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Chapter 1

Introduction

Cosmology is the study of the Universe on the largest scales. Up to the 1950s,
cosmological data was scarce and generally so inaccurate that Herman Bondi
claimed that if a theory did not agree with data, it was about equally likely
the data were wrong. Hubble’s first determination of the expansion rate
of the Universe (Hubble’s constant h) was off by a factor of 10. Even as
recently at 1995, h was uncertain by 20-40%, depending on who you believed
more, and as a consequence most cosmological variables are (still) written
with their dependence on h made clear, for example by quoting distances in
units of Mpc/h.

Our current cosmological model is based on the solutions to the equations
of general relativity, making some general assumptions of isotropy and ho-
mogeneity of the Universe at large (which we’ll discuss below). These models
were all developed in the 1920s, at which stage it had not been fully appre-
ciated that the MW was just one of many million galaxies that make-up the
visible Universe. With other words: the assumptions on which the models
are based, were certainly not inspired nor suggested nor even confirmed by
the data at that time. In fact, Einstein’s static model was shown to be un-
stable and so the expansion of the Universe could have been a prediction of
the theory; surely it would have ranked as one of the most amazing predic-
tions of the physical world based on pure thought. As it happened, Hubble’s
observational discovery of the expansion around the same time relegated the
models to describing the data.

Novel observational techniques have revolutionised cosmology over the
past decade. The combined power of huge galazxy redshift surveys, and cos-
mic micro-wave background (CMB) experiments have lead us into the era



of precision cosmology, where we start to test the models, and where we
can determine their parameters to the percent level. The past years have
seen the emergence of a ‘standard model” in cosmology, described by around
ten parameters. Given how recent this has all happened, we certainly need
to keep our minds open for surprises, but the degree to which the models
agree with the data is simply astonishing: the current cosmological model is
based on general relativity, in which the Universe began in a Hot Big Bang,
is presently dominated by dark energy and dark matter, and where the ob-
served structures grew from scale invariant Gaussian fluctuations amplified
by gravity. It is called a spatially flat, scale-invariant ACDM model, where A
denotes the cosmological constant (a special case of dark energy), and CDM
stands for cold dark matter. A large part of these notes is taken-up by ex-
plaining what this all means.

Is this the end of the road? Cosmology is almost unique in the physical
sciences that it also demands an answer to the question why the cosmologi-
cal parameters have the values they do. Is the Big Bang truly a singularity?
What happened before that? Is our Universe alone? And do these questions
make sense? Not so long ago, most cosmologists would have mumbled that
time was created in the BB, and that it therefore made no sense to talk
about things which are in principle unobservable, such as other Universes, or
anything before the BB. Yet there is currently a flurry of theoretical activity
addressing precisely these issues, but it is not clear how we will distinguish
different models. The list of questions goes on though, for example why are
there (at least at the moment) 341 dimensions? What about the topology
of the Universe? Does it have a simple topology, or could it have the topol-
ogy of a donut? And do we have any physical theory that even attempts to
answer these questions? What is the nature of dark matter? And even more
enigmatic, the nature of the dark energy. Particle physics experiments are
being designed to look for dark matter particles. What if they never succeed?

These notes describe in more detail the current cosmological model, and
the observational evidence for it. Arranged in order of complexity (or de-
tail), try An Introduction to Modern Cosmology (Liddle, Wiley 2003), Phys-
ical Cosmology (Peebles, Princeton 1993), Cosmological Physics (Peacock,
Cambridge 1999). For more details on the Early Universe, try Cosmological
Inflation and Large-Scale Structure (Liddle & Lyth, Cambridge 2000) and
The Early Universe (Kolb & Turner, West View Press, 1990). See also Ned
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Wrights tutorial at http://www.astro.ucla.edu/ wright/cosmo_01.htm



Chapter 2

The Homogeneous Universe

2.1 The Cosmological Principle

The Cosmological Principle, introduced by Einstein, demands that we are
not in a special place, or at a special time, and that therefore the Universe
is homogeneous and isotropic, i.e. it looks the same around each point,
and in each direction®.

This is of course only true on sufficiently ‘large scales’. We know that
on the scale of the solar system, or the Milky Way galaxy, or on that of the
distribution of galaxies around us, that the Universe is neither homogeneous
nor isotropic. What we mean, is that, on larger and larger scales, the Universe
should become more and more homogeneous and isotropic.

Does one imply the other? No: for example a Universe with a uniform
magnetic field can be homogeneous but is not isotropic. If the distribution of
matter around us were a function of distance alone, then the Universe would
be isotropic from our vantage point, but it need not be homogeneous. We
can (and will) derive the consequences of adopting this ‘principle’, but the
real Universe need not abide by our prejudice!

So we’ll start by describing the evolution of, and metric in, a completely
homogeneous Universe. Rigour is not our aim here, excellent more rigorous
derivations can be found in Peacock’s Cosmological Physics (Cambridge Uni-
versity Press), or Peebles’ Physical Cosmology (Princeton University Press).

We are familiar with axioms in mathematics, but the use of a ‘principle’ in

I'Note that this was manifestly not true for the known visible Universe in Einstein’s
time, and even not today for the distribution of optical galaxies.



physics is actually a bit curious. Physical theories are based on observations,
and should make testable predictions. How does a ‘principle’ fit in? The
inflationary paradigm (which is not discussed much in these notes) is a phys-
ical theory for which the homogeneity of the Universe, as discussed above,
is a consequence of a very rapid faster-than-light expansion of the Universe
during a very short interval preceding the early classical picture of hot Big
Bang (but now m,ore commonly considered to be part of the BB). This is
a much healthier description of the Universe on the largest scales, because
being a proper physical theory, it is open to experimental testing, in contrast
to a principle.

2.2 The Hubble law

Given the Cosmological Principle, what non-static isotropic homogeneous
Universes are possible?
Consider two points r; and ry, and let v be the velocity between them.
By homogeneity
v(ry) — v(rz) = v(r; —ra) (2.1)

Hence v and r must satisfy a linear relation of the form
v; = 25 Aijr;. (2.2)
The matrix A;; can be decomposed into symmetric and anti-symmetric parts
Ay = A+ AL (2.3)

Af} corresponds to a rotation and so can be transformed away by choosing
coordinates rotating with the Universe (i.e. non-rotating coordinates).
Then AZSj can be diagonalised

A5 = (2.4)

o o Q
o O
2 OO

and hence v; = ar; vy = ffry w3 = 7yrs. But by isotropy a« = 8 = v = H (t).
Hence
v = H(t)r. (2.5)



Note that H has the dimension of inverse time. The current value of
Hubble’s constant, denoted Hy, is usually written as

Hy = 100h km s~ 'Mpc™* (2.6)

and for years we did not have an accurate determination of h. From Hubble
Space Telescope observations of variable stars in nearby galaxy clusters, we
have h =~ 0.72, which squares very well with measurements from the CMB.
It is not obvious what the uncertainty in the value currently is, because
there may be systematic errors in the HST determination, and there are
degeneracies in the CMB determination. The Coma cluster, at a distance
r = 90Mpc, therefore has a Hubble velocity of around v = 72 x 90km s=! =
6480km s .

The recession velocity can be measured via the Doppler shift of spectral
lines

AN A=z=v/c ifvKe. (2.7)

This is the definition of the redshift z of an object, but only for nearby
galaxies, when v/c < 1, can you think of it as a Doppler shift.

In the mid-1920s Edwin Hubble measured the distances and redshifts of
a set of nearby galaxies and found them to follow this law — the Hubble
Law. However, his data were far from good enough to actually do this, and
the value he found was about 10 times higher than the current one.

The fact that all galaxies seem to be moving away from us does not mean
we are in a special place in the Universe. You can easily convince yourself
that this is now in fact true for all other observers as well. An often made
analogy is that of ants on an inflating balloon: every ant sees all the others
move away from it, with speed proportional to distance. But as far as the
ants, that live on the balloon’s surface are concerned, no point on the balloon
is special.

2.2.1 Fundamental Observers and Mach’s principle

Recall from special relativity that the laws of physics are independent of the
velocity of the observer. In general relativity this is taken even further: the
laws of physics are the same for all observers, also those that are acceler-
ating: these are called freely falling observers. Any physical theory should



be formulated to be covariant, that is it transforms in a very specific way
between such observers.

We've assumed that the Universe is homogeneous and isotropic — but
for which type of observers? Suppose we find a set to which Hubble’s law
applies. Now consider a rogue observer moving with velocity v, with respect
to these observers. Clearly, for that observer there will be a special direction:
along v,. For galaxies in the observer’s direction of motion, v/r will be
different from v/r in the opposite direction. Put another way: there is a
special velocity in the Universe, namely that in which the mean velocity of
all galaxies is zero. Actually, most of the mass may not be in galaxies, or
may be the galaxies could be moving with respect the centre-of-mass velocity
of the Universe as a whole? This is not as crazy as it may seem.

The Milky Way is falling with a velocity of 175km s~ !'toward Andromeda.
Clearly, for observers in the Milky Way, or in Andromeda, the Hubble law
does not strictly apply, as there is this special direction of infall. But the
Local Group of galaxies, to which the Milky Way and Andromeda belong, is
also falling toward the nearby Virgo cluster of galaxies. So even the Local
Group is not a ‘good observer’ to which the Hubble law applies. But we did
not claim that homogeneity and isotropy were valid on any scale: just on
‘sufficiently’ large scales.

The simply reasoning we followed to ‘derive’ the Hubble law from homo-
geneity and isotropy therefore causes us all sorts of problems, and we need
to assume that we can attach a ‘standard of rest’ to the Universe as a whole,
based on the visible mass inside it. Note that it is the velocity of the reference
frame which is ‘absolute’, not its centre. Observers at rest to this reference
frame are called fundamental observers. These would be ants that do not
move with respect to the balloon. The velocity of observers with respect to
such fundamental observers are called peculiar velocities. So this would be
the velocity of ants, with respect to the balloon.

There is some circularity in this reasoning: fundamental observers are
those to which Hubble’s law applies, and Hubble’s law is v = H(t)r, but
only for fundamental observers. It’s a bit like inertial frames in Newtonian
mechanics. In an inertial frame, F = ma, and vice versa, inertial frames
are those in which this law applies. Ernst Mach in 1872 argued that since
acceleration of matter can therefore only be measured relative to other mat-
ter in the Universe, the existence of inertia must depend on the existence
of other matter. There is still controversy whether General Relativity is a
Machian theory, that is one in which the rest frame of the large-scale matter
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distribution is necessarily an inertial frame.

2.2.2 The expansion of the Universe, and peculiar ve-
locities

The typical rms velocity of galaxies with respect to the Hubble velocity, is
currently 600km s~!. So only if r is much large than 600km s~!/H can you
expect galaxies to follow the Hubble law. We will see that the Local Group
moves with such a velocity with respect to the micro-wave background, the
sea of photons left over from the BB. Presumably, this peculiar velocity is
the result of the action of gravity combined with the fact that on smaller
scales, the distribution of matter around the MW is not quite spherically
symmetric. Even now, it is not fully clear what ‘small scale’ actually means.

Note that Hubble’s constant, H(t), is constant in space (as required by
isotropy), but isotropy or homogeneity do not require that it be constant
in time as well. We will derive an equation for its time-dependence soon.
Of course, in relativity, space and time are always interlinked (there is a
gauge degree of freedom). But our observers can define a common time, and
hence synchronise watches, by saying ¢ = ¢y, when the Hubble constant has
a certain value, H = H,.

If v = H(t)r, then for r > ¢/H(t), galaxies move faster than the speed
of light. Surely this cannot be right? In our example of ants on a balloon, it
was the inflation of the balloon that causes the ants to think they are moving
away from each other, but really it is the stretching of the balloon: no ants
need to move at all. Put another way, for small velocities, you can think
of the expansion as a Doppler shift. Now in special relativity, when adding
velocities you get a correction to the Newtonian vioa = vy +vo velocity addi-
tion formula, which guarantees you can never get v > ¢ unless a photon,
which already had v = ¢ to begin with, is involved. But the velocities we are
adding here do not represent objects moving. So there is no special relativis-
tic addition formula, and it is in fact correct to add the velocities. But may
be it is better not to think of H(t)r as a velocity at all, since no galaxies
need to be moving to have a Hubble flow.

Is it space which is being created in between the galaxies? This would

suggest that then also galaxies, and in fact we as well, would also expand
with the Universe. We don’t, and neither do galaxies. One way to think
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of the expansion is that galaxies are moving away from each other, be-
cause that’s what they were doing in the past. Which is not very satis-
fying, because it rightly asks why they were moving apart in the past. See
http://uk.arxiv.org/abs/0809.4573 for a recent discussion by John Peacock.

Another startling conclusion from the expansion is that at time of order
o« 1/H, the Universe reached zero size: there was a BB. Actually, whether
or not there is a true singularity, and when it happened, depends on how H
depends on time. The equations that describe this are called the Friedmann
equations.

2.3 The Friedmann equations

One of the requirements of General Relativity is that it reduces to Newtonian
mechanics in the appropriate limit of small velocities and weak fields. So we
can study the expansion of the Universe on a very small scale, to which
Newtonian mechanics should apply, and then use homogeneity to say that
actually the result should apply to the Universe as a whole. The proper way
to derive the Friedmann equations is in the context of GR, but the resulting
equation is identical to the Newtonian one. Almost.

So consider the Newtonian behaviour of a shell of matter of radius R(t),
expanding within a homogeneous Universe with density p(t). Because of the
matter enclosed by the shell, it will decelerate at a rate

GM
‘RZ
where M = (47/3)poR3 is the constant mass interior to R. Newton already
showed that the behaviour of the shell is independent of the mass distribution
outside. In GR, the corresponding theorem is due to Birkhoff.

According to how I wrote the solution, you can see that the density of the
Universe was pg when the radius of the shell was Ry. It’s easy to integrate
this equation once, to get, for some constant K

. 2
R 8rG [ R\
<R—0> = T/Oo (E{)) + K. (29)

Now consider two concentric shells, with initial radii Ay and By. At some

later time, these shells will be at radii A = (R/Ry)A and B = (R/Ry) By,

R=— (2.8)
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since the density remains uniform. Therefore, the distance between these
shells will grow as B — A = (R/R) (B — A). It is as if the shells recede from
each other with a velocity V = B — A, which increases linearly with distance
B — A, with proportionality constant H = R/R. This constant (in space!) is
Hubble’s constant, and we’ve just derived the equation for its time evolution.

The meaning of the constant K becomes clear when we consider R — oo:
it then becomes the speed of the shell. So, when K = 0, the shell’s velocity
goes eventually to zero: this is called a critical Universe, and its density is

the critical density, p.,
R\ snG
T
= =—0p, 2.10
( R) 4 (2.10)

If the Universe had the critical density, the matter contained in it is just
enough to eventually stop the expansion. (Or put another way: the expan-
sion speed of the Universe is just equal to its escape speed.) By measuring
Hubble’s constant Hy = 100hkm s~ 'Mpc~!, we can determine the critical
density as

pe = 1.125 x 107°A?*mpem ™
= 1.88 x 107*h2gem ™
= 2.78 x 10" h? M Mpc—° (2.11)

So the critical density is not very large: it is equivalent to about 10
hydrogen atoms per cubic meter! Note that the density of the paper you are
reading this on (or the screen if you're reading this on a computer, for that
matter), is around lg/cm?, or around 29 order of magnitudes higher than
the critical density.

However, let us look at it from a cosmological perspective. The mass of
the Milky Way galaxy, including its dark halo, is around 102M, say?. If
the Universe had the critical density, then show that the typical distance
between MW-type galaxies should be of order a Mpc, which is in fact not so
different from the observed value. So observationally, we expect the Universe
to have the critical density to within a factor of a few.

If the constant K is positive, then the final velocity is non-zero, and
the Universe keeps expanding (an Open Universe). Finally, for a negative

2Recall how we obtained this from the motion of the MW with respect to Andromeda.
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constant, the Universe will reach a maximum size, turn around, and start to
collapse again, heading for a Big Crunch.

Now, the proper derivation of these two equations needs to be done within
the framework of GR. This changes the equations in three ways: first, it
teaches us that we should also take the pressure into account (for example
the pressure of the photon gas, when considering radiation). Secondly, the
constant is kc?, where k = 0 or 1 (we might have expected that the speed of
light was to surface). And finally, there is another constant, the ‘cosmological
constant’ A. Where does this come from?

Peacock’s book has a nice explanation for why a cosmological constant
surfaces. There is in fact no unique way to derive the equations for GR. The
only thing we demand of the theory, is that it be generally co-variant, and
reduces to SR in the appropriate limit. So we start by looking at the simplest
field equation that satisfies this. The field equation should relate the energy-
momentum tensor of the fluid, 7", to the corresponding metric, g,,. Now
there only is one combination which is linear in the second derivatives of the
metric, which is a proper tensor, it is called the Riemann tensor, and has
four indices, since it is a second derivative of g,,,. The Einstein tensor is the
appropriate contraction of the Riemann tensor, and the field equation follows
from postulating that the Einstein tensor, and the energy-momentum tensor,
are proportional. There is no reason not to go to higher orders of derivatives.
But in fact, we have ignored the possibility to also look for a tensor which
is zero-th order in the derivatives: this is the cosmological constant. Recall
that Einstein introduced A, because he was looking for a static Universe, and
hence needed something repulsive to counter-balance gravity. This does not
work, because such a static Universe is unstable. And soon Hubble found
that the Universe is expanding — not static. So, there was no longer any
need to assume non-zero A. Curiously, there is now firm evidence that the
Universe in fact has a non-zero cosmological constant. More about that later.

The full equations, including pressure and a cosmological constant, are
the famous Friedmann equations,

a e A
©_ 2V 3 o
" 3 (p+3p) + 3
o\ 2
a TG k2 A
— = — — + —. 2.12
(a) 3 P T 3 (2.12)

I have replaced the radius R(t) of the sphere by the ‘scale factor’ a(t).
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In our derivation, the absolute size of the sphere did not matter, and so we
might as well consider just the change in the radius, R(t)/R(t = ty) = a(t),
by choosing a(ty) = 1.

One way to see how these come about, is to introduce the pressure in the
equation of motion for the shell, through,

4
i = —WTG(p—I—Z%p)a. (2.13)

Now consider the enclosed volume. Its energy is U = pc?V, where V =
(47/3)a? is its volume. If the evolution is isentropic, i.e., if there is no heat
transport, then thermodynamics (energy conservation) tells us that

dU = —pdV
= pdV +Vdp (2.14)

and, since dV/V = 3da/a, p = —(p + p)V/V = =3(p + p)a/a. Eliminating
the pressure between this equation, and the equation of motion, leads us to
ai = (87G/3)(paa + pa®/2). This is a total differential, and introducing the
constant K, we get the second of the Friedmann equations (but still without
the cosmological constant, of course).

Note that a positive cosmological constant can be seen to act as a repulsive
force. Indeed, the acceleration of the shell, can be rewritten as

A A GM A
3 pa+§a5—?+§a. (2.15)
You’ll recognise the first term as the deceleration of the shell, due to the
matter enclosed within it. The second term thus acts like a repulsive force,

whose strength o« a.

a =

2.4 Solutions to the Friedmann equations

We can solve the Friedmann equations (FE, Eqgs.2.12) in some simple cases.
The equation for the evolution of the Hubble constant H = a/a is

a 8rG kA
H=(-2="Zp4+ 242 2.1
Cr=Zp+ -+ 5 (216)
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So its evolution is determined by the dependence on the matter density
(first term), the curvature (second term), and the cosmological constant (last
term).

2.4.1 No curvature, k£ =0

The total density p is the sum of the matter and radiation contributions,
P = Pm + pPr.

For ordinary matter, such as gas or rocks (usually called ‘dust’ by cos-
mologists), the density decreases with the expansion as p o 1/a®, whereas
for photons, p oc 1/a*. In both cases, there is an a® dependence, just ex-
pressing the fact that the number of particles (gas atoms, or photons), in
a sphere of radius a is conserved — and hence p o< 1/a®. But for photons,
the energy of each photon in addition decreases as 1/a due to redshift — and
hence p o< 1/a* for a photon gas (we’ll derive a more rigorous version of this
soon). So in general, p = pp(a,/a)® + pr(a,/a)t.

For a matter dominated Universe (p,, >> p,, A = 0), we have sim-
plified the FE to

(= T Loy (217)

for which you can check that the solution is a oc t/3. Note that p,, is
now a constant: it is the matter density when a = a,. Writing the con-
stant as a = a,(t/t,)?/?, and substituting back into the FE, we get that
to = \/1/67Gpy = 2/3H,y. This case, a critical-density, matter-dominated
Universe, is also called the Einstein-de Sitter (EdS) Universe. Note that
the Hubble constant H(z) = Hy(1 + 2)%2. For Hy = 100hkm s~'Mpc~1,
Hy' =098 x 10*°h'yr

We can do the same to obtain the evolution in the case of radiation
domination, p = p,(a,/a)? (hence p,, = A = 0). The solution of the FE
is easily found to be a oc t'/? (just substitute an Ansatz a o< t* and solve
the resulting algebraic equation for «), and, again writing the constant as

a = ay(t/t,)"?, you find that t, = \/3/327Gp, = 1/2H,.

15



Finally, a cosmological constant dominated Universe is even easier.
Since (a/a)? = A/3, the Universe expand exponentially, a o exp(y/A/3t).
Incidentally, this is what happens during inflation.

2.4.2 The Evolution of the Hubble constant

In a critical density, matter dominated Universe, we have p, = 0, and k =
A = 0, and so (a/a)? = 87Gp./3. The matter density p,, is the critical
density, p., and we will denote the Hubble constant now as Hy. So dividing
Eq. (2.16) by HZ = (87G/3)p., we get the equivalent form

S+ pr/at k A
H2 — H2 pm/a r
ol pe e 3me)
= H3(Qpn/d®+Q,/a* + Q/a® + Q) (2.18)

where we have introduced the constants Q,, = pn/pe, QO = pr/pes
Q. = k/HZ and Q) = A/3H3. They characterise how much matter, ra-
diation, curvature and cosmological constant, contribute to the total density.
Note that, since we have written Hubble’s constant at a = 1 as Hy, we have
by construction, that 2, + Q,. + Q, + Qy = 1.

Current best values are (€2,,,Q4,€) = (0.3,0.7,0), with ©, ~ 4.2 x
10~°h? and currently the Universe is dominated by the cosmological con-
stant. At intermediate redshifts > 1 say, we can neglect the cosmological
constant, and H(2) ~ Hov/Q,(1 + 2)¥2. Given Hy = 70km s~'Mpc~!, this
gives H(z = 3) ~ 307km s~ 'Mpc™'. For the Coma cluster, at distance
90Mpc, we found that the current Hubble velocity is 70 x 90 = 6300km s~ *.
At redshift z = 3, this would have been 307 x 90/(1 + 3) = 6907km s~ .

The cosmological constant starts being important when ,,/a®> < Qu
which is for a > (9,,/Q4)Y? ~ 0.75 or z < 1/a — 1 = 0.3. This may seem
rather uncomfortably close to the present day.

As we study the Universe at earlier and earlier times, a — 0, the cosmo-
logical constant, curvature, and matter (in that order, unless the curvature
term is zero) become increasingly less important, until eventually only ra-
diation matters in determining H(a): no matter what the values of €2,,,
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and 2, are now, the Universe becomes eventually radiation dominated for
sufficiently small a (or high redshift). In this case, H(t) = Hy P2 (1 + 2)2
We can compute when, going back in time, radiation starts to dominate
the expansion over matter, by computing €, from the CMB (see later):
Q, ~ 4.2 x 107°h%, and hence Q,, >> Q, now. From these numbers, we
find at redshift z.q, the contributions of matter and radiation become equal,
where 1+ zeq = Q,,/Q, & 2380092,,,h2. This is called equality.

The various Qs that occur in Eq. (2.18) are constants: for example €2, =
Pm/pe now. Because both the matter density and the critical density depend
on time, we can also compute how their ratio, 2 = p/p. varies in time. Here,
p is the total matter density, including radiation and matter. Start from
Eq. (2.16), which can be written as

k A
H? =H?’Q+ — + = 2.19
+ az + 3 ’ ( )

hence k A
Q_lz_H2a2_ﬁ. (220)

For small a, H(a)? oc 1/a* when radiation dominates, or at least H(a)? o
1/a® when matter dominates. In either case, 1/H?a® becomes small, hence
Q(a) — 1 irrespective of k or A. In the absence of a cosmological constant,
) =1 is a special case, since it implies £ = 0 hence Q(a) = 1 for all a. This
is also true, if we consider Q4 = A/3H?, in which case

k
H2q2 "

Q+Qp—1=-— (2.21)
If the Universe were matter (radiation) dominated, then a(t) o /3 (a(t) o
t/2), and Q + Qy — 1 o< t¥? (o< t). This is a peculiar result, because it
implies that, unless 2+, = 1, that sum will start to deviate from 1 as time
increases: €1+ €2y = 1 is an unstable solution. For example, since we know
that now Q+Q, ~ 1, at nucleo-synthesis, when ¢ ~ 1 sec, |2+, —1] < 10718,
and the closer we get to the BB, the more fine-tuned €2 + 2, = 1 needs to
be. Because a space with 2 4+ Q, = 1 is called flat (see below why), this is
also called the flatness problem: unless the Universe was very fine-tuned to
have Qo = 2 + Q4 = 1 at early times, then we cannot expext Qi &~ 1
now. Although this is in fact what we find. The easiest way out is to assume
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that 24+ Q) = 1 at all times, and hope to find a good theory that explains
why. This is for example the case in Inflationary scenario’s, which indeed
predict that the deviation of {2y from 1 is exceedingly small at the end of
inflation.

2.5 Evolution of the Scale Factor

At low redshifts, we can develop a(t) in Taylor series, as

at) = alto) +alto)(t — to) + gilto)t —10)? +

1
where . 0O
apao m
- _ =""_0 2.23
qo a(g) 9 A ( )

where we used the fact that radiation is negligible at low z. With 1 + 2z =
ap/a(t), we can write this as an expression for the lookback time as function
of redshift,

Ho(to—t) =2 — (1+qo/2)2* + - (2.24)

For example for an Einstein-de Sitter Universe, which has (a1 = 1 = Q1
so that Hy = 2/3tg, and qo = 1/2

tot;t:g(z_(1+1/4)z2+...)7 (2.25)

so that at 2 = 1/2, ;5 = (23/32)ty or approximately 1/3 of the age of the
Universe is below z = 1/2.

The more general expression starts from @ = aH (a), hence dt = da/aH (a)

hence o g 2 g - q
a a YA
Hot = Hy | &= Y — 2.26
° / i / aE(2) / 1+2)E0) (2.26)

where the function

1/2

E(z) = [Qm(1+ 2% + Q1+ 2)" + Qu(1 + 2)* + Q] (2.27)
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Here, t is the age of the Universe at redshift z. For 2 =0, t = t; and

e da & dz
Hyty = H, — = _— 2.28
0%0 0/0 a /0 (14 2)E(2) (2.28)

Since the Universe is not empty, ,, > €2, > 0, this integral converges for
2z — o0, which means that the age of the Universe is finite, at least if the
physics we are using here applies all the way to infinity. This is not necessar-
ily the case: we know that the laws of physics do not apply sufficiently close
to the BB. However, this should only occur at exceedingly high energies, long
before there were stars, say. So tg better be (much?) bigger than the oldest
stars we find in the Universe. For a long time, when people assumed €2, = 1,
mostly because of theoretical prejudice, this was only marginally, and some-
times not even, fulfilled: some Globular Clusters stars were older (as judged
from stellar evolution modelling) than the Universe. Since these uncomfort-
able days, the ages of these stars have come down, whereas the discovery of
the cosmological constant has increased ty, and there is no longer a problem.

Exercise

We will see later why we think the Universe underwent a period of infla-
tion, during which the expansion was dominated by a cosmological constant.
Given this, sketch the evolution of the scale factor a(t) from inflation to the
present, by assuming that in each subsequent stage of evolution, only one
term (the appropriate one!) dominates the expansion. Indicate the redshifts
where one period ends and the next one begins. [Hint: plot a(t) vs ¢ in
log-log plot] What will happen in the future?

2.6 The metric

A metric determines how distances are measured in a space that is not nec-
essarily flat. In four dimensional space time, the infinitesimal distance is

ds® = ga[gdxadxﬂ
= goodt2 + 2gOZdtdLUl - O'Z‘jdl'idl’j . (229)

(We'll let Greek indices run from 0 — 3, and Roman ones from 1 — 3).
For two events happening at the same point in space, dz* = 0, and ds is the
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elapsed time between the two events. Conversely, at a given time, dt = 0,
ds® is minus the distance squared, dl?, between the two events. Since this
distance needs to be positive definite, so does the tensor o;;. Light travels
along geodesics, for which ds = 0 (since dt = dl along a light path). (I
assume you recall these results from earlier courses.)

Now impose that the Universe described by this metric be homogeneous
and isotropic. This requires that go; = 0, since otherwise we’ve introduced
special directions. Now, in our homogeneous Universe, we can get observers
to synchronise watches, and determine the time unit, throughout the Uni-
verse. (For example by measuring the density, and its rate of change.) Such
observers are our ‘fundamental observers’. For those, the most general ex-
pression for the metric becomes

ds® = dt* — a®(t)(f*(r)dr® + ¢*(r)dQ?) . (2.30)

In position space, we have chosen spherical coordinates, where r denotes
the radial coordinate, and dQ? = df? + sin? 0d¢? is the angular bit, and g
and f are to be determined. This is just as in special relativity, except for
the scale factor a(t).

To get the spatial part of the metric, we want to derive the general metric
in curved space. An elegant way to do so, is as follows. Suppose you want
to get the metric on a surface of a (3D) sphere. If we embed that sphere (a
two dimensional surface), into 3D space, then we can write down the metric
in 3D space, and then impose the constraint that that all points are lying on
the surface. Here we’ll do the same, except we want to obtain the metric on
a 3D surface, and so we’ll have to embed it in a four dimensional space. Let’s
chose Cartesian coordinates in this 4D space, and let’s call the radius of the
sphere R. Then, using Cartesian coordinates (z,y, z,w), the 3D surface of
the 4D sphere is defined by

R* = 2% + y* 4 22 + w? (2.31)
and hence w? = R? — r?, where r? = 22 4+ y? + 2%. Taking the differential
of the previous equation, we get that

RdR = 0 = zdx + ydy + zdz + wdw , (2.32)

and consequently
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rdr +ydy + zdz rdr

dw = = — . (2.33)
R2 _ 12 R2 _ 12

Introducing again spherical coordinates,

x =rsinfcos ¢

y = rsinfsin ¢
z =rcosh, (2.34)

we find that the distance on the sphere is
2 2 2 2 2 2 .2,102 r2dr?

dl* = da* + dy* + dz* + dw” = (dr +TdQ)+R2—7"2' (2.35)

The first bit, dr? + r2dQ?, is just the metric in 3D space, the second
bit comes about because we are in curved space (in fact, it goes to zero for
large curvature, when R* >> r?). Rewriting a little bit, we finally get the
following result,

ds* = dt* —a*(t) d—r2 + r2dQ?
1 —k(r/R)?
= dt’ — *(t)R? [dx* + sin®(x)dQ?] (2.36)

where /R = sin(x) and k& = 1. This is called a Closed Universe: here is
why. Consider the volume of a sphere at time t. The surface of the sphere
is A = 4ma®(t)R?*sin?(x) (the surface is at dy = 0 and the integral over df2
gives the usual 47) whereas the proper distance between two concentric shells
is dl = a(t)Rdyx. Hence the volume is

V= / Adl = 4ma(t)*R? /0 ’ sin?(x) dx = 27 (a(t)R)>. (2.37)

So the volume of space in this Universe, at fixed time, is finite, hence why it
is called spatially closed.

The metric for an Open Universe can be obtained, by taking k = —1. In
this case, y is unbounded and V' could be infinite. However, it need not be:
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our assumption of homogeneity might break down for large x, in which case
our reasoning would not apply.

Finally, the case of k£ = 0 is called a flat Universe, because the metric in
(r,0,¢) corresponds to that of a flat space. However, because the complete
metric still has the a(t) multiplicative factor, the physical metric is not the
same as that for a flat space. We will discuss how to compute distances soon,
but first I want to derive the cosmological redshift. The factor a(t) is the
scale factor, which describes the rate at which the Universe expands. A little
thought will convince you that the equations that describe its evolution, are
just the Friedmann equations which we derived earlier.

The line element ds? is called the Robertson-Walker line element, after
they showed that this is the most general form for the line element in a
spatially homogeneous and isotropic space-time, independent of general rel-
ativity. This is a purely geometric description of the Universe, and does not
involve any dynamics. In particular, it does not tell us how the expansion fac-
tor evolves in time. We need a dynamical theory for this, for which we used
GR so far. So combining the Friedmann equations, that tell us the evolu-
tion a(t), with the Robertson-Walker line element, to describe the metric, we
have a complete cosmological model. These models are called Friedmann-
Robertson-Walker models, or FRW models for short. As we shall see
later, given the parameters that characterise them, they are extremely suc-
cessful in describing the cosmological world as inferred from a wide variety
of data sets.

Note that it is not obvious at this stage that the integration constant K
that appeared in Eq. (2.9) be related to the choice of £ = 0,+1 in Eq. (2.36),
however within GR they are (see e.g. Peebles page 291).

2.7 Cosmological Redshift

Suppose a cosmologically distant source emits two photons, the first one at
time t., and the second one a short time interval later, at time t, + At.. Now
choose the axes such that these photons move radially, i.e. df = d¢ = 0.
Since for the photon ds = 0, we have dt = a(t)dr/+/1 — kr? (I assume you've
noticed I have been setting the speed of light, ¢ = 1 for a while now).
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Therefore, introducing r;, we can integrate along the light ray, to find

that
[
woalt) o (1= k)2
to+Ato dt
_ / e (2.38)
t

e+ AL, a(t)

r1 is the coordinate that corresponds to t, (the time the photon is ob-
served), and define

" dr
Te = /O m . (239)

Note that this measure of distance does not depend on time, because we
have taken out the explicit time dependence introduced by the scale factor
a(t). It is called the co-moving distance between the points where the photon
was emitted and where it is observed. And because it does not depend on
time, the second step in Eq.2.38 follows. Rewriting the RHS as

to+At0 to to +Ato te+Ate
[ A A (2.40)
te+Ate te to te

to+Aty te+Ate
/ At / At (2.41)
o alt) ), a(t)

and hence for small time intervals

At, At

Qo Qe

we get that

(2.42)

For example, let us take At, the period of the photon (i.e. the time
between two successive maxima), and hence the wavelength is At, (since
¢ = 1). Equation 2.42 then provides a relation between the emitted and
observed wavelength of photon,

Qo
Ao = Ae(1 + 2), s l+z2=—. (2.43)

Qe
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So the ratio of emitted over observed wavelength, equals the ratio of the
expansion factors a. and a, of the Universe, when the photon was emitted
and observed, respectively. This ratio is usually written as 1 4+ 2z, where 2
is called the redshift of the galaxy that emitted the photon. It is as if the
photon’s wavelength expands with the Universe. Note that this has nothing
to do with a Doppler shift; the only thing which is moving is the photon, and
it always moves with the speed of light.

Think again of the ants on the balloon. If the ants are moving with re-
spect to the balloon, then in addition to the redshift, there will also be a
Doppler shift, which adds to the change in wavelength. Because the velocity
of the ant is < ¢, we can use the non-relativistic Doppler shift equation, and
so the observed wavelength A\, = A\.(1 + 2)(1 4 v/c), where v needs to take
account of the velocity of both the ant that observes the light ray, and the
one that emits the light ray. For nearby sources, v/c < 1, but for distant
ones most of the change in A is due to the redshift.

Cosmologists often treat the redshift as a distance label for an object.
This is not quite correct: Eq. (2.43) demonstrate that the redshift of a source
is not constant in time, since the expansion factor depends on time. We want
to know dz/dt.ps, which, given 1+ z = ay/a. can be written as:

dz ao ag da. dten
z ey = — — —
dtobs Qe Clg dtem dtobs
= (1+2)Hy—H(z). (2.44)
Is this measurable? Suppose we observe a source at z = 3. Using

Eq. (2.18), we find that H(z = 3) ~ Ho(Q,(1 + 2)*)"/2, because we can
neglect radiation, curvature and the cosmological constant for the current
values of the Qs (see later). Hence H(z = 3) ~ 4.4H,, for €, = 0.3, and
2 = 0.4H, ~ 107®¥s7. So over a year, the redshift of the z = 3 source
changes by ~ 107!!. It is not inconceivable that we will one day be able
to measure such changes. Note that the ‘redshift’ would also change if the
peculiar velocity of the distant source, or of the observer, would change. And
these changes are likely to be far greater than the minuscule Z which results
from the deceleration of the Universe.
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2.8 Cosmological Distances

2.8.1 Angular size diameter and luminosity distance

Because of the expansion of the Universe, different measures of distance,
which would be the same in a non-expanding Universe, are different. It is
not that one is correct and the others are wrong, they are just different. We
already encountered the co-moving distance

m dr
re :/0 eyt (2.45)

Related is the physical or proper distance, r = a,r., i.e. the product of
the co-moving distance with the expansion factor. Suppose you normalise
the expansion factor at a given time, for example now, to be a, = 1. Then
proper distance and co-moving distance would be the same. As you go back
in time, and hence the expansion factor a < 1, then the proper distance
decreases, whereas by construction, the co-moving one remains the same.
(Hence its name!) In our ants-on-a-balloon analogy, the co-moving distance
is the distance between the ants, in units of the radius of the sphere. So it
stays the same when the ants do not move wrt the balloon.

For making measurements in the Universe, two other distances are rel-
evant. One way to characterise the distance to an object, is by measuring
the angular extent 6 of an object with known (physical) size [. You get the
angular diameter distance D4 by taking the ratio, d4 = (/6 (for small § of
course). So by definition of angular size diameter distance, if you increase
D4 by a factor two, then the angular extent of the object halves. At the
time that the proper size of the object is [, its proper distance is a.r., and
its angular extent is therefore 6 = 1/(a.r.). And hence

dy = aere (2.46)

Note that by the time you observe the object —i.e. by the time the light
emitted by the object has reached you — its proper distance will have in-
creased by an amount a,/a.. And so the angular extent is not the ratio of
its proper size, [ over its proper distance a,r., but {/d,.

Another way to measure distances is to measure the observed flux from
an object with known luminosity. The luminosity distance, dy, is defined
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such, that if you increase d; by a factor f, the observed flux will go down
like f2. Suppose the source has intrinsic luminosity L. = n./At, — i.e., the
source emits n, photons per time interval At.. Now the observed flux, F,, —
the amount of photon energy passing through unit surface per unit time, is

Ne e 1
At, N\, 4ma2r?
At Ae 1

“At, N, dmar?

L I
 dmar? 14z

Le
drds

F, =

(2.47)

The number of photons you detect through the surface of a sphere centred
on the emitting galaxy, is n./At,, which is not equal to L. because of time
dilation (Eq.2.42). The energy of each photon, o< 1/), is decreased because
of the redshifting of the photons, Eq.2.43. And so the measured energy flux,
F,, is the first line of the previous equation. Using the previous expression
for redshift leads to the luminosity distance

dp = agre(1+ 2) = da(1+ 2)2. (2.48)

Only if the Universe is not expanding, are these equal.

In a non-expanding Universe, the surface brightness (SB) of an object
does not depend on distance. For an extended source, such as for example
a galaxy, the intensity is the luminosity per unit area, I = L/A. Surface
brightness is the observational version of this, it is the observed flux, dF’, per
unit solid angle dQ2, SB = dF/d). In Euclidean geometry, the flux decreases
o 1/r? but the surface area corresponding to a given solid angle increases
o 72. Think of the galaxy as made-up of stars of indentical luminosity. For
given solid df, the flux received from each star oc 1/r? but the number of
stars in dQ is o< r%. Equation (2.48) shows this is note the case in the FRW
model. Consider a patch of given physical size [ on the galaxy. It emits a total
flux I.ml?, where I, is the intrinsic intensity. The corresponding observed flux
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Is
Lri?
4rd?
I.d%dQ 1
drdy (1+2)4
I

x md@. (2.49)

dFy =

Note that this is independent of the cosmological dependence of a(t), and
hence is an important test to eliminate rival models.

For the EdS model, with k& = 0 and a(t) = ao(t/ts)*?, we can easily
evaluate the previous integrals. For the co-moving distance, we obtain

" to (t o dt 3t t
e — d = _— = —_— " = —O - _6 1/3 . 2
" /0 g /te a(t) /te Qo (t/t0)2/3 Qo [ (to) } (2:50)

Hence the angular-size diameter distance, d4 = a.r., is in terms of the
redshift, 1 + 2z = a,/ae = (to/te)*/?,

(14 2)2 -1

dy = 3t,0————
A =Sy

(2.51)

This function, plotted in Fig. 2.1, has a maximum for z = 5/4. And so,
an object of given size, will span a minimum angular size on the sky, when
at z =5/4, and will start to appear bigger again when even further away.

How to interpret this? Consider as simple analogy a closed 2D space:
the surface of a sphere. Assume you are at at the North pole, and measure
the angular extent of a rod, held perpendicular to lines of constant longi-
tude (i.e., parallel to the equator). Now draw lines with constant longitude
on the surface, 0 for Greenwich. When the rod is at the equator, it has a
certain angular extent, 6, which is a measure of how many lines of constant
longitude cross the rod. When the rod moves toward you, it will cross more
of the lines: its angular extent increases. But also as the rod moves away
from you, its angular extent increases, and becomes infinite at the South pole.
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Figure 2.1: Top panel: Angular size diameter distance d4 for an Einstein-
de Sitter Universe (Qiota1 = Qi = 1), as function of redshift. Bottom panel:
Angular extent € (in arc seconds) of a galaxy of fixed physical size of 20kpc/h
as function of redshift, for the same EdS model. Note how d4 reaches a
maximum for z = 5/4, and consequently 6 a minimum.
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The co-moving distance to an object with known redshift, r. = [;* dr/(1 — kr?)'/? =

tteo dt/a(t) depends on how the scale factor varies as function of time, and
hence on the parameters of the cosmological model. Suppose we measure the
apparent luminosity of objects with the same intrinsic luminosity (a standard
candle) as function of z. The apparent luminosity depends on the luminosity
distance, and hence also on a(t). This is what the super-nova cosmology
project did.

Super novae (SNe) of type I, which are thought to result from mass trans-
fer in binary stars, are also thought to be relatively uniform in their prop-
erties, in particular their peak brightness is assumed to be a good standard
candle. In addition, these sources are very bright, and so can be observed
out to large distances. Figure 2.2 is the apparent magnitude - redshift re-
lation for a sample of SNe, from z ~ 0 to z = 1. Superposed on the data
are theoretical curves, which plot the evolution of the apparent brightness
for a standard candle, in various cosmological model. In models without a
cosmological constant, SN at z ~ 1 are predicted to be brighter than the
observed ones, hence suggesting a non-zero cosmological constant.

2.8.2 Horizons

Another distance we can compute is the distance that light has travelled
since t = 0. The co-moving distance 7, (h for horizon) is obtained by taking
the limit of ¢, — 0 in eq.2.50, 7, = 3t,/a,. And so the proper size of the
horizon is a,r, = 3t,. And using our expression for t, in terms of Hj, the
proper size is 2/Hy = 6 x 103h*Mpc. So, if we lived in an EdS Universe,
the furthest distance we could see galaxies to, would be this.

This is a particular case of what is called a ‘horizon’. Suppose a galaxy
at distance r such that Hr > ¢, emits a light-ray toward us. The proper
distance between us and that galaxy is increasing faster than ¢, and hence
the distance between us and the photon is increasing: the photon actually
appears to move away from us. Depending on how the expansion rate evolves
with time, the packet may or may not ever reach us.

Using the metric Eq. (2.36) and without loss of generality, let’s put our-

selves at x = 0, and assume the photon moves along the § = ¢ = 0 axis (the
Universe is isotropic!). Since for the photon ds = 0, dt = a(t)Rdy, so that
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the co-moving distance travelled by the photon between times t. and ¢, is

ot
Ry = /t ok (2.52)

For the EdS case, k = 0 and we have r = Rsin(x) — r = Ry, and a(t) =

ao(t/te)?3, hence
to
Te = / i, (2.53)
r. a(t)

which reduces to 3ty for t. —, as we had before. Galaxies at greater dis-
tances are not causally connected, and are outside each other’s particle
horizon.

Whether or not there is a particle horizon depends on how quickly a(t) —
0 for ¢ — 0: it has to go slower than a o< t for the integral in Eq. (2.52) to
converge for ¢, — 0. This is the case for EdS (a oc t/3) or a radiation domi-
nated Universe (a o< t'/2). So in these cases, two points at opposite directions
in the sky, and distance r., have never been in causal contact. This begs the
question as to why the properties of the CMB, to be discussed below, are so
similar. This is called the horizon problem.

During inflation when a cosmological constant dominates the expansion,
ds? = dt* — exp(2HAL)(dr? + r*>dQ?), and the BB happened for ¢t — —oo.
With a(t) = exp(2Ht), the integral for 7. does not converge, and hence there
is no particle horizon, and all points will eventually be in causal contact with
all other points (at least up to when inflation ends). This might be why the
Universe is so strikingly uniform, as causality at least was present at some
time in the Universe’s past.

2.9 The Thermal History of the Universe

Going back in time, the Universe gets hotter and denser. Therefore, collisions
between particles becomes more frequent as well as more energetic, and some
of the particles we have now, will be destroyed. A good example of how this
works is the cosmic micro-wave background.
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2.9.1 The Cosmic Micro-wave Background
Redshifting of a black-body spectrum

The energy density of photons of frequency vy = w;/27 in a black-body
spectrum at temperature 77, is

hp w3dwy
2m3¢3 exp(hpwy /2kpTy) — 1
Suppose you have such a BB spectrum at some time, ¢t = ¢;. Then, if

no photons get destroyed or produced, at the later time ¢, each photon will
appear redshifted according to w; = (1 + z)wp, and the distribution will be

u(wy)dw, = (2.54)

hp wg’dwo
27'[‘303 exp(hpwo/QﬁkBTO) -1 ’

with Ty = T1/(1 + z). So, still a BB spectrum, but with temperature de-
creased by a factor 1+ 2, and the energy density decreased by a factor (1+42)*
(recall I promised to show that the radiation density scales < 1/a* = (1+2)*.
Note that it was not obvious this would happen. It works, because (1) the ex-
ponent is a function of w/T, and (2) the number of photons o< w?® oc 1/(1+2)3.

u(wy)dw, = (1 + 2)* (2.55)

What this shows is that, even in the absence of interactions, the CMB
will retain its BB nature forever.

Origin of the CMB

Figure 2.3 compares the spectrum of the micro-wave background as mea-
sured by a variety of balloon and satellite measurements (symbols) to that
of a black-body (dotted line). The agreement is amazing.

The measured value of the CMB temperature now is 7" = 2.73K. Since
T x (1+ z), we find that at redshift ~ 1100, 7" ~ 3000K, and collisions
between gas particles were sufficiently energetic to ionise the hydrogen in
the Universe. So, at even higher redshifts, the Universe was fully ionised.
The beauty of this is, that then the Universe was also opaque, because pho-
tons kept on scattering off the free electrons. And so photons and gas were
tightly coupled. But we know what the result of that is: the gas will get into
a Maxwell-Boltzmann distribution, and the photons into a BB distribution,
with the same temperature. So, no matter what the initial distributions
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of experiments, compared to a Black-Body spectrum. The agreement is
astounding.
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were, the many interactions will automatically ensure that a BB distribution
for photons will be set-up, at least given enough time. And after interactions
cease at z =~ 1100, because the Universe becomes neutral, the expansion of
the Universe ensures that the photon distribution remains a BB distribution,
even though gas and photons decouple.

Gamov predicted the existence of relic radiation from the BB, but, while
Dicke and collaborators where building instruments to actively look for it,
Penzias & Wilson in 1965 discovered a background of micro-wave photons
that was exceedingly homogeneous and which they traced to cosmological
origins. So they discovered the CMB by accident. In a sense, the CMB sky
is reminiscent of Olber’s paradox. In Euclidean geometry, surface bright-
ness is conserved, and hence one would expect the night sky to be infinitely
bright, clearly in conflict with observations. Applied to the CMB, it is the
redshifting of surface brightness oc 1/(1+ 2)* that prevents us being blinded
by photons coming from the BB.

The energy density u, of photons with temperature 7' is u, = a T*, where
a = 7.5646 x 10716 J m=3 K~* is the radiation constant. The corresponding
mass density is p, = u,/c?, hence

8t GaT* N

Q== ~ 2.5 x 10752, (2.56)

pe 3 H2?
This differs from the usually quoted value of Q, = 4.22 x 107°h~2, that we

have been using so far, because we have neglected the contribution from
neutrinos.

Recombination

How does the transition from fully ionised, to fully neutral occur? At high
density and temperature, ionisations and recombinations will be in equilib-
rium. As the Universe expands and cools, the typical collision energy will
be unable to ionise hydrogen, and the gas will become increasingly neutral.
However, and this is crucial, the rate at which hydrogen recombines also
drops, since the recombination rate oc p? o< (1 + 2)%. So a small, but no-zero
residual ionisation is left over.
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When doing this in more detail, we find two results. Firstly, you would
expect ionisation to end, when the typical kinetic energy of a gas particle
is equal to the binding energy of the hydrogen atom, kg7 ~ 13.6 eV, hence
T ~ 10* K. In fact, because the particles have a Boltzmann distribution, and
hence a tail toward higher energies, ionisations only stop when kgT" =~ 13.6/3,
or T =~ 3000 K. Secondly, the gas does not fully recombine, because the re-
combination rate effectively becomes larger than the age of the Universe.
Note that as the gas becomes increasingly neutral, the tiny fraction of free
electrons simply cannot find the equally tiny fraction of protons to combine
with.

2.9.2 Relic particles and nucleo-synthesis

The process whereby electrons and protons recombine at z ~ 1100 leaving a
low level of residual ions is typical for how the cooling Universe leaves relic
particles. At sufficiently high T, each reaction (e.g. ionisation) is in ap-
proximate equilibrium with the opposite reaction (recombination), and the
particles are in equilibrium. As T’ changes, the equilibrium values change,
but because the reaction rate is so high, the particles quickly adapt to the
new equilibrium. Hence the particles’ abundances track closely the slowly
changing equilibrium abundance.

However, many of the reaction rates increase strongly with both 7" and
p. Consequently, as the Universe expands and cools, the reaction rates drop,
and eventually, the rates can not keep-up with the change in equilibrium
required. It is often a good approximation to simply neglect the reactions
once the reaction rate I" drops below the age of the Universe ~ 1/H, and to
assume that the abundance of the particles remains frozen at the last values
they had, when I"' ~ 1/H.

As an example, let us consider the abundance of neutrons and protons.
At sufficiently high 7', the reactions for converting p to n are

n+ve —p+e
n+et —p+u.. (2.57)

When in equilibrium, the ratio of ns over ps is set by the usual Boltzmann
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factor, which arises because n and p have slightly different mass, N, /N, ~
exp(—(my, —m,)c®/kgT).

Calculations show that the reaction rate of the reaction in Eq. (2.57) ef-
fectively drops below the Hubble time, when kgT' ~ 0.8MeV at which time
N,/N, ~ exp(—1.3/0.8) =~ 1/5, where (m, — m,)c®> = 1.3MeVThe relative
abundance of N,,/N, would from then on remain constant, except that free
neutrons decay, with a half-life .y ~ 612s.

When did this happen? At late time, when matter dominates the expan-
sion rate, a = (t/ty)%3, and hence T = Ty(to/t)**. This is (approximately)
valid until matter-radiation equality which is, assuming ¢y = 12Gyr,

to 0. B2)3/2
te - ~ 3300 m y
4 (23800§2mh2)3/2 ( ) g

T, = 6.5x10"Q,h°K, (2.58)

where I used zoq ~ 2380082,,,h%. Before this time, we can assume radiation
domination, hence a o< t'/2, and finally

t
T = To(—)"?~2x10"KQ,h?

teq
kpT =~ 2MeV Q,,h2(t/s)"1/2. (2.59)

So the reactions coverting n to p ‘froze-out’ at a time t ~ 6.3(Q,,h?)%s.

After these reactions ceased, neutrons and protons reacted to produce
heavier elements, through

p+n —D
D+n — 3He
D+D — ‘He. (2.60)

Given the corresponding nuclear-reaction rates, one finds that the corre-
sponding destruction reactions (with the opposite arrows) became unimpor-
tant below kT ~ 0.1MeV. Hence the *He abundance can be estimated by
requiring that all neutrons that were still around at T' = Ty, ended up inside
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a Helium atom (and not in Deuterium say). The corresponding time is

~ 2MeV(Q,h?%)?
~ 0.1MeV

~ 400(Q2,,h%)%s . (2.61)

He

At t = tye, the neutron over proton abundance had fallen to

N, 1
= £ &XP(—400 x In(2)/612) ~ 1/8, (2.62)

p

due to spontaneous neutron decay. Because Helium contains 2 neutrons, the
Helium abundance by mass is

4(Nn/2) 2 _

Not N, 9 ~ 0.22. (2.63)

A correct calculation of this value also provides the corresponding Deu-

terium abundance, which can be compared against observations. Deuterium
is an espicially powerful probe, because stars do not produce but only de-
stroy Deuterium. The abundance of elements thus produced depends on the
baryon density ,h? (because the reaction rates do), and one can vary €,
to obtain the best fit to the data. The abundances of the various elements
depend on €2, in different ways, as illustrated in Fig. 2.4, and it is therefore
not obvious that BB synthesis would predict the observed values. The fact
that it does is strong confirmation of the cosmological model we have been
describing.
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Figure 2.4: Abundance of various elements produced during BB nucleosyn-
thesis as function of the baryon density (curves), versus the observational
constraints (vertical band). The very fact that there is a reaonable value of
the baryon density that fits all constraints is strong evidence in favour of the
Hot Big Bang.



Chapter 3

Linear growth of Cosmological
Perturbations

3.1 Introduction

The Cosmology Principle, introduced by Einstein, states that the Universe
is homogeneous and isotropic. As we discussed before, this only applies
to ‘sufficiently’ large scales: on smaller scales, matter is seen to cluster in
galaxies, which themselves cluster in groups, clusters and super-clusters. We
think that these structures grew gravitationally from very small ‘primordial
perturbations’in the inflationary paradigm, these primordial perturbations
were at one stage quantum fluctuations, which were inflated to macroscopic
scales. When gravity acted on these small perturbations, it made denser
regions even more dense, and under dense regions even more under dense,
resulting in the structures we see today.

Because the fluctuations were thought to be small once!, it makes sense to
treat the growth of perturbations in an expanding Universe in linear theory.
There are several excellent reviews of this, for example see Efstathiou’s review
in ‘Physics of the Early Universe’ (Davies, Peacock & Heavens), ‘Structure
formation in the Universe’(T Padmanabhan, Cambridge 1993).

IThis need not be the case: structure may have been seeded non-perturbatively as well.
The tremendous confirmation of the inflationary paradigm by the CMB data have made
these cosmic strings models less popular.
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3.2 Equations for the growth of perturbations

We will derive how perturbations in a self gravitating fluid grow when their
wavelength is larger than the Jeans length. We will see that the expansion
of the Universe modifies the growth rate of the perturbations such that they
grow as a power-law in time, in contrast to the usual exponential growth.
This is of course a very important difference, and is crucial ingredient for
understanding galaxy formation. Mathematically, the difference arises be-
cause the differential equations in co-moving coordinates have explicit time
dependence that the usual equations do not have. We will assume Newtonian
mechanics, as the general relativistic derivation gives the same answer..

The equations we need to solve, those of a self-gravitating fluid, are the
continuity, Euler, energy and Poisson equations. They are respectively

9p
- = 1
5 + V(pv) 0 (3.1)
0 1
pTad +(v-V)v = —;Vp - Vo (3.2)
3}
Pt +p(v-Vu = —pVv (3.3)

V20 = 4nGp. (3.4)
Here, u is the energy per unit mass, u = p/(v — 1)p = kgT/(y — 1) pumy,.

In the above formulation, the equations describe how the fluid moves
with respect to our fixed set of coordinates r. This is called the Fulerian
description. In the Lagrangian description, we imagine ourselves to move
along with the fluid, and we want to describe how the fluid’s properties such
as density, changes along the trajectory. This is accomplished by introducing
the Lagrangian derivative, df /dt = 0f /0t + (v - V) f, for any fluid variable

f.

In order to take into account the expansion of the Universe, we will write
the physical variables r (the position) and v (velocity) as perturbations on
top of a homogeneous expansion, by introducing the co-moving position x
and the peculiar velocity v, as
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r = a(t)x

V = I'=a4x+aX=ax+vp. (3.5)

Here, a(t) is the scale factor of the expanding (background) cosmological
model. The velocity v is the sum of the Hubble velocity, ax = Hr, where
H = a/a is Hubble’s constant, and a ‘peculiar’ velocity, v, = ax.

Next step is to insert this change of variables into Eqs.3.4. We have to be
a bit careful here: the derivative /0t in those equations refers to derivatives
with respect to t, at constant r. But if we want to write our fluid fields
in terms of (x,t), instead of (r,t), then we need to express that, now, we
want time derivatives at constant x, and not at constant r. Suppose we have
some function f(r,t) = g(r/a,t), such as the density, or velocity, for which
we want to compute the partial derivative to time, for constant x, and not
constant r. We can do this like

0 0
Ef(r,t)h" = 7 (r/a,t)lr
= Dyl — (Hx- - )glx,) (3)
- atg X, X X 8X g\X, 3 .
So in fact we just need to replace
0 0
§|r—>§|x—(HX'V), (37)

where from now on, we will always assume that V = 9/0x, hence Vy =
(1/a)V and Vi = (1/a*)V?.
The continuity equation then becomes,

1
(% —Hx-V)p%—an(ax%—vp) =0. (3.8)

Now, we can write the density as

p(x;1) = pu(t) (1 +0(x, 1)) (3.9)

where py(t) describes the time evolution of the unperturbed Universe, and
0 the deviation from the homogeneous solution, which need not be small, but
obviously 6 > —1
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In terms of these new variables, the continuity equation becomes

9] 1
(&—Hx-V)pb(1+5)+anb(1+5)(ax+vp) =0, (3.10)

Collecting terms which do not depend on the perturbation, and those
that do, we find that

pp+3Hp, = 0
-1
§+-V[(1+0)v] = 0. (3.11)

Now the first equation just describes how the background density evolves.
The second one is the continuity equation for the density perturbation.
Using the same substitution in the Poisson equation, we find that

%V% — 4nGpy(1+6) — A, (3.12)

where I've also inserted the cosmological constant, A. Now let’s define an-
other potential, ¥, as

2 1
=0T+ %pranZ — gAa%Q. (3.13)
Taking the Laplacian, we get

V20 = VU + 47Gpya® — Aa?*. (3.14)

Comparing Egs. (3.12) and (3.14), note that & — U solves the Poisson
equation for the homogeneous case, § = 0, whereas V¥ is the potential that
describes the perturbation,

V2V = 470G pya’s . (3.15)

Fine. Now compute the gravitational force in terms of the new potential

v

Y

4 1
Vo = VU + %praZX — SAd’x. (3.16)

Next insert this into Euler’s equation, Eq. (3.2) to obtain
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0 1
(5p — Hx-V)(ax+vp)+ —|(ax +vp) - V](ax +vy)
1 dm ., o, 1., 1
= a(V\I/+3prax 3Aax) apr. (3.17)

Working-out the left hand side (LHS) of this equation, taking into account
that the time derivative assumes x to be constant, gives

LHS = dx+v,— Hax—H(x-V)v,
1
+ [@*x + a(x - V)vp 4+ avy + (v - V)vp ] (3.18)

Now we need to use the fact that our uniform density, p(t), and the scale
factor, a(t), satisfy the Friedmann equation, so that

A
Q= —?pra + 30 (3.19)

Combining these two leads use to the equation for the time evolution of
the peculiar velocity, v,

, 1 1 2V
Vp—f—HVp—f—a(Vp'V)VP = —EV\P—ESTP
VU = 4rGpya®s . (3.20)

To get the pressure term, use Vp = (dp/dp)Vp = v2Vp, were v, is the
adiabatic sound speed. This assumes that the gas is polytropic, so that the
pressure is a function of density, and dp/dp = v?.

Alternatively, we can substitute v, = ax to obtain an equation for x:

1 2 v
%+ 2H% + (x-V)x = —— Vo — = 2
a a’ p

Collecting all the above, we find:
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0+V[1+0)% = 0

1 2
% oMk 4+ (x- V)% = vy VP
a? a’ p
a+3HE + (x-Viu = -Lvx
p p
VU = drGpyda®. (3.21)

So far we have only assumed the gas to be polytropic, with dp/dp = v2,
and that the scale factor a(t) satisfies the Friedmann equation.

In the absence of pressure or gravitational forces, Euler’s equation reads

%+ 2H% + (x- V)% =0, (3.22)

which integrates to? %azx = 0 or ax  1/a: because of the expansion
of the Universe, peculiar velocities ax decay as 1/a. Similarly, the energy
equation integrates in that case to a~Ywu =constant, hence T o u o
1/a* < (1 + 2)* for polytropic gas with v = 5/3. This also follows from

poc (14 2)3 and u o p7~ ! o< (14 2)3071),

3.3 Linear growth

We can look for the behaviour of small perturbations by linearising equa-
tions (3.21):

§+Vx = 0
. . 1 2
x+2Hx = ——QV\I/——‘;V(S
a a
VU = 4rnGpyda®. (3.23)

By taking the time derivative of the first one, and the divergence of the
second one, this simplifies to

2
. . /US
§+2H0 — Evz‘é = 4nGpyd . (3.24)

2Here, d/dt = 9/0t + (x - V) is the Lagrangian derivative.
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For a self-gravitating fluid in a non-expanding Universe, a = 1 and H = 0,
this reduces to )
§ — v2V?6 = 4rGpyd (3.25)

Substituting d(x,t) = exp(i(k - x — wt)) yields the dispersion relation
w? = vk — 4nGpy . (3.26)

For perturbations with wavelength \/27 < (v2/47Gpy)'/?, this solu-
tion corresponds to travelling waves, sound waves with wavelength modi-
fied by gravity. As the fluid compresses, the pressure gradient is able to
make the gas expand again, and overcome gravity. The critical wavelength
Ay /21 = (V247G py)'/? is called the Jeans length. Waves larger than A are
unstable and collapse under gravity, with exponential growth o exp(—wy t)
where w; is the imaginary part of w.

But in an expanding Universe, with H # 0, the behaviour is very different.
In particular, exponential solutions, § o exp(i(k - x + wt)) are no longer
solutions to this equation, because H and a explicitly depend on time.

3.3.1 Matter dominated Universe

For example, let’s look at the EAS Universe, where a o t/3. Writing the
behaviour a bit more explicit,

t
a = ao(—)2/3
Lo
H = 2
3t
8¢ 4
o= I, - 2 2
3 Po 91527 (3 7)

where I have also used the second Friedmann equation, Eq.??, for k = A =
0. Neglecting the pressure term for a second, and substituting the previous
equations, I find that the final equation for the perturbation  becomes

. 4. 9
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Substituting the Ansatz 6 o« t*, we get a quadratic equation for a and

hence two solutions, § oc t2/% and 6 o ™! (i.e. o = 2/3 and o = —1), and
hence the general solution
§ = At + Bt™' = Aa+ Ba™*?. (3.29)

The first term grows in time, and hence is the growing mode, whereas
the amplitude of the second one decreases with time — the decreasing mode.
Note that they behave as a power law — a direct consequence of the explicit
time dependence of the coefficients of Eq. (3.28). This is very important,
because it means that unstable perturbations grow only as a power law —
much slower that the exponential growth of perturbations in the case of a
non-expanding fluid. The reason is that the perturbations needs to collapse
against the expansion of the rest of the Universe. And hence, it is not so
easy for galaxies to form out of the expansing Universe.

Note that the growth rate, § o< t*/3 o< a oc 1/(1 + z). So, as long as the
perturbation is linear (recall that we linearised the equations, and so our solu-
tion is only valid as long as |§| << 1) it grows proportional to the scale factor.

Recall from our discussion that the amplitude of the perturbations in the
CMB is of order 1072, at the recombination epoch, z ~ 1000. So, the ampli-
tude of these fluctuations now, is about a factor 1000 bigger, and so of order
1072, This is a somewhat simplistic reasoning, but it does suggest that we do
not expect any non-linear structures in the Universe today — clearly wrong.
This is probably one of the most convincing arguments for the existence of
dark matter on a cosmological scale.

3.3.2 (<1, matter dominated Universe

For an Open Universe, without a cosmological constant, the scale factor
evolves as a o< t at late times when curvature dominates the dynamics,

8t G 1 1

(=)? (3.30)

Q|

3 a2 a?
Hence substituting H(t) = a/a = 1/t into Eq. (3.24), neglecting pressure
forces, gives '
)
b+ = =0, (3.31)



which has the general solution
§=A+Bt". (3.32)

Again we have a decreasing mode Bt~!, but now the ‘growing’ mode
does not actually increase in amplitude. Because of the low matter density,
perturbations have stopped growing altogether, § — A.

3.3.3 Matter fluctuations in a smooth relativistic back-
ground

If the Universe contains a sea of collisionless relativistic particles, for ex-
ample photons or neutrinos, then they might dominate at early times, and
determine the expansion rate,

a G

(5)2 =3 (Pm + PR) (3.33)

4

with p,, < a™3 and pgr o< a™*, and the growth rate of perturbations in the

mass, determined by

04 2H0 = 4nGpnd . (3.34)

Here we assumed the total density to be p = p,,(1 + 0) + pg, i.e. there
are no perturbations in the radiation. The second Friedmann equation reads
in this case

a A7 G 4G
—=———(p+3p) = ———(pm +2pr). (3.35)
a 3 3
since p,, &~ 0 and pr = pr/3. Combined with the equation for the Hubble
constant, we get
4G In+2 _,

= r@H ) =—- 12l 3.36

noa. Using 7 as the new time variable, in which case

ISHISH

where 1 = pn/pn
1 = nH, we obtain

6 = &'nH
1n+2

N " 2 / V] 2 g 2
0 = " (nH)*+ 8 nia=08" (nH)*—9¢ 2—?7+1nH : (3.37)
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Here, ¢’ is 96 /9n and 6" = 0*5/0n?. Therefore the perturbation equation

for 6 becomes
0 (2439 d6 _3 ¢ (3.38)
dp?  2n(1+4+n) dnp  2n(1+mn)’ '

The growing mode is now

§=1+3n/2. (3.39)

Clearly, the fluctuation cannot grow, ¢ & constant, until 7 starts to become
N = pm/Pr > 1, i.e., until matter starts to dominate. When the Universe
is radiation dominated, matter fluctuations cannot grow: they are tied to
radiation.

3.4 Fourier decomposition of the density field

The statistics of the density field are often assumed to be Gaussian. This
may follow from the central-limit theorem, or from inflation. In any case,
the fluctuations measured in the CMB appear to be Gaussian to high level
of accuracy. Here we discuss in more detail the growth of perturbations in a
Gaussian density field.

3.4.1 Power-spectrum and correlation functions

We can characterise the density field by its Fourier transform,

o(x,t) = Zé(k, t)exp(i(k-x)) = % /5(k, t) exp(i(k - x)) dk, (3.40)

where the density p(x,t) = p(t) (1 + d(x,1t)), and V is a sufficiently large
volume in which we approximate the Universe as periodic. Since §(x) is real
and has mean zero, we have (d(k,t)) = 0 and d(k,t) = §(—k,t)'.

Since the perturbation equation Eq. (3.24) is linear, each Fourier mode
d(k, t) satisfies the linear growth equation separately, i.e., each mode grows
independently of all the others, as long as § < 1.
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The statistical properties of the density field are determined by the infinite
set of correlation functions,

(0(x1)d(x2)) = &
(0(x1)d(x2)d(x3)) = &
(0(x1)d(x2)0(x3)d(x4)) = &

(0(x1)0(x2)d(x3) - 0(xn)) = &En- (3.41)

Since the Universe is homogeneous and isotropic, these correlation func-

tions should only depend on relative distance, e.g., & = &(|x; — Xo|) for the
two-point correlation function &;.

What does this mean? Consider for example the two-point density corre-
lation function, & (JA]) = (p(r)p(r + A)). Clearly, for A = 0, &(0) = (p?),
whereas for very large A, you expect the density at r and at r + A to be
uncorrelated, hence &(|A| — oo) — (p)2. In the intermediate regime, &
describes to what extent the density at two points separated by A are cor-
related.

Inserting the Fourier decomposition into & yields
&A) = = / d(x)d(x + A)dx
= — Z / ) exp(ik - x) 0(q) exp(iq(x + A)) dx

= Z|5( )I* exp(—ik - A)

= OE /](5 exp(—ik - A) dk, (3.42)

where we used the fact that
1
v /exp(z'k -x)dx = 67 (k), (3.43)

where 07 is Dirac’s delta function. The function P(k) = (|6(k)|?) is called
the power spectrum of the density field, the () denote an ensemble average.
Note that because of isotropy, P(k) = P(|k|). The two-point correlation
function is the Fourier transform of the power-spectrum.
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3.4.2 Gaussian fields

An important class of density fields is one where d(k) are Gaussian variables,
i.e. where the real and imaginary parts of § are independently Gaussian
distributed with zero mean and dispersion P(k)/2, such that (|6]?) = (|0r|*)+
(|67)*) = P. Such a density field is called a Gaussian field. By writing the
complex amplitude as the sum of its real and imaginary parts, d = dr + iy,
and introducing the amplitude A = (0% + 62)'/2 and phase angle 6, tanf =
d1/0r, we can find the probability distribution for A and € from

— 1 2
= %P2 A exp(—A*/P)dAdob, (3.44)

from which it becomes clear that the amplitude of the Fourier modes are
distributed o< A exp(—A?/P), and the phases 6 are random in [0, 27].

If the Fourier modes are Gaussian, then the real-space density field is a
sum of Gaussian fields, hence also a Gaussian field, with probability

1

p(é)dé = (27‘(‘0‘2)1/2

exp(—6%/20%) d§ . (3.45)
Since 0 > —1, this can only work when the dispersion ¢ < 1, that is, the field
can only be Gaussian for very small perturbations, and as the perturbations
grow, the statistics of the field will always start to deviate from a Gaussian.

A Gaussian field has the important property that all the higher order
correlation functions can be computed in terms of the power-spectrum, or
alternatively from the two-point correlation function. So, if the cosmological
density field were Gaussian initially, then its statistics are fully determined
by the power-spectrum P(k). Fluctuations generated during inflation are
likely, but not necessarily, Gaussian.

As fluctuations grow, the statistics of ¢ will become non-Gaussian, in
particular, the distribution of the galaxy density field today is non-Gaussian.
However, for the CMB radiation, the fluctuations are very small, and are very
accurately Gaussian, although there is a large army of cosmologists searching
for deviations from Gaussianity.

50



3.4.3 Mass fluctuations

The Fourier decomposition can also be used to estimate the mass-variance in
spheres of a given size, Viy. The mean mass in such a volume is M = p Viy.
To find the level of fluctuation around the mean value, ((§M/M)?), define
a filter function W such that [ W(x)dx = Viy. When this filter function is
positioned at position x the mass contained within it is

M(x) = / p(x) W (x — x')
= / p(140(x")) W(x —x') dx’
— p/ W(x—x)dx' +p /Z d(k) exp(ik - x') W(q) exp(iq - (x — x')) dx’
kq

The integral over x’ is [ exp( (k q) - x)dx' = VP (k — q), hence

M(x) = [1 + — Z d(k k) exp(ik - x)| . (3.46)
Consequently
<(M(x]24— M)2> _ % /<M(X§[ M)2dx
_ % / 3 5(k) W (K) exp(ik - x)5(q) W (q) expliq - x) dx
Ve 2 2
R 6(k) " [W (k)|

wWM

= Gy [ 1900R WGP

1 [ dk k(K2 VP )

This shows that
Kk |o(k)[* V2

2m2 ’

A*(k) = (3.48)
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is a measure of how much fluctuations on scale k£ contribute to the mass
fluctutations, per unit logarithmic interval in k. Note in passing that

Viv = /W(x) dx =Y W(k) /exp(ik x)dx=VW(k=0), (3.49)
k

hence W(k =0) = Vi /V.

A special type of filter is one which operates directly in Fourier space,
such that for example

]

Vi Z d(k) exp(ik - x), (3.50)

where M o 1/k3 . Such a filter only allows modes with sufficiently small k
or sufficiently long wavelength A > A\pin27/ky, ~ M'/3 to contribute to the
fluctuations in mass. For such a filter,

P o= v X[ e etk +a)x) dx

k<km,q<km

= > k)P

k<km
Vo[

= — k> P(k)dk . 51
5z | P (351)

oM

(=

If we know the power-spectrum at a given time ¢y, then we can use
our linear perturbation equations to compute the PS at any later time ¢,
P(k,t) = T*(k,t) P(k,tp). Since the Fourier modes evolve independently,
the function T'(k,t) does not depend on the actual shape P(k,ty). It is
called the transfer function. Since P(k) = (|6(k)|?), T also specifies how
d grows, 6(k,t) = T(k,t)6(k,to). If the primordial field is Gaussian, then
its statistics is completely determined by P(k,t) = T?(k,t)P(k,t,), and so
T(k,t) and P(k,to) together provide a complete description of how structure
evolves in the linear regime.
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3.4.4 The Transfer function

Super-horizon growth

So far we have compute the growth rate in the Newtonian approximation,
so our results may be correct for wavelengths A = 27 /k < ct, where t is the
age of the Universe®. We have seen that these growth rates depend on the
properties of the cosmological model, in particular, the growth rate differs in
the radiation vs matter dominated Universe. But a particular mode A will
also at some early time be larger than the horizon. What happens in that
case? We will follow a simplified Newtonian procedure which happens to give
the right answer.

Consider a small perturbations in a spatially flat, & = 0, Friedmann
model*. For the unperturbed model, the Friedmann equation is

G
e g2 = 17 52
&) o (3.52)

Q-

Now consider as small perturbation another such model, with the same ex-
pansion rate, but where the density p; is a little bit higher, and therefore
this corresponds to a closed Universe,

&G K
=5 =3 (3.53)

H2
where the curvature x (not to be confused with the wave-number k) is posi-
tive. We shall always compare these models when they have the same Hubble
constant. Comparing these two models, we find a relation between the den-
sity contrast, d = (p1 — po)/po and the curvature &,

pL—po  K/d®
0 = . 3.54
Po 8mGipo/3 (3:54)

As long as ¢ is small, the scale factors a for both models should be very
similar, therefore we have found that § will grow as § oc 1/ppa® < a in a
matter-dominated model (py oc a3) and as 6 o a? in a radiation dominated

3In fact, a full general-relativistic treatment results in the same growth-rates as we
have obtained.
4Recall that this will always be a good approximation at sufficiently early times.
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Universe (po oc a=*), hence

d o a matter dominated (3.55)

o a® radiation dominated . 3.56)

It is clear from this derivation that a density perturbation can be seen as
a change in the geometry of the background model. We have found that
density perturbations will also grow when outside the Horizon. This may
seem counterintuitive, since the perturbation region is not actually causally
connected. One way to think of it is in terms of kinematic growth, as opposed
to dynamic growth.

The transfer function in a Cold Dark Matter model

We are now in a position to infer the general shape of the transfer func-
tion T'(k). Consider perturbations with large A\ that enter the horizon late,
when the Universe already has become matter dominated. All these waves
will experience the same growth rate § o< a, both when outside the Horizon,
Eq. (3.55) and when inside the Horizon, Eq. (3.29), hence T'(k = 27/\) is
constant and the shape of the primordial spectrum is conserved.

However, now consider a smaller wavelength perturbation, one that enters
the Horizon when the Universe is still radiation dominated. Equation (3.39)
shows that the amplitude of the perturbation remains constant once it has
entered the Horizon, and can only start to grow when the Universe becomes
matter dominated. Outside the horizon, they grew o a?, but they stopped
growing after entering the Horizon. Now consider two such perturbations,
with co-moving wavelengths A\; and Ay < A\;. The ratio of scale-factors a; and
as when these perturbation enter the Horizon will scale as a;/as = A1/ g,
and hence their growth rate as (a;/as)? = (ko/k1)?, so T(k) o< 1/k* the
smaller the wavelength, the earlier it enters the Horizon, and the sooner its
growth gets quenched due to the radiation.

Combining these considerations, we expect that

T(k) o< 1 for k < keq
o 1/k* for k> ke, (3.57)

o4



where ey = 27/keq is the co-moving Horizon size at matter-radiation equal-
ity,
Aeq = 10 (Q2,,h%) "Mpe. (3.58)

In practise, the roll-over from T ~ 1 to T ~ 1/k? is rather gradual.

An often used approximation is

T(k) = [1 + ((ak) + (bk)3? + (ck)*)*]~ V", (3.59)

where a = 6.4 (Q,,h?)*Mpc, b = 3.0 (2,,h?)'Mpc, ¢ = 1.7 (2,,h*) ' Mpc,
and v = 1.13, plotted in Figure 3.1.

Some small remarks. (1) It is customary to normalise the transfer func-
tion such that T" = 1 on large scales. It does not mean that such large
wavelength perturbations do not grow: they do. (2) This analysis only ap-
plies to dark matter and radiation. But if we want to make observations, we
would like to know what the baryons, that we see in galaxies, do. There is
an extra complication here: even when the Universe is matter dominated,
baryons are still tightly coupled to the radiation when the plasma is ionised,
due to Thomson scattering. Therefore, before recombination, whereas the
dark matter perturbations are already happily growing, the baryon pertur-
bations are tied to the radiation and grow much less fast. Once the plasma
recombines, they will quickly catch-up with the dark matter. On smaller
scales, pressure forces may prevent perturbations from growing, leading to
oscillations in T'(k) that correspond to sound waves. But the general picture
is that the total growth of waves with A < \¢q is suppressed with respect to
larger-scale perturbations, because their growth is temporarily halted as they
enter the Horizon during radiation domination. This leads to T'(k) bending
gradually from T'(k) ~ 1 for k < keq and T'(k) o< k=2 on small scales.

Finally, a proper calculation of T'(k,t) requires that we take all types
of matter and radiation into account, and follow the growth of each mode
outside and inside the Horizon. Such calculations are now routinely done
numerically. For example the CMBFAST code developed by Seljak and Zal-
dariagga will compute T'(k,t) for any set of cosmological parameters.
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Figure 3.1: Transfer function of Eq. (3.59) in a Cold Dark Matter model,
which curves slowly from 7' ~ 1 on large scales, to T' o< 1/k? on small scales.
The dashed line is T'(k) o< 1/k?, which corresponds to the small scale limit
k — oo.
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3.4.5 The primordial power-spectrum

Although we have computed how perturbations grow due to gravity, we have
not yet been able to predict the ultimate origin of the density fluctuations.
Harrison and independently Zel’dovich gave a symmetry argument, which
we will reproduce below, and suggested that P(k,t — 0) o< k", with n = 1,
called a scale-invariant or Harrison-Zel’dovich spectrum. They do not provide
a mechanism to compute the amplitude of this spectrum (i.e. the propor-
tionality constant).

In inflation, the ultimate origin of fluctuations are quantum mechanical.
On a sub-atomic scale, quantum fluctuations will naturally produce small
fluctuations. During inflation, these quantum fluctuations are ‘inflated’ to
macroscopic scales. The predicted spectrum is close to scale-invariant, n = 1.
We have no good way yet to compute the expected amplitude of such infla-
tionary perturbations.

There is in fact no a priori reason that the fluctuations should have once
been small. In theories with topological defects, structure is generated by
defects, which you can think of as begin similar to defects in the structure of
crystals. Such defects are non-perturbatively, i.e. they were always of finite
amplitude.

The measured CMB fluctuations appear to require scale-invariant adia-
batic perturbations as predicted by the simplest inflationary models, and at
the moment other mechanisms for generating perturbations have gone out of
fashion.

Let us write the primordial spectrum as P(k,t — 0) = P(k). The argu-
ment of Harrison and Zel’dovich is that we demand that there is no physical
scale associated with P(k). This suggests that P(k) = k", for some value
of n. Consider a sphere of co-moving radius R, and typical mass M oc R3.
With a spectrum of fluctuations P(k) o< k™, the fluctuations in mass will be

(cfr.Eq. (3.51))

(M/M)?) = /0 v P(k)k*dk ~ M~(3)/3. (3.60)
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The corresponding potential fluctuations are of order

5B ~ %\/[ o~ M-ER/6 203 a6 (3.61)

For n = 1, these are independent of scale. Another way in which n = 1 is
scale-invariant, is to consider the amplitude of the fluctuations at the moment
they enter the Horizon. The variance of density fluctuations in a patch of
co-moving size 1s xy is

5p/p)?) = 2 Wfpk; k2 dk ~ 2 g7 3.62
((6p/p)7) =t i (k) ~tt (3.62)

where we have used that the fluctuation & o a® o t outside the Horizon
in the radiation era. The fluctuation enters the Horizon when az; = ct or
xp o t/a oc tY/2 since a = /2 in the radiation dominated era. So when the
perturbation enters the Horizon, its amplitude is oc x;(”+3) = x}’", and
is independent of xy when n = 1.

3.5 Hierarchical growth of structure

So far we have assumed that the fluctuation amplitude § << 1. As § grows,
our analysis eventually breaks down, but we can already guess what will hap-
pen: a region with § ~ 1 will collapse onto itself, and in effect detach itself
from the Hubble expansion. Presumably this is what happens during galaxy
formation. We will treat this in more detail below, but less us investigate
how this process depends on scale.

Let the power-spectrum at late times P(k,t) = T'(k,t)* P(k,ty) o k™,
and we expect m ~ 1 on large scales, and m ~ —3 on small scales. In that
case, we can use our reasoning that lead to Eq. (3.60) to find that the rms
mass fluctuations as function of scale are

(M /M)?) = /0 v P(k) k* dk ~ M~(m+3)/3 (3.63)

If m > —3, then the fluctuation amplitude decreases with increasing scale,
and hence small objects will first become non-linear, § ~ 1, and hence they
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will collapse before more massive ones. This phenomena is called hierar-
chical growth, were more massive objects form from the merging of smaller
structures. Given its value for m, this is the case for the CDM model.

3.5.1 Statistics of density peaks

The statistics of Gaussian fields, such as for example the number density of
local maxima, have been studied in great detail, see Bardeen et al., ApJS
304, 15, 1985° For simplicity, consider a 1D Gaussian field, smoothed on
some scale R,

5, R) = / S(kYW (kR) exp(ikz) di . (3.64)

where W is a smoothing function.® If § is a Gaussian field, then also §' =
dd/dz and all other derivatives are Gaussian fields, with dispersions

(6% = /P(k) W?2(kR)dk = o}
(67 = / k* P(k)W?*(kR) dk = o2
(6" = / k* P(k)W?(kR) dk = o3 . (3.65)

What we are after is the number density of local maxima, where &' = 0
and ¢” < 0. Now, if we ask in how many points ' = 0, then we always find
0: it is a set of measure zero. What we mean is not that ¢’ = 0, but ¢’ =
within some some small volume dx around the peak. Then, if the peak is at
Zp, close to the peak

§'(x) =" (x,) (x — x) (3.66)
hence 5(2)
() =T —Tp, (3.67)
so that
07[(z — w,)] = 610 (2) /6" ()] = 6" () 6718 ()] , (3.68)

5In April 2004, this paper has been references 1370 times.
6Recall that the Fourier transform of a convolution of two functions, fxg, is the product
of the Fourier transforms, f*xg = fg.
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where 67 is again the Dirac delta function. The number density np(d) of
peaks of height 0 then follows from

ni(0) = (07[(z — zp)])
= (0"(x,) 67[0"(2)])

- / P(5,8 = 0,5") |8"|d5 do" . (3.69)

The importance of peaks is that it helps to understand why unusual
objects, for example massive galaxy clusters, seem to occur close to each
other. For high peaks, Kaiser shows that the correlation function

(0pk(6 > vog,T)dpk(0 > vog, T+ A)) = Z—z (0(r)o(r + A)). (3.70)

3.6 Perturbations in the Cosmic Micro-wave
Background

We have just computed the expected power-spectrum of fluctuations, P(k) =
T%(k) k o< k on large scales, and oc k= on small scales, where ‘large’ means
with co-moving wavelength larger than the Horizon at matter-radiation equal-
ity. These perturbations will induce perturbations in the CMB temperature
on the sky.

To describe this, expand the temperature fluctuations on the celestial
sphere in spherical harmonics,

T (6, 9)

= > i Yim(0, ). (3.71)

lym

Here, (0, ¢) denotes a given direction in the sky, and Y}, are the usual
spherical harmonics. If the fluctuations are Gaussian, then they are com-
pletely characterised by their power-spectrum

Cl = (|alm\2>, (372)

which also defines the temperature auto-correlation function,
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1
T T ) = yym Z(Ql + 1) CyP(cos(h)), (3.73)

where n; and ny are two directions on the sky, separated by the angle 6.

How do we expect the power-spectrum to look like? Let us begin by
computing the angular size 0. of the Horizon at recombination, z = 2.e. ~
1100. Using Eq. (2.51) gives an angular-size diameter distance to the last-

scattering surface (LSS) of

3t
dA% 0

(3.74)

Zrec
The physical size of the Horizon, a,e. 7., at recombination follows from
the reasoning that lead to Eq. (2.50), but assuming radiation domination,
a(t) = Gree (t/trec)'/?, in which case rec Te = 2tree. Finally, ayee = (t/t9)%>.
Combining all this, gives
OrecTe 2 1

Orec = == ~ 0.02. 3.75
dA 3 (1 + Zrec)1/2 ( )

S0 Orec &~ 1.15° (We have assumed an Einstein-de Sitter Universe all the way,
1/2

the more accurate value 0.87° Q2,,” depends on the matter density.)

This will be an important scale for the CMB fluctuations, because pertur-
bations on larger scale were outside of the Horizon at decoupling, and hence
were not susceptible to any causal processes.

There are five distinct physical effects that give rise to CMB fluctuations,
they are

1. our peculiar velocity wrt the CMB rest frame

2. fluctuations in the gravitational potential at the LSS
3. fluctuations in the intrinsic radiation field itself

4. peculiar velocities of the LSS

5. changes to the CMB BB spectrum due to effects on the photons as they
travel from the LSS to us
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The first arises because the Milky Way is not a fundamental observer.
Its motion introduces a dipole in the CMB, which cannot be distinguished
from any intrinsic dipole. The second effect, called the Sachs-Wolf effect,
arises because photons redshift due to gravitational redshift, as they climb
out of a potential well, and so these fluctuations are a measure of fluctuations
in the gravitational potentential due to large-scale perturbations. It is the
dominant effect on large scales, # > 60,... The last three effects dominate on
smaller scales.

The COBE satellite” was the first to measure temperature fluctuations
in the CMB (Fig.3.2). Its antenna had an angular resolution of around 7
degrees, so was only able to measure super-horizon scales! The top panel
in the Figure shows the strong dipole contribution, which has been sub-
tracted in the lower two panels. The regions of slightly hotter or slightly
coolder show-up as red and blue regions. The size of the regions is mostly
determined by the resolution of the COBE, not the intrinsic size of the fluc-
tuations. The large red band running through the centre of the middle panel
is micro-wave emission from dust in the Milky Way disk, it is not due to
CMB photons. The regions contaminated by this ‘foreground’ emission is
masked in the botton panel. CMB experiments such as COBE measure the
CMB sky in a range of wavelengths, in order to be able to distinguish the
true CMB signal from foreground emission such as dust in the Milky Way
and other galaxies. The typical rms temperature variation in the CMB sky
is only ((6T/T)*)Y/? ~ 107°.

The WMAP satellite® dramatically improved the resolution of COBE, see
Fig. 3.3) and produced the beautiful spectrum shown in Fig.3.4. Note the
tremendously small error bars!

The red line is a fit to the data, assuming a CDM model with a cosmolog-
ical constant, where fluctuations start from a scale-invariant spectrum, as we
discussed earlier. It has around 10 parameters, for example €2,,,, Qx, n, h, - - -.

Note that this model describes the true ‘mean’ power-spectrum. The
power-spectrum is defined as C; = (|a,|?). The angular brackets refer to a

"http://aether.Ibl.gov/www/projects/cobe/
8http://lambda.gsfc.nasa.gov/product /map/
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mean over many realisations. However, we can measure only one realisation:
the actual CMB sky we see from our vantage point. So we would not expect
the actual CMB to be represented by the mean expectation. How far an ac-
tual measurement can differ from the mean, is illustrated by the grey band.
Clearly, on small scales, C; has many constributions from multipoles with
—l < m < [, but the low-order multipoles have many fewer contributions.
Consequently the expected value of ( is close to the mean value for large [
(small scales), whereas the grey band widens at small [ (large scales) where
an actual single realisation may differ considerably from the mean. This phe-
nomena is called ‘cosmic variance’.

The tremendous agreement between CMB data and the theoretical ex-

pectation is a strong indication that the models we have been discussing are
relevant for the actual Universe.
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Figure 3.2: Temperature fluctuations on the CMB sky, as measured by
COBE. The colour scale is a measure of the temperature of the CMB sky
in that direction. The top panel is dominated by the dipole resulting from
the Milky Way’s motion. This dipole is subtracted in the lower panels. The
disk of the Milky Way runs horizontally through the image. Clearly it is an
important contaminant.
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Figure 3.3: Same as Fig. 3.2, but for the WMAP satellite. Note that the
large-scale features in COBE and WMAP correspond very well. WMAP has
far better angular resolution, around 0.22° for the best chanel.
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Figure 3.4: Temperature fluctuations power-spectrum as measured by the

WMAP satellite (top-panel). CBI and ACBAR are balloon born CMB ex-
periments. (see text)
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Chapter 4

Non-linear growth of
Cosmological Perturbations

The previous discussion focused on the linear growth of fluctuations. The
density of the Milky Way disk is several hundred times the mean density, and
so clearly linear growth is not sufficient to describe the formation of galaxies.

4.1 Spherical top-hat

Consider a spherical region of uniform density p and radius R. Newton’s
theorem (or Birkhoff’s in general relativity) guarantees that the collapse of
this object is independent of the mass-distribution around it, hence

2

o Gl (4.1)

dt? R?
where M = (47/3) pR? is a constant. The first integral expresses conserva-
tion of energy F,

1 dR, GM
—(—)'——=F. 4.2
2 ( dt ) R (42)
For E < 0, this is a bound system, with the usual parametric solution
R 1
R_m = 5 (]_ — COS 77)
t 1 .
o= (n —sinn). (4.3)
m s
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From R = 0 at t = 0, the object expands, reaches a maximum size R,,
at t =t,, (n =), and then collapse to zero size again at t = 2t,,, (n = 2m).
Substituting the solution into the equation of motion, we find that

GM
E = ———
Ry,
TR,

The behaviour at early times, n < 1, is found by Taylor-expanding
Egs. (4.3),

R n n
ek S
B, ~ a0t
t o
LI S 4.5
tm 6 ( 20 ) (45)
[teratively solving this set of equations allows us to find R = R(t) as
Ry, 67t 5 1 67t
om0 1 — — (225)2/3 ... 4.
R=2 Cp 1o o G (4.6)

The second term in the [| brackets is the first-order correction to the
expansion, and hence corresponds to the deviation from an Einstein-de Sitter
Universe. Writing the enclosed mass in radius R as (47/3)pRj for the EdS
Universe, and as (47/3)p(1 + 0)R? for the small perturbation on top of the
EdS, we get that when the radii enclose the same mass, R = (1 — §/3)Ry.
Comparing with Eq. (4.6) shows that the mean over density, with respect to
an EdS Universe of the same age, is

3 brt
“ 500,

The non-linear collapse of the sphere to R = 0 occurs at t = 2t,,, at
which time the extrapolated linear over-density is

3
Ocollapse = O(t = 2t,,) = 5 (127)%3 ~ 1.686 = 6, . (4.8)
The advantage of this result is that we can use linear perturbation theory
to follow the growth of the perturbation, and decide that the full non-linear
collapse will occur when the linear over density reaches 1.7. This is used in

the Press-Schechter theory of the mass function of collapsed objects.

)23 (4.7)
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4.2 Press-Schechter mass function

In Eq. (3.47), we computed the expected mass-fluctuations on a given scale
in a Gaussian field, characterised with its power-spectrum P(k), as

_ M(x,t) — M
pny = (MU= My
1 [dk B sk PV )
- o [ g

00 3 N271/3
_ DQ(t)L?/ dk k*[o(k, t:)|" V.

Viv Jo K 272

— D(t) A2(M, 1,). (4.9)

W (k)|*

Here, W (k) is the Fourier-transform of a filter function, that selects volumes

of size Vi and mean mass M, and A? = <(M(XTM)2) are the fluctuations

in mass M around the mean enclosed mass M = pVyy. d(k,t) are the Fourier
amplitudes of the density field, as in

p(x,t) = p(t) Y o(k, ) exp(ik - x). (4.10)
k

In a given cosmological model, we know how the amplitude d(k, t) grows
in time §(k,t) = D(t)0(k,t;), with for example D(t) = (t/t;)*? in the EdS
model, and t; some initial early time at which we know .

Now assume we have a Gaussian field d(k, t;) at some early time ¢t = ¢;.
We can use linear theory to predict the evolution of the density field, using
§(k,t) = D(t)d(k,t;). This field, smoothed on the scale M is

O(M,x,t) = / p(t) 5(X/’ HW(x — X/) Ix!
- Z pV Z 6(k7 t) W(k) eXp(—z'k . X)
k

VQ
(2m)?

= pD(t) / d(k,t;) exp(—ik -x) dk.  (4.11)

Since §(k,t;) is a Gaussian field, §(M,x,t) is a sum of Gaussian fields,
hence also a Gaussian field, with mean zero and rms A(M,t), hence proba-

bility distribution
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1
(27 A2(M, 1)1/

P(§(M,x,t))do(M,x,t) = exp(—0(M,x,t)/20%(M,t))ds(M,x,t).

(4.12)
In an inspired paper, Press and Schechter (1974) suggested how to use
this to compute the mass function of galaxies. The argument goes as follows.

Suppose we know the shape of the power-spectrum, P(k,t;) oc k™, say,
then we find for the mass dependence of A, that (cfr. Eq. (3.47))

A(M,t) o D(t) M~m+3/6 (4.13)

Take for example m = —2, so that A(M,t) = AD(t)/M'. On suffi-
ciently large scales, such that A(M,t) < 1, 6(M,x,t) is a Gaussian field
with mean zero and very small dispersion, and almost all points still in the
linear regime 6 < 1. Now, on smaller scales, the dispersion increases, hence
some small fraction of points have § ~ 1. Comparing to our spherical top-
hat model, this suggests that this fraction of space may undergo non-linear
collapse and detach from the expansion of the Universe, and form a galaxy.
We can also keep the filter mass constant, M = constant, but investigate
the field on later and later times. The dispersion now increases because D(t)
increases, and so whereas the field on the large scale M was initially linear
everywhere, it will eventually becomes d ~ 1 over some fraction of space,
and objects with this large mass M will start to form anyway. This is the
essence of the hierarchical growth of structure.

Using what we learned from the spherical collapse model, we can identify
0. = 1.686 with the critical linear density, above which the object collapses.
The fraction of space for which the linear density is above this threshold, is

P = /;odd(zw)mplA(M o L= 2D2A%(T, 1)
N /50/ODA (27r1)1/2 exp(—2*/2) dr, (4.14)

where z = §./DA. Press and Schechter (1974) made the assumption that
this fraction be identified with the fraction of space that has collapsed into
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objects of mass at least M. If n(M) denotes the number density of objects
with mass M, then, since they occupy a volume V' = M /p, we have according
to Press & Schechter that,

POV ) = /°° (A1) %dl\]. (4.15)

M

However, consider what happens for M — 0 in Eq. (4.14), in which case
A — 00, and the integral over z runs from 0 to oo, hence F(M > 0,t)=1/2:
only half of the whole Universe is expected to collapse in objects of any size.
This seems strange, because at sufficiently small M, the density field always
becomes non-linear (at least for our choice of P(k)), and so you'd think that
the Universe will always collapse in sufficiently small objects. To overcome
this problem, Press and Schechter arbitrarily multiplied Eq. (4.14) by a factor
2 to take this into account. With an extra factor of 2 in that equation, we
can equate the derivative of Esq. (4.14) and (4.15) wrt M, to obtain an
expression for n(M) as

M v 1 2 o noy 0 dA(M)
n(M) p dM = 2(2%)1/2 exp(—0. /2D A )DAz o7 dM , (4.16)
which can be re-arranged as
- - 2 p e dA(M,t) 52
M, t)dM = —(=)Y? = - = —~ ¢ dM .
n(M,1) M DA did exp | 2D2(1) A2(M, i)}

For P(k) oc k™, A(M) oc M~m+3)/6 and

- - 1

n(M,t)dM = (=)"/? u (1+20) (M /M, () B8 exp [— (I /M, (t)) B+m/5] M

2 M 3

(
where the characteristic mass M,(t) is defined as D(t) A(M,(t),t;) = 0.

At a given time, M,(t) has some value, and Eq. (4.18) shows that the
mass function n(M) cuts-off exponentially at large masses M > M, (t), and
is a power-law n(M) oc M™=9/6 & 1/M? for m = —3 (Recall that m = —3
on small scales.)
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Now compare the mass function at two different times, t; < to. At tq,
the mass cut-off will be at M,(t;) < M,(t2), that is, there will be a larger
fraction of massive objects at t5 than at t1: some fraction of objects at ¢; has
merged with other objects to form these more massive objects at t5. With
this value of the spectral index, we can expect the Universe to evolve from
having very many, very low-mass objects at early times, to a growing num-
ber of more and more massive objects that form from the merging of smaller
objects, at later time. In particular, an object such as the Milky Way, will
have been broken-up into many smaller components, a long time ago. This is
called ‘hierarchical formation’ of objects. The value of the mass Mx* now is
of order of the Milky Way mass. Because of this, most of the mass currently
is in MW sized objects, whereas the fraction of mass in much more massive
objects, such as groups and clusters of galaxies, is exponentially suppressed.

The non-linear evolution of the Universe can also be studied with com-
puter simulations, to be discussed below. The agreement between the mass
function found from simulations, and the PS mass function, is really rather
good, much better than could have been expected for such a rather simplified
derivation. There is actually a better way to understand where the arbitrary
factor two that we introduced comes from, although it took many years be-
fore anybody came-up with the solution to the puzzle. It is explained in
Bond et al.’s excursion set approach.

4.3 Zel’dovich approximation

The perturbative equations we derived earlier require the density contrast
0 < 1. A very powerful alternative is to perform Lagrangian perturbation
theory, as introduced by Zel'dovich.

Start from Eq. (3.24), neglecting pressure:

0+ 2H6 = 4nGpyd . (4.19)

Since there are no spatial derivatives in this eqation for ¢, it follows that
the density contrast grows as

d(x,t) = D(t)d(xo), (4.20)
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Figure 4.1: Comparison of simulated mass function (wave-lines) with the
Press-Schechter mass function (dashed line, labelled PS). 07! is a measure of
the mass of the object. The mass function has an almost exponential cut-off
at large M, and becomes a power-law at small masses. PS mass-function also
has this general shape, but under-predicts the number of massive haloes, and
over-predicts the number of low mass haloes. From Jenkins et al., 2000
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where D is the growth factor, and §(xg) is the density field at some initial
time. Clearly, the density field grows self-similarly, i.e. it grows o< D every-
where.

Inserting this in the Poisson equation (Eq.3.23),

V2)(x,t) = 4nGpyda? (4.21)
shows that D
Uk, ) = = i), (422

In the Einstein-de Sitter case, D o a, and v is independent of time.
Finally, using the linear form of Euler’s equation, (Eq.3.23),

%+ 2H% = —%vqf , (4.23)
a
we find that
o1 D _ D(t)
X = —; / dt Voxo) = s Vi) (4.24)

d D D
x(t) = XO_/a_z / dt — Vih(x0) = Xo = 47Tprow(xo). (4.25)

To see this, firstly check that Eq. (4.24) is indeed the solution to Eq. (4.23).
Now, taking the first and second derivative of the double integral F(t) =
|/ % [ dt %, we find that

. . D
F42HF == (4.26)
a
 Since we know that d(x,t) = D(t)d(x) is the solution to Eq. (4.19),
D+ dH D = 47G pyoD, hence F' = D/(47Gpyp).

How accurate is the Zel’dovich approximation? Equation (4.25) shows
that we approximate the orbit of each particle as a straight line, traversed
with velocity ax oc aD. We can use mass conservation to compute the density
as a function of time:

pd*x = (14 6) pgd*x = pod®xy, (4.27)

hence 1 + 9 is the Jacobian of the transformation xy — x,
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1
~ det (8, — (D47 Gy 0) (02(0)/0:/0xy)))

The matrix (1/47Gpy0)(9%(0)/0x;/0x;) is symmetric, hence we can
compute its eigenvalues \;, i = 1, 3, to find

146 (4.28)

1
(1—=XM\D)(1—=XD)(1—XD)’
where we can choose A\ > Ay > A3. For time such that \{D = 1, the
density becomes infinite. Zel’dovich noted that this corresponds to the col-

lapse of a sheet, and it shows that any collapsing structure will first collapse
as a sheet, before collapsing along the second, and finally third axis.

146 =

(4.29)

The great strength of the Zel’dovich approximation is that the description
is in fact exact in one dimension. And since the 3D object will first collapse
in 1D anyway, it is a much more accurate description of the non-linear evolu-
tion of the density field than you would at first expect. Note that  need not
be small in the Zel’dovich approximation: what needs to be small is the tidal
force (which makes the particle’s trajectory deviate from a straight line) and
the acceleration along its trajectory.

4.4 Angular momentum

A beautiful application of the Zel’dovich approximation is the generation of
angular momentum of galaxies. Recall that in spiral galaxies, it is the angu-
lar momentum of the stars and the gas that opposes collapse.

The angular momentum L of the matter contained at time ¢ in a volume
a®V in co-moving space x = r/a is

Mﬂ:/meQXV% (4.30)

where the integral is assumed to be performed with respect to the centre
of mass of the galaxy, so fa3V drpr = 0.

As usual p(r) = pp(1 + d(r)) is the density at position r, and v = ax is
the velocity. Note that the Hubble component ax of the velocity does not
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contribute to L, since x X ax = 0.

The previous integral over x (in ‘Eulerian’ space) can also be written as
an integral in Lagrangian space xg, when we introduce the displacement field
S(Xo, t),

x(t) = q+8S(q,t)
= q+D(t)Sz(q), (4.31)

where we have made the Zel’dovich approximation in the second line
(hence the subscript Z), put x(t = ty) = q, and

1

Sz(q) = “InGonn Vi(q). (4.32)

Expressing mass conservation, (1 + J) dx = dq, we obtain

L(t) = a4,0b/v dq [(q+DSZ) X aDSZ]

= a°D pb/ dqq xSy, (4.33)
Vo

since Sz xSz = 0. We can make progress by expanding the displacement
field Sz(q) in Taylor series from the centre of mass q, of the object, hence
for the ¢-th component

1 o
Szi(@) = — TGpno 04, (a)
1 o 8%
S 7Y L (434

The last equation defines the centre of mass force F, and the deformation
tensor 7T, as

1 Oy
Fi = Ty 8_%(%)
1 0%
i = — 4.
7;,j 47_‘_pr70 aqzaqj (qO) ) ( 35)
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hence
Szi(q) =F, + q; Tij+-. (4.36)

Both F and 7 are computed at the position q, of the centre of mass, and
so are constants in the integral fVo dq.
Substituting the Taylor expansion yields

L.(t) = CﬁDPb%Bv/ dqqﬁ (-7:7—1-(157:;«,)
Vo

= a5DPb €aBy / dq a5 95 Tsy
Vo

= CL2D Eagfyzg,y%,y. (437)
Here,
Lo, = @) | da g, (4.38)
Vo

is the inertia tensor of the Lagrangian volume Vj, and € is the usual anti-
symmetric pseudo tensor, with €193 = 1. Note that p, a® is time-independent.
The term in F does not contribute because [ dq ¢, = 0, since we use a
system of axes where the centre of mass is in the origin.

The final result is thus

La(t) = a2D €aBy Iﬁg 7;5. (439)

From this we see that angular momentum grows when the principle axes
of the inertia tensor Z are not aligned with those of the deformation tensor 7T .

In an Einstein-de Sitter Universe, a = D o t*3, hence L(t) o a®>D o t:
the angular momentum grows linearly in time.

We can estimate the final angular momentum of a forming galaxy, as its
linear angular momentum L, evaluated at the time ¢, when the over density
§ = —DV?) ~ 1. Here I've used Poisson’s equation V?¢ o §. Since the
inertia tensor of an object of mass M and radius R is Z oc MR? o< M>/3,
this gives

(D(tm) V) M3 (4.40)



which is oc 4> M3 for an EdS Universe. Note that this implies that
L/M oc M??: the angular momentum per unit mass increases with mass.
Numerical simulations show that this is a reasonable description of what
actually happens during the non-linear formation of objects.

4.5 Numerical simulations

4.5.1 Introduction

Computer simulations have revolutionised the study of structure formation
in the Universe, almost to the extent that we ‘know’ how structure grows in
a CDM Universe, at least in the absence of gas. Such numerical calculations
follow the linear and later non-linear collapse of structures, starting from
Gaussian initial conditions with a specified transfer function, and cosmolog-
ical parameters. They use the Zel’dovich approximation to generate particle
positions at a time when the density field is everywhere linear, and integrate
the equations of motion to follow the collapse into the non-linear regime.

The general appearance of the density field is a filamentary pattern of over
dense structures, delineating almost spherical low density ‘voids’. Denser,
nearly spherical structures appear along and at the intersection of these fil-
aments: these are dark matter haloes of galaxies, and the haloes of more
massive groups and clusters.

The filamentary pattern comes from the collapse of 1D structures, the
Zel'dovich sheets, along a second axis. It is not easy to see the actual sheets
in simulations, although they are there. An example is shown in figure 4.2.

4.5.2 Co-moving variables

Although it is possible to implement a numerical simulation code in terms of
the ‘physical coordinates’ r, v, it may be more efficient to implement them in
terms of a form of the co-moving coordinates (x,x), and in a similar vein, in
terms of some (to be defined) co-moving density, pressure and temperature.
For example suppose we wrote our equations in terms of the following co-
moving density p = pa®. In the limiting case in which the Universe stayed
uniform, p o a=3, and p remained constant. So this choice of co-moving
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Figure 4.2: Particle plots of the dark matter density in cold dark matter
dominated models. The simulation box is 240Mpc/h on a side, the thickness
of the shown slices is around 8Mpc/h. The particle distribution is very
filamentary, a consequence of the large amount of large scale power in this
model. The higher density filaments delineate nearly spherical under dense
voids. Very high density haloes occur on the intersection between filaments.
Different redshifts (z = 3, 1, 0) are shown from left to right. Plots from top to
bottom are (1) a Universe with cosméibgical constant (€2, = 0.3,Q, = 0.3),
(2) Einstein-de Sitter Universe (£2,, = 1.0, = 0.0), (3) a cosmology with
a tilted power-spectrum (€2, = 1.0, = 0.0), (4) an Q,, = 0.3 Open model
(Qn = 0.3,Q24 = 0.0). (Jenkins et al, 1998 Astrophysical Journal,499,20-40)



variable would mean that the dynamic range over which p varies is much less
(and hence the numerical calculation less affected by round-off errors). We
will start our discussion for the following version of Egs.(3.21)

po(L+6)+Vpo(l+8)x] = 0
X+ 2H%x+ (x-V)x = gLV
a? a’ p
a+3HE + (x-V)u = —Lvx
p p
V20 = 4rGpyda'. (4.41)

which came from writing the density as p(x,t) = poa(t)™ (1 + d(x,t)). We
need to integrate these equations together with the Friedmann equations
(2.12) that determine the evolution of the scale factor a(t).

To make progress, we will need to pick a set of variables in which to write
the equations (for example (x,x), but also a set of units (dimensions).

4.5.3 The GADGET-II simulation code

This section goes into more detail into how the cosmological equations of mo-
tion discussed above can be implemented in a numerical code. In particular
we will look in more detail at how it is done in Volker Springel’s GADGET-II.
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