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Chapter 1

Introduction

1.1  Why nuclear physics

Nuclear physics is one of the most important branches and milestones in modern physics in the last
century. It has intrinsic connections to quantum mechanics and can be regarded as a laboratory for
quantum physics. The aim of nuclear physics is to understand the properties of nuclei and their
applications. Among many applications are (a) The origin of nuclei in the universe, i.e. nuclear
nucleosynthesis, nuclear cross section is the key to understanding of nuclear reaction in astrophysics;
(b) Nuclear energy, nuclear fission and fusion; (¢) Nuclear transmutation of radioactive waste with
neutrons; (d) Radiotherapy for cancer with proton and heavy ion beams; (e) Medical Imaging, such
as nuclear Magnetic Resonance Imaging (MRI), X-ray imaging with better detectors and lower doses,
Positron-Electron Tomography (PET); (f) Radioactive Dating, such as C-14/C-12 dating for dead
lives, Kr-81 dating for ground water; (g) Element analysis, such as forenesic (as in hair), biology
(elements in blood cells) and archaeology (provenance via isotope ratios).

1.2 From cgs-Gaussian to natural unit system

We use natural units [h,c,eV] (the Planck constant, speed of light, and electro-Volt) for angular
momentum, velocity and energy to replace [g,cm,s| (gram, centmeter and second) for mass, length
and time [1]. So any quantities in the cgs unit can be expressed as g¢cm®s®, and in the natural unit
it can be expressed by hA%cPeV7.

For electromagnetic phenomena, there are several unit system, here we will use cgs-Gaussian
units, in particular, the unrationalized Gaussian units (not Lorentz-Heaviside ones). We will explain
it in more details. In dealing with thermal phenomena, we have an additional unit kg (Boltzmann
constant) in the natural unit or equivalently K (Kelvin) in the cgs unit. The relations between two
systems of units are given by

1A = 1.05x107 % g.-cm? 57!

le = 299792458 x 10 cm - s7* (1.1)
leV = 1.60217653 x 1072 g-cm? - 572
lkg = 1.3806488 x 107 *%g.cm? - s 2. K™ ! (1.2)
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From the above we can get the inverse relation

lem = 5.06x10%h-eV !¢

lg = 5.6x10%%eV.c2

Is = 152x10¥h-eV!

1K = 8617x107%eV - kg' (1.3)

Now we explain the feature of unrationalized Gaussian units in electromagnetics. In this unit
system, the Maxwell equations are written as

V-E = A4mp,
4 1 0E
VxB = —j+-—-——,
x c‘]+08t
vV-B = 0,
10B
VxE = ——— 1.4
X c 8t3 ( )

where the electric and magnetic fields have the same unit. The inverse-square force laws are written
as

F — q1492

P
1 Ildll X (Igdlg X I‘)

We see that two of Maxwell equations (1.4) have the factor 47 while there is no such a factor in the
force laws. However in Lorentz-Heaviside units or rationalized Gaussian units, one can absorb 47 in
Maxwell equations by redefining fields and charges. As a price there are 47 factors in the force laws.
The fields and charges in two unit systems are related by

1

ELH = 7ﬂEunrat—GaUSSa
qgquH = V 47TQunrat—Gauss~ (16)

In nuclear physics, the unit for thermal system is not used very often. So we stick to the unit
[f,c,eV] or [g,cm,s] for convenience. From the relations in Eq. (1.2) we can derive following useful
conversion factors

he = 197MeV - fm
1
2 N 1.
e 137hc (1.7)

We have e? ~ 1/137 in unrationalized Gaussian units. In contrast this relation becomes e?/(47) ~
1/137 in rationalized Gaussian or Lorentz-Heaviside units.

In the cgs-Gaussian units, the charge is in the electrostatic unit (esu) which can be determined
from the Coulomb law

2

F = %r—)esuz:g~cm~s*2><cn12:g~cm3~sf2
T
— esu=g!/?.cm??. 571 (1.8)

We know that the Coulomb force law in the SI system has the following form

lq2

F = — %,
4meq r3

(1.9)
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where €y = 8.8542 x 10712 C2N~1m~2 and the charge unit is Coulomb (C). We can determine the
conversion rule for C to esu. In the SI system, we have ¢ = 1 C and » = 1 m, then the force is
F = 8.99 x 10° N. In the unrationalized Gaussian units, we have ¢ = 1 esu and r = 1 cm, then the
force is F' = 1dyn = 10~° N. Comparing two units, we obtain 1 C = 3 x 10° esu. An electron carries
the charge

le=1.602x 107" C=4.8x10""esu (1.10)

In the ST system, the unit of the electric field is Volt/m = N/C, while in the unrationalized Gaussian
units, the electric and magnetic fields have the same unit: Gauss (G). So we have

d
1 Gauss = I _ g1/2 cem V2. g7t
esu
107 dyn - cm
1Volt = 1N- =
Vo m/C 3 x 109 esu
1
= 3 x 10~ 2esuVolt
esuVolt = g'/2.cm'/2. 57! (1.11)

where we have the static Volt unit: esuVolt. Then we obtain 1eV = 1.6 x 1072 g - cm? - s72, the
third line of Eq. (1.2). Also we obtain

e? = 2304x107esu® =2.304 x 1079 g- cm? - 572
he = 315x 1077 g-cm® . 572 (1.12)
which give the second line of Eq. (1.7). We can express fic by
fic = 315x107' (g-cm?-57%) - cm
= 3.15x107%(g-cm?-s72) - fm
197 MeV - fm (1.13)

which is the first line of Eq. (1.7).
Now we can convert some quantities in natural units. For electric and magnetic fields in cgs units,
we have

1 Gauss = gl/2 cem ™2 g7t
6.92 x 1072 (hc)~3/2 . eV? (1.14)
We can convert the proton and neutron masses in cgs unit to natural unit.
mp = 1.672622 x 1072* g = 938.27208 MeV - ¢ 2
mn = 1.674927 x 107%* g = 939.56541 MeV - ¢~ 2 (1.15)

Atomic mass unit is defined as 1/12 of the mass of {2C, i.e. Ny '-gram where Na = 6.022142 x 10?3
is the Avogadro constant. Atomic unit is

lu=1.66x 10727 kg = 931.494 MeV /¢, (1.16)
The proton and neutron mass in the atomic mass unit are
mp = 1.007276u
my, = 1.008665u (1.17)

Here is an example involving another natural unit kg. The shear viscosity is defined by F' = nS % and
entropy density is defined as thermal energy sT'Q2 (2 is the volume). Their dimensions are determined
from knowns,

= g.cm_l .S_l

em ™3 - kp (1.18)

ENSH
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So the ration n/s has the dimension
n/s] =g-cm? - s7 kg' = h- kgt (1.19)

In this book we take the natural unit 7 = ¢ = kg = 1. In summary, a quantity has the dimension
[D] = g?em’s?KS = hecPeVTkS, by using Eq. (1.2) and (1.3), we can obtain following relations
a+d
a—2b
—a+b—d+f
—f (1.20)

> 2 @ L
Il

1.3 Conventions

We list conventions for notations as follows. All superscripts or subscripts standing for texts in
mathematical expressions are shown in roman letters, those standing for variables are shown in
normal mathematical mode.



CHAPTER 1. INTRODUCTION

Table 1.1: Conventions for notations.

Symbols | Physical Quantities
J, Ja (1) Total angular momentum quantum number; (2) Nuclear spin quantum number
J. Ja (1) Total angular momentum; (2) Nuclear spin
L Orbital angualr momentum quantum number
L Orbital angualr momentum
M (1) Atomic mass of an element; (2) Quantum transition amplitude;
(3) Orbital angualr momentum quantum number along one particular direction
S (1) Spin quantum number; (2) S-matrix; (3) S-factor in WKB approximation;
(4) Area in coordinate space
m (1) Nuclear mass; (2) Nucleon mass
X, r 3-dimensional coordinates space points
T, T Modula of 3-dimensional coordinate space points, x = |x|, r = |r|
T, T Three components of coordinates space points, i = 1,2,3
R Nuclear radius
q Particle charge
e Electric charge of a proton
Q (1) Electric quadrupole; (2) Q-value
n Magnetic moment
g (1) g-factor in magnetic moment; (2) Coupling constant
k,p 3- dimensional momentum
k,p Modula of 3-dimensional momentum, k = |k|, p = |p|
A Nucleon number in a nucleus
Z Proton number in a nucleus
N (1) Neutron number in a nucleus; (2) Particle number;
(3) Quantum number in harmonic oscillator
n (1) Radial quantum number; (2) Occupation quantum number; (3) Particle number
E Electric field
B Magnetic field
A Electromagnetic vector potential
E Energy
B Binding energy
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Exercise 1. Unit transformation. Shear viscosity is a measure of the resistance of a fluid
when it is deformed by shear stress, often denoted as n. Entropy density is the entropy
per unit volume, denoted as s. Please try to express the unit of n/s in terms of h and
kg, with h=h/2r the reduced Planck constant, and kg the Boltzmann constant. [Note: In
International System of Units, the unit of n is Pascal-Second.]

Exercise 2. Nuclear magneton. Convert the nuclear magneton in the natural unit un = pT

to the unit of Hertz/Tesla, where e is the electric charge of the proton in unit of Coulomb,
and my, is the proton mass.

Exercise 3. Given 1 Volt = esuVolt x 1 x 1072, calculate ¢*/(hc).

10



Chapter 2

Properties of Nuclei

The static properties such as the charge, radius, spin, magnetic moment, electric qaudrapole etc. are
basic properties of nuclei. The dynamic properties include the structure and decay of nuclei.

2.1 Discover atomic nucleus

The beginning of particle and nuclear physics started from Rutherford’s alpha scattering experiments,
which was the first experiment where a microscopic particle was shooted as projectiles into another
microscopic particle as target to detect the content of the target particle. This is the prototype of
modern particle and nuclear physics experiments.

To quote Rutherford in his original paper, "By means of a diaphragm placed at D, a pencil of
alpha particles was directed normally on to the scattering foil F. By rotating the microscope [M] the
alpha particles scattered in different directions could be observed on the screen S."

To quote Rutherford, "I had observed the scattering of alpha-particles, and Dr. Geiger in my
laboratory had examined it in detail. He found, in thin pieces of heavy metal, that the scattering
was usually small, of the order of one degree. One day Geiger came to me and said, "Don’t you think
that young Marsden, whom I am training in radioactive methods, ought to begin a small research?"
Now I had thought that, too, so I said, " Why not let him see if any alpha-particles can be scattered
through a large angle?" I may tell you in confidence that I did not believe that they would be, since
we knew the alpha-particle was a very fast, massive particle with a great deal of energy, and you
could show that if the scattering was due to the accumulated effect of a number of small scatterings,
the chance of an alpha-particle’s being scattered backward was very small. Then I remember two
or three days later Geiger coming to me in great excitement and saying "We have been able to get
some of the alpha-particles coming backward ..." It was quite the most incredible event that ever
happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of
tissue paper and it came back and hit you."

The Rutherford alpha scattering experiment proved that in the center of an atom locates its hard
core called nucleus with positive charge due to the large angle scatterings.

In 1932, Chadwick found neutron by bombarding Beryllium with « particles to produce Carbon-
12, 4He+9Be — {2C+n. He was awarded the Nobel prize later in 1935 for this discovery. Heisenberg
proposed that a nucleus is made of protons and neutrons. This marked the birth of nuclear physics.

A Nucleus is labeled by ‘E‘XN (in simple version, poeple also use éX or AX), where X is the
name of the nucleus, A is the number of proton and neutrons A = Z + N, with Z/N the number of
protons/neutrons. A nuclide is the nucleus with specific proton and neutron number. Isotope is the
nuclide with the same Z but different N, isotone is that with the same N but different Z. Isobar:
the same A but different Z.

The nucleus mass can be measured by mass spectrometer. Often the material is heated to produce
an atomic vapor. Then the electron beam in transverse direction are used to strip the electrons out

11
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Figure 2.1: Rutherford alpha scattering experiments.

>
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of the atoms to make them ions. These ions are accelerated by an electric field and then pass through
an area with a magnetic filed exerted in upward direction perpendicular to the ion velocity. These
ions are then bent in a circular motion and some finally enter the detector, see Fig. 2.4. Those ions
that pass through the magnetic zone to enter the detector satisfy qu|B| = mv?/R, where q,v,m, R
are the charge, circulating velocity, mass and radius of the circle the particle moves, respectively.
Then we can get the mass from m = ¢R|B|/v.

The Segre chart is the chart for nuclides in Z versus V. For light nuclei, we have Z ~ N, but for
heavier nuclei, we have Z < N.

2.2 The size and density distribution of nucleus

A nucleus is a collection of protons and neutrons which can be regarded as a bulk of nuclear matter.
If the nucleus is treated as a sphere, while the volume of a nucleus is proportional to the number of
nucleons A, then the radius of the nucleus is in the form,

R = 1oAY3, (ry ~ 1.2 fm) (2.1)
We can estimate the density of a nucleus. The number and mass densities are
A A
= o~ ~0.138fm 3 ~ 1.38 x 10¥ cm3
o v~ @3y A " e
po = mmy~23x10"g-cm™3 (2.2)

Actually it is not very precise to regard the nucleus as a sphere with a uniform density. The electron
scatterings tell us that a nucleus does not have a rigorous boundary but a surface with the width of
2-3 fm where the charge density gradually drops to zero. One can use the Woods-Saxon distribution
(or the Fermi distribution) to discribe the nuclear charge density,

Po
_ 2.3
A e (I (23)
where a =~ 0.54 fm. The width of the surface ¢ can be defined by the criterion that the density drops
from 90% to 10% of py,
t~4.4a ~ 2.4 fm (2.4)

Oune can introduce the angular dependence of the radius R(6) to describe the non-spherical shapes of
the nuclei,

R(0) = Ro[l + B2Y20(0) + BaYao(0) + - -] (2.5)
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13

Figure 2.2: Chadwick found neutrons. The unknown particles carry no charges and has almost the

same mass as proton.

neutron

neutron

Po

Source recoil particle

target nuclei (H,He,N,...)

where only even numbers [ appear in spherical harmonic functions Yjq.

2.3 Spin and magnetic moment

Any microscopic particles have angular momenta. If they contain charged constituents they also have
magnetic moments. Here is the classical picture for magnetic moment. When a charged particle has
orbital angular momentum it must have a magnetic moment. Suppose it carries a charge ¢ and move
in a circle with radius r and velocity v. Then its angular momentum is . = mwvr. The magnetic

moment is the area times the current, p = w5 = L[,

27r
Now let us consider the Maxwell equations (1.4) for magnetostatics,
VxB = d4nxj,
v-B = 0.

Using B =V x A, we obtain
V(V-A) - VA = 4r7j.

We impose Coulomb gauge condition V - A = 0 and the above becomes

V2A = —47j,
whose solution is i)
A _ d3 I
=R
We can make expansion of the integrand for r = |r| > ' = |r'|,
1 1,1 1
— - —7r; Oi—— +:7+7‘1i+
|r — 1’| v —r'[{,_, r 73

(2.10)
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Figure 2.3: Chart of Nuclide [see, e.g. “http://atom.kaeri.re.kr/ton/nuc8.html”
“http://nsspi.tamu.edu/media/878612 /imgl.jpg”]
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Figure 2.4: Mass spectrometer.
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Figure 2.5: The nuclear density distribution.
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Figure 2.6: Elastic electron scattering of the charge distribution of '°0, see Fig. 1(A) and Fig. 5 of
Ref. [23].
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Then Eq. (2.9) becomes

A(r)

where the first term is vanishing [ dr’j

0

/
/

We can also have the following identity for j,

0

Then we can re-write Eq. (2.11) as

A(r)

/d‘o’r’(r;ji + T;jk)

where the magnetic moment is defined by

If we consider a system of charged particles, the current density is given by

17
r/d?’T/J /d3frrz.]( DR
:Z / d3r'rlj(r (2.11)
j(r') = 0. This can be shown by using V - j = 0 and
B (0l) = [ @G
d3r' j; (2.12)
/d3r’V' ~(riry) = /dsr'(r;cji + gk + iV - )
(2.13)
[ () — k()]
273 ke v
1
ekﬁekilri/d?’r’[r’ x ()
3T XK (2.14)
1 3. 1.0 s
m=3 d°r'r’ x j(r') (2.15)
—r;) (2.16)

= avid(r

where r; and v; are position and velocity of the particle i. Then the magnetic moment in Eq. (2.15)

can be re-written as

—qu/dS "(r' x pi)o(r' — ;)

(2.17)

where L; = r; X p; is the oribital angluar momentum for the particle 1.
The quantum origin of the magnetic moment can be seen as follows. When a charged particle is

placed in an external magnetic field,

p2

2m

its kinetic energy term is modified to

(p—gA)* | (=iV—qA)
2m 2m
iq(V-A+A-V) M,y
2m m

(rxB)- V:%Pr(I‘XV)

iq

2m

1B L,

o (2.18)
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where the vector potential A is related to the constant magnetic field B by

1
A=—grxB (2.19)
One can verify
1 1
(VxA)y = —iﬁijkai(r xB); = —§€ijk€lsj8i(7“lBs)
1
= 5(51151%’ - 6i36kl)B58ﬂ"l
1 1
= §Bk6iri - §Bi81"l"k = Bk
1
V-A = 0= *iez‘jkBk&Tj =0 (2.20)

One can define the orbital magnetic moment from Eq. (2.18),

q
= —L 2.21
1235 om ( )

so that the magnetic energy due to orbital angular momentum is
Hp,=—-p;,-B (2.22)

The spin magnetic interaction can only be derived from the Dirac equation,

Hg=—pg-B (2.23)
where q
=g—S 2.24
Hs =95 - (2.24)
with the factor of g and the spin S of the particle. We see that a non-zero spin always gives a non-zero
magnetic moment. For electrons with ¢ = —e, where e is the charge modula of the electron, we have

ge = 2 following the Dirac equation.
We know that nucleons have magnetic moments,

Bp = gpiNSp, gp = 5.586
Hy = gnpiNSn, gn = —3.82 (2.25)

where un = e/(2my,) is the nuclear magneton for nucleons with the proton mass my, S, = S, = 1/2.
The value of the nuclear magneton is,

1/v/137 1 Y
= LT MeV ' =455 %1071 -
KN 2% 0383 x V2
~ 4.55 x 1071 x 1.05184 x 10" (s7* - gauss™*)
~ 479 %x10%s7! - Gauss™ ' =4.79 x 10" Hz - T~ 1. (2.26)

Here we express ¢V in s~ ! by Eq. (1.3) and eV? by Eq. (1.14) and then set to the natural unit. The
nuclear magneton can also be expressed in 0.105 e - fm. Normally people use the maximum value of
the magnetic moment for a particle in unit uy, for example, the magnetic moments of proton and
neutron are 5.586/2 = 2.793 and —3.82/2 = —1.91. Note that the magnetic moment of the neutrons
has the same sign as the electrons. The non-zero magnetic moment of the neutrons indicates an
inhomogeneous charge distribution. We know that a nucleon is composed of three constituent quarks,
so its magnetic moment can be given by those of three quarks.
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The nucleus behaves as a single entity with an angular momentum J 4, which is referred to as the
nuclear spin and is a vector sum of those of all constituent nucleons,

Ja= > (Li+8S) (2.27)
i=1,-,A

A nucleus has a magnetic moment which is proportional to its spin,

ua = gapnJa (2.28)

with ga the g-factor for the nucleus. There are pairing forces in the nucleus to make two nucleons
coupled so that their spins and oribital angular momenta add up to zero. So the paring nucleons do
not contribute to magnetic moments. We only need to count a few valence nuclones. This makes the
magnetic moments of heavy nuclei much smaller than expected. Actually there are no nuclei whose
magnetic moments exceed 6py.

Generally for even-A (even-even and odd-odd) nuclei, nuclear spin is an integer since the angular
momentum of each nucleon is a half integer and there are even number of nucleons, while for odd-A
nuclei, the nuclear spin is a half-integer. If we consider the shell structure and pairings, for even-even
nuclei, we have Jp = 0 due to spin-0 pairings of every two protons or neutrons. For even-odd nuclei,
Ja is determined by the unpaired nucleon. For odd-odd nuclei, Ja is an integer and is determined
by unpaired nucleons. For example, the Ja of 3C and 3N are 1/2, the spin is determined by the
nucleon outside the fully occupied shell. For nuclei with A > 10, nuclear spins come from J - J
couplings of constituent nucleons, i.e. J = Zi:l J; where J; = L; + S;. For nuclei with A < 10, there
are LS couplings, J =L +S where L=), L;and S=)_.8S;.

The nucleus magnetic moment can be measured by exerting an external magnetic field, the asso-
ciated energy is

E = —pa-B=—gauxMaB (2.29)
where Mp = —Ja,—Ja +1,--- ,Ja — 1, Ja. The energy difference of the neighboring levels is
AE = gaunxB (2.30)
If the magnetic field oscillates with a high frequency which satisfies
2y = AEFE (2.31)

there is a strong resonance absorption or emission. This phenomenon is called nuclear magnetic
resonance (NMR), and the frequency v is called resonance frequency. This energy is at about 60-
1000 MHz in the range of VHF and UHF in television broadcasts. NMR allows the measurement of
magnetic properties of atomic nuclei in molecules, crystals, and non-crystalline materials and becomes
a useful tool for condensed matter physics and material sciences. There are two gradients in NMR,
one is the constant magnetic field exerting on the sample to align the nuclear spin, another one is
the electromagnetic pulse at radio frequency to produce perturbation of this alignment. At he NMR
frequency, there are nuclei which can be excited to the higher energy level by resonance absorption
and flip their spins. After the electromagnetic pulse, those nuclei on the higher energy level can jump
back into the thermal state and emit photons at the same frequency. By analyzing the radiation
spectrum captured, we can build up a picture of the nuclear distribution.

Use this property for protons to make image of living tissues is called magnetic resonance imaging
(MRI). The MRI technology was developed in 1973. Most substance of human body is water whose
molecule has two hydrogen nuclei or protons. When a constant magnetic field of the scanner is
exerted onto the body, the alignment of magnetic moments of these protons in the direction of the
field will take place. An oscillating electromagnetic field is then turned on at resonant frequency, and
the protons will absorb or emit the electromagnetic quanta to flip their alignment relative to the field.
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Figure 2.7: Nuclear magnetic resonance imaging.
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When the field is switched off they go back to their original ground state or magnetization alignment
in the constant magnetic field. By measuring the signal from the alignment changes people can build
up an image of the body. The position of the body can be located by using gradient magnetic field
so the resonant frequency depends on the position. By analytzing signals of different frequency one
can know where the signals are from the body. Diseased tissue, such as tumors, can be identified
from the different rates at which the tissue protons return to their equilibrium state. One can make
images of different organs by the contrast between different types of body tissue.

The resonance phenomenon for protons was demonstrated in 1946 by F. Bloch and E. M. Purcell
who were awarded the Nobel Prize in Physics in 1952. Further significant discovery in magnetic
resonance led to two Nobel Prizes in Chemistry and one in Physiology or Medicine: R. Ernst (1991,
Chemistry), K. Wiithrich (2002, Chemistry), and P. C. Lauterbur and P. Mansfield (2003, Physiology
or Medicine).

5]
2mp

try to find its form in the cgs unit. [Hint: in accordance with the interaction energy from
the magnetic moment we can determine the real unit of the nuclear magneton. |

Exercise 4. We know that the nuclear magneton is defined by ux = in natural unit,

2.4 Parity
Parity is one of the property of the wave function for a particle under spatial reversion r — —r,

Py(r) = ¢(-r),

where P is the parity operator satisfying P? = 1. So the eigenvalue of P is either +1 or —1, i.e.
Py(r) = £4¢(r), corresponding to the even or odd parity. For a particle moving in a central potential,
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the wave function is written in the form,

¢(7“a 97 ¢) = R(T)YLM (97 ¢)7

where Y7,5/(0, ¢) are spherical harmonics. Under spatial reversion § — 7 —6 and ¢ — ¢+, Yo (0, @)
transform as
Vim0, 6) = You(r — 0,6 +7) = (—1)* Y1 (6,¢)

So the parity corresponding to the orbital angular momentum is (—1)%.

Now we turn to the nuclear parity. The orbital parity of a single nucleon in the central potential
is (—1)~. The intrinsic parity of nucleons is +1. Suppose a nucleon moves in the potential formed
by other nucleons, we can obtain its wave function and then its parity. If we know the wave function
of each nucleon we could determine the parity of the nucleus by the product of the parities of all
nucleons. But in practice this is impossible. Like the nuclear spin, we regard the parity as an overall
property of the nucleus. The nuclear parity can be measured by the decay products of the nucleus.
We can denote the parity of a nucleus by J* where .J denotes the nuclear spin and P the parity.

2.5 Electric multipole moment

The charge distribution of any charged systems can be described by electric multipole moments. The
lowest multipole moment is monopole moment, followed by the dipole and quadrupole ones. The
multipole expansion is a useful tool to describe the electromagnetic field of a remote source. Now we
consider electric multipole moments. Consider the electric potential from an electric source p(r’),

p
B(r) = /d3 llr(—zl (2.32)
which satisfies Poisson equation

V2¢(r) = —4mp(r) (2.33)

s 1
v — |

because

= —4n(r —1’) (2.34)

We define r = |r|. If r > 7/, we can expand

1 1 1 1

— = =7 O— 0,0;
|r — 1’| ro |r7r’| +2rl7ﬂ] e —1/| —r'||, +
1 1 o ,3rlrj T2(5ij
N i (2.35)
where we have used
1 T 1 r; 1 1 37’1'7"]' - ’I"2(Sij
Then the potential in Eq. (2.32) becomes
pr) QD  1rriQyj
o) = [t L =y Ty T (2.87)
where
@ = [drow)
D = [aripe)
Qij = /d?’r’[?)r;r; —1"25,5]p(r") (2.38)
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Figure 2.8: Multipole expansion.

Z—axis

o—position

y—axis

X—axis

There is restriction on multipole moments from the symmetry of the nucleus, namely the parity of
the nuclear state in quantum mechanical sense. Each electromagnetic moment has a parity depending
on its property under parity transformation. The parity of the electric mulipole moment is given by
(—1)%, the the magnetic mulipole moment is given by (—1)“*!, where L is the order of the moment.
In quantum mechanics, the moment can be obtained by the expectation value of moment operator O

on the nuclear wave function, <O> = fw*éw ~ f@\¢|2 For electric dipole, the operator is 0= r;

for the magnetic moment, the operator is O = —ir x V. The parity of the wave function does not
influence the result, but the parity of the moment operator does. For O with odd parity, the integral
is vanishing. So we conclude that all electric/magnetic moments of the odd/even order are vanishing.
So a nucleus does not have eletric dipole moment and magnetic quadrupole moment. This fact has
been verified by experiments.

The next non-vanishing moment is the electric quadrupole moment. From Eq. (2.38), if the
nuclear is a sphere, we can clearly see that the dipole and quadrupole moments D; and ();; are zero.
For non-vanishing electric quadrupole moments, we consider the nucleus in ellipsoid, it has rotational
symmetry along z-axis, the length of the z-axis is 2¢ and the radius in zy-plane is a. The equation

for the ellipsoid is:
N 2 Y\ 2 2\ 2
() +G) +C) =x
a b c

where we have a = b. We can parametrize the ellipsoid coodinates as x = a€sinfcos¢, y =
asinfsin g, z = c€cosf, where £ < 1. In terms of (£,6,¢), the volume element becomes d*r =
drdydz = a*cdédfdpé? sinf. Then the quadrupole moment is diagonal @Q;; = Q;6;;. Normally the
quadrupole moment is defined by @ = Q3 and given by

/d3 (322 — 12 /d3 (222 — 22 — ) p(r)

23 (1 2yl 2v> = Z(c* —a?) (2.39)

Q
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Table 2.1: Some values of nuclear electric quadruple moments. Data from V. S. Shirley, Table of
Isotopes, Wiley, New York, 1978, Appendix VII.

Nuclide q 70 5300 53Cn 33 Ty [ 7Ly | 29B;

Q(eb) | 4288 x 1073 [ —2.578 x 1072 | +0.40 | —0.209 | =3 x 103 | +2.4 | +8.0 | —0.37

where we have used

1
/d3r22 = a263/ d££4/d9005298in9/d¢
0

4 1
= T2 =2y

15 5
1
/d?’er = a4c/ d§§4/desin39/d¢0082¢
0

4 1

1—75ra4c = gVa2 (2.40)
Note that Q1 = Q2 = —Q/2. For spherical shape, the quadruple moment is vanishing, @ = 0; for
prolate or cigar-like shape, it is positive, @ > 0; for a oblate (discus-like) shape, it is negative, @ < 0.
So the quadruple part of the potential is

da(r) = 5 =57 = — (2.41)

The deviation of the nuclear shape from a sphere is characterized by ¢ = AR/R with R the radius
of the sphere with the same volume as the ellipsoid, then we have ¢ = R(1 +¢) and a = R/V/1+¢
given by equating two volumes %”R?’ = 4%azc. Inserting a and ¢ back into @ in Eq. (2.39), we get

6 6
Q~ 5ZR25 R~ nggAz/Be (2.42)

The value of € can be obtained by using the above formula and by measuring @) in experiments.
The electric quadruple moment can be measured by the violation of the separation rule in atomic
hyperfine spectra. It can also be measured by the resonant absorption from the interaction between
the nuclear electric quadruple and electons outside the nucleus.

Table 2.1 shows the electric quadruple moments of some nuclides. The unit is barn which is
10=24 cm?. Usually the quadruple moment is about one tenth of electron-barn (eb) for nuclides with
A < 150 until it reaches about 2 for A > 150.

Exercise 5. Electric quadrupole moment. Calculate the electric quadrupole moment of an

ellipsoid whose long azis is 2a and short axis is 2b. This ellipsoid is uniformly charged, and
the total electric charge is Q. [Hint: The volume of this ellipsoid is %ﬂabQ. Ji

Exercise 6. From Table 2.1 and Eq. (2.42), determine € for each nuclide.

2.6 The mass formula and binding energy
A nucleus is a bound state of protons and neutrons. The binding energy of a nucleus is defined as

B(Z,A) = Zmy+ (A= Z)my—m(Z,A) (2.43)
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Table 2.2: The binding energies per nucleon for some nuclei. The data are taken from Ref. [28].
S| e | 3Me | Si | i | fBe | Be | B | IB
B/A (MeV) | 2.8273 | 7.0739 | 5.4811 | 5.3323 | 5.6063 | 7.0624 | 6.4628 | 6.4751 | 6.9277

T2 T3 1 15 6 7 s T0 20 2T
6 C 6 C | 7N s O s O g F g F 1oNe ioNe

B/A (MeV) | 7.6801 | 7.4698 | 7.4756 | 7.6995 | 7.9762 | 7.7507 | 7.6316 | 7.7790 | 8.0322 | 7.9717

A nucleus can be regarded as an incompressible liquid drop which reflects the satuaration property
of the nuclear force. According to the liquid drop model, the binding energy can be expressed by the
Weizsicker’s formula,

B(Z,A) = avA- agA?3 —acZ?2 A3 — asymIQA + sapA~1/? (2.44)

where [ = (N —Z)/A. Here ay = 15.75 MeV is the volume energy, ag ~ 17.8 MeV the surface energy,
ac ~ 0.71 MeV the Coulomb energy, asym ~ 23.3 MeV the symmetric energy, ap ~ 12 MeV the
pairing energy. The sign of the surface energy is negative because the binding force of the nucleons
in the surface is weakened compared to those inside the volume. The Coulomb energy comes from
the static electric energy which is repulsive, so it is to decrease the binding energy. The symmetric
energy is a quantum effect. For the pairing energy, the coefficient s is given by

1, even — even nuclei
s = 0 oddA (2.45)
—1 odd — odd nuclei

For the even-even nuclei are more stable becuase of the pairing of nucleons. See Table 2.2.

The volume energy is due to the short distance and satuation properties of nuclear force. If nuclear
force is between any pair of nucleons, the volume term would be proportional to A(A —1)/2 ~ A2,
The surface term is like the surface tension in liquid since a nucleus is like a liquid droplet. We know
the larger the droplet’s surface, the less stable the droplet is. So the surface term is to reduce the
binding energy. The Coulomb term is from Coulomb energy of a charged sphere. With the constant
charge density pc = % where V' = %Rg’ and @ = Ze, the electric potential inside a nucleus is

QR Q@
or) =4 + TR?,(RQ —r?) (2.46)
So the Coulomb energy is
1 37%%  3e? 72
Ec = 3 = - N ——— 2.4
c=3 /d rpcg(r) F R Sro A3 (2.47)

Therefore ac = 2% ~ 0.71 MeV with a = ¢® = 1/137 = 1.4 fm - MeV the fine structure constant

and rg ~ 1.25 fm.
The binding energy for nuclei, Eq. (2.44), can be described by the model of the Fermi gas. We
now sketch the idea of this model. We consider a potential of a cubic box,

- 0, 0 <x1,22,23 < L,
Vix) = { 00, otherwise

(2.48)
One particle wave function under the periodic condition at the box boundaries is
¥~ sin(kiz)sin(kaxe) sin(ksxs)

where k; = % for i = 1,2,3 with n; being integers. The eigen-energy is given by

1 (27)?
2m L2

1
E=_——(k +k2+Ek2

5 (n} +n3 +n3)
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An eigenstate can be denoted by a 3-integers set (n1,n2,n3). The number of states for a given energy,
E = k% /(2m) where kp is called the Fermi momentum kg, can be obtained by

2 2 2 L2 2 L2
nl + TL2 + ng = ZmE (27‘[‘)2 = kF (27(_)2
Nstate 4 3 1
d. =7k - 2.49
L3 83" (o) (2.49)

where dg is the degeneracy of each state, for a particle with spin 1/2, we have dy = 2. We see that
the density of states is proportional to k3.

Now we consider a nucleus as a system of nucleons in a volume. The nucleon number density is
related to the Fermi momentum kg,

A 1 4rw d 2

where d, = 4 is the degeneracy factor from the number of the spin states (2) and the isospin states (2).
Here we treat protons and neutrons as identical particles with different isospins. From p = 0.16 fm 3,
we can determine kp = 1.36 fm~' = 268 MeV. The corresponding kinetic energy is Frp = k2 /(2mn) ~
38 MeV. The average kinetic energy per nucleon is then

1 [k k23

dkk = = Ep ~ 23 MeV (2.51)

E = dy—
£2712p Jo 2my

When the numbers of protons and neutrons are not equal, the proton and neutron number densities

are
3 3

V 32 Fe o\ ke ) VOV 32 P T o\ e )V

where the degeneracy factors for protons and neutrons are the same d, = 2 accouting for two spin
states. Then the Fermi momenta for the protons and neutrons are given by

97\ 1/3 oN\ /3
kpp = kp (A) y kpn = Fkr (A) (2.53)
The average kinetic energies are
—_ 1 kr.p k2 Ep n k2
E(l) = — dkk? dkk?
(D) m2p (/0 2my +/0 2mN>
3 27\°® (2N\"?*| 3
= = = = = "B |1-1D%3+ (1 +1)%3
10F(A> +(A) 10F[( PrEHAHD)
3 1
~ pBr gEFIQ (2.54)

where I = (N — Z)/A. We can also obtain the surface energy after taking the boundary condition
into account, the nucleon number element is

R L2
VEk? ™ S
— 1— = 2.
dy 272 ( 2k v) dk (2.55)

where the second term comes from three circle area corresponding to k; = 0 (k3 + k3 < k2) or ko =0
(k3 + k3 < k3) or k3 = 0 (k} + k3 < k3). Here S = 6L% and V = L? are the surface area and



CHAPTER 2. PROPERTIES OF NUCLEI 26

Figure 2.9: The nuclear binding energy. From http://en.wikipedia.org/wiki/Nuclear energy.
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volume of the cube box with length L. Due to the wave function proportinal to sin kyx sin koy sin ks z
all boundary states with k; = 0 have to be excluded. The average kinetic energy is

k k2 )% S
7 - Jo & dASE— _ 27iLN (102 k% — 1o k%) - 3E 1 S 9,56
Fr = V 13 _ 512 e\t sv (2.56)
Jo©dA 5 Fe — srhE F

where we have treated the surface energy as a perturbation. The surface energy is then

3 TS A o
Es~°E —E
ST Ve T 40roky

A%/3 x~16.5A%/3 MeV (2.57)

The nuclear binding energies of all nuclei per nucleon are shown in Fig. 2.9, which is a benchmark
for how tight the nucleons are bound in nuclei. From the first three terms of the binding energy
in Eq. (2.44), we can estimate the most tightly bound nuclide by looking at the extrema point of
binding energy per nucleon,

B(Z,A a
which gives A ~ 2as/ac =~ 51 roughly in agreement with the atomic numbers of iron or nickel. The
binding energies per nucleon are largest for nuclei with mediate atomic number and reach maximum
for iron nucleus *°Fe. So the splitting of heavy nuclei into lighter ones or the merging of lighter nuclei
into heavy ones can release substantial energy called nuclear energy by converting nuclear mass
difference of initial and final state nuclei to kinetic energy, following Einstein’s mass-energy formula
E = mc?. The splitting and merging processes are called nuclear fission and fusion respectively.

Exercise 7. The nuclear binding energy can be expressed by
B(Z,A) = ayA—asA*? —acZ?A7'V3 —agmI? A+ sap A~Y/?

where I = (N — Z)/A. Using the model of the fermion gas, determine the coefficients ac,
as and asym for Coulomb, surface and asymmetric energy respectively.
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Exercise 8. Draw the binding energy per nucleon as a function of mass number as in Fig.
2.9 using data from the database NuDat2.6 of IAEA nuclear data services (https://www-
nds.iaea.org/).
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Chapter 3

Radioactivity and nuclear decay

3.1 General property of radioactivity

Unstable nuclides will undergo spontaneously decays by emitting particles. The phenomenon is called
radioactivity. There two groups of elements or isotopes on the earth, one group were created by the
s-process or the r-process in stars, the other group were created in the big bang earlier than 4.5 billion
years ago. Most of lighter elements than lithium and beryllium belong to the fist group, they are
called primodial, meaning that they were created by the universe’s stellar processes. All unstable
nuclides are subject to a series of radioactive decays (decay chains) untill they become stable. All
nuclides with their half-lives less than 100 million years on the earth almost disappear by radioactive
decays.

In addition to natually occuring radioactivity, we can also produce radioactive nuclei in laboratory.
The first experiment was first done by Irene Curie and Pierre Joliot in 1934. They used the « particles
to bombard aluminum to produce the isotope of Phosphorus $YP (Phosphorus-31 is stable) which
decay through positron emission with half-life of 2.5 min. For the discovery of artificially produced
radioactivity, the Joliot-Curie team won the Nobel prize in Chemistry in 1935. It is interesting to
note that Pierre and Marie Curie and Becquerel was also awarded Nobel prize in physics in 1903 for
their discovery of the natural radioactivity.

There are three main forms of radioactivities: (1) « decay. The nuclei emit « particles, i.e. the
Helium nuclei; (2) B decay, including S~ and 8% decay for electron and positron emissions, and
electron capture (EC) where an orbital electron is captivated by a nucleus; (3) v decay and internal
conversion (IC). In the v decay, excited nuclei transits to the lower energy levels by emitting the
short wave length photons. In the internal conversion, nuclei transfer energy to the orbital electrons
directly.

The units for radioactivity are 1 Ci (Curie)=3.7 x 10'° decays/s and 1 Bq(Becquerel)=1 decay/s.
The SI unit for radioactivity is Bq, but Ci is widely used. The activity is not a good quantity
to measure the radioactive strength for different decays. For example, how can one compares the
strength of 1 p Ci of v decays with that of o decays? To this end, one can define the exposure X
as the total electric charge @ on the ions produced by radiation in a given mass m of air, i.e. we
can define X = @/m. It measures the strength of the radiation in terms of its ability to ionize the
atoms in the medium into which it propagates. The traditional unit of the radiation exposure is
Roentgen (R), which is defined as ionization of 1 esu charge in 1 ¢cm?® of air at 0°C and 760 mm
pressure (m = 1.293 x 1073g), so we have

1 esu

IR=——
1293 x 103 g

=258 x 1071 C/kg = 1.61 x 10'%e- g+ (3.1)

where e is the charge (no sign) of the electron or proton, and we have used 1 C = 3 x 10° esu and
Eq. (1.10). From above one can see that 1 R is to produce 1.61 x 10'? electrons (ions) per gram or

28
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Table 3.1: (a) Quality factors or weighting factors for radiations. (b) Quantities and Units for
radiation.

’ Radiation type \ QF or WF ‘

By 1

(a)|  p,n (~keV) 2-5

p,n (~MeV) 5-10

« 20

[ Quantity Definition | Traditional unit | ST unit \
Activity Decay rate 3.7 x 1051 Curie (Ci) | s~T, Becquerel (Bq)
(b) Exposure Ionization in air esu/(0.001293g), erg-g 1 Coulomb /kg
Roentgen (R)

Absorption dose Energy absorption 100 erg-g— !, rad J-kg™1, Gray (Gy)
Dose equivalent | Biological effectiveness 100 erg-g~!, rem J-kg~!, Sievert (Sv)

2.08 x 10? electrons (ions) per cubic cm. On average, it costs about 34 eV energy to produce an ion
carrying one unit electron charge in the air. So the radiation exposure of 1 R in the air is equivalent
to energy absorption of 5.474 x 1013 eV -g=! = 88 erg - g7 1.

The ionization by the v ray depends on its energy. With about 34 eV to produce an ion in the
air, 1 MeV v ray may produce 3 x 10* ions. To describe the energy absorption, one uses the absorbed
dose D defined as the energy deposited in the material by ionization. The unit for radiation absorbed
dose is rad, 1 rad = 100 erg/g. For radiation in the air, we have 1 R=0.88 rad. The SI unit of the
absorbed dose is Gray (Gy), defined as 1 Joule of energy absorbed in 1 kilogram of material. We
have 1 Gy=1 J/kg=100 rad.

In the above quantities, we have not yet considered the radiation effects on biological systems like
human body. For biological systems, the effects of the g and ~ radiation are very different from that
of a radiation. The energy absorption of the « particles per unit length is much more significant than
that of g and ~ radiation. To account for the effectiveness of radiation on biological systems, one
uses quality factor (QF) or weighting factors (WF) to measure the energy absorption of a given type
of the radiation per unit length. The QF of the § and v radiation is set to 1. The QF of other types
of radiation can then be determined by comparing to the 5 and  radiation. The effects of radiation
on biological systems depend on the quality factor and the absorption dose, so one define the dose
equivalent (DE) as

DE =D QF (3.2)

The unit of DE is rem (Roentgen Equivalent Man) when D is in rad. In the ST unit when the unit
of D is Gray (Gy), the unit of DE is Sievert (Sv). We have 1 Sv=1 J/kg, and 1 Sv=100 rem.
The recommended safe dose for general public should be lower than 0.5 rem = 0.005 Sv per year.
The radioactive decay follows the power law,

dN
~Z_ = _)\N
dt A
N({t) = Nye ™
T = /dtte_’\t//dte_’\t =1/)

where X is the decay constant whose inverse gives the mean life # of the nuclei, Ty, is the half-
life which is the time when the number of nuclei reaches half of its original value. For nuclei with
only one decay channel, they are identical. But for those with multiple channels they are different.
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Figure 3.1: Type of nuclear decays in the nuclide chart. The scheme plots for alpha and beta decays
are shown.
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Normally it is very hard to measure the number of nuclei to determine A. It is easier to measure
A(t) = AN(t) = A(0)e=* defined as the activity. One can read out A from the plot of In A(t) vs .
This method is workable for nuclei of half-life which is not too long or not too short. For those nuclei
with very long half-lives we would not be able to observe substantial reduction of the activity. For
those nuclei with very short half-lives such as 107% — 10712 s, one has to use other precise techniques.

Usually many nuclei have more than one decay channels. Suppose there are two decay ways for a
nuclide with A\, and )\, as decay constants respectively, the total decay rate is given by

dN
E == _N(>\a + )\b)
N = Nye Qatre)t (3.4)

We note that the only observable decay constant is A, + A, instead of each A\, or A\, alone. There is no
way to turn off one and measure the other. We can generalize the above example to multi-channels
cases

dN/dt = —AN
N(t) = Npe (3.5)

where A = >, \;. The branching ratio for the channel 7 is given by R; = A;/A.

Sometimes we have to deal with nuclear production, e.g. in materials bombarded by proton or
neutron in reactors. The nuclei will capture a neutron or other charged particles to produce radioactive
nuclear species. The rate R depends on the number of target atoms Ny, the flux of incident particles
I and the reaction cross sections o. We assume R is very small and Ny is a constant, which is valid
for most cases in accelerators or reactors, we have

R = Nool (3.6)

Typically I is of order 10'*s~'cm™2 in reactors and the cross section is of few barns (10724 cm?), so

we have R ~ 10719Nys™!, i.e only 10719 of original nuclei are transmitted to radioactive nuclei. In
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presence of nuclear production, the nuclear activity follows the law

dN
= = — AN
= R—\
d(R—AN)
— N = M
R—AN() = [R—AN(ty)]e ™M
1
N(t) = JR(- e M) 4+ N(tg)e ™™
1
— XR’ t— oo (3.7)

We can consider the case N(tp) = 0, then we have

Alt) = R(1—e ™)
{ RXt, t < 12

R, t> t1/2 (38)

We see the activity is linear in time for short time of bombardment and reach equilibrium for long
time.
For subsequent decay

A A A
Ni =% Ny =% N3 =%

the decay rates are

dNy
— = —-\N
gt 1V1
dN:-
7752 = AN — XNy
dN:-
— A2No — A3 N3 (3.9)
A general solution to Eq. (3.9) has the form,
Nl = aue*)‘lt
N2 = aglef)‘lt + aggef)‘ﬁ
N3y = a316_>\1t + a32€_)\2t + a336_>\3t (310)
The initial conditions are assumed to be
a1 = Ng
G21 + a2 =
asi +asz +azgg = 0 (3.11)

i.e. we assume that we only have A species at the initial time. Inserting the above solution into Eq.
(3.9) to determin a,;, the second and third lines becomes

At At At

= Aane "M —agi e
— At — Aot
= 0,21)\26 B + a22/\26 2

—a31)\3€_’\1t - a32>\3€_/\2t (312)

7(121)\167

—as31 /\16_>\1t — 0,32)\26_)\2t



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 32

Then we get
ag1 = a a
S VS Wt
azz = —az1
a1 = Az ag = Ao a
S VS Ve s — )0 — M) 11
age = ﬂa = A1z a
2 = S T s — M) (Ot — o) 11
A1
- Qe — = 3.13
ass (31 — a32 Do —A3) (M — )\3)CL11 ( )
Then Eq. (3.9) becomes
N1 = N()e_klt
A —A1t — Azt
Ny = N 72
2 veyw (e e ")
A1z gt A1z ot
N3 = N, e "'+ N e "2
’ "Os = M) — M) "5 = X) (M — o)
A1 Az st
+N e "3 3.14
P2 =) (M = s) (319
We can generalize the above case to any number of generations,
Ny 25 Ny 22 N, Ay e
Assume that we already know all Ny, (k = 1,--- ,n) which have the form
ko k 1
Nk = NQ)\l/\2,“/\k_1ZH767>\it (315)
i=1 j#i (A7 = A
we can determine N, 1 by
dN,
#“ AnNn = Ag1Nos1 (3.16)
We assume N, 11 has the following form,
n+1
Nn+1(t) = Z an+171'67)\it (317)
i=1
Inserting the above into Eq. (3.16) we obtain
=Y anpdie ™ =Y (Al = Angrangri)e
i=1 i=1
_>
_anJrl,i)\i - )\nan,i - )\n+1an+1,i
4>
py1i = La<i—l n (3.18)
n+1,: - >\n+1 7)\1_ n,% — 4 ) .

From the initial condition, N, +1(0) = 0, we can obtain an41 511,

n n 1
Uniins1 = =3 antii=Nodde-- M ][] P, (3.19)
i=1 i Ot "
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So we finally get

n+1n+1 1 o
Nppr = NO)\1>\2"')\nZ H e (3.20)
i=1 j#£i v

Assuming >."" , a,; = 0, one can prove Eq. (3.19), this method is called mathematical induction
method. The trick for the proof is to replace a, 1 in the last line of Eq. (3.18) with — 22;2 i

If we have AN AN AN
1 2 3
o~ 2 =" 2 —=...= 21
a S at 0 (3:21)
ie. N; (i=1,---,n) are all constants in time, this means
ANp = ANy = A3N3 = - -+ (3.22)

In order for Nj to be nearly a constant in time, it is required that A; is very small. Then we have a
decay chain with a very long half-life isotope followed by shorter half-life isotopes as decay products.
This is called secular equilibrium.

There are about 200 or so stable nuclei in the universe, all decay chains end up there. Stable nuclei
have p/n ratios from 1 for light nuclei to about 0.7 for heavy nuclei like Pb. Any nuclei heavier than
Pb-208 are not stable, they will lose their weight mainly through alpha decays. Neutron-rich nuclei
normally adjust their high n/p ratio through beta decays. Sometime we call nuclei heavier than Pb
transuranics. For transuranic nuclei, there are only four types of decay chains, represented by A=4n,
4n+1, 4n+2, 4n+3. This is because they undergo the alpha decays in which their mass numbers
change by 4 and beta decays in which their mass numbers do not change but their proton/neutron
numbers increase/decrease by 1. Three of them start from long half-lives nuclei, U-238 (4n+2 series,
4.5 billion years), U-235 (4n+3 series, 700 million years) and Th-232 (4n series, 14 billion years),
known as natural decay chains. There are no natural decay chains of the 4n+1 series because there
are no natural nuclei with mass number of the 4n+1 type which have longer half-lives than the earth.
But artificially produced Np-237 have the decay chain of the 4n-+1 series.
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Figure 3.2: The decay chain of thorium-232 (4n series). The energy released from Thorium to Pb-208

is 42.6 MeV. From wiki page about decay chain “http://en.wikipedia.org/wiki/Decay chain”.
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Figure 3.3: The decay chain of Uranium-238 (4n+2 series). The energy released from Uranium-238 to
PDb-206 is 51.7 MeV. From wiki page about decay chain “http://en.wikipedia.org/wiki/Decay _chain”.
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Figure 3.4: The decay chain of Uranium-235 (4n+3 series). The energy released from Uranium-235 to
PDb-207 is 46.4 MeV. From wiki page about decay chain “http://en.wikipedia.org/wiki/Decay _chain”.
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Exercise 9. The Chernobyl disaster was a well-known nuclear accident of catastrophic
proportions that occurred at 1:23 a.m. on 26 April 1986, at the Chernobyl Nuclear Power
Plant in Ukraine (then in the Ukrainian Soviet Socialist Republic, part of the Soviet Union,).
It is considered the worst nuclear power plant accident in history. The radioactive materials
were released immediately into the environment as radioactive dust. The most important
radioactive releases were: (i) Noble gases like radioactive isotopes of Kr and Xe in fission
products. Fortunately they do little harm to human body since once inhaled they are promptly
ezhaled and so they do not remain in the body. (ii) }3'1 that has 8.04 days half-life. Since it
is highly volatile it is readily released. When taken into the human body by inhalation or by
ingestion with food and drink, they can be transfered to the thyroid gland and cause thyroid
nodules or thyroid cancers. These diseases represent a large fraction of all health effects
predicted from nuclear accidents, but only a tiny fraction would be fatal. (iii) 137Cs that
has 80.1 years half life. It decays mostly (94.6%) by emission beta particle with mazimum
energy 0.512 MeV to a metastable nuclear isomer 13" Ba, the rest 5.4 % decays to the ground
state 13"Ba. (2™Ba has a half-life of about 2.55 minutes by emissions of gamma rays with
energy 0.662 MeV. It does harm by being deposited on the ground where its gamma radiation
continues to expose those nearby for many years. It can be picked up by plant roots and
therefore get into the food chains. On May 2 of 1986, the main isotopes detected are (with
activity in Bg/m® and half life)
Te-132 | (18; 78.2h) | Ru-1038 | (4.5; 89.4 d)
1-132 | (10.6; 2.3h) | Mo-99 | (1.4; 6.02h)
I-131 | (8.5;8.04d) | Te-129 | (3.5; 83.6d)
Cs-137 | (4.3; 30.1y) | Ba-140 | (2.3; 12.8d)
Cs-134 | (2.1; 2.04y) | La-140 | (2.3; 40.2h)
Cs-136 | (0.6;13.0d)
(1) What is the total activity per cube meter at the time of the measurement and after 10
days? (2) Write the decay scheme plot for 137Cs. (8) About 0.4 tons of 13'1 were released
into the environment at the time of the accident, what’s the radioactivity of }3'1 at 11:00
a.m. on May 2 of 19862 [Hints: 1 Bq=1 decay/s|

3.2 Radioactive dating

Radiocarbon dating or carbon dating is a method to determine the age of carbonaceous materials up
to about 60,000 years using the radioactive isotope *C. One use of carbon dating is to determine
the age of organic remains from archaeological sites. The idea is as follows. Carbon has two stable
isotopes 12C (98.9%) and '3C (1.1%) in atmosphere. There is a small portion of radioactive isotope
14C in atmosphere produced by collisions of neutrons from cosmic ray and '*N,

n+#N - p+ic (3.23)

All ™C in atmosphere exists in the form of carbon dioxide CO,. The production rate of '#C can
be approximated as almost constant for thousands of years assuming that the flux of the cosmic ray
does not vary much with time. The plants absorb '*C by photosynthesis. The abundance of *C
in living plants maintains the same level as in atmosphere. When plants die or eaten by animals or
humans the density of *C will not be in equilibrium with atmosphere but will decrease by decay. By
measuring the current amount of 'C and comparing with that in atmosphere one can determine the
age of plants, animals or humans after they die.

The decay channel of C is f-decay, §*C — N + e~ + i, with half-life T}, = 5730 £ 40
years. There is one atom of 14C for 102 atoms of '2C. We know that 1 g of carbon has about
Na/12 =~ 5 x 10?2 atoms of 2C and 5 x 10'° atoms of “C, the radioactivity of *C is estimated
as 5 x 10" x In2/T 5 ~ 11.5 decays per minute. The atomic composition (mass composition) of
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Figure 3.5: Production of Carbon-14 in atmosphere.
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carbon in a human body is about 12% (18%). Suppose a human has a weight of 60 kg, then he/she
has about 9 x 107!% mol of '*C in the body. So there are about 5.4 x 10' x In 2/Ty )9 ~ 2.06 x 103
decays of 1*C in a second.

The carbon dating technique was developed by W. Libby and his colleagues at the University of
Chicago in 1949. The concept was first suggested by E. Fermi in a seminar at University of Chicago,
according to E. Segre. Libby was awarded Nobel prize in chemistry in 1960.

Exercise 10. Read the article and write a report: [C. B. Ramsey, “Radiocarbon Dating:
Revolutions in Understanding”, Archaeometry 50(2), 249-275(2008).]

3.3 « decay: strong interaction at work

Rutherford showed in his experiments in 1903 and 1909 that the a particles are actually Helium
nuclei. The « decay is one of the most important decays for heavy nuclei. Especially the decay chains
of naturally occuring nuclei involve only the a decay from strong interaction. The binding energy per
nucleon for a Helium-4 nucleus or an « particle is much larger than its neighbors (much more stable),
so it should be present in the heavy nuclear as clusters. In the binding energy formula of nuclei, the
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Coulomb term behaves as A%/3 while the volume term does as A. So for heavy nuclei, the Coulomb
repulsion effects increase rapidly and match or even exceed the volume effects. This makes the nuclei
unstable against cluster emission. The a decay is the most frequently occuring cluster decay.

The a-particles carry positive charges, so they can be measured by the spectrometer. The results
show that there is fine structure in the energy spectra of the a-particles. They consist of some discrete
peaks indicating that the energies are almost discrete.

The a decay can be written as

2X = 55V +3He (3.24)

Here X is the mother nucleus with the mass mx and Y the daughter particle with the mass my .
The mass of the a-particle is m,. Their velocities are denoted vx, vy and v,. For the decay to take
place, the following decay energy must be satisfied:

Ey = B(Z-2,A-4)+ B(2,4)—B(Z,A)
= Mmx —Mmy — Mgy
= (Mx — Zme) — [My — (Z — 2)me] — (Mize — 2me)
= Mx— My — Mye >0 (3.25)

The decay energy can also be expressed in terms of binding energies

OB OB
~25~ — 4o+ B(2.4)

2 1
dacZA™Y3 — 4(ay — gasfrl/?’ - gacZ2A*4/3) +7.074 x 4

Ey

Q

Q

4
dacZ A3 — gacZ2A*4/3 + gasA’l/?’ — day + 28.3

Q

Q

gacAQ/?’ + gasA_l/?’ —4ay + 28.3 (3.26)

Inserting Eq. (2.44) into the above (we keep only the first three terms), we can get the decay energy
as a function of Z and A. We see that only when A > 100 is the positive decay energy possible. In
reality we have the positive decay energy when A > 140.

The momentum conservation leads to

vy = va& (3.27)
my
The energy conservation is
1 1 m
E, = imavi + §myv% =FE, (1 + mz)
A

E,—— 3.28
11 (3.28)

where E, is the kinetic energy of the a-particle. The kinetic energy is related to the decay energy

A-4

E, 1

Ey (3.29)
If A is very large, the kinetic energy is almost the decay one.
For example, the followings decay of polonium isotopes

2'Po —  °Pb+'He

2P0 —  2®Pb+*He (3.30)



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 40

Table 3.2: Comparison the Q-value of 2i°Po (209.9829 u) in different reaction channels. The unit is
MeV.

2P + n (208.9824,1.00867) u | -7.6 | 23°Pb +° He (204.9745, 5.01222) u | -3.5
20931 +1 H (208.9804, 1.00783) u | -4.96 | 23'Pb +5 He (203.9730, 6.01889) u | -8.3
ggBBl +2 H (207.9797, 2.01410) u | -10.15 | 29*T1+° Li (203.9739, 6.01512) u | -5.7
207Bi +3 H (206.9785, 3.01605) u | -10.85 | 293T1+7 Li (202.9723, 7.016) u | -5.03
205Pb +* He (205.9745, 4.0026) u | 5.4

Figure 3.6: The potential for the « particles.
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can happen. We can check
M(%1%Po) = 209.9829 u
M(*?Po) = 211.9889u
M(?°°Pb) = 205.9745u
M(?%Pb) = 207.9766 u
M (*He) 4.0026 u (3.31)

where 1 u=931.494027 MeV is the atomic mass unit, for example, the deuteron has 2.014 u. Then
the decay energies are

Ey = 209.9829 — 205.9745 — 4.0026 = 0.0058 u
~ 5.4MeV for 2%Po
Ey = 211.9889 —207.9766 — 4.0026 = 0.0097 u
9.03 MeV for 22Po (3.32)

All these masses can be found in NuDat at IAEA nuclear data services.
Before we deal with the o decay problem. We review the tunneling effect in quantum mechanics.
Suppose we have a potential V' (r) which has only radial dependence. In spherical coordinates, the



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 41

Hamiltonian reads,

H = —(1/2m)V*+V
_ 1 [10(,0 1 9 (.  ,0 I
= o {a ( aT> + E5n0 50 (““%a) T sinZGW} Vi)
_ 1 [10(,0 L?
with L2 given by
. 1 9 d 1 82
2 _ . : _— _—
Lc = [sin@ 20 (Sln989> + sin293(/52] (3.34)

whose eigenfunctions are spherical harmonics Yy, (6, ¢) which satisfies
L*Yim(6,¢) = L(L+1)Yium(6,9)
One can verify
[H,1%] = [H,L.]=0 (3.35)

Because the operators {}AI,I?, ﬁz} all commute to each other, the state can be labeled by quantum
numbers {n, L, M}, where n labels the energy level, L the angular momentum, M the projection to
the third axis. The wave function can be expanded by

) +L
G(kr) = > > com(k)Roy(k,r)Yin (9, 6) (3.36)
L=0 M=—L
The Schrodinger equation is .
Hy = Ey (3.37)
whose radial part reads
1 10 /(50 L(L+1) B
_% |:7~28r (7' 87") - ’,"2:| RL(k,T) + V(T)RL(k7T) = ERL(IC,T') (338)

There is no dependence on the magnetic quantum number M, so Ry (k,r) is written as Ry (k,r).
The above equation can be written as

£ 24, LL+1)
[er 7ndr+k—rg—U(T)}RL(I’W“)—O (3.39)

where U(r) = 2mV (r). It is convenient to use

ur (k,r)

RL(kaT) = r

(3.40)

to rewrite Eq. (3.39),

[dd; A % _ U(T)] ur,(k,r) =0 (3.41)

If we consider the most simple case, [ = 0, the above equation becomes similar to one dimensional
Schrédinger equation,

[dﬂ + k2 — U(r)} ug(k,7) =0 (3.42)
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Figure 3.7: Potential barrier.
potential
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For simplicity of notation, we will suppress the subscript ug(k,r) — u(k,r).

We consider a particle with energy F = k?/2m moving toward a potential barrier U(r), see Fig.
3.7. We denote the regions bounded by the classical turning points, » < Ry, Ry < r < R, and
R > Ry, as I, IT and III respectively. The regions I and III are classical allowed regions and the
region IT is the classical forbidden region. The corresponding wave functions are denoted as uq (k, ),
uz(k,r) and us(k,r), they satisfy the continuity conditions,

ui(k,Ry1) = wua(k,Ry)
uy(k,R1) = wubh(k,Ry)
us(k,Ra) = wus(k,Ra)
uy(k,Ry) = wuh(k,Ra) (3.43)

Remember that we have suppressed the factor 22 in front of the second order differential operator V?
in the Schrodinger equation since we use the natural unit. We can use the Wenzel-Kramers-Brillouin
(WKB) method to solve the one dimensional Schrédinger equation (3.41, 3.42). In the WKB method,
one assumes that the wave function has the following form,

h

Substitute the above into Eq. (3.42) and make expansion of the equation in powers of the Planck
constant /i or in the number of spatial derivatives, we can solve S(x) or the wave function order by
order. We assume S(r) can be expanded as

S(r) = So(r)+ (—=ih)S1(r) + (—ih)*Sa(r) + - -- (3.45)
Inserting Eq. (3.44) into Eq. (3.42), we derive

w(k, 1) = exp Fsm} (3.44)

0 = {hZCZ: + Kk — U(r)} u(k, )

ihS" (r) exp {;S(T)} — [S'(r)]? exp [;S(ﬂ}

R — U()] exp {;S(r)} (3.46)

Using Eq. (3.45), up to O(h) we obtain
[So(r)* = K =U(r)
Sy +25,5] = 0 (3.47)
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Then we can solve

So = i/dr k2 —U(r)
/ _ 1 / /
51 = —§[ln So(r)]
—
S, = In[k®—U(r) V4 (3.48)

Let’s define a new variable k = 1/k2 — U(r). So the wave function has the form (we resume the use
of natural unit),

u(k,r) = expliS(r)] = \}; exp (:l:i /T: drl%) (3.49)

For the classically allowed region, i.e. k? > U(r) or k is real, the general form of the wave function is

C(1 . " b 02 . r ~
u(k,r) —— exp (z/ drk‘) + — exp (—z/ drk)
\/E To \/é T0
cy o </T ~ ,>
= — sin drk + C. (3.50)
VE o ’

where Cy 2 and Cf , are constants to be determined by the boundary and normalization condition.

For the classically forbidden region, i.e. k? < U(r), k in Eq. (3.49) is purely imaginary, so the wave
function has the following form,

(b, r) = \7|%|exp (- / dr|12> + \7|%|exp (/ dr|fc|> (3.51)

where (' 2 are constants to be determined by the boundary and normalization condition. One can
observe that the solution in the classically allowed region is oscillating while that in the forbidden
region is exponential. Note that at classical turning points, the points at which k% = U(r), the WKB
solutions in Eqgs. (3.50,3.51) are not valid since they are divergent.

Now we consider the boundary at » = R; with the classically allowed region in the left-side and
the classically forbidden region in the right-side. The wave functions in the both sides have following
correspondence,

2 B - oo 1 I
——=sin / drk+— | <= exp (—/ dr|k|>
Vk r 4 N R,
r< Ry r> Ry (352)

Note that the wave function in the left-side is the superposition of an incident and reflection wave
with equal amplitude (we assume the loss from transmission is small),

Ry ~ Rq ~

sin (/r drk—!—Z) = —iexp lz (/r drk—FZ)
Ry

+iexp l—i < drk + Z)

We can rewrite the right-side wave function in Eq. (3.52) as

1 Ro ~ Ro ~
— exp <—/ drk|> exp (/ dr|k|> (3.54)
H e ‘

(3.53)
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The second factor has following correspondence to the wave function in the right side of the turning

point at r = Ra,
R2 - T - T
exp / dr|k| | <= —exp [z (/ drk + )}
T Rz 4

r < Ry r> Ry (355)
With the factor in Eq. (3.54), we obtain the wave function in the region r > Ro,

u(k,r > Ro) = —\/1?' exp l— /RR dr|l~c|] exp [z </R drk + Zﬂ (3.56)

So the transmission current is
~ R2 ~
§ ~ klu(k,r > Ry)|* = exp —2/ dr|k| (3.57)
Ry

The transmission probability is then

R2 -
P =exp (—2/ dr|k|> (3.58)
Ry

For the a decay, there are two forces in the nuclei, nuclear and Coulomb. We can assume the
nuclear and Coulomb forces reach balance for the o particles which can be treated as free inside the
nuclei. The potential for the a particles is

-V, r<R
Vir) = 3.59
((r) { 212262, r>R ( )
where Z1 = 2 and Zs = Z. See Fig. 3.6. Let us estimate the height of potential barrier,
71 Zoe? 27 x 1.44 Z

EB = 1£2¢ ~ x 173 =24 173

R 1. 2(/11/3 + AV A3 4 AY
~ 27 MeV for 21°P (3.60)

where R ~ 1.2(A'/? + A(l)/?’) =9 fm.
One sees Eg > Ey. According to classical theory the o decay cannot escape. But in quantum
theory the penetration probability is given

P = e %=exp (—2\/2ma /b VvV — Eodr> (3.61)
R

where b = ZlZ?e . When b/R > 1,

zﬁ/ N/le“j —Eodr—4f\/>Zlde/ V1 2dy

min

4\f\/>zlzge[ \/1—7dy /ymmﬂdy}

42 %212262 <Z — ,/) — 9/2rZe? 1/ —8/e2moVZR
0
1 Z
— V2 ——/3750—— — 8+/3750/197/137VZR
\[”137 VEo 197/

—~2.98VZR (3.62)

G

Q

Q

7
= 3.97
VEy
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where y = \/g and Ypmin = ,/ZfZEzoeg = 1/%. We have used the fine structure constant e? = 1/137.

Obtaining the last line, we have used Z; = 2, Zy = Z, m, = 3750 MeV. In the last equality, R is in
unit fm and Ej is in MeV. The collision times per second for an « particle inside the nucleus is

2E; 1
Yo 2R A3 102 AR gec? (3.63)

"= 2R~ Me 2R

where Fy = Fy + Vy is the kinetic energy of the a particle inside the nucleus in unit MeV. In
transforming the speed v from the natural unit to cgs one, we note that it has to times the speed of
light ¢. Then the average life for « decay is

1 _
T o= = 5351074V 126G (3.64)

We can take logarithm of above and obtain,

1
InT = ay + ag\/?, (365)
0

where a; = In(3.5 x 10_22A1/3E,;1/2) —2.98VZR and ay = 3.97Z. Eq. (3.65) was first obtained as
an empirical law by Geiger and Nutall in 1911 and later confirmed by quantum mechanics.
Let us estimate the half life of 2'°Po from « decay,

In2 -
Tl/Q(QIOPO) — HT = 1n2 X 35 X 10_22A1/3Ek 1/26G

In2 x 3.5 x 10722 % 2103 x (5.4)71/2 x exp(3.97 x 84/V/5.4 — 2.98 x /84 x 9)
6.2 x 10722 x exp(61.6)
~ 4.06 days (3.66)
Ty /5(*?Po) ~ In2x 3.5 x 10722 x 2121/% x (9.03) !/

x exp(3.97 x 84/v/9.03 — 2.98 x /84 x 9)
4.81 x 10722 x exp(29)
1.98 x 1079 s (3.67)

We can compare with the data, T} »(?'°Po) = 138.4 days and Ty 5(2'*Po) =3 x 107" s.

In the above simple model, we have made several approximations. (1) We have neglected the
influence of initial and final state wave functions. (2) we did not consider the angular momentum
of alpha particles. When the angular momentum is taken into account, there will be centrifugal
potential Ve = % which will modify the half life of alpha decay. (3) We used the nuclear
radius formula R = 1.2A4'/3 fm, which is not correct for many heavy nuclei with strong deformation.
Since the half-lives are very sensitive to the nuclear radius, it becomes a method to measure the shape
of the nuclei through a decay half-lives.

The alpha decay is strong interaction which conserves parity. The parity of an alpha particle is
(—=1)F where L is the quantum number of the orbital angular momentum. So parity conservation
requires the selection rule P, = (—1)% P, where P, and P; are the parity of the initial and final state
respectively.

A full description of alpha decay using time dependent quantum mechanics can be found in Ref.
[34, 35].

Exercise 11. Use the data at the IAEA nuclear data services [28] to draw the binding energy
per nucleon as a function of the number of nucleons in Fig. 2.9. Also draw the o particle
decay energy Ey in Eq. (3.25) as a function of the number of nucleons.
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Exercise 12. Calculate the half life of 335U from emission of 4.2 MeV a-particles. One
assumes F ~ Ej.

Exercise 13. In the above we do not consider the angular momentum of alpha particles.
When the angular momentum is taken into account, the centrifugal potential Veeny = LQ(Tf;zl)
will modify the half life of alpha decay. FEstimate its correction to T1/2(210P0).

Exercise 14. A full description of alpha decay using time dependent quantum mechanics
can be found in Ref. [34, 35]. Read one of the articles and write a report of 2000 chinese
words.

Exercise  15. Calculate the « decay half-lives of thorium isotopes
(A=220,222,22/,226,228,230,232) and compare to the experimental data.

Exercise 16. Consider the alpha decay QJ:QLX — 4Y +a. The potential for the o particles

is
—Vo, r<R

V(r)= { 7175 r>R

where 7y, = 2, Zy = Z and R ~ 1.2(AY/3 + A(ll/g). The kinetic energy of the alpha particle

21Z2€2
T Ee -

is Eqy, from which we can determine classical turning point b = The transmission

probability for the alpha particle to go through the Coulomb barrier is

b
P = e %=exp (—2\/2ma/ VV — Eodr>
R

We assume b/R > 1. (1) Work out the integral to express P as a function of Eo, Z and
R. (2) Write down the formula for the half-life of the alpha decay in terms of E, = Eg+ Vj
and R.

3.4 [ decay: weak interaction at work

In the « decay, when the recoil energy of the daughter nucleus is negligible, the energy of the «
particle reflects its energy inside the mother nucleus. The energy spectrum is not continuous since
the a particle and the daughter nucleus form a quasi-bound state inside the mother nucleus and the
bound state energies form energy levels. Unlike the « decay, the energy spectrum of the 5 particle or
electron in the £ decay is continuous ranging from the zero to the decay energy which is the energy
difference between the initial and final state. This poses a puzzle or a challenge for theorists. In
order to explain the continuous energy spectra in the 5 decay or the 'missing’ energy Pauli proposed
the neutrino hypothesis, accompanying the emission of electrons is emitted a tiny particles called
neutrinos which escape the catch of the detector. Neutrinos are spin-one-half neutral particles with
very small mass. The 8 decay is then written as

72X = 4.V +e 47, (3.68)
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Figure 3.8: Beta minus decay. From http://en.wikipedia.org/wiki/Beta_ decay.

as a three body decay. The electron anti-neutrino is denoted as 7.. The simplest example is the
decay of neutron into proton accompanying emission of electron and neutrino [see Fig. 3.§],

n—p+e +7 (3.69)

From Table 6.1, we know that the neutron and proton masses are 939.56536 MeV and 938.27203
MeV respectively. The electron has rest mass 0.51 MeV. The mass difference between neutron and
proton plus electron is Am = m, — mp, — me = 0.78 MeV. Then the Q-value of the neutron S-decay
is @ = Am — m,,. The measured value of the maximal endpoint energy of the electron is about 0.78
MeV, so we conclude that the neutrino mass is very small.

Let us discuss all forms of the 8 decays in general sense. The first form is the § decay of electrons
in Eq. (3.68), whose decay energy is given by

Ey = mx(Z,A)—my(Z+1,4) —me
= Mx(Z,A) — My(Z +1,A) (3.70)

where mx and Mx are the nuclear and the atomic mass respectively. In order for the 8 decay to
occur, it is required that Mx > M.
The energy-momentum conservation for 8 decay in (3.68) reads

Pe + Pv + PY = 0
E.+E,+Ey = E (3.71)
where Ej is the decay energy, F; (i = e,v,Y) are kinetic energies. Let us consider two extreme cases.
If p, =0, we have
py i Eo(Ee+2me)
me B me - 2my
E.(E + 2m)
2my

Ey =

Ey, = E.+Ev~ +E.~E, (3.72)

for E, < my. Here we have used for the kinetic energy F,

2 1 2\ 2 2 E2
E:\/p2+m2—m:p—<p ) ~ DB (3.73)

2m  2m \2m “om  2m

If po =0, then E, = 0. We see that the energy of the electron is in the range between 0 and Ej.
Neutrinos are neutral fermions with spin one-half and are almost massless. We can define the
helicity for massless fermions, H = o - P, see Fig. 3.10. Anti-neutrinos have positive helicity and are
right-handed meaning that their spins are along the momentum direction. Neutrinos have negative
helicity and are left-handed. Neutrinos rarely interact with other particles. The cross section of
neutrino-nucleus interaction is about o ~ 10~%* cm?. If the matter density is about n ~ 1022 cm™3,
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Figure 3.9: Decay scheme for beta decay for Cobalt-60 and Gold-198.

http://en.wikipedia.org/wiki/Decay scheme.
Decay Scheme of Au'%®

y198
$Co
0.31 MeV B oosew 0.28
1.48 Me\:l\a—’";— 1.1732 MeV ¢ 9 **Hg198ém
0.68]1.09
1.37 *Hg19em
13325 MeV y
0.41
BN Stable Hg%
Figure 3.10: Neutrino helicity.
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Figure 3.11: The K-electron capture isotope ;Be, taken from Ref. [24].
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the mean free path is about Iy, = 1/(no) ~ 10'® km. Direct experimental tests of neutrinos are hard
to carry out. But there are some indirect evidences for their existence, for example, the beta particle
can be emitted at any angles with respect to recoiling nucleus. The measurement of the recoil energy
spectrum of an electron capture isotope is a good test of the single neutrino hypothesis. The kinetic
energy of the recoiling nucleus is

B B Me?

E pr— = ~ ~J
YT omy  2my  2my 10,000 MeV

~ 100 eV (3.74)

We see that the recoil energy is very small. In order to enlarge the recoiling energy the light nuclei
are favorable. Davis Jr. measured the recoil energy of the process [24]

Be+tex — sLi+v+0.87MeV (3.75)

which gave the expected result EFr ~ 56 eV.
The direct detection of neutrinos was made by F. Reines and C. L. Cowan in 1959 [25]. They
measured the cross section of the following process

v+p — n+et (3.76)

The anti-neutrinos were emitted from a powerful fission reactor. They used 1400 liter liquid scintilla-
tion detector as the proton source, where a cadmium compound was added to the scintillator solution
mainly of triethylbenzene for the detection of the reaction by the delayed coincidence technique.
The positrons will annihilate with electrons emitting photons, while the neutrons are captured by
cadmium also producing photons.

The 3 decay of $H put a more stringent limit on the neutrino mass,

H—3He4e +7, (3.77)

The atomic masses of $H and 3He are 2809.431984 MeV and 2809.413284 MeV respectively. The
atomic mass difference between ‘fH and gHe is Am = My— My ~ 0.0186. The nuclear mass difference
between $H and 3He + e~ becomes Am = (Mg — me) — (Mpe — 2me) — me = My — My ~ 0.0186
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Figure 3.12: The anti-neutrino detector used by Reines and Cowan, taken from Ref. [25].
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F16. 1. Schematic of antineutrino detector. This 1.4X10%liter
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(3 g/liter), POPOP wavelength shifter (0.2 g/liter and cadmium
(1.8 g/liter) as cadmium octoate. An antineutrino is shown trans-
muting a proton to produce a neutron and positron. The positron
slows down and annihilates, producing annihilation radiation.
The neutron is moderated by the hydrogen of the scintillator and
is captured by the cadmium, producing capture gamma rays.
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MeV. The upper limit for neutrino mass is only about 18.6 KeV. The further study of momentum
spectrum of electrons gives an upper limit of only about 60 eV.

We provide two another examples for beta decays, Co-60 and Au-198, in Fig. 3.9. Co-60 is widely
used as radioactive source for radiotherapy. Co-60 mainly decay to two excited states of Ni-60 through
beta emission with a half life of 5.27 years. The excited states of Ni-60 emit two gamma rays with
energies at 1.1732 MeV and 1.33 MeV. The decay energies are 0.31 MeV and 1.48 MeV respectively.
For Au-198, it has three beta decay channels, to excited states of Hg-198 at 1.09 MeV and 0.41 MeV,
and to the ground state. The excited states decay to the ground state by emitting three gamma rays
of 0.68 MeV, 0.41 MeV and 1.09 MeV. The decay energies are 0.28 MeV, 0.96 MeV and 1.37 MeV
respectively.

The second form of beta decay is the 31 decay for positron emission,

24X = 4. YV4el+u (3.78)
The decay energy is given
Ey = mx(Z,A)—my(Z—-1,4) —m,
= Mx(Z,A)— My(Z—-1,A) — 2m, (3.79)

In order for the 3% decay to take place, one requires Mx(Z, A) > My (Z — 1, A) + 2m,.
The third form of beta decay is the orbital electron capture (EC),

4X ey — 5 Y+, (3.80)
where e; is the electron in the i-shell. The decay energy is

Eyy = mx+me—my—W;
— Mx(Z,A) — My(Z —1,A) — W, (3.81)

where W; is the binding energy of the electron in the atom. The K-level electron capture takes place
with the largest probability, next to it is the L-level one. When

Wk > Mx(Z, A) — My(Z — ].7A) > Wi, (382)

the K-level electron capture cannot happen but the L-level one can. Since 2m, > W;, the nuclei
which can 87 decay can also capture orbital electrons.
As an example, we look at the 87 decay and EC of Zn-65:

®Zn — SsCu+et 4+,
SZn+e; — SoCu+twv, (3.83)
The scheme plot is shown in Fig. 3.13. There are two EC channels, whose decay energies are 0.236
MeV (45%) and 1.34 MeV (53.5%). The decay energy of the 8+ decay is 0.325 MeV. $4Cu is the
nucleus where all 37, 87 and EC can happen.

There are two kinds of double § decays, one with two neutrinos produced (352v) and another
without neutrinos S50v.

72X = 2.,V +2 +2, (BB2v)
42X = 5.V 42, (BBOV) (3.84)
The neutrinos in 2v83 are Dirac neutrinos for which anti-neutrinos and neutrinos are different
fermions, those in OvSf are Majorana ones for which anti-neutrinos and neutrinos are identical.
The neutrinoless double 8 deay (850v) is the combination of two processes,
n — pt+te +vU
v+n — p+e” (3.85)
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Figure 3.13: 3% decay and electron capture of Zn-65.
Decay Scheme for B* Emitting Zn®°

244 day Zn®®

e
1.5%, 0.325 MeV
Stable Cu®®

Vertical line represents the rest mass of the 2
electrons. Energy equivalence: 1.02 MeV

No experiments so far have succeeded in proving that neutrinos are of Dirac or Majorana types. In g3
decay, the final nucleus must have a larger binding energy than the initial nucleus. For some nuclei
the 8 decay cannot happen since the nucleus with one more proton and one less neutron has smaller
binding energy, the nucleus with two more protons and two less neutrons has larger binding energy
so that the double g decay can happen. Germanium-76 is an example, which can in principle decay
to selenium-76 via the double 8 decay. Here are isotopes which have been observed to have double 5
decay: 45Ca, 18Ge, $2Se, 967r, 100Mo, 1160id, 128Te, 130Te, 13ONd, 235U,

Exercise 17. Write down the reaction formula for the 3 and 3% decay for the nucleus X,
where the daughter nucleus is 4,Y with A’ and Z' the nucleon and proton numbers. What

are conditions for these decays to take place? Express the conditions using the atomic masses
of X and Y.

Exercise 18. Write down the reaction formula for the 552v and BS0v decay for the nucleus
éX, where the daughter nucleus is Q,Y with A" and Z' the nucleon and proton numbers.
What is the difference in the electron energy spectra between the S52v and 580y decays?

Exercise 19. For following beta-type decays,

72X — .Y +e +7, (B)

72X = gaY +el v, (BY)
24X +ey — 5.V 4w, (EC)
72X = 4.,Y +2e +20., (BB2v)

Using atomic masses of X and Y to express the energy, what are the energy conditions for
the reactions to take place?
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Figure 3.14: Double beta decay. From: http://en.wikipedia.org/wiki/Double _beta_decay.
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Figure 3.15: Similarity between an electron scattering and a beta decay-type reaction. The propagator
of the W# and Z° can be approximated as a point contact interaction due to their heavy masses.
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Exercise 20. List all mass data for mother and daughter nuclei for nuclides which can
undergo double beta decays. These are 35Ca, 55 Ge, §3Se, 95 Zr, 19° Mo, 116Cd, 138 Te, 130 Te,
$ONd, 338 U. Calculate the Q-values of each decay.

3.4.1 Fermi theory of 5 decay

In 1934 Fermi proposed a theory to describe the g decay. Fermi made an analogy of the 5 decay to
the quantum transition of two atomic states radiating light or electron-electron scatterings, see Fig.
3.15. Similarly in 8 decay a quantum transition takes place where a neutron changes to a proton
with emission of an anti-neutrino and an electron. In quantum electrodynamics, the amplitude of
electron-electron scatterings can be written as 157#1/)@/77"1/1 where 1 is a spinor field for electrons and
can be understood as the electron wave function. Fermi then proposed the four-fermion model for
the 8 decay. In this subsection, we will illustrate how the model works.

Before we discuss about the Fermi theory of the 8 decay. Let’s first derive the Fermi golden rule
for the rate of a quantum transition process from the Schrédinger equation. Suppose the transition
is the concequence of the perturbative part of the Hamilton, Hj,;. The free part of the Hamilton is
denoted as Hy. The Schrédinger equation reads,

o

ih—r = (Ho + Hine)y (3.86)
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where Hi,y < Hp. The eigenstates of Hy form a complete and orthorgonal set {|n),n =0,1,2,---}
with Hg|n) = E,|n). Suppose at the initial time ¢ = 0, the system is in one eigenstate of H,
¥(0) = |é). At a later time ¢, the wave function is in the form,

00 = X Cultyexp (£ Eut) ) (3.87)

So we have Cy;(0) = d,;. We can calculate the amplitude C,x(t) by substituting the above wave
function into the Schrédinger equation,

. d 1 7
zhz ﬁCnli(t) exp (—hEn1t> |n1) = ZCm(t) exp (_hEmt) Hint |n1) (3.88)

We can determine C,;(t) by projecting the above state on |n),

C'm(t) = %chli(t) exp {;(En — Enl)t} (n| Hing In1)
~ %exp {;(En _ Ei)t} (n| Hin |3) (3.89)

where we have used C,,;(t) = Cp,;(0) = 0,,;. Then we can solve C,;(t) as
1 [t i .
Crni(t) = 0ni+—= [ dtexp|-(E,— E;)t| (n| Hin |7) (3.90)
th Jo h

If n # i, we get the transition probability for |i) — |n),

1]/ i NG
Pu = /0 dt exp [h(En - Ei)t] (0] Hine |1) (3.91)
If Hiyt is independent of time, the probability for ¢ — oo becomes,
" , 2
1 A2 i
P, = = [(n| Hint |2)] /0 dt exp [h(En — Ez)t}
1 | 2 sin®[(B, — Ei)t/(2h)]
= Y Hin
K2 |<’fl| t |Z>| (En . Ez)z/(4h2)
—  |(n| Hing |i)|* 27t0(E,, — E;), (t — oo, in natural unit) (3.92)
where we have used i (2)
. sin“(z)
zlgl;o = = wo(x) (3.93)
Taking the density of final states into account, we obtain the transition rate
A= / dn(E,) |(n] Hg 1) 28(E, — E,)
= 2mp(Ey) | (] Hine i) (3.94)

where g—g = p(FE) is the energy density of states. Eq. (3.94) is called the Fermi golden rule.

Now we deal with the 8 decay with the Fermi golden rule. The initial state is the state of the
mother nucleus and the final state is made up of daughter nucleus, an electron and an anti-neutrino,

i) = §X>=Ui(x)
f) = |2aYieT, Pe) = up(x)de(xe) bu (%) (3.95)
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Here u;; are eigenstates of mother and daughter nuclei respectively, and ¢. and ¢, are the wave
function of the electron and neutrino. Accoding to the Fermi golden rule the differential decay rate
reads

dX\ = 27 |(f] Hine [1)|? 6(E¢ + Ee + E, — E)dp(e™, %) (3.96)

where dp(e™, ) is the number of final states for electrons and (anti-)neutrinos. The matrix element
of the Hamiltonian between the initial and final state is

Mg = (| Hing i)
= /dgxd:sxedgx,,u}‘(x)gbz(xe)gbz(xy)Hintui(x)

= G’/cl3>cd3xed3x,,1[fk (%) (%e) b5 (%0 )ui (%) (%6 — x)0(x, — X)

= G / d*xuf (x) g (x) ¢y, ()i (x) (3.97)
where we assumed the interaction part of the Hamiltonian is in a point contact form,
1nt G(S( )5(XV - X) (398)
with G the effective coupling constant for 5 decay.

The differential decay rate for emitting an electron within the momentum range [k, ke + dke] is,

2

d\ ~ G? / d3xuf (x)¢r (%)% (x)ui(x)| 270(Es + E. + E, — E;)dp. (3.99)

Agsuming that the electron and the neutrino are free particles, their wave functions can be approxi-
mated by the plane waves

1 iKe X
e = e
T
1 .
b = Welkv'x (3.100)

Substituting the above into Eq. (3.99), we obtain

2

1 ,
D G2W / dPxuf (x)u;(x)e " Ke ) x| 9n5( By + Eo + E, — E;)dp
1 Vd*k, Vd3k,
= G’ ———2216(E; + E. + E, — E;)| Mg |?, (3.101)

V2 (2m)3 (2m)3

where we have used

Vd3k Vdk, VdQ, VdS,
dp = = k2k2dk.dk, :
3 (2m)? (@m) (2m)?
2
|Mg)? = ‘/d?’xuf (x)e ke Fku)x (3.102)

where we used k., = |ke,,|. Note that |Mg|? is dimensionless. If we neglect the neutrino mass m,, ~ 0
and integrate over final state phase space where electron momenta are in the range [k, ke + dke], Eq.
(3.101) becomes

a0 d3k,,
dA:22k2dke/—e/ ——=6(Et + E. + E, — E))|Mg|?
G?

= 23dkk2(E Ef — Eo)*| Mg|? (3.103)



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 56

So the probability distribution is
dA G?

= —Kk2(AFE — E.)?|M;z|? 104
dkc 27T3ke( e) I ﬁ| (3 0 )

where AE = E; — Ef is the energy between the mother and daughter nucleus in the beta decay or
the decay energy.

Here we have neglected the influence of the Coulomb field on electrons from the nucleus. Normally
the plane wave function of an electron can be distorted in the Coulomb field from protons inside the
nucleus. The distortion to the electron wave function can be described by a Coulomb modification

factor F(Z, E.),
x

l—e*®

where © = +21Ze? /v, for the ST decay with v, = m_y/E2 — m2 being the electron velocity. The
final form of the probability distribution is now

F(Z,E,) = (3.105)

dX G?
T = go3k(Bo— Eo)*F(Z, Eo)|Mg[? (3.106)

We can re-write the above spectrum as

d/dke

Rz, By ~ CAETE)

= C(By-T.) (3.107)

where E, = T, +me., Ej is the Q-value, and C is a constant. We can see that \/(d\/dke)/[k2F(Z, Ee)]
is in linear relation to E,, which is known as the Kurie plot. From the Kurie plot we can determine
the maximum energy AE or the Q-value from the intercept with the energy-axis. In Eq. (3.106),
we see that the electron spectrum is in the range k. = [0,1/(AE)2 —m2] ~ [0, AF — m2/(2AE)],
see Fig.3.16 for the electron momentum and kinetic energy spectra of electrons and positrons in 4%
decays of $5Cu.

If we recover the neutrino mass in Eq. (3.106) we obtain

dA G?

Rl 2
ol LA | Mg|?, (3.108)

2 m?
AE—Ee) F(Z,Ee) ]._m

where we have used k2dk, = k,E,dE,. The zero points read Eéo) = AF and Ego) = AE+m,, where
the lowest zero point Ee(o) = AFE — m, is physical. So we can determine the neutrino mass from the
intercept with energy axis once we know AF.

We can obtain the integrated rate from Eq. (3.106) by using dimensionless variable w = E,/m,
and wg = AE/me.,
G2 Eo
A = 273/ dE.F(Z,Ee)Ecke(AE — Eo)*| Mg |?
T J e
G*m?

~ ?;f(z, wo)| Mg|?, (3.109)

where f(Z,w) is defined as

f(Z,wg) = /1w0 dwF(Z,w)Vw? — 1(wy — w)?*w (3.110)
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Figure 3.16: Momentum and kinetic energy spectra of electrons and positrons in 3* decays of SaCu.
Taken from Fig. 5.9 on p129 of Ref. [37].
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Figure 3.17: Illustration of the Fermi-Kurie plot for >H —3 He 4+ e~ + 7. Suppose m,, =30 eV, there
is difference between massive and massless neutrinos. Taken from Fig. 5.11 on p130 of Ref. [37].
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Figure 3.18: T /5 f(Z,wo) for superallowed transition. Taken from Table. 5.3 on p133 of Ref. [37].

Decay fT(s)

e g 3100 + 31
HO — HN 3092 + 4
BNe — WF 3084 + 76
Mg — Na 3014 £ 78
#Al - ¥Mg 3081 £ 4
857 — BA] 3052 % 51
g . ¥p 3120 + 82
¥Cl - M8 3087 £ 9
Mar— HCl O 3101 £ 20
WK Mar 3102+ 8
®ea — BK 3145 + 138
8¢ — Y2Ca 3091 £ 7
2Tp - 98j 3275 + 1039
6y _, Ty 3082 + 13
i O L) 2834 + 657
Mnp — WCr 3086 £ 8
MCo — ¥Fe 3091 £ 5
2Ga — %2Zn 2549 + 1280

If wy is very large, we have f(Z,wq) ~ w§/5. The the half life is given by

In2 273 In 2

T =
12 X GPmif(Z,wo)|Mg]?

(3.111)

If we know Tj/o and |Mg|?, we can determine the coupling G. It turns out that the quantity
Ty/2f(Z,wp) is almost a constant for certain type of beta decays. It is called the comparative
half-life. For 0% — 0T transition, we have |Mg|? = 2, T2 f(Z,wp) should be a constant, see Fig.
3.18 for the experimental data. From the data G can be determined to be 0.89 x 1074 MeV - fm3 =
1.16 x 1075 GeV 2. Eq. (3.111) can be put into a simple form,

6185
Ty 2 f(Z,wo) = second

| Mg
So the dimensionless coupling constant is Gmg ~ 1.026 x 1075 with nucleon mass m,. This can be
compared to the counlings in strong and electromagnetic interactions whose coupling constants are
of the order 1 (strong) and 10~2 (electromagnetic). We see that the strength of the 3 decay is much
weaker, this is why the so-called weak interaction is at work in the 8 decay.
We can estimate the free neutron half life from the beta decay by Egs. (3.110,3.111). We can
neglect F(Z,w). We can further neglect the recoil effect and approximate |Mg|*> ~ 14393 /9% ~ 5.8,
with AE ~ 1.29 MeV, G = 0.89 x 10~* MeV - fm® = 1.16 x 1075 GeV 2, and

wo
f(Z,wg) = / dwv/w? — 1(wy — w)*w ~ 1.63, (3.112)
1

we obtain the neutron’s half life

197 x 1012273 1n 2

1.152 x 1010 x 0.515 x 1.63 x 5.8
~ 654s.

T12(n) (fm/c)

The data give T /5(n) ~ 661 s. We see the perfect agreement between the data and the theoretical
value.
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Let us discuss about the transition amplitude |Mg|?, Eq. (3.102). Note that the phase is very
small (ke +k,)-x~ 0.1 —0.01 < 1, so we can make an expansion of the phase factor e’(Ketkv)x ip
terms of powers of (k. +k, ) -x. We can also make an expansion of it in terms of spherical harmonic
functions,

eilketku)x 2L + 1)(—i)%j1 (ke + ky|x) Pr(cos 6
( )( ) JL(| e u| ) L( )
L=0

) %k + L [Fa” Py (cos ) (8:113)
L=0

Therefore the amplitude can be written as

_ (2L + 1)(=i)* ]
My = ;) Lyl /d3xuf (x)ui(x) ke + ky |2 PL(cos )

> Mg (3.114)
L=0

The matrix elements corresponding to two lowest partial waves are
ME=0 = /d3xu1? (x)u;(x)
MEL = / B (x)us () ke + k2P (cos 0) (3.115)

If ME=0 +£ 0, it is called the allowed transition. If MEF=1 =£ 0, it is called the first order prohibited
transition and etc.. The partial wave contribution ML drops very fast as L increases. The suppression
of higher order contributions can be seen by

MﬁLJrl kr
ME 2041

~ 1072 (3.116)

for r ~ 5 fm and k ~ 1 MeV. So we see that the lowest order, L = 0,1, contributions play the role.
In the original version of the Fermi model of the beta decay, the spin part is absent. Nucleons
and leptons are spin-1/2 fermions, we can recover the spin part in Eq. (3.114),

Mef = 3 |MES P (3.117)
L,Se.

where S, = S, + S, is the lepton spin. The angular momentum conservation reads
Ji=J¢i+Se +L (3.118)

where L denotes the angular momentum of the leptons, and J;(J¢) is the nuclear spin of the mother
(daughter) nucleus or the intitial (final) nuclear state. The spin of the leptonic system S, can be
0 (singlet) or 1 (triplet), which correspond to Fermi and Gamow-Teller transition respectively. The
strength for Fermi and Gamow-Teller transition are different. The coupling strength is charicaterized
by Gar/Gr ~ —1.26. For allowed transitions of the pure Fermi type (L = 0, S; = 0), we have
\MﬁLZO’SFOP = 1. For allowed transitions of the pure Gamow-Teller type, we have |MﬁL:0’S’:1 |2 =3,
because there are three spin states. For super-allowed transition, we have |Mé;:O’S’:0 (0r = 0h)2P=2
due to two pairing nucleons outside the shell in the initial 0T state. For the mixed type decays, there
are both Fermi type and Gamow-Teller type contributions. We denote the matrix element squared
as GZ|Mr|? + G%1|Mgr|*. From Eq. (3.114) we have parity selection rule:

PP = (-1)", (3.119)
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Table 3.3: Classification for the beta decay. Parity selection rule: PPy = (—1)%.

S; = 0: Fermi S; = 1: Gamow-Teller
L=0:allowed | J;—J; =0, PP =1 | J,—J;=0,41, P,P; =1
0t — 0": super-allowed | 07 — 1%: unique Gamow-Teller
L —1: 1st forbidden Ji—J; =0, %1 Ji—J; =0, £1, 2
PP =1 PP =1

where P,(P%) is the parity of the intitial (final) nuclear state.

For S., = 0 and the allowed transition (L = 0), we get J; — Jf = 0 and P, = P, this is called
Fermi selection rule. For S, = 1 and the allowed transition (L = 0), we get J; — Jf = 0,£1 and
P, = P, this is called Gamow-Teller seletion rule.

The classification for the beta decay is in Table 3.3. For various types of transitions, the decay
strengths vary to many orders of magnitude: log,o[T}/2f(Z,wo)] =2.9-3.7 (super-allowed), 4.4-6.0
(allowed), 6-10 (1st forbidden), above 15 (2nd forbidden), where T} /5 is in the unit of second.

Here are some examples for the allowed S-decays. (1) {*O —3* N*, 19C —10 B* 1§Ne —{8 F*
and $3Cl =3¢ S are 0t — 0" super-allowed Fermi-type transitions. The scheme plots for these
decays are shown in Fig. 3.19. (2) {°C —1° B (07 — 17), §He —§ Li (07 — 17), 3B —{3
C(3/27 — 1/27), 28Mg —3 Al" (07 — 17) and §3Cr —§2 Mn (0* — 17) are Gamow-Teller
transitions. The scheme plots for these decays are shown in Fig. 3.20. There are mixed type of
decays, here are some examples. (3) Mirror decays: n — p(1/2% — 1/2%), 3H —3 He(1/2% — 1/27),
BN =83 C(1/27 — 1/27), 2iNa =3} Ne (3/2+ — 3/21), 41Sc =3} Ca (4t — 41); Non-mirror
decays: 2{Na —73 Mg (3/2F — 3/2%), HAr =1} K (7/27 — 7/27), 3%Sc —35 Ti (47 — 471),
52Mn —37 Cr (27 — 21), $3Ni =83 Cu (5/27 — 5/27).

We now discuss about the Fermi model of the orbital electron capture process. If the mass
difference between the mother nucleus and the daughter nucleus is larger than the electron’s binding
energy, the orbital electron capture can take place. The electron capture process leads to an electron
vacancy in the orbit. The filling of this vacancy by a free electron can release the binding energy by
emission of X-rays or Auger electrons. The decay constant can be obtained through the Fermi golden
rule,

d
d\pc = 27T|Mﬁ|25(EV—EO)dTndE,,, (3.120)

where FEj is the Q-value of the process and

My = G / A (%) 67 (%) (%) 1 (),

d 1
dE" = VisE. (3.121)

Here ¢¢(x) is the electron wave function in the atomic shell. Capture is most likely for 1s electrons
in the K-shell, since the s-wave function is maximal at the origin,

pe(x) = %(ZeZme)S/QeXp(fZezme|X\). (3.122)

The neutrino wave function is still a plane wave, ¢, = ﬁeik”‘. Then we have

11
IMs)? = G*==(Ze*me)®| Mgl?,
Vr

Mg = /dgxu}‘ (x)ui(x)exp(—ik, - x — Ze*me|x|), (3.123)
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Figure 3.19: The scheme plots for the allowed [-decays of the Fermi type. The half-lives are shown
as logyo(fT1/2). From TAEA database NuDat 2.6 at “http://www.nndc.bnl.gov/nudat2/”.
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Figure 3.20: The scheme plots for the allowed §-decays of the Gamow-Teller type. The half-lives are
shown as logyo(f71/2). From TAEA database NuDat 2.6 at “http://www.nndc.bnl.gov/nudat2/”.
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where Mpg is dimensionless. So after integration My; is replaced by its average value, the decay rate
or constant is then

G? _
Apc = — (Ze*me)*|Mg|*E?.
T

We have taken into account that there are two 1s electrons in the K-shell. We see that the decay
constant is proportional to Z3.
Now we calculate the cross section of the inverse beta decay processes described by

X 4v, — ?HY—l—e*,
X +0, — 4.,V +eh. (3.124)
The simplest inverse beta decays are

P+ — n+et,
n+ve — pie . (3.125)

The transition rate for the inverse reaction is given by

d
i = 27| Mg |?8(E. — AB) -~ dE, (3.126)
dE,
where AE = F; + E,, — Ef, and
dn \%
= —kFE, 12
dE. 272 (3.127)
After integration, we obtain
1 - dn 1 _
Aimv—b = 27G? — |Mg|* — = —G?poEo| Mg|?
b TGy Ml g = S G pe Eel Ml
1 _
= —VG2m3|Mﬁ|2w\/w2 -1 (3.128)
™
where the dimensionless nuclear matrix element My is defined by
My = / dPxug (x)u; (x) et kv ko) x (3.129)
In general both Fermi-type and Gamow-Teller type reactions are present,
(2 Y 2>, Gér 2
|Mg|® = |Ma(F)|]" + T%|MH(GT)| (3.130)
Note that Gy =~ G. The cross section is then given by
)\inv—
Oinv—b = F b = Ainv—bv/c

1 _
= ;G2mzw\/w2 — 1| Mp)? (3.131)

Using the value |Mg|? ~ 5, we can estimate the magnitude of oy, for e.g. w = 3: oyy_p ~
20 x 10~%* cm?.

In real situations we have to determine the electron energy from energy-momentum conservation.
We assume the inverse beta decay only affect the nucleon inside the nucleus. Then we have following
equations from energy-momentum conservation in the center-of-mass frame,

Pcv = Pci
Pce = DPcf

ECV + \/ pgi + ml2) = V p(z:e + mg + \/ pgf + m121 (3-132)
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We can express F¢ as a function of pc,

pcu+\/pcu+m2) m _m
E. = (3.133)
2(pev + /P2, +mi)

The neutrino energy in the c.m.s. is related to that in the lab frame,

1-pBe

cv = c\Pv — ch v 3.134
p Velpw = Bebv) = ——2 Vi (3.134)
where v, = ﬁl_ﬂ? and B. = py’fmp. Then we transform to the lab frame where the initial state
nucleon is static,

E. = ’Yc(Ecc + ﬁcpcc COS HCC) (3135)

We can take average over 6., for E,, so we get the average electron energy in the lab frame, E, = . Fee,

or explicitly,
) pcy+\/pw+m2) +mg (3.136)
L) = 3.136
2(pev + /P2, +m3)

Substituting w = (Ee) /me into Eq. (3.131), we can obtain the cross section as a function of the
neutrino energy.

Exercise 21. When the neutrino has a mass, what happens to the electron energy spectra

dXx
b as Eo — AFE.

Exercise 22. Cualculate the cross section of the inverse beta decay p + Ve — n + e’ and
n+ve —p+e forp, =[0,10lme. One should use exact masses for proton and neutron,
i-e. take the mass difference into acount.

Exercise 23. Read the article about solar neutrino problem in Ref. [36]. Write a report
about it in 2000 chinese words.

Exercise 24. Find as many as possible the super-allowed and unique Gamow-Teller 3 decays
and in the IAEA database NuDat. For each decay, please list the decay reaction formula and
the quantity log(ft) for the half life.
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Figure 3.21: The parity violation in the S decay.

neutrino electron

T

Cobalt Nickel T

electron neutrino

Exercise 25. The half-life of the beta decay is given by

In2 _ 273 1n 2
N T GPmif(Z,wo)|Mpl?

Ty =

where G = 0.88 x 1074 MeV - fm? = 1.15 x 107 GeV ™2, wy = AE/m. with the decay energy
AFE and electron mass me = 0.511 MeV. For wo > 1, we can approzimate f(Z,wq) ~ wg/5.
For a pure Fermi transition (L = 0, S, = 0), we have |Mg|?> = 1. For a pure Gamow- Teller
transition (L = 0, Se, = 1), we have |Mg|*> = 3, because there are three spin states. For
super-allowed transition (0t — 0% ), we have |Mg|* = 2 due to two pairing nucleons outside
the shell in the initial 0T state. See Fig. 3.19 for super-allowed transition of {*O —1* N*.
Calulate T' /5 for such a beta decay in the unit of second.

3.4.2 Parity violation in S decay

In 1950s there was a 7 — 6 puzzle that seemingly identical strange mesons §+ and 77 can decay into
two and three pions respectively,

ot — 7t +7°
™ = at4at 4T

Considering a pion has negative parity and the decay occurs in s-wave, it seems that §+ and 77 are
different particles with opposite parity. But actually they are all kaons and parity is violated in weak
decays.

In 1957 C.S. Wu and her collaborators measured the electron distribution in the S decay of
polarized cobalt ,

0Co — ONi+e +7, (3.137)

They found that electrons are predominantly emitted opposite to the nuclear spin. Under the parity
transformation r — —r, the magnetic field and the spin are invariant while the mometum changes
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the direction, i.e.

B - B
s — s
P — -p (3.138)

Along the direction of the magnetic field, a cobalt nucleus carries a spin of 5h while a nickel nucleus
carries a spin of 4h. The difference in spin is compensated by the emitted electron and anti-neutrino.
Since the anti-neutrino is right-handed (the spin of the anti-neutrino is along its momentum), the
electron is predominantly emitted opposite to the direction of the nuclear spin, see the left panel of
Fig. 3.21.

Exercise 26. Wu and her collaborators measured the electron distribution in the B decay of
polarized cobalt, $2Co — S$INi + e~ + Uo. Describe the main result of the experiment and
explain why the result indicates that the parity is violated.

3.5 v decay: electromagnetic interaction at work

Nuclei are many body systems of nucleons which interact via nuclear force or strong interaction. A
nucleus can stay in some quantum states with specific energies. By external perturbation a nucleus
can be excited to higher energetic states and can jump onto its ground state by radiating photons
(for example, the nuclei normally stay in their excited states right after the o and g decay).

3.5.1 Classical electrodynamics for radiation field

Classical electrodynamics can be summarized by Maxwell equations,

V-E = A4mp,
47 1 0E
B = —j4+-22
VX c‘]—i_cat7
V-B = 0,
10B
E = ———. 1
v x e (3.139)

From the last two equations, we can define scalar and vector potential ¢(¢,x) and A(t, x),

B = VxA
10A
E = —-Vo——— 3.140
c Ot ( )
The above equations are invariant under gauge transformation
10f
/ P —_—
o= oF c ot
Al = A-VJ (3.141)

where f(t,x) is a function of space and time. Eq. (3.140) satisfies the last two equations of (3.139)
automatically. Then inserting Eq. (3.140) into the first two equations of (3.139), we obtain

10

V2 p— VA = 4
Ve c@lﬁv mp
1 0%A 9 10 4
— — V°A <A -— —j 142
22 VY +V(V-A)+ A Pt (3.142)
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We choose the Coulomb gauge,

V-A=0 (3.143)
and consider the free space where p = 0 and j = 0. Then Eq. (3.145) becomes
V¢ = 0
1 0%A 9 10 47
= —V°A+ —— = —j 144
02 a2t % + Catv¢ c Js (3 )

We can further set ¢ = 0 as a solution to Poisson equation V2¢ = 0 in free space with boundary
condition ¢| = 0. Then we obtain the wave equation for radiation

1 %A

2 0%
A vector field satisfying the Coulomb gauge is called a transverse field. We consider a solution to the
wave equation (3.145)

X—> 00

~V?A =0 (3.145)

A(t,x) = Age'x—wt) (3.146)
with k2 = w?/c?. The Coulomb gauge gives transverse condition
k-A=0 (3.147)

Such waves satisfying transverse condition are called radiation fields. Now we collect all equations
we need for describing radiation,

B = VxA
10A
Er = —-—
r c Ot
V-A =0
1 02A
3286% ~-V?A = 0 (3.148)

where we have denoted E1 as the transverse electric field. The Hamiltonian for radiation field is
1
Hipq = g/dBI(E% + Bz) (3149)

In order to quantize the radiation field, we consider a box of length L and volume V = L3. The
periodic condition reads
A(t,x € boundary) = constant (3.150)

We choose the following complete set of transverse orthonormal vectors which satisfy the above

periodic boundary condition,
1 .
_e(r, k)e’k* 3.151

where €(r, k) with » = 1,2 are two perpendicular real unit vectors and

21

k = f(nl,ng,ng), ni, N2, N3 :O,il,iQ,-“ (3.152)
The polarization vectors €(r, k) satisfy following orthogonal and transverse conditions
€(r,k) - e(s, k) = 6,5, k- €(r, k) =0 (3.153)

Then the vector potential can be expanded in this complete set of transverse orthonormal vectors as
Fourier series,

27 1z ik-x * —ik-x
Altx) =) <M) e(s, k)[a(t, s,k)e™ > + a*(t, s, k)e %X (3.154)
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where wy, = k. We see that A(¢,x) in the above form is real. Substituting Eq. (3.154) into Eq.
(3.145), we get
d?a(t, s,k)
ot?
So we can determine the time dependent part as

+ wia(t,s,k) =0 (3.155)

a(t, s, k) = a(s, k)e k! (3.156)

Then the vector potential in (3.154) becomes

or \ /2 o .
A(t,x) = E (V(:k> e(s,k)[a(s, k)e wrttikx o gx(g k)eiwrt—ikx) (3.157)
k,s

The Hamiltonian (3.149) can be evaluated as

P
= ) wpa(s,k)a* (s, k) (3.158)
K,s
The first term (%)2 is evaluated as
0A ) or \ /2 Cionttikex iwnt—ikox
e —sz; <M) (s, K)wy[a(s, k)e writikx _gx (g k)eiwnt—ikx]
<5(;1?)2 = —iz Z 2Vw((.ukw;ﬁ)l/ze(s,k) - €(s1,kq)
k,s k1,51

% [a(& k)e—iwkt+ik»x —a* (s’ k)eiwkt—ikx]

x[a(s1,ky)e  WrtTikix _g* () g )eiwi tikix)

[ () = -5 3 Zon ettt

k,s k1,51
X[a(s,k)a(shkl)e—iwkt—iwklt/d3xei(k+kl),x
—a(S,k)a*(sl,kl)e_i‘*’kt"‘iwklt/d3xei(k—k1).x
_a*(s,k)a(sl,kl)eiwktfiwklt/d3x67i(k7kl).x
a* (5, K)a* (51, Ky )t Hionm / P pe-ilieria)x]

= > dmwa(s,k)a”(s,k) + Iy (3.159)
k,s

where we have used [ d®ze’k> 2wkt

L = - 2227%%6(8, k) - €(s1, —k)

k,s s1

x[a(s,k)a(s1, —k)e 2™k 4+ a*(s,k)a*(s1, —k)e?“r! (3.160)

= Vg0, and I; denotes the oscillating terms ~ e
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we will see it will cancel the same term in (V x A)2. The second term (V x A)? is evaluated as

9 1/2 _ _ ' _
VxA = ZZ <WZ> k x E(S, k) [CL(S, k)eflwkt+2k~x _ a*(s, k)ezwktlecx]
k
k,s

(VxA? = = > %(wkwkl)_l/z[k x €(s,k)] - [k x €(s1,k1)]

k,s k1781
[ (S, k)efiwktjtik»x o a*(s’ k)eiwktfikx}

X|a
x[a(sy, ky e Writikex ¥ (g Lk )elriikix]

/de(V «A? = -3 % %(wkwkl)_lﬂ[k « e(s,K)] - [kn x e(s1,k1)]

k,s k1,51
X[a(&k)a(Shkl)e_w"t_i“’“lt/d3xei(k+k1)‘x
_a(37k)a*(51,kl)e_iwkt+iwk1t/d3.’1}ei(k—k1)'x
—a*(s,k)a(sy, ky)e ki wmt /d%e‘i(k_kl)'x

—|—a*(s, k)a* (51; kl)eiwkt+iwk1 t / dSzefi(kJrkl).x]

= Z47kaa(5, k)a*(s,k) — I (3.161)
k,s
where we have used
[k x e(s,k)] - [k1 x €(s1,k1)] = —{ki x [k x €(s,k)]} - €(s1,k1)
= —[ki-€(s,Kk)][k - €(s1, k)]
+k - ki][e(s, k) - €(s1,k1)] (3.162)

The combinging Eq. (3.159) and (3.161), we get Eq. (3.158).

Exercise 27. Derive the classical Hamiltonian in Eq. (3.158) using the momentum decom-
position for the classical field in Eq. (3.157).

3.5.2 Quantization of radiation field

The quantization of radiation field can be done by treating a(s,k) and a*(s,k) as creation and
destruction operator. Then we impose following commutation relations

[a(s,k),aT(s1,k1)] = ds,5 0k kK,

[a(s,k),a(s1,k1)] = [aT(s,k),aT(sl, kl)} =0 (3.163)
The vector potential is then an operator,
or \1/2 . . . .
At,x) =) (m) e(s,k)[a(s, k)e wrttikx o gT(g k)elwort=ikx] (3.164)

k,s

The Hamiltonian as an operator is written in the form

Hyaq = Zwk [a'(s,k)a(s, k) + %] (3.165)
k,s



CHAPTER 3. RADIOACTIVITY AND NUCLEAR DECAY 70

The number operator for mode (s, k) is given by
N(s,k) = a'(s,k)a(s, k) (3.166)
Its eigenstate is then

' (s.30]"4

n(s, k)) = ]

0) (3.167)

One can check

k vn(s,k)|n(s, k) —1)
a'(s,k) |n(s,k)) = +/n(s,k)+1|n(s,k)+1)

a' (s, k)a(s, k) [n(s,k)) = n(s,k) |n(s, k)

)
—~
»
~
3
—~
»
=
~—
~
I

The eigenfunction of radiation Hamiltonian H,,q4 is then a product of such states for a set of modes,

= I InGsi. k) (3.168)
ki,s;
The energy is then
1
E = (A| Haq |A) = Zwk (s, k) + 5] (3.169)

Now we can use creation and destruction operators to express the momentum of electromagnetic field,
1 3
P = — [|dzErxB
4

= —ﬁ/d%%—?x(VxA)
- 1/2
- Z Z : (wkwm) wikile(s, k) - €(s1,ki)]

k,s kl,sl

% /de[a(S7 k)e—iwkt+ik-x _ CLT (8, k)eiwkt—ik-x]

X [a(sl, kl)efiwk-,lt‘f’ikl-x . af(sh kl)eiwkltiikl'x]

21 /2
= Z Z (wkwm) kalels 1 el k)]

k5k17 81

[ dafats 100! (1, e ien it
al(s, k)a(51,k1) i(wr“’”)t*i(k*kl)ﬂ
B ZkaT (5,1) +1/2] = Zk ] (3.170)

Exercise 28. Derive the quantized energy momentum of the radiating EM system in Eqs.
(8.165,3.170) using the quantized field in Eq. (3.164).
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3.5.3 Interaction of radiation with matter

Now we can add matter and matter-field interaction part of Hamiltonian. Consider a system of point
charged particles with mass m; and charge g;, the matter part of Hamiltonian reads,

1
H, = —(pi — ¢iA:)*
;mi(p 7.9

- szn b =3 g b At A )+ 3 LY

_ Z Zqu pZ+Z qz o Al

= Hy+ H (3.171)

where Hj is the free part and Hj is the interaction part of particles and fields. Here we have used

under the Coulomb gauge condition. Here we have denoted A; = A(xl) and B; = B(x;). We can
look at the term A; - p;, with A = 1B X r, we have g; A, -p; = 5&-B; - L; with L; = r; x p; is
the orbital angular momentum of partlcle 7. So this term is actually the interaction energy of the
magnetic moment from the orbital angular momentum in a magnetlc field. Slmllarly there should
also be a term g;5* is the
g-factor of the partlcle S sp1n magnetlc moment. For neutrons with ¢; = 0, the spin magnetlc moment,
would be vanishing which is not true, in order to avoid this problem, we can write the spin magnetic
moment term as giﬁa - B; where e is the absolute value of the electron charge, all information of
the magnetic moment is contained in g;.
The electromagnetic energy is denoted as Hep,

1
Hep = o /d%(EQ + B?) (3.173)
T

where E = Ep, + Er is the full electric field. The electric part of the electromagnetic is

1 , 1
g/d%:E2 = /d3 (Ep, 4+ E1)?
= —/dg (Ef +E7)

1 t t,x’ 1
= 2/d3xd3x’p(’xx)p(x;|x) + 877/‘1395]3% (3.174)

In order to prove the above equation, we can use

0A
L=-V¢, Er = o0 (3.175)

and the Coulmob gauge condition V - A = 0. The mixed electric energy term for transverse and
longitudinal electric fields cna be proved to be vanishing,

/ PiEy By = / #(Ve)- 2
-/ d‘”’”(@f)at) faev ()

DA 5 0 B

boundary
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using the Coulmob gauge condition. The longitudinal electric energy beocmes

/ d2E? = / Br(Vp)? = — / BrpV3ep = 4r / dzpp

1
= 47r/d3:cd3x’|x — X,‘p(t,x)p(t,x’)

where we have used

o(t,x) = /d3 /Pt xX) (3.177)

[x — x|

For discrete system of charged particles, we can further derive

/d?’in = 47r/d3:vd3xlx_1x,| Z%é(x—xi)z(]jcs(x
i J

Qiq]'
= Arx (3.178)
where we have used
X) = Zqié(x—xi) (3.179)
So we can define the Coulomb part of electric energy Hc which comes from the longitudinal electric
field,
A
1
Z - (3.180)

Therefore, we can summarize the total Hamlltoman as

H = H,+H.,=Hy+ Hi+ Hc+ Haa (3.181)
where
1
HO = Z 2m pz
qi q2 2 €
Hy = _ZEAi'pi +Z QmiAi - ZgiTmiU -B;
1 qiq;
He = -y 4
¢ 2 Z |%i —
i#]
Hyg = 87/d3x(E%+B2) (3.182)

Here we have added a spin-magnetic-field coupling term into Hj.

Let us calculate the transition amplitude of an atom or a nucleus between two energy states of
electrons or nuclear by absorption of emission of one photon, a — b+ -y, through the coupling A; - p;.
The initial/final states for atom or nucleus and photons are as follows

initial = |a) |n(s,k))
final = |b)|n(s,k) = 1) (3.183)

The transition amplitude is then

Mg

(b, n(s k) + 1| Hy|a, n(s,k))
’LZ (b,n(s, k) £ 1| A; - V;|a,n(s,k)) (3.184)
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Note that we have neglected A2 term since it is of quadratic order in the electric charge.
First we consider the photon emission case. Inserting Eq. (3.164) into Eq. (3.184), we obtaine
the amplitude for photon emission,

My

’ - 1/2 .
zklzm (v%) (n(s,k) +1|al(s1, k1) |n(s,k))

xe(sr ki) - (b] Y Aeeiont =Y, Ja)

2 1/2 qi .
. 1 k . 1 dwit—ikex; . 1
i (Vwk> vn(s, k) + le(s, k) - (b] % s Vi la) (3.185)

Following the Fermi golden rule, we obtain the transition rate by taking an integral over the photon
mometum and a sum over the photon spin state,

Vd3k 2
Aa—)b+’y = 27 W&(Eb + WE — Ea) Z |Mﬁ‘
s=%+

_ ;ﬁ/kodké(EberkEa)wk;[n(s,k)Jrl]
2

x (3.186)

(s, k) - (b Y 2o T, fa)

After completing the integration over the photon energy to remove the energy conservation delta
function, we arrive at

Massbany = %[ﬁ(k)ﬂ] 3 / Ay

s==+1
2
9i _ik-x,
k)-(b — "V, 3.187
x |€(s, k) - ( |§Z.:mie ) (3.187)
where we have used wy = E, — Ey, = |k| and n(k) = (1/2) >, _, n(s, k).
For photon absorption b + v — a, we derive a similar formula
or \1/2
My = lkz (leﬂ) <7’l($,k) - 1|a(81vk1) |n(85k)>
1,51
Qi —jwprt+iksx;
k . v k1l 1°X4 i b
e(ouk) -l 3 e Vi [b)
2 1/2 qi . .
= i (Vwk> vn(s,k)e(s, k) - (al ; ieﬂw’“tﬂk'xivi |b) (3.188)
The transition rate reads,
Vd3k
)‘b+’yﬁa = 27T/735<Eb + wg — Ea) Z |Mfi|2
(2m) =
1
= ?dﬂkdk‘(S(Eb + wg — Ea)wkﬁ(k)
e
2
qi ik-x;
k) - — iV;|b 3.189
3 Jelork) -l 35 e Vi ) (3.159)
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which has the following form after completing the integration over the photon energy

w
Abty—sa = Tiﬁ(k) Z /ko
s==+1
2

x (3.190)

qi ik-x;
€(s,k) - (al Z o KXV, [b)

Now we look at the simplest case, the electric dipole radiation at the long wave length limit. At
this limit the wavelength of radiation is much larger than the size of the atom or the nucleus, so we
can approximate k -x ~ 0 or e ** ~ 1. Then the matrix element in Eq. (3.187) can be put into the
form,

4di
b 7v1 = b X = D a 3.191
OIS ¥l = (bl X aosila) = D (3.191)
where we have defined the electric dipole moment Dy, = (b|>_, ¢;x; |a). Here we have used

V = ip= z’m%’; = mx, Ho] (3.192)

Then the photon emission/absorption rate in Egs. (3.187,3.190) becomes

WP
Xassbiy = Q—k[ﬁ(k)Jrl] > /ko|e(s,k)~Dba|z
& s==1
Wi 2
Abiyoa = Q—n(k) > [ % |e(s,k) - Day| (3.193)
Y5
s==+1
Note that we have |D,,|? = |Dj,|>. If there is no other photons in the environment, we can set

fi(k) = 0(1) for the process a — b+~ (b + v — a), the above rates become
wp 2
Aasbiy = Mbiyon =5t > [ due(s,k) - Dyl (3.194)
T s==1
The power of radiation is given by,
=i = 2 3 [ a0 jels, 19 D’ (3.195)
k 2m s==+1 7

Suppose the photon is emitted along the z-axis (k is along the z-axis) and Dy, is in the plane of
€(1,k) and k, so Dy, is perpendicular to €(2,k). Suppose the angle between Dy, and k is 6, the
above integral of matrix element becomes

> /ko|e(s7k)-Dba\2 - /ko|e(1,k)-Dba|2

s==41
= /ko |Dpa|*sin? 6 = %” Dy |? (3.196)
So the radiation power turns out to be
_ 4 2
1, = —wj |Dpal (3.197)

3

which is consistent to the result of classical electrodynamics.
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We now look at the electric quadrupole radiation by considering the linear order term ~ k - x in
the phase factor e~ in Eq. (3.187). For simplicity of notation, we suppress the subscript i which
labels the charged particles, and we have

%(k x)(e-p) = Cp+C-_ (3.198)
where Cy is defined by

C: = 5-l(k-x)(e-p) = (k-p)(e-x)] (3.199)

We focus on C which corresponds to quadrupole radiation,

C = -[(k-x)(e-p) + (k-p)(e-x)
= Ykxe Dk e Xye x)
= jt[ 30c-x)(e %) — x*(e k)
_ é jdtQ”: 2161 Ky [Quys o) (3.200)

where we used € -k = 0 and we have defined Q;; = ¢(3z;x; — 2%5;;). We have also used the
Schroedinger equation for the operator O, i%O = [Q, Ho|. Substituting Eq. (3.200) into Eq. (3.187)
and setting 7i(k) = 0, we obtain the emission rate

w
Moty = e 3 [am

s==+1

3
- 7°;k / a9y,
4 s==+1

where n labels all charged particles in the system. This gives the electric quadrupole transition rate.
The absorption rate can be similarly derived from Eq. (3.190).
Let us look at the C_ term in Eq. (3.199),

ei(k, s)k; (b Z QE?),

(3.201)

ci(k, s)k bIZQU

C- = lk-x)(e-p) ~ (k-p)(e-x)] = 7 (k x €) - (x X P)
= (kxe) pp

Note that k x € comes from B =V x A, so C_ ~ —pu; -B is from the interaction of magnetic moment
in magnetic field. So this term corresponds to the magnetic dipole transition. If the particle has spin,
there is also a term (k x €) - pg. So we can combine pg and p; and write the term as

C. — (kxe) (uy+pg) (3.202)

We then obtain the magnetic dipole transition rate from

a—>b+’y - Z /ko

ail

k x e(k, s)] - (b| Z ™ 4wy a > (3.203)

where n labels all charged particles in the system.
From Eq. (3.193) we further obtain

)\b+vﬂa ﬁ(k)
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If we assume equilibrium,
N(A)Xasw, = N(B)Aboa (3.205)

then we have N(a) o< e~ /T and N(b) oc e~ /T,

N@ a0
Nb)  alk)+1
k) — ﬁ (3.206)

which is Bose-Einstein distribution.

3.5.4 Multipole expansion

Let’s first look at electric and magnetic dipole radiation. A static electric dipole is made up of two
opposite charges (g, —q) separated by a distance d along the z-axis. The electric dipole moment is
Dg = gd. Suppose it is oscillating in time, Dg = ¢d cos(wt), it will induce an electric current I in the
z-direction which produces a magnetic field tangent to the circle parallel to the xy-plane and centered
along the z-axis. So the magnetic field is perpendicular to the coordinate vector x, i.e. x- By = 0.
The electric field is determined by Ex) = Bg) x k with k the wave vector. An oscillating magnetic
moment is expressed as Dy = Iacos(wt) where I and a denote the electric current density and the
area of a coil. Similarly it will induce a circular electric field perpendicular to the coordinate vector
x, i.e. x-Eq) = 0. The magnetic field is determined by By = k x E(\)- See Fig. 3.22.

Both electric and magnetic dipole radiation give the same power distribution but radiation fields
have opposite parity under the transformation x — —x. The electric dipole moment is odd under
the transformation, therefore the magnetic field it induces changes sign, i.e. B(g)(—x) = —B(g)(x),
E@)(—x) = —E(g)(x). The magnetic dipole moment is even under the transformation x — —x, so
the fields do not change sign, ie. B(M)(—X) = B(M) (X), E(M)(—X) = E(M) (X)

The wave equation for the vector potential in free space reads

1 0%A

e VZA =0 (3.207)

Let us assume that the vector potential has an oscillating part of the form of e~*!. The wave equation
becomes

(V2 +EHA(k,x) =0 (3.208)
where k = |k| = w and V? is given by
10 0 1.
e _ 19 (29)_ 12
v r2 or <r 8r) r2
L = —ixxV
5 1 0 0 1 02
L? = — C (gnoZ ) 4 —
[sin@ 90 (Sm ae) T T a¢2]
Here L is the angular momemtum operator and can be written as
L = Y L, (3.209)
n=0,%+1

where Ly = (L, + iﬁy) /+/2 are operator that can raise or lower the magnetic quantum number,

. 1
LYoy = ﬁ\/(L FM)(L+M+1)Yr 41 (3.210)
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Figure 3.22: Electric and magnetic dipole radiation. Taken from page 329 of Ref. [4].

7
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and e41 = %(ex +iey), eg = e, and Lo = L,. So we obtain

LY v = Z L,Yive_,
n=0,+1
1
= E\/(L —~ M)(L+M+1)Y ey
1
—ﬁ\/(L +M)(L—M+1)Yy, pr—1e1 + MYy pre,
= VLIL+1) Y CiiinanYimine n (3.211)
n=0,%+1

Any function can be expanded as,
F(x) =Y fr(r)Yom(0,9) (3.212)
LM

The radial part fr(r) satisfies the following equation

et - M e —o

dr2 ' rdr

Using the replacement f;(r) = u;(r)/r'/? , the above equation can be simplified as
2 1d (L+1/2)?
1d 42 —0 3.213
Llﬁ + rdr + 72 } ur(r) ( )

Its solution is the Bessel function with v = 14 1/2. Then the radial part fr(r) has the following
solution

B = ORI+ S
= (CU + CENIL(r) +i(CL) — O (r) (3.214)

where the coefficients ng)w (1 =1,2) can be determined by the boundary condition, and h(Ll)(x) and

h(Lz)(a:) are spherical Bessel functions of the third kind, see Appenix B.
Let us look at the multipole radiation in electrodynamics. Let us assume that all fields are
oscillating in the form of e=*“¢. The Maxwell equations in vacuum read,

VxE = ikB,
VxB = —ikE,
V-E = 0,
V-B = 0, (3.215)

where k£ = w. We can derive the equations for E and B respectively,
(V24 k5B =0, V-B=0,
with E = %V x B,
(V24 E)E=0, V-E=0,

with B = —%v « E. (3.216)
The electric and magnetic fields are related to the vector potential,
A
B=VxA, g 24 (3.217)

ot
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We can solve the vector potential and obtain all radiation fields from above. One way of solving

Eq. (3.216) is to solve the wave equation for each component of E or B first and then insert all

components into the transverse condition V - E or V - B respectively and select the final solution.
We will solve E and B in a different way. We have the following relations

(V2 +k%)(x-B)

(V2+E)(x-E) = 0 (3.218)
where we have used
Vi(x-B) = 00;(x;B;)] = 8;[(0s;) Bj + (8 Bj)x;]
= 20;B; + (0:0;Bj)z; =2V -B +x-V’B (3.219)

This combines the wave function and the transverse condition. We can define the magnetic multipole
mode, or the transverse electric (TE) mode, of order (L, M) as follows

L(L+1
B = HEED g v, 0)
x-EM = o (3.220)
where g (kr) = C’g)h(Ll)(kr) + Cf)h(ﬁ)(l@r). From the last line of Eq. (3.216), we obtain the relation
for the electric field,

M 1 M 1. M
x By = —px-VxEpy= LB
L-EYy) = L(L+1)g(kr)YLa(0,0) (3.221)

Then we obtain the field of the TE or magnetic multipole mode,

EYY = go(kr)LYLu(0,0)
BM = —%VXES\J@ (3.222)

Similarly the electric multipole mode, or the transverse magnetic (TM) mode, of order (L, M) satisfies
the condition

E 71 E 1/\ E
x-EF, = EX~V><B(LA)/I:—%L-B(L]3[
L(L+1
= _%fL(kT)YLM(ea(b)
x-BP = 0 (3.223)

The fields of the TM mode are given by

B, = fo(kr)LYzar(0,¢)
R, = %VXB(LEAL (3.224)

It is convenient to use following normalized vector functions

Xpa(0,0) = L(imﬁYLM("’d’) (3.225)
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which satisfy the normalization and orthogonality conditions
/dQXE/M/ X = Odrpdmme
/dQXj‘:/M/ (rxXpym) = 0 (3.226)

So general solutions to Maxwell’s equations in multipole expansion can be expressed by

E = Z |:]iC(E)(L, MV x fr(kr)Xpam + C(M) (L, M)QL(]W')XLJV[:|
LM
B = > |:C(E)(L7 M) fr(kr)X v — %C(M)(IM M)V x gL(kT)XLM:| (3.227)

LM

The vector potential can be obtained by E = —0A /0t = ikA,

1 i
A= Z |:]CQC(E) (L, M)V x fr,(kr)X o — kC(M)(L,M)gL(kr)XLM}
L,M
= (E) (M)
= D lag) (L, M)A (k%) + aqu) (L, M)A Ly (k, %) (3.228)
L,M

In Egs. (3.227,3.228) a(g),(m) and ¢(g),(v) are all expansion coefficients. We can verify that the above
vector potential really satisfies B = V x A. We can check this. The second term does obviously obey
B =V x A, so does the first term since
VAV x [fr(kr)Xom]} = V(Y- [fr(kr)Xoum]) — V2fr(kr) X o]
= EXfr(kr)Xpou (3.229)
where we have used (V2 + k2)[f1(kr)X ] = 0. We can choose fr(kr) = gr(kr) by re-defining ¢(g)
and cqy), then we have

A (k%) = 2V x ALY (k%) (3.230)

In proper nomalization, the vector potential of a TE mode is given by
8w .
Ay = k\/;oXLM(9»¢)JL(kT) (3.231)

where have chosen jr(kr) for it fullfils the boundary condition A(Ll\fv}(r = 0) should be finite and
A(Ll\ﬁ(r — 00) = 0. The parity of the magnetic multipole field is (—1)%. Due to x - L = 0, we see
that A(Ll\ﬁ is perpendicular to x. The normalization constant can be determined from

" Smkk’
/d%A%} ADD, = 7;30 /dQXEM'XL'M'/dTTZjL(k?T)jL’(k/T)
= AwdrrOnn Ok (3.232)

where we have assumed for KRy > kr > L,

. 1 . s
jo(kr) = Esm(kr—§lj) (3.233)

The boundary condition

jL(kRy) = 0, kuRo— gL = (3.234)
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So we have

Ro kRO
W[ a2 ) = /O Ay (y)

Q

kRo T 1
/ dysin®(y — —=L) = —kR, (3.235)
0 2 2

The the vector potential of a TM mode is obtained by Eq. (3.230),

1 . |8 .
i (e:3) = 17 X AL (,%) = iy [ 5=V % Xpar(0, 0)i (k)
The parity of the electric multipole field is (—1)“*1. The TE and TM modes are dual to each other,
E M E M
Epy =Bl Biy = —Epy (3:236)

The energy flows of both TE and TM modes are along x.

Having the transverse radiation fields A} A)/[(M) we can write down the general solution by expan-

sion and quantize it,

Altx) = Y Z f[aa(l@ L, M)AS,,(k,x)e ™"

LM,k o=(E),(M)
+al (k, L, M)AT3 (k, x)e™] (3.237)

where a, and @, are destruction and creation operators,

[ao(k, L, M), al, (', L', M")] = 65.5:00,0 a1 a1 Or

all others = 0 (3.238)
The Hamiltonian for the radiation field is

R T Li/g IAN\? )
Hpd = SF/dx(E +B)787T &z || = +(V xA)

Sk [aj,(k, L, M)as(k, L, M) + ;} (3.239)
L,M,k,oc

Here we treat the nucleus as a single identity. The transition amplitude from the initial state to the
final state is

A = 2x|(b,1|Hi|a,0)* p(Ef) (3.240)
where Hp is given by Eq. (3.182). Here p(Ey) is the density of final states,

dn Ro
Ey) = 3.241
o) = = (3:241)
where we have used Eq. (3.234).
For electric multipole radiation or TM mode the non-vanishing term in the matrix element
(b,1|Hy|a,0) comes from the creation operator term in the vector field A(t,x) and magnetic field
B(t,x),

\} by (6. LODAR (1) = —ialgy (b, L M)y | 570 % (X006, )70 (br)

ey (b LDBE (k) = il (k. L M) 58 7 (X4 0.0 (k1)) (3282
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where
s (k1) Ro X [XTar(0,0)iL(kr)]
B (k,r) = VxA(LEAZ*(kyr) (3.243)

Substituting Eq. (3.242) into H; in Eq. (3.182) and using Eq. (3.240), we obtain the amplitude for
one charged particle (we suppressed the particle label in the charge and g-factor),

b, 1|H = 1/
(b, 1[Hia,0) ROwLL+1

{ (b[IV 5 (@ Yprin)] - (=i9) + (=iV) - [V x (B Vi) a)
]

eg ‘a’ V x [V x ( LYLM]L a}

- \/ RowL L+1

x{eq (b|[V x (x x VY] 7r)] - V+ V[V x (x x VY 3i0)]] &)
+ eg<b‘o’~v x [V x (L* YLMjL)]’a>}

Am(L+1) KL+
RowL (2L + 1)l

N {eq<b}rLYIfM’ >+k‘g2L1+1<b‘[0'f4(TLYL*M)]‘a>}
- L+1
_ dn(L+1) k Q113 + Q2100 (3.244)

Rowl L+ DI

Here we have assumed that there is only one charged particle in the system, we will add a sum over
all particles in the end. We also assume that kr is very small, i.e. the photon wavelength is much
smaller than nucleus size. We have defined

Qv = eq<b|7‘LYL*M’a>
0 _ gk <b’[ LGy )]‘ > (3.245)
2, LM = g2mL+1 o RS VIR :

We have used

UBIV X (x X VYEan)] - Viba + 95V - [V X (X X VY i) ]¢ba

L+ 1)k" v2
= 2m ((2L++ )1)11%{_( “Y 7 vrta) _TLYL*M(_%)"/}a}

L 1 kL VQ VZ
= ((2L++ )1),, Ui{[—5— + V()]rt Yy, — TLYL*M[—% + V() a

( )kL * Lyr*
E —QWW(ECL - Eb>wbr YLMwa

L+ 1)kEt!
’Qm%wﬁ "Yinta (3.246)

2L+ 1)!
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and

oV xI[Vx ( Yiuin)] = io0-V X[V x(xxVYiyio)l

io -V x [xV2(Y; o)

= —ik?c -V x (xY}yin) = ik*o - [x x V(Y] 91)]
kL+2

‘CL+ !
kL+2

= @i’ L(rty;,,) (3.247)

Q

(o xx)- V(TLYL*M)

Here in deriving the above two formula we have used

PRIV X (x X VYEargn)] - Viba + 95V - [V X (% X VY1) s

L+ 1)k
((2L++ : Dy RV Y] - Vi + 90V - [V Y]}
L+ 1)KL
= 22L+—‘r ) )” {wb[ ( LYEM)] : VQ/}a + 1/1§v : [V(TLYITM’I/}a) — TLYITMV’(Z)E}}
L+ 1)k
- E2L++ : nH! {vplV(r LYL*M)] Vi,
U [V2(r Y aba) = V(r Yy - Viba — r2Y [ V0] }
(L+1)kL 2 L~y % Ly * 2
(2L+ )”wb{v r YLM -r YLMV }u)a (3248)
and
k L
Jjrokr) = (22:_)1)”, forkr <1
$jaj8h = 8h$jaj78h
VX (xx VY[yir) = enenni€ijOn(T;0kY [ \iL)

= enenni€ijk(0njOk + ;0,00) Y 0rJL
= ep(0n;0nk — Onk0n;)(0n;O0k + 20,0K) Y ardL
= ep(xpd® — 20, — 2;0;00) Y ML
= ep[rn0® — On(1 +2;0)Y miL
= [xV?=V(1+70.)]Y;\miL
= —xk*Y[ e — [V +79,)Y L]
KR (L4 1)k

~ _ _ L~y *
T T*errn (2L+1)!!V(T Yium)
(L+ 1)KL .
_WV(TLYLW (3.249)
So the transition rate from the electric multipole field is
Awy = 2r|(b,1|H|a,0) p(Ey)
8n(L+1) o

= Iierromrt Z Qu.Lym + Q2,21 (3.250)

112 ; :

L{(2L + 1) ST 20, + 1

where we have taken average over the initial states and sum over the final states. When we recover
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the sum over all charged particles, Q1(2), L1 are given by

QiLm = eZqi (b|rFYiy(i)]a)

Qan = o7 g (bl L)rEVE 0] a) (3.251)

From spherical harmonics, Y3 11 (0, ¢) = F/3/8msin0et*?, Y] 4(0, ¢) = \/3/47 cos 0, we have

3 .
Qui+1 = F/ 3r <b e i(z; £ dy;) a>
Q = 1/3 b ez 2| & (3.252)
1;1,0 - 47T - qizi .

If we neglect Q2 1y, Eq. (3.250) becomes

_ 4 3 1 2
Ay = Wi D 57,1 DoalMo, Ma)| (3.253)

ay

The power of radiation is then

1 1
Iy = g D 57— DMy, M) (3.254)
M, My =%

which is the same as Eq. (3.197). From Eq. (3.251) we have @1 = Q2 = 0 when L = 0, so there is
no EO transition.

Now we consider the magnetic multipole transition. The vector potential and magnetic fields for
a L, M mode which appear in the creation operator term are given by

* 8 * A
ALY (kr) = k\/;oXLM(M)yL(kr)
BYY (kr) = Vx AN (k) (3.255)
Then the creation operator terms in A(¢,x) and magnetic field B(¢, x) are given by

1
—r aly (k, L M)A (kr) = afyp (b, L, M ,/ X o)jr(kr)

r afyy (k. L MBS (k,v) = afyy (k. L, M),/ R—Lv X (X500 (0,0)jr (k)] (3.256)
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Substituting the above into Eq. (3.240), we get the transition amplitude,

\l RowL

{ <b)LYLM;L (i) + (=iV) - (B ¥iarin)| )
b

+ 69 ‘ [V x L*YLM]L)]‘ >}

- \/ ROwL L+1

x {eq (b|(x x VYLMJL V4 V- (xx VY yjo)a)
+eg <b “7 *YLMJL)]‘ >}

- \/ RowL(L 1) 2L 1)

x{ 2zeq<b‘L Vv (r LYLM)’ >—Z€9 (L+1) <b’0' V( LYLM)| >}

4r(L+1) kLt (
Rowl L+ 1)

<ba 1 |HI| a, 0>

My oy + Mo par) (3.257)

Here we have used

G X VYfrdn) - Vibu + U5V - (x x VY ardn)itn
= 200 x VY yrin) - Vil = —205(VYarin) - (x % Vi)
= 2V - (x X VY['3190)0a

= =2Ypx x V- [V(Y[pjr) vl (3.258)
o [V x (LY i) = io-{V x [xx V(Yiyi)}
L
~ _ima VEEYE,) (3.259)

The transition rate from the magnetic multipole field or TE mode is

8n(L+1) o714 1
A = — L}t M + M. 3.260
(M) L[(2L + 112 M;Ib 2], +1| s+ Mol ( )
where MI,LM and MQ)LM are defined by
1 €q; * .
Miim = 1 ; po <b i[riLYLM(Z)]‘ a>

- T e (i 1

My = Zgz b|¢7z ilrf Y (D] a) (3.261)

where we have recovered the sum over all charged particles. From Eq. (3.261) we have My = My =0
for L = 0, so there is no MO transition.
Let us estimate the magnitude of the transition. For the electric multipole field,

; fdrrL+2 3
Quiyr = eq(b|r*Yiy|a) ~e(rh) ~ [ drr? N6L+3RL
_ gk )by o 3 L
Quiv = 95777 <b’(o- L)(r YLM)‘a> LTI (3.262)
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For the nuclear v decay, the ratio becomes

Dot @ 4p-3 (3.263)

Ql,LM m

So we can neglect Q2 1a relative to Qq,ras. For the magnetic multipole field, My pa and My 1 are
of the same order,

(&
Myom  ~ M2,LMNERL71 (3.264)

The transitions of the higher order are much suppressed relative to the lower order,

AL+ Aan(L+1)
Ae) (L) Aoy (L)

The magnitude of the magnetic transition is suppressed relative to that of electric one of the same
order,

~ k?R%* ~ (MeV - 10 fm)? ~ 2.5 x 1073 (3.265)

Aoy (L) N 1 1
A (L) m?R? (1 GeV - 10 fm)?

~4x107* (3.266)

Then we can roughly have the relation A(gy(L + 1) ~ Aany(L), i.e. E(L+1) radiation is comparable
to ML one in magnitude.
Selection rules for parity are given as follows. The parity of the operators are know as

P(r*Yiy) = (-1)F
P[L-V(rtY}y,)] = Plo-V(rtYry,)) = (1! (3.267)
For EL and ML transitions
PP = (-1)*, EL
PP = (-1)F, ML (3.268)

where P ¢ are parities for the initial and final states.
Selection rules for angular momentum. Following the Wigner-Eckart theorem,

(Je, Mg | Tpae| Ji, M) = Cif%fLM (Je | Toasll i) (3.269)
where
Teve = Y7y, L-V(@tYry), o-VEtYiy) (3.270)

and L # 0 obeys that J¢, J;, L form a vector triangle,

Je=J;+L
|Ji*Jf‘ <L< |J1+Jf‘ (3.271)

There is no transition with J; = Jy and L = 0 since there is no monopole transition. Note that the
transition with L = |J; — J| is dominant.

The mixing only takes place between E(2L) and E(2L’), M(2L) and M(2L’) or ML and E(L+1)
[but not EL and M(L+1) due to the disparity of the two transition strengths]. For example, a
transition 2+ — 1% can be M1 or E2. From the parity conservation (—1)%/(—1)%*! must be 1 for
electric/magnetic field, so L must be even/odd for the electric/magnetic field. For angular momentum
conservation, we have L = 1,2,3. So the possible transitions are M1, E2 or M3. The dominant
transitions are M1 or E2.
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Table 3.4: Selection rules for parity and angular momentum. Note that when

1 J; — Jy] 0,1 2 3 1 5
PP =+ | M1(E2) | E2 | M3(E4) | FE4 | M5(E6)
PPf=—| E1 | M2(E3)| E3 | M4(E5) | E5

Figure 3.23: Energy spectra of electrons from beta decay and internal conversion of radioactive nuclei.
The peaks on top of continuous the spectrum are from internal conversion.
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Figure 3.24: The electron spectrum in the S-decay 2°3Hg —2%3 T1 with internal conversion of 2°3TI.
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There are no 0T — 0% transition, since this would need a monopole radiation with L = 0 which
does not exist. These decay processed can happen through internal conversion. Internal conversion is
aradioactive decay where a transition of an excited nucleus to its lower energy level takes place and the
energy is transfered to an electron on the inner atomic shell which is kicked out. Internal conversion
is not photo-electric effect since there is no photon involved. The electrons emitted from internal
conversion can be distinguished from those from the p-decay. The electron energy is continuous in
the p-decay, while it is discrete in the internal conversion. See Fig. 3.23.

The electron energy in internal conversion can be expressed by T. = E, — W, where E, is the
transition energy and W is the binding energy of the electron in the atomic shell. Normally an
electron in the K-shell (n = 1) is kicked out, so from the K-shell binding energy Wi and the electron
energy T, we can determine the transition energy or the difference of the two energy levels. For the
L-shell (n = 2) electrons, there are atomic orbitals 2sy,9, 2p; /2 and 2ps /o, which are also called Ly,
Ly and Ly;; shells. The vacancy left by the knocked out electron is instantly filled by the electron
from an outer shell. This results in accompanying X-ray.

As an example we consider the 3 decay of 25°Hg —293 T1 followed by a 7-decay of energy 279.19
keV. We need to know the electron binding energies of the T1 (Thallium) atom whose lower shells are

[4],

B(K) = 85.529keV
B(L;) = 15.347keV
B(Lr;) = 14.698 keV
B(Lrr) = 12.657keV
B(M;) = 3.704keV (3.272)
So the conversion electrons have energies as follows,
T.(K) = (279.19 — 85.529) keV = 193.661 keV
T.(L;) = (279.19 —15.347) keV = 263.843 keV
T.(L;r) = (279.19 — 14.698) keV = 264.492 keV
T.(Lirr) = (279.19 — 12.657) keV = 266.533 keV
T.(M;) = (279.19 — 3.704) keV = 275.486 keV (3.273)

See Fig. 3.24 for the electron spectrum of 2*Hg. One can see the peaks on the continuous background
of the $-decay. The intensities of internal conversion varies from 8 decays. In some cases internal
conversion is favored over the + emission, in others, it is opposite. We can define the ratio of the
internal conversion rate (decay constant) to the y-emission rate, @« = Ac/A,. Then the total decay
constant can be put in the form A\, = A, (1 + ).

Let us take the v-emission of Se-72 for an example. The enegry level of Se-72 is shown in Fig.
3.25. We notice that the 937-MeV transition must be an internal conversion since it is a 0% — 0T
transition. Let us look at the energy level of 1317 keV. The half life of the level 1317 keV is 8.7 ps,
whose total decay rate is

B In2 - 0.693

= =
Tty 8T x 10712

=7.97x 109571 (3.274)

The total decay rate is the sum of the rates for three transitions, 1317 keV, 455 keV and 380 keV,

At = 1317+ Aass + Asso
= As17(1 4 a1317) + Ay as5(1 + auss) + Ay,380(1 + ass0)
A Ay 1317 + Ay as5 + Ay 380 (3.275)

The relative intensities for these y-decays are

)\%1317 : )\%455 : )\7,380 =51:39:10 (3276)
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Figure 3.25: Energy level of Se-72.
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Then we obtain
Moasiz = 051\ =4.1x10"0s™!
Ayass = 0.39)\ = 3.1 x 1010571
Aysso = 0.10 =8x10%s7! (3.277)

We can compare these partial rates to the values from Egs. (3.245,3.250). Let us assume an E2
transition, then we get

Sm(L+1) o 3 \?
A k +1_2 2L
B2,1817 L[2L + D)2 “\i+3) B
47
— x(1.31 197)% x 1.317/197 fm~*
75><137><( 317 x 5/197)% x 1.317/197 fm
~ 3.67x1072¢/fm ~ 1.1 x 102571 (3.278)
where we have used R ~ A'/3ry ~ 5 fm. We can obtain the rates of other E2 transitions as
Ap24s5 = (455/1317)°Aga 1317 = 5.4 x 109571
/\E2,380 = (380/1317)5/\}32,1317 =2.2x 109 S_1 (3279)

We can see that there is difference between Eqs. (3.245,3.250) and from Eq. (3.277), which is within
a factor of 10. In real applications, Eqs. (3.245,3.250) have to be improved.

Exercise 29. Which is larger E(L+1) and EL radiation? Why?

Exercise 30. Write down the parity selection rules for EL and ML radiation.
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Figure 3.26: The Mossbauer effect: recoil-free nuclear resonance emission and absorption of gamma-

ray.
excited state excited state
\ NN T
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ground state ground state
source absorber

Exercise 31. For the vy-decay from the transition 27 — 1~ , what are the possible types of
multipole radiations? why?

Exercise 32. The ratio of the transition rate of E(L+1) to EL and M(L+1) to ML transition
can be estimated as

AE)(L+1 Aoy (L +1
g2 2D Aanp(EAD) o0
Ay (L) Ao (L)
where k is the wave number (momentum) of the Gamma ray and R is the typical radius
of the nucleus. The ratio of the transition rate of magnetic to electric transition can be
estimated as

ry = )\(M)(L) N 1
)\(E)(L) m?R?

where m is the nucleon mass. (1) Try to estimate r1 and ro for typical values of k =1 MeV
and R =10 fm. (2) Given the initial and final state’s parities P; and Py for Gamma decay,
write down the parity selection rule for EL and ML transition. (3) What is the angular
selection rule for the Gamma decay? (4) (8 Er has the following energy levels starting from
the ground state,

7t 3T 17 37 57

27272 72 72
give the dominant Gamma transitions for each excited states.

3.6 Mossbauer effect

Moéssbauer discovered the recoil-free emission and absorption of gamma rays by nuclei in 1958 and
was awarded the Nobel prize in physics for this effect name after him. See Fig. 3.26. Using the
Mossbauer effect one can make very high precision measurement of the energy to observe the fine
structure.

The transition rate of an energy level is inversely proportional to its life and proportional to its
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width. In the v decay, the ratio of its width to its energy is normally 10~%, which requires very high
precision measurement. One usually measure the width of a + transition by the resonant absorption.
This emission and subsequent absorption is called resonant fluorescence. But the recoil of the mother
nuclei will take off a lot of energy making the resonant absorption very difficult. Mossbauer was the
first physicist who tackled this difficulty.

Take the gamma decay 14.4 KeV of 57Fe* as example. The momentum of the photon is

p=|p| = 0.0144 MeV (3.280)

The recoil energy of the nucleus is

2 2
o (0.0144) ,3
Jo N R G O S TR X0 3.981
R om  2x57Tx931 ¢ (3.281)

The lifetime of the excited state of 3iFe* is 7 ~ 10~ 7s. The width of 5lFe” is then

1 1
7 1077 x 3 x 108 x 101
197 x 3.3 x 10717 MeV ~ 6 x 1077 eV (3.282)

r = fm ' ~3.3x 1077 fm~!

Q

One sees
Egr >T (3.283)

In this case the resonant absorption cannot take place. For the resonant absorption to occur, one
should have

E’y,em = FEy—FEgr
E’y,ab = EO + ER
Ev,ab - E’y,em = 2ER <2r (3284)

It was a great breakthrough to realize that one could get resonance absorption of gamma rays by
putting the source nuclei in a crystal in low temperature. To see how many iron nuclei would have
to recoil together to keep the gamma within the natural linewidth:

2

p
E —T
R 2mN ’
2 2x 1073
N = P 2 ~ 3.3 x 10° (3.285)

oml 6 x 10~9

which is many orders of magnitude smaller than the macroscopic scale 1023,

Exercise 33. The resonant absorption without recoil is observed in the ~y-decay of 39'1r114.
The energy of the photon is 120 KeV and the width of the spectrum is given by its life
T~ 1.4 x 1071° 5. Estimate the recoil energy of the nucleus if the nucleus is put in free
space. In order for the resonant absorption to take place, what is the least mass of the crystal
in which the nuclei are embeded in order for the resonant absorption to take place.



Chapter 4

Nuclear models

A nucleus is a many body system of nucleons. Nucleons interact with each other via nuclear force.
Besides two-body forces, there are many-body forces like three-body forces etc.. Nuclear models are
simplified descriptions of some of nuclear properties.

4.1 The shell model

4.1.1 Phenomena related to shell structure

It is found that a nucleus is stable when the neutron or proton number is 2,8,20,28,50,82, and the
neutron number is 126. These numbers are called the magic numbers. A nucleus can be singly magic
with proton or neutron number being a magic number, or doubly magic with both proton and neutron
numbers being magic numbers. Several evidences about the magic numbers are as follows.
(1) Abundance. (a) On the earth, the following nuclei are more abundant than their neighbors:
gHeg, 18608, 38(3&20, ggNig,g, ggSIgo, ZgZI‘50,
1520081170, 15268Bagg, 1548009827 28028Pb126 (41)
In nuclei with even proton numbers (even Z), it is less likely that their abundances are more than
50%. There are exceptions: the abundances of §3Sr50, 13°Bagy and Cegy are 82.56%, 71.66% and
88.48%. Onme can see that when the neutron number is 50 or 82 the nucleus is much more stable than
a normal one. (b) In all stable elements, those with neutron number 20, 28, 50, 82 have more number
of isotones than their neighbors. Elements with N = 20, 28 have 5 isotones, N = 50 have 6, N = 82
have 7. (c¢) When the proton number Z = 8,20, 28, 50,82, the number of stable isotopes are much
larger than their neighbors. (d) The presence of pairing energy shows that even-even nuclei are more
stable than odd-odd ones, see Table 2.2. (e) The average excitation energy of the first excited state
in even-even nuclei show a maximum when the neutron number is a magic one.
(2) The binding or separation energies of the last nucleon for nuclei are defined by

Sy = B(Z,A) —B(ZA-1)=M(Z,A-1)—M(Z,A) +mn
Sy = B(Z,A)—B(Z-1,A-1)=M(Z-1,A—1)—M(Z,A) +my (4.2)

They are much smaller for nuclei with Z — 1 or N — 1 being magic numbers than others, which
indicates that the nuclei with magic number are more tightly bound. The neutron binding energy is
small for nuclei with N = 8,20, impling that it is relatively hard for them to capture a neutron. The
empirical formula for the nuclear binding energy per nucleon deviates from data strongly when N or
Z are magic numbers. The neutron capture cross sections are much smaller for nuclei whose neutron
numbers are magic numbers. See Fig. 4.1.

(3) There are sudden changes of nucleus radius for nuclei whose neutron numbers are magic
numbers.

93
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Figure 4.1: Neutron separation energy S,, as a function of the neutron number of final nucleus.
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4.1.2 Main points of the shell model

The shell model was mainly developed in 1949 by several physicists independently, mainly by Wigner,
Mayer and Jensen, who was awarded by Nobel prize in physics in 1963. Every nucleon can be regarded
as moving in the mean field of other nucleons. For spherical shape, the mean field provides a central
force. Such a picture is called the independent particle model. Pauli exclusion principle limits the
maximum number of nucleons in one energy level. The mean free path of nucleon is large since a lot
of collision is forbiden if the final state is an occupied state.

There are mainly three kinds of single nucleon potentials, the square well, the Woods-Saxon and
the harmonic oscillator. The real potential is between the square well and the harmonic oscillator.
The Woods-Saxon nuclear potential is

Vo

EC R

(4.3)
where Vy > 0, and R and a are the radius and the width of the potential. The potential for harmonic
oscillator is

Vir)= %mw%z (4.4)

Let us first consider harmonic oscillator. The wave function can be factorized into a radial part
and an angular part, ¢» = Rp(r)Yra (6, ¢). The radial part of the wave function Ry (r) satisfies the
following radial part of the Schroedinger equation

2 2d 155\ L(EL+1)
[drz + dr +2m (E imw T ) - 7“2] Rp(r)=0 (4.5)

We can first look at the solution with £ = 0. Two possible divergent points are at r = 0, 0o. We first
look at » = 0, where the equation becomes

{dQ 2d L(L+1)

R - ECEL o)
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which has two solutions,

L
Ry ~ 17, L+ (4.7)
The solution is Ry, ~ r’ is physical. Then we look at the case for r = oo,
i —m2wir? | Ry(r) =0 (4.8)
dr?
The solutions are
Rr(r) ~ exp(£mwr?/2) (4.9)

where we only the solution with the minus sign is physical at infinity. So we can assume a general
solution Ry, (r) for non-vanishing F has the following form

RL(r) ~ ¥ exp(—mwr?/2)ur (1) (4.10)
Changing the variable r to a dimensionless & = mwr?

hypergeometric function for ur (),

d*uy, 3 dur, L+3/2 E B
€d§2+[(L+2>_£}d§_< 5 _2w>uL_0 (4.11)

, we arrive at the equation for the confluent

whose physical solution is
u(r) ~ F(=ny, L+ 5 ,6) (4.12)
with the radial quntum number n, given by

E L+3/2

2w 2
The wave functions of a harmonic oscillator can be written in a compact and analytic form,
¢n7~LM(Ta 0,¢) = Rnr (T)YLM(G d))

B , [2E+2=m (20 + 2n, + 1)1V
fna ()= 3/{ V(2L + DI }

x (ar)¥ exp (—;a2r2> F(—ny, L+3/2,a%r?) (4.13)

ny =

where F is the confluent hypergeometrical function and o = y/mw. The energy level is,
E = (N+3/2w
N = 2n.+4+1L (4.14)

Some lowest levels and their quantum numbers are illustrated in Fig. 4.1. The degeneracy for the
energy level N is

[N/2]
dy = 2 [2(N —2n,)+1]
n,=0
= (N+1)(N+2) (4.15)

where we have included two spin states of nucleons.
Another example is the square well with depth —Vj in the range r € [0, R]. The Schoedinger
equation for the radial part becomes the equation for spherical Bessel functions,

& 2d L(L+1)
’f‘

- -
dr?2 r dr

Rp(r) =0 (4.16)
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Table 4.1: Some energy levels of the harmonic oscillator. The quantum numbers for the orbital
angular momentum are L = 0(s), 1(p), 2(d), 3(f), 4(g), 5(h).

E, (w) n, state nucleon | accumulation
(N) (ng, L) number number

0 0 Os 2 2

1 0 0p 6 8

2 0,1 1s,0d 12 20
3 0,1 ip,0f 20 40
4 0,1,2 | 2s,1d,0g 30 70
5 01,2 | 2p,1f,0h 12 112
6 0,1,2,3 | 3s,2d,19,0i | 56 168

Table 4.2: The energy levels of the square well potential. Here n denotes the n-th zero point of
Jig12(x).

’ nl ‘ LnL ‘ dn ‘ Zn dn ‘

1s | 3.1416 | 2 2
1p | 4.4934 | 6 8
1d | 5.7635 | 10 18
2s | 6.2832 | 2 20
1f | 6.9879 | 14 34
2p | 7.7253 | 6 40
1g | 8.1826 | 18 58
2d | 9.0950 | 10 68
1h | 9.3558 | 22 90
3s | 9.4248 | 2 92
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where k = \/2m(FE + Vp) with energy E < 0. Assuming Ry = ur/+/r, the above equation becomes,

> 1d 5, (L+1/2)?
— —_—— —_—— = 4.1
dr? = rdr tk r2 ur(r) =0 (4.17)
The solution which satisfies the boundary condition is
RL = C’]L(k‘r)
Rp|,_, = finite
Ril,_p = Cjr(kR) =0, (4.18)

where j(x) = \/7/(2x)Jp11/2(7) is the spherical Bessel function. The wave vectors k at zero points
are denoted as k, = x,1 /R, where x, 1, is the n-th zero point of j;(x). The energy is then

2

x
E,.. =V nL 4.19
L 0+ mR? (4.19)

The degeneracy factor is
d, =2L+1 (4.20)

When applying to a nucleon system, one has to include two spin states in d,,. See Table 4.2 for the
energy levels of the square well potential.

We consider a charged particle with magnetic moment moving in a magnetic field. In the rest
frame of the moving particle, the interaction energy is

AH=-p-B (4.21)
with magnetic moment g = %S, Here the magnetic field B’ is related to B in the lab frame by
B =B-vxE (4.22)

where E is the electric field in the lab frame felt by the moving particle. In the central potential we
have

(4.23)

Then the interaction becomes

99 g 1dV(r)
AH=-%s. Bt 9 (s.L)-
2mS +2m2<s )7’ dr

(4.24)

where L = m(r x v) is the orbital angular momentum. The second term is just the spin-orbital
coupling. Actually one can show that the spin-orbital coupling arises from the meson exchange in
the nuclear potential.

Mayer and Jensen introduced the spin-orbital coupling to nuclei for a nucleon moving in the mean
field of other nucleons,

AV(r) = —OL~S:—% [(L+8)*—L*-8?]
_ —g[J(JH)_L(LH)_i

c
—%L J=L+1/2
- 24
{ S(L+1), J=L-1/2 (4.25)
One sees that there is splitting between the levels with J = L +1/2 and J = L — 1/2. The energy
level can be labeled by (n,, L, J).
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Figure 4.2: Nuclear shell model versus atomic shell model. For 3-d harmonic oscillator the energy
eigenvalue is controlled by N = 2n,.+1 and while for hydrogen atom it is controlled by N = n, +1+1.
The energy levels for nuclei are labeled by (n,,[, ) (left panel) or (n, + 1,1, j) (right panel). The 3-d
harmonic oscillator and hydrogen atom are labeled by (n.., ).
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The applications of the Mayer-Jensen shell models are given in following examples.

(1) The spins and parities (J¥) of the nuclei in ground states can be explained by the model. For
even-even nuclei, J© = 07. Following the Racah seniority principle a pair of identical particles are
in the lowest energy if their coupling angluar momentum is zero. This is because the wave functions
have largest overlap if the total angluar momentum is zero. For even-even nuclei every two protons
or neutrons pair, so that the total angluar momentum is vanishing. The J of even-odd nuclei are
determined by the unpaired nucleon. For example, the JZ of {2C and *N are (1/2)~, the spin and
parity are determined by the nucleon outside the fully occupied shell. Another example, an even-odd
nucleus Niobium, $Nbs,, there are two neutrons outside the full shell (50) which are in the Ogz /o
state. But their pair has J = 0. The spin of the nucleus is determined by the 41-th proton which is
in the Ogg,> state. So the spin and parity of 33Nbsy are (9/2)%.

(2) The shell model can explain the J¥ of nuclei of the lowest excited states. An excited state
with the filled shell plus or minus one nucleon shows single particle property and its J¥ is given by
that of the nucleon outside the shell.

(3) The magnetic moments of nuclei can be described by the shell model. The magnetic moment of
an odd-A nucleus is determined by the last unpaired nucleon. The magnetic moment of the unpaired
nucleon is

ny = pr+ps=gL+gsS=gsJ (4.26)

where J, L and S are the total, orbital and spin momenta. ¢;—; 1 s are their g-factors. We have

gJJ~J = gLL-J+gsS~J
JUI+D)+LIL+1)—S(S+1)  JJ+1)+S(S+1)—L(L+1)
J = 4.27
gJ gL 2J 1) +9s 2+ 1) (4.27)

For an odd-A nucleus, its magnetic moment p ; is

JUAD+LL+D=SS+1) | JI+D)+S(S+1) = LL+1)

= J =
Hr =97 9L 2(J+1) 95 2(J + 1)
_ { gr(J = 1/2) + gs/2. J=L+1/2 8)
[J/(J+Dllge(J +3/2) —gs/2],  J=L-1/2 '
For an odd-N and even-Z nucleus, the last nucleon is a neutron which has gr = 0 and gg = —3.82,
-1.91, J=L+1/2
Hy = J _ (4.29)
{ 1917, J=L-1/2
For an even-N and odd-Z nucleus, the last nucleon is a proton which has g;, = 1 and gg = 5.58,
J +2.29, J=L+1/2
pr = (4.30)
{ J—2295%, J=L-1/2

The experiments partially verify the above behavior for odd-A nuclei.
(4) Electric quadrupole moments. The electric quadrupole moment of a nucleus is defined by

©= é/dBT(?’ZQ —r%)pe(r) = % (2¢2%) = (=) = (v*)) (4.31)

where p.(r) is the electric charge density and ¢ = [ d3rp.(r) the total charge. If the charge distribution
is spherical, @ = 0. For long/short ellipsoid, @ > 0 and @ < 0. Following the shell model, the electric
quadruple moment is determined by the protons outside the filled shell. For odd-Z and even-N
nucleus, there are n, protons outside the filled shell and have angular momentum .J, the quadruple
momemt is given by

B 2] —1 2(ny — 1)
Q = —(9 2(J + 1) [1 27 — 1 ] (4.32)
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We see that when n, < J + 1/2, i.e. the number of protons is less than half the number of levels,
Q@ < 0, otherwise @ > 0. So for an odd-A nucleus with number of protons being a magic number +1,
we have Q < 0/Q > 0. The shell model can well describe the electric quadrupole moments with only

a few protons away from the magic numbers, but it can not describe those of other nuclei.

Exercise 34. For a square well potential with depth V (r) = =Vp forr € [0,R] and V(r) =0
for r > R. Calculate the lowest 15 energy levels.

Exercise 35. The magnetic moments of an odd-A nucleus is determined by the last unpaired
nucleon. Write down its formula with respect to the nuclear spin J.

Exercise 36. Give J of 13C, N and 3Nbs,.

Exercise 37. The electric quadruple moment of a nucleus is given by

1 q
Q= E/d?’rpe(3z2 ~) =L (2(2) — (&) - (7))
For an ellipsoid which is symmetric with respect to rotation along the z-axis (symmetric for
x and y coordinates), give a simple explanation why @ > 0 and Q < 0 correspond to the
long and short ellipsoid.

Exercise 38. The ground states of nuclei can be treated as a many body system of identical
fermions where protons and neutrons are isospin doublets. A nucleon is moving in the mean
field of other nucleons. As a simple model, people use harmonic oscillator to simulate the
mean field potential. Then nucleons fill in the single particle energy levels. The eigen-enerqgy
reads,

Ey =Nw=(2n, + L)w

For a fized N or eigen-energy, (1) calculate the degeneracy of the states, or how many states
are there having the same energy; (2) write down the states in terms of (n, +1)L for N =3
using the notation s, p, d, f, g, h and i for L = 0,1,2,3,4,5,6. For example, 1s or 2f
etc.. (8) When the number of protons or neutrons is the magic number 2, 8, 20, 28, 50, 82,
and 126, the nuclei are most stable. But the harmonic spectra can only reproduce the first
three magic numbers corresponding to N = 0,1,2. In order to explain all magic numbers,
Mayer and Jensen introduced the coupling —CL - S. How to explain the magic number 28
and 50% (4) The introduction of the Li-S coupling term shift the energy level for J = L+1/2
and J = L — 1/2. What the energy difference between the two levels? Which one is shifted
higher? (5) As an application of the shell model, what’s the spin and parity of *C and
13N?
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4.2 Collective models

For even-even nuclei, to form an excited state, it will cost much more energy to break a pair of
nucleons and excite one nucleon to higher level than in collective motion. There are three groups of
nuclei. (1) One group is around the double magic number which can be described by the shell model.
This is called single particle energy levels. (2) Even-even nuclei far away from magic numbers with
(60 < A < 150 or 190 < A < 220) whose lower excitations show the harmonic oscillation feature. (3)
Even-even nuclei far away from magic numbers with (150 < A < 190 or A > 220) whose energy levels
are like spectra of rotation.

The shape of nuclei with double magic numbers is sphere. With increase of nucleons outside the
filled shell, the shape gradually turns into ellipsoid. See Fig. 4.3. This arises from the filling of
nucleons in the energy state above the full shell in such a way that makes the binding energy larger.
The nuclear deformation can be described by a mulipole expansion of a position on the nuclear surface

R(0,¢) = Ro |1+ > armYru(0,0) (4.33)
LM

where apy are coefficents characterizing the magnitudes of the deformation. Since Y7),(6,¢) =
(=)MYy 11 (0, ¢), the coefficients satisfy o ,, = (=1)Mayr . We can remove the L = 0 term,
which corresponds to the volume change. The dipole component with L = 1 of an nucleus corresponds
to displacement of nucleus, which has nothing to do with internal motion of nucleons. The lowest non-
vanishing component deviating from sphere is the quadupole deformation with L. = 2. A deformed
nuclei have non-zero electric quadrupole moments.

We now look at the lowest deformation, the quadrupole with L = 2. We now list spherical
harmonic functions Yaps (0, ¢) with M = —2,—1,0,1,2 as follows

1[5 ,
Yoo(0,9) = 54/ -(Bcos™0—1),
15 . +i
Yo 11(0,¢) = Fy/——sinfcosfhe™"?,
8T
1 /15 )
Youa(0,9) = 5y/gsin?0e™%, (4.34)
We define a unit vector n = (sin @ cos ¢, sin fsin ¢, cos 0) and Yaps (6, ¢) can be rewritten as
L/d 5o 2 o
Yoo = 3 E(an —ng —ny),
15 .
Yor1 = Fy/ 87712(”1 +iny),
1 /15, , 5 . .
Yo4o = 3 8—7r(nlc —n, £1i2n,n,). (4.35)

So we see that (a) agg describes the stretching or contraction along the z axis; (b) ag 11 describe the
oblique deformation along the the z axis; (¢) ag 12 describe the length difference between the z axis
and y axis and the oblique deformation in the zy plane.

An ellipsoid satisfies R(6, ¢) = R(m — 6, ¢) = R(8, —¢), so we have as1 = ag,_1 = 0, aigz = a2 _2.
Then Eq. (4.33) becomes

R(6,¢) = Ro[l+ az0Y20(0, ) + a22Y22(0, ¢) + aYa _2(0, )]

1[5 ) 15 .,
1—|—a202 47T(3COS 0—1)+ o g, Sin 0cos(2g0)1 (4.36)

= RO




CHAPTER 4. NUCLEAR MODELS 102

We can also use (3,7) to replace (aag, aa2),

gy = [cosy
1
« = —fsin 4.37
22 \/55 0 ( )

The deformed values of lengths of three axis from that of the sphere are

/5 2

0R, = R,— Ro= EﬂRO cos(y — gw)
5 4

R, = Ry—Ro= EBRO cos(y — 577)

5
R, = R,— Ry= ”ZBRO cos 7y (4.38)
™

A symmetric ellipsoid with respect to the z-axis corresponds to v = 0, i.e. age = 0, this corresponds
to

R(0) = Ro[l+ axYa0(0,9)]

1/
1+ ago= i(3 cos? ) — 1)] (4.39)
2V 4m

R. = Ro(l+ \/Eﬁ) (4.40)

A long/flat ellipsoid or prolate/oblate is described by 8 > 0/5 < 0, see Fig. 4.3.
The Lagrangian for nuclear vibration is given by

= RO

and we have

1 .
L= 537 |Buith(t)+ CoRiy| (4.41)
LM

The cannonical conjugated momentum of Xy, is given by Pry = BLRLM. The Hamiltonian is
given by

1 1, )
H =3 % |:BLPLM + CLRLM} (4.42)

which is a sum of harmonic oscillators with the frequency wy, = /CL/Br.

The ground state is 0T and the lowest excited state is 27 which corresponds to quadrupole
deformation, whose excitation is called phonon. The next-lowest excited state with two phonon
excitations are J© = 07,21, 4. The total angular of momentum of two phonons with L = 2 can be
determined by J = (L1, m1) ® (L2, m2) = 0®2® 4 with L1 = Ly = 2 and my,my = (£2,+1,0). We
can verify that J #£ 1,3. The energy level of an oscillator has equal distance feature,

E=(N+5/2)w (4.43)

For quadrupole vibration mode, there are N phonons each of which contributes to 2 units angular
momentum. All states have positive parity. The oscillation spectra manifest themselves in nuclei
with filled shells. The main form is quadrupole oscillation where 8 fluctuates around zero.
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The rotation of an ellipsoid even-even nucleus along an axis perpendicular to the symmetry axis
has observable effect. Rotation spectra can be described by

1
Ej=57J(J +1) (4.44)

where [ is the inertial moment and J the total momentum. It can be proved that J must be even
and the parity must be positive. Eq. (4.44) is valid for small I. For larger I, a correction is needed
due to large centrifugal force which makes more deformation and less kinetic energy,

1
E; = ﬁJ(J +1) — BJ*(J 4+ 1)? (4.45)

For deformed odd-A nuclei, there exists one energy band for every single particle energy level,
1
Er = 27 [J(J+1)— K(K+1)] (4.46)

for K > 1/2. When K =1/2,

1 3
Er= g7 |J(J+1) = T +at+a(-)""2(JT +1/2) (4.47)

The states in the same band have the same parity. For K > 1/2 we have,

EK+1EK+2EK+3:(K+1)(2K+3)(3K+6) (448)

4.3 Hatree-Fock self-consistent method

In a nucleus composed of A nucleons, a particluar nucleon can be regarded as moving in a mean
field of other A — 1 nucleons. But this is a very rough picture because it neglects the correlation or
interaction between nucleons beyond the mean field. The Hamiltonian can be written by

2
Z P; 1 Z
H = : om + 5 2 V(I‘i,I'j) (449)

and the trial wave function can be expressed by a Slater determinant of A single particle wave
functions,

Yi(r1)  pa(rz) - Ya(ra)
Ya(r1)  a(rz) - tha(ra)
Ya(ry) a(re) -+ Ya(ra)
> (=1)PPpay (1) pe) (r2) - ¥p(a)(ra) (4.50)

P

5= =l
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Figure 4.3: Nuclear potential versus shape. Shapes with quadrupole moments.

beta
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where P denotes the permutation of (1,2,---,A4). Now we evaluae the expectation value of the
Hamiltonian, where the kinetic energy is

/[dr]\lﬁzi:;i\l/ = %ZZ(—N“”/W pr,(k) ry) ( )pr, ) (r1)

i PP’

V2
= A,/dr Hz/)p/(k) Ik H¢P’ ) (ry Z/dmﬁp(z) r;) <_T;L> wP(i)(ri)

l#1

= ZZ/driw;(“(ri) (—272> Ypei)(rs)
> Jarsio (-3 ) wsto (451)

where [dr] = dridrs---dry and we have used the orthogonality condition for each spatial integral
that P(k) = P’(k) for k # i which gives (A — 1)! identical terms. The potential part is

A A
June S = 553 S 0™ flan [ oho Ve TTveoe)

i i#] PP
11 -
_ 1)PH+P’
= 37 (-1 /dr H Q/JP, (ry) H Ypray(r)
P,P’ k#1,j 1#1,j

XZ/ddegwp/(Z (rl)’(/}Pl (rj) (rurj)wP (I‘ZWP(;)(TJ)
i#]
1 1 /
= §m ;(—:UP-FP /d’l‘ld’rj’(/};,(l)(rl)w;,(-])(I'J)
i#]
XV (ri, x) e (ri)Yp) (r))

= 33 [ [l 6V e
k,l

—f ()] )V (e, ) () ()| (452)

So the expectation value of the Hamiltonian is

5 [arsio) (—5 ) ot
15 [ [l 6 )
k,l

— L )V ()| (453)

We can solve the eigenstates through the variational method. The requirement is to make the expec-
tation value of the Hamiltonian stable with the variance of the wave function under the normalization
condition of the wave function,

I
=

B / [dr]UTHY

/ [dr] W T

[
—_

(4.54)
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which is equivalent to
5/[dr]\1ﬁqu - 65/[dr]\1/T\11 (4.55)

where € is a Lagrange multiplier. The variances of the expectation values of the kinetic and interaction
energy are,

6/[dr}\1ﬁ22p’ v o= Z/drw ( )wj()
+Z/dr¢* ( ) d4p;(r) (4.56)

and

5 [lane 3 Y virr)v ;; [ arar {0l @l @) + vl )0 )

i#£]
<V (r, 1) (2t (r)
— o0l )s] () + L w)ow] )] V(e )y () }
+H.c.

= Z/drdr’{&p,t(r)w;(r')‘/(r, ')y (r) i (r')
kel

—auf )] ()W (e, ¥ () (x') }
+H.c. (4.57)

where we have used V(r,r’) = V(r/,r). Then the requirement of Eq. (4.55) becomes

( Vz) +Z/drVrr [ (x) P (x)
3 [V e = an) (4.58)
l

The above equation is called the Hartree-Fock equation.

The above method is too complicated for the many body problems. A better method is to use
occupation number representation and the second quantization. Similar to the expectation value of
energy in Eq. (4.53), we can write down the Hamiltonian operator in terms of quantum fields of

nucleons,
v2
Ho= [aioo (-5 ) v

4y [ doded! (06! GOV G0 ) (4.59)
where the quantum fields are
0o = D wlone = = X o

Pix) = > Ylx)n. = % > e xpal (4.60)
s k,s
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) and n_ = . Note that the quantum

0
0 1
field has the same dimension as the wave function, so the creation and destruction operators are
dimensionless. One can check that the ordering of the second term in Eq. (4.59) would leading to

the Hermitian property of the Hamiltonian. They satisfy the following anti-commutator relations,
{0s(x),e(x)} = {wl(x),9{(x)}=0
1 ik-x —ik’-x’
(L)l ()} = e e ™ {agal )}

S 1
where s = £1 denote the spin orietation and 1y = (

kk!
1 ; /
= dugy 2}; ek x=x) — 5 5(x — x') (4.61)
where
{ak,s,az,ﬁt} = 050k k', {Qk,s, 0t} = {aLS, a,i,’t} =0 (4.62)
Then using Eq. (4.59) and (4.62), the Hamiltonian (4.59) becomes
k?
H = Z /dxel(k ot 77t7752 ak, k.5
k: k’,s,t
_’_@ Z /dwdm/e—ikyxe—ikgx' eikg'xleik4'xV(X7 X/)
k1—4,81-4

T ot T T
XNsy MsyMs3Msa O, s, Qg 50 Vhis,53 Vs, s4

k? 1 , . ,
= Z 2—@2 $Qk,s T 7] Z /dxdx'e_’(kl_k“)'xe_l(k?_kS)'x Vi(x,x")
m k.

k,s k1-4,81,2
T T
Xakl,Slak2782ak3’52ak4g51
= L ! dXxd ks +ks — ki — ko) - X
= D gtk T r D yexpli(ks + ks — ki — k) - X]
k,s k1-4,51,2
exp[ (kQ —ks —ki + k4) Y/2]V(Y)a21’51a£2152ak3782ak4781
k2
— Z 2—(1;2 Jaks + Z V(q)al,_ - L+q 03 Op,s3 Q.51 (4.63)
k,s p,k,q,81,2
where we have assumed V(x,x') = V(X,y) = V(y) with X = (x + x’)/2 and y = x — x’. We also
used V(q) = & [ dze’¥V (y). We will assume that V(q) only depends on |q|.
Now we can calculate the expectation value of the groud state energy. The ground state is a state
that all states below the Fermi momentum kr = |kp| is occupied and those above it are empty,

)= II af,l0) (4.64)
T,|k|<kp
Then the kinetic energy is
— k2
Eo me (F|a} jaks|F) fQZ—H k| < kp)
k,s
&k k2 3 k2
= 20 | —=—"0(k| <kp)===EN 4.65
/(27r)32m (Kl <kr) =550 (4.65)

where N the total number of the fermions and is given by N = Q#k% The expectation value of
the interaction energy is

El = Z V ak q,81 ;+q752ap,52ak,sl |F> (466)

p,k,q,81,2
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Figure 4.4: The overlapping of Fermi surface in evaluating the potential energy of a fermionic system
at zero temperature.

From two destruction operators acting on |F') we see that both p and k must be below the Fermi
surface. Similarly from two creation operators acting on (F'| we see that both k — q and p 4+ q must
be below the Fermi surface. And the two groups of momenta must be the same otherwise there is
overlapping,

[(pa 52)7(1{751)] = [(k_qul)V(p+qv 82)] (467)

Note that another order for the pair of momenta is not valid because p cannot be p + q. So the
potential energy (4.66) is evaluated as

By = Z V a’k q, sla:)+q,sza’p,82ak,81 |F>

p,k,q,81,2
= Z V F| ap s, p+q,sla:0 s10ptq,5, [ 1)

p,q,s1
= - Z V(@) (F|np,s,nptq,s, [F)

P,q,81
d3p  d’q
= —207? <k <k
| G s V@8p] < ke)6lp -+ al < )

The two step functions give the overlapping area of the Fermi surface if |q| < 2kp. We can first
integrate over p while fixing |q|,

[ o(ipl < ke)o(lp -+ al < ki)
= 2 {%(1 —2)k3 — gk%x(l —2?)| 0(z < 1)
= 2%(2 — 3z + 2*)ki0(x < 1)
Then we carry out the integral over q,

2 oo
E = —ﬁﬁ%%/ dzV (2kpx)z?(2 — 3z + 23)
m 0

1
—6N? / dxV (2kpz)z?(2 — 3z 4 2°)
0



Chapter 5

Nuclear reaction

Like chemical reaction, in nuclear reaction some nuclei or particles and nuclei collide and give rise to
different particles or nuclei in the final state. There are many type of nuclear reactions which can be
characterized by the type and energy of incoming particles and the target nuclei. The natural decay
processes can be regarded as without incoming particles but with Q > 0. In accelerator reactions,
charged particles, e.g. electrons, protons, alpha-particles or even heavier nuclei (heavy ions), are
accelerated to hit the target nuclei. Beams of neutrons can thus be obtained in nuclear reactors as
fragments in collisions of charged particles and target nuclei. Bombardment of leptons like electrons,
muons and neutrinos on target nuclei are also nuclear reactions. Here are notable examples of nuclear
reactions: nuclear fusion, fission, spallation, induced gamma emission etc.. The spallation is a kind
of nuclear reaction that a nucleus is hit by a lighter particle with sufficient energy and momentum
to knock out several small fragments or break into many fragments. Induced gamma emission is a
process that a nucleus absorbs a photon of a specific energy to be excited to a higher energy level,
and then emits fluorescent gamma rays often with a delay after absorption.

A two-to-two nuclear reaction can be written as a+X — b+Y or the shorthand notation X(a, b)Y
where X and Y are the target and outgoing nuclei and “a” denotes the lighter projectile and ‘b’ the
fragment particle.

We can classify the reaction by the reaction energy. Low energy nuclear reaction is characterized
by the order of 10 MeV per nucleon or less. The medium energy nuclear reaction is in the range 100
MeV to 1 GeV, where mesons can be produced and protons and neutrons can transform into each
other. In high energy nuclear reaction, all particles can be produced including quarks and gluons,
the constituents of nucleons.

We can classify the reaction by incident and outgoing particles. If the incident and outgoing
particles are the same, i.e. a+ X — a+ X, we call the reaction the elastic scattering process.
Sometimes ‘b’ is the same as “a’” but there is another nucleon being ejected, this reaction is called
a knockout reaction.

The reaction can also be classified by the mechanism involved. In direct reactions, very few
nucleons take part in the reactions, while other nucleons serve as spectators. Such reactions can be
used to explore the inner structure of nuclei. In contrast, compound nucleus can be formed in some
types of reactions, where incoming and outgoing nuclei merge in very short time and sharing the
energy among all nucleons before ejecting a few nucleons. The resonance reactions are between the
direct and compound nculear reations, in which the incoming and outgoing particle form quasi-bound
state before emitting outgoing particles.

Here are examples of nuclear reactions [5],

109
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Figure 5.1: Momentum configuration in the two-to-two nuclear reaction in the lab frame.

) a+¥N=TO0+p
) pHN =7 Be+2a
3)  pHI5 Al S
) 3a —g2 C

) S Cu—82 Ni+p

) v+ U= Rb 414! Cs+2n
The reaction (1) was the first nuclear reaction made in laboratory by Rutherford in 1919. The first
three reactions are induced by lighter projectiles the « particle and proton on heavier nuclei. In
the reactions (3) there is only one product in the final state. The reaction (4) takes place in the

star interior at high temperature and density. The reactions (5) and (6) are radiative capture or
photo-nuclear reactions.

5.1 Conservation laws and kinematics

Here are the conservation laws for nuclear reactions: (a) Conservation of energy momentum; (b)
Conservation of total angular momentum; (c) Conservation of charge and baryon number; (d) Con-
servation of parity. At low energy, the conservation of baryon number in (c) becomes that of proton
and neutron number in which the energy is not enough to produce mesons. Note that we neglect
all weak processes because the time scale of weak interaction is much longer than that of nuclear
reactions.

We consider a two-to-two nuclear reaction a + X — b+ Y or X(a,b)Y, see Fig. 5.1. The
conservation of energy requires that the total energy of incoming particles should be equal to the
outgoing particles. We have

Tx +mx + 15 +my =Ty +my + 11, +my (5.1)
where T; = %mivf denote the kinetic energy. The Q-value of a reaction is defined by
Q=mx+ms—my—mp=Ty+Tp, —Tx — T, (5.2)
In the lab and center-of-mass frames, the velocities for all particles are

Lab: vx =0, va, v, Vy

CM : vk, vi, Vi, v (5.3)
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We can express the velocities in the center of mass frame in terms of those in the lab frame,
Vi = —v =V, — L =vp — Y=vy — (5.4)
X = —VCM, V4 = Va — VCM, Vi, = Vp — VoM, Vy = Vy — VoM .

where vy is the velocity of the center of mass frame in the lab frame and given by

MaVa

VoM = ——— 5.5
M (5.5)
According to mementum conservation we have

MaVa = MpVp 4+ MyVy (5.6)

Suppose we choose the direction of v, (same as voy) as the z-axis, and denote the angles between
the direction of vy, and the z-axis as 6}, and 6] in the lab and center of mass frame respectively. We
decompose the total momentum into parallel and transverse directions, the momentum conservation
becomes

Mala = MpUp COS Oy + myvy cos by

0 = mpopsinb, — myvy sin by (5.7)

Once the initial state is fixed there are six variables, vy, and vy, in the the final state. There are
four energy-momentum conservation relations. The two-to-two scattering is on a plane so there is
freedom to fix the orientation of the plane. Therefore there is only one free variable, we can choose
it to be the angle 6}, or the scalar velocity vy,.

Now we can determine the Q-value, which is frame independent. We can eliminate vy and 6y
since it is hard to measure in experiments from Eq. (5.7),

m3v3 = (mpupsinbp)? + (Mava — mpwp cos fp)?
= miv} +m2v? — 2mamyvauy cos By (5.8)
Then the Q-value is
Q = Iv+T —Tx - T,
1
= — [m%vg + mivi — 2MyMpVa UL COS Gb} + T, —Tx — T,
2mY
— <1 + mb) Ty + (—1 + Ma ) T, —Tx — MMl VaUp, COS B, (5.9)
my my my

If we let 6y, be the free variable, we can determine vy, from the above energy conservation equation.
Then from Egs. (5.7,5.8) we can determine vy and 6y.
We obtain the relation between 6}, and 6],

v sinf), = wvpsinby,
v cosf, = wpcosb, —vem,
vp, sin G},
tang, = — SO (5.10)

Vp €os Oy, — vom

Here v} is given by (v])? = v + vy — 2vpvom cos by, In the center of mass frame, we have my v, =
—my v}, then we can determine v{, = (my,/my)v},.

The reaction rate depends on the energies of participating particles, the particle flux and the cross
section of the reaction. The cross section is used to describe the probability for a type of nuclear
reaction to take place. The cross section is defined as,

R

= 11
o= e (5.11)
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Figure 5.2: The cross section.
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where R is the number of reactions per unit time or the reaction rate, Ng the number of nuclei per
unit area, and Iy the incident particles per unit time. Consider a sheet of target material with width
x in Fig. 5.2. We have Ng = Nyx, where Ny is the number of nuclei per unit volume in the target.
Then the number of incident particles per unit time which are through the target without collisions
is

I(x) = Ip—R=1Iy(1—0oNyzx)=~ Ipe 7NV (5.12)

We can see that I(x) decays with = exponentially. The mean free path is give by 1/(cNv).
The cross section means the reaction rate of one particle hitting one target nucleus per unit area.
The unit for the cross section is barn (b), mili-barn (mb) and micro-barn (ub),

1b = 107%®m?
Imb = 1073'm?,
lpb = 1073 m? (5.13)

The differential cross section is defined as,

do AR

where AR is the number of scatterings in the solid angle AQ per unit time.

The differential cross section depends on the frame since the polar angle 6 is different in different
frame. Suppose the differential cross section is independent of the azimuthal angle, we have the
relation between the lab and center of mass frame,

%(9) sin 0df = %(9’) sin §'do’, (5.15)
and we obtain from the first line of Eq. (5.10),
do ,  dcos®' do,, (v wvcacosd do,
diQ( )= dcos 6 diﬁ( )= (U’Jr v'2 dTl(a ) (5.16)

Exercise 39. Consider the reaction d +% Li — o + a with Ty = 2 MeV in the lab frame,
calculate the emission angle 6 of one a-particle in the lab frame as function of the velocity
of one alpha particle v,,.
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Exercise 40. Derive Eq. (5.16).

5.2 Partial wave analysis and optical potential

The elastic, inelastic and total cross section are

o0

7T
oo = EZ@H”H_S!'Q
=0
T o0
Oin = EZ(21+1)(1—|51\2)
=0
P
Otot — ﬁ (2l + 1)(1 - ReSl) (517)
=0

where S; = |S;|e?*(¥) and §;(k) is the phase shift. Having |1 —S;|> = 1 —2ReS; + |S;|?, we can verify
Otot = Oel + Tin (518)

In nuclear reaction, the elastic scattering can be further divided into potential and resonance
scatterings
Oel = Opot + Ores (519)

So the total cross section can be decomosed in several different ways,

Otot = Oel + Tin
= Opot + Ores + Oin
= Opot + 0a
= Opot T 0CN + 0D (520)

where 0, = 0res + 0in = 0cN + 0D, With ocon,op the formation cross sections of compound nuclei and
direct reaction respectively.

The idea of the optical potential is to treat a nucleus as a semi-opaque ball. When incident particle
hits the nucleus part of it is reflected or scattered, the other part of it is absorbed. It is convenient
to introduce the optical potential,

Ve (r) = { O_’(VO +iv), i f g (5.21)
with the nuclear radius R. The wave function is in the form,
P = Aette® (5.22)
where
ke = +2m(T + Vo +iU)
~ 2m(T + Vo) +iU 7 :ano
= k+ik (5.23)

where T is the kinetic energy of the incident particle. So the wave function have a damping part,

Y = Akt = AehreH'w (5.24)
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Figure 5.3: Optical potential [4].
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The absorption rate is proportional to e=2¥'#. The the typical attenuation length is given by

1 1 T+ Vy
= —-— = — '2
2k’ 2U m (5.25)

We can estimate the mean free path when a neutron with energy 7' = 10 MeV hits a nucleus with
potential Vy = 40 MeV and U = 1 MeV. We obtain [ =~ 23 fm, which is much larger than nuclear size.
We conclude that such a neutron can go through the nucleus almost without collisions.

More precisely the square well potential can be replaced by Woods-Saxon potential as

Vo(Vo +14U)

Vear(r) = =1 m/a

(5.26)

where a is the width of the nuclear surface. For nuclear reaction induced by neutron and proton, the
spin-orbital term can be included into the potential.
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Figure 5.4: Types of scatterings [4].
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5.3 Resonance and compound nuclear reaction

Compound nuclear reaction is one of low energy nuclear reaction and was first proposed by N. Bohr
in 1936. It can be written as
a+X—->C"—=Y+b (5.27)

where C* denotes the compound nucleus. The cross section for the above reaction is

I'y

Tab = Oa (5.28)
where o, is the formation cross section for the compound nucleus C*, T" is the total decay width of
the compound nucleus C*, and T}, is the decay width for the b-channel. When the incident particle
(nucleus or nucleon) enters the nucleus X it strongly interacts with surrounding nucleons incide X
and quickly loses its energy to the surrounding nucleons to reach equilibrium and then form the
excited compound nucleus C*. The excitation energy levels are well discretized for low excitations.
So the cross section has a resonance feature. For higher excitations, the energy levels are continuous
so the cross section varies slowly with energy, which is called continuum region. The transition from
resonance to continuum depends on the energy and nucleus atomic number. The compound nucleus
in the excited state will decay by emitting a number of nucleons or a nucleus.

We can derive the resonance cross section. The total cross section is

o0

S %Z(ZlJrl)Imfl(O)

=0

= % (21 + 1) sin® 6;(E) (5.29)
=0

where is f, = (S; — 1)/(2ik) with S; = €?%(¥), When §;(E) satisfy
S(E) ~ (n+1/2)w, or sin?§(FE)~1 (5.30)

the partial wave cross section reaches maximum and the resonant states occur. We can expand near
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Figure 5.5: Test the compound nuclear reaction model. See “An Experimental Verification of the

Theory of Compound Nucleus”, Phy. Rev. 80, 939(1950).
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the resonant energy E = Ej as

sind;(E) = sind(Ep) + [cos (ME)Z%} (E—Ey) ~1
Ey

cosOi(E) =~ cosdi(Ey) — sinél(E)d—dl (E — Ey)
dE | g,
do, 2
= - — E—-E)=—=(E—-E .31
iE EO( 0) = —(E = Eo) (5.31)
where we have defined
do;
r = 2/ — .32
/&, (532)
So the partial wave amplitude The we have
1 , .
fi = Eexp[uil(k)} sin d;(k)
1 sin 0; (k)
~ kcosd(k) —isind (k)
N SR R S
T k—2(E—Ey) —i k(E—Eo)+il/2
1 I2/4
I = = .
m f; FE B T (5.33)

If at F ~ Ej, the partial wave [ is dominant, the cross section is then

F2
(E — Eo)? +12/4

i
ot = ﬁ@l +1) (5.34)
We can extend the above formula into the compound nuclear reaction a+ X — C* and choose the
lowest partial wave. The cross section is then
s r.r

% = EE LI (5.35)

where I is the total width and I', is the partial width for the a-channel. So the cross section for
reaction (5.27) is then

™ Fan
k2 (E—-Ep)?+12/4
For incident nuclei with spins and resonance with non-zero spin, we should also include a spin counting
factor g = (2Ic + 1)/[(2I, + 1)(2Ix + 1)], where I¢, I, and Ix are spins of the resonance, incident
particle and target nucleus respectively.

To test the compound nuclear reaction model, Ghoshal measured p +5$3 Cu and « +52 Ni to form
§37Zn*,

ab (5.36)

837Zn+n
p+SsCu — S$3Zn* — { $2Zn+2n
95Cu+p+n
837Zn +n
a+S9Ni — $8Zn* — { $27Zn+2n (5.37)

95Cu+p+n
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The data show that
Opmn - Op2n - Oppn = Oamn :0@2n :0apn = Fn : FZn : 1_‘pn (538)

which predicted by the model.

The angular distribution of nucleon emitted by compound nuclei is almost isotropic without
preferable direction, i.e. the compound nuclei lose the memory of the incident particle’s direction.
The emission of outgoing particles is like evaporation. This is not surprising since the energy of the
incident particle is distributed among all nucleons in the nucleus. The more energy is pumped into
the nuclei, more particles are likely to evaporate.

Exercise 41. The Breit-Wigner formula for the single-level compound cross section in the
nuclear reaction a + X — C* is
m Fal“b
Cab = g
T I2 (B B2 + 24

where g = (2Ic+1)/[(21.+1)(2Ix +1)], Ic, I, and Ix are spins of the compound nucleus or
resonance, incident particle and target nucleus respectively. Consider the compound nucleus
(resonance) reaction n+33° U — C* with Iy = 7/2 and I, = 1/2. At neutron energies below
0.5 eV, the cross section is dominated by one resonance with Ic = 3 at a kinetic energy of
0.29 eV with a width of 0.185 eV. There are three channels, which allow the compound state
to decay by neutron emission, photon emission, or fissison. At resonance the contributions
to the neutron cross sections are (a) elastic and resonant scattering (< 1 barn); (b) radiative
capture (70 barns); (c) fission (200 barns). The questions: (1) Calculate the partial widths
for the three channels. (2) How many fissions per second will there be in a sheet of U-235
of thickness 1mg/ecm=2, traversed by normally by a neutron beam of 10° per second with a
kinetic energy of 0.29 eV?

5.4 Direct reaction

Stripping reaction is one kind of direct reaction, where the projectile nucleus loses some of its con-
stituents to the target nucleus and the rest of it pass through as final nucleus. Stripping reaction for
deuteron is a normal type and can be denoted as

2X(D,p)5 ™Y

A

2X(D,n)5 1Y (5.39)

For example, we have
SH(D,n)*He, 32S(D,p)**S, 2"Al(D, p)?®Al (5.40)

Nuclear fission and fusion are also direct reactions.
Knock-out reaction is another type of direct reaction, where the projectile nucleus knocks out
some constituents of the target and stays in the target or emits with less energy. For example,

p+°N = p+iN+n (5.41)

The transfer reaction is a reaction type where a number of protons or neutrons of the projectile
leave in the target or the projectile grab a number of protons or neutrons from the target nuclear.
For example,

§0+57C = FPo+g%C
H+3)Ne — 1H+3)Ne
H+MN — SHe+42C (5.42)
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Figure 5.6: Examples for stripping and kock-out reactions.
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Another example is the reaction in which the neutron was first discovered by Chadwick in 1932,
3He +9 Be = n+42 C (5.43)

It is also used for generating neutrons in the lab. The helium-4 particles come from radioactive
americium, and the beryllium is just a piece of metal.
Neutron absorption is a reaction where a neutron is absorbed by a nucleus, for example,

n+24 Al — 28A1 - BMg +p + 7,
n+2°U — 23U = B?Th +a (5.44)
Note that aluminum-28 and uranium-236 are very unstable and decay very quickly through £ and «
decay respectively.
Another important nuclear reaction is the heavy ion collisions, where two heavy nuclei collide each
other.

5.5 Nuclear fission

Nuclear fission is phenomenon where a nucleus split to two fragments of approximately equal mass.
The nuclear fission was discovered in 1939 by Hahn and Strassmann when they found the uranium
atom, when bombarded by neutrons, can produce barium, a much lighter element than uranium.

There are two types of nuclear fissions: the spontaneous fission and induced fission. The spon-
taneous fission happens without any outside perturbations. The induced fission needs an absorption
of additional particles, e.g. a slow neutron, to excite the nucleus and fragment into smaller pieces.
Induced fission takes place in nuclear reactors.

5.5.1 Spontaneous fission

In order for the spontaneous fission to take place, fissile nuclei must overcome the Coulomb barrier,
see Fig. 5.7(a). We take U-238 for example. We assume it split into two equal daughter nuclei
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Figure 5.7: (a) Droplet model for fission. Fission barrier is about 6 MeV. (b) The fission barrier as a
function of mass number.
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whose surface touch. Then the distance between two daughter nuclei can be approximated as R =
2 x 1.2 x (238/2)'/3 ~ 14.9 fm. We can estimate the Coulomb potential as follows,

(Z/2)%* 467 x 197
R ©14.9 x 137

V= ~ 204 MeV. (5.45)

This is roughly the energy released in fission. The fission barrier or the activation energy as a function
of mass number can be shown in Fig. 5.7(b).
Now we first discuss about the spontaneous fission in detail. We take a very simple example, a

mother nucleus splits into two daughters,
2X = 2'Y1+ 52Y2 (5.46)

where A = Ay + As and Z = Z1 + Z5. The Q-value is

Q = ag(A¥P — AP — A2 fag(Z2ATVR - 22A7P — 72451%)
= ag[A2P — A2 (A— A))*
tac[ZPATVR = Z2ATYP (2 - 70)%(A — Ay (5.47)
We resuire that @ is stable with respect to varying A; and 77, i.e.
0 2 _ _
1 _
tgaclZiATY (2 - 20)*(A - A) ] =0

9Q -1/3 -1/3
aizl = 2@0[—21141 + (Z - Zl)(A - Al) ] =0 (548)

which gives A = 2A4; and Z = 2Z;. The stability of the nucleus with respect to the fission is that
the Q-value is less than zero, with A = 24, and Z = 277, the threshold condition is then

Z2
Al/3

QA1 = A/2,21 = Z/2) = as(1 = 2'/°)A*P® +ac(1 - 27%%) 2 =0 (5.49)
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whose solution is ) s
Z ag(2'/° -1 a
27 _ s 1) 0% g (5.50)
A ac(l—272/3) ac
where we have used ag = 17.8 MeV and ac ~ 0.71 MeV. Note that @ is an increasing function of A,
then we conclude that nuclei with A < 70 are stable with respect to spontaneous fission.
Like alpha decay, the spontaneous fission is also a quantum tunneling effect. For the spontaneous
fission to take place the Q-value must be equal to the Coulomb barrier at the distance of scission for
two daughter nuclei or at 2Ry,

1/3) 22/3 —2/3 z? Z3e?
where R; ~ TOA}/S ~ 192 /3 AY3 and Z, ~ Z/2. Then the solution is
z as(1 —21/3)
A e2/(re28/3) —ac(1 —2-2/3)
0.26
~ 5 ~225%8 ~ 56 (5.52)
0.37ac — 0.16e2r, ac

where we have used 79 = 1.25 fm, €2 = 1/137, €?/ry ~ 1.62ac with ac = 0.71 MeV and ag = 17.8
MeV. The stability condition for spontaneous fission is Z?/A < 56. So we find a heavy nucleus with
A =~ 226 and Z =~ 113 cannot have spontaneous fission. Of course this is a very rough estimation.

Bohr explained the spontaneous fission using the nuclear droplet model, see Fig. 5.7. The de-
formation is assumed to be the reason for the fission. Nuclear density or volume is almost constant
under small deformations. A sphere has the smallest ratio of surface area to volume. If the sphere is
deformed to ellipsoid at constant density its surface area and surface energy will increase. Since the
deformation makes charges separate, the Coulomb energy will decrease. The surface tension tends
to make the deformed nucleus recover to sphere, while the Coulomb potential tends to make the
nucleus be even more deformed. That the nucleus will be stable or unstable for a small deformation
depends on whether the increase of surface energy outperforms the decrease of Coulomb energy. The
deformation can be described by a long ellipsoid with the half lengths of the long axis and short axis
are r1 = R(1+a) and ro = R/+/1 + a respectively. The Coulomb and surface energies are

1 1 3@2 a2 a2
E = = avdv’ N==—Z="_[1—2] = ZQA—1/3 1- 2
o) = 3 [avav 2 pmp) = 2% (1- %) = ac 5
2a? 202
Es(a) = 47R% (1 + g) = agA?/3 (1 + g) (5.53)
where we have used
4m 4
S N
-1
S = on [§+12s:1] (5.54)

where e = /1 — (r2/r1)?. The change in the binding energy of the deformed nucleus is from the
Coulomb and surface energy,

AE = FEc(a)+ Es(a) — Ec(0) — Es(0)
2 2 2
= faCZZAfl/g% + asA2/32% = asAz/SQ%(l — ) (5.55)

2 2 2 .
where z = ;70527 Here we have used %% = ac47 and 47R%0 = agA?/3. When = < 1, the binding

gets positive correction, so the nucleus is stable against the spontaneous fission, when =z > 1, the
binding gets negative correction, the nucleus is unstable against the fission.
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Figure 5.8: The potential energy of a nucleus as a function of deformation parameter Z2/A. (a)
Z?JA < 0.752; (b) Z2/A > 0.752; (c) Z2/A S 2.642; (d) Z2/A > 2.652.
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Exercise 42. Suppose a mother nucleus splits into two eqaul daughters,
72X = Y + 22V

where Ay = Ay = A/2 and Zy, = Zy = Z/2. The coefficients in the nuclear binding
energy are: ay ~ 15.75 MeV (volume energy term), as ~ 17.8 MeV (surface energy term),
ac ~ 0.71 MeV (Coulomb energy term), asym =~ 23.3 MeV (symmetric energy term), ap ~ 12
MeV (pairing energy term). (1) Exzpress the Q-value of the above fission reaction. (2)
In order for the fission to take place, Q) value must be no less than the Coulomb barrier
Z?e?/(2Ry), try to estimate the critical value of Z*/A at which fission can take place. Here
Ry = roA}/g and ro = 1.2 fm. (3) If we further assume Z = A/2, what would A be for
fissible nuclei?

5.5.2 Induced fission

The uranium nucleus 23°U can have fission when absorbing a slow neutron which makes 235U in an
excited state with excitation energy obtained by,

Sn(236U) _ m(235U) +m, — m(236U)
_ A(235U) +Amn o A(236U)
= 4091+ 8.07 — 42.44 ~ 6.54 MeV (5.56)

where A denotes the nuclear mass excess relative to atomic mass unit (931.5 MeV) times the atomic
number. We see that S,,(?39U) ~ 6.54 MeV is larger than its fission barrier 5.9 MeV.

But 23¥U cannot undergo fission with a slow neutron. The difference is that 2*6U is an even-
even nucleus whose binding energy is larger with full pairings of neutrons while 239U is an even-odd
nucleus whose binding energy is smaller. The uranium nucleus 23°U tends to decay to its ground
state through emitting a v photon. Since 236U is tightly bound, so it tends to split into nearly equally
massive fragments. By capturing a slow neutron, the excitation energy of 239U is

Sn(239U) _ m(238U) +m, — m(239U)
— A(ZSSU) +Amn o A(239U)
= 47.3+8.07—50.6 ~ 4.8 MeV (5.57)

which is not enough to overcome the fission barrier 6.2 MeV. Here are reactions of 233U when capturing
a slow neutron,

238U—|—n — 239U* 239U+’7
239U — 239Np +e +v
2INp — FPute 4T (5.58)

Here 239Pu is fissionable element since it is an even-odd nucleus. The abundances of *U and 38U
are 0.7% and 99.3% on the earth. 23°U and 33°Pu do not exist on the earth.

The fission cross sections for 235U/238U or 25U(n, f)/?38U(n, f) are shown in Figs. 5.9 and 5.11.
In the thermal region, the cross section has 1/v behavior. In the energy range 1-100 eV there are
many resonances produced. For U-235, the cross section for fission induced by thermal neutrons is
3 orders of magnitude larger than by fast neutrons. For U-238, fission cannot occur in the thermal
region.

As we have shown before that the fissionable nuclei are heavy nuclei, the heavier the nuclei are the
more neutrons they have because the number of neutron increases with the mass number. Therefore
the fragments have more neutrons and away from beta-stable line. These neutrons are called prompt
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Figure 5.9: The cross sections of the neutron induced fissions for 23°U and 23%U. The data are from
Neutron Cross-section Standards 2006 [http://www-nds.iaea.org/].

10° 10
10° e
T or T or
e .| 8 |
< 10 =107
© = © =
1 102
o1l vl vl vl vl ol ol sl vl sl o 10-° R | R | A
-8 -7 -6 -5 -4 -3 -2 -1 2 3 2
Lo A l‘]gutro1n0ene“rgy (IV?&I) g LONRICENO Ngl?tron energy (MeV) L

Figure 5.10: The energy spectra of fission neutron. (a) Fission neutron spectrum for the system
238U(n, f) measured with the FIGARO setup [32]. Data are for incident neutron energies from 2.1
to 4.0 MeV and are compared to a precision measurement at 2.9 MeV incident neutron energy [33].
(b) Prompt fission neutron spectrum of Neptunium-237 for 0.62 MeV incident neutrons.
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Figure 5.11: Cross sections for neutron induced fission of 23°U and 238U. Taken from Ref. [4].
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Figure 5.12: Fisssion fragment distribution of 23°U(n, f). The figure is taken from Ref. [30].
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Figure 5.13: Delayed neutron emission from Rb-93. Taken from Ref. [4].
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neutrons because they emitted in less than 107 '%s. Their distribution is isotropic. The fission
fragments normally undergo beta decay and followed by more neutron emission. These neutrons are
called delayed neutron. The delay time is of order of a few seconds. For example, following the
6-seconds beta decay of $3Rb — 33S1™ + e~ + 7, the excited state 3Sr* has a larger enough energy
than neutron separation energy, so it can decay by neutron emission in competition with Gamma
emission, 53S1* — 92Sr+n. The delay neutrons are normally used to controll chain reactions in fission
reactors. See Fig. 5.13 for the scheme plot of the above beta decay and delayed neutron emission.
The energy spectra of the prompt neutrons follows Maxwell distribution

f(E) ~ VE exp(—E/Tw) (5.59)

where Ty is called Maxwell temperature of about one or two MeV, see Fig. 5.10. The example for

the neutron energy spectra are those in the spontaneous fission of 23?Cf and in the induced fission of

235U with thermal neutrons, where T, are

Tw[332Cf] = 1.453+0.017 MeV
Tul3PU+nm] = 1.319£0.019 MeV (5.60)

The average energy of neutrons is 37,,/2. The number of neutrons follows the Gauss distribution

P(\) = \/2170 exp [ (AQU;)} (5.61)

where ) is the average number of neutrons including prompt and delayed neutrons, which is about
2 to 4 for most nuclei. For thermal induced fission of 233U, 235U and 238U, the average numbers of
prompt neutrons are 2.48, 2.42, 2.86 respectively.



CHAPTER 5. NUCLEAR REACTION 127

The probability for a fissionable nucleus to split to two equal fragments is very small. Normally
there is a distribution of fission fragments as a function of mass number, for example the fragments
of 235U(n, f) follow the distribution as shown in Fig. 5.12. The most probable fragments for induced
fission reaction 23U(n, f) are around A; = 95 and Ay = 140. This is a typical example for induced
fission,

n+23°U — PRb+i Cs+2n

5.5.3 Self-sustaining nuclear fissions and fission reactor

A nucleus of 233U absorb a slow neutron and undergoes fission and release on average 193 MeV of
energy. For example, the fission reaction

n+ 259U — 92Kr + 1§%Ba + 2n (5.62)
has the Q-value
Q = m(5°U) —m(55Kr) — m(35°Ba) —my,
= [235.04 — (91.93 + 141.92) — 1.0] u
= 0.19u~ 177 MeV (5.63)

Most of them is converted to thermal energy. On average 2.5 prompt neutrons and 0.018 delayed
neutrons are produced in each fission process. If at least one neutron is captured by the 235U nuclei
the nuclear fission is then self-sustaining with constant output of energy.

In natural uranium material on the earth the self-sustaining fission can not take place since 99.28%
of ingredients are 23%U. The fissions of 238U rely on higher energy neutrons of above 1 MeV but the
neutrons quickly lose their energies via inelastic scatterings. In the 1 MeV region the cross section
of 238U(n,v)?3?U is 1/10 of 235U(n, f) but the aboundance of 238U is 138 times that of 3°U. So in
natural uranium most neutrons produced in fissions of 235U are absorbed by ?*3U which stop further
fissions. There are two methods to solve this problem: either to enrich ?3*U or to change the energy
spectra of neutrons to enhance the cross section of 235U(n, f) over 238U(n, v)?3°U. The latter method
can be realized by thermalization of neutrons. Note that the fission cross section of 23°U follows a
1/v = \/my/2F law, the smaller v the larger the cross section.

Through elastic scattering of light nuclei, fast neutrons of about 1 MeV can lose their energies
very quickly. Now we can estimate how much energy a neutron would lose in each collision. Suppose
in the lab frame a neutron with velocity v, collides with a nucleus of mass M which is still, the
scattered neutron moves in the direction € in the center-of-mass frame. The center-of-mass frame has
a velocity ven = Mty /(my + M) in the lab frame. So in the lab frame the energy is

1
E., = imn[((vn — vom) cos 0 + UCM)2 + (vn — ’UCM)2 sin? 0
1
= imn[(vn —wvem)? + viy + 2(va — vou)vew cos 6] (5.64)

The average energy over angle 6§ is then

= imy [ dcosO[(vy — vem)? + véy 4 2(vn — vom)vewm cos b
L =

[ dcost
1 1 m2+M?
= §mn[('l}n - UCM)Z + U%M] = §mnmvﬁ (565)
So the fraction of Ep, in the incident energy Ej, becomes
E M2+ M?
L A (5.66)

Ein (Mn + M)2
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If M — oo, the lab frame coincides with the center-of-mass frame, so the neutron would not lose
energy by elastic scatterings. If we use carbon as a moderator with mass M =~ 12M,,, the fraction
becomes Ep,/Ei, = 145/169 ~ 0.86, i.e. the neutron loses 14% of its energy per scattering. For a
neutron of 1 MeV it will undergo 61n(10)/1n(1/0.86) =~ 91 collisions to reach 1 €V. One would think
that hydrogen would be best choice for the moderator but the cross section of p(n,v)d is very large
so that it is not suitable. But hydrogen in the form of heavy water DO or some compound can
be used as the moderator in the reactor with enriched uranium. Graphite is the material used as
a moderator in natural uranium because '2C is a light nucleus and all nucleons are in pairs so the
nucleus is tightly bound.

5.5.4 Time constant of a fission reactor

The neutron number distribution in a reactor is a function of the time, position and energy of the
neutron. For an ideal case, we consider a homogeneous number density n for neutrons. Due to the
capture processes for these neutrons, the number of neutrons will decrease as follows dn/dt = —n/7
whose solution is n = nge~*/7. Here 7 is the time constant and given by
1
==Y owN; (5.67)
T .
K3
where o; and N; are the cross section and particle number density for the i-th process and nucleus
i respectively. For a neutron with energy 1/40 eV, the cross sections are 238U(n,~)?3°U: 2.73 barns,
25U(n, f): 577 barns, 23°U(n, v)?3%U: 101 barns.
If we include the production of neutrons, the rate equation becomes

dn n
—=(k-1)— 5.68
= (k- 1)~ (5.69)
where k is the neutron reproduction or multiplication factor and defined as the ratio of the number
of neutrons in one generation to the that in proceeding generations. It reflects the net change in the

thermal neutron number between two generations. The solution to the above equation is then
n = ngeF~VY/7 (5.69)

Only if £ > 1, will the number density of neutrons increase, and then the fission is self-sustaining.
If £ > 1, we call it super-critical. If £ = 1, we call it critical. If k¥ < 1, we call it sub-critical. The
neutron reproduction factor k is defined by

k=mnfep (5.70)

This is known as four-factor formula. Here f is the thermal fuel utilization factor for neutrons which
gives the fraction of neutrons available to U-235 and U-238. It is defined by

o NUO'a(U)
i Nioa(i) + Nyoa(U)
where 0,(4) is the absorption (including fission) cross section for nuclide i. The factor 7 is defined as

the mean number of fission neutrons produced per thermal neutron in the last generation, which is
given by

f (5.71)

ot(U)
os(U) + 0a(U)
where 0, (U) is the absorption cross section by uranium. For example, for natural uranium and 1/40

eV neutrons, we have o¢(?*°U) = 577 b, 0,(?3°U) = 101 b, 0¢(?**U) = 0 b and 0,(*%U) = 2.73 b,
then we can obtain

n(U) =\ (5.72)

or(U) = 0.00720¢(**°U) + 0.9928 0¢(**¥U) = 4.15b
oa(U) = 0.00720,(*°U) + 0.9928 7, (**%U) = 3.43 b
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With A = 2.5, we get the factor n(U) = 1.37. One way to increase n(U) is to enrich uranium.
For natural uranium, a fast neutron can induce 22%U to undergo fission which will also produce
neutrons, so € is the factor for induced fission by fast neutrons (fast-fission factor) and defined by

o Nfast + Nthermal

5.73
N thermal ( )

€
where Niagt and Nipermal are neutron numbers from induced fission by fast and thermal neutrons
respectively. In natural uranium before cooled down to thermal energy resonant absorption takes
place for some neutrons.

The escape rate from such resonance absorption is denoted by resonance escape probability p.
Here € and p depend on the geometric shape of the reactor.

5.6 Accelerator-Driven System

5.6.1 Spallation neutron source

Neutrons have many properties that make them an ideal tool for certain types of research. Neutrons
are neutral and are highly penetrating. So they can be used as clean and non-destructive probe to
materials. Neutrons are very sensitive to hydrogen, they can locate hydrogen atoms and then to
determine the structure of molecules or materials. Neutrons are also sensitive to light atoms among
heavy ones. This properties have been used to locate light oxygen atoms in yttrium-barium-copper
oxide (YBCO), a high-Tc superconducting ceramic, whose positions in the ceramic are crucial to
the superconducting properties. Neutrons have spin and magnetic moment. Such a property makes
neutron act like a compass needle to detect the magnetic structure of materials and help develope
new magnetic materials. The energies of thermal neutrons almost match those of atoms in motion,
or in other words, the neutron wavelength is close to the atomic spacing, so neutrons can be used
to track molecular vibrations, movements of atoms during catalytic reactions, and crystal structures
and atomic spacings, etc..

Neutron sources have been built to meet the needs in many fields. The Spallation Neutron
Source (SNS) is an accelerator-based neutron source in Oak Ridge, Tennessee , USA, at the site of
Oak Ridge National Laboratory by the U.S. Department of Energy (DOE). Spallation is a process in
which fragments of material (spall) are ejected from a body due to impact or stress. In nuclear physics
is the process in which a heavy nucleus emits a large number of nucleons as a result of being hit by a
high-energy particle. The SNS uses high-energy protons to bombard a target made of heavy particles
to produce many neutrons. For each collision 20 to 30 neutrons are ejected. The neutron energies
are about 30 MeV for proton beam with 1 GeV. For more about SNS, see “http://www.sns.gov/”.

These neutrons can be used to bombard nuclear fuel to make sustainable nuclear fission. This is
called the Accelerator-Driven sysytem (ADS). The neutrons produced by spallation act as a trigger to
ignite the fission which will continue by additional neutrons produced in the course of fission. There
is an advantage for the ADS system is that the fission will stop immediately once the proton beam is
switched off, therefore an ADS is safer than conventional reactor. For more information about ADS,
see, e.g., “http://www.world-nuclear.org/”.

5.6.2 Thorium as fission fuel

Thorium reservation on the earth is 3 to 5 times that of uranium. Thorium can be used as fission
fuel by capturing a neutron,

n +252 Th — 233Th (22 min) — 2¥Pa (27 days) — 25°U (159200 years) (5.74)
which is analogous to

n+258 U — 239U (23.5 min) — 23°Np (2.4 days) — 23°Pu (24110 years) (5.75)
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Figure 5.14: Fission cross section of Uranium-233.
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The process of converting fertile isotopes to fissile ones is called breeding. Uranium-233 needs enough
neutrons to undergo sustainable fission. Carlo Rubbia first proposed to use ADS to produce enough
neutrons to ignite sustainable fission of Thorium-232.

5.6.3 Nuclear waste incinerator

Used nuclear fuel in conventional reactors normally contain a lot of long-lived heavy isotopes, par-
ticularly actinides. Among nuclides heavier than Th-232, those with odd atomic number can most
probably absorb a neutron to undergo fission, while those with even atomic number will first undergo
beta-decay and then fission. ADS can be used to transmute these long-lived isoptopes into short-lived
ones. ADS can also be used to destroy long-lived fission product such as Tc-99 and 1-129.

5.7 Nuclear fusion

As can be seen in the behavior of the binding energy per nucleon versus the mass number, two light
nuclei lower than iron in mass merge into a middle sized nucleus can release energy. This process is
called fusion. There are many types of nuclear fusion, among which are thermonuclear fusion, inertial
confinement fusion, beam-beam and beam-target fusion etc.. Nuclear fusion have been known to
power the stars. H. Bethe found the main cycle of nuclear fusion in stars in 1930s. The hydrogen
bomb was successful in 1952 as part of the Manhattan Project. Civilian use of fusion power is not
successful until now because for the fusion to take place two light nuclei have to overcome the Coulomb
barrier which needs extremely high temperature environment.

The Coulomb barrier is shown in Fig. 5.15 and is given by

- Z1Z262
R

Eg (5.76)

where R = TO(A}/ 3 +A§/ %), and Z; and Z, are proton numbers for incident nuclei. The turning point
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is

- 212262
- E
where E = %mrUQ with the reduced mass m, = myms/(my + ms) of two incident nuclei and their
relative velocity v. The barrier transparency factor 7' is given by,

Ry (5.77)

Tre Cne VE/E = o221 226" v (5.78)

where Eq = 2m,(Z,Z2e*)? is called the Gamow energy. The above is valid for Eq > E. The
tunneling factor G can be evaluated as,

R¢p

G = 2v2m, dr\/V(r)—FE
R
1
4\/2mrERtp/ dy~/1 — y2

Yo

E
,/EG, for R < Ry, (5.79)

where V(r) = Z1Z2€?/r, y = \/7/Ryp and yo = \/R/Ry,. We see that the Coulomb barrier is
extremely sensitive to ZyZ,. The less Z,Z5, the most probably the fussion reaction can take place.
The barrier is the lowest for hydrogen isotopes, Eg ~ e¢?/R ~ 100/137 ~ 0.7 MeV. This is still much
larger than typical kinetic energy of a few KeV.

The fusion cross section is normally parameterized as

Q

0~ OgeomTF (5.80)

where ogcom is the geometrical cross section and F is the reaction characteristic factor and depends
on the nature of the reaction. The geometrical cross section ogeom is given by the wavelength of the

induced mass,
1 1

~

(mw)?2  mE

So the fussion cross section can be finally written as

o(E) = @avEG/E (5.82)

~ A2~

(5.81)

Ogeom

where S(F) is called astrophysical S-factor, a weakly energy dependent function for non-resonant
reactions.
The reaction rate per unit volume for two collision particles is given by

nin2

R =
12 1+ 019

(ov) (5.83)
where o is the cross section for the reaction,v is the relative velocity, n; and no are number densities.

If two colliding particles are identical 412 = 1, otherwise 612 = 0. In thermal environment, the velocity
obeys Boltzmann-Maxwell distribution, then (ov) is evaluated as

(ov) = N_l/dvv2av exp(—Bmv?/2)

— oN-'m=2 [ dES(E) exp [— (\/M + BE)] (5.84)

0
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where 3 = (kgT)~! and

N = /Oodvvze’m“’z/(z’“BT) \f dEVEe PE
0
kpT\ %2 [ EsT\>%1_ /1
vz () /M“WP) r(3)
my 0 my 2 2

\/§ (":f)m (5.85)

is the normalization constant. Inserting the above into Eq. (5.83), we obtain the reaction rate. Here
we have used the cross section formula in Eq. (5.82). The energy integral in Eq. (5.84) is dominated

by the minimum value of the function f(F) = 1/%9 + BE in the exponent at Ej,

df (E) 1 —3/2
———= = —=vEgE =
dE pVEcE, T+ 5=0
2/3
E, = EY® (IC‘ZT) (5.86)
So we can expand f(E) = E—; + BE at E = E; and keep the quadratic term,
1 *f(E) 2
F) = E — E — E
f( ) f( 0)+2 dE2 E:EO( 0)
= f(Eo)+ 8E1/2Eg5/2(E — Ep)? (5.87)

So Eq. (5.84) becomes
(ov) ~ 2N"'m 28(E) exp[ (\/EG/EO—i—/BEo)}

/ dE exp {:E};/QE(;W(E - EO)Q}
0

94/3 3 [ Eq\'Y?
~ \/3?(21226 2m) V3 (kg T) =23 m /3 S(Ey) exp ~537 (lé)
The Sun is a perfect prototype of self-sustaining thermonuclear fusion reactor. The basic fusion
process in the sun is the hydrogen burning process into helium. Hydrogen is the most abundant
material in the universe, almost 90% of elements in the universe are hydrogens. The temperature in
the center of the Sun is about 1.6 x 107 K (about 1.38 KeV with 1eV = 1.1604 x 10* K). Most fusion
reactions occur within 25% of the Sun’s radius (R = 6.95 x 10° km). Most of the sun energy comes
from the proton-proton chain reaction. The reaction rate in the center is about 9.2 x 1037 times
per second. In each reaction four protons are converted into alpha particles or Helium-4. So about
3.7 x 1038 proton out of 10°7 protons are converted to Helium-4 per second. Each fusion releases the
energy of about 25.7 MeV (or 27.8 MeV if including electron-positron annihilation), see below. Thus
the energy power is about (3 —4) x 1026 W (1W =1J-s ! =10"erg-s™1).
The proton-proton chain reaction of type-1 (pp-I chain) is,

(5.88)

p+p — D+4et +v.+042MeV

et +e” — 2y+1.02MeV
p+D — 3He+y+549MeV
sHe +3He — 3He+2p+7+12.86 MeV (5.89)
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Figure 5.15: Coulomb barrier for fusion.
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Note that in definition of the Q-value we did not count the electron in the final state. If we do not
take the second reaction for electron-positron annihilation into account, the net reaction is

4p — 5He + 2e™ + 2u, + 3 4 24.68 MeV (5.90)
when including electron-positron annihilation, the net reaction becomes
4p +2e” — 3He + 2u, + Ty + 26.70 MeV (5.91)

The pp-I branch is dominant at temperatures of 10 to 14 megakelvins (MK = 10° K). Below 10 MK,
the 3He yield is suppressed. Since in the first reaction a proton must be converted to a neutron in the
weak interaction. The rate is controlled by the first reaction since the time scale for weak interaction
is much longer than the strong interaction. The cross section is of order 10723 b and 10722 b at KeV
and MeV respectively. The proton number density of the core of the Sun is about 7.5 x 10%2®> cm ™3,
and the temperature is about 16 MK. Given these parameters, we can estimate the rate of the first
reaction, which is actually the rate of the pp-chain.

The pp-II chain is more important for temperatures of 14 to 23 MK. The pp-II chain reaction is
SHe+5He — IBe+v+ 1.59 MeV
iBe+e  — ILi*(ILi) + ve + 0.861(0.383) MeV
Li+p — 2'He+17.35 MeV (5.92)
whose net reaction is )
sHe +p+e” — *He + v, + 19.8/19.3 MeV (5.93)

90% of the neutrinos produced in the reaction "Be(e™, v.)"Li* carry an energy of 0.861 MeV (Lithium-
7 in the excited state), while the remaining 10% carry 0.383 MeV (Lithium-7 in the ground state).
If the temperature is above 23 MK, there is pp-III chain reaction as follows,

SHe +3He — 1Be+ v+ 1.59 MeV

Be+p — EB+7+0.197MeV
B — iBetem +rv.+vy+17.5MeV
8Be — 23He+0.092 MeV (5.94)
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Figure 5.16: Parameters for some fusions. The Q-value is only from nuclear mass difference. The table
is from S. Atzeni and J. Meyer-Ter-Vehn, “The Physics of Inertial Fusion: Beam Plasma Interaction,
Hydrodynamics, Hot Dense Matter”, Oxford University Press, 2009. The data is from C. Angulo et
al., Nucl. Phys. A656 (1999)3-187. [http://pntpm.ulb.ac.be/Nacre/nacre_d.htm]|

0 Q) SO e
(MeV) (MeV) (keV barn) (keV'/?)
Main controlled fusion fuels
D+T—>a+n 17.59 1.2 x 10* 34.38
T+p 4.04 56 31.40
D+D— !3He +n 3.27 54 31.40
la+y 23.85 42 x107? 31.40
T+T—a+2n 11.33 138 38.45
Advanced fusion fuels
D+ *He - a +p 18.35 5.9 x 10° 68.75
p+ 5Li > a + *He 4.02 5.5 % 10° 87.20
p+ "Li — 2a 17.35 80 88.11
p+ "B — 3a 8.68 2 x 107 150.3
The p—p cvcle
p+p—=D+et +v 1.44 0.27 4.0 x 102 22.20
D+p—*He+4y 549 2.5 x 10~ 25.64
He 4+ *He — a + 2p 12.86 54 % 10° 153.8
CNO cycle
P+2Co> BN+ y 1.94 1.34 181.0
[PN=BC+et +v+y] 2.22 0.71 — -
p+PCaMUN+y 7.55 7.6 181.5
p+UN B0+ 7.29 3.5 2123
[P0 ->PN+et +v+y] 2.76 1.00 - -
p+"No2Ct+a 497 6.75 x 10* 212.8
Carbon burn
B3Na+p 2.24
Ret2c 5 {PNat o 4.62 8.83 x 10" 2769

l14Mg + ¥ 13.63
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Figure 5.17: The PP chain reaction in the sun.

“http://en.wikipedia.org/wiki/File:FusionintheSun.svg”.
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whose net reaction is
SHe +p — *He+ e + v + 37+ 19.3 MeV (5.95)

The pp III chain is not a major source of energy for the Sun (only 0.11%), but was very important
in the solar neutrino problem because it generates very high energy neutrinos (up to 14.06 MeV).
The CNO cycle is more important for heavier stars and higher temperatures (called CNO-I),

FC+p — PN44+1.94MeV
BN — BCHet +v.+1.71 MeV
BCH+p — N4y 4 7.55MeV
UN+p — $O+7+7.30MeV
$£0 = PN+et +rv, +224MeV
PN+p — §2C+3He+4.96 MeV (5.96)
The net reaction is
4p — 5He + 2e™ + 2u, + 3y + 27.8 MeV (5.97)

Note that the Carbon, Nitrogen and Oxygen nuclei do not really participate the net reaction but
play as catalyst. The net reaction is still Eq. (5.91). There are also another chain reactions called
CNO-1I invloving 50 and §70.

The pp-chain and CNO cycle are not feasible on the earth because there is anything that can
confine the matter at such high temperatures in such a long time. The fusion reactions which can be
used on the earth are those with large cross sections at moderate temperatures. For example, here
are a few such reactions,

H+3H — 3jHe+n+17.58MeV (DT)
SH+%H — 3He+2n+ 11.33MeV (TT)
H+H — 3He+n+3.27MeV (DD)
— JH+p+4.04 MeV
—  3He + 7 4 23.85 MeV
H+3He — 3He+p+18.4MeV

Because of large energy release, the DT reaction is chosen for controlled fussion reaction in reactors.
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Figure 5.18: The cross sections for DD and DT fusion reactions. Also shown is the fusion reaction of
He-3 and deuteron. Taken from [4].
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Figure 5.19: The cross sections for DD and DT fussion reactions averaged over Boltzmann-Maxwell
disribution. Also shown is the fusion reaction of He-3 and deuteron. Taken from [4].
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Exercise 43. The Sun is a perfect prototype of self-sustaining thermonuclear fusion reactor.
The basic fusion process in the sun is the hydrogen burning process into helium. The proton-
proton chain reaction of type-I (pp-I chain) is dominant one,

p+p — D+et+u,
p+D — gHe—&-’y
SHe+3He — 3He+2p+1~

Given the atomic masses (not nuclear mass, given by mass excess relative to atomic mass
unit) of nuclides Mp = 12.628 MeV, Myes = 14.931 MeV, Myes = 2.425 MeV. The
proton and neutron masses (mass excess) are mp = 0.007276u, m, = 0.008665u with
1u=931.494MeV /c?>. The electron mass is m. = 0.511 MeV. (1) Calculate the Q-value of
each reaction. The Q-value is defined as the mass surplus of initial state nuclei relative to
final state nuclei. (2) Write the net reaction and the Q-value. (3) Among the three reactions,
which one is dominant to control the total reaction rate? Why? (4) The fusion cross section
of the first reaction p +p — D + et + v, can be written as

o(E) = @e—m

where E = m,v?/2 is the kinetic energy with reduced mass of two incident nuclei m, =
mimz/(m1 + ma), and Eg = 2m,.(Z1Zse?m)?, S(E) = S(0) + (dS(0)/dE)E with S(0) =
3.8x 10722 KeV-barn and dS(0)/dE = 4.2 x 10~2* barn. We note that the fusion takes place
within 25% of the Sun’s radius (Re = 6.95 x 10° km) and the proton mass density is about
100 g/cm?®. We can approvimate that the kinetic energy E is given 3T /2 with T = 1.6 x 107
K. For reference we list following constants here: 1 MeV= 1.16x10'° K, Avogadro’s constant
Na = 6.022 x 1023 /mol, barn=10"2% cm?. Try to calculate the rate of the fusion reaction
per unit volume.
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[Solution: E = 3T/2 = 2.07 KeV, S(E)/E ~ 1.9 x 10722 barn, Eg ~ 940 x 103 x 72/137% ~
494 KeV, \/Eg/E ~ 154, e VFe/E = 195 x 1077, o = 3.6 x 10~2° barn= 3.6 x 1075 cm?.
v = /2E/m, = /414 x 1073/940 = 2.09 x 1073 — 6.3 x 107cm/s. ov = 2.3 x 107%° c¢m3/s.
ng =100 x 6.022 x 103 = 6 x 10%° /em®. R/V =n%ov/2 =576 x 1055 tem™3. R =1.92x10719/s,
7=1/R=5.2x10'8 s=1.65 x 10!! y]




Chapter 6

Nuclear force and nucleon-nucleon
interaction

6.1 Properties of nucleons

The proton and neutron are nucleons, the building blocks of nuclei. The properties of nucleons are
summarized in Table 6.1. The main difference between the proton and the neutron is that the mass of
the neutron is 1.29 MeV larger than that of the proton and that the proton is stable but the neutron
is not. The dominant decay mode for the neutron is n — p+ e~ + 7.

6.2 General properties of nuclear force

The human knowledge about nuclear force started from 1934, shortly after neutron was discovered
in 1932 by J. Chadwick. Then H. Yukawa proposed that nuclear force was mediated by meson which
was discovered in 1947. From modern perspective nuclear force can understood as a residual force
of strong interaction whose the elementary particles are quarks and gluons. Mesons are actually
composite particles made of quarks and gluons. Nuclear force is like a Van der Waals force among
atoms which is a short range force much weaker than electromagnetic force. The Van der Waals
force originated from separation of charges (electric polarization) in atoms which are electric neutral.
Similarly quarks and gluons are bound together into a nucleon which is a color singlet object (color
neutral). When quarks and gluons with colors fluctuate inside the nucleon they produce a short
range force felt by a neighboring nucleon. Therefore the nuclear force is a residual force of quarks
and gluons.

1. Saturation and short distance. The forces which bind the nucleons together in nuclei are very

Table 6.1: Properties of nucleons.

proton neutron
quark content uud udd
1(7) 3 (3) 3 (3)"
mass 938.27203+0.00008 MeV 939.56536+0.00008 MeV
Magnetic moment | 2.792847351+0.000000028 pun | —1.9130427+0.0000005 pn
Charge radius 0.875 £+ 0.007 fm — 0.1161+0.0022 fm
Mean life > 2.1x10% years 885.7£0.8 s

140
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Figure 6.1: Nuclear force mediated by meson. From “http://en.wikipedia.org/w
U B
Pifleeca %8 - —__—F

iki/Nuclear _force”.

Figure 6.2: The nuclear force.
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Table 6.2: The states of NN system denoted by the symbol 2°t'L. B, H, M and W mean Bartlett,
Heisenberg, Majorana and Wigner force.

NN state L S I 0109 T1 T2 B H M W
ppopnn | 1S [0[0]1 -3 1 11 ]-1]-1
np 3 Jof1]o0 1 3111
np TP l1]olo0 -3 -3 1]-1]1]-1
pp.ap,an | SP 11111 1 1 1|11 -1

strong because they can at least overcome the Coulomb repulsion among protons. The nuclear forces
have one property which we call the saturation: a nucleon can only interact with nucleons surrounding
it in a nucleus because it is an attractive force at short distances. This is why the binding energy is
proportional to the number of nucleons in a nucleus or the atomic number A. We can easily understand
it. Suppose the nuclear forces in the nucleus would be attractive between all pairs of nucleons, then
the total potential exerted on one nucleon by other A — 1 nucleons is proportional to (A —1). There
are A nucleons, so the total potential energy is proportional to A2, which is not the real case. There
must be some other effects to keep the nucleons apart when the inter-nucleon distance is larger than
a threshold value. It turns out to be that the nuclear force is attractive in the intermediate short
range r € [1,2] fm and repulsive at very short distance r € [0,1] fm, where r is the distance between
two nucleons. In some sense the nuclear force is like Van der Waals force of molecules, which arises
from inhomogeneous distributions of electric charges though the molecule does not carry net charges
or is electric neutral. The nuclear force is illustrated in Fig. 6.2.

2. Ezchange property. Nuclear force is mediated by mesons (pions and others) like the covalent
bonding in molecules. The force is attractive or repulsive depending on if the pair of nucleons is in
a symmetric or an anti-symmetric state in their separation. This counts in part for the saturation
of the forces. If we regard the proton and nucleon as an isospin doublet, we can extend the Pauli
principle by including the isospin. For a NN system, the total wavefunction must be anti-symmetric
with respect to exchange of two nucleons, which requires

(=D = 1 (6.1)

Assume ¥ (ry,01,71; 2,09, 72) is the wavefunction of the NN system, where o; and 7; (i = 1,2)
label the spin and isospin states. We introduce three exchange operators P,., P, and P, which
exchange the spatial positions, spins and isospins of two nucleons,

Poj(ri,01,71310,02,72) = Y(r2,01,71;11,02,T2)
Ppip(r1,01,71312,02,72) = (r1,02,71;12,01,72)
Pip(ry,01,71512,09,72) = (r1,01,72;¥r2,02,71) (6.2)
These operators satisfy
PP=pP2=pP2=1 (6.3)

So the eigenvalues of the above operators must be £1. Considering the properties under the exchange
of positions, spins and isospins for a NN state with the angular momentum, spin and isospin quantum
number L, S and I,

P, (-1)%
Pa _ (_1)S+1
P, = (-1 (6.4)

According to Eq. (6.1), we have
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These operators can be expressed in terms of Pauli matrices for spins and isospins o1 2 and 7 2,

Pg’ = (1+0’10’2)/2:S(S+1)71
PT = (1—|—T1T2)/2=I(I—|—1)—1
P = —(1+0’1 ~0'2)(1+T1 'TQ)/4 (66)

One can check S(S +1) — 1= (=1)5t! for S =0, 1.

In nucleon-nucleon interaction, the nuclear force can be modeled by nuclear potential in Schroedinger
equation. The most widely used nucleon-nucleon potentials are the Paris potential, the Argonne po-
tential, the Bonn potential and the Nijmegen potentials. The parameters of these potentials are fixed
by fitting experimental data, such as the deuteron binding energy, nucleon-nucleon elastic scattering
cross sections, etc.. A recent development is to systematically derive the nucleon-nucleon potential
from chiral effective field theory. Nuclear potential can be classified into four kinds, they are attractive
or repulsive depends on the quantum state of the nucleon-nucleon system. In the following, vw(r),
vMm(r), va(r) and vg(r) are all positive functions.

e Spin exchange potential (Bartlett force),

1
B = 75(1 + 01 02)up(r) (6.7)
The spin exchange potential is attractive for the spin triplet state S = 1 and repulsive for the
singlet S = 0.

e Isospin exchange potential (Heisenberg force),

Vu = %(1+7'1'7'2)UH(7") (6.8)

The isospin exchange potential is attractive for the isospin singlet state I = 0 and repulsive for
the triplet I = 1.

e Space exchange potential (Majorana force),
1
VM = Z(1+0'1‘0’2)(1+T1'T2)’UM(7’) (69)

e Non-exchange potential (Wigner force),
VW = —Uw(T) (610)
We see that the non-exchange potential is always attractive.

In the above we note that vw(r), vm(r), va(r) and ve(r) are all positive functions. As shown in
Table 6.2, the above four forces are all attractive for the state 3.

3. Charge independence or isospin invariance. The nuclear force between two nucleons is equal
irrelevant of if they are proton-proton, neutron-neutron or proton-neutron,

Vop = Van = Von (6.11)

This property was verified in the NN scattering experiments and in the presence of isospin multiplets
in nuclear structure. A good example is the mirror nuclei *H and *He (see Fig. 6.3). It is found that
the difference in binding energies of *H and *He only comes from the Coulomb energy of proton-proton
in 3He.

4. Momentum dependence. The nuclear force nontrivially depends on the relative momentum due
to the fact that it is mediated by meson exchange. The most important force that is momentum
dependent is the LS coupling,

(L-S)V(r) (6.12)
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Figure 6.3: Mirror nuclei: *H and *He.

which is essential to explain the shell structure of in nuclei.
5. Spin dependent. Apart from the spin exchange force listed in Eq. (6.7), there is also tensor
force formed by three vectors o1, o2 and = r/|r|,

512 = 3(f‘ . Ul)(f‘ . 0’2) — (0’1 . 0'2) = (3’1%%1 — 51‘]‘)0'1,'0'2]‘
= 6(S-1)% 282 (6.13)

The tensor force violates the angular momentum conservation.
In summary, the nuclear force has the following general form,

V = Ver)+Vo(r)(o1-02) + Vi(r) (71 T2) + Vor(r) (o1 - 02)(T1 - T2)
+Vi(r)Si2 + Vir (1) S12(1 - T2) (6.14)
One sees that the potential conserves the total isospin since it is commutable with
1 1
I? = 1(7'1 +T2)2=§(3+7'1'7'2) (6.15)

The potential does not depend on I3, i.e. it does not discriminate protons and neutrons.
NN potentials have the following properties,

e A scalar, because it is an energy;

e Only depends on the relative distance between two nucleons r and o - r- locality and momentum
conservation;

e Invariant under the spatial reflection - parity invariance;

e Invariant under rotation - angular momentum conservation;
e Invariant under the time reflection;

e Invariant under the exchange of proton and neutron;

e Not dependent on velocity - static;

Exercise 44. What is general Pauli exclusive principle? From this principle, fill the empty
space of the following table,

NN state L S| 0109 T1 T2 B H M w

pp,np,nn | 1S 1| 11]-1|-1
np 38 -1)-11|-1]-1
np p 1]-1]11-1

pp,np,nn | *P 11 1]-1
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Table 6.3: Static properties of the deuteron nucleus (J¥ = 17).

observables data

binding energy Bp (MeV) 2.224
magnetic moment up/un 0.857
electric quadrupole Qp (fm?) 0.286

average square root radius <\/7"72> (fm) | 1.964
ratio of D to S states n = Ap/Ag 0.026

Exercise 45. What is the saturation property of nuclear force?

Exercise 46. Assume 1(r1,01,71;T2,09,72) is the wavefunction of the nucleon-nucleon
system, where o; and 7; (i = 1,2) label the spin and isospin states. We introduce operators
P, and P, which exchange the spins and isospins of two nucleons,

Pyip(r1,01,T1510,02,72) = (r1,09,7T1;T2,01,72)
Pop(ri,01,71;r2,02,72) = (ri,01,T;r2,02,71)

Considering that the nucleon-nucleon state can be in spin and isospin singlet and triplet,
write down the formula for P, and P, using o; and 7;.

6.3 Deuteron nucleus

The Deuteron nucleus is the second most simple nuclei and made of one proton and one neutron.
Following the Pauli principle 6.1, the total wave function must be anti-symmetric with the exchange
of two nucleons. The Deuteron nucleus is an isospin singlet and has spin-parity J” = 1*. The
interaction inside the deuteron is purely nuclear force without Coulomb contribution. Since S = 1
gives a stronger nuclear attraction, the deuterium ground state is in the S = 1, L = 0 state. As we
know from the positive parity and total angular momentum 1 of the deuteron, it must be in the states
with relative orbital angular momentum L = 0,2, - - -, where two lowest states are 2°T'L; =3 S, 3 D;.

6.3.1 S-state

For the 35, state, the relative motion of neutron and proton can be described by Schrédinger equation
with a square well potential,

{—mlNVQ—kV(r)—E} Y(r) = 0 (6.16)

Here the reduced mass is mpy /2. The square well potential is defined by,

Viir) = { 0, (r>a) (6.17)

P(r) = u(r)/r (6.18)
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Then the Schrodinger equation becomes

1 1d ,d u(r)
B Al _p| % 1
my 2 drr dr +Vi(r) r 0 (6.19)
Using
1d,d _ & 2d
2dr dr  dr? ' rdr
d? u(r) u’'(r)y 2, ,
ek
2du(r) 2, ,
the the Schrédinger equation can be simplified as
1
——d"(r)+[V(r) — EJu(r) =0 (6.21)
mnN
and further as
u'(r)+mn[E+WVolu = 0, (r<a)
u'(r)+mxEu = 0, (r>a) (6.22)

where the energy is chosen to be the binding energy F = Bp = —2.224 MeV. Using the boundary
condition, u(0) = u(co) = 0, we get the solution

u(r) = { Asin(\/mn(E + Vo)r), (7 < a) (6.23)
Bexp(—+/mx|E|r), (r>a)

At r = a, u(r) and «'(r) must be continuous. So we get

Asin(v/mn(E + Vo)a) = Bexp(—v/mn|F|a)
A\/mN(E+W))COS(\/mN(E+%)a) = —Bymy|E|exp(—v/mn|E|a) (6.24)
and then
1

tan(\/mn(B 4 Vo)a) = ———m (6.25)

mN(E+V0) mN|E\

which gives the relation between V and a. We can choose a = 2 fm. Define ka = /mn|E|a =
V938 x 2.224 x 2/197 ~ 0.465 and koa = v/mnVpa, with k < ko, the above equation is rewritten as

(koa)* — (ka)?
ka

tan(v/(koa)? — (ka)?) = — (6.26)

In order for the above equation to have solutions, kga must be within [(2n + 1/2)m, (2n 4+ 1)7] so
that two functions y = tan /22 — 22 and y = —2~'\/2Z — 22 (z¢ = koa, © = ka) have intersections.
For ka =~ 0.465, we can find the smallest value koa ~ 1.87 which is about 1.19 times 7/2 and within
[7/2,x]. In this case, the potential depth is Vj = 36.5 MeV.

The electric dipole moment of the deuteron is zero. Its magnetic moment is

py = pr+ps=gopuxL+ gsunS = grund (6.27)

where J, L and S are the total, orbital and spin momenta. ¢;—;r s are their g-factors, and we
have g, = (g7 + ¢7)/2 = ¢7/2 = 1/2 and gs = (g% + g%)/2. The g-factor of deuteron for oribital
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angular momentum can be easily understood by the fact that only proton contributes with half of
total orbital angular momentum: p;, = g7 unL, = g7 unL/2. The g-factor of deuteron for spin can
also be derived:

1
s = gspnS = fuN(ggm + g502)
1
gsS-S = 1(g§01-8+9202~3)
3 a1 ;
= ;005 +93) + ;{95 +g5)o1 -0 (6.28)

where we have used S = 1(o1 + 02). We see that for S =1, gg = (g% + g%)/2.
We multiply J to both sides of Eq. (6.27) and obtain

0533 = Sgh(L-T) 4 L6k + i) )
- pJ(J+1)+L(L+1)fS(S+1)
957 = 91 AT +1)
J(J+1)+S(S+1)— L(L+1)

+(95 + 93) (6.29)

A(J+1)

Then the magnetic moments of the deuteron states 3S; (S =1, J =1 and L = 0) and 3D; (S =1,
J=1and L =2) are

1
niPS1) = grJ = (g5 +g8) = 0.879
3. 1 i
ns(*D1) = gJ = ZQE - Z(gg +g5) = 0.31 (6.30)

We can see we can reproduce the magnetic moment of deuteron nucleus in such a simple model.

6.3.2 S and D states

Data show that the deuteron has non-zero quadrupole moment, indicating that one should take non-
central potential into account. The most simple non-central potential is the tensor one, then the total
potential of the deuteron can be written as

Vi(r) = Ve(r)+ Si2Vr(r) (6.31)

where the tensor operator Sis is given in Eq. (6.13). As we have mentioned in the last subsection
that the lowest ground states of the deuteron are states 3S; and 3D;. Let us denote ¢s and ¢p as
the spin and angular part of the S- and D-state wavefunction,

M= ximYoo(6,9)
BYo= D0 oMMy, My)Yous, (0, ¢)xan, (6.32)
My, My

where the Clebsch-Gordon coefficients ¢(m;m1, ma) can be taken from [19] and are listed below,

¢(1;2,-1) = —/3/10, ¢(1;0, 1) =/1/10
¢(0;1,-1) = +/3/10, ¢(0;0,0) = \/275, c(0;—1,1) = 1/3/10
¢(=1;0,—1) = +/1/10, ¢(—1;—1,0) 3/10, ¢(—=1;-2,1) = /3/5 (6.33)
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The spin wave functions are

X1,1 = ™
1
0o = —=(M+
X1,0 ﬁﬁi )
X1,-1 =
and angular momentum ones are
1 /15 . 1 /151
Y- . Y a2 0 2i¢p i —v - Tll _ T22 ~2T12
272(67 ?) 4V 27 s ve 4V 27 3 ( t )
15 ; 151
Yo1(0,9) = — o sin @ cos fe'® = — 8r3 (T" +iT%°)
5 (3 1 /5
— _ ) == 7T33
¥20(0,9) 47\ 2 cos* 6 ) 2V 4m
Yo m(0,0) = (=1)"Y3,(0

)

where the rand-2 tensor is defined by T = 3#;7; — §;;. With Eq. (6.13), one can prove

Siog! = V8op!
512¢1DM = \ffb 1M

Now we can introduce the D wavefunction into the ground state of the deuteron,

W(r) V/Pss(t) + \/Ppip(r)

= @ EM+¥ b’

Then Ps and Pp are given by

%) 2 %)

Py = / wur ) rzdr:/ u?(r)dr
0 r 0
%) 2 oo

Pp, = / w(r) r2dr:/ w?(r)dr
0 r 0

Pot Py = [ )+ i)l =1

0

The Schréodinger equation becomes

{—mlNW + Vo(r) + S12Vir(r) — E} Y(r) = 0
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(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)
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We can simplify it by

[—1v2 + Ve(r) + S12V(r) — E] (“(:)gz)}gM + @ gM)

- [_leVZ +Ve(r) - E} (“E@ M @ }JM)
#siava) (Mo + o)

_ {va? +Velr) - E} <“Sﬁ’”)¢1sM + w(T)%M)
#a(0) (M VBolt 4 ) Bgppr — gy

o Vel - B o 4 M vy

+ {—mlw + Velr) — E} @ 2+ Vir(r) <\/§“(:) - 21”5,7”)) p'=0 (640
The we get

[—1V2 + Ve(r) — E] u(r) +w(r)V8Vp(r) = 0

I
o

{—1V2 + Ve(r) — 2Vp(r) — E] w(r) + V8V (r)u(r) (6.41)

The boundary conditions are
u(r),w(r) =0, r=0,00

The coupled equations can be solved numerically. The solutions have to be adjusted to fit the data.
These equations can be decoupled outside the range of nuclear force, the asymptotic behaviors are

u(r) = Age™™
wir) = Ap |14 o B | (6.42)
- P kr  (kr)? '
with k = y/mx|E|. The ratio of D to S state is
n = Ap/As=~0.025 (6.43)

The electric quadrupole moment is

Qo = (V@MW) = Ps (vslQlvs) + Po (vnlQlvn) +2v/PsPp (vslQvn)  (6.44)

where the quadrupole operator is defined as

O — 3(322 I \/?21/20(9) (6.45)

Note that the first term in Eq. (2.39) does not contribute following the Wigner-Eckart theorem, i.e.
there is no [1] in [5] ® [1] = [5]. Then we can derive

@ = 35 [Ty - g5 [ artur (6.46)
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Exercise 47. The spin-parity of deuteron is J& = 17. What are two lowest states for
deuteron? Express the states using the optical spectrum symbol >>+t1L ; with S, P,D,G, F, - - -
for L=1,2,3,4,5,---.

Exercise 48. Prove Eq. (6.36).

Exercise 49. Prove Eq. (6.46).
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Figure 6.4: pp cross sections
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6.4 Low energy nucleon-nucleon scatterings

When considering nucleon-nucleon scatterings, we have spin-orbit and spin-spin interactions in ad-
dition to the central potential. Neither spins nor orbital angular momenta are conserved in the
scatterings. Only the total angular momentum, its third compponent and the parity are conserved.
For a general two-to-two scattering a +b — ¢ 4+ d , the selection rules for the interaction are

(1) PP(-1)F = PPa(~1)"
(2) My +mp +mp = me +mq +mp,
B J=J (6.47)

where P; are intrinsic parities for particles ¢ = a, b, c,d; m; are the third components of the spins;
mp and mp, are the third components of the relative angular momenta of initial and final states; J
and J' are the total angular momenta of initial and final states.

Nucleon-nucleon scatterings include np, pp and nn scatterings. One can measure the cross sections,
differential cross sections or angular distributions with or without polarizations. For low energy
scatterings ka < 1, s-wave is dominant. We can estimate the incident energy for which ka < 1 holds,
ka =~ VmyFEa =~ \/m,EL/2a where E, is the energy in the lab frame. When E; ~ 10 MeV and
a ~ 2 fm, ka ~ 0.7, so for E;, < 10 MeV, we can safely consider only the s-wave. In this case the
total cross section is

1
Otot ~ 47'{'?(131 sin? 6; + Pssin? 63) ~ w(a2, + 3a23) (6.48)

where §; and ag; for ¢ = 1,3 are phase shifts and scattering lengths for the spin singlet and triplet.
The total cross section is obtained by summing over all the final states and taking average over the
initial states for which P; 3 = 1/4,3/4 are degeneracy weights from spin counting. Since the total

angular momentum is conserved, there is no mixing of the singlet and triplet in the amplitude. From
Eq. (??) and (A.62), we have

1 1
kcothd; = —— + —reg1k?
Qg1 2
11 )
kcothds = —— 4 —reg sk (6.49)

Qg3 2
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where 7.g,1 3 are effective force distances for the singlet and triplet. For neutron-proton scatterings,
their values are given by

a1 ~ 23.7fm

rer,1 ~ 2.5fm
a3 ~ —5.4fm
Tef,s ~ 1.7fm (6.50)

Note that the triplet/singlet channel is attractive/repulsive since as3/as1 is negative/positive. From
the scattering length we can determine the depth of the potential provided the potential width a is
known following Eq. (A.63). If we set a = 3 fm, we have the potential depths for singlet and triplet
channels are 311 and 96 MeV respectively, corresponding to kga = 1.51x,0.46w. The total cross
section is then about 20.4 barns (10724 cm?), where those for the singlet and the triplet are 71 and
3.7 barns. From these value we can determine the potential depth and width from Eqgs. (A.65,A.63).
At low energy the phase shift as function of wave number are independent of potential shape because
the wave length is much larger than the force distance. The scattering length for the triplet is negative
means the phase shift is positive and the force is attractive.

6.5 Nucleon-Nucleon scatterings in moderate energy

To gain knowledge about the deep structure of the nuclear force, one has to use high energy scatterings.
When the nucleon incident energy in the lab frame E; > 400 GeV, the internal mesonic degree of
freedoms can be excited and the relativistic effects enter the play. New particles can be produced by
transforming part of the kinetic energy into the masses.

Suppose the incident protons are moving along the z-axis in proton-neutron scatterings. The
differential cross section do/d? of neutron-proton scatterings in moderate energies has a feature that
there are peaks at § = 0,7 and the peak at § = 7 is higher than that at § = 0. There is a valley
at @ = w/2. The large peak at § = 7 is understood as the signal for the exchange character of the
nuclear force. The protons can exchange a pion with the neutrons and turn to neutrons which emit
at small angles, while the protons transformed from the incident neutron absorbing the pions move
out along the negative z-axis.

In proton-proton scatterings the differential cross section shows an isotropic feature with respect
to polar angles except § < /8. This is a result of coherence effect among a variety of partial waves.

6.6 Meson exchange model for NN potentials

Yukawa first proposed in 1934 that in analogy to the scalar potential of the electromagnetic field there
is also a potential between the proton and the neutron. The potential has an additional exponential
factor besides the Coulomb potential,

where g is the coupling constant and A characterizes the distance of the nuclear force. He argued
that A is actually the mass of one kind of particle which mediate the nuclear force which was later
called the pion.

Fig. 6.5 shows the central force, one can see that the repulsive part of the nucleon-nucleon
potential in short distance is from the vector meson exchange w and p. For intermediate distance the
potential is dominated by the o meson exchange. The long distance part is from the pion exchange.
The tensor force is provided by the pion and the p meson, while the spin-orbital force is from the o
and w mesons.
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Figure 6.5: Nucleon-nucleon potential.
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Figure 6.6: NN interaction through pion exchange.
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6.6.1 One pion exchange potential (OPEP)

The interaction potential via one pion exchange can be obtained from the Lagrangian by the scattering
amplitude of two nucleons. This can be translated into the Yukawa coupling igps@757'j¢¢3ps in the
Lagrangian where d)%,s (j =1,2,3 are isospin indices) denote the pseudoscalar pion fields and 7; are
Pauli matrices in isospin space. The coupling vertex is i['; = —gpgys7;. It is easy to introduce the
pion propagator, i.e. the Green function in momentum space,

i

iGij(q) =

- m@j (6.51)

where ¢ is the four-momentum and m, the pion mass. An incoming nucleon is denoted by un(p) =
(up,un)T, an outgoing nucleon by ux(p) = uf\ﬁo. Here g and ~5 are Dirac matrices given by

1 0 0 1
We write down the T-matrix,

i@ h, ho| T lp, hasha) - = —x(=p', h)iliun (=p, ha)

/L .
Xz O (B M) jun (9, ) (6.53)

where ¢ = p—p’ is the four-momentum transfer in nucleon-nucleon scattering and h =7, | denote the
spin states. At low energies we can transform all quantities to non-relativistic (NR) ones ¢> — —q?,
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FEnx — my and

ux(p,h) = ( E‘jr‘iéihi(h) ) - < ;ﬁ(j(lzh) >

where X = (Xp, Xn)? With xpn = |1),|J) are Pauli spinors for spin states. We obtain

154

(6.54)

) = (1L g2 (o ) (g )m( e )y

2mN

= S (W)l (b~ )7 x(1)
my
i (—p B hamun(-pia) =~ (x(2)] o+ (b~ BT [x(2)

Then the T-matrix element in the non-relativistic limit can be simplified by
<p/7 hl]v h'/2| T ‘pa hla h2>NR

= —W (x()[ (o - a)7 [x(1)) (x(2)| (e - a)7i [x(2))

which give rise to the effective potential in the Born approximation,

. 91298 1
4m% g2 + m2

Vela) = (11-72)(01-9)(02 - q)

The potential in coordinate space can be obtained by Fourier transformation,

qu q-r
Ve = [ ke
2 3
_ 9ps . . . d q iq-r 1
= B menen Ve V) [ Gl o
Q%S e~ MmnT
= 4m12\I(Tl'T2)(0'1-V)(0'2'V) -

where we have used

43 ) 1 1 oo 1 iqr cos 6
/ d iar = / dqqz/ deosfS—
@2m)?  a*+m2 (2m)% Jo 1 q* +m2

1 oo ) 1 eiqrcose
= d dcos——
(27r)2/0 qq /_1 cos @ +m2

1 > e

_ iqr efiqr —i o] 6iqr
= / dqq = / dgq———
(2m)2r Jo ¢?+my (21 ) P+ my

i / o (L1 1
— _— e = ——e ™
2(2m)2%r Jo 1 qg—imgy q+img 47y

where the contour C' is in the upper half plane. The OPEP potential then becomes

2 2 2 —MaeT
Ibs 1 My ME ms e M=

Ve = - T —+ —+ ") Si2+ Lo -
) 16mm% T [(7‘2 r 3 > 127 3o 02] r

where Sp5 is defined by

512 = 3(0’1'f‘)(0'2'f‘)—0'1'0'2

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)
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Table 6.4: Exchanged bosons in OBEP.

bosons | spin, parity J* [ isospin I | mass (MeV) | coupling type
T 0~ 1 139.57 14.24 | isovector, pseudoscalar
70 0~ 1 134.98 14.24 isovector, pseudoscalar
o 0" 0 (550) 3.16 isoscalar, scalar
n 0~ 0 548.7 5.77 isoscalar, pseudoscalar
p 1~ 1 759.9 0.71 isovector, vector
w 1~ 0 781.9 10.06 isoscalar, vector

Table 6.5: Lagrangian density for boson-nucleon couplings. For isospin multiplet like pions, we should
replace ¥ — (Yp, ¥n)?, ¢ — ¢; and I'r;.

Boson type Lagrangian term (gyI'¢) | coupling term (il")
scalar (S) gspos igs
pseudoscalar (PS) igpsYsYdps —9gprs7s
pseudoscalar vector-type (PV) %Vméwwamps -V 571 g,
vector (V) IV ey L9V Y
vector (T) I 40, 0" P, -3 0,q”
and we have used
e Ty i\ —mar
Vi = (e
e~ T Ti\ —mar
ViV = V() e
_ rirj 0y Tty Oij \ —m.,
= ( 5 T s T2Mmamgm —ma g e
r

e T
r
3 3mﬂ— mfr T 1 Uz 5 —MT
- T73+ 72 +7 r2 T3+T‘T |
1 My  m2 3r;r; m2 e m="
= -+ —+ = — ;i — 04 6.62
[(LomeomB) () mE e o

The OPEP can give the radius of deuteron rp = 1.94 fm, the quadrupole moment Q = 0.284 fm?,
which are in agreement with data. The OPEP can give the right description of the long range

attractive part of the nuclear force, but not the short distance part, because of the small mass of
pions.

6.6.2 One boson exchange potential

To describe the short and mediate distance of the nuclear force, one extends OPEP by including
other bosons, i.e. one boson exchange potential (OBEP), see Table 6.4. The Lagrangian density for
boson-nucleon couplings for various intermediate bosons are listed in Table 6.5.

In a similar way to one pion exchange, we can determine the potential from the o exchange. As
we know from Table 6.4 that o is an isoscalar and scalar particle, the interaction term is g,11)¢, with
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vertex ¢I' = ig;. The T-matrix can be evaluated as

Z<p/7h/17h/2| T ‘pah17h2>

. T _ .
_ﬂ]\/v(_p/7 hIQ)ZFUN(—p, hZ)muN(p/, hll)ZFUN<p, hl)

g

gz

= i P (B (- ha) (9 s (. )

~ _icﬁiismg x@)| {1 — (U'Z;g:'m] 1x(2))
< (1) [1 e ﬂ (V)

o o (p' xp)

~ i @)l [1- B T R
x<x(1’)l[1—i’ﬁ%—i f;ﬁ: p)}lx(lﬁ (6.63)

We have used q = p — p’ and we can also define k = (p 4+ p’)/2. In terms of k and q, the potential
in momentum space reads

2 i k2_ 2 4 2 . / k2_ 2 4
Vg = -9 1 g/ 48 (p2><p) {— 2/
q?+m?2 4m3, 2m3, am3,
1
*mal -(p' x p)oz - (p' x P)]
2 [ k2—-q%/4 iS-(kx
~ 295 . 1— (3/ iS - ( . Q)} (6.64)
Q- +ms | 2my; 2my;

where we have kept the terms upto k?/m3; or q?/m%. The term iS - (k x q) gives the L - S coupling
of the nuclear force. We only keep the leading order term we obtain

g: 9:
Volq) # ——5—"— = Vo(r)m == ™" 6.65
o‘(q) q2 + mg 0'( ) 471'7" ( )
which gives an attractive Yukawa potential.
Let us compute the potential from the exchange of the massive vector boson. The Lagrangian

reads 1 1
L=—FuF" + im?)VMV“ (6.66)

with F*” = VY — 9¥V*# is the strength tensor for the vector field. We can write the vector field
explicitly V# = (V% V) and V,, = (V% —V). The equation of motion can be obtained from the
Lagrangian equation,

oL oL
Ohs=——5- = 0
W ICNANEIA
1 v o o o
—5 O (gug] — grgp) —mVe = 0
HFN +m?ve = 0 (6.67)
The conjugate momenta are
oL 1
e = — __fw 0 o0 0,0
FENARE (9,97 — 939v)

= (0,F") = (0,E) = (0,1I) (6.68)
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where av

This indicates that there is no conjugate momentum of 1} since the Lagrangian does not contain
0oVh. Actually Vj is instantly obtained from Eq. (6.67),

1 1
VO = — QBAFXO = —jVH (670)
v v
So Eq. (6.69) becomes
1 ov
E=I1II=—V(V-II) - — 6.71
V(v - (6.71)
Taking the derivative of Eq. (6.67), we find
o, Ve = 0 (6.72)
The Hamiltonian can be found
H = 1I°0)V, —L=-II- V-1L
1 1
- _II-(-II- 0 - B2 _ CII 2 S on2v%2
(T V) = (B - BY) = (VT 4 iV

_ lmpeipy o L _ 2 1 oy
= P +B%) - —OvV.II (V-0 + gmiV

2
v va

1
5 IT° + B + —5 (V- M) +m2V?| + V- (IIVp) (6.73)

v

which is definitely positive after dropping the last divergence term. Here we have used B =V x V.
The quantization condition reads

[Vi(t,r), (¢, )] = —id;;6) (r — 1) (6.74)

where the minus sign comes from the fact that V; = —V® and II* are conjugate variables. Note that
V and IT satisfy the constraint (6.72),

1 .
SV-I=0 (6.75)

v

V-V -

This is the binding condition for the longitudinal component of V and II along the direction of the
wave vector.
Assume that V expands as

—ik-x Ax T ik-x
V(z) Zk: \/W (Akekak A€ + AYrep” aj \e ) (6.76)

where k-2 = Eit — k - x. We assume that e,lf’ 1 k and €} || k. Similar to the expansion of V, we
can express II in the following form,

(C’k epapre FT L CMep az et *) (6.77)

1
; V2ELV

where the coefficients C,i‘ can be obtained by solving Eq. (6.71). Inserting the expansion of V into
Eq. (6.71), we obtain

ov(xz) . 1
ot ’;WE’“(

1 kk , kk
Z \/ﬁ |:C]$\ (1 + 7’n2) . sgaky)\e_lk‘x + C}i\* (1 + 77”L2> 62*011]; )\elk Jc:|(678)
k v v

A ik-x Ax ik-x
Apepag e FT — Aprep* ak \€ )
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We can determine the coefficients,
1,2 1,2 m;
Cy? = iERALY, Ch = iE—”Az (6.79)
k

where we have used k - €,,> = 0 and k || €}. From the commutator (6.74), we obtain

, . 1 1 ;
% : / —ik-x Ak _idx T ik-x
[V(t,x), 1P (¢t,x")] = kgk, SEV VD, [(Aksk ag,z€ + Aptei M ay \e ) )

’ -)\/ Ry R )\ RN
(C,j, e aw e £ O e Maf, e ﬂ

1 { Y
- = A)\CA *61)\61 *e—zk z+ik’-x’ [CL CLT ]
Yk Sk Sk ks Qper s
v kzk, V2B V2Ew
-7,/ ’
+A)\*Ck/ Ik ?j\ ezk-m—ik T [G'L’)\aak’,k']}

- = Z 25, {A)\CA* i j)\* zk (x—x") _ AQ*C;;\E%A*E?;)\G_ik.(x_x/)}

— _liz AA 262)\6%)\* |:ez (x— x)+ —ik-(x— x):|

31243 _J3* ik (x—x’ —ik-(x—x’
_’*ZgEz‘A eided [z( ) 4 ek )}

= —i6;;0®)(x —x' 6.80
J
where z = (t,x) and 2’ = (t,x’). We have used [akv\,a,z,}/\,] = Sii0xn and assumed e are
real. The above requires
7 APl + ﬁmd epe> = 6y (6.81)
A=1,2 k

If we assume €3 = (Ey/m,)k and AL = A2 = A3 = 1, we get

2 . .
k'k’
7 Ak
> 6135?@ = 0~ a
3 . .
o kikJ
Do = Oyt (6.82)

The zero-component becomes

1
Ve = ——=v-1
m’U

1 _
B _#Z V2ELV (C?k'eﬁak,xe Ok epta) e r)
k

v

1 k —ik-x ik-x
_ mef(ak,ge b af 4o ) (6.83)
k v

We can define the polarization tensor for V0,

k
52’1 = 62’2 =0, 52’3 = — (6.84)

v



CHAPTER 6. NUCLEAR FORCE AND NUCLEON-NUCLEON INTERACTION 159

Then the four-vector V¢ reads

1 A —ik- At ik
Ve(z) = (eo" ag e P+ ay € m) (6.85)
zk: /2Ekv k k kA

The orthogonal condition (6.82) can be written into a compact form,

3
o wp . KOKP
ng,xef,A — g8 1 — (6.86)
A=1 v

The propagator can be obtained from Eq. (6.85),
iG = (0|T[V*(z)VP(2")]|0)
0t —t") (0|V(x)VP(2")|0) + 0(t' — 1) (0 |VP(2")V(z)| 0)

1 ’ . N,
ot -t E AP ik ik <O ‘a al, ,’ 0>
1) 2 v amam, BT

k.k’

’ .
a,A_fB,A e—zk: -z ezk»w <0 ’ak/’)\/az )\‘ 0>

1
Ot —t ¢, ;
D Dver i

k. k/

1 . / 1 - /

_ Y A B —ik-(z—z') o a,A_ B, ik-(z—z')

= 0t t);QEkvsk epe +0(t t);ZEkvsk ey

d*k i kKB
_ B
- / (2m)* k2 —m2 + 40 ( g+ m2 ) (6.87)
So the propagator in momentum space is
i kokP

iG=————— [ —g™ 6.88
! k:?—m%-l—zﬁ( go m%) (6.88)

Similarly we can compute the potential from the exchange of vector bosons. As we know from
Table 6.4 that p and w are vector mesons. We take the w meson as an example, which is an isospin
singlet. The interaction term is g,y ¢ (vector coupling) with vertex I, = i¢g,7,. The T-matrix
is

i(p/ By W T lp, haho) = —tn(—p', hy)iTaun(—p, ha)
i(=9*" +q°d"/m3)_ ..
@ —m2 un(p', k)il gun (p, h1)
ig2 (g% + q%¢® /m?)
q* —m3

un (=p', hy)vaun(—p, ho)un (p', hy)vsun (p, hi) (6.89)

We can simplify

G 2 ( e ) )

2mpy

un (p', ) voun (p, h1)

S CUII A 2L [N
N

0' .
n (0-p)
2mN 2mN

Il
=
=

)
'.c\
Q

an(p', hy)yun (p, h) Ix(1)) (6.90)
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The two terms are

I = an (=1, hy)vaun(=p, ha)un (', hy)y un (p, h1)
= an(=p', hy)youn (=p, ha)an (0, hy)voun (p, ha)
=N (=p', hy)y" uzv( sho)u (p,hm 'uy (p, h1)
= @)+ TPRT R o) s TRAT Ry )
N N
1
P

+— (@)l[(e

i o' +a' (o p)] Ix(2)) (x(1) (- p')o" + o' (o - )] Ix(1))
N

and

I = un(-p'h)
:*('

oY —q-Y)u ( p7h2)ﬂN(plvhi)(QO’Yo—Q'V)UN(pvhl)
q - Y)un(=p, h2)un (P, hy)(q - ¥)un(p, h1)

)
)
i CAICRICIRNCRTILR SINEY

< (1) (o - B)(o - a) + (o - a)(o - p)][x(1) (6.91)

where we have set gp ~ 0. The potential from vector meson exchange is

9z {[1+ (o1 'P/)(;Tl'p)} [1+ (o2-pP')(02-P)

Vol@) = —2—
(a) q?+m? 4m3; 4m3;

i (o1 P)(os P)(o1 - 02) + (01 D) (o1 02)(2 p)
N

+(o2 - p')(01 - 02)(01-P) + (01 02)(01 - P)(02 - P)]

oz (@1 P (@1l B ) 4 (1o - P)(ez P (o2 )

+(o1-p')(o1-a)(o2-a)(o2 ) + (01-q)(o1 - p)(02 - q)(o2 - P)]} (6.92)

If we make non-relativistic approximation, |p|,|p’|,|a] < muy, the potential becomes

2
9u g e~
Vo(a) = Erm2 —|—1m2 = Vo(r) =~ 47:7“ (6.93)

We can see that the potential resulting from vector boson exchange is repulsive.

Exercise 50. Try to derive Eq. (6.60) from Eq. (6.58). Try to extract the
spin/isospin/space exchange potential in one pion exchange potential in Eq. (6.60).



Chapter 7

The structure of hadrons

7.1 Symmetries and Groups

Group theory is the branch of mathematics to deal with symmetry. We take the rotation group
as an illustrative example. The set of rotations of a system form a group, each rotation being an
element of the group. Let Ry and Ry be two successive rotations, then Ry Ry are equivalent to a single
rotation, another group element. The set of rotations is closed under multiplcation. There is identity
element corresponding to no rotation, and any rotation has an inverse, a back rotation. The product
is not necessarily commutative, Ro Ry # Ry Ra, but the associate law R3(R2R1) = (R3R2)R; always
holds. The rotation group is a Lie group, where every rotation can be expressed as the product of
a succession of infinitesimal rotations. The group is then completely defined by the neighborhood of
the identity.

The experimental results do not depend on the specific lab orientation of the system being mea-
sured. Rotation must form a symmetry group of a system. They are a subset of the Lorentz trans-
formations. By definition, the physics is unchanged by a symmetry operation. In particular these
operations leave the transition probabilities of the system invariant.

Suppose the states of a system under a rotation R transform as

W) = Ul (7.1)

The probability is unchanged

(Bl = [(¢'[W)]* = | (6 |UTT| )| (7.2)

so U must be a unitary operator. The operators U(R) form a group with the same structure as the
original group R, they form a unitary representation of the rotation group.
Moreover the Hamiltonian is invariant under the rotation of the system, then we have

(@' [H|y') = (¢|UTHU|y) = (¢|H|¥) (7.3)

so we get [H,U] =0, i.e. U is a constant of motion.
Now let us find the generators of U from infinitesimal rotations in the neighborhood of identity.
Under the infinitesimal rotation R along the z-axis, the wave function transforms as

Y'(r) = (R 'r)=Uy
= Ylx+ey,y—ex,2)

0 0
— Ul el —ag)
= [L—ie(zpy —ypa)]¥) (7.4)

161
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where ¢ is a small rotational angle. Then the transformation matrix U becomes
U=1—1iel;s (7.5)

with J3 the angular momentum operator along the z-axis. A finite rotation can be built up from
exponentiation,

U@)=[UE)"=0- i%Jg)" — e (7.6)
The general form of the matrix along a rotational axis is
U(f) = e 17 (7.7)
The commutators of generators are
i, J;) = ieijudi (7.8)

A finite group is one which contains only a finite number of elements. Two examples are spatial
reflection
P:r— —r

and particle-antiparticle transformation or charge conjugation
C: A=A

where A denotes a particle and A denotes its anti-particle. There are two elements in these groups:
the identity e and an element g with g?> = e, where g denotes the operation P or C. Invariance of the
physics under g means that g is represented by a unitary (or anti-unitary) operator U(g) satisfying

[U(g),H] = 0 (7.9)

where U(g) is a representation for the group. Time-reversal invariance is the only symmetry requiring
an antiunitary operator. Here we take U to be unitary, i.e. UTU = 1, to represnet spatial reflection
or charge conjugation. For our two-element group, we have

Ul=1 (7.10)

Since U~! = U', so U = U', i.e. U is hermitian. Thus U itself is an observable conserved quantity,
and its eigenvalues are conserved quantum number. If p is an eigenvaule of U corresponding to the
eigenstate |p), i.e. U |p) = p|p), then we have

U?lp) = p’lp) (7.11)

leading to p = £1. Invariance of the system under the symmetry operation g means that if the system
is in eigenstate of U, the transition can only occur to eigenstates with the same eigenvalue. The
eigenvalues of U are multiplicative quantum numbers. By contrast, the eigenvalues of the commuting
generators of SU(n) are additive quantum numbers.

The spatial reflection operation defines the parity property of a particle or a system, while the
charge conjugation defines the C-parity.

Under the spatial reflection operation, the wave function changes as

P o ’(/)(t,I‘) — w(t7 —I')
Y(t,r,0,0) = Pt t,r,m— 0,7+ ¢) (7.12)

The eigenvalues of the parity are 1 corresponding to the even/odd parity, i.e. U(P)y(t,r) =
+(t, —r). In central force potential the spatial wave-function can be written as

Y(t,r0,0) = Rn(T)le(COSQ)eim¢ (7.13)
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Then under the transformation 8 — 7 — 6, ¢ — 7 + ¢, the wave function becomes

Y(t,rm—0,m+¢) = Rn(r)P"(—cos Q)eim(ﬂﬁb)
= Rn(r)(_l)ler.le(COS0)(—1)meim¢
.0l (7.14)

So we see that the parity for a wave function in the central force potential is (—1)!. We know that
if the parity operator commutes with the Hamiltonian, the energy eigenstate has a specific parity.
Then the parity of the state does not change with time. This is so-called the parity conservation. If
the Hamiltonian is not invariant under the parity transformation, the parity conservation does not
hold. For the strong and electromagnetic interaction, the parity is conserved, but it is violated in
the weak interaction. Particles can also have intrinsic parity if their intrinsic wave functions have
specific transformation property under the spatial reflection. It turns out that the intrinsic parity
can only defined for neutral particles, those with vanishing additive quantum numbers. The parities
of non-neutral particles are not completely fixed. One can prove in field theory that the parity of a
fermion is opposite in sign to its anti-fermion, and the parity of a boson is the same as that of its
anti-boson. The parity of photons is negative because the vector potential A for electromagnetic field
is an axial vector, i.e. P: A — —A.

The charge conjugation transforms a particle to its anti-particle. All additive quantum numbers,
e.g. the charge, lepton number, baryon number, strange number etc., change their signs. The space-
time, momentum and angular momentum do not change. Suppose a state |A) is transformed into its
charge conjugate state |Z>,

U(C)|A) =na |A) (7.15)

where 14 is a phase factor, nan% = 1. We can transform the state twice,
U*(C)|A) = nanz |A) = |4) (7.16)

which requires nan; = 1, then we get ;7 = 7}, i.e. the phase factor of a conjugate state is the
complex conjugate of the factor of the state. According to the definition for the charge conjugation,
Eq. (7.15), a charge neutral state is the eigenstate of U(C). A neutral state is denoted by |n), then
we have

U(C) [n) = mn |n) (7.17)

where 7, = 1 is called the C-parity of the state. The C-parity is a multiplicative quantum number.
Let us look at the C-parity of the photon. For photons, the charge conjugation changes the sign of
the electric and magnetic fields. Thus the photon fields transform as

C: Ay=(0.A) > (~6,-A) = -4, (7.18)

So the C-parity of photons is —1.

For a neutral particle system composed of a particle and its anti-particle, the C-parity is given by
nc = (—1)!*5. If we treat the system as consisting of identical particles by regarding the anti-particle
as the particle with different addtitive quantum numbers, the general Pauli principle is applicable.
Then interchanging particle labels 1 <> 2 leads to the sign + for the bosonic and fermionic system
respectively,

1,2) = (—1)H(=1)"" "0 2,1) = £[2,1) (7.19)

where (—1)! and (—1)*7*17%2 come from the angular momentum and spin sector respectively. n¢ is
the C-parity of the system. We get
ne = (=1)'* (7.20)

for both the bosonic and fermionic system.

The Strong and electromagnetic interactions are invariant under both the parity and charge con-
jugate transformation. The weak interactions do not respect these symmetries. However, to a good
approximation, weak interactions are invariant under the product transformation C'P.
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7.1.1 The group SU(2)

We have discussed that the rotational symmetry is connected the angular momentum. In this sub-
section we will introduce the group related to the rotational symmetry.
The lowest-dimension nontrivial representation of the rotation group (j = 1/2) has generators,

1
Ji = goii=123 (7.21)

where the Pauli matrices are

012((1) (1))702=<? _Oi>,a?,=((1) 01>. (7.22)

The basis for this representation is conventionally chosen to be the eigenvectors of o3,

-0 ) ()

The SU(2) transformation matrices are

U;) = e i (7.24)

One can check, ‘
U0:)UT(60;) = 1, det(U(0;)) = e~ ?iTr(e) — (7.25)
There are 1,2,3,--- dimenional representation of SU(2) corresponding to j = 0, %, 1, %, ..+, TeSpec-

tively. The two dimensional representation is called the fundamental representation of SU(2).

The combined angular momentum operators J = J 4 + J p also satisfy algebra (7.8). The Casimir
operators J2, J3 and J3 have eigenvalues J(J +1), J4(Ja +1) and Jg(Jp +1). The product of the
two irreducible representations of dimension 2J4 4+ 1 and 2Jp + 1 may be decomposed into the sum
of irreducible representations of dimensions 2.J + 1 with

J = |Ja—Jpl,|Ja—Jpl+1,--,Ja+Jp (7.26)
with basis |JM), where M = my4 + mp. One basis can be expressed in terms of the other by,
|JM) = Z C(mamp; JM)|Jama, Jpmp) (7.27)
ma,mp

where the coefficients C' are called Clebsch-Gordan coefficients. These coefficients are readily calcu-
lated by repeatedly applying the step-down operator J_ = J4_ + Jp_ to the fully stretched state
|J, M =J)y=1|Ja,Ma = Ja;Jg, Mp = Jp) and using orthogonality.

We can denote the doublet [2] as

ED-()-m BB em

We may write the system with two spin-1/2 particles may have spin 1 and 0 as
2l ® 2] =[3]®[1] (7.29)
Combining the third spin-1/2 particle, we have
(Pel2he2 = BlelR)e(1]e(2])=I[4e 2us®[2ma (7.30)

where 'MS’ and "M A’ mean mixed symmetric and mixed anti-symmetric. Normally the 4-plet com-
pletely symmetric and is expressed as

LML+ 1+ 1) (7.31)

Sl

3
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Figure 7.1: Clebsch-Gordan coefficients, from Particle Data Group, http://pdg.lbl.gov.
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33
’2,2 = M
31 1 11 2 1
53) = Vinoly-3)+Enol
1 2 /1
= \/;TTH\@\E(NHT)T
\/g (M + Tt + 1)

3 1 2 1 1 1
27_2> = \/;|170>‘2;_2>+\/;|17_1>
2 1 1
= \/;\/;(T¢+¢T)¢+\/Q¢H

= \/g(mumum

3 3
s —2> " (7.32)

)

11
272

The 2-plet from [1] ® [2] is expressed as

11 1
272>MA = \/;mww

1 1 1
2,—2>MA = \[Q(N ~ (7.33)

The 2-plet from [3] ® [2] = [4] & [2] is expressed as
1 11
)eyznol;)

1a1> = \/§|131> lail
22/ 1 3 272
R L T

\[ [T+ 411) = 2 114]
2 - Vi) -y
\/;\E(NHM—\/;M

= ﬁ (11 + 14) — 2 14] (7.34)

v/

7.1.2 SU(2) isospin, fundamental representation

Isospin arises because the nucleon may be viewed as having an internal degree of freedom with two
allowed states, the proton and neutron, which the nuclear interaction does not distinguish. We
therefore have an SU(2) symmetry in which the (p,n) form the fundamental representation.

p(é)n(?) (7.35)
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Figure 7.2: Basic facts about proton and neutron. http://pdg.1bl.gov

10P) = 3(3%)

[]

100727646688 + 0.00000000013 u

Mass m — 038.27203 + 0.00008 MeV 13l

[my - IrlT’-| My < 2K 1079, CL = 00% (o]
|%|(%b = (.00000040081 + 0.000000000(9
|ap+opl/e < 21072 cL=o00% [

|e,'p Fgel/e = L0 x 1021 I

Magnetic moment ¢ = 2792847351 - 0.000000028 e py
f.f"'p 4 .f"-TI] _If'l hp (—2.6 £ 2.9) x 13

Electric dipole moment o <« (.54 « 1072 acm

Electric polarizability o = {12.0 + 0.6) x 109 fm?

Mass m

[]

4Py = 33H

Mass m = 1.0086649156 £ 0.0000000006 u
Mass m = 030.56536 -+ 0.00008 Mey 13
My — m, = 1,2033317 4 0.0000005 MeV

= 0.00138544387 £ 0.0000000006 u

Mean life + = 885.7 + 0.8 s
cr = 2.655 x 108 km
Magnetic moment j =

Magnetic polarizabiliy 7 = (1.9 + 0.5) = 10~ fm?
Charge radius = 0.875 + 0.007 fm

Mean life 7 > 2.1 % 10%° years, CL
Mean life 7 = 1071 1o 1079 years [9]

W% (p— invisible mods)
(mode dependent)

7.1.3 Conjugate representation of SU(2)

Pronton and neutron are up and down state in the fundamental representation of SU(2). We

1.9130427 £ 0.0000005 ppy
Electric dipole moment o = 0.20 = 102 ecm, CL = 00%

can

label antiparticle doublet (7,p), which has I3 = (1/2, —1/2) just like (p,n). This new representation

is known as the conjugate representation. Use the following notation,

[2] = (p, n) ) [2*] = (ﬁ,f?) (7'36)
Here is the transformation for ¢ = < z ),
¢ = exp(ifn-o)p = (cosf +in-osinbh)p (7.37)
Acting charge conjugation (complex conjugate) to the above equation, we have
3 = exp(—ifn - 6*)p = exp(ifloan - 02)¢
= ogexp(ifn - o)oyd (7.38)
where ¢ = ( g ) and we have used o} = —090;02. We can rewrite Eq. (7.38) as
o2d = exp(ifn-o)oad
Defining ¢ = ( %ﬁ ) = —io9p, the above can be written as
¢ = exp(ifn-o)¢ (7.39)
the same transformation form as ¢.
For a rotation about the 2-axis, we have
P’ _ cosf  sinf D
< n’ ) o ( —sinf cosf > ( n ) (7.40)
Now make charge conjugation on both side of the above equation, p — p and n — 7, we get
w cosf —sind n
( 7 ) - ( sinf cosf > ( D ) (7.41)
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Figure 7.3: SU(3) triplet with I, U,V doublets.

I-spin
-t

Y—supercharge V—spin
U-spin
isospin—3

Define the conjugate doublet as & = ( %n ), so that the transformation matrix is the same as that
for ¢,

7 = ( cosf sind )a (7.49)

—sinf cosf

In general SU(N) there are basic representation N and N*. In SU(2) we find 2 = 2*. For
N =3,4,..., N and N* are not equivalent.

Exercise 51. Pions 7= are composed of (u,d) and (u,d) which obey SU(2) fundamental
representation. Pions are flavor triplet of SU(2). Write down the flavor wave functions of
pilons.

7.1.4 SU(3) symmetry

The extension from SU(2) to SU(3) is straightforward if we add a thrid component to a doublet to
form a triplet in fundamental representation,

U
¢ = d (7.43)
s
The transformation is
¢ =U¢p (7.44)

where U is now a 3 x 3 unitary unimodular matrix,

U = exp (;zm) (7.45)
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where \; are eight independent Hermitian traceless 3 x 3 matrices analogous to the o; of SU(2). We
can choose the form given by Gell-Mann,

01 0 0 — 0 1 0 O
M= 100, =i 0 0], =0 -1 0],
0 0 0 0 0 O 0 0 O
0 0 1 0 0 —
)\4: O O O 5 )\5: 0 0 O 5
1 00 ¢t 0 O
0 0 O 0 0 1 1 0 0
=100 1], =100 —i |, se=—|[01 0 (7.46)
010 0 ¢+ 0 V3 0 0 -2

Normally we use T; = 2\;. The SU(2) is subgroup of SU(3). The A;» have the structure of SU(2)
in 12-block which is isospin subgroup. The Ag 7 have the same structure in 23-block which is called
U-spin. Ay 5 is related to V-spin. See figures for their relation. The SU(2) doublets are

u, d(I) d,s(U) wu,s(V) (7.47)

We can define ladder operators from T; for isospin, U-spin and V-spin,

0 1(0) 0
I, = Ty+ilr=1| 01) 0 O
0 0 0
0 0 0
U = TgxiTr=|( 0 0 1(0)
0 0(1) ©O
0 0 1(0)
Vo = T,+:iI5 = 0 0 O (7.48)
0(1) 0 0
They satisfy
[IJHI*} = 213 :dlag(]-?_LO)
3
U, U] = §Y — I3 = 2U; = diag(0,1, —1)
3

where I3 =T5 = %)\3 is the isospin operator since acting on u, d, s it has eigenvalues j:%, 0 respectively.
The hypercharge operator is

2 1
Y = Ty=—2\ 7.50
NCEY S (7.50)
The Gell-Mann matrices satisfy the Lie algebra,
(T3, T3] = ifijTh (7.51)

with the anti-symmetric structure constants f;; given in Tab. 7.1. Also we have anti-commutator
1
{13, T;} = §5ij + diji Ty (7.52)

where symmetric structure constants d;;, are given in Tab. 7.1.
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Table 7.1: Structure constants of SU(3).

fraz =1
J1a7 = faas = fos1 = faas = f516 = fe3r = 1/2
fass = feors = V/3/2
di1s = daog = dszs = —dsss = 1/V/3
dis6 = dis7 = dosg = d3as = dzss = 1/2
doy7 = dzee = dzr7 = —1/2
dias = dsss = dees = drrs = —1/(2V/3)

We can generalise these results by defining N x N matrices T; which satisfy Eq. (7.51) and
transform N-dimensional states by

¢p—¢ = (1+i6,T;)p (7.53)

These states form N-dimensional multiplets of SU(3).
A SU(8) irreducible representation can be drawn in the Is — Y diagram. We know that the

eigenvalues of I3 are 0, j:Q%, +1, ﬂ:ﬁ, -+, s0 are Us and V3. From Y = 2(Us + V3), the eigenvalues of
hypercharge are 0, :t%, +5,+1,£3,---. Then the basis vectors locate on the grid points with spacing

(%, %) for I3 and Y, see Fig. 7.4. The function of T4 is to change I3 by +1 while keeping Y fixed.
The operator Uy is to change (I3,Y) by (¥4, =£1), while V4 is to change (I3,Y) by (+34,41). There
are three kinds of irreducible representation: (1) There is one point on (0,0); (2) There is one point
on (0,2); (3) There is one point on (0, —2). As an example, the weight diagram for the irreducible
representation (p,q) = (4,1) is shown in Fig. 7.6 and 7.5. Any SU(3) representation has a convex
boundary in I3 — Y space. The maximum state ¢,,,, can be defined by

I+¢maw - U+¢maw - V+¢maz =0 (754)
Let I3(pmaz) = p/2 and Us(dmaz) = q/2, we obtain for ¢,,qq
P P+2
13,Y) = - .
my) = (5.74%) (7.55)
The maximum state ¢4, can also be defined in an alternative way,
I—l—(bmaa: = U—¢max = V+¢maw =0 (756)
Then (I3.,Y) for ¢ma. is obtained by acting (U_)? on ¢q, given in Eq. (7.55), changing (I3,Y") by
(q/27 _Q)a
(I Y) = (”;“’f) (7.57)

Here we choose this ¢4, see Fig. 7.6. We see that the maximum state ¢4, can be characterized by
a pair of numbers (p, ¢). The SU(3) irreducible representation can be completely specified by a pair of
number (p, q), so we denote it as D(p, q), see Tab. (7.2). The maximum state is composed of p-quarks
and g-antiquarks. We will see in the next section that the irreducible representation notation D(p, q)
corresponds to a irreducible tensor representation Ty;...>. The irreducible representation (p,q) can
be classified into three categories by,

c(p,q) = p+2¢=(p—q) (mod 3) (7.58)

as: (1) ¢(p,q) =0, Co and Cj5 are integers, there is one point on (0,0) in (I3,Y) plot; (2) ¢(p,q) = £1,
Cy and Cj3 are fractions, there is one point on (0, f%) and (%,0) respectively. If ¢(p,q) = —c(q,p),
where ¢(g, p) is the c-number for its conjugate representation.
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Figure 7.4: (I3,Y) figure and Uy,V4 and I..

= (4,1). The weight of the states in the outer layer

Figure 7.5: The irreducible representation (p, q)

is 1, while that of the states surrounded by circles in the inner layers is 2.

Y—supercharge

isospin—3

.

p*unit

p*unit

,94{

g*unit
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Figure 7.6: The maximum state ¢,,q. given in Eq. (7.57) for the octet, triplet and anti-triplet.

Y—supercharge

Y—-supercharge
Y—supercharge .

V-—spin+ anti-tsvoratiied

2 d—quarke—third u—quark

7

hi X I-spin+ \ / phi-max —onefhalf one—half
P /ef I P I | I I

. isospin—3 isospin—3
isogpin=3 —onexhalf /' one-half LA phi—max

.. U—spin— . . .
1 antl-mmﬁ»ﬂlﬂhrd anti—-d—quark
qedvko—third

»
|

octet triplet anti—triplet

The irreducible representation D(p,q) can also be expressed by the Young tableaux as shown in
Fig. 7.7.

There are two Casimir operators, Co and C5 in SU(3). The quadratic Casimir operator Cs is
defined by

1 1 1
C = ZTE = §{I+’I—} +1I3 + §{U+,U—} + §{V+’V—} + T3 (7.59)

We can compute the magnitude of the Casimir operator for any SU(3) representation by acting with
C> on the maximal state of that representation. We can rewrite Cy by moving I, V; and U_ are to
the right side of any pair of operators

1 1 1
Cr = Sl I3+ B+ {0 U+ o{Vi, V4 T
= I L+ L+E+UU- —Us+V_Vy + V3 +T%
3
= DBA2L+1 1, +U U +V_ Vi + ZY2 (7.60)
So we get
3
(Dmac|C2lmaz) = (I3)+2(I5) + ZYQ (7.61)
Then C5 for D(p,q) becomes
1
G = S +pa+a)+(p+a) (7.62)

We see that Cy is symmetric with respect to exchanging p and g. The values of Cy for some repre-
sentations are listed in Tab. (7.2).
The cubic Casimir operator Cj3 is defined by

C3 = 7if7:1j1j2ifi2j2j3ifi3j3jlani2Ti3:7[T]’1’ﬂ2][Tj2’j}3}[Tj3’7}1} (763)

The eigenvalue of C5 for the representation (p, ¢) is given by

Cy = (p+2¢)(p+2)— é(p — q)(2p* + 5pq + 2¢°) (7.64)
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Table 7.2: Irreducible representations for SU(3).

tensor | rank | dimension | Cy
T (1,0) 3 4/3
T, | (0,1) 3 4/3
D | (1,1) 8 3
T | (2,0) 6 10/3
T | (0,2) 6 10/3
T9% 1 (3,0) 10 6
Tape | (0,3) 10 6
T | (2,2) 27 8

We see that C'3 assumes different values for conjugate representation, i.e. it is not symmetric for p
and q.
The commutation rule for SU(N) generators is given by,

[Gi,Gj] = ifijkGhr, (7.65)

where 4,5,k = 1,...,M. The coefficients f;;, are the structure constants of SU(N). There always
exists a M-dimensional representation, the so-called regular representation or adjoint representation
defined by the structure constants,

(Gi)jk = —ifijk- (7.66)

One can prove that the above matrices in Eq. (7.66) satisfy the commutation rule (7.65) by using
the Jacobi’s identity,

G, G5, Gk + [(G, Gil, Gil + [[Gr, Gi, G = 0 (7.67)

Exercise 52. Prove the Casimir operator Cy is commutable with all Gell-Mann matrices T;

(Z:]-v 78)7 [027T1] :0

7.1.5 Tensor representation of SU(3)

See Ref. [16]. Corresponding to the (n,m) irreducible representation, we have a (n,m) tensor 7.1\
transforming under SU(3),

T = U UmUS U (7.68)

ayp-Qm Am

There are three special tensors.
(1) &} is a (1,1) tensor.

7 7 +J1 5i1 __ A V)
8 = ULUMR = (UUT) =6 (7.69)

(2) €% is a (3,0) tensor. € is a (0,3) tensor.

b Ui U U itk = diRdetl = ¢t (7.70)

LRV



CHAPTER 7. THE STRUCTURE OF HADRONS 174

Using ¢, €% and €ijk, we can form different tensors from 7,1 ¢»

Q)

927 ln _ Wy s SRR
Azin g

o Qm a;—ay-am?
i3+ ln . i1i2i3ein
Bbalmam - EblllzTal---am )
bi1"'in ba1a2 Z1'L
C = ¢ T in (7.71)
ag---am a1a2a3: " am’

where A, B and C are (n—1,m —1), (n —2,m + 1) and (n+ 1,m — 2) tensors respectively if they
are not zero. We say that 77!t is reducible.

A

A irreducible (n,m) tensor T:!;i» has following properties: (1) Symmetric under interchange of
any two subscript and superscript indices; (2) Contraction of any one superscript and one subscript
indices gives zero.

An irreducible (n,m) tensor T2 form a basis for the irreducible representation of SU(3). The

dimension of the representation is given by
d = (I+n)(1+m)[1l+(n+m)/2]. (7.72)

Now we give a proof. We first focus on the upper indices. Due to the symmetry, the order of the
indices is irrelevant. Suppose we put the indices in such an order: ones, twos and threes. If there are
j ones, and then (n — j) twos and threes. There are (n — j 4+ 1) combinations in this case. In total
the number of different components is then

n

dn-j+1) = %(n+1)(n+2) (7.73)
=0

Similarly for lower indices there are 1(m + 1)(m + 2) linearly independent components. So a (n,m)

tensor has +(m + 1)(m + 2)(n + 1)(n + 2) independent components. The trace of the tensor is a
(n—1,m —1). The traceless requirement leads to im(m + 1)n(n + 1) conditions. The dimension of

the irreducible representation is then

d = %(er Dim+2)(n+1)(n+2) — im(m +n(n+1)

= %(m+1)(n+1)(m+n+2) (7.74)

Suppose A% and Bj are two irreducible (1,1) tensors (octet), so they are traceless. We can construct
a (2,2) tensor T;i = AfLBZ which can be reduced to tensors in Tab. (7.3). For example the 27-plet is

T)) = ALB]+ A\B]+ AlB} + A} Bl — 5.,(A;B] + AIBf) — 6](ALB; + A;BY)
—0i(ASBI + AIBS) — 6] (ALBE + ASBY) (7.75)

Exercise 53. Consider the tensor decomposition of D(2,0) ® D(0,2).

7.1.6 Reduction of direct product of irreducible representations in SU(3)

There are many ways to reduce the direct product of two irreducible representations. Here we take
Young tableaux method as an example. As we have learned that an IR representation D(p, q) can be
represented by a Young table with the first and second rows to have p + ¢ and ¢ boxes, as shown in
Fig. 7.7. The dimension of the representation is given in Eq. (7.72). Consider the following reduction
D(3,1) ® D(1,1). The procedure is (1) Fix the first one D(3,1), label each box of D(1,1) by its row
number; (2) Move each box from D(1,1) to D(3, 1) one by one; (3) For the labelled boxes which are in
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Table 7.3: Irreducible tensor from T;{) = Aleg.

tensor rank | dim
S = AlBo 0,0) | 1
Fi=A'B] — B A} (L,1) | 8
D} = AiB] + BiA] — 3635 Ly | 8
Al B] e?**+all permutations of (i,j,k) | (3,0) | 10
Al Bl €;;.+all permutations of (a,b,c) | (0,3) | 10
Al B} +symmetric term-(trace) (2,2) | 27

the same row, the order of numbers from the left to the right should not decrease (equal or increase);
(4) For the labelled boxes which are in the same column, the numbers should be all different, and
should increase from up to down; (5) Counting labelled boxes from up-right to down-left, the number
of boxes labelled by 1 should be no less than that labelled by 2 in each step of the counting. (6)
Delete any column with 3 or more boxes.

The result of the reduction is then,

D(3,1)®D(1,1) = D(4,2)® D(5,0)® D(2,3)® D(3,1) & D(3,1) ® D(2,0)  (7.76)

The dimension of an IR representation D(p,q) can also be computed by using the Young tableaux.
The dimension is gven by d;/ds where d; and dy are products of two series of numbers filled in each
box of the Young tableaux. The rule of the filling for d; is: (1) fill one number in each box; (2)
fill 3 [for SU(3)] in the upper-left box; (3) the number increases by 1 when moving to the right and
decreases by 1 when moving to down. The rule for dy is: fill one number in each box, which is the
number of boxes counting from this box to its right end plus that to its lower end and minus 1. For
example, we can compute the dimension of D(1,1) = 8 according to this rule, see Fig. 7.8.

Exercise 54. Consider the decomposition of D(3,2) ® D(2,1) in Young tableaux.

7.1.7 Quarks as building blocks for hadrons

According to the quark model, all hadrons are made up of a small variety of more basic entities, called
quarks, bound together in different ways. The fundamental representation of SU(3), the multiplet
from which all other multiplets can be built, is a triplet. There are also anti-quark multiplets in
which the signs of additive quantum numbers are reversed. Each quark is assigned spin 1/2 and
baryon number B = 1/3. See Fig. (7.6). Baryons are made of three quarks (qqq) and mesons of
quark-anti-quark (¢q). A new additive quantum number is called the hypercharge, i.e. the sum of
the baryon number and the strangeness number,

Y=B+§8 (7.77)

The charge, Qe, is given by the Gell-mann-Nishijima relation,

Q = 13+§ (7.78)

The quantum number of the quarks are listed in Tab. (7.4).
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Figure 7.7: Young tableaux and reduction of the direct product.
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Figure 7.8: The dimension of D(3,1).
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Table 7.4: Quantum numbers of the quarks.

quark | spin | B Q I S Y
u | 1/2 [1/3|2/3 [ 1/2 |0 | 1/3
d 1/2 11/3|-1/3|-1/2| 0 | 1/3
s | 1/2 | 1/3[-1/3] 0 |-1]-2/3

176
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7.1.8 Mesons as quark-anti-quark states

In the quark model, mesons are bound states made of a quark and an anti-quark. Consider two flavor

case, ¢ = (u,d), § = (—d, ), the mesons are in isotriplet and isosinglet, i.e. [2] ® [2] = [3] @ 1 in
SU(2),
I=1,I3=1) = —ud
1 _
I=1,I;=0) = wi — dd
| 3=0) \/5( )
I=11=-1) = da
1 _
1=0,I3=0 = uu + dd 7.79
| 3=0) \/5( ) (7.79)
They are pions: 7+ = ud (we neglect the minus sign), 7~ = du and 7° = %(uﬂ — dd). The masses

of pion are about: 140 MeV (7%) and 135 MeV (7°). The spin, parity and C-parity of pions are

JPC = 0~F. The isospin scalar %(uﬂ + dd) will be mixed with other I3 = Y = 0 states.

For three flavor case, ¢ = (u,d,s), § = (4,d,3), there are nine possible combinations. See Fig.
(7.9) for resulting meson nonet. The nine states divide into an SU(3) octet and an SU(3) singlet.
The decomposition can be written as

Ble3] = B&[]
D(1,0)® D(0,1) = D(1,1)& D(0,0) (7.80)

Three states, A, B and C, have I3 =Y = 0. These are linear combinations of w, dd, and s3 states.
The singlet combination, C, must contain each quark flavor on an equal footing, so we have

r =
Cc = ﬁ(ourderss) (7.81)

State A is taken to be a member of the isospin triplet (du, A, —ud) and so we have

A = \%(uﬂ _ dd) (7.82)
By orthogonality to A and C, we can find B,
B = %(uﬂ + dd — 253) (7.83)
We often use the notation (SU(3),SU(2)),
A = 7% p%(8],[3])
B = ns,ws([8],[1])
C = m,w([1],[1]) (7.84)

The physical # and 7’ or w and ¢ are mixtures of 71 g and wq g respectively. The 1 and 1’ are almost
octet and singlet respectively,

n ~ ng=—=(ut +dd— 2s3),

no= m=

S-Sl

(ut + dd + s3).
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Here are their masses and spin-parities: 7(548) and 7/(958), JP¢ = 0=F. The physical w and ¢
appear to be ideal mixture:

¢ = \%wlf %wszsg
w = 2w1+ \[ \[(uu—i—dd) (7.85)

Their masses and spin-parities are ¢(1020), w(1420), JP¢ =1-".
Octet mesons can be expressed by

1
8] = M=q"a%—30d e (7.86)

where ¢° is the quark field and ¢; is its Hermite conjugation (antiquark). Under the SU(3) transfor-
mation ¢ — Ugq, the meson tensor transforms as

M — UMUT" (7.87)
Matrix form
x4 s + +
oI \]/% 07r K 1
M - I T TR (7.88)
K- G V2
\/6778
where
at = 7(51 :!:7/52)» 7= &3
K* = *(54 i&s), KO/FO 7(56 i&7)
V2 V2
s = & (7.89)

The singlet can be written as

1 1 00
1 — S=g6da = Blo1 o (7.90)
3\ o0 01
One can verify
x4y oms 4 om + +
73 + 2 + % ) s K
Z o 0
M4+S = ™ —I5+ % + % K
- 78 _ 2 M
K K \/6778+ \/15
U B uu u@ us
= d | (@wd3s)=| du dd ds (7.91)
S st sd s3

Here are masses and spin-parity for kaons: K+(494), K°(498) and K (498), J¥ =0~
Like any quantum-mechanical bound system, the ¢g pair will have a discretre energy level spectrum
corresponding to the different modes of ¢g excitations. The intrinsic spin of ¢g is S = 0,1. The spin
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Figure 7.9: Meson nonet as gg bound states. A, B,C are states with Y = I3 = 0 composed of
U, dd, 3.

dsbar usbar

dub A udbar C
‘B

subar sdbar

Table 7.5: Some examples of J (spin-parity) about meson multiplets (nonets). We have used
abbreviation “S”=scalar,“PS"=pseudoscalar, “V’=vector, “AV”=axial vector, “T"=tensor, “AT"=axial
tensor.

multiplets | S | PS| V | AV | T | AT
JP oF o J1- |1t [2F ] 2-

J of the composite meson is the vector sum of this spin and the relative orbital angular momentum
L of the ¢ and g. The parity of the meson is,

P = (=it (7.92)

where the minus sign arises because the ¢ and g have opposite intrinsic parity, and (—1)% arises from
the space inversion replacements § — m — 0, ¢ — 7 + ¢ in the angular part of the gg wavefunction
Y (6,¢). A neutral ¢g system is an eigenstate of the particle-anti-particle conjugation operator
C. The value of C can be deduced by g <+ g and then interchanging their positions and spins. The
combined operation gives

C = (=D (-nF= (-1t (7.93)

where the minus sign arises from interchanging fermions, the (—1)°*! from the symmetry of the ¢g
spin states, and the (—1)% from the angular momentum. Here S is the total intrinsic spin of the ¢g
pair. The total meson spin J is given by |L — S| < J < |L + S]|.

The C-parity is only defined for neutral particles or systems. Now we extend the C-partity by
introducing the G-partity which is not limited to neutral systems or particles. The ud state can be

Table 7.6: Some examples of J'¢ (spin-parity-C-parity) about ground state (L = 0) and first excited
(L = 1) mesons. We have used abbreviation “PS”=pseudoscalar, “V’=vector, “S’=scalar, “AV”’=axial
vector, “T”=tensor.

=0) [ V(IL=0)[SZ=1)]AV(IL=1)][T({L=1)
+ 1—— 0++ 1++’ 1+7 2++

multiplets | PS (L
Jre 0~
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Figure 7.10: Pseudoscalar (J¥ = 07) and vector mesons (J¥ =17).

dsbar usbar dsbarl usbarl

duba sing udbar

dub singfetetef udbarl

octet—triplet octet—tripletl

subar sdbar subarl sdbarl

pseudoscalar vector

either symmetric or anti-symmetric
s =

b4 =

These states are distinguished by G-parity defined by

. 0 1
G:sz:c( o 0)

where C' is the charge conjugation operator. Let’s see
U 0 1 u d d
o) = elha)(i)-e(5)-(%)
a _ 2 u _ u
o(5) - eli)--(4)

so we have
Gos = %G(ud—&— du) = —\%(Eu +ud) = —¢g
Goa = %G(ua—au) = %(—Eu +ud) = ¢
We can see
70l dd) + (i~ dd)] = 6

P %[(ug —dd) — (Tu — dd)] = ¢%

This definition is consistent to the fact about the C-parity,

Col = ¢2,CoY = —¢%
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Table 7.7: gq representations with explicit G-parity

KT (KT*) %(UE:I:EU)
KO(K%) —5(d5 £3d)
K—(K;*) 75 (5T £ Ts)
K (K™ %(sgi ds)
7T (ph) —%(ud +du
m(p~ sldutud)
() f(wa — dd)  (au — 4d)]
79 (w?) ﬁ[(uﬂ + dd — 2s3) + (wu + dd — 23s))]
7P (wW?) %[(uﬂ +dd + s35) £ (uu + dd + 35s)]

Therefore 0~ mesons (pseudoscalar) are the symmetric states with negative G-parity, while 1~ mesons
(vector) are anti-symmetric states with positive G-parity.

Combining with spins, we have following possibilities for the symmetry property of SU(3)-SU(2)
wave function ¢x under the interchange of 1 and 2,

symmetric :  ¢gxs,PaXA
anti — symmetric : ¢sxa, dsXA

where x4 denotes the spin single wave function and xg the triplet wave function. The 0~ and 1~

mesons are totally anti-symmetric because the wave functions for neutral particles are
™~ dxa
P’ o~ Paxs

Hence the wave functions for the 0~ mesons are ¢gx 4 while that for the 1~ mesons are ¢4xs.

7.1.9 Baryons as three-quark states

A baryon is a bound state of three quarks. First we combine two quarks,

Ble@B = [6]e3 (7.94)
Then the third one,
BleB)@B]l = (6] [B])® 3] = (6] 3]+ [3] @ [3]
= [10] © [8]ms @ [8]ara @ [1] (7.95)

where 'MS’ and '"MA’ mean mixed symmetric and mixed anti-symmetric SU(3) multiplets. As an
example, we construct 'uud’ whose combinations are denoted as A, pyrs, and para. Combining the

non-strange member of the [3] with the u quark of the [3], we have

1
pPMA = ﬁ(ud — du)u (7.96)
Note that (ud — du) behaves like a 5 in SU(3)s. The decuplet states are totally symmetric under
interchange of quarks, as evidenced by the uuu, ddd, and sss members. The symmetric combination
of 'uud’ is

A = [udu + duu + uud) (7.97)

S
V3
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Requiring orthogonality of the remaining "uud’ state to both pas4 and A gives

1

= —|[(ud+ du)u — 2uud 7.98
pus = ellud +du 1 (7.98)
The states pass and ppr4 have mixed symmetry, they are analogous to ’%, :i:%>MA in Eq. (7.33) and

|%, :l:%>MS Eq. (7.34). The quark structure of other states can be readily obtained in a similar way
by using U or V spin. The singlet is (Problem: prove this)

(qaq9)p = %[u(ds — sd) + s(ud — du) + d(su — us)]
1 . _ _
- %[uu + 55+ dd] (7.99)

The reduction of direct product of three spin-1/2 states is given in Eq. (7.30). The spin states
are displayed in Eq. (7.32)-(7.34). The two doublets have mixed symmetry that the spin states are
symmetric or anti-symmetric with interchange of two quarks. We can label states by (SU(3),SU(2)),

S (o], [4]) + (8], [21)
MS o ([10], [2]) + ([8], [4]) + (18], [2]) + ([1], [2])
MA ([0, [21) + (8], [4]) + (18], [21) + ([1], [2])
A ([, [4)) + (8], [2D) (7.100)

The ground state baryons fit into the J© = (3/2)* decuplet and the J* = (1/2)* octet. See Fig.
7.13. Their spatial wave functions are symmetric, belonging to the S wave (L = 0) in orbital agular
momentum. Their spin and flavor or SU(6) wavefunctions are totally symmetric. The total wave
functions for ground state baryons must be anti-symmetric. Then a new degree of freedom for quarks,
whose wave function is anti-symmetric, is needed for ground state baryons (and for all baryons). This
new degree of freedom is called the color. We will discuss it in Section 7.2. The decuplet and octet
ground state baryons belong to ([10],[4]) and ([8], [2]) respectively. For example, the wave function

of spin-up proton is
11
22/ ya

J_1> _ 1[ 11> N
D, Jz 5 \/ipMs 29 s Pma

= o { Gt w241+ 411 211
2 (s — du) (111 m)}
1
— o (udu@ T~ 11— L)+ dun 4~ 14— 14
T uud(2 1 — 10— 111) (7.101)

where spin wave functions |%, %>MA as are given by Eq.(7.33,7.34).
A simple way to get the spin-flavor wave functions is to start from the simplest known wave

functions of certain baryons and to use the spin ladder operators. For example, staring from

+ 7 3> _ 1
‘A AR Pt )
= L (ututd+lutdtut) +ldtutut) (7.102)

Sl

3
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where P(Ju T,u 1,d 1)) is to sum over all different permutations, we can derive ’A*, J, = %) by using
the spin ladder operator S_ = s1_ + So_ + s3_,

v, 1) :

AT T, =2
s-|ars.=3)

2

:j%@k+@;MLMMWﬂd®+WMMwﬂ+WWMmﬂ)
= g llebutd b ) +ldLutut)
b d )+t d dout) + ld b u )

futyutyd 1)+ futyd fud) + 1d 1t b))
5 [P bt d D)+ Pl tu bod 1)+ Pl tutd 1) (7.103)

One can verify that the spin-up proton is the orthogonal state to |A+, J., = %> with the same values
of I3 and S,.

Exercise 55. Write down the spin-flavor wave functions for the ground state decuplet (3/2)*
and octet (1/2)% baryons, and show that they are totally symmetric under the interchange
of two quark labels. The decuplet (3/2)% and octet (1/2)" baryons are shown in the left and
right panel of Fig. 7.13 respectively.

Exercise 56. Starting from ‘E**, J, = %> =lut,ut,s?), find the spin-isospin function of

|ZO,JZ = %) and |A,J = %)

Exercise 57. For a non-relativistic particle with the charge Q) and the mass m, its magnetic
moment is given by,

_ Q@
o= 5 g8 (7.104)

where g = 2 is the g-factor for elementary particles. We know that the magnetic moment of
a proton (neutron) is p, = 2.79un (u, = —1.91un) with pun = 55— the nuclear magneton,

2my,

which corresponds to g, = 5.6 (9, = —3.82). Since the neutron is a neutral particle, its
magnetic moment indicates that it is made of electrically charged particles: quarks. Show
the following relation with the wave functions of proton and neutron,
1 z 1
b 1) 3
P l5lp3) 2 ks §> - 2 (7.105)

where

3
g
Hpn = . ZQiSiz

T 2m
9 =1

where g4 = 2, mq and Q; are the g-factor, mass and charges for quarks.
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Figure 7.11: The gq multiplet of SU(3). 3®3 =6 3.
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Figure 7.13: Ground state baryons, the decuplet [J© = (3/2)"] and octet [JF = (1/2)*].
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7.1.10 Gell-Mann-Okubo relations

Similarly as in Eq. (7.88), the flavor contents of the baryon and anti-baryon octets can also be written
as

™
+

20 A
ViV A !
=° A S =
_ it 3,
— 5 2, i = ,
B 27 \/Ej_ G = (7.106)
D n —%A
It can be proved that B]? can also be written in the form,
% i a b 1 i k_a b
B; ~q'q"“q"€anj — géjq q“q’ €abk
The baryons and anti-baryons transform in SU(3) as
B — UBUT"
B — UBU* (7.107)
We can write the strong Hamiltonian as
H = Hyy+ Hosym (7.108)

where H,y, is invariant under SU(3) transfromation. The SU(3) violated term is denoted by Hgsym-
To make the baryon number conserve in Hygym, Hasym has to be in the bilinear form (as it gives the
masses of baryons) and traceless in flavor indices,

. 1 _ 1 .
ST~ qivoq’ — §5§qﬂoqj ~ Pl — 5531#,170% (7.109)
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where ¢* ~ ; and ¢; ~ 77212 with v; and 1/);-[ spinors and ¢ the flavor index. Assume that Hysym < Hgys,
50 Hasym can be regarded as perturbation. Suppose |h) is the eigenstate of Hys,

Hgys|h) = ~vIh) (7.110)
So the energy expectation value becomes
En % 5+ (h Hasym| D) (7111)

Let’s determine the form of (h|Hgsym|h). Note that |h) are eigenstates of Hyys and belong to the
representation of SU(3). The matrix (h |Hgsym|h) can be regarded as the transition amplitude of the
process

h — h+5; (7.112)

where S is the pseudoparticle which belongs to SU(3) octet. Let’s discuss a speical case S§ = 530;30;3.
Denote |h) = B}, the gedanken process is

B! — By+S5% (7.113)
The perturbation Hggym can be regarded as formed by three octets, Bj, B, and St
Hysysm ~ (aByB?+ BB;B)S! ~aB.BS + fB5B?

2__ - 2_
= a(pp+mm+ ZAA) +B(E = + E°20 + ZRA)

3
= a@p+7n)+BE ="+ + %(a + B)AA (7.114)
The total energy is then
En~v+a@p+man)+BE = += =0 + §<a + B)AA (7.115)
We can derive
by = ~«
Ex—Bs = (a+h)
En —FBEy = «
Ez - Ex, B (7.116)
So we derive
3(Ex —Ex) = 2(Ey—FEsx)+2(E=—Ey) (7.117)
which becomes
3EAn+Ex—2ENy—2FE=z = 0 (7.118)

The above relation can be transformed into that of mesons by replacing A - n, N - K, = — K,
3B, +E,—4Fx = 0 (7.119)

The above relatons can be casted into ultra-relativistic case, where

2
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Table 7.8: Masses of octet baryons and mesons. Unit=MeV.

N | 939 7r 140
A | 1116 | K, K | 495
Y | 1192 | 75 | 549
= 11315
The above equations become
3m3 +m¥% —2m% —2mZ = 0
Sm?7 +mZ —4mi = 0 (7.121)

Here we have assumed that |h) is a state with momentum p > m,;. For non-relativistic case we have

3ma+my —2my —2m= = 0
Imy +my —4mg = 0 (7.122)

We can check the above relations (7.121) and (7.122) by inserting baryon and meson masses given in
Table (7.8).
The baryon decuplet can be expressed by,

iy 1 ) X
Bk = ZN " qP0gP0gP®) (7.123)
n P

where the sum is over all different permutations and n is its number. The normalized state is given
by

1 P(i), P(j) P
%zpzq (1) g P(2) g P (k) (7.124)
Then we have, e.g.
B33 _
L.
B33 _ ﬁ: 0
B3 _ %Z*J“
Bl23 _ %Z*O (7.125)

For the baryon decuplet, the mass formula can be derived in a similar way. The virtual process can
be written by

Bimm o By §i (7.126)

where we also take St = S30;30;3. The SU(3) violated Hamiltonian is then in the form,

Hasysm ~ (Biaijab - 35gBdadeab> S]Z ~ 6 <B3abB3ab - SBdadeab> (7127)
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The total energy is

_ 1—
En ~ a+p (BgabB3“” - SBdade“b)

=k

2 1 —
= a+p [3QQ+3(E Oz | =

(1]

)

1 _ . .
—g(A++A++ +ATAT L AAY A A-)} (7.128)
This gives the result that the masses of isospin multiplets A, ¥*, =* and Q are equal-distant,
_ _ _B
My — MA = Mz — Mxx = M — M = 3 (7.129)

One can check the above formula by inserting the mass values of the decuplet baryons. Eq. (7.121),
(7.122) and (7.129) can be summarized into the so-called Gell-Mann-Okubo relations [17, 18],

1
m:a+bY+c[I(I+1)— 4Y2} (7.130)

Exercise 58. Use the Gell-Mann-Okubo mass formula to obtain the masses of ground state
baryons, (1/2)T and (3/2)*.

Exercise 59. We can define a matriz in terms of meseon octet in Eq. (7.88) U = e€ara/f,
where A\, are Gell-Mann matrices in Eq. (7.46), &, are meson fields given in Eq. (7.89),
and f is a constant. Then the Lagrangian due to the quark masses is given by

Ly ~ ;{Tr[M(UJrUT)]} (7.131)

where M = diag(m,,, mq, ms) is the quark mass matriz. Derive the masses for the mesons
by extracting the coefficients of quadratic terms of mesonic fields.

7.2 Quarks and gluons
7.2.1 Color degrees of freedom

There are many evidences for the existence of color degree of freedom. We only take some of them
as examples.

The first one is from the baryons Q(sss), AT" (uuu) and A~ (ddd) with the same flavor content.
We know that they belong to the ground state with orbital angular momentum L = 0, whose wave
function is symmetric. The flavor wave function is also symmetric. This seems to violate the Pauling
principle for a fermionic system. So quarks must carry another degree of freedom - color. There are
three colors, R, G and B which makes a color triplet. The color wave function for three quarks should
be a color singlet which is anti-symmetric,

(¢99)y) = [(RB—BR)G + (BG — GB)R+ (GR — RG)B]/V6 (7.132)
By the way, the color wave function for mesons is

(¢@)yy = (RR+GG+BB)/V3 (7.133)
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Figure 7.14: The definition of the R factor.
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The second evidence is the R factor defined by

R — o(ete™ — gg — hadrons) (7.134)
olete” — ptp~)

Both reactions are electromagnetic interactions. Both quarks and electrons are pointlike particles.
The only differences are that muons carry unit charges, while quarks carry fractional charges, flavors
and colors. The number of colors can be determined by measuring R. The factor can be written as

R = N> Q3 (7.135)
f

where Q) is the quark electric charge for flavor f and N, the number of colors. In the energy range
where only light quarks (u, d, s) are produced, R = %NC . When the charm quark threshold is reached,
the factor becomes R = 19—0Nc. When the bottom quark is produced, we have R = %NC. All these
values can be compared to data which show a clear evidence for N, = 3.

The third evidence is the decay rate of 7% — v + v, see Fig. 7.16. for illustration. The rate is
given by
) a’m?

F(ﬂ-o — 27) = NCQ(Q’IQL - Q?l) 647T3f,.2r

(7.136)

where o = e%/4r = 1/137, N, is the number of colors, m, is the mass of neutral pion, @, 4 are
charges of u and d quarks, f. is the pion decay constant for 7 — pr. We can estimate the rate by
substituting N. = 3, Q, = 2/3, Qq = 1/3, m, = 140 MeV and f, = 91 MeV,

1 1 1 [140)?
(= 29)~9x -—— — ] MeV=T. 1
(m7 = 29) = 9 X 51372 613 ( o1 ) eV T76eV (7.137)
which agree with the date very well,
P (7% — 2y) = 7.48 £ 0.33 eV (7.138)

If quarks carry no color, the measured decay rate in experiments is about 9 times larger than the
theoretical prediction.

Color degrees of freedom respect SU(3). symmetry. Unlike flavor SU(3) which is an approxi-
mated symmetry, this is an exact symmetry and has dynamic effects.
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Figure 7.15: The data for R [19].
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Figure 7.16: Pions decay to two photons via axial vector current.
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Table 7.9: Part of color factors ¢ for one gluon exchange. T; = \;/2 with \; the Gell-Mann matrices
in Eq. (7.46).

initial | final | gluon color factor ¢
BB | BB | A4s (Ts)33(Tx)ss = %
RR | RR | A3, Ag (T5)11(T3)11 + (T5)11(T8)11 =
RB RB Ag (Ts)11(T8)33 = —%
RB | BR | A4 A5 (Ty)31(Ty)13 + (T5)31(T5)13 =
BB | BB | Ag —(Tx)33(Tg)33 = —3
BE RE Ag, As | —(Tu)31(Ty)1s — (T5)31(Ts)13 = —3
BB | GG | As. A7 | —(T5)23(T6)s2 — (T7)23(Tr)32 = —3

7.2.2 Gluons as color carriers

The color interaction between quarks are carried by gluons. Gluons carry colors and anti-colors and
belong to a color octet. According to group theory, [3] ® [3] = [1] @ [8], the direct product of two

triplets can be reduced to a singlet and a octet. The gluon octet can be represented by ¢; (i = 1, ..., 8),
RN 3(2RR — GG — BB) _ RG RB
G | (R,G,B) = GR 3(2GG — RR — BB) _GB
B BR BG 3(2BB— RR—GQG)
B 1 00
(RR+GG+BB)| 0 1 0
0 0 1
A A Ay —iA Ag—iAs
BT VE o s . 100
- Autidy s A Accidr |4 — Al 0 1 0
alia,  donia)® YA V3 o 01
V2 V2 6
1 1
= —=T°A°+ —Apl 7.139
7 73 (7.139)
where Ag is the color singlet and Ay, --- , Ag are color singlet and defined by,
Ay = (RR+GG+ BB)/V3,
A (RG + GR)/V?2,
Ay i(RG — GR)/V?2,
As (RR - GG)/V2,
Ay (RB + BR)/V?2,
As i(RB — BR)/V?2,
As = (GB+ BG)/V?2,
Az i(GB — BG)/V?2,
Ay = (RR+GG-2BB)/V6 (7.140)

The singlet gluon couples equally to all quarks, and is independent of the octet.

The strength of the interaction coupling for the exchange of a single gluon between two colored
quarks is cay, where ¢ is the color factor that can be deduced from Eq. (7.139). Part of color factors
for one gluon exchange are listed in Tab. 7.9.
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Figure 7.17: One gluon exchange in baryons and mesons. The wavy lines denote gluons. Solid lines
are quarks.
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The color factor for two quarks inside a baryon can be determined as follows. The color wave
function for a baryon is

(g = \}G[R(GB — BG)+ B(RG — GR) + G(BR — RB)] (7.141)

For the RG term, i.e. the second term in the color wave function (7.141), the color amplitude is

1 1
%(51‘153'2 - 5i25j1)(Ta)i'i(Ta)j'j%(51"153"2 — 6ir201)
1 1 1 1
= %(51'1(2'2 — 0i26;1) 6(51'1'/5”'/ + 031 0ji0) — §(5i¢f5jj/ — 045 05ir) 76(51"15]"2 —0i12611)
1
= _T8(5i15j2 — 0i201) (8337050 — 8557053 ) (071012 — O372011)
2
= —— 7.142
9 ( )

where 7, j denote the initial state color indices and ', 7' denote the final state color indices. We have
used the formula,

1 1
(Ta)iri(Ta)ys = 50050 — g djsr
1 1
or
To()Th(2) = + (P — (7.144)
a a - 2 12 N .

for SU(N) group, where Pj5 is the permutation operator for indices 1 and 2. For other terms in
(7.141), the result is the same. So the color factor for any two quarks inside a baryon is cparyon =

3 x (—2/9)=-2/3.
The color singlet wave function for a meson is,
1

(@p = 73

In the same way, we can determine the color factor for quark and anti-quark inside a meson ¢ = —4/3,

(RR+ GG + BB) (7.145)
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Figure 7.18: The first evidence for three-jet events in ete™ collisions at Petra |20, 21|. European
Physical Society high energy and particle physics prize (1995) by P. Séding, B. Wiik, G. Wolf, S.L.

3 jel quent - FA 3 v ﬂ?nﬁr ererl

ER f n B 4
R L. oerem

PO 3. A Mgl edoads: oot do the BADR derestae T

faliet liare duelue b e icajes i es of e ehaigat (groks The M B i e drpre T aent s ma 00, 77 < 13 el it duelines themi o the aleactinn and cep iode of
kel s fiuno i ialereccian print aeg b oeowcd neu- g degesael b Ty o i ol e pecanan, TR0 VTV Gppser a0 WA § et W it the Bhonet- ajor
ol A J e s, il U Py we bl sl ominn g bowe o s (B v e L

For the initial state BB, the color amplitude is

1 1 .
—(T))irs(—=Ty) 3 —=6%
\/g( a)z 3( 0)3] \/g j
1 4
= —(Ta)si(Ta)is = —¢ (7.146)
3 9
where the minus sign in (—T5)s;s comes from the anti-quark. For other terms in 7.145 the result is
the same, so we have the factor 3 for the total result ¢peson = 3 X (—4/9) = —4/3.

Thus the Coulomb potentials between two quarks inside a baryon and a meson are

2
Ve(r) = _g%, inside baryon
= —2%, inside meson (7.147)
T

Note that the negative sign indicates that the force is attractive. In order to take into account the
confinement, one should include the confinement potential which prevent two quarks from separating
to large distance,

Vi) = 25 4 ar (7.148)
T

where A ~ 0.18 GeV? ~ 0.9 GeV/fm is the string tension.
Exercise 60. There are three constituent quarks inside a baryon. There are one quark and
one anti-quark in a meson. Fach quark carries a color R, G or B. Each anti-quark carries

an anti-color R, G or B.Write down the color wave functions for a baryon and a meson.
What is the connection between baryon and meson color wave functions? Why?

Exercise 61. Describe why the color degrees of freedom is necessary for the baryon Q~.
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Figure 7.19: Ilustration of how vacuum polarization in QED and QCD shield a test charge. In QCD
there is another process which is absent in QED, i.e. ared charge can turn to be B or G by radiating
a gluon with RB or RG.
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7.2.3 Asymptotic Freedom

The electric charge can be probed by photons. The higher the energy of the photon, the smaller
size it can probe. The wave length of the photon can be defined by the inverse of an energy scale
A~1/ \/@ . It can be proved that as the energy of the photon increases, the effective coupling in
quantum electrodynamics changes as

@

1—2m<

3
3m m2

agep(Q®) = (@7 = (7.149)

We see that a.rr(Q?) increases as Q? increases. The physical reason for the rising effective charge
with the increased Q2 of the probing photon is illustrated in Fig. 7.19. If Q2 is small then the photon
cannot resolve small distances and sees a point charge shielded by the vacuum polarization of the
infinite sea of electron-positron pairs. As Q2 increases, the photon sees a smaller and smaller spatial
area and the shielding effect of the pair fluctuation becomes less and less.

In quantum chromodynamics (QCD), things get complicated. We know that photons as a carrier
of electromagnetic force are charge neutral. But this is not the case in QCD. The strong coupling
constant is defined by as = ¢2/(47) with g, the coupling of quark-gluon and gluon-gluon vertices,
whose running behavior is governed by

0oy,
5 — 28(ay 7.150
"o Bles) (7.150)
where the beta-function is given by
2 a?
s) = —|11—= —= 7.151
s = - (1130 & (7.131)
with ny the number of flavors. We obtain
/’62 /O‘S(#) das
In — =
MO as(.U‘O) B(as)
1 as (po)
as(p) = 2 = 2 (7.152)
oty T A (1= gnp)nts 14 au(po) (11 = 3ny) In ks
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Figure 7.20: Running coupling constant [22].
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We see that when 11 — Zny > 0, og(p) < vs(po) for pu > pg. We can make expansion of the inverse

of In Z—g, we get the leading term,

9 4m
(@) = 7 —2n;/3) In(Q?/A2) (7.153)
where A is an arbitray energy scale. Ome observes that the essential difference of ag(Q?) from
agep(Q?) is that ag(Q?) decreases as Q? increases, just opposite to agpp(Q?). This is called the
asymptotic freedom. The physics is shown in Fig. 7.19. The quark-antiquark vacuum polarization
screen the color charge in a similar way as in QED. But there is another process which cannot
be found in QED: a color charge can turn into another color charge by radiating a gluon carrying
away the original charge. The contribution of this process dominate over the QED-like one provided
11 > 2ny;/3 which is true for ny = 6 in the real world. The data and theoretical predictions for
as(Q?) are shown in Fig. 7.20.
The running coupling constant can be very large at the infrared end which means stong couplings.
This indicates a very important effect, color confinement, where quarks and gluons can not be seen
freely at low energies. We will explain the color confinement in the next section.

7.2.4 Phenomenological illustration of the confinement [7]

Consider a system of quarks and gluons in a volume of L3, the coupling constant at length scale [ is
given by ¢;, one can prove g, > ¢g; for L > [. Let’s introduce a color dielectric constant in vacuum
k1, and a renormalized coupling constant g = g; where [ is the length in the order of proton radius.

Then kj, is defined by
2

a=" (7.154)
KL
So when L =1, we have k; =1 and
kL < Ky, for L >1 (7.155)
The perturbation theory gives to the leading order,
R, 1
A 7.156
K] 1+%(11—%nf) ln% ( )

When L — oo, we have ko, = 0 and g% — o0o. So the vacuum is a medium with extremely strong
couplings.

In electromagnetism, the dielectric constant is Kyacyum = 1. One can prove that £ > 1 for all
physical dielectric media. This can be seen by the electric displacement vector,

D =E + 4P = xE (7.157)

where the polarization vector P is parallel to E, so one has x > 1.
There is an electromagnetism analogy to the color confinement. We consider a hypothetical
medium with a small dielectric constant,

kK = kp<<lor =0 (7.158)

i.e. the medium is anti-screening because the polarization vector is anti-parallel to the electric field.
If we put a test charge into the medium, a hole must be formed as shown in Fig. 7.21. Inside the
hole is the perturbative vacuum with x = 1. We can estimate the radius of this hole. Assume E,,

Dout ,Ein and Dj, are normal components of the fields outside and inside the sphere. We have
e
-Din = Ein = Dout = ﬁ
e

Eout 2
KEm R

(7.159)
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Figure 7.21: The effect of a test charge in an anti-screening medium.
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where e is the total electric charge of a charge distribution and R is the radius of the hole. The
electric energies in the medium and vacuum are given by

1 [ 1 e?
un, = — dQdrr®D -E = =
out st ), T 2 kmR
1e?
vac _ 7 1
Uout 2R (7 60)
where UJS¢ So the energy difference is
le? (1
AU, = ——|—-1 7.161
2R (/{m ) ( )

One needs an energy Upole to create a hole. It has two parts: the volume energy and the surface one,
4T 4 9
Uholc ~ Ol ?R + 0247TR (7162)

where C7 and Cy are two constants. The total energy is then

U = Ul + Unole (7.163)
When «,, — 0 and Uy ~ C1 %’TR?’, i.e. dominated by the volume energy, we can find the minimum
of U as,
dU d (1 € 47
— = — | = C,—R?
R dR<2mmR+ 3 )
1 e? 9
- +C14TR? =0 (7.164)

2k R2
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Figure 7.22: The splitting of a bag.

Table 7.10: Comparison with superconductivity.

superconductivity (QED) | hadron (QCD)
H E°
Min = 0 Ryac = 0
Hoac = 1 Kin = 1
internal external
external internal

which gives

Rmin - 672 v
8T kmCh
1 e AT 4
Umin 5 /memin + Cl ?Rmin
4 9 N 3/4
~ 3la) e (7.165)
Rm,

One can extend this example by introducing two test particles in opposite charges into the vacuum.
Similar to the case of one test charge, a hole containing the two charges will form. This is the picture
for mesons with two opposite color charges. See Fig. 7.21.

When the couplings are extermely strong, there exists a strong repulsive force exerting on the
color charges. This is analogous to Van der Waals force between two helium atoms. There is also an
analogy between the Meissner effect in a superconductor and the color confinement. See Table 7.10
and Fig. 7.23.

Exercise 62. Determine Rnin and Upin when Unole ~ CodmwR2, i.e. the hole energy is only
from the surface.
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Figure 7.23: Comparison of superconductivity and hadron.

‘ d antif-charge
kappa—vacuum

mu—vacuum




Chapter 8

Acknowledgement

The author thanks following students who took this course and pointed out several errors in this
lecture note: Dai Lei (2008-09 fall semester), Wu Ying-hai (2008-09 fall semester), Chen Peng-fei
(2009-10 fall semester), Liu Pei-fan (2014 spring semester).

200



Appendix A

Nucleon-nucleon scattering theory

A.1 Nucleon-nucleon scatterings

The nucleon-nucleon interaction is a basic for understanding the nuclear force, for a review of this
topic, see, e.g., Ref. [29]. The scattering experiments is one of the most efficient tools to detect the
properties of particles. They are widely used in nuclear and particle physics. One of the earliest
attempt was made in the Rutherford’s experiment where the alpha-particles were used to bombard
the atoms. It shows that there is a nucleus inside the atom. In 1960s, in order to find the structure of
nucleons Hofstadter used high energy electron-nucleon scatterings, which uncovers that the nucleon
is not a point-like particle but has a finite size.

A.2 The stationary scattering wave function

Let us consider the non-relativistic scattering of a spinless particle of mass m by a central potential
V(r). The time-dependent Schroedinger equation is

oY(t,r)
P (A.1)

{—QinVQ + V(r)} Y(t,r) = i
For stationary solution,
Y(tr) = e Fhy(r) (A.2)
where E = k?/2m. So the time-independent Schroedinger equation becomes
[VZ+ k> —2mV(r)](xr) = 0 (A.3)

We assume that the potential V' (r) tends to zero faster than 1/r as r goes to infinity. The asymptotic
form of the wave function at r — oo is denoted by wl(j)(r),

@ = alerr 0.0 (A4

where the first term of Eq. (A.4) is the incident wave along k, while the second term is the scattering
wave. We can choose the incident momentum k = kz along the z-axis, so f(6,¢) = f(6) depending
only on the polar angle. This is because the incident wave has rotational symmetry which is conserved
during the scattering by a central potential.

201
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Figure A.1: Scattering of a plane wave.

incident—-momentum
B

A.3 Cross section

The cross section o(Q)dQ2 = g—ng is the number of particles emitted per unit time and unit incident

flux within the solid angle dQ? about the direction Q(6,¢). One can obtain it by computing the

outgoing flux of particles scattered through the spherical surface r2d) devided by the incident flux.
The probability current density is

WV — (V)] = —Im(yVe) (A.5)

) = iz -

It satisfies the continuity equation,

ap
ot

V-j+
where p = [1)|? is the probability density. Since % = 0 in the stationary case, one has
V-j=0 (A7)

Now we try to calculate the current density. In spherical coordinates, we have

0 ~190 ~ 1 0

- Y -2 - = A.
v r8r+9r69+¢rsin98¢ (4.8)
The radial outgoing flux is
1 ) e—ikr o ) eikr
i = —I AA* —ikz * v ikz
i = pm{an e r o] e 0|}
_o L —ikz O ke Lo 2 e "9 et
Lo ik O €T e €0
Fo AP @) LT ) e
- (jinc +jout +jint) ‘ /f (Ag)
Here the flux corresponding to the incident wave
Gra(r) = Aci (A.10)

is given by

Jine = l2|A\21m {eikzaeikz} = 2|A|2£ = 2|A|%v (A.11)
m 0z m
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One can verify

1 ; . 1
jine T = —]A]’Im [e_zkzaelkz} = |A]*—kcosf (A.12)
m or m
The outgoing flux is
1 e—ikr o eikr
iU = fA2 21 =
o ® = L1ap0) m[ =
2
~ |A|2|f( )| O(1/r?) (A.13)
The inteference term is given by
. =~ _ 1 2 —ikz 0 ezkr * e—ikr 0 ikz
i F = AP | o) O O e
1 ) .
- |A\2%;Re [ F(0)e*r=2) & £*(9) cos 9e—“€<’“—2>] +O(1/r?) (A.14)

We see that as 7 — oo, the exponential factor e=#("=2) oscillates drastically except at the forward

direction at # = 0. The interference term can be neglected except at forward direction.
The particle outgoing flux through the spherical area r2d(Q is

|A|2|f( s 2dQ |A|2k| (0)[2d2 (A.15)

Dividing by the incident flux |A|?v, one gets the differential cross section,

do

— = 6,02 Al

= (6.9 (A.16)
The total cross section is then

A.4 The optical theorem

Now consider the forward scattering at # = 0. Let us compute the flux at forward direction from Eq.
(A.14),

~ k1 . )
dQTjSnt r = dQT2|A‘2—7Re |:f(9 — O)elkr(l_cosg) + f*(9 — O)e—zkr(l—cos 0)
0=0 0=0 mr

1
= 7"|A‘2%47T/ . dcosORe {f(@ = O)Gikr(l_cose)}

Q

7“|A‘2 47Re [ f(O=0)(1- eikr(l—cosée)):|

kr

Q

T|A\2*47TRe [ij(e =0)(1— eik7'602/2):|
~ —|A|2 47TImf(9 =0) s

We have used the fact that kré62/2 — oo when r — oo, so the phase factor e?#790°/2 drastically
fluctuates and is negligible. We see in Eq. (A.18) that the total flux from ji,; - T is negative which
means it goes inside the sphere. In contrast the total flux from incident wave is zero,

/deinc T=0 (A.19)
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which is easy to understand: the incident wave goes inside the region at § = 7 and leaves the region
at 0 = 0.
From the continuity equation V - j = 0, we have

r2/de T=0 (A.20)
which reads
2 [ Ao+ ) =0 (A.21)
and can be written as )
|A]2— [k/de(Q)F —4rImf( =0)| =0 (A.22)
m

So the total cross section is related to the imaginary part of the scattering amplitude in the forward
direction,

This is called the optical theorem, a result of probability conservation, which states that the total
cross section is given by the imaginary part of the forward scattering amplitude. This proof is based
on the elastic scattering.

A.5 Partial wave method

We consider a central potential V' (r). In spherical coordinates, the Hamiltonian H = —(1/2m)V2+V
reads,

1710 /,0 1 a9/, .9 1 &
o= - {23 ( m)ﬂzsmeae(&“%a)*mw}”(’")
1 10 /[,0 L?
with L? given by
2 _ [ L O (.9 Lo
L= [sineaa Sinb55 )t anZe o2 (4.25)
One can verify
[HvLQ} = [H7Lz]:0 (A26)

Because the operators {H, L2, L.} all commute to each other, the state can be labeled by quantum
numbers {n,l,m}, where n labels the energy level, [ the angular momentum, m the projection to the

(+)
k

third axis. The scattering wave function v, "’ can be expanded in partial waves as

oo +I

k) = 37N (k) R (k7)Y (0, ) (A.27)

=0 m=—1

If there is no dependence on the magnetic quantum number m, so Ry, (k,r) is written as Ry(k,r).
We obtain

(l+1)
PR PR — 27
dr2+7“dr+k 72

U(r)} Ri(k,r) = 0 (A.28)
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It is convenient to use

k
Ri(k,r) = UI(/T) (A.29)
to rewrite Eq. (A.28) as
d? 5 U1+1)
[drz tE - - U(T)] u(k, ) =0 (A.30)
For V(r) = 0, we can also use variable p = kr to rewrite Eq. (A.28) as
? 2d I(1+1)
— + ——+1- = A.31
[dp2+pdp+ P ]Rl(ﬂ) 0 (A.31)

whose solution is the spherical Bessel function.
For free particles with V'(r) = 0, the solutions to Eq. (A.31) are spherical Bessel functions

Ri(kr) = CM(k)ji(kr) + CP (kyn(kr) (A.32)

or
Ry(kr) = DV (k)B (kr) + D2 (k)W (ker) (A.33)

At r — 0 only j;(kr) is finite and all others diverge. At r — oo, we have

1 1 . 2 1
Ri(k,r) — C! ’(k)ﬁ sin (kr - 7r> —C! )(k)ﬁ cos (kr - 7r)

~ IO EE + 0P ()2

~ %Al(k) sin {kr - éﬂ' + 5l(k)] (A.34)

where we have used

Ak = IcO®E+c® w)
R ¢/ ()
tand (k) = T (A.35)

and §;(k) is called the phase shift. The usual normalizations of scattering wave functions at r — oo
are A;(k) =1or Aj(k) =1/cosd;.

A.5.1 Scattering amplitude and cross section

The scattering wave function at r — oo is

(+) ikz eik:r
P (r) = A+ f(9) " (A.36)
where the first term is the incident wave and the second term is the scattering wave. It is easy
to verify that both terms are eigen wave function of the Schroedinger equation at r — oo where
I(1+1)/r? — 0 and V(r) — 0. We can expand the plane wave e?** as

oo

ethr = ;(21—1—1)1'13';(167“)3(0089) (A.37)
=0
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The proof can be found in the Appendix. Then the scattering wave function can be written as

()~ i(m +1)ilj,(kr)P,(cos 6) + f(0) 6:
1=0
0 ikr
Z (20 + 1)d —sm (kr - iﬂ') Pi(cos ) + f(@)er
=0
G l l
21—}—1@— exp |i|kr— -7 || —ex kr — —m Py(cosb)
- e g e (g ew (g} 2
LkT
+£(60)° . (A.38)
If we assume for real §;(k),
F0) = Y _(21+1)fiPi(cosb)
1=0
= Q%k ;(21 + 1) {exp[2id; (k)] — 1} Pi(cos 6)
= 2;%(21+ 1) {exp[2id; (k)] — 1} Pi(cos )
_ 112 (20 + 1) explidy (k)] sin 6, (k) P, (cos 0) (A.39)

where the partial wave scattering amplitude is written as f; = (S; — 1)/(2ik) where S; = €2"0(F), We
then obtain

(20 +1)i' — Pl (cos @)

exp [z (kr — g+ 200))| e i (= )|}

(20 + 1)i ﬁ explid; (k)] Pi(cos )

exp i (b = gr+0i0) ) | = exp =i (b = g6 ) ||

(20 + 1)4! % exp|id; (k)] P (cos 0) sin (kr - %W + 51) (A.40)

:M8
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Il
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X
—N
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The differential cross section is given by

do , . .
q - = ”Z: (20 + 1)(2l" + 1) exp[id; (k)] exp[—idy ()]

x sin d; (k) sin 8y (k) P, (cos ) Py (cos ) (A.41)
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Figure A.2: The positivity of the phase shift.
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The total cross section is then

Otot = /dQ\f(Q

= / dcos@ll/ S° (204 1)(20 + 1) explidu(k)] expl—idy (k)]

x sin d; (k) sin 0y (k) P, (cos ) Py (cos )

1 o , . . .
= 4ﬂ'ﬁ Z S (21" + 1) explid; (k)] exp[—idy (k)] sin 6; (k) sin 6y (k)
LU=0
r

= 13 Z (21 + 1) sin? 6, (k) (A.42)
1=0

where we have used
2

1
7 = — ’ A.4
/_1 dxP(z) Py (x) ST 15” (A.43)

The phase shift reflect if the force is attractive or repulsive, one can see from wl(j) in Eq. (A.40)

> 0, attractive force
o = { < 0, repulsive force (A.44)
See Fig. A.2 for illustration.
We can estimate the maximum value of 1,,,,, as follows
lnaz ~ ka (A.45)

where «a is the interaction range. For example, the range of nuclear force is about a few fm, for a
particle with the incident energy k ~ 20 MeV /c,

1
ka ~ 20% —— ~0.1 A.46
“ 197 (4.46)

So the partial wave one has to take into account is s and p wave.

A.5.2 Inelastic scattering and total cross section

The wave function at r — oo is given in Eq. (A.40), we rewrite it here,
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() ~ 2(21 + l)izl {Siexp [i(kr — I7/2)] — exp [—i(kr — I /2)]} Pi(cosb)

2ikr
1=0
=2l +1 ‘ 11 .
= Z Tk [Syexp(ikr) + (—1)""! exp(—ikr)] P(cos0) (A.47)
ikr
1=0
For elastic scatterings, d; is real and S; is a purely phase factor, |S;| = 1. For inelastic scatterings, d;

is complex and |S;| # 1. The probability current density is given in Eq. (A.5), its radial part is given
by

o0

%Im(w* 1)) = —ImZle +1 [S; exp(—ikr) + (—1)"*" exp(ikr)] P(cos 0)

r(7)

!/
X Z 2+ ik [Sl/ exp(ikr) — (=1)F'+1 exp(—ikr)} Py (cosb)

2ikr
1'=0
- 11 i'(21+12l’ 1) P,(cos 0) Py (cos 0
T mdkr? m”/_ol )(2l" + 1) Py(cos 0) Py (cos 6)
[Slsl/—( i (1)l’+1sl*exp(—2ikr)+(—1)l+1sl,exp(2¢kr)] (A.48)

We can compute the outgoing flow,
2
dQj,.(r)r? = 1§ i(20+1)(20 + 1 S

/ 3 (1)7 s m”/ 0 +1)2" + )21+1 u

x [SpS1 — 1+ 2i(—1)"Iml[S; exp(2ikr)]]
oo
T
= — 20+ 1 21 A4

o 22+ DS = (4.49)

When [S;|? = 1, no outgoing flow occurs, this corresponds to elastic scatterings. When |S;|? < 1,
there is negative flow, this corresponds to an absorption. The differential and total cross sections for
inelastic scattering can be obtained by dividing the above by the incident flow k/m,

doym r24,.(r)
aQ  k/m
dQj,(r)r? T —
1=0

The total elastic cross section is

ool /dQ|f|2 " Z (20 + 1)(20 + 1)(S) — 1)(S} — 1)Py(cos 6) Py (cos 6)
N
™

= /?Z 21+1|1—Sl|2—4772 (214 1)|f]? (A.51)
=0 =0

where the scattering amplitude f is given in by Eq. (A.39). The total cross section is then

o 0
Otot = Oel +0ip = kf ZO 2[ + 1 1 — ReSl> (A52)
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The scattering amplitude in general case is similar to Eq. (A.39)
1 oo
—kz (20+1)(S; — 1) Pi(cos )
1=0

so we have

1 o0
Imf(0) = ?2 (21 +1)(1 — ReSy) (A.53)

Comparing Eq. (A.52) and (A.53) we obtain the optical theorem (A.23) in general case with elastic
and in-elastic scatterings.

A.5.3 Phase shifts in square well scattering

Let us consider the scattering of a particle in a square well potential in a sphere,

_ Vo, r<a
Vir) = { 0. r>a (A.54)
where V5 > 0. We consider only the s-wave scattering. In the range r < a,
d2
d 2 (k‘Q + ko) == O
k=+V2mE, ko = v/2mVy (A.55)

The boundary condition is «(0) = 0. The solution is
u(r) = sinkyr
ki = \/E2+k3=+2m(E+ V) (A.56)

In the range r > a, the Schroedinger equation becomes

d?u 2,
with the solution
u(r) = Asin(kr+ do) (A.58)

The boundary condition at r = a should be that the wave function and its derivative must be
continuous, then we have

1 1
—tan(ka + 0p) = — tan(kya) (A.59)
k k1
or
1 tan(ka) + tandp 1
- = — A.
k1 — tan(ka) tan dg k1 tan(k1a) (4.60)

Then we get tan dg,

ktan(kia) — k1 tan(ka)
k1 + ktan(ka) tan(kia)

tan dg

S0 = —ka+tan™? [: tan(kla)] (A.61)
1
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At ka < 1, we can Taylor expand the above with respect to k, and obtain

1 kia+ katan(ka) tan(kia) 1 1 9
kcotdy = = N —— 4 —repsk A.62
ot atan(kia) — (k1a/ka) tan(ka) as + g"ets (4.62)

We see that dg must be or the order k£ at the limit £ — 0. Here the scattering length is

as = lima{l koa

(A.63)

Note that as < 0 and dp(k) > 0 for attractive interaction. For ays < 0, kga must be in [0, 7/2]. We
have used

1 kia+ katan(ka) tan(kia) 1 1 9
— —— + —rersk A64
a tan(kra) — (k1a/ka) tan(ka) as Ty ( )
where
a? 1
. — 4— _ A
Teff a 3@2 k%as ( 65)

Because for s-wave and low energy, then the total cross section is

sin? 0y 4r 4 o tan(koa)]” 9
Ttot = AT S B P ot?ey R+ (—1ay + pi2 22 T [1 " o | TOH)
(A.66)
When kga = /2,
do =m/2 (A.67)

In this case the scattering length and cross section turn to negative infinity. This corresponds to zero
energy resonance. Note that kga = 7/2 is also the threshold for the appearance of one s-wave bound
state. When 7/2 < kga < m, there is one bound state, so the scattering length is positive. When
koa < /2, there is no bound state, the scattering amplitude is negative.

A.5.4 Breit-Wigner formula

We conside the elastic scattering for simplicity. The total cross section is

41 & .
it = 13 Z(Ql + 1) sin? 6;(E) (A.68)
1=0
When §;(F) satisfy
S(E) ~ (n+1/2)m, or sin®§(E)~1 (A.69)

the partial wave cross section reaches maximum and the resonant states occur. We can expand near
the resonant energy E = Ej as

sind;(E) =~ sind(Ey) + |:COS 51(E)d(5l} (E—Ey)~1
dB | ;.
) dé,
cosOi(E) =~ cosdi(Ey) — [sind(F)——=| (E— Ep)
dE|
B o 2,
T4, (B — Eo) = F(E Ep) (A.70)
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Figure A.3: Argand plot for the partial wave amplitude. (a) n, = 1; (b) m < 1.

Imf_1

Imf_1

resonant—energy

resonang—energy
6\‘&/\
i/2
! )2 Ita_|
fl
Ref 1 Ref 1
where we have defined
dé;
r = 2/ — AT
/a5, (A1)
So the partial wave amplitude is
fi = explidi(k)]sind; (k)
B sin 6;(k)
~ coséy(k) —isind; (k)
N 1 B -T/2
T —2(E-Ey) —i (E-—E)+il/2
I2/4
2
= .A.- 2
If at £ ~ Ej, the partial wave [ is dominant, the cross section so we have
47 ?/4
tot  _ 21l 1 A73
d RSy o E (A.73)
Generally the partial wave amplitude can be written as
1 25, i 9
= — P —1) = = — = A.74
i 22.(7716 ) =5~ gme (A.74)

The amplitude f; can be plotted on the Argand plot of Imf; versus Ref;. The center of the circle is
at (0,4/2). The resonant energy is located at (0,4(1 + 7;)/2) which corresponds to &; = 7/2.

A.6 Scatterings of identical particles

There are two cases for scatterings of identical particles.
(1) Two incident particles with spin-0. One cannot distinguish which particle is captured by the

detector. The differential cross section is then
do

a - f(8) + f(m —0)] (A.75)
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Figure A.4: Identicle scatterings.
2 by
<3 0
N DL DS

In the c.m.s frame, the differential cross section is symmetric with respect to § = 7/2. In terms of
the partial wave decomposition, the differential cross section can be written

2

% = 42 Z (20 + 1) {exp[2id (k)] — 1} [Pi(cos 0) + P(—cos )]
1=0
2
= ﬁ Z (20 + 1) {exp(2id; (k)] — 1} P(cos 0) (A.76)
l=even

where we have used Eq. (A.39) and P;(—cos) = (—1)'P;(cos#).

(2) Scatterings of two identical spin-1/2 particles. The wave function of two fermions are anti-
symmetric. The spin states are S = 0 and 1. For S = 0, the spatial wave function must be symmetric.
For S =1, the spatial wave function must be anti-symmetric. So we have

% = |f(0)+ f(r—0)]*, S=0
b O - fr— 0P s =1 (a)

For the second line, the partial wave decomposition reads

2

;% = | D0 @20+ 1) fexpl2idi (k)] — 1} Pi(cos ) (A.78)
l=odd

If the incident particles are not polarized, the probability in spin-0 state is 1/4, while that in spin-1
state is 3/4. So the total differential cross section is
3 ( do )
- == (A.79)
4\dQ) ¢,

AN
dQ2 tot a 4 \dQ S=0

A.7 Lippman-Schwinger equation and Green function method

We now introduce another method for scattering problems: Lippman-Schwinger or Green func-
tion method. This method is suitable for high energy particle scatterings. The time-independent
Schrédinger equation reads

(V2 +E)p(x) = Ur)y(r) (A.80)

where k? = 2mE and U(r) = 2mV (r). The wave function satisfies the boundary condition at r — oo,
Eq. (A.4). The solution v (r) is composed of a general solution of the homogeneous equation and a
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Figure A.5: Scatterings of identical spin-1/2 particles.
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special solution of the full equation,

o) = o)+ [ EriGol - r)U) U (A1)
where ¢y (r) is a general solution of
(V2 + k) pr(r) = 0
The Green function Go(r — ') satisfies
(V2 +]€2)G0(I‘—I‘1) = 53(1‘—1‘1) (A82)

Obviously one can verify that ¢ (r) of the form in Eq. (A.81) obey the Schrédinger equation. Egs.
(A.81) can be written in a symbolic form

) = [6)+GoUy)
where [¢)) can be solved by
) = (1-GoU)™"|¢) = (1+GU)l¢) (A.83)

Note that Gg and U can thought of matrices in symbolic space. Here we have defined the full Green
function G,
G=01-GU) Gy

The Green function G satisfies
V2 +k? —U(r)]G(r —r1) = *(r — ;) (A.84)

So we can verify that |¢) satisfies Eq. (A.80).
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Figure A.6: The possible contours for the integral in Eq. (A.85).
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We can solve Go(r —ry) as

2

P’ e 1 1 : g igreosd_ 4
Go(r) = —/(27r)36q e :—(2ﬂ)2/dqd6‘8m96‘1 cos e

_ { 1 > q ! . iqr cos 6
- 2 .. 2 _ 1.2

s dqq ) d(igrcosf)e

i 1 [ q , . i 1 [ qe
— - d 'LqT_ wqr — _ d

@ ), T = gy |t

i1 [ ; 1 1
_ - iqr A.
2(27T)2T/_oodqe (q—k+q+k> (48

We can extend ¢ to compex plane and make it to the contour integral along C. To make the integral
converge, we assume Img > 0 close the contour in the upper plane because ¢/" — 0 in the upper half
circle at 1 — oo. There are four contours C 2 34. The integrals of contour (' 2 3 give contributions
proportional to e?*” +e~*" 0, and e~ **" respectively. For the outgoing wave we need the contribution
proportional to e**” which comes only from C,. The choice of Cy can be implemented by making the

replacement qzikz — qQ_klz_iE. Eq. (A.85) can be carried out
11,
G e Z otk A.86
or) = —gre (A.86)

If we treat the potential as perturbation, i.e. we take Born approximation, in the leading order
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Eq. (A.81) or (A.83) becomes

~ _ i 3 1 ik|r—rq |
v & o) = g [ e e o)
~ i 3 ; ik(r—ry cos )
~ k() 4 /d . 1 cosf” Ur)éx(rs)
~ ezkr _ ﬂezkr/dBrlefz(kf7k)<r1 U(I‘l) (A87)
T

where k; = kr/r. The scattering amplitude is then

1 ik k)t 1~
flkp k) = —E/d?’rle (ks —k) Ufr1) = =~ U(k; ~ k) (A.88)



Appendix B

A: Bessel functions

The Bessel equation reads

d’y 1dy v?
d$2+xd§t+(1_;c?>y =0 (B.1)

where v and z are any complex number. The solutions are the Bessel functions J,(z) of the first
kind,

> 1 1 N 2k+v
Jo(z) = Z(—l)kﬁm (5) (B.2)

If v is not an integer, then J_, (x) is another independent solution. If J,(z) = n an integer, then we
have

00 1 1 x\ 2k—n
J_n(z) = Z(—l)kgm (5)

k=0
= S At
N ;H)H (z+n)!ﬁ(§)
= (=1)"Ju(z) = Ju(—2) (B.3)

where we have used the fact that 1/(—1)! = 0 with [ > 0. This means J,(z) and J_,(x) are basically
the same solution of the Bessel equation. Another independent solution is the Bessel function of
second kind. When z is real, J,(z) is an oscillating function with a damping amplitude.

The generating function of Bessel functions is

N2 = N @), (0 < [t] < o0) (B-4)

n=—oo
One can write it in a different way by using t = ie®, z = kr,

o0
eikr cos  _ E Jn(kr)ineinO

n=-—oo

= Jo(kr) + [Jn(kr)i”eme + J_n(kr)f”efme]

NE

n

1" Jp (kr) cosné (B.5)

ik

= J()(k?") +2

n=1

216
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where we have used J_,(z) = (—1)"J, ().
The Bessel function of the second kind is defined by
Jy(x) cosvm — J_,(x)

sinvmw

(B.6)

Y, (x)

If v is not an integer, obviously Y, (z) is independent of J,(z). One can prove that if v = n, Y, (x) is
also an independent solution of J,(x). Note that Y;,(x) diverges at x = 0. For example, at x — 0,

Yo(z) = %lng
@ = -ty (B.7)

Bessel functions of third kind H,El)(x) and H,EQ)(x) are defined by

S

D) = J(@)+iY,(2)
HP(z) = J,(x)—iY,(z) (B.8)

The asymptotic forms of Bessel functions at |arg(z)| < 7, || — oo are

N N L ~3/2
J(xr) = — cos (x > 4) + O(x™7%),
_ 2 . VT —3/2
Yo(z) = —sin (J: -5~ 4) +O(z™%),
2 r vmwoT
(1) - il .2 T —3/2
HY(x) —exp |i (:L' 5 4” + O(z%),
2 r vm T
(2) - il il 22 2 —3/2
H (x) — &P |~ (x 5 4)] +O(z ), (B.9)
The spherical Bessel functions are solutions of
d*y 2dy [, I(I+1)
Using y(x) = 2~ '/?n(z) and
dy 11 1 dn(z)
de 2 x\/fn(x) + vz dz
d?y 3 _ _ _
DY = D) e (@) 4 e ()
P’y 2dy 3 52 —3/2, —1/2, 1
g T rde — At n(x) —a ' (x) + = " (z)
2] 1 1 1 dn(x)
z [zmﬁ”@) * 5 dr }
1
= e e (@) 2 ) (B.11)

Then the spherical Bessel equation becomes the Bessel one
d*y  2dy (1+1)
Z2J 25 1—
d? T rdn © { 2z |7

_ e {dQ’uldTu (1(”;2/2)2> ,,} —0 (B.12)
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whose solution is the Bessel function n ~ Ji11/2,Y;11/2. The solutions y = x’l/zn(x) to the spherical

Bessel equation are spherical Bessel functions

Jilw) = \/ZJHl/z(@")

™
—Y
o0 l+1/2(93)

[T ) .
hl(l) = %Hl(}r)lm(x) = ji(x) + iny(x)

[ . ,
hl(2) — %Hl(i)l/Q(x) = ji(z) — iny(z)

20+ 1
Y1+ = W

T

W1 — (I +Dhpr = 2+ 1)

where vy stands for j;(x), n;(z), hl(l) or hz(2)-
We can expand the plane wave e’** in terms of Legendre polynomials

S
S
|

They satisfy

oo

eikr cosf _ Z cl(k;r)B(COS 9)
=0
where
20+1 1

— dze'™® Py(z)
2 Ja

20411 ! ikrxz dl 2 l
= 721_"_1 ﬁlldxe @(ﬂf 71)

ci(kr)

A+11 . N g dT
= Wﬁ(—zlmﬂ)/_ldace o (z*—1)

204+11 !
= 72:1 l—'(—ikr)l/ dae®® (2% — 1)!

20411 2 (ikr)™ 1
= 72;1 ﬁ(fikr)l Z (kr) / dra™(z? — 1)

2A+11, . (ikr)zs/l er 5 v
= — —(—ikr)'2 dxx~® -1
o g (k) Z @), el =)
where we have used

dlfn 9
dl‘l_” ((E

—

where n =1,2,...,1 — 1. The integral is evaluated as

/_11 dra® (2 — 1)l = (—1)% /01 duus_l/Q(l — u)l
_ (1 AT (s+1/2)F(+1)
= U3 (1 +s+3/2)

(—=D(2s)/7
22561 (1 4+ s + 3/2)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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where we have used

N(s+1/2) = T'2s+1)27%r/T(s+1) = % (B.18)

Eq. (B.15) becomes

a(kr) = wglil(l@rﬂ)lZ(—l)%kr/?)Qsm

s=0
00 1
T 1) Q)2stit/2____ -
1+ W;Q e (P

= (2 + )i, /%JZH/Q(M = (20 + 1)iLy (kr) (B.19)



Appendix C

B: Spherical harmonic functions

A few lowest order harmonic functions. The Legendre and associated Legendre polynomials are given
by

1 d

P) = gy g @~ V)
dm
pPm™ — 1— 2 m/27P
() = (-2t R)
(1_x2)m/2 dl-‘rm ) .
- TR = G

Note that for the associated Legendre functions, the first equality holds for [ > m > 0, but the second
one holds for all |m| <. They satisfy

P(-z) = (-1)'P()
! 2
/_ P@)P@) = g
[ wrrwrrw = S,
A few lowest order terms are

Py(z) = 1, Pi(z) ==z, Pa(x) = %(33@2 —1),
Py(z) = %(5:}33 —3x), Py(z) = é(35x4 — 302% 4 3)
Ps(z) = %(63335 — 702 + 152),
Ps(x) = %(2313@6 — 3152 + 10522 — 5)

The spherical harmonic functions are defined

Yim = (=)™ 214; 2 8 — Z;iﬂ%os@)eim% m| <1
Vi = (=1)"™Yiom
For m # 0, we have
Yio= 2 _; 1Pl(cos )

220
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The orthogonal and complete property,
/dﬁifl:n}/l/m’ = 5ll’5mm/

A few lowest order functions

1
Yoo = —
00 i
3 /3 )
Yo = = cosl, Y141 = F\/ — sinfe¥
47 ' 8w
1 5 /15 .
Yoo = = 3COS 0—1), Yo 11 =F1/ -—sinfcos GeTie,
2 81
1 +24
Yoo = sm 2 get2ie
Vector spherical harmonic functlons are
Y (6 ZCﬁ%nYlm(G p)en

The gradient formula

VIf(r)Yum(0,9)] = YinVf(r)+ f(r)VYim

B 19Y;,, 1 0Yim
= SO+ eof ()7 =50+ eaf () s =

where we have used

V- e iep-2 e
= e 50 T % sin 000

OYim 1 2041 [(I—m)! . d X
= ()" —y/ 1/ 0 P™(cos 0)e™™?
00 (=1) sin @ 4 (I+m) !sm dcosf ! (cosO)e
_ ymet /2l+1 (I —m)!
sm@ (I+m)!

I+1)({+m m+1) im
X {ZZHPI 1 (cos ) — ZZHPZH(COSH)]G
1 (I —m)(I+m) 1 (l—-m+1){I+m+1)
= - I+ Y 1m l
s T Y @D+ T s 20+ 1)(20 + 3)
1
Y (—ea1Yi—1im + c2Yit1m)
Y]
eg = e,cosfcosg+e,cosfsing —e,sinfd
1 . 1 .
= —e;—=cosfe ™ +e_;—cosfe® — e, sinf
1\@ 1\5
ey = —e;sinf+e,cosf
1 1
= ﬁ(sinﬁ—i—icosﬁ)el+ﬁ(—sin0+icos0)e_1
e, = i( e t+e_q)
T - \/5 1 —1
)
e, = ﬁ(el +e_1)
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(C.1)
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We obtain
eof(r )71~ 8Ylm +eaf(r )7"511n9 8;:!;”
= 7:78557;)9 (—e1Yi—1m + c2Yit1m)
<e1\2 cosfe " + &1% cosfe'® — e, sin 9>
+rfs5r) mYim [\f(binﬁ +icosf)e; + %(— sin 6 + i cos 9)9—1]



Appendix D

Solutions to problems

Exercises in (6.3.2). We use S5 = T"oy;00; = 21795, S; where T = 37;7;—d;; and S; = 3(01;+02;).

We can express the total spin operators in terms of ladder operators Sy = 57 + 4S5 with

Sixim = VIFm)AEm+1)x1me
Sixii = 0, \/§X1,0
Sixi0 = V2xi41
Sixi—1 = V2x1,0,0
with
1
Sl == §(S+ + S_)
1
SQ == 5(54_ - S_)
1
52 = Z(si +5%+8,5 +5.85,)
S8y = —%(si 8% 8.5 +5.8))
1
S —Z(Si +852 —S548_ —S_S,)
$281 = —7(S%—S2+8:5- —5.8,)
We get
%(Xl,—l +X1,1) %(Xl,—l +X1,1) g)(l,o
SiSixi1 = 5(x1,-1 —x1.1) %(—X1,—1 +x1,1) %im,o
0 0 X1,1
X1,0 0 0
SiSjXLO = 0 X1,0 0
?(Xu - X1,-1) —@i(xm +x1,-1) 0O
%(Xm +X1,-1) _%(Xl,l + X1,-1) —§X170
SiSjx1,-1 = —%(Xu - X1,-1) —%(X1,1 - X1,-1) i?)ﬁ,{)
0 0 X1,—-1

223
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where we have used for x1 1,

and for x1,

5151X1,1
S182x1,1
S153x1,1
5231X1,1
5252X1,1
S2S3x1,1
S351X1,1

S352x1,1
S353X1,1

S151x1,0

S152x1,0
S153x1,0
5251X1,0
S252x1,0
S253x1,0
S351x1,0

S352x1,0
S353X1,0

1 1
E(Sz + S¢S )x11 = 5(){1,—1 +x1,1)

i(SE + S¢S )x11 = %(Xl,fl +x1,1)

1 V2

Six11 = §(S+ +S-)x11 = 5 XL
%(53 - S¢S )x11 = 1(X1,—1 - X1,1)
1 1
*Z(SE — 8.8 )x11 = 5(*){1,—1 +x1,1)
e V2

% -X1,1 = B 1X1,0
1 1
553(S+ + S5 )x11 = 553(5+ +8 )x11=0
1
Q—Z,Sg(SJr -5 )x11=0
X1,1

[\)

1
Z(S+57 +5_54)x1,0 = X1,0

7
_1(_S+S_ +S_5+)x10=0
0

—(S48- = S_S1)x10 =0

1
—7 (=89 =58 )x10 = x10

0

1 V2

553(S+ + S )x1,0 = 7()(1,1 —X1,-1)

1 V2.

553(5+ — S )x1,0 = ——5-i(x1,1 +x1,-1)
7 2

0

224



APPENDIX D. SOLUTIONS TO PROBLEMS

and for x; _1,

Then we obtain

S1a¢5t

S120%

5151X1,—1 =
515’2X1,71 =
S193x1,-1 =
5251)(1,—1 =
5252)(1,—1 =
5253X1,71 =
5351X1,71 =

S389x1,-1 =
S383x1,-1 =

1 1
1(51 +S8_8y)x1,-1 = §(X1,1 +X1,-1)

_E(Si +S8-8)x1,-1 = _%(Xl,l + x1,-1)

4
1 V2
—§(S+ +S )x1,-1 = ~ T X10
—i(Si —S_Si)x1,-1 = —%(Xu - X1,-1)
1 1
,Z(Si —S_Si)x1,-1 = *§(X1,1 - X1,-1)
1 V2
Z§(S+ S )x1,-1= 5 X1,0
1
§SB(S+ +5_)x1,-1=0
1
533(S+ - Sf)Xl,fl =0
i

X1,-1

1 ..
QET” SiSle’l

1
9
Var

2

1

1

Nz
V8oL

1 ..
2\/T?TZjSiSjX]_,Q

1
9~
Vam

Var
V8oL

1 V2
T ~(x1,-1 +x10) + T2 = (X121 +xa1) + TH ==

V2 V2.
Tlle,O + T22X1,O + T317(X171 _ Xl,—l) _ T327'l(

i

2 2

2

2 2

X1,0

1 V2.
+T21§(X1,—1 - X1,1) + T22§(*X1,_1 + X1,1) + T23fZX1,o + T33X1,1]

[(T“ 2y i2T12) Xi—1 + V2(T" +iT%)x1 +T33X1,1}

X1,1 + X1,—1)]

1 . .
— [2 (T +T%%) x10 + V2T —iT?)x 1 — V2(T + 2T23)X1,,1}
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where 1"

11
D

10
D

1,—-1
¢p

B 1
Siepg ™ = 2——=T"8;S;x1,1

VAT

1
= 2

_ TlB@Xl B
Vamr

1
= (Xl 1+ x1-1) —iTxa

1 23 V2
_T22§(X1,1 _ Xl,—l) +ZT237X1,0 4 T33X1,—1

1
Vi [(TH — T2 —i2T") X110 + V2(=T" +iT)x1 0 + T33X1771]
/I8

— f¢1—1

are given by

Z C(l; my, m2)}/2m1 (97 @)lez

31 /151 3 (151 ; 11 [5 .
v oY= Tll _ T22 '2T12 _ e -v - T13 'T23 - 7T33
\/;4 5 ( +2T) X1+ 150 gz (U7 +1T7) Xao + 4/ 55\ 12T X

1 1 11

S (T = T®2 4 i2T") o T 44T 1 =T"

; 27r( +42T%%) xa, 1+4f( te )X10+4\ﬁ X
[(Tll = T2 42T"%) x1, -1 + V2T +iT%)x10 + T° Xl,l}

3 2 3
EY2,1(97<P)X1,—1 - \/}3 0(0,0)x1,0 + \/ —Ys 1(0,0)x11

/ 3 151 13 23 2 1 33 3 151 13 =23
E ng (T +ZT X1 -1 — + E gg (T — T )Xl,l
1

\/7
_ T13 'T23 - T33 T13 -T23
74\/77( +1 ) X1,-1 72\/» X1,0+74\f( v )Xl,l
1 1 . .
T [—\[2 (T13 +iT%%) x1,-1 — AT%x1,0 + V2 (T13 —iT??) X1,1:|

C<_1§ mai, m2)Yv2m1 (97 @)lez

3
—2(0,0)x1.1 — 4/ 103/2—1(9 @)X10+\/ Yz 00, 9)x1,-1
} (Tll T22 22T12 1 g T13 ZT23) Xl 0 + 11 5 T33X1 .
T3 V1 \/ V 102 V 47 ’

_ (Tll T22 22T12) - (T13 ZT23) X1,0 + i\/jTSBXI 1

-~ {(T” _22 _ i2T12) Xi-1 — \/§(T13 T X1+ T33X1,1}

(]

mi,msa

o

cm%]cmw
] =
S

o

=~ =
)
3
_.
|
_
I
,.J;
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Now we have proved Sia¢5™ = V8¢, By acting Sio on it again and use

2 —4(0’1 ~0'2) —2512
2_1-259

1
w
+
2
Q
(V]

Sty = [BE-o1)(F-02) — (01-02)|[3(F - 01)(F - 02) — (01 - 02)]
= 94 (01-02)° —3(t-01)01(F - 09)09; — 301 (F - 1) 00 (F - 72)
= 9+ (01-02) = 3taTe(ia — i€iabo1p) (Gic — i€ica02d) — 3PaTe(0ia + i€iapT1p) (Jic + i€icdo2q)
= 34 (01 02)% + 3Fafciab€icat1602d + 3Falc€iab€icaT16024
= 34 (01 02) 4 6Fafc(SacOba — aadbe)T16024
= 34 (01-02)% +6(6ba — F47q) 016024
( )
)

we get

SHoE" = V8S1adp" =8¢L" — 251204"
S1207" VBog" — 201"

Exercises in (3.6).
In order to change the life of the energy level in second into the energy width in eV, we use the
relation in the natural unit, ¢ = 3 x 1023 fm/s = 1, which gives 1 s = 3 x 102 fm. So the width is

1 1 i 197 b
Tvcn——  fm a0 MeV 47 x 10712 MeV
T Tax3x108 M~ kg x1om eV 8 ¢
The recoil energy is about
2 12)2 12)2
Bre o O127 iy 0127 v s 1078 Mev

T 2m T 2 x 191 x 940 T 2% 191 x 940

For the resonant absorption to take place, one need at least

4x10°8

N 3
~ AT 8.5 x 10

N
atoms to reduce the recoil energy.
Exercises in (3.5). For the v-decay 27 — 17, according to the parity selection rule, P;P; =
(=D)L, (=1)L+! for EL and ML radiation which requires L be odd and even for EL and ML radiation
respectively. E1 and M2 are the lowest possible radiation. But the strength of M2 is much less than
E1. So the answer is E1 radiation.
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