
Michael Biehl

The
Shallow
and the

Deep

A biased
introduction
to neural networks
and old school
machine learning

The Shallow and the Deep is a collection of lecture notes that offers an
accessible introduction to neural networks and machine learning in general.
However, it was clear from the beginning that these notes would not be able to
cover this rapidly changing and growing field in its entirety. The focus lies on
classical machine learning techniques, with a bias towards classification and
regression. Other learning paradigms and many recent developments in, for
instance, Deep Learning are not addressed or only briefly touched upon.
Biehl argues that having a solid knowledge of the foundations of the field is
essential, especially for anyone who wants to explore the world of machine
learning with an ambition that goes beyond the application of some software
package to some data set. Therefore, The Shallow and the Deep places
emphasis on fundamental concepts and theoretical background. This also
involves delving into the history and pre-history of neural networks, where the
foundations for most of the recent developments were laid.
These notes aim to demystify machine learning and neural networks without
losing the appreciation for their impressive power and versatility.

Michael Biehl is Associate Professor of Computer
Science at the Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence of the
University of Groningen, where he joined the Intelligent
Systems group in 2003. He also holds an honorary
Professorship of Machine Learning at the Center for
Systems Modelling and Quantitative Biomedicine of the
University of Birmingham, UK.
His research focuses on the modelling and theoretical

understanding of neural networks and machine learning in general. The
development of efficient training algorithms for interpretable, transparent
systems is a topic of particular interest. A variety of interdisciplinary
collaborations concern practical applications of machine learning in the
biomedical domain, in astronomy and other areas.

Th
e S

h
allo

w
 an

d th
e D

eep M
ich

ael B
ieh

l

The Shallow and the Deep

The Shallow and the Deep

A biased introduction to neural
networks and old school machine
learning

Michael Biehl

Published by University of Groningen Press
Broerstraat 4
9712 CP Groningen
The Netherlands

First published in the Netherlands © 2023 Michael Biehl, Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence, Groningen

Comments, corrections and suggestions are welcome, contact: m.biehl@rug.nl

Please cite as: Biehl, M. (2023). The Shallow and the Deep: A biased introduction to neural networks
and old school machine learning. University of Groningen Press.

This book has been published open access thanks to the financial support of the Open Access
Textbook Fund of the University of Groningen.

Cover design: Bas Ekkers
Coverphoto: Michael Biehl
Production: LINE UP boek en media bv

ISBN (print) 9789403430287
ISBN (ePDF) 9789403430270
DOI https://doi.org/ 10.21827/648c59c1a467e

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. The full licence terms are available at creativecommons.org/ licenses/
by-nc-sa/4.0/legalcode

http://creativecommons.org/

Preface

Stop calling everything AI.

— Michael I. Jordan, in [Pre21]

The subtitle of these lecture notes is “A biased introduction to neural networks
and old school machine learning” for good reasons. Although the aim was to
give an accessible introduction to the field, it has been clear from the beginning
that it would not end up as a comprehensive, complete overview. The focus is
on classical machine learning, many recent developments cannot be covered.

Personally, I first got in touch with neural networks in my early life as a
physicist. At the time, it was sufficient to read a handful of papers and perhaps
a little later the good book [HKP91] to be up-to-date and able to contribute a
piece to the big puzzle. Am I exaggerating and somewhat nostalgic? Probably.
But the situation has definitely changed a lot. Nowadays, an overwhelming
flood of publications makes it difficult to filter out the relevant information and
keep up with the developments.

The selection of topics in these notes has been determined to a large extent
by my own research interests and early experiences. This is definitely true for
the initial focus on the simple perceptron, the hydrogen atom of neural network
research as Manfred Opper put it [Opp90]. Moreover, the bulk of this text deals
with shallow systems for supervised learning, in particular classification, which
reflects my main interest in the field.

The notes may be perceived as old school, certainly by some dedicated fol-
lowers of fashion [Dav66]. Admittedly, the text does not address the most
recent developments in e.g. Deep Learning and its applications. However, in
my humble opinion it is invaluable to have a solid background knowledge of the
basics before exploring the world of machine learning with an ambition that
goes beyond the application of some software package to some data set.

Therefore, the emphasis is on basic concepts and theoretical background,
with specific aspects selected from a personal and clearly biased viewpoint. In
a sense, the goal is to de-mystify machine learning and neural networks without

iii

iv

losing the appreciation for their fascinating power and versatility. Very often,
this involves a look into the history and pre-history of neural networks, where
the foundations for most of the recent developments were laid.

I have aimed at pointing the interested reader to many resources for further
exploration of the area. Therefore, the list of references in the bibliography,
although by no means complete, is slightly more extensive than initially envi-
sioned.

The starting point for these notes was the desire to provide more comprehen-
sive material than the presentation slides in the MSc level course Neural Net-
works (renamed Neural Networks and Computational Intelligence later) which
I have been giving at the University of Groningen. A thorough archeological
investigation of the text and figures would also reveal traces of the courses The-
orie Neuronaler Netzwerke and Unüberwachtes Lernen, that I taught way back
when in the Physics program at the University of Würzburg.

My writing activity was greatly boosted on the occasion of the wonderful
30th Canary Islands Winter School in 2018, devoted to Big Data analysis in
Astronomy, where I had the honor to give a series of lectures on supervised
learning, see [MSK19,Bie19] for course materials and video-recorded lectures.

Last not least I would like to acknowledge constructive feedback from several
“generations” of students who followed the course and from many colleagues
and collaborators. In particular, I thank Elisa Oostwal and Janis Norden for a
critical reading of the manuscript and many suggestions for improvements.

Groningen, June 2023

The mysterious machine learning machine

© Catharina M. Gerigk and Elina L. van den Brandhof
Reproduced with kind permission of the artists.

Contents

Preface iii

1 From neurons to networks 1
1.1 Spiking neurons and synaptic interactions 3
1.2 Firing rate models . 5

1.2.1 Neural activity and synaptic interaction 5
1.2.2 Sigmoidal activation functions 6
1.2.3 Hebbian learning . 8

1.3 Network architectures . 9
1.3.1 Attractor networks and the Hopfield model 10
1.3.2 Feed-forward layered neural networks 12
1.3.3 Other architectures . 15

2 Learning from example data 17
2.1 Learning scenarios . 17

2.1.1 Unsupervised learning . 17
2.1.2 Supervised learning . 19
2.1.3 Other learning scenarios 22

2.2 Machine Learning vs. Statistical Modelling 23
2.2.1 Differences and commonalities 23
2.2.2 An example case: linear regression 24
2.2.3 Conclusion . 30

3 The Perceptron 31
3.1 History and literature . 31
3.2 Linearly separable functions . 33
3.3 The Rosenblatt perceptron . 36

3.3.1 The perceptron storage problem 36
3.3.2 Iterative Hebbian training algorithms 37
3.3.3 The Rosenblatt perceptron algorithm 39
3.3.4 The perceptron algorithm as gradient descent 41
3.3.5 The Perceptron Convergence Theorem 42
3.3.6 A few remarks . 45

3.4 The capacity of a hyperplane . 46

v

vi CONTENTS

3.4.1 The number of linearly separable dichotomies 46
3.4.2 Discussion of the result 52
3.4.3 Time for a pizza or some cake 53

3.5 Learning a linearly separable rule 55
3.5.1 Student-teacher scenario 55
3.5.2 Learning in version space 57
3.5.3 Generalization begins where storage ends 60
3.5.4 Optimal generalization . 62

3.6 The perceptron of optimal stability 63
3.6.1 The stability criterion . 63
3.6.2 The MinOver algorithm 65

3.7 Optimal stability by quadratic optimization 67
3.7.1 Optimal stability reformulated 67
3.7.2 The Adaptive Linear Neuron - Adaline 68
3.7.3 The Adaptive Perceptron Algorithm - AdaTron 73
3.7.4 Support vectors . 78

3.8 Inhom. lin. sep. functions revisited 80
3.9 Some remarks . 81

4 Beyond linear separability 83
4.1 Perceptron with errors . 85

4.1.1 Minimal number of errors 85
4.1.2 Soft margin classifier . 87

4.2 Layered networks of perceptron-like units 90
4.2.1 Committee and parity machines 91
4.2.2 The parity machine: a universal classifier 92
4.2.3 The capacity of machines 95

4.3 Support Vector Machines . 97
4.3.1 Non-linear transformation to higher dimension 98
4.3.2 Large margin classifier . 99
4.3.3 The kernel trick . 100
4.3.4 A few remarks . 104

5 Feed-forward networks for regression and classification 107
5.1 Feed-forward networks as non-linear function approximators . . . 107

5.1.1 Architecture and input-output relation 108
5.1.2 Universal approximators 109

5.2 Gradient based training of feed-forward nets 114
5.2.1 Computing the gradient: Backpropagation of Error 116
5.2.2 Batch gradient descent . 116
5.2.3 Stochastic gradient descent 119
5.2.4 Practical aspects and modifications 122

5.3 Objective functions . 123
5.3.1 Cost functions for regression 124
5.3.2 Cost functions for classification 125

5.4 Activation functions . 127

CONTENTS vii

5.4.1 Sigmoidal and related functions 127
5.4.2 One-sided and unbounded activation functions 128
5.4.3 Exponential and normalized activations 130
5.4.4 Remark: universal function approximation 131

5.5 Specific architectures . 131
5.5.1 Popular shallow networks 132
5.5.2 Deep and convolutional neural networks 135

6 Distance-based classifiers 141
6.1 Prototype-based classifiers . 143

6.1.1 Nearest Neighbor and Nearest Prototype Classifiers . . . 143
6.1.2 Learning Vector Quantization 144
6.1.3 LVQ training algorithms 145

6.2 Distance measures and relevance learning 148
6.2.1 LVQ beyond Euclidean distance 148
6.2.2 Adaptive distances in relevance learning 149

6.3 Concluding remarks . 153

7 Model evaluation and regularization 155
7.1 Bias and variance, over- and underfitting 155

7.1.1 Decomposition of the error 156
7.1.2 The bias-variance dilemma 158
7.1.3 Beyond the classical bias-variance trade-off (?) 161

7.2 Controlling the network complexity 163
7.2.1 Early stopping . 163
7.2.2 Weight decay and related concepts 164
7.2.3 Constructive algorithms 167
7.2.4 Pruning . 167
7.2.5 Weight-sharing . 169
7.2.6 Dropout . 170

7.3 Cross-validation and related methods 171
7.3.1 n-fold cross-validation and related schemes 172
7.3.2 Model and parameter selection 175

7.4 Performance measures . 175
7.4.1 Measures for regression 176
7.4.2 Measures for classification 176
7.4.3 Receiver Operating Characteristics 177
7.4.4 The area under the ROC curve 180
7.4.5 Alternative measures for two-class problems 181
7.4.6 Multi-class problems . 182
7.4.7 Averages of class-wise quality measures 183

7.5 Interpretable systems . 185

viii CONTENTS

8 Preprocessing and unsupervised learning 187
8.1 Normalization and transformations 188

8.1.1 Coordinate-wise transformations 189
8.1.2 Normalization . 191

8.2 Dimensionality reduction . 192
8.2.1 Low-dimensional embedding 194
8.2.2 Multi-dimensional Scaling 194
8.2.3 Neighborhood Embedding 195
8.2.4 Feature selection . 196

8.3 PCA and related methods . 197
8.3.1 Principal Component Analysis 198
8.3.2 PCA by Hebbian learning 200
8.3.3 Independent Component Analysis 203

8.4 Clustering and Vector Quantization 204
8.4.1 Basic clustering methods 205
8.4.2 Competitive learning for Vector Quantization 206
8.4.3 Practical issues and extensions of VQ 208

8.5 Density estimation . 211
8.5.1 Parametric density estimation 211
8.5.2 Gaussian Mixture Models 212

8.6 Missing values and imputation techniques 215
8.6.1 Approaches without explicit imputation 216
8.6.2 Imputation based on available data 216

8.7 Over- and undersampling, augmentation 218
8.7.1 Weighted cost functions 218
8.7.2 Undersampling . 218
8.7.3 Oversampling . 219
8.7.4 Data augmentation . 220

Concluding quote 223

A Optimization 225
A.1 Multi-dimensional Taylor expansion 225
A.2 Local extrema and saddle points 227

A.2.1 Necessary and sufficient conditions 227
A.2.2 Example: unsolvable systems of linear equations 228

A.3 Constrained optimization . 230
A.3.1 Equality constraints . 230
A.3.2 Example: under-determined linear equations 231
A.3.3 Inequality constraints . 232
A.3.4 The Wolfe Dual for convex problems 234

A.4 Gradient based optimization . 235
A.4.1 Gradient and directional derivative 235
A.4.2 Gradient descent . 236
A.4.3 The gradient under coordinate transformations 238

A.5 Variants of gradient descent . 239

CONTENTS ix

A.5.1 Coordinate descent . 239
A.5.2 Constrained problems and projected gradients 240
A.5.3 Stochastic gradient descent 240

A.6 Example calculation of a gradient 243

List of figures 246

List of algorithms 247

Abbrev. and acronyms 248

Bibliography 250

1. Abandon the idea that you are ever going to finish.

— John Steinbeck, Six Writing Tips

x CONTENTS

Chapter 1

From neurons to networks

Reality is overrated anyway.

— Unknown

To understand and explain the brain’s fascinating capabilities1 remains one
of the greatest scientific challenges ever. This is particularly true for its plas-
ticity, i.e. the ability to learn from experience, to adapt to and to survive in
ever-changing environments.

Ultimately, the performance of the brain must rely on its hardware (or wet-
ware [LB89]) and emerges from the cooperative behavior of its many, relatively
simple, yet highly interconnected building blocks: the neurons. The human
cortex, for instance, comprises an estimated number of 1012 neurons and each
individual cell can be connected to thousands of others.

In this introduction to Neural Networks and Computational Intelligence we
will study artificial neural networks and related systems, designed for the pur-
pose of adaptive information processing. The degree to which these systems
relate to their biological counterparts is, generally speaking, quite limited. How-
ever, their development was greatly inspired by key aspects of biological neurons
and networks. Therefore, it is useful to be aware of the conceptual connections
between artificial and biological systems, at least on a basic level.

Quite often, technical solutions are inspired by natural systems without copy-
ing all their properties in detail. Due to biological constraints, nature (i.e. evolu-
tion) might have found highly complex solutions to certain problems that could
be dealt with in a simpler fashion in a technical realization. A somewhat over-
used example in this context is the construction of efficient aircraft, which by no
means requires the use of moving wings in order to imitate bird flight faithfully.

Of course, it is unclear a priori which of the details are essential and which
ones can be left out in artificial systems. Obviously, this also depends on the

1(including the capability of being fascinated)

1

2 1. FROM NEURONS TO NETWORKS

specific task and context. Consequently, the interaction between the neuro-
sciences and machine learning research continues to play an important role for
the further development of both.

In this introductory text we will consider learning systems, which draw on
only the most basic mechanisms. Therefore, this chapter is only meant as a very
brief overview, which should allow to relate some of the concepts in artificial
neural computation to their biological background. The reader should be aware
that the presentation is certainly over-simplifying and probably not quite up-
to-date in all aspects.

Recommended textbooks and other sources
In most of this introductory chapter, detailed citations concerning specific topics
will not be provided. Instead, the following list points the reader to selected
textbooks, reviews or lecture notes. They range from brief and superficial to
very comprehensive and detailed reviews of the biological background. The same
is true for the discussion of the different conceptual levels on which biological
systems can be modelled. References point to the full citation information in
the bibliography. Note that the selection is certainly incomplete and biased by
personal preferences.

◦ K. Guerney’s (Neural Networks) gives a very basic overview and provides
a glossary of biological or biologically inspired terms [Gue97].

◦ The first sections of Neural Networks and Learning Machines by S. Haykin
cover the relevant topics in slightly greater depth [Hay09].

◦ The classical textbook Neural Networks: An Introduction to the Theory of
Neural Computation by J.A. Hertz, A. Krogh and R.G. Palmer discusses
the inspiration from biological neurons and networks in the first chapters.
It also provides a thorough analysis of the Hopfield model from a statistical
physics perspective [HKP91].

◦ H. Horner and R. Kühn give a brief general introduction in Neural Net-
works [HK98], including a basic discussion of the biological background.

◦ Models of biological neurons, their bio-chemistry and bio-physics are in
the focus of C. Koch’s comprehensive monograph on the Biophysics of
computation [Koc98]. It discusses the different modelling approaches and
relates them to experimental data obtained from real world neurons.

◦ T. Kohonen has introduced important prototype-based learning schemes.
An entire chapter of his seminal work Self-Organizing Maps is devoted to
the Justification of Neural Modeling [Koh97].

◦ H. Ritter, T. Martinetz and K. Schulten give an overview and also discuss
some aspects of the organization of the brain in terms of maps in their
monograph Neural Computation and Self-Organizing Maps [RMS92].

◦ M. van Rossum’s lecture notes on Neural Computation provide an overview
of biological information processing and models of neural activity, synaptic
interaction and plasticity. Moreover, modelling approaches are discussed
in some detail [Ros16].

1.1. SPIKING NEURONS AND SYNAPTIC INTERACTIONS 3

1.1 Spiking neurons and synaptic interactions

The physiology and functionality of the biological systems is highly complex,
already on the single neuron level. Sophisticated modelling frameworks have
been developed that take into account the relevant electro-chemical processes
in great detail in order to represent the biology as faithfully as possible. This
includes the famous Hodgkin-Huxley model and variants thereof.

They describe the state of cell compartments in terms of an electrostatic
potential, which is due to varying ion concentrations on both sides of the cell
membrane. A number of ion channels and pumps control the concentrations
and, thus, govern the membrane potential. The original Hodgkin-Huxley model
describes its temporal evolution in terms of four coupled ordinary differential
equations, the parameters of which can be fitted to experimental data measured
in real world neurons.

Whenever the membrane potential reaches a threshold value, for instance
triggered by the injection of an external current, a short, localized electrical
pulse is generated. The term action potential or the more sloppy spike will be
used synonymously. The neuron is said to fire when a spike is generated.

The action potential discharges the membrane locally and propagates along
the membrane. As illustrated in Figure 1.1 (left panel), a strongly elongated
extension is attached to the soma, the so-called axon. From a purely technical
point of view, it serves as a cable along which action potentials can travel.

Of course, the actual electro-chemical processes are significantly different
from the flow of electrons in a conventional copper cable, for instance. In fact,
action potentials jump between short gaps in the myelin sheath, an insulating
layer around the axon. By means of saltatory conduction, action potentials
spread along the axonic branches of the firing neuron and eventually reach the
points where the branches connect to the dendrites of other neurons. Such
a connection, termed synapse, is shown schematically in Fig. 1.1 (right panel).
Upon arrival of a spike, so-called neuro-transmitters are released into the synap-
tic cleft, i.e. the gap between pre-synaptic axon branch and the post-synaptic
dendrite. The transmitters are received on the post-synaptic side by substance
specific receptors. Thus, in the synapse, the action potential is not transferred
directly through a physical contact point, but chemically.2 The effect that an ar-
riving spike has on the post-synaptic neuron depends on the detailed properties
of the synapse:

◦ If the synapse is of the excitatory type, the post-synaptic membrane po-
tential increases upon arrival of the pre-synaptic spike,

◦ When a spike arrives at an inhibitory synapse, the post-synaptic mem-
brane potential decreases.

Both excitatory and inhibitory synapses can have varying strengths, as reflected

2 Note that also so-called gap junctions exist which can function as bi-directional electrical
synapses, see e.g. [CL04] for further information and references.

4 1. FROM NEURONS TO NETWORKS

Figure 1.1: Schematic illustration of neurons (pyramidal cells) and their con-
nections. Left: Pre-synaptic and post-synaptic neurons with soma, dendritic
tree, axon, and axonic branches. Right: The synaptic cleft with vesicles releas-
ing neuro-transmitters and corresponding receptors on the post-synaptic side.
Redrawn after [Kat66].

in the magnitude of the change that a spike imposes on the post-synaptic mem-
brane potential.

Consequently, the membrane potential of a particular cell will vary over time,
depending on the actual activities of the neurons it receives spikes from through
excitatory and inhibitory synapses. When the threshold for spike generation is
reached, the neuron fires itself and, thus, influences the potential and activity of
all its post-synaptic neighbors. All in all, a set of interconnected neurons forms
a complex dynamical system of threshold units which influence each other’s
activity through generation and synaptic transmission of action potentials.

The origin of a very successful approach to the modelling of neuronal ac-
tivity dates back to Louis Lapicque in 1907. In the framework of the so-called
Integrate-and-Fire (IaF) model, electro-chemical details accounted for in the
Hodgkin-Huxley type of models are omitted (and were probably not known at
the time). The membrane is simply represented by its conductance and ohmic
resistance. All charge transport phenomena are combined in one effective elec-
tric current, which summarizes the individual contributions of changing ion
concentrations as well as leak currents through the membrane. Similarly, the
precise form of spikes and details of their generation and transport are ignored.
Instead, the firing is modelled as an all-or-nothing threshold process, which re-
sults in an instantaneous discharge. A spike is represented by a structureless
Dirac delta function which defines the time point of the event. Despite its sim-
plicity compared to more realistic electro-chemical models, the IaF model can
be fitted to physiological data and yields a fairly realistic description of neuronal
activity.

1.2. FIRING RATE MODELS 5

time [ms]

Figure 1.2: Left (upper): Schematic illustration of an action potential, i.e.
a short pulse on mV - and ms-scale. Left (lower): Spikes travel along the axon
through saltatory conduction via gaps in the insulating myelin sheath. Right:
Schematic illustration of how mean firing rates are derived from a temporal
spike pattern.

1.2 Firing rate models
In another step of abstraction, the description of neural activity is simplified
by taking into account only the mean firing rate, e.g. obtained as the average
number of spikes per unit time; the concept is illustrated in Fig. 1.2 (right
panel).

The implicit assumption is that most of the information in neural process-
ing is contained in the mean activity and frequency of spikes of the neurons.
Hence, the precise timing of individual action potentials is completely disre-
garded. While the role of individual spike timing appears to be the topic of
ongoing debate in the neurosciences3, the simplification clearly facilitates effi-
cient simulations of very large networks of neurons and can be seen as the basis
of virtually all artificial neural networks and learning systems considered in this
text.

1.2.1 Neural activity and synaptic interaction
The firing rate picture allows for a simple mathematical description of neural
activity and synaptic interaction. Consider the mean activity Si of neuron i,
which receives input from a set J of neurons with j ∕= i. Taking into account the
fact that the firing rate of a biological neuron cannot exceed a certain maximum
due to physiological and bio-chemical constraints, we can limit Si to a range of
values 0 ≤ Si where the upper limit 1 is given in arbitrary units. The resting
state Si = 0 obviously corresponds to the absence of any spike generation.

The activity of neuron i is given as a (non-linear) response of incoming spikes,
which are - however - also represented only by the mean activities Sj : in

Si = h(xi) with xi =

j∈J

wij Sj . (1.1)

3See, e.g., http://romainbrette.fr/category/blog/rate-vs-timing/ for further references.

6 1. FROM NEURONS TO NETWORKS

Here, the quantities wij ∈ R represent the strength of the synapse connecting
one neuron j ∈ J with neuron i. Positive wij > 0 increase the so-called local
potential xi if neuron j is active (Sj > 0), while wij < 0 contribute negative
terms to the weighted sum. Note that real world chemical synapses are strictly
uni-directional: even if connections wij and wji exist for a given pair of neurons,
they would be physiologically separate, independent entities.

1.2.2 Sigmoidal activation functions

A variety of different activation functions h(x) have been employed in artificial
neural networks. A few specific types of functions will be introduced in a later
chapter. Here we restrict the discussion to the by now classical sigmoidal acti-
vation which arguably captures important characteristics of biological systems.

It is plausible to assume the following mathematical properties of the acti-
vation function h(x) of a given neuron (subscript i omitted) with local potential
x as in Eq. (1.1):

lim
x→−∞

h(x) = 0 (resting state, absence of spike generation)

h′(x) ≥ 0 (monotonic increase of the excitation)

lim
x→+∞

h(x) = 1 (maximum possible firing rate), (1.2)

which takes into account the limitations of individual neural activity discussed
in the previous section.

Various activation or transfer functions have been suggested and considered
in the literature. In the context of feed-forward neural networks, we will discuss
several options in Sec. 5.4. A very important class of plausible activations is
given by so-called sigmoidal functions, one prominent4 example being

h(x) =
1

2

1 + tanh

γ(x− θ)

(1.3)

which clearly satisfies the conditions given above. The two important param-
eters are the threshold θ, which localizes the steepest increase of activity, and
the gain parameter γ, which quantifies the slope. It is important to note that
θ does not directly correspond to the previously discussed threshold of the all-
or-nothing generation of individual spikes: it marks the characteristic value of
h at which the activation function is centered.

4Its popularity is partly due to the fact that the relation tanh′ = 1 − tanh2 facilitates a
very efficient computation of the derivative, see also Chapter 5.

1.2. FIRING RATE MODELS 7

Si γ

θ

xi =

j wijSj

Si

θ

xi =

j wijSj

Figure 1.3: Schematic illustration of symmetrized activation functions. Left:
A sigmoidal transfer function with gain γ and threshold θ in the symmetrized
representation, cf. Eq. (1.6). Right: The binary McCulloch Pitts activation as
obtained in the limit γ → ∞.

Symmetrized representation of activity

We will frequently consider a symmetrized description of neural activity in terms
of modified activation functions:

lim
x→−∞

g(x) = −1 (resting state, absence of spike generation)

g′(x) ≥ 0 (monotonic increase of the excitation)

lim
x→+∞

g(x) = 1 (maximum possible firing rate). (1.4)

An example activation analogous to Eq. (1.3) is

g(x) = tanh

γ(x− θ)

. (1.5)

At first sight, this appears to be just an alternative assignment of a value S = −1
to the resting state.

Note that in the original description with 0 < Sj < 1, a quiescent neuron
does not influence its postsynaptic neurons explicitly. However, keeping the
form of the activation as

Si = g(xi) with xi =

j∈J

wij Sj (1.6)

implies that the absence of activity (Sj = −1) in neuron j can now increase the
firing rate of neuron i if connected through an inhibitory synapse wij < 0. This
and other mathematical subtleties are clearly biologically implausible which is
due to the somewhat artificial introduction of – in a sense – negative and positive
activities which are treated in a symmetrized fashion.

However, as we do not aim at describing biological reality, the above dis-
cussed symmetrization can be justified. In fact, it simplifies the mathematical
and computational treatment, and has contributed to, for instance, the fruitful
popularization of neural networks in the statistical physics community in the
1980s and 1990s.

8 1. FROM NEURONS TO NETWORKS

McCulloch Pitts neurons

Quite frequently, an even more drastic modification is considered: for infinite
gain γ → ∞ the sigmoidal activation becomes a step function, see Fig. 1.3 (right
panel) for an illustration. Eq. (1.5) for instance yields in this limit

g(x) = sign(x− θ) =

+1 if x ≥ θ
−1 if x < θ.

(1.7)

In this symmetrized version of a binary activation function, only two possible
states are considered: either the model neuron is totally quiescent (S = −1) or
it fires at maximum frequency, which is represented by S = +1.

The extreme abstraction to binary activation states without the flexibility
of a graded response was first discussed by McCulloch and Pitts in 1943, who
originally denoted the quiescent state by S = 0. The persisting popularity of
this model is due to its simplicity as well as its similarity to Boolean concepts
in conventional computing. In the following, we will frequently resort to binary
model neurons in the symmetrized version (1.7). In fact, the so-called percep-
tron, as discussed in Chapter 3, can be interpreted as a single McCulloch Pitts
unit which is connected to N input neurons.

1.2.3 Hebbian learning

Probably the most intriguing property of biological neural networks is their abil-
ity to learn. Instead of realizing only pre-wired functionalities, brains adapt to
their environment or - in higher level terms - they can learn from experience.
Many potential forms of plasticity and memory representation have been dis-
cussed in the literature, including the chemical storage of information or learning
through neurogenesis, i.e. the growth of new neurons.

A very popular and plausible paradigm of learning is synaptic plasticity. A
key mechanism, Hebbian Learning, is named after psychologist Donald Hebb,
who published his work The Organization of Behavior in 1949 [Heb49]. The
original hypothesis was formulated in terms of a pair of neurons, which are con-
nected through an excitatory synapse:

“When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.”

This is known as Hebb’s law and sometimes rephrased as “Neurons that fire
together, wire together.” Hebbian Learning results in a memory effect which
favors the simultaneous activity of neurons A and B in the future. Hence, it
constitutes a form of learning through synaptic plasticity.

The question to which extent the Hebbian paradigm reflects the biological
reality of learning is subject of on-going debate. Alternative or complementing
mechanisms have been suggested, see [SVG+18] for a recent example. In the

1.3. NETWORK ARCHITECTURES 9

context of artificial neural networks, Hebbian synaptic plasticity provides a very
plausible basis for the representation of learning in the models.

In the mathematical framework of firing rate models presented in the previ-
ous section, we can express Hebbian Learning quite elegantly, assuming that the
synaptic change is simply proportional to the pre- and post-synaptic activity:

∆wAB ∝ SASB . (1.8)

Hence, the change ∆wAB of a particular synapse wAB depends only on locally
available information: the activities of the pre-synaptic (SB) and the post-
synaptic neuron (SA). For SA, SB > 0 this is quite close to the actual Hebbian
hypothesis.

The symmetrization with −1 < SA,B < +1 adds some biologically implau-
sible aspects to the picture. For instance, an excitatory synapse connecting A
and B would also be strengthened according to Eq. (1.8) if both neurons are
quiescent at the same time, since in this case SASB > 0. Similarly, high activ-
ity in A and low activity in B (or vice versa) with SASB < 0 would weaken an
excitatory or strengthen an inhibitory synapse. In Hebb’s original formulation,
however, only the presence of simultaneous activity should trigger changes of
the involved synapse. Moreover, the mathematical formalism in (1.8) facilitates
the possibility that an individual excitatory synapse can become inhibitory or
vice versa, which is also questionable from the biological point of view.

Many learning paradigms in artificial neural networks and other adaptive
systems can be interpreted as Hebbian Learning in the sense of the above dis-
cussion. Examples can be found in a variety of contexts, including supervised
and unsupervised learning, see Sec. 2 for working definitions of these terms.

Note that the actual interpretation of the term Hebbian Learning varies a
lot in the literature. Occasionally, it is employed only in the context of unsuper-
vised learning, since feedback from the environment is quite generally assumed
to constitute non-local information. Here, we follow the wide-spread, rather
relaxed use of the term for learning processes which depend on the states of the
pre- and post-synaptic units as in Eq. (1.8).

Frequently, learning can be seen as the optimization of suitable costs which
are interpreted as a function of the network parameters, i.e. the synaptic
strengths or weights. As we will see, in many cases numerical optimization
procedures, which are for instance based on gradient descent, lead to update
rules for the weights that resemble Hebbian Learning to a large extent.

1.3 Network architectures
In the previous section we have considered types of model neurons which retain
certain aspects of their biological counterparts and allow for a mathematical
formulation of neural activity, synaptic interactions, and learning. This enables
us to construct networks from, for instance, sigmoidal or McCulloch Pitts neu-
rons, and model or simulate the dynamics of neurons and/or learning processes
concerning the synaptic connections.

10 1. FROM NEURONS TO NETWORKS

In the following, only the most basic and clear-cut types of network architec-
tures are introduced and discussed, namely fully connected recurrent networks
and feed-forward layered networks. The possibilities for modifications of these
networks, as well as for hybrid and intermediate types are nearly endless. Some
more specific architectures will be introduced briefly later; in Section 5.5 and
Chapter 6 various shallow and deep networks will be addressed.

1.3.1 Attractor networks and the Hopfield model
Networks with very high or unstructured connectivity form dynamical systems
of neurons which influence each other through synaptic interaction. In a network
as shown in Figure 1.4 (left panel) the activity of a particular neuron depends
on its synaptic input. Considering discrete timesteps t one obtains an update
of the form

Si(t+ 1) = g

j∈J

wij Sj(t)

 , (1.9)

where the sum is taken over all units j ∈ J which neuron i receives input from
through a synapse wij ∕= 0. Eq. (1.9) can be interpreted as an update of all
neurons in parallel. Alternatively, units could be visited in a deterministic or
randomized sequential order. We will not discuss the subtle, yet important,
differences between parallel and sequential dynamics here and refer the reader
to the literature, e.g. [HKP91].

From an initial configuration S(0) at time t = 0 which comprises the indi-
vidual activities S(0) = (S1(0), S2(0), . . . , SN (0))

⊤, the dynamics generates a
sequence of states S(t) which can be considered the system’s response to the
initial stimulus. The term recurrent networks has been coined for this type of
dynamical system.

One of the most extreme, clear-cut example of a recurrent architecture is
the fully connected Hopfield or Little-Hopfield model [Hop82,Lit74,HKP91]. A
Hopfield network comprises N neurons of the McCulloch Pitts type which are
fully connected by bi-directional synapses

wij = wji ∈ R (i, j = 1, 2, . . . N) with wii = 0 for all i. (1.10)

While the exclusion of explicit, non-zero self-interactions wii appears plausible,
the assumption of symmetric, bi-directional interactions clearly constitutes yet
another serious deviation from biological reality.

The dynamics of the binary units is given by

Si(t+ 1) = sign

N

j=1
j ∕=i

wijSj(t)

 . (1.11)

John Hopfield [Hop82] realized that the corresponding random sequential update
can be seen as a zero temperature Metropolis Monte Carlo dynamics which is

1.3. NETWORK ARCHITECTURES 11

⇒

S(t = 0) S(t ≫ 1)

Figure 1.4: Recurrent neural networks. Left: A network of N = 5 neurons
with partial connectivity and uni-directional synapses. Right: Pattern retrieval
from a noisy initial configuration in a Hopfield network of 2500 units, storing
100 activity patterns. Activities Sj = ±1 are shown as black and white ’pixels’,
respectively. Initially, 40% of the Sj are flipped with respect to the pattern. The
rightmost figure displays the system shortly before perfect retrieval is achieved.

governed by an energy function of the form

H(S(t)) = −
N

i,j=1
i<j

wij Si(t)Sj(t). (1.12)

The mathematical structure is analogous to the so-called Ising model in Statisti-
cal Physics, see [HKP91,Kob97] for background and further references. There,
the degrees of freedom Si = ±1 are typically termed spins and they repre-
sent microscopic magnetic moments. Ising-like systems have been considered
in a variety of scientific contexts ranging from the formation of binary alloys
to abstract models of segregation in the social sciences. Positive weights wij

obviously favor pairs of aligned Si = Sj which reduce the total energy of the
system. For the modelling of magnetic materials one considers specific couplings
wij as motivated by the physical interactions. For instance, constant positive
wij = 1 are assumed in the so-called Ising ferromagnet, while randomly drawn
interactions are employed to model disordered magnetic materials, so-called spin
glasses [HKP91].

In the actual Hopfield model, however, synaptic weights wij are constructed
or learned in order to facilitate a specific form of information processing [Hop82].
From a given set of uncorrelated, N -dimensional activity patterns P = {ξµ}Pµ=1

with ξµi ∈ {−1,+1}, a weight matrix is constructed according to

wij = wji =
1

P

P

µ=1

ξµi ξµj for i ∕= j and wii = 0 for all i, (1.13)

where the constant pre-factor 1/P follows the convention in the literature. Ac-
cording to Eq. (1.13), we can interpret the weights as empirical averages over

12 1. FROM NEURONS TO NETWORKS

the data set. Improved versions of the weight matrix for correlated patterns are
also available. In principle, all perceptron training algorithms discussed later
could be applied (per neuron) in the Hopfield network as well.

The Hopfield network can operate as an auto-associative or content ad-
dressable memory: If the system is prepared in an initial state S(t = 0) which
differs from one of the patterns ξν ∈ P only for a limited fraction of neurons with
Si(0) = −ξνi , the dynamics can retrieve the original ξµ from corrupted or noisy
information. Ideally, the temporal evolution under the updates (1.11) restores
the pattern nearly perfectly and S(t) approaches ξν for large t. The retrieval of
a stored pattern from a noisy initial state is illustrated in Fig. 1.4 (right panel).
Note that the two-dimensional arrangement of neurons serves purely illustrative
purposes. Since every neuron is connected to every other neuron, neighborhood
relations do not define a low-dimensional topology in the Hopfield model.

Successful retrieval of a stored pattern is only possible if the initial deviation
of S(0) from ξν is not too large. Moreover, only a limited number of patterns
can be stored and retrieved successfully. For random patterns with zero mean
activities ξµj = ±1, the statistical physics based theory of the Hopfield model
(valid in the limit N → ∞) shows that P ≤ αrN must be satisfied. The value
αr ≈ 0.14 marks the so-called capacity limit of the Hopfield model5.

Note that the weight matrix construction (1.13) can also be interpreted as
Hebbian Learning: Starting from a tabula rasa state of the synaptic strengths
with zero weights, a single term of the form ξµi ξ

µ
j is added for each activity

pattern, representing the neurons that are connected by synapse wij (and wji).
Hence, Eq. (1.13) can be written as an iteration

wij(0) = 0, wij(µ) = wij(µ− 1) +
1

P
ξµi ξ

µ
j , (1.14)

where the incremental change of wij depends only on locally available informa-
tion and is of the form “pre-synaptic × post-synaptic activity.”

The Hopfield model serves as a prototypical example of highly connected
neural networks. Potential applications include pattern recognition and image
processing tasks. Perhaps more importantly, the model has provided many
theoretical and conceptual insights into neural computation and continues to
do so.

More general recurrent neural networks are applied in various domains that
require some sort of temporal or sequence-based information processing. This
includes, among others, robotics, speech or handwriting recognition.

1.3.2 Feed-forward layered neural networks

Throughout this reader, we will mainly deal with another clear-cut network
architecture: layered feed-forward networks. In these systems, neurons are ar-
ranged in layers and information is processed in a well-defined direction.

5This critical value is often referred to as αc in the literature, but it should not be confused
with the storage capacity of feed-forward networks in, e.g., Sec. 4.4

1.3. NETWORK ARCHITECTURES 13

The left panel of Fig. 1.5 shows a schematic illustration of a feed-forward
architecture. A specific, single layer of units (the top layer in the illustration)
represents external input to the system in terms of neural activity. In the
biological context, one might think of the photoreceptors in the retina or other
sensory neurons which can be activated by external stimuli.

The state of the neurons in all other layers of the network is determined via
synaptic interactions, and activations of the form

S
(k)
i = g

j

w
(k)
ij S

(k−1)
j

 . (1.15)

Here, the activity S
(k)
i of neuron i in layer k is determined from the weighted sum

of activities in the previous layer (k−1) only: information contained in the input
is processed layer by layer. Ultimately, the last layer in the structure (bottom
layer in the illustration) represents the network’s output, i.e. its response to the
input or stimulus in the first layer. The illustration displays only a single output
unit, but the extension to a layer of several outputs is straightforward.

The essential property of the feed-forward network is the directed informa-
tion processing: neurons receive only input from units in the previous layer. As
a consequence, the network can be interpreted as the parameterization of an in-
put/output relation, i.e. a mathematical function that maps the vector of input
activations to a single or several output values. This interpretation still holds if
nodes receive input from several previous layers, or in other words: connections
may “skip” layers. For the sake of clarity and simplicity, we will not consider
this option in the following.

The feed-forward property and interpretation as a simple input/output re-
lation is lost as soon as any form of feedback is present: inter-layer synapses or
backward connections feeding information into previous (“higher”) layers intro-
duce feedback loops, making it necessary to describe the system in terms of its
full dynamics.

Neurons that do not communicate directly with the environment, i.e. all
units that are neither input nor output nodes, are termed hidden units (nodes,
neurons) which form hidden layers in the feed-forward architecture.

The right panel of Fig. 1.5 displays a more concrete example. The net-
work comprises one layer of hidden units, here with activities σk ∈ R, and
a single output S. The response of the system to an input configuration
ξ = (ξ1, ξ2, . . . , ξN) ∈ RN is given as

S(ξ) = g

K

k=1

vk σk

= g

K

k=1

vk g

 N

j=1

wkj ξj

 . (1.16)

Here we assume, for simplicity, that all hidden and output nodes employ the
same activation function g(. . .). Obviously, this restriction can be relaxed by
defining layer-specific or even individual activation functions. In Eq. (1.16) the

14 1. FROM NEURONS TO NETWORKS

S(ξ)

ξj ∈ R ξj ∈ R

wkj ∈ R

σk = g

j wkjξj

vk ∈ R

S(ξ) = g

k vkσk

Figure 1.5: Feed-forward neural networks.6 Left: A multilayered architecture
with varying layer-size and a single output unit. Right: A convergent feed-
forward network with a layer of input neurons, one hidden layer, and a single
output unit.

quantities wkj denote the weights connecting the j-th input component to the k-
th hidden unit with k = 1, 2, . . .K, where K is the total number of hidden units
(in the example K = 3). These weights can be grouped in vectors wk ∈ RN ,
while the hidden-to-output connections are denoted by vk ∈ R.

Altogether, the architecture and connectivity, the activation function and its
parameters (gain, threshold etc.), and the set of all weights determine the actual
input/output function ξ ∈ RN → S(ξ) ∈ R parameterized by the feed-forward
network. Again, the extension to several output units, i.e. multi-dimensional
function values, is conceptually straightforward.

Without going into details yet, we note that we control the function that is
actually implemented by setting the weights and other free parameters in the
network. If their determination is guided by a set of example data representing
a target function, the term learning is used for this adaptation or fitting process.
To be more precise, this situation constitutes an example of supervised learning
as discussed in the next section.

To summarize, a feed-forward neural network represents an adaptive param-
eterization of a, in general non-linear, functional dependence. Under rather mild
conditions, feed-forward networks with suitable, continuous activation functions
are universal approximators. Loosely speaking, this means that a network can
approximate any “non-malicious”, continuous function to arbitrary precision,
provided the network comprises a sufficiently large (problem dependent) num-
ber of hidden units in a suitable architecture, see Chapter 5. This property
clearly motivates the use of feed-forward nets in quite general regression tasks.

If the response of the network is discretized, for instance due to a threshold-
ing operation that yields

S(ξ) ∈ {1, 2, . . . C} , (1.17)

the system performs the assignment of all possible inputs ξ to one of C categories
6Following the author’s personal preference, layered networks are drawn from top (input)

to bottom (output). Alternative orientations can be achieved by rotating the page.

1.3. NETWORK ARCHITECTURES 15

or classes. Hence, the feed-forward network constitutes a classifier which can be
adapted to example data by choice of weights and other free parameters.

The simplest feed-forward classifier, the so-called perceptron, will serve as a
very important example system in the following. The perceptron is defined as
a linear threshold classifier with response

S(ξ) = sign

N

j=1

wjξj − θ

 (1.18)

to any possible input ξ ∈ RN , corresponding to an assignment to one of two
classes represented as S = ±1. Comparison with Eq. (1.7) shows that it can
be interpreted as a single McCulloch Pitts neuron which receives input from N
real-valued units.

The perceptron will be discussed in detail in Chapter 3 as a basic architecture
that provides valuable insights into the fundamentals of machine learning.

1.3.3 Other architectures
Apart from the clear-cut, fully connected attractor neural networks and strictly
feed-forward layered nets, a large variety of network types have been considered
and designed, often with specific application domains in mind, see Chapter 5.

Combinations of feed-forward structures with, for instance, layers of highly
interconnected units are employed in the context of Reservoir Computing, see
e.g. [SVC07,LJ09] for overviews and references.

Recently, the use of feed-forward architectures has re-gained significant pop-
ularity in the context of Deep Learning [GBC16,Hue19]. Specific designs and
architectures of Deep Neural Networks including e.g. so-called convolutional or
pooling layers will be discussed very briefly in Chapter 5.

The framework of prototype-based learning is introduced in Chapter 6. Sys-
tems like Learning Vector Quantization can also be interpreted as layered net-
works with specific, distance-based activation functions in the hidden units (the
prototypes) and a winner-takes-all or softmax output layer for classification or
regression, respectively. Prototype-based systems in unsupervised learning will
be discussed briefly in Chapter 6.

16 1. FROM NEURONS TO NETWORKS

Chapter 2

Learning from example data

You live and learn. At any rate, you live.

— Douglas Adams

Different forms of machine learning were already briefly presented in Sec. 1.
In the following section, we focus on the most clear-cut scenarios: supervised
learning and unsupervised learning. In addition, we will briefly discuss the
interesting and fruitful relations of machine learning with statistical modelling.

2.1 Learning scenarios
The main chapters of these notes deal with supervised learning, with emphasis
on classification and regression. Several of the introduced concepts and methods
can however be transferred to unsupervised settings. This is also the case for
the prototype-based methods discussed in Chapter 6.

2.1.1 Unsupervised learning
Unsupervised learning is an umbrella term comprising various methods for the
analysis of unlabeled data. Such data sets do not contain label information as-
sociated with some pre-defined target as it would be the case in classification or
regression. Moreover, there is no direct feedback available from the environment
or a teacher that would facilitate the evaluation of the system’s performance. A
comparison of its response with a given ground truth or approximate represen-
tation thereof is not available or possible.

For more about the background of unsupervised learning, the reader is
referred to the literature, e.g. [Hay09, Bis95a, Bis06]. An introduction, spe-
cific algorithms and applications can also be found in lecture notes by Dalya
Baron [Bar19]. Here we only briefly discuss the framework of unsupervised data

17

18 2. LEARNING FROM EXAMPLE DATA

analysis in contrast to supervised learning. We briefly revisit some key methods
of unsupervised learning in the context of preprocessing in Chapter 8.

Potential aims of unsupervised learning are quite diverse, a few examples being:

◦ Data Reduction
Frequently it makes sense to represent large amounts of data by fewer
exemplars or prototypes, which are of the same form and dimension as the
original data and capture the essential properties of the original, larger
data set. One important framework is that of Vector Quantization.

◦ Compression:
Another form of unsupervised learning aims at replacing original data
by lower-dimensional representations without reducing the actual number
of data points, see also Chapter 8. The mapping to lower dimension
should obviously preserve information to a large extent. Compression
could be done by explicitly selecting a reduced set of features, for instance.
Alternative techniques provide explicit projections to a lower-dimensional
space or representations that are guided by the preservation of relative
distances or neighborhood relations.

◦ Visualization
Two or three-dimensional representations of a data set can be used for the
purpose of visualizing a given data set. Hence, it can be viewed as a special
case of compression and many techniques can used in both contexts. In
addition, more specific tools have been devised for visualization tasks only.

◦ Density Estimation:
Often, an observed data set is interpreted as being generated in a stochas-
tic process according to a model density. In a training process, parameters
of the density are optimized, for instance aiming at a high likelihood as a
measure of how well the model explains the observations, see Sec. 8.5.

◦ Clustering
One important goal of unsupervised learning is the grouping of observa-
tions into clusters of similar data points which jointly display properties
from the other groups or clusters in the data set. Most frequently, cluster-
ing is formulated in terms of a specific (dis-)similarity or distance measure,
which is used to compare different feature vectors.

◦ preprocessing
The above mentioned and other unsupervised techniques can be employed
to identify representations of a data set suitable for further processing.
Consequently, unsupervised learning is frequently considered a useful pre-
processing step also for supervised learning tasks.

Note that the above list is by far not complete. Furthermore, the goals men-
tioned here can be closely related and, often, the same methods can be applied

2.1. LEARNING SCENARIOS 19

to several of them. For instance, density estimation by means of Gaussian Mix-
ture Models (GMM) could be interpreted as a probabilistic clustering method
and the obtained centers of the GMM can also serve as prototypes in the context
of Vector Quantization.

Several relevant techniques of unsupervised learning are discussed in Chapter
8, where additional references can also be found.

In a sense, in unsupervised learning there is no “right” or “wrong”. This
can be illustrated in the context of a toy clustering problem: If we sort a num-
ber of fruit according to shape and taste, we would most likely group pears
and apples and oranges in three corresponding clusters. Alternatively, we can
sort according to color only and end up with clusters of objects with like col-
ors, e.g. combining green apples with green pears vs. yellowish and red fruit.
Without further information or requirements defined by the environment, many
clustering strategies and outcomes can be plausible. The example also illus-
trates the fact that the choice of how the data is represented and which types
of properties/features are considered important can determine the outcome of
an unsupervised learning process to the largest extent.

The important point to keep in mind is that, ultimately, the users define
the goal of the unsupervised analysis themselves. Frequently this is done by
formulating a specific cost function or objective function which reflects the task
and guides the training process. The selection or definition of a cost function
can be quite subjective and, moreover, its optimization can even completely fail
to achieve the implicitly intended goal of the analysis, see Sec. 8.4.3 for the
discussion of Vector Quantization as an example.

As a consequence, the identification of an appropriate optimization crite-
rion and objective function constitutes a key difficulty in unsupervised learning.
Moreover, a suitable model and mathematical framework has to be chosen that
serves the purpose in mind.

2.1.2 Supervised learning
In supervised learning, available data comprises feature vectors1 together with
target values. The data is analysed in order to tune parameters of a model,
which can be used to predict the (hopefully correct) target values for novel data
that was not contained in the training set.

Generally speaking, supervised machine learning is a promising approach if
the target task is difficult or impossible to define in terms of a set of simple
rules, while example data is available that can be analysed.

We will consider the following major tasks in supervised learning:

◦ Regression
In regression, the task is frequently to assign a real-valued quantity to
each observed data point. An illustrative example could be the estimation
of the weight of a cow, based on some measured features like the animal’s
height and length.

1The discussion of non-vectorial, relational or other data structures is excluded here.

20 2. LEARNING FROM EXAMPLE DATA

◦ Classification
The second important example of supervised problems is the assignment of
observations to one of several categories or classes, i.e. to a discrete target
value. A currently somewhat overstrained example is the discrimination
of cats and dogs based on photographic images.

A variety of problems can be formulated and interpreted as regression or classi-
fication tasks, including time series prediction, risk assessment in medicine, or
the pixel-wise segmentation of an image, to name only a few.

Because target values are taken into account, we can define and evaluate
clear quality criteria, e.g. the number of misclassifications for a given test set
of data or the expected mean square error (MSE) in regression. In this sense,
supervised learning appears well defined in comparison to unsupervised tasks,
generally speaking. The well-defined quality criteria suggest naturally mean-
ingful objective functions which can be used to guide the learning process with
respect to the given training data.

However, also in supervised learning, a number of issues have to be addressed
carefully, including the selection of a suitable model. Mismatched, too simplistic,
or overly complex systems can hinder the success of learning. This will be
discussed from a quite general perspective in Chapter 7. Similarly, details of the
training procedure may influence the performance severely. Furthermore, the
actual representation of observations and the selection of appropriate features
is essential for the success of supervised training as well.

In the following, we will mostly consider a prototypical workflow of super-
vised learning where

a) a model or hypothesis about the target rule is formulated in a training
phase by means of analysing a set of labeled examples. This could be
done, for instance, by setting the weights of a feed-forward neural network.

and
b) the learned hypothesis, e.g. the network, can be applied to novel data in

the working phase, after training.

Frequently, an intermediate validation phase is inserted after (a) in order to
estimate the expected performance of the system in phase (b) or in order to
tune model (hyper-)parameters and compare different setups. In fact, validation
constitutes a key step in supervised learning, see Chapter 7.

It is important to keep in mind that many realistic situations deviate from
this idealized scenario. Very often, the examples available for training and
validation are not truly representative of the data that the system is confronted
with in the working phase. The statistical properties and the actual target may
even change while the system is trained. This very relevant problem is addressed
in the context of so-called continual or life-long learning.

A clear-cut strategy for the supervised training of a classifier is based on
selecting only hypotheses that are consistent with the available training data
and perfectly reproduce the target labels in the training set. As we will discuss
at length in the context of the perceptron classifier, this strategy of learning

2.1. LEARNING SCENARIOS 21

in version space relies on the assumption that (a) the target can be realized
by the trained system in principle and that (b) the training data is perfectly
reliable and noise-free. Although these assumptions are hardly ever realized in
practice, the consideration of the idealized scenario provides insight into how
learning occurs by elimination of hypotheses when more and more data becomes
available.

This can be illustrated in terms of a toy example. Assume that integer
numbers have to be assigned to one of two classes denoted as “A” or “B”. Assume
furthermore that the following example assignments are provided

4 → A 13 → B 6 → A 8 → A 11 → B

as a training set. From these observations we could conclude, for instance, that
A is the class of even integers, while B comprises all odd integers. However, we
could also come to the conclusion that all integers i < 11 belong to class A and
all others to B. Both hypotheses are perfectly consistent with the available data
and so are many others. It is in fact possible to formulate an infinite number of
consistent hypotheses based on the few examples given.

As more data becomes available, we might have to revise or extend our
analysis accordingly. An additional example 2 → B for instance, would rule
out the above mentioned concepts, while the assignment of all prime numbers
to class B would (still) constitute a consistent hypothesis now.

We will discuss learning in version space in greater detail in the context of
the perceptron and other networks with discrete output. Note that the strategy
only makes sense if the example data is reliable and noise-free; the data itself
has to be consistent with the unknown rule that we want to infer, obviously.

The simple toy example also illustrates the fact that the space of allowed
hypotheses has to be limited in order to facilitate learning at all. If possible
hypotheses may be arbitrarily complex, we can always construct a consistent one
by, for instance, simply taking over the given list of examples and claiming that
“all other integers belong to class A” (or just as well “...to class B”). Obviously
this approach would not infer any useful information from the data, and such a
largely arbitrary hypothesis cannot be expected to generalize to integers outside
the training set. This is a very simple example for an insight that could be
summarized as as2

Generalization begins where storage ends.

Merely storing the example set by training a very powerful system may com-
pletely miss the ultimate goal of learning, which is inference of useful information
about the underlying rule. We will study this effect more formally with respect
to neural networks for classification.

The above arguments are particularly clear in the context of classification. In
regression, the concept of consistent hypotheses has to be softened, since agree-
ment with the data set is in general quantified by a continuous error measure.

2(rephrasing “Generalization begins where learning ends” — T.M. Cover)

22 2. LEARNING FROM EXAMPLE DATA

However, the main idea of supervised learning remains the same: additional
data provides evidence for some hypotheses while others become less likely.

2.1.3 Other learning scenarios
A variety of specific, relevant scenarios can be considered which deviate from
the clear-cut simple cases of supervised learning and unsupervised learning. The
following examples highlight just some tasks or practical situations that require
specific training strategies to cope with. Citations merely point to just one
selected review, edited volume or monograph for further reference.

◦ Semi-supervised Learning [CSZ06]
Frequently, only a subset of the available data is labeled. Strategies have
been developed which, in a sense, combine supervised and unsupervised
techniques in such situations.

◦ Reinforcement Learning [WO12]
In various practical contexts, feedback on the performance of a learning
system only becomes available after a sequence of decisions has been taken,
for instance in the form of a cumulative reward. Examples would be the
reward received only after a number of steps in a game or in a pathfinding
problem in robotics.

◦ Transfer Learning [YCC18]
If the training samples are not representative for the data that the system
is confronted with in the working phase, adjustments might be necessary
in order to maintain acceptable performance. Just one example could be
the analysis of medical images which were obtained by using similar, yet
not identical technical platforms.

◦ Lifelong or Continual Learning [DRAP15]
Drift processes in non-stationary environments can play an important role
in machine learning. The statistics of the observed example data and/or
the target itself can change while the system is being trained. A system
that learns to detect spam e-mail messages, for instance, has to be adapted
constantly to the ever-changing strategies of the senders.

◦ Causal Learning [PJS17]
Regression systems and classifiers typically reflect correlations they have
inferred from the data, which allow to make some form of prediction based
on future observations. In general, this does not explicitly take causal
relations into account. The reliable detection of causalities in a data set is
a highly non-trivial task and requires specifically designed, sophisticated
methods of analysis.

In this material, we will focus almost exclusively on well-defined problems
of supervised learning in stationary environments. In most cases, we will as-
sume that training data is representative of the problem at hand and that it is
complete and reliable to a certain extent.

2.2. MACHINE LEARNING VS. STATISTICAL MODELLING 23

2.2 Machine Learning vs. Statistical Modelling
In the sciences it happens quite frequently that the same or very similar concepts
and techniques are developed or rediscovered in different (sub-)disciplines, either
in parallel or with significant delay.

While it is – generally speaking – quite inefficient to re-invent the wheel, a
certain level of redundancy is probably inevitable in scientific research. The
same questions can occur and re-occur in very different settings, and different
communities will come up with specific approaches and answers. Moreover, it
can be beneficial to come across certain problems in different contexts and to
view them from different angles.

It is not at all surprising that this is also true for the area of machine learning,
which has been of inter-disciplinary nature right from the start, with contribu-
tions from biology, psychology, mathematics, physics and others.

2.2.1 Differences and commonalities
An area, which is often viewed as competing, complementary, or even supe-
rior to machine learning is that of inference in statistical modelling. A simple
web-search for, say, “Statistical Modelling versus Machine Learning” will yield
numerous links to discussions of their differences and commonalities. Some of
the statements that one may very likely come across are3:

– The short answer is that there is no difference
– Machine learning is just statistics, the rest is marketing
– All machine learning algorithms are black boxes
– Machine learning is the new statistics
– Statistics is only for small data sets, machine learning is for big data
– Statistical modelling has lead to irrelevant theory and questionable

conclusions
– Whatever machine learning will look like in ten years, I’m sure statisticians

will be whining that they did it earlier and better.
These and similar opinions reflect a certain level of competition, which can
be counterproductive at times, to put it mildly. In the following, we will re-
frain from choosing sides in this on-going debate. Instead, the relation between
machine learning and statistical modelling will be highlighted in terms of an
illustrative example.

One of the most comprehensive, yet accessible presentations of statistical
modelling based learning is given in the excellent textbook The Elements of
Statistical Learning by T. Hastie, R. Tibshirani, and J. Friedman [HTF01]. A
view on many important methods, including density estimation and Expectation
Maximization algorithms is provided in Neural Networks for Pattern Recognition
[Bis95a] and the more recent Pattern Recognition and Machine Learning [Bis06]
by C. Bishop.

3Exact references and links are not provided in the best interest of the originators.

24 2. LEARNING FROM EXAMPLE DATA

In both, machine learning and statistical modelling, the aim is to extract
information from observations or data and to formalize it. Most frequently,
this is done by generating a mathematical model of some sort and fitting its
parameters to the available data.

Quite often, machine learning and statistical models have very similar or
identical structures and, frequently, the same mathematical tools or algorithms
are used. The differences lie in the emphasis that is usually put on different
aspects of the modelling or learning:

Generally speaking, the main aim of statistical inference is to describe, but
also explain and understand the observed data in terms of models. These usually
take into account explicit assumptions about statistical properties of the obser-
vations. This includes the possible goal of confirming or falsifying hypotheses
with a desired significance or confidence.

In Machine Learning, on the contrary, the main motivation is to make pre-
dictions with respect to novel data, based on patterns detected in the previous
observations. Frequently, this does not rely on explicit assumptions in terms of
statistical properties of the data but employs heuristic concepts of inference.4
The goal is not so much the faithful description or interpretation of the data,
but rather, it is the application of the derived hypotheses to novel data that is in
the center of interest. The corresponding performance, for instance quantified
as an expected error in classification or regression, is the ultimate guideline.

Obviously, these goals are far from being really disjoint in a clear-cut way.
Genuine statistical methods like Bayesian classification can clearly be used with
the exclusive aim of accurate prediction in mind. Likewise, sophisticated heuris-
tic machine learning techniques like relevance learning are designed to obtain
insight into mechanisms underlying the data, see Chapter 6.

Very often, both perspectives suggest very similar or even identical meth-
ods which can be used interchangeably. Frequently, it is only the underlying
philosophy and motivation that distinguishes the two approaches.

In the following section, we will have a look at a very basic, illustrative
problem: linear regression. It will be re-visited as a prototypical supervised
learning task a couple of times. Here, however, it serves as an illustration of
the relation between machine learning and statistical modelling approaches and
their underlying concepts.

2.2.2 An example case: linear regression
Linear regression constitutes one of the earliest, most important and clearest
examples of inference.

As a, by now, historical application, consider the theory of an expanding
universe according to which the velocity v of far away galaxies should be directly
proportional to their distance d from the observer [Hub29]:

v = Ho d. (2.1)
4However, it is very important to realize that implicit assumptions are always made, for

instance when choosing a particular machine learning framework to begin with.

2.2. MACHINE LEARNING VS. STATISTICAL MODELLING 25

v

d

Figure 2.1: Hubble dia-
gram: the velocity v of galax-
ies as a function of their dis-
tance d, taken from [Hub29].
Note that the correct units of
v should be km/s. According
to PNAS, figure and article
[Hub29] are in the public do-
main.

Here, Ho is the so-called Hubble constant which is named after Edwin Hubble,
one of the key figures in modern astronomy. Hubble fitted an assumed linear
dependence of the form (2.1) to observational data in 1929 and obtained as a
rough estimate Ho ≈ 500km/s

Mpc , see Figure 2.1. The interested reader is referred
to the astronomy literature for details, see e.g. [Huc18] for a quick start.

Two major lessons can be learnt from this example: (a) simple linear regres-
sion has been and continues to be a highly useful tool, even for very fundamental
scientific questions, and (b) the predictive power of a fit depends strongly on
the quality of the available data. The latter statement is evidenced by the fact
that more recent estimates of the Hubble constant, based on more data of better
quality, correspond to much lower values Ho ≈ 73.5km/s

Mpc [Huc18].
Obviously, a result of the form (2.1) summarizes experimental or observa-

tional data in a descriptive fashion and allows us to formulate conclusions that
we have drawn from available data. At the same time, it makes it possible
to apply the underlying hypothesis on novel data. By doing so, we can test,
confirm or falsify the model and its assumptions and detect the need for correc-
tions. The topic of validating a given model will be addressed in greater detail
in Chapter 7.

Note that the following discussion is by no means intended to claim that lin-
ear regression is a genuine machine learning method. It goes back to at least Leg-
endre and Gauss, see https://en.wikipedia.org/wiki/Linear_regression#History.
Here, it merely serves as a relatively simple, illustrative example problem.

A heuristic machine learning approach

Equation (2.1) represents a simple linear dependence of a target function v(d) on
a single variable d ∈ R. In the more general setting of multiple linear regression,
a target value y(ξ) is assigned to a number of arguments which are concatenated
in an N -dimensional vector ξ ∈ RN .

In the standard setting of multiple linear regression, a set of examples

D = {ξµ, yµ}Pµ=1 with ξµ ∈ RN , yµ ∈ R (2.2)

https://en.wikipedia.org/wiki/Linear_regression#History

26 2. LEARNING FROM EXAMPLE DATA

is given. A hypothesis of the form

fH(ξ) =

N

i=1

wi ξi = w⊤ξ = w · ξ with w ∈ RN (2.3)

is assumed to represent or approximate the dependence y(ξ) underlying the
observed data set D. In analogy to other machine learning scenarios considered
later, we will refer to the coefficients wj also as weights and combine them in a
vector w ∈ RN . Depending on the context, any of the equivalent notations for
the scalar product in Eq. (2.3) will be used.

Note that a constant term could be incorporated formally without explicit
modification of Eq. (2.3). This can be achieved by decorating every input vector
with an additional clamped dimension ξN+1 = −1 and introducing an auxiliary
weight wN+1 = θ:

ξ = (ξ1, ξ2, ξ3, . . . , ξN ,−1)⊤ , w = (w1, w2, w3, . . . wN , θ)⊤ ∈ RN+1

⇒ w⊤ ξ = w⊤ξ − θ. (2.4)

Any inhomogeneous hypothesis fH(ξ) = w⊤ξ−θ including a constant term can
be written as a homogeneous function in N +1 dimensions for an appropriately
extended input space, formally. Hence, we will not consider constant contribu-
tions to the the hypothesis fH explicitly in the following. A similar argument
will be used later in the context of linearly separable classifiers.

A quite intuitive approach to the selection of the model parameters, i.e. the
weights w, is to consider the available data and to aim at a small deviation of
fH(ξµ) from the observed values yµ. Of the many possibilities to define and
quantify this goal, the quadratic deviation or Sum of Squared Error (SSE) is
probably the most frequently used one:

ESSE =
1

2

P

µ=1

fH(ξµ)− yµ

2

where fH(ξµ) = w⊤ξµ (2.5)

and the sum is over all examples in D.
The quadratic deviation disregards whether fH(ξµ) is greater or lower than

yµ. Note that the pre-factor 1/2 conveniently cancels out when taking deriva-
tives with respect to the weights but is otherwise irrelevant. We will fre-
quently replace the SSE by the Mean Squared Error (MSE) which is defined
as EMSE = ESSE/P . The constant factor 1/P is, of course, also irrelevant for
the minimization and the properties of the optima.

Necessary and sufficient conditions for the presence of a (local) minimum in
a differentiable cost function are briefly summarized and discussed in Appendix
A.2.2, where we also point to additional literature. Here, we consider only the
necessary first order condition for a weight vector w∗ that minimizes ESSE :

∇wE
SSE

w=w∗

!
= 0 with ∇wE

SSE =

P

µ=1

w⊤ξµ − yµ

ξµ. (2.6)

2.2. MACHINE LEARNING VS. STATISTICAL MODELLING 27

Note that the SSE is also a popular objective function in the context of re-
gression in multi-layered networks, see Chapter 5 and e.g. [Bis95a,Bis06,HTF01,
HKP91,EB01]. With the convenient matrix and vector notation5

Y =

y1, y2, . . . , yP

⊤ ∈ RP , χ =

ξ1, ξ2, . . . , ξP

⊤
∈ RP×N (2.7)

we can rewrite Eq. (2.6) and solve it formally:

χ⊤ (χw∗ − Y)
!
= 0 ⇒ w∗ =

χ⊤χ

−1
χ⊤

χ+
left

Y (2.8)

where χ+
left is the (left) Moore-Penrose pseudoinverse of the rectangular matrix

χ [PP12,BH12]. Note that the solution can be written in precisely this form only
if the (N ×N) matrix [χ⊤χ] is non-singular and, thus, [χ⊤χ]−1 exists. This can
only be the case for P > N , i.e. when the system of P equations

w⊤ξµ = yµ

in N unknowns is over-determined and cannot be solved exactly.
For the precise definition of the Moore-Penrose and other generalized in-

verses (also in the case P ≤ N) see e.g. the Matrix Cookbook [PP12] as a
comprehensive source of information in the context of matrix manipulations.

Heuristically, in the case of singular matrices [χ⊤χ], one can enforce the
existence of an inverse by adding a small contribution of the N -dimensional
identity matrix IN :

w∗
γ =

χ⊤χ+ γ IN

−1
χ⊤ Y. (2.9)

Since the symmetric [χ⊤χ] has only non-negative eigenvalues, the matrix on the
r.h.s. of (2.9) is guaranteed to be non-singular for any γ > 0.

We will re-visit the problem of linear regression in the context of perceptron
training and more general regression later, see also Appendix A.3.2. There,
we will also discuss the case of under-determined systems of solvable equations
w⊤ξµ = yµ

P

µ=1
.

In analogy to the above, it is straightforward to show that the resulting
weights w∗

λ correspond to the minimum of the modified objective function

ESSE
λ =

1

2

P

µ=1

fH(ξµ)− yµ

2

+
1

2
γw2. (2.10)

Hence, we have effectively introduced a penalty term, which favors weight vectors
with smaller norm | w |2. The concept is known as weight decay, see Sec. 7.2.
Note that nearly singular matrices [χ⊤χ] would lead to large magnitude weights
according to Eq. (2.8).

This is our first encounter of regularization, i.e. the restriction of the search
space in a learning problem with the goal of improving the outcome of the
training process. In fact, weight decay is applied in a variety of problems and

5For better readability, χ is used instead of Ξ (the properly capitalized version of ξ).

28 2. LEARNING FROM EXAMPLE DATA

is by no means restricted to linear regression. Other methods of regularization
will be discussed in the context of overfitting in neural networks in Sec. 7.2.

We will revisit linear regression again in later chapters and show that it can
also be formulated as the minimization of w2 under suitable constraints. This
approach circumvents the problem of having to choose an appropriate weight
decay parameter γ in Eqs. (2.9, 2.10).

The statistical modelling perspective

In a statistical modelling approach, we aim at explaining the observed data D in
terms of an explicit model. To this end, we have to make and formalize certain
assumptions. For instance, we can assume that the labels yµ are generated
independently according to a conditional density of the form

p(yµ | ξµ,w) = N (yµ | w⊤ξ,σ2) =
1√
2πσ

exp

− 1

2σ2

yµ −w⊤ξµ

2

. (2.11)

Hence, we assume that the observed targets essentially reflect a linear depen-
dence but are subject to Gaussian noise:

yµ = w⊤ξµ + σ ηµ (2.12)

with independent, random quantities ηµ with 〈ηµ〉 = 0 and 〈ηµην〉 = δµν . In
contrast to the previous, heuristic treatment, we start from an explicit assump-
tion for how and why the observed values deviate from the linear dependence.

In the following, we consider only w as parameters of our model, while σ
is fixed. Extensions that include σ as an adaptive degree of freedom are very
well possible but not essential for the comparison with the heuristic machine
learning approach.

In the simplest case we assume that example inputs ξµ are generated inde-
pendently. Then, for a given model with weights w, the likelihood of observing
a particular set of target values Y =

y1, y2, . . . yP

⊤ factorizes:

p(Y | w,χ) =

P

µ=1

p(yµ | ξµ,w). (2.13)

The corresponding log-likelihood reads

log p(Y |χ,w) =
P

µ=1

log p(yµ |ξµ,w) = −P

2
log(2πσ2)− 1

σ2

1

2

P

µ=1

yµ −w⊤ξµ

2
,

(2.14)
where we inserted the Gaussian model (2.11). Now we note that the first term
on the r.h.s. is constant with respect to w. Furthermore, the second term is
proportional to −ESSE as given in Eq. (2.5).

We conclude that the weights w∗ that explain the data with Maximum
Likelihood under the assumption of model (2.11) are exactly those that minimize
the SSE. Hence, we arrive at the same formal solution as given in (2.8).

2.2. MACHINE LEARNING VS. STATISTICAL MODELLING 29

This correspondence of the Maximum Likelihood solution in the Gaussian
model with a quadratic error measure is of course due to the specific mathemat-
ical form of the normal distribution and can be rediscovered in various other
contexts. The assumption of Gaussian noise is rarely strictly justified, but it
is very popular and appears natural in absence of more concrete knowledge.
Frequently, it yields practical methods and can be seen as the basis of popular
techniques like Principal Component Analysis, mixture models for clustering,
or Linear Discriminant Analysis [HTF01,Bis06].

Note, however, that the statistical approach is more flexible in the sense
that we could, for instance, replace the conditional model density in (2.11) by
an alternative assumption and proceed along the same lines to obtain a suitable
objective function in terms of the associated likelihood.

Moreover, it is possible to incorporate prior knowledge, or prior beliefs, into
the formalism. If we had reason to assume that weights with low magnitude are
more likely to occur, even before any data is observed, we could express this in
terms of an appropriate prior density, for instance

po(w) ∝ exp

− 1

2τ2o
w2

. (2.15)

Exploiting Bayes Theorem, P (A|B)P (B) = P (B|A)P (A), we obtain from the
data likelihood P (D|w):

p(w|D) ∝ p(D|w) po(w). (2.16)

With the proper normalization this represents the posterior probability of weights
p(w|D) after having seen a data set D = {χ, Y }, and taking into account the
data independent prior po(w).

Assuming the independent generation of ξµ again and inserting the par-
ticularly convenient Gaussian prior (2.15) we can write the logarithm of the
posterior as

log [p(w|D)] ∝ −ESSE − 1

2
γw2 + const. (2.17)

with a suitable parameter γ that depends on τo and is obtained easily by working
out the logarithm of p(w|D) from Eq. (2.16).

The important observation is that maximizing the posterior probability with
respect to the set of weights w is equivalent to minimizing the objective function
given in Eq. (2.10). Hence, the Maximum A Posteriori (MAP) estimate of
the parameters w is formally identical with the MSE estimate when amended
by an appropriate weight decay term. Not surprisingly, many different names
have been coined for this form of regularization and its variants, including L2-
regularization, Tikhonov-regularization, and ridge-regression [HTF01, Bis95a,
Bis06,DHS00].

The above discussed Maximum Likelihood and MAP results are examples of
so-called point estimates: one particular set of model parameters (here: w) is
selected according to the specific criterion in use. The statistical modelling idea
allows us to go even further: In the framework of Bayesian Inference [HTF01]

30 2. LEARNING FROM EXAMPLE DATA

we can consider all possible model settings at a time, yielding the posterior
predictive probability

p(y|ξ,D) ∝

p(y|ξ,w) p(w|D)
∝ p(D|w) po(w)

dNw. (2.18)

Properly normalized, this defines the probability of response y(ξ) to an arbitrary
(novel) input ξ after having seen the data set D. It is obtained as an integral
over the specific model responses p(y|ξ,w) given a particular w, but integrated
over all possible models with the posterior p(w|D) as a weighting factor.

The formalism yields a probabilistic assignment of the target y, which also
makes it possible to quantify the associated uncertainty due to the data depen-
dent variability of the model parameters. On the one hand, f this constitutes
an appealing advantage over the simpler point estimates. On the other hand,
the full formalism can be quite involved in practice. Frequently, one resorts to
convenient parametric forms of model and prior densities and/or derives easy to
handle (e.g. Gaussian) approximations of the posterior predictive distribution
(2.18).

2.2.3 Conclusion
Heuristic machine learning and statistical modeling based approaches differ sig-
nificantly in terms of their conceptual foundations. However, in practice, these
differences often blur or play a minor role. Very often, seemingly purely heuris-
tic methods of machine learning can be derived from the statistical inference
perspective under suitable model assumptions. Frequently, training algorithms
and methods are very similar if not identical. Many statistics based methods
can be used for the main goals of machine learning, i.e. prediction and gen-
eralization. At the same time, sophisticated machine learning techniques can
also aim at understanding and explaining the observed data, a goal which is
frequently attributed to statistical learning.

In summary, the author’s recommendation is to acquire knowledge of both,
statistical modeling and heuristically motivated machine learning. We should
use the best of both complementary frameworks without being dogmatic or
religious in preferring one over the other. The never-ending debates and claims
of superiority by both communities are essentially useless and even counter-
productive. Instead, efforts should be combined in order to achieve a better
understanding of data analysis and learning.

Chapter 3

The Perceptron

The perceptron has shown itself worthy despite (and even because of!) its severe
limitations. It has many features to attract attention: its linearity; its intriguing
learning theorem; its clear paradigmatic simplicity as a kind of parallel compu-
tation.

— Marvin Minsky and Seymour Papert in [MP69]

3.1 History and literature

The term perceptron is used in a variety of meanings. Throughout this text,
however, it will exclusively refer to a system representing inputs ξ ∈ RN in
a layer of units, which are connected to a single binary output unit of the
McCulloch Pitts type. Its activation S(ξ) ∈ {−1,+1} is taken to represent two
possible responses.1 It corresponds to a linear threshold classifier or – in feed-
forward network jargon – to an N–1 architecture with a single binary output,
that does not comprise hidden units or layers.

Other well-known linear threshold classifiers are Linear Discriminant Analy-
sis (LDA), the Naive Bayes classifier, and the popular Logistic Regression (LR).
Overviews and comparisons can be found in e.g. [DHS00,HTF01,Bis95a,Mur22].
These classical methods are based on concepts of statistical modelling and differ
mostly in the way their parameters are determined or constructed from a given
data set.

In the literature, more general architectures with several layers and/or con-
tinuous output are often referred to as (multilayer, soft, . . .) perceptrons. We
will later consider layered networks which are constructed from perceptron-like

1Of course, any binary output, e.g. S ∈ {0, 1}, could serve the same purpose.

31

32 3. THE PERCEPTRON

units, but in these lecture notes the term perceptron always refers to the single
layer, binary classifier.

Even the very simple, limited perceptron architecture is of interest for a
multitude of reasons:

◦ Pioneered by Frank Rosenblatt [Ros58, Ros61], the perceptron has been
one of the earliest, very successful machine learning concepts and devices,
and it was even realized in hardware, see Figure 3.1.

◦ Rosenblatt also suggested an algorithm for perceptron training, which is
guaranteed to converge, provided a suitable solution exists. The corre-
sponding Perceptron Convergence Theorem is one of the most fundamen-
tal results in machine learning and has contributed largely to the initial
popularity and success of the field. It will be presented and proven in Sec.
3.3.3.

◦ It serves as a prototypical model system that provides theoretical, mathe-
matical and intuitive insights into the basic mechanisms of machine learn-
ing. At the same time it is a building block from which to construct more
powerful systems. As Manfred Opper [Opp90] put it: “The perceptron is
the hydrogen atom of neural network research.”

◦ In its modern, conceptually extended re-incarnation, the Support Vec-
tor Machine (SVM) [SS02,CST00,STC04,Her02,DFO20], the perceptron
persists to be used successfully in a large variety of practical applications.
The precise relation of the SVM to the simple perceptron will be discussed
in great detail in Section 4.3.

◦ The history of the perceptron provides insights into how the scientific
community deals with high expectations and disillusionments leading to
the extreme over-reaction of stalling an entire field of research [Ola96].

Several original texts from the early days of the perceptron are available
in the public domain. This includes an original article from 1958 [Ros58], the
highly interesting official Manual of the Perceptron Mark I hardware [HRM+60]
and Rosenblatt’s monograph Principles of Neurodynamics [Ros61]. An inter-
esting TV documentation is available at [You07].

The so-called Perceptron Controversy and its perception and long-lasting
impact on the machine learning community is analysed in an article entitled A
Sociological Study of the Official History of the Perceptron Controversy by M.
Ozaran [Ola96].

Clear presentations of the Rosenblatt algorithm can be found in virtually
all texts that cover the perceptron. Discussions which are quite close to these
lecture notes (apart from notation issues) are given in the monographs by J.A.
Hertz, A. Krogh and R.G. Palmer [HKP91] and by S. Haykin in [Hay09], for
instance.

The counting argument for the number of linearly separable functions, see
Sec. 3.4, is presented in e.g. [HKP91]. In this context, it should be useful to

3.2. LINEARLY SEPARABLE FUNCTIONS 33

Figure 3.1: The Mark I Perceptron. Left: Hardware realization at Cornell
Aeronautical Laboratory. Photo reproduced with kind permission from Cornell
University Library.2 The input of the Mark I was realized via a retina of 400
photosensors. Adaptive weights were represented by potentiometers that could
be tuned by electric motors. Right: Schematic outline of the Mark I architec-
ture, based on a figure taken from [HRM+60]. The triangular, shaded region
(added to the original illustration) marks a subset of units that is commonly
referred to as the perceptron in this text.

consult the original publications by R. Winder [Win61], T.M. Cover [Cov65] and
G.J. Mitchison and R.M. Durbin [MD89a]. The latter work also presents the
extension of the counting argument to two-layered networks (machines) with K
hidden units.

3.2 Linearly separable functions
The perceptron can be viewed as the simplest feed-forward neural network. It
responds to real-valued inputs ξ ∈ RN in terms of a binary output S ∈ {−1,+1}.
The response of a perceptron with weight vector w is obtained by applying a
threshold operation to the weighted sum of inputs:

Sw,θ(ξ) = sign (w · ξ − θ) = ±1, (3.1)

where the N -dim. weight vector and the threshold θ parameterize the specific
input/output relation. Its mathematical structure suggests an immediate geo-
metrical interpretation of the perceptron which is illustrated in Fig. 3.3: The
set of points in feature space

ξ ∈ RN

w · ξ − θ

= 0

(3.2)

2Cornell University News Service records, #4-3-15. Division of Rare and Manuscript Col-
lections, Cornell University Library. See https://digital.library.cornell.edu/catalog/ss:550351.

https://digital.library.cornell.edu/catalog/ss:550351

34 3. THE PERCEPTRON

ξ ∈ RN (inputs)

w ∈ RN (weights)

S = sign(w · ξ −Θ) = ±1 (output)

Figure 3.2: Illustration of the single layer perceptron with N -dimensional
inputs and a binary output of the McCulloch Pitts type.

corresponds to a (hyper-)plane orthogonal to to w with an off-set θ |w| from the
origin3. Inputs with w · ξ > θ result in perceptron output +1, while vectors ξ
with w · ξ < θ yield the response −1. Hence, the perceptron realizes a linearly
separable (lin. sep.) function: feature vectors with perceptron output +1 are
separated by the hyperplane (3.2) from those with output −1.

Two cases can be distinguished: input/output relations of the form (3.1)
with θ ∕= 0 are called inhomogeneously lin. sep., while homogeneously lin. sep.
functions can be written as

Sw(ξ) = sign (w · ξ) . (3.3)

For the latter, the corresponding hyperplane, cf. Fig. 3.3, has no offset (θ = 0)
and includes the origin.

In the following, we will focus on homogeneously linearly separable func-
tions, mostly. This does not constitute an essential restriction because any
inhomogeneously lin. sep. function can be interpreted as a homogeneous one in
a higher dimensional space: Consider the function Sw,θ(ξ) = sign (w · ξ − θ)
with w, ξ ∈ RN . Now let us define the modified (N + 1)-dimensional weight
vector

w = (w1, w2, . . . , wN , θ)
⊤

and augment all feature vectors by an auxiliary, “clamped” input dimension:

ξ = (ξ1, ξ2, . . . , ξN ,−1) ∈ RN+1.

We observe that

w · ξ = w · ξ − θ and, thus, sign

w · ξ

= sign (w · ξ − θ) . (3.4)

As a consequence, a non-zero threshold θ in N -dimensions can always be re-
written as an additional weight in a trivially augmented feature space and,
formally, the two cases can be treated on the same grounds. Note that the ar-
gument is analogous to the formal inclusion of a constant term in multiple linear
regression, see Eq. (2.4). Later, we will encounter subtleties which require more
precise considerations, but for now we will restrict ourselves to homogeneous
functions and simply refer to them as linearly separable for brevity.

3The distance of the plane from the origin is exactly θ in case of normalized w with |w| = 1.

3.2. LINEARLY SEPARABLE FUNCTIONS 35

θ

0
S=−1

S=+1w/|w|

Figure 3.3: Geometrical in-
terpretation of the perceptron.
The hyperplane orthogonal to w
with off-set θ from the origin
separates feature vectors with
output S = +1 and S = −1,
respectively.

In the following, we will also call a set of P input/output pairs

D = {ξµ, Sµ
T }

P

µ=1 (3.5)

(homogeneously) linearly separable, if at least one weight vector w exists with

Sµ
w = sign (w · ξµ) = Sµ

T for all µ = 1, 2, . . . , P, (3.6)

where we use the shorthand notation Sµ
w ≡ Sw(ξµ). The labels in D are denoted

by ST = ±1, with the subscript T for target or training.
A number of interesting and important questions related to linear separabil-

ity come to mind:

(Q1) Given a linearly separable data set, (how) can we find a perceptron weight
vector w that satisfies (3.6)?

(Q2) Given an arbitrary data set with binary target labels, can we determine
whether it is linearly separable without (before) attempting to train a
perceptron? Are there efficient iterative algorithms which indicate (at an
early stage) that a data set is not linearly separable?

(Q3) How serious is the restriction to linear separability in the space of binary
target functions? How many linearly separable functions exist, i.e. in how
many lin. sep. ways can we label P input vectors in N dimensions?

(Q4) Can we learn an underlying linearly separable rule from the examples con-
tained in D? How does the realization or “storage” of the given labels in
D relate to the learning of the unknown rule?

(Q5) If – for a lin. sep. D – several or many vectors w satisfy the conditions
(3.6), which one is the best? What is a meaningful measure of quality and
how can the corresponding optimal weight vector be found?

(Q6) If D is not separable, can we still approximate the target classification by
means of a perceptron? Which alternatives or extensions exist?

Most of these questions (Q1–Q5) will be addressed and answered in the forth-
coming sections, while Chapter 4 deals with the realization or approximation of
classification schemes beyond linear separability (Q6).

36 3. THE PERCEPTRON

3.3 The Rosenblatt perceptron

To a large extent, the success of the perceptron has been due to the existence of
a training algorithm and the associated convergence theorem, both presented by
Frank Rosenblatt [Ros58,Ros61]. In the following, we first precisely define the
basic goal of the training process, outline the general form of iterative perceptron
algorithms and present Rosenblatt’s algorithm. As a key result, we reproduce
the corresponding proof of convergence, eventually.

3.3.1 The perceptron storage problem

Here we address question (Q1) of the list given in the previous section. First
we consider the task of reproducing the labels of a given data set of form (3.5)
through a perceptron. We define the so-called perceptron storage problem (PSP)
as

Perceptron Storage Problem (I) (3.7)

For a given D = {ξµ, Sµ
T }

P

µ=1 with ξµ ∈ RN and Sµ
T ∈ {−1,+1} ,

find a vector w ∈ RN with sign (w · ξµ) = SµT for all µ = 1, 2, . . . , P.

The term storage refers to the fact that we are not (yet) aiming at the application
of the function Sw(ξ) to vectors ξ ∕∈ D. We are only interested in reproducing
the correct assignment of labels within the data set by means of a perceptron
network. Alternatively, this aim could be achieved by storing D in a memory
table and look up the correct Sµ

T when needed.
In order to rewrite the PSP we note that sign(w · ξ) = S ⇔ w · ξ S > 0.

Defining the so-called local potentials (the term indicates a vague relation to
the membrane potentials, cf. Sec. 1.1.)

Eµ = w · ξµ Sµ
T for µ = 1, 2, . . . , P, (3.8)

we obtain an equivalent formulation of the PSP in terms of a set of inequalities:

Perceptron Storage Problem (II) (3.9)

For a given D = {ξµ, Sµ
T }

P

µ=1 with ξµ ∈ RN and Sµ
T ∈ {−1,+1} ,

find a vector w ∈ RN with Eµ ≥ c > 0 for all µ = 1, 2, . . . , P.

Here, we have introduced a constant c > 0 as a margin in terms of the conditions
Eµ > 0. Note that the actual value of c is essentially irrelevant: Consider vectors
w1 and w2 = λw1 with λ > 0. Due to the linearity of the scalar product

Eµ
1 = w1 · ξµ Sµ

T ≥ c > 0 implies Eµ
2 = w2 · ξµ Sµ

T ≥ λ c > 0. (3.10)

3.3. THE ROSENBLATT PERCEPTRON 37

The existence of weights w with all Eµ ≥ c > 0 also implies that a solution for
any other positive constant can be constructed. This is a consequence of the
fact that the function Sw(ξ) = sign(w · ξ) only depends on the direction of w
in N -dim. feature space while it is invariant under changes of the norm |w|.

3.3.2 Iterative Hebbian training algorithms

In order to answer question (Q1) in Sec. 3.2, we consider iterative learning al-
gorithms which present a single

ξν(t), S

ν(t)
T

at time step t of the training

process. Often, the sequence of examples corresponds to repeated cyclic presen-
tation, i.e.4

ν(t) = 1, 2, 3, . . . , P, 1, 2, 3, . . . (3.11)

where each loop through the examples in D is called an epoch in the literature.
A frequently used alternative is random sequential presentation, where at each
time step t one of the examples in D is selected with equal probability 1/P .

The specific form of perceptron updates we consider in the following is:

Generic iterative perceptron updates (weights)

at discrete time step t

- determine the index ν(t) of the current training example

- compute the local potential Eν(t) = w(t) · ξν(t) Sν(t)
T

- update the weight vector according to

w(t+ 1) = w(t) +
1

N
f(Eν(t)) ξν(t) S

ν(t)
T . (3.12)

The scaling of the update with N is arbitrary and is used here to achieve con-
sistency with the literature. In order to turn (3.12) into a practical training
algorithm, the prescription has to be completed by specifying initial condition
w, and by defining a stopping criterion, obviously.

Together with the definition of the sequence ν(t), the so-called modulation
function f(. . .) determines the actual training algorithm and we assume here
that it depends only on the local potential of the actual training example. Note
that (3.12) constitutes a realization of Hebbian learning: the change of a com-
ponent wj of the weight vector is proportional to the“pre-synaptic” input ξµj and
the “post-synaptic” output Sµ

T .
As a consequence, the weight vector accumulates Hebbian terms ξµ Sµ

T start-
ing from the given initialization w(0). Most frequently, we will consider a so-
called tabula rasa initialization, i.e. w(0) = 0. In this case, after performing

4Formally, this can be represented by the function ν(t) = mod[(t−1),P] + 1 for t ∈ Z+

38 3. THE PERCEPTRON

updates at time steps t = 1, 2, . . . τ the weight vector is bound to have the form

w(τ) =
1

N

P

µ=1

xµ(τ) ξµ Sµ
T . (3.13)

This implies that the resulting perceptron weight vector is a linear combi-
nation of the vectors ξµ ∈ D and the so-called embedding strengths xµ(τ) ∈ R
quantify their specific contributions.

Assuming that w(0) = 0, it is also possible to rewrite the update (3.12) in
terms of the embedding strengths. At the end of the training process, the actual
weight vector can be constructed according to Eq. (3.13). Hence, the following
formulation is equivalent to (3.12):

Generic iterative perceptron updates (embedding strengths)

at discrete time step t

- determine the index ν(t) of the current training example

- compute the local potential Eν(t) = w(t) · ξν(t) Sν(t)
T

- update the embedding strength xν(t) according to

xν(t)(t+ 1) = xν(t)(t) + f(Eν(t)) (3.14)

(all other embedding strengths remain unchanged at time t).

Many perceptron algorithms can be formulated directly in the weights, cf.
(3.12), or in terms of the embedding strengths as in (3.14). While in principle
equivalent, we note that the number of variables used to represent the percep-
tron during training is N in the weight vector formulation and P if embedding
strengths are updated. Thus, the computational efficiency of training and the
corresponding storage needs will depend on the ratio P/N , in practice.

Note that the simple correspondence between (3.12) and (3.14) can be lost if
the structure of the actual updates is modified. Constraints of the form xµ ≥ 0
are imposed, for instance, in the AdaTron algorithm [AB89, BAK91] for the
perceptron of optimal stability, see Sec. 3.6. This prevents a straightforward
formulation of the training scheme as an iteration in weight space. Of course,
one can always construct the weight vector via relation (3.13) if needed.

3.3. THE ROSENBLATT PERCEPTRON 39

3.3.3 The Rosenblatt perceptron algorithm

In terms of the generic algorithm (3.12, 3.14), the Rosenblatt perceptron algo-
rithm is specified by

- tabula rasa initial conditions: w(0) = 0 or, equivalently, {xµ(0) = 0}Pµ=1

- deterministic, cyclic presentation of the examples in D according to (3.11)

- and the modulation

f(Eµ) = Θ [c− Eµ] =

0 if Eµ > c
1 if Eµ ≤ c

(3.15)

with the Heaviside function Θ[x] = 1 for x ≥ 0 and Θ[x] = 0 else.

In summary, the prescriptions (3.12) and (3.14) become:

Rosenblatt perceptron algorithm (3.16)

at discrete time step t

- determine the index ν(t) of the current example according to (3.11)

- compute the local potential Eν(t) = w(t) · ξν(t) Sν(t)
T

- update the weight vector according to

w(t+ 1) = w(t) +
1

N
Θ[c− Eν(t)]ξν(t) S

ν(t)
T (3.17)

or, equivalently, increment the corresponding embedding strength

xν(t)(t+ 1) = xν(t)(t) +Θ[c− Eν(t)]

(all other embedding strengths remain unchanged at time t)

(3.18)

The update (3.16) modifies w(t) only if the example input is misclassified
by the current weight vector or correctly classified with Eν(t) < c. In this case,
a Hebbian term is added. The quantity xν(t) remains unchanged or increases
by 1 in every update step (3.18). Consequently, for tabula rasa initialization,
the resulting embedding strengths are non-negative integers.

Frequently, the simple setting c = 0 is considered and the resulting scheme
is often called the (Rosenblatt) perceptron algorithm. The underlying principle
of adding a Hebbian term for misclassified examples is referred to as “learning
from mistakes”. It is the basis of several other training algorithms discussed in
forthcoming sections.

The (c = 0)-algorithm stops as soon as all examples in D are correctly
classified: the evaluation of the modulation function yields Θ(−Eµ) = 0 in all
forthcoming update steps. The algorithm is illustrated in terms of a simple
two-dimensional feature space and a data set D comprising six labeled inputs,
see Fig. 3.4. In this specific case, the perceptron classifies all feature vectors in

40 3. THE PERCEPTRON

t=0 t=1 t=2

t=3 t=4 t=5

t=6 —————————————————————–
t = 0 : w(0) = 0 all xµ = 0

t = 1 : w(1) = 1
2ξ

1 x1 → 1

t = 2 : w(2) = w(1) zero update
t = 3 : w(3) = w(2) + 1

2ξ
3 x3 → 1

t = 4 : w(4) = w(3) zero update
t = 5 : w(5) = w(4)− 1

2ξ
5 x5 → 1

t = 6 : w(6) = w(5) alg. terminates
—————————————————————–

Figure 3.4: Rosenblatt perceptron algorithm.
Illustration of the training scheme with c = 0 in (3.16) in a two-dimensional
feature space (N = 2). A set of six examples is presented sequentially. Empty
circles represent feature vectors labeled with ST = −1, filled circles mark data
from class ST = +1. Initial conditions correspond to w(0) = 0 (tabula rasa).
Only one epoch of training is considered with ν(t) = t = 1, 2, . . . , 6. At each time
step, ξt is marked by a shaded circle. The current weight vector is either updated
by adding a Hebbian term if example t is misclassified (time steps t = 1, 3, 5) or
it remains unchanged if the current classification is correct already (time steps
t = 2, 4, 6). We refer to the latter as zero updates. Actual non-zero updates
are given by the addition (St

T = +1) or subtraction (St
T = −1) of 1

N ξt which is
displayed as an arrow in the illustration. The resulting weight vector is shown
in the next time step. For the specific data set considered here, all examples
are correctly classified after one epoch already. In general, the data set has to
be presented several times before the Rosenblatt algorithm terminates.

3.3. THE ROSENBLATT PERCEPTRON 41

D correctly, and the algorithm stops already after one sweep through the data
set, i.e. one epoch of training.

We will show in Sec. 3.3.5 that the Rosenblatt algorithm (3.15) converges
in a finite number of steps and finds a weight vector that solves the percep-
tron storage problem (3.7,3.9), provided the given data set is indeed linearly
separable.

3.3.4 The perceptron algorithm as gradient descent
We have introduced the Rosenblatt algorithm more or less intuitively as a form of
iterative Hebbian learning. Alternatively, we can motivate it as the minimization
of the cost function

E(w) =

µ=1

eµ(w) =
1

N

P

µ=1

Θ [c−w · ξµSµ
T] (c−w · ξµSµ

T) , (3.19)

which is written as a sum over contributions eµ of the given examples in the data
set. The example specific term is zero if the data point is classified correctly
with w·ξµSµ

T > c and it contributes the linear costs (c−w·ξµSµ
T) > 0 otherwise.

Note that the objective function (3.19) is frequently referred to as the hinge loss,
see for instance [HTF01].

Strictly speaking, the function E is not differentiable wherever w ·ξµ = 0 for
one or several examples. In order to cope with this difficulty one can resort to
the consideration of the sub-derivative or sub-gradient method, see [Bot04] for
a more detailed discussion. From a practical point of view, we can ignore this
subtlety here and devise a gradient based minimization as outlined in Appendix
A.4 and Sec. 5.2.3 by setting

∇w eµ = − 1

N
Θ [c−w · ξµSµ

T] ξµSµ
T (3.20)

for a single example. Here ∇w denotes the gradient with respect to the weight
vector w ∈ RN . Hence the update (3.17) can be written as

w(t+ 1) = w(t)− ∇w eν(t)

w=w(t)

(3.21)

where the currently considered example is given by ν(t) according to (3.11). An
update step along the negative gradient tends to decrease eν(t) and, thus, the
total cost function E.

We will encounter a number of learning algorithms in quite diverse settings
which are guided by the gradient of an objective function with respect to the
entire data set or single example contributions as above, see Appendix A.4 for
a general discussion.

The Rosenblatt algorithm resembles the minimization of E(w) by stochas-
tic gradient descent (SGD), which is presented and discussed more generally in
Appendix 5.2.3 and in Chapter 5. In contrast to SGD, however, the original
prescription as suggested by Rosenblatt and discussed here presents examples

42 3. THE PERCEPTRON

in the deterministic sequential order (3.11). The formulation in terms of embed-
ding strengths has the structure of coordinate descent as discussed in Appendix
A.5.1: at every step, only one xµ is updated. However, its potential increment
(3.18) is not given by the derivative ∂/∂xµ of E in Eq. (3.19).5

Another important difference to the generic SGD is that, due to the specific
structure of the problem, it is not necessary to introduce and fine-tune a learning
rate in order to achieve convergence. In fact, one can show that for tabula rasa
initialization w(0) = 0, a constant learning rate η as in

w(t+ 1) = w(t)− η

N
∇w eν(t)

w=w(t)

= w(t) +
η

N
Θ[c− Eν(t)]ξν(t) S

ν(t)
T

would simply rescale the resulting embedding strengths and thus also the weight
vector by a factor η as compared to (3.21). This would affect neither the con-
vergence behavior nor the resulting classification scheme. Note, however, that
the influence of a time-dependent η(t) and its interplay with a potential nor-
malization of the weight vector is non-trivial, see for instance [BSS94].

While the interpretation as a gradient based method helps to relate the
Rosenblatt algorithm to other machine learning schemes, we will not make use
of it explicitly in the following section. For linearly separable data sets, conver-
gence can be shown explicitly without referring to gradient descent.

3.3.5 The Perceptron Convergence Theorem

The Perceptron Convergence Theorem is one of the most important, fundamen-
tal results in the field. The guaranteed convergence of the Rosenblatt perceptron
algorithm for linearly separable problems has played a key role for the popularity
of the perceptron framework:

Perceptron Convergence Theorem (PCT) (3.22)

For linearly separable data D = {ξµ, Sµ
T }

P

µ=1, the Rosenblatt perceptron

algorithm stops after a finite number of update steps (3.17) or (3.18) and
yields a weight vector w with w · ξµSµ

T ≥ c > 0 for all µ = 1, 2, . . . P.

In the following we outline the proof of convergence. We consider a linearly
separable D = {ξµ, Sµ

T }
P

µ=1, which implies that at least one solution w∗ of the
Perceptron Storage Problem (3.7,3.9) exists with

sign (w∗ ·ξµ) = SµT

P

µ=1
or, equivalently,

Eµ∗ = w∗ · ξµ SµT ≥ c > 0

P

µ=1

(3.23)
for some positive constant c.

5It is left to the reader to work out the derivative explicitly.

3.3. THE ROSENBLATT PERCEPTRON 43

We do not have to further specify w∗ here. In fact, for a given D there could
be many solutions of the form (3.23), but here it is sufficient to assume the
existence of at least one. We will furthermore denote its squared norm as

Q∗ ≡ w∗ ·w∗ = |w∗|2. (3.24)

Note that any pair of vectors w,w∗ ∈ RN satisfies

0 ≤ (w ·w∗)2

|w∗|2 |w|2 = cos2 ∠ {w,w∗} ≤ 1. (3.25)

As discussed above, the algorithm yields - after t time steps - a weight vector
of the form

w(t) =
1

N

P

µ=1

xµ(t) ξµSµ
T for w(0) = 0. (3.26)

In the Rosenblatt algorithm the quantity xµ(t) is an integer that counts how
often example µ has contributed a Hebbian term to the weights, cf. Sec. 3.3.3,
The total number of non-zero updates is, therefore, given by

M(t) =
P

µ=1

xµ(t). (3.27)

Now let us consider the projection R(t) = w(t) · w∗. Inserting (3.26) and ex-
ploiting the condition (3.23) we obtain the following lower bound:

R(t) =
1

N

P

µ=1

xµ(t) [w∗ · ξµSµ
T] =

1

N

P

µ=1

xµ(t) Eµ∗

≥c

≥ 1

N
cM(t). (3.28)

Similarly, we consider the squared norm Q(t) = w(t) ·w(t) of the trained weight
vector. At time step t with presentation of example ν(t) it changes as

Q(t+ 1) =

w(t) +

1

N
Θ

c− Eν(t)

ξν(t) S

ν(t)
T

2

(3.29)

= Q(t) +
2

N
Θ

c− Eν(t)

Eν(t) +

1

N2
Θ2

c− Eν(t)

 ξν(t)

2

In any finite data set D, one of the examples will have the largest norm. We
can therefore always identify the quantity

Γ ≡ 1

N
max
µ

|ξµ|2

P

µ=1
, (3.30)

where the scaling with dimension N is convenient in the following6. Next, we
observe that Θ2(x) = Θ(x) for all x. Furthermore we note that

6We could also consider the simpler, less general case of normalized inputs |ξµ|2 = ΓN .

44 3. THE PERCEPTRON

Θ[c− Eν(t)] = 0 and Eν(t) ≥ c in a zero learning step, while
Θ[c− Eν(t)] = 1 and Eν(t) < c in a non-zero learning step.

As a consequence, we can replace all Eν(t) by c in Eq. (3.29) to obtain the upper
bound

Q(t+ 1) ≤ Q(t) +
2

N
cΘ[c− Eν(t)] +

1

N
ΓΘ[c− Eν(t)] (3.31)

Here we exploit the fact that Q changes only in non-zero updates with Θ[. . .] = 1.
Taking into account the initial value Q(0) = 0, we can conclude that

Q(t) ≤ 1

N
(2 c + Γ) M(t), (3.32)

where M(t) is the number of non-zero changes of Q. In summary, we have ob-
tained the two bounds

R(t) ≥ 1

N
cM(t) and Q(t) ≤ 1

N
(2c+ Γ)M(t), (3.33)

respectively. Exploiting Eq. (3.25) we can write

1 ≥ (w(t) ·w∗)2

(|w(t)||w∗|)2 =
R2(t)

Q∗ Q(t)
≥

1
N2 c

2 M2(t)

Q∗ 1
N (2c+ Γ)M(t)

=
c2

Q∗ N (2c+ Γ)
M(t).

(3.34)
We conclude that

M(t) ≤ M∗ =
(2c+ Γ)N Q∗

c2
, (3.35)

where the right hand side involves only constants: N and Γ are obtained directly
from the given data set. The constants c and Q∗ characterize the assumed
solution w∗, which is - of course - unknown a priori. However, in any case, Eq.
(3.35) implies that the number of non-zero learning steps remains finite, if a
solution w∗ exists for the given D. In other words, after at most M∗ non-zero
learning steps, the perceptron classifies all examples correctly with Eµ ≥ c > 0.
The number of required training epochs is also upper-bounded by M∗, because
- as long as the algorithm does not stop - at least one non-zero step must occur
in every epoch.

The dependence of M∗ on the constant c deserves further attention: In the
limit c → 0, the upper bound appears to diverge (M∗ → ∞). However, if D
is linearly separable, solutions w∗ with Q∗ ∝ c2 can be found for small values
of c. This is due to the linear dependence of Eµ∗ on |w∗| =

√
Q∗, which we

already discussed in the context of Eq. (3.10). In the limit c → 0 with Q∗ ∝ c2

the upper bound becomes

lim
c→0

M∗ ≈ ΓN
Q∗

c2
with

Q∗

c2
= const. (3.36)

Hence, we can express the PCT (3.22) without referring to a specific value of c.

3.3. THE ROSENBLATT PERCEPTRON 45

3.3.6 A few remarks
The number of training steps

According to the PCT, the required number of training steps is finite for linearly
separable data. However, their actual number depends on the detailed proper-
ties of D and can be very large, see [Roj96] for a discussion of the computational
complexity of the Rosenblatt algorithm and further references.

More efficient alternatives to the simple Rosenblatt algorithm can be devised,
for instance based on Linear Programming methods [Fle00,PAH19] as discussed
in [Roj96].

Non-separable data

For the convergence proof, we had to assume the existence of a solution, i.e.
linear separability. The Perceptron Convergence Theorem does not provide
direct insight into the algorithm’s performance if D is not separable. We will
consider the problem of finding approximative solutions with minimum or low
number of errors in non-separable data in Sec. 4.1.

Existence of a solution

In practice, it turns out difficult to decide whether a given D is linearly separable
or not, cf. (Q2) in Sec. 3.2. If a solution is not found by the Rosenblatt algorithm
after a number of steps, this could imply that it simply should be run for more
steps or that, indeed, a solution does not exist.

A theorem borrowed from the theory of duality in optimization, see Ap-
pendix A.3.4 and [Fle00,PAH19], provides a surprisingly clear criterion for lin-
ear separablity, which is closely related to Farkas’ Lemma [Fle00]. It is known
as Gordan’s Theorem of the Alternative in the literature [BB00, Man69]. In a
notation familiar from the previous sections it reads:

Gordan’s Theorem of the Alternative (3.37)

For a given matrix χ ∈ RN×P , exactly one of the following
statements is true:

(1) a vector w ∈ RN exists with [χ⊤w]µ > 0 for all µ = 1, 2, . . . , P

or

(2) a non-zero vector y ∈ RP exists with yµ ≥ 0 for all µ and χy = 0.

If the matrix χ comprises the oriented input vectors of a given data set D,

χ =

ξ1S1

T , ξ2S2
T , . . . ξPSP

T

,

we can interpret w as the weight vector of a perceptron and statement (1)
corresponds to (homogeneous) linear separability of the data set.

46 3. THE PERCEPTRON

On the other hand, (2) states that a linear combination of the form

P

µ=1

yµ ξµ Sµ
T = 0 with {yµ ≥ 0}Pµ=1 and y ∕= 0

exists. This goes beyond the condition of linearly dependent columns ξµSµ
T of χ,

which would be relevant in the context of solving equations. The consideration of
inequalities requires the existence of at least one non-zero vector of non-negative
coefficients y resulting in a zero linear combination.

Observing that χ⊤ χy = 0 ⇔ χy = 0 we can re-formulate (2) also in terms of
the null-space (the space of eigenvectors y with eigenvalue zero) of the symmetric
and positive semi-definite matrix C = [χ⊤χ]/N ∈ RP×P . We will encounter and
make use of the matrix C frequently in later sections.

In practice, checking the validity of condition (2) in Gordan’s Theorem may
be quite involved: The computation of the null-space can be costly, already.
Finding non-negative coefficients y for zero linear combinations is also non-
trivial, in general.

Learning the unlearnable

In this context, several algorithms have been suggested that converge for both
separable and non-separable data sets. As one example, D. Nabutovsky and
E. Domany suggest such an iterative training procedure in [ND91]. For lin.
sep. problems, a consistent perceptron vector is found. However, unlike the
Rosenblatt algorithm, the algorithm terminates also in the presence of non-
separable data and - in this case - indicates that no solution exists. In [ND91],
references to other, similar concepts are provided and the suggested scheme is
compared with techniques based on Linear Programming.

3.4 The capacity of a hyperplane
The existence of successful training algorithms for lin. sep. data is certainly of
great value. The question remains how relevant linear separability is or, in other
words, how serious the restriction to linearly separable functions is.

Linear separability depends on details of the individual, given data set. How-
ever, surprisingly general qualitative and quantitative results can be obtained
which require only mild assumptions about the data.

3.4.1 The number of linearly separable dichotomies
In this section we address (Q3) from Sec. 3.2 and determine the number C(P,N)
of linearly separable binary class assignments or dichotomies7 of P feature vec-
tors in an N -dimensional input space. Quite surprisingly, this is possible under
rather mild conditions on the input data.

7“There are two kinds of people: Those who couch everything in dichotomies and those
who do not.” — Unknown

3.4. THE CAPACITY OF A HYPERPLANE 47

Figure 3.5: One-dimensional inputs ξ can be separated into two classes by
the origin in C(P, 1) = 2 ways, independent of P .

The derivation for general P and N has been published several times in the
literature [Win61,Cov65,MD89a] and was also reviewed in [HKP91]. Here we
follow the presentation in [MD89a] to a large extent. Interestingly, the result
is closely related to very early findings concerning high-dimensional geometry
obtained by the Swiss mathematician Ludwig Schläfli in the 19th century al-
ready [Sch01].

More recently, very similar results have been re-discovered from a different
point of view in the context of Deep Networks, see [Str19, PMB14, MPCB14].
They relate to more general theorems concerning Face-Count Formulas for
Partitions of Space by Hyperplanes, which are due to T. Zaslavsky [Zas75].
Specifically, counting the number of response regions in layered networks with
piecewise linear activation functions leads to very similar considerations and
results [PMB14].

Some results for small N or P

We first address straightforward cases involving low dimensions N and/or small
numbers P of feature vectors. The first, obvious result is that

C(1, N) = 2 for all N.

It corresponds to the fact that a single point can always be mapped to S = ±1
by a a hyperplane through the origin and setting the orientation corresponding
to the target label. Here we exclude feature vectors ξ = 0, which could always
be avoided by an over-all translation of the data set.

The second observation

C(P, 1) = 2 for all P,

reflects the insight that one-dimensional inputs ξ ∈ R can only be separated by
the origin in two ways: By setting S = sign[ξ] or by the inverted S = −sign[ξ],
see Fig. 3.5 for an illustration.

In N = 2 dimensions it is easy to see that for P = 2 typically all 2P

dichotomies can be realized, as displayed in Fig. 3.6 (panel a). However, we
have to exclude a special case: If the two input vectors are collinear with the
origin, it is impossible to separate them by a line representing a homogeneously
linearly separable function.

For P = 3 we find that C(3, 2) < 23, see Fig. 3.6 (panels b,c) panel, even for
generic data sets: In panel (b), of the eight possible dichotomies, the two cases
with S1 = S2 = S3 = +1 or −1 cannot be represented by a plane through the

48 3. THE PERCEPTRON

a) b) c) d)

Figure 3.6: Panel (a): Two two-dimensional feature vectors (large filled
circles) in general position, i.e. not collinear with the origin (small filled circle).
Here, four linearly separable dichotomies exist: either both inputs are assigned
to the same class S1 = S2 ∈ {−1,+1} or they are separated with S1 = −S2.
Panels (b,c): Three two-dimensional feature vectors in general position. Of
the 23=8 dichotomies only six are linearly separable, each one represented by
one of the three planes with two possible orientations. In panel (b) the two
dichotomies with S1 = S2 = S3 cannot be realized, in panel (c) the rightmost
point cannot be separated from the other two. Panel (d): As indicated by the
dotted line, two of the three feature vectors are collinear with the origin. As a
consequence only 4 different linearly separable functions can be found.

origin. Similarly, in panel (c) one of the data points cannot be separated from
the other two, which also excludes two dichotomies. This implies that

C(3, 2) = 6.

Again, the result is only valid if no subset of two data points falls onto a line
through the origin. In panel (d), a counterexample is displayed. Here, only four
distinct dichotomies can be realized by a lin. sep. function, as it is not possible
to separate the collinear points by a line through the origin. As a consequence
they can only be assigned to the same class, as for instance by the two decision
boundaries shown in the illustration.

Similar, explicit insights can still be achieved for three-dimensional data,
which is left to the reader as an exercise. Again, one has to exclude specific
configurations in which two or more feature vectors are aligned. Moreover,
subsets of three data points should not fall into a two-dimensional plane that
includes the origin.

General N and P

Our intuition – certainly that of the author – usually fails in higher dimensional
spaces, i.e. for N > 3. However, it is indeed possible to obtain C(P,N) for
general N and P under rather mild assumptions. Similar to the exclusion of
collinear input vectors in N = 2 and N = 3, we formulate the condition that
the data set should be in general position [Cov65]:

3.4. THE CAPACITY OF A HYPERPLANE 49

0
0

Figure 3.7: Two homogeneously linearly separable dichotomies DP=9
N=2 of the

same set of two-dimensional feature vectors. In both panels, all separating
planes in the grey-shaded areas would realize the same assignment of labels.

General position condition (3.38)

A set of vectors P =

ξµ ∈ RN

P

µ=1
is in general position, if every subset

{ξρ}Kρ=1 ⊂ P containing K ≤ N elements is linearly independent.

For P > N , obviously, subsets of more than N elements in N dimensions are
always linearly dependent. In sloppy terms, the general position conditions
requires that the vectors in P do not form more hyperplanes than necessary.

In a sense, the general position condition corresponds to the absence of
degeneracies in the data. Real world data, however, is frequently prone to
such degeneracies. Often, it is even assumed and exploited that nominally
high-dimensional feature vectors fall into lower-dimensional manifolds due to
correlations and interdependencies.

In the modelling and simulation of learning processes, e.g. when investigating
training algorithm performances, one often resorts to randomized feature vectors
of N independent components [HKP91]. The popular example of zero mean /
unit variance Gaussian random numbers, for instance, leads to data sets that
are in general position with probability one.

For the following argument we consider a fixed set of P input vectors ξ ∈ RN

in general position. A dichotomy DP
N of these feature vectors assigns a set of

binary labels:

DP
N : ξµ ∈ RN → Sµ ∈ {−1,+1} for µ = 1, 2, . . . P.

The aim is to work out how many of the in total 2P possible dichotomies cor-
respond to linearly separable functions. Their number will be referred to as
C(P,N).

As an illustration, Fig. 3.7 displays a set of P = 9 feature vectors in N = 2
dimensions. The set has been labeled in two different ways, both of which are
linearly separable, as shown in the left and right panel of the figure. All planes

50 3. THE PERCEPTRON

0
0

ξP+1 ξP+1

Figure 3.8: An additional feature vector ξP+1 is added to the data set of Fig.
3.7. Its label is either non-ambiguously determined by the linearly separable
function as in the left panel, or the label is ambiguous, SP+1 = +1 or −1, as
shown in the right panel.

through the origin that fall into the shaded region would separate the two classes
as represented by filled (S = +1) versus empty circles (S = −1).

Now we assume that an additional feature vector ξP+1 is added to the data
set, as displayed in Figure 3.8. We note that two essentially different situations
can occur: In the left panel of the figure, all perceptrons that separate the
already known P examples would assign ξP+1 to the same class, i.e. SP+1 = −1
in the illustration. The dichotomy is said to be non-ambiguous with respect to
the new data point.

On the contrary, in the right panel the response is ambiguous with respect to
the additional feature vector: Some separating planes correspond to SP+1 = −1,
others to SP+1 = +1. We will denote by8

Z(P,N) the number of ambiguous
E(P,N) the number of non-ambiguous

dichotomies DP

N w.r.t. SP+1.

We note immediately that the total number of linearly separable dichotomies is

C(P,N) = Z(P,N) + E(P,N)

since each labelling is either ambiguous or non-ambiguous with respect to SP+1.
Obviously, each non-ambiguous dichotomy DP

N contributes exactly one lin.
sep. labeling to C(P+1, N). However, each of the Z(P,N) ambiguous labellings
contributes two lin. sep. dichotomies in the enlarged data set with P +1 feature
vectors, as we have the choice between SP+1 = +1 and −1 while retaining
separability. Hence we have

C(P + 1, N) = E(P,N) + 2Z(P,N) = C(P,N) + Z(P,N). (3.39)

Unfortunately this is not yet a useful recursion because Z(P,N) is not known.

8Here the symbols E and Z are inspired by the German terms eindeutig and zweideutig.

3.4. THE CAPACITY OF A HYPERPLANE 51

ξP+1 ξP+1

HH

Figure 3.9: The projection of data into the auxiliary subspace H ⊥ ξP+1 is
either linearly separable in H (right panel, ambiguous case) or not separable as
in the non-ambiguous case (left panel), respectively.

However the following consideration shows that Z(P,N) can be related to
the number of lin. sep. dichotomies in N−1 dimensions. In Fig. 3.9 we introduce
the auxiliary (N−1)-dimensional subspace H, i.e. the hyperplane through the
origin which is orthogonal to ξP+1. In the left panel, H falls into the grey
shaded area of separating hyperplanes, while in the right panel it does not.

Next, we project the P feature vectors into the auxiliary space H as shown
in the figure. In situations exemplified by the left panel, the projections of the P
feature vectors into the (N − 1)-dim. auxiliary space are not linearly separable
in H. In the right panel however, examples with S = ±1 fall into opposite
half-spaces in H. In other words, their labels correspond to a linearly separable
dichotomy of the P examples in (N − 1) dimensions.

On can show that there is indeed a one-to-one correspondence between the
Z(P,N) ambiguous lin. sep. functions and all linearly separable dichotomies in
H. Assuming that there is nothing special about H, we conclude that Z(P,N) =
C(P,N − 1). Hence we obtain the recursion

C(P + 1, N) = C(P,N) + C(P,N − 1). (3.40)

The condition is, in fact, that the data points are in general position as defined
above in (3.38). If, for instance the added data point would fall onto a line with
another data point and the origin, clearly H could not be considered a generic
subspace. For data in general position, however, we can assume that H has the
same properties as any (N − 1)-dim. subspace would.

The number of linearly separable dichotomies

It is straightforward to show that the following expression satisfies the recursion
and matches the above given initial values C(P, 1) = 2 and C(1, N) = 2:

C(P,N) =

2P for P ≤ N

2
N−1

i=0

P − 1

i

for P > N,

(3.41)

52 3. THE PERCEPTRON

Figure 3.10: The fraction
Pls = C(P,N)/2P of linearly
separable functions versus α =
P/N for three different values
of N (5, 20, 100).

C
(P

,N
)/
2P

α = P/N

N=5

N=100

with the familiar bionomial coefficients

m
k

= m!

k!(m−k)! .
The expression in the second line of (3.41) would also reproduce 2P for

P < N , as

m
k

= 0 for k > m and 2

m−1
k=0

m
k

= 2m. The formal consideration

of the two cases in (3.41) is only provided for the sake of clarity.
The proof can be done by induction and exploits that

P

i

=

P − 1

i− 1

+

P − 1

i

for arbitrary i, P and

P

i

= 0 for i < 0.

Therefore, C(P + 1, N) according to Eq. (3.41) satisfies

2
N−1

i=0

P

i

= 2

N−1

i=0

P−1

i− 1

+ 2

N−1

i=0

P−1

i

= 2

N−2

i=0

P−1

i

C(P,N−1)

+2

N−1

i=0

P−1

i

C(P,N)

which corresponds to the recursion relation (3.40).
Instead of the numbers C(P,N) themselves, we can also consider the fraction

of linearly separable dichotomies

Pls(P,N) =
C(P,N)

2P
=

1 for P ≤ N

21−P
N−1

i=0

P − 1

i

for P > N,

(3.42)

This allows to compare and represent the results graphically for different N as
shown in Fig. 3.10. The fraction Pls can be interpreted as the probability for a
set of randomly assigned labels {Sµ = ±1}Pµ=1 to be linearly separable.

3.4.2 Discussion of the result
For the above arguments and derivation it is essential to assume that the data
set is in general position. Typically, violations of this condition will reduce the
number of linearly separable dichotomies. In this sense, the results given in Eqs.
(3.41) and (3.42) can be interpreted as an upper bound even in more realistic
settings.

3.4. THE CAPACITY OF A HYPERPLANE 53

Figure 3.10 shows the fraction of linearly separable dichotomies C(P,N)/2P

as a function of P/N . This scaling allows to conveniently display several curves
for selected values of N in one graph.

The most striking and - at first sight - counterintuitive feature of the result
(3.41) is that C(P,N) = 2P for P ≤ N . It implies that all possible dichotomies
are linearly separable, as long as the number of feature vectors does not exceed
their dimension N . We have explicitly confirmed the statement for N = 2 in
the discussion of Fig. 3.6 (panel a).

For P > N , the fraction of linearly separable dichotomies decreases and
approaches its limiting value Pls(α) → 0 for α → ∞. As exemplified in Fig. 3.10
for dimensions N = 5, 20, 100, the region with Psl ≈ 1 extends with increasing
N and at the same time the decrease of Pls with α becomes steeper. Moreover,
all curves intersect in α = P/N = 2. The behavior in the simultaneous limits

N → ∞, P → ∞ with finite α = P/N (3.43)

is given as

P∞
ls =

1 for α ≤ 2
0 for α > 2.

Hence, in high dimensions, linearly separability is guaranteed (with probability
one) up to P ≤ 2N, which motivates to define the so-called

storage capacity of the perceptron: αc = 2. (3.44)

In general, the storage capacities of more powerful network architectures are
non-trivial to obtain, see for instance [EB01,WRB93].

For all N and P in the perceptron we have obtained the even stronger result
that Pls = 1 exactly for α ≤ 1, i.e. up to P = N . The latter is often referred
to as the Vapnik-Chervonenkis (VC) dimension of the perceptron, see [HTF01]
for a discussion and further references.

At first sight, the storage capacity of the perceptron or other student systems
relates only to their ability to reproduce a given data set and implement the
corresponding labels. However, as we will see in the following, storage capacity
and VC-dimension play an important role with respect to the generalization
ability and learning of a rule from example data.

3.4.3 Time for a pizza or some cake

It is amusing to note that the counting of lin. sep. dichotomies is closely related
to a popular mathematical puzzle known as the lazy caterer’s problem: The max-
imum number of pieces obtained by K straight cuts through a two-dimensional
pizza (or a pancake, depending on cultural background) [Wet78,MD09] is given
by

c(K, 2) =

K

0

+

K

1

+

K

2

=

2 +K +K2

2
= 1, 2, 4, 7, 11, 16 . . . (3.45)

54 3. THE PERCEPTRON

⇒

Figure 3.11: The Pizza Connnection: K planar cuts through the center (•)
of an N -dim. sphere (left panel) correspond to K − 1 arbitrary straight cuts
through the (N − 1)-dim. surface of each flattened hemisphere (right panel).

The corresponding result for three-dimensional objects is known as the cake
number [Wei99,Str19], i.e. the maximum number of pieces obtained by K planar
cuts:

c(K, 3) =

K

0

+

K

1

+

K

2

+

K

3

=

6 + 5K +K3

6
= 1, 2, 4, 8, 15, 26 . . .

(3.46)
In fact, one can show that the recursion relation

c(K + 1, N) = c(K,N) + c(K,N − 1)

holds in complete analogy to Eq. (3.40), albeit with different initial values. See
also [Str19] for the proof of a similar result.

We can directly relate the C(P,N) with the generalized cake numbers c(K,N):
The left panel of Figure 3.11 displays a sphere in N = 3 dimension, which is cut
by four equatorial planes through the center. They correspond to four feature
vectors and divide the normalized weight space into regions representing 14 lin.
sep. dichotomies. Note that one of the planes (marked by the red circle) is
oriented such that the corresponding upper hemisphere is shown in top view. A
two-dimensional simplified representation of the situation is shown in the right
panel, which displays a schematic projection onto the selected equatorial plane.
Apparently, there is a 1:1 correspondence of K planar cuts through the cen-
ter of a spherical cake to K − 1 unrestricted cuts through a two-dimensional
pizza which represents one of the hemispheres. The same holds for the lower
hemisphere in the left panel. Quite generally, this yields the simple relation

C(P,N) = 2 c(P − 1, N − 1)

between the number of lin. sep. functions and the generalized cake numbers.

3.5. LEARNING A LINEARLY SEPARABLE RULE 55

3.5 Learning a linearly separable rule
Obviously it is not the ultimate goal of perceptron training to reproduce the
labels in a given data set, only. This could be done quite efficiently by simply
storing D in memory and look it up when needed.

In general, it is the aim of machine learning to extract information from
given data and formulate (parameterize) the acquired insight as a hypothesis,
which can be applied to novel data not contained in D in the working phase.

Addressing (Q4) from Sec. 3.2, we assume that an unknown, linearly sepa-
rable function or rule exists, which assigns any possible input vector ξ ∈ RN to
the binary output SR(ξ) = ±1, where the subscript R stands for “rule”.

Training of a perceptron from D = {ξµ, Sµ
T } should infer some information

about the unknown SR(ξ) as long as the training labels Sµ
T are correlated with

the correct Sµ
R = SR(ξ

µ). In the simplest and most clear-cut situation we have

Sµ
T = Sµ

R for all µ = 1, 2, . . . , P. (3.47)

Hence, we assume that the set of training data D = {ξµ, Sµ
R}

P

µ=1 comprises
perfectly reliable examples for the application of the rule. It does, for instance,
not contain mislabeled example data and is not corrupted by any form of noise
in the input or output channel.

We will use the notation Sµ
R or SR(ξ

µ) for labels which are given by a
rule, explicitly. Here, this indicates that the examples in D represent a linearly
separable function, indeed. Note that more general data sets D = {ξµ, Sµ

T }
P

µ=1

can also be linearly separable without direct correspondence of the Sµ
T to a

lin. sep. rule: a small set of examples for a non-separable function or examples
corrupted by noise can be very well linearly separable.

3.5.1 Student-teacher scenario
Even for data sets of reliable noise-free examples only, it is not a priori clear
that a perceptron is able to reproduce the labels in D correctly, since the target
might not be linearly separable.

To further simplify our considerations, we restrict ourselves to cases, in which
the rule is indeed given by a function of the form

SR(ξ) = sign (w∗ · ξ) (3.48)

for a particular weight vector w∗. In fact, all weight vectors λw∗ with λ > 0
would define the same rule and, therefore, we will assume |w∗| = 1 implicitly,
without loss of generality.

A perceptron with weights w∗ is always correct9. It is therefore referred to as
the teacher perceptron (or teacher, for short) and can be thought of as providing
the example data from which to learn. Likewise, the trained perceptron with
adaptive weights w will be termed the student.

9The characteristic trait of many teachers, at least in their self-perception.

56 3. THE PERCEPTRON

Figure 3.12: Generalization er-
ror of the perceptron in a stu-
dent/teacher scenario. For N -
dim. random input vectors gener-
ated according to an isotropic den-
sity, the probability of disagree-
ment between student vector w and
teacher w∗ is proportional to the
red shaded area, i.e. to the angle
∠(w,w∗).

w

w∗
∕=

∕=

The choice of a specific student weight vector corresponds to a particular
hypothesis, which is represented by the linearly separable function

Sw(ξ) = sign (w · ξ) for all ξ ∈ RN . (3.49)

Student-teacher scenarios have been used extensively to model machine
learning processes, aiming at a principled understanding of the relevant phe-
nomena. They conveniently allow to control the complexity of the target rule
vs. that of the trained system in model situations, thus enabling the systematic
study of a variety of setups.

In the following sections we will consider idealized situations, in which stu-
dent and teacher both represent linearly separable functions. Under this con-
dition, a plausible guideline for training the student from a set D = {ξµ, Sµ

R}
is to achieve perfect agreement with the unknown teacher in terms of the given
examples. However, the agreement should not only concern data in D as in the
storage problem; it should extend or generalize to novel data, ideally.

Frequently, the so-called generalization error serves a measure of success
of the learning process. In practical situations, it would correspond to the
performance of the student with respect to novel data, for instance in a test
set which was not used for training. In our idealized setup, we can revisit
the basic geometrical interpretation of linearly separable functions. Figure 3.12
displays a student-teacher pair of weight vectors. The illustration is, obviously,
two-dimensional. Note, however, that it can be interpreted as representing
the two-dimensional subspace spanned by N -dimensional vectors w,w∗, more
generally.

We assume that a test input ξ is generated according to an isotropic, un-
structured density anywhere in RN . The corresponding generalization error g,
i.e. the probability for a disagreement

sign(w · ξ) ∕= sign(w∗ · ξ)

between student and teacher is directly proportional to the area of the shaded
segments, i.e. to the angle ∠(w,w∗):

g =
1

π
arccos

w ·w∗

|w||w∗|

. (3.50)

3.5. LEARNING A LINEARLY SEPARABLE RULE 57

ξ

w ∈ RN

|w|=const.•

V (3)

Figure 3.13: Dual geometrical interpretation of linear separability. Illustra-
tion in terms of labeled input vectors ξ ∈ R3 and L2-normalized weight vectors
with |w| = const. on the surface of an N -dim. hypersphere.
Left: A single, labeled input ξ1 separates all weight vectors with S1

w = +1 from
those with S1

w = −1. Right: A set of P labeled input vectors (here: P = 3)
defines the (darker) region V(3) of all weight vectors w with correct response
Sw(ξµ) = Sµ

R for µ = 1, 2, 3. For clarity, the vectors ξµ are not shown.

Orthogonal student-teacher pairs would result in g = 1/2, which corresponds
to randomly guessing the output. Perfect agreement with g = 0 is achieved
for w w∗. The latter statement holds true independent of the statistical
properties of the test data, obviously.

3.5.2 Learning in version space

In the classical setup of supervised learning, the training data comprises the
only available information about the rule. If the target rule is known to be
linearly separable and for reliable noise-free example data, it appears natural to
require that the hypothesis is perfectly consistent with D.

But is this a promising training strategy? In other words, can we expect
to infer meaningful information about the unknown w∗ by “just” solving the
perceptron storage problem with respect to D?

In order to obtain an intuitive insight, we re-visit and extend the geometri-
cal interpretation of linear separability. Following the so-called dual geometric
interpretation of linear separability, see Fig. 3.13 (left panel), we can interpret
weight vectors w as points in an N -dim. space. Note that every vector ξ defines
a hyperplane through the origin of this space, which separates weight vectors
w ∈ RN with positive w · ξ and Sw(ξ) = +1 from those with negative scalar
product and Sw(ξ) = −1. Hence, given the correct target label SR(ξ), the plane
orthogonal to ξ separates correct from wrong students in N -dimensional weight
space.

Consequently, a set D of P labeled feature vectors defines a region or volume
of vectors w which reproduce Sw(ξµ) = SR(ξ

µ) for all µ = 1, 2, . . . , P , as

58 3. THE PERCEPTRON

V(3)

= V(4)

ξ1

ξ2

ξ3

ξ4

ξ1

ξ2

ξ3

ξ4

ξ5

Figure 3.14: Illustration of perceptron learning in version space.
Left: The hyperplane associated with the additional example ξ4 does not in-
tersect the version space V(3). Consequently, all weight vectors in V(3) already
classify ξ4 correctly and V(4) = V(3). Right: The hyperplane associated with
ξ5 cuts through V(4) and, consequently, V(5) corresponds to either the small
triangular region (green) or the remaining dark area, depending on the actual
target S5

R.

illustrated in Fig. 3.13 (right panel).
The set of all perceptron weight vectors which are consistent with the P

examples in D, i.e. which give Sµ
w = Sµ

R for all µ = 1, 2, . . . , P , is termed version
space and can be defined as

V =

w ∈RN , w2=1

 sign(w · ξµ) = Sµ
R for all {ξµ, Sµ

R} ∈ D

. (3.51)

In the following, we will use the notation V(P), if we want to refer to the number
of examples in D explicitly.

In the context of the previous section, C(P,N) in Eq. (3.41) can be inter-
preted as the number of different version spaces that can be constructed for a
set of P input vectors in N -dimensional space by assigning linearly separable
target labels Sµ = ±1.

It is important to note that defining V as a set of normalized vectors with
w2 = 1 is convenient but not essential. Obviously, the normalization is irrelevant
with respect to the conditions sign(w · ξµ) = Sµ

R and could be replaced by any
other constant norm or even be omitted.

The version space is non-empty, V ∕= ∅, if and only if D is linearly separable:
If a (normalized) teacher vector w∗ defines the linearly separable rule repre-
sented by the examples in D, then w∗ ∈ V, necessarily. In words: at least the
teacher vector itself must be inside version space. However, in absence of any
information beyond the data set D, the unknown w∗ could be located anywhere
in V with equal likelihood.

The term learning in version space refers to the idea of admitting only hy-
potheses which are perfectly consistent with the example data. Let us assume

3.5. LEARNING A LINEARLY SEPARABLE RULE 59

that, given a set D of P reliable examples for a linearly separable rule, we have
identified some vector w ∈ V. According to the Perceptron Convergence The-
orem (3.22) this is always possible, e.g. by means of the Rosenblatt perceptron
algorithm10. In our low-dimensional illustration, Fig. 3.13 (right panel), this
means that we can always place a student vector w somewhere in the darker
region representing V(3) for P = 3 training examples.

Now, consider a fourth labeled example {ξ4, S4
R} as displayed in Fig. 3.14

(left panel). The hyperplane associated with ξ4 does not intersect the version
space V(3). Consequently all student vectors w ∈ V(3) fall into the same half-
space with respect to the new example and yield the same perceptron output
sign(w · ξ4).

This implies in turn that, if the extended data set {ξµ, Sµ
R}

4

µ=1 is still linearly
separable, only one value of the target label S4

R is possible, which must be
S4
R = sign(w · ξ4) for w ∈ V(3). Consequently we have that V(4) = V(3); the

version space with respect to the extended data set remains the same as for the
previously known P = 3 examples. Hence, our strategy of learning in version
space does not require modifying the hypothesis or selecting a new student
vector w to parameterize it. In this sense, the input/output pair {ξ4, S4

R} is
un-informative in the given setting.

The situation is different in the case illustrated in the right panel of Fig.
3.14. Here, the data set is amended by {ξ5, S5

R} with the plane orthogonal to
ξ5 cutting through V(4) = V(3). Elements of V(4) on one side of the hyperplane
correspond to the perceptron response Sw(ξ5) = +1, while the others yield
Sw(ξ5) = −1.

Depending on the actual target S5
R of the additional example, the version

space V(5) corresponds to either the green area or the remaining lighter region
in the illustration. In any case, the extended data set {ξµ, Sµ

R}
5

µ=1 is linearly
separable and the new version space V(5) of consistent weight vectors is bound
to be smaller than the previous V(4) = V(3). The volume of consistent weight
vectors w shrinks due to the information associated with the new example data.

As we add more examples to the data set, the corresponding version space
can only remain the same or decrease in size. Indeed, one can show that V will
shrink to a point with P/N → ∞ under the rather mild condition of general
position discussed in the previous section.

Together with the fact that the teacher w∗ ∈ V(P) for any P , we can con-
clude that learning from version space will enforce w → w∗ with increasing
training set size. More precisely, we conclude that the angle ∠(w,w∗) → 0
for unnormalized vectors w,w∗. Hence, we can expect that learning in version
space yields hypotheses which agree with the unknown rule to a large extent,
provided the data set contains many examples. In the sense of the above dis-
cussed generalization error (3.50), it will achieve perfect generalization g → 0
for P → ∞.

10. . . with subsequent normalization in order to match the definition (3.51) precisely.

60 3. THE PERCEPTRON

Figure 3.15: The generalization
error g vs. α = P/N as ob-
tained from the number of ambigu-
ous / non-ambiguous linearly sep-
arable functions, cf. Eq. 3.52. The
curves correspond to N = 5, 20, 100
and to the limit N → ∞, respec-
tively (from left to right).

g

α = P/N

3.5.3 Generalization begins where storage ends

The above, elementary and illustrative considerations do not provide more con-
crete mathematical relations which, for instance, quantify the generalization
error as a function of the training set size P .

However, we can re-visit and exploit the result of Section 3.4, where we
counted the number of linearly separable functions of P feature vectors in N
dimensions under quite general assumptions [Win61,Cov65,MD89a].

Assume that the training process has exploited P examples for a linearly
separable rule and that we have identified a student weight vector in V(P) which
corresponds to one of the C(P,N) linearly separable dichotomies of the data.

Implicitly, we assume that the true rule represents any of the C(P,N)
linearly separable functions with equal probability. Alternative approaches,
e.g. from the statistical physics perspective, weight every dichotomy with the
volume of the associated version space. We refrain from a detailed discus-
sion of this subtlety and refer the reader to the more specialized literature
[HKP91,EB01,WRB93].

Now assume that we present a novel input vector ξtest with target label Stest

to the student. In complete analogy to the considerations illustrated in Fig.
3.14, the version space could be ambiguous or non-ambiguous with respect to
the perceptron output Stest

w . In the latter case we know that any w ∈ V(P) will
provide the correct response. If the version space is ambiguous with respect to
ξtest, a fraction of the weight vectors in V(P) will be correct while the remaining
ones would predict an incorrect label. Therefore, in absence of more detailed
knowledge, we expect that the response of a random w ∈ V(P) will be incorrect
with probability 1/2.

As a consequence, the generalization error g is proportional to the fraction
of ambiguous dichotomies and we obtain

g =
1

2

Z(P,N)

C(P,N)
=

1

2

C(P,N−1)

C(P,N)
(3.52)

with C(P,N) from Eq. (3.41). The result is displayed in Fig. 3.15 as a function of
the scaled number of examples α = P/N . The curves represent input dimensions
N = 5, 20, 100 and the limiting case N → ∞, cf. Eq. (3.43).

3.5. LEARNING A LINEARLY SEPARABLE RULE 61

++

+−

−+

−−

+−
w∗

w

Figure 3.16: Linear separability for P < N .
Left panel: Version space corresponding to two feature vectors in N = 3
dimensions with all (four) possible combinations of labels ±1. Right panel:
Assume that, as an example, the region marked +− corresponds to the set of
correct (normalized) weight vectors. The version space is large enough to allow
for significant disagreement between student w and teacher vector w∗. Even
g = 1 is possible for extreme settings with w = −w∗.

For arbitrary N and P we find that g = 1/2 as long as P ≤ N. For larger
N , the region of g = 1/2 extends, up to α = αc = 2 in the limit (3.43). This
finding indicates that for relatively small data sets, the perceptron output is no
better than unbiased random guessing by, for instance, flipping a coin!

Hence, we learn from the above counting argument that storage without
generalization is possible for small P/N . Figure 3.16 illustrates the situation in
N = 3 dimensions. The version space for P < N allows to place the student
vector very far away from the (unknown) teacher vector in V(P) without causing
disagreement on the training data. Even total misalignment with w = −w∗ is
possible in an extreme setting.

The result (3.52) indicates that for a randomly selected student inside the
version space of a randomly selected lin. sep. dichotomy, storage without learning
the rule can be observed up to the Vapnik-Chervonenkis-dimension P = N . For
large N → ∞ the region extends to the storage capacity, i.e. to P = 2N .

On the positive side, we also see that for data set sizes which exceed the
storage capacity, it is inevitable for the perceptron to perform better than ran-
dom. Learning in version space is guaranteed to yield non-trivial generalization
as soon as the number of examples exceeds the storage capacity (or the VC-
dimension for finite N,P).

These findings confirm the intuition that learning and generalization is not
possible if the hypothesis space is too flexible. A very complex student system
can implement large sets of example data without inferring useful information
about the underlying rule.

62 3. THE PERCEPTRON

Asymptotic behavior for N → ∞

For large N → ∞ with P/N = α one can show that the asymptotic form of Eq.
(3.52) reads [Cov65]

g(α) =

1/2 for α ≤ 2

1

2

1

α− 1
for α > 2.

(3.53)

As an alternative to the counting argument, methods borrowed from statistical
physics have been applied to compute the typical version space volume in high
dimensions (N → ∞) and yield the same basic dependence, i.e.

g ∝ α−1 for α → ∞

for various training algorithms in the presence of noise-free data, see for instance
[EB01,WRB93,BSS94,Opp94].

However, the statistical physics based analysis and similar considerations
also show that learning in version space typically performs better than random
even for small training sets. It turns out beneficial to select specific students
in version space. Even simple algorithms like the Rosenblatt scheme typically
yield g(α) < 1/2 already for small α. In the following sections we will consider,
more specifically, the perceptron of optimal stability which achieves near optimal
expected performance.

3.5.4 Optimal generalization
In the student-teacher setup discussed above, we only know that the teacher
w∗ is located somewhere in V. In absence of additional knowledge it could be
anywhere in the version space with equal probability.

Learning in version space places the student w also somewhere in V. Its
generalization error g is, under very general circumstances, a decreasing func-
tion of the angle ∠(w,w∗), which itself is a decreasing function of the Euclidean
distance |w−w∗| for normalized weight vectors w,w∗, see Fig. 3.12. As a con-
sequence, the smallest expectation value of g over all possible positions w∗ ∈ V
would be achieved by placing the student vector in the center of mass wcm of
the version space

wcm =

V
w dNw. (3.54)

By definition, it has the smallest average (angular) distance from all other points
in the set. Note that the center of mass wcm of the normalized vectors in V
itself is not normalized, but realizes the same classification as wcm/|wcm|.

In principle, the definition (3.54) immediately suggests how to determine
wcm for a given lin. sep. data set D: We would have to determine many, random
elements w(i) ∈ V independently and compute the simple empirical estimate
[Wat93]

w(est)
cm =

1

M

M

i=1

w(i). (3.55)

3.6. THE PERCEPTRON OF OPTIMAL STABILITY 63

In practice, sampling the version space with uniform density is a non-trivial
task. The theoretical background and practical strategies for how to achieve
the optimal generalization ability when learning a linearly separable rule are
discussed in e.g. [Wat93,OH91,Ruj97].

3.6 The perceptron of optimal stability

Here we approach the question (Q5) of Sec. 3.2 of how to choose a good or near
optimal weight vector in version space from a different perspective. We avoid
the explicit computation of the center of mass of V and consider a well-defined
problem of quadratic optimization instead.

3.6.1 The stability criterion

The so-called stability of the perceptron has been established as a meaningful
optimality criterion. We first consider the stability of a particular example,
which is defined as

κµ =
Eµ

|w| =
w · ξµ Sµ

T

|w| . (3.56)

Due to the linearity of Eµ in w, cf. Eq. (3.8), the quantity κµ is invariant under
a rescaling of the form w → λw (λ > 0). In terms of the geometric interpreta-
tion of linear separability, the scalar product of ξµSµ

T and w/|w| measures the
distance of the input vector from the separating hyperplane, see Fig. 3.17. More
precisely κµ is an oriented distance: For κµ > 0, the input vector is classified
correctly by the perceptron, while for κµ < 0 we have sign(w · ξµ) = −Sµ

T and
the input is located on the wrong side of the plane.

The stability (its absolute value) quantifies how robust the perceptron re-
sponse would be against small variations of ξµ. Examples with a large distance
from the hyperplane will hardly be taken to the opposite side by noise in the
input channel.

We define the stability of the perceptron as the smallest of all κµ in D:

κ(w) = min {κµ}Pµ=1 . (3.57)

Note that if the perceptron does not separate the classes correctly, κ(w) < 0
corresponds to the negative κµ with the largest absolute value. Positive stability
κ(w) > 0 indicates that w is a solution of the PSP and separates the classes
correctly in D. In this case, κ(w) corresponds to the smallest distance of any
example from the decision boundary. It quantifies the size of the gap between
the two classes or, in other words, the classification margin of the perceptron.

In a linear separable problem it appears natural to select the perceptron
weights which maximize κ(w). In principle, the concept of stability extends to
negative κµ according to Eq. (3.56). Therefore, we can also define the perceptron
of optimal stability without requiring linear separability of the data set D =
{ξµ, Sµ

T } with more general targets ST (ξ
µ) = ±1.

64 3. THE PERCEPTRON

κ

κµ

ξµ

wmax

κ

Figure 3.17: Stability of the perceptron. Left: The stability κµ, defined in
Eq. (3.56), corresponds to the oriented distance of ξµ from the plane orthogonal
to w. The stability of the perceptron κ(w) is defined as the smallest κµ in the
set of examples, i.e. κ(w) = minµ{κµ}. Here, all inputs are classified correctly
with κµ > 0. Right: Restricting the student hypotheses to weight vectors with
κ(w) > κ for a given data set, selects weight vectors w in the center region of
the version space. The largest possible value of κ singles out the perceptron of
optimal stability wmax.

We define the perceptron of optimal stability (not very precisely termed the
optimal perceptron, occasionally) as the target of the following problem:

Perceptron of optimal stability (3.58)

For a given data set D = {ξµ, Sµ
T }

P

µ=1, find the vector wmax ∈ RN

with wmax = argmax

w ∈ RN κ(w) for κ(w) = min

κµ =

w·ξµSµ
T

|w|

P

µ=1
.

For linearly separable data, the search for w could be limited to the version
space V, formally. However, this restriction is non-trivial to realize [Ruj97] and
would not constitute an advantage in practice. Moreover, for more general data
sets of unknown separability, the version space might not even exist (V = ∅) and
κ(wmax) < 0. We will discuss the usefulness of a corresponding solution wmax

with negative stability κmax < 0 later and focus on linearly separable problems
in the following.

The perceptron of optimal stability wmax does not exactly coincide with
wcm, cf. Sec. 3.5.4, in general. The “center” as defined by the “maximum
possible distance from all boundaries” is identical with the center of mass only
if V has a regular, symmetric shape. However, one can expect that wmax is in
general quite close to the true center of mass and could serve as an approximative
realization.

3.6. THE PERCEPTRON OF OPTIMAL STABILITY 65

As a consequence, the perceptron of optimal stability should display favor-
able (near optimal) generalization behavior when trained from a given reliable,
lin. sep. data set. In fact, the difference appears marginal from a practical
perspective. For a theoretical comparison of optimal stability and optimal gen-
eralization in the perceptron see [Wat93].

3.6.2 The MinOver algorithm
An intuitive algorithm that can be shown to achieve optimal stability for a
given lin. sep. data set D has been suggested in [KM87]. The so-called MinOver
algorithm performs Hebbian updates for the currently least stable example in
D. We assume here tabula rasa initialization, i.e. w(0) = 0, but more general
initial states could be considered.

The prescription always aims at improving the least stable example. Note
that for a given weight vector w(t), the minimal local potential coincides with
minimum stability since κµ(t) = Eµ(t)/|w(t)|.

The MinOver update is defined as follows:

MinOver algorithm

at discrete time step t with current w(t)
- compute the local potentials Eµ(t) = w(t) · ξµ Sµ

T for all examples in D
- determine the index µ of the training example with minimal overlap,

i.e. with the currently lowest local potential: Eµ = min {Eµ(t) }Pµ=1

- update the weight vector according to

w(t+ 1) = w(t) +
1

N
ξµ Sµ

T (3.59)

or, equivalently, increment the corresponding embedding strength

xµ(t+ 1) = xµ(t) + 1.

(3.60)

A few remarks:
• According to the original presentation of the algorithm [KM87], the Heb-

bian update is only performed if the currently smallest local potential also
satisfies Eν(t) ≤ c for a given c > 0. This is reminiscent of learning from
mistakes as in the Rosenblatt algorithm (3.3.3). However, as pointed out
in [KM87], optimal stability is only achieved in the limit c → ∞, which is
equivalent to (3.59).

• In the above formulation (3.59), MinOver updates the weights (or embed-
ding strengths) even if all examples in D are classified correctly already.
As the algorithm keeps performing non-zero Hebbian updates, the tempo-
ral change of the weight vector w(t) itself does not constitute a reasonable

66 3. THE PERCEPTRON

stopping criterion. Instead, one of the following quantities could be con-
sidered:

- the angular change ∠

w(t),w(t+T)

=

1

π
arccos

w(t) ·w(t+T)

|w(t)||w(t+T)|

or the argument of the arccos, for simplicity.

- the total change of stabilities
P

µ=1

κµ(t)− κµ(t+T)

2
,

for example. For these and similar criteria, reasonably large numbers of
training steps T should be performed, e.g. with T ∝ P , in order to allow
for noticeable differences. In both criteria, changes of only the norm |w(t)|
are disregarded because they do not affect the classification or its stability.

• From the definition of the MinOver algorithm (3.59) we see that it can
only yield non-negative, integer embedding strengths when the initializa-
tion is tabula rasa. This feature of wmax will be encountered again in
the following section, together with several other properties of optimal
stability.

• As proven in [KM87], the MinOver algorithm converges and yields the per-
ceptron weights of optimal stability, if D is linearly separable. The proof
of convergence is similar in spirit to that of the Perceptron Convergence
Theorem (3.22). We refrain from reproducing it here. Instead, we show
only that the perceptron of optimal stability can always be written in the
form

wmax =
1

N

P

µ=1

xµ
max ξ

µ Sµ
T with embedding strengths {xµ

max ∈ R}Pµ=1 .

(3.61)

The existence of embedding strengths xmax will be recovered en passant in the
next section. However, it is instructive to prove the statement explicitly here.
To this end, we consider two perceptron weight vectors: the first one is assumed
to be given as a linear combination of the familiar form

w1 =

P

µ=1

xµ
1ξ

µ Sµ
T with embedding strengths {xµ

1}
P
µ=1 , (3.62)

while for the second weight vector we assume that

w2 = w1 + δ with |δ| > 0 and δ · ξµ = 0 for all µ = 1, 2, . . . , P. (3.63)

Hence, w2 cannot be written in terms of embedding strengths as it contains
contributions which are orthogonal to all input vectors in D.

If we consider the local potentials with respect to w2, we observe that

Eµ
2 = w2 · ξµSµ

T = w1 · ξµSµ
T + δ · ξµSµ

T
=0

= Eµ
1 . (3.64)

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 67

On the other hand we have

|w2|2 = |w1 + δ|2 = |w1|2 + 2 w1 · δ
=0

+ |δ|2
>0

⇒ |w2| > |w1|, (3.65)

where the mixed term vanishes because w1 is a linear combination of the ξµ⊥δ.
As a consequence, we observe that

κµ
2 =

Eµ
2

|w2|
=

Eµ
1

|w2|
<

Eµ
1

|w1|
= κµ

1 for all µ, and therefore κ2 < κ1. (3.66)

We conclude that any contribution orthogonal to all ξµ inevitably reduces the
stability of a given weight vector. This implies that maximum stability is in-
deed achieved by weights of the form (3.61). The result also implies that the
framework of iterative Hebbian learning is sufficient to find the solution.

Note that a non-zero δ in Eq. (3.63) cannot exist for P > N , in general.
Obviously, if span

{ξµ}Pµ=1

= RN , any N -dimensional vector including wmax

can be written as a linear combination. In this case, Eq. (3.61) is trivially true.
Our simple consideration does not yield restrictions on the possible values

that the embedding strengths can assume. However, the proven convergence
of the MinOver algorithm implies that the perceptron of optimal stability can
always be written in terms of non-negative xµmax ≥ 0. We will recover this result
more formally in the next section.

3.7 Optimal stability by quadratic optimization

Here we will exploit the fact that optimal stability can be formulated as a prob-
lem of constrained quadratic optimization. Consequently, a wealth of theoret-
ical results and techniques from optimization theory becomes available [Fle00,
PAH19]. They provide deeper insight into the structure of the problem and
allow for the identification of efficient training algorithms, as we will exemplify
in terms of the so-called AdaTron algorithm [AB89,BAK91] Before deriving and
discussing this training scheme we re-visit another closely related, prototypical
training scheme from the early days of neural network models: B. Widrow and
M.E. Hoff’s Adaptive Linear Neuron or Adaline [WH60,WL90].

3.7.1 Optimal stability reformulated

For a given lin. sep. D = {ξµ, Sµ
T }

P

µ=1, the perceptron of optimal stability
corresponds to the solution of the following problem:

maximize
w ∈ RN κ(w) where κ(w) = min

κµ =

Eµ

|w| =
w⊤ξµSµ

T

|w|

P

µ=1

(3.67)

68 3. THE PERCEPTRON

which is just a more compact version of (3.58).
Obviously, the stability κ can be made larger by increasing the minimal Eµ

for constant norm |w|. Analogously, κ increases with decreasing norm |w| if all
local potentials obey the constraint Eµ ≥ c > 0. As discussed previously, the
actual choice of the constant c is irrelevant because Eµ is linear in w and we can
set c = 1 without loss of generality. This allows us to re-formulate the problem
as follows:

minimize
w ∈ RN

N

2
w2 subject to inequality constraints {Eµ ≥ 1}Pµ=1 . (3.68)

Hence, we have rewritten the problem of maximal stability as the optimization
of the quadratic cost function Nw2/2 under linear inequality constraints of
the form Eµ = w⊤ξµSµ

T ≥ 1. The solution wmax then displays the (optimal)
stability κmax = 1

|wmax|. Note that the pre-factor N/2 in (3.68) is irrelevant

for the definition of the problem but is kept for convenience and consistency of
notation.

3.7.2 The Adaptive Linear Neuron - Adaline

The problem of optimal stability in the formulation (3.68) involves a system of
inequalities. Before we address its solution in the following sections, we resort
to the more familiar case of constraints given by equations, i.e. we consider the
simpler optimization problem

minimize
w ∈ RN

N

2
w2 subject to constraints {Eµ = 1}Pµ=1 . (3.69)

This, in fact, has the form of a standard optimization problem with non-linear
(here: quadratic) cost function and a set of (here: linear) constraints. A brief
discussion of this type of problem is given in Appendix A.3.1.

Historically, the problem (3.69) relates to the the so-called Adaptive Linear
Neuron or Adaline model which was introduced by B. Widrow and M.E. Hoff in
1960 [WH60]. Like the Rosenblatt Perceptron, it constitutes one of the earliest
artificial neural network models and truly groundbreaking work in the area of
machine learning. A series of very instructive and entertaining videos about B.
Widrow’s pioneering work is available at [Wid12].

Widrow realized Adaline systems in hardware as “resistors with memory”
and introduced the term Memistor [Wid60].11 The concept was also extended
to layered Madaline (Many Adaline) networks consisting of several linear units
which were combined in a majority vote for classification [WL90,Wid12].

For our purposes, the Adaline can be interpreted as a single layer perceptron
which differs from Rosenblatt’s model only in terms of the training procedure.

11Not to be confused with the more recent concept of Memristor elements [Chu71].

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 69

The Adaline framework essentially treats the problem of binary classification as
a linear regression with subsequent thresholding of the continuous w · ξµ.

We will take a rather formal perspective based on the theory of Lagrange
multipliers [Fle00, PAH19] as outlined in Appendix A.3.1. The P linear con-
straints of the form Eµ = w⊤ξµSµ

T = 1 can be incorporated in the correspond-
ing Lagrange function

L

w, {λµ}Pµ=1

=

N

2
w2 −

P

µ=1

λµ

w⊤ξµSµ

T − 1

. (3.70)

With the gradient ∇w = (∂/∂w1, ∂/∂w2, ..., ∂/∂wN)⊤ in weight space we
obtain ∇wL = Nw−

µ λ

µξµSµ
T . Furthermore, ∂

∂λν

µ λ

µ(Eµ−1)

= (Eν−1).

Hence, the first order stationarity conditions for a solution w∗, {λ∗µ} of problem
(3.69) read

∇wL|∗ = 0 ⇒ w∗ =
1

N

P

µ=1

λ∗µ ξµSµ
T (3.71)

and
∂L
λµ

∗
= 0 ⇒ E∗µ = w∗⊤ξµSµ

T = 1 for all µ (3.72)

where the shorthand (. . .)|∗ stands for the evaluation of (. . .) in w = w∗ and
λµ =λ∗µ for all µ. Note that sufficient (second oder) conditions for a solution
of the problem are non-trivial to work out.

The second condition (3.72) merely reproduces the original equality con-
straints, which have to be satisfied by any candidate solution, obviously. The
first, more interesting stationarity condition (3.71) implies that the formally in-
troduced Lagrange parameters can be identified as the embedding strengths xµ

and can be renamed accordingly. Hence, we can eliminate the weights from L
and obtain

L

{xµ}Pµ=1

=

1

2N

µ,ν

xµSµ
T ξ

µ⊤ξνSν
Tx

ν−

µ

xµ

1

N

ν

xνSν
T ξ

ν

⊤

ξµSµ
T+

µ

xµ

= − 1

2N

P

ν,µ=1

xµSµ
T ξ

µ⊤ ξνSν
Tx

ν +

P

µ=1

xµ. (3.73)

It turns out useful to resort to a compact notation which again exploits that
the weights are of the form w = 1

N

µ x

µξµSµ
T . We introduce the symmetric

correlation matrix

C = C⊤ ∈ RP×P with elements Cµν =
1

N
Sµ
TS

ν
T ξµ⊤ξν (3.74)

and define the P -dimensional vectors x = (x1, x2, ...xP)⊤, E = (E1, E2, ...EP)⊤

as well as the formal 1 = (1, 1, ..., 1)⊤ ∈ RP , yielding, e.g., x⊤1 =

µ x
µ.

70 3. THE PERCEPTRON

In addition, we use the notation a > b, which is popular in the optimization
related literature and indicates that aµ > bµ for all µ = 1, 2,P . Analogous
notations are employed for component-wise relations “<”, “≥” and “≤”.

In the convenient matrix-vector notation, we have furthermore

Eν =
1

N

P

µ=1

xµ Sµ
TS

ν
T ξµ⊤ξν

NCµν

= [Cx]ν i.e E = Cx (3.75)

w2 =
1

N2

µ,ν

xµxν

Sµ
TS

ν
T ξ

µ⊤ξν =
1

N
x⊤C x =

1

N
x⊤ E. (3.76)

In this notation, the Lagrange function (3.73) becomes L(x) = −1/2 x⊤ C x +
x⊤1, which has to be maximized (!) with respect to x, see the discussion of
the Wolfe Dual in [Fle00, PAH19] and Appendix A.3.4. Consequently we can
re-formulate (3.69) as the following unconstrained problem:

maximize
x ∈ RP f(x) = − 1

2
x⊤Cx + x⊤1. (3.77)

Compared to (3.69), the cost function appears slightly more complicated. In
turn, however, the constraints are eliminated. While completely equivalent with
(3.69), the re-written problem is given in terms of the embedding strengths
x ∈ IRP only.

Parallel Adaline algorithm

In absence of constraints, it is straightforward to maximize f(x) and we could
employ a variety of methods, in practice. For instance, we can resort to simple
gradient ascent, cf. Appendix A.4, with tabula rasa initialization x(0) = 0. We
can also identify an equivalent update in terms of weights with initial w(0) = 0

by exploiting the relation w(t) = 1
N

P
µ=1 x

µ(t) ξµSµ
T :

Adaline algorithm, parallel updates

x(t+ 1) = x(t) + η∇xf = x(t) + η

1− E(t)

(3.78)

or w(t+ 1) = w(t) +

η

N

P

µ=1

1− Eµ(t)

ξµSµ

T

, (3.79)

where Eµ(t) = [Cx(t)]
µ
= w(t)⊤ξµSµ

T . The learning rate η controls the magni-
tude of the update steps.

This version of the Adaline algorithm corresponds to standard, so-called
batch gradient descent in the space of embedding strengths x. Hence, η can
be finite but has to be small enough enough to ensure convergence. The pre-
cise condition depends on the mathematical properties of the extremum, see
Appendix A.4 for a general discussion.

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 71

Sequential Adaline algorithm

As an important alternative to the above batch or parallel update, sequential
gradient-based methods can be devised, which present the example data repeat-
edly in, for instance, deterministic order and update a single embedding strength
in each step. Intuitively, we would want to increase an embedding strength of
any example with Eµ < 1 and we expect the magnitude of the updated xµ to
increase with (1− Eµ).

The sequential Adaline algorithm corresponds to coordinate ascent in terms
of x, a variant of gradient based optimization which is briefly discussed in Ap-
pendix A.5.1:

Adaline algorithm, sequential updates (repeated presentation of D)
– at time step t, present example µ(t) = 1, 2, 3, ..., P, 1, 2, 3, ...
– update (only) the corresponding embedding strength

xµ(t)(t+ 1) = xµ(t) + η

1− Eµ(t)(t)

(3.80)

or w(t+ 1) = w(t) +

η
N

1− Eµ(t)(t)

ξµ(t)S

µ(t)
T

. (3.81)

Convergence of the Adaline

In the following we sketch the proof of convergence for the sequential Adaline
algorithm (3.80) and obtain the corresponding condition on the learning rate η.
For the update of the current component xµ we have

xµ → xµ + δµ with δµ = η (1− [Cx]µ) = η (1− Eµ) (3.82)

while all other embedding strengths remain unchanged: δ = (0, . . . , δµ, 0, . . . 0)⊤.
Therefore, the change of the objective function under update (3.82) is

f(x+ δ)− f(x) = −1

2
δ⊤Cδ − δ⊤ Cx + δ⊤1 = −1

2
(δµ)2 Cµµ + δµ (1− Eµ)

= η(1− Eµ)2

1− 1

2
ηCµµ

≥ 0 for η <

2

Cµµ
. (3.83)

Unless a solution x with Eµ = 1 for all µ has been reached, the objective function
will strictly increase in at least some of the individual steps of the sequential
procedure as long as η < 2/Cµµ.

The diagonal elements of C are proportional to the norms of the correspond-
ing feature vectors, Cµµ = (ξµ)2/N, which are of course available for any given
data set. If we want to use a single, constant value of η and guarantee monotonic
increase of f under the iteration, the learning rate has to satisfy

0 < η <
2

max{Cµµ}Pµ=1

. (3.84)

72 3. THE PERCEPTRON

One can also show that the objective function is bounded from above if C is
positive definite and Cx = 1 has a solution: while the linear term 1⊤x in f , Eq.
(3.77), can grow in an unbounded way, the negative quadratic term will always
dominate and limit the increase.

Hence, unless a solution with Cx = E = 1 exists and has been found, the
iteration performs at least one non-zero update in each sweep through the data
set and f increases monotonically. Moreover, the cost function is bounded
from above. Therefore, the coordinate-ascent-like version (3.80) of the Adaline
converges and maximizes f under constraints E = 1, if the learning rate satisfies
(3.84).

Relation to linear regression and the SSE

Several interesting relations to other problems and algorithms are noteworthy:
As pointed out in [DO87], the coordinate ascent (3.82) is closely related to
the well-known Gauß-Seidel and Gauß-Jacobi methods [Fle00] for the iterative
solution of the system of linear equations Cx = 1.

For non-singular C, the problem could be solved directly by x = C−11,
which gives

xµ = [C−11]µ =

ν

[C−1]µν 1 and w =
1

N

µ,ν

[C−1]µνξµSµ
T (3.85)

in weight space. If we incorporate the outputs Sµ
T = ±1 in the modified input

vectors ξ
µ
= Sµ

T ξ
µ the problem becomes equivalent to regression with the par-

ticular targets yµ = (Sµ
T)

2 = 1 for all data points. Hence, the Adaline problem
has the same mathematical structure as linear regression considered in Sec. 2.2.2
and Appendix A.2.2, which immediately links Eq. (3.85) to the pseudoinverse
solutions (2.8) and (A.24), respectively.

It is interesting to note that although (3.79) is the weight space equivalent
of (3.78), it cannot be interpreted as a gradient ascent along ∇wf of the cost
function (3.77). As outlined in Appendix A.4.3, even linear transformations of
variables do not preserve the gradient property, in general.

However, (3.79, 3.81) can be seen as gradient descent in weight space with
respect to a different, yet related cost function: the Sum of Squared Errors
(SSE), cf. Eq. (2.5), for linear regression with target values Sµ

T = ±1 :

ESSE =
1

2

P

µ=1

(1− Eµ)2 =
1

2

P

µ=1

Sµ
T −w⊤ξµ

2
(3.86)

with ∇wE
SSE = −

P

µ=1

(1− Eµ)ξµSµ
T . (3.87)

Note that writing ESSE in terms of embedding strengths would involve the
quadratic form x⊤C⊤Cx which is not present in (3.77).

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 73

This consideration also indicates what the behavior of the Adaline will be
if E = 1 cannot be satisfied: the algorithm finds an approximate solution by
minimizing the SSE.

The sequential algorithm (3.81) in weight space is equivalent to Widrow
and Hoff’s original LMS (Least Mean Square) method for the Adaline [WH60,
Wid12]. The LMS, also referred to as the delta-rule or the Widrow-Hoff al-
gorithm in the literature, can be seen as the most important ancestor of the
prominent Backpropagation of Error for multilayered neural networks, cf. Sec.
A.4 and Chapter 5. A review of the history and conceptual relations between
these classical algorithms is given in [WL90].

3.7.3 The Adaptive Perceptron Algorithm - AdaTron

In Rosenblatt’s perceptron algorithm an update is performed whenever the pre-
sented example is misclassified. All non-zero Hebbian learning steps are per-
formed with the same magnitude, independent of the example’s distance from
the current decision plane. On the contrary, the Adaline learning rule is adaptive
in the sense that the magnitude of the update depends on the actual deviation
of Eµ from the target value 1. While this appears to make sense and is expected
to speed up learning, it also results in negative Hebbian updates (“unlearning”)
with η(1 − Eµ) < 0 if the example is correctly classified with large Eµ > 1,
already. In fact, Adaline can yield negative embedding strengths xµ < 0 in
order enforce Eµ = 1 when the example otherwise could have Eµ > 1.

This somewhat counter-intuitive feature of the Adaline is accounted for in
the Adaptive Perceptron (AdaTron) algorithm [AB89, BAK91]. It retains the
concept of adaptivity but takes into account the inequality constraints in prob-
lem (3.68), explicitly. In essence, it performs Adaline-like updates, but prohibits
the embedding strengths from assuming negative values. As we will see, this rel-
atively simple modification yields the perceptron of optimal stability for linearly
separable data.

The method of Lagrange multipliers has been extended to the treatment
of inequality constraints [Fle00, PAH19], see also Appendix A. Therefore, we
can make use of several well-established results from optimization theory in the
following. We return to the problem of optimal stability in the form (3.68),
which we repeat here for the sake of clarity:

Perceptron of optimal stability (weight space)

minimize
w ∈ RN

N

2
w2 subject to inequality constraints {Eµ ≥ 1}Pµ=1 .

Formally, we have to consider the same Lagrange function as for equality
constraints, already given in Eq. (3.70):

L

w, {λµ}Pµ=1

=

N

2
w2 −

P

µ=1

λµ

w⊤ξµSµ

T − 1

. (3.88)

74 3. THE PERCEPTRON

The Kuhn-Tucker Theorem of optimization theory, see [Fle00,PAH19], pro-
vides the first order necessary stationarity conditions for general, non-linear
optimization problems with inequality and/or equality conditions. They are
known as the so-called Kuhn-Tucker (KT) or Karush-Kuhn-Tucker conditions
[Fle00,PAH19], see (A.26) in the Appendix. In our specific case, as worked out
as an example in the Appendix, they read

Kuhn-Tucker conditions (optimal stability)

w∗ =
1

N

P

µ=1

λ∗µ ξµSµ
T (embedding strengths λµ) (3.89)

E∗µ = w∗⊤ξνSµ
T ≥ 1 for all µ (linear separability) (3.90)

λ∗µ ≥ 0 (not all λ∗µ = 0) (non-negative multipliers) (3.91)

λ∗µ (E∗µ − 1) = 0 for all µ (complementarity). (3.92)

The first condition is the same as for equality constraints and follows directly
from ∇wL = 0. As in the case of the Adaline, it implies that the solution of
the problem can be written in the familiar form (3.61). Moreover, the Lagrange
multipliers λµ play the role of the embedding strengths and we can set λµ = xµ

in the following considerations. The second condition (3.90) merely reflects the
original constraint, i.e. linear separability.

Intuitively, the non-negativity of the multipliers, KT-condition (3.91), re-
flects the fact that an inequality constraint is only active on one side of the
hyperplane defined by Eµ = 1. As long as Eµ > 1, the corresponding multiplier
could be set to λµ = 0 as the constraint is satisfied in the entire half-space. Since
the solution can be written with xµ = λµ due to (3.89), we formally recover the
insight from Sec. 3.6.2 which indicates that wmax can always be represented by
non-negative embedding strengths.

After renaming the Lagrange multipliers λµ to xµ, we refer to a solution
x∗ of the problem (3.68) as a KT-point. Using our convenient matrix-vector
notation, the KT conditions of the simplified problem read

Kuhn-Tucker conditions (optimal stability, simplified)
E∗ = Cx∗ ≥ 1 (linear separability) (3.93)
x∗ ≥ 0 (x∗ ∕= 0) (non-negative embeddings)12 (3.94)
x∗µ (E∗µ − 1) = 0 for all µ (complementarity). (3.95)

The most interesting condition is that of complementarity (3.92) and (3.95).
It states that at optimal stability, any example with non-zero embedding will

12Obviously x = 0,w = 0 cannot be a solution.

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 75

have E∗µ = 1 while input/output pairs with E∗µ > 1 do not contribute to the
linear combination (3.61). We will discuss this property in greater detail later.
Complementarity also implies that x∗µE∗µ = x∗µ for all µ and, therefore

x∗⊤Cx∗ = x∗⊤ E∗ =

P

µ=1

x∗µE∗µ =

P

µ=1

x∗µ = x∗⊤1. (3.96)

Now consider two potentially different KT-points x1 and x2, both satisfying the
first order stationarity conditions. By definition, the matrix C is symmetric and
positive semi-definite:

u⊤C u ∝

µ,ν

uµSµ
T ξ

µ · ξνSν
Tu

ν =

µ

uµξµSµ
T

2

≥ 0 for all u ∈ RP .

Setting u = x1 − x2 we obtain with (3.96):

0 ≤ (x1 − x2)
⊤C(x1 − x2) = x⊤

1 Cx1
=x⊤

1
1

+ x⊤
2 Cx2
=x⊤

2
1

−x⊤
1 Cx2 − x2

⊤Cx1

= x⊤
1

1− Cx2

+ x⊤

2

1− Cx1

.

All components of the KT-points x1,2 are non-negative, while all components of
vectors (1− Cx1,2) ≤ 0 due to the linear separability condition. Therefore, we
obtain 0 ≤ (x1 − x2)

⊤C(x1 − x2) ≤ 0 and hence:

⇒ 0 = (x1 − x2)
⊤C(x1 − x2) ∝

µ,ν

(xµ
1 − xµ

2)S
µ
T ξ

µ · ξνSν
T (x

ν
1 − xν

2)

=

µ

(xµ
1 − xµ

2) ξ
µSµ

T

2

∝ [w1 −w2]
2 ⇒ w1 = w2.

We conclude that any two KT-points define the same weight vector, which
corresponds to the perceptron of optimal stability. Even if x1 ∕= x2, which is
possible in spite of Cx1 = Cx2 for singular matrices C, the solution is unique
in terms of the weights. Moreover, this finding implies that any local solution
(KT-point) of the problem (3.68) is indeed a global solution. In contrast to
many other cost function based learning algorithms, local minima do not play
a role in optimal stability. This is a special case of a more general result which
applies to all convex optimization problems [Fle00,PAH19].

The stationarity conditions also facilitate a re-formulation of the optimiza-
tion problem. Similar to the simplification of the Adaline problem, it essentially
amounts to the elimination of the weights and the interpretation of Lagrange
multipliers as embedding strengths. It constitutes a special case of what is
known as the Wolfe Dual in optimization theory, see [Fle00] for the general def-
inition and proof of the corresponding Duality Theorem. A brief introduction
is given in Appendix A.3.4. Duality is frequently employed to rewrite a given
problem in terms of a modified cost function with simplified constraints.

76 3. THE PERCEPTRON

As outlined in Appendix A.3.4 the following formulation is equivalent to
problem (3.68):

Perceptron of optimal stability (embedding strengths, dual problem)

maximize
x f(x) = −1

2
x⊤Cx+ x⊤1 subject to x ≥ 0. (3.97)

Hence, the resulting Wolfe Dual still comprises constraints, albeit simpler ones.
In this simplified formulation of optimal stability, see also Appendix A.3.4, the
goal is to maximize the objective function (3.77) under the constraint x ≥ 0
(with x ∕= 0). The search for the optimum is therefore restricted to the positive
hyperoctant of RP .

These particularly simple conditions facilitate the design of a gradient-based
active set algorithm, see Appendix A.3. Moreover, it is possible to combine this
concept with coordinate ascent as discussed in Appendix A.5.1. The algorithm
satisfies the constraint by simply clipping each xµ to zero whenever the gradient
step would lead into the excluded region of xµ < 0:

AdaTron algorithm, sequential updates (repeated presentation of D)

– at time step t, present example µ(t) = 1, 2, 3, ..., P, 1, 2, 3, ...
– update (only) the corresponding embedding strength:

xµ(t)(t+1) = max

0, xµ(t)(t) + η

1− Eµ(t)

, (3.98)

where Eν = [Cx]ν . The name AdaTron has been coined for this Adaptive
Perceptron algorithm [AB89,BAK91]. By comparison with the sequential Ada-
line algorithm (3.80) we observe that the change from equality constraints
(Eµ = 1) to inequalities (Eµ ≥ 1) leads to the restriction of embedding strengths
to non-negative values. Otherwise, the update +η (1 − Eµ) is adaptive in the
sense of the discussion of Adaline. Unlike the Rosenblatt algorithm, Adaline
and AdaTron can decrease an embedding strength if Eµ is already large.

A parallel version of the algorithm can be formulated, which performs steps
along the direction of ∇xf , but always ensures x > 0 by limiting the step size
where necessary. Thus, for sufficiently small values of η, the cost function will
also decrease monotonically [AB89, BAK91]. Here, we refrain from giving a
more explicit mathematical formulation and discussion of the parallel updates.

Convergence of the sequential AdaTron algorithm
As we show in the following, the sequential AdaTron converges and yields op-
timal stability if 0 < η < 2/Cµµ for all µ, provided the data set D is linearly

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 77

separable [AB89,BAK91].12 We consider the learning step xµ → xµ + δµ with

δµ =

η (1− Eµ) if − xµ ≤ η (1− Eµ)
−xµ < 0 if − xµ > η (1− Eµ)

(3.99)

and see that in both cases

|δµ| ≤ η |(1− Eµ)| =⇒ 1− Eµ

δµ
≥ 1

η.

Hence, similar to Eq. (3.83) for the Adaline algorithm, we obtain

f(x+δ)−f(x) = −1

2
δ⊤Cδ − δ⊤ Cx + δ⊤1 = −1

2
(δµ)2 Cµµ + δµ (1− Eµ)

= (δµ)2

1− Eµ

δµ
− Cµµ

2

≥ (δµ)2

1

η − Cµµ

2

. (3.100)

The r.h.s. is obviously non-negative for 0 < η ≤ 2/Cµµ. We recover the same
condition (3.84) for the monotonic increase of f as in the sequential Adaline
algorithm.

Furthermore, it can be shown that f is bounded from above in the hyper-
octant x ≥ 0 if the data set is linearly separable. For general convex problems
with linear constraints it has been proven that the Wolfe Dual is bounded if
and only if the original problem has a solution [Fle00]. Here, this property
is closely related to Farkas’ Lemma and Gordan’s Theorem of the Alternative
(3.37), which we discussed briefly in Sec. 3.3.6. The latter implies for matrices
C ∈ RP×P that

x |C x ≥ 1

= ∅ ⇔ C v = 0 for some v ∕= 0 with {vµ ≥ 0}Pµ=1 .

Note that if such a vector v exists, it is straightforward to show that f in Eq.
(3.77) cannot be bounded in x > 0: Setting x = γv > 0, we obtain x⊤Cx = 0
and

lim
γ→∞

f(x) = lim
γ→∞

v⊤1 → ∞.

In summary, we have

a) For linearly separable D, the cost function f(x) is bounded from above in
the hyperoctant x ≥ 0.

b) The function f(x) increases monotonically under non-zero, sequential Ada-
Tron updates with 0 < η < 2/Cµµ.

c) By construction of the algorithm, any KT-point x∗ of the problem, cf. Eq.
(3.93–3.95), is a fixed point of the AdaTron algorithm and vice versa.

In combination, (a-c) imply that the algorithm converges to a KT-point which
represents the (unique) perceptron of optimal stability.

12In [AB89,BAK91] normalized data with Cµµ = 1 was considered, yielding the condition
0 < η < 2.

78 3. THE PERCEPTRON

Embedding strengths only
In contrast to the Rosenblatt or Adaline algorithm, it is not straightforward to
rewrite the AdaTron in terms of explicit updates in weight space. Obviously we
can compute the new weight vector as w(t + 1) =

P
µ=1 x

µ(t + 1)ξµSµ
T after

each training step. However, a direct iteration of the weights w(t) cannot be
provided without involving the xµ(t), explicitly. This is due to the non-linear
clipping of embeddings at zero which has no simple equivalent in weight space.

Non-separable data
The outcome of the AdaTron training (3.98) for data that is not linearly sepa-
rable is not obvious. Modifications of the SSE (3.86) which take into account
that for Eµ > 1 the actual deviation is irrelevant have been considered in the
literature, see the discussion in Sec. 4.1.

For these, corresponding gradient descent methods in weight space can be
derived, which - for suitable choices of the cost function - resemble the Ada-
Tron scheme. However, they are not identical and, in particular, additional
constraints have to be imposed in order to achieve optimal stability for linearly
separable data.

The concept of optimal stability has been generalized in the so-called soft
margin classifier which tolerates misclassifications to a certain degree. A corre-
sponding extension of the AdaTron algorithm is discussed in Sec. 4.1.2.

Efficient algorithms
The MinOver and AdaTron are presented here as prototypical approaches to
solving the problem of optimal stability. While they are suitable for solving
the problem in relatively small data sets, the computational load may become
problematic when dealing with large numbers of examples and, consequently, a
large number of variables xµ.

A variety of algorithms have been devised aiming at computational effi-
ciency and scalability, mainly in the context of Support Vector Machines, cf.
Sec. 4.3. A prominent example is Sequential Minimal Optimization (SMO)
approach [Pla98]. It is the basis of many implementations, see e.g. [svm99]
for links and the SVM literature for further discussions and references [SS02,
CST00,STC04,Her02].

3.7.4 Support vectors

The treatment of optimal stability as a constrained, convex optimization prob-
lem has provided useful insights, from which practical algorithms such as the
AdaTron and other schemes emerged, see [Ruj93] for another example. The ab-
sence of local minima and the resulting availability of efficient optimization tools
is one of the foundations of the Support Vector Machine and has contributed
largely to its popularity [SS02,CST00,STC04,Her02,DFO20], see Sec. 4.3.

One of the most important observations with respect to optimal stability
is a consequence of the complementarity condition (3.95). It implies that in a

3.7. OPTIMAL STABILITY BY QUADRATIC OPTIMIZATION 79

Eµ=1

∝wmax

Figure 3.18: Support Vectors in
the perceptron of optimal stability.
The arrow represents the normalized
weight vector wmax/|wmax|. Class
membership is indicated by filled
(ST = +1) and open symbols (ST =
−1), respectively. Support vectors,
marked as squares, fall into the two
hyperplanes with Eµ = 1, i.e. κµ =
κmax. All other examples (circles) dis-
play greater stability without being
embedded explicitly.

KT-point we have

either

Eµ = 1
xµ ≥ 0

or

Eµ > 1
xµ = 0

. (3.101)

In the geometrical interpretation of linear separability, the former set of feature
vectors with xµ ≥ 0 falls into one of the two hyperplanes with w · ξ = −1
or +1, respectively. Both planes are parallel to the decision boundary and
mark the maximum achievable gap between the two classes, see Figure 3.18.
Only these examples, marked as squares in the figure, contribute to the linear
combination (3.61) with non-zero embedding strength. They can be said to form
the support of the weights and, therefore, are referred to as the set of support
vectors. In a sense, they represent the hard cases in D which end up closest
to the decision boundary. The remaining training data display larger distances
from the separating hyperplane and do not explicitly contribute to the linear
combination (3.61).

For the support vectors we observe that wmax is the weight vector that
solves the system of linear equations Eµ = 1 with minimal norm |w|. All
other examples appear to be stabilized “accidentally”. Hence, if we were able
to identify them beforehand in a given D, we could solve the simpler problem
(3.77) restricted to the support vectors by applying, e.g., the Adaline algorithm.
Unfortunately, the set of support vectors is not known a priori and their deter-
mination is an integral part of the training process.

It is important to realize that, despite the special role of the support vectors,
all examples in the data set are relevant. Even if some of them end up with
zero embedding, the composition of the entire D implicitly determines the set
of support vectors and, thus, the actual weight vector.

Remark: Complementarity in the MinOver algorithm
The MinOver algorithm (3.59,3.60) as presented in Sec. 3.6.2 yields, in gen-
eral, non-zero integer xµ > 0 for all µ. However, the complementary condition
(3.101) is satisfied in the sense that the embedding strengths of the support vec-
tors increase in the training process, while those of the other examples remain

80 3. THE PERCEPTRON

relatively small. In the limit of infinitely many update steps, properly rescaled
xµ satisfy condition (3.92).

3.8 Inhom. lin. sep. functions revisited
So far, following the arguments leading to Eq. (3.4) in Sec. 3.2 we have treated
homogeneously and inhomogeneously linearly separable functions on the same
footing. However, with respect to the stability criterion we have to take a
subtlety into account: if we consider a perceptron with output

S(ξ) = sign [w · ξ − θ] with adaptive quantities w ∈ RN and θ ∈ R, (3.102)

the proper definition of the stabilities is

κµ
inh = (w · ξµ − θ)Sµ/ |w| (3.103)

which corresponds to the oriented distance of feature vectors ξµ from the sepa-
rating hyperplane given by (w ·ξ−θ = 0). As a consequence, the corresponding
perceptron of optimal stability is given by the solution of the problem

min
w,θ

w2/2 subject to [w · ξµ − θ]Sµ ≥ 1 for all µ = 1, 2, . . . P. (3.104)

Note that if for suitable θ, w2 can be minimized under the constraints, the choice
of θ will influence the result, i.e. the achievable maximum stability. Hence, the
optimization has to be done with respect to both w and θ.

If we naively exploit the equivalence of inhomogeneous separability in N
dimensions with homogeneous separability in N + 1 dimensions, c.f. Eq. (3.4),
we define the modified weight vector w = [w, θ] and augmented feature vectors
ξ = [ξ,−1]. The corresponding naive definition of the stabilities reads

κµ = w · ξ
µ
Sµ

|w|. (3.105)

Here w2 corresponds to (w2 + θ2) and the resulting optimal stability problem
becomes

min
w

w2/2 subject to w · ξ
µ
Sµ ≥ 1 for all µ = 1, 2, . . . P, (3.106)

where the constraints are equivalent to those in Eq. (3.104). However, treating θ
as an additional weight in the spirit of (3.4) has altered the objective function in
comparison with (3.104) as it includes a contribution θ2 in the squared Euclidean
norm w2. Consequently the solution of (3.106) would differ from the (correct)
optimal stability defined by Eq. (3.104).

For the sake of clarity, we have explicitly limited our discussion of opti-
mal stability to the case of homogenous separation with θ = 0. This also
applies to the Support Vector Machine in Sec. 4.3. The corresponding modifi-
cations of the algorithms and other results to the modified definitions (3.103)
and (3.104) for nonzero local threshold are conceptually straightforward, see
e.g. [Str19,HTF01,DFO20].

3.9. SOME REMARKS 81

3.9 Some remarks
In this chapter we have considered the simple perceptron as a prototypical
machine learning system. It serves as a framework in which to obtain insights
into the basic concepts of supervised learning. It also illustrates the importance
of optimization techniques and the related theory in machine learning.

The restriction to linearly separable functions is, of course, significant. In
the next chapter we consider a number of ways to deal with non-separable data
sets and address classification problems beyond linear separability.

It is remarkable that the perceptron still ranks among the most frequently
applied machine learning tools. This is due to the fact that the very successful
Support Vector Machine is frequently used with a linear kernel, cf. Sec. 4.3.
In this case, however, it reduces to a classifier that is equivalent to the simple
perceptron of optimal stability or its extension to the soft margin classifier, cf.
Sec. 4.1.2.

82 3. THE PERCEPTRON

Chapter 4

Beyond linear separability

Non-linear means it’s hard to solve.

— Arthur Mattuck

In the previous sections we studied learning in version space as a basic train-
ing strategy in terms of the simple perceptron classifier. We obtained important
insights into the principles of learning a rule and obtained the concept of optimal
stability.

As pointed out already, learning in version space only makes sense under
a number of conditions, which – unfortunately – are rarely fulfilled in realistic
settings. The key assumptions are

(a) The data set D = {ξµ, Sµ
T }

P

µ=1 is perfectly reliable, labels are correct and
noise–free.

(b) The unknown rule is linearly separable, or more generally: the student
complexity perfectly matches the target task.

In practice, a variety of effects can impair the reliability of the training data:
Some examples could be explicitly mislabeled by an unreliable expert to begin
with. Class labels could be inverted due to some form of noise in the communi-
cation between student and teacher. Alternatively (or additionally), some form
of noise or corruption may have distorted the input vectors ξµ in D, potentially
rendering some of the labels Sµ

T inconsistent.
In fact, real world training scenarios and data sets will hardly ever meet

the conditions (a) and/or (b). From the perspective of perceptron training, i.e.
restricting the hypothesis space to linearly separable functions, the following
situations are much more likely to occur:

83

84 4. BEYOND LINEAR SEPARABILITY

i) The unknown target rule is linearly separable, but D contains mislabeled
examples, for instance in the presence of noise. Depending on the number
of examples P and the degree of the corruption the following may occur:

i.1) In particular, small data sets D with few mislabeled samples can still
be linearly separable and the labels Sµ

T can be reproduced by a per-
ceptron student. While the non-empty version space V is consistent
with D, it is not perfectly representative of the target rule and the
success of training will be impaired.

i.2) The data set D is not linearly separable and, consequently, a version
space of linearly separable functions does not exist: V = ∅. In this
case, learning in version space is not even defined for the perceptron.
Hence, the data set still contains information (albeit noisy or cor-
rupted) about the rule, but it is not obvious how it can be extracted
efficiently.

ii) The target rule itself is not linearly separable and would require learning
systems of greater complexity than the simple perceptron, ideally. Again,
the consequences for perceptron training depend on the size of the available
data set:

ii.1) Small data sets may be linearly separable and one can expect or hope
that a student w ∈ V at least approximates the unknown rule to a
certain extent, in this situation.

ii.2) Larger data sets become non-separable and V = ∅ should signal that
the target is, in fact, more complex.

Of course, superpositions of cases i) and ii) can also occur: we could have to
deal with a non-separable rule, represented by a data set which in addition is
subject to some form of corruption.

As mentioned earlier, it is a difficult task in practice to determine whether
a given data set D is linearly separable or not. Not finding a solution by use
of the Rosenblatt algorithm, for instance, could simply indicate that a larger
number of training steps is required. In [ND91], a perceptron-like algorithm
is presented which either finds a solution or terminates and establishes non-
separability [ND91], see also Sec. 3.3.6.

In the following, we discuss a number of basic ideas and strategies for coping
with non-separable data sets:

◦ A simple perceptron could be trained to implement D approximately, in
the sense that a large (possibly maximal) fraction of training labels is
reproduced by the perceptron. In Sec. 4.1 we will present and discuss
corresponding training schemes.

◦ More powerful, layered networks for classification can be constructed from
perceptron-like units. We will consider the so-called committee machine
and parity machine as example two-layer systems in Sec. 4.2. We show
that the latter constitutes a universal classifier.

4.1. PERCEPTRON WITH ERRORS 85

◦ Many perceptrons (or other simple classifiers) can be combined into an
ensemble in order to take advantage of a wisdom of the crowd effect
[OM99,Urb00]. So-called Random Forests, i.e. ensembles of decision trees
[Bre01], constitute one of the most prominent examples in the literature,
currently. We refrain from a detailed discussion of ensembles and refer to
the literature [OM99,Urb00] for further references.

◦ A perceptron-like threshold operation of the form S = sign(. . .) with linear
argument can be applied after a non-linear transformation of the feature
vectors. Along these lines, the framework of the Support Vector Machines
(SVM) was developed. It has been particularly successful and continues
to do so. In Sec. 4.3 we will outline the concept and show that the SVM
can be seen as a (highly non-trivial) conceptual extension of the simple
perceptron.

◦ Perhaps the most frequently applied strategy is to treat the classification
as a regression problem. A network of continuous units (including the
output) can be trained by standard methods and, eventually, the output
is thresholded. We have seen one example already in terms of the Adaline
scheme, see Sec. 3.7. We return to this strategy in Chapter 5.

◦ Prototype-based systems [BHV16] offer another, very powerful framework
for classification beyond linear separability. In Chapter 6 we will discuss
the example of Learning Vector Quantization (LVQ), which implements –
depending on the details – piecewise linear or piecewise quadratic decision
boundaries. It is moreover a natural tool for multi-class classification.

4.1 Perceptron with errors

Assume that a given data set {ξµ, Sµ
T } with ξµ ∈ RN and Sµ

T = {−1,+1} is not
linearly separable due to one or several of the reasons discussed above.

In the following, we discuss extensions of perceptron training which toler-
ate misclassification to a certain degree. Intuitively, this corresponds to the
assumption that the data set is nearly linearly separable or in other words: the
unknown rule can be approximated by a linearly separable function.

4.1.1 Minimal number of errors

Aiming at a linearly separable approximation, one might want to minimize
the number of misclassifications by choice of the weight vector w ∈ RN in
a simple perceptron student. While at a glance the idea appears plausible, we
should realize that the outcome will be very sensitive to individual, misclassified
examples in D.

Formally, we can consider the following problem:

86 4. BEYOND LINEAR SEPARABILITY

Minimal number of errors (Perceptron) (4.1)

For a given D = {ξµ, Sµ
T }

P

µ=1 with ξµ ∈ RN and Sµ
T ∈ {−1,+1} ,

minimize

w ∈ RN
Herr(w) =

P

µ=1

(w, ξµ, Sµ
T) with =

1 if sign (w · ξµ) = −Sµ

T

0 if sign (w · ξµ) = +Sµ
T .

Note that this cost function does not differentiate between nearly correct
examples with Eµ ≈ 0 close to the decision boundary and clear cases where the
feature vector falls deep into the incorrect half-space.

The above defined problem proves very difficult. Note that the number of
misclassified examples is obviously integer and can only display discontinuous
changes with w. On the other hand, ∇w Herr = 0 almost everywhere in feature
space. As a consequence, gradient based methods cannot be employed for the
minimization or approximate minimization of Herr.

A prescription that applies Hebbian update steps which can be seen as a
modification of the Rosenblatt algorithm (3.15) has been introduced by S.I.
Gallant [Gal90]. The so-called Pocket Algorithm relies on the stochastic pre-
sentation of simple examples in combination with the principle of learning from
mistake for a weight vector w. In addition to the randomized, yet otherwise
conventional, Rosenblatt updates of the vector w, the so far best (with respect
to Herr) weight vector w is “put into the pocket”. It is only replaced when the
on-going training process yields a vector w with a lower number of errors.

Pocket algorithm (4.2)

– initialize w(0) = 0 and w = 0 (tabula rasa), set H(0) = P

– at time step t, select a single feature vector ξµ with class label Sµ
T

randomly from the data set D with equal probability 1/P

– compute the local potential Eµ(t) = w(t) · ξµSµ
T

– for w(t), perform an update according to (Rosenblatt algorithm)

w(t+1) = w(t) +
1

N
Θ

−Eµ(t)

ξµ Sµ

T .

– compute H(t+1) = Herr

w(t+1)

acc. to Eq. (4.1)

– update the pocket vector w(t) and H(t) according to

w(t+1) =

w(t+1) if H(t+1) < H(t) (improvement)
w(t) if H(t+1) ≥ H(t) (w unchanged)

H(t+1) = Herr

w(t+1)

.

4.1. PERCEPTRON WITH ERRORS 87

Obviously, the number of errors H(t) of the pocket vector w(t) can never
increase under the updates (4.2). Moreover, one can show that the stochastic
selection of the training sample guarantees that, in principle, w(t) approaches
the minimum of Herr with probability one [Gal90,Roj96].

However, this quite weak convergence in probability does not allow to make
statements about the expected number of updates required to achieve a solution
of a particular quality. Certainly it is not possible to provide upper bounds as
in the context of the Perceptron Convergence Theorem.

Several alternative, well-defined approaches have been considered which can
be shown to converge in a more conventional sense, at the expense of having to
accept sub-optimal Herr.

Along the lines discussed towards the end of Sec. 3.7.2, the gradient based
minimization of several cost functions similar to Eq. (3.86) has been consid-
ered in the literature. For instance [GG91] discusses objective functions which
correspond to

H [k](w) =
P

µ=1 (c− Eµ)k Θ[c− Eµ] with Eµ = w · ξµSµ
T

in our notation. Note that the limiting case c = 0, k → 0 would recover the
non-differentiable Herr, Eq. (4.1). In [GG91] the above functions are, not quite
precisely, referred to as the perceptron cost function for k = 1 and the adatron
cost function for k = 2, respectively. We would like to point out that, despite
the conceptual similarity, the case c = 1, k = 2 is not strictly equivalent to the
AdaTron algorithm for non-separable data sets. Moreover, for lin. sep. data, any
w ∈ V gives H [2](w) = 0. Hence, optimal stability would have to be enforced
through an additional minimization of the norm w2.

4.1.2 Soft margin classifier

An explicit extension of the large margin concept has been suggested which
allows for the controlled acceptance of misclassifications. For an introduction
in the context of the SVM, see e.g. [SS02,DFO20] and references therein. The
formalism presented there reduces to the soft margin perceptron in the case of
a linear kernel function, see Sec. 4.3 for the relation.

A corresponding, extended optimization problem similar to (3.68) reads:

Soft margin perceptron (weight space)

minimize
w, β

N

2
w2 + γ

P

µ=1

βµ subject to {Eµ ≥ 1− βµ}Pµ=1

and {βµ ≥ 0}Pµ=1 . (4.3)

Here, we introduce so-called slack variables βµ ∈ R with

βµ = 0 ⇔ Eµ ≥ 1
βµ > 0 ⇔ Eµ < 1.

88 4. BEYOND LINEAR SEPARABILITY

We recover the unmodified problem of optimal stability (3.68) with βµ = 0 for
all µ = 1, 2, ..., P, which also implies that all Eµ ≥ 1. On the contrary, non-
zero βµ > 0 correspond to violations of the original constraints, i.e. examples
with Eµ < 1, which includes potential misclassifications (Eµ < 0). In (4.3),
the Lagrange multiplier γ ∈ R controls the extent to which non-zero βµ are
accepted.

In the by now familiar matrix-vector notation with β = (β1,β2, ...,βP)⊤ we
can rewrite the problem in terms of embedding strengths:

Soft margin perceptron (embedding strengths)

minimize
x, β

1

2
x⊤Cx + γβ⊤1 subject to E ≥ 1− β

and β ≥ 0. (4.4)

Here, the derivation of the Wolfe Dual [Fle00] amounts to the elimination
of the slack variables β. Similar to the error-free case, cf. Sec. 3.7, we obtain a
modified cost function with simpler constraints:

Soft margin perceptron (dual problem)

maximize
x − 1

2
x⊤Cx + x⊤1 subject to 0 ≤ x ≤ γ1. (4.5)

In comparison to the dual problem (3.68) for the error-free case, the non-
negative embedding strengths x ≥ 0 are now also bounded from above. The
parameter γ limits the magnitudes of the xµ.

In analogy to the derivation of the AdaTron algorithm (3.98) we can devise
a similar, sequential projected-gradient descent algorithm:

AdaTron with errors, sequential updates (repeated presentation of D)

– at time step t, present the example µ = 1, 2, ..., P, 1, 2, ...
– perform the update

xµ(t+ 1) = xµ(t) + η (1− [Cx(t)]µ) gradient step

xµ(t+ 1) = max {0, xµ(t+ 1)} non-negative embeddings...

xµ(t+ 1) = min {γ, xµ(t+ 1)} ...with limited magnitude. (4.6)

4.1. PERCEPTRON WITH ERRORS 89

Eµ=1

∝wmax

Figure 4.1: Support vectors in the
soft margin perceptron.
The arrow represents the normalized
weight vector wmax/|wmax|. Filled
and open symbols correspond to the
classes Sµ

T = ±1, respectively. Sup-
port vectors, displayed as squares,
fall onto the two hyperplanes with
Eµ = 1, into the region between the
planes, or even deeper into the incor-
rect half-space. All other examples,
marked by circles, display Eµ > 1
without explicit embedding.

Compared to the original AdaTron for lin. sep. data, the only difference is the
additional restriction of the search to the x ≤ γ1. Obviously we recover the the
original algorithm in the limit γ → ∞.

As in the separable case, the algorithm follows the gradient of the cost func-
tion along (1 − E), in principle. Hence, an individual embedding strength will
increase if the corresponding example has a local potential Eµ < 1, including
misclassifications with Eµ < 0. If some of the errors cannot be corrected because
D is not separable, the corresponding xµ would grow indefinitely. In the soft
margin version (4.6), however, updates are clipped at xµ = γ and the misclassi-
fication1 of the corresponding example is tolerated. For fixed γ, the problem is
well-defined and the AdaTron with errors (4.6) finds a solution efficiently. We
refrain from further analysis and a formal proof.

It is important to realize that the precise nature of the solution depends
strongly on the setting of the parameter γ: It controls the compromise between
the goals of – on the one hand – minimizing the norm w2 (maximizing the
margin) and – on the other hand – correcting misclassifications. More precisely,
the emphasis is not explicitly on the number of errors, but on the violations of
Eµ ≥ 1 and their severity.

If, for instance a mismatched (too small) value of γ is chosen, misclassifi-
cations will be accepted and favored, even in a linearly separable data set. In
practice, a suitable value can be determined by means of a validation procedure
which estimates the performance for different choices of γ.

In analogy to Sec. 3.7.4 the support vectors are characterized by xµ > 0,
as before. However, only examples with 0 < xµ < γ will lie exactly in one of
the planes with Eµ = 1. Clipped embedding strengths xµ = γ correspond to
examples which fall into the region between the planes in Fig. 4.1 or even deeper
into the incorrect half-space.

The soft margin concept for the toleration of misclassification is highly rel-
evant in the context of the Support Vector Machine, see Sec. 4.3.

1the violation of Eµ ≥ 1, to be more precise

90 4. BEYOND LINEAR SEPARABILITY

input layer ξ ∈ RN

adaptive weights wk ∈ RN

(k = 1, 2, . . .K)

hidden units σk = sign

wk · ξ−θk

fixed hidden-to-output relation F (...)

binary output S

ξ

= F

σk(ξ)

K

k=1

Figure 4.2: The architecture of a “machine” as introduced in Sec. 4.2. A
number K of hidden units of the perceptron type are connected by adaptive
weights with the N -dim. input layer, K = 3 in the illustration. The bi-
nary response S(ξ) is determined by a pre-defined, fixed functional dependence
F

σ1,σ2, ...σK

= ±1.

4.2 Layered networks of perceptron-like units
Perceptron-like units can be assembled in more powerful architectures as to
overcome the restriction to linearly separable functions. We will highlight this
in terms of a family of systems which are occasionally termed machines in
the literature, see [MD89a, EB01, WRB93, AMB+18, MZ95, BO91, SH93] and
references therein.

In Fig. 4.2 the architecture of a machine is illustrated. It comprises

◦ an input layer representing feature vectors ξ ∈ RN

◦ a single layer of K perceptron-like hidden units

σk(ξ) = sign

wk · ξ − θk

◦ a set of adaptive input-to-hidden weight vectors wk ∈ RN and
local thresholds2 θk ∈ RN

◦ a single, binary output, determined by a fixed function F (σ1,σ2, ...σK)

The function F ultimately determines the network’s input/output relation.
However, it is assumed to be pre-wired and cannot be adapted in the training
process. Learning is restricted to the wk connecting input and hidden layer.

2Thresholds could be replaced by a formal weight from a clamped input as outlined in
(3.4).

4.2. LAYERED NETWORKS OF PERCEPTRON-LIKE UNITS 91

4.2.1 Committee and parity machines

Two specific machines have attracted particular interest:

CM: The committee machine combines the hidden unit states σk in a majority
vote [EB01,MD89a,WRB93,AMB+18]. This is realized by setting

FCM

σk
K

k=1

= sign

K

k=1

σk

⇒ SCM(ξ)=sign

K

k=1

sign

wk ·ξ−θk

(4.7)
which is only well-defined for odd values of K which avoids ties

k σ

k = 0.
The majority vote is reminiscent of an ensemble of independently trained
perceptrons. The CM, however, is meant to be trained as a whole [SH93].

PM: In the parity machine the output is computed as a product over the hidden
unit states σk [EB01,WRB93,BO91]:

FPM

σk
K

k=1

=

K

k=1

σk ⇒ SPM (ξ) =

K

k=1

sign

wk · ξ

(4.8)

which results in a well-defined binary output SPM (ξ) = ±1 for any K.
Note that the product depends on whether the number of units with
σk = −1 is odd or even. In this sense FPM (. . .) is analogous to a par-
ity operation.

The hidden-to-output relation of the PM, i.e. the parity operation, cannot be
represented by a single perceptron unit.3 We could realize the hidden-to-output
function by a more complex multi-layered network. But since F is considered
to be pre-wired and not adaptive, we do not have to specify a neural realization
here. On the contrary, the committee machine can be interpreted as a conven-
tional two-layered feed-forward neural network with an N−K−1 architecture
as discussed in Sec. 1.3.2 and illustrated in Fig. 1.5 (right panel). However,
compared to the general form of the output, Eq. (1.16), we have to use the acti-
vation function g(z) = sign(z) throughout the net and fix all hidden-to-output
to vk=1 in the CM.

Many theoretical results are available for CM and PM networks and more
general machines. Among other things, their storage capacity and generalization
ability have been addressed, see [MD89a, SH93,Opp94,PBG+94] for examples
and [EB01,WRB93,AMB+18] for further references.

3 The gist of Minsky and Papert’s book [MP69] is often reduced to this single insight,
which is a gross injustice to both, the book and the perceptron.

92 4. BEYOND LINEAR SEPARABILITY

+ + +

+ + −

+ − +

+ − −

− + +
−
−
+

−
+

− + + +

+ + −

+ − −

+ − +

− + +

−
−
+

−
+

−
Figure 4.3: Output function of Committee machine and Parity machine,
applied to identical sets of feature vectors ξ (filled and empty circles). The
illustration corresponds to the surface of an N -dim. hypersphere. In both ma-
chines, K = 3 oriented hyperplanes tesselate the feature space. Arrows point to
the respective half-space of σk=+1. The three hidden units states are marked
by "+" and "-" signs in the corresponding regions. The networks’ responses
S = ±1 are marked by empty and filled circles. Left panel: The majority
of σk determines the total response of the CM. Dashed lines mark redundant
pieces of the hyperplanes which do not separate outputs S = +1 from S = −1.
Right panel: In the PM, the total output is S =

k σ

k. Every hyperplane
separates total outputs S = ±1 locally, everywhere in feature space.

4.2.2 The parity machine: a universal classifier

Here, we focus on a particularly interesting result. We show that a PM with
sufficiently many hidden units can implement any data set of the form D =

{ξµ, Sµ
T }

P

µ=1 with binary training labels.
In the following, we outline a constructive proof which is based on the appli-

cation of a particular training strategy. So-called growth algorithms add units
to a neural network with subsequent training until the desired performance is
achieved and, for example, a given data set D has been implement. Mezard
and Parisi coined the term tiling algorithm for a particular procedure [MN89],
which adds neurons one by one. Several other similar growth schemes have been
suggested, see [GM90,Fre90] for examples and references.

A particular tiling-like algorithm for the PM was introduced and analysed
in [BO91]. It was not necessarily designed as a practical training prescription
for realistic applications. Tiling-like training of the PM proceeds along the fol-
lowing lines:

4.2. LAYERED NETWORKS OF PERCEPTRON-LIKE UNITS 93

Tiling-like learning, (parity machine) (4.9)

(I) Initialization (m = 1):
Train the first unit with output S1(ξ) = σ1(ξ) = sign[w1 · ξ − θ1]

from the data set D1 = D , aiming at a large number of correctly classified
examples Q1.4

(II) After training of m units:
Given the PM with m hidden units {σ1,σ2, ...σm}, re-order the
indices µ of the examples such that the PM output is

Sm(ξµ) =

m

j=1

σj(ξµ) =

+Sµ

T for 1 ≤ µ ≤ Qm

−Sµ
T for Qm < µ ≤ P,

where Qm is the number of correctly classified examples in D.

Define the new training set Dm+1 = {ξµ, [Sm(ξµ)Sµ
T]}

P

µ=1

with labels [Sm(ξµ)Sµ
T] =

+1 for 1 ≤ µ ≤ Qm (Sm was correct)
−1 for Qm < µ ≤ P (Sm was wrong)

(III) Training step:
add and train the next hidden unit σm+1(ξ) = sign

wm+1 · ξ − θm+1

as to achieve a low number of errors (P −Qm+1) w.r.t. data set Dm+1.

Note that if a solution with zero error, i.e. QM = P is found in step (III) for
the M -th hidden unit σM , the total output of the PM is

M

m=1

σm(ξµ) = Sµ
T for all examples in D,

i.e. the data set is perfectly reproduced by the PM of M units.
It is surprisingly straightforward to show that the number of correctly classi-

fied feature vectors can be increased by at least one (Qm+1 > Qm) when adding
the (m+ 1)-th unit in step (III) of the procedure (4.9).

To this end, we consider a set of normalized input vectors in the procedure
(4.10). The normalization (4.11) could always be implemented in a preprocess-
ing step. The second relation (4.12) is trivially satisfied: in every data set δ can
be determined by computing all pair-wise scalar products.

4Any of the algorithms discussed in Sec. 4.1 could be used in this step. For the inhomo-
geneity, a clamped input as in Eq. (3.4) can be employed, for simplicity.

94 4. BEYOND LINEAR SEPARABILITY

Grandmother neuron (4.10)

Consider a set of feature vectors {ξµ}Pµ=1 with

|ξµ|2 = Γ for all µ = 1, 2, ..., P (4.11)
0 < δ < Γ− ξµ · ξν for all µ, ν (µ ∕= ν). (4.12)

Construct a perceptron weight vector and threshold as

w = −ξP and θ = δ − Γ. (4.13)

It results in the inhomogeneously linearly separable classification

Sw,θ(ξ
µ)=sign

−ξP ·ξµ−δ+Γ

=

sign

−ξP · ξP

=Γ

+Γ−δ

=−1 for µ = P

sign

− ξP · ξµ + Γ

>δ

−δ

=+1 for µ ∕= P.

(4.14)

The corresponding perceptron separates exactly one feature vector, ξP , from all
others in the set. The term grandmother neuron has been coined for this type
of unit. It relates to the debatable concept that a single neuron in our brain is
activated specifically whenever we see our grandmother.5

For the tiling-like learning (4.9), this implies that, by use of a grandmother
unit, we can always separate ξP from all other examples in the training step
(III). The hidden unit response for this input is σm+1(ξ

P) = −1, which corrects
the misclassification as the incorrect output Sm(ξP) = −SP

T is multiplied with
−1 yielding Sm+1(ξ

P) = SP
T . All other PM outputs are left unchanged.

Hence, at least one error can be corrected by adding a unit to the growing
PM. With at most P units in the worst case, the number of errors is zero and
all labels in D are reproduced correctly.

A few remarks

◦ The grandmother unit (4.14) serves at best as a minimal solution in the
constructive proof - it is not suitable for practical purposes. The use of
O(P) perceptron units for the labelling of P examples would be highly
inefficient.

◦ Step (III) can be improved significantly as compared to the constructive
solution by using efficient training algorithms such as the soft margin
AdaTron, see Sec. 4.1.1.

5An idea which is possibly not quite as unrealistic as it may seem, see for instance
[QRK+05] for a discussion of “Jennifer Aniston cells”.

4.2. LAYERED NETWORKS OF PERCEPTRON-LIKE UNITS 95

◦ Tiling-like learning imposes a strong ordering of the hidden units. Neurons
added to the system later are supposed to correct only the (hopefully)
very few misclassifications made by the first units. To some extent this
contradicts the attractive concept of neural networks as fault-tolerant and
robust distributed memories.

◦ The strength of the tiling concept is at the same time its major weak-
ness: Unlimited complexity and storage capacity can be achieved by
adding more and more units to the system, until error-free classification is
achieved. This will lead to inferior generalization behavior as the system
adapts to every little detail of the data. This suggests to apply a form
of early stopping, which limits the maximum number of units in the PM
according to validation performance.

We conclude that the parity machine is a universal classifier in the sense that
a PM with sufficiently many hidden units can implement any two-class data D:

Universal classifier (parity machine) (4.15)

For a given data set D = {ξµ, Sµ
T }

P

µ=1 with binary labels Sµ
T ∈ {−1,+1}

and normalized feature vectors with |ξµ|2 = const. for all µ = 1, 2, . . . P ,

weight vectors wk ∈ RN and thresholds θk ∈ R exist (and can be found) with

SPM (ξµ) =

K

k=1

sign

wk · ξµ − θk

= Sµ

T for all µ = 1, 2, . . . P.

Similar theorems have been derived for other “shallow” architectures with
a single layer of hidden units and a single binary output.6 These findings are
certainly of fundamental importance. In contrast to the Perceptron Convergence
Theorem, however, (4.15) and similar propositions are in general not associated
with practical, efficient training algorithms.

The result parallels the findings of Cybenko and others [Cyb89,HTF01] that
networks with a single, sufficiently large hidden layer of continuous non-linear
units constitute universal function approximators, see Chapter 5 for details.

It is interesting to note that also extremely deep and narrow networks can
be universal classifiers. As an example, stacks of single perceptron units with
shortcut connections to the input layer have been investigated in [Roj17,Roj03].

4.2.3 The capacity of machines
Compared to the simple perceptron, the greater complexity of the CM or PM
should lead to an increased storage capacity. In fact, following the work of

6Strictly speaking the PM does not fall into this class, as FPM cannot be realized by a
single perceptron-like unit.

96 4. BEYOND LINEAR SEPARABILITY

Mitchison and Durbin [MD89a], we can extend the arguments presented in Sec.
3.4 to machines.

The number CK(P,N) of different dichotomies that a machine with K hid-
den units can realize for P feature vectors in N dimensions is obviously bounded
from above as

CK(P,N) ≤ C(P,N)K (4.16)

with C(P,N) from Eq. (3.41) for the perceptron. If we assume that the network
can freely combine all lin. sep. functions realized by the perceptron units in the
hidden layer, we would expect an equality in (4.16). In general, correlations
between the hidden units and other redundancies or restrictions will reduce
CK(P,N) as compared to the upper bound.

With the total number of possible dichotomies 2P we obtain an upper bound
for the probability of a random labelling to be separable with K hidden units:

PK(P,N) = min

1,

C(P,N)K

2P

(4.17)

where the minimum is applied to explicitly avoid PK(P,N) > 1 resulting from
the upper bound.

Further analytical treatment of Eq. (4.17) is involved, including the limit
N → ∞. However, we can obtain numerical estimates (upper bounds) of the
storage capacity by identifying, for given K and N , the value of P for which7

C(P,N)K

2P
=

1

2
. (4.18)

This marks the characteristic point αc(K) = P/N at which the probability
PK(P,N) drops, which is in line with the observation that C(2N,N)/2(2N) =
1/2 for the perceptron.

Example estimates obtained for N = 1000 and a few, small values of K are

αc(2)≈ 9.07(≈ 2×4.55), αc(6)≈ 40.53(≈ 6×6.76), αc(10)≈ 76.86(≈ 10×7.69)

which already shows that αc(K) displays a superlinear dependence on K. In
particular,

αc(K) > K × 2 = K × αc(1)

where the r.h.s. could be interpreted as a naive lower bound for combining K
perceptrons without any synergy effect.

Figure 4.4 displays the numerical estimates for N = 100 and K ≤ 20. One
can show that for large values of K the capacity bound is given by [MD89a,
Opp94,BO91]

αc(K) ≤ K lnK/ ln 2 (4.19)

which is consistent with a faster than linear growth with the number of hidden
units. The fact that the capacity grows rapidly with K agrees with the finding

7 More precisely: the smallest integer P for which the upper bound exceeds 1/2.

4.3. SUPPORT VECTOR MACHINES 97

K

αc Figure 4.4: The storage capac-
ity αc(K) according to the esti-
mate (4.18), obtained for N =
100. The solid line corresponds
to the naive lower bound 2K for
combining K perceptrons.

that a (parity) machine with a sufficiently large number of units can implement
any given dichotomy.

In the context of Section 3.5.3, it also indicates that the number of hidden
units should be carefully selected in order to avoid the realization of large storage
capacity at the expense of poor generalization behavior.

The asymptotic K lnK-dependence of the storage capacity for large K has
been confirmed explicitly for the parity machine also by means of statistical
physics based considerations [EB01,BSS94,WRB93,Opp94]. Interestingly, for
the committee machine, the increase of αc appears to be slightly weaker as
αc ∝ K(lnK)1/2 for K → ∞ [Urb97].

This difference in the asymptotic growth of αc(K) is consistent with our
intuitive insight that the committee machine is subject to redundancies, while
the parity machine makes full use of the separating hyperplanes in its hidden
layer.

The storage capacities and/or VC dimensions of a variety of network types
and architectures has been of great interest in the machine learning community.
This is due to the role that the capacity plays with respect to the ultimate goal
of learning, i.e. generalization. Examples from the statistical physics point of
view can be found in [EB01,BSS94,WRB93,Opp94], see also references therein.

4.3 Support Vector Machines
The Support Vector Machine (SVM) constitutes one of the most successful
frameworks in supervised learning for classification tasks. It combines the con-
ceptual simplicity of the large margin linear classifier, a.k.a. the perceptron of
optimal stability, with the power of general non-linear transformations to high-
dimensional spaces. In particular, it employs the so-called kernel trick which
makes it possible to realize the transformation implicitly.

For a detailed presentation of the SVM framework and further references
see, for instance, [SS02,CST00,STC04,Her02,DFO20]. A comprehensive repos-
itory of materials, including a short history of the approach is provided at
www.svms.org [svm99].

The concept of applying a kernel function in the context of pattern recog-
nition dates back to at least 1964, see Aizerman et al. [ABR64]. Probably the

98 4. BEYOND LINEAR SEPARABILITY

first practical version of Support Vector Machines, close to their current form,
was introduced by Boser, Guyon and Vapnik in 1992 [BGV92] and relates to
early algorithms developed by Vladimir Vapnik in the 1960s [VL63]. According
to Isabelle Guyon [Guy16], the MinOver algorithm [KM87] triggered their in-
terest in the concept of large margins which was then combined with the kernel
approach. Eventually, the important and practically relevant extension to soft
margin classification was introduced by Cortes and Vapnik in 1995 [CV95].

4.3.1 Non-linear transformation to higher dimension
The first important concept of the SVM framework exploits the fact that non-
separable data sets can become linearly separable by means of a non-linear
mapping of the form

ξ ∈ RN → Ψ(ξ) ∈ RM with components Ψj(ξ) (4.20)

where M can be different from N , in general. A function of the form

S(ξ) = sign [W ·Ψ(ξ)] with weights W ∈ RM (4.21)

is by definition linearly separable in the space of transformed vectors Ψ. So,
while retaining the basic structure of the perceptron, formally, we will be able to
realize functions beyond linearly separability by proper choice of the non-linear
transformation ξ → Ψ.

In fact, Rosenblatt already included this concept when introducing the Per-
ceptron: the threshold function sign(. . .) is applied to the weighted sum of states
in an association layer, cf. Fig. 3.1 showing the Mark I Perceptron. Its units are
referred to as masks or predicate units in the literature [Ros58,HRM+60], see
also [MP69]. In the hardware realization, for instance, 512 association units were
connected to subsets of the 400 photosensor units and performed a threshold
operation on an effectively randomized weighted sum of the incoming voltages,
see [HRM+60] for details.

In the Support Vector Machine, the non-linear mapping is – in general – from
an N -dimensional space to a higher-dimensional space with M > N in order
to achieve linear separability of the classes. As an illustration of the concept
we discuss a simple example which was presented by Rainer Dietrich in [Die00]:
Consider a set of two-dimensional feature vectors ξ = (ξ1, ξ1)

⊤, with two classes
separated by a non-linear decision boundary as displayed in Fig. 4.5 (left panel).
We apply the explicit transformation

Ψ(ξ1, ξ2) = (ξ21 ,
√
2 ξ1 ξ2, ξ2)

⊤ ∈ R3

which is non-linear as it contains the square ξ21 and the product ξ1 ξ2. In the
example, the plane orthogonal to the weight vector W = (1, 1,−1)⊤ separates
the classes perfectly in M = 3 dimensions, see the center and right panels of
Fig. 4.5.

This is obviously only a toy example to illustrate the basic idea. In typical
applications of the SVM the dimension N of the original feature space is already

4.3. SUPPORT VECTOR MACHINES 99

Figure 4.5: Illustration courtesy of Rainer Dietrich [Die00]. A two-dimensional
data set with two classes that are not linearly separable (left panel) can become
linearly separable after applying an appropriate non-linear transformation to a
higher-dimensional space (center and right panel, two different viewpoints).

quite large and frequently M has to satisfy M ≫ N in order to achieve linear
separability.

While the concept appears appealing, it is yet unclear how we should identify
a suitable transformation ξ → Ψ for a given problem and data set. Before
we return to this problem (and actually circumvent it elegantly), we discuss
the actual training, i.e. the choice of a suitable weight vector W in the M -
dimensional space.

4.3.2 Large margin classifier

Let us assume that for a given, non-separable data set DN =

ξµ ∈ RN , Sµ

T

P

µ=1

we have found a suitable transformation such that

DM =

Ψµ ∈ RM , Sµ

T

P

µ=1

is indeed linearly separable in M dimensions. Hence, we can apply conventional
perceptron training in the M -dimensional space and, by means of the Perceptron
Convergence Theorem (3.22), we are even guaranteed to find a solution.

However, in general, we do not have explicit control of (or reliable informa-
tion about) how difficult the task will be. On the one hand, we would wish to
use a powerful transformation to very high-dimensional Ψ in order to guarantee
separability and make it easy to find a suitable W . On the other hand, one
could expect inferior generalization behavior in that case. Along the lines of
the student-teacher scenarios discussed in Sec. 3.5.1, the corresponding version
space of consistent hypotheses W might be unnecessarily large.

The SVM aims at resolving this dilemma by determining the solution of
maximum stability Wmax. Hence, the potentially very large freedom in select-
ing a weight vector W in the high-dim. version space is efficiently restricted

100 4. BEYOND LINEAR SEPARABILITY

and – following the arguments provided in Sec. 3.5.2 – we can expect good
generalization ability.

The mathematical structure of the corresponding problem is fully analogous
to the original (3.58). The M -dim. counterpart reads

Perceptron of optimal stability (M -dim. feature space) (4.22)

For a given data set DM = {Ψµ, Sµ
T }

P

µ=1, find the vector Wmax ∈ RM

with Wmax = argmax
W κ(W) with κ(W) = min

κµ =

W ·ΨµSµ
T

|W |

P

µ=1
.

Obviously we can simply translate all results, concepts and algorithms from Sec.
3.6 to the transformed space.

So far we have assumed that the transformation ξ → Ψ exists and is explic-
itly known. Then we could for instance formulate and apply an M -dimensional
version of the MinOver algorithm (3.59,3.60). Moreover, we can apply the opti-
mization theoretical concepts and methods presented in Sec. 3.7 as exploited in
the next sections. Among other aspects, this implies that the resulting classifier
can be expressed in terms of support vectors, which ultimately motivates the
use of the term Support Vector Machine.

4.3.3 The kernel trick

In analogy to the original stability problem, cf. Sec. 3.7, we can introduce the
embedding strengths X = (X1, X2, ..., XP)⊤ ∈ RP . With the shorthand Ψµ =
Ψ(ξµ) we also define the correlation matrix

Γ with elements Γµν = 1
M Sµ

TΨ
µ ·ΨνSν

T (4.23)

and analogous to Eqs. (3.76) we obtain

W =
1

M

P

µ=1

Xµ Ψµ Sµ and W 2 =
1

M
X⊤ Γ X. (4.24)

Eventually, we can re-formulate the problem (4.22) as

Perceptron of optimal stability (M -dim. feature space)

minimize
X

1

2
X⊤Γ X subject to inequality constraints Γ X ≥ 1 (4.25)

and proceed along the lines of Sec. 3.7 to derive, for instance, the corresponding
AdaTron algorithm, see below.

4.3. SUPPORT VECTOR MACHINES 101

The output of the M -dim. perceptron can be written as

S(ξ) = sign

W ·Ψ(ξ)

= sign

1

M

P

µ=1

Xµ SµΨµ ·Ψ(ξ)

. (4.26)

We note that this involves the scalar products of the M -dimensional, trans-
formed input vector with the transformed example training examples Ψµ. We
define a so-called kernel function

K : RN×RN →R with K(ξ, ξ) =
1

M
Ψ(ξ) ·Ψ(ξ) =

1

M

M

j=1

Ψj(ξ)Ψj(ξ)

(4.27)
which represents the scalar product in RM . We observe that

S(ξ) = sign

P

µ=1

Xµ SµK(ξµ, ξ)

(4.28)

does not involve the transformation Ψ(. . .) explicitly anymore. The kernel K is
defined as a function of pairs of original feature vectors. Similarly, we have

Eµ =

Γ X

µ
= Sµ

T

P

ν=1

Sν
T Xν K(ξµ, ξν). (4.29)

One can also formulate the AdaTron algorithm for optimal stability in the
M -dimensional space. The Kernel AdaTron was introduced and discussed in
[FCC98] and has been applied in a variety of practical problems. In analogy to
(3.98) it is given as

Kernel AdaTron (sequential updates) (repeated presentation of D)

– at time step t, present example µ = 1, 2, 3, ..., P, 1, 2, 3, ...
– perform the update

Xµ(t+ 1) = max

0, Xµ(t) + η

1 − Sµ

T

P

ν=1

Sν
T Xν K(ξµ, ξν)

. (4.30)

The training algorithm is also expressed in terms of the kernel and does not
require explicit use of the transformation Ψ, formally.
So far, the above insights suggest a strategy along the following lines:

a) For a given, non-separable DN , identify a suitable non-linear mapping
ξ → Ψ from N to M dimensions that achieves linear separability of DM .

b) Compute the kernel function for all pairs of example inputs:
Kµν = K(ξµ, ξν) = 1/M Ψµ ·Ψν .

102 4. BEYOND LINEAR SEPARABILITY

c) Determine the embedding strengths Xmax corresponding to optimal sta-
bility in the M -dim. weight space, for instance by use of the AdaTron
(4.30).

d) Classify an arbitrary ξ ∈ RN according to

S(ξ) = sign

P

µ=1

Xµ
max S

µK(ξµ, ξ)

In practice, of course, the problem is to find and implement a suitable trans-
formation that yields separability in a given problem and data set. However, we
observe that once step (a) is performed, the transformation ξ → Ψ is not explic-
itly used anymore. Even the weight vector Wmax is not required explicitly: it
is not directly updated in in the training (c), nor is it used for the classification
in working phase (d). Instead, the representation (4.24) is used throughout.

Ultimately, this suggests to by-pass the explicit transformation in the first
place and replace step (a) by

a’) For a given, non-separable DN , identify a suitable kernel function K(ξ,ξ)
and proceed from there as before.

This can only be mathematically sound if the selected kernel K(ξ, ξ) func-
tion represents some meaningful transformation, implicitly. It is obvious that
for any transformation a kernel exists and we can work it out via the scalar prod-
ucts ψ(ξ) · ψ(ξ). However, the reverse is less clear: given a particular kernel,
can we guarantee that there is a valid, i.e. consistent, well-defined transforma-
tion? Fortunately, such statements can be made with respect to a large class of
functions without having to work out the underlying ξ → Ψ explicitly.

Sufficient conditions for a kernel to be valid can be provided according to
Mercer’s Theorem [Mer09], see also [SS02,CST00,STC04,Her02]. Without going
into the mathematical details and potential additional conditions, it can be
summarized for our purposes as:

Mercer’s condition (sufficient condition for validity of a kernel) (4.31)

A given kernel function K can be written as K(ξ, ξ) = 1

M
Ψ(ξ) ·Ψ(ξ),

with a transformation ξ ∈ RN → Ψ ∈ RM of the form (4.20), if

g(ξ) K(ξ, ξ) g(ξ) dNξ dNξ ≥ 0

holds true for all square-integrable functions g with

g(ξ)2dNξ < ∞.

Several families of kernel functions have been shown to satisfy Mercer’s condition
and are referred to as Mercer kernels, frequently. A few popular examples are
discussed in the following.

4.3. SUPPORT VECTOR MACHINES 103

Polynomial kernels

A polynomial kernel of degree q can be written as

K(ξµ, ξ) = (1 + ξµ · ξ)q yielding S(ξ) = sign

P

µ=1

Xµ Sµ
T (1 + ξµ · ξ)q

(4.32)
as the input-output relation of the classifier.

As a special case, let us consider the simplest polynomial kernel:

Linear kernel (q = 1)

K(ξµ, ξ) = (1 + ξµ · ξ) with S(ξ) = sign

P

µ=1

Xµ Sµ
T (1 + ξµ · ξ)

(4.33)

= sign

P

µ=1

Xµ Sµ
T

≡M Θ

+

P

µ=1

Xµ Sµ
T ξµ

≡MW

·ξ

.

In this case, we can provide an immediate, almost trivial interpretation of the
kernel: it corresponds to the realization of a linearly separable function in the
original feature space (M = N) with

weights W = w =
1

M

P

µ=1

Xµ Sµ
T ξµ and off-set Θ =

1

M

P

µ=1

XµSµ
T .

The SVM with linear kernel is applied very frequently in practice. There is even
an unfortunate trend to refer to it as “the SVM”. However – strictly speaking
– the SVM is not a classifier but a framework for classification: it has to be
specified by defining the kernel in use. In particular, the linear kernel reduces
the SVM to the familiar perceptron of optimal stability (with local threshold
Θ).

In order to take full advantage of the SVM concept, we have to employ more
sophisticated kernels. The first non-trivial choice beyond linearity corresponds
to q = 2:

Quadratic kernel (q = 2)

K(ξµ, ξ) = (1 + ξµ · ξ)2 = 1 + 2

N

j=1

ξµj [ξj] +

N

j,k=1

ξµj ξµk [ξj ξk]. (4.34)

Hence, the output S(ξ) in Eq. (4.32) with q = 2 corresponds to an inhomoge-
neously linearly separable function in terms of the N original features augmented
by N(N+1)/2 products of the form [ξjξk] which includes the squares of features
for j = k.

104 4. BEYOND LINEAR SEPARABILITY

As intuitively expected, the use of the quadratic kernel represents the non-
linear mapping from N -dim. feature space to in total M = N(N + 3)/2 trans-
formed features (original, squares and mixed products). An explicit formulation
is reminiscent of Quadratic Discriminant Analysis (QDA) [HTF01], albeit aim-
ing at a different objective function in the training.

Similarly, for the general polynomial kernel (4.32) the separating class bound-
ary becomes a general polynomial surface and the dimension M of the trans-
formed feature space grows rapidly with its degree q.

Next, we consider a somewhat extreme, yet very popular choice:

Radial Basis Functions (RBF) kernel

K(ξµ, ξ) = exp

− 1

2σ2

ξµ − ξ

2

(4.35)

which involves the squared Euclidean distance and a width parameter σ.
In an attempt to interpret the popular RBF Kernel along the lines of the

discussion of polynomial kernels we could consider the Taylor series

exp[x] =

∞

k=1

1

k!
xk = 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 + . . .

which shows that the dimension of the corresponding space would be M → ∞
as all powers and products of the original features are involved.

The RBF kernel has become one of the most popular choices in the literature.
The fact that an SVM with this extremely powerful kernel with, formally, M →
∞ can generalize at all demonstrates the importance of the restriction to optimal
stability (the large margin concept) which constitutes an efficient regularization
of the classifier.

4.3.4 A few remarks
Selection of kernels and parameter setting

In practice, the choice of the actual kernel function can influence the perfor-
mance of the corresponding classifier significantly. In addition, kernels may
contain parameters which have to be tuned to suitable values by means of vali-
dation techniques. The RBF-kernel is just one example of kernels that feature
a control parameter: the width σ in Eq. (4.35). The data-driven adaptation of
kernel parameters as part of the training process has also been discussed in the
literature, see [CCST99] for just one example.

Inhomogeneous separation of classes

In analogy to the perceptron of optimal stability, see Sec. 3.8, an offset from
the origin of the high-dimensional feature space can be considered in the SVM.
For the sake of simplicity we have restricted the discussion to the homogeneous
case and refer the reader to the literature w.r.t. the conceptually straightforward
extension to inhomogeneous separation, see e.g. [CST00,SS02].

4.3. SUPPORT VECTOR MACHINES 105

Soft-margin SVM

In addition to the choice of the kernel and potential parameters thereof, one of-
ten resorts to a soft margin version of the SVM [CV95], see also [SS02,CST00,
STC04,Her02,DFO20]. The considerations of Sec. 4.1.2 for the simple percep-
tron immediately carry over to the SVM formalism, once a kernel is defined.

The modified optimization problems (4.4) and (4.5) are easily generalized to
the case of the Support Vector Machine by replacing the embedding strengths
with X and the correlation matrix by Γ from Eq. (4.24) and (4.23), respectively.

Consequently, we can immediately derive suitable training algorithms for
the soft margin SVM. For instance, the “AdaTron with errors” algorithm (4.6)
carries over to the kernel-based formulation in a straightforward fashion.

The soft margin extension introduces an additional parameter in the training
process: the parameter γ in (4.4) implicitly controls the tolerance of constraint
violations (or even misclassifications). Like potential parameters of the kernel,
it should be determined by means of a suitable validation procedure.

Overfitting

In the early days of the SVM, occasionally the claim was made that the strong
intrinsic regularization related to the large margin idea would eliminate the risk
of overfitting to a large extent, if not completely. However, practice shows that
the use of too complex kernels or low tolerance towards misclassification can
result in poor generalization.

Interestingly, the SVM offers a signal of overfitting which does not even
require the explicit estimation of the generalization error: the number of support
vectors ns with nonzero embedding strengths Xµ > 0. A relatively high fraction
ns/P indicates that the classifier may be overly specific to the given data set.
The fact that only very few examples in the data set are stabilized by embedding
the others suggests inferior classification performance with respect to novel data
in the working phase. This indication can be exploited for the choice of a suitable
kernel to begin with, for the tuning of its parameters and for the choice of control
parameters in the optimization.

Efficient implementations

The remark at the end of Sec. 3.7.3 concerning computational efficiency and
scalability carries over to the kernel-based SVM as well.

Efficient implementations, for instance based on the concept of Sequential
Minimal Optimization (SMO) [Pla98] are available for a variety of platforms.
As just one source of information, the reader is referred to a list of links provided
at www.svms.org/software.html [svm99].

106 4. BEYOND LINEAR SEPARABILITY

Chapter 5

Feed-forward networks for
regression and classification

The fishermen in the north of Spain have been using Deep Networks
for centuries. Their contribution should be recognized . . .

— Javier Movellan

Layered Neural Networks have regained significant popularity due to their
impressive successes in the context of Deep Learning applications such as image
classification. The basic designs and training techniques have been established
decades ago.

In the previous chapter we presented examples of layered networks con-
structed from perceptron-like threshold units. The by far most popular type of
networks comprise continuous units with differentiable activation functions. In
the following, we consider the use of such networks for regression and probabilis-
tic classification and discuss their ability to approximate continuous functions.
We present methods for their training by optimization techniques like gradient
descent and variants thereof. Furthermore, we inspect specific example archi-
tectures and very briefly address the use of deep networks with many hidden
layers and strategies for their training.

5.1 Feed-forward networks as non-linear function
approximators

We first revisit the basic architecture and definition of strictly feed-forward,
layered networks. We show that, in principle, suitable networks can approximate

107

108 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

ξj ≡ σ
(1)
j

w
(1)
kj , j = 1, . . . N

S
(1)
k , k = 1, . . .K(1)

S
(2)
k , k = 1, . . .K(2)

w
(2)
kj , j = 1, . . .K(1)

. . .

vk ≡ w
(L)
1k , j = 1, . . .K(1)

σ(ξ) ≡ S
(L)
1

Figure 5.1: A feed-forward neural network with N input units, L−1 hidden
layers and a single output unit.

any reasonable function from RN to R. This implies that layered networks can
serve as tools for quite general problems of non-linear regression. In section
5.1.2 we show explicitly, that suitable layered networks can approximate any
reasonable function to arbitrary precision. Cost function based training for the
learning from examples is discussed in 5.2 with emphasis on gradient based
methods.

5.1.1 Architecture and input-output relation

Figure 5.1 displays a multilayer neural network with a single output unit. The
generalization to several output units is formally straightforward. The figure
suggests a convergent architecture with the number of hidden units per layer
decreasing towards the output. While in practice this is frequently the case, it
is by no means required in the following.

The network in Fig. 5.1 is strictly feed-forward, i.e. the state of a particular
hidden unit depends directly and only on the nodes in the previous layer. The
resulting hidden unit activation is

S
(M)
k = g

(M)
k

K(M−1)

j=1

w
(M)
kj S

(M−1)
j − θ

(M)
k

 (5.1)

where adaptive weights w(M)
kj connect the j-th unit in layer (M − 1) to the k-th

unit of layer M and θ
(M)
k denotes an adaptive local threshold. Alternatively,

we could introduce an additional, clamped unit S
(M)
0 ≡ −1 in each layer and

5.1. NON-LINEAR FUNCTION APPROXIMATORS 109

represent the local threshold by a weight w
(M−1)
k0 ≡ θ

(M)
k . This would parallel

our representation of inhomogeneously linear separable functions in Eq. (3.4).
We can include the input layer in the the notation of Eq. (5.1) by defining

S
(0)
j ≡ ξj . Similarly, we can rename the single output as S

(L)
1 ≡ σ in the L-th

layer with K(L) = 1:

σ(ξ) ≡ S
(L)
1 = gout

K(L−1)

k=1

vk S
(L−1)
k − θout

= g
(L)
1

K(L−1)

k=1

w
(L)
1k S

(L−1)
k − θ

(L)
1

(5.2)

with the alternative notations vk ≡ w
(L)
1k and θout ≡ θ

(L)
1 .

The output according to Eq. (5.2) together with (5.1) can be interpreted as
a function

σ : RN → R.
The precise form of the input-output relation is determined by the network
architecture including its connectivity and the activation functions. Frequently
we will assume that the same transfer function g(. . .) defines the activation of all
hidden units, while the output might result from a specific activation gout(. . .).

5.1.2 Universal approximators
Following the previous section we can use a feed-forward network with a single
output to implement a function from RN to R. It is a quite common concept to
realize or approximate functional dependencies by the superposition of specific
basis functions. A most prominent example is the representation in terms of
Fourier series which exploit properties of the trigonometric basis functions. Co-
efficients are chosen as to approximate a target function to a required precision.
Frequently, they are fitted to a set of discrete points and the resulting series is
used to interpolate or even extrapolate. Hence, the situation is reminiscent of
more general non-linear regression.

Neural networks of the form discussed in the previous section can be seen as
a particular framework for functional approximation: for a given architecture
and connectivity, the function σ : RN → R is parameterized by the choice of all
adaptive quantities, i.e. weights and thresholds.

In the following we will see that the considered type of layered neural net-
works can approximate virtually any function1 to arbitrary precision.

A network for piecewise constant approximation

Here we show by construction that any reasonable function f : RN → R can
be approximated by a layered neural network comprising sigmoidal and linear

1Mathematical subtleties are ignored here to some extent.

110 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

z

g23(z)

sigm.

linear

z

g5a(z)− g5b (z)

Figure 5.2: Left panel: A sigmoidal activation of the form (5.3) with γ =
2, zo = 3 as an example. Right panel: The difference of two steep sigmoidals
(here: γ = 5, a = 2, b = 6, respectively) singles out arguments a ≤ z ≤ b. The
inset shows a graphical representation of the sigmoidals with equal γ connected
to input z with thresholds a, b, respectively, and a linear unit computing the
difference of their activations.

units. More precisely, we will consider functions which map inputs from a
compact subset of RN to a real valued output. We restrict the argument to
feature vectors from the hypercube ξ ∈ [0, 1]

N , which can always be generalized
by transformations like rescaling and translation in input space.

Let us first consider sigmoidal neurons with, for instance, the activation

gγzo(z) =
1

1 + exp[−γ(z − zo)]
, (5.3)

with the argument z ∈ R, threshold zo and steepness parameter γ > 0, see
Figure 5.2 (left panel) for an example. Two (steep) sigmoidal units can be
combined in order to select a range of z-values, effectively:

Gγ
[a,b](z) = gγa(z)− gγb (z) =

1

1+e−γ(z−a) −
1

1+e−γ(z−b) ≈

1 if a< z<b
0 else.

(5.4)
where the approximate identity becomes exact in the limit γ → ∞.2 This is
illustrated in the right panel of Fig. 5.2.

For N -dim. inputs ξ we can realize the selection of a specific interval [ai, bi]
for each dimension i = 1, 2, . . . N separately, defining regions of interest (ROI)

R(j) = [a
(j)
1 , b

(j)
1]× [a

(j)
2 , b

(j)
2] . . .× [a

(j)
N , b

(j)
N], j = 1, 2, . . .M. (5.5)

These can be constructed to cover the volume of all possible inputs [0, 1]
N ,

which implies that M grows exponentially with N .
If we add up the corresponding N activations for one region of interest we

have
N

i=1 G
γ
[ai,bi]

(ξi)

≈ N if ξ ∈ R
≤ N − 1 if ξ ∕∈ R.

2For the argument we can ignore the difference between open and closed intervals.

5.1. NON-LINEAR FUNCTION APPROXIMATORS 111

2 i=
1

G
γ [a

i
,b

i
](
ξ i
)

ξ2

ξ1

2

0

1

ξ2

ξ1

⇒
gγ
N− 1

2

(. . .)

0

1

Figure 5.3: N threshold nodes (steep sigmoidal units) which select a specific
interval per input dimension can be combined by adding up their activation.
The left panel shows an illustration for N = 2 and ξj ∈ [−10, 10]. Only where
all threshold units are activated, the sum reaches its maximum N . For ξ ∕∈ R,
cf. Eq. 5.5, the total activation is

2
i=1 G

γ
[ai,bi]

(ξi) ≤ N − 1. Consequently, an
additional threshold operation can be employed to single out a region of interest
R ⊂ RN , as illustrated in the right panel.

Here we consider one particular ROI and have omitted the superscript (j) for
simplicity. Another threshold unit, i.e. a steep sigmoidal with zo = N −1/2 can
be applied to the sum to single out inputs ξ ∈ R, see Fig. 5.3 for an illustration
with N = 2.

Figure 5.4 displays the architecture of a layered net in which M such units
correspond to the ROI of Eq. (5.5). Eventually, we select one representative
value vj = f(ξ(j)) of the target function in each ROI, for instance with ξ(j) in
the center of R(j). The vj serve as weights for feeding the activations ϑj into a
simple, linear output unit. Therefore, the resulting network response

M
j=1 vjϑj(ξ) = vk for ξ ∈ R(k) (5.6)

amounts to a piecewise constant approximation of the target function in [0, 1]
N .

The constructive argument shows that the network in principle constitutes
a universal approximator. However, a few remarks are in place:

◦ In order to achieve an accurate approximation of any non-trivial func-
tion, we would have to realize a rather fine-grained representation of in-
put space. Assuming that we split [0, 1] into, say, k equal size intervals
in each of the N feature dimensions, the network of Fig. 5.4 would com-
prise O(Nk) units in the second and third layer, which appears reason-
able. However, representing all possible combinations of N intervals in
the fourth layer requires on the order of O

kN

hidden units.

◦ The idea of training the feed-forward network by means of example data
appears somewhat obscured. The simple-minded setting of the weights
vj = f(ξ(j)) in Eq. (5.6) could be interpreted as learning from one ex-
ample per ROI. However, in view of the previous remark, the procedure

112 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

Figure 5.4: The constructed network for piecewise constant function approx-
imation: Each input unit (top layer) is connected to a set of sigmoidal units
in the second layer. Pairs of these connect to linear units in the third layer
which select specific intervals [ai, bi], [bi, ci], . . . as illustrated in Fig. 5.2. Each
unit marked as ϑj in the fourth layer performs a threshold operations on a par-
ticular sum of N activations in the third layer, corresponding to one selected
interval in each feature dimension. An activation ϑj = 1 indicates that ξ ∈ R(j)

and the resulting state of the linear output unit is given by vi = f(ξ(i)) which
corresponds to a representative ξ(i) ∈ R(i).

would require a number P of examples that grows exponentially with the
dimension N .

◦ In this sense, the construction of ROI parallels the use of grandmother
neurons when showing that the parity machine is a universal classifier in
Section 4.2.

While the argument justifies and supports the use of feed-forward networks in
principle, it does not provide insight into how to design and how to train such
a system in practice.

Note that the number of layers required for universal approximation is lim-
ited. In the above construction scheme, four layers of processing units are
sufficient. Obviously, shallow networks are sufficient to achieve this property.
However, this does not imply that shallow architectures are necessarily suitable
for all practical applications. In fact, the recent success of deep networks appears
to suggest the contrary, in many cases.

5.1. NON-LINEAR FUNCTION APPROXIMATORS 113

input layer ξ ∈ RN

input-to-hidden weights

w(k) ∈ RN (k = 1, 2, . . .K)

hidden units Sk = g

w(k) · ξ−θ(k)

hidden-to-output weights vk

linear output σ

ξ

=

K
k=1 vk Sk

Figure 5.5: A so-called Soft Committee Machine realizes a functional approx-
imation as considered in Cybenko’s Theorem. A number K of hidden units with
sigmoidal activation and adaptive thresholds θ(k) are connected through adap-
tive weight vectors w(k) with the N -dim. input layer, in the illustration K = 3.
The linear response σ(ξ) is determined as σ =

K
k=1 vk g

w(k) · ξ−θ(k)

with

hidden-to-output weights vk ∈ R.

Variants of the Universal Approximation Theorem

In the literature various incarnations of the Universal Approximation Theorem
have been presented, differing in the degree of generality and practical relevance.
Some of them address particular classes of target functions, others focus on
specific types of activation functions or network architectures, see [Hor89,Fri94,
LLPS93,SM15,MM92,CMB00] for examples and reviews.

In the following we present an early and important formulation which is due
to G. Cybenko [Cyb89]. The theorem states that a relatively simple network
with a single hidden layer of sigmoidal units and a linear output is a universal
function approximator:

Cybenko’s Theorem (5.7)

Consider inputs ξ ∈ [0, 1]
N and a continuous, sigmoidal function

g : R → R with g(z) →

1 for z → +∞
0 for z → −∞.

Let w(k) ∈ RN , vk ∈ R, θ(k) ∈ R for k = 1, 2, . . .K.

Then, finite sums of the form

σ(ξ) =

K

k=1

vk g

w(k) · ξ − θ(k)

are dense in the space of continuous functions C([0, 1])N .

114 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

This implies that for any continuous target function τ ∈ C([0, 1]N) and a given
real number ε > 0, parameters

w(k)∈RN , vk∈R, θ(k)∈R

K

k=1
exist with

σ(ξ)− τ(ξ)
 < ε for all ξ ∈ [0, 1]

N
.

The parameters can be interpreted as the weights and thresholds of a network
with a single hidden layer and linear output which is illustrated in Figure 5.5.
The term Soft Committee Machine has been coined for this architecture, see
[Saa99] and references therein. The name refers to the network’s similarity
with the (discrete output) committee machine for classification tasks which is
discussed in Section 4.2.
In a sense, Cybenko’s Theorem provides a stronger and more useful statement
than the basic insight obtained by the construction in the previous section.
However, the problem remains that a very large number K of hidden units
might be required to exploit the approximation property in practice. Moreover,
the theorem itself states only the existence of suitable parameters, it does not
suggest how to find them.

The choice of appropriate network parameters based on example data is
addressed in the following sections. We focus on training schemes which are
based on the minimization of appropriate cost functions by means of gradient
descent techniques.

5.2 Gradient based training of feed-forward nets
As we have seen, feed-forward neural networks can serve as universal function
approximators. Hence it appears natural to employ them in the context of non-
linear input/output relations which correspond to a real-valued target function
σ : RN → R.

Extensions to multiple continuous outputs are obviously possible. Likewise,
classification schemes could be realized by an additional binary threshold oper-
ation on the output σ or by appropriate binning in the case of multiple classes.
Class memberships could also be represented by coding schemes applied to a
number of output units as discussed in a forthcoming section.

Formally, we concatenate all M adaptive parameters of a feed-forward net-
work in one vector W ∈ RM . The convenient flattened notation facilitates a
unified discussion of various network architectures in the following. In the Soft
Committee Machine displayed in Fig. 5.5 as just one example, we have

W =

w

(1)
1 , , w

(K)
N , θ(1), . . . , θ(K), v1, . . . , vK

∈ RM with M = KN+2K

and we can refer to any of the adaptive parameters as a component Wj .
For simplicity we focus on networks with a single, continuous output σ(ξ)

in the following. The goal of training is to implement or approximate a target
function τ : RN → R by adapting a given network architecture to a given set of
examples D = {ξµ, τ(ξµ)}Pµ=1.

5.2. GRADIENT BASED TRAINING OF FEED-FORWARD NETS 115

To this end, we define an error measure which is suitable for the comparison
of the network output σ(ξ) with the target function τ(ξ) for a given input vector.
A popular and intuitive choice is the simple quadratic deviation

e(σ, τ) =
1

2
(σ − τ)

2
. (5.8)

Here and in the following, shorthands σ = σ(ξ),σµ = σ(ξµ), τ = τ(ξ) and
τµ = τ(ξµ) refer to a generic input ξ or a particular example input ξµ ∈ D,
respectively.

While many alternative measures can be considered, see the discussion in
Section 5.3, the quadratic error (5.8) remains very popular and is particularly
intuitive. It treats deviations σ > τ and σ < τ in a symmetric way and yields
e = 0 only for perfect agreement with the target.

Given a set of examples D we can define a corresponding training set specific
cost function3:

E(W) =
1

P

P

µ=1

eµ with eµ = e(σµ, τµ). (5.9)

In the context of regression, E(W) plays the role of the training error and
quantifies the network performance with respect to D. As in classification, the
expectation is that the trained network represents a hypothesis that can be
applied successfully to novel data in the working phase.

A plethora of numerical optimization methods could be used to optimize the
cost function in practice. Most of these employ local gradient information or
higher order derivatives of E(W) in order to iteratively find a (local) minimum
of the cost function. If possible, derivatives can be computed analytically or
are estimated numerically. A few prominent examples are the so-called Newton
and quasi-Newton methods, conjugate gradient descent, Levenberg-Marquardt
algorithm or line search methods. Here we point the reader to the literature,
e.g. [Fle00, PAH19, Str19, DFO20, SNW11, Bis95a, HKP91] where an overview
can be obtained and further references are provided.

Relatively simple gradient descent techniques have been particularly popular
in the context of machine learning for decades, as a very early example we have
already discussed the Adaline algorithm [WH60] in Sec. 3.7.2.

From an optimization theoretical point of view, simple gradient descent is
certainly inferior to state-of-the art methods. However, it remains an impor-
tant, very popular tool in many machine learning frameworks, including power-
ful multi-layered architectures in Deep Learning. This is due to the conceptual
simplicity and hands-on character of the descent and the fact that the mathe-
matical structure of feed-forward networks appears particularly suitable for the
computation of the required gradients.

Moreover, although the training is generically formulated as an optimization,
the actual minimization of E serves only as a proxy for the ultimate goal, which

3Other terms frequently used in this context are: objective function, loss function, or
energy.

116 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

is the successful application of the trained system to novel data. Hence, the
precision to which a minimum is determined can play a minor role and the
potential existence of many (suboptimal) local minima of E is not as problematic
as one might expect.

5.2.1 Computing the gradient: Backpropagation of Error

A key property of feed-forward layered neural networks with differentiable acti-
vation functions is that the network output itself is a differentiable function of
the inputs. Likewise, the output and the error measure e(σ, τ) are differentiable
with respect to the adaptive parameters in the network for any given input ξ:

∂e(σ, τ)

∂Wj
= (σ − τ)

∂σ

∂Wj
.

Consequently, also the data set specific cost function E =
P

µ=1 e(σ
µ, τµ) is a

differentiable function of all components of W.
For strictly feed-forward architectures as shown in Figure 5.1 we can ob-

tain derivatives of σ with respect to any network parameter Wj recursively by
applying the chain rule [Bis95a, Bis06, HKP91]. The mathematical structure
facilitates a very efficient calculation of the gradient: Weights and thresholds
serve as coefficients when computing the output for a given input in a feed-
forward network. The actual output is compared with the target and the error
is said to propagate back (towards the input) when computing the derivatives in
a layer-wise fashion, which involves the very same coefficients again. Gradients
for an example of a shallow network architecture are worked out explicitly in
Appendix A.6.

The term Backpropagation of Error (Backpropagation or Backprop for short)
was originally used for the efficient implementation of the gradient only [RM86].
Later it became synonymous with the the entire gradient based training of multi-
layered feed-forward networks and is nowadays mostly used in this sense.

The ambiguity of the term partly complicates the on-going debates about
who invented Backpropagation or coined the term Deep Learning.4 Here we
refrain from taking part in these discussions of questionable usefulness. For
some original articles and reviews of the history of Backpropagation, see e.g.
[Wer74,LBH18,CR95,Ama93,WL90,HKP91,GBC16].

5.2.2 Batch gradient descent

In principle, the minimization of E(W) could be done by any suitable method
of non-linear optimization. In the context of layered neural networks, relatively
simple gradient based techniques continue to play a very important role. Here
we focus on the use of standard gradient descent. Gradient based techniques
are also discussed in Appendix A.4.

4For an example thread initiated by J. Schmidhuber in the connectionists mailing-list see
http://mailman.srv.cs.cmu.edu/pipermail/connectionists/2021-December/037086.html

http://mailman.srv.cs.cmu.edu/pipermail/connectionists/2021-December/037086.html

5.2. GRADIENT BASED TRAINING OF FEED-FORWARD NETS 117

In analogy to Eq. (A.39) in the Appendix, the basic form of the updates is
given as

Batch gradient descent (basic form)
at discrete time step t perform an update step of the form

W (t+ 1) = W (t)− η ∇WE|W=W (t) (5.10)

with the learning rate η and cost function E of the form (5.9).

At each time step, the gradient with respect to all adaptive quantities W is
computed as a sum over all examples in D:

∇WE =
1

P

P

µ=1

∇W eµ =
1

P

P

µ=1

σ(ξµ)− τ(ξµ)

∇Wσ(ξµ), (5.11)

where the r.h.s. is given for the quadratic error (5.8) but can be worked out for
alternative cost functions as well.

The terms batch or offline gradient descent refer to the fact that the entire
set D of example data is used in every update. Careful changes of W in the
direction of −∇WE decrease the value of the cost function in each individual
step and, consequently, the descent approaches some local minimum W ∗ of the
cost function. If several local minima 5 exist, the actual stationary W ∗ depends
on the initialization W (t=0) of the system.

The specific form of ∇Wσ has to be worked out by means of the chain rule
in layered networks as explained in the previous section. It depends obviously
on the network architecture, the activation functions and the set of all adaptive
quantities in the system. In Appendix A.6 a specific example is given for a Soft
Committee Machine, c.f. Section 5.1.2.

The general discussion of gradient descent in the appendix shows that its
convergence near a local minimum W ∗ of E is governed by the symmetric,
positive definite Hessian of second derivatives

H∗ = H(W ∗) ∈ RM×M with elements H∗
ij=H∗

ji =
∂2 E(W)

∂Wi∂Wj

W=W∗

. (5.12)

In a local minimum, all eigenvalues {ρi}Mi=1 of H∗ are positive and can be sorted
by magnitude:

0 < ρ1 ≤ ρ2 ≤ . . . ≤ ρmax.

We show in App. A.4.2 that with a given, constant learning rate η > 0 the
following qualitative behavior can be expected near a local optimum W ∗ :

5 The term refers to local properties of the function and possibly includes global minima.

118 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

a) η ≤ 1
ρmax

b) 1
ρmax

<η≤ 2
ρmax

c) η > 2
ρmax

Figure 5.6: Illustration of the behavior of gradient descent near a local min-
imum W ∗ (marked by the red dot in the center). The contour lines represent
the quadratic approximation of E(W) in the vicinity of a local minimum, the
black symbols correspond to the iterates W (t) in Eq. (5.10). For small step size
η (panel a) the iteration converges smoothly into the minimum, intermediate
step sizes (panel b) result in convergent yet oscillatory behavior. Failure to
converge is observed for too large step sizes (panel c).

(a) η ≤ 1/ ρmax

For small, finite learning rates, the iteration approaches the local minimum
smoothly and converges to lim

t→∞
W (t) = W ∗, see Fig. 5.6 (a). Obviously,

with very small rates η ≈ 0, the approach can become unnecessarily slow.

(b) 1/ ρmax < η ≤ 2/ ρmax

In this regime, convergence is still achieved, but in at least one of the
eigendirections of H∗ an oscillatory behavior is observed. As illustrated
in panel (b) of Fig. 5.6, the alternating behavior occurs in eigendirections
with large curvature, which correspond to narrow troughs in the landscape
E(W), while the approach towards W ∗ is smooth along directions of small
ρi in which E resembles a shallow basin.

(c) η > 2/ ρmax

Too large learning rates result in divergent behavior of the iterations as
displayed in Fig. 5.6 (c). Depending on η in relation to the individual
ρi, the distance from the minimum can increase in one, several, or all
eigendirections of H∗.

This insight is valid for any local minimum of E. However, two important
points should be noted. Firstly, the analysis presented in App. A.4.2 is only
valid close to a local minimum, where the Taylor expansion up to second order,
Eq. (A.41), is a good approximation of E. Secondly, different minima can dis-
play very different properties in terms of the Hessian and its eigenvalues. In any
case, minima are not known in advance, which would render the training un-
necessary. Since the cost function E can have many local minima, the outcome

5.2. GRADIENT BASED TRAINING OF FEED-FORWARD NETS 119

of the training process may depend strongly on the initialization of the system.
Therefore, the practical relevance of the mathematical analysis is limited.

In practice, a relatively large η could be used in the initial phase of training,
assuming that the system is far away from any local minimum. Schemes have
been suggested in the literature, which monitor the iterations and adjust the
learning rate, for instance whenever a zigzagging behavior is observed. An
intuitive example of a heuristic step size adaptation in batch gradient descent
is presented in [PBB11].

The most important insight of this section is that in batch gradient descent,
non-zero finite learning rates can be used to reach a local minimum. This is in
contrast to the stochastic gradient descent strategy discussed in the next section.
There, the learning rate has to be reduced to zero in the course of training in
order to enforce convergence of the network configuration.

5.2.3 Stochastic gradient descent
The cost function E(W), Eq. (5.9), is given as a sum over examples in D:

E(W) =
1

P

P

µ=1

eµ(W) with ∇WE =
1

P

P

µ=1

∇W eµ, (5.13)

where eµ quantifies the contribution of an individual example to the total costs.
Virtually all machine learning objectives mentioned and discussed in this text
can be written in such a form, with the actual function eµ(W) and the pre-
cise definition of D depending on the details, of course. This includes the log-
likelihood in maximum-likelihood problems, the SSE (2.5) in regression, the
quantization error in unsupervised Vector Quantization [HKP91,BHV16] or the
objective function of the Generalized LVQ scheme introduced in Chapter 6.

We note that costs of the form (5.13) can be interpreted as an empirical
average of eµ over the data set, corresponding to randomly drawing examples
from D with equal probability 1/P. Accordingly, the gradient of E as in Eq.
(5.13) can also be seen as a data set average of the single example terms ∇W eµ.

As a consequence, we can approximate the gradient of E by computing a
restricted empirical mean over a random subset of D. As an extreme case, we
can inspect single, randomly selected examples:

Stochastic gradient descent (SGD)

at discrete time step t

- select a single example {ξµ(t), τµ(t)} randomply with equal probability
- perform an update step

W (t+ 1) = W (t) +∆W (t) = W (t)− η(t) ∇W eµ(t)

W=W (t)

. (5.14)

with the learning rate η(t) and error terms eµ as given in Eq. (5.13).

120 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

The learning rate is denoted as η(t) in order to indicate a possible explicit
time-dependence and to distinguish it from η in batch gradient descent, Eq.
(5.10). Clearly, the computational costs per update are lower than in the batch
procedure which involves the sum of P gradient terms in each step.

The update of the form (5.14) is referred to as online or stochastic gradient
descent, in contrast to offline batch algorithms. It can be seen as a special case
of stochastic approximation, see [RM51,Bis95a,HTF01] and Appendix A.5.3.

The stochastic approximation of the gradient introduces noise in the training
process. As a consequence, E(W) may increase in individual update steps. The
intuitive motivation for stochastic descent is that this noise helps the system to
explore the search space more efficiently and to overcome barriers (e.g. saddle
points of E) which separate different local minima of the cost function.

The index µ(t) of the presented example at time t in Eq. (5.14) is drawn
randomly from the set {1, 2, . . . , P} with equal probability 1/P . In general, the
resulting individual ∆W (t) will deviate from the direction of steepest descent
−∇WE. However, on average over the random selection of an example from D
the update (5.14) follows the negative gradient of the total costs E. Therefore,
in a local minimum W ∗

∆W (t)

∗ = − 1

P

P

µ=1

η(t)∇W eµ

∗ = −η(t)∇WE

∗ = 0

where (. . .) denotes the average over the selection of µ(t). The notation (. . .)|∗
indicates that a term is evaluated in W (t) = W ∗.

Hence, the average update becomes zero in the local minimum. However,
individual updates remain non-zero, in general. This can be seen by considering
the averaged squared norm of ∆W :

|∆W |2

∗
=

1

P

P

µ=1

η2(t)

∇W eµ |∗

2
= 0 only if ∇W eµ

∗=0 for all µ

> 0 else.

In general, not all of the gradient contributions will vanish in W ∗. One exception
would be a minimum of E in which all individual eµ are minimized. For the
quadratic costs with eµ = (σ(ξµ) − τµ)2/2 this would correspond to a global
minimum E(W ∗) = 0, i.e. a perfectly solvable case where σ(ξµ) = τµ for all µ.

The generic behavior for constant learning rate η > 0 is illustrated schemati-
cally in the left panel of Fig. 5.7. After reaching the vicinity of a local minimum,
the iteration follows a seemingly irregular trajectory corresponding to the ran-
dom sequence of individual gradient terms with | ∇W eµ|∗ |

2
> 0.

We can enforce convergence near a local minimum in the sense of

lim
t→∞

W (t) = W ∗ and lim
t→∞

∆W (t) = 0 (5.15)

by employing an explicitly time-dependent learning rate η(t) which decreases
appropriately with the number of descent steps. Conditions for suitable learning

5.2. GRADIENT BASED TRAINING OF FEED-FORWARD NETS 121

Figure 5.7: Schematic illustration of the behavior of stochastic gradient de-
scent near a local minimum W ∗ as marked by the (red) dot in the center. The
contour lines represent the quadratic approximation of E(W) in the vicinity of
W ∗. Left panel: Black symbols correspond to the iterates W (t) in Eq. (5.14).
With a constant learning rate η > 0, the descent overshoots the point of sta-
tionarity in an oscillatory way. Right panel: The average of the most recent
(here: 3) positions W (t) of the stochastic descent (large filled circles) results in
a favorable estimate (large empty circle) of the local minimum.

rate schedules η(t) → 0 can be found already in the seminal paper by Robbins
and Monro [RM51] which introduced the concept of stochastic approximation in
1951, originally in the context of finding zeros of a function. Further references
and more detailed discussions can be found in several textbooks, e.g. in [Bis95a,
HTF01].

Robbins and Monro showed that schedules which satisfy lim
t→∞

η(t) = 0 with

(I) lim
T→∞

T

t=0

η(t)2 < ∞ and (II) lim
T→∞

T

t=0

η(t) → ∞ (5.16)

facilitate convergence. Intuitively, the first condition (I) states that η(t) has to
decrease fast enough in order to achieve a truly stationary configuration with
limt→∞ ∆W (t) = 0. However, enforcing η(t) → 0 too rapidly would result in
trivial stationarity at arbitrary positions in W -space. Therefore, condition (II)
implies that the decrease is slow enough so that the entire search space can be
explored efficiently.

Simple schedules which reduce the learning rate asymptotically like η(t) ∝
1/t for large t satisfy both conditions in (5.16). This relates to the well-known
results that

∞
n=1 n

−2 = π2/6 while
∞

n=1 n
−1 → ∞. Just one possible (popu-

lar) realization of such a decrease is of the form

η(t) =
a

b+ t

with constant parameters a, b > 0.

122 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

Various schedules which satisfy the conditions (I) and (II) of Eq. (5.16)
can be considered, including power laws η(t) ∝ t−β , logarithmic schedules like
η(t) ∝ 1/(t ln t), or other explicitly time-dependent schemes, see for instance
[DM92] and references therein.

Stochastic gradient descent is arguably the most popular basic scheme for the
training of neural networks, including systems with many layers in the context
of Deep Learning.

5.2.4 Practical aspects and modifications

Numerous alternative approaches or modifications of the gradient based schemes
have been suggested and are of great practical relevance, in particular in the
context of Deep Learning. Here, only a few can be mentioned and explained
briefly. Note that some of these concepts can also be useful in batch gradient
descent.

SGD-training in epochs: In practice, we do not have to actually draw a
random example from D independently at each time step. Most frequently,
updates are organized in epochs, e.g. by generating a random permutation of
{1, 2, . . . P} and presenting the entire D in this order before moving on to the
next epoch with a novel randomized order of examples.

Mini-batch training: Instead of performing the stochastic approximation
with respect to a single example, a random subset of D can be employed replac-
ing the full gradient ∇WE by partial sums in each training step. In a sense, this
strategy retains the advantages of SGD, i.e. lower computational costs and the
introduction of noise, but yields more reliable estimates of the gradient. The
size of the mini-batches constitutes a hyperparameter which can be tuned in
practice to achieve good performance and efficiency.

Averaged SGD: While training with constant learning rate η will not re-
sult in a converging behavior W (t) → W ∗, one can expect the iterates W (t)
to approach the vicinity of a local minimum and to assume more or less ran-
dom positions centered around W ∗. This can be exploited by considering a
(potentially moving) average of the form

W av(t) =
1
k

k−1
j=0 W (t− j)

which takes into account the last k iterations of SGD. In the simplest setting
with k = t, the average is performed over all update steps up to t. As illus-
trated in Fig. 5.7 (right panel) the averaged Wav is expected to be closer to
the local minimum than the individual W (t), once the training has reached the
vicinity of the optimum. Averaging SGD for faster and smoother convergence
was suggested and studied in [PJ92,Rup88], originally.

5.3. OBJECTIVE FUNCTIONS 123

Local learning rates: For both, batch and stochastic gradient descent, it
has been suggested to use local learning rates for different layers, nodes, or
even individual weights in the network. As an early, simple rule of thumb,
Plaut et al. [PNH86] suggest to use local learning rates inversely proportional
to the fan-in of the given neuron, i.e. the number of units it receives input
from, see the discussion in [HKP91]. More sophisticated methods make use
of the local properties of the cost function in terms of second derivatives as
motivated by Newton’s method [Fle00,HKP91]. Frequently, only the diagonal
elements of the local Hessian are used to compute an individual learning rate
for the update of W j which is, for instance, inversely proportional to ∂2E

(∂Wi)2
,

see [BL89] or [HKP91] for further references.
Note that gradient based algorithms with local or even individual learning

rates do not follow the steepest descent in E anymore. However, they still realize
a descent procedure, see the discussion in the Appendix A.4.

Momentum: Already in [RHW86] a modification of simple gradient descent
was suggested, in which the update contains a memory term representing infor-
mation about recently performed updates. In its simplest form the update is a
linear combination of the (stochastic) gradient term and the previous update:

∆W (t) = −η∇W eµ(W (t)) + α∆W (t− 1) with α > 0. (5.17)

The decay factor α controls the influence of previous update steps on the cur-
rent change of W . Obviously, momentum could also be incorporated in batch
gradient descent.

The idea is to overcome flat regions where ∇WE ≈ 0, by keeping the mo-
mentum of previous downhill moves. Furthermore, momentum should milden
oscillatory behavior of the updates when E displays anisotropic curvatures.

Adaptive learning rate schedules: The design and optimization of learn-
ing rate schedules and schemes for the automated adaptation of η in SGD or
η in batch algorithms plays a key role for efficient training prescriptions. Fre-
quently, the learning rate adaptation is combined with the concept of momen-
tum. Prominent examples are algorithms termed AdaGrad, RMSProp, Adam,
or variance-based SGD (vSGD). For a first introduction and further references,
Section 8.5 in [GBC16] can serve as a starting point. A systematic comparison
of several popular schemes can be found in [LBV17], there in the context of
gradient-based LVQ training.

5.3 Objective functions

So far we have discussed the training of layered networks based on the quadratic
deviation (5.8) which, arguably, constitutes the most prominent cost function
in the context of regression. However, insights into the actual target problem,

124 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

heuristic assumptions or concrete statistical models of the observations may mo-
tivate the use of alternative objective functions in the training process. More-
over, the use of differentiable neural networks for classification tasks motivates
the use of cost functions which are designed for this particular purpose.

In the following we briefly discuss very few important examples of cost func-
tions for regression and classification based on layered neural networks with
differentiable activation functions.

5.3.1 Cost functions for regression

The very intuitive quadratic deviation or SSE cost function appears plausible
and suitable for a variety of regression problems. A variety of alternative ob-
jective functions have been suggested in the literature that can be optimized by
gradient descent or similar procedures.

Heuristic cost functions: Numerous heuristic schemes have been suggested
which adjust an instantaneous objective function while training proceeds. The
goal could be to smooth out the costs initially by levelling out details, which
could help to avoid regions that contain unfavorable local minima. Gradually,
more and more detail are re-introduced and, eventually, the genuine objective
is optimized [HKP91].

As just one example, Makram-Ebeid et et al. suggest in [MSV89] the mod-
ified quadratic costs

E(W) =
P

µ=1

γ (σµ − τµ)2 if σµ τµ > 0
(σµ − τµ)2 if σµ τµ ≤ 0

(5.18)

with the parameter γ ∈ [0, 1] increasing during the training process, e.g. accord-
ing to an explicit time-dependence γ(t). For γ = 0, deviations (σµ − τµ)2 do
not contribute to the costs if the output has the correct sign. Thus, training
will focus on achieving agreement in terms of sign(σµ) = sign(τµ), initially. As
γ → 1, the system is fine-tuned to achieve σµ ≈ τµ for all µ, eventually.

Minkowski-r errors: In the following we focus on a class of cost functions
that can be derived from a noise model which is assumed to describe the statis-
tical properties of the data at hand.

The popular quadratic deviation can be explicitly motivated by assuming
Gaussian distributed training labels. These could result from, e.g., additive
Gaussian noise corrupting the true target values in the available data, as in Eq.
(2.12). In Section 2.2.2 we have seen in the specific example of linear regression
that a corresponding Maximum Likelihood approach leads immediately to the
SSE-criterion (2.5).

Starting from different assumptions about the statistical properties leads to
specific choices of the cost function. Assume, for instance, that the training

5.3. OBJECTIVE FUNCTIONS 125

labels in a regression problem deviate from the true target function by indepen-
dent noise terms ηµ with

P (ηµ) ∝ e−β |ηµ|r with r > 0, (5.19)

which is normalized to

P (ηµ)dηµ = 1. Obviously we recover a Gaussian

density with a β-dependent variance for r = 2. The optimization of the corre-
sponding Maximum Likelihood criterion introduces a cost function of the form

E =
1

P

P

µ=1

|σµ(W)− τµ|r (5.20)

where terms independent of the network parameters W have been omitted.
This objective function is referred to as the Minkowski-r error in the literature
[HB87], see also [Bis95a].

We note again that for r = 2 the familiar MSE criterion is recovered, the
special case of r = 1 corresponds to the so-called Manhattan distance or city
block metric 6 |σ − τ |. Intuitively, costs with r < 2 will be less sensitive to
outliers, i.e. to examples with very large |σ − τ |, than the conventional SSE.

5.3.2 Cost functions for classification
Heuristically, we can apply networks with differentiable activation functions and
output also for classification, retaining regression type cost functions like the
simple quadratic deviation or (5.18) in the training. In the simple case of two
classes we could perform one additional threshold operation on a single output
of the trained network to obtain a crisp binary classifier. Similar ideas can be
applied to multi-class problems.

A more systematic approach realizes network responses that can be inter-
preted as a probabilistic assignment of the input vector to one of the classes.
Here we follow to a large extent the presentation in [Bis95a]. First, we restrict
ourselves to the case of two classes, here represented by target values τµ ∈ {0, 1},
which correspond to crisp training labels in the simplest case. Moreover, we as-
sume that also the output of the network satisfies 0 ≤ σ(ξµ) ≤ 1, as for instance
realized by a proper sigmoidal output activation.

After training, we want to interpret σ(ξ) as the class-membership probability

p(τ = 1|ξ) = σ(ξ) and p(τ = 0|ξ) = 1− σ(ξ).

This can be written conveniently in the compact form

p(τ |ξ) = σ(ξ)τ [1− σ(ξ)]1−τ . (5.21)

If we consider this as our model for the occurrence of a label τ in the data set
and we furthermore assume that the examples are generated independently, the

6Here, we ignore the subtle difficulty that |x|r it is not differentiable in x = 0 for r ≤ 1.

126 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

likelihood of generating a given set of labels {τµ}Pµ=1 with the network reads

P

µ=1

(σµ)τ
µ

[1− σµ]1−τµ

with the shorthand σµ = σ(ξµ).

Maximizing this likelihood by choice of the network parameters W is equivalent
to minimizing the negative log-likelihood

E(W) = −
P

µ=1

τµ lnσµ + (1− τµ) ln(1− σµ)

. (5.22)

In contrast to the SSE, we omit the irrelevant pre-factor 1/P here for simplicity.
The cost function quantifies the similarity of the outputs σµ which we in-

terpret as probabilities with the targets τµ in terms of their cross entropy
[Hop87,BW88,SLF88]. Note that it is bounded from below by the entropy

Eo = −
P

µ=1

τµ ln τµ + (1− τµ) ln(1− τµ)

which can only be achieved if all σµ = τµ. Since the bound Eo does not depend
on W we can subtract it from the cross entropy and consider the equivalent
objective function

E(W)−Eo = −
P

µ=1

τµ ln

σµ

τµ
+ (1− τµ) ln

1− σµ

1− τµ

≥ 0 ≡ DKL(τ ||σ). (5.23)

This is the so-called relative entropy or Kullback-Leibler divergence DKL(τ ||σ)
between the specific probability distributions σ and τ , see for instance [Bis95a]
for a discussion in the machine learning context. 7

The cross entropy E(W), Eq. (5.22), or equivalently the Kullback-Leibler
divergence DKL constitute differentiable objective function of the adaptive pa-
rameters W and can be minimized by gradient-descent based or other opti-
mization methods for a given data set D = {ξµ, τµ}Pµ=1 . This way we achieve
a network with outputs σ(ξ) that can be interpreted as a class membership
probability.

Multi-class problems: The formalism can be extended to multiclass prob-
lems with targets τµk ∈ [0, 1], k ∈ {1, 2, . . . , C} which satisfy

C
k=1 τ

µ
k = 1. In

the simple case of crisp training labels we have that for each example exactly
one τµj = 1 which indicates that ξµ is assigned to class j in the training data.

Obviously we have to consider a network architecture and activations which
can represent C assignment probabilities σk ∈ [0, 1] with

C
k=1 σk = 1. This

can be achieved, for instance, with a layer of C output units with a so-called
soft-max or normalized exponential activation, see also the following Sec. 5.4.

7Note that the KL-divergence is in general non-symmetric: DKL(τ ||σ) ∕= DKL(σ||τ).

5.4. ACTIVATION FUNCTIONS 127

Now the equivalent of cost function (5.23) becomes

DKL(τ ||σ) = −
P

µ=1

C

k=1

τµk ln

σµ
k

τµk

, (5.24)

which reduces to (5.23) in the binary case with C = 2 where σ1 = 1 − σ2 and
τ1 = 1− τ2.

Given a network structure with C outputs σk as described above, we can
determine the adaptive parameters of the system by minimization of the above
differentiable cost function. All gradient-based or more sophisticated techniques
discussed here can be applied.

5.4 Activation functions
When designing a neural network for a given task, the key step is the choice of
the network architecture and size. The choice of activation functions is equally
important, as it should reflect properties of the problem and the data. Obvi-
ously, the output unit (or units) should realize the appropriate range of possible
responses in a regression problem. In classification, properly defined outputs
should encode the crisp or probabilistic class assignments. The choice of acti-
vations in intermediate, hidden layers influences the complexity of the network
and can be crucial for the success of training, e.g. by gradient descent or other
techniques.

So far we have mainly considered threshold or sigmoidal activation functions,
with the notable exception of simple linear units when constructing a universal
function approximator in 5.1.2. A large variety of activation functions have been
suggested and investigated in the literature, see e.g. [HKP91,Bis95a,GBC16].
In this section, only a few important and/or popular choices are presented.

In the following we refrain from including gain parameters, local thresh-
olds or similar parameters in the description, the corresponding extensions are
straightforward. Similarly the range of activations can be trivially shifted and
scaled: for example, a sigmoidal function h(x) with 0 ≤ h(x) ≤ 1 can be
transformed as g(x) = 2h(x) − 1 with −1 ≤ g(x) ≤ 1. It is understood that
all functions given as g(x) in the following can be modified like a g(γx) + b if
needed.

5.4.1 Sigmoidal and related functions
In Chapter 1 we motivated the use of sigmoidal activation functions as a rough
approximation of biological neuron responses in a firing rate picture. A number
of functions satisfy the conditions (1.2) or (1.4), see Fig. 5.8 for a few prominent
examples. The left panel displays erf[x] (chain line, green), tanh[x] (dashed,
blue), and the logistic function 1/(1 + exp[−x]). The latter was shifted and
scaled to realize the range g(x) ∈ [−1, 1]. In the right panel, the Heaviside step
function of the McCulloch Pitts neuron and a piecewise linear activation, which
resembles a sigmoidal function, are shown.

128 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

x

g(x)

x

g(x)

Figure 5.8: Sigmoidal and related activation functions. Left panel: three
differential sigmoidal functions. Right panel: The limiting case of the McCul-
loch Pitts activation (Heaviside step function) and a piecewise linear function.

5.4.2 One-sided and unbounded activation functions
The simplest of all activation functions, the trivial identity g(x) = x is un-
bounded. In the context of biologically inspired firing rate models this does not
make sense, as there are no limits to the frequency of spike generation. However,
in artificial networks, linear neurons are very often employed and indeed useful
for specific tasks, e.g. as trainable output units attached to an otherwise more
complex network for regression. Examples will be presented in Sec. 5.5.

Recitfied Linear Unit and variations thereof: The so-called Rectified
Linear Unit or ReLU activation [NH10], see Fig. 5.9 (left panel), has gained
significant popularity in the context of Deep Networks 8. In its original form it
corresponds to

g(x) = max{0, x} =

0 if x < 0
x if x ≥ 0

with g′(x) =

0 if x < 0
1 if x > 0.

(5.25)

We ignore here the subtlety that the ReLU function is not continuously differ-
entiable in x = 0.

Note that the function (5.25) has been known and used for long in various
mathematical, technical and engineering fields, ranging from signal processing
and filtering to finance mathematics. Depending on the context, it is know as
the ramp function, hockey stick, or hinge function.

In the literature, several advantages are associated with the ReLU activation
when compared to, for instance, sigmoidal activations [GBC16]:

- Obviously, the ReLU is computationally cheap, and so is its derivative.
8As stated in [GBC16] : “In modern neural networks, the default recommendation is to

use the rectified linear unit . . . ”.

5.4. ACTIVATION FUNCTIONS 129

x

g(x)

x

g(x)

Figure 5.9: Unbounded and one-sided activation functions. Left panel: Sim-
ple linear activation g(x) = x (dotted), Rectified Linear Unit ReLU (solid), Eq.
(5.25), and leaky ReLU, Eq. (5.26), with a = 0.25 (dashed). Right panel: Ex-
ponential linear unit ELU (dashed, black), cf. Eq. (5.28), Swish (solid, green),
Eq. (5.29), and Softplus (dotted, blue), Eq. (5.27).

- The ReLU is one-sided, i.e. g(x) = 0 for x < 0. As a consequence, a
considerable fraction of units will display zero activity in a given network,
typically. In this sense, a network of rectified linear units realizes sparse
activity which is considered advantageous in many cases.

- When computing derivatives via the chain rule in a network of many
layers, the multiplication of many derivatives |g′| < 1 causes the so-called
problem of vanishing gradients. Supposedly, the problem is absent in
ReLU networks where g′(x) = 1 at least for x > 0.

- Several empirical comparisons of networks with ReLU and other acti-
vations have been published, in which ReLU networks display favorable
training behavior and performance. Recently, theoretical studies of model
situations seem to support these claims [OSB20].

In the so-called leaky ReLU (LReLU) activation [HZRS15], the constant zero
for x < 0 is replaced by a linear dependence, usually with a slope 0 < a < 1,
see also the left panel of Fig. 5.9. Hence, it reads

g(x) =

a x if x < 0
x if x > 0

with g′(x) =

a if x < 0
1 if x ≥ 0.

(5.26)

Differentiable, unbounded activations: Several differentiable functions
which maintain or approximate the linear behavior g(x) = x for large posi-
tive arguments x > 0 have been suggested in the literature. Fig. 5.9 (right
panel) displays three examples:

- the so-called Softplus function [GBB11]

g(x) = ln(1 + exp[x]) (5.27)

130 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

- the Exponential Linear Unit (ELU) [CUH16] with

g(x) =

exp[x]− 1 for x < 0
x for x ≥ 0,

(5.28)

- the Swish function [EYG92] with

g(x) =
x

1 + exp[−x]
. (5.29)

Interestingly, the Swish activation is even non-monotonic and displays a min-
imum in a negative value of the argument. Several empirical studies seem to
show favorable convergence behavior of gradient descent based training and
improved performance of Swish-networks compared to other activation func-
tions [EYG92,VRV+20].

5.4.3 Exponential and normalized activations
Frequently, units within a particular layer are coupled, e.g. through a normal-
ization, which deviates from the activation by local synaptic interaction.

Softmax function: The most prominent example is the representation of
assignment probabilities in an output layer of C units {σk}Ck=1. As outlined in
Sec. 5.3.2, the activations should obey 0 ≤ σk ≤ 1 individually. In addition,C

k=1 σk = 1 is required to justify their interpretation as probabilities.
An obvious and popular choice is to set σk = gβ

{xk}Ck=1

with the C pre-

activations xk and the so-called soft-max or normalized exponential activation:

gβ

{xk}Ck=1

=

exp[βxk]C
j=1 exp[βxj]

. (5.30)

Note that the required normalization couples the units σk and their states
cannot be interpreted as independently activated by synaptic interaction: each
unit depends on all pre-activations in the layer. For β → 0 all activations will
be equal (σk = 1/C), while for β → ∞ the unit with maximum xk is singled
out with σk = 1.

Radial Basis Functions (RBF): Another popular class of activations also
deviates from the familiar concept of synaptic interactions. The RBF activation
of a given unit σ with input from neurons {sj}Lj=1 which are concatenated in
the vector s ∈ RL is computed as

σ = g (||s− c||) with c ∈ RL. (5.31)

The activation depends on the Euclidean distance of the activation vector s
from the adaptive center vectors c. The term Radial Basis Function refers to
the fact that σ is isotropically centered around c.

5.5. SPECIFIC ARCHITECTURES 131

A most prominent example is the Gaussian RBF, which is frequently referred
to as the RBF:

σ = exp

−β (s− c)2

with parameter β > 0. (5.32)

Frequently, normalized Gaussian RBF are considered in a layer of hidden or
output units σk(k = 1, 2, . . .K):

σk(s) =
exp

−β(s− ck)

2

K
j=1 exp [−β(s− cj)2]

. (5.33)

In the limit β → ∞, the normalized Gaussian RBF singles out the unit with
smallest (s− ck)

2, i.e. with the closest center vector for a given s.
A popular network architecture for regression comprises a potentially high-

dimensional input layer, a single hidden layer with K units (5.33), and a linear
output unit with adjustable weights. It is described briefly in Sec. 5.5.

5.4.4 Remark: universal function approximation
In Sec. 5.1.2 we constructed a piecewise constant function approximator using
sigmoidal and linear units. It is interesting to note that it is often straight-
forward to extend these considerations to other activation functions. Note for
instance, that the combination of two ReLU units, equipped with suitable local
thresholds and gain parameters, can replace a piecewise linear activation of the
type displayed in Fig. 5.8 (right panel):

max

0,

x− a

b− a

−max

0,

x− b

b− a

=

0 for x < a
x−a
b−a for a ≤ x < b

1 for x ≥ b.

Using the resulting piecewise linear activation, we can implement the selection
of ROI, cf. Sec. 5.1.2, in analogy to the sigmoidal activations assumed there.
Hence, networks of ReLU and/or piecewise linear units also constitute universal
approximators. Similar arguments can be provided for large families of activa-
tion functions.

Similarly, units with normalized RBF activation, Eq. (5.32), can be readily
used to define ROI in input space and facilitate universal function approximation
when combined with piecewise constant representations as in Sec. 5.1.2.

5.5 Specific architectures
In this section we consider a selection of network architectures which play a role
in practical applications and can be handled with the algorithmic approaches
that we have studied so far. In the next section, specific shallow networks are in-
troduced. In Sec. 5.5.2 we briefly discuss the design and training of multilayered
deep neural networks.

132 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

5.5.1 Popular shallow networks

So far, we have developed training prescriptions in terms of shallow, feed-forward
architectures with only one or very few hidden layers. In particular we have seen
that a single hidden layer is sufficient to provide universal function approxima-
tions. An important example that we already discussed is the parity machine
for classification, with hidden and output units of the McCulloch Pitts type9.

A soft version of the committee machine, cf. Sec. 4.2, with sigmoidal ac-
tivation can be shown to be provide universal function approximation in the
context of regression, see Sec. 5.1.2. Analogous proofs exist for similar archi-
tectures with alternative hidden activations.

Radial Basis Function networks

Radial basis functions (RBF) as activation functions have been addressed in
Sec. 5.4 already. Frequently, N −K−1 architectures with K RBF hidden units
and linear output units are referred to as RBF Networks [BL88,MD89b].

In the popular case of Gaussian RBF and a single, linear output with bias
wo we have the input-output relation

σ(ξ) =

M

j=1

wjφj (ξ) + wo with φj (ξ) = exp

− (ξ − cj)

2

2σ2
j

. (5.34)

This corresponds to Eq. (5.32) with unit-specific parameters βj = 1/(2σ2
j). Each

unit is equipped with an adaptive vector ci ∈ RN which defines the center of
the receptive field. The response of the unit to a given input ξ ∈ R depends on
its Euclidean distance from the center vector. Here, we also include an adaptive
local bias wo ∈ R in the activation. Instead, we could introduce an additional
hidden unit with constant activation φo(ξ) = 1 for all ξ, similar to the clamped
input employed in Eqs. (2.4) and (3.4).

RBF networks of this form are universal approximators, see the general
discussion in [Bis95a] and specifically, [GP90]. Hence, we can employ networks
of the type (5.34) for general regression tasks.

The complexity of the RBF network can be increased by allowing for adaptive
(inverse) covariance matrices in the Gaussian activations:

φj (ξ) = exp

− (ξ − cj)

⊤
Σ−1

j (ξ − cj)

. (5.35)

Nominally, this introduces N(N+1)/2 additional adaptive parameters per sym-
metric matrix Σj ∈ RN×N . In turn, fewer units might be required to achieve
the same accuracy and performance as a larger network with hidden unit ac-
tivations of the form (5.34). Modifications can be considered, such as the re-
striction to diagonal Σj or the pooling of covariances with a single adaptive
Σ = Σ1 = . . . = ΣM .

9The parity machine is strictly speaking not an (N−K−1) architecture, see Sec. 4.2.

5.5. SPECIFIC ARCHITECTURES 133

input layer ξ ∈ RN

fixed random input-to-hidden weights
wm ∈ RN (m = 1, 2, . . .M)

hidden units σm = g (wm · ξ)

hidden-to-output weights vm

linear output S

ξ

=

M

m=1

vm σm

Figure 5.10: Illustration of an Extreme Learning Machine (ELM). The N -
dimensional input is connected to a hidden layer with M ≫ N units by fixed
(non-adaptive) random weights. In the example, the single output unit is linear,
e.g. for the purpose of regression. Extensions to a threshold unit or a full layer
of outputs are straightforward.

The RBF architecture could be used for classification tasks by attaching
a single or multiple output classifier to the hidden layer {φj(ξ)}Mj=1 . A more
natural approach is to normalize the M activations in the hidden layer as in
(5.33) and interpret them as probabilistic class assignments:

φj(ξ) =
φj(ξ)M
k=1 φk(ξ)

with φj from (5.34) or (5.35). (5.36)

These non-local activations satisfy φj ∈ [0, 1] and

j
φj = 1 and hence we can

train the system according to a classification specific cost function like (5.23)
for binary problems and (5.24) in a multi-class setting.

Remark: RBF systems for classification display a striking similarity with
prototype-based classifiers. In an LVQ system as presented in Chapter 6, the
prototypes correspond to the center vectors cj and the softmax scheme of the
classifier would be replaced by a crisp Nearest Prototype classification (NPC).
Similarly, the matrix Σ−1

j in (5.35) is the equivalent of a prototype-specific, local
relevance matrix Λj in Eq. (6.13), see Sec. 6.2.2.

Extreme Learning Machines

Frank Rosenblatt already suggested randomized connections from an input layer
to a so-called association layer, which then was classified by threshold units in
the Mark I realization of the perceptron [HRM+60], see Section 3, Fig. 3.1.
More recently, random projections have been become popular as a technique to
achieve sparse, low-dimensional representations of high-dimensional data sets,
see for instance [BM01,LHC06].

A specific feed-forward architecture, termed the Extreme Learning Machine
(ELM), was introduced in 2004 by Huang et al. [HZS06]. It is schematically

134 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

original input ξ ∈ RN

wm ∈ RN (m = 1, 2, . . .M)
encoder

decoder

latent variables ym = g (wm · ξ)

vm ∈ RN (m = 1, 2, . . .M)

ξrec =

M

m=1

ymvm

Figure 5.11: An example of a shallow auto-encoder network: The N -dim.
inputs are represented in a hidden layer with M < N units. Here, N (linear)
output units represent the target reconstruction ξrec ∈ RN , the extension to
non-linear output units is obviously possible.

represented in Fig. 5.10. The random mapping of inputs to a high-dimensional
hidden layer makes it, for instance, possible to separate classes or perform re-
gression tasks with a single linear (threshold) unit which would not be sufficient
to realize the target in terms of the original data. This is similar in spirit to the
basic idea of the Support Vector Machine, cf. 4.3. The relation of ELM and
SVM was first discussed in [FV10].

Shallow autoencoders

A particular feed-forward type of networks can be used to find a low-dimensional
representation of high-dimensional feature vectors {ξµ}Pµ=1. To this end, we can
employ a so-called auto-encoder as illustrated in Figure 5.11. The encoder rep-
resents N -dim. input vectors ξ in a single hidden layer of M < N units. The
output ξrec is again N -dimensional and the goal is to minimize the reconstruc-
tion error in the decoder:

Erec =
1

2

P

µ=1

(ξµrec − ξµ)
2
. (5.37)

Training amounts to the (e.g. gradient based) minimization of Erec with respect
to the network weights wm,vm ∈ RN . Obviously, the mathematical structure is
the same as in function approximation, with the special target to approximate
the identity function RN → RN . The resulting M -dimensional latent variables
{ym}Pm=1 serve as the low-dimensional representations of high-dimensional data.

In Fig. 5.11 the output units are assumed to be linear, the possible general-
ization to non-linear reconstructions is straightforward. One special case is par-
ticularly interesting: for linear activations g in the hidden layer and linear recon-
struction ξrec, the minimization of the reconstruction error (5.37) is analogous

5.5. SPECIFIC ARCHITECTURES 135

to the well known Principal Component Analysis, e.g. [Bis95a,HKP91,HTF01].
More precisely, the weight vectors wm, which minimize Erec, span the same
sub-space as the M leading principal components of the data set.

Using sigmoidal or other non-trivial hidden and/or output activations in
the auto-encoder network, generalizes the concept of PCA to non-linear low-
dimensional representations and reconstructions. In the next section we will
also briefly mention deep auto-encoders, where several hidden layers represent
and process the data internally [GBC16].

Obviously we can exploit the latent variables of an auto-encoder immediately
for the purpose of visualizing complex, high-dim. data if M = 2 or 3. Moreover,
after having trained the auto-encoder to realize a faithful internal representation,
one could attach a feed-forward classifier or regression network to the hidden
layer and apply supervised learning to realize a target function, e.g. of the type
RM → R.

5.5.2 Deep and convolutional neural networks

At a glance, the term Deep Learning refers to the use of feed-forward neural
networks with many hidden layers. While this over-simplified definition ignores
several aspects of Deep Learning, e.g. the potential use of feedback and recurrent
systems, we will focus here on deep feed-forward architectures. As phrased by
Goodfellow, Bengio and Courville [GBC16]:

[There is no] consensus about how much depth a model requires to
qualify as ’deep’. However, deep learning can safely be regarded as
the study of models that either involve a greater amount of compo-
sition of learned functions or learned concepts than traditional ma-
chine learning does.

The enormous success of Deep Learning and its popularity after, say, 2010, can
be attributed to a number of developments, including the following:

◦ The availability of large amounts of data, e.g. from image data bases or
large collections of commercial data in e-commerce

◦ The pre-training of deep networks or sub-networks from unspecific data
bases, followed by task-specific fine tuning (transfer learning)

◦ The ever-increasing computational power, made available through super-
computers or local solutions (e.g. GPU)

◦ The refinement of (mostly) gradient-based training techniques, e.g. w.r.t.
to the automatic adaptation of learning rates or efficient regularization
techniques such as drop out

◦ The exploitation and combination of concepts that had been developed
earlier for shallow networks, e.g. the ideas of weight-sharing or momentum.

136 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

Figure 5.12: A 3× 3 ’convolutional’ filter kernel is applied to a 3× 3 image,
here zero-padded. The 3 × 3 kernel with weights denoted in the illustration
is centered on every pixel of the image to obtain the pixel values in the 3 × 3
convolved image. Note that the operation does not reduce the dimension of the
data.

◦ The use of activation functions that (supposedly) improve the efficiency
and performance of networks in training and working phase, for example
the Rectified Linear Unit (ReLU), cf. Sec. 5.4.2

◦ The consideration of particular architectures, e.g. Convolutional Neural
Networks (CNN), designed for the analysis of specific types of data, such
as images, language, time series or other data with a low-dimensional
spatial, temporal or functional structure.

Quite a few of these concepts have been known well before the rise of Deep
Learning. Ultimately their combination made the great success of Deep Net-
works possible, see e.g. [Sch15,LBH18].

Convolutional and pooling layers

All convolutional neural networks (CNN) share some characteristic design fea-
tures which facilitate the processing of structured data. For instance, in images
or time series data, we expect localized information: Time series like the €/$
exchange rate will display short time correlations that decrease over time. Like-
wise, pixels in a photographic image are expected to be similar in intensity and
color if they belong to the same object, while far away pixels may be totally
unrelated. In the following we will discuss CNN in the context of images, the
transfer to other structured data is straightforward.

The localization is accounted for by connecting units in a first layer to limited
neighborhoods or patches of the input data, see Fig. 5.12 for an illustration. By
choice of the weights in such a filter kernel, nodes can implement a particular
local operation or convolution. 10 The weights can be adapted in the training

10The term is used somewhat loosely in the context of Deep Learning.

5.5. SPECIFIC ARCHITECTURES 137

Figure 5.13: The 3 × 3 convolved image from Fig. 5.12 is reduced to 2 × 2
pixels by applying a max-pooling (upper) or average pooling (lower) to all 2× 2
patches in the 3× 3 filtered image.

process, e.g. by using gradient based Backpropagation of Error for the entire
network. A number K of different filters is applied to all patches of the same
size in the input data. As each filter applies the same operation, the number
of adaptive weights depends only on K and on the dimension and type of the
kernels, while it is independent of the dimension of the input. This basic concept
of weight-sharing was already present in very early network models, see below
for Fukushima’s Neocognitron as an example.

The first convolutional layer in a CNN therefore represents the input data
in terms of many versions of the image obtained through a potentially large set
of adaptive filters. These may include but are not limited to (approximations
of) intuitive operations like the detection of edges or other local patterns.

Most frequently, after convolution, a pooling operation is applied in a sub-
sequent layer. Pooling reduces the dimensionality by combining, usually small,
patches of nodes into a super-pixel. Popular examples replace plaquettes of 2×2
or 3× 3 nodes by the average activation (average pooling) or by the maximum
activity in the patch, see Fig. 5.13. Typically, the pooling nodes are hard wired,
i.e. not trainable, although one could for instance consider adaptive weighted
averages for pooling.

After the first convolution and pooling, the input image is represented by
a number of filtered and dimension reduced versions. Frequently, convolutional
and pooling layers are stacked in alternating fashion, yielding increasingly ab-
stract representations of decreasing dimension. Ultimately, one or several train-
able dense layers, fully connected as in conventional feed-forward architectures,
are employed to represent the target classification or regression.

A large number of network similar architectures have been developed and
are made available in the public domain, see https://modelzoo.co for an example
repository. Many of these networks have been pre-trained on more or less generic
data sets and can be fine-tuned by the user for the specific task at hand.

Despite the simplifications through weight-sharing and similar regularization
techniques, Deep Networks often comprise a huge number of adaptive weights
and consequently can be very data hungry. In fact, it appears often surpris-

https://modelzoo.co

138 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

Figure 5.14: An early deep architecture (schematic) known as the Neocog-
nitron, first introduced by K. Fukushima in 1980 (1979 in Japanese) [Fuk80].
Besides input and output (recognition), several layers of so-called S-cells and
C-cells are stacked see the text for details. Illustration redrawn after [Fuk19]
with kind permission from the author.

ing that heavily over-parameterized networks can be trained successfully at all
and suffer less drastically from over-fitting effects than one might expect on
theoretical grounds.

Early examples: Neocognitron and LeNet

Inspired by an early model of human vision of Hubel and Wiesel [HW59], Kuni-
hiko Fukushima introduced the so-called Neocognitron network architecture as
early as 1979 (in Japanese) and 1980 [Fuk80,Fuk88], see preceding S-also [Fuk19]
for a more recent presentation and discussion of different versions of the basic
architecture.

The Neocognitron already comprises many elements of modern Convolu-
tional Neural Networks. As illustrated in Figure 5.14, the network consists of
an input and output layer, with stacked hidden layers of alternating types. Units
are typically connected to patches of nodes in the preceding layer. Feature ex-
traction layers (shaded blue in Fig. 5.14) employ local filters to these patches.
Their units correspond to the simple neurons or S-cells suggested by Hubel and
Wiesel, which are activated, for instance, by characteristic patterns like straight
lines of a particular orientation. Nodes in a subsequent layer of complex or
C-cells perform pooling operations in the sense that they are activated inde-
pendent of the precise location of the stimulation within their receptive field in
the preceding S-layer. Thanks to the averaging or pooling C-cells, the Neocogni-
tron is, to a certain degree, insensitive to shifts and distortions of input patterns.

5.5. SPECIFIC ARCHITECTURES 139

Figure 5.15: A deep architecture (schematic) known as LeNet, specifically
LeNet-5, introduced by LeCun et al. in [LBD+89]. Image available under license
CC BY3.0 at https://www.researchgate.net/publication/319905492_Image_retrieval_
method_based_on_metric_learning_for_convolutional_neural_network/figures.

The sequence of S and C layers represents the input in decreasing detail and,
ultimately, the network response (e.g. a classification) is provided in the output
layer. In contrast to more recent CNN architectures, Fukushima did not train
the Neocognitron end-to-end by gradient descent techniques. Instead, the filters
realized by S-cells were either pre-wired or adapted by means of unsupervised
learning techniques.

The Neocognitron has been studied and used in the context of brain-inspired
pattern recognition, including handwritten digit recognition and similar tasks.
It constitutes a groundbreaking work that inspired many, if not all modern Deep
Networks for visual pattern recognition and similar tasks.

Another groundbreaking architecture, known as LeNet is due to LeCun and
collaborators [LBD+89]. It is an early example of a Convolutional Neural Net-
work (CNN) for pattern recognition and image processing and can be considered
the starting point for this popular type of architecture. The structure is simi-
lar to the above discussed Neocognitron. Alternating convolutional and pooling
layers process an input with increasing abstraction towards a fully connected
output layer. The LeNet can be trained from end-to-end by gradient based
Backpropagation. It was initially introduced for the task of handwritten digit
recognition (ZIP-code reading).

Groups of nodes perform the same task on different patches of the input.
Consequently, many nodes can share the same weight values which reduces
the effective number of adaptive quantities drastically. LeNet constitutes a
very early example of weight-sharing, which to date plays an important role
in the training of deep networks, see also Sec. 7.2.5. Further improvements of
the network performance were achieved by developing and applying a specific
pruning technique named Optimal Brain Damage [LDS90], which we introduce
in Sec. 7.2.4.

Appraisal and critique of deep learning

The success of Deep Learning, mainly in the context of image processing, has
triggered a lot of excitement in, both, academia and the general public. This
includes exaggerated claims with respect to general intelligence or applications

https://www.researchgate.net/publication/319905492_Image_retrieval_method_based_on_metric_learning_for_convolutional_neural_network/figures

140 5. NETWORKS FOR REGRESSION AND CLASSIFICATION

in critical areas like clinical medicine.
Recently, several scholars have expressed criticism of Deep Learning and the

hype surrounding it, with [Mar18,Pre21,Zad19,AN20] being just a few examples.
In a sense, the situation is highly reminiscent of the strong expectations and the
later disappointments in previous waves of machine learning popularity.

In the biased opinion of the author of this text, several deplorable trends
can be observed in academia and in the general public:

◦ Deep Learning is often presented as fundamentally new and totally differ-
ent from so-called conventional, supposedly old school machine learning,
ignoring decades of research that facilitated the recent developments.

◦ The mis-identification of machine learning with image analysis only, in
particular in the non-scientific media. While image classification, scene
analysis, face recognition etc. are certainly relevant and particularly ap-
pealing problems, machine learning should be seen from a much broader
perspective.

◦ A wide-spread tendency to use overly complex DNN to tackle even rela-
tively simple, specific applications without investing a thoughtful analysis
and often without a proper critical evaluation of the performance or com-
parison with baseline techniques.

◦ The exclusive use of ready-made programming environments while having
a limited understanding of the basic underlying principles.11 Frequently
such systems offer only limited user control or the options are not exploited
properly.

◦ A lack of theoretical insight into Deep Learning, or - much worse - a lack
of interest into a better understanding of the relevant phenomena.

The last points are particularly unfortunate in view of the many interesting
challenges and open questions posed by Deep Learning, some of which are sum-
marized in [Sej20].

Despite these and other points of criticism, Deep Learning will play an im-
portant role in forthcoming years. It will certainly facilitate the exploration of
new and exciting application areas. At the same time Deep Learning will con-
tinue to provide highly interesting theoretical challenges that deserve significant
attention.

11Even worse, this is often combined with displaying code in illegible small but colorful fonts
on a black background.

Chapter 6

Distance-based classifiers

One can state, without exaggeration, that the observation of and the search for
similarities and differences are the basis of all human knowledge.

— Alfred Nobel

The use of distances or dissimilarities for the comparison of observations
with a set of labeled reference data points provides a simple yet powerful tool
for classification. In particular, the use of prototypes or exemplars, derived from
a given data set, is the basis for a very successful family of machine learning
approaches. Prototype-based classifiers are appealing for a number of reasons.
The extraction of information from previously observed data in terms of typi-
cal representatives, the prototypes, is particularly transparent and intuitive, in
contrast to many, more black-box like systems. The same is true for the working
phase, in which novel data are compared with the prototypes by use of a suitable
(dis-)similarity or distance measure.

Prototype systems are frequently employed for the unsupervised analysis of
complex data sets, aiming at the detection of underlying structures, such as
clusters or hierarchical relations, see also Chapter 8 and, for instance, [HTF01,
Bis95a, DHS00]. Competitive Vector Quantization, the well-known K-means
algorithm or Self-Organizing Maps are prominent examples for the use of pro-
totypes in the context of unsupervised learning [Koh97,HTF01,DHS00].

In the following the emphasis is on supervised learning in prototype-based
systems. In particular, we focus on the framework of Learning Vector Quan-
tization (LVQ) for classification. Besides the most basic concepts and train-
ing prescriptions we present extensions of the framework to unconventional
distances and to the use of adaptive measures in so-called relevance learning
schemes [BHV16].

The aim of this chapter is far from giving a complete review of the ongoing
fundamental and application oriented research in the context of prototype-based

141

142 6. DISTANCE-BASED CLASSIFIERS

Figure 6.1: Left panel: Illustration of the Nearest Neighbor (NN) Classi-
fier for an artificial data set containing three different classes. Right panel:
A corresponding NPC scheme for the same data. Prototypes are represented
by larger symbols. Both schemes are based on Euclidean distance and yield
piecewise linear decision boundaries.

learning. It provides, at best, first insights into supervised schemes and can serve
as a starting point for the interested reader.

The emphasis will be on Teuvo Kohonen’s Learning Vector Quantization and
its extensions [Koh97]. Examples for training prescriptions are given and the use
of unconventional distance measures is discussed. As an important conceptual
extension of LVQ, Relevance Learning is introduced, with Matrix Relevance
LVQ serving as an example.

In a sense, the philosophies behind LVQ and the SVM are diametrically
opposed to each other: while support vectors represent the difficult cases in
the data set, which are closest to the decision boundary, cf. Sec. 4.3, LVQ
represents the classes by - supposedly - typical exemplars relatively far from the
class borders.

Note that LVQ systems could be formulated and interpreted as layered neural
networks with specific, distance-based activations and a crisp output reflecting
the Winner-Takes-All principle. In fact, after years of denying the relation in
the literature, it has become popular again to point out the conceptual vicinity
to neural networks. Recent publications also discuss the embedding of LVQ
modules in deep learning approaches [VMC16,VBVS17].

6.1. PROTOTYPE-BASED CLASSIFIERS 143

6.1 Prototype-based classifiers

Among the many frameworks developed for supervised machine learning, proto-
type-based systems are particularly intuitive, flexible, and easy to implement.
Although we restrict the discussion to classification problems, many of the con-
cepts carry over to regression or, to a certain extent, also to unsupervised learn-
ing, see [BHV16].

Several prototype-based classifiers have been considered in the literature.
Some of them can be derived from well-known unsupervised schemes like the
Self-Organizing-Map or the Neural Gas [Koh97,RMS92,HSV05], which can be
extended in terms of a posterior labelling of the prototypes. Here, the focus is
on the so-called Learning Vector Quantization (LVQ), a framework which was
originally suggested by Teuvo Kohonen [Koh97]. As a starting point for the dis-
cussion, we briefly revisit the well-known k-Nearest-Neighbor (kNN) approach
to classification, see [DHS00,CH67].

6.1.1 Nearest Neighbor and Nearest Prototype Classifiers

Nearest Neighbor classifiers [DHS00,CH67] constitute one of the simplest and
most popular classification schemes. In this classical approach, a number of
labeled feature vectors is stored in a reference set:

D = {ξµ, yµ = y(ξµ)}Pµ=1

with ξµ ∈ RN . In contrast to the discussion of the perceptron and similar
systems, here we do not have to restrict the presentation to binary labels. We
therefore denote the (possibly multi-class) labels by yµ ∈ {1, 2, . . . C} where C
is the number of classes.

An arbitrary novel feature vector or query ξ ∈ RN can be classified ac-
cording to its (dis-) similarities to the samples stored in the reference data.
To this end, its distance from all reference vectors ξµ ∈ D has to be computed.
Most frequently, the simple (squared) Euclidean distance is used in this context:
d(ξ, ξµ) = (ξ − ξµ)2. The query ξ is then assigned to the class of its Nearest
Neighbor exemplar in D. In the more general kNN classifier, the assignment is
determined by means of a voting scheme that considers the k closest reference
vectors [CH67].

The NN or kNN classifier is obviously very easy to implement as it does
not even require a training phase. Nevertheless one can show that the kNN
approach bears the potential to realize Bayes optimal performance if the number
k of neighbors is chosen carefully [HTF01, DHS00, CH67]. Consequently, the
method serves, to date, as an important baseline algorithm and is frequently
used as a benchmark to compare performances with.

Fig. 6.1 (left panel) illustrates the NN classifier and displays how the system
implements piecewise linear class borders. Several difficulties are evident already
in this simple illustration. Class borders can be overly complex, for instance if
single data points in the set have been classified incorrectly. Furthermore, the

144 6. DISTANCE-BASED CLASSIFIERS

fact that every data point contributes with equal weight can lead to overfitting
effects because the classifier over-rates the importance of individual examples.
As a consequence, it might not perform well when presented with novel, unseen
data.

Straightforward implementations of kNN compute and sort the distances of
ξ from all available examples in D. While methods for efficient sorting can
reduce the computational costs to a certain degree, the problem persists and is
definitely relevant for very large data sets.

Both drawbacks could be attenuated by reducing the number of reference
data in an intelligent way while keeping the most relevant properties of the data.
Indeed, the selection of a suitable subset of reference vectors by thinning out
D was already suggested in [Har68]. An alternative, essentially bottom-to-top
approach is considered in the following sections.

6.1.2 Learning Vector Quantization

This successful and particularly intuitive approach to classification was intro-
duced and put forward by Teuvo Kohonen [Koh97,RMS92,BHV16,Koh95,SK99,
NE14]. The basic idea is to replace the potentially large set of labeled example
data by relatively few, representative prototype vectors.

LVQ was originally motivated as a simplifying approximation of a Bayes
classifier under the assumption that the underlying density of data corresponds
to a superposition of Gaussians [Koh97]. LVQ replaces the actual density esti-
mation by a simple and robust method of supervised Vector Quantization. Each
of the C classes is to be represented by (at least) one representative. Formally,
we consider the set of prototype vectors

wj , cj

M

j=1
with wj ∈ RN and cj ∈ {1, 2, . . . C}. (6.1)

Here, the prototype labels cj = c(wj) indicate which class the corresponding
prototype is supposed to represent. The so-called Nearest Prototype classifier
(NPC) assigns an arbitrary, e.g. novel, feature vector ξ to the class c∗ = c(w∗)
of the closest prototype

w∗(ξ) with d

w∗(ξ), ξ

= min

d(wj , ξ)

M

j=1
(6.2)

where ties can be broken arbitrarily.

In the following, the closest prototype w∗(ξ) of a given input vector will be
referred to as the winner. For brevity we will frequently omit the argument of
w∗(ξ) and use the shorthand w∗ when it is obvious which input vector it refers
to.

Figure 6.1 (right panel) illustrates the NPC concept: class borders corre-
sponding to relatively few prototypes are smoother than the corresponding NN
decision boundaries shown in the left panel. Consequently, an NPC classifier

6.1. PROTOTYPE-BASED CLASSIFIERS 145

can be expected to be more robust and less prone to overfitting effects.

The performance of LVQ systems has proven to be competitive in a variety of
practical classification problems [Neu02]. In addition, their flexibility and inter-
pretability constitute important advantages of prototype-based classifiers since
prototypes are obtained and can be interpreted within the space of observed
data, directly. This feature facilitates the discussion with domain experts and
stands in contrast to many other, less transparent machine learning frameworks.

An LVQ system for nearest prototype classification can be interpreted as a
neural network with a single hidden layer. The prototypes correspond to hidden
units with a distance-based activation which feed into a winner-takes-all output
unit. This appealing analogy is elaborated in, for example, [RKSV20]. However,
it is not essential for the following.

6.1.3 LVQ training algorithms

So far we have not addressed the question of where and how to place the pro-
totypes for a given data set. A variety of LVQ training algorithms have been
suggested in the literature [Koh97,SK99,Koh90,NE14,BGH07,Gho21,Wit10].

The first, original scheme suggested by Kohonen [Koh97] is known as LVQ1.
Essentially, it already includes all aspects of the many modifications that were
suggested later. The algorithm can be summarized in terms of the following
steps:

LVQ1 algorithm, random sequential presentation of data

– at time step t, select a single feature vector ξµ with class label yµ
randomly from the data set D with uniform probability 1/P.

– identify the winning prototype, i.e. the currently closest prototype

w∗
µ = w∗(ξµ) given by d(w∗

µ, ξ
µ) = min

d(wj , ξµ)

M

j=1
(6.3)

with class label c∗µ = c(w∗
µ).

– perform a Winner-Takes-All (WTA) update: (6.4)

w∗
µ(t+1) =w∗

µ(t)+ ηw Ψ(c∗µ, y
µ)

ξµ−w∗

µ

with Ψ(c, y)=

+1 if c=y
−1 else.

The magnitude of the update is controlled by the learning rate ηw. The actual
update step (6.4) moves the winning prototype even closer to the presented
feature vector if w∗

µ and the example carry the same label as indicated by

146 6. DISTANCE-BASED CLASSIFIERS

Ψ(c∗µ, y
µ) = +1. On the contrary, w∗

µ is moved farther away from ξµ if the
winning prototype represents a class different from yµ, i.e. Ψ(c∗µ, y

µ) = −1.

A popular initialization strategy is to place prototypes in the class-conditional
mean vectors in the data set, i.e.

wj(0) =

P

µ=1

δ[yµ, cj] ξµ

P

µ=1

δ[yµ, cj]

with the Kronecker-delta δ[i, j]. If several prototypes are employed per class,
independent random variations could be added in order to avoid coinciding pro-
totypes, initially. More sophisticated initialization procedures can be realized,
for instance by applying a K-means procedure in each class separately.

After repeated presentations of the entire training set, the prototypes should
represent their respective class by assuming class-typical positions in feature
space, ideally.

Numerous modifications of this basic LVQ scheme have been considered in
the literature, see for instance [Koh90, NE14, BGH07, Gho21, Wit10] and ref-
erences therein. In particular, several approaches based on differentiable cost-
functions have been suggested. They allow for training in terms of gradient
descent or other optimization schemes. Note that LVQ1 and many other heuris-
tic schemes cannot be interpreted as descent algorithms in a straightforward
fashion.

One particular cost function based algorithm is the so-called Robust Soft
LVQ (RSLVQ) which has been motivated in the context of statistical mod-
elling [SO03]. The popular Generalized LVQ (GLVQ) [SY95, SY98] is guided
by an objective function that relates to the concept of large margin classifica-
tion [CGBNT03]:

EGLVQ =

P

µ=1

Φ(eµ) with eµ =
d(wJ

µ , ξ
µ)− d(wK

µ , ξµ)

d(wJ
µ , ξ

µ) + d(wK
µ , ξµ)

. (6.5)

Here, the vector wJ
µ denotes the closest of all prototypes which carry the same

label as the example ξµ, i.e. cJµ = yµ. Similarly, wK
µ denotes the closest proto-

type with a label different from yµ. For short, we will frequently refer to these
vectors as the correct winner wJ

µ and the incorrect winner wK
µ , respectively.

The cost function (6.5) in general comprises a non-linear and monotonically
increasing function Φ(e). A particularly simple choice is the identity Φ(e) = e,
while the authors of [SY95,SY98] suggest the use of a sigmoidal Φ(e) = 1/[1 +
exp(−γ e)], where γ > 0 controls its steepness.

Negative values eµ < 0 indicate that the corresponding training example is
correctly classified in the NPC scheme, since then d(wJ

µ , ξ
µ) < d(wK

µ , ξµ).1 For
large values of the steepness γ the costs approximate the number of misclassified

1Note that the argument of Φ obeys −1 ≤ eµ ≤ 1.

6.1. PROTOTYPE-BASED CLASSIFIERS 147

training data, while for small γ the minimization of EGLVQ corresponds to
maximizing the margin-like quantities eµ.

A popular and conceptually simple strategy to optimize EGLVQ is stochastic
gradient descent in which single examples are presented in randomized order
[RM51,Bot91,FP96]. In contrast to LVQ1, two prototypes are updated in each
step of the GLVQ procedure:

Generalized LVQ (GLVQ), stochastic gradient descent

– at time step t, select a single feature vector ξµ with class label yµ
randomly from the data set D with uniform probability 1/P.

– identify the correct and incorrect winners, i.e. the prototypes

wJ
µ with d(wJ

µ , ξ
µ) = min

d(wj , ξµ)

 cjµ = yµ
M

j=1

wK
µ with d(wK

µ , ξµ) = min

d(wj , ξµ)
 cjµ ∕= yµ

M

j=1

(6.6)

with class labels cJµ = yµ and cKµ ∕= yµ, respectively.

– update both winning prototypes according to:

wJ
µ(t+1) = wJ

µ(t)− ηw
∂Φ(eµ)

∂wJ
µ

wK
µ (t+1) = wK

µ (t)− ηw
∂Φ(eµ)

∂wK
µ

, (6.7)

where the gradients are evaluated in wL
µ (t) for L = J,K.

For the full form of the gradient terms we refer the reader to [SY95,SY98]. Note
that – if Euclidean distance is used – the chain rule implies that the updates
are along the gradients

∂d(wL
µ , ξ

µ)

∂wL
µ

∝

wL

µ − ξµ

for L = J,K. (6.8)

Moreover, the signs of the pre-factors in (6.7) are given by Ψ(cL, yµ) = ±1 as in
(6.1.3). In essence, GLVQ performs updates which move the correct (incorrect)
prototype towards (away) from the feature vector, respectively. Hence, the basic
concept of the intuitive LVQ1 is preserved in GLVQ.

In both LVQ1 and GLVQ, very often a decreasing learning rate ηw is used
to ensure convergence of the prototype positions [RM51]. Alternatively, schemes
for automated learning rate adaptation or more sophisticated optimization meth-
ods can be applied, see e.g. [SNW11], which we will not discuss here.

148 6. DISTANCE-BASED CLASSIFIERS

6.2 Distance measures and relevance learning

So far, the discussion focussed on Euclidean distance as a standard measure for
the comparison of data points and prototypes. This choice appears natural and
it is arguably the most popular one. One has to be aware, however, that other
choices may be more suitable for real world data. Depending on the application
at hand, unconventional measures might outperform Euclidean distance by far.
Hence, the selection of a specific distance constitutes a key step in the design of
prototype-based models. In turn, the possibility to choose a distance based on
prior information and insight into the problem contributes to the flexibility of
the approach.

6.2.1 LVQ beyond Euclidean distance

As discussed above, training prescriptions based on Euclidean metrics generi-
cally yield prototype displacements along the vector (ξµ − w) as in Eq. (6.8).
Replacing the Euclidean distance by a more general, differentiable measure
δ(ξµ,w), allows for the analogous derivation of LVQ training schemes. This
is conveniently done in cost function based schemes like GLVQ, cf. Eq. (6.5),
but it is also possible for the more heuristic LVQ1, which will serve as an exam-
ple here. As a generalization of Eq. (6.4) we obtain the analogous WTA update
from example µ at time t:

w∗
µ(t+ 1) = w∗

µ(t) − ηw Ψ(c∗µ, y
µ) 1

2

∂δ(w∗
µ,ξ

µ)
∂w∗

µ
. (6.9)

Obviously, the winner w∗
µ has to be determined by use of the same measure δ,

for the sake of consistency.
Along these lines, LVQ update rules can be derived for quite general dissim-

ilarities, provided the distance δ is differentiable with respect to the prototype
positions. Note that the formalism does not require metric properties of δ. As
a minimal condition, non-negativity δ(w, ξ) ≥ 0 should be satisfied for w ∕= ξ
and δ(ξ, ξ) = 0.

Note that cost function based approaches can also employ non-differentiable
measures if one resorts to alternative optimization strategies which do not re-
quire the use of gradients [SNW11]. Alternatively, differentiable approximations
of non-differentiable δ can be used, see [HV05] for a discussion thereof.

In the following, we mention just a few prominent alternatives to the stan-
dard Euclidean metrics that have been used in the context of LVQ classifiers. We
refer to, e.g., [BHV16,BHV14,HV05] for more detailed discussions and further
references.

Statistical properties of a given data set can be taken into account explicitly
by employing the well-known Mahalanobis distance [Mah36]. This classical
measure is a popular tool in the analysis of data sets. Duda et al. present a
detailed discussion and several application examples [DHS00].

Standard Minkowski distances satisfy metric properties for values of p ≥ 1

6.2. DISTANCE MEASURES AND RELEVANCE LEARNING 149

in

dp(ξ, ξ) =
N

j=1

ξj − ξj

p1/p

for ξ, ξ ∈ RN , (6.10)

which includes Euclidean distance as a special case for p = 2. Larger (smaller)
values of p put emphasis on the components ξj and ξj with larger (smaller)
deviations |ξj − ξj |, respectively. For instance, in the limit p → ∞ we have

d∞(ξ, ξ) = max
j=1,...N

ξj − ξj
 .

Setting p ∕= 2 has been shown to improve performance in several practical
applications, see [BBL07,GW10] for specific examples.

The squared Euclidean distance can be rewritten in terms of scalar products:

d(w, ξ)2 = (w ·w − 2w · ξ + ξ · ξ) . (6.11)

So-called kernelized distances [Sch01] replace all inner products in (6.11) by a
kernel function κ:

dκ(w, ξ)2 = κ(w,w)− 2κ(w, ξ) + κ(ξ, ξ). (6.12)

As in the SVM formalism, the function κ can be associated with a non-linear
transformation from RN to a potentially higher-dimensional feature space. In
SVM training one takes advantage of the fact that data can become linearly
separable due to the transformation, as discussed in Sec. 4.3. Similarly, kernel
distances can be employed in the context of LVQ in order to achieve better
classification performance, see [VKNR12] for a particular application.

As a last example, statistical divergences can be used to quantify the dis-
similarity of densities or histogram data. For instance, image data is frequently
characterized by color or other histograms. Similarly, text can be represented
by frequency counts in a bag of words approach. In the corresponding classifi-
cation problems, the task would be to discriminate between class-characteristic
histograms. Euclidean distance is frequently insensitive to the relevant dis-
criminative properties of histograms. Hence, the classification performance can
benefit from using specific measures, such as statistical divergences. The well-
known Kullback-Leibler divergence is just one example of many measures that
have been suggested in the literature. For further references and an example
application in the context of LVQ see [MSS+11,Mwe14]. There, it is also demon-
strated that even non-symmetric divergences can be employed properly in the
context of LVQ, as long as the measures are used in a consistent way.

6.2.2 Adaptive distances in relevance learning
In the previous subsection, a few alternative distance measures have been dis-
cussed. In practice, a particular one could be selected based on prior insights
or according to an empirical comparison in a validation procedure.

150 6. DISTANCE-BASED CLASSIFIERS

The elegant framework of relevance learning allows for a significant con-
ceptual extension of distance-based classification. It is particularly suitable for
prototype systems and was was introduced and put forward in the context of
LVQ in [HV02,SBH09,Sch10,Bun11,SBS+10,BSH+12], for instance.

Relevance learning has proven useful in a variety of applications, including
biomedical problems and image processing tasks, see for instance [Bie17].

In this very elegant approach, only the parametric form of the distance
measure is fixed in advance. Its parameters are considered adaptive quantities
which can be adjusted or optimized in the data-driven training phase. The basic
idea is very versatile and can be employed in a variety of learning tasks. We
present here only one particularly clear-cut and successful example in the context
of supervised learning: the so-called Matrix Relevance LVQ for classification
[SBH09].

Similar to several other schemes (e.g. [WS09, BAP+12, BCLC15]), Matrix
Relevance LVQ employs a generalized quadratic distance of the form

δΛ(w, ξ) = (w − ξ)
⊤

Λ (w − ξ) =

N

i,j=1

(wi − ξi)Λij (wj − ξj). (6.13)

Heuristically, diagonal entries of Λ quantify the importance of single feature
dimensions in the distance and can also account for potentially different mag-
nitudes of the features. Pairs of features are weighted by off-diagonal elements,
which reflect the interplay of the different dimensions. Note that for Λ = IN/N ,
Eq. (6.13) recovers the simple squared Euclidean distance.

In order to fulfill the minimal requirement of non-negativity, δΛ ≥ 0, a con-
venient re-parameterization is introduced in terms of an auxiliary, unrestricted
matrix Ω ∈ RN×N :

Λ = Ω⊤Ω, i.e. δΛ(w, ξ) = [Ω (w − ξ)]
2
. (6.14)

Hence, δΛ can be interpreted as the conventional squared Euclidean distance
but after a linear transformation of feature space. Note that Eqs. (6.13, 6.14)
define only a pseudo-metric in RN since Λ can be singular with rank(Λ) < N
implying that δΛ(w, ξ) = 0 is possible even if w ∕= ξ.

Obviously, we could employ a fixed distance of the form (6.13) in GLVQ or
LVQ1 as outlined in the previous sections. The key idea of relevance learning,
however, is to consider the elements of the relevance matrix Λ ∈ RN×N as
adaptive quantities which can be optimized in the data-driven training process.

Numerous simplifications or extensions of the basic idea have been sug-
gested in the literature. The restriction to diagonal matrices Λ corresponds
to the original formulation of Relevance LVQ in [HV02], which assigns a single,
non-negative weighting factor to each dimension in feature space. Rectangular
(M ×N)-matrices matrices Ω with M < N can be used to parameterize a low-
rank relevance matrix [BSH+12]. The corresponding low-dimensional intrinsic
representation of data facilitates, for instance, the class-discriminative visualiza-
tion of complex data [BSH+12]. The flexibility of the LVQ classifier is enhanced

6.2. DISTANCE MEASURES AND RELEVANCE LEARNING 151

significantly when local distances are used, i.e. when separate relevance matrices
are employed per class or even per prototype [SBH09,BSH+12].

Here we restrict the discussion to the simplest case of a single, N×N matrix
Ω corresponding to a global distance measure. The heuristic extension of the
LVQ1 prescription by means of relevance matrices is briefly discussed in [BHV16]
and its convergence behavior is analysed in [BHS+16].

Gradient based updates for the simultaneous adaptation of prototypes and
relevance matrix can be derived from a suitable cost function. We observe that

∂δΛ(w, ξ)

∂w
= Ω⊤Ω (ξ−w) and

∂δΛ(w, ξ)

∂Ω
= Ω (w − ξ) (w − ξ)

⊤
. (6.15)

The full forms of the gradients with respect to the terms eµ in the GLVQ
cost function are presented in [SBH09], for instance. They yield the so-called
Generalized Matrix Relevance LVQ (GMLVQ) scheme, which can be formulated
as a stochastic gradient descent procedure:

Generalized Matrix LVQ (GMLVQ), stochastic gradient descent

– at time step t, select a single feature vector ξµ with class label yµ
randomly from the data set D with uniform probability 1/P.

– with respect to the distance δΛ (6.13) with Λ = Ω(t)⊤Ω(t),
identify the correct and incorrect winners, i.e. the prototypes

wJ
µ with δΛ(w

J
µ , ξ

µ) = min

δΛ(w
j , ξµ)

 cjµ = yµ
M

j=1

wK
µ with δΛ(w

K
µ , ξµ) = min

δΛ(w

j , ξµ)
 cjµ ∕= yµ

M

j=1
(6.16)

with class labels cJµ = yµ and cKµ ∕= yµ, respectively.

– update both winning prototypes and the matrix Ω according to:

wJ
µ(t+ 1) = wJ

µ(t)− ηw
∂Φ(eµ)

∂wJ
µ

wK
µ (t+ 1) = wK

µ (t)− ηw
∂Φ(eµ)

∂wK
µ

,

Ω(t+ 1) = Ω(t) − ηΩ
∂Φ(eµ)

∂Ω
. (6.17)

where the gradients are evaluated in Ω(t) and wL
µ (t) for L = J,K.

In both GMLVQ and Matrix LVQ1, the relevance matrix is updated in order
to decrease or increase δΛ(w

L
µ , ξ

µ) for the winning prototype(s), depending on
the class labels in the, by now, familiar way.

152 6. DISTANCE-BASED CLASSIFIERS

Figure 6.2: Visualization of the Generalized Matrix Relevance LVQ system
as obtained from the z-score transformed Iris flower data set, see Sec. 6.2.2 for
details.
Left panel: Class prototypes are shown as bar plots with respect to the four
feature space components in the left column. The right column shows the eigen-
value spectrum of Λ, the diagonal elements of Λ, and the off-diagonal elements
in a gray-scale representation (top to bottom).
Right panel: Projection of the P = 150 feature vectors onto the two leading
eigenvectors of the relevance matrix Λ.

Frequently, the learning rate of the matrix updates is chosen to be relatively
small, ηΩ ≪ ηw, in the stochastic gradient descent procedure. This follows the
intuition that the prototypes should be enabled to follow changes in the distance
measure. The relative scaling can be different in batch gradient realizations of
GMLVQ as for instance in [VWB21].

The matrix Ω can be initialized as the N -dim. identity or in terms of indepen-
dent random elements. In order to avoid numerical difficulties, a normalization
of the form

i Λii =

i,j Ω

2
i,j = 1 is frequently imposed [SBH09].

In the following we illustrate Matrix Relevance LVQ in terms of a classical
benchmark data set. In the famous Iris flower data set [Fis36], four numerical
features are used to characterize 150 samples from three different classes which
correspond to particular species of Iris flowers. We obtained the data set as
provided at [Lic13] and used one prototype per class and a global relevance
matrix Λ ∈ R4×4. For the training, we employed the freely available beginner’s
toolbox for GMLVQ with default parameter setting [VWB21]. An additional
z-score transformation was applied, resulting in re-scaled features with zero
mean and unit variance in the data set, see Sec. 8.1.1. This allows for an
immediate interpretation of the relevances, without having to take into account
the potentially different magnitudes of the features.

Figure 6.2 visualizes the obtained classifier. The resulting LVQ system
achieves almost perfect, error-free classification of the training data. It also

6.3. CONCLUDING REMARKS 153

displays very good generalization behavior with respect to validation or test set
performance not presented here.

In the left panel, the prototypes after training and the resulting relevance
matrix and its eigenvalues are displayed. As discussed above, the diagonal ele-
ments Λii can be interpreted as the relevance of features i in the classification.
Apparently, features 3 and 4 are the dominant ones in the Iris classification prob-
lem. The off-diagonal elements represent the contribution of pairs of different
features. Here, also the interplay of features 3 and 4 appears to be important.

In more realistic and challenging data sets, Relevance Matrix LVQ can pro-
vide valuable insights into the problem. GMLVQ has been exploited to identify
the most relevant or irrelevant features, e.g. in the context of medical diag-
nosis problems, see [Bie17] for a variety of applications. A recent application
in the context of galaxy classification based on astronomical catalogue data is
presented in [NWB18,NWB+19].

In an N -dimensional feature space, the GMLVQ relevance matrix intro-
duces O(N2) additional adaptive quantities. As a consequence, one might
expect strong overfitting effects due to the large number of free model parame-
ters. However, as observed empirically and analysed theoretically, the relevance
matrix displays a strong tendency to become singular and displays very low
rank(Λ) = O(1) ≪ N after training [BHS+16]. This effect can be interpreted as
an implicit, intrinsic mechanism of regularization, which limits the complexity
of the distance measure, effectively.

In addition, the low rank relevance matrix allows for the discriminative vi-
sualization of the data by projecting feature vectors (and prototypes) onto its
leading eigenvectors. As an illustrative example, Fig. 6.2 displays the Iris flower
data set.

6.3 Concluding remarks
Prototype-based models continue to play a highly significant role in putting
forward advanced machine learning techniques. We encourage the reader to
explore recent developments in the literature. Challenging problems, such as
the analysis of functional data, non-vectorial data or relational data, to name
only very few, are currently being addressed, see [BHV16, NE14] for further
references. At the same time, exciting application areas are being explored in a
large variety of domains.

Most recently, prototype-based systems are also re-considered in the context
of Deep Learning [GBC16,Sch15,LBH18,Hue19]. The combination of multilayer
network architectures with prototype- and distance-based modules appears very
promising and is the subject of on-going research, see, for instance, [SHRV18,
VMC16] and references therein.

154 6. DISTANCE-BASED CLASSIFIERS

Chapter 7

Model evaluation and
regularization

Accuracy is not enough.
— Paulo Lisboa

In supervised learning the aim is to infer relevant information from given
data, to parameterize it in terms of a model, and to apply it to novel data
successfully. It is obviously essential to know or at least have some estimate of
the performance that can be expected in the working phase.

In this chapter we discuss several aspects related to the evaluation and val-
idation of supervised learning. In Sec. 7.1, we take a rather general perspective
on overfitting and underfitting effects without necessarily addressing a partic-
ular classifier or regression framework. We present methods for controlling the
complexity of neural networks in Sec. 7.2. Cross-validation and related methods
are in the focus of Sec. 7.3. Specific quality measures beyond the simple overall
accuracy for the evaluation of classifiers and regression systems are presented
in 7.4.3. Finally, we address the importance of interpretable models in machine
learning in Sec. 7.5.

7.1 Bias and variance, over- and underfitting

Different sources of error can influence the performance of supervised learning
systems. Here we decompose the expected prediction error into two main con-
tributions, see e.g. [HTF01,Bis06]: the so-called bias corresponds to systematic
deviations of trained models from the true target, while the term variance refers
to variations of the model performance when trained from different realizations

155

156 7. MODEL EVALUATION AND REGULARIZATION

K = 1 K = 3 K = 7

DA

DB

DC

Figure 7.1: Illustration of the bias-variance dilemma in regression. In each
row of graphs, a particular set of 10 points {xi, yi}10i=1 is approximated by least
square linear regression (K = 1), by a cubic fit (K = 3), and by fitting a
polynomial of degree seven (K = 7). Rows correspond to three randomized,
independently generated data sets DA,B,C .

of the training data1.
Frequently, a so-called irreproducible error is considered as a third, inde-

pendent contribution [HTF01]. It could, for instance, stem from intrinsic noise
in the test data which cannot be predicted even with perfect knowledge of the
target rule. As the irreproducible error is beyond our control anyway, we refrain
from including it in the discussion.

7.1.1 Decomposition of the error

For the purpose of illustration, we consider a simple one-dimensional regression
problem. The obtained insights, however, carry over to much more complex
systems. In our example, least squares fits are based on data sets of the form
D = {xµ, yµ}Pµ=1. They contain real-valued arguments xµ ∈ R , e.g. equidistant
values in [−1, 1], and their corresponding target labels yµ ∈ R. The data sets

1Note that the terms bias and variance are used in many different scientific contexts with
area specific meanings.

7.1. BIAS AND VARIANCE, OVER- AND UNDERFITTING 157

represent a function f(x) which is of course unknown to the learning system.
We assume that the training labels are noisy versions of the true targets:

yµ = f(xµ) + rµ with 〈rµ〉 = 0 and 〈rµ rν〉 = ρ2δµν (7.1)

with the Kronecker-delta δµν . Hence, the deviation of the training labels from
the underlying target function is given by uncorrelated, zero mean random quan-
tities rµ in each data point. Further details are irrelevant for the argument, but
we could, for instance, consider independent Gaussian random numbers with
variance ρ2, i.e. rµ ∼ N (0, ρ). We perform polynomial fits of the form

fK(x) =

K

j=0

ajx
j with coefficients aj ∈ R (7.2)

for powers xj with maximum degree K. Given a data set D = {xµ, yµ}Pµ=1, the
aj can be determined by minimizing the familiar quadratic deviation

ESSE =
1

2

P

µ=1

fH(xµ)− yµ

2

. (7.3)

Fig. 7.1 displays three randomized data sets DA,B,C with P = 11 equidistant
xµ and noisy yµ representing the underlying target function f(x) = x3. For
each of the three slightly different data sets, polynomial least square fits were
performed with K = 1 (linear), K = 3 (cubic) and with degree K = 7. Hence,
the same data sets were analysed by using models of different complexity.

In order to obtain some insight into the interplay of model complexity and
expected performance, we consider the thought experiment of performing the
same training/fitting processes for a very large number of slightly different data
sets of the same size, which all represent the target.

We denote by 〈. . .〉D an average over many randomized realizations of the
data set or – more formally – over the probability density of the training data in
D. In this sense, the expected total quadratic deviation of a hypothesis function
fH from the true target f in an arbitrary point x ∈ R is given by

fH(x)− f(x)

2

D
, (7.4)

where the randomness of D is reflected in the outcome fH of the training. We
could also consider the integrated deviation over a range of x-values, which
would relate the SSE to the familiar generalization error. However, the following
argument would proceed in complete analogy due to the linearity of, both,
integration and averaging. Performing the square in Eq. (7.4) we obtain

f2
H(x)

D − 2 〈fH(x)〉D f(x) + f2(x). (7.5)

Note that the true target f(x) obviously does not depend on the data and can
be left out from the averages.

158 7. MODEL EVALUATION AND REGULARIZATION

For the sake of brevity, we omit the argument x ∈ R of the functions fH and
f in the following. Including redundant terms (*) which add up to zero we can
rewrite (7.5) as

〈fH〉2D
∗

− 2 〈fH(x)〉D f + f2 +

f2
H

D −2 〈fH〉2D + 〈fH〉2D

∗

(7.6)

and obtain a decomposition of the expected quadratic deviation in x:

fH−f

2

D
=

f−〈fH〉D

2

bias2

+

fH−〈fH〉D

2

D
variance

. (7.7)

The equality with (7.6) is straightforward to show by expanding the squares
and exploiting that 〈fH 〈fH〉D〉D = 〈fH〉2D =

〈fH〉2D

D
.

Hence we can identify two contributions to the total expected error:

◦ Bias (squared): (f − 〈fH〉D)
2

The bias term quantifies the deviation of the mean prediction from the
true target, where the average is over many randomized data sets and
corresponding training processes. A small bias indicates that there is very
little systematic deviation of the hypotheses from the unknown target rule.

◦ Variance:

fH − 〈fH〉D
2

D

The variance measures how much the individual predictions, obtained after
training on a given D, typically differ from the mean prediction. The
observation of a small variance implies that the outcome of the learning
is robust with respect to details of the training data.

Similar considerations apply to more general learning problems, including
classification schemes [Dom00].

7.1.2 The bias-variance dilemma
Ideally, we would like to achieve low variance and low bias at the same time, i.e.
a robust and faithful approximation of the target rule. Both goals are clearly
legitimate, but very often they constitute conflicting aims in practice, as further
illustrated in the following.

This is often referred to as the bias-variance dilemma or trade-off [HTF01,
Bis95a, Bis06, Dom00]. It is closely related to the problem of overfitting in
unnecessarily complex systems and its counterpart, the so-called underfitting in
simplistic models.

The concept of bias and variance is illustrated in Fig. 7.2 (left panel). In
the illustration, the fits of two different models are displayed in the space of
adaptive quantities, e.g. weights in a neural network, while bias and variance
are defined in terms of the prediction error. However, we can assume that the
deviation in weight space from the target is in general associated with the error.

7.1. BIAS AND VARIANCE, OVER- AND UNDERFITTING 159

model B

target

fits of model Am
od

el
pa

ra
m

et
er

2

adaptive parameter 1

pr
ed

ic
ti

on
er

ro
r

test set
performance

← high bias high variance →

training
set performance

a measure of the model complexity

Figure 7.2: Left panel: Illustration of the bias-variance Dilemma. The true
target is represented by the filled circle in the center. Fits obtained from dif-
ferent data sets Di in model A (open circles) show low bias and large variance,
while model B (filled circles) displays large systematic bias with smaller vari-
ance. Right panel: Schematic illustration of underfitting and overfitting (af-
ter [HTF01]): expected error with respect to a test set (generalization error)
and training set performance as a function of the model complexity, e.g. K in
the polynomial fits of Fig. 7.1.

Overfitting: low bias – high variance
In terms of our polynomial regression example we can achieve low bias by em-
ploying powerful models with large degree K. In the extreme case of K = P ,
for instance, we can generate models which perfectly reproduce the data points,
fK(xµ) = yµ for all µ, in each individual training process.

Because the training labels themselves are assumed to be unbiased with
〈yµ〉D = f(xµ), cf. Eq. (7.1), the averaged fit result will also be in exact
agreement with the target in the arguments xµ. In fact, since the objective
function (7.3) of the training treats positive and negative deviations symmetri-
cally as well, there is no reason to expect systematic deviations of the fits with
fK(x) > f(x) or fK(x) < f(x) for all fits in some arbitrary value of x.

However, using a very flexible model with large K will result in fits which
are very specific to the individual data set. As can be seen in Fig. 7.1, (right
column), already for a moderate degree of K = 7, very different models emerge
from the individual training processes.

For the sample points themselves, the variance of the nearly perfect fit would
be essentially determined by the statistical variance of the training labels ρ2 in
Eq. (7.1). However, when interpolating or even extrapolating to x ∈/ {xµ}Pµ=1,
the different fits will vary a lot in their prediction fK(x). Consider, for instance,
the extrapolation to x = ±1.1 in Fig. 7.1 as a pronounced example of the effect.

Underfitting: low variance – high bias
If emphasis is put on the robustness of the model, i.e. low variance, we would
prefer simple models with low degree K in (7.2). This should prevent the fits

160 7. MODEL EVALUATION AND REGULARIZATION

from being overly specific to the individual data sets. As illustrated in the left
column of Fig. 7.1, we achieve nearly identical linear models from the different
data sets. However, a price is paid for the robustness: systematic deviations
occur in each training procedure. We observe, for instance, that the linear
fits (left column) obtained from DA,B,C are virtually identical. However, they
display quite large deviations from the sample points – which represent a non-
linear function, after all. These deviations are systematic in the sense that
they are reproduced qualitatively in each data set. For instance, for the first
sample point x1 = −1 we can see that always fK=1(x) > y1. As a consequence,
interpolation and extrapolation will also be subject to systematic errors.

Matched model complexity
In our example, fits of degree K = 3 seem to constitute an ideal compromise.
In the sample points, they achieve small deviations with no systematic ten-
dency and, consequently, have relatively low bias. At the same time the fits
fK=3(x) appear also robust against variations of the data set, corresponding to
a relatively small variance.

This is of course not surprising, since polynomials of degree K = 3 perfectly
match the complexity of the underlying, true target function. It is important to
realize that this kind of information is rarely available in practical situations.

In fact, in absence of knowledge about the complexity of the target rule, it is
one of the key challenges in supervised learning to select an appropriate model
that achieves a good compromise with respect to bias and variance. In the
following sections we will consider a variety of ways to control the complexity
of a learning system with emphasis on feed-forward neural networks.

The trade-off
The above considerations suggest that there is a trade-off between the goals of
small variance and bias [HTF01,NMB+18,Dom00]. Indeed, in many machine
learning scenarios one observes such a trade-off which is illustrated in Fig. 7.2
(right panel). It shows schematically the possible dependence of the prediction
performance in the training set and the generalization error (test set perfor-
mance) as a function of the model complexity.

In our simple example, we could use the polynomial degree K as a measure
of the latter. It could be also interpreted as, for instance, the degree of a
polynomial kernel in the SVM, the number of hidden units in a two-layer neural
network, or the number of prototypes per class in an LVQ system. Similarly, the
x-axis could correspond to a continuous parameter that controls the flexibility
of the training algorithm, e.g. a weight decay parameter or the training time
itself [HKP91,Bis95a,Bis06].

Generically, we expect the training error to be lower than the generalization
error for any model. After all, the actual optimization process is based on the
available training examples.

Simplistic models that cannot cope with the complexity of the task display,
both, poor training set and d due to large systematic bias. Increasing the

7.1. BIAS AND VARIANCE, OVER- AND UNDERFITTING 161

model’s flexibility will reduce the bias and, consequently, training and test set
error decrease with K in Fig. 7.2 (right panel). However, overly training set
specific models display overfitting: while the training error typically decreases
further with increasing K, the test set error displays a U -shaped dependence
which reflects the increase of the model variance.

It is important to realize that the extent to which the actual behavior follows
the scenario in a practical situation depends on the detailed properties of the
data and the problem at hand. While one should be aware of the possible
implications of the bias-variance dilemma, the plausibility of the above discussed
trade-off must not be over-interpreted as a mathematical proof. Note that the
decomposition (7.7) itself does not imply the existence of a trade-off, strictly
speaking.

As argued and demonstrated in e.g. [Sch93] and [NMB+18], a given practical
problem does not necessarily display the U -shaped dependence of the general-
ization error shown in Fig. 7.2 (right panel). There is also no general guarantee
that measures which reduce the variance in complex models will really improve
the performance of the system [Sch93]. In many practical problems, however,
the assumed bias-variance trade-off can indeed be controlled to a certain degree
and may serve as a guiding principle for the model selection process.

According to the above considerations, a reliable estimate of the expected
generalization ability would be highly desirable in any given supervised learning
scenario. It would be very useful to be able to compare and evaluate the use of
different approaches, e.g. SVM and LVQ, in a given practical problem. Similarly,
the expected performance should guide the selection of model parameters like
the number of hidden units in a neural network. The aim is to select the most
suitable student complexity in a situation as sketched in Fig. 7.2. The same
applies to selecting a training procedure and suitable parameter values, e.g. the
learning rate.

In Sec. 7.3 we present the basic idea of how to obtain estimates of the
generalization performance by means of cross-validation and related schemes.

7.1.3 Beyond the classical bias-variance trade-off (?)

The unreasonable effectiveness of Deep Learning in Artificial Intelligence [Sej20]
seems to raise some doubts about the validity of the bias-variance trade-off.
Deep Learning systems are frequently heavily over-parameterized with very large
numbers of layers, units and weights. For instance, the currently very popular
Large Language Models can comprise billions of adaptive parameters, see Table
2.1 in the preprint version of [BMR+20]. According to the reasoning of the
previous sections, one would expect serious overfitting effects in such extremely
powerful systems. In practice, however, over-parameterized Deep Learning sys-
tems are trained and applied with great success.

In this context, a publication by Belkin et al. [BHMM19] has attracted a
lot of attention. The authors discuss the so-called double descent or peaking
phenomenon which is illustrated in Fig. 7.3. Beyond the classical under- and
overfitting scenario of Fig. 7.2, the test error frequently undergoes a second

162 7. MODEL EVALUATION AND REGULARIZATION

pr
ed

ic
ti

on
er

ro
r test error

training
error

number of parameters, model complexity

interpolation
threshold

“classical”
regime

“modern”
regime

Figure 7.3: Illustration of the double descent phenomenon, after [BHMM19].

descent as a function of the number of adaptive parameters. This descent occurs
in the over-parameterized regime, while the test error displays a peak at the so-
called interpolation threshold. The illustration 7.3 refers to what is sometimes
called model-wise double descent: for a given problem or data set, models of
increasing complexity are considered. Similar peaking effects can be observed
in models of fixed complexity with varying data set size in the so-called sample-
wise double descent [You21,LVM+20,Vie23].

Double descent is the subject of ongoing discussions and apparently has led
several researchers and practicioners to the somewhat hasty conclusion that the
bias-variance trade-off generalization is wrong [You21]. Moreover, it is often
assumed that double descent is a relatively novel phenomenon that was discov-
ered specifically in Deep Learning, motivating the terms classical and modern
regime in Fig. 7.3. However, as already mentioned in [BHMM19], double descent
occurs also in much simpler settings, including shallow networks and elemen-
tary regression systems. In [LVM+20], the authors present a brief prehistory of
double descent, pointing out that it had been observed already in basic learning
problems like linear regression or perceptron training, e.g. [OKKN90].

Plausible explanations for the occurrence of double descent have been pro-
vided by several authors. It is important to note that, depending on the details
of problem and method, it is incorrect to naively identify the number of parame-
ters with the capacity or complexity of the model, as we suggestively did in Fig.
7.3. As one example, Daniela Witten presents an insightful discussion in terms
of fitting cubic splines to a number of data points in [Wit20] (a twitter thread).
There, the interpolation threshold corresponds to the situation in which the
number of parameters exactly matches the number of data points. This is anal-
ogous to other regression or interpolation schemes, such as the poynomial fits
discussed in Sec. 7.1. Right at the interpolation threshold, there is only one
possible solution for a given data set and the resulting model is very sensitive
to small variations or noise. Above the interpolation threshold, many fits are
possible. The specific selection of the solution with the minimum norm of coeffi-
cients restricts the flexibility of the system drastically, resulting in the observed
peaking and double descent. On the contrary, fitting under other types of reg-

7.2. CONTROLLING THE NETWORK COMPLEXITY 163

ularization, cf. Sec. 7.2, would not necessarily display the peaking and double
descent [Wit20]. The influence of implicit and explicit regularization on the
emergence of double descent is also discussed in the context of ordinary least
squares regression in [KLS20].

In general, explicit regularization as well as details of the training prescrip-
tion can play an important role in determining the effective flexibility of a sys-
tem. The important conclusion is that, if the model complexity is taken into
account correctly, the bias-variance trade-off is still valid.

7.2 Controlling the network complexity

So far we have discussed the control of the student complexity in terms of the
actual model design, i.e. by choosing the degree of a polynomial fit, the number
of prototypes in LVQ, or the size of a hidden layer in a neural network. These
choices are made prior to the actual training and can be evaluated by comparing
different settings after training.

In a variety of approaches the (effective) complexity of a learning system
is controlled by imposing constraints on the training process in a given archi-
tecture. Appropriate restrictions can prevent the training algorithm from fully
exploring the space of adaptive quantities. We discuss two basic methods: the
so-called early stopping strategy in Sec. 7.2.1 and the concept of weight decay
in 7.2.2, respectively. The latter is an important example for regularization by
introducing a penalty term into the objective function that guides the train-
ing. Here, we will use the term regularization more generally for all methods of
implicit or explicit complexity control.

Constructive algorithms which incorporate the addition of units or layers
into the training process are discussed in Sec. 7.2.3. In Sec. 7.2.4 we present
so-called pruning procedures that remove unnecessary weights or units during
or after training. Eventually, two techniques that are particular relevant in the
context of Deep Learning, weight-sharing and Dropout, are presented in Sec.
7.2.5 and 7.2.6, respectively.

In practice, all these methods require or benefit from reliable estimates of
the performance with respect to the prediction on novel data. For now we
assume that such estimates are available, for instance by computing suitable
error measures on a large representative test set. Practical methods like the
well-known n-fold cross-validation will be discussed in Sec. 7.3.

7.2.1 Early stopping

A conceptually very simple idea is to end the training process before the system
becomes overly specific to the data set. For example, if we manually stop gradi-
ent descent updates after a suitable number tmax of epochs, the resulting weight
configuration may display a relatively low value of the objective function, yet
without representing one particular local minimum too faithfully. Fig. 7.4 (left

164 7. MODEL EVALUATION AND REGULARIZATION

W (0) = 0

W (tmax)

W (0)=0

W∗W∗

Figure 7.4: Schematic illustration of early stopping and weight decay. Ellipses
correspond to contour lines of the objective function. The blue solid lines rep-
resent the unrestricted hypothetical updates by, for instance, gradient descent.
Left panel: after tmax epochs, the training is stopped, which hinders the weight
configuration from reaching the local minimum W ∗ (red dot).
Right panel: weights are initialized tabula rasa and restricted to small norms.
Circles correspond to lines of equal norm |W |.

panel) shows an illustration of the effect of early stopping on the optimization
process.

Being one of the most intuitive concepts of regularization, early stopping
has been discussed very early in the context of neural networks, see for example
[BC91,SL92]. A thorough discussion and further references can be found in text
books as well, e.g. in [Bis06,GBC16].

The early stopping parameter tmax plays a role that is comparable to the
degree K in the example of polynomial fits, cf.7.1. Note that tmax and other
parameters that control the training process are often referred to as hyper-
parameters in order to distinguish them from the actual adaptive quantities,
e.g. weights and thresholds in a neural network.

In order to set discrete parameter like the number of hidden units in the
network, we have to train different systems separately and compare their train-
ing and test set retrospectively. In early stopping we can monitor the system
on the fly and stop as soon as overtraining effects set in. The proper choice of
tmax based on heuristic criteria and the use of cross-validation, cf. Sec. 7.3.1 has
been addressed in the literature, see e.g. [Pre97, Pre98, STW11] for examples
and [GBC16,Bis06] for general discussions.

7.2.2 Weight decay and related concepts

We have encountered weight decay as a regularization technique already in the
discussion of simple linear regression in Sec. 2.2.2. There, a penalty term was
added to the objective function that prevents the L2-norm of the weight vec-
tor from growing arbitrarily large. Depending on the perspective, this can be
motivated heuristically in a pragmatic machine learning approach or on the

7.2. CONTROLLING THE NETWORK COMPLEXITY 165

basis of assuming prior knowledge in the context of statistical learning the-
ory [HTF01, HKP91, Bis95a, Bis06, DHS00]. In the linear regression problem,
weight decay facilitates the construction or computation of a meaningful solu-
tion of the regression problem.

Here we extend the concept to the implementation of non-linear functions in
non-linear networks. Modifications of weight decay, e.g. by considering general
Minkowski-norms or heuristically motivated penalty terms are discussed at the
end of this subsection.

Weight decay in non-linear neural networks

The concept of weight decay generalizes to a variety of classification and re-
gression problems, including the training of non-linear layered neural networks,
see [Hin86,KSV88] for early works. The influence of weight decay has also been
investigated in model scenarios from the statistical physics of learning perspec-
tive, see [Bös96,ABS99,SR98] for examples.

Compared to the case of linear regression, the formulation of weight decay
based on statistical learning theory, is less obvious for non-linear neural net-
works. However, the heuristic interpretation remains valid: restricting the mag-
nitude of weights prevents the system from exploring the search space exhaus-
tively and thus limits the effective complexity of the network. Figure 7.4 (right
panel) illustrates the effect of limiting the Euclidean L2-norm of the weights W .

The effect of weight decay can be motivated in terms of a single non-linear
unit. Assume that the activation of the unit is given by the non-linear function

g(x) ∈ R with x = w · ξ, w, ξ ∈ RN . (7.8)

For weight vectors with small norm |w| ≈ 0 we have x ≈ 0 and a Taylor
expansion implies that the activation is approximately

g(x) ≈ g(0) + g′(0)x+
1

2
g′′ x2 + . . . (7.9)

Thus, the activation is effectively linearized. By the same argument, the output
of a layered network of in principle non-linear units, will become nearly linear
if the magnitude of the weights are very small.

If we represent the set of all weights in a network by W and consider gra-
dient descent with respect a cost function E(W), we can limit the norm of W
heuristically by reducing the magnitude of weights in or after each update step:

W (t+ 1) = W (t)

1− γ

− η ∇WE|W (t) (7.10)

with the (small) weight decay parameter γ > 0. The update can also be inter-
preted as gradient descent with respect to a modified objective function:

E = E +
1

2

γ

η
|W |2 with ∇W

E = ∇WE +
γ

η
W (7.11)

166 7. MODEL EVALUATION AND REGULARIZATION

which also leads to (7.10).2

As an alternative to the use of a penalty term, sometimes a constraint of
the type |W |2 ≤ c with constant c > 0 is imposed. This can be done explicitly
by projecting back onto the sphere in weight space |W |2 = c whenever the
constraint is violated by the updates. This so-called max-norm regularization
is considered in [SHK+14] in combination with Dropout, see Sec. 7.2.6. Weight
decay as given by Eqs. (7.10, 7.11) can be interpreted as a soft implementation
with Lagrange parameter γ/η.

Variants of weight decay

Following an argument presented in e.g. [HKP91] and [NH92b], the penalty term
∝

j W

2
j in Eq. (7.11) favors several non-zero weights of similar magnitude

over a combination of zero weights with a few larger Wj . This can be seen by
comparing the penalty of a pair of weights {w/2, w/2} to that of {w, 0}:

w
2

2

+
w
2

2

< w2 + 02.

In the context of sparse classifiers or regression systems the aim is a system
with a significant fraction of zero or very small weights, which could be removed.
This can be achieved by employing modified penalty terms and update rules,
for instance the one discussed in [HKP91]:

E = E +
1

2

γ

η

j

W 2
j

1 +W 2
j

with
∂ E
Wk

=
γ

η

Wk

(1 +W 2
k)

2
. (7.12)

Compared to (7.11) this leads to a Wk-dependent decay term in the gradient de-
scent updates which favors the further decrease of small weights. Consequently,
the modified weight decay, together with a removal of weights with |Wj | ≈ 0
after training, can serve as a method for pruning the neural network. Further
methods for the removal of unnecessary weights in a trained network are briefly
presented in Sec. 7.2.4.

A family of systematic variations of weight decay can be based on Lp-
regularization, where the penalty is given by the more general term

||W ||p =

j

W p
j

1/p

. (7.13)

Eq. (7.13) constitutes a proper norm only for p ≥ 1. Formally, extensions
to 0 < p < 1 are possible but involve mathematical subtleties. The familiar
Euclidean norm is recovered for p = 2. Another case of particular interest is
p = 1, corresponding to the so-called Manhattan norm. In linear regression,
a (non-differentiable) penalty term proportional to

j |Wj | appears in the La-

grangian form of the so-called Least Absolut Shrinkage And Selection Operator
2Here, the scaling of γ with η merely guarantees formal equivalence with Eq. (7.10).

7.2. CONTROLLING THE NETWORK COMPLEXITY 167

(LASSO), see [HTF01] for a thorough discussion and comparison with L2-based
Ridge Regression. Similar to the above discussed heuristic penalty (7.12), L1

regularization can also be used to enforce some weights to become exactly zero.
It thus also relates to feature selection and pruning, cf. Sec. 7.2.4.

7.2.3 Constructive algorithms

In the context of classification we have discussed constructive algorithms such
as the so-called tiling algorithms, cf. Sec. 4.2.2. In these schemes, units or layers
are added to the network until the given, labeled data set can be implemented.
Similar ideas have been applied in layered networks for regression. Reviews of
suggested methods and corresponding references can be found in [KY97,SC10].
A key issue of all constructive algorithms is the need to avoid overfitting due
to the addition of too many units. Suitable stopping criteria are discussed
in [KY97].

A popular constructive algorithm for regression is the so-called Cascade-
Correlation algorithm suggested by Fahlmann and Lebiere in 1997 [FL90]. Very
similar to the tiling-like algorithm (4.9), the original Cascade-Correlation scheme
adds hidden units one at a time. However, in contrast to the construction in
(4.9), the added node receives input from all previous hidden units. The new
unit is trained by maximizing the correlation of its output with the residual
error achieved so far, see [FL90] for details. The specific algorithm can lead
to an architecture with many single unit hidden layers, i.e. a deep and narrow
network as opposed to the shallow and wide architectures considered in Sec.
4.2.2 or 5.1.2.

7.2.4 Pruning

The concept of pruning or trimming a neural network is diametrically opposed to
that of constructive algorithms. The idea of pruning is to first train a relatively
complex system which is capable of realizing the desired task to a satisfactory
extent with respect to the given training data. In order to avoid or reduce
overfitting, the network is then simplified by removing weights and/or nodes
from the system without detoriating its performance too much. The dilution of
trained networks has been considered very early, see [HKP91] for references.

Pruning is usually done after training, and the system may be retrained
thereafter. Likewise, it can be realized in intermediate steps of the training
procedure. Pruning is considered an important ingredient of neural network
training also in recent applications of machine learning. However, as Hugo
Tessier puts it on https://towardsdatascience.com [Tes21]:
“Unfortunately, the dozens, if not hundreds of papers published each year are
revealing the hidden complexity of a supposedly straightforward idea.”

In the literature, many recently suggested pruning procedures appear to be
closely related to early works like [LDS90, HSW93], see [Ree93] for a survey.
According to reviews like [BGFG20], many authors fail to relate and compare
their work properly to early publications in the area. Consequently, we restrict

168 7. MODEL EVALUATION AND REGULARIZATION

ourself to the discussion of some early works that represent the basic ideas and
inspired later, more specific schemes. We also limit the discussion to strategies
for the removal of weights rather than entire units or layers. The latter is
frequently referred to as structural pruning, see for instance [AK13] for a review
and references.

Modified weight decay procedures can be employed for the selection of unim-
portant weights as outlined in Sec. 7.2.2. In the following we present two classical
methods which are not based on weight decay, but remove weights explicitly ac-
cording to their importance for the minimization of the cost function that guides
the training process.

Optimal Brain Damage (OBD) and Optimal Brain Surgeon(OBS)

Two classical pruning algorithms with slightly macabre names have been sug-
gested in the 1990s already: LeCun, Denker and Solla’s Optimal Brain Damage
(OBD) [LDS90] and the Optimal Brain Surgeon (OBS) by Hassibi, Stork and
Wolff [HSW93]. Both schemes are based on a ranking of individual weights Wj

according to their saliency, i.e. the sensitivity of the system with respect to their
removal (setting Wj = 0).

Assume a network has been trained and the weight configuration is suffi-
ciently close to a local minimum W ∗ of the cost function E(W) with E(W ∗) =
E∗. A Taylor expansion for W = W ∗ + U yields

E(W) ≈ E∗+
1

2

i,j

Ui H
∗
ij Uj = E∗+

1

2

i

H∗
ii U

2
i +

1

2

i,j(i∕=j)

Ui H
∗
ij Uj . (7.14)

Here, the linear term vanishes in the minimum and H∗
ij = ∂2E

∂Wi∂Wj

∗

is an ele-
ment of the Hesse matrix computed in W ∗. Moreover, we have simply separated
diagonal and off-diagonal contributions of the quadratic term.

In [LDS90], the authors suggest to avoid the computation of the full, po-
tentially very high-dimensional Hesse matrix and focus on the diagonal terms.
Assuming that H∗ is approximately diagonal, i.e. dominated by the H∗

jj , Eq.
(7.14) reduces to

E(W) ≈ E∗ +
1

2

j

H∗
jjU

2
j . (7.15)

An efficient computation of the diagonal elements of H∗ is also outlined in
[LDS90]. The so-called saliencies

sk = H∗
kkW

2
k (7.16)

can be used as a guideline for the selection of weights that could be removed
from the system without increasing E significantly. The OBD procedure can be
summarized as follows (after [LDS90]):

7.2. CONTROLLING THE NETWORK COMPLEXITY 169

Optimal Brain Damage (OBD) (7.17)

1. Train a network until a local minimum W ∗ of E is reached or sufficiently
well approximated

2. Compute the diagonal second derivatives H∗
kk

3. Compute the saliencies skk = H∗
kkW

2
k

4. Sort the weights by saliency and set some low-saliency weights to zero

5. Potentially retrain the remaining weights

6. Go to step 1.

The alternative scheme of Optimal Brain Surgery (OBS) as suggested in
[HSW93] follows a similar line of thought. However, there the saliencies are
defined as

sk =
1

2

W 2
k

[H∗−1]kk
. (7.18)

Compared to Eq. (7.18), the factor H∗
kk is replaced by 1/[H∗−1]kk with H∗−1

denoting the inverse of the Hessian H∗. Note that for diagonal matrices H∗

the definitions (7.16) and (7.18) are identical. Further differences between OBD
and OBS concern details of the procedure, see [HSW93].

Numerous modifications and extensions of OBD and OBS have been pro-
posed in the literature. For instance, the authors of [PHL96] suggest a scheme
which computes the saliencies with respect to the estimated generalization error
rather than based on the cost function or training error. Hence, their pruning
procedures, termed γOBS and γOBD, are more closely related to the actual
goal of training.

7.2.5 Weight-sharing
An elementary and intuitive method to reduce the flexibility of a neural network
is to consider subsets of weights that assume the same value. This so-called
weight-sharing usually relies on insights into the problem and data. Assume
that we want to apply a set of (adaptive) filters to patches of a given input
image. It appears natural to train and use only one shared set of weights per
type of filter. This reduces the effective number of weights drastically and
consequently simplifies the training a lot. The strategy is ubiquitous in the
context of, for instance, Convolutional Neural Networks for image classification.

For defining the sets of shared weights in advance, prior knowledge is re-
quired which might not always be available. Nowlan and Hinton suggested a
soft version of weight-sharing in [NH92b,NH92a]. They propose a penalty term

170 7. MODEL EVALUATION AND REGULARIZATION

full network with all
units and connections

network after dilution
in Dropout

Figure 7.5: Illustration of regularization by Dropout (redrawn after
[SHK+14]). Left panel: the network with all nodes and weights. Right
panel: four randomly selected units (red circles) and their incoming and out-
going weights are temporarily removed.

that enforces the distribution of weights to follow a mixture of Gaussians, the
parameters of which are also subject to updates in the training process. Eventu-
ally, weights can be grouped according to their membership to the contributing
Gaussians. Within these clusters, weights can display very similar values but
are not necessarily identical.

Further discussions of hard or soft weight-sharing and references can be
found in e.g. [UMW17]. More recently, the authors of [OLLB20] conclude that
weight-sharing “is a pragmatic optimization approach” but “it is not a necessity
in computer vision applications.” They also argue that approximate weight-
sharing emerges in a self-organized way in unrestricted CNN, for example when
trained from images that display translational invariance.

7.2.6 Dropout

We have already discussed methods from the dilution of networks by removing
weights from a given network, either by weight decay and related methods or
by applying pruning techniques after training, see [HKP91] as well as sections
7.2.2 and 7.2.4.

In the so-called Dropout regularization [HSK+12, SHK+14,GBC16], a ran-
dom dilution is applied in the training process. More concretely: in every
individual update step, e.g. in stochastic gradient descent, individual input and
hidden units are excluded from the network. Only the remaining subnetwork is
trained as usual. DropConnect has been suggested as a variation of the basic
idea that excludes randomly selected weights instead of units [WZZ+13].

In Dropout, at each update step a randomly determined subnetwork of lim-
ited complexity is considered. Therefore, Dropout reduces the flexibility of
the system and restricts its adaptation to the details of the training data. The
removal of nodes occurs independently with probability (1−p), the hyperparam-
eter p determines the fraction of units present in the subnetwork. According

7.3. CROSS-VALIDATION AND RELATED METHODS 171

to [SHK+14, GBC16], a value of p = 1/2 is typically used for hidden units,
while p is close to 1 for input units (e.g. p = 0.8). Note that an individual
Dropout dilution could by chance remove an entire layer or some other way cut
all connections from input to output. Such configurations have to be excluded
explicitly, but are very unlikely to occur in large networks.

In the working phase and for testing purposes, the full network is used.
Updating with Dropout will yield larger individual weights than conventional
training. This is compensated for by multiplying all weights that were included
in the Dropout by a factor p in the full network.

Dropout can be interpreted as to simulate the training of an ensemble of
simpler systems (the subnetworks). In the working phase, the complete network
yields an estimate of the corresponding ensemble average. Moreover, due to
this analogy, the potential usefulness of Dropout goes beyond the purpose of
regularization: in the working phase it can be used for uncertainty estimation,
see [GG16].

While Dropout and DropConnect were introduced and are mostly used in
the context of deep neural networks, the concept can be transferred to other
machine learning systems, see [RKSV20] for the consideration of Dropout in
Learning Vector Quantization.

7.3 Cross-validation and related methods

In supervised learning, the availability of well-defined performance measures
allows us to formulate the training process as the optimization of a suitable
objective function. However, one has to be aware that this does not necessarily
reflect the ultimate goal of the learning. The cost function can only be defined
with respect to the training set, while the generic goal of machine learning is to
apply the inferred hypothesis to novel, unseen data. Objective functions serve,
at best, as proxies for the actual aim of training.

As a consequence, the strict minimization of the training error, for example,
can be even counter-productive as it may lead to overtraining or overfitting ef-
fects. From a more positive perspective, this also implies that we should not
take optimization too seriously in the machine learning context. For instance,
the existence of local minima in gradient descent based learning frequently turns
out much less problematic than expected. In fact, the very success of simple-
minded techniques like stochastic gradient descent relates to the fact that strict
minimization of the cost function is usually not the primary goal of machine
learning and could be even harmful. In this sense, the use of SGD can be
interpreted as an implicit regularization which helps to avoid overfitting. Simi-
larly, several of the explicit regularization techniques discussed in the previous
sections hinder the strict minimization of the cost function in order to achieve
better generalization behavior.

On the downside, it becomes necessary to acquire reliable information about
the expected performance on novel data, if we do not want to face unpleasant
surprises in the working phase. Clearly, the training itself and the performance

172 7. MODEL EVALUATION AND REGULARIZATION

Figure 7.6: The requirement that the training data should be representative
of the actual task at hand seems obvious, but is not always met in practice.
© Jonathan van Engelenhoven, see https://www.instagram.com/banjoofjustice
for more of his work. Cartoon reproduced from [Vie23] with kind permission of
the artist.
Remark: MNIST (see e.g. https://paperswithcode.com/dataset/mnist) is a pop-
ular benchmark database of handwritten digits.

on the actual training data does not provide us with such insights.
Validation procedures can be employed which allow us to at least estimate

the expected generalization performance [HTF01,Bis06]. The key idea is rather
obvious: split the available data into a training set and a disjoint test set of
examples. The former is then used for the adaptation of the model, which is
eventually applied to the test set. This way, we can simulate working phase
behavior while using only the available data.

Obviously, the data is assumed to be representative for the task at hand, see
Fig. 7.6 for a tounge-in-cheek illustration. This crucial assumption was already
discussed in Sec. 2.1.2 in the context of the generic workflow of supervised
learning.

7.3.1 n-fold cross-validation and related schemes
The simple idea of splitting the available data randomly into one training and
one test set has several problems:

◦ If only relatively few examples are available, as it is very often the case
in practical problems,3 we cannot afford to disregard the information con-

3Image classification tasks have become one of the few prominent exceptions due to the
availability of very large databases.

7.3. CROSS-VALIDATION AND RELATED METHODS 173

tained in a subset of these in the training.

◦ The composition of the subsets could be lucky or unlucky in the sense
that the test set might contain only very difficult or very easy cases. As
a consequence, the test set performance might be overly pessimistic or
optimistic, respectively.

◦ Performing a single test only cannot give valid insight into the robustness
of the system with respect to details of the training set, i.e. the variance
in the sense of Sec. 7.1.1.

All these issues are addressed in a very popular standard approach known as
n-fold cross-validation, see e.g. [HTF01,Bis06,Ras18]. The idea is to split the
available data randomly into a number n of disjoint subsets of (nearly) equal
size, train on n−1 of the subsets and use the remaining subset for the validation:

n-fold cross validation (7.19)

• Generate subsets of D of (approximately) equal size:
D = ∪n

i=1Di with ∩(Di,Dj) = ∅ for i ∕= j and cardinalities |Di| = P/n.

• For i = 1 : n

◦ Train the system on Dtrain
i = D \ Di

◦ Determine a suitable performance measure on Di

• Compute average and variance of the performance measures over the n
training processes.

For each split we train the classifier or regression system on (1 − 1/n)P ex-
amples and evaluate its performance with respect to the P/n left out samples.
Eventually, we have obtained n systems trained on slightly different data sets
with n estimates of the performance, for instance in terms of the accuracies of
a classifier or the MSE in regression problems.

While the n validation sets are disjoint, we have to be aware that the training
sets strongly overlap. The obtained estimates of the generalization error and,
even more so, of the training error are definitely not statistically independent.
Hence, the mean or variance obtained over the n-fold training process should
not be over-interpreted. Nevertheless, the procedure will provide us with some
insight into the expected generalization performance and the robustness of the
system with respect to small changes in the training set.

Obviously, the parameter n in n-fold cross validation will influence the work-
load and the quality of the results:

◦ For large n, many training processes have to performed, each one based
on a large fraction of the available data. In turn, the individual validation
sets will be relatively small.

174 7. MODEL EVALUATION AND REGULARIZATION

◦ For small values of n we obtain fewer, but more reliable individual esti-
mates from larger validation sets. At the same time, the computational
workload is reduced in comparison with the use of larger n. However,
averages are performed over few individual results, only. Moreover, each
training process make use of a relatively small subset of the data and
cannot take full advantage of the available information.

In a practical situation, the choice of n will depend primarily on the number
P of available examples to begin with. For a more detailed discussion and
corresponding references see, for instance, [HTF01,Ras18]. In the literature, a
canonical value of n = 10 has become a standard choice, apparently.

Variants
Many variations of the basic idea of cross-validation have been considered in the
literature [Ras18]. The split into n disjoint subsets of data may also suffer from
lucky/unlucky set composition. Therefore, one often resorts to a few repeti-
tions of the n-fold scheme, performed with randomized splits and an additional
average over the realizations.

In principle one could aim at realizing all possible splits of the data into
(P−p) training and p validation examples. Their number

P
p

grows rapidly with

P and the computational costs can become unrealistically high. Alternatively,
in repeated random sub-sampling validation, also known as Monte Carlo cross
validation, one generates a number of independently generated random splits
into P − p and p examples and computes averages and variances accordingly.
This is closely related to so-called bootstrap methods [HTF01], which differ from
cross-validation by resampling subsets of data with replacement. We refrain
from a thorough comparison and discussion of the advantages and disadvantages
of these variations of cross-validation. We refer the reader to, for example,
[Efr83,ER97,Bur89,BHT23] and to textbooks like [HTF01,Bis95a,Bis06].

Leave-one-out cross-validation
As a popular extreme case, one often resorts to the so-called Leave-One-Out
validation [HTF01,Bis95a,Bis06,Ras18], in particular for very small data sets.
It follows the idea of cross-validation, but selects just one example as the smallest
possible validation set in each training run. Hence, we set n = P and run P
training processes to obtain an average of the performance measure of interest.

It is important to note that the Leave-One-Out estimate can be unreliable.
It even bears the risk of systematically yielding misleading results: In very small
data sets, leaving out one sample from a specific class can lead to a bias in the
training set towards the other class(es), which may result in overly pessimistic
estimates of the generalization performance [Ras18,APW+09]. A modification
that mildens the effect is known by the self-explanatory name Leave-one-out
from each class, generating validation sets that represent all classes [APW+09]
with equal weight.

7.4. PERFORMANCE MEASURES 175

7.3.2 Model and parameter selection

The above discussed validation schemes can be employed in the context of
model selection and, similarly, for the setting of parameters or hyper-parameters
[Ras18]. We can use, for instance, n-fold cross-validation to compare the ex-
pected performance of different classifiers or regression systems. We can also
employ it to determine the size of a hidden layer in a feed-forward neural net-
work, to set algorithm parameters like the learning rate in gradient descent, or
to select a particular kernel in an SVM, to name just a few examples. In the
illustration of Fig. 7.2, for instance, we would select the model complexity that
corresponds to the minimum of the U -shaped generalization error curve.

Similarly, (hyper-)parameters of the regularization schemes discussed in Sec.
7.2 can be tuned according to the performance of the system w.r.t. the validation
sets. However, one has to be aware of the risk to over-interpret or even mis-use
the results of cross-validation. As an example, consider gradient based training
of a network with one hidden layer on a given data set D. Assume that, on
the basis of n-fold cross-validation, we conclude that systems with, say, K = 3
hidden units yield the best generalization ability.4

Is it justified to expect the observed, averaged performance for K = 3 when
applying the system to novel data? The problem is that we have used all of D
to determine the supposedly best parameter setting. This constitutes a data-
driven learning process and could be subject to overfitting effects in itself: The
supposedly best choice of K may be very specific to D and could fail in the
working phase.

In order to obtain a more reliable estimate of the expected performance we
would have to perform an extended validation procedure. We could split D
into training set Dtrain and Dtest once, then apply n-fold cross-validation on
Dtrain in order to determine a suitable value of K. Eventually, a system with
the supposedly best setting can be re-trained on Dtrain and validated on Dtest

to obtain a more realistic estimate. Now, of course, we face the problem of
lucky/unlucky set compositions again, which suggests to perform a full loop
along the lines of n-fold cross-validation (or one of the discussed variants).

Strictly speaking, this has to be done separately for every independent pa-
rameter or hyperparameter in an additional layer of validation. Obviously, prac-
tical limitations apply, in particular when only small data sets are available.

7.4 Performance measures for regression
and classification

Despite the conceptual clarity of supervised learning, even the choice of an
appropriate measure of success can constitute a non-trivial issue in practice.

4For the difficulty to even define “the best” see the next sections.

176 7. MODEL EVALUATION AND REGULARIZATION

7.4.1 Measures for regression

In regression, a differentiable objective or loss function typically guides the
training process. It appears natural to consider the same function also for the
evaluation of a system in validation or working phase. Most frequently, the
familiar mean squared error (MSE) is used in both contexts.

Depending on the application domain, alternative measures different from
the loss function can be employed for the evaluation of regression models. Two
popular measures that are essentially different from the MSE are:

◦ Mean Absolute Error [WM05]

MAE = 1
Q

Q
µ=1 |σµ − τµ| (7.20)

which weights deviations from the target differently than the MSE in a set
of Q test or validation samples. The MAE also satisfies 0 ≤ MAE ≤ ∞
where lower values correspond to better quality of the regression.

◦ Coefficient of Determination (CoD) [DS98]. 5

CoD = 1 −

µ(σ
µ − τµ)2

µ(τ

µ − 〈τ〉µ)2
(7.21)

where 〈τµ〉 is the mean target value in the data set. The CoD compares
the mean squared deviation of the predictions from the targets, scaled by
the variance of the target values in the data set. The measure satisfies
−1 ≤ CoD < 1, a value of CoD = 0 indicates that all predictions are
σµ = 〈τµ〉, CoD = 1 corresponds to perfect regression with all σµ=τµ.

A variety of further evaluation criteria, e.g. based on distance metrics or cor-
relations, is available in the literature. A typology of measures is provided
in [Bot19].

7.4.2 Measures for classification

The actual goal of machine learning for classification problems is to achieve a
model that assigns data to the correct class with high probability in the working
phase. Very often, the actual objective functions used in training provide at best
a proxy of this ultimate goal. Loss functions for probabilistic classifiers based on
cross-entropy like (5.23) and (5.24) could be used for training and evaluation.

Most frequently, the evaluation of crisp classifiers is guided by criteria that
directly relate to the accuracy with respect to the validation or test data. An
overview of a variety of performance measures for classification is given in [SL09].

Assume we are comparing the performances of two different classifiers, A and
B, which have been trained to perform a given binary classification. By means

5In the literature, the CoD is most frequently termed R2. The author refuses to denote a
quantity that can become negative by a square.

7.4. PERFORMANCE MEASURES 177

of cross-validation we can obtain the estimates for the generalization ability in
terms of the overall error as, say,

Ag = 0.05 and Bg = 0.30.

Apparently, we could conclude that A is the better classifier and should be used
in the working phase.

A closer look into the available data D, however, might reveal that it con-
sists of 95% class 1 samples, while only 5% of the data represent class 2. We
furthermore might find that classifier 1 trivially assigns all feature vectors to
class 1, resulting in 95% accuracy in D. On the other hand, model B might
have learned from the data and provides 70% correct responses in both classes
of the data set.

Clearly, this insight might make us reconsider our previous evaluation of
classifier A as the better one. If we are just after good overall accuracy and
have reason to believe that the true prevalence of class 1 data is also about 95%
in the real world, we can - of course - settle for the trivial model. If our main
goal is to detect and identify the relatively rare occurrences of class 2, classifier
B is obviously to be preferred.

This somewhat extreme example illustrates two major questions that arise
in the practical approach to classification problems:

◦ How can we cope with strongly biased data sets when evaluating the per-
formance of a classifier?

◦ Can we evaluate classifiers beyond their overall accuracies in order to
obtain better insight into the performance?

Here we do not address the question of how to take class bias into account in
the training process. Some strategies for the training from imbalanced data sets
will be discussed in Section 8.7.

7.4.3 Receiver Operating Characteristics
For two-class problems, both of the above mentioned questions can be addressed
in the framework of the so-called Receiver Operating Characteristics (ROC)
[HTF01,Bis95a,Bis06,DHS00,Faw06]. The concept and terminology goes back
to signal processing tasks originally, but has become popular in the machine
learning community.

Most classifiers we have discussed obtain a binary assignment by applying
a threshold operation to a so-called discriminative function g. In terms of the
simple perceptron, for instance, we assign an input ξ ∈ RN to class S = ±1
according to

S = sign [g(ξ)] with g(ξ) =

N

j=1

wjξj , (7.22)

as discussed in Chapter 3 in great detail. Having trained the perceptron as
to implement the homogeneous lin. sep. function (7.22), we can introduce a

178 7. MODEL EVALUATION AND REGULARIZATION

threshold Θ after training and consider the modified classification

SΘ = sign [g(ξ)−Θ] . (7.23)

While this is formally identical with the consideration of an inhomogeneously
lin. sep. function, see Sec. 3.3, here the perspective is different: We assume the
threshold is introduced and varied manually after training. Furthermore, the
concept could be applied to any discriminatory function for binary classification.

Quite generally, for a large family of classifiers it is possible to realize and
control a class bias by tuning Θ in Eq. 7.23. For very large negative Θ → −∞,
all inputs will be assigned to class SΘ = −1, while large positive Θ → +∞
result in SΘ = +1 exclusively.

In a similar way, probabilistic models can be used for crisp classification by
thresholding the class membership probability which serves as the discriminative
function g in Eq. 7.23. Employing a probability threshold 0 < Θ < 1 different
from 1/2 imposes a bias towards one of the two classes.

Very often it is important to distinguish the two class-specific errors that
can occur: If a feature vector which is truly from class −1 is misclassified as
S = +1, we account this as a false positive or false alarm type of error. The
terminology reflects the idea that class +1 is to be detected, for instance in
a medical test which discriminates diseased (positive test result) from healthy
control patients (negative outcome). Analogously, the term false negative error
is used when the classifier misses to detect a truly positive case.6 Similarly, the
complementary true positive or true negative rates correspond to the class-wise
accuracies in the two-class problem.

The introduction of a controlled bias can be achieved in other classification
frameworks as well and is, by no means, limited to linear classifiers. For instance,
we can modify the Nearest Prototype Classification (NPC) in LVQ, Eq. (6.2).
Identifying w∗

(−1), the closest one among all prototypes representing class −1

and the closest class-(+1)-prototype w∗
(+1), we can assign an arbitrary feature

vector ξ to class +1 if

d

w∗

(+1), ξ

< d

w∗

(−1), ξ

−Θ (7.24)

and to class −1 else, thus introducing a margin Θ in the comparison of distances.
Similarly, we could consider the output unit activation in a multilayered feed-
forward neural network as the discriminative function and perform a biased
thresholding along the same lines in order to obtain a crisp class assignment.

For a given value of the threshold Θ we can obtain, e.g. from a validation or
test set, the observed absolute number of false positive classifications FP , false
negatives FN , true positives TP and true negatives TN . The corresponding
rates are defined as

fpr=
FP

FP+TN
, tpr=

TP

FN+TP
, fnr=

FN

FN+TP
, tnr=

TN

FP+TN
. (7.25)

6In the literature, other terms like type I/II errors are used frequently, but these are avoided
here for the sake of clarity.

7.4. PERFORMANCE MEASURES 179

tr
ue

po
si

ti
ve

ra
te

tp
r

false positive rate fpr

Θ→+∞

Θ=0

Θ→−∞

ξ−
δΘ

Θ−

g(ξ)

Figure 7.7: Left panel: Schematic illustration of Receiver Operating Char-
acteristics. The extreme working points with Θ → ±∞ are marked by empty
circles. A filled circle corresponds to an unbiased classifier with Θ = 0, while
the dashed line represents random, biased guesses. Right panel: Illustration
of a two-class data set with discriminative function g(ξ). Feature vectors from
the negative (positive) class are displayed as green (light) and red (dark) filled
circles, respectively. A randomly selected negative example ξ− is marked by
the large filled circle and corresponds to g(ξ−) = Θ−. The variation of the
threshold by δΘ is referred to in the arguments employed in Sec. 7.4.4 to obtain
the statistical interpretation of the AUC.

Different names are used for the same quantities in the literature, depending on
the actual context and discipline. In medicine, for instance, the term sensitivity
(SENS) is frequently used for the tpr, while specificity (SPEC) refers to the
tnr. An overview of the many quantities that can be derived from the four basic
quantities TP, TN, FP, FN and rates (7.25) can be found in [Wik22], which also
provides further relevant references.
The quantities in Eq. (7.25) are not independent: Obviously, they satisfy

tpr + fnr = 1 and tnr + fpr = 1.

Consequently, two of the four rates can be selected to fully characterize the
classification SΘ(ξ).

In the framework of Receiver Operating Characteristics (ROC) one deter-
mines tpr(Θ) and fpr(Θ) for a meaningful range of thresholds Θ and displays
the true positive rate as a function of the false positive rate by eliminating the
threshold parameter7.

Figure 7.7 (left panel) displays an example ROC curve for illustration. The
lower left corner, as marked by an empty circle, would correspond to the extreme

7For efficient implementation ideas see [DHS00,Faw06].

180 7. MODEL EVALUATION AND REGULARIZATION

setting Θ → ∞ with all inputs assigned to the negative class. Obviously, the
false positive rate is zero for this setting, the classifier does not give any false
alarms. On the other hand, no positive cases are detected and tpr = 0, as
well. The upper right corner in tpr = fpr = 1, also marked by an open circle,
corresponds to Θ → −∞ in (7.23) or (7.24): The classifier simply assigns every
feature vector to the positive class, thus maximizing the true positive rate at
the expense of having fpr = 1. An ideal, error-free classifier would obtain fpr =
0, tpr = 1 in the upper left corner of the ROC graph.

The performance of an unmodified classifier with Θ = 0 is marked by a filled
circle in the illustration 7.7 (left panel). It could correspond, for instance, to the
NPC in LVQ or the homogeneous, unbiased perceptron, Eq. (7.22). By selecting
a particular threshold −∞ < Θ < +∞, the user can realize any combination of
{tpr, tpr} that is available along the ROC curve. This way, the domain expert
can adjust the actual classifier according to the specific needs in the problem at
hand. In medical diagnosis systems, for instance, high sensitivity (tpr) might
be more important than specificity (1− fpr) or vice versa.

To a certain extent, we can also compensate for the effects of unbalanced
training data: In the illustrative example shown in Fig. 7.7 (left panel), the
classifier with Θ = 0 realizes very low fpr, which might be a consequence of an
over-representation of negative cases in the data set D. An objective function
which is related to the number of mis-classification will favor classifiers with
small fpr over those with higher tpr. In retrospect, this can be compensated
for by biasing the classifier towards the detection of positive cases and move the
working point closer to the upper left corner in the ROC.

The hypothetical, best possible ROC is obviously given by the step function
including the ideal working point fpr = 0, tpr = 1, i.e. the complete square in
Fig. 7.7. On the other hand, a completely random guess with biased probability
tpr = fpr for assignments to class +1 would correspond to the diagonal, i.e. the
dashed line in the left panel of the illustration.

7.4.4 The area under the ROC curve

When evaluating different classifiers (or frameworks, rather) one often resorts
to the comparison of the area under the ROC curve, the so-called AUROC or
less precisely AUC [Faw06]. Intuitively the AUC with 0 ≤ AUC ≤ 1 provides
information about the degree to which the ROC deviates from the diagonal with
AUC = 1/2. Clearly, an AUC > 1/2 indicates better–than–random classifica-
tion and the AUC is often used as a single numerical quality measure for the
evaluation of classifiers. In principle, the precise shape of the ROC should be
taken into account as well, as individual ROC can differ significantly from the
idealized shape displayed in Fig. 7.7.

The AUC with respect to novel data can be estimated, for instance, in the
course of cross-validation along the lines of Sec. 7.3. It provides better insight
into the performance of the trained system than a single specific working point.
Therefore, it serves as the basis for model selection or the setting of parameters.

7.4. PERFORMANCE MEASURES 181

Moreover, the AUC can be associated with a well-defined statistical inter-
pretation. Fig. 7.7 (right panel) illustrates a two-class data set which can be
classified according to a discriminative function which, in the illustration, is
assumed to increase monotonically along the g(ξ)-axis. Note that here it is
convenient, but not necessary, to argue in terms of a linear classifier like the
perceptron, in which the weight vector w defines the discriminative direction.

In the illustration, a particular, e.g. randomly selected, negative example ξ−
is marked by a filled circle with the value g(ξ−) of the discriminative function.
In other words, in a classifier with Θ = g(ξ−) the considered example would be
located precisely at the decision boundary.

Now assume that we select a random example ξ+ from the positive class,
i.e. one of the feature vectors marked as red circles in the illustration. The
probability for such an example to satisfy g(ξ+) > Θ− = g(ξ−) is given precisely
by tpr(Θ−), which is the fraction of positive examples located on the correct
side of the decision boundary defined by g(ξ) = Θ−.

On the other hand, the local density of negative examples is given by the
derivative dfpr/dΘ in Θ−: Shifting the threshold by δΘ, as marked by the gray
shaded area, will result in correcting the output for δfpr = (dfpr/dΘ) δΘ many
samples from the negative class.

In summary, this implies that for a pair of feature vectors comprising one
randomly selected ξ− from the negative class and one randomly selected ξ+ from
the positive class, the probability that g(ξ+) > g(ξ−) is given by the integral

 +∞

−∞
tpr(ϑ)

dfpr

dϑ
dϑ =

 1

0

tpr dfpr = AUC.

Hence, the AUC quantifies the probability with which a randomly selected pair
{ξ−, ξ+} is ordered according to class membership in terms of the discriminative
function g(. . .). This corresponds to the probability that a threshold value Θ
exists, at which the classifier would separate such a pair of inputs correctly.

This intuitive interpretation of the AUC in the ROC-analysis also makes it
possible to perform the training of a classifier in such a way that the expected
AUC is maximized, for details see [HR04,VKHB16].

7.4.5 Alternative measures for two-class problems

A variety of evaluation criteria for binary classification schemes have been sug-
gested in the literature. The Precision-Recall (PR) formalism [DG06] can be
considered as an alternative to the ROC. The PR evaluation is also based on
the four quantities TP, TN, FP , and FN . Precision (Prec) and Recall (Rec) are
defined as

Prec =
TP

TP + FP
Rec =

TP

TP + FN
= tpr. (7.26)

Similar to the ROC, a PR curve displaying Prec vs. Rec can be generated
by varying a bias parameter. Also, the area under the PR curve is often pro-
vided as a single quality parameter. However, unlike the AUROC it lacks an

182 7. MODEL EVALUATION AND REGULARIZATION

appealing statistical interpretation. For a discussion of supposed disadvantages
or advantages of the PR formalism over the ROC see [DG06] and references
therein.

Like other quantities, Prec and Rec can also be computed at a single, spe-
cific working point of the classifier. Various application domain specific measures
have been defined, see e.g. [Wik22,KEP17,KHV14] for overviews and references.
In fact, the large number of related quality measures can be a source of consid-
erable confusion. Here we present only two popular examples:

While the overall accuracy for a test set of in total ntot samples is computed
as (TP + TN)/ntot, the so-called balanced accuracy corresponds to an equal
weight average over classes:

BAC =
tpr + tnr

2
=

1

2

TP

TP + FN
+

TN

TN + FP

. (7.27)

It is supposedly more suitable for class imbalance in training and validation sets.
Here, TP, FP and FN are the absolute numbers of true positives, false positives
and false negatives observed in the data set. Similar claims have been made for
the popular F1-measure, which is given by the harmonic mean of Prec and Rec:

F1 =
TP

TP + (FP + FN)/2
= 2

Prec ·Rec

Prec+Rec
(7.28)

7.4.6 Multi-class problems

The evaluation of multi-class systems is more subtle. Several single valued
measures can be computed, see below, but a multi-dimensional generalization
of the ROC formalism or the PR scheme is far from obvious.

Confusion matrix

Most commonly, the so-called confusion matrix is provided in order to sum-
marize the class-specific performance of a multi-class system with respect to a
given data set. Illustration 7.8 displays the confusion matrix of a hypotheti-
cal 4-class classification problem. In the left panel, each element corresponds
to the number of feature vectors which belong to class i and are assigned to
class j by the classifier. In the right panel of Fig. 7.8, percentages (rounded)
are displayed. Here, diagonal elements correspond to the class-wise accuracies.
Off-diagonal elements provide insight into which classes are relatively easy or
difficult to separate.

Note that although the confusion matrix provides detailed information about
class-wise performances, it still corresponds to a single working point of the clas-
sifier. A multi-dimensional ROC- or PR-like analysis for multi-class problems is
non-trivial [Faw06,HT01]. However, many of the above mentioned single quan-
tities for a given working point can be extended to multi-class problems in a
straightforward fashion, see [KEP17]. An obvious example is the multi-class
BAC which weights every class equally by 1/C in a C-class problem.

7.4. PERFORMANCE MEASURES 183

predicted class
[abs.] 1 2 3 4

tr
u
e

cl
as

s

1

2

3

4

sum
predicted class

[%] 1 2 3 4

tr
u
e

cl
as

s

1

2

3

4

sum

Figure 7.8: Confusion matrix of a hypothetical imbalanced 4-class problem.
Left panel: matrix elements correspond to the absolute number of samples
from class i which are assigned to class j. Right panel: the corresponding
percentages. Diagonal entries represent the class-wise accuracies.

7.4.7 Averages of class-wise quality measures

A set of class-wise quantities can be derived from the confusion matrix or by
considering sub-classification schemes of the type class i vs. all others. This
way, all measures suitable for two-class problems, like AUROC or F1, can be
considered in C-class problems as well.

Averages of class-wise quantities can be computed in different ways, e.g. by
weighting each class equally or by taking the number of examples per class
into account. In the following, this subtlety is illustrated in terms of Precision
(Prec) and Recall (Rec) as defined in Eq. (7.26) for two-class problems and the
F1-measure (7.28).

From the confusion matrix c(i, j) in terms of sample counts of a C-class
problem we can determine the class-wise quantities

TPi = c(i, i), FNi =

j,(∕=i)

c(i, j), FPi =

j(∕=i)

c(j, i) for i = 1, 2 . . . C. (7.29)

For the matrix displayed in Fig. 7.8 (left panel) we would obtain TP1 = 72, FN1 =
6 + 11 + 4 = 21, and FP1 = 3 + 13 + 7 = 23 with respect to the first class.

Macro-averages

Based on Eq. (7.29) we can also compute the class-wise Precision and Recall
values in analogy with Eq. (7.26):

Preci =
TPi

TPi + FPi
, Reci =

TPi

TPi + FNi
. (7.30)

184 7. MODEL EVALUATION AND REGULARIZATION

The so-called macro-averages

Precmac =
1

C

C

i=1

Preci and Recmac =
1

C

C

i=1

Reci. (7.31)

are obtained with equal weight assigned to the C classes. Alternatively, a
weighted macro-average of the form

Precw−mac =
1

ntot

C

i=1

ni Preci and Recw−mac =
1

ntot

C

i=1

niReci (7.32)

is frequently considered. Here ni denotes the number of samples in class i and
the total number is ntot =

C
i=1 ni.

Now we have at least two options for defining a macro-F1 measure:

a) as an arithmetic mean of the class-wise F i
1 given by

F i
1 = 2

Preci Reci
Preci +Reci

, Fmac−a
1 =

1

C

C

i=1

F i
1 (7.33)

b) or as a harmonic mean of macro-Recall and macro-Precision, i.e.

Fmac−b
1 = 2

Precmac Recmac

Precmac +Recmac
(7.34)

Unfortunately, both measures appear in the literature under the same name, of-
ten without clarifying which version was used. A recently published note [OB21]
compares Fmac−a

1 and Fmac−b
1 . The authors show that the two quantities can

differ significantly with Fmac−b
1 ≥ Fmac−a

1 . They demonstrate that Fmac−b
1 can

yield overly large scores in class-imbalanced problems, while Fmac−a
1 appears to

be more robust in that respect. The authors conclude that “at the very least,
researchers should indicate which formula they are using.”

Micro-averages

In contrast to the above discussed macro-averages, micro-averaging considers
all data points without taking class-specifics into account. It is obtained by
considering the averages

TP =
1

C

C

i=1

TPi, TN =
1

C

C

i=1

TNi, FP =
1

C

C

i=1

FPi, FN =
1

C

C

i=1

FNi

(7.35)
and computing

Precmic =
TP

TP + FP
and Recmic =

TP
TP + FN

. (7.36)

7.5. INTERPRETABLE SYSTEMS 185

We note that

(TP + FP) =
1

C

C

i=1

(TPi + FPi) =
1

C

C

i=1

(TPi + FNi) = TP + FN =
ntot

C
,

as both sums add up all elements of the confusion matrix. As a consequence

Precmic = Recmic =
1

ntot

C

i=1

TPi,= Fmic
1 . (7.37)

Since Precmic = Recmic, their harmonic mean Fmic
1 also equals the overall

accuracy.
In general, macro-averages put the same emphasis on each class which makes

sense if the aim is an approximately class-independent performance. The micro-
average targets the overall quality, while the weighted macro-average constitutes
a compromise between the micro- and macro-approach.

Which averaging procedure should be used to evaluate a multi-class sys-
tem depends on the actual target and the preference of the user. The class-
composition in the training data set compared to the one that is expected in
the working phase plays an important role. Assume, for instance, that a par-
ticular class is represented by very few samples in the training set, but can be
expected to be more frequent in the real world data. Then, micro-averaging
bears the risk of disregarding the class in the evaluation with potential poor
performance in the working phase as a consequence.

7.5 Interpretable systems
The above discussed quality measures and validation procedures focus on the
performance of a trained system in terms of classification or regression accura-
cies. This is also true for the considered more sophisticated measures beyond
overall or class-wise accuracies. Accuracy appears to be a natural evaluation
criterion, if the goal is to, say, distinguish cats from dogs in images or perhaps
discriminate diseased patients from healthy controls in a diagnosis problem.

However, machine learning systems should be evaluated and compared to
each other also according to complementary criteria. Potentially, some of these
cannot even be expressed in terms of simple quantitative measures. As an
illustration, we discuss an entertaining and frequently quoted example [Nik17].
It illustrates and summarizes an important issue in machine learning along the
lines of the opening quote of this chapter: “Accuracy is not enough.”

The story is that a classifier was trained to distinguish dogs from wolves
based on a labeled set of still images. It seemed to work perfectly in training and
validation, but failed completely on novel photos in the working phase. Even-
tually, a check of the database showed that all wolves had been photographed
in the snow, while dogs were shown on green grass. The classifier had “learned”
to distinguish the image backgrounds, not the actual animals.

186 7. MODEL EVALUATION AND REGULARIZATION

As usual with stories like that, it is told in many versions, see [gwe09] for an
interesting account of similar examples of supposedly mislead classifiers. Ap-
parently, the origin of the wolves vs. dogs problem is [RSG16], a publication in
which the authors purposefully trained a classifier on the misleading data. The
aim was to illustrate the problem and to test a method for explain the inner
workings of the classifier.

However, the moral of the story is definitely relevant: unnoticed biases in
data sets can result in seemingly good or even excellent performances. The
effect is frequently much more subtle and more difficult to detect than in the
wolves vs. dogs problem. As a particularly important example, medical data
sets are frequently prone to selection biasses that facilitate a seemingly successful
discrimination of diseased from healthy subjects. For example, the age or gender
distribution in the classes could be different, while being essentially unrelated
with the actual target diagnosis. Even the more frequent occurrence of missing
values in one of the groups could be exploited by the machine learning system,
resulting in seemingly good yet useless performance. It is the nature of machine
learning systems that they are excellent artefact detectors.

Hence, the evaluation and comparison of supervised learning models in terms
of accuracy only (or similar performance oriented criteria) can be misleading
and even dangerous. Responsible use of machine learning techniques requires at
least a certain degree of insight into what is the basis of the system’s response.
Which features, for instance, appear most relevant in a classification scheme?
In the example of wolves vs. dogs: is it the properties of the animals or the
color of the background that the assignment relies upon?

In this sense, machine learning systems should be transparent and inter-
pretable. At the very least, an effort should be made to understand how a given
classifier or regression system works. Intuitive prototype-based systems and rel-
evance learning constitute just two examples of approaches that can be useful
in this context. A qualitative or quantitative study of the importance of given
features can be performed in a variety of learning frameworks.

The motivation for favoring white-box approaches is not limited to the de-
tection of potential biases. Interpretable models also facilitate the discussion
with the domain expert and increase the user acceptance for machine learning
based support systems. Consequently, the topic of improved interpretability
has attracted considerable interest within the machine learning community and
continuous to do so. Partly, these efforts aim at closing the gap (if any) between
the goals of statistical modelling and machine learning discussed in Sec. 2.2.

For recent reviews and research articles we refer the reader to several spe-
cial sessions which have been organized at the European Symposium on Neural
Networks (ESANN) [VMGL12,BL13,BBVZ17]. The overview articles and ses-
sion contributions should provide a useful starting point for further explorations
of the topic. A comprehensive discussion of explainability and interpretability
with many references can also be found in [Gho21].

Chapter 8

Preprocessing and
unsupervised learning

I will let the data speak for itself when it cleans itself.

— Unknown

In most of these lecture notes we have implicitly assumed that feature vectors
and labels are provided ready-to-use for training. In practical situations, this is
rarely the case. In general, real world data sets have to be thoroughly checked
for inconsistencies, missing values or other issues. A list of useful rules for initial
data analysis is provided in [BCS+22].

Quite often, outliers are removed from the data, e.g. single data points that
appear implausible because they are very different from the bulk of the data or
display unrealistic values of individual features. Such a cleaning of the data has
to be performed with utmost care and in a controlled, reproducible way. The
criteria and goals of data set curation and cleaning are usually very specific to
the application domain. Therefore, it should rely on insights from the domain
experts and it should never be guided by the idea of making the data consistent
with a given research goal or hypothesis. For instance, removing suspected
outliers may seriously affect the overall quality of the data set and introduce
unwanted biases.1

Here, we focus on broadly applicable and popular preprocessing steps. The
design of a classifier or regression system usually begins with the choice of
how to represent the data to the system. This can amount to the extraction
of engineered features, e.g. derived from images. But also seemingly simple
data sets of directly observed numerical feature vectors often require careful
preprocessing.

1(or in the worst case even wanted biases that support the desired result)

187

188 8. PREPROCESSING AND UNSUPERVISED LEARNING

Depending on the type of data at hand, a multitude of preprocessing steps
can be considered. Some operations have little or no effect on the subsequent
analysis. Others may seem natural but are far from trivial and can even be
harmful. Here we will highlight only a few key techniques and selected popular
methods:

◦ Frequently, some form of normalization or coordinate transformation
is performed which then facilitates the application of a particular machine
learning framework. This can account for mismatched scaling or skewed
distributions of feature values, for instance.

◦ Dimensionality reduction plays a key role in learning problems, where
the (nominal) dimension of feature vectors is relatively high compared to
their intrinsic dimension and/or to the number of example data. The iden-
tification of specifically two- or three-dimensional representations plays an
important role in the exploration and in the human-understandable vi-
sualization of data sets or the trained systems. Feature selection can
be interpreted as a specific form of dimensionality reduction, aiming at
a the identification of a subset of available features that is suitable and
sufficient for the given task.

◦ Unsupervised density estimation, Vector Quantization and cluster-
ing can provide important insights into the structure of the data. For
example, the detection of pronounced clusters of data in a preprocessing
step can help to design a specific classifier or regression system.

◦ Often, the imputation of missing values in incomplete data sets is nec-
essary, in particular when data is scarce and incomplete feature vectors
cannot be simply discarded.

◦ Under- and oversampling techniques are applied when data sets are
imbalanced with respect to the classes in a supervised learning problem.
Similarly, data augmentation aims at enriching the training data in
order to achieve better robustness against noise or to impose certain in-
variances in the training process, e.g. by generating rotated or shifted
training images in object recognition.

The above goals and methods are obviously interrelated. For example, dimen-
sionality reduction by Principal Component Analysis obviously constitutes also
a coordinate transformation. Similarly, density estimation can be used for the
imputation of missing values.

8.1 Normalization and transformations
Probably the most frequently used preprocessing steps concern some form of
normalization or transformation of the feature vectors prior to the actual ma-
chine learning analysis. Clearly, such operations should never be applied blindly
without evaluating their effect on the subsequent analysis.

8.1. NORMALIZATION AND TRANSFORMATIONS 189

8.1.1 Coordinate-wise transformations
Frequently, coordinate- or feature-wise transformations are applied in order to
harmonize the range or the statistical properties of the features.

Centering and z-score transformation

Given a set of observations or measurements resulting in N -dim. features vectors

IP =

ξ
µ
∈ RN

P

µ=1
, it can be convenient and/or useful to subtract the mean

observed in the data set. As a result, one obtains centered feature vectors

ξµ = ξ
µ
− m where m =

1

P

P

µ=1

ξ
µ

with
1

P

P

µ=1

ξµ = 0. (8.1)

Here, we subtract the empirical mean m as observed in the data set. In (rare)
cases where the true mean of the corresponding probability density is known, it
could be used to replace the empirical one.

In the N -dimensional Euclidean space, the centering (8.1) corresponds to
a simple translation of all data points, which has no effect on, for instance,
pair-wise Euclidean distances or angles defined by triplets of data points.

A slightly more involved transformation is frequently applied in order to
obtain zero mean, unit variance features:

zµj =
ξ µ
j − mj

σj
with σ2

j =
1

P

P

µ=1

ξ µ
j − mj

2

(8.2)

Here, mj is the empirical mean of component ξ µ
j in IP as defined in Eq. (8.1) and

σj is the corresponding standard deviation. As a result, the so-called standard
scores or z-scores zµj display zero mean and unit variance in the given data set.
Hence, zµj quantifies by how many standard deviations a feature value differs
from the empirical mean in the data set. Positive (negative) zµj correspond to
above (below) average values, respectively.

The z-score transformation or standardization is used to account for features
that scale differently, which can be detrimental in a supervised or unsupervised
analysis of the data. The transformation renders the representation independent
of linear rescaling of individual features and choice of units of measure (as
in miles or centimeters for the length of an object). On a univariate level,
considering only single features, the effect of the monotonic transformation is
not critical. However, one should be aware that it can alter the relations between
features in a non-trivial way. As one example, a z-score transformation can affect
the outcome of a Vector Quantization scheme, see the discussion of Fig. 8.6 in
Sec. 8.4.3.

A variety of similar linear transformations can be motivated for specific
problems and data sets. For instance, we could employ the feature median and
interquartile range (IQR) for a scaling analogous to (8.2) in order to achieve
zero median and unit IQR data.

190 8. PREPROCESSING AND UNSUPERVISED LEARNING

n

ξ

n

log(ξ)

Figure 8.1: Left panel: skewed histogram of a of a feature ξ that displays
many small and relatively few large values in a given data set (illustration).
Right panel: histogram of the log-transformed feature log(ξ).

Min-Max feature scaling

Sometimes it is desirable to transform features to a fixed range of values, e.g.
reflecting the specific requirements of the machine learning system in use. With

minj = min

ξµj
P

µ=1
and maxj = max

ξµj
P

µ=1
we can achieve that

ξj =
ξj −minj

maxj −minj
∈ [0, 1]. (8.3)

Note that the use of minimum and maximum values can be very sensitive to
the presence or absence of extreme values in a data set.

This or similar transformations are occasionally also referred to as normal-
ization in the literature. In order to avoid confusion, we will use the term only
in the context of the actual Lp-normalization of vectors as described in the
following subsection.

Non-linear feature transformations

The effect of linear feature-wise transformations can be highly non-trivial, for
instance in the context of classification or unsupervised clustering, cf. Sec. 8.4.
Obviously, the impact of non-linear transformations can be even greater. A
large variety of such transformations can be considered, having specific goals
in mind and taking into account domain knowledge about the properties of the
data set at hand.

As just one particular example we discuss briefly the popular log-transform.
Often, features of the considered data display a skewed distribution of values.
The illustration in Figure 8.1 (left panel) shows the histogram of a non-negative
feature which frequently assumes small values and only rarely larger ones. In
such cases, a feature-wise logarithmic transformation of the form

ξj = log(ξj) or ξj = log(ξj +) with > 0 (8.4)

8.1. NORMALIZATION AND TRANSFORMATIONS 191

Figure 8.2: Astrology as an
artefact of implicit normalization
by projecting stars onto the sur-
face of a sphere. The right panel
can also be viewed as an example
of (mental) overfitting.
Reproduced with kind permis-
sion from John Atkinson for
non-commercial use, see https://
wronghands1.com/ for more of his
brilliant cartoons.

reshapes the histogram to appear – loosely speaking – more Gaussian.2
The transformed data is exactly Gaussian only if the original data follows a

log-normal distribution of the form

P (ξj) ∝ exp

− (log ξj − µ)2

2σ2

. (8.5)

While this is rarely exactly the case in real world data, skewed distributions
similar to the histogram in Fig. 8.1 (left) are not uncommon in practice, e.g. in
the context of medical data relating to bio-markers, see [Bie17] for an example.

In any case, which transformations make sense in a particular problem de-
pends on available domain knowledge and insights into the data structure.

8.1.2 Normalization
One of the most frequently applied type of transformation is the normalization
of observed N -dimensional feature vectors. Based on so-called Lp-norms

||ξ||p =

N

j=1

| ξj |p
1/p

we can consider vectors ξ = ξ

||ξ||p, (8.6)

which then all display Lp-norm one.
For p = 2, corresponding to the familiar Euclidean norm, we obtain vectors

of the same length in feature space. In other words, all data points are projected
onto the unit sphere in RN . Using Euclidean distance after L2- normalization is
equivalent to measuring distances in terms of angles between the original feature
vectors. The L2-normalization appears to be a natural thing to do, for instance
in the context of the Perceptron, see Chapter 3.

In more general contexts, however, the effects of normalization can be non-
trivial and even lead to artefacts and mis-interpretations of the data. Astrology

2The choice = 1 is often used for non-negative features as it maps ξj = 0 to ξj = 0.

https://wronghands1.com/

192 8. PREPROCESSING AND UNSUPERVISED LEARNING

is a superb example: unrelated stars appear to form meaningful clusters when
they are implicitly projected onto a sphere, see Fig. 8.2 for a tongue-in-cheek
illustration.

As another example, L1-normalization using the so-called Manhattan norm
yields transformed feature vectors with

j |ξj | = 1. For non-negative features

e.g. representing amounts of chemical components in a sample, the normalized
data can be interpreted as concentrations. Similarly, event counts would be
transformed to normalized frequencies or probabilities.

Normalization as a preprocessing step can be helpful and greatly beneficial
in practical problems. In any case, it should be applied based on available
domain knowledge, and its effects on the subsequent analysis should be carefully
evaluated.

8.2 Dimensionality reduction
The low-dimensional representation of high-dimensional data plays an impor-
tant role in the context of data analysis and machine learning, see e.g. [Bis06,
HTF01,LV07,MPH09,BBH12] for a variety of methods and concepts. Several
interconnected, overlapping motivations for dimension reduction can be identi-
fied:

◦ Preprocessing
If high-dimensional data are presented to a machine learning system, the
number of adaptive quantities will be (at least) of the same order. This
may hinder successful training, in particular if the number of available
examples is limited. Dimension reduction can help to overcome this diffi-
culty.

◦ Exploration
Low-dimensional representations help to explore a given data set prior
to, say, supervised learning. Linear or non-linear projections can reveal
structures in the data, e.g. clusters or subspaces in which the feature
vectors are located. Such insights can help to design appropriate systems
in the subsequent analysis by taking specific properties of the data into
account.

◦ Visualization
Closely related to the previous point, two- or three-dimensional represen-
tations provide visualizations of the data set which facilitate interaction
with the user or domain expert. Before further analysis, visualization can
give useful insight into the structure of the problem. In retrospect, e.g.
after the training of a classifier, visualization helps to evaluate its perfor-
mance and provides information about regions where classes overlap or
individual misclassified data points are located [SHH20].

It is important to realize that the intrinsic dimensionality of feature vectors
ξ ∈ RN does not necessarily coincide with the nominal dimension N . For

8.2. DIMENSIONALITY REDUCTION 193

Figure 8.3: Left panel: schematic illustration of three-dimensional data
points falling into a two-dimensional manifold. Right panel: the special case
of a linear subspace or hyperplane that contains the data points.

instance, a set of vectors {ξµ}Pµ=1 could fall into (or close to) a low-dimensional
manifold M ⊂ RN as illustrated in Fig. 8.3. A particular simple example is a
linear subspace, i.e. a hyperplane which contains the linear dependent feature
vectors, an illustration is shown in the right panel of Fig. 8.3.

Note that the popular term curse of dimensionality [Bel57] is avoided here,
because (a) it is not obvious that a nominally high dimension is necessarily detri-
mental for the performance of machine learning methods (see e.g. [HKK+10,
GT18]) and (b) superstition brings bad luck.

We can distinguish two essentially different concepts for the low-dimensional
representation of high-dim. data: in one family of approaches, each original data
point is represented by an individual counter-part in a low-dim. latent space
without requiring a parameterized mapping between the spaces. The positions
of the representatives are directly determined by means of optimizing a suitable
cost function which is based on the aim of (approximately) preserving neigh-
borhood relations, pair-wise distances, or the overall topology of the original
data points. These approaches do not require an explicit linear or non-linear
functional mapping from the high- to the low-dimensional space. As an impor-
tant example, we present Multi-dimensional Scaling (MDS) below and briefly
mention a few other popular methods.

In the second major framework, an explicit mapping is determined which
provides linear or non-linear projections of the original data into the latent
space. The projection is optimized according to a specific criterion which is
evaluated w.r.t. a given data set. While these methods are less flexible due
to the pre-defined form of the actual mapping, they offer the possibility to
project out-of-sample data after training. The most popular example of the
basic concept is the well-known Principal Component Analysis (PCA) which is
discussed in Sec. 8.3 also from a neural network perspective.

194 8. PREPROCESSING AND UNSUPERVISED LEARNING

ξ2

ξ3

ξ1 y1

y2

||ξµ − ξν ||

||y
µ
−

y
ν
||

Figure 8.4: Left panel: three-dimensional data points ξµ ∈ R3 which display
a relatively low variance in component ξ3 . Center: the two-dim. represen-
tations y µ ∈ R2 as obtained by metric MDS. Right panel: scatter plot of
pair-wise Euclidean distances in N =3 dimensions vs. distances in M =2 after
MDS.

8.2.1 Low-dimensional embedding

Consider a given set of N -dim. feature vectors IP =

ξµ ∈ RN

P

µ=1
with a

distance measure dN (ξ, ξ′) that quantifies the pair-wise dissimilarity of data
points in IP . As a straightforward example we can think of the Euclidean
distance in N dimensions, but the consideration of any meaningful dissimilarity
is possible. We refer to the pair-wise distances as dµν

N = dN (ξµ, ξν) in the
following.

A number of methods aim at finding an embedding of the data points in
a low-dimensional Euclidean vector space that preserves relations between the
individual feature vectors in the original space, as much as possible. The goal
could be to approximately reproduce the pair-wise distances themselves, their
rank structure, or associated probability densities.

8.2.2 Multi-dimensional Scaling

The goal of metric Multi-dimensional Scaling (MDS) 3 is to find representatives
y µ ∈ RM with M < N , which preserve pair-wise distances and their relations
as far as possible. To this end we consider coordinates yµj ∈ R (j = 1, . . .M
and µ = 1, . . . P) in the target space. There, we evaluate the dissimilarities of
the corresponding vectors {y µ}Pµ=1 by means of a metric dM (y, y ′). Again, this
measure could be based on any reasonable vector norm, with Euclidean metric
being the classical and by far most popular choice. Note that, in general, the
measures dN and dM need not be of the same type. An example cost function

3So-called classical MDS is also known as Principal Coordinates Analysis and is not dis-
cussed here [Mea92].

8.2. DIMENSIONALITY REDUCTION 195

to optimize in MDS is the quadratic deviation

E

{y µ}Pµ=1

=

P

µ,ν=1
µ<ν

dµν
N − dM (y µ, y ν)

2
. (8.7)

All coordinates yµj are considered degrees of freedom that can be obtained by
minimization of E.

A (local) minimum of (8.7) corresponds to an arrangement of P points in M
dimensions which reflects the pair-wise distances dµν

N as well as possible. For
M < N it is in general not possible to obtain a perfect solution with E = 0.
Obviously, we can also not expect to find a unique minimum of E, the actual
outcome of MDS will depend on the initial configuration of y µ and on the poten-
tial randomness in the training process. Figure 8.4 illustrates MDS in terms of a
simple example based on Euclidean distance in both spaces: three-dimensional
feature vectors ξµ (left panel) display a relatively small variance in component
ξ3. The corresponding two-dimensional representations y µ, obtained by min-
imizing the quadratic deviation (8.7), is displayed in the center panel. The
scatter plot in the right panel shows that very similar pair-wise distances have
been achieved in M = 2 dimensions. Quantitative measures, e.g. a correlation
coefficient, could be obtained in order to evaluate the quality of the MDS result.
Note that the quality of the embedding is invariant under, e.g., simultaneous
translations or rotations of the y µ.

The term MDS is frequently meant to imply the use of Euclidean distances
in RN and RM , and minimizing the quadratic deviation (8.7). Various modifica-
tions of the basic idea have been suggested and applied in practice. Obviously,
a variety of distance measures dN and dM could be considered. Moreover, spe-
cific cost functions can be chosen which put, for instance, different emphasis
on small or large distances. A good overview of MDS related methods can be
obtained from [LV07] and [MPH09]. In particular [BBH12] discusses several
choices in a unified framework, including the so-called Isomap [TdSL00], Sam-
mon mapping [Sam69], Local Linear Embedding (LLE) [RS00], and Laplacian
Eigenmaps [BN03].

8.2.3 Neighborhood Embedding

Another popular family of methods is often used for the visual inspection of
complex data sets. In the original Stochastic Neighborhood Embedding (SNE)
as introduced by Hinton and Roweis [HR03], the data is characterized in terms
of Gaussian probabilities in the original and in the embedding space. These are
replaced by long-tailed student-t distributions in the popular t-distributed SNE
(t-SNE) that was later suggested by van der Maaten and Hinton [MH08].

Both, SNE and t-SNE, aim at the minimization of the Kullback-Leibler
divergence as a measure of (dis-)similarity between the assumed densities in
the original and the embedding space. The optimization can be done using
gradient-based methods. Recently, an alternative known as Uniform manifold

196 8. PREPROCESSING AND UNSUPERVISED LEARNING

approximation and projection (UMAP) has become popular [MHM20]. Its key
feature is the assumption that data is distributed in (or close to) a particular
manifold along which distances are computed.

Embedding methods are very popular, mainly in the context of data ex-
ploration and visualization. For more detailed presentations of neighborhood
embedding, we refer the reader to the original literature and reviews like [LV07,
BBH12,BBK20]. One of the main drawbacks of these methods is that, generally
speaking, the embedding coordinates y are not directly interpretable and their
connection to the original feature space is often unclear. In this sense, embed-
ding methods are not very appealing as preprocessing steps for further super-
vised learning (regression or classification). Moreover, out-of-sample extension,
i.e. the post-hoc embedding of data points that were not in IP is non-trivial.
One option is to add them to the set and then recompute all y µ on the basis of
the extended data, which is obviously very costly. Alternatively, one can try to
obtain an explicit mapping function Ψ that approximately realizes Ψ : ξµ → y µ

and can be applied to novel data points, see for instance [EHT20] for a Deep
Learning based approach.

8.2.4 Feature selection
A rather direct way of reducing the dimensionality of input data is to select
a subset of features, neglecting all others. It appears to be a natural idea to
simply try all different combinations of features and select the best possible
subset. In practice, however, the number of subsets with k features selected
from N dimensions is

N
k

and grows very rapidly with k and N .

An overview of basic feature selection methods can be found in [GE03,CS14,
JBB15]. Three main strategies for the selection of feature subsets have been
considered in the literature:

◦ Filter methods:
So-called filter methods aim at the identification of useful features with-
out actually training a classification or regression model. In unsupervised
approaches, features are selected or rejected based on their statistical prop-
erties, independent of the actual target problem. For instance, correlations
between different features could be exploited in order to discard redundant
features in a given data set.
Supervised filtering takes into account the label information in the data.
For instance, in the context of regression, individual features can be evalu-
ated and selected in terms of their correlations with the target. Similarly,
in classification problems, mutual information or cross entropy between
features and the target can serve as a selection criterion. Most frequently,
these criteria are applied in a univariate fashion, feature by feature. This
bears the risk of missing the relevance of combinations of features which
would be revealed in an appropriate multivariate analysis.

◦ Wrapper methods:
In the wrapper approach, the idea is to consider different combinations of

8.3. PCA AND RELATED METHODS 197

features in terms of the performance of trained regressors or classifiers. For
each candidate set of features, training and potentially validation schemes
have to be performed, which can result in considerable computational
costs. An advantage of the wrapper approach over univariate filter meth-
ods is that, in principle, favorable combinations of features can be found.

Obviously, there is no straightforward way to find the optimal set of fea-
tures for a given task. One can start with the full set of available features
and remove single ones from the set, in every step selecting the one that
has the least impact on the performance after training. Alternatively, one
could add features to the set, following a greedy strategy to improve the
quality of the classification or regression in every step.

◦ Embedded methods:
In embedded methods the selection of a subset of features is an integral
part of training a specific type of model, i.e. classifier or regression system.
A popular example would be the training of decision trees in a Random
Forest [Bre01], in which a tree selects a particular feature in every branch-
ing step. Hence, the actual feature set is compiled while the system is
trained. While this can be more efficient than the wrapper approach, it is
- in a sense - limited to an essentially univariate evaluation of features.

8.3 PCA and related projection methods

A variety of methods derives an explicit mapping of the form

Ψ : RN → RM with y = Ψ(ξ) ∈ RM (8.8)

directly from the data set IP. The mapping Ψ is parameterized and obtained
in a data driven process. Hence, unlike MDS or other embedding methods,
the mapping can be applied to out-of-sample data ξ /∈ P immediately. This is
particularly important for methods of supervised learning, where we can derive
Ψ from the training data and apply the same mapping to novel data in the
working phase.

In principle, we can obtain a meaningful projection by parameterizing the
function Ψ in a suitable way and then optimizing its parameters according to
an appropriate cost function. All criteria discussed in the context of embedding
in the previous section could be employed for the identification of an explicit
mapping as well.

We discuss here only methods which employ linear projections of the data.
Most methods, including Principal and Independent Component Analysis can
be extended in various ways. Non-linear versions can be formulated, for in-
stance, in terms of shallow or deep neural autoencoders as discussed in Sec.
5.5.1. Kernelized versions also exist, see for instance [SSM98,LG19] and refer-
ences therein.

198 8. PREPROCESSING AND UNSUPERVISED LEARNING

8.3.1 Principal Component Analysis
Due to their simplicity and intuitive nature, linear mappings are of particular
interest and practical relevance. For example, Principal Component Analysis
(PCA) is one of the most important and frequently used explicit mappings
in the context of data analysis, unsupervised learning, low-dimensional rep-
resentation and visualization. Primarily, PCA is employed to determine low-
dimensional representations. In addition it can be used to identify supposedly
non-informative contributions in a given data set. The basic idea is to disregard
linear combinations of features that hardly vary over the observed data.

Like many other standard and well-established methods, PCA can be mo-
tivated and derived from a variety of perspectives. Here we follow a mostly
heuristic line of thoughts and point out the relation to the theoretical back-
grounds in passing.

For convenience we will assume throughout the following that the data set
used for the identification of the mapping Ψ is centered, i.e. 1

P

P
µ=1 ξµ = 0. If

this has been achieved by a centering of the form (8.1), the same transformation
using the empirical mean in IP has to be performed on novel input vectors, before
Ψ can be applied.

The direction w = u1 ∈ RN along which the centered data displays the
largest variance is of particular interest. We can formulate the search as an
optimization problem with respect to the empirical variance along w:

Evar =
1

P

P

µ=1

(yµ)
2 with the projections yµ = w · ξµ. (8.9)

It is plausible to assume that the corresponding solution of largest variance, is
the direction in which most of the information about ξ is contained. In fact,
this is rigorously true under the assumption that all features follow a normal
distribution. If we define the empirical covariance matrix 4

C ∈ RN×N with elements Cij =
1

P

P

µ=1

ξµi ξµj , (8.10)

we can rewrite the objective function, Eq. (8.9), as a quadratic form

Evar =

N

j,k=1

wj wk
1

P

P

µ=1

ξµj ξ
µ
k

 = w⊤ Cw. (8.11)

The matrix C is positive semi-definite by definition, the quadratic form is non-
negative but otherwise unbounded. We can assume that C has ordered eigen-
values

λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. (8.12)
4not to be confused with the complementary P×P matrix C with elements Cµν ∝

j ξ

µ
j ξ

ν
j

defined in (3.74) in the context of classification.

8.3. PCA AND RELATED METHODS 199

Restricting the search to normalized w with |w| = 1, it is straightforward to
show that the maximum of Evar is achieved if w is the eigenvalue of C with the
largest eigenvalue λ1:

w = u1 with Cu1 = λ1u1.

In case of degenerate leading eigenvalues, λ1 = λ2 = . . . = λm, we have to
consider the corresponding m-dimensional eigenspace. Note that the variance
associated with the normalized u1 is given directly by its eigenvalue:

1

P

P

µ=1

(u1 · ξµ)2 = u⊤
1 Cu1 = λ1(u1)

2 = λ1. (8.13)

Once we have determined u1 as the direction of largest variation, we proceed
by identifying the direction u2 which displays the largest variance in the space
orthogonal to u1. In general we can determine the ordered sequence of directions
um in which the data displays the largest variance with um · uk for all k =
1, 2 . . .m − 1. Hence, we identify the M leading Principal Components of IP
with the leading eigenvectors of C

{wk}Mk=1 with projections yµk = wk · ξµ and variance
1

P

P

µ=1

(yµk)
2 = λk.

(8.14)
In the simple illustration shown in Fig. 8.3 (right panel), the vectors marked

in red correspond to the two leading eigenvectors or principal components. They
can serve as coordinate axes defining the two-dimensional subspace of largest
variation in the data set.

The M -dim. vectors y µ = (yµ1 , y
µ
2 , . . . y

µ
M)⊤ serve as M -dimensional repre-

sentations of the data set. The associated linear subspace displays the largest
variances in the data set. Under appropriate assumptions of Gaussianity, this
implies that the vectors y µ have the maximum possible information content
about the high-dimensional ξµ.

Equivalently, one can show that, for fixed dimensionality M , PCA can be
interpreted as a linear autoencoder, cf. Sec. 5.5.1, realizing a dimensionality
reducing a linear mapping and back-transformation:

y µ
k = uk · ξµ, ξµest =

M

k=1

yµk uk, (8.15)

realizes the smallest quadratic reconstruction error (5.37). Introducing the ma-
trix U = [u1,u2, . . .uM]

⊤ ∈ RM×N we can write (8.15) in the compact form

yµ = U ξµ, ξµest = U⊤ yµ. (8.16)

Generically, we will apply PCA to high-dimensional data sets, in particular
if the number of examples is lower than the nominal dimension, i.e. P < N.

200 8. PREPROCESSING AND UNSUPERVISED LEARNING

Obviously the subspace of non-zero variability in the data set is at most P -
dimensional in this case, as reflected by the rank of C. Hence, the maximum
number of meaningful principal components is M = P. Typically, fewer com-
ponents are used: under the assumption that the leading eigenvectors carry
most information, the mapping is truncated at relatively small M , neglecting
variations along minor eigendirections as noise.

Powerful tools exist that can be used to determine the leading eigenvectors
of the symmetric, semi-definite matrix C. Often, numerical methods for the
more general singular value decomposition (SVD) are preferred [Str19,DFO20].
SVD reduces to eigenvalue decomposition for diagonalizable matrices, but it is
claimed to be numerically more stable.

Whitening

PCA can also be used for a so-called Whitening transformation. The trans-
formed coordinates

yµk =
uk · ξµ√

λk

(8.17)

display zero mean and unit variance for all k. Hence, on the level of second
order statistics, the data appears totally isotropic with an identity covariance
matrix. Note that this does not imply that there is no structure left in the data.
Whitening can be useful when analysing properties of the data which concern
higher order statistics as in Independent Component Analysis, see Sec. 8.3.3.

8.3.2 PCA by Hebbian learning

It is instructive to study a very simple numerical procedure to compute u1, which
corresponds to the power method or von Mises iteration [MP29,Wil65]. As we
will see, it relates to Hebbian learning and can be extended to the computation
of several leading eigenvectors from a neural network perspective.

Consider an initial vector w(0) which can be expanded in terms of the eigen-
vectors ui of C:

w(0) =
N

j=1

aj uj with coefficients aj ∈ R and a1 ∕= 0.

Repeated multiplication (from the left) with C leads to the t-th iterate

w(t) = Ctw(0) =
N

j=1

aj λ
t
j uj = λt

1

a1u1 +
N

j=2

λj

λ1

t

aj uj

≈ λt
1a1u1 for t → ∞, (8.18)

where we omit contributions that vanish like O
λ2

λ1

t

.

8.3. PCA AND RELATED METHODS 201

Hence, assuming that 0 < λ2 < λ1, the weights w(t) will be dominated by
the leading eigenvector u1 for t → ∞. In case of degeneracies, the argument
can be extended to the m-dimensional subspace of leading eigenvalues and the
role of λ2 is taken over by λm+1 accordingly.

We can obtain a modified iteration by replacing C by the shifted matrix
[IN + η C] with η > 0 where IN is the N -dim. identity. This matrix has the
same eigenvectors as C and ordered eigenvalues 1 + ηλj . The corresponding
iteration reads

w(t) = [IN + ηC]w(t−1) = w(t−1)+ η Cw(t−1) = w(t−1)+ η
1

P

P

µ=1

yµ(t) ξµ

(8.19)
where yµ(t) = w(t− 1) · ξµ and we exploit that for general w ∈ RN

[Cw]i =

N

j=1

Cijwj =
1

P

P

µ=1

ξµi

N

j=1

ξµj wj =
1

P

P

µ=1

ξµi y
µ.

Instead of computing the sum over µ = 1, . . . P in each iteration step (8.19)
we can update the vector w in single steps of the form

w(τ) = w(τ − 1) + η yµ(τ) ξµ (8.20)

where w(0) is the initial vector and the index µ on the r.h.s follows the sequence
µ = 1, 2 . . . P, 1, 2, . . . which corresponds to the repeated presentation of all data
in a fixed sequential order 5.

Note that the update (8.20) can be interpreted as Hebbian Learning in a
linear neuron with inputs ξj and output y = w · ξ. The update can also be
derived as the gradient based maximization of cost function Evar in Eq. (8.9).

In practice, it makes sense to normalize the weight vector after each update
step in order to avoid numerical problems of diverging or vanishing |w|:

w(τ) =
w(τ − 1) + η yµ(τ) ξτ

|w(τ − 1) + η yµ(τ) ξτ | (8.21)

with yµ(τ) = w(τ − 1) · ξµ. Assuming that the previous w(τ − 1) was already
normalized, we note that

|w(τ − 1) + η yµ(τ) ξτ | =

1 + 2η[yµ(τ)]2 +O(η2).

The last term in the square root can be neglected for small learning rates η → 0.
In the same limit (1 + ηz)−1/2 ≈ (1 + ηz/2) and we therefore obtain

Oja’s rule

w(τ) = w(τ−1) + η

yµ(τ) ξτ − [yµ(τ)]2w(τ−1)

. (8.22)

5The change from Eq. (8.19) to (8.20) is reminiscent of the difference between Gauss-Seidel
and Jacobi iterations for linear systems [Fle00], see Sec. 3.7.2 It also resembles the relation
between batch and stochastic gradient descent, cf. see Appendix A.48.

202 8. PREPROCESSING AND UNSUPERVISED LEARNING

Here terms O(η2) have been omitted. The iteration (8.22) is known as Oja’s
Rule after Erkki Oja [Oja82]. It combines Hebbian learning with an appropriate
weight decay that realizes an approximate normalization of w for small learning
rates.

Further principal components

In principle, one could apply the power method also for the second and all
following principal components. Theoretically, we could avoid contributions
of u1 in the iteration (8.18) by starting from a w(0) with coefficient a1 =
0. Analogously, we would set a1 = a2 = . . . am−1 = 0 when computing um.
Similarly, one could consider the modified matrices

Cm = C −
m−1

k=1

λk[uku
⊤
k]

for the iteration of the vector wm. However, both ideas are at risk to fail in
practice, as numerical inaccuracies will always introduce small but non-zero
contributions of u1 which will blow up in the iterations, if not corrected for.
It is more promising to iterate a set of vectors {wj}Mj=1 in parallel and im-
pose appropriate conditions after each step, e.g. by means of a Gram-Schmidt
orthonormalization.

Two closely related extensions of Oja’s Rule are based on this concept. We
present here only the single step variants and refer the reader to the original
literature [Oja89,San89]. For details and convergence proofs, see also [HKP91]
for a more elaborate discussion.

Oja’s subspace algorithm and Sanger’s rule (8.23)

Initialize a random wm(0) with |wm(0)| = 1 for m = 1, 2, . . .M
At discrete time step τ

- determine the index µ of the current example (sequential presentation)
- update the vectors wm(τ),m = 1, 2 . . .M

according to Oja’s subspace algorithm:

wm(τ) = wm(τ − 1) + η yµm(τ)

ξµ −

M

k=1

yµk (τ)wk(τ − 1)

(8.24)

or according to Sanger’s rule:

wm(τ) = wm(τ − 1) + η yµm(τ)

ξµ −

m

k=1

yµk (τ)wk(τ − 1)

(8.25)

where yµk (τ) = wk(τ − 1) · ξµ(τ).

8.3. PCA AND RELATED METHODS 203

The first terms in the brackets [. . .] of Eqs. (8.24, 8.25) correspond to the familiar
Hebbian learning for linear units. The remaining terms can be motivated as
approximate normalizations for k = m as in (8.20), while the terms with k ∕= m
are associated with the pair-wise orthogonalization of vectors.

Note that in Oja’s subspace algorithm the sum in Eq. (8.24) is over all indices
k = 1, 2, . . .M, while in Sanger’s rule (8.25) it is truncated to k = 1, 2, . . .m
for the m-th vector. This imposes a hierarchy among the iterated weight vec-
tors. In fact, one can show that Sanger’s algorithm yields the ordered principal
components, i.e. wk(τ) → uk for large τ . On the contrary, in Oja’s subspace
algorithm the vectors {wk}Mk=1 converge to form an arbitrary orthonormal basis
of the same subspace. They do not necessarily become identical with uk and do
not display the same order with respect to the partial variances of the data.

Orthogonal vectors wk ⊥ wl result in uncorrelated projections yµk and yµl .
In fact, the updates (8.25) and (8.24) can also be derived as (single example)
gradient maximization of cost function (8.9) complemented by penalty terms of
the form − [yµk yµl]

2 for k ∕= l.

8.3.3 Independent Component Analysis

As discussed above, PCA identifies directions in which uncorrelated projections
display the largest variances. In Independent Component Analysis (ICA), the
goal is to find orthogonal directions which are independent in a broader sense
[HTF01, Sto04, HO00]. ICA is, for instance, used for Blind Source Separation
to identify independent sources in a mixed signal [CJ10]. Algorithms based
on Hebbian Learning have also been suggested for Independent Component
Analysis, see e.g. [CLG08,LG19].

Typically, the problem is addressed by considering a proxy for statistical
independence. Two popular concepts are

a) Mutual information
Here, projections are identified which carry as little information about
each other as possible. For projections x = w⊤ξ and y = v = v⊤ξ the
mutual information can be determined as the relative entropy [HTF01]

Ix,y =

x∈X

y∈Y
px,y(x, y) log

px,y(x, y)

px(x) py(y)

with the joint density px,y in the domain X ×Y and the marginal densities
px and py. Minimizing Ix,y identifies independent directions w and v in
feature space.

b) Deviation from Gaussianity
Orthogonal directions in which the projections appear least Gaussian are
expected to be most interesting and potentially relevant for the task at
hand [HO00]. They would display, for instance, very skewed or multimodal
histograms of projections.

204 8. PREPROCESSING AND UNSUPERVISED LEARNING

Figure 8.5: Left panel: three unimodal histograms with kurtosis ≈ −1 (left
panel), kurtosis ≈ 0 (center panel, corresponding to a normal density), and
kurtosis ≈ 2 (right panel), respectively.

As one example strategy for (b), we discuss here the maximization (in ab-
solute value) of the kurtosis of projections yµ = w · ξµ [HO00, HTF01]. It is
defined as

kurtosis =
(y − y)4

(y − y)2
2 − 3, (8.26)

where (. . .) denotes means of the type y = 1
P

P
µ=1 y

µ. Very often, the data is
centered and whitened in a first step, Eq. (8.17), appearing isotropic with unit
variance and zero mean in any direction. In this case, Eq. (8.26) simplifies to

kurtosis = y4 − 3. (8.27)

The kurtosis as defined here is zero for normal densities.6
Projections yµ = w⊤ξ with maximum kurtosis (in absolute value) can serve

as a proxy for directions in which the data differs most from Gaussianity. Figure
8.5 displays histograms of a unimodal density with kurtosis< 0 (left panel),
which appears more bumpy than a Gaussian (center panel), and a density with
kurtosis> 0, which appears pointier. Similarly, other non-Gaussian densities,
e.g. multimodal or skewed ones, also have a non-zero kurtosis.

8.4 Clustering and Vector Quantization
The identification and exploration of structures in a given data set can constitute
a very useful preprocessing step. Quite often, methods of unsupervised learning
are applied before the actual classification or regression scheme is implemented.
The purpose can be to obtain insight into the complexity of the problem and
into the difficulties that might be expected. If, for example, the data set contains
several well-defined clusters or groups of similar feature vectors, this knowledge
could be used in the design of a specific classifier. Similarly, density estimation
techniques can be applied to obtain knowledge about the general statistical
properties of the data.

6Note that the additive term −3 is sometimes omitted in the literature. Then, the kurtosis
of a Gaussian density is obviously 3.

8.4. CLUSTERING AND VECTOR QUANTIZATION 205

After a very brief discussion of elementary distance-based clustering meth-
ods, we present two prominent and related methods of unsupervised data anal-
ysis: Vector Quantization (VQ) by competitive learning and Gaussian Mixture
Models (GMM) for density estimation.

8.4.1 Basic clustering methods
A variety of specific clustering techniques exist. Many of them are based on
suitable distance measures in feature space like the familiar Euclidean metrics in
the simplest case. In methods of hierarchical clustering the distance D(Ca, Cb)
between two clusters is derived from the pairwise d(xa,xb) of their individual
elements xa ∈ Ca and xb ∈ Cb. Prominent criteria for the computation of
cluster distances are known as

◦ single linkage with

D(Ca, Cb) = min {d(xa,xb)}xa∈Ca,xb∈Cb
,

where the closest pair of feature vectors determines D(Ca, Cb).

◦ average linkage where

D(Ca, Cb) =
1

|Ca||Cb|

xa∈Ca

xb∈Cb

d(xa,xb)

is determined by the average pair-wise distance. Here, the number of
vectors contained in a cluster C is denoted as |C|.

◦ complete linkage with

D(Ca, Cb) = max {d(xa,xb)}xa∈Ca,xb∈Cb

corresponds to the largest pairwise distance of vectors in Ca and Cb.

These and similar measures can be used in so-called hierarchical clustering ap-
proaches like

◦ agglomerative clustering (bottom up):
Here, every data point is initially considered a cluster. In every step the
two clusters Ca and Cb, which are the closest according to some criterion
D(Ca, Cb), are merged into one cluster.

◦ divisive clustering (top down):
Here one starts by assigning all of the data to one cluster. In every step,
one of the current clusters is selected and split into two sub-clusters. Var-
ious criteria can be considered in the cluster selection and to guide the
actual division, see e.g. [DHS00].

Unlike K-means or similar methods, hierarchical clustering does not require
a predefined number of clusters. On the contrary, the procedure generates a
hierarchical tree of clusters. Deeper levels of this so-called dendrogram represent
splits of the data set into an increasing number of sub-clusters. A particular
configuration can be chosen once the dendrogram is constructed.

206 8. PREPROCESSING AND UNSUPERVISED LEARNING

8.4.2 Competitive learning for Vector Quantization
One possible aim of unsupervised learning is the representation of a potentially
large set of feature vectors by a few typical representatives. The term Vector
Quantization (VQ) has been coined for this task. In VQ, so-called prototypes
should reflect the frequency of observations in feature space. The goal could be
to reduce storage needs or to reveal structures such as clusters in the data.

In the following we present a basic scheme for unsupervised Vector Quanti-
zation by competitive learning [Koh97,HKP91,Bis95a,HTF01,BHV16]. Tech-
nically, it resembles the methods of (supervised) Learning Vector Quantization
discussed in Sec. 6.1 in that it also employs the concept of competitive learning.
However, unsupervised VQ is applied to unlabeled feature vectors and its aim is
the faithful representation of data sets, not an actual classification or regression
task.

Like most unsupervised learning techniques, VQ is also guided by a cost
function. Here, it is optimized in terms of the prototype vectors. The objective
function measures the quality of a particular prototype configuration with re-
spect to a given set of vectors P =

xµ ∈ RN

P

µ=1
. In neuroscience jargon, the

input vectors can be interpreted as stimuli which activate the neurons or units
that are characterized by N -dim. vectors

w1,w2, . . .wK

. The prototype vec-

tors wk ∈ RN can be seen as weight vectors, exemplars or expected stimuli,
see [BHV16].

A very popular approach to VQ is based on the crisp assignment of any data
point to the closest prototype, the so-called winner in terms of a pre-defined,
fixed distance measure. We restrict the discussion to the use of simple squared
Euclidean distance d(x,y) = (x− y)

2
/2 for x,y ∈ RN . Generalizations to

alternative measures are in principle possible along the lines discussed in 6.1.
A corresponding, suitable cost function is given by the so-called quantization

error [Bis95a,Bis06,HTF01,BHV16]:

HV Q =
P

µ=1
1
2

wk(µ) − xµ

2
. (8.28)

Here, wk(µ) ∈ RN denotes the winning prototype with the smallest Euclidean
distance from xµ ∈ RN :

d

wk(µ),xµ

≤ d

wj ,xµ

for all j = 1, 2, . . . ,K, (8.29)

where ties are broken arbitrarily. Hence, HV Q accumulates the quadratic dis-
tances of all feature vectors from their closest prototype. In this sense, the
quantization error indicates how faithfully the set of feature vectors is repre-
sented by the prototypes.

Standard competitive VQ corresponds to the stochastic gradient descent
based minimization of HV Q, see Appendix A.48. The resulting algorithm is very
intuitive and could be obtained on purely heuristic grounds: at each discrete
time step, a single randomly selected feature vector xµ is drawn with equal
probability from the data set. Then, the currently closest prototype wk(µ) is
determined according to Eq. (8.29). Similar to the supervised LVQ1 algorithm

8.4. CLUSTERING AND VECTOR QUANTIZATION 207

of Sec. 6.1, only the winner is adapted. However, in unsupervised VQ the
winning prototype is always moved closer to the considered input vector; the
update does not depend on additional information such as the labels in Learning
Vector Quantization:

Competitive learning (Vector Quantization)

– at time step t, select a single feature vector xµ randomly
from the data set P with equal probability 1/P

– identify the winning prototype, i.e.

wk(µ) with d(wk(µ),xµ) = min

d(wj ,xµ)

– update only the winning prototype according to:

wk(µ)(t+1) = wk(µ)(t) + η(t)

xµ −wk(µ)(t)

. (8.30)

The term competitive learning has been coined for this and several related
training schemes as prototypes compete for updates [Koh97,Bis95a,Bis06,RMS92,
BHV16]. The algorithm described above is an example of a Winner-Takes-All
(WTA) scheme, extensions to the update of several prototypes at every time step
have been considered also in the context of unsupervised Vector Quantization.

As in any stochastic gradient descent, convergence of the prototype vectors
has to be guaranteed by employing a time-dependent or adaptive learning rate
η(t) which slowly approaches zero in the course of training, see the discussion
of SGD in Appendix A.5.

Competitive Vector Quantization is closely related to the well-known Lloyd’s
algorithm or K-means algorithm [HTF01, Llo82, DHS00]. In contrast to the
prescription (8.30) it considers all available data in each update of the system
and alters all prototypes at a time:

K-means algorithm (Lloyd’s algorithm)

Given a data set

xµ ∈ RN

(µ = 1, 2 . . . P), initialize

K prototype vectors

wj ∈ RN

(j = 1, 2, . . . , N).

Repeat the following steps:

A) assign every data point xµ to the nearest prototype wk(µ) with

d

wk(µ),xµ

= min

d(wj ,xµ)

.

B) compute updated prototypes (centers) wj as the mean of
all data points which were assigned to wj in (A):

wj =
P

µ=1 x
µδj,k(µ)

P
µ=1 δj,k(µ). (8.31)

208 8. PREPROCESSING AND UNSUPERVISED LEARNING

8.4.3 Practical issues and extensions of VQ

The quantization error HV Q can be interpreted as a quality criterion when
comparing different prototype configurations. However, this is only meaningful
for systems with the same number of prototypes. In general, HV Q will decrease
with increasing K. Obviously, placing one prototype on each individual data
point always gives the lowest possible quantization error HV Q = 0.

A key difficulty of competitive VQ and the K-means algorithm is that the
objective function HV Q can display many sub-optimal local minima. Among
other problems, this can lead to a strong dependence of the training outcome
on the initial prototype positions. As an extreme example, placing a prototype
in an empty region of feature space can prevent it from ever being identified
as the winner for any of the data points, thus leaving it unchanged in a WTA
training process. The term dead unit has been coined for such a prototype.

For competitive learning, rank-based schemes have been suggested which
help to overcome this problem by updating not only the winner. Instead, pro-
totypes are ranked according to their proximity to the presented feature vector,
with e.g. the rank r = 1 of the winner, r = 2 of the second closest prototype etc.
Generally, the magnitude of the update of a prototype is a decreasing function
of r. A prominent example for the application of rank-based updates is the so-
called Neural Gas algorithm [MBS93,RMS92,BHV16], which employs relatively
large numbers of prototypes representing the density of data in feature space.
The idea has also been extended in the context of supervised learning [HSV05].

In Self-Organizing Maps (SOM), competitive learning is also the key ingre-
dient [Koh97]. In addition, prototypes are associated with a low-dimensional
latent space, in which they form a grid. Updates affect the winning prototype
as defined in conventional VQ, but neighbors of the winner in the grid are also
updated. This way, the SOM can approximately preserve and visualize topolo-
gies, i.e. neighborhood relations, in the latent space. For more information on
this popular method see e.g. [Koh97,RMS92,BHV16].

Vector Quantization vs. Clustering

Frequently, Vector Quantization is confused or even identified with clustering as
indicated by the frequent use of the suggestive term K-means clustering in the
literature. This is based on the idea that prototypes or centers should always
represent pronounced clusters of similar data points. Then, the quantization
error would correspond to the average within-cluster distances.

However, it is important to note that VQ is well-defined and useful even
if there are no clusters present in the data. Figure 8.6 shows a few illustra-
tive situations, where prototypes represent simple, two-dimensional data with
minimal HV Q. Panel (a) displays a single, elongated cluster represented by
prototypes which characterize the variation of observed feature vectors. Here,
the minimization of HV Q does not correspond to the identification of a set of
clusters. Panel (b) shows an idealized case of approximately spherical clusters.
Each of the two clusters can be represented by one prototype. In panel (c) of

8.4. CLUSTERING AND VECTOR QUANTIZATION 209

(a) (b)

(c) (d)

Figure 8.6: Vector Quantization: representation of two-dimensional data
points by prototypes (schematic). In each panel, 200 data points are displayed
as small (red) dots, prototype positions corresponding to minimal HV Q are
marked by filled black circles. The subpanels are referred to in the text of Sec.
8.4.3.

Fig. 8.6, clusters appear to be elongated along one of the axes in feature space.
A minimal value of the quantization error can be achieved by placing the pro-
totypes in the space between the apparent clusters, where hardly any examples
are observed. Panel (c) illustrates the fact that the outcome of VQ can be
highly sensitive to coordinate transformations, even if they are linear. Panel
(d) of the Fig. 8.6 displays a situation in which a smaller, separated cluster is
not identified at all. Although these few data points contribute large distances,
their total contribution do not have a significant influence on the position of the
prototypes when minimizing HV Q.

The number of prototypes or clusters

As discussed in Sec. 2, unsupervised learning including clustering and Vector
Quantization frequently lack simple performance measures which makes it dif-
ficult to select a model of suitable complexity. The goal of Vector Quantization
can be formulated mathematically in terms of HV Q, but the cost function is
strictly speaking only suitable for comparing systems which have the same com-
plexity, i.e. the same number of prototypes. Similar restrictions apply to explicit

210 8. PREPROCESSING AND UNSUPERVISED LEARNING

Figure 8.7: Illustration of the
elbow method: the quantization
error (per sample) as obtained
from the Iris flower data set with
P = 150 feature vectors [Fis36]
as a function of K in the K-
means algorithm.

K

HV Q/P

methods of clustering and the related criteria.

In absence of additional information like domain knowledge providing a
ground truth, it is impossible to infer the correct or optimal number of clus-
ters or prototypes from the data set P alone. In this sense, clustering and
VQ are ill-defined problems, ultimately their evaluation depends on the user’s
preferences and subjective quality criteria.

Several heuristic ideas have been suggested for the determination of a suit-
able number of clusters or prototypes. Here we illustrate the popular elbow
method [Tho53] in terms of an application of the K-means algorithm. Fig. 8.7
displays the quantization error HV Q as obtained in the Iris flower data set [Fis36]
by applying the algorithm with different choices of K. In this simple example,
we can conclude that K = 3 appears to be a reasonable choice. For K = 1, 2 the
quantization is much higher, while for K > 3 no further, significant reduction
of HV Q is achieved. The curve displays a pronounced elbow shape that suggests
K = 3, hence the term elbow method.7

Of course, the insight does not come as a surprise as the data set was al-
ready considered in Sec. 6.2.2 in the context of supervised learning. It contains
samples from three different classes corresponding to a more or less pronounced
cluster structure, see Fig. 6.2 for a discriminative visualization. In more gen-
eral practical situations, the shape of the corresponding curves and the elbow is
frequently much less conclusive.

Several related and alternative methods have been suggested, some of which
are based on more rigorous statistical arguments. As one example, R. Tibshirani
et al. suggested the so-called gap statistics as a criterion for the estimation of
the number of clusters in K-means or other methods [TWH02].

7Depending on the actual quality criterion and the visual representation, the elbow could
also be a knee.

8.5. DENSITY ESTIMATION 211

8.5 Density estimation

A rather fundamental approach to obtaining insight into the properties of a
given data set P = {ξµ}Pµ=1 is to identify a model density that could have
generated the observed data with high likelihood. Textbooks like [Bis95a,Bis06,
HTF01] provide comprehensive overviews of relevant methods and theoretical
background.

Several basic concepts can be applied in density estimation. In paramet-
ric methods, a particular statistical model is postulated and adapted. More
precisely, a particular functional form of the density is assumed. Then, the
optimization of its parameters can be formulated as an unsupervised learning
process based on the observed feature vectors in P.

So-called non-parametric methods 8 do not assume a specific functional form
a priori, but aim to infer a descriptive density directly from the data [Bis95a].
Examples are so-called histogram methods or approaches using local kernels
(not to be confused with kernel functions in the context of SVM and related
methods).

Here we focus on the important family of mixture models, which are some-
times referred to as semi-parametric [Bis95a]. We first discuss some basic ideas
behind parametric density estimation and then present the particular popular
example of Gaussian Mixture Models (GMM), see e.g. [Bis95a,HTF01,DFO20].

8.5.1 Parametric density estimation

In the parametric approach we make explicit assumptions about a probability
density that could explain the observed data set. Very frequently we will assume
that feature vectors ξµ ∈ RN can be interpreted as generated independently
according to a specific identical N -dim. density. We furthermore assume an
appropriate parametric form and, hence, we can write the likelihood and log-
likelihood of the observed data as

L(Θ) =

P

µ=1

p(ξµ|Θ) and ℓ(Θ) = ln(L(Θ)) =

P

µ=1

ln p(ξµ|Θ). (8.32)

Here, the vector Θ ∈ RK concatenates the K parameters of the model density
p(ξ|Θ). The dimension K of Θ as well as the type of parameters depend on the
actual structure of the considered model.

The optimization of ℓ(Θ) yields the corresponding maximum-likelihood model.
Similar to the discussion in Sec. 2.13 we can extend the formalism by introduc-
ing a prior density po(Θ) and derive the resulting maximum a posteriori (MAP)
model. Furthermore, Bayesian estimation techniques can be applied to obtain a
probabilistic description of the model parameters, see Sec. 2.13 for a discussion

8Despite the suggestive name, non-parametric methods may very well comprise parameters
and hyper-parameters.

212 8. PREPROCESSING AND UNSUPERVISED LEARNING

in terms of linear regression. Here, we only follow the maximum likelihood ap-
proach and consider its application to a specific type of model densities in the
next section.

8.5.2 Gaussian Mixture Models
As in any machine learning problem, model selection is a key difficulty also
in the context of density estimation. The assumed model density should be
appropriate to represent the complexity of the data. While the formalism is
very powerful, it can be difficult to define suitable models which allow for an
analytical or efficient numerical treatment. A particularly successful concept is
the consideration of adaptive models which are defined as mixtures of specific
basis functions. Gaussian densities p(ξ|Θ) constitute a particular popular and
convenient choice. Here we restrict our analysis to the particularly simple case
with

p(ξ|Θ) =

M

m=1

pm p(ξ|m,σm,wm) (8.33)

with p(ξ|m,σm,wm) =

2πσ2

m

−N/2
exp

− 1

2σ2
m

(ξ −wm)
2

which also factorizes with respects to the components ξj . For simplicity we as-
sume here that the contributing densities are isotropic with covariance matrices
σM IN . Extensions to more general N -dimensional Gaussian densities are of
course possible.

The model parameters Θ in (8.33) are given by the union of the sets
σm ∈ R,wm ∈ RN , pm ∈ R

for m = 1, 2, . . .M . Hence, Θ ∈ RK with K =

M(N + 2) in this special case. Note that the so-called mixing parameters pm
quantify the contribution of the individual Gaussians and have to satisfy the
conditions

0 ≤ pm ≤ 1 for all m and
M

m=1

pm = 1. (8.34)

Given a particular realization of the model we assign a feature vector ξ to
one of the contributing Gaussians with probability

Qm =
pm p(ξ|m,σm,wm)

M
k=1 pk p(ξ|k,σk,wk)

=
σ−N
m pm exp

− 1

2σ2
m
(ξ −wm)

2

M
k=1 σ

−N
k pk exp

− 1

2σ2
k
(ξ −wk)

2
 . (8.35)

Note that also the Qm are properly normalized with
M

m=1 Qm = 1. Analo-
gously, we define the quantities Qµ

m by (8.35) evaluated in ξ = ξµ.
For the specific model density (8.33), the log-likelihood (8.32) reads

ℓ (Θ) =

P

µ=1

ln

M

k=1

pkσ
−N
k exp

− 1

2σ2
k

(ξµ −wm)
2

+ const. (8.36)

8.5. DENSITY ESTIMATION 213

It is straightforward to work out the necessary conditions for a maximum of
the log-likelihood [Bis95a]. They can be written in the suggestive form

wm =

P

µ=1

Qµ
m

Qµ

mP
ν=1 Q

ν
m

ξµ (8.37)

σ2
m =

P

µ=1

Qµ

mP
ν=1 Q

ν
m

(ξµ −wm)

2 (8.38)

pm =
1

P

P

µ=1

Qµ
m (8.39)

with the assignment probabilities Qµ
m defined in Eq. (8.35). Note that for the

derivation of (8.39) the normalization

m pm = 1 has to be taken into account
explicitly [Bis95a]. The equations can be solved self-consistently by means of the
intuitive natural iteration method, see e.g. [Kik76]. If we interpret the r.h.s. as
to define the next iterates of the quantities on the l.h.s. we obtain the following
algorithm:

Gaussian Mixture Model (isotropic Gaussian contributions)
- initialize wm,σm, pm for m = 1, 2, . . . ,M
- update the model parameters according the following iterative procedure:

wm(t+ 1) =

P

µ=1

Qµ
m(t)

Qµ

m(t)
P

ν=1 Q
ν
m(t)

ξµ (8.40)

σ2
m(t+ 1) =

P

µ=1

Qµ

m(t)
P

ν=1 Q
ν
m(t)

ξµ −wm(t+ 1)

2

(8.41)

pm(t+ 1) =
1

P

P

µ=1

Qµ
m(t). (8.42)

Note that here wm(t+ 1) appears on the r.h.s. of (8.41), but the terms Qµ
m(t)

are evaluated by inserting the previous wm(t) into Eq. (8.35). While this de-
tail is not essential for the iteration to work, it is very interesting to note that
this specific form can be derived as an Expectation-Maximization (EM) proce-
dure for the optimization of the (log-)likelihood [Bis95a,HTF01,DFO20]. This
methodological framework has been formalized by Dempster et al. for quite
general problems involving incomplete data, see [DLR77]. In our density esti-
mation problem we can interpret the assignment probabilities Qµ

m as unknown
latent variables. Detailed discussions of the very versatile EM-approach can be
found in textbooks like [Bis95a] or [HTF01].

Figure 8.8 illustrates the application of the GMM algorithm in terms of a
rather simple multi-modal density of two-dimensional data points (left panel).

214 8. PREPROCESSING AND UNSUPERVISED LEARNING

Figure 8.8: Illustration of density estimation by adaptation of a Gaussian
Mixture Model. Left panel: 1000 two-dimensional data points drawn from a
multimodal density. Center panel: initial density represented by a mixture of
six Gaussians. Right panel: the model density after 20 EM-steps according to
(8.40-8.42).

A mixture of six Gaussians is adapted to the data following the iteration (8.40-
8.42), the center panel of Fig. 8.8 displays the initial configuration of the system
with pk = 1/6. After as few as 20 update steps, the density is approximated very
well. Note that the model is overly complex with 6 Gaussians representing only
4 clusters in the data. However, this does not appear to constitute a problem
in this simple setting. The complexity is reduced by coinciding Gaussians with
equal means and variances or by eliminating redundant contributions by having
mixing parameters pk → 0. The actual realization of the estimated density in
terms of the model parameters will depend on the initialization in this example.

It is very instructive to consider the algorithm (8.40–8.42) in an extremely
simplifying limit. Assume that the variances are equal and fixed in all compo-
nents of the GMM, i.e. σ2

m = σ2 which simplifies Eq. (8.35):

Qm =
pm exp

− 1

2σ2 (ξ −wm)
2

M
k=1 pk exp

− 1

2σ2 (ξ −wk)
2
 . (8.43)

If we now take the limit σ → 0, the sum is dominated by the largest summand
(the term with the smallest (ξ − wk)

2), which is exponentially larger than all
other ones. Consequently we obtain

lim
σ→0

Qm =

1 if (ξ −wm)2 ≤ (ξ −wk)

2 for all k ∕= m
0 else.

(8.44)

Hence, in this limit, data points are assigned in a crisp way to the closest
wm according to Euclidean distance. In the GMM algorithm (8.40–8.42), the
updates of the variances become obsolete and the pm are simply computed as
the fraction of crisp assignments to wm(t), while the new wm(t+1) are obtained
as the means of the data points currently assigned to wm(t).

8.6. MISSING VALUES AND IMPUTATION TECHNIQUES 215

In the considered limit, the GMM algorithm becomes identical with the
intuitive K-means procedure presented in (8.31). This is yet another example
for the observation made in Sec. 2.2 that many heuristic learning procedures
can be interpreted as special cases or limits of more general statistical modelling
schemes.

8.6 Missing values and imputation techniques
Many real world data sets are compromised by missing values, i.e. components
of feature vectors that have not been observed, registered or communicated
properly. Missing values can occur due to a variety of more or less complex
reasons, see [Gho21] (chapter 3) and [GBB+23] for a comprehensive discussion.
Quite frequently, the use of a certain spreadsheet based software tool leads to
unwanted missingness or other artefacts and makes it difficult to excel. These
are not explicitly discussed here, but always should be taken into consideration
as a potential source of error.

In the literature, the following rather coarse categorization of missingness
can be found [Lit88, GLSGFV10, LR02, Gho21, GBB+23], examples are taken
from [Bla15]9

◦ MCAR: missing completely at random
Missingness is considered to be completely at random if the absence or
presence of a feature does not depend on its value or on the value and/or
missingness of other features. As an example, an accidentally damaged
blood sample in a medical study would result in missing the observation
of a particular feature.

◦ MAR: missing at random
In this case, the fact that a feature is missing might be predictable from
other information, but does not depend on the potential value of the miss-
ing feature. As an example, similar to the one presented in [Bla15], a
person may miss an IQ test because they are ill on the day that the IQ
test is given. This missingness relates to other available information about
the person, but does not depend on the potential outcome of the test, i.e.
the feature value itself.

◦ MNAR: missing not at random
If missingness is specifically related to the feature that is missing, the
somewhat vague term not at random is used. For instance, a person might
have avoided a drug test resulting in a missing observation, because they
took drugs and the outcome would be positive. Another example would be
a feature that cannot be registered whenever it exceeds an allowed range
of values, e.g. due to technical limitations of the measurement process.

The distinction of these types of missingness is not always very clear. More-
over, it can be difficult (if not impossible) to infer the underlying reason for

9See also https://www-users.york.ac.uk/~mb55/intro/typemiss4.htm

https://www-users.york.ac.uk/~mb55/intro/typemiss4.htm

216 8. PREPROCESSING AND UNSUPERVISED LEARNING

missingness from the provided data alone. The MCAR and MAR types, which
are sometimes referred to as ignorable, are certainly the least difficult to handle.
More systematic forms of missingness as in MNAR, would require sophisticated
modelling techniques to take them properly into account. Consequently, the
methods discussed in the following are most appropriate for data affected by
MCAR or MAR type missingness.

8.6.1 Approaches without explicit imputation

Depending on the frequency and nature of missing features, simple strategies
can be applied which ignore or eliminate the missingness beforehand or as an
integral part of the training process.

◦ Deletion
The most straightforward idea to handle missingness is to include only complete
feature vectors in the analysis and omit all others. This is appealing since it
does not require explicit manipulations of the data. However, disregarding a
subset of samples might introduce biases. In any case, simple deletion is only
feasible if enough training data are available to begin with. In addition, one
would have to reject all incomplete data in validation, test or working phase. A
similar (also problematic) strategy is to omit features entirely if they appear to
be missing in a significant fraction of the available samples.

◦ Training algorithms that can handle missingness
In some machine learning frameworks it is possible to restrict their application
to the features that are present in a given observation. As an example, the
computation and ranking of pairwise distances in a subset of samples can be re-
stricted to the set of features that is present in all involved feature vectors. The
concept could be applied, for instance, in Nearest Neighbor Classification. Sim-
ilarly, in LVQ and other prototype based systems, cf. Chapter 6, the distances
of an incomplete test or training sample from all prototypes can be computed
and compared (excluding the missing components) for the identification of the
closest prototype, see e.g. [GBV+17]. Another example of an algorithm that
can handle missingness (and noise) without explicit imputation is the so-called
Probabilistic Random Forest [RBS19].

8.6.2 Imputation based on available data

The most widely used approach to handle missing values is imputation, i.e. the
replacement of missing features by more or less sophisticated estimates based
on the available data. Several strategies and modifications of the basic idea are
explained in the following. For details and references, see e.g. [Gho21,GBB+23].

◦ Naive estimates
A straightforward but naive idea is to replace a missing value in, say, feature

8.6. MISSING VALUES AND IMPUTATION TECHNIQUES 217

ξj by the corresponding mean or median in the data set as computed from all
instances in which ξj is present. This can, however introduce or enhance a bias
in imbalanced data sets.

As a seemingly more sophisticated choice, the class-wise mean or median of ξj
could be used for imputation in a set of labeled training data. But this estimate
would be unavailable for unlabeled feature vectors in the test or working phase.

◦ Nearest-Neighbor imputation
Applying a Nearest-Neighbor (NN) (or K-NN) approach partly solves the above
mentioned problem and constitutes a popular tool for imputation. Given an
incomplete feature vector ξ with missing value ξj , one can determine the nearest
neighbor(s) of ξ in the training set e.g. in terms of the partial Euclidean distance
w.r.t. the available dimensions. Then, the value of ξj in the nearest neighbor or
an appropriate estimate based on the K nearest neighbors can be imputed.

◦ Regression based imputation
If a feature ξj can be expected to be correlated with other features ξk with
k ∕= j, imputation can be based on a regression scheme. From the available
data we can infer this dependency by means of linear or non-linear regression
and obtain a prediction for the missing value.

◦ Cold deck and hot deck imputation
The term cold deck imputation has been coined for situations in which a sepa-
rate data set is used for imputing missing values in the training data or when
testing/applying the trained system. On the contrary, in hot deck settings, the
available (training) data set itself is used for determining the imputed values.

◦ Generative modelling for imputation
Methods discussed in Sec. 8.4, can be employed to estimate the density of data
or a particular feature from a given data set. If the occurrence of feature ξj
is modelled by e.g. a mixture of Gaussians, the resulting GMM can be used to
generate random values for the imputation of missing values accordingly.

◦ Multiple imputation
Frequently, more than one imputation value is generated per missing feature.
Generative approaches or randomized versions of regression based imputation
can be used to provide multiple versions of the imputed data set. Then, training
and validation can be performed on a number of versions in order to obtain
reliable performance estimates.

As an example, the so-called Multiple Imputation by Chained Equations
(MICE) has recently become popular [ASFL11, Gho21, GBB+23]. There, in
a first step all missing values are replaced by simple mean or median impu-
tation, with the exception of one selected feature dimension, say, ξk. Next, a
regression based imputation is used to replace the missing values of ξk in the
data set. Subsequently the missing values of a different feature ξj(j ∕= k) are

218 8. PREPROCESSING AND UNSUPERVISED LEARNING

imputed by regression and the entire procedure is repeated until all missing fea-
tures (and naive estimates) have been replaced by regression based imputation.
The imputation of all missing values can be done with different selections of the
initial feature ξk and by varying the order of features, thus obtaining several
versions of the imputed data set.

8.7 Over- and undersampling, augmentation
Here we discuss the problems that arise when a classification problem is im-
balanced in the sense that the prevalences of the individual classes are very
different. Similar difficulties occur in regression problems with skewed and/or
multimodal distributions of the target variable, but here we restrict the discus-
sion to classification. For reviews of imbalance related strategies and further
references consult, for instance [Cha09,HG09].

Class-imbalance can be handled in various ways when validating a given
classifier, see the discussion in Sec. 7.4. However, it is often necessary to take the
imbalance into account in the training phase already. Strong over-representation
of certain classes in the training data can lead to very poor performance with
respect to minority classes. Note that an imbalanced training set does not
necessarily reflect the prevalences we can expect in the working phase.

8.7.1 Weighted cost functions

Assume that a training set comprises a total of P =
C

j=1 Pj examples, with
Pj of those representing class j in a C-class problem. Virtually all objective
functions we have considered for training are of the general form

E(W) =
1

P

P

µ=1

eµ (8.45)

with the contribution eµ of a single example in the data set. We can balance
the influence of the different classes by considering the weighted cost function

Ebal(W) =

C

j=1

1

Pj

Pj

µj=1

eµj (8.46)

where the partial sums over µj = 1, 2, . . . Pj contain only examples from class
j ∈ {1, 2, . . . C}. Note that a gradient descent optimization of Ebal leads to
updates that are equivalent to descent in the original E, Eq. (8.45), with class-
specific learning rates ηj ∝ 1/Pj .

8.7.2 Undersampling
Another straightforward way to compensate for class imbalances is to per-
form the actual training on sets with balanced class composition. This can

8.7. OVER- AND UNDERSAMPLING, AUGMENTATION 219

be achieved by randomly selecting the same number of examples from each
class. Hence, the training set size will be limited to at most min{P1, P2, . . . PC}
examples per class. Undersampling can be limited to the actual training set
while validation and test sets can remain unbalanced, but the evaluation criteria
should be robust against imbalance, like the BAC or other measures discussed
in Sec. 7.4.2.

The random selection could be done once, disregarding the remaining data.
However, this strategy would not make use of all available information and
bears the risk of selecting atypical cases. Instead, the random undersampling
should be performed repeatedly, which enables the computation of averaged
performance measures.

8.7.3 Oversampling

One can also aim at increasing the effective influence of the underrepresented
minority classes by generating additional examples for training. The two main
ideas are described in the following.

Random oversampling

In this simple approach, the training set is augmented by exact copies of ran-
domly selected examples in the underrepresented classes. It can be realized by
random selection of examples with replacement.

For loss functions of the general form (8.45), the effect of including copied
examples in the training data is very similar to weighting the classes as in Eq.
(8.46). However, in the corrected cost function every example from a given class
has the same weight.

In practice, random oversampling in the underrepresented classes and un-
dersampling of the overrepresented ones are often combined.

Generative oversampling

Instead of using exact copies of available examples, one can aim at generating
synthetic data which reflect the statistical properties of the minority classes.

The simplest idea would be to augment the training set by noisy copies of
randomly selected feature vectors. In more sophisticated approaches one per-
forms a suitable density estimation and uses the resulting model for generating
additional samples.

The Synthetic Minority Oversampling Technique (SMOTE) [CBHK02] fol-
lows a similar, yet simpler concept. The basic scheme is summarized in the
following:

220 8. PREPROCESSING AND UNSUPERVISED LEARNING

SMOTE (Synthetic Minority Oversampling Technique)

- randomly select an example from the minority class

- determine its k nearest neighbors in the same class, e.g. according to
Euclidean distance

- select one of the neighbors with equal probability 1/k

- generate a new data point at a random position on the line connecting
the two selected feature vectors, assign it to the same class.

Several modifications and extensions can be considered. For example, the neigh-
bor identification and construction of the synthetic data point could be based on
different distance measures, see [GBV+17] for an example of applying geodesic
SMOTE in angle-based classification.

Practical issues

The suitability of the approaches discussed in Sec. 8.7.1–8.7.3 clearly depends
on the availability of example data from all classes and on the details of the
problem at hand.

Both the weighting of classes in the cost function and undersampling are
easy to realize since they do not rely on generating synthetic data. Clearly,
undersampling is only feasible for data sets with a reasonably large number of
examples for each class to begin with. However, if that is not the case, the
application of machine learning is questionable anyway.

Generative oversampling cannot really create fundamentally novel informa-
tion, since the augmented feature vectors more or less faithfully reflect the
properties of the original data set. As a consequence, the oversampling and
subsequent training bears the risk of overfitting to the available minority class
data. In addition, generative oversampling introduces problems of model and
parameter selection, e.g. concerning the number of neighbors in SMOTE or the
choice of a model density to begin with.

Imbalanced data can constitute a significant challenge in practical applica-
tions of machine learning. Measures to compensate the imbalance should be
applied with care and they should always be evaluated in a proper validation
process.

8.7.4 Data augmentation

In practical applications, even balanced data sets are often augmented by addi-
tional, artificial training data. Data augmentation can be naively motivated as
a way to improve the training by providing more example data. In principle,
one can employ all methods discussed for oversampling in the previous section
also for the generation of additional data. The concept of data augmentation

8.7. OVER- AND UNDERSAMPLING, AUGMENTATION 221

is discussed briefly in [GBC16] with additional references given. One survey on
image data augmentation for Deep Learning is provided in [SK19].

Obviously, some of the risks mentioned in Sec. 8.7.3 are also relevant for data
augmentation. In principle, it is not possible to generate genuinely novel infor-
mation from a given data set alone. However, a few cases in which augmentation
appears justifiable can be identified:

◦ domain knowledge based models
In specific applications, generative models of the expected data in the
working phase may be available, which are based on explicit domain knowl-
edge. Such models can be used to generate surrogate data for training and
testing. Assume that the characteristics of a novel instrument, say a tele-
scope in astronomy, are known in detail. If, in addition, key properties of
the objects of interest are known, artificial data can be generated by means
of simulations of the observation process and subsequently used to (pre-)
train a classifier or regression system, see [RMBJ21] for just one recent
example. Of course, systems trained on surrogate data should eventually
be validated and tested in a real world setting.

◦ increased robustness against noise
The robustness of a classifier w.r.t. input noise can be increased by com-
plementing the training set by noisy copies of the original data. In fact,
this strategy can be viewed as a regularization technique [Bis95b,GBC16].
Obviously the noise must not be too strong and should reflect the expected
level in real data.

◦ imposing invariances
Analogous strategies can be applied in order to achieve robustness with
respect to other expected variations in feature space. This plays an impor-
tant role in image processing tasks. The original data is often subjected
to systematic variations, such as rotation, scaling, or skewing of objects.
A properly designed training set will result in a classifier or regression
system that displays the desired invariances.

It is essential that the applied variations are suitable for the task at hand:
while e.g. galaxy classification [NWB+19] will not be affected by arbitrary
rotations in the image plane, as all orientations should occur in the data
anway. On the contrary, handwritten character recognition is insensitive
to rotations of the symbols only in a very small range of angles.

In many cases, data set augmentation appears to be a cheap but efficient way
to increase the performance of the trained system. However, systematic alterna-
tives should always be considered. In particular, invariances could be imposed
through preprocessing, i.e. the extraction of invariant features. Even more ele-
gantly, they can be achieved by appropriate network design and modified loss
functions which realize invariant functions, see [WBJH18] for an example and
further references.

222 8. PREPROCESSING AND UNSUPERVISED LEARNING

Concluding quote

Everybody right now, they look at the current technology, and they think, “OK,
that’s what artificial neural nets are.” And they don’t realize how arbitrary it
is. We just made it up! And there’s no reason why we shouldn’t make up some-
thing else.

— Geoffrey Hinton

224

Appendix A

Optimization

There is nothing objective about objective functions.

— James L. McClelland

Here we summarize some essential mathematical concepts concerning real-
valued functions of multi-dimensional arguments and their optimization. In
particular, we consider local extrema and gradient-based search strategies. We
also discuss basic aspects of constrained optimization.

Note that we refrain from providing the precise (yet usually mild) math-
ematical conditions for the validity of expansions and applicability of theo-
rems. For instance, we assume implicitly that all considered functions are
continuous and differentiable, that second derivatives are symmetric, etc. For
more rigorous presentations we refer the reader to the mathematical literature,
e.g [Fle00,PP12,PAH19,Str19,DFO20].

A.1 Multi-dimensional Taylor expansion
Consider a real-valued function of the form

f : x ∈ Rd → f(x) ∈ R. (A.1)

If the value of the function f(xo) and its derivatives are known in some point xo,
we can perform a d-dimensional Taylor expansion to obtain the approximation

f(xo + h) ≈ f(xo) + h⊤∇f(xo) +
1

2
h⊤ H(xo)h+O

|h|3

(A.2)

in the vicinity of xo. Here, we assume that the norm of the deviation h ∈ Rd

is small: |h| ≈ 0. The first term merely corresponds to the simple estimate
f(x) ≈ f(xo) close to the reference point. The second term takes into account

225

226 A. OPTIMIZATION

Figure A.1: Real world illustration of extrema and saddle points of a func-
tion in d = 2 dimensions (elevation z(x, y)). Zero gradients can correspond to
maxima, minima, saddle points or extended flat regions. Photo taken on the
Mt. Whitney trail (https://en.wikipedia.org/wiki/Mount_Whitney_Trail).

the first (partial) derivatives of the function with respect to the coordinates x.
With the formal vector

∇ =

∂

∂x1
,

∂

∂x2
, . . .

∂

∂xd

⊤
(A.3)

we obtain the gradient of f in xo, i.e. the vector of partial derivatives

∇f(xo) =

∂f

∂x1
,
∂f

∂x2
, , . . . ,

∂f

∂xd

⊤

x=xo

and h⊤∇f(xo) =

d

j=1

hj
∂f

∂xj

x=xo

.

(A.4)
The third term in (A.2) involves the (d×d)-dimensional Hesse matrix or Hessian
H(xo) of second derivatives with elements

Hij(xo) = Hji(xo) =
∂2

∂xi∂xj
H

x=xo

and h⊤ H(xo)h =

d

i,j=1

hiHij(xo)hj .

(A.5)
Higher order terms are obviously more involved than the quadratic approxi-
mation (A.2). Here we assume implicitly, that a quadratic approximation is
suitable for the extrema under consideration.

https://en.wikipedia.org/wiki/Mount_Whitney_Trail

A.2. LOCAL EXTREMA AND SADDLE POINTS 227

A.2 Local extrema and saddle points
First, we consider unconstrained problems of the form

minimize

x ∈ Rd
f(x)

with the real-valued objective function f . Obviously, analogous results are ob-
tained for local maxima by considering the minima of −f(x). First, we assume
that x can be chosen anywhere in Rd without any restrictions. Hence, we do
not have to consider minima at the border of allowed regions

Note that the term local minimum is not synonymous with suboptimal mini-
mum, it only implies that the function locally increases whenever moving away
from the minimum. In this sense, a global minimum is also a local minimum.

A.2.1 Necessary and sufficient conditions
An obvious, necessary condition for the presence of a local minimum of f in the
point x∗ is that all first derivatives vanish:

∇f(x∗) = 0. (A.6)

This follows immediately from the Taylor expansion (A.2) up to first order: If
∇f(x∗) ∕= 0, a small displacement with h = −η∇f(x∗) with η > 0 would result
in

f(x∗ + h) ≈ f(x∗)− η|∇f(x)|2 < f(x∗)

and, hence, x∗ could not be a local minimum.
Assuming that (A.6) is satisfied, we have with the shorthand H∗ = H(x∗)

f(x∗ + h) ≈ f(x∗) +
1

2
h⊤ H∗ h (A.7)

∇f(x∗ + h) ≈ H∗ h. (A.8)

From Eq. (A.7) we obtain the sufficient condition

x⊤H∗ x > 0 for all x ∈ Rd (A.9)

in the presence of a local minimum in x∗. If this is the case, small steps away
from x∗ will always lead up-hill, increasing the function value. This is obviously
only correct as long as |h| is small enough and the higher-order corrections
O(|h|3) can be neglected.

The Hessian H∗ has to be positive definite, which is equivalent to the con-
dition that all its eigenvalues are positive, i.e.

H∗ ui = ρ∗iui with ρ∗i > 0 (i=1,2,. . . d) (A.10)

Note that – due to the symmetry of H∗ – all eigenvalues are real and we can
construct an orthonormal set of eigenvectors {ui}di=1 as a basis in Rd [PP12,
Str19,DFO20].

228 A. OPTIMIZATION

Note also that an eigenvalue ρi relates to the curvature (second derivative)
of the function f in x∗ along the direction of the normalized eigenvector ui.
Defining fi(γ) = f(x∗ + γui) and using u⊤

i ui = 1 we have

fi(γ) ≈ (x∗) + (γui)
⊤H∗(γui) = fi(0) + γ2 ρ∗i , i.e.

∂2 fi
∂γ2

γ=0

= ρ∗i

by comparison with the conventional, one-dimensional Taylor expansion with
vanishing linear term.

If the Hessian is indefinite, i.e. if it has positive and negative eigenvalues,
the point x∗ corresponds to a saddle point: in some of the eigendirections u∗

i

it displays a local maximum, while in others it behaves like a one-dimensional
local minimum, cf. Fig. A.1.

Semi-definite H∗ with ρ∗i ≥ 0 (or ρ∗i ≤ 0) require more careful considerations:
Eigenvalues ρ∗i = 0 can correspond either to an extended flat region (along ui)
around a local extremum or to a saddle point in x∗. We refrain from discussing
this subtlety in detail and refer the reader to e.g. [Fle00,Str19,DFO20].

A.2.2 Example: unsolvable systems of linear equations
We consider a set of P linear equations in N variables w ∈ RN of the form

w⊤ ξµ
!
= yµ for µ = 1, 2, . . . , P. (A.11)

For P > N the system is overdetermined and, in general, inconsistent, i.e.
not solvable. Here, the notation is chosen to resemble the machine learning
settings that we are considering throughout, where the coefficients and r.h.s. of
the system are given by a data set of the familiar form

D =

ξµ ∈ RN , yµ ∈ R

P

µ=1
.

Using the matrix and vector notation introduced in Sec. 2.2.2, we define

Y =

y1, y2, . . . y

P
⊤ ∈ RP and χ =

ξ1, ξ2, . . . ξP

⊤
∈ RP×N . (A.12)

Now Eq. (A.11) is conveniently written as

χw
!
= Y. (A.13)

If χ happens to be an invertible square matrix with N =P , the solution of the
problem is obviously w∗ = χ−1 Y. However, if the set of equations is overdeter-
mined and cannot be satisfied exactly, we can resort to approximative solutions.
A natural and popular choice is to minimize the corresponding Sum of Squared
Error (SSE), cf. Eq. (2.5), in the sense of a linear regression

ESSE(w) =
1

2

P

µ=1

w⊤ξµ − yµ

2
=

1

2
[χw − Y]

2

=
1

2
w⊤

χ⊤χ

w −w⊤χ⊤Y +

1

2
Y ⊤Y, (A.14)

A.2. LOCAL EXTREMA AND SADDLE POINTS 229

where the last term is independent of w. We proceed as in (2.2.2) by considering
the first order, necessary conditions (A.6) for a solution w∗:

∇wE
SSE = [χ⊤χ]w∗ − χ⊤ Y

!
= 0. (A.15)

In Sec. 2.2.2 we have already presented the formal solution of (A.15) in terms
of the left pseudoinverse [PP12,BH12]

w∗ = χ+
left Y with χ+

left =

χ⊤χ
−1

χ⊤

(A.16)

under the condition that [χ⊤χ] is invertible. Here, the (N × P)-dim. matrix
χ+
left satisfies χ+

leftχ = IN×N with the N -dim. identity.
The assumption that [χ⊤χ] ∈ RN×N is invertible is consistent with the

assumption that the equations {w∗⊤ξµ = yµ}µ=1,2,...P cannot be satisfied si-
multaneously, which - after all - was the motivation for minimizing ESSE .

In our example we obtain the Hesse matrix of second derivatives in w∗ as

H∗
ik =

∂2ESSE

∂wi∂wk
=

P

µ=1

ξµi ξ
µ
k or H∗ = χ⊤χ ∈ RN×N . (A.17)

Note that for the quadratic ESSE a Taylor expansion up to second order would
be exact in the minimum w∗, of course.

The sufficient second order condition (A.9) corresponds to positive definite
H∗. Here, it is guaranteed that H∗ is at least positive semi-definite:

u⊤χ⊤χu = [χu]2 ≥ 0 for any u ∈ RN .

In order to have positive definite H∗, the condition P ≥ N must be fulfilled1.
For P < N , the (N ×N)-dim. matrix H∗ = [χ⊤χ] cannot have full rank and is
bound to have zero eigenvalues. Correspondingly, the system (A.11) has many
solutions. We will address this case in the discussion of constrained optimization
in the next section.

Strict positive definiteness implies that H∗ = [χ⊤χ] is invertible. We con-
clude that – under this condition – the solution (A.16) exists and corresponds to
a local minimum, which is also a global minimum since unrestricted quadratic
costs cannot display other, local minima.

In Sec. 2.2.2 we have briefly considered the case of singular [χ⊤χ] which
cannot be inverted. There we solved the problem by introducing a non-singular
[χ⊤χ+ λIN] with λ > 0, which corresponds to a simple form of regularization.
Alternatively, we can make use of the right pseudo-inverse which is introduced
and discussed below in Sec. A.3.2.

1P ≥ N is necessary, not sufficient. Correlations in the data set can still yield singular H∗.

230 A. OPTIMIZATION

A.3 Constrained optimization

A.3.1 Equality constraints
Frequently, one encounters optimization problems of the form

minimize

x ∈ Rd
f(x) subject to n equality constraints {gi(x) = 0}ni=1 , (A.18)

where the real-valued functions gi define additional conditions under which f(x)
has to be minimized: The constraints {gi(x)}ni=1 define the set of allowed argu-
ments x.

As a consequence, solutions of the problem (A.18) do not necessarily cor-
respond to local minima of the (unrestricted) objective function f discussed in
Sec. A.2. If it is possible to eliminate the conditions explicitly, one can transform
the problem to an unconstrained one and proceed as before.

Formally, constraints given in the form of equations as in (A.18) can be dealt
with systematically by introducing Lagrange multipliers {λi ∈ R}ni=1. We define
the Lagrange function or Lagrangian

L

x, {λi}ni=1

= f(x)−

n

i=1

λi gi(x) (A.19)

with the real-valued multipliers λi. Solutions of the constrained problem (A.18)
satisfy the first order necessary conditions

∂L
∂xj

∗
= 0

d

j=1

and

∂L
∂λi

∗
= 0.

n

i=1

(A.20)

where we use the shorthand (...)|∗ for the evaluation in x = x∗ and {λi = λ∗
i } .

The second set of conditions merely corresponds to the original constraints
gi(x) = 0.

Sufficient conditions for the presence of an optimum are non-trivial to formu-
late in the presence of constraints, see [Fle00,PAH19] for a detailed discussion.
Note that the extended (d+ n)× (d+ n)-dimensional Hessian of the Lagrange
function L is indefinite, in general.

The conditions (A.20) can often be exploited in order to eliminate some of
the variables or, in fact, the multipliers and to simplify the structure of the
optimization problem significantly.

In Sec. 3.7.2 we present an important example of the above in terms of
the Adaline problem, i.e. Widrow’s Adaptive Linear Neuron [WH60, WL90].
There, we consider the minimization of the norm |w|2 under linear equality
constraints {w⊤ξµSµ

T = 1}Pµ=1. The actual perceptron weights can be eliminated
by making use of the first order conditions, while the Lagrange multipliers play
the role of the embedding strengths x ∈ RP . The resulting optimization problem
corresponds to an unconstrained maximization of the modified cost function
(3.77).

A.3. CONSTRAINED OPTIMIZATION 231

A.3.2 Example: under-determined linear equations

We revisit the set of linear equations considered in Sec. A.2.2

χw = Y. (A.21)

If it represents P < N equations for the N unknowns w ∈ RN , the system
can have many solutions. Then, a number io of vectors vi ∕= 0 of χ exist with
χvi = 0. Consequently, for any given solution w of (A.21) we can construct a
continuum of solutions

w +

io

i=1

ci vi with arbitrary coefficients ci ∈ R.

The solution of minimal norm w∗ is of particular interest. We can formulate
the search for w∗ as a quadratic optimization problem with linear equality
constraints:

Example: minimal norm solution of linear equations
minimize

w∈RN

1

2
w2 subject to χw = Y. (A.22)

Introducing multipliers λ ∈ RP , we obtain the Lagrange function

L

w, λ

=

1

2
Nw2 − λ⊤ (χw − Y) (A.23)

The first order necessary conditions (A.20) become

w − χ⊤λ
!
= 0 and χw − Y

!
= 0.

While the second condition is obvious, the first one suggests to eliminate w. We
obtain the modified cost function

L = −1

2
λ⊤[χχ⊤] + λ⊤Y and the stationarity condition − χχ⊤ λ+ Y

!
= 0.

Note that here [χχ⊤] ∈ RP×P is the counterpart of the (N×N)-dim. matrix
[χ⊤χ] that we have encountered earlier in Eqs. (A.14 ff).

Here, we assume that P < N and that [χχ⊤] is invertible. We therefore get
immediately

λ = [χχ⊤]−1 Y ⇒ w = χ⊤[χχ⊤]−1Y.

This motivates the definition of the so-called right pseudoinverse [PP12,BH12]

χ+
right = χ⊤[χχ⊤]−1 ⇒ χχ+

right = IP×P , (A.24)

with the P -dim. identity matrix IP×P .

232 A. OPTIMIZATION

Remark: A unified treatment
Unsolvable over-determined and solvable under-determined systems can be treated
in a unified way [BH12]. Consider the limits

lim
γ→0+

[χ⊤χ+ γ IN]−1 χ⊤ and lim
γ→0+

χ⊤ [χχ⊤ + γ IP]
−1 (A.25)

with the P -dim. and N -dim. identity matrices IP and IN , respectively. Both
limits exist even if χ⊤χ or χχ⊤ is singular. The limits either coincide with the
left pseudoinverse (2.8) or with χ+

right defined above. Note also that Eq. (A.25,
left) corresponds to a limit of the regularization term (2.9) that we introduced
heuristically in Sec. 2.2.2.

A.3.3 Inequality constraints

The concept of Lagrange multipliers has been extended to the presence of in-
equality constraints in optimization problems of the form

minimize

x ∈ Rd
f(x) subject to n constraints {gi(x) ≥ 0}ni=1 . (A.26)

We refrain from discussing the more general combination of inequality and equal-
ity constraints, which leads to fairly obvious extensions of the following. For
details we refer the reader to [Fle00,PAH19,Str19,DFO20]. Note that, in princi-
ple, we could introduce pairs of inequality constraints gi(x) ≥ 0 and −gi(x) ≥ 0
simultaneously in order to include equality constraints, effectively.

Formally, the corresponding Lagrange function (A.19)

L

x, {λi}ni=1

= f(x)−

n

i=1

λi gi(x)

is the starting point. First order necessary conditions for a solution of (A.26) are
given by the Kuhn-Tucker (KT) Theorem of optimization theory [Fle00,PAH19].
Here, they read

Kuhn-Tucker conditions (only inequality constraints)

∇xL|∗ = 0 ⇔ ∇xf |∗ =

n

i=1

λ∗
i ∇xgi|∗ (stationarity) (A.27)

gi(x
∗) ≥ 0 for i = 1, 2, . . . n (constraints) (A.28)

λ∗
i ≥ 0 for i = 1, 2, . . . n (non-neg. multipliers) (A.29)

λ∗
i gi(x

∗) = 0 for i = 1, 2, . . . n. (complementarity) (A.30)

A.3. CONSTRAINED OPTIMIZATION 233

where we use the shorthand (...)|∗ for the evaluation in x = x∗ and {λi = λ∗
i } .

The first condition (A.27) corresponds to the stationarity of the Lagrangian
with respect to the variables x. Condition (A.28) simply represents the original
constraints, while (A.29) states that all multipliers are non-negative in the op-
timum. Individual multipliers λi > 0 correspond to so-called active constraints
with gi(x) = 0, which follows from the complementarity condition (A.30). On
the contrary, if gi(x) > 0 is satisfied with λi = 0, the constraint does not have
to be enforced explicitly and is termed inactive.

More detailed interpretations and discussions of the KT conditions can be
found in the literature, see for instance [Fle00,PAH19].

Example: optimal stability in the perceptron

As an important application of the KT theorem we exploit the necessary condi-
tions (A.27–A.30) in the problem of maximum stability for the perceptron, see
Sec. 3.7.3:

minimize
w ∈ RN

N

2
w2 subject to inequality constraints {Eµ ≥ 1}Pµ=1 .

The KT conditions are based on the Lagrangian

L

w,λ

=

N

2
w2 −

P

µ=1

λµ

w⊤ξµSµ

T − 1

.

which is the same as for the Adaline problem with equality constraints as given
in Eq. (3.70). We work out the gradient

∇wL = N w −
P

µ=1

λµ ξµSµ
T

and obtain from (A.27-A.30) the following set of necessary conditions, which
were already presented in Sec. 3.7:

Kuhn-Tucker conditions (optimal stability)

w∗ =
1

N

P

µ=1

λ∗µ ξµSµ
T (embedding strengths λµ) (A.31)

E∗µ = w∗⊤ξνSµ
T ≥ 1 for all µ (linear separability) (A.32)

λ∗µ ≥ 0 (not all λ∗µ = 0) (non-negative multipliers) (A.33)

λ∗µ (E∗µ − 1) = 0 for all µ (complementarity). (A.34)

234 A. OPTIMIZATION

As outlined in Sec. 3.7, the first condition shows that the Lagrange multipliers
play the role of embedding strengths. The weights can be interpreted as to
result from iterative Hebbian learning and can, in fact, be eliminated from the
optimization problem.

A.3.4 The Wolfe Dual for convex problems
The concept of duality plays an important role in the analysis and solution of
optimization problems. The idea is typically to derive an alternative formulation
of a given problem, which is then easier to handle numerically or even analyt-
ically. A particularly powerful framework is that of the so-called Wolfe Dual
for quite general problems [Wol61], which is discussed in some detail in [Fle00]
and [PAH19], for instance.

The Wolfe Dual simplifies significantly in the case of so-called convex prob-
lems which are of the form (A.26) with the additional requirements that

a) the set IK = {x |gi(x) ≥ 0 for i = 1, 2, . . . n} is convex
b) the objective function f(x) is a convex function on IK.

In particular, condition (a) is satisfied if all functions gi(x) are convex or even
linear. One of the most important results for convex optimization problem states
that every local solution of the problem is also a global solution [Fle00,PAH19].

Under rather mild assumptions2 one can show that if x∗ is a solution of
(A.26), then

x∗,λ∗

with the vector notation λ = {λ1,λ2, . . .λn} solves the

following problem:

Wolfe Dual of a convex problem of the form (A.26):
maximize

x∈Rd,λ∈Rn
L

x,λ

subject to ∇xL(x,λ) = 0 and λ ≥ 0 (A.35)

with the Lagrangian L as defined in Eq. (A.19). Moreover, the solution satisfies
f(x∗) = L(x∗,λ∗).

Note that while in the original problem (A.26) f is minimized with respect to
x, here the maximization refers to λ and x under the constraint that ∇xL = 0.
For a more detailed discussion of this subtlety and the Wolfe Dual of more
general problems, see [Fle00,PAH19].

Example: quadratic optimization under linear constraints

Frequently, the condition ∇xL(x,λ) = 0 can be used to eliminate the original
variables x, resulting in a simplified optimization problem. As an example
consider a quadratic problem with linear inequality constraints, which involves
the vector of variables x ∈ Rn, i.e. d = n, a symmetric matrix C ∈ Rn×n and a
vector of constants b ∈ Rn:

2Most importantly, the functions f and gi should be continuously differentiable. An addi-
tional so-called regularity assumption is discussed in [Fle00], sections 9.4 and 9.5.

A.4. GRADIENT BASED OPTIMIZATION 235

Example:
minimize

x∈Rn

1

2
x⊤ C x subject to Cx ≥ b. (A.36)

A particular property of this example problem is that the same matrix C de-
fines the quadratic form and the linear constraints. More general examples
for the application of duality are presented in, e.g., [Fle00, PAH19]. Here, the
corresponding Wolfe Dual (A.35) reads

Example: Wolfe Dual of the quadratic problem (A.36)

maximize

x∈Rn,λ ∈ Rn

1

2
x⊤ C x− λ⊤ (Cx−b) (A.37)

subject to Cx = Cλ and λ ≥ 0.

Now we can conveniently exploit the constraint Cx = Cλ in order to eliminate
x. While it does not necessarily imply x = λ, we can still simplify the problem
and obtain

Example: Simplification of the Wolfe Dual (A.37)

maximize
λ ∈ Rn

− 1

2
λ⊤ C λ+ λ⊤b subject to λ ≥ 0. (A.38)

Note that this specific example has the exact same mathematical structure as
the problem of optimal stability discussed in Section 3.7, if we set n = P and b =
1 ∈ RP and moreover assume that C ∈ RP×P is defined according to Eq. (3.74).
Renaming λ = x we recover the Wolfe Dual (3.97) for the problem of optimal
stability, see Sec. 3.7.

A.4 Gradient based optimization

The gradient is the basis or at least an important component of many practical
optimization techniques. Gradient descent persists to be one of the most popular
and most successful method for the training of neural networks and more general
machine learning setups. We discuss the reasons for this perhaps somewhat
surprising fact in Chapter 5.

A.4.1 Gradient and directional derivative

The gradient as defined in Eq. (A.4) is closely related to so-called directional
derivative. Consider a normalized vector a ∈ Rd with |a| = 1. According to the

236 A. OPTIMIZATION

Taylor expansion (A.2), the corresponding directional derivative in xo can be
written as

lim
α→0

f(xo + αa)− f(x)

α
= a⊤ ∇f(xo).

Obviously the conventional partial derivatives are recovered by setting a = ei,
i.e. by taking the directional derivative along the coordinate unit vectors ei with
eik = δik.

In any direction with a⊤∇f(xo) < 0 the function decreases, while a with
a⊤∇f(xo > 0 marks directions of ascent.

In a given point xo the magnitude of the directional derivative quantifies
how rapidly the function increases or decreases in the direction of a. For a
given ∇f(xo) we see immediately that we obtain the directions of ...

... steepest ascent for a ∝ +∇f(xo)

... steepest descent for a ∝ −∇f(xo)

... stationarity for a ⊥ ∇f(xo).

The gradient is always perpendicular to the level directions along which f is
locally constant.

A.4.2 Gradient descent
The properties of the gradient can be used for the numerical minimization of a
function f(x). Starting from an initial vector x(t = 0), we consider an iteration
of the form

x(t+ 1) = x(t)− η∇f(x(t)). (A.39)

If the step size η > 0 is sufficiently small, the Taylor expansion of f in x(t) is
dominated by the linear term and we have

f(x(t+ 1)) ≈ f(x(t)− η|∇f(x(t))|2 < f(x(t)) (A.40)

in every step of the sequence x(0) → x(1) . . . → x(t) → x(t+ 1) . . .
Consequently f can only decrease and the gradient descent (A.39) should ap-
proach a local minimum. Analogously, we can devise gradient ascent with up-
dates along +∇f(x(t)) in order to approach a local maximum.

It is important that the step size η is small enough in order to guarantee
validity of Eq. (A.40) and ensure convergence of the iteration. We will make
this statement more precise in the following.

The role of the step size

We can investigate the behavior of gradient descent in greater detail by assuming
that x(t) is already close to a local minimum x∗ with

f(x(t)) ≈ f(x∗)+
1

2
(x(t)−x∗)⊤H∗(x(t)−x∗) and ∇f(x(t)) ≈ H∗(x(t)−x∗).

(A.41)

A.4. GRADIENT BASED OPTIMIZATION 237

Introducing the shorthand δt = x(t)− x∗ for the deviation from the optimum,
the update (A.39) at step t of the descent satisfies approximately

δt ≈ δt−1 − ηH∗δt−1 ≈ [I − ηH∗] δt−1 ≈ [I − ηH∗]
2
δt−2 . . . ≈ [I − ηH∗]

t
δ0

with the N -dim. identity matrix I. Here, we have subtracted x∗ on both sides
of Eq. (A.39) and approximated the gradient according to (A.41).

Now we can exploit the fact that an orthonormal basis of Rd can be con-
structed from the eigenvectors ui of H∗. Hence, we can expand the initial
deviation as

δ0 =

d

i=1

ci ui with coefficients ci ∈ R

in terms of the eigenvectors. We obtain immediately

δt ≈ [I − ηH∗]
t
δ0 =

d

i=1

ci [1− ηρi]
t
ui

The corresponding squared magnitude reads

|δt|2 ≈
d

i,j=1

cicj [1− ηρi]
t
[1− ηρj]

t
u⊤
i uj =

d

i=1

c2i [1− ηρi]
2t

where we have used that u⊤
i ui = 1 and u⊤

i uj = 0 for i ∕= j. We obtain that

lim
t→∞

|δt|2 = 0 if and only if |1− ηρi| < 1 for all i.

Since all eigenvalues are positive and therefore 1−ηρi < 1 for all i, the (t → ∞)
asymptotic behavior of δt is dominated by the largest eigenvalue of the Hessian
ρmax = max {ρ1, ρ2 . . . , ρN} : The condition for convergence of the iteration to
the local minimum is that

− 1 < 1− ηρmax ⇔ η < ηmax =
2

ρmax
. (A.42)

For a finite range of step sizes 0 < η < ηmax, convergence is guaranteed,
once the iteration is sufficiently close to the minimum. Moreover, we note that
the factor (1− ηρmax) changes sign for η = 1/ρmax. Hence, for η < ηmax/2 the
iteration will approach the minimum smoothly, while for ηmax/2 < η < ηmax

the orientation of δt flips in every gradient step and x(t) displays an oscillatory
behavior while still approaching the minimum as t → ∞.

Finally, for η > ηmax, the iteration diverges and moves away from x∗ in at
least one eigendirection of H∗. The three different regimes are illustrated and
summarized in Figure 5.6 of Chapter 5.

It is important to realize that the above result is valid only in the vicinity
of a given, local optimum. It does not enable us to make statements concerning
the behavior or the role of the step size far away from an optimum.

238 A. OPTIMIZATION

The fact that convergence can be achieved with a constant, non-zero value
of η constitutes an important insight. However, the practical usefulness of this
insight is limited: the properties of the Hessian can be very different for every
local minimum and they are obviously not available in advance. To a large
extent, the initialization x(0) of a gradient procedure will determine which of
the (potentially many) local minima will be approached.

Close to a specific minimum, the local Hessian H(x(t)) can be seen as an
estimate of H∗ and used to select a suitable step size. More sophisticated
higher order optimization techniques like Newton- or Quasi-Newton methods
use H(x(t)) or an approximation thereof explicitly in the update, see for instance
[Fle00,PAH19]. We refrain from introducing these more involved techniques here
and restrict the discussion to relatively simple gradient-based methods which
are frequently used in the context of machine learning.

A.4.3 The gradient under coordinate transformations

A frequently ignored property of the gradient is that the direction of steepest
descent or ascent behaves non-trivially under coordinate transformations.

In the context of the Adaline algorithm we see in Sec. 3.7.2 that gradient
descent for the cost function of Eq. (3.77) in the space of embedding strengths
x ∈ RP is not equivalent to gradient descent in terms of the weights w ∈ RN .3

Here we consider even simpler linear transformations from x ∈ Rd to z ∈ Rd :

z = Ax with components zi =

d

j=1

Aijxj and A ∈ Rd×d.

In the following we use the notation ∇x = (∂/∂x1, ∂/∂x2, . . . ∂/∂xd)
⊤ and ∇z

analogously to indicate which set of variables the gradient refers to.
Interpreting the objective as a function of z we obtain with the chain rule

∂f

∂xk
=

d

i=1

∂f

∂zi

∂zi
∂xk

=

d

i=1

Aik
∂f

∂zi
i.e. ∇x f = A⊤∇z f, (A.43)

or, assuming that A is invertible: ∇z f = A−⊤∇x f, while z = Ax.
The transformation of the gradient is different from that of “ordinary” vec-

tors, see [Tou12] for a brief discussion. The direction of steepest descent in
the transformed coordinates does not coincide with the naive projection of the
original gradient, in general.

Therefore, we should be aware that a gradient descent procedure found for
one coordinate system does not necessarily follow the steepest descent in an-
other. This seems to cast some doubt on the distinguished role of gradient
descent. We note however, reassuringly, that directions of descent need not be
the steepest in order to be useful in numerical minimization procedures.

3It can be formulated, however, as gradient descent w.r.t. a different cost function in w.

A.5. VARIANTS OF GRADIENT DESCENT 239

For a more detailed discussion and an introduction of the so-called co-variant
or natural gradient we refer to the lecture notes of M. Toussaint as a starting
point [Tou12]. The corresponding method of Natural Gradient Descent can be
related to information theoretic metrics and was pioneered by Shun-ichi Amari
in the context of machine learning, see [Ama98] for a discussion and further
references.

A.5 Variants of gradient descent

The previous section presents and discusses plain “classical” gradient descent for
the minimization of cost functions in unrestricted optimization problems.

The basic idea of gradient descent can of course be modified and adapted to
the specific properties and needs of a given problem. In the following we briefly
discuss a number of variants which are particularly relevant in machine learning
problems. This is the case, for instance, for the popular Stochastic Gradient
Descent and its modifications and extensions.

A.5.1 Coordinate descent

Quite generally we consider the minimization of a continuously differentiable
function f(x) of d-dimensional arguments x = (x1, x2, . . . xd). As discussed, the
negative gradient −∇xf |x=x(t) marks the direction of the steepest descent in a
given point x(t). We use the shorthand (. . .)|t for (. . .)|x=x(t) in the following.

From a practical point of view it is often advantageous to resort to some
direction of descent a(t) which is not necessarily the steepest and, therefore,
only has to satisfy

a(t)⊤ ∇f |t < 0. (A.44)

A corresponding iterative procedure of the form x(t+1) = x(t) + η a(t) can
be used to approach a (local) minimum of f , provided a suitable step size η is
chosen.

A particularly simple example is the sequential performance of steps along
one of the coordinate axes with a(t) ∝ ei(t). It is straightforward to see that we
can easily satisfy Eq. (A.44) by setting

a(t) = −

e⊤i(t) ∇f |t

ei(t) = − ∂f

∂xi(t)

t

ei(t) =

0, 0, . . .

−∂f

∂xi(t)

t

, 0, . . . 0

.

Hence, the iteration step changes x only in one component, i(t), and it is deter-
mined by the corresponding partial derivative of f .
In deterministic-sequential coordinate descent a recursion of the form

i(0) = 1; i(t) = [i(t−1)mod d] + 1 for t = 1, 2, 3, . . .

generates a cyclic sequence of the form i(t) = 1, 2, 3, . . . , d, 1, 2, 3, . . . , d, 1, 2, . . .

240 A. OPTIMIZATION

Essentially, the structure of the algorithm is the same as for a conventional
gradient descent step when it is performed as a loop over the d coordinates. Here,
however, in each component we make use of the previously updated coordinates,
while in conventional gradient descent the values from the previous loop are
used.

The resulting, so-called coordinate-wise descent or coordinate descent for
short, is a simple, sometimes surprisingly efficient method for minimization4. A
recent review of this classical approach can be found in, e.g., [Wri15]. Obviously,
one could also consider modifications with randomized selection of the updated
coordinate, etc.

A.5.2 Constrained problems and projected gradients

In general, the solution of constrained problems by means of gradient descent
techniques requires considerable refinement.

One important approach in this context is gradient projection [Fle00]: As-
sume that the search space is restricted to a region D by equality and/or in-
equality constraints. If a step according to naive, unconstrained gradient descent
yields x(t+1) = x(t)−η∇f ∈ D, the step is accepted and x(t+1) = x(t). Other-
wise one determines x(t+1) as a projection into D as x(t+1) = argminD ||x−x||
in an auxiliary optimization step. Depending on the precise nature of the con-
straints, the computation of the projected gradient can be costly.

In the case of simpler constraints, for instance as given by linear inequali-
ties, one can often resort to so-called active set methods [Fle00,PAH19]. There,
the iteration proceeds by unconstrained gradient descent or ascent until one or
several constraints would be violated and, therefore, become active. Temporar-
ily, active inequalities are treated as equality constraints in the following steps
which move along the corresponding planes.

A.5.3 Stochastic gradient descent

A specific modification of gradient descent may be applied when the cost func-
tion can be written as a sum over a number of individual functions as in

f(x) =
M

m=1

hm(x) with ∇xf(x) =

M

m=1

∇xhm(x), (A.45)

where the second identify follows from the linearity of the gradient operator.
In machine learning, very often the training process is guided by a cost

function which can be written as a sum over a given set of example data. In
supervised learning, e.g. regression, it typically corresponds to an error measure
evaluated with respect to the individual examples in the training set

D =

ξµ ∈ RN , yµ ∈ R

P

µ=1
.

4Of course, coordinate ascent can be formulated for maximization analogously.

A.5. VARIANTS OF GRADIENT DESCENT 241

A corresponding cost function can be written in the form

E(W) =
1

P

P

µ=1

eµ(W) where eµ(W) = e(ξµ, yµ|W) (A.46)

quantifies the contribution of an individual example data to the total costs.
Quite generally, the vector W is meant to concatenate all degrees of freedom in
the trained system, e.g. all adaptive weights and thresholds of a neural network.
Obviously this is of the form (A.45) with variables W and individual functions
eµ(W). The discussion in the following refers to this machine learning setup
and notation, but carries over to more general problems of the type (A.45),

Of course, the numerical minimization of E could be aimed at by applying
standard gradient descent as for any other, more general objective function. In
analogy to Eq. (A.39) the basic form of updates would be

W (t+ 1) = W (t)− η∇WE(W (t)). (A.47)

We note, however, that costs of the form (A.46) can be interpreted as an empir-
ical average (. . .) =

µ(. . .)/P over the data set, which corresponds to drawing

examples from D with equal probability 1/P :

E(w) = eµ(W).

Accordingly, the gradient of E w.r.t. W can be written as a mean of individual
gradients:

∇wE(W) =
1

P

P

µ=1

∇W eµ(W) = ∇W eµ(W).

This suggests to approximate the full gradient of E by computing a restricted
empirical mean over a random subset of examples from D. As an extreme case,
we consider one randomly selected, single example in an individual training step:

µ(t) ∈ {1, 2, . . . , P} (randomly selected with equal probability 1/P)
W (t+ 1) = W (t)− η∇W eµ(t)(W (t)) (A.48)

where we denote the learning rate by η to potentially distinguish it from η in
batch gradient descent. Obviously, a single update step is, in general, computa-
tionally cheaper than the full gradient descent (A.47) for which a sum over all
examples has to be performed.

Individual update steps follow a rough, stochastic approximation of the true
gradient of E, hence the term stochastic gradient descent (SGD) has been coined
for the iterative procedure. In practice, we could actually draw (with replace-
ment) a random example from D independently in each step. Frequently, up-
dates are organized in epochs, e.g. by generating a random permutation of
{1, 2, . . . P} and presenting the entire D in this order before moving on to the
next epoch with a novel randomized order of the examples.

242 A. OPTIMIZATION

On average over the random selection process, an SGD update is guided by
the true negative gradient −∇WE and, therefore, we can expect that the cost
functions typically decreases over many steps for suitable choices of η. However,
single training steps may actually increase the objective function temporarily,
as individual terms ∇W eµ can point uphill w.r.t. E with (∇W eµ) ·∇WE > 0.

Let us now study the behavior of SGD near or in a local minimum W ∗ with
∇WE(W ∗) = 0. Assuming that W (t) = W ∗ we have that

W (t+ 1) = W (t) +∆W (t) with ∆W = −η∇W eµ(W ∗)

for a randomly selected µ ∈ {1, 2, . . . , P}. It follows that on average over the
selection process

〈∆W (t)〉D = −ηE(W ∗) = 0.

In this sense, the SGD training becomes stationary in a local minimum of E and
〈∆W 〉D → 0 as w → W ∗. However, it is important to realize that, generally,
in an individual update step, the weight vector will change even if W = W ∗ is
exactly satisfied. This can be seen from the average magnitude of the update
step

(∆W)

2

D
= η2

eµ(W ∗)

2

D
= η2 1

P

P

µ=1

∇W eµ(W ∗

2

≥ 0.

Note that 〈(∆W)
2〉D=0 is possible iff all individual terms ∇W eµ(W ∗)=0,

which could mean that each contribution eµ is minimized in W ∗ individually.
If, for instance, a quadratic error measure of the form eµ = (σµ − τµ)2/2 with
∇W eµ = (σµ− τµ) is employed, this would imply that σµ = τµ for all examples
simultaneously, representing a perfect solution with E(W ∗) = 0.

In general, however, 〈(∆W)
2〉D > 0 in the local minimum W ∗. This indicates

that for constant learning rate η > 0, the adaptive quantities W (t) will persist
to fluctuate in the vicinity of a local minimum, even in the limit t → ∞.

The generic behavior for η > 0 is illustrated in Fig. 5.7 of Chapter 5. As
discussed there, Robbins and Monro [RM51], see also [Bis95a, HTF01], have
shown that convergence can be achieved with a time dependent learning rate
schedule with lim

t→∞
η(t) = 0 which satisfies the conditions (5.16):

(I) lim
T→∞

T

t=0

η(t)2 < ∞ and (II) lim
T→∞

T

t=0

η(t) → ∞. (A.49)

Intuitively, the first condition (I) states that η(t) has to decrease fast enough in
order to achieve a stationary configuration, eventually. Condition (II) implies
that the decrease is slow enough so that the entire search space can be explored
efficiently without stopping the iteration too early.

Simple schedules which reduce the learning rate asymptotically like η(t) ∝
1/t for large t satisfy both conditions in (5.16). Just one possible and popular
realization of such a decrease is of the form

η(t) =
a

b+ t
with parameters a, b > 0.

A.6. EXAMPLE CALCULATION OF A GRADIENT 243

Sophisticated schemes have been devised in which the learning rate is not ex-
plicitly time dependent, but is adapted in the course of training. The adaptation
can be based on (estimated) second order derivatives or on the observed variance
of the gradient over several update steps, for instance. Learning rate adaptation
is frequently combined with so-called momentum terms which comprise infor-
mation about previous updates. Up-to-date textbooks such as [GBC16] provide
more details and further references. For a brief discussion, see Chapter 5, where
also other modifications of SGD are introduced.

A.6 Example calculation of a gradient
In order to exemplify the computation of gradients in a feed-forward network,
we consider here a specific two-layer architecture with N -dimensional input, K
hidden units and a single output

σ(ξ) = h

K

j=1

vj g

w(j) · ξ

 . (A.50)

All input-to-hidden weight vectors w(j) and hidden-to-output weights vj are
assumed to be adaptive, while for simplicity local thresholds are not considered
here. The output activation h(. . .) is taken to be (potentially) different from
the hidden unit activations g(. . .).

For a given data set D = {ξµ, τµ}Pµ=1, we consider the familiar quadratic
deviation

E =
1

P

P

µ=1

eµ with single example terms eµ =
1

2

σ(ξµ)− τµ

2 (A.51)

Note that only σ depends on the weights, the target values τ are fixed and given
in the data set. In the following we work out derivatives for one example term
eµ only. For convenience, we omit the index µ and write σ in short for σ(ξ).

First we compute the derivative with respect to one of the hidden-to-output
weights. Only one term in the sum

K
j=1 . . . depends on vk and we obtain

∂e

∂vk
= (σ − τ)

∂σ

∂vk
= (σ − τ)h′

K

j=1

vjg(w
(j) · ξ)

shorthand: δ

g(w(k) · ξ). (A.52)

Of course, h′ has to be specified in a concrete setting. For instance, if
h(x) = tanh(γx) we have h′(x) = γ

1− tanh2(γx)

.

Next, we take the derivative with respect to a single input-to-hidden weight
w

(m)
n , i.e. the n-th component of the m-th input-to-hidden weight vector. With

the same shorthand δ as defined above we obtain
∂e

∂w
(m)
n

= (σ − τ)
∂σ

∂w
(m)
n

= δ vm g′

w(m) · ξ

ξn. (A.53)

244 A. OPTIMIZATION

The term vm g′(. . .) corresponds to the derivative of the only term in the sumK
j=1 . . . that contains the weight vector w(m). Finally the factor ξn appears

because

w(m) · ξ =

N

j=1

w
(m)
j ξj and thus

∂(w(m) · ξ)
∂w

(m)
n

= ξn.

Note that the r.h.s. of Eqs. (A.52,A.53) are just numbers as they correspond to
derivatives w.r.t. single weights. We could build a single gradient vector from
the component-wise results by combining all adaptive quantities into a vector
W as introduced in the previous section. It appears more natural, however, to
write for m = 1, 2, . . .K:

∇w(m) E = δ vm g′

w(m) · ξ

ξ (A.54)

where the notation ∇w(m) stands for the gradient with respect to the m-th
input-to-hidden weight vector. Note that both sides of the equation obviously
correspond to N -dim. vectors. The partial derivatives w.r.t. the vk are given by
the K additional equations (A.52).

For the gradient of the full cost function we have to perform sums over
all examples. Note that the abbreviation δ is defined for a particular single
example, as well. Hence we get

∂E

∂vk
=

1

P

P

µ=1

σ(ξµ

−τµ)h′

K

j=1

vjg(w
(j) · ξµ)

shorthand: δµ

g

w(k) · ξµ

(A.55)

∇w(m)E =
1

P

P

µ=1

δµ vm g′

w(m) · ξµ

ξµ. (A.56)

In a network with more layers, the chain rule has to be applied several times and
in each layer terms similar to δ from previous layers appear. While the network
response σ is determined by propagating an input towards the output, the gra-
dient is computed by propagating the deviation (σ− τ) backwards through the
network. In both operations the same weights play the role of coefficients. This
is the basic concept behind the famous Backpropagation of Error for efficient
gradient calculation in multi-layered networks [RHW86].

List of figures

1.1 Neurons and synapses . 4
1.2 Action potentials and firing rate 5
1.3 Sigmoidal activation functions . 7
1.4 Recurrent neural networks . 11
1.5 Feed-forward neural networks . 14

2.1 Simple linear regression (Hubble diagram) 25

3.1 The Mark I Perceptron . 33
3.2 Single layer perceptron . 34
3.3 Geometrical interpretation of the perceptron 35
3.4 Rosenblatt perceptron algorithm 40
3.5 Linear separability in one dimension 47
3.6 The number of lin. sep. functions for N = 2 48
3.7 Counting lin. sep. dichotomies (I) 49
3.8 Counting lin. sep. dichotomies (II) 50
3.9 Counting lin. sep. dichotomies (III) 51
3.10 The fraction of lin. sep. functions 52
3.11 The pizza connection . 54
3.12 Perceptron student-teacher scenario 56
3.13 Dual geometrical interpretation of the perceptron 57
3.14 Perceptron learning in version space 58
3.15 Generalization error as a function of α = P/N 60
3.16 Version space for P < N . 61
3.17 Stability of the perceptron . 64
3.18 Support vectors (linearly separable data) 79

4.1 Support vectors (soft margin) . 89
4.2 Architecture of “machines” . 90
4.3 Committee and parity machine 92
4.4 Storage capacity of machines . 97
4.5 SVM: Illustration of the non-linear transformation 99

5.1 Generic layered network . 108

245

246 LIST OF FIGURES

5.2 Interval selection by sigmoidal functions 110
5.3 Selection of ROI in high dimensions 111
5.4 Constructed network for universal function approximation 112
5.5 Soft Committee Machine . 113
5.6 Gradient descent near a minimum 118
5.7 Stochastic gradient descent near a minimum 121
5.8 Sigmoidal and related activation functions 128
5.9 Unbounded and one-sided activation functions 129
5.10 Extreme Learning Machine . 133
5.11 Shallow auto-encoder . 134
5.12 Convolution . 136
5.13 Pooling . 137
5.14 Neocognitron . 138
5.15 LeNet . 139

6.1 Nearest Neighbor and Nearest Prototype Classifiers 142
6.2 GMLVQ system and data visualization 152

7.1 Bias–variance dilemma . 156
7.2 Bias and variance, underfitting and overfitting 159
7.3 The double descent phenomenon 162
7.4 Early stopping and weight decay 164
7.5 Dropout regularization . 170
7.6 Representative training data . 172
7.7 Receiver Operating Characteristics (ROC) 179
7.8 Confusion matrix . 183

8.1 Log-transformation . 190
8.2 Big dipper and enormous kitchen 191
8.3 Low-dimensional manifold . 193
8.4 Multi-dimensional scaling . 194
8.5 Kurtosis . 204
8.6 Vector Quantization . 209
8.7 Elbow method . 210
8.8 Gaussian Mixtures . 214

A.1 Multi-dimensional extrema and saddle points 226

List of algorithms

Adaline (parallel updates), 70
Adaline (sequential updates), 71
AdaTron (sequential updates), 76
AdaTron with errors (sequential updates), 88

Batch Gradient Descent (basic form), 117

Competitive learning (Vector Quantization), 207
Cross validation (n-fold), 173

Gaussian Mixture Model, maximum likelihood, 213
Generalized Learning Vector Quantization (GLVQ), 147
Generalized Matrix Learning Vector Quantization (GMLVQ), 151
Generic iterative perceptron updates (embedding strenghts), 38
Generic iterative perceptron updates (weights), 37
Grandmother Neuron, 93

K-means algorithm, 207
Kernel AdaTron (sequential updates), 101

Learning Vector Quantization (LVQ1), 145
Lloyd’s algorithm, 207

MinOver algorithm, 65

Oja’s subspace algorithm, 202
Optimal Brain Damage (OBD), 168
Optimal Brain Surgery (OBS), 168

Pocket algorithm, 86

Rosenblatt perceptron, 39

Sanger’s rule, 202
Stochastic Gradient Descent, 119
Synthetic Minority Oversampling Technique (SMOTE), 219

Tiling-like learning in the parity machine, 92

247

Abbrev. and acronyms
Adaline adaptive linear element, adaptive linear neuron

AdaTron adaptive perceptron (algorithm)
AUC area under the curve

AUROC area under the receiver operating characteristics curve
BAC balanced accuracy
CM committee machine

CNN convolutional neural network
CoD coefficient of determination
ELM extreme learning machine
EM expectation-maximization (algorithm)

FP, FN false positives, false negatives (counts)
fpr, fnr false positive rate, false negative rate
GLVQ generalized learning vector quantization

GMLVQ generalized matrix relevance learning vector quantization
GMM gaussian mixture model
hom. homogeneous(ly)
inh. inhomogeneous(ly)
ICA independent component analysis
IQR interquartile range
KL Kullback-Leibler (divergence)
KT Kuhn-Tucker (e.g. KT conditions, KT theorem, KT point)

l.h.s. left hand side
lin. sep. linearly separable

LMS least mean squares
LVQ learning vector quantization

MAE mean absolute error
MAR missing at random
MAP maximum a posteriori (probability)

MCAR mis ing comp etely at r ndom
MNAR missing not at random

MDS multi-dimensional scaling
MICE multiple imputation by chained equations
MSE mean squared error
NPC nearest prototype classifier {classification}
OBD optimal brain damage
OBS optimal brain surgeon
ODE ordinary differential equation
PM parity machine

248

PCA principal component analysis
PCT perceptron convergence theorem

PR precision-recall
Prec precision
PSP perceptron storage problem
RBF radial basis functions
Rec recall

ReLU rectified linear unit
r.h.s. right hand side
ROC receiver operating characteristics
ROI region of interest

RSLVQ robust soft learning vector quantization
SENS sensitivity
SPEC specificity
SGD stochastic gradient descent

SMOTE synthetic minority oversampling technique
SNE stochastic neighborhood embedding
SOM self-organizing map
SSE sum of squared errors

SVM support vector machine
t-SNE t-distributed stochastic neighborhood embedding

TP, TN true positives, true negatives (counts)
tpr, tnr true positive rate, true negative rate
UMAP uniform manifold approximation and projection

VC Vapnik-Chervonenkis, e.g. in VC-dimension
VQ vector quantization

w.r.t. with respect to
WTA winner-takes-all

249

Notes on the bibliography
References are sorted alphabetically by their BIBTEX keys for ease of brows-
ing. The BIBTEX source file is available upon request from the author or at
www.cs.rug.nl/˜biehl.

Most online sources point to the publisher’s final versions, some of which might
not be publicly available. Where possible, links to accessible preprint versions
are provided as an alternative.

All of the provided online sources have been accessed in April 2023. However,
the author cannot guarantee the correctness of the links and is not liable for
potential copyright infringements on the corresponding websites.

250

Bibliography

[AB89] J.K. Anlauf and M. Biehl. The AdaTron: an adaptive perceptron algo-
rithm. Europhys. Lett., 10(7):687–692, 1989. Online: https://iopscience.
iop.org/article/10.1209/0295-5075/10/7/014,
see also Europhys. Lett. 11(4):387 for an Erratum: https://doi.org/10.
1209/0295-5075/11/4/016.

[ABR64] M. A. Aizerman, E. A. Braverman, and L. Rozonoer. Theoretical
foundations of the potential function method in pattern recognition
learning. In Automation and Remote Control,, number 25 in Au-
tomation and Remote Control, pages 821–837, 1964. Online: https:
//cs.uwaterloo.ca/~y328yu/classics/kernel.pdf.

[ABS99] M. Ahr, M. Biehl, and Schlösser. Weight decay induced phase transitions
in multilayer neural networks. Journal of Physics A: Mathematical and
General, 32:5003–5008, 1999. Preprint: https://arxiv.org/pdf/cond-mat/
9901179.pdf.

[AK13] M.G. Augasta and T. Kathirvalavakumar. Pruning algorithms of neural
networks - a comparative study. Central European Journal of Computer
Science, 3:105–115, 2013. https://doi.org/10.2478/s13537-013-0109-x.

[Ama93] S. Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5(4):185–196, 1993. Online: https://doi.org/10.1016/
0925-2312(93)90006-O.

[Ama98] S. Amari. Natural Gradient Works Efficiently in Learning. Neu-
ral Computation, 10:251–276, 1998. Online: https://doi.org/10.1162/
089976698300017746.

[AMB+18] B. Aubin, A. Maillard, J. Barbier, F. Krzakala, F. Macris, and L. Zde-
borová. The committee machine: Computational to statistical gaps in
learning two-layers neural network. In Proc. Conf. on Neural Infor-
mation Processing Systems (NeurIPS 2018), pages 3223–3234. Curran
Associates Inc., 2018. Preprint: https://arxiv.org/abs/1806.05451.

[AN20] M. Ahmed and A.K.M. Najmul Islam. Deep Learning: Hope or Hype.
Ann. Data. Sci., 7:427–432, 2020. Online: https://doi.org/10.1007/
s40745-019-00237-0.

[APW+09] A. Airola, T. Pahikkala, W. Waegeman, B. De Baets, and T. Salakoski.
A comparison of auc estimators in small-sample studies. In S. Dze-
roski, P. Guerts, and J. Rousu, editors, Proceedings of the third Inter-
national Workshop on Machine Learning in Systems Biology, volume 8

251

https://iopscience.iop.org/article/10.1209/0295-5075/10/7/014
https://doi.org/10.1209/0295-5075/11/4/016
https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf
https://arxiv.org/pdf/cond-mat/9901179.pdf
https://doi.org/10.2478/s13537-013-0109-x
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1162/089976698300017746
https://arxiv.org/abs/1806.05451
https://doi.org/10.1007/s40745-019-00237-0

252 BIBLIOGRAPHY

of Proceedings of Machine Learning Research, pages 3–13, 2009. Online:
https://proceedings.mlr.press/v8/airola10a.html.

[ASFL11] M.J. Azur, E.A. Stuart, C. Frangakis, and P.J. Leaf. Multiple imputa-
tion by chained equations: what is it and how does it work? Interna-
tional Journal of Methods in Psychiatric Research, 20(1):40–49, 2011.
Online: https://doi.org/10.1002/mpr.329.

[BAK91] M. Biehl, J.K. Anlauf, and W. Kinzel. Perceptron learning by con-
strained optimization: the AdaTron algorithm. In F. Pasemann and
H.D. Doebner, editors, Neurodynamics: Proc. 9th Summer Workshop
on Math. Physics, Arnold Sommerfeld Institut, Clausthal, 1990, pages
194–210. World Scientific, 1991. Online: https://www.worldscientific.
com/worldscibooks/10.1142/1526.

[BAP+12] A. Backhaus, P. Ashok, B. Praveen, K. Dholakia, and U. Seiffert. Clas-
sifying Scotch Whisky from near-infrared Raman spectra with a Ra-
dial Basis Function Network with Relevance Learning. In M. Ver-
leysen, editor, Proceedings of the European Symposium on Artifi-
cial Neural Networks ESANN 2012, pages 411–416. d-side publishing,
2012. Online: https://www.esann.org/sites/default/files/proceedings/
legacy/es2012-139.pdf.

[Bar19] D. Baron. Machine Learning in Astronomy: A Practical Overview,
2019. In [MSK19]. Online: http://research.iac.es/winterschool/2018/
media/summaries/ml_summary_dbaron.pdf.

[BB00] K.P. Bennett and E.J. Bredensteiner. Geometry in Learning. In C.A.
Gorini, editor, Geometry at Work, volume 53 of MAA Notes, pages
132–148. Mathematical Association of America, 2000. Online: https:
//www.researchgate.net/publication/2407543_Geometry_in_Learning.

[BBH12] K. Bunte, M. Biehl, and B. Hammer. A general framework for
dimensionality-reducing data visualization mapping. Neural Compu-
tation, 24(3):771–804, 2012. Preprint: https://www.cs.rug.nl/~biehl/
Preprints/2011-NECO-mapping.pdf.

[BBK20] J.N. Böhm, P. Berens, and D. Kobak. A unifying perspective on neigh-
bor embeddings along the attraction-repulsion spectrum. ArXiv, 2020.
Online: https://arxiv.org/abs/2007.08902.

[BBL07] M. Biehl, R. Breitling, and Y. Li. Analysis of Tiling Microarray Data
by Learning Vector Quantization and Relevance Learning. In H. Yin,
P. Tino, E. Corchado, W. Byrne, and X. Yao, editors, Proc. Intelligent
Data Engineering and Automated Learning, IDEAL, volume 4881 of Lec-
ture Notes in Computer Science, pages 880–889. Springer, Berlin, 2007.
Online: https://pure.rug.nl/ws/files/10196444/2007LNCSBiehl.pdf.

[BBVZ17] G. Bhanot, M. Biehl, T. Villmann, and D. Zühlke. Biomedical data
analysis in translational research: Integration of expert knowledge and
interpretable models. In M. Verleysen, editor, Proc. of the Euro-
pean Symposium on Artificial Neural Networks (ESANN 2017), pages
177–186. i6doc.com, 2017. Preprint: https://pure.rug.nl/ws/portalfiles/
portal/41806420/2017_ESANN_biomedical_session.pdf.

[BC91] P. Baldi and Y. Chauvin. Temporal Evolution of Generalization during
Learning in Linear Networks. Neural Computation, 3(4):589–603, 12
1991. Online: https://ieeexplore.ieee.org/document/6796708.

https://proceedings.mlr.press/v8/airola10a.html
https://doi.org/10.1002/mpr.329
https://www.worldscientific.com/worldscibooks/10.1142/1526
https://www.esann.org/sites/default/files/proceedings/legacy/es2012-139.pdf
http://research.iac.es/winterschool/2018/media/summaries/ml_summary_dbaron.pdf
https://www.researchgate.net/publication/2407543_Geometry_in_Learning
https://www.cs.rug.nl/~biehl/Preprints/2011-NECO-mapping.pdf
https://arxiv.org/abs/2007.08902
https://pure.rug.nl/ws/files/10196444/2007LNCSBiehl.pdf
https://pure.rug.nl/ws/portalfiles/portal/41806420/2017_ESANN_biomedical_session.pdf
https://ieeexplore.ieee.org/document/6796708

BIBLIOGRAPHY 253

[BCLC15] M. Boareto, J. Cesar, V. Leite, and N. Caticha. Supervised variational
relevance learning, an analytic geometric feature selection with applica-
tions to omic data sets. IEEE/ACM Trans. Computational Biology and
Bioinformatics, 12(3):705–711, 2015. Online: https://www.researchgate.
net/publication/271727720.

[BCS+22] M. Baillie, S. le Cessie, C.O. Schmidt, L. Lusa, M. Huebner, and the
Topic Group Initial Data Analysis of the STRATOS Initiative. Ten
simple rules for initial data analysis. PLOS Computational Biology,
18(2):1–7, 2022. Online: https://doi.org/10.1371/journal.pcbi.1009819.

[Bel57] R. Bellman. Dynamic Programming. Rand Corporation research study.
Princeton University Press, 1957. Google books: https://books.google.
de/books?id=wdtoPwAACAAJ.

[BGFG20] D. Blalock, J.J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the
state of neural network pruning? In I. Dhillon, D. Papailiopoulos, and
V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2,
pages 129–146, 2020. Preprint: https://arxiv.org/pdf/2003.03033.pdf.

[BGH07] M. Biehl, A. Ghosh, and B. Hammer. Dynamics and generalization abil-
ity of LVQ algorithms. Journal of Machine Learning Research, 8:323–
360, 2007. Online: https://www.jmlr.org/papers/v8/biehl07a.html.

[BGV92] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for op-
timal margin classifiers. In Proc. 5th Ann. Workshop on Computational
Learning Theory (COLT ’92), pages 144–152. ACM Press, NY, 1992.
Preprint: https://www.svms.org/training/BOGV92.pdf.

[BH12] J.C.A. Barata and M.S. Hussein. The Moore-Penrose Pseudioinverse: A
Tutorial Review of the Theory. Brazilian Journal of Physics, 42(1):146–
165, 2012. Preprint: https://arxiv.org/abs/1110.6882v1.

[BHMM19] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling mod-
ern machine-learning practice and the classical bias-variance trade-
off. Proc. Natl. Acad. Sci. USA, 116(32):15849–15854, 2019. Preprint:
https://arxiv.org/abs/1812.11118.

[BHS+16] M. Biehl, B. Hammer, F.-M. Schleif, P. Schneider, and T. Villmann. Sta-
tionarity of Matrix Relevance LVQ. In Proc. IEEE International Joint
Conference on Neural Networks (IJCNN 2015). IEEE, 2016. Preprint:
https://www.cs.rug.nl/~biehl/Publications/PDFS/biehl-ijcnn2015.pdf.

[BHT23] S. Bates, T. Hastie, and R. Tibshirani. Cross-validation: what does it
estimate and how well does it do it? Journal of the American Statistical
Association, pages 1–22, 2023. Preprint: https://arxiv.org/abs/2104.
00673.

[BHV14] M. Biehl, B. Hammer, and T. Villmann. Distance measures for proto-
type based classification. In L. Grandinetti, T. Lippert, and N. Petkov,
editors, Brain-Inspired Computing, BrainComp2013, volume 8603 of
Lecture Notes in Computer Science, pages 110–116. Springer, Berlin,
2014. Preprint: https://www.cs.rug.nl/~biehl/Preprints/2013-Cetraro-
distances.pdf.

[BHV16] M. Biehl, B. Hammer, and T. Villmann. Prototype-based models in
machine learning. Wiley Interdisciplinary Reviews: Cognitive Science,

https://www.researchgate.net/publication/271727720
https://doi.org/10.1371/journal.pcbi.1009819
https://books.google.de/books?id=wdtoPwAACAAJ
https://arxiv.org/pdf/2003.03033.pdf
https://www.jmlr.org/papers/v8/biehl07a.html
https://www.svms.org/training/BOGV92.pdf
https://arxiv.org/abs/1110.6882v1
https://www.cs.rug.nl/~biehl/Publications/PDFS/biehl-ijcnn2015.pdf
https://arxiv.org/abs/2104.00673
https://www.cs.rug.nl/~biehl/Preprints/2013-Cetraro-distances.pdf

254 BIBLIOGRAPHY

7(2):92–111, 2016. Online: https://pure.rug.nl/ws/portalfiles/portal/
172538141/wcs.1378.pdf.

[Bie17] M. Biehl. Biomedical applications of prototype based classifiers and rel-
evance learning. In D. Figueiredo, C. Martin-Vide, D. Pratas, and M.A.
Vega-Rodriguez, editors, AlCoB: 4th International Conference on Algo-
rithms for Computational Biology, volume 10252, pages 3–23. Springer
LNCS, 2017. Preprint: https://www.cs.rug.nl/~biehl/Preprints/2017-
AlCoB-biehl.pdf.

[Bie19] M. Biehl. Supervised Learning - An Introduction, 2019. In [MSK19]. On-
line: http://research.iac.es/winterschool/2018/media/summaries/Winter-
School-Biehl-notes-12-03-19.pdf.

[Bis95a] C.M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, Inc., New York, NY, USA, 1995. Google
books: https://books.google.de/books/about/Neural_Networks_for_
Pattern_Recognition.html?id=b8GuQgAACAAJ.

[Bis95b] C.M. Bishop. Training with Noise is Equivalent to Tikhonov Reg-
ularization. Neural Computation, 7(1):108–116, 1995. Preprint:
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/
02/bishop-tikhonov-nc-95.pdf.

[Bis06] C.M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, Heidelberg, Germany,
2006. Google books: https://books.google.nl/books/about/Pattern_
Recognition_and_Machine_Learning.html?id=kTNoQgAACAAJ.

[BL88] D.S. Broomhead and D. Lowe. Multivariable functional interpola-
tion and adaptive networks. Complex Systems, 2:321–355, 1988. On-
line: https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-
CS.pdf.

[BL89] S. Becker and Y. Le Cun. Improving the convergence of back-
propagation learning with second order methods. In D. Touretzky,
G. Hinton, and T. Sejnowski, editors, Proc. Connectionist Models
Summer School, pages 29–37, 1989. Online: https://www.researchgate.
net/publication/216792889_Improving_the_Convergence_of_Back-
Propagation_Learning_with_Second-Order_Methods.

[BL13] V. Van Belle and P. Lisboa. Research directions in interpretable machine
learning models. In M. Verleysen, editor, Proc. of the European Symp.
on Artificial Neural Networks (ESANN 2013), pages 533–431. d-side,
2013. Online: https://web.archive.org/web/20170829075124id_/https://
www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-14.pdf.

[Bla15] M. Bland. An Introduction to Medical Statistics. Oxford University
Press, 4 edition, 2015. selected material: https://www-users.york.ac.uk/
~mb55/intro/introcon4.htm.

[BM01] E. Bingham and H. Mannila. Random projection in dimensional-
ity reduction: Applications to image and text data. In Proceedings
of the Seventh ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’01, pages 245Ă–250, New
York, NY, USA, 2001. Association for Computing Machinery. Online:
https://doi.org/10.1145/502512.502546.

https://pure.rug.nl/ws/portalfiles/portal/172538141/wcs.1378.pdf
https://www.cs.rug.nl/~biehl/Preprints/2017-AlCoB-biehl.pdf
http://research.iac.es/winterschool/2018/media/summaries/Winter-School-Biehl-notes-12-03-19.pdf
https://books.google.de/books/about/Neural_Networks_for_Pattern_Recognition.html?id=b8GuQgAACAAJ
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-95.pdf
https://books.google.nl/books/about/Pattern_Recognition_and_Machine_Learning.html?id=kTNoQgAACAAJ
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
https://www.researchgate.net/publication/216792889_Improving_the_Convergence_of_Back-Propagation_Learning_with_Second-Order_Methods
https://web.archive.org/web/20170829075124id_/https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2013-14.pdf
https://www-users.york.ac.uk/~mb55/intro/introcon4.htm
https://doi.org/10.1145/502512.502546

BIBLIOGRAPHY 255

[BMR+20] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D.M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandish, A. Radford,
I. Sugskever, and D. Amodei. Language models are few-shot learn-
ers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems,
Proc. of NEURIPS 2020, pages 1877–1901. Curran Associates, Inc.,
2020. Preprint: https://arxiv.org/pdf/2005.14165.pdf.

[BN03] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15:1373–1396, 2003.
Online: https://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.
pdf.

[BO91] M. Biehl and M. Opper. Tilinglike learning in the parity ma-
chine. Physical Review A, 44(10):6888–6894, 1991. Online:
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.6888.

[Bös96] S. Bös. Optimal weight decay in a perceptron. In C. van der Mals-
burg, W. von Seelen, J.C. Vorbrüggen, and B. Sendhoff, editors, Ar-
tificial Neural Networks - ICANN 1996, volume 1112 of Lecture Notes
in Computer Science, pages 551–556, Berlin, 1996. Springer. Preprint:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.86.

[Bot91] L. Bottou. Stochastic gradient learning in neural networks. In Proc. of
Neuro-Nimes 91. EC2 editions, 1991. Online: https://leon.bottou.org/
publications/pdf/nimes-1991.pdf.

[Bot04] L. Bottou. Stochastic learning. In O. Bousquet and U. von Luxburg,
editors, Advanced Lectures on Machine Learning, Lecture Notes in Ar-
tificial Intelligence, LNAI 3176, pages 146–168. Springer Verlag, Berlin,
2004. Preprint: https://leon.bottou.org/publications/pdf/mlss-2003.pdf.

[Bot19] A. Botchkarev. A new typology design of performance metrics to
measure errors in machine learning regression algorithms. Interdisci-
plinary Journal of Information, Knowledge, and Management, 14:045–
076, 2019. Online: https://dx.doi.org/10.28945/4184.

[Bre01] L. Breiman. Random Forests. Machine Learning, 45:5–32, 2001. https:
//www.stat.berkeley.edu/~breiman/randomforest2001.pdf.

[BSH+12] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and
M. Biehl. Limited rank matrix learning, discriminative dimension re-
duction, and visualization. Neural Networks, 26:159–173, 2012. https:
//www.techfak.uni-bielefeld.de/~fschleif/pdf/nn_2012.pdf.

[BSS94] N. Barkai, S. Seung, and H. Sompolinsky. On-line Learning of Di-
chotomies. In J.D. Cowan, G. Tesauro, and J. Alspector, editors, Adv. in
Neural Information Processing Systems. Proc. NIPS 2 (1993), volume 6,
pages 303–310. MIT Press, 1994. Online: https://proceedings.neurips.cc/
paper/1994/file/9c01802ddb981e6bcfbec0f0516b8e35-Paper.pdf.

[Bun11] K. Bunte. Adaptive dissimilarity measures, dimension reduction and
visualization. PhD thesis, University of Groningen, 2011. Online: https:
//www.rug.nl/research/portal/files/14550974/kbunte_thesis.pdf.

https://arxiv.org/pdf/2005.14165.pdf
https://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.86
https://leon.bottou.org/publications/pdf/nimes-1991.pdf
https://leon.bottou.org/publications/pdf/mlss-2003.pdf
https://dx.doi.org/10.28945/4184
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://www.techfak.uni-bielefeld.de/~fschleif/pdf/nn_2012.pdf
https://proceedings.neurips.cc/paper/1994/file/9c01802ddb981e6bcfbec0f0516b8e35-Paper.pdf
https://www.rug.nl/research/portal/files/14550974/kbunte_thesis.pdf

256 BIBLIOGRAPHY

[Bur89] P. Burman. A comparative study of ordinary cross-validation, v-
fold cross validation and the repeated learning testing-model methods.
Biometrika, 76:503–514, 1989. Online: https://www.jstor.org/stable/
2336116.

[BW88] E.B. Baum and F. Wilczek. Supervised learning of probability distri-
butions by neural networks. In D.Z. Anderson, editor, Adv. in Neu-
ral Information Processing Systems, pages 52–61. American Inst. of
Physics, 1988. Online: https://proceedings.neurips.cc/paper/1987/file/
eccbc87e4b5ce2fe28308fd9f2a7baf3-Paper.pdf.

[CBHK02] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intel-
ligence Research, 19:321–357, 2002. Online: https://www.jair.org/index.
php/jair/article/view/10302/24590.

[CCST99] N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynami-
cally adapting kernels in Support Vector Machines. In Ad-
vances in Neural Information Processing Systems, pages 204–
210, 1999. Online: https://proceedings.neurips.cc/paper/1998/file/
7fb8ceb3bd59c7956b1df66729296a4c-Paper.pdf.

[CGBNT03] K. Crammer, R. Gilad-Bachrach, A. Navot, and A. Tishby. Mar-
gin analysis of the LVQ algorithm. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural Information Process-
ing Systems, volume 15, pages 462–469. MIT Press, Cambridge,
MA, 2003. Online: https://proceedings.neurips.cc/paper/2002/file/
bbaa9d6a1445eac881750bea6053f564-Paper.pdf.

[CH67] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Trans. Information Theory, 13:21–27, 1967. Online: https://isl.stanford.
edu/~cover/papers/transIT/0021cove.pdf.

[Cha09] N.V. Chawla. Data Mining for Imbalanced Datasets. In M.A.
Arbib, editor, Data Mining and Knowledge Discovery Handbook,
pages 875–886. Springer, Boston (MA), 2009. Google books:
https://books.google.de/books/about/Data_Mining_and_Knowledge_
Discovery_Hand.html?id=S-XvEQWABeUC.

[Chu71] L.O. Chua. Memristor – The Missing Circuit Element. Transaction on
Circuit Theory, CT-18(5), 1971. Online: https://citeseerx.ist.psu.edu/
doc/10.1.1.189.3614.

[CJ10] P. Comon and C. Jutten. Handbook of Blind Source-Separation. Aca-
demic Press, Oxford, 2010. Online: https://www.gipsa-lab.grenoble-
inp.fr/~pierre.comon/FichiersPdf/HandBook.pdf.

[CL04] B.W. Connors and M.A. Long. Electrical synapses in the mammalian
brain. Annu. Rev. Neurosci., 27:393–418, 2004. Online: https://longlab.
med.nyu.edu/wp-content/uploads/2017/10/20.pdf.

[CLG08] C. Clopath, A. Longtin, and W Gerstner. An online Hebbian learn-
ing rule that performs Independent Component Analysis. BMC Neu-
roscience, 9(O13), 2008. Online: https://doi.org/10.1186/1471-2202-9-
S1-O13.

https://www.jstor.org/stable/2336116
https://proceedings.neurips.cc/paper/1987/file/eccbc87e4b5ce2fe28308fd9f2a7baf3-Paper.pdf
https://www.jair.org/index.php/jair/article/view/10302/24590
https://proceedings.neurips.cc/paper/1998/file/7fb8ceb3bd59c7956b1df66729296a4c-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/bbaa9d6a1445eac881750bea6053f564-Paper.pdf
https://isl.stanford.edu/~cover/papers/transIT/0021cove.pdf
https://books.google.de/books/about/Data_Mining_and_Knowledge_Discovery_Hand.html?id=S-XvEQWABeUC
https://citeseerx.ist.psu.edu/doc/10.1.1.189.3614
https://www.gipsa-lab.grenoble-inp.fr/~pierre.comon/FichiersPdf/HandBook.pdf
https://longlab.med.nyu.edu/wp-content/uploads/2017/10/20.pdf
https://doi.org/10.1186/1471-2202-9-S1-O13

BIBLIOGRAPHY 257

[CMB00] J.L. Castro, C.J. Mantas, and J.M. Benitez. Neural networks with a con-
tinuous squashing function in the output are universal approximators.
Neural Networks Letter, 13:561–563, 2000. Online: https://sci2s.ugr.es/
sites/default/files/ficherosPublicaciones/0820_2000-benitez-NN.pdf.

[Cov65] T.M. Cover. Geometrical and Statistical Properties of Systems of Linear
Inequalities with Applications in Pattern Recognition. IEEE Trans.
Electronic Computers, pages 326–334, 1965. Online: https://isl.stanford.
edu/~cover/papers/paper2.pdf.

[CR95] Y. Chauvin and D.E. Rumelhart. Backpropagation: Theory, Archi-
tectures, and Applications. Psychology Press, 1995. Online: https:
//www.taylorfrancis.com/books/mono/10.4324/9780203763247.

[CS14] G. Chandrashekar and F. Sahin. A survey on feature selection meth-
ods. Computers & Electrical Engineering, 40(1):16–28, 2014. On-
line: https://www.researchgate.net/publication/305952742_A_Survey_
on_Feature_Selection,.

[CST00] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel- based Learning Methods. Cambridge Uni-
versity Press, Cambridge, UK, 2000. Online: https://doi.org/10.1017/
CBO9780511801389.

[CSZ06] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. MIT
Press, Cambridge, MA, 2006. Online: https://www.molgen.mpg.de/
3659531/MITPress--SemiSupervised-Learning.pdf.

[CUH16] D.-A. Clever, T. Unterhiner, and S. Hochreiter. Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs). In Y. Bengio
and Y. LeCun, editors, Proc. of the 4th International Conference on
Learning Representations, ICLR 2016, 2016.

[CV95] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning,
20(3):273–297, 1995. Online: https://link.springer.com/article/10.1007/
bf00994018.

[Cyb89] G. Cybenko. Approximations by Superpositions of a Sigmoidal Func-
tion. Math. Control Signals Systems, 2:303–314, 1989. Online: https:
//cognitivemedium.com/magic_paper/assets/Cybenko.pdf.

[Dav66] Ray Davies. Dedicated Follower of Fashion, 1966. The Kinks, single,
online available at https://www.youtube.com/watch?v=nxTnJPIl20U.

[DFO20] M.P. Deisenroth, A.A. Faisal, and C.S. Ong. Mathematics for Machine
Learning. Cambridge University Press, 2020. Online: https://mml-
book.com.

[DG06] J. Davis and M. Goadrich. The Relationship Between Precision-Recall
and ROC Curves. In Proc. of the 23rd International Conference on
Machine Learning (ICML), pages 233–240. ACM, New York, USA, 2006.
Online: https://doi.acm.org/10.1145/1143844.1143874.

[DHS00] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wi-
ley, New York, 2000. Google books: https://books.google.nl/books?id=
Br33IRC3PkQC.

https://sci2s.ugr.es/sites/default/files/ficherosPublicaciones/0820_2000-benitez-NN.pdf
https://isl.stanford.edu/~cover/papers/paper2.pdf
https://www.taylorfrancis.com/books/mono/10.4324/9780203763247
https://www.researchgate.net/publication/305952742_A_Survey_on_Feature_Selection
https://doi.org/10.1017/CBO9780511801389
https://www.molgen.mpg.de/3659531/MITPress--SemiSupervised-Learning.pdf
https://link.springer.com/article/10.1007/bf00994018
https://cognitivemedium.com/magic_paper/assets/Cybenko.pdf
https://www.youtube.com/watch?v=nxTnJPIl20U
https://mml-book.com
https://doi.acm.org/10.1145/1143844.1143874
https://books.google.nl/books?id=Br33IRC3PkQC

258 BIBLIOGRAPHY

[Die00] R. Dietrich. Statistical Mechanics of Neural Networks: Enhancement
by Weighting of Examples. PhD thesis, Julius-Maximilians-Universität
Würzburg, Germany, 2000. Online: https://citeseerx.ist.psu.edu/doc/
10.1.1.15.4844.

[DLR77] A.P. Dempster, N.M. Lair, and D.B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. J. of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977. Online: https:
//www.ece.iastate.edu/~namrata/EE527_Spring08/Dempster77.pdf.

[DM92] C. Darken and J. Moody. Towards faster stochastic gradient search.
In Hanson Moody, J.E, S.J., and R.P. Lippmann, editors, Advances
in Neural Information Processing Systems 4, volume 4, pages 1009–
1016, 1992. Online: https://proceedings.neurips.cc/paper/1991/file/
e2230b853516e7b05d79744fbd4c9c13-Paper.pdf.

[DO87] S. Diederich and M. Opper. Learning of correlated patterns in
spin-glass networks by local learning rules. Physical Review Letters,
58(9):949–952, 1987. Online: https://journals.aps.org/prl/abstract/10.
1103/PhysRevLett.58.949.

[Dom00] P. Domingos. A unified bias-variance decomposition and its appli-
cations. In Proc. 17th Intl. Conf. on Machine Learning (ICML),
pages 231–238. Morgan Kaufmann, 2000. Preprint: https://homes.cs.
washington.edu/~pedrod/papers/mlc00a.pdf.

[DRAP15] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonsta-
tionary environment: A survey. Comput. Intell. Mag., 10:12–25, 2015.
Online: https://www.researchgate.net/publication/282907128.

[DS98] N.R. Draper and H. Smith. Applied Regression Analysis. Wiley,
3 edition, 1998. Google books: https://books.google.nl/books?id=
uSReBAAAQBAJ.

[EB01] A. Engel and C. van den Broeck. The Statistical Mechanics of Learn-
ing. Cambridge University Press, Cambridge, UK, 2001. Google
books: https://books.google.nl/books/about/Statistical_Mechanics_of_
Learning.html?id=qVo4IT9ByfQC.

[Efr83] B. Efron. Estimating the error rate of a prediction rule: Improvement
on cross-validation. Journal of the American Statistical Association,
78(382):316–331, 1983. Online: https://doi.org/10.1080/01621459.1983.
10477973.

[EHT20] M. Espadoto, N.S.T. Hirata, and A.C. Telea. Deep learning multidi-
mensional projections. Information Visualization, 19(3):247–269, 2020.
Preprint: https://arxiv.org/abs/1902.07958.

[ER97] B. Efron and R.Tibshirani. Improvements on cross-validation: The
.632+ bootstrap method. Journal of the American Statistical Associa-
tion, 92(438):548–560, 1997. Online: https://sites.stat.washington.edu/
courses/stat527/s13/readings/EfronTibshirani_JASA_1997.pdf.

[EYG92] S. Eger, P. Youssef, and I. Gurevych. Is it Time to Swish? Comparing
Deep Learning Activation Functions Across NLP Tasks. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 4415–4424, Brussels, Belgium, 1992. Association for Com-
putational Linguistics. Online: https://www.aclweb.org/anthology/D18-
1472.

https://citeseerx.ist.psu.edu/doc/10.1.1.15.4844
https://www.ece.iastate.edu/~namrata/EE527_Spring08/Dempster77.pdf
https://proceedings.neurips.cc/paper/1991/file/e2230b853516e7b05d79744fbd4c9c13-Paper.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.58.949
https://homes.cs.washington.edu/~pedrod/papers/mlc00a.pdf
https://www.researchgate.net/publication/282907128
https://books.google.nl/books?id=uSReBAAAQBAJ
https://books.google.nl/books/about/Statistical_Mechanics_of_Learning.html?id=qVo4IT9ByfQC
https://doi.org/10.1080/01621459.1983.10477973
https://arxiv.org/abs/1902.07958
https://sites.stat.washington.edu/courses/stat527/s13/readings/EfronTibshirani_JASA_1997.pdf
https://www.aclweb.org/anthology/D18-1472

BIBLIOGRAPHY 259

[Faw06] T. Fawcett. An introduction to ROC analysis. Pattern Recogni-
tion Letters, 27:861–874, 2006. Online: https://www.researchgate.net/
publication/222511520_Introduction_to_ROC_analysis.

[FCC98] T. Friess, N. Cristianini, and C. Campbell. The Kernel-AdaTron Al-
gorithm: a Fast and Simple Learning Procedure for Support Vector
Machines. In Machine Learning: Proc. 15th Intl. Conf. (ICML). Mor-
gan Kaufmann, San Francisco, CA, 1998. Online: https://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.42.2060.

[Fis36] R. Fisher. The use of multiple measurements in taxonomic problems.
Annual Eugenics, 7:179–188, 1936. Online: https://onlinelibrary.wiley.
com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x.

[FL90] S. Fahlman and C. Lebiere. The cascade-correlation learning ar-
chitecture. In D. Touretzky, editor, Advances in Neural Infor-
mation Processing Systems, volume 2, pages 524–532. Morgan-
Kaufmann, 1990. Online: https://proceedings.neurips.cc/paper/1989/
file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf.

[Fle00] R. Fletcher. Practical Methods of Optimization (2nd Edition). Wi-
ley, 2000. Online: https://onlinelibrary.wiley.com/doi/book/10.1002/
9781118723203.

[FP96] J. C. Fort and G. Pages. Convergence of stochastic algorithms: from
the Kushner & Clark theorem to the Lyapounov functional. Advances
in applied probability, 28:1072–1094, 1996. Online: https://www.jstor.
org/stable/1428165.

[Fre90] M. Frean. The upstart algorithm: A method for constructing and
training feedforward neural networks. Neural Computation, 2(2):198–
209, 1990. Online: https://homepages.ecs.vuw.ac.nz/foswiki/pub/Users/
Marcus/MarcusFreanPublications/Frean90-Upstart-Algorithm.pdf.

[Fri94] J.H. Friedman. An Overview of Predictive Learning and Function
Approximation. In From Statistics to Neural Networks, volume 136
of NATO ASI Series F: Computer Systems Sciences, pages 1–61.
Springer, Berlin, Heidelberg, 1994. Online: https://purl.stanford.edu/
vz166tw6964.

[Fuk80] K. Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biol. Cybernetics, 36:193–202, 1980. Online: https://doi.org/10.1007/
BF00344251.

[Fuk88] K. Fukushima. Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural Networks, 1(2):119–130, 1988. Online:
https://doi.org/10.1016/0893-6080(88)90014-7.

[Fuk19] K. Fukushima. Recent advances in the deep CNN neocognitron. Nonlin-
ear Theory and Its Applications, IEICE, 10(4):304–321, 2019. Online:
https://doi.org/10.1587/nolta.10.304.

[FV10] B. Frénay and M. Verleysen. Using SVMs with randomized feature
spaces: an extreme learning approach. In M. Verleysen, editor, Proc. of
the European Symosium on Artifical Neural Networks (ESANN 2010),
pages 315–320. d-side, 2010. Online: https://perso.uclouvain.be/michel.
verleysen/papers/esann10bf.pdf.

https://www.researchgate.net/publication/222511520_Introduction_to_ROC_analysis
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.2060
https://proceedings.neurips.cc/paper/1989/file/69adc1e107f7f7d035d7baf04342e1ca-Paper.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203
https://www.jstor.org/stable/1428165
https://homepages.ecs.vuw.ac.nz/foswiki/pub/Users/Marcus/MarcusFreanPublications/Frean90-Upstart-Algorithm.pdf
https://purl.stanford.edu/vz166tw6964
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/0893-6080(88)90014-7
https://doi.org/10.1587/nolta.10.304
https://perso.uclouvain.be/michel.verleysen/papers/esann10bf.pdf

260 BIBLIOGRAPHY

[Gal90] S.I. Gallant. Perceptron-based learning algorithms. IEEE Transac-
tions on Neural Networks, 1(2):179–191, 1990. Online: https://www.
ling.upenn.edu/courses/Fall_2007/cogs501/Gallant1990.pdf.

[GBB11] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural
networks. In G. Gordon, D. Dunson, and M. Dudáŋk, editors, Pro-
ceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics, volume 15 of Proceedings of Machine Learn-
ing Research, pages 315–323, Fort Lauderdale, FL, USA, 2011. JMLR
Workshop and Conference Proceedings. Online: https://proceedings.mlr.
press/v15/glorot11a/glorot11a.pdf.

[GBB+23] S. Ghosh, E.S. Baranowski, M. Biehl, W. Arlt, P. Tino, and K. Bunte.
Interpretable models capable of handling systematic missingness in im-
balanced classes and heterogeneous datasets. 2023. In preparation.

[GBC16] I.J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
Cambridge, MA, USA, 2016. Online: https://www.deeplearningbook.org.

[GBV+17] S. Ghosh, E.S. Baranowski, R. van Veen, G.-J. de Vries, M. Biehl,
W. Arlt, P. Tino, and K. Bunte. Comparison of strategies to learn
from imbalanced classes for computer aided diagnosis of inborn steroido-
genic disorders. In M. Verleysen, editor, 25th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning, ESANN 2017, pages 199–205. i6doc.com, 2017. Online: https:
//www.esann.org/sites/default/files/proceedings/legacy/es2017-94.pdf.

[GE03] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. J. Mach. Learn. Res., 3:1157–1182, 2003. Online: https:
//www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf.

[GG91] M. Griniasty and H. Gutfreund. Learning and retrieval in attractor
neural networks above saturation. J. of Phys. A: Math. Gen., 24:715–
734, 1991. Online: https://www.sciencedirect.com/science/article/abs/
pii/0378437195001827.

[GG16] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. ICML’16, pages 1050–
1059. JMLR.org, 2016. Online: https://proceedings.mlr.press/v48/gal16.
pdf.

[Gho21] S. Ghosh. Intrinsically Interpretable Machine Learning In Computer
Aided Diagnosis. PhD thesis, University of Groningen, 2021. Online:
https://doi.org/10.33612/diss.175627883.

[GLSGFV10] P.J. Garcia-Laencina, JL. Sancho-Gomez, and A.R. Figueiras-Vidal.
Pattern classification with missing data: a review. Neural Comput &
Applic, pages 263–282, 2010. Online: https://doi.org/10.1007/s00521-
009-0295-6.

[GM90] M. Golea and M. Marchand. A growth algorithm for neural network
decision trees. Europhysics Letters, 12(3):205–210, 1990. Online: https:
//www.researchgate.net/publication/231136885.

[GP90] F. Girosi and T. Poggio. Networks and the best approximation prop-
erty. Biol. Cybernetics, 63:169–176, 1990. Online: http://cbcl.mit.edu/
people/poggio/journals/girosi-poggio-BiolCybernetics-1990.pdf.

https://www.ling.upenn.edu/courses/Fall_2007/cogs501/Gallant1990.pdf
https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://www.deeplearningbook.org
https://www.esann.org/sites/default/files/proceedings/legacy/es2017-94.pdf
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
https://www.sciencedirect.com/science/article/abs/pii/0378437195001827
https://proceedings.mlr.press/v48/gal16.pdf
https://doi.org/10.33612/diss.175627883
https://doi.org/10.1007/s00521-009-0295-6
https://www.researchgate.net/publication/231136885
http://cbcl.mit.edu/people/poggio/journals/girosi-poggio-BiolCybernetics-1990.pdf

BIBLIOGRAPHY 261

[GT18] A.N. Gorban and I.Y. Tyukin. Blessing of dimensionality: mathematical
foundations of the statistical physics of data. Phil. Trans. R. Soc. A,
376(20170237), 2018. Online: https://doi.org/10.1098/rsta.2017.0237.

[Gue97] K. Guerney. An Introduction to Neural Networks. UCL Press, Lon-
don, 1997. Online: http://www.macs.hw.ac.uk/~yjc32/project/ref-NN/
Gurney_et_al.pdf.

[Guy16] I. Guyon. Data mining history: The invention of Support Vector Ma-
chines, 2016. Online: https://www.kdnuggets.com/2016/07/guyon-data-
mining-history-svm-support-vector-machines.html.

[GW10] O. Golubitsky and S. Watt. Distance-based classification of hand-
written symbols. Int. J. on Document Analysis and Recognition (IJ-
DAR), 13:133–146, 2010. Preprint: https://www.csd.uwo.ca/~watt/pub/
reprints/2009-ijdar-similarity.pdf.

[gwe09] gwern.net. The Neural Net Tank Urban Legend, 2009. Online: https:
//www.gwern.net/Tanks.

[Har68] P. Hart. The condensed nearest neighbor rule. IEEE Trans. Informa-
tion Theory, 14:515–516, 1968. Online: https://sci2s.ugr.es/keel/pdf/
algorithm/articulo/hart1968.pdf.

[Hay09] S. Haykin. Neural Networks and Learning Machines. Pearson Education,
Upper Saddle River, NJ, USA, third edition, 2009. Online: https://
cours.etsmtl.ca/sys843/REFS/Books/ebook_Haykin09.pdf.

[HB87] S.J. Hanson and David J. Burr. Minkowski-r Back-Propagation: Learn-
ing in Connectionist Models with Non-Euclidian Error Signals. In Proc.
Neural Information Processing Systems 1987, pages 348–357, Cam-
bridge, MA, USA, 1987. MIT Press. Online: https://proceedings.neurips.
cc/paper/1987/file/fc490ca45c00b1249bbe3554a4fdf6fb-Paper.pdf.

[Heb49] D.O. Hebb. The Organization of Behavior. Erlbaum, 1949.
Reprinted 2002, 335 pages. Online: https://pure.mpg.de/rest/items/
item_2346268_3/component/file_2346267/content.

[Her02] R. Herbrich. Learning Kernel Classifiers, Theory and Algorithms.
MIT Press, Cambridge, MA, 2002. Online: https://mitpress.mit.edu/
9780262546591/learning-kernel-classifiers.

[HG09] H. He and E.A. Garcia. Learning from imbalanced data. IEEE Trans.
on Knowledge and Data Engineering, 21(9):1263–1284, 2009. Online:
https://ieeexplore.ieee.org/document/5128907,.

[Hin86] G.E. Hinton. Learning Distributed Representations of Concepts. Proc.
of the Cognitive Science Society, pages 1–12, 1986. Online: https://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.7684.

[HK98] H. Horner and R. Kühn. Neural Networks. In U. Ratsch, M. Richter,
and I.O. Stametescu, editors, Intelligence and Artificial Intelligence,
an Interdisciplinary Debate, pages 125–161. Springer, Heidelberg, Ger-
many, 1998. Online: https://link.springer.com/chapter/10.1007/978-3-
662-03667-9_8.

[HKK+10] M.E. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek.
Can shared-neighbor distances defeat the curse of dimensionality?

https://doi.org/10.1098/rsta.2017.0237
http://www.macs.hw.ac.uk/~yjc32/project/ref-NN/Gurney_et_al.pdf
https://www.kdnuggets.com/2016/07/guyon-data-mining-history-svm-support-vector-machines.html
https://www.csd.uwo.ca/~watt/pub/reprints/2009-ijdar-similarity.pdf
https://www.gwern.net/Tanks
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/hart1968.pdf
https://cours.etsmtl.ca/sys843/REFS/Books/ebook_Haykin09.pdf
https://proceedings.neurips.cc/paper/1987/file/fc490ca45c00b1249bbe3554a4fdf6fb-Paper.pdf
https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
https://mitpress.mit.edu/9780262546591/learning-kernel-classifiers
https://ieeexplore.ieee.org/document/5128907
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.408.7684
https://link.springer.com/chapter/10.1007/978-3-662-03667-9_8

262 BIBLIOGRAPHY

In M. Gertz and B. Ludäscher, editors, Scientific and Statisti-
cal Database Management, pages 482–500, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. Preprint: https://imada.sdu.dk/~zimek/
publications/SSDBM2010/SNN-SSDBM2010-preprint.pdf.

[HKP91] J.A. Hertz, A.S. Krogh, and R.G. Palmer. Introduction To The The-
ory Of Neural Computation. Addison-Wesley, Reading, MA, USA,
1991. Online: https://www.taylorfrancis.com/books/mono/10.1201/
9780429499661.

[HO00] A. Hyvärinen and E. Oja. Independent component analysis: algorithms
and applications. Neural Networks, 13(4):411–430, 2000. Online: http:
//www.cse.msu.edu/~cse902/S03/icasurvey.pdf.

[Hop82] J J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, 79(8):2554–2558, 1982. Online: https://www.pnas.org/doi/
abs/10.1073/pnas.79.8.2554.

[Hop87] J.J. Hopfield. Learning algorithms and probability distributions in feed-
forward and feed-back networks. Proc. of the National Academy of Sci-
ences, 84:8429–8433, 1987. Online: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC299557/pdf/pnas00338-0264.pdf.

[Hor89] K. Hornik. Multilayer Feedforward Networks are Universal Approxima-
tors. Neural Networks, 2:359–366, 1989. Online: https://www.cs.cmu.
edu/~epxing/Class/10715/reading/Kornick_et_al.pdf.

[HR03] G. Hinton and S. Roweis. Stochastic neighbor embedding. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems, volume 15, pages 833–840. MIT Press, 2003. Online:
https://www.cs.toronto.edu/~hinton/absps/sne.pdf.

[HR04] A. Herschtal and B. Raskutti. Optimising area under the ROC curve
using gradient descent. In Proc. of the 21st International Conference on
Machine Learning, page 8, 2004. Online: https://icml.cc/Conferences/
2004/proceedings/papers/132.pdf.

[HRM+60] J.C. Hay, F. Rosenblatt, A.E. Murray, A. Stieber, and R.A Wolf.
Mark I Perceptron Operator’s Manual, Report No. VG-1196-G-5. Cor-
nell Aeronautical Laboratory Inc., Buffalo, NY, USA, 1960. Online:
https://apps.dtic.mil/sti/pdfs/AD0236965.pdf.

[HSK+12] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R.
Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. CoRR, 2012. Preprint: https://arxiv.org/abs/1207.
0580.

[HSV05] B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with
general similarity measure. Neural Processing Letters, 21(1):21–44, 2005.
Online: https://www.researchgate.net/publication/2873240.

[HSW93] B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal Brain Surgeon and
general network pruning. In IEEE International Conference on Neural
Networks, volume 1, pages 293–299, 1993. Online: https://doi.org/10.
1109/ICNN.1993.298572.

https://imada.sdu.dk/~zimek/publications/SSDBM2010/SNN-SSDBM2010-preprint.pdf
https://www.taylorfrancis.com/books/mono/10.1201/9780429499661
http://www.cse.msu.edu/~cse902/S03/icasurvey.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC299557/pdf/pnas00338-0264.pdf
https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf
https://www.cs.toronto.edu/~hinton/absps/sne.pdf
https://icml.cc/Conferences/2004/proceedings/papers/132.pdf
https://apps.dtic.mil/sti/pdfs/AD0236965.pdf
https://arxiv.org/abs/1207.0580
https://www.researchgate.net/publication/2873240
https://doi.org/10.1109/ICNN.1993.298572

BIBLIOGRAPHY 263

[HT01] D.J. Hand and R.J. Till. A simple generalisation of the area under the
ROC curve for multiple class classification problems. Machine Learning,
45(2):171–186, 2001. Online: https://link.springer.com/article/10.1023/
A:1010920819831.

[HTF01] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer, New York, NY, USA,
2001. Online: https://hastie.su.domains/Papers/ESLII.pdf.

[Hub29] E. Hubble. A relation between distance and radial velocity among
extra-galactic nebulae. Proceedings of the National Academy of Sciences
(PNAS), 15(3):168–173, 1929. Online: https://www.pnas.org/content/
15/3/168.

[Huc18] J. Huchra. home page, 2018. Online: https://www.cfa.harvard.edu/
~dfabricant/huchra.

[Hue19] M. Huertas-Company. Deep Learning, 2019. In: [MSK19].
Online: http://research.iac.es/winterschool/2018/media/summaries/iac_
winter_syllabus_MHC.pdf.

[HV02] B. Hammer and T. Villmann. Generalized Relevance Learning Vector
Quantization. Neural Networks, 15(8-9):1059–1068, 2002. Online: https:
//www.sciencedirect.com/science/article/abs/pii/S0893608002000795.

[HV05] B. Hammer and T. Villmann. Classification using non-standard met-
rics. In M. Verleysen, editor, Proc. Europ. Symp. on Artificial Neural
Networks (ESANN), pages 303–316. d-side publishing, 2005. Online:
https://www.researchgate.net/publication/221165820.

[HW59] D.H. Hubel and T.N. Wiesel. Receptive fields of single neurons in the
cat’s striate cortex. J. Physiol., 148(3):574–591, 1959. Online: https:
//doi.org/10.1113/jphysiol.1959.sp006308.

[HZRS15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In 2015
IEEE International Conference on Computer Vision (ICCV), pages
1026–1034, 2015. Preprint: https://arxiv.org/abs/1502.01852.

[HZS06] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning ma-
chine: Theory and applications. Neurocomputing, 70(1):489–501,
2006. Online: https://www.sciencedirect.com/science/article/abs/pii/
S0925231206000385.

[JBB15] A. Jovic, K. Brkic, and N. Bogunovic. A review of feature selection
methods with applications. In 38th International Convention on Infor-
mation and Communication Technology, Electronics and Microelectron-
ics (MIPRO), pages 1200–1205, 2015. Online: https://doi.org/10.1109/
MIPRO.2015.7160458.

[Kat66] B. Katz. Nerve, Muscle, and Synapse. McGraw-Hill, New York, 1966.

[KEP17] T. Kautz, B.M. Eskofier, and C.F. Pasluosta. Generic performance
measure for multiclass classifiers. Pattern Recognition, 68:1125, 2017.
Online: https://www.researchgate.net/publication/314272452_Generic_
Performance_Measure_for_Multiclass-Classifiers.

https://link.springer.com/article/10.1023/A:1010920819831
https://hastie.su.domains/Papers/ESLII.pdf
https://www.pnas.org/content/15/3/168
https://www.cfa.harvard.edu/~dfabricant/huchra
http://research.iac.es/winterschool/2018/media/summaries/iac_winter_syllabus_MHC.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608002000795
https://www.researchgate.net/publication/221165820
https://doi.org/10.1113/jphysiol.1959.sp006308
https://arxiv.org/abs/1502.01852
https://www.sciencedirect.com/science/article/abs/pii/S0925231206000385
https://doi.org/10.1109/MIPRO.2015.7160458
https://www.researchgate.net/publication/314272452_Generic_Performance_Measure_for_Multiclass-Classifiers

264 BIBLIOGRAPHY

[KHV14] M. Kaden, W. Hermann, and T. Villmann. Optimization of general
statistical accuracy measures for classification based on learning vector
quantization. In M. Verleysen, editor, Proc. of the European Symposium
on Artificial Neural Networks ESANN 2014, pages 47–52. i6doc.com,
2014. Online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.431.5465.

[Kik76] R. Kikuchi. Natural iteration method and boundary free energy. J.
Chemical Physics, 65:4545, 1976. Online: https://doi.org/10.1063/1.
432909.

[KLS20] D. Kobak, J. Lomond, and B. Sanchez. The optimal ridge penalty for
real-world high-dimensional data can be zero or negative due to the
implicit ridge regularization. J. Machine Learning Research, 21:1–16,
2020. Online: https://jmlr.org/papers/volume21/19-844/19-844.pdf.

[KM87] W. Krauth and M. Mezard. Learning algorithms with optimal stabil-
ity in neural networks. J. Phys. A: Math. Gen., 20(11):L745–L752,
1987. Online: https://iopscience.iop.org/article/10.1088/0305-4470/20/
11/013.

[Kob97] S. Kobe. Ernst Ising - Physicist and Teacher. J. Stat. Phys., 88:991–
995, 1997. Online: https://link.springer.com/article/10.1023/B:JOSS.
0000015184.19421.03.

[Koc98] C. Koch. Biophysics of Computation: Information Processing in Single
Neurons. Oxford University Press, New York, NY, USA, 1998. Selected
chapters: https://christofkoch.com/biophysics-book/.

[Koh90] T. Kohonen. Improved versions of Learning Vector Quantization. In
Proc. of the International Joint conference on Neural Networks (San
Diego, 1990), 1:545–550, 1990. Online: https://ieeexplore.ieee.org/
document/5726582.

[Koh95] T. Kohonen. Learning Vector Quantization. In M.A. Arbib, editor,
The Handbook of Brain Theory and Neural Networks., pages 537–540.
MIT Press, Cambridge, MA, 1995. Online: https://mitpress.mit.edu/
9780262511025/the-handbook-of-brain-theory-and-neural-networks/.

[Koh97] T. Kohonen. Self-Organizing Maps. Springer, Berlin, Germany, 1997.
Online: https://link.springer.com/book/10.1007/978-3-642-56927-2.

[KSV88] A.H. Kramer and A. Sangiovanni-Vincentelli. Efficient paral-
lel learning algorithms for neural networks. In Proceedings
of the 1st International Conference on Neural Information Pro-
cessing Systems, NIPS’88, pages 40–48, Cambridge, MA, USA,
1988. MIT Press. Online: https://papers.nips.cc/paper/1988/hash/
02522a2b2726fb0a03bb19f2d8d9524d-Abstract.html.

[KY97] T.-Y. Kwok and D.-Y. Yeung. Constructive algorithms for structure
learning in feedforward neural networks for regression problems. Neural
Networks, IEEE Transactions on, 8:630 – 645, 06 1997. Online: https:
//repository.ust.hk/ir/Record/1783.1-52.

[LB89] B.E. Lautrup and S. Brunak. Neural Networks: Computers with Intu-
ition. World Scientific, 1989. Online: https://www.worldscientific.com/
worldscibooks/10.1142/0878.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.5465
https://doi.org/10.1063/1.432909
https://iopscience.iop.org/article/10.1088/0305-4470/20/11/013
https://link.springer.com/article/10.1023/B:JOSS.0000015184.19421.03
https://christofkoch.com/biophysics-book/
https://ieeexplore.ieee.org/document/5726582
https://mitpress.mit.edu/9780262511025/the-handbook-of-brain-theory-and-neural-networks/
https://link.springer.com/book/10.1007/978-3-642-56927-2
https://papers.nips.cc/paper/1988/hash/02522a2b2726fb0a03bb19f2d8d9524d-Abstract.html
https://repository.ust.hk/ir/Record/1783.1-52
https://www.worldscientific.com/worldscibooks/10.1142/0878

BIBLIOGRAPHY 265

[LBD+89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation Applied to Handwritten Zip
Code Recognition. Neural Computation, 1(4):541–551, 12 1989. Online:
https://doi.org/10.1162/neco.1989.1.4.541.

[LBH18] Y. LeCun, Y. Bengio, and G. Hinton. Deep Learning. Nature,
521(7553):436–444, 2018. Online: https://www.nature.com/articles/
nature14539.

[LBV17] M. LeKander, M. Biehl, and H. de Vries. Empirical Evaluation of Gra-
dient Methods for Matrix Learning Vector Quantization. In Proc. 12th
Intl. Workshop on Self-Organizing Maps, Learning Vector Quantization
and Visualization (WSOM+), Nancy/France. IEEE Xplore, 2017. 8
pages. Online: https://ieeexplore.ieee.org/document/8020027.

[LDS90] Y. LeCun, J. Denker, and S.A. Solla. Optimal Brain Dam-
age. In D. Touretzky, editor, Advances in Neural Infor-
mation Processing Systems, volume 2, pages 598–605. Morgan-
Kaufmann, 1990. Online: https://proceedings.neurips.cc/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

[LG19] M. Lange-Geisler. Hebbian learning approaches based on general in-
ner products and distance measures in non-Euclidean spaces. PhD
thesis, University of Groningen, 2019. Online: https://pure.rug.nl/ws/
portalfiles/portal/77221420/Complete_thesis.pdf.

[LHC06] P. Li, T.J. Hastie, and K.W. Church. Very sparse random projections.
In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’06, pages 287–296, New
York, NY, USA, 2006. Association for Computing Machinery. Online:
https://doi.org/10.1145/1150402.1150436.

[Lic13] M. Lichman. UCI Machine Learning Repository, 2013. Online: https:
//archive.ics.uci.edu/ml,.

[Lit74] W.A. Little. The existence of persistent states in the brain. Mathemati-
cal Biosciences, 19(1):101–120, 1974. Online: https://www.sciencedirect.
com/science/article/pii/0025556474900315.

[Lit88] R.J.A. Little. A test of missing completely at random for multivari-
ate data with missing values. Journal of the American Statistical As-
sociation, 83(404):1198–1202, 1988. Online: https://doi.org/10.1080/
01621459.1988.10478722.

[LJ09] M. Lukoševičius and H. Jaeger. Reservoir computing approaches to
recurrent neural network training. Computer Science Review, 3(3):127–
149, 2009. Online: https://doi.org/10.1016/j.cosrev.2009.03.005.

[Llo82] S.P. Lloyd. Least square quantization in PCM. IEEE Transactions on
Information Theory, 28:29–137, 1982. First published in Bell Telephone
Laboratories Paper 1957. Online: https://cs.nyu.edu/~roweis/csc2515-
2006/readings/lloyd57.pdf.

[LLPS93] M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken. Multilayer
Feedforward Networks With a Nonpolynomial Activation Function
Can Approximate Any Function. Neural Networks, 6:861–867,
1993. Online: https://www.sciencedirect.com/science/article/abs/pii/
S0893608005801315.

https://doi.org/10.1162/neco.1989.1.4.541
https://www.nature.com/articles/nature14539
https://ieeexplore.ieee.org/document/8020027
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://pure.rug.nl/ws/portalfiles/portal/77221420/Complete_thesis.pdf
https://doi.org/10.1145/1150402.1150436
https://archive.ics.uci.edu/ml
https://www.sciencedirect.com/science/article/pii/0025556474900315
https://doi.org/10.1080/01621459.1988.10478722
https://doi.org/10.1016/j.cosrev.2009.03.005
https://cs.nyu.edu/~roweis/csc2515-2006/readings/lloyd57.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0893608005801315

266 BIBLIOGRAPHY

[LR02] R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data.
Wiley Series in Probability and Statistics. John Wiley & Sons, 2 edition,
2002. Online: https://doi.org/10.1002/9781119013563.

[LV07] J.A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction.
Springer, 2007. Online: https://link.springer.com/book/10.1007/978-0-
387-39351-3.

[LVM+20] M. Loog, T. Viering, A. Mey, J.H. Kreijthe, and D.M.J. Tax. A brief pre-
history of double descent. Proc. Natl. Acad. Sci. USA, 117(20):10625–
10626, 2020. Preprint: https://arxiv.org/abs/2004.04328.

[Mah36] P. Mahalanobis. On the generalised distance in statistics. Proc.
of the National Inst. of Sciences of India, 2:49–55, 1936. On-
line: http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/MiscDocs/
1936_Mahalanobis.pdf.

[Man69] O.L. Mangasarian. Nonlinear Programming. McGraw-Hill, New
York, 1969. Online: https://epubs.siam.org/doi/book/10.1137/1.
9781611971255.

[Mar18] G. Marcus. Deep learning: A critical appraisal. arXiv e-prints,
1801.00631, 2018. Preprint: https://arxiv.org/abs/1801.00631.

[MBS93] T. Martinetz, S. Berkovich, and K. Schulten. Neural Gas Network
for Vector Quantization and its Applications to Time-Series Predic-
tion. IEEE Trans. on Neural Networks, 4:558–569, 1993. Online:
https://ieeexplore.ieee.org/document/238311.

[MD89a] G.J. Mitchison and R.M. Durbin. Bounds on the learning capacity of
some multi-layer networks. Biological Cybernetics, 60:345–356, 1989.
Online: https://link.springer.com/article/10.1007/BF00204772.

[MD89b] J.E. Moody and C.J. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation, 1(2):281–294, 1989. Online:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.830.1813.

[MD09] R. Mabry and P. Deiermann. Of Cheese and Crust: A Proof of the
Pizza Conjecture and Other Tasty Results. The American Mathemat-
ical Monthly, 116(5):423–438, 2009. Online: https://www.cs.umd.edu/
~gasarch/BLOGPAPERS/pizza.pdf.

[Mea92] A. Mead. Review of the development of multidimensional scaling meth-
ods. Journal of the Royal Statistical Society, Series D (The Statistician),
41(1):27–39, 1992. Online: https://www.jstor.org/stable/2348634.

[Mer09] J. Mercer. Functions of positive and negative type, and their connection
with the theory of integral equations. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, 209(441-458):415–446, 1909. Online: https://
royalsocietypublishing.org/doi/abs/10.1098/rsta.1909.0016.

[MH08] L. van der Maaten and G Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 2008. Online: https://
www.jmlr.org/papers/v9/vandermaaten08a.html.

[MHM20] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approx-
imation and projection for dimension reduction. Journal of Open Source
Software, 3(29):861, 2020. Preprint: https://arxiv.org/abs/1802.03426.

https://doi.org/10.1002/9781119013563
https://link.springer.com/book/10.1007/978-0-387-39351-3
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/MiscDocs/1936_Mahalanobis.pdf
https://epubs.siam.org/doi/book/10.1137/1.9781611971255
https://arxiv.org/abs/1801.00631
https://ieeexplore.ieee.org/document/238311
https://link.springer.com/article/10.1007/BF00204772
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.830.1813
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/pizza.pdf
https://www.jstor.org/stable/2348634
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1909.0016
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426

BIBLIOGRAPHY 267

[MM92] H.N. Mhaskar and C.A. Micchelli. Approximation by Superposition
of Sigmoidal and Radial Basis Functions. Adv. in Appl. Mathemat-
ics, 13:350–373, 1992. Online: https://www.sciencedirect.com/science/
article/pii/019688589290016P.

[MN89] M. Mezard and J.-P. Nadal. Learning in feedforward layered networks:
the tiling algorithm. J. of Physics A: Math. Gen., 22(12):2191–2203,
1989. Online: https://www.researchgate.net/publication/230980679.

[MP29] R. von Mises and H. Pollaczek-Geiringer. Praktische Verfahren der Gle-
ichungsauflösung. ZAMM - Zeitschrift für Angewandte Mathematik und
Mechanik, 9:152–164, 1929. Online: https://onlinelibrary.wiley.com/doi/
abs/10.1002/zamm.19290090206.

[MP69] M. Minsky and S. Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Cambridge, MA, USA,
1969. Online: https://direct.mit.edu/books/book/3132/PerceptronsAn-
Introduction-to-Computational.

[MPCB14] G. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the Number of
Linear Regions of Deep Neural Networks. In Z. Ghahramani, M. Welling,
C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Adv. in Neural
Information Processing Systems. Proc. NIPS (2014), volume 27, pages
2924–2932. Curran Associates Inc., 2014. Preprint: https://arxiv.org/
abs/1402.1869.

[MPH09] L. van der Maaten, E. Postma, and J. van den Herik. Dimen-
sionality reduction: a comparative review. page 13, 2009. Online:
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_
Reduction_Review_2009.pdf.

[MSK19] A. Monreal Ibero, J. Sánchez Almeida, and J. Knapen, editors. Canary
Islands Winter School of Astrophysics: Big Data Analysis in Astronomy.
Instituo de Astrofisica de Canarias, Tenerife/Spain, 2019. E-book: http:
//research.iac.es/winterschool/2018/pages/book-ws2018.php.

[MSS+11] E. Mwebaze, P. Schneider, F.-M. Schleif, J. R. Aduwo, J. A. Quinn,
S. Haase, T. Villmann, and M. Biehl. Divergence based classification and
Learning Vector Quantization. Neurocomputing, 74:1429–1435, 2011.
Online: https://pure.rug.nl/ws/files/2489124/2011NeurocompMwebaze.
pdf.

[MSV89] S. Makram-Ebeid, J.-A. Sirat, and J.-R. Viala. A Rationalized Back-
Propagation Learning Algorithm. In International Joint Conference
on Neural Networks, volume 2, pages 373–380. IEEE, New York, 1989.
Online: https://ieeexplore.ieee.org/document/118725.

[Mur22] K.M. Murphy. Probabilistic Machine Learning: An Introduction. MIT
Press, 2022. Online: https://probml.github.io/pml-book/book1.html.

[Mwe14] E. Mwebaze. Divergences for prototype-based classification and causal
structure discovery: Theory and application to natural datasets. PhD
thesis, University of Groningen, 2014. Online: https://hdl.handle.net/
11370/7c4e0ebf-76cf-4f64-aeec-7096aa919559.

[MZ95] R. Monasson and R. Zecchina. Learning and generalization theories of
large committee-machines. Modern Physics Letters B, 9(30):887–897,
1995. Preprint: https://www.phys.ens.fr/~monasson/Articles/a15.pdf.

https://www.sciencedirect.com/science/article/pii/019688589290016P
https://www.researchgate.net/publication/230980679
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19290090206
https://direct.mit.edu/books/book/3132/PerceptronsAn-Introduction-to-Computational
https://arxiv.org/abs/1402.1869
https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf
http://research.iac.es/winterschool/2018/pages/book-ws2018.php
https://pure.rug.nl/ws/files/2489124/2011NeurocompMwebaze.pdf
https://ieeexplore.ieee.org/document/118725
https://probml.github.io/pml-book/book1.html
https://hdl.handle.net/11370/7c4e0ebf-76cf-4f64-aeec-7096aa919559
https://www.phys.ens.fr/~monasson/Articles/a15.pdf

268 BIBLIOGRAPHY

[ND91] D. Nabutovsky and E. Domany. Learning the unlearnable. Neural Com-
putation, 3(4):604–616, 1991. Online: https://doi.org/10.1162/neco.
1991.3.4.604.

[NE14] D. Nova and P.A. Estévez. A review of Learning Vector Quantization
classifiers. Neural Computing and Applications, 25(3-4):511–524, 2014.
Preprint: https://arxiv.org/abs/1509.07093.

[Neu02] Neural Networks Research Centre, Helsinki. Bibliography on the Self-
Organizing Maps (SOM) and Learning Vector Quantization (LVQ).
Otaniemi: Helsinki Univ. of Technology, 2002. Repository: https:
//liinwww.ira.uka.de/bibliography/Neural/{SOM.LVQ}.html.

[NH92a] S. Nowlan and G.E. Hinton. Adaptive soft weight tying using gaussian
mixtures. In J. Moody, S. Hanson, and R. P. Lippmann, editors, Ad-
vances in Neural Information Processing Systems, volume 4, pages 993–
1000. Morgan-Kaufmann, 1992. Online: https://proceedings.neurips.cc/
paper/1991/file/05f971b5ec196b8c65b75d2ef8267331-Paper.pdf.

[NH92b] S.J. Nowlan and G.E. Hinton. Simplifying neural networks by soft
weight-sharing. Neural Computation, 4(4):473–493, 1992. Online:
https://doi.org/10.1162/neco.1992.4.4.473.

[NH10] V. Nair and G.E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proc. of ICML 2010, pages 807–814, Madison, WI,
USA, 2010. Omnipress. Preprint: https://www.cs.toronto.edu/~fritz/
absps/reluICML.pdf.

[Nik17] E. Nikolaychuk. Dogs, wolves, data science, and why machines must
learn like humans do, 2017. Online: https://hackernoon.com/dogs-
wolves-data-science-and-why-machines-must-learn-like-humans-do-
41c43bc7f982.

[NMB+18] B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-
Julien, and I. Migliagkas. A modern take on the bias-variance tradeoff
in neural networks. arxiv e-prints, 1810.08591, 2018. Preprint: https:
//arxiv.org/abs/1810.08591.

[NWB18] A. Nolte, L. Wang, and M. Biehl. Prototype-based analysis of GAMA
galaxy catalogue data. In M. Verleysen, editor, 26th European Sym-
posium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, ESANN 2018, pages 339–344. i6doc.com, 2018. On-
line: https://pure.rug.nl/ws/files/58483665/ESANN2018_115.pdf.

[NWB+19] A. Nolte, L. Wang, M. Bilicki, B. Holwerda, and M. Biehl. Galaxy
classification: A machine learning analysis of GAMA catalogue data.
Neurocomputing, 342:172–190, 2019. Preprint: https://arxiv.org/abs/
1903.07749.

[OB21] J. Opitz and S. Burst. Macro F1 and Macro F1. arXiv eprints,
1911.03347, 2021. Online: https://arxiv.org/abs/1911.03347.

[OH91] M. Opper and D. Haussler. Generalization performance of Bayes op-
timal classification algorithm for learning a perceptron. Phys. Rev.
Lett., 66:2677–2680, 1991. Online: https://journals.aps.org/prl/abstract/
10.1103/PhysRevLett.66.2677.

https://doi.org/10.1162/neco.1991.3.4.604
https://arxiv.org/abs/1509.07093
https://proceedings.neurips.cc/paper/1991/file/05f971b5ec196b8c65b75d2ef8267331-Paper.pdf
https://doi.org/10.1162/neco.1992.4.4.473
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://hackernoon.com/dogs-wolves-data-science-and-why-machines-must-learn-like-humans-do-41c43bc7f982
https://arxiv.org/abs/1810.08591
https://pure.rug.nl/ws/files/58483665/ESANN2018_115.pdf
https://arxiv.org/abs/1903.07749
https://arxiv.org/abs/1911.03347
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.66.2677

BIBLIOGRAPHY 269

[Oja82] E. Oja. Simplified neuron model as a principal component analyzer.
J. Math. Biology, 15:267–273, 1982. Online: https://doi.org/10.1007/
BF00275687.

[Oja89] E. Oja. Neural Networks, Principal Components, and Subspaces.
International Journal of Neural Systems, 1(1):61–68, 1989. Online:
https://www.worldscientific.com/doi/abs/10.1142/S0129065789000475.

[OKKN90] M. Opper, W. Kinzel, J. Kleinz, and R. Nehl. On the abil-
ity of the optimal perceptron to generalise. J. of Physics A:
Math. and Gen., 23(11):L581–L586, 1990. Online: https://www.
semanticscholar.org/paper/On-the-ability-of-the-optimal-perceptron-to-
Opper-Kinzel/b2e7dc93f6827606e153219b5767d74ecbc5bded.

[Ola96] M. Olazaran. A sociological study of the official history of the perceptron
controversy. Social Studies of Science, 26:611–659, 1996. Online: https:
//journals.sagepub.com/doi/10.1177/030631296026003005.

[OLLB20] J. Ott, E. Linstead, N. LaHaye, and P. Baldi. Learning in the machine:
To share or not to share? Neural Networks, 126:235–249, 2020. Online:
https://doi.org/10.1016/j.neunet.2020.03.016.

[OM99] D. Opitz and R. Maclin. Popular ensemble methods: an empirical study.
J. of Artificial Intelligence Research, 11:169–198, 1999. Preprint: https:
//arxiv.org/abs/1106.0257.

[Opp90] M. Opper, 1990. private communication.
[Opp94] M. Opper. Learning and generalization in a two-layer neural network:

The role of the Vapnik-Chervonvenkis dimension. Phys. Rev. Lett.,
72:2113–16, 1994. Online: https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.72.2113.

[OSB20] E. Oostwal, M. Straat, and M. Biehl. Hidden unit specialization in
layered neural networks: ReLU vs. sigmoidal activation. Physica A:
Statistical Mechanics and its Applications, 564:125517, 2020. Preprint:
https://arxiv.org/abs/1910.07476.

[PAH19] B. Paassen, A. Artelt, and B. Hammer. Lecture Notes on Applied Opti-
mization. Bielefeld University, Germany, 2019. Online: https://pub.uni-
bielefeld.de/record/2935200.

[PBB11] G. Papari, K. Bunte, and M. Biehl. Waypoint averaging and step size
control in learning by gradient descent. In F.-M. Schleif and T. Vill-
mann, editors, Proc. Mittweida Workshop on Computational Intelligence
MIWOCI 2011, Machine Learning Reports MLR-2011-06, pages 16–26.
Bielefeld University, Germany, 2011. Online: https://www.techfak.uni-
bielefeld.de/~fschleif/mlr/mlr_06_2011.pdf#page=17.

[PBG+94] A. Priel, M. Blatt, T. Grossmann, E. Domany, and I. Kanter. Com-
putational capabilities of restricted two-layered perceptrons. Phys.
Rev. E, 50:577–595, Jul 1994. Online: https://link.aps.org/doi/10.1103/
PhysRevE.50.577.

[PHL96] M. Pedersen, L. Hansen, and J. Larsen. Pruning with generalization
based weight saliencies: γOBD, γOBS. In D. Touretzky, M. C. Mozer,
and M. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8, pages 521–527. MIT Press, 1996. Online: https:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.3425.

https://doi.org/10.1007/BF00275687
https://www.worldscientific.com/doi/abs/10.1142/S0129065789000475
https://www.semanticscholar.org/paper/On-the-ability-of-the-optimal-perceptron-to-Opper-Kinzel/b2e7dc93f6827606e153219b5767d74ecbc5bded
https://journals.sagepub.com/doi/10.1177/030631296026003005
https://doi.org/10.1016/j.neunet.2020.03.016
https://arxiv.org/abs/1106.0257
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.72.2113
https://arxiv.org/abs/1910.07476
https://pub.uni-bielefeld.de/record/2935200
https://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_06_2011.pdf#page=17
https://link.aps.org/doi/10.1103/PhysRevE.50.577
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.3425

270 BIBLIOGRAPHY

[PJ92] B.T. Polyak and A.B. Juditsky. Acceleration of stochastic approxima-
tion by averaging. SIAM J. Control Optim., 30(4):838–855, 1992. On-
line: https://www.researchgate.net/publication/236736831.

[PJS17] J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference:
Foundations and Learning Algorithms. MIT Press, Cambridge, MA,
2017. Online: https://mitpress.mit.edu/books/elements-causal-inference.

[Pla98] J.C. Platt. Sequential minimal optimization: A fast algorithm for train-
ing support vector machines. Technical report, MSR-TR-98-14, Mi-
crosoft Research, 1998. Online: https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.43.4376.

[PMB14] R. Pascanu, G. Montufar, and J. Bengio. On the number of response
regions of deep feedforward networks with piecewise linear activations.
In Second International Conference on Learning Representations - ICLR
2014. ICLR, Banff, 2014. Preprint: https://arxiv.org/abs/1312.6098.

[PNH86] D. Plaut, S. Nowlan, and G. Hinton. Experiments on learning by back
propagation. Technical report, CMU-CS-86-126, Dept. of Comp. Sci-
ence, Carnegie Mellon University, 1986. Online: https://ni.cmu.edu/
~plaut/papers/pdf/PlautNowlanHinton86TR.backprop.pdf.

[PP12] K.B. Petersen and M.S. Pedersen. The Matrix Cookbook, 2012. Version
20121115, Online: https://www2.imm.dtu.dk/pubdb/p.php?3274,.

[Pre97] L. Prechelt. Early Stopping – But When? In Montavon, G. and
Orr, G.B. and Müller, K.R., editor, Neural Networks: Tricks of the
Trade, volume 7700 of Lecture Notes in Computer Science, pages 53–67.
Springer, Heidelberg, 1997. Online: https://link.springer.com/chapter/
10.1007/978-3-642-35289-8_5.

[Pre98] L. Prechelt. Automatic early stopping using cross validation: quanti-
fying the criteria. Neural networks : the official journal of the Inter-
national Neural Network Society, 11(4):761–767, 1998. Online: https:
//www.sciencedirect.com/science/article/abs/pii/S0893608098000100.

[Pre21] K. Pretz. Stop Calling Everything AI, Machine Learning Pioneer Says.
IEEE Spectrum, March 2021. Online: https://spectrum.ieee.org/stop-
calling-everything-ai-machinelearning-pioneer-says.

[QRK+05] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant
visual representation by single neurons in the human brain. Nature,
435:1102–1107, 2005. Online: https://www.researchgate.net/publication/
7770938.

[Ras18] S. Raschka. Model evaluation, model selection, and algorithm selection
in machine learning. CoRR, abs/1811.12808, 2018. Preprint: https:
//arxiv.org/abs/1811.12808.

[RBS19] I. Reis, D. Baron, and S. Shahaf. Probabilistic Random Forest: a ma-
chine learning algorithm for noisy data sets. The Astronomical Journal,
157(16), 2019. Online: https://iopscience.iop.org/article/10.3847/1538-
3881/aaf101.

[Ree93] R. Reed. Pruning algorithms - a survey. IEEE Trans. on Neural
Networks, 4:740–747, 1993. Online: https://axon.cs.byu.edu/~martinez/
classes/678/Papers/Reed_PruningSurvey.pdf.

https://www.researchgate.net/publication/236736831
https://mitpress.mit.edu/books/elements-causal-inference
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.4376
https://arxiv.org/abs/1312.6098
https://ni.cmu.edu/~plaut/papers/pdf/PlautNowlanHinton86TR.backprop.pdf
https://www2.imm.dtu.dk/pubdb/p.php?3274
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_5
https://www.sciencedirect.com/science/article/abs/pii/S0893608098000100
https://spectrum.ieee.org/stop-calling-everything-ai-machinelearning-pioneer-says
https://www.researchgate.net/publication/7770938
https://arxiv.org/abs/1811.12808
https://iopscience.iop.org/article/10.3847/1538-3881/aaf101
https://axon.cs.byu.edu/~martinez/classes/678/Papers/Reed_PruningSurvey.pdf

BIBLIOGRAPHY 271

[RHW86] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning represen-
tations by back-propagating errors. Nature, 323:533–536, 1986. Online:
https://www.nature.com/articles/323533a0.

[RKSV20] J. Ravichandran, M. Kaden, S. Saralajew, and T. Villmann. Variants
of dropconnect in learning vector quantization networks for evaluation
of classification stability. Neurocomputing, 403:121–132, 2020. Online:
https://www.sciencedirect.com/science/article/pii/S0925231220305014.

[RM51] H. Robbins and S. Monro. A stochastic approximation method. The
Ann. of Mathematical Statistics, 22:405, 1951. Online: http://www.
columbia.edu/~ww2040/8100F16/RM51.pdf.

[RM86] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Processing.
Explorations in the Microstructure of Cognition. MIT Press, Cambridge,
MA, 1986. Online: https://ieeexplore.ieee.org/book/6276825.

[RMBJ21] S. Rezaei, J.P. McKean, M. Biehl, and A. Javadpour. DECORAS: detec-
tion and characterization of radio-astronomical sources using deep learn-
ing. Monthly Notices of the Royal Astronomical Society, 510(4):5891–
5907, 12 2021. Online: https://academic.oup.com/mnras/article-pdf/
510/4/5891/42297317/stab3519.pdf.

[RMS92] H. Ritter, T. Martinetz, and K. Schulten. Neural Computation
and Self-Organizing Maps. Addison-Wesley, New York, NY, USA,
1992. Google books: https://books.google.nl/books/about/Neural_
Computation_and_Self_organizing_M.html?id=x1NjtAEACAAJ.

[Roj96] P. Rojas. Neural Networks - A Systematic Introduction. Springer, Berlin,
Germany, 1996. Online: https://page.mi.fu-berlin.de/rojas/neural/.

[Roj03] R. Rojas. Networks of width one are universal classifiers. In Proc. of
the International Joint Conference on Neural Networks, volume 4, pages
3124–3127, 2003. Online: https://ieeexplore.ieee.org/document/1224071.

[Roj17] P. Rojas. Deepest Neural Networks. arXiv:1707.02617v1, 2017. 9 pages.
Preprint: https://arxiv.org/abs/1707.02617.

[Ros58] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. Psychological Review, pages 65–
386, 1958. Online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.335.3398.

[Ros61] F. Rosenblatt. Principles of Neurodynamics. Perceptrons and the The-
ory of Brain Mechanisms. Cornell Aeronautical Laboratory Inc., Buf-
falo, NY, USA, 1961. Online: https://safari.ethz.ch/digitaltechnik/
spring2018/lib/exe/fetch.php?media=neurodynamics1962rosenblatt.pdf.

[Ros16] M. van Rossum. Neural Computation. Univ. of Edinburgh, UK, 2016.
Online: https://www.inf.ed.ac.uk/teaching/courses/nc/ln_all.pdf.

[RS00] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by local
linear embedding. Science, 290(5500):2323–2326, 2000. Online: https:
//www.science.org/doi/10.1126/science.290.5500.2323.

[RSG16] M.T. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?”:
Explaining the Predictions of Any Classifier. In Proc. of the 22nd ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, KDD

https://www.nature.com/articles/323533a0
https://www.sciencedirect.com/science/article/pii/S0925231220305014
http://www.columbia.edu/~ww2040/8100F16/RM51.pdf
https://ieeexplore.ieee.org/book/6276825
https://academic.oup.com/mnras/article-pdf/510/4/5891/42297317/stab3519.pdf
https://books.google.nl/books/about/Neural_Computation_and_Self_organizing_M.html?id=x1NjtAEACAAJ
https://page.mi.fu-berlin.de/rojas/neural/
https://ieeexplore.ieee.org/document/1224071
https://arxiv.org/abs/1707.02617
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=neurodynamics1962rosenblatt.pdf
https://www.inf.ed.ac.uk/teaching/courses/nc/ln_all.pdf
https://www.science.org/doi/10.1126/science.290.5500.2323

272 BIBLIOGRAPHY

’16, pages 1135–1144, New York, NY, USA, 2016. Association for Com-
puting Machinery. Online: https://www.kdd.org/kdd2016/papers/files/
rfp0573-ribeiroA.pdf.

[Ruj93] P. Ruján. A fast method for calculating the perceptron with maximal
stability. J. de Physique I, 3(2):277–290, 1993. Online: https://hal.
archives-ouvertes.fr/file/index/docid/246719/filename/ajp-jp1v3p277.pdf.

[Ruj97] P. Ruján. Playing billiards in version space. Neural Computation,
9(1):99–122, 1997. Online: https://doi.org/10.1162/neco.1997.9.1.99.

[Rup88] D. Ruppert. Efficient estimations from a slowly convergent Robbins-
Monro process, 1988. Technical Report, Cornell University Operations
Research and Industrial Engineering. Online: https://www.researchgate.
net/publication/246031929.

[Saa99] D. Saad, editor. Online learning in neural networks. Cam-
bridge University Press, Cambridge, UK, 1999. Online:
https://www.cambridge.org/core/books/online-learning-in-neural-
networks/7D901F98C2A4F1CF69648FDAEF6877CD#.

[Sam69] J. W. Sammon. A nonlinear mapping for data structure analysis.
IEEE Transactions on Computers, C-18(5):401–409, 1969. Online:
http://syllabus.cs.manchester.ac.uk/pgt/2017/COMP61021/reference/
Sammon.pdf.

[San89] T.D. Sanger. Optimal unsupervised learning in a single-layer linear feed-
forward neural network. Neural Networks, 2(6):459–473, 1989. Online:
https://www.sciencedirect.com/science/article/pii/0893608089900440.

[SBH09] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices
in Learning Vector Quantization. Neural Comput., 21:3532–3561, 2009.
Preprint: https://www.cs.rug.nl/biehl/Preprints/mlmatrix.pdf.

[SBS+10] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and
M. Biehl. Regularization in matrix relevance learning. Neural Networks,
IEEE Transactions on, 21(5):831–840, 2010. Online: https://research.
rug.nl/en/publications/regularization-in-matrix-relevance-learning.

[SC10] S.K. Sharma and P. Chandra. Constructive Neural Networks: A Review.
Intl. J. of Engineering Science and Technology, 2(12):7847–7855, 2010.
Online: https://www.researchgate.net/publication/50384469.

[Sch01] L. Schläfli. Theorie der vielfachen Kontinuitat. Zürcher & Furrer,
Zürich, Switzerland, 1901. Reprint: https://babel.hathitrust.org/cgi/ssd?
id=coo.31924059156582.

[Sch93] C. Schaffer. Overfitting avoidance as bias. Machine Learning,
10:153–178, 1993. Online: https://link.springer.com/article/10.1023/A:
1022653209073.

[Sch01] B. Schölkopf. The kernel trick for distances. In Proc. Adv.
in neural information processing systems, pages 301–307,
2001. Online: https://proceedings.neurips.cc/paper/2000/file/
4e87337f366f72daa424dae11df0538c-Paper.pdf.

[Sch10] P. Schneider. Advanced methods for prototype-based classification. PhD
thesis, University of Groningen, 2010. Online: https://www.rug.nl/
research/portal/files/14618216/thesis.pdf.

https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf
https://hal.archives-ouvertes.fr/file/index/docid/246719/filename/ajp-jp1v3p277.pdf
https://doi.org/10.1162/neco.1997.9.1.99
https://www.researchgate.net/publication/246031929
https://www.cambridge.org/core/books/online-learning-in-neural-networks/7D901F98C2A4F1CF69648FDAEF6877CD#
http://syllabus.cs.manchester.ac.uk/pgt/2017/COMP61021/reference/Sammon.pdf
https://www.sciencedirect.com/science/article/pii/0893608089900440
https://www.cs.rug.nl/biehl/Preprints/mlmatrix.pdf
https://research.rug.nl/en/publications/regularization-in-matrix-relevance-learning
https://www.researchgate.net/publication/50384469
https://babel.hathitrust.org/cgi/ssd?id=coo.31924059156582
https://link.springer.com/article/10.1023/A:1022653209073
https://proceedings.neurips.cc/paper/2000/file/4e87337f366f72daa424dae11df0538c-Paper.pdf
https://www.rug.nl/research/portal/files/14618216/thesis.pdf

BIBLIOGRAPHY 273

[Sch15] J. Schmidhuber. Deep learning in neural networks: an overview. Neural
Networks, 61:85–117, 2015. Preprint: https://arxiv.org/abs/1404.7828.

[Sej20] T.J. Sejnowski. The unreasonable effectiveness of deep learning in ar-
tificial intelligence. Proc. National Academy of Sciences of the Unit-
ede States of America (PNAS), 117(48):30033–30038, 2020. Preprint:
https://arxiv.org/abs/2002.04806.

[SH93] H. Schwarze and J. Hertz. Generalization in fully connected committee
machines. Europhysics Letters, 21(7):785–790, 1993. Online: https:
//iopscience.iop.org/article/10.1209/0295-5075/21/7/012.

[SHH20] A. Schulz, F. Hinder, and B. Hammer. Deepview: Visualizing classi-
fication boundaries of deep neural networks as scatter plots using dis-
criminative dimensionality reduction. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence,{IJCAI-
20}, 2020. Preprint: https://arxiv.org/abs/1909.09154,.

[SHK+14] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(56):1929–
1958, 2014. Online: https://jmlr.org/papers/v15/srivastava14a.html.

[SHRV18] S. Saralajew, L. Holdijk, M. Rees, and T. Villmann. Prototype-
based neural network layers: Incorporating vector quantization. CoRR,
abs/1812.01214, 2018. Online: https://arxiv.org/abs/1812.01214.

[SK99] P. Sommervuo and T. Kohonen. Self-organizing maps and learning
vector quantization for feature sequences. Neural Processing Letters,
10(2):151–159, 1999. Online: http://cis.legacy.ics.tkk.fi/panus/papers/
dtwsom.pdf.

[SK19] C. Shorten and T.M. Khoshgoftaar. A survey on Image Data Aug-
mentation for Deep Learning. J. of Big Data, 6:60, 2019. Online:
https://doi.org/10.1186/s40537-019-0197-0.

[SL92] J. Sjöberg and L. Ljung. Overtraining, regularization, and searching for
minimum in neural networks. IFAC Proceedings Volumes, 25(14):73–78,
1992. Preprint: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.51.298&rep=rep1&type=pdf.

[SL09] M. Sokolova and G. Lapalme. A systematic analysis of performance
measures for classification tasks. Inf. Process. Manage., 45(4):427–437,
2009. Online: https://www.researchgate.net/publication/222674734.

[SLF88] S.A. Solla, E. Levin, and M. Fleisher. Accelerated learning in layered
neural networks. Complex Systems, 2:625–640, 1988. Online: https:
//www.researchgate.net/publication/239033363.

[SM15] S. Sonoda and N. Murata. Neural network with unbounded activa-
tion functions is universal approximator. Appl. and Computational Har-
monic Analysis, 43(2):233–268, 2015. Preprint: https://arxiv.org/abs/
1505.03654.

[SNW11] S. Sra, S. Nowozin, and S. Wright, editors. Optimization for machine
learning. MIT Press, Cambridge, MA, 2011. Online: https://mitpress.
mit.edu/books/optimization-machine-learning.

https://arxiv.org/abs/1404.7828
https://arxiv.org/abs/2002.04806
https://iopscience.iop.org/article/10.1209/0295-5075/21/7/012
https://arxiv.org/abs/1909.09154
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1812.01214
http://cis.legacy.ics.tkk.fi/panus/papers/dtwsom.pdf
https://doi.org/10.1186/s40537-019-0197-0
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.298&rep=rep1&type=pdf
https://www.researchgate.net/publication/222674734
https://www.researchgate.net/publication/239033363
https://arxiv.org/abs/1505.03654
https://mitpress.mit.edu/books/optimization-machine-learning

274 BIBLIOGRAPHY

[SO03] S. Seo and K. Obermayer. Soft Learning Vector Quantization. Neural
Computation, 15:1589–1604, 2003. Online: https://www.researchgate.
net/publication/10698895_Soft_Learning_Vector_Quantization.

[SR98] D. Saad and M. Rattray. Learning with regularizers in
multilayer neural networks. Physical Review E, 57(2):2170–
2176, 1998. Online: https://proceedings.neurips.cc/paper/1996/file/
e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf.

[SS02] B. Schölkopf and AJ. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge, MA, USA,
2002. Online: https://mitpress.mit.edu/books/learning-kernels.

[SSM98] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear Component Anal-
ysis as a Kernel Eigenvalue Problem. Neural Computation, 10(5):1299–
1319, 1998. Online: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.100.3636.

[STC04] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, Cambridge, UK, 2004. Online:
https://doi.org/10.1017/CBO9780511809682.

[Sto04] J.V. Stone. Independent Component Analysis : a tutorial introduc-
tion. MIT Press, 2004. Online: https://direct.mit.edu/books/book/
2325/Independent-Component-AnalysisA-Tutorial.

[Str19] G. Strang. Linear Algebra and Learning from Data. Wellesley-
Cambridge Press, Wellesley, MA, 2019. Online: https://math.mit.edu/
~gs/learningfromdata/.

[STW11] Y. Shao, G.N. Taff, and S.J. Walsh. Comparison of early stopping
criteria for neural-network-based subpixel classification. IEEE Geo-
science and Remote Sensing Letters, 8(1):113–117, 2011. Online: https:
//ieeexplore.ieee.org/document/5530351.

[SVC07] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview
of reservoir computing: theory, applications, and implementations. In
M. Verleysen, editor, Proceedings of the European Symposium on Arti-
ficial Neural Networks ESANN 2007, pages 471–482. d-side publishing,
2007. Online: https://www.researchgate.net/publication/221166209.

[SVG+18] S. Sardi, R. Vardi, A. Goldental, Y. Tugendhaft, H. Uzan, and I. Kanter.
Dendritic learning as a paradigm shift in brain learning. ACS Chemical
Neuroscience, 9(6):1230–1232, 2018. Online: https://doi.org/10.1021/
acschemneuro.8b00204.

[svm99] svm.org. Support Vector Machines, 1999. Online repository: https:
//www.svms.org.

[SY95] A.S. Sato and K. Yamada. Generalized Learning Vector Quanti-
zation. In G. Tesauro, D. Touretzky, and T. Leen, editors, Ad-
vances in Neural Information Processing Systems, volume 7, pages
423–429, 1995. Online: https://proceedings.neurips.cc/paper/1995/file/
9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf.

https://www.researchgate.net/publication/10698895_Soft_Learning_Vector_Quantization
https://proceedings.neurips.cc/paper/1996/file/e1d5be1c7f2f456670de3d53c7b54f4a-Paper.pdf
https://mitpress.mit.edu/books/learning-kernels
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.3636
https://direct.mit.edu/books/book/2325/Independent-Component-AnalysisA-Tutorial
https://math.mit.edu/~gs/learningfromdata/
https://ieeexplore.ieee.org/document/5530351
https://www.researchgate.net/publication/221166209
https://doi.org/10.1021/acschemneuro.8b00204
https://www.svms.org
https://proceedings.neurips.cc/paper/1995/file/9c3b1830513cc3b8fc4b76635d32e692-Paper.pdf

BIBLIOGRAPHY 275

[SY98] A.S. Sato and K. Yamada. An analysis of convergence in Generalized
LVQ. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Interna-
tional Conference on Artificial Neural Networks, ICANN’98, pages 172–
176. Springer, Berlin, 1998. Online: https://link.springer.com/chapter/
10.1007/978-1-4471-1599-1_22.

[TdSL00] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319–
2323, 2000. https://www.science.org/doi/10.1126/science.290.5500.2319.

[Tes21] H. Tessier. Neural Network Pruning 101 – All you need to know to
get lost, 2021. Online: https://towardsdatascience.com/neural-network-
pruning-101-af816aaea61.

[Tho53] Robert L. Thorndike. Who belongs in the family? Psychometrika, 18(4),
1953. Online: https://link.springer.com/article/10.1007/bf02289263.

[Tou12] M. Toussaint. Lecture Notes: some notes on gradient descent, 2012. On-
line: https://www.user.tu-berlin.de/mtoussai/notes/gradientDescent.pdf.

[TWH02] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number
of clusters in a data set via the gap statistics. J. Royal Statisti-
cal Society, Statistical Methodology, Series B, 63(2), 2002. Online:
https://rss.onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293.

[UMW17] K. Ullrich, E. Meeds, and M. Welling. Soft weight-sharing for neural
network compression. In 5th International Conference on Learning Rep-
resentations (ICLR), 2017. Preprint: https://arxiv.org/abs/1702.04008.

[Urb97] R. Urbanczik. Storage capacity of the fully-connected committee ma-
chine. Journal of Physics A: Math. and Gen., 30(11):L387–L392,
1997. Online: https://iopscience.iop.org/article/10.1088/0305-4470/30/
11/007.

[Urb00] R. Urbanczik. Online Learning with Ensembles. Physical Review
E, 62(1):1448–1451, 2000. Preprint: https://arxiv.org/pdf/cond-mat/
9907487.pdf.

[VBVS17] T. Villmann, M. Biehl, A. Villmann, and S. Sarajalew. Fu-
sion of deep learning architectures, multilayer feedforward net-
works and Learning Vector Quantizers for deep classification learn-
ing. In Proc. 12th Workshop on Self-Organizing Maps and Learn-
ing Vector Quantization (WSOM+), pages 248–255. IEEE Press,
2017. Online: https://pure.rug.nl/ws/files/47382763/Fusion_of_Deep_
Learning_Architectures_Multilayer.pdf.

[Vie23] T. Viering. On Safety in Machine Learning. PhD thesis, Technical Uni-
versity Delft, 2023. Online: https://research.tudelft.nl/en/publications/
on-safety-in-machine-learning.

[VKHB16] T. Villmann, M. Kaden, W. Herrmann, and M. Biehl. Learning Vector
Quantization classifiers for ROC-optimization. Computational Statis-
tics, 2016. Online: https://research.rug.nl/en/publications/learning-
vector-quantization-classifiers-for-roc-optimization.

[VKNR12] T. Villmann, M. Kästner, D. Nebel, and M. Riedel. ICMLA face recog-
nition challenge – results of the team ’Computational Intelligence Mit-
tweida’. In Proc. of the International Conference on Machine Learning

https://link.springer.com/chapter/10.1007/978-1-4471-1599-1_22
https://www.science.org/doi/10.1126/science.290.5500.2319
https://towardsdatascience.com/neural-network-pruning-101-af816aaea61
https://link.springer.com/article/10.1007/bf02289263
https://www.user.tu-berlin.de/mtoussai/notes/gradientDescent.pdf
https://rss.onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293
https://arxiv.org/abs/1702.04008
https://iopscience.iop.org/article/10.1088/0305-4470/30/11/007
https://arxiv.org/pdf/cond-mat/9907487.pdf
https://pure.rug.nl/ws/files/47382763/Fusion_of_Deep_Learning_Architectures_Multilayer.pdf
https://research.tudelft.nl/en/publications/on-safety-in-machine-learning
https://research.rug.nl/en/publications/learning-vector-quantization-classifiers-for-roc-optimization

276 BIBLIOGRAPHY

Applications (ICMLA), pages 7–10. IEEE, New York, NY, 2012. Online:
https://ieeexplore.ieee.org/document/6406802.

[VL63] V.N. Vapnik and A.Y. Lerner. Recognition of patterns with help of
generalized portraits. Avtomat. i Telemekh., 24(6):774–780, 1963. On-
line: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=
at&paperid=11885&option_lang=eng.

[VMC16] H. de Vries, R. Memisevic, and A. Courville. Deep Learning Vec-
tor Quantization. In M. Verleysen, editor, Proc. Europ. Symp.
on Artificial Neural Networks (ESANN), pages 503–508. i6doc.com,
2016. Online: https://www.esann.org/sites/default/files/proceedings/
legacy/es2016-112.pdf.

[VMGL12] A. Vellido, J.D. Martín-Guerro, and P. Lisboa. Making machine learn-
ing models interpretable. In M. Verleysen, editor, Proc. of the Euro-
pean Symposium on Artificial Neural Networks (ESANN 2012), pages
163–172. d-side, 2012. Online: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.431.5382&rep=rep1&type=pdf.

[VRV+20] T. Villmann, J. Ravichandran, A. Villmann, D. Nebel, and M. Kaden.
Investigation of activation functions for generalized learning vec-
tor quantization. In A. Vellido, K. Gibert, C. Angulo, and J.D.
Martín Guerrero, editors, Advances in Self-Organizing Maps, Learn-
ing Vector Quantization, Clustering and Data Visualization, pages 179–
188, Cham, 2020. Springer International Publishing. Online: https:
//www.researchgate.net/publication/332719447.

[VWB21] R.J. Veen, F. Westerman, and M. Biehl. A no-nonsense beginner’s
toolbox for GMLVQ, Version v3.1, 2021. Online: https://www.cs.rug.
nl/~biehl/gmlvq.

[Wat93] T.L.H. Watkin. Optimal Learning with a Neural Network. Europhys.
Lett., 21(8):871–876, 1993. Online: https://iopscience.iop.org/article/10.
1209/0295-5075/21/8/013.

[WBJH18] M. van der Wilk, M. Bauer, S.T. John, and J. Hensman. Learning
invariances using the marginal likelihood. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. Online: https://proceedings.neurips.cc/paper/
2018/file/d465f14a648b3d0a1faa6f447e526c60-Paper.pdf.

[Wei99] E.W. Weisstein. Cake Number, 1999. From MathWorld– A Wolfram
Web Resource: https://mathworld.wolfram.com/CakeNumber.html.

[Wer74] P. Werbos. Beyond regression: New tools for prediction and analysis in
the behavorial sciences. PhD thesis, Harvard University, 1974. Online:
https://www.researchgate.net/publication/35657389.

[Wet78] J.E. Wetzel. On the division of planes by lines. The American Math-
ematical Monthly, 85(8):647–656, 1978. Online: https://www.jstor.org/
stable/2320333.

[WH60] B. Widrow and M.E. Hoff. Adaptive switching circuits. In Proc. IRE
WESCON Convention Rec., pages 96–104, 1960. Online: https://www-
isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf.

https://ieeexplore.ieee.org/document/6406802
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=11885&option_lang=eng
https://www.esann.org/sites/default/files/proceedings/legacy/es2016-112.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.5382&rep=rep1&type=pdf
https://www.researchgate.net/publication/332719447
https://www.cs.rug.nl/~biehl/gmlvq
https://iopscience.iop.org/article/10.1209/0295-5075/21/8/013
https://proceedings.neurips.cc/paper/2018/file/d465f14a648b3d0a1faa6f447e526c60-Paper.pdf
https://mathworld.wolfram.com/CakeNumber.html
https://www.researchgate.net/publication/35657389
https://www.jstor.org/stable/2320333
https://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf

BIBLIOGRAPHY 277

[Wid60] B. Widrow. An Adaptive "Adaline" Neuron Using Chemical "Memis-
tors", 1960. Technical Report No. 1553-2. Online: https://www-isl.
stanford.edu/~widrow/papers/t1960anadaptive.pdf.

[Wid12] B. Widrow. Youtube channel widrowlms, 2012. Online: https://www.
youtube.com/user/widrowlms.

[Wik22] Wikipedia. Receiver operating characteristic, 2022. Online: https://en.
wikipedia.org/wiki/Receiver_operating_characteristic.

[Wil65] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Univer-
sity Press, 1965. Online:https://global.oup.com/academic/product/the-
algebraic-eigenvalue-problem-9780198534181.

[Win61] R.O. Winder. Single stage threshold logic. In 2nd Ann. Symposium
on Switching Circuit Theory and Logical Design (SWCT 1961), pages
321–332, 1961. Online: https://doi.org/10.1109/FOCS.1961.29.

[Wit10] A.W. Witoelar. Statistical physics of Learning Vector Quantization.
PhD thesis, University of Groningen, 2010. Online: https://www.rug.
nl/research/portal/files/14692629/11complete.pdf.

[Wit20] D. Witten. The bias-variance-tradeoff & double descent, 2020. Twitter:
https://threadreaderapp.com/thread/1292293102103748609.html.

[WL90] B. Widrow and M.A. Lehr. 30 years of adaptive neural networks:
perceptron, madaline, and backpropagation. Proc. of the IEEE,
78(9):1415–1442, 1990. Online: https://www-isl.stanford.edu/~widrow/
papers/j199030years.pdf.

[WM05] C.J. Willmott and K. Matsuura. Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average
model performance. Climate Research, 30(1):79–82, 2005. Online: https:
//www.jstor.org/stable/24869236.

[WO12] M. Wiering and M. van Otterlo, editors. Reinforcement Learning, State-
of-the-Art. Springer, Berlin, 2012. Online: https://link.springer.com/
book/10.1007/978-3-642-27645-3.

[Wol61] P. Wolfe. A duality theorem for nonlinear programming. Quarterly of
Applied Mathematics, 19(3):239–244, 1961. Online: https://www.jstor.
org/stable/43635235.

[WRB93] T.L.H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of
learning a rule. Reviews of Modern Physics, 65:499–556, 1993. On-
line: https://research.rug.nl/en/publications/the-statistical-mechanics-of-
learning-a-rule.

[Wri15] S.J. Wright. Coordinate descent algorithms. Math. Programming,
151(1):3–34, 2015. Online: https://doi.org/10.1007/s10107-015-0892-3.

[WS09] K. Weinberger and L. Saul. Distance metric learning for Large Mar-
gin Nearest Neighbor classification. J. of Machine Learning Research,
10:207–244, 2009. Online: https://jmlr.csail.mit.edu/papers/volume10/
weinberger09a/weinberger09a.pdf.

[WZZ+13] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Regular-
ization of neural networks using dropconnect. In S. Dasgupta and

https://www-isl.stanford.edu/~widrow/papers/t1960anadaptive.pdf
https://www.youtube.com/user/widrowlms
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://global.oup.com/academic/product/the-algebraic-eigenvalue-problem-9780198534181
https://doi.org/10.1109/FOCS.1961.29
https://www.rug.nl/research/portal/files/14692629/11complete.pdf
https://threadreaderapp.com/thread/1292293102103748609.html
https://www-isl.stanford.edu/~widrow/papers/j199030years.pdf
https://www.jstor.org/stable/24869236
https://link.springer.com/book/10.1007/978-3-642-27645-3
https://www.jstor.org/stable/43635235
https://research.rug.nl/en/publications/the-statistical-mechanics-of-learning-a-rule
https://doi.org/10.1007/s10107-015-0892-3
https://jmlr.csail.mit.edu/papers/volume10/weinberger09a/weinberger09a.pdf

278 BIBLIOGRAPHY

D. McAllester, editors, Proceedings of the 30th International Confer-
ence on Machine Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pages 1058–1066, Atlanta, Georgia, USA, 2013. PMLR.
Online: https://proceedings.mlr.press/v28/wan13.pdf.

[YCC18] M. Yamada, J. Chen, and Y. Chang. Transfer Learning, Algorithms and
Applications. Morgan Kaufmann, 2018. Google books: https://books.
google.nl/books/about/Transfer_Learning.html?id=AOeMCgAAQBAJ.

[You07] YouTube channel Pseudo1ntellectual. Perceptron Research from the
50’s & 60’s, video clip, 2007. Online: https://www.youtube.com/watch?
v=cNxadbrN_aI.

[You21] A. Young. Every Data Scientist Should Know: The Bias-Variance
Trade-off Generalization is Wrong, 2021. Towards Data Science. On-
line: https://tinyurl.com/mr2f5p36.

[Zad19] A.M. Zador. A critique of pure learning and what artificial neural net-
works can learn from animal brains. Nature Communications, 10:3770,
2019. Online: https://doi.org/10.1038/s41467-019-11786-6.

[Zas75] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for
Partitions of Space by Hyperplanes, volume 154 of Memoirs of the Amer-
ican Mathematical Society. AMS, 1975. Online: https://bookstore.ams.
org/memo-1-154/.

https://proceedings.mlr.press/v28/wan13.pdf
https://books.google.nl/books/about/Transfer_Learning.html?id=AOeMCgAAQBAJ
https://www.youtube.com/watch?v=cNxadbrN_aI
https://tinyurl.com/mr2f5p36
https://doi.org/10.1038/s41467-019-11786-6
https://bookstore.ams.org/memo-1-154/

Michael Biehl

The
Shallow
and the

Deep

A biased
introduction
to neural networks
and old school
machine learning

The Shallow and the Deep is a collection of lecture notes that offers an
accessible introduction to neural networks and machine learning in general.
However, it was clear from the beginning that these notes would not be able to
cover this rapidly changing and growing field in its entirety. The focus lies on
classical machine learning techniques, with a bias towards classification and
regression. Other learning paradigms and many recent developments in, for
instance, Deep Learning are not addressed or only briefly touched upon.
Biehl argues that having a solid knowledge of the foundations of the field is
essential, especially for anyone who wants to explore the world of machine
learning with an ambition that goes beyond the application of some software
package to some data set. Therefore, The Shallow and the Deep places
emphasis on fundamental concepts and theoretical background. This also
involves delving into the history and pre-history of neural networks, where the
foundations for most of the recent developments were laid.
These notes aim to demystify machine learning and neural networks without
losing the appreciation for their impressive power and versatility.

Michael Biehl is Associate Professor of Computer
Science at the Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence of the
University of Groningen, where he joined the Intelligent
Systems group in 2003. He also holds an honorary
Professorship of Machine Learning at the Center for
Systems Modelling and Quantitative Biomedicine of the
University of Birmingham, UK.
His research focuses on the modelling and theoretical

understanding of neural networks and machine learning in general. The
development of efficient training algorithms for interpretable, transparent
systems is a topic of particular interest. A variety of interdisciplinary
collaborations concern practical applications of machine learning in the
biomedical domain, in astronomy and other areas.

Th
e S

h
allo

w
 an

d th
e D

eep M
ich

ael B
ieh

l

	Lege pagina
	Lege pagina

