
Chapter 1

Introduction to Dynamics

1.1 Introduction and Review

Dynamics is the science of how things move. A complete solution to the motion of a system
means that we know the coordinates of all its constituent particles as functions of time.
For a single point particle moving in three-dimensional space, this means we want to know
its position vector r(t) as a function of time. If there are many particles, the motion is

described by a set of functions ri(t), where i labels which particle we are talking about. So
generally speaking, solving for the motion means being able to predict where a particle will
be at any given instant of time. Of course, knowing the function ri(t) means we can take

its derivative and obtain the velocity vi(t) = dri/dt at any time as well.

The complete motion for a system is not given to us outright, but rather is encoded in a
set of differential equations, called the equations of motion. An example of an equation of
motion is

m
d2x

dt2
= −mg (1.1)

with the solution

x(t) = x0 + v0t −
1
2gt2 (1.2)

where x0 and v0 are constants corresponding to the initial boundary conditions on the
position and velocity: x(0) = x0, v(0) = v0. This particular solution describes the vertical
motion of a particle of mass m moving near the earth’s surface.

In this class, we shall discuss a general framework by which the equations of motion may
be obtained, and methods for solving them. That “general framework” is Lagrangian Dy-
namics, which itself is really nothing more than an elegant restatement of Isaac Newton’s
Laws of Motion.
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1.1.1 Newton’s laws of motion

Aristotle held that objects move because they are somehow impelled to seek out their
natural state. Thus, a rock falls because rocks belong on the earth, and flames rise because
fire belongs in the heavens. To paraphrase Wolfgang Pauli, such notions are so vague as to
be “not even wrong.” It was only with the publication of Newton’s Principia in 1687 that
a theory of motion which had detailed predictive power was developed.

Newton’s three Laws of Motion may be stated as follows:

I. A body remains in uniform motion unless acted on by a force.

II. Force equals rate of change of momentum: F = dp/dt.

III. Any two bodies exert equal and opposite forces on each other.

Newton’s First Law states that a particle will move in a straight line at constant (possibly
zero) velocity if it is subjected to no forces. Now this cannot be true in general, for suppose
we encounter such a “free” particle and that indeed it is in uniform motion, so that r(t) =
r0 + v0t. Now r(t) is measured in some coordinate system, and if instead we choose
to measure r(t) in a different coordinate system whose origin R moves according to the
function R(t), then in this new “frame of reference” the position of our particle will be

r′(t) = r(t) − R(t)

= r0 + v0t − R(t) . (1.3)

If the acceleration d2R/dt2 is nonzero, then merely by shifting our frame of reference we have
apparently falsified Newton’s First Law – a free particle does not move in uniform rectilinear
motion when viewed from an accelerating frame of reference. Thus, together with Newton’s
Laws comes an assumption about the existence of frames of reference – called inertial frames

– in which Newton’s Laws hold. A transformation from one frame K to another frame K′

which moves at constant velocity V relative to K is called a Galilean transformation. The
equations of motion of classical mechanics are invariant (do not change) under Galilean
transformations.

At first, the issue of inertial and noninertial frames is confusing. Rather than grapple with
this, we will try to build some intuition by solving mechanics problems assuming we are

in an inertial frame. The earth’s surface, where most physics experiments are done, is not

an inertial frame, due to the centripetal accelerations associated with the earth’s rotation
about its own axis and its orbit around the sun. In this case, not only is our coordinate
system’s origin – somewhere in a laboratory on the surface of the earth – accelerating, but
the coordinate axes themselves are rotating with respect to an inertial frame. The rotation
of the earth leads to fictitious “forces” such as the Coriolis force, which have large-scale
consequences. For example, hurricanes, when viewed from above, rotate counterclockwise
in the northern hemisphere and clockwise in the southern hemisphere. Later on in the course
we will devote ourselves to a detailed study of motion in accelerated coordinate systems.

Newton’s “quantity of motion” is the momentum p, defined as the product p = mv of a
particle’s mass m (how much stuff there is) and its velocity (how fast it is moving). In
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order to convert the Second Law into a meaningful equation, we must know how the force
F depends on the coordinates (or possibly velocities) themselves. This is known as a force

law. Examples of force laws include:

Constant force: F = −mg

Hooke’s Law: F = −kx

Gravitation: F = −GMm r̂/r2

Lorentz force: F = q E + q
v

c
× B

Fluid friction (v small): F = −bv .

Note that for an object whose mass does not change we can write the Second Law in the
familiar form F = ma, where a = dv/dt = d2r/dt2 is the acceleration. Most of our initial
efforts will lie in using Newton’s Second Law to solve for the motion of a variety of systems.

The Third Law is valid for the extremely important case of central forces which we will
discuss in great detail later on. Newtonian gravity – the force which makes the planets orbit
the sun – is a central force. One consequence of the Third Law is that in free space two
isolated particles will accelerate in such a way that F1 = −F2 and hence the accelerations
are parallel to each other, with

a1

a2
= −

m2

m1
, (1.4)

where the minus sign is used here to emphasize that the accelerations are in opposite
directions. We can also conclude that the total momentum P = p1 + p2 is a constant, a
result known as the conservation of momentum.

1.1.2 Aside : inertial vs. gravitational mass

In addition to postulating the Laws of Motion, Newton also deduced the gravitational force
law, which says that the force Fij exerted by a particle i by another particle j is

Fij = −Gmimj

ri − rj

|ri − rj |3
, (1.5)

where G, the Cavendish constant (first measured by Henry Cavendish in 1798), takes the
value

G = (6.6726 ± 0.0008) × 10−11N · m2/kg2 . (1.6)

Notice Newton’s Third Law in action: Fij + Fji = 0. Now a very important and special
feature of this “inverse square law” force is that a spherically symmetric mass distribution
has the same force on an external body as it would if all its mass were concentrated at its
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center. Thus, for a particle of mass m near the surface of the earth, we can take mi = m

and mj = Me, with ri − rj ≃ Rer̂ and obtain

F = −mgr̂ ≡ −mg (1.7)

where r̂ is a radial unit vector pointing from the earth’s center and g = GMe/R2
e ≃ 9.8m/s2

is the acceleration due to gravity at the earth’s surface. Newton’s Second Law now says
that a = −g, i.e. objects accelerate as they fall to earth. However, it is not a priori clear
why the inertial mass which enters into the definition of momentum should be the same
as the gravitational mass which enters into the force law. Suppose, for instance, that the
gravitational mass took a different value, m′. In this case, Newton’s Second Law would
predict

a = −
m′

m
g (1.8)

and unless the ratio m′/m were the same number for all objects, then bodies would fall
with different accelerations. The experimental fact that bodies in a vacuum fall to earth at
the same rate demonstrates the equivalence of inertial and gravitational mass, i.e. m′ = m.

1.2 Examples of Motion in One Dimension

To gain some experience with solving equations of motion in a physical setting, we consider
some physically relevant examples of one-dimensional motion.

1.2.1 Uniform force

With F = −mg, appropriate for a particle falling under the influence of a uniform gravita-
tional field, we have m d2x/dt2 = −mg, or ẍ = −g. Notation:

ẋ ≡
dx

dt
, ẍ ≡

d2x

dt2
,

˙̈̈
ẍ =

d7x

dt7
, etc. (1.9)

With v = ẋ, we solve dv/dt = −g:

v(t)
∫

v(0)

dv =

t
∫

0

ds (−g) (1.10)

v(t) − v(0) = −gt . (1.11)

Note that there is a constant of integration, v(0), which enters our solution.
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We are now in position to solve dx/dt = v:

x(t)
∫

x(0)

dx =

t
∫

0

ds v(s) (1.12)

x(t) = x(0) +

t
∫

0

ds
[

v(0) − gs
]

(1.13)

= x(0) + v(0)t − 1
2gt2 . (1.14)

Note that a second constant of integration, x(0), has appeared.

1.2.2 Uniform force with linear frictional damping

In this case,

m
dv

dt
= −mg − γv (1.15)

which may be rewritten

dv

v + mg/γ
= −

γ

m
dt (1.16)

d ln(v + mg/γ) = −(γ/m)dt . (1.17)

Integrating then gives

ln

(

v(t) + mg/γ

v(0) + mg/γ

)

= −γt/m (1.18)

v(t) = −
mg

γ
+

(

v(0) +
mg

γ

)

e−γt/m . (1.19)

Note that the solution to the first order ODE mv̇ = −mg − γv entails one constant of
integration, v(0).

One can further integrate to obtain the motion

x(t) = x(0) +
m

γ

(

v(0) +
mg

γ

)

(1 − e−γt/m) −
mg

γ
t . (1.20)

The solution to the second order ODE mẍ = −mg − γẋ thus entails two constants of
integration: v(0) and x(0). Notice that as t goes to infinity the velocity tends towards

the asymptotic value v = −v∞, where v∞ = mg/γ. This is known as the terminal veloc-

ity. Indeed, solving the equation v̇ = 0 gives v = −v∞. The initial velocity is effectively
“forgotten” on a time scale τ ≡ m/γ.

Electrons moving in solids under the influence of an electric field also achieve a terminal
velocity. In this case the force is not F = −mg but rather F = −eE, where −e is the
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electron charge (e > 0) and E is the electric field. The terminal velocity is then obtained
from

v
∞

= eE/γ = eτE/m . (1.21)

The current density is a product:

current density = (number density) × (charge) × (velocity)

j = n · (−e) · (−v
∞

)

=
ne2τ

m
E . (1.22)

The ratio j/E is called the conductivity of the metal, σ. According to our theory, σ =
ne2τ/m. This is one of the most famous equations of solid state physics! The dissipation
is caused by electrons scattering off impurities and lattice vibrations (“phonons”). In high
purity copper at low temperatures (T <∼ 4K), the scattering time τ is about a nanosecond
(τ ≈ 10−9 s).

1.2.3 Uniform force with quadratic frictional damping

At higher velocities, the frictional damping is proportional to the square of the velocity.
The frictional force is then Ff = −cv2 sgn (v), where sgn (v) is the sign of v: sgn (v) = +1
if v > 0 and sgn (v) = −1 if v < 0. (Note one can also write sgn (v) = v/|v| where |v| is
the absolute value.) Why all this trouble with sgn (v)? Because it is important that the
frictional force dissipate energy, and therefore that Ff be oppositely directed with respect to
the velocity v. We will assume that v < 0 always, hence Ff = +cv2.

Notice that there is a terminal velocity, since setting v̇ = −g +(c/m)v2 = 0 gives v = ±v∞,

where v∞ =
√

mg/c. One can write the equation of motion as

dv

dt
=

g

v2
∞

(v2 − v2
∞

) (1.23)

and using
1

v2 − v2
∞

=
1

2v∞

[

1

v − v∞
−

1

v + v∞

]

(1.24)

we obtain

dv

v2 − v2
∞

=
1

2v∞

dv

v − v∞
−

1

2v∞

dv

v + v∞

=
1

2v∞
d ln

(

v∞ − v

v∞ + v

)

=
g

v2
∞

dt . (1.25)
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Assuming v(0) = 0, we integrate to obtain

1

2v∞
ln

(

v∞ − v(t)

v∞ + v(t)

)

=
gt

v2
∞

(1.26)

which may be massaged to give the final result

v(t) = −v∞ tanh(gt/v∞) . (1.27)

Recall that the hyperbolic tangent function tanh(x) is given by

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (1.28)

Again, as t → ∞ one has v(t) → −v∞, i.e. v(∞) = −v∞.

Advanced Digression: To gain an understanding of the constant c, consider a flat surface
of area S moving through a fluid at velocity v (v > 0). During a time ∆t, all the fluid
molecules inside the volume ∆V = S · v ∆t will have executed an elastic collision with the
moving surface. Since the surface is assumed to be much more massive than each fluid
molecule, the center of mass frame for the surface-molecule collision is essentially the frame
of the surface itself. If a molecule moves with velocity u is the laboratory frame, it moves
with velocity u − v in the center of mass (CM) frame, and since the collision is elastic, its
final CM frame velocity is reversed, to v − u. Thus, in the laboratory frame the molecule’s
velocity has become 2v − u and it has suffered a change in velocity of ∆u = 2(v − u). The
total momentum change is obtained by multiplying ∆u by the total mass M = ̺∆V , where
̺ is the mass density of the fluid. But then the total momentum imparted to the fluid is

∆P = 2(v − u) · ̺S v ∆t (1.29)

and the force on the fluid is

F =
∆P

∆t
= 2S ̺ v(v − u) . (1.30)

Now it is appropriate to average this expression over the microscopic distribution of molec-
ular velocities u, and since on average 〈u〉 = 0, we obtain the result 〈F 〉 = 2S̺v2, where
〈· · · 〉 denotes a microscopic average over the molecular velocities in the fluid. (There is a
subtlety here concerning the effect of fluid molecules striking the surface from either side –
you should satisfy yourself that this derivation is sensible!) Newton’s Third Law then states
that the frictional force imparted to the moving surface by the fluid is Ff = −〈F 〉 = −cv2,
where c = 2S̺. In fact, our derivation is too crude to properly obtain the numerical prefac-
tors, and it is better to write c = µ̺S, where µ is a dimensionless constant which depends
on the shape of the moving object.

1.2.4 Crossed electric and magnetic fields

Consider now a three-dimensional example of a particle of charge q moving in mutually
perpendicular E and B fields. We’ll throw in gravity for good measure. We take E = Ex̂,
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B = Bẑ, and g = −gẑ. The equation of motion is Newton’s 2nd Law again:

m r̈ = mg + qE + q
c ṙ × B . (1.31)

The RHS (right hand side) of this equation is a vector sum of the forces due to gravity plus
the Lorentz force of a moving particle in an electromagnetic field. In component notation,
we have

mẍ = qE +
qB

c
ẏ (1.32)

mÿ = −
qB

c
ẋ (1.33)

mz̈ = −mg . (1.34)

The equations for coordinates x and y are coupled, while that for z is independent and may
be immediately solved to yield

z(t) = z(0) + ż(0) t − 1
2gt2 . (1.35)

The remaining equations may be written in terms of the velocities vx = ẋ and vy = ẏ:

v̇x = ωc(vy + u
D
) (1.36)

v̇y = −ωc vx , (1.37)

where ωc = qB/mc is the cyclotron frequency and u
D

= cE/B is the drift speed for the
particle. As we shall see, these are the equations for a harmonic oscillator. The solution is

vx(t) = vx(0) cos(ωct) +
(

vy(0) + uD

)

sin(ωct) (1.38)

vy(t) = −uD +
(

vy(0) + uD

)

cos(ωct) − vx(0) sin(ωct) . (1.39)

Integrating again, the full motion is given by:

x(t) = x(0) + A sin δ + A sin(ωct − δ) (1.40)

y(r) = y(0) − uD t − A cos δ + A cos(ωct − δ) , (1.41)

where

A =
1

ωc

√

ẋ2(0) +
(

ẏ(0) + u
D

)2
, δ = tan−1

(

ẏ(0) + uD

ẋ(0)

)

. (1.42)

Thus, in the full solution of the motion there are six constants of integration:

x(0) , y(0) , z(0) , A , δ , ż(0) . (1.43)

Of course instead of A and δ one may choose as constants of integration ẋ(0) and ẏ(0).

1.3 Pause for Reflection

In mechanical systems, for each coordinate, or “degree of freedom,” there exists a cor-
responding second order ODE. The full solution of the motion of the system entails two
constants of integration for each degree of freedom.


