes can occur in ways, then the first
or second event can occur in ways. See Example 1.

• If one event can occur in ways and a second event can occur in ways after the first event has occurred, then the
two events can occur in ways. See Example 2.
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• A permutation is an ordering of objects.
• If we have a set of objects and we want to choose objects from the set in order, we write
• Permutation problems can be solved using the Multiplication Principle or the formula for See Example 3 and

Example 4.
• A selection of objects where the order does not matter is a combination.
• Given distinct objects, the number of ways to select objects from the set is and can be found using a

formula. See Example 5.
• A set containing distinct objects has subsets. See Example 6.
• For counting problems involving non-distinct objects, we need to divide to avoid counting duplicate permutations.

See Example 7.

13.6 Binomial Theorem

• is called a binomial coefficient and is equal to See Example 1.

• The Binomial Theorem allows us to expand binomials without multiplying. See Example 2.
• We can find a given term of a binomial expansion without fully expanding the binomial. See Example 3.

13.7 Probability

• Probability is always a number between 0 and 1, where 0 means an event is impossible and 1 means an event is
certain.

• The probabilities in a probability model must sum to 1. See Example 1.
• When the outcomes of an experiment are all equally likely, we can find the probability of an event by dividing the

number of outcomes in the event by the total number of outcomes in the sample space for the experiment. See
Example 2.

• To find the probability of the union of two events, we add the probabilities of the two events and subtract the
probability that both events occur simultaneously. See Example 3.

• To find the probability of the union of two mutually exclusive events, we add the probabilities of each of the events.
See Example 4.

• The probability of the complement of an event is the difference between 1 and the probability that the event occurs.
See Example 5.

• In some probability problems, we need to use permutations and combinations to find the number of elements in
events and sample spaces. See Example 6.

Exercises
Review Exercises
Sequences and Their Notation
1. Write the first four terms of

the sequence defined by the
recursive formula

2. Evaluate 3. Write the first four terms of
the sequence defined by the
explicit formula

4. Write the first four terms of
the sequence defined by the
explicit formula

Arithmetic Sequences
5. Is the sequence

arithmetic? If so, find the
common difference.

6. Is the sequence
arithmetic? If

so, find the common
difference.

7. An arithmetic sequence has
the first term and
common difference
What are the first five
terms?
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8. An arithmetic sequence has
terms and

What is the first
term?

9. Write a recursive formula
for the arithmetic sequence

10. Write a recursive formula
for the arithmetic
sequence

and then find the 31st term.

11. Write an explicit formula
for the arithmetic
sequence

12. How many terms are in the
finite arithmetic sequence

Geometric Sequences
13. Find the common ratio for

the geometric sequence
14. Is the sequence 4, 16, 28,

40 … geometric? If so find
the common ratio. If not,
explain why.

15. A geometric sequence has
terms and

. What are
the first five terms?

16. A geometric sequence has
the first term and
common ratio What
is the 8th term?

17. What are the first five
terms of the geometric
sequence

18. Write a recursive formula
for the geometric
sequence

19. Write an explicit formula for the
geometric sequence

20. How many terms are in the
finite geometric sequence

Series and Their Notation
21. Use summation notation to

write the sum of terms
from to

22. Use summation notation to
write the sum that results
from adding the number

twenty times.

23. Use the formula for the
sum of the first terms of
an arithmetic series to find
the sum of the first eleven
terms of the arithmetic
series 2.5, 4, 5.5, … .
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24. A ladder has tapered
rungs, the lengths of which
increase by a common
difference. The first rung is
5 inches long, and the last
rung is 20 inches long.
What is the sum of the
lengths of the rungs?

25. Use the formula for the
sum of the first n terms of
a geometric series to find

for the series

26. The fees for the first three
years of a hunting club
membership are given in
Table 1. If fees continue to
rise at the same rate, how
much will the total cost be
for the first ten years of
membership?

Year
Membership

Fees

1 $1500

2 $1950

3 $2535

Table 1

27. Find the sum of the infinite
geometric series

∞

28. A ball has a bounce-back
ratio of the height of the
previous bounce. Write a
series representing the
total distance traveled by
the ball, assuming it was
initially dropped from a
height of 5 feet. What is the
total distance? (Hint: the
total distance the ball
travels on each bounce is
the sum of the heights of
the rise and the fall.)

29. Alejandro deposits $80 of
his monthly earnings into
an annuity that earns
6.25% annual interest,
compounded monthly.
How much money will he
have saved after 5 years?

30. The twins Hoa and Binh
both opened retirement
accounts on their 21st

birthday. Hoa deposits
$4,800.00 each year,
earning 5.5% annual
interest, compounded
monthly. Binh deposits
$3,600.00 each year,
earning 8.5% annual
interest, compounded
monthly. Which twin will
earn the most interest by
the time they are years
old? How much more?
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Counting Principles
31. How many ways are there

to choose a number from
the set

that is divisible by either
or

32. In a group of musicians,
play piano, play

trumpet, and play both
piano and trumpet. How
many musicians play either
piano or trumpet?

33. How many ways are there
to construct a 4-digit code
if numbers can be
repeated?

34. A palette of water color
paints has 3 shades of
green, 3 shades of blue, 2
shades of red, 2 shades of
yellow, and 1 shade of
black. How many ways are
there to choose one shade
of each color?

35. Calculate 36. In a group of first-year,
second-year, third-

year, and fourth-year
students, how many ways
can a president, vice
president, and treasurer be
elected?

37. Calculate 38. A coffee shop has 7
Guatemalan roasts, 4
Cuban roasts, and 10 Costa
Rican roasts. How many
ways can the shop choose
2 Guatemalan, 2 Cuban,
and 3 Costa Rican roasts
for a coffee tasting event?

39. How many subsets does
the set

have?

40. A day spa charges a basic
day rate that includes use
of a sauna, pool, and
showers. For an extra
charge, guests can choose
from the following
additional services:
massage, body scrub,
manicure, pedicure, facial,
and straight-razor shave.
How many ways are there
to order additional services
at the day spa?

41. How many distinct ways
can the word DEADWOOD
be arranged?

42. How many distinct
rearrangements of the
letters of the word
DEADWOOD are there if
the arrangement must
begin and end with the
letter D?

Binomial Theorem
43. Evaluate the binomial

coefficient

44. Use the Binomial Theorem

to expand

45. Use the Binomial Theorem
to write the first three
terms of

46. Find the fourth term of

without fully
expanding the binomial.
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Probability

For the following exercises, assume two die are rolled.

47. Construct a table showing the sample space. 48. What is the probability that a roll includes a

49. What is the probability of
rolling a pair?

50. What is the probability that a roll includes a 2 or
results in a pair?

51. What is the probability that
a roll doesn’t include a 2 or
result in a pair?

52. What is the probability of rolling a 5 or a 6?

53. What is the probability that
a roll includes neither a 5
nor a 6?

For the following exercises, use the following data: An elementary school survey found that 350 of the 500 students
preferred soda to milk. Suppose 8 children from the school are attending a birthday party. (Show calculations and round
to the nearest tenth of a percent.)

54. What is the percent chance
that all the children
attending the party prefer
soda?

55. What is the percent chance
that at least one of the
children attending the
party prefers milk?

56. What is the percent chance
that exactly 3 of the
children attending the
party prefer soda?

57. What is the percent chance
that exactly 3 of the
children attending the
party prefer milk?

Practice Test
1. Write the first four terms of

the sequence defined by the
recursive formula

2. Write the first four terms of
the sequence defined by the
explicit formula

3. Is the sequence

arithmetic? If so find the
common difference.

4. An arithmetic sequence has
the first term and
common difference
What is the 6th term?

5. Write a recursive formula
for the arithmetic sequence

and then find the 22nd term.

6. Write an explicit formula for
the arithmetic sequence

and then find the 32nd term.

7. Is the sequence

geometric? If so find the
common ratio. If not,
explain why.

8. What is the 11th term of the
geometric sequence

9. Write a recursive formula
for the geometric sequence
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10. Write an explicit formula
for the geometric
sequence

11. Use summation notation to
write the sum of terms

from to

12. A community baseball
stadium has 10 seats in the
first row, 13 seats in the
second row, 16 seats in the
third row, and so on. There
are 56 rows in all. What is
the seating capacity of the
stadium?

13. Use the formula for the
sum of the first terms of
a geometric series to find

14. Find the sum of the infinite
geometric series
∞

15. Ramla deposits $3,600 into
a retirement fund each
year. The fund earns 7.5%
annual interest,
compounded monthly. If
she opened her account
when she was 20 years old,
how much will she have by
the time she’s 55? How
much of that amount was
interest earned?

16. In a competition of 50
professional ballroom
dancers, 22 compete in the
fox-trot competition, 18
compete in the tango
competition, and 6
compete in both the fox-
trot and tango
competitions. How many
dancers compete in the
fox-trot or tango
competitions?

17. A buyer of a new sedan can
custom order the car by
choosing from 5 different
exterior colors, 3 different
interior colors, 2 sound
systems, 3 motor designs,
and either manual or
automatic transmission.
How many choices does
the buyer have?

18. To allocate annual
bonuses, a manager must
choose his top four
employees and rank them
first to fourth. In how many
ways can he create the
“Top-Four” list out of the
32 employees?

19. A music group needs to
choose 3 songs to play at
the annual Battle of the
Bands. How many ways
can they choose their set if
have 15 songs to pick
from?

20. A self-serve frozen yogurt
shop has 8 candy toppings
and 4 fruit toppings to
choose from. How many
ways are there to top a
frozen yogurt?

21. How many distinct ways
can the word
EVANESCENCE be arranged
if the anagram must end
with the letter E?

22. Use the Binomial Theorem

to expand

23. Find the seventh term of

without fully
expanding the binomial.
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For the following exercises, use the spinner in Figure 1.

Figure 1

24. Construct a probability
model showing each
possible outcome and its
associated probability. (Use
the first letter for colors.)

25. What is the probability of
landing on an odd
number?

26. What is the probability of
landing on blue?

27. What is the probability of
landing on blue or an odd
number?

28. What is the probability of
landing on anything other
than blue or an odd
number?

29. A bowl of candy holds 16
peppermint, 14
butterscotch, and 10
strawberry flavored
candies. Suppose a person
grabs a handful of 7
candies. What is the
percent chance that exactly
3 are butterscotch? (Show
calculations and round to
the nearest tenth of a
percent.)
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Important Proofs and Derivations
Product Rule

Proof:

Let and

Write in exponent form.

and

Multiply.

Change of Base Rule

where and are positive, and

Proof:

Let

Write in exponent form.

Take the of both sides.

When

Heron’s Formula

where

Proof:

Let and be the sides of a triangle, and be the height.
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So .

We can further name the parts of the base in each triangle established by the height such that

Using the Pythagorean Theorem, and

Since then Expanding, we find that

We can then add to each side of the equation to get

Substitute this result into the equation yields

Then replacing with gives

Solve for to get

Since we get an expression in terms of and

Therefore,

And since then
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Properties of the Dot Product

Proof:

Proof:

Proof:

Standard Form of the Ellipse centered at the Origin

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:
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Consider a vertex.

Then,

Consider a covertex.

Then
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Let

Because then

Standard Form of the Hyperbola

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two
fixed points is constant.
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Diagram 1: The difference of the distances from Point P to the foci is constant:

Diagram 2: When the point is a vertex, the difference is

Define as a positive number such that
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Trigonometric Identities

Pythagorean Identities

Even-Odd Identities

Cofunction Identities

Fundamental Identities

Sum and Difference Identities

Double-Angle Formulas

Table A1
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Half-Angle Formulas

Reduction Formulas

Product-to-Sum Formulas

Sum-to-Product Formulas

Law of Sines

Law of Cosines

Table A1
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ToolKit Functions

Figure A1

Figure A2
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Figure A3

Trigonometric Functions
Unit Circle

Figure A4

Angle

Cosine 1 0

Table A2
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Angle

Sine 0 1

Tangent 0 1 Undefined

Secant 1 2 Undefined

Cosecant Undefined 2 1

Cotangent Undefined 1 0

Table A2
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Answer Key
Chapter 1
Try It
1.1 Real Numbers: Algebra Essentials

ⓐ ⓑ ⓒ1. ⓐ 4 (or 4.0), terminating;

ⓑ repeating;

ⓒ –0.85, terminating

2. ⓐ rational and repeating;

ⓑ rational and terminating;

ⓒ irrational;

ⓓ rational and terminating;

ⓔ irrational

3.

ⓐ positive, irrational; right

ⓑ negative, rational; left

ⓒ positive, rational; right

ⓓ negative, irrational; left

ⓔ positive, rational; right

4. 5.
N W I Q Q'

a. X X

b. 0 X X X

c. X X X X

d. X

e.
4.763763763...

X

ⓐ 10 ⓑ 2 ⓒ 4.5 ⓓ 25

ⓔ 26
6.

ⓐ 11, commutative
property of multiplication,
associative property of
multiplication, inverse
property of multiplication,
identity property of
multiplication;

ⓑ 33, distributive property;

ⓒ 26, distributive property;

ⓓ commutative
property of addition,
associative property of
addition, inverse property of
addition, identity property of
addition;

ⓔ 0, distributive property,
inverse property of addition,
identity property of addition

7. 8.
Constants Variables

a.

b. 2(L + W) 2 L, W

c. 4

ⓐ 5; ⓑ 11; ⓒ 9; ⓓ 269.

ⓐ 4; ⓑ 11; ⓒ ;

ⓓ 1728; ⓔ 3

10. 11. 1,152 cm2 ⓐ
ⓑ ⓒ

ⓓ

12.

13.
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1.2 Exponents and Scientific Notation
ⓐ ⓑ ⓒ1. ⓐ ⓑ

ⓒ
2. ⓐ ⓑ

ⓒ
3.

ⓐ ⓑ ⓒ ⓓ4. ⓐ ⓑ ⓒ5. ⓐ ⓑ6.

ⓐ ⓑ
ⓒ ⓓ
ⓔ

7. ⓐ ⓑ ⓒ
ⓓ

ⓔ

8. ⓐ ⓑ ⓒ
ⓓ ⓔ ⓕ

9.

ⓐ
ⓑ
ⓒ
ⓓ
ⓔ

10. ⓐ
ⓑ
ⓒ

ⓓ

11. ⓐ
ⓑ
ⓒ
ⓓ
ⓔ

12.

13. Number of cells:
length of a cell:
m; total length:
m or m.

1.3 Radicals and Rational Exponents

ⓐ ⓑ ⓒ ⓓ1. 2. Notice the
absolute value signs around
x and y? That’s because
their value must be positive!

3.

4. We do not need the

absolute value signs for
because that term will
always be nonnegative.

5. 6.

7. 8. 9.

ⓐ ⓑ ⓒ10. 11. 12.

13.

1.4 Polynomials
1. The degree is 6, the leading

term is and the leading
coefficient is

2. 3.
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4. 5. 6.

7. 8.

1.5 Factoring Polynomials
1. 2. ⓐ

ⓑ
3.

4. 5. 6.

7. 8.

1.6 Rational Expressions
1. 2. 3.

4. 5.

1.1 Section Exercises
1. irrational number. The

square root of two does not
terminate, and it does not
repeat a pattern. It cannot
be written as a quotient of
two integers, so it is
irrational.

3. The Associative Properties
state that the sum or
product of multiple
numbers can be grouped
differently without affecting
the result. This is because
the same operation is
performed (either addition
or subtraction), so the terms
can be re-ordered.

5.

7. 9. 11. 9

13. -2 15. 4 17. 0

19. 9 21. 25 23.

25. 17 27. 4 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.
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49. 51. 53.

55. irrational number 57. 59. inverse property of
addition

61. 68.4 63. true 65. irrational

67. rational

1.2 Section Exercises
1. No, the two expressions are

not the same. An exponent
tells how many times you
multiply the base. So is
the same as which
is 8. is the same as
which is 9.

3. It is a method of writing very
small and very large
numbers.

5. 81

7. 243 9. 11.

13. 1 15. 17.

19. 21. 23. 16,000,000,000

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 0.00135 m 47.

49. 0.00000000003397 in. 51. 12,230,590,464 53.

55. 57.

59. 0.000000000000000000000000000000000662606957
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1.3 Section Exercises
1. When there is no index, it is

assumed to be 2 or the
square root. The expression
would only be equal to the
radicand if the index were 1.

3. The principal square root is
the nonnegative root of the
number.

5. 16

7. 10 9. 14 11.

13. 15. 25 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. 63. 65. 500 feet

67. 69. 71.

73.

1.4 Section Exercises
1. The statement is true. In

standard form, the
polynomial with the highest
value exponent is placed
first and is the leading term.
The degree of a polynomial
is the value of the highest
exponent, which in standard
form is also the exponent of
the leading term.

3. Use the distributive
property, multiply, combine
like terms, and simplify.

5. 2
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7. 8 9. 2 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53. m2

55. 57.

1.5 Section Exercises
1. The terms of a polynomial do

not have to have a common
factor for the entire polynomial
to be factorable. For example,

and don’t have a
common factor, but the whole
polynomial is still factorable:

3. Divide the term into the
sum of two terms, factor
each portion of the
expression separately, and
then factor out the GCF of
the entire expression.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.
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55. 57. 59.

1.6 Section Exercises
1. You can factor the

numerator and
denominator to see if any of
the terms can cancel one
another out.

3. True. Multiplication and
division do not require
finding the LCD because the
denominators can be
combined through those
operations, whereas
addition and subtraction
require like terms.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57.

Review Exercises
1. 3. 53 5.

7. 9. whole 11. irrational

13. 15. 17.

19. 21. 23. 14
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25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

61. 63. 65.

67. 69.

Practice Test
1. rational 3. 5. 3,141,500

7. 9. 9 11.

13. 21 15. 17.

19. 21. 23.

25. 27. 29.
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Chapter 2
Try It
2.1 The Rectangular Coordinate Systems and Graphs
1. 2. x-intercept is y-intercept

is
3.

4.

2.2 Linear Equations in One Variable
1. 2. 3.

4. 5. Excluded values

are and

6.

7. 8. 9.

10. Horizontal line: 11. Parallel lines: equations are
written in slope-intercept form.

12.
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2.3 Models and Applications
1. 11 and 25 2. 3. 45 mi/h

4. cm, cm 5. 250 ft2

2.4 Complex Numbers
1. 2. 3.

4. 5. 6.

7.

2.5 Quadratic Equations
1. 2. 3.

4. 5. 6.

7. 8. 9. units

2.6 Other Types of Equations
1. 2. 3.

4. 5. extraneous solution 6. extraneous solution

7. 8. 9.

10. is not a solution.
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2.7 Linear Inequalities and Absolute Value Inequalities
1. 2. ∞ ∞ 3.

4. 5. ∞ 6. ∞

7. 8. 9.

10. or in interval
notation, this would be

∞ ∞

2.1 Section Exercises
1. Answers may vary. Yes. It is

possible for a point to be on
the x-axis or on the y-axis
and therefore is considered
to NOT be in one of the
quadrants.

3. The y-intercept is the point
where the graph crosses the
y-axis.

5. The x-intercept is and
the y-intercept is

7. The x-intercept is and
the y-intercept is

9. The x-intercept is and
the y-intercept is

11.

13. 15. 17.

19. 21. 23.

25. 27. 29.
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31.

not collinear

33. 35.

1

0 2

3 3

6 4

37.
x y

–3 0

0 1.5

3 3

39. 41.

43. 45. 47.

49. 51. 53.

55. shorter 57. 59. Midpoint of each diagonal
is the same point .
Note this is a characteristic
of rectangles, but not other
quadrilaterals.

61. 37mi 63. 54 ft
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2.2 Section Exercises
1. It means they have the same

slope.
3. The exponent of the

variable is 1. It is called a
first-degree equation.

5. If we insert either value into
the equation, they make an
expression in the equation
undefined (zero in the
denominator).

7. 9. 11.

13. 15. 17.

19. when we solve this
we get which is
excluded, therefore NO
solution

21. 23.

25. 27. 29.

31. 33. 35.

37.

Parallel

39.

Perpendicular

41.

43. 45.     47.
Answers may vary.

49.
Answers may vary.

51. 53.

Yes they are perpendicular.

55. 30 ft 57. $57.50 59. 220 mi
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2.3 Section Exercises
1. Answers may vary. Possible

answers: We should define
in words what our variable is
representing. We should
declare the variable. A
heading.

3. 5.

7. Ann: Beth: 9. 11. 300 min

13. 15. 6 devices 17.

19. 4 h 21. She traveled for 2 h at 20
mi/h, or 40 miles.

23. $5,000 at 8% and $15,000 at
12%

25. 27. Plan A 29.

31. or 0.8 33. 35.

37. 39. 41. length = 360 ft; width = 160
ft

43. 405 mi 45. 47. 28.7

49. 51. 53.

2.4 Section Exercises
1. Add the real parts together

and the imaginary parts
together.

3. Possible answer: times
equals -1, which is not
imaginary.

5.

7. 9. 11.
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13. 15. 17.

19. 21. 23.

25. 27. 25 29.

31. 33. 35.

37. 39. 41.

43. 128i 45. 47.

49. 0 51. 53.

55.

2.5 Section Exercises
1. It is a second-degree

equation (the highest
variable exponent is 2).

3. We want to take advantage
of the zero property of
multiplication in the fact
that if then it must
follow that each factor
separately offers a solution
to the product being zero:

5. One, when no linear term is
present (no x term), such as

Two, when the
equation is already in the
form

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. Not real 35. One rational
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37. Two real; rational 39. 41.

43. 45. and 47. and

49. 51. 7 ft. and
17 ft.

53. maximum at

55. The quadratic equation would be

The two values of are 20 and 60.

57. 3 feet

2.6 Section Exercises
1. This is not a solution to the

radical equation, it is a value
obtained from squaring
both sides and thus
changing the signs of an
equation which has caused
it not to be a solution in the
original equation.

3. They are probably trying to
enter negative 9, but taking
the square root of is not
a real number. The negative
sign is in front of this, so
your friend should be taking
the square root of 9, cubing
it, and then putting the
negative sign in front,
resulting in

5. A rational exponent is a
fraction: the denominator of
the fraction is the root or
index number and the
numerator is the power to
which it is raised.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47. 10 in.

49. 90 kg
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2.7 Section Exercises
1. When we divide both sides

by a negative it changes the
sign of both sides so the
sense of the inequality sign
changes.

3. ∞ ∞ 5. We start by finding the
x-intercept, or where the
function = 0. Once we have
that point, which is we
graph to the right the
straight line graph
and then when we draw it to
the left we plot positive y
values, taking the absolute
value of them.

7. ∞ 9. ∞ 11. ∞

13. ∞ 15. All real numbers ∞ ∞ 17. ∞ ∞

19. ∞ ∞ 21. No solution 23.

25. 27.

29.
  ∞

31.

   

∞ ∞
33. ∞ ∞
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35. 37. It is never less than zero.
No solution.

39. Where the blue line is
above the orange line;
point of intersection is

∞

41. Where the blue line is
above the orange line;
always. All real numbers.

∞ ∞

43. 45. ∞

47. 49. 51.

53. ∞ 55. Where the blue is below
the orange; always. All real

numbers. ∞ ∞

57. Where the blue is below
the orange;
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59. 61. 63.

Review Exercises
1. x-intercept:

y-intercept:
3. 5.

7. 9. midpoint is 11.
x y

0 −2

3 2

6 6

13. 15. 17. No solution

19. 21. 23. females 17, males 56

25. 84 mi 27. 29. horizontal component
vertical component

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.
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61. ∞ 63. 65. No solution

67. 69. Where the blue is below
the orange line; point of
intersection is

∞

Practice Test
1.

x y

0 2

2 5

4 8

3. 5. ∞

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.
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Chapter 3
Try It
3.1 Functions and Function Notation

ⓐ yes

ⓑ yes (Note: If two players
had been tied for, say, 4th
place, then the name would
not have been a function of
rank.)

1. 2. 3. yes

4. 5. 6.

7. 8. or ⓐ yes, because each bank
account has a single balance
at any given time;

ⓑ no, because several
bank account numbers may
have the same balance;

ⓒ no, because the same
output may correspond to
more than one input.

9.

ⓐ Yes, letter grade is a
function of percent grade;

ⓑ No, it is not one-to-one.
There are 100 different
percent numbers we could
get but only about five
possible letter grades, so
there cannot be only one
percent number that
corresponds to each letter
grade.

10. 11. yes 12. No, because it does not
pass the horizontal line
test.

3.2 Domain and Range
1. 2. ∞ ∞ 3. ∞ ∞

4. ∞ ⓐ values that are less than
or equal to –2, or values that
are greater than or equal to
–1 and less than 3

ⓑ

ⓒ ∞

5. 6. domain =[1950,2002] range
= [47,000,000,89,000,000]
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7. domain: ∞ range:

∞

8.

3.3 Rates of Change and Behavior of Graphs
1.

per year.

2. 3.

4. The local maximum appears to
occur at and the local
minimum occurs at
The function is increasing on

∞ ∞ and

decreasing on

3.4 Composition of Functions

1.

No, the functions are not the same.

2. A gravitational force is still a
force, so makes
sense as the acceleration of
a planet at a distance r from
the Sun (due to gravity), but

does not make
sense.

3. and 4. ⓐ 8 ⓑ 205.
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6. ∞ 7. Possible answer:

3.5 Transformation of Functions
1. 2. The graphs of and are

shown below. The
transformation is a horizontal
shift. The function is shifted to
the left by 2 units.

3.

4. ⓐ

ⓑ

5. ⓐ

-2 0 2 4

ⓑ

-2 0 2 4

15 10 5 unknown

6.

7.

Notice: looks the
same as .

8. even 9.
2 4 6 8

9 12 15 0
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10. 11. so using the
square root function we

get

3.6 Absolute Value Functions
1. using the variable for

passing,
2. 3. or

3.7 Inverse Functions
1. 2. Yes 3. Yes

4. The domain of function

is ∞ and the range

of function is ∞

ⓐ In 60
minutes, 50 miles are
traveled.

ⓑ To travel
60 miles, it will take 70
minutes.

5. ⓐ 3 ⓑ 5.66.

7. 8.

∞

∞

9.

3.1 Section Exercises
1. A relation is a set of ordered

pairs. A function is a special
kind of relation in which no
two ordered pairs have the
same first coordinate.

3. When a vertical line
intersects the graph of a
relation more than once,
that indicates that for that
input there is more than one
output. At any particular
input value, there can be
only one output if the
relation is to be a function.

5. When a horizontal line
intersects the graph of a
function more than once,
that indicates that for that
output there is more than
one input. A function is one-
to-one if each output
corresponds to only one
input.

7. function 9. function 11. function

13. function 15. function 17. function

19. function 21. function 23. function
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25. not a function 27. 29.

31. 33. 35. a. b.

37. a. b. or ⓐ
ⓑ ⓒ

39. 41. not a function

43. function 45. function 47. function

49. function 51. function ⓐ
ⓑ or

53.

55. not a function so it is also
not a one-to-one function

57. one-to- one function 59. function, but not one-to-
one

61. function 63. function 65. not a function

67. 69.

71.   

73. 75. 20

77. 79. 81.
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83. 85. 87.

ⓐ
ⓑ The number of cubic
yards of dirt required for a
garden of 100 square feet
is 1.

89. ⓐ The height of a rocket
above ground after 1
second is 200 ft.

ⓑ The height of a rocket
above ground after 2
seconds is 350 ft.

91.

3.2 Section Exercises
1. The domain of a function

depends upon what values
of the independent variable
make the function
undefined or imaginary.

3. There is no restriction on
for because you
can take the cube root of
any real number. So the
domain is all real numbers,

∞ ∞ When dealing with

the set of real numbers, you
cannot take the square root
of negative numbers. So
-values are restricted for

to nonnegative
numbers and the domain is

∞

5. Graph each formula of the
piecewise function over its
corresponding domain. Use
the same scale for the
-axis and -axis for each
graph. Indicate inclusive
endpoints with a solid circle
and exclusive endpoints
with an open circle. Use an

arrow to indicate ∞ or ∞
Combine the graphs to find
the graph of the piecewise
function.

7. ∞ ∞ 9. ∞ 11. ∞ ∞

13. ∞ ∞ 15. ∞ ∞ 17. ∞ ∞

19. ∞ ∞ 21. ∞ 23. ∞

25. ∞ ∞ 27. domain: range 29. domain: range:

31. domain: range: 33. domain: ∞ range:

∞
35. domain:

range:
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37. domain: ∞ range:

∞
39. domain: ∞ ∞ 41. domain: ∞ ∞

43. domain: ∞ ∞ 45. domain: ∞ ∞

47. 49.

51. 53. domain: ∞ ∞
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55.

window: range:

window: range:

57. 59. Many answers. One
function is

ⓐ The fixed cost is $500.

ⓑ The cost of making 25
items is $750.

ⓒ The domain is [0, 100]
and the range is [500,
1500].

61.

3.3 Section Exercises
1. Yes, the average rate of

change of all linear
functions is constant.

3. The absolute maximum and
minimum relate to the
entire graph, whereas the
local extrema relate only to
a specific region around an
open interval.

5.

7. 3 9. 11.

13. 15. 17.
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19. increasing on

∞ ∞
decreasing on

21. increasing on

∞
decreasing on

∞

23. local maximum:
local minimum:

25. absolute maximum at
approximately
absolute minimum at
approximately

ⓐ –3000 ⓑ –125027. 29. -4

31. 27 33. –0.167 35. Local minimum at

decreasing on ∞
increasing on ∞

37. Local minimum at
decreasing on
increasing on

∞

39. Local maximum at
local minima at
and

decreasing on

∞ and

increasing
on and

∞

41. A

43. 45. 2.7 gallons per minute 47. approximately –0.6
milligrams per day

3.4 Section Exercises
1. Find the numbers that make

the function in the
denominator equal to
zero, and check for any
other domain restrictions on

and such as an even-
indexed root or zeros in the
denominator.

3. Yes. Sample answer: Let
Then

and

So
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5. domain:

∞ ∞

domain:

∞ ∞

domain: ∞ ∞

domain:

∞ ∞

7.

domain: ∞ ∞

domain: ∞ ∞

domain:

∞ ∞

domain: ∞ ∞

9.

domain: ∞

domain: ∞

domain: ∞

domain:

∞

ⓐ 3 ⓑ
ⓒ
ⓓ

ⓔ

11. 13.

15. 17.

19. ⓐ
ⓑ ∞

21. ⓐ ∞

ⓑ ∞ ∞

ⓒ ∞

23.

25. ∞ 27. sample: 29. sample:

31. sample: 33. sample: 35. sample:

37. sample: 39. sample: 41. sample:

43. 2 45. 5 47. 4

49. 0 51. 2 53. 1

55. 4 57. 4 59. 9

61. 4 63. 2 65. 3

67. 11 69. 0 71. 7
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73. 75. 77.

79. 81. 2 83. ∞ ∞

85. False 87. ; 89.

91. c 93. and

square inches

95.
square units

ⓐ

ⓑ 3.38 hours

97.

3.5 Section Exercises
1. A horizontal shift results

when a constant is added to
or subtracted from the
input. A vertical shifts results
when a constant is added to
or subtracted from the
output.

3. A horizontal compression
results when a constant
greater than 1 is multiplied
by the input. A vertical
compression results when a
constant between 0 and 1 is
multiplied by the output.

5. For a function substitute
for in

Simplify. If the resulting
function is the same as the
original function,

then the
function is even. If the
resulting function is the
opposite of the original
function,
then the original function is
odd. If the function is not
the same or the opposite,
then the function is neither
odd nor even.

7. 9. 11. The graph of is a
horizontal shift to the left
43 units of the graph of

13. The graph of is a
horizontal shift to the right
4 units of the graph of

15. The graph of is a
vertical shift up 8 units of
the graph of

17. The graph of is a
vertical shift down 7 units
of the graph of

19. The graph of
is a horizontal shift to the
left 4 units and a vertical
shift down 1 unit of the
graph of

21. decreasing on ∞
and increasing on ∞

23. decreasing on ∞
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25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47. even

49. odd 51. even 53. The graph of is a vertical
reflection (across the
-axis) of the graph of

55. The graph of is a vertical
stretch by a factor of 4 of
the graph of

57. The graph of is a
horizontal compression by
a factor of of the graph
of

59. The graph of is a
horizontal stretch by a
factor of 3 of the graph of

61. The graph of is a
horizontal reflection across
the -axis and a vertical
stretch by a factor of 3 of
the graph of

63. 65.
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67. 69. The graph of the function
is shifted to the left 1

unit, stretched vertically by a
factor of 4, and shifted down 5
units.

71. The graph of is
stretched vertically by a factor
of 2, shifted horizontally 4 units
to the right, reflected across the
horizontal axis, and then
shifted vertically 3 units up.

73. The graph of the function
is compressed

vertically by a factor of

75. The graph of the function is
stretched horizontally by a
factor of 3 and then shifted
vertically downward by 3 units.

77. The graph of is
shifted right 4 units and then
reflected across the vertical line
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79. 81.

3.6 Section Exercises
1. Isolate the absolute value

term so that the equation is
of the form Form
one equation by setting the
expression inside the
absolute value symbol,
equal to the expression on
the other side of the
equation, Form a second
equation by setting equal
to the opposite of the
expression on the other side
of the equation, Solve
each equation for the
variable.

3. The graph of the absolute
value function does not
cross the -axis, so the
graph is either completely
above or completely below
the -axis.

5. The distance from x to 8 can
be represented using the
absolute value statement: ∣
x − 8 ∣ = 4.

7. ∣ x − 10 ∣ ≥ 15 9. There are no x-intercepts. 11. (−4, 0) and (2, 0)

13. 15. 17.

19. 21. 23.
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25. 27. 29.

31. 33. range: 35.

37. There is no solution for
that will keep the function
from having a -intercept.
The absolute value
function always crosses the

-intercept when

39. 41.

3.7 Section Exercises
1. Each output of a function

must have exactly one
output for the function to be
one-to-one. If any horizontal
line crosses the graph of a
function more than once,
that means that -values
repeat and the function is
not one-to-one. If no
horizontal line crosses the
graph of the function more
than once, then no -values
repeat and the function is
one-to-one.

3. Yes. For example,
is its own inverse.

5. Given a function
solve for in terms of
Interchange the and
Solve the new equation for

The expression for is the
inverse,

7. 9. 11.
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13. domain of

∞
15. domain of

∞
ⓐ and

ⓑ This tells us that and
are inverse functions

16.

17. 19. one-to-one 21. one-to-one

23. not one-to-one 25. 27.

29. 31. 33.

35. 37. 39.

41.
1 4 7 12 16

3 6 9 13 14

43. 45.
Given the Fahrenheit
temperature, this
formula allows you to
calculate the Celsius
temperature.

47.
The time for the car to
travel 180 miles is 3.6
hours.

Review Exercises
1. function 3. not a function 5.

7. one-to-one 9. function 11. function
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13. 15. 17. or

19. 21. ∞ ∞ 23.

25. 27. increasing ∞

decreasing ∞

29. increasing
constant

∞ ∞

31. local minimum
local maximum

33.

35. 37.

39. 41. 43. sample:

45. 47. 49.
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51. 53. 55.

57. even 59. odd 61. even

63. 65. 67.

69. 71. 73. The function is one-to-one.

75.

Practice Test
1. The relation is a function. 3. −16 5. The graph is a parabola and

the graph fails the
horizontal line test.

7. 9. 11.
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13. 15. 17.

19. 21. ∞ ∞ 23.

25. 27. 29.

31. yes 33.

Chapter 4
Try It
4.1 Linear Functions

1.
decreasing because

2.

3. 4. 5.

6. Possible answers include
or

7. 8.

1371



ⓐ
ⓑ

9. 10.

4.2 Modeling with Linear Functions
1. ⓐ

ⓑ The y-intercept is
. If the company

does not produce a single
doughnut, they still incur a
cost of $25,000.

2. ⓐ 41,100 ⓑ 2020 3. 21.57 miles

4.3 Fitting Linear Models to Data
1. 2. 150.871 billion gallons;

extrapolation

4.1 Section Exercises
1. Terry starts at an elevation

of 3000 feet and descends
70 feet per second.

3. 5. The point of intersection is
This is because for

the horizontal line, all of the
coordinates are and for

the vertical line, all of the
coordinates are The point
of intersection is on both
lines and therefore will have
these two characteristics.

7. Yes 9. Yes 11. No

13. Yes 15. Increasing 17. Decreasing

19. Decreasing 21. Increasing 23. Decreasing

25. 2 27. –2 29.

31. 33. 35.

37. perpendicular 39. parallel 41.
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43. 45. 47. Line 1: m = –10 Line 2: m =
–10 Parallel

49. Line 1: m = –2 Line 2: m = 1
Neither

51.

53. 55. 57. 0

59. 61. 63.

65. F 67. C 69. A

71. 73. 75.

77. 79. 81.
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83. 85. 87.

89. Linear, 91. Linear, 93. Linear,

95. Linear, 97. 99.

ⓐ

ⓑ

101. 103. 105.

107. 109. 111.

113. 115. $45 per training session. 117. The rate of change is 0.1.
For every additional
minute talked, the
monthly charge increases
by $0.1 or 10 cents. The
initial value is 24. When
there are no minutes
talked, initially the charge
is $24.
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119. The slope is –400. this
means for every year
between 1960 and 1989,
the population dropped
by 400 per year in the city.

121. C

4.2 Section Exercises
1. Determine the independent

variable. This is the variable
upon which the output
depends.

3. To determine the initial
value, find the output when
the input is equal to zero.

5. 6 square units

7. 20.01 square units 9. 2,300 11. 64,170

13. 15. (–30, 0) Thirty years before
the start of this model, the
town had no citizens. (0,
75,000) Initially, the town
had a population of 75,000.

17. Ten years after the model
began

19. 21. : The x-intercept is
not a plausible set of data
for this model because it
means the baby weighed 0
pounds 15 months prior to
birth. : The baby
weighed 7.5 pounds at
birth.

23. At age 5.8 months

25. 27. In roughly 59
years, the number of
people inflicted with the
common cold would be 0.

Initially there
were 12,025 people
afflicted by the common
cold.

29. 2063

31. 33. In 2070, the company’s
profit will be zero.

35.

37. (10, 0) In the year 1990, the
company’s profits were
zero

39. Hawaii 41. During the year 1933

43. $105,620 ⓐ 696 people ⓑ 4 years

ⓒ 174 people per year

ⓓ 305 people

ⓔ P(t) = 305 + 174t

ⓕ 2,219 people

45. ⓐ C(x) = 0.15x + 10

ⓑ The flat monthly fee is
$10 and there is a $0.15 fee
for each additional minute
used

ⓒ $113.05

47.
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49. P(t) = 190t + 4,360 ⓐ
ⓑ 5.5 billion cubic feet

ⓒ During the year 2017

51. 53. More than 133 minutes

55. More than $42,857.14
worth of jewelry

57. More than $66,666.67 in
sales

4.3 Section Exercises
1. When our model no longer

applies, after some value in
the domain, the model itself
doesn’t hold.

3. We predict a value outside
the domain and range of the
data.

5. The closer the number is to
1, the less scattered the
data, the closer the number
is to 0, the more scattered
the data.

7. 61.966 years 9.

No.

11.

No.

13.

Interpolation. About

15.

17. 19.

1376

Access for free at openstax.org



21. 23. Yes, trend appears linear
because and will
exceed 12,000 near
midyear, 2016, 24.6 years
since 1992.

25.

27. 29. 31.

33.
Yes, the function is a good fit.

35. If 18,980 units
are sold, the company will
have a profit of zero
dollars.

37. 39. 41.

Review Exercises
1. Yes 3. Increasing 5.

7. 3 9. 11. Not linear.

13. parallel 15. 17. Line 1: Line 2:
Parallel

19. 21. 23. More than 250

25. 118,000 27. ⓐ 800

ⓑ 100 students per year

ⓒ

29.
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31. 18,500 33. $91,625 35. Extrapolation

37. 39. 2023 41.

43. 2027 45. 7,660

Practice Test
1. Yes 3. Increasing 5. y = −1.5x − 6

7. y = −2x − 1 9. No 11. Perpendicular

13. (−7, 0); (0, −2) 15. y = −0.25x + 12 17.

Slope = −1 and y-intercept = 6

19. 150 21. 165,000 23. y = 875x + 10,625
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ⓐ 375

ⓑ dropped an average of
46.875, or about 47 people
per year

ⓒ y = −46.875t + 1250

25. 27. 29. In early 2018

31. y = 0.00455x + 1979.5 33. r = 0.999

Chapter 5
Try It
5.1 Quadratic Functions
1. The path passes through the

origin and has vertex at
so

To
make the shot,
would need to be about 4
but he
doesn’t make it.

2. in
general form;

in
standard form

3. The domain is all real
numbers. The range is

or ∞

4. y-intercept at (0, 13), No
intercepts

ⓐ 3 seconds ⓑ 256 feet

ⓒ 7 seconds
5.

5.2 Power Functions and Polynomial Functions
1. is a power function

because it can be written as
The other

functions are not power
functions.

2. As approaches positive or
negative infinity,
decreases without bound: as

∞ ∞
because of the negative
coefficient.

3. The degree is 6. The leading
term is The leading
coefficient is

4. As

∞ ∞ ∞ ∞
It has the shape of an even degree power
function with a negative coefficient.

5. The leading term is
so it is a degree 3
polynomial. As approaches
positive infinity,
increases without bound; as

approaches negative
infinity, decreases
without bound.
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6. y-intercept
x-intercepts
and

7. There are at most 12
intercepts and at most 11
turning points.

8. The end behavior indicates
an odd-degree polynomial
function; there are 3
intercepts and 2 turning
points, so the degree is odd
and at least 3. Because of
the end behavior, we know
that the lead coefficient
must be negative.

9. The intercepts are
and the

y-intercept is and the
graph has at most 2 turning
points.

5.3 Graphs of Polynomial Functions
1. y-intercept

x-intercepts
and

2. The graph has a zero of –5
with multiplicity 3, a zero of
-1 with multiplicity 2, and a
zero of 3 with multiplicity 4.

3.

4. Because is a polynomial
function and since is
negative and is
positive, there is at least one
real zero between and

5. 6. The minimum occurs at
approximately the point

and the maximum
occurs at approximately the
point

5.4 Dividing Polynomials
1. 2. 3.

5.5 Zeros of Polynomial Functions
1. 2. The zeros are 2, –2, and –4. 3. There are no rational zeros.

4. The zeros are 5. 6. There must be 4, 2, or 0
positive real roots and 0
negative real roots. The
graph shows that there are
2 positive real zeros and 0
negative real zeros.
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7. 3 meters by 4 meters by 7
meters

5.6 Rational Functions
1. End behavior: as

∞ Local

behavior: as

∞ (there are

no x- or y-intercepts)

2.

The function and the
asymptotes are shifted 3 units
right and 4 units down. As

∞ and as

∞

The function is

3.

4. The domain is all real
numbers except and

5. Removable discontinuity at
Vertical asymptotes:

6. Vertical asymptotes at
and horizontal
asymptote at

7. For the transformed reciprocal squared function, we find the
rational form.

Because the numerator is the same degree as the denominator

we know that as ∞ is the

horizontal asymptote. Next, we set the denominator equal to
zero, and find that the vertical asymptote is because as

∞ We then set the numerator equal to 0 and

find the x-intercepts are at and Finally, we
evaluate the function at 0 and find the y-intercept to be at

8. Horizontal asymptote at
Vertical asymptotes at

y-intercept at

x-intercepts at
is a

zero with multiplicity 2, and the
graph bounces off the x-axis at
this point. is a single zero
and the graph crosses the axis
at this point.
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5.7 Inverses and Radical Functions
1.

and

2.

3. 4. 5.

5.8 Modeling Using Variation
1. 2. 3.

5.1 Section Exercises
1. When written in that form,

the vertex can be easily
identified.

3. If then the function
becomes a linear function.

5. If possible, we can use
factoring. Otherwise, we can
use the quadratic formula.

7. Vertex 9.

Vertex

11.
Vertex

13.

Vertex

15. Minimum is and

occurs at Axis of

symmetry is

17. Minimum is and

occurs at Axis of

symmetry is

19. Minimum is and occurs
at Axis of symmetry is

21. Domain is ∞ ∞

Range is ∞

23. Domain is ∞ ∞ Range

is ∞

25. Domain is ∞ ∞ Range

is ∞

27. 29.
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31. 33. 35. Vertex: (3, −10), axis of
symmetry: x = 3, intercepts:

and

37. Vertex: , axis of
symmetry: , intercept:

and

39. 41.

43. 45. 47.

49. 50. 53. The graph is shifted to the
right or left (a horizontal
shift).

55. The suspension bridge has
1,000 feet distance from
the center.

57. Domain is ∞ ∞ Range

is ∞
59. Domain: ∞ ∞ ; range:

∞

61. 63. 65.

67. 75 feet by 50 feet 69. 3 and 3; product is 9 71. The revenue reaches the
maximum value when 1800
thousand phones are
produced.
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73. 2.449 seconds 75. 41 trees per acre

5.2 Section Exercises
1. The coefficient of the power

function is the real number
that is multiplied by the
variable raised to a power.
The degree is the highest
power appearing in the
function.

3. As decreases without
bound, so does As
increases without bound, so
does

5. The polynomial function is
of even degree and leading
coefficient is negative.

7. Power function 9. Neither 11. Neither

13. Degree = 2, Coefficient = –2 15. Degree =4, Coefficient = –2 17. As ∞ ,

∞ ∞ ∞

19. As ∞ ,

∞ ∞ ∞
21. As ∞ ,

∞ ∞ ∞

23. As ∞ ,

∞ ∞ ∞
25. y-intercept is

t-intercepts are
27. y-intercept is

x-intercepts are and

29. y-intercept is
x-intercepts are

and

31. 3 33. 5

35. 3 37. 5 39. Yes. Number of turning
points is 2. Least possible
degree is 3.

41. Yes. Number of turning
points is 1. Least possible
degree is 2.

43. Yes. Number of turning
points is 0. Least possible
degree is 1.

45. Yes. Number of turning
points is 0. Least possible
degree is 1.

47.

10 9,500

100 99,950,000

–10 9,500

–100 99,950,000

As ∞ ,

∞ ∞ ∞

49.

10 –504

100 –941,094

–10 1,716

–100 1,061,106

As ∞ ,

∞ ∞ ∞
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51.

The intercept is The
intercepts are As

∞ ,

∞ ∞ ∞

53.

The intercept is . The
intercepts are

As

∞ ,

∞ ∞ ∞

55.

The intercept is The
intercept is

∞ ,

∞ ∞ ∞

57.

The intercept is The
intercept are

As ∞ ,

∞ ∞ ∞
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59.

The intercept is The
intercepts are

As

∞ ,

∞ ∞ ∞

61. 63.

65. 67. 69.

5.3 Section Exercises
1. The intercept is where the

graph of the function
crosses the axis, and the
zero of the function is the
input value for which

3. If we evaluate the function
at and at and the sign of
the function value changes,
then we know a zero exists
between and

5. There will be a factor raised
to an even power.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. and
Sign change confirms.

27. and
Sign change confirms.

29. and
Sign

change confirms.

31. 0 with multiplicity 2,
with multiplicity 5, 4 with
multiplicity 2

33. 0 with multiplicity 2, –2 with
multiplicity 2

35. with multiplicity 5, 5
with multiplicity 2

37. 0 with multiplicity 4, 2 with
multiplicity 1, −1 with
multiplicity 1

39. with multiplicity 2, 0 with
multiplicity 3
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41. 43. x-intercepts, with multiplicity 2,
with multiplicity 1, intercept As

∞ ∞ ∞ ∞

45. x-intercepts with multiplicity 3,
with multiplicity 2, intercept As

∞ ∞ ∞ ∞

47. x-intercepts with
multiplicity 1, intercept As

∞ ∞ ∞ ∞

49. 51. 53. –4, –2, 1, 3 with multiplicity
1

55. –2, 3 each with multiplicity
2

57. 59.

61. 63. 65.

67. local max
local min

69. global min 71. global min

73. 75. 77.
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79.

5.4 Section Exercises
1. The binomial is a factor of

the polynomial.
3.

5. 7.

9. 11.

13. 15.

17. 19. 21.

23. 25. 27.

29. 31. 33.

35. 37. 39. Yes

41. Yes 43. No 45.

47. 49.

51. 53.

55. 57. 59.

61. 63. 65.

67. 69. 71.

73.

5.5 Section Exercises
1. The theorem can be used to

evaluate a polynomial.
3. Rational zeros can be

expressed as fractions
whereas real zeros include
irrational numbers.

5. Polynomial functions can
have repeated zeros, so the
fact that number is a zero
doesn’t preclude it being a
zero again.

7. 9. 11.
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13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47. 1 positive, 1 negative

49. 3 or 1 positive, 0 negative 51. 0 positive, 3 or 1 negative 53. 2 or 0 positive, 2 or 0
negative

55. 2 or 0 positive, 2 or 0 negative 57. 59.

61. 63. 65.

67. 69. 71. 8 by 4 by 6 inches
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73. 5.5 by 4.5 by 3.5 inches 75. 8 by 5 by 3 inches 77. Radius = 6 meters, Height =
2 meters

79. Radius = 2.5 meters, Height
= 4.5 meters

5.6 Section Exercises
1. The rational function will be

represented by a quotient of
polynomial functions.

3. The numerator and
denominator must have a
common factor.

5. Yes. The numerator of the
formula of the functions
would have only complex
roots and/or factors
common to both the
numerator and
denominator.

7. 9. 11. V.A. at H.A. at
Domain is all reals

13. V.A. at H.A. at
Domain is all reals

15. V.A. at H.A.
at Domain is all reals

17. V.A. at H.A. at
Domain is all reals

19. V.A. at H.A. at

Domain is all reals

21. none 23.

25. Local behavior:

∞ ∞

End behavior: ∞

27. Local behavior:

∞ ∞
End behavior: ∞

29. Local behavior: ∞
∞ ∞ ∞

End behavior: ∞

31.
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33. 35. 37.

39. 41.

43.
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45. 47.

49. 51.

53. 55. 57.

59. 61. 63.
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65.
2.01 2.001 2.0001 1.99 1.999

100 1,000 10,000 –100 –1,000

10 100 1,000 10,000 100,000

.125 .0102 .001 .0001 .00001

Vertical asymptote Horizontal
asymptote

67.
–4.1 –4.01 –4.001 –3.99 –3.999

82 802 8,002 –798 –7998

10 100 1,000 10,000 100,000

1.4286 1.9331 1.992 1.9992 1.999992

Vertical asymptote Horizontal
asymptote

69.
–.9 –.99 –.999 –1.1 –1.01

81 9,801 998,001 121 10,201

10 100 1,000 10,000 100,000

.82645 .9803 .998 .9998

Vertical asymptote Horizontal
asymptote

71. ∞

73. ∞ 75. 77.

79. 81. 83. After about 6.12 hours.

85. 2 by 2
by 5 feet.

87. Radius
= 2.52 meters.

5.7 Section Exercises
1. It can be too difficult or

impossible to solve for in
terms of

3. We will need a restriction on
the domain of the answer.

5.
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7. 9. 11.

13. 15. 17. ∞

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.
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49. 51. 53.

55. 57. , 3.54

seconds

59. 8.92 in.

61. 3.26
ft

63. -2, 3.99 ft 65. ≈ 5.64 ft

5.8 Section Exercises
1. The graph will have the

appearance of a power
function.

3. No. Multiple variables may
jointly vary.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.
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43. 45. 47. 1.89 years

49. 0.61 years 51. 3 seconds 53. 48 inches

55. 49.75 pounds 57. 33.33 amperes 59. 2.88 inches

Review Exercises
1. 3.

5. 300 meters by 150 meters,
the longer side parallel to
river.

7. Yes, degree = 5, leading
coefficient = 4

9. Yes, degree = 4, leading
coefficient = 1

11. ∞ ∞ ∞ ∞ 13. –3 with multiplicity 2,
with multiplicity 1, –1 with
multiplicity 3

15. 4 with multiplicity 1 17. with multiplicity 1, 3 with
multiplicity 3

19. with remainder 12

21. 23. , so factored
form is

25.
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27. 29. 0 or 2 positive, 1 negative 31. Intercepts ,
Asymptotes and

33. Intercepts (3, 0), (-3, 0), and
, Asymptotes

35. 37.

39. 41. 43.

45. 47. 148.5 pounds

Practice Test
1. Degree: 5, leading

coefficient: −2
3.

5. 7. 3 with multiplicity 3, with
multiplicity 1, 1 with
multiplicity 2

9. with multiplicity 3, 2
with multiplicity 2

11. 13. 15. 1, −2, and − (multiplicity
2)
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17. 19. 2 or 0 positive, 1 negative 21.

23. 25. 27.

Chapter 6
Try It
6.1 Exponential Functions
1. and

represent
exponential functions.

2. 3. About billion people;
by the year 2031, India’s
population will exceed
China’s by about 0.001
billion, or 1 million people.

4. and 5. 6. Answers

may vary due to round-off
error. The answer should be
very close to

7. 8. about $3,644,675.88 9. $13,693

10. 11. $3,659,823.44 12. 3.77E-26 (This is calculator
notation for the number
written as in
scientific notation. While
the output of an
exponential function is
never zero, this number is
so close to zero that for all
practical purposes we can
accept zero as the answer.)
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6.2 Graphs of Exponential Functions
1. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

2. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

3.

4. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

5. The domain is ∞ ∞ the

range is ∞ the horizontal

asymptote is

6. the

domain is ∞ ∞ the

range is ∞ the

horizontal asymptote is

6.3 Logarithmic Functions
ⓐ is
equivalent to

ⓑ is
equivalent to

1. ⓐ is equivalent to

ⓑ is equivalent
to

ⓒ is equivalent to

2. 3. (recalling

that )

4. 5. 6.

7. The difference in
magnitudes was about

8. It is not possible to take the
logarithm of a negative
number in the set of real
numbers.
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6.4 Graphs of Logarithmic Functions
1. ∞ 2. ∞ 3.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

4.

The domain is ∞ the

range ∞ ∞ and the

asymptote

5.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

6.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

7.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

8.

The domain is ∞ the

range is ∞ ∞ and the

vertical asymptote is

9.

10. 11.
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6.5 Logarithmic Properties
1. 2.

3. 4. 5.

6. 7.

8. 9. can also be

written by reducing
the fraction to lowest terms.

10. 11. this answer

could also be written

12. The pH increases by about
0.301.

13. 14.

6.6 Exponential and Logarithmic Equations
1. 2. 3.

4. The equation has no
solution.

5. 6. or

7. 8. 9.

10. 11. 12. or

13.

6.7 Exponential and Logarithmic Models

1. 2. less than 230 years, 229.3157
to be exact

3.

4. 6.026 hours 5. 895 cases on day 15 6. Exponential.

7.
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6.8 Fitting Exponential Models to Data
ⓐ The exponential regression
model that fits these data is

ⓑ If spending continues at this
rate, the graduate’s credit card
debt will be $4,499.38 after one
year.

1. ⓐ The logarithmic regression model
that fits these data is

ⓑ If sales continue at this rate, about
171,000 games will be sold in the year
2015.

2.

ⓐ The logistic regression model
that fits these data is

ⓑ If the population continues
to grow at this rate, there will be
about seals in 2020.

ⓒ To the nearest whole
number, the carrying capacity is
25,657.

3.

6.1 Section Exercises
1. Linear functions have a

constant rate of change.
Exponential functions
increase based on a percent
of the original.

3. When interest is
compounded, the
percentage of interest
earned to principal ends up
being greater than the
annual percentage rate for
the investment account.
Thus, the annual percentage
rate does not necessarily
correspond to the real
interest earned, which is the
very definition of nominal.

5. exponential; the population
decreases by a proportional
rate. .

7. not exponential; the charge
decreases by a constant
amount each visit, so the
statement represents a
linear function. .

9. The forest represented by
the function

11. After years, forest A
will have more trees
than forest B.
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13. Answers will vary. Sample
response: For a number of
years, the population of
forest A will increasingly
exceed forest B, but
because forest B actually
grows at a faster rate, the
population will eventually
become larger than forest
A and will remain that way
as long as the population
growth models hold. Some
factors that might
influence the long-term
validity of the exponential
growth model are drought,
an epidemic that culls the
population, and other
environmental and
biological factors.

15. exponential growth; The
growth factor, is
greater than

17. exponential decay; The
decay factor, is
between and

19. 21. 23. Linear

25. Neither 27. Linear 29.

31. 33. 35.

37. 39. continuous growth; the
growth rate is greater than

41. continuous decay; the
growth rate is less than

43. 45. 47.

49. 51. 53.

55.

57.

59. Let be the exponential decay function such
that Then for some number

61. fox

63. 65. 67.
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6.2 Section Exercises
1. An asymptote is a line that

the graph of a function
approaches, as either
increases or decreases
without bound. The
horizontal asymptote of an
exponential function tells us
the limit of the function’s
values as the independent
variable gets either
extremely large or
extremely small.

3. y-intercept:
Domain: all real

numbers; Range: all real
numbers greater than

5.
y-intercept: Domain:
all real numbers; Range: all
real numbers less than

7. y-intercept:
Domain: all real

numbers; Range: all real
numbers greater than

9.

y-intercept:

11.

13. B 15. A 17. E

19. D 21. C 23.

1404
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25. 27.

Horizontal asymptote:
Domain: all real

numbers; Range: all real
numbers strictly greater than

29. As ∞ , ∞ ;

As ∞ ,

31. As ∞ , ;

As ∞ , ∞
33. 35.

37. 39. 41.

43. 45. 47.

49. 51. The graph of
is the refelction about the
y-axis of the graph of

For any real
number and function

the graph of
is the the reflection

about the y-axis,

53. The graphs of and
are the same and are

a horizontal shift to the
right of the graph of
For any real number n, real
number and
function the
graph of is the

horizontal shift

6.3 Section Exercises
1. A logarithm is an exponent.

Specifically, it is the
exponent to which a base
is raised to produce a given
value. In the expressions
given, the base has the
same value. The exponent,

in the expression can
also be written as the
logarithm, and the
value of is the result of
raising to the power of

3. Since the equation of a
logarithm is equivalent to an
exponential equation, the
logarithm can be converted
to the exponential equation

and then properties
of exponents can be applied
to solve for

5. The natural logarithm is a
special case of the logarithm
with base in that the
natural log always has base

Rather than notating the
natural logarithm as

the notation used
is

7. 9. 11.

13. 15. 17.
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19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59. No, the function has no
defined value for To
verify, suppose is in
the domain of the function

Then there
is some number such
that Rewriting
as an exponential equation
gives: which is
impossible since no such
real number exists.
Therefore, is not the
domain of the function

61. Yes. Suppose there exists a
real number such that

Rewriting as an
exponential equation gives

which is a real
number. To verify, let

Then, by definition,

63. No; so

is undefined.

65.

6.4 Section Exercises
1. Since the functions are

inverses, their graphs are
mirror images about the line

So for every point
on the graph of a

logarithmic function, there
is a corresponding point

on the graph of its
inverse exponential
function.

3. Shifting the function right or
left and reflecting the
function about the y-axis will
affect its domain.

5. No. A horizontal asymptote
would suggest a limit on the
range, and the range of any
logarithmic function in
general form is all real
numbers.
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7. Domain: ∞ Range:

∞ ∞

9. Domain: ∞ Range:

∞ ∞

11. Domain: ∞ Vertical

asymptote:

13. Domain: ∞
Vertical asymptote:

15. Domain: ∞ Vertical

asymptote:

17. Domain: ∞ ;

Vertical asymptote: ;
End behavior: as

∞
and as ∞ ∞

19. Domain: ∞ ; Vertical

asymptote: ;
End behavior: as

, ∞ and as

∞ , ∞

21. Domain: ∞ Range:

∞ ∞ Vertical

asymptote:
x-intercept:
y-intercept: DNE

23. Domain: ∞ Range:

∞ ∞ Vertical

asymptote:
x-intercept:
y-intercept: DNE

25. Domain: ∞ Range:

∞ ∞ Vertical

asymptote:
x-intercept:
y-intercept: DNE

27. B 29. C

31. B 33. C 35.

37. 39. C 41.
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43. 45. 47.

49. 51. 53.

55. 57. The graphs of
and

appear to
be the same; Conjecture:
for any positive base

59. Recall that the argument of a
logarithmic function must be
positive, so we determine
where . From the
graph of the function

note that the
graph lies above the x-axis on

the interval ∞ and

again to the right of the vertical

asymptote, that is ∞
Therefore, the domain is

∞ ∞

6.5 Section Exercises
1. Any root expression can be

rewritten as an expression
with a rational exponent so
that the power rule can be
applied, making the
logarithm easier to
calculate. Thus,

3. 5.

7. 9. 11.

1408

Access for free at openstax.org



13. 15. 17.

19. 21. 23.

25. 27.

29. 31.

33. 35. 37.

39. By the quotient rule:

Rewriting as an exponential equation and
solving for

Checking, we find that

is defined, so

41. Let and be positive
integers greater than
Then, by the change-of-
base formula,

6.6 Section Exercises
1. Determine first if the

equation can be rewritten so
that each side uses the
same base. If so, the
exponents can be set equal
to each other. If the
equation cannot be
rewritten so that each side
uses the same base, then
apply the logarithm to each
side and use properties of
logarithms to solve.

3. The one-to-one property can
be used if both sides of the
equation can be rewritten as
a single logarithm with the
same base. If so, the
arguments can be set equal
to each other, and the
resulting equation can be
solved algebraically. The
one-to-one property cannot
be used when each side of
the equation cannot be
rewritten as a single
logarithm with the same
base.

5.

7. 9. 11.
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13. No solution 15. 17.

19. 21. 23.

25. no solution 27. 29.

31. 33. 35.

37. 39. No solution 41. No solution

43. 45. 47.

49. 51. 53.

55. 57. 59. No solution

1410
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61. 63. 65. about

67. about 5 years 69. 71.

73. 75. 77. about

79. 81.

6.7 Section Exercises
1. Half-life is a measure of

decay and is thus associated
with exponential decay
models. The half-life of a
substance or quantity is the
amount of time it takes for
half of the initial amount of
that substance or quantity
to decay.

3. Doubling time is a measure
of growth and is thus
associated with exponential
growth models. The
doubling time of a
substance or quantity is the
amount of time it takes for
the initial amount of that
substance or quantity to
double in size.

5. An order of magnitude is the
nearest power of ten by
which a quantity
exponentially grows. It is
also an approximate
position on a logarithmic
scale; Sample response:
Orders of magnitude are
useful when making
comparisons between
numbers that differ by a
great amount. For example,
the mass of Saturn is 95
times greater than the mass
of Earth. This is the same as
saying that the mass of
Saturn is about times, or
2 orders of magnitude
greater, than the mass of
Earth.
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7. The amount
initially present is about 16.7
units.

9. 150 11. exponential;

13. logarithmic 15. logarithmic 17.

19. about years 21. about years 23. half-lives; minutes

25. 27. Let for some non-
negative real number
such that Then,

29.
mg

31. about days 33.
half-life: about minutes

35. So the hourly
decay rate is about

37.
after 3 hours:

39.
doubling time: about
minutes

41. about minutes

43.
where is in minutes.

45. about minutes 47.

49. MMS magnitude: 51. 53. C
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6.8 Section Exercises
1. Logistic models are best

used for situations that have
limited values. For example,
populations cannot grow
indefinitely since resources
such as food, water, and
space are limited, so a
logistic model best
describes populations.

3. Regression analysis is the
process of finding an
equation that best fits a
given set of data points. To
perform a regression
analysis on a graphing
utility, first list the given
points using the STAT then
EDIT menu. Next graph the
scatter plot using the STAT
PLOT feature. The shape of
the data points on the
scatter graph can help
determine which regression
feature to use. Once this is
determined, select the
appropriate regression
analysis command from the
STAT then CALC menu.

5. The y-intercept on the graph
of a logistic equation
corresponds to the initial
population for the
population model.

7. C 9. B 11. ; 175

13. 15. y-intercept: 17. koi

19. about months. 21. 23. About 38 wolves

25. About 8.7 years 27. 29.
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31. 33. 35. When

37. 39. 41.

43. When 45. When 47.

49. About 25 51. 53.

55. When 57.
; ; the
regression curves are
symmetrical about , so
it appears that they are
inverse functions.

59.

Review Exercises
1. exponential decay; The

growth factor, is
between and

3. 5.
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7. continuous decay; the
growth rate is negative.

9. domain: all real numbers;
range: all real numbers strictly
greater than zero; y-intercept:
(0, 3.5);

11.
y-intercept:
Domain: all real numbers;
Range: all real numbers
greater than

13. 15. 17.

19. 21. 23.

25. Domain: Vertical
asymptote: End
behavior: as

∞ and

as ∞ ∞

27. 29.

31. 33. 35.

37. 39. 41. no solution

43. no solution 45. 47.

49. 51. about years 53.

55.

  
57. about minutes 59. about days
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61. exponential 63. 65. about days

67. logarithmic;

Practice Test
1. About 13 dolphins. 3. 5. y-intercept:
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7. 9. 11.

13. Domain: Vertical
asymptote: End
behavior:

∞ and

∞ ∞

15. 17.

19. 21. 23. no solution

25. 27. 29. half-
life: about days

31. 33. logarithmic

1417



35. exponential; 37. logistic;

Chapter 7
Try It
7.1 Angles
1. 2. 3.

4. 5. 6.

7. 8. 9. 1.88

10. rad/s 11. 1655 kilometers per hour

1418

Access for free at openstax.org



7.2 Right Triangle Trigonometry

1. 2.

3. 4. 2

5.
missing angle is

6. About 52 ft

7.3 Unit Circle

1. 2. 3.

4. approximately 0.866025403 5. ⓐ

ⓑ

6.

7.

7.4 The Other Trigonometric Functions

1.

2.

3. 4.

5. 6. 7.

8. 9.

10.
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7.1 Section Exercises
1. 3. Whether the angle is

positive or negative
determines the direction. A
positive angle is drawn in
the counterclockwise
direction, and a negative
angle is drawn in the
clockwise direction.

5. Linear speed is a
measurement found by
calculating distance of an
arc compared to time.
Angular speed is a
measurement found by
calculating the angle of an
arc compared to time.

7. 9. 11.

13. 15. 17.

19. 21. 23.
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25. 27. 29.

31. 33. radians 35. radians

37. radians 39. radians 41. miles

43. centimeters 45. meters 47. 104.7198 cm2

49. 0.7697 in2 51. 53.

55. 57. 59. rad/min RPM

61. in./s, 4.77 RPM ,
deg/s

63. 65. miles

67. 69. 794 miles per hour 71. 2,234 miles per hour

73. 11.5 inches

7.2 Section Exercises
1. 3. The tangent of an angle is

the ratio of the opposite
side to the adjacent side.

5. For example, the sine of an
angle is equal to the cosine
of its complement; the
cosine of an angle is equal
to the sine of its
complement.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 188.3159 45. 200.6737 47. 498.3471 ft
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49. 1060.09 ft 51. 27.372 ft 53. 22.6506 ft

55. 368.7633 ft

7.3 Section Exercises
1. The unit circle is a circle of

radius 1 centered at the
origin.

3. Coterminal angles are
angles that share the same
terminal side. A reference
angle is the size of the
smallest acute angle,
formed by the terminal side
of the angle and the
horizontal axis.

5. The sine values are equal.

7. I 9. IV 11.

13. 15. 17. 0

19. -1 21. 23.

25. 27. 29.

31. 33. 35. Quadrant IV,

,

37. Quadrant II,

,

39. Quadrant II,

,

41. Quadrant II,

,

43. Quadrant III,

,

45. Quadrant II,

,

47. Quadrant II,

,

49. Quadrant IV, 51. 53.

55. 57. 59.

61. 63. 65.
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67. 69. 71.

73. 75. 77.

79. 81. −0.1736 83. 0.9511

85. −0.7071 87. −0.1392 89. −0.7660

91. 93. 95.

97. 99. 0 101.

103. 37.5 seconds, 97.5
seconds, 157.5 seconds,
217.5 seconds, 277.5
seconds, 337.5 seconds

7.4 Section Exercises
1. Yes, when the reference

angle is and the terminal
side of the angle is in
quadrants I and III. Thus, a

the sine and
cosine values are equal.

3. Substitute the sine of the
angle in for in the
Pythagorean Theorem

Solve for and
take the negative solution.

5. The outputs of tangent and
cotangent will repeat every

units.

7. 9. 11.

13. 1 15. 2 17.

19. 21. 23.

25. –1 27. -2 29.

31. 2 33. 35. –2

37. –1 39. , ,

,

,

41.
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43. 45. 3.1 47. 1.4

49. , ,
, ,

,

51. ,

,

, ,

53. –0.228

55. –2.414 57. 1.414 59. 1.540

61. 1.556 63. 65.

67. even 69. even 71.

73. 13.77 hours, period: 75. 3.46 inches

Review Exercises
1. 3. 5. 10.385 meters

7. 9. 11.

13. 15. 1036.73 miles per hour 17.

19. 21. 23.

25. 27. 29. 369.2136 ft
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31. 33. 35.

37. all real numbers 39. 41.

43. 2 45. –2.5 47.

49. cosine, secant

Practice Test
1. 3. 6.283 centimeters 5.

7. 9. 3.351 feet per second,
radians per second

11.

13. 15. real numbers 17. 1

19. 21. –0.68 23.

Chapter 8
Try It
8.1 Graphs of the Sine and Cosine Functions
1. 2. compressed 3. right

4. 2 units up 5. midline: amplitude:
period:

phase shift:

6.
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7. two possibilities:
or

8.

midline: amplitude:
period:

phase shift: or none

9.

midline: amplitude:
period:

phase shift:

10. 7 11.

8.2 Graphs of the Other Trigonometric Functions
1. 2. It would be reflected across

the line becoming
an increasing function.

3.
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4. This is a vertical reflection of
the preceding graph because
is negative.

5. 6.

7.

8.3 Inverse Trigonometric Functions
1. ⓐ ⓑ ⓒ

ⓓ
2. 3. 1.9823 or 113.578°

4.
radians

5. 6.

7. 8. 9.

8.1 Section Exercises
1. The sine and cosine

functions have the property
that for a
certain This means that
the function values repeat
for every units on the
x-axis.

3. The absolute value of the
constant (amplitude)
increases the total range
and the constant (vertical
shift) shifts the graph
vertically.

5. At the point where the
terminal side of intersects
the unit circle, you can
determine that the
equals the y-coordinate of
the point.
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7.

amplitude: period:
midline: maximum:

occurs at

minimum: occurs at
for one period, the

graph starts at 0 and ends at

9.

amplitude: 4; period:
midline: maximum
occurs at minimum:

occurs at one
full period occurs from to

11.

amplitude: 1; period:
midline: maximum:

occurs at
minimum: occurs at

one full period is
graphed from to

13.

amplitude: 4; period: 2; midline:
maximum: occurs

at minimum:
occurs at

15.

amplitude: 3; period:
midline: maximum:

occurs at
minimum: occurs at

horizontal shift:
vertical translation 5; one
period occurs from to

17.

amplitude: 5; period:
midline: maximum:

occurs at
minimum: occurs at

phase shift:
vertical translation: one full
period can be graphed on

to
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19.

amplitude: 1 ; period:
midline: maximum:

occurs at
maximum: occurs at

minimum:
occurs at phase shift:

vertical translation: 1; one
full period is from to

21.

amplitude: 1; period:
midline: maximum:

occurs at
minimum: occurs at

phase shift:
vertical shift: 0

23. amplitude: 2; midline:
period: 4;

equation:

25. amplitude: 2; period: 5;
midline: equation:

27. amplitude: 4; period: 2;
midline: equation:

29. amplitude: 2; period: 2;
midline equation:

31. 33. 35.

37. is symmetric 39. 41. Maximum: at ;
minimum: at

43. A linear function is added to a
periodic sine function. The
graph does not have an
amplitude because as the linear
function increases without
bound the combined function

will increase
without bound as well. The
graph is bounded between the
graphs of and

because sine
oscillates between −1 and 1.

45. There is no amplitude because
the function is not bounded.

47. The graph is symmetric with
respect to the y-axis and there
is no amplitude because the
function’s bounds decrease as

grows. There appears to be
a horizontal asymptote at
.
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8.2 Section Exercises
1. Since is the

reciprocal function of
you can plot the

reciprocal of the coordinates
on the graph of to
obtain the y-coordinates of

The x-intercepts
of the graph are
the vertical asymptotes for
the graph of

3. Answers will vary. Using the
unit circle, one can show
that

5. The period is the same:

7. IV 9. III 11. period: 8; horizontal shift: 1
unit to left

13. 1.5 15. 5 17.

19.

stretching factor: 2; period:
asymptotes:

21.

stretching factor: 6; period: 6;
asymptotes:

23.

stretching factor: 1; period:
asymptotes:

25.

Stretching factor: 1; period:
asymptotes:

27.

stretching factor: 2; period:
asymptotes:
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29.

stretching factor: 4; period:
asymptotes:

31.

stretching factor: 7; period:
asymptotes:

33.

stretching factor: 2; period:
asymptotes:

35.

stretching factor: period:
asymptotes:

37. 39. 41.
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43. 45. 47.

49. 51. 53.

ⓐ
ⓑ

ⓒ and the
distance grows without bound
as approaches —i.e., at
right angles to the line
representing due north, the
boat would be so far away,
the fisherman could not see it;

ⓓ 3; when the boat
is 3 km away;

ⓔ 1.73; when the
boat is about 1.73 km away;

ⓕ 1.5 km; when

55. ⓐ
ⓑ

ⓒ after 0 seconds,
the rocket is 0 mi above the
ground; after 30
seconds, the rockets is 2 mi
high;

ⓓ As approaches 60
seconds, the values of
grow increasingly large. The
distance to the rocket is
growing so large that the
camera can no longer track it.

57.
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8.3 Section Exercises
1. The function is

one-to-one on
thus, this interval is the
range of the inverse
function of

The function
is one-to-one on

thus, this interval is
the range of the inverse
function of

3. is the radian measure of
an angle between and

whose sine is 0.5.

5. In order for any function to
have an inverse, the
function must be one-to-one
and must pass the
horizontal line test. The
regular sine function is not
one-to-one unless its
domain is restricted in some
way. Mathematicians have
agreed to restrict the sine
function to the interval

so that it is one-to-
one and possesses an
inverse.

7. True . The angle, that
equals , ,
will be a second quadrant
angle with reference angle,

, where equals
, . Since is

the reference angle for ,
and

= -

9. 11.

13. 15. 17. 1.98

19. 0.93 21. 1.41 23. 0.56 radians

25. 0 27. 0.71 29. -0.71

31. 33. 0.8 35.

37. 39. 41.

43. 45. 47.

49.

domain range

51. approximately 53. 0.395 radians
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55. 1.11 radians 57. 1.25 radians 59. 0.405 radians

61. No. The angle the ladder
makes with the horizontal
is 60 degrees.

Review Exercises
1. amplitude: 3; period:

midline: no asymptotes
3. amplitude: 3; period:

midline: no asymptotes
5. amplitude: 3; period:

midline: no asymptotes

7. amplitude: 6; period:
midline: no asymptotes

9. stretching factor: none; period:
midline: asymptotes:

where is an
integer

11. stretching factor: 3; period:
midline: asymptotes:

where is an
integer
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13. amplitude: none; period: no
phase shift; asymptotes:

where is an odd
integer

15. amplitude: none; period:
no phase shift; asymptotes:

where is an integer

17. amplitude: none; period: no
phase shift; asymptotes:

where is an integer

19. largest: 20,000; smallest:
4,000

21. amplitude: 8,000; period:
10; phase shift: 0

23. In 2007, the predicted
population is 4,413. In
2010, the population will be
11,924.

25. 5 in. 27. 10 seconds 29.

31. 33. 35. No solution

37. 39. The graphs are not symmetrical
with respect to the line
They are symmetrical with
respect to the -axis.

41. The graphs appear to be
identical.
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Practice Test
1. amplitude: 0.5; period:

midline
3. amplitude: 5; period:

midline:
5. amplitude: 1; period:

midline:

7. amplitude: 3; period:
midline:

9. amplitude: none; period:
midline: asymptotes:

where is an
integer

11. amplitude: none; period:
midline: asymptotes:

where is an integer

13. amplitude: none; period:
midline:

15. amplitude: 2; period: 2;
midline:

17. amplitude: 1; period: 12;
phase shift: midline

19. 21. period: horizontal shift: 23. period: 2;
phase shift: 0
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25. 27. The views are different because
the period of the wave is
Over a bigger domain, there
will be more cycles of the
graph.

29.

31. On the approximate intervals 33.

35. This graph is periodic with a
period of

37. 39.

41. 43. 45.

47. False 49. approximately 0.07 radians
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Chapter 9
Try It
9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to
Simplify Trigonometric Expressions

1. 2.

3. 4. This is a difference of squares formula:

5.

9.2 Sum and Difference Identities

1. 2. 3.

4. 5.

9.3 Double-Angle, Half-Angle, and Reduction Formulas
1. 2.

3.

4.
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5.

9.4 Sum-to-Product and Product-to-Sum Formulas

1. 2. 3.

4. 5.

9.5 Solving Trigonometric Equations
1. 2. 3. and

4. 5.

9.1 Section Exercises
1. All three functions, , , and , are even.

This is because
,

and

3. When then
which is undefined.

5. 7.

9. 11. 13.

15. 17. 19.

21. 23. 25.

27. 29. Answers will vary. Sample proof:

31. Answers will vary. Sample proof:

33. Answers will vary. Sample proof:
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35. False 37. False 39. Proved with negative and
Pythagorean identities

41. True

9.2 Section Exercises

1. The cofunction identities
apply to complementary
angles. Viewing the two
acute angles of a right
triangle, if one of those
angles measures the
second angle measures

Then
The

same holds for the other
cofunction identities. The
key is that the angles are
complementary.

3. so is
odd.

so is even.

5.

7. 9. 11.

13. 15. 17.

19. 21.

23. 25. 27.
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29. 31. 33. They are the same.

35. They are the different, try 37. They are the same. 39. They are the different, try

41. They are different, try 43. 45. or 0.9659

47. 49.

51. 53. True

55. True. Note that

   
and expand the right hand
side.

9.3 Section Exercises

1. Use the Pythagorean
identities and isolate the
squared term.

3.
multiplying the top and
bottom by and

respectively.

5. a) b) c)

7. a) b) c)

9.

11. 13. 15.
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17. 19. 21. a) b) c)

23. a) b) c) 25. 27.

29. 31. 33.

35. 37.

39. 41. 43.

45. 47. 49.

51. 53.

55. 57.

59. 61.

63.

9.4 Section Exercises
1. Substitute     into cosine

and     into sine and

evaluate.

3. Answers will vary. There are
some equations that involve
a sum of two trig
expressions where when
converted to a product are
easier to solve. For example:

  When

converting the numerator to
a product the equation
becomes:

5.
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7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31.

33.

35.

37. 39.

41. 43. 45. It is an identity.

47. It is not an identity, but
is.

49. 51.

53. 55. Start with Make a substitution and let and let
so becomes

Since and we can solve for and in terms of x and y
and substitute in for and get

57. 59.

61. 63.
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9.5 Section Exercises
1. There will not always be

solutions to trigonometric
function equations. For a
basic example,

3. If the sine or cosine function
has a coefficient of one,
isolate the term on one side
of the equals sign. If the
number it is set equal to has
an absolute value less than
or equal to one, the
equation has solutions,
otherwise it does not. If the
sine or cosine does not have
a coefficient equal to one,
still isolate the term but
then divide both sides of the
equation by the leading
coefficient. Then, if the
number it is set equal to has
an absolute value greater
than one, the equation has
no solution.

5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. ,

,

,

,

,

35. 37. 39.

41. 43. There are no solutions. 45. ,

47. ,

,

,

49. There are no solutions. 51. There are no solutions.
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53. 55. 57.

59. 61. , ,

,

63. , ,

,

65. 67. , ,

,

69. There are no solutions.

71. ,
,
,

73. 75.

77. 79. 81.

83. 85. 87. There are no solutions.

89. 91. There are no solutions. 93.

95. 97. 99.

101. 103. 105.

Review Exercises

1. ,

,

,

3. 5.

7. 9. Yes 11.

13.
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15.

17. 19. 21.

23. 25. 27.

29. 31. 33.

35. 37. 39.

41. 43. 45. No solution

47. 49.

Practice Test

1. 1 3. 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27.
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29. 31. Amplitude: , period: ,
frequency: 60 Hz

33. Amplitude: 8, fast period:
, fast frequency: 500

Hz, slow period: , slow
frequency: 10 Hz

35.
, 31 second

Chapter 10
Try It
10.1 Non-right Triangles: Law of Sines

1. 2. Solution 1

Solution 2

3.

4. two 5. about square feet 6. 161.9 yd.

10.2 Non-right Triangles: Law of Cosines
1. 2. 3. Area = 552 square feet

4. about 8.15 square feet

10.3 Polar Coordinates

1. 2. 3.
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4. 5. or, in the
standard form for a circle,

10.4 Polar Coordinates: Graphs
1. The equation fails the

symmetry test with respect
to the line and with
respect to the pole. It passes
the polar axis symmetry
test.

2. Tests will reveal symmetry
about the polar axis. The
zero is and the
maximum value is

3.

4. The graph is a rose curve,
even

5.

Rose curve, odd

6.

10.5 Polar Form of Complex Numbers
1. 2. 13 3.

4. 5. 6.

7. 8.
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10.6 Parametric Equations

1. 2. 3.

4. 5. 6.

10.7 Parametric Equations: Graphs
1. 2. 3. The graph of the parametric

equations is in red and the
graph of the rectangular
equation is drawn in blue dots
on top of the parametric
equations.

10.8 Vectors
1. 2. 3.
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4.

Magnitude =

10.1 Section Exercises
1. The altitude extends from

any vertex to the opposite
side or to the line containing
the opposite side at a 90°
angle.

3. When the known values are
the side opposite the
missing angle and another
side and its opposite angle.

5. A triangle with two given
sides and a non-included
angle.

7. 9. 11.

13. 15. one triangle, 17. two triangles,
or

19. two triangles,
or

21. two triangles,

or

23. no triangle possible

25. or 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59. 51.4 feet

61. The distance from the
satellite to station is
approximately 1716 miles.
The satellite is
approximately 1706 miles
above the ground.

63. 2.6 ft 65. 5.6 km

67. 371 ft 69. 5936 ft 71. 24.1 ft

73. 19,056 ft2 75. 445,624 square miles 77. 8.65 ft2
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10.2 Section Exercises
1. two sides and the angle

opposite the missing side.
3. is the semi-perimeter,

which is half the perimeter
of the triangle.

5. The Law of Cosines must be
used for any oblique (non-
right) triangle.

7. 11.3 9. 34.7 11. 26.7

13. 257.4 15. not possible 17. 95.5°

19. 26.9° 21. 23.

25. 27. 177.56 in2 29. 0.04 m2

31. 0.91 yd2 33. 3.0 35. 29.1

37. 0.5 39. 70.7° 41. 77.4°

43. 25.0 45. 9.3 47. 43.52

49. 1.41 51. 0.14 53. 18.3

55. 48.98 57. 59. 7.62

61. 85.1 63. 24.0 km 65. 99.9 ft

67. 37.3 miles 69. 2371 miles 71.

73. 292.4 miles 75. 65.4 cm2 77. 468 ft2
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10.3 Section Exercises
1. For polar coordinates, the

point in the plane depends
on the angle from the
positive x-axis and distance
from the origin, while in
Cartesian coordinates, the
point represents the
horizontal and vertical
distances from the origin.
For each point in the
coordinate plane, there is
one representation, but for
each point in the polar
plane, there are infinite
representations.

3. Determine for the point,
then move units from the
pole to plot the point. If is
negative, move units from
the pole in the opposite
direction but along the
same angle. The point is a
distance of away from the
origin at an angle of from
the polar axis.

5. The point has a
positive angle but a negative
radius and is plotted by
moving to an angle of
and then moving 3 units in
the negative direction. This
places the point 3 units
down the negative y-axis.
The point has a
negative angle and a
positive radius and is plotted
by first moving to an angle
of and then moving 3
units down, which is the
positive direction for a
negative angle. The point is
also 3 units down the
negative y-axis.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29. or

circle

31. line 33. line 35. hyperbola

37. circle 39. line 41.

43. 45. 47.

1452

Access for free at openstax.org



49. 51. 53.

55. 57. 59.

61. 63. 65.

67. 69. 71.

73. 75. A vertical line with units
left of the y-axis.

77. A horizontal line with
units below the x-axis.

79. 81. 83.
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10.4 Section Exercises
1. Symmetry with respect to

the polar axis is similar to
symmetry about the -axis,
symmetry with respect to
the pole is similar to
symmetry about the origin,
and symmetric with respect
to the line is similar
to symmetry about the

-axis.

3. Test for symmetry; find
zeros, intercepts, and
maxima; make a table of
values. Decide the general
type of graph, cardioid,
limaçon, lemniscate, etc.,
then plot points at

and and
sketch the graph.

5. The shape of the polar
graph is determined by
whether or not it includes a
sine, a cosine, and constants
in the equation.

7. symmetric with respect to
the polar axis

9. symmetric with respect to
the polar axis, symmetric
with respect to the line

symmetric with
respect to the pole

11. no symmetry

13. no symmetry 15. symmetric with respect to
the pole

17. circle

19. cardioid 21. cardioid 23. one-loop/dimpled limaçon

25. one-loop/dimpled limaçon 27. inner loop/two-loop limaçon 29. inner loop/two-loop limaçon
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31. inner loop/two-loop limaçon 33. lemniscate 35. lemniscate

37. rose curve 39. rose curve 41. Archimedes’ spiral

43. Archimedes’ spiral 45. 47.

49. 51. 53.

55. They are both spirals, but
not quite the same.

57. Both graphs are curves
with 2 loops. The equation
with a coefficient of has
two loops on the left, the
equation with a coefficient
of 2 has two loops side by
side. Graph these from 0 to

to get a better picture.

59. When the width of the
domain is increased, more
petals of the flower are
visible.

61. The graphs are three-petal,
rose curves. The larger the
coefficient, the greater the
curve’s distance from the
pole.

63. The graphs are spirals. The
smaller the coefficient, the
tighter the spiral.

65.
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67. 69. 71.

and at since
is squared

10.5 Section Exercises
1. a is the real part, b is the

imaginary part, and
3. Polar form converts the real

and imaginary part of the
complex number in polar
form using and

5.
It is used to simplify polar
form when a number has
been raised to a power.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45.

47. 49. 51.
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53. 55. 57.

59. 61.

10.6 Section Exercises
1. A pair of functions that is

dependent on an external
factor. The two functions are
written in terms of the same
parameter. For example,

and

3. Choose one equation to
solve for substitute into
the other equation and
simplify.

5. Some equations cannot be
written as functions, like a
circle. However, when
written as two parametric
equations, separately the
equations are functions.

7. 9. 11. or

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35. Ellipse

37. Circle 39. 41.

43. yes, at 45.

1 -3 1

2 0 7

3 5 17

47. answers may vary:

1457



49. answers may vary: ,

10.7 Section Exercises
1. plotting points with the

orientation arrow and a
graphing calculator

3. The arrows show the
orientation, the direction of
motion according to
increasing values of

5. The parametric equations
show the different vertical
and horizontal motions over
time.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.
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31. 33. 35.

37. 39. There will be 100 back-and-
forth motions.

41. Take the opposite of the
equation.

43. The parabola opens up. 45. 47.
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49. 51. 53.

55. 57. 59.

61. The -intercept changes. 63. 65.
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67. approximately 3.2 seconds 69. 1.6 seconds 71.

73.

10.8 Section Exercises
1. lowercase, bold letter,

usually
3. They are unit vectors. They

are used to represent the
horizontal and vertical
components of a vector.
They each have a magnitude
of 1.

5. The first number always
represents the coefficient of
the and the second
represents the

7. 9. not equal 11. equal

13. equal 15. 17.

19. 21.

23. 25. 27.

29. 31. 33.

35. 37. 39.

1461



41. 43. 45.

47. 49. 51.

53. ⓐ 58.7 ⓑ 12.555. 57. pounds,
pounds

59. pounds,
pounds

61. 4.635 miles, 17.764° N of E 63. 17 miles. 10.318 miles

65. Distance: 2.868. Direction:
86.474° North of West, or
3.526° West of North

67. 4.924°. 659 km/hr 69. 4.424°

71. 73. 21.801°, relative to the car’s
forward direction

75. parallel: 16.28,
perpendicular: 47.28
pounds

77. 19.35 pounds, 231.54° from
the horizontal

79. 5.1583 pounds, 75.8° from
the horizontal

Review Exercises
1. Not possible 3. 5. distance of the plane from

point 2.2 km, elevation
of the plane: 1.6 km
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7. 9. 40.6 km 11.

13. 15. 17.

19. 21. 23. symmetric with respect to
the line

25. 27. 29. 5

31. 33. 35.

37. 39. 41.

43. 45. 47.
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49. 51. a.

b. The ball is 14 feet high and 184 feet
from where it was launched.

c. 3.3 seconds

53. not equal 55. 4i 57. i j

59. Magnitude:
Direction:

61. 63.

Practice Test
1. 3. 5.

7. 9. 11.

13. 15. 17.
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19. 21. 23. −4i − 15j

25.

Chapter 11
Try It
11.1 Systems of Linear Equations: Two Variables
1. Not a solution. 2. The solution to the system is

the ordered pair
3.

4. 5. 6. No solution. It is an
inconsistent system.

7. The system is dependent so
there are infinite solutions
of the form

8. 700 children, 950 adults

11.2 Systems of Linear Equations: Three Variables
1. 2. No solution. 3. Infinite number of solutions

of the form

11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
1. and 2. 3.
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4.

11.4 Partial Fractions
1. 2. 3.

4.

11.5 Matrices and Matrix Operations

1. 2.

11.6 Solving Systems with Gaussian Elimination

1. 2. 3.

4. 5. 6. $150,000 at 7%, $750,000 at
8%, $600,000 at 10%

11.7 Solving Systems with Inverses

1.
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2. 3. 4.

11.8 Solving Systems with Cramer's Rule
1. 2. 3.

11.1 Section Exercises
1. No, you can either have

zero, one, or infinitely many.
Examine graphs.

3. This means there is no
realistic break-even point.
By the time the company
produces one unit they are
already making profit.

5. You can solve by
substitution (isolating or
), graphically, or by addition.

7. Yes 9. Yes 11.

13. 15. 17. No solutions exist.

19. 21. 23.

25. No solutions exist. 27. 29.

31. 33. 35.

37. 39. 41. Consistent with one
solution

43. Consistent with one
solution

45. Dependent with infinitely
many solutions

47.

49. 51. 53.

55. 57. They never turn a profit. 59.

61. The numbers are 7.5 and
20.5.

63. 24,000 65. 790 second-year students,
805 first-year students

67. 56 men, 74 women 69. 10 gallons of 10% solution,
15 gallons of 60% solution

71. Swan Peak: $750,000,
Riverside: $350,000

73. $12,500 in the first account,
$10,500 in the second
account.

75. High-tops: 45, Low-tops: 15 77. Infinitely many solutions.
We need more information.
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11.2 Section Exercises
1. No, there can be only one,

zero, or infinitely many
solutions.

3. Not necessarily. There could
be zero, one, or infinitely
many solutions. For
example, is not a
solution to the system
below, but that does not
mean that it has no solution.

5. Every system of equations
can be solved graphically, by
substitution, and by
addition. However, systems
of three equations become
very complex to solve
graphically so other
methods are usually
preferable.

7. No 9. Yes 11.

13. 15. 17.

19. 21. 23. No solutions exist

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 24, 36, 48 53. 70 grandparents, 140
parents, 190 children

55. Your share was $19.95,
Shani’s share was $40, and
your other roommate’s
share was $22.05.

57. There are infinitely many
solutions; we need more
information

59. 500 students, 225 children,
and 450 adults

61. The BMW was $49,636, the
Jeep was $42,636, and the
Toyota was $47,727.

63. $400,000 in the account
that pays 3% interest,
$500,000 in the account
that pays 4% interest, and
$100,000 in the account
that pays 2% interest.

65. The United States
consumed 26.3%, Japan
7.1%, and China 6.4% of the
world’s oil.

67. Saudi Arabia imported
16.8%, Canada imported
15.1%, and Mexico 15.0%

69. Birds were 19.3%, fish were
18.6%, and mammals were
17.1% of endangered
species
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11.3 Section Exercises
1. A nonlinear system could be

representative of two circles
that overlap and intersect in
two locations, hence two
solutions. A nonlinear
system could be
representative of a parabola
and a circle, where the
vertex of the parabola
meets the circle and the
branches also intersect the
circle, hence three solutions.

3. No. There does not need to
be a feasible region.
Consider a system that is
bounded by two parallel
lines. One inequality
represents the region above
the upper line; the other
represents the region below
the lower line. In this case,
no points in the plane are
located in both regions;
hence there is no feasible
region.

5. Choose any number
between each solution and
plug into and If

then there is
profit.

7. 9. 11.

13. 15. 17.

19. 21.

23. 25. 27. No Solutions Exist

29. No Solutions Exist 31.

33. 35.

37. 39.

41. 43. 45.
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47.

49.

51. No Solution Exists 53. and 55. 12, 288

57. 2–20 computers

11.4 Section Exercises
1. No, a quotient of

polynomials can only be
decomposed if the
denominator can be
factored. For example,

cannot be decomposed
because the denominator
cannot be factored.

3. Graph both sides and
ensure they are equal.

5. If we choose then
the B-term disappears,
letting us immediately know
that We could
alternatively plug in

, giving us a B-value
of

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.
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11.5 Section Exercises
1. No, they must have the

same dimensions. An
example would include two
matrices of different
dimensions. One cannot add
the following two matrices
because the first is a
matrix and the second is a

matrix.

has no

sum.

3. Yes, if the dimensions of
are and the
dimensions of are
both products will be
defined.

5. Not necessarily. To find
we multiply the first row of

by the first column of to
get the first entry of To
find we multiply the
first row of by the first
column of to get the first
entry of Thus, if those
are unequal, then the matrix
multiplication does not
commute.

7. 9. 11. Undidentified; dimensions
do not match

13. 15. 17.

19. 21. 23.

25. Undefined; dimensions do
not match.

27. 29.

31. 33. Undefined; inner
dimensions do not match.

35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

1471



55. 57. 59.

 

 

11.6 Section Exercises
1. Yes. For each row, the

coefficients of the variables
are written across the
corresponding row, and a
vertical bar is placed; then
the constants are placed to
the right of the vertical bar.

3. No, there are numerous
correct methods of using
row operations on a matrix.
Two possible ways are the
following: (1) Interchange
rows 1 and 2. Then

(2)
Then divide

row 1 by 9.

5. No. A matrix with 0 entries
for an entire row would have
either zero or infinitely
many solutions.

7. 9. 11.

13. 15. 17. No solutions

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. No solutions exist. 53. 860 red velvet, 1,340
chocolate

55. 4% for account 1, 6% for
account 2

57. $126 59. Banana was 3%, pumpkin
was 7%, and rocky road
was 2%

61. 100 almonds, 200 cashews,
600 pistachios
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11.7 Section Exercises

1. If is the inverse of
then the identity
matrix. Since is also the
inverse of
You can also check by
proving this for a
matrix.

3. No, because and are
both 0, so
which requires us to divide
by 0 in the formula.

5. Yes. Consider the matrix The

inverse is found with the following
calculation:

7. 9. 11.

13. 15. 17. There is no inverse

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53. Infinite solutions.

55. 50% oranges, 25%
bananas, 20% apples

57. 10 straw hats, 50 beanies,
40 cowboy hats

59. Micah ate 6, Joe ate 3, and
Albert ate 3.

61. 124 oranges, 10 lemons, 8
pomegranates
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11.8 Section Exercises
1. A determinant is the sum

and products of the entries
in the matrix, so you can
always evaluate that
product—even if it does end
up being 0.

3. The inverse does not exist. 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. Infinite solutions 45. 47.

49. Yes; 18, 38 51. Yes; 33, 36, 37 53. $7,000 in first account,
$3,000 in second account.

55. 120 children, 1,080 adult 57. 4 gal yellow, 6 gal blue 59. 13 green tomatoes, 17 red
tomatoes

61. Strawberries 18%, oranges
9%, kiwi 10%

63. 100 for movie 1, 230 for
movie 2, 312 for movie 3

65. 300 almonds, 400
cranberries, 300 cashews

Review Exercises
1. No 3. 5.

7. No solutions exist. 9. 11. Infinite solutions

13. No solutions exist. 15. 17.

19. 11, 17, 33 21. 23. No solution
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25. No solution 27. 29.

31. 33. 35.

37. 39. 41. undefined; dimensions do
not match

43. undefined; inner
dimensions do not match

45. 47.

49. undefined; inner
dimensions do not match

51. with infinite

solutions

53.

55. 57. No solutions exist. 59. No solutions exist.

61. 63. No inverse exists. 65.

67. 69. 17% oranges, 34%
bananas, 39% apples

71. 0

73. 6 75. 77. (x, 5x + 3)

79.

Practice Test
1. Yes 3. No solutions exist. 5.

7. 9.
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11. 13. 15.

17. 19. 21.

23. No solutions exist. 25. 27.

29. 32 or more cell phones per
day

Chapter 12
Try It
12.1 The Ellipse

1. 2. 3. center: vertices:
co-vertices: foci:

4. Standard form:
center: vertices:
co-vertices: foci:

5. Center: vertices:
and co-vertices:

and

foci: and

6.
center: vertices:

and co-
vertices: and

foci: and
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ⓐ
ⓑ The people are standing
358 feet apart.

7.

12.2 The Hyperbola

1. Vertices: Foci: 2. 3.

4. vertices: co-vertices:
foci:

asymptotes:

5. center: vertices:
and co-vertices:

and foci:

and

asymptotes:

6. The sides of the tower can be
modeled by the hyperbolic
equation.

12.3 The Parabola
1. Focus: Directrix:

Endpoints of the latus rectum:
2. Focus: Directrix:

Endpoints of the latus rectum:
3.
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4. Vertex: Axis of
symmetry: Focus:

Directrix:
Endpoints of the latus rectum:

and

5. Vertex: Axis of
symmetry: Focus:

Directrix:
Endpoints of the latus rectum:

and

ⓐ
ⓑ The depth of the cooker
is 500 mm

6.

12.4 Rotation of Axes

ⓐ hyperbola ⓑ ellipse1. 2. ⓐ hyperbola ⓑ ellipse3.

12.5 Conic Sections in Polar Coordinates
1. ellipse; 2. 3.

4.

12.1 Section Exercises
1. An ellipse is the set of all

points in the plane the sum
of whose distances from two
fixed points, called the foci,
is a constant.

3. This special case would be a
circle.

5. It is symmetric about the
x-axis, y-axis, and the origin.
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7. yes; 9. yes; 11. Endpoints of

major axis and
Endpoints of minor

axis and Foci

at

13.

Endpoints of major axis
and

Endpoints of minor axis
Foci at

15.

Endpoints of major axis
Endpoints of

minor axis Foci
at

17.

Endpoints of major axis
Endpoints of

minor axis
Foci at

19.

Endpoints of major axis
Endpoints of

minor axis
Foci at

21.

Endpoints of major axis

Endpoints of minor axis

Foci at

23. Endpoints

of major axis
Endpoints of minor axis

Foci at

25. Endpoints of

major axis
Endpoints of minor axis

Foci at

27. Foci

29. Focus 31. Foci 33. Center Vertices

Foci
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35. Center Vertices

Foci

37. Center Vertices

Focus

Note that this ellipse is a circle.
The circle has only one focus,
which coincides with the center.

39. Center Vertices

Foci

41. Center Vertices

Foci

43. Center Vertices

Foci

45. Center Vertices

Focus

47. 49.

51. 53. 55.

57. 59. square units. 61. square units.

63. 65. . Distance =
17.32 feet

67. Approximately 51.96 feet
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12.2 Section Exercises
1. A hyperbola is the set of

points in a plane the
difference of whose
distances from two fixed
points (foci) is a positive
constant.

3. The foci must lie on the
transverse axis and be in the
interior of the hyperbola.

5. The center must be the
midpoint of the line
segment joining the foci.

7. yes 9. yes 11. vertices:

foci:

asymptotes:

13. vertices:

foci:

asymptotes:

15. vertices:

foci:
asymptotes:

17. vertices:

foci:

asymptotes:

19. vertices:

foci:

asymptotes:

21. vertices:

foci:

asymptotes:

23. vertices:

foci:

asymptotes:

25. vertices:

foci:

asymptotes:

27.
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29. 31.

33. 35. 37.

39. 41. 43.

45. 47. 49.

51. 53. 55.
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57. 59.

61. 63. 65.

67. 69.

12.3 Section Exercises
1. A parabola is the set of

points in the plane that lie
equidistant from a fixed
point, the focus, and a fixed
line, the directrix.

3. The graph will open down. 5. The distance between the
focus and directrix will
increase.

7. yes 9. yes

11. 13.

15. 17.

19.
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21.

23.

25.

27.

29. 31.

33. 35. 37.

39. 41. 43.

45. 47. 49.

51. 53. 55.

1484

Access for free at openstax.org



57. 59. 61.

63. At the point 2.25 feet above
the vertex.

65. 0.5625 feet 67.
height is 7.2 feet

69. 2304 feet

12.4 Section Exercises
1. The term causes a

rotation of the graph to
occur.

3. The conic section is a
hyperbola.

5. It gives the angle of rotation
of the axes in order to
eliminate the term.

7. parabola 9. hyperbola 11. ellipse

13. parabola 15. parabola 17.
ellipse

19. 21.

23. 25.

27. 29.

31. 33. 35.

37. 39.
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41. 43. 45.

47. 49. 51.

53. 55. 57.

59.

12.5 Section Exercises
1. If eccentricity is less than 1,

it is an ellipse. If eccentricity
is equal to 1, it is a parabola.
If eccentricity is greater than
1, it is a hyperbola.

3. The directrix will be parallel
to the polar axis.

5. One of the foci will be
located at the origin.

7. Parabola with and
directrix units below the
pole.

9. Hyperbola with and
directrix units above the
pole.

11. Parabola with and
directrix units to the
right of the pole.
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13. Ellipse with and
directrix units to the right
of the pole.

15. Hyperbola with and

directrix units above
the pole.

17. Hyperbola with and
directrix units to the
right of the pole.

19. 21. 23.

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45. 47.

49. 51. 53.

55. 57. 59.

Review Exercises

1. center:

vertices:

foci:
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3.

5. center: vertices:

foci:

7. center: vertices:

foci:

9.

11. Approximately 35.71 feet 13. center:

vertices:
foci:

15.

center: vertices:
foci:

17. 19. 21.

23.
vertex: focus:

directrix:

25. vertex:
focus:

directrix:

27.

29. 31. 33. parabola
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35.
ellipse

37. 39.

41. Hyperbola with and
directrix units to the left
of the pole.

43. Ellipse with and
directrix unit above the
pole.

45.

47. 49.

Practice Test

1. center:

vertices:

foci:

3. center: vertices:

foci:

5.
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7. center:

vertices foci:

asymptotes:

9. center: vertices:
foci:

asymptotes:

11.

13.
vertex: focus:

directrix:

15. 17. Approximately feet

19. parabola; 21. 23. Hyperbola with and

directrix units to the
right of the pole.

25.
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Chapter 13
Try It
13.1 Sequences and Their Notations
1. The first five terms are 2. The first five terms are 3. The first six terms are

4. 5. 6.

7. 8. 9. The first five terms are

13.2 Arithmetic Sequences
1. The sequence is arithmetic.

The common difference is
2. The sequence is not

arithmetic because
3.

4. 5. 6.

7. There are 11 terms in the
sequence.

8. The formula is
and it will

take her 42 minutes.

13.3 Geometric Sequences
1. The sequence is not

geometric because
.

2. The sequence is geometric.
The common ratio is .

3.

4. 5. 6.

ⓐ
ⓑ The number of hits will
be about 333.

7.

13.4 Series and Their Notations
1. 38 2. 3.

4. 5. $2,025 6.

7. 9,840 8. $275,513.31 9. The sum is not defined.
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10. The sum of the infinite
series is defined.

11. The sum of the infinite
series is defined.

12. 3

13. The series is not geometric. 14. 15. $32,775.87

13.5 Counting Principles
1. 7 2. There are 60 possible

breakfast specials.
3. 120

4. 60 5. 12 6.

7. 8. 9. 64 sundaes

10. 840

13.6 Binomial Theorem
ⓐ 35 ⓑ 3301. ⓐ

ⓑ

2. 3.

13.7 Probability
1.

Outcome Probability

Heads

Tails

2. 3.

4. 5. 6.

13.1 Section Exercises
1. A sequence is an ordered list

of numbers that can be
either finite or infinite in
number. When a finite
sequence is defined by a
formula, its domain is a
subset of the non-negative
integers. When an infinite
sequence is defined by a
formula, its domain is all
positive or all non-negative
integers.

3. Yes, both sets go on
indefinitely, so they are both
infinite sequences.

5. A factorial is the product of a positive
integer and all the positive integers below
it. An exclamation point is used to indicate
the operation. Answers may vary. An
example of the benefit of using factorial
notation is when indicating the product It
is much easier to write than it is to write
out
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7. First four terms: 9. First four terms:
.

11. First four terms:
.

13. First four terms:
.

15. First four terms: 17.

19. 21.

23. 25. 27. First five terms:

29. First five terms: 31.

33. 35. 37.

39. 41. 43. First four terms:

45. First four terms: 47. 49.

51. 53. 55.

57. First five terms: , ,

, ,

59. First five terms: 2, 3, 5, 17,
65537

61.

63. First six terms: 0.042, 0.146,
0.875, 2.385, 4.708

65. First four terms: 5.975,
2.765, 185.743, 1057.25,
6023.521

67. If is a term in
the sequence, then solving
the equation

for will
yield a non-negative
integer. However, if

then
so is

not a term in the sequence.

69. 71.
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13.2 Section Exercises
1. A sequence where each

successive term of the
sequence increases (or
decreases) by a constant
value.

3. We find whether the
difference between all
consecutive terms is the
same. This is the same as
saying that the sequence
has a common difference.

5. Both arithmetic sequences
and linear functions have a
constant rate of change.
They are different because
their domains are not the
same; linear functions are
defined for all real numbers,
and arithmetic sequences
are defined for natural
numbers or a subset of the
natural numbers.

7. The common difference is 9. The sequence is not
arithmetic because

11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33.

35. 37.

39. 41. First five terms: 43.

45. 47. 49.

51. 53. There are 10 terms in the
sequence.

55. There are 6 terms in the
sequence.

57. The graph does not
represent an arithmetic
sequence.

59. 61.
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63. 65. 67. Answers will vary.
Examples: and

69. 71. The sequence begins to
have negative values at the
13th term,

73. Answers will vary. Check to
see that the sequence is
arithmetic. Example:
Recursive formula:

First 4 terms:

13.3 Section Exercises
1. A sequence in which the

ratio between any two
consecutive terms is
constant.

3. Divide each term in a
sequence by the preceding
term. If the resulting
quotients are equal, then
the sequence is geometric.

5. Both geometric sequences
and exponential functions
have a constant ratio.
However, their domains are
not the same. Exponential
functions are defined for all
real numbers, and
geometric sequences are
defined only for positive
integers. Another difference
is that the base of a
geometric sequence (the
common ratio) can be
negative, but the base of an
exponential function must
be positive.

7. The common ratio is 9. The sequence is geometric.
The common ratio is 2.

11. The sequence is geometric.
The common ratio is

13. The sequence is geometric.
The common ratio is

15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35.
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37. 39. 41.

43. 45. There are terms in the
sequence.

47. The graph does not
represent a geometric
sequence.

49. 51. Answers will vary.
Examples:

and

53.

55. The sequence exceeds
at the 14th term,

57. is the first non-
integer value

59. Answers will vary. Example:
Explicit formula with a decimal
common ratio:

First 4
terms:

13.4 Section Exercises
1. An partial sum is the

sum of the first terms of a
sequence.

3. A geometric series is the
sum of the terms in a
geometric sequence.

5. An annuity is a series of
regular equal payments that
earn a constant
compounded interest.

7. 9. 11.

13. 15. 17.

19. 21.

23. The series is defined. 25. The series is defined. 27.
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29. Sample answer: The graph
of seems to be
approaching 1. This makes

sense because

∞

is a defined infinite
geometric series with

31. 49 33. 254

35. 37. 39.

41. 43. 45.

47. $3,705.42 49. $695,823.97 51.

53. 9 terms 55. 57. $400 per month

59. 420 feet 61. 12 feet

13.5 Section Exercises
1. There are ways for

either event or event to
occur.

3. The addition principle is
applied when determining
the total possible of
outcomes of either event
occurring. The multiplication
principle is applied when
determining the total
possible outcomes of both
events occurring. The word
“or” usually implies an
addition problem. The word
“and” usually implies a
multiplication problem.

5. A combination;

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35. 9
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37. Yes, for the trivial cases
and If

then

  If

then

39. 41.

43. 45. 47.

49. 51. 53.

13.6 Section Exercises
1. A binomial coefficient is an

alternative way of denoting
the combination It
is defined as

3. The Binomial Theorem is
defined as

and can be used to expand
any binomial.

5. 15

7. 35 9. 10 11. 12,376

13. 15.

17.

19. 21.

23. 25.

27. 29.

31. 33. 35.
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37. 39. 41.

43. 45. 47.

49. The expression

cannot be
expanded using the
Binomial Theorem because
it cannot be rewritten as a
binomial.
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13.7 Section Exercises
1. probability; The probability

of an event is restricted to
values between and
inclusive of and

3. An experiment is an activity
with an observable result.

5. The probability of the union
of two events occurring is a
number that describes the
likelihood that at least one
of the events from a
probability model occurs. In
both a union of sets

and a union of
events the union
includes either or
both. The difference is that a
union of sets results in
another set, while the union
of events is a probability, so
it is always a numerical
value between and

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33.
1 2 3 4 5 6

1 (1,1)
2

(1,2)
3

(1,3)
4

(1,4)
5

(1,5)
6

(1,6)
7

2 (2,1)
3

(2,2)
4

(2,3)
5

(2,4)
6

(2,5)
7

(2,6)
8

3 (3,1)
4

(3,2)
5

(3,3)
6

(3,4)
7

(3,5)
8

(3,6)
9

4 (4,1)
5

(4,2)
6

(4,3)
7

(4,4)
8

(4,5)
9

(4,6)
10

5 (5,1)
6

(5,2)
7

(5,3)
8

(5,4)
9

(5,5)
10

(5,6)
11

6 (6,1)
7

(6,2)
8

(6,3)
9

(6,4)
10

(6,5)
11

(6,6)
12

35.

37. 39. 41.

43. 45. 47.
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49. 51. 53.

55. 57.

59.

Review Exercises
1. 3. 5. The sequence is arithmetic.

The common difference is

7. 9. 11.

13. 15. 4, 16, 64, 256, 1024 17.

19. 21. 23.

25. 27. 29. $5,617.61

31. 6 33. 35.

37. 39. 41.

43. 45.

47.
1 2 3 4 5 6

1 1,1 1,2 1,3 1,4 1,5 1,6

2 2,1 2,2 2,3 2,4 2,5 2,6

3 3,1 3,2 3,3 3,4 3,5 3,6

4 4,1 4,2 4,3 4,4 4,5 4,6

5 5,1 5,2 5,3 5,4 5,5 5,6

6 6,1 6,2 6,3 6,4 6,5 6,6

49. 51.

53. 55. 57.
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Practice Test
1. 3. The sequence is arithmetic.

The common difference is
5.

7. The sequence is geometric.
The common ratio is

9. 11.

13. 15. Total in account:
Interest

earned:

17.

19. 21. 23.

25. 27. 29.
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Index
A
AAS (angle-angle-side) 894
absolute maximum 233
absolute minimum 233
absolute value 216, 287
absolute value equation 156, 156
absolute value function 213
absolute value functions 287, 291
absolute value inequality 166, 167
addition method 1032, 1034, 1038
Addition Principle 1282
addition property 163
adjacent side 705
algebraic expression 17
altitude 894
ambiguous case 897
amplitude 764
angle 682
angle of depression 712
angle of elevation 712, 894
angle of rotation 1202
angular speed 698, 698
annual interest 1276
annual percentage rate (APR) 551
annuity 1276
apoapsis 1212
arc 686
arc length 687, 695, 718
arccosine 801
Archimedes’ spiral 953
arcsine 801
arctangent 801
area 118
area of a circle 419
area of a sector 696
argument 962
arithmetic sequence 1247, 1248,
1250, 1251, 1269
arithmetic series 1269
arrow notation 485
associative property of addition 14
associative property of
multiplication 14
asymptotes 1165
augmented matrix 1094, 1098,
1099, 1113
average rate of change 223
axes of symmetry 1165
axis of symmetry 400, 403, 1191,
1192

B
base 12
binomial 51, 463
binomial coefficient 1293
binomial expansion 1293, 1296

Binomial Theorem 1295
break-even point 1040

C
cardioid 944
carrying capacity 638
Cartesian coordinate system 84
Cartesian equation 932
Celsius 295
center of a hyperbola 1165
center of an ellipse 1149
central rectangle 1165
change-of-base formula 614, 615
circle 1062, 1063
circular motion 772
circumference 686
co-vertex 1149
co-vertices 1151
coefficient 51, 51, 420, 473
coefficient matrix 1094, 1096,
1115, 1118
cofunction 841
cofunction identities 710, 841
column 1081
column matrix 1082
combinations 1287, 1293
combining functions 241
common base 619
common difference 1247, 1269
common logarithm 579
common ratio 1259, 1271
commutative 242
commutative property of addition
14
commutative property of
multiplication 14
complement of an event 1304
completing the square 141, 142
complex conjugate 130
Complex Conjugate Theorem 477
complex number 126, 958
complex plane 126, 958
composite function 241
composition of functions 241
compound inequality 165
compound interest 551
compression 338, 567, 593
conditional equation 99
conic 1148, 1164, 1219
conic section 1200
conic sections 977
conjugate axis 1165
consistent system 1029
constant 17
constant function 213
constant of variation 522, 522

continuous 440
continuous function 431
convex limaçons 946
coordinate plane 1183
correlation coefficient 379
cosecant 736, 785
cosecant function 785, 786, 789,
824
cosine 861, 862
cosine function 718, 761, 763, 765,
768, 772
cost function 239, 1039
cotangent 736, 791
cotangent function 791, 824
coterminal angles 692, 694
Cramer’s Rule 1124, 1125, 1127,
1131
cube root 420
cubic functions 512
curvilinear path 970

D
De Moivre 964
De Moivre’s Theorem 965, 966
decompose a composite function
248
decomposition 1071
decreasing function 229, 326
decreasing linear function 326
degenerate conic sections 1198
degree 51, 51, 425, 683
dependent system 1029, 1038,
1052
dependent variable 182
Descartes 958
Descartes’ Rule of Signs 479
determinant 1123, 1126, 1127
difference of squares 56
dimpled limaçons 946
direct variation 522, 522
directrix 1183, 1186, 1187, 1188,
1191, 1212, 1214, 1218, 1219, 1220
discriminant 144, 144
displacement 698
distance formula 90, 833, 1166,
1184
distributive property 15
diverges 1273
dividend 462
Division Algorithm 462, 471
divisor 462
domain 182, 191, 205, 206, 207,
208, 800, 801
domain and range 205, 205
domain of a composite function
246

Index 1503



dot product 1007
double-angle formulas 848, 848
doubling time 636
Dürer 948

E
eccentricity 1213, 1214
electrostatic force 226
elimination 1063
ellipse 985, 985, 1063, 1148, 1149,
1151, 1152, 1157, 1182, 1214, 1218
ellipsis 1232
end behavior 421, 496
endpoint 226, 682
entry 1081
equation 19, 189
equation in quadratic form 157
equation in two variables 86
Euler 958
even function 269, 823
even-odd identities 823, 825
event 1300
experiment 1300
explicit formula 1232, 1233, 1234,
1251, 1262
exponent 12
Exponential decay 542, 549, 562,
631, 634, 637, 650
exponential equation 618
exponential function 543
exponential growth 542, 545, 563,
631, 636, 638
exponential notation 12
extraneous solution 623
extraneous solutions 153
extrapolation 377

F
factor by grouping 62
Factor Theorem 472
factorial 1241
factoring 135
Fahrenheit 295
feasible region 1066
finite arithmetic sequence 1253
finite sequence 1233
foci 1148, 1150, 1151, 1166
focus 1148, 1183, 1186, 1187, 1188,
1191, 1212, 1218, 1219, 1220
FOIL 53
formula 19, 189
function 182, 217
function notation 184
Fundamental Counting Principle
1283
Fundamental Theorem of Algebra
476, 477

G
Gauss 958, 1047, 1094
Gaussian elimination 1047, 1096,
1098
general form 401
general form of a quadratic
function 403
Generalized Pythagorean
Theorem 912
geometric sequence 1259, 1271
geometric series 1271
global maximum 454, 454
global minimum 454, 454
graph in two variables 86
gravity 988
greatest common factor 60, 60,
135

H
half-angle formulas 853, 854
half-life 626, 631
Heaviside method 1073
Heron of Alexandria 917
Heron’s formula 917
horizontal asymptote 488, 494,
496
horizontal compression 275, 877
horizontal line 108, 344, 345
horizontal line test 196
horizontal reflection 265
horizontal shift 258, 565, 589, 761
horizontal stretch 275
hyperbola 1165, 1168, 1169, 1170,
1172, 1173, 1175, 1177, 1183, 1214,
1217
hypotenuse 705

I
identities 742
identity equation 99
identity matrix 1108, 1108, 1113
identity property of addition 15
identity property of multiplication
15
imaginary number 126
inconsistent equation 99
inconsistent system 1029, 1037,
1051
increasing function 229, 326
increasing linear function 326
independent system 1029
independent variable 182
index 45, 45
index of summation 1268
inequality 1065
infinite geometric sequence 1273
infinite sequence 1233
infinite series 1273

initial point 995, 998
initial side 683
inner-loop limaçons 948
input 182
integers 8, 11
intercepts 89
Intermediate Value Theorem 451,
451
interpolation 377
intersection 1302
interval 162
interval notation 162, 205, 229
inverse cosine function 801
inverse function 296, 512
inverse matrix 1113, 1115
inverse of a radical function 515
inverse of a rational function 518
inverse property of addition 16
inverse property of multiplication
16
inverse sine function 801
inverse tangent function 801
inverse trigonometric functions
800, 801, 804, 808
inverse variation 524
inverse variations 524
inversely proportional 524
invertible functions 511
invertible matrix 1108, 1123
irrational numbers 9, 11

J
Johnson 1182
joint variation 526

K
Kovalevskaya 1147
Kronecker 958

L
latus rectum 1183, 1186, 1187,
1191
Law of Cosines 912, 914
Law of Sines 895, 913
leading coefficient 51, 51, 425
leading term 51, 51, 425
least common denominator 71,
101
least squares regression 378
lemniscate 949
linear equation 99
Linear Factorization Theorem 477,
478
linear function 324, 325
linear growth 542
linear model 361, 374
linear relationship 374
linear speed 698
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local extrema 228
local maximum 228, 454
local minimum 228, 454
logarithm 577
logarithmic equation 623
logarithmic model 653
logistic growth model 638
long division 461
lower limit of summation 1268

M
magnitude 216, 257, 959, 995
main diagonal 1096
major and minor axes 1151
major axis 1149, 1153
matrix 1081, 1082, 1094
matrix multiplication 1087, 1110,
1114
matrix operations 1082
maximum value 400
Maxwell 1147
measure of an angle 683
midline 764
midpoint formula 93
minimum value 400
minor axis 1149
model breakdown 376
modulus 216, 962
monomial 51
Multiplication Principle 1283
multiplication property 163
multiplicative inverse 1110, 1111
multiplicative inverse of a matrix
1108, 1108
multiplicity 444, 445
mutually exclusive events 1302

N
n factorial 1241
natural logarithm 581, 622
natural numbers 8, 11, 182
negative angle 683
Newton’s Law of Cooling 637
nominal rate 551
non-right triangles 894
nondegenerate conic sections
1198
nonlinear inequality 1065
nth partial sum 1267
nth root of a complex number 966
nth term of the sequence 1232,
1233

O
oblique triangle 894
odd function 269, 823
one-loop limaçon 946
one-to-one 563, 576, 607, 614

one-to-one function 194, 296, 800
opposite side 705
order of magnitude 632
order of operations 12
ordered pair 85, 182, 207
ordered triple 1047
origin 84, 288
outcomes 1300
output 182

P
parabola 400, 407, 983, 1059, 1182,
1187, 1187, 1188, 1192, 1213, 1215,
1215
parallel 108
parallel lines 346, 348
parallelograms 999
parameter 970
parametric equations 970, 982,
983
parametric form 985
parent function 589
partial fraction 1071
partial fraction decomposition
1071, 1071
Pascal 948
Pascal's Triangle 1295
perfect square trinomial 55
periapsis 1212
perimeter 118
period 745, 761, 779, 781, 868
periodic function 761
permutation 1284
perpendicular 109
perpendicular lines 347, 348
pH 606
phase shift 766
piecewise function 216
piecewise functions 1236
point-slope form 329
point-slope formula 110, 1170
polar axis 925
polar coordinates 925, 927, 929,
939
polar equation 933, 940, 941, 1213
polar form 959
polar form of a complex number
961
polar form of a conic 1220
polar grid 925, 926
pole 925
polynomial 51, 51, 472
polynomial equation 152
polynomial function 424, 438, 446,
452
position vector 995, 997
positive angle 683
power function 419

power rule for logarithms 610, 614
principal nth root 45, 45
principal square root 39, 40
probability 1300
probability model 1300
product of two matrices 1087
product rule for logarithms 607,
609
product-to-sum formulas 861, 862
profit function 1040
properties of determinants 1129
Proxima Centauri 632
Pythagoras 958
Pythagorean identities 822, 825
Pythagorean identity 833
Pythagorean Identity 721, 721, 742
Pythagorean Theorem 90, 145,
849, 878, 912, 986

Q
quadrant 84
quadrantal angle 684
quadratic 1075, 1077
quadratic equation 135, 135, 141,
142, 872
quadratic formula 142, 143, 144,
873
quadratic function 403, 406
quotient 462
quotient identities 824, 825
quotient rule for logarithms 609

R
radian 687, 688, 689
radian measure 688
radical 39, 40
radical equation 154
radical expression 39, 40
Radical expressions 46
radical functions 511
radicand 39, 40, 153
radiocarbon dating 635
range 182, 801
rate of change 223, 361
rational equation 102
rational expression 68, 100, 1071,
1072, 1077
rational function 490, 498, 502
rational number 100
rational numbers 8, 11
Rational Zero Theorem 473, 473
ray 682
real number line 10
real numbers 10
reciprocal 109, 296, 420
reciprocal function 485
reciprocal identities 824, 825
reciprocal identity 784, 791
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rectangular coordinates 925, 927,
929
rectangular equation 933, 976
rectangular form 961, 985
recursive formula 1239, 1250,
1250, 1261
reduction formulas 852, 852
reference angle 693, 729, 739
reflection 568, 596
regression analysis 650, 653, 656
regression line 378
relation 182
remainder 462
Remainder Theorem 471
removable discontinuity 492, 493
Restricting the domain 304
resultant 999
revenue function 1039
Richter Scale 576
right triangle 705, 800
roots 400
rose curve 951
row 1081
row matrix 1082
row operations 1096, 1098, 1101,
1111, 1112, 1113, 1113
row-echelon form 1096, 1098,
1099
row-equivalent 1096

S
sample space 1300
SAS (side-angle-side) triangle 911
scalar 1000, 1084
scalar multiple 1001, 1084
Scalar multiplication 1000, 1084
scatter plot 374
scientific notation 33, 33, 34
secant 736, 784
secant function 784
sector of a circle 696
sequence 1232, 1233, 1247
series 1267
set-builder notation 162, 209
sigma 1267
sine 823, 861, 863
sine function 718, 760, 762, 765,
771, 774
sinusoidal function 763
slope 104, 325
slope-intercept form 324, 325, 329
smooth curve 431

solution set 99, 1048
solving systems of linear
equations 1032
special angles 832
square matrix 1082, 1123
square root property 140
SSA (side-side-angle) 894
SSS (side-side-side) triangle 911
standard form 107
standard form of a quadratic
function 403
standard position 683, 684, 995
stretch 567
stretching/compressing factor
782, 783
substitution method 1031
sum and difference formulas for
cosine 833
sum and difference formulas for
sine 835
sum and difference formulas for
tangent 837
sum-to-product formulas 863, 863
summation notation 1268
surface area 510
symmetry test 940
synthetic division 465, 475
system of equations 1094, 1095,
1098, 1099, 1115
system of linear equations 366,
1028, 1030, 1031
system of nonlinear equations
1059
system of nonlinear inequalities
1066
system of three equations in three
variables 1127

T
tangent 736, 779, 781
tangent function 780, 781, 782,
794, 824
term 1232, 1247
term of a polynomial 51, 51
term of a polynomial function 424
terminal point 995, 998
terminal side 683
transformation 255, 338
translation 1152
transverse axis 1165
trigonometric equations 977
trigonometric functions 739

trigonometric identities 912
trinomial 51
turning point 429, 448

U
union of two events 1301
unit circle 689, 705, 718, 730, 869
unit vector 1003
upper limit of summation 1268
upper triangular form 1047

V
variable 17
varies directly 522, 522
varies inversely 524
vector 995
vector addition 999
vertex 400, 682, 1149, 1150, 1183,
1191
vertex form of a quadratic
function 402
vertical asymptote 487, 490, 496,
801
vertical compression 271
vertical line 107, 344, 345
vertical line test 195
vertical reflection 265
vertical shift 256, 338, 565, 591,
637, 766
vertical stretch 271, 338, 593
vertices 1149, 1151
volume 118
volume of a sphere 419

W
whole numbers 8, 11

X
x-axis 84
x-coordinate 85
x-intercept 89, 342

Y
y-axis 84
y-coordinate 85
y-intercept 89, 325

Z
zero-product property 135
zeros 400, 440, 444, 475, 944
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