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Foreword

In 1989 I walked into the Distributed Systems Laboratory as an 

undergraduate in the Electrical Engineering department at University of 

Pennsylvania and it seemed as if I didn’t leave that lab until I received a 

doctorate 6 years later. Combining compute and communications has 

been a professional passion ever since as I’ve lead a range of initiatives at 

Intel Corporation in protecting video and audio content, bring networks 

and digital technologies into the home, securing compute infrastructure, 

and preparing for a new generation of distributed applications popularly 

referred to as the Internet of Things (IoT).

IoT’s connection and computerization is a pervasive trend 

transforming everything we do and the infrastructure which supports 

us. From smart cities and homes to Industry 4.0, enterprises, critical 

infrastructure, healthcare, retail, and wearables, vast flows of data, 

increasingly processed using machine learning algorithms, are altering our 

existence. This unprecedented scale, pervasiveness, and interconnectivity 

also creates an environment where the security and integrity of these 

applications becomes a paramount concern. One only has to look to the 

headlines where attacks on critical infrastructure such as power generation 

and distribution, vulnerabilities in our automobiles, and malware in the 

devices such as webcams, smartphones, and PCs which we bring into our 

homes, highlight our collective vulnerability. Given the extensive attack 

surfaces being created and the asymmetry between attackers needing to 

find a single vulnerability to exploit while defenders have to find and close 

all vulnerabilities, IoT creates an unmatched set of security challenges.

During my journey, I’ve had the pleasure of working with many experts 

in their respective fields. These authors are the best when it comes to 
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offering practical guidance in addressing the IoT Security challenges. This 

timely book will build your knowledge about the IoT security challenges 

and remedies from the ground up, starting with the fundamental security 

building blocks and extending into available IoT frameworks and specific 

vertical applications. Please join us in the critical mission of securing IoT 

applications, and by extension, our future!

— Brendan Traw

Intel Senior Fellow

Hillsboro, Oregon

July 2019

foreword



xxi

Introduction

The Internet of Things (IoT) is a general term describing any device used 

to collect data from the world around us and then share that data across 

the Internet where the data can be intelligently processed to provide 

information and services. This definition can be extended to an industrial 

closed loop control system where data is acquired, coalesced with related 

data, transmitted to an intelligent station, analyzed, and then acted upon 

to influence the environment.

The technology consulting firm Gartner, Inc. forecasts that 20.4 billion 

connected things will be in use worldwide by 2020. The total spending 

on endpoints and services will reach nearly $3 trillion in 2020.1 They also 

forecast that worldwide spending on IoT security2 is expected to reach $3.1 

billion by 2021. In a similar study, IDC Forecasts Worldwide Technology 

Spending on the Internet of Things will experience a compound annual 

growth rate (CAGR) of 13.6% over the 2017–2022 forecast period and reach 

$1.2 trillion in 2022.3

The authors believe that IoT is a ripe field for not just securing the IoT 

devices but also for innovations in secure system design, secure building 

block technologies, and secure hardware and software development 

practices that together turn the Internet of Things into the Secure Internet 

of Things.

1 www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-
8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-
from-2016

2 www.gartner.com/newsroom/id/3869181
3 www.idc.com/getdoc.jsp?containerId=prUS43994118

http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/newsroom/id/3869181
http://www.idc.com/getdoc.jsp?containerId=prUS43994118
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The IoT ecosystem is at an inflection point, and Intel has developed 

a roadmap of products and services which comprehend this growth and 

enables customers to participate in the IoT ecosystem transformation 

from a collection of disjointed, vertically integrated suppliers of embedded 

technologies into an ecosystem of interoperable and flexible building 

block technologies. This transformation has three evolutionary phases:

Phase 1: Connect previously unconnected devices 

through a multitude of interfaces and gateways 

eventually converging on the Cloud.

Phase 2: Make devices smarter and more secure 

where the connected devices are empowered to 

make more important decisions and become more 

aware of their environment and context, while 

security is resiliently maintained.

Phase 3: Increase the degree of autonomous 

operation while maintaining security where the 

smart devices require less dependence on back-end 

services – to dictate policies and to make decisions, 

becoming devices that can dynamically join or leave 

a network, can resiliently recover from failures, 

proactively update system software, and even learn 

to optimize operational efficiency.

Up through calendar year 2018, the industry, largely, has experienced a 

transition to Phase 1. We’re now seeing dramatic shifts toward Phases 2 and 

3 throughout the industry. We anticipate the future will be all about making 

IoT systems secure as a prerequisite to paving the way for a smarter and 

more autonomous IoT. Some may argue that IoT isn’t a new phenomenon, 

and some say it’s revolutionizing the compute domain where compute 

happens from Edge networks to cloud services. Our perspective is that IoT is 

actually both evolutionary and revolutionary – IoT will advance and reshape 
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the existing (brownfield) infrastructure while at the same time revolutionize 

and create new (greenfield) markets, processes, and ecosystems. IoT will 

disrupt some businesses, transform others, and create entirely new ones. 

That is both evolutionary and revolutionary!

In this expanding world of IoT, security becomes critical since the 

attack surface expands in intricate and profound ways when connecting 

billions of new and previously unconnected devices. Connecting 

devices that have not historically been part of the Internet world is a 

bit like throwing the innocent to the wolves. Security is a vital part of 

the IoT transformation to connectedness. The data4 from the National 

Vulnerability Database (NVD) pertaining to “CVSS5 Severity Distribution 

Over Time” shows that during 2016–2018, the number of vulnerabilities 

with medium severity tripled (3359 vs. 8912) and those with high severity 

doubled (2469 vs. 4317). During the same period, the total number 

of vulnerabilities almost tripled. A search6 for IoT in the NVD from 

2016 to 2018 resulted in 89 hits with several critical and high severity 

vulnerabilities in IIoT gateways and in other IoT devices. Therefore it is 

not enough to simply connect these devices; the imperative is that these 

devices authenticate mutually and authorize services all while protecting 

the confidentiality, integrity, and privacy of the data they collect and share 

between elements of the system. It is critical to have end-to-end security 

including each element along the data and control paths from sensor and 

actuator, to edge and gateway, all the way to the Cloud, protecting both the 

device and their associated data, interfaces, and software. Edge devices 

range from the lowest-power MCU-based devices to Intel Atom, all the way 

up to high-performance Intel Core/Xeon-based platforms.

4 https://nvd.nist.gov/general/visualizations/
vulnerability-visualizations/cvss-severity-distribution-over-time

5 Common Vulnerability Scoring System (CVSS) : https://nvd.nist.gov/
vuln-metrics/cvss

6 https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_
type=overview&query=IoT&search_type=last3years
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It is important to understand that the anatomy of IoT hacks is radically 

different from typical consumer or enterprise computing. Consider the 

example of a hypothetical shutdown of the electrical grid via a domestic, 

Wi-Fi-connected oven and a ransomware attack that encrypts the firmware 

in a connected oven rendering it unusable. In both cases the oven 

becomes inoperable. The difference is in how the device owner needs 

to respond to the outage. A systemic outage of the power grid marshals 

resources to address the issue fairly quickly as the impact is more broadly 

felt. This outage will garner attention from government and private sector 

professionals because of its broad indiscriminate impact. Consumers 

could overcome the outage by resorting to local power generation sources 

to keep appliances, lights, and local networks running. Conversely, a 

localized malware compromise of a single oven requires the home owner 

themselves to be the first to respond and diagnose. If the malware is 

virulent, and noticed by network operators, the home network may be 

quarantined to prevent further spreading. The home network owner may 

be required to prove to network operators that the home network is free 

from malware before being reconnected. This is a significant burden 

to most appliance owners – a burden many do not have the skills to 

adequately carry. The IoT phenomenon brings an important paradigm 

shift where the focus of our attention turns from tactile devices like a 

smartphone to a network-of-networks and a system-of-systems where 

the misbehavior of a few devices may have systemic consequences. And 

at times those consequences may be broadly felt, while at other times fall 

fully on an unsuspecting and unprepared few.

Nevertheless, the IoT paradigm shift doesn’t seem to fully persuade 

security practitioners to carefully regard the security design of every 

connected device. Some even ask: What is so unique about IoT that it 

requires unique security knowledge or expertise? How is it different from 

say PCs and servers? What devices qualify as purely or only IoT things? 

Any CPU spanning from MCU class to Atom to Core to Xeon to Xeon-SP 
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can be a “thing” that is connected to the Internet. So what’s unique? From 

our perspective, the challenge in IoT can be framed as follows:

• The Device Lifecycle is unique since IoT devices often 

have a much longer replacement cycle than PCs and 

smartphones (sometimes up to 30 years). Few of us 

are still using their 10-year-old PC, but many of us can 

identify components in our offices, public buildings, 

transportation systems, HVAC systems, water treatment 

systems, and factories that may be much older. Long 

replacement cycles imply embedded systems with 

security vulnerabilities have embedded attack vectors.

• Security objectives and robustness rules vary greatly 

across multiple verticals/domains. Here are a few 

examples: AutoSAR and the numerous standards 

impacting the automotive domain – Automotive 

E-safety Vehicle Intrusion proTected Applications 

(EVITA)/Secure Hardware Extension (SHE)/

AUTomotive Open System Architecture, Retail Payment 

Card Industry (PCI), Medical Health Insurance 

Portability and Accountability Act (HIPAA), naming 

only a few.

• Multiple Operating Systems must be considered in IoT 

systems to address diverse operational requirements. 

Some examples include Linux-Yocto, Wind River Linux, 

Android, Windows IoT/Enterprise/Client, VxWorks, 

QNX, and many other proprietary implementations. 

Interoperability and consistency in service operations, 

system update capabilities, and driver support are only 

a few of the obstacles encountered in supporting such a 

diverse field of operating systems on a single hardware 

platform.
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• System on Chip (SoC) and CPU with embedded 

security capabilities and features can vary significantly 

across vendors’ MCU products and even within the 

same vendors’ products including Intel Atom, Core, 

Xeon, and Xeon-SP architectures, making design of 

end-to-end services and security more challenging.

• There are multiple pre-OS boot loaders and platform 

initialization software, for example, Firmware Support 

Package (FSP) + Coreboot, Intel Slim Bootloader, UEFI, 

Legacy BIOS, Deep Embedded, and other types of 

firmware that are used across the various IoT segments, 

all of which complicate IoT platform design and field 

support. Inadequate field update mechanism would 

result in attacks on initialization software implying that 

attackers are able to load and configure malware.

• The stakeholders are many and scattered – 

independent BIOS/boot loader vendors, board 

vendors, independent maker community design and 

integration shops, OEM/ODM, tiered SW/HW System 

Integrators, and Middleware providers. Producing a 

coalesced platform with consistent and interoperable 

features and services in such a diverse ecosystem is 

formidable. This implies security processes such as 

incident response, forensics, compliance, and system 

design must maintain healthy ecosystem interactions 

to prevent security issues from falling into the “cracks.”

• Hypervisors are a critical part of the security equation 

since they provide needed isolation and protection. 

Some of these include Wind River Virtualization Profile, 
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Xen, VMWare, RTS, and ACRN. However, hypervisors 

also add system complexity as they impact operating 

systems, device drivers, and platform firmware.

• Managing these devices on heterogeneous networks 

is a huge challenge that requires a cradle-to-grave 

lifecycle approach; this includes provisioning, 

commissioning, decommissioning, software update, 

and other operational management tasks. Safety 

and regulatory aspects of security are also inherently 

present.

Security is not just a single step but instead a journey since what is 

secured this minute may not be secure the next minute and also because 

security has to be comprehended in all phases of the IoT device lifecycle. 

This book aims to diverge from a generic discussion of technologies 

presented by existing literature. It instead strives to inform readers of the 

methodology and intuition associated with implementing secure systems 

that were designed to be secure and presents focused insights gathered 

from the authors’ years of experience in the security domain.

While this book represents a snapshot in time, the IoT ecosystem is 

not stationary. The anatomy of threats is dynamic, and more applications 

are being designed and deployed every day. The National Vulnerability 

Database (NVD) mining reveals that the threats are consistently moving 

down the stack, and they are now at the firmware and hardware level. 

This makes constant improvement through security by design critical, 

and security design cannot start with the application developer, but 

must begin at the silicon design and manufacturing phase and continue 

through platform development, software design, system installation, and 

sustaining operations. This is where a partnership with Intel begins to pay 

out enormous benefits that continue long into the system lifecycle.
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Design of IoT devices cannot consider only their own security. 

IoT devices that are designed for security must still interoperate with 

other devices and systems that may not be built with the same security 

measures. Interoperability requires commonly accepted standards and 

regulations that help ensure behavior of the singleton as well as a system of 

devices is consistent from vendor to vendor and from product to product. 

More standards are being created and regulations are being enacted to 

address many of the IoT security concerns, including protecting the user’s 

data, identity, and other valuable assets.

Managing risk in an IoT environment is inherently a formidable task. 

As Mike Crews, Director of Architecture in Intel Corporation’s Internet 

of Things Group (IoTG) – a staunch believer in Security – opines, “Every 

vertical domain – whether it is Retail, or Industrial, or Digital Surveillance 

System – is just one ‘Jeep Hack’ incident7 away from encountering the 

potential risks in not deploying and managing the security lifecycle of the 

IoT Devices.” His opinion is vertical domain business owners have to be 

well informed, feel responsible, and must judiciously invest in securing 

their own assets as well as the assets of their customers.

The authors believe there are three principles that support security 

by design which we have interwoven throughout this book. They are by 

no means trivial to achieve in real systems, and instead require a lot of 

commitment from all participants in the IoT ecosystem. The principles to 

evaluate features that are secure by design include

• Simple to Implement by leveraging relevant standard 

Application Programming Interface (API), frameworks, 

and Software Development Kits (SDK) to develop the 

IoT device

7 www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
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• Seamless to Deploy by leveraging relevant standard 

and scalable provisioning tools and associated 

collateral to deploy IoT devices in the field

• Easy to Manage by leveraging the standard 

management technologies, tools, and associated 

collateral to manage the IoT device lifecycle

After reading this book, we anticipate readers will be empowered 

with the knowledge and tools needed to recognize security trade-offs 

in IoT system design and software architecture and to identify the 

relevant hardware building block ingredients that underpin secure IoT 

deployments. We believe the solutions presented here provide reasonable 

security trade-offs and follow the secure by design principles. The chapters 

of this book aim to enlighten the reader’s understanding to address the 

following:

• Chapter 1: How the IoT ecosystem differs from the PC 

and data center ecosystem and how those differences 

impact security.

• Chapter 2: What are IoT frameworks and how design 

choices in different frameworks affect security, 

interoperability, and usability trade-offs.

• Chapter 3: What are the relevant hardware security 

features and building block technologies – as the 

authors believe, hardware security is the last line of 

defense.

• Chapter 4: How to approach building secure firmware, 

system software, and applications that leverage 

hardware security capabilities.
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• Chapter 5: Which security properties affect IoT 

connectivity and what impact do they have on network 

and system designs given the IoT paradigm shift toward 

Network of Networks (NoN) and system of systems.

• Chapter 6: What other requirements affecting IoT 

verticals are relevant to security and why security is not 

a simple blanket but instead must be designed from the 

beginning with a foundational layer common across all 

verticals and then built up using vertical-specific stack 

components and application services.  We also discuss 

key standards impacting some of the IoT verticals.

From this book, readers will gather an overview of the different security 

building blocks available in Intel Architecture (IA)–based IoT platforms. 

Readers will also be able to understand the threat pyramid, secure boot, 

chain of trust, and the SW stack leading up to defense in depth. Readers 

will also be able to comprehend the connectivity interfaces with security 

implications and IoT verticals with their unique security requirements and 

associated standards and regulations.

We invite you to join us on our journey demystifying IoT security!
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CHAPTER 1

Conceptualizing 
the Secure Internet 
of Things
In this chapter we relate several iconic attacks on cyber-physical IoT 

systems to illustrate the clever ways attackers are able to achieve their 

objectives. The physicality of cyber-physical systems and resource 

limitations of constrained IoT devices present new challenges, both for 

attackers and systems designers. This chapter explores security trade-off 

consequences resulting from design decisions aimed at reducing device 

cost. We advocate more enlightened perspectives that consider the value 

of the device in terms of the broader network and system value. The 

security front line often is a constrained device requiring world-class 

security capabilities such as hardware underpinnings for cryptography, 

integrity protection, storage, and attestation. Devices that don’t provide 

the basic building blocks of security are the weak links in the system – 

which systems designers aim to quarantine.



2

 The BadUSB Thumb Drive
In 2014 Karsten Nohl and Jacob Lell presented proof-of-concept 

malicious software at Black Hat USA 20141 that demonstrated how USB 

is fundamentally broken. The malware infects USB firmware rather than 

simply placing malicious applications on the storage area. USB firmware 

is trusted by most every USB controller to behave properly, as defined by 

the USB Consortium specifications.2 However, as long as USB firmware 

works within the framework defined by the standard, malware can 

cause the USB controller to give the USB firmware unintended access to 

the host computer. This is unfortunate as the lack of attention given to 

security implies a potential for exploits that includes key-logging, privilege 

escalation, data exfiltration, identity and access misdirection, session 

hijacking, and denial-of-service.

Karsten and Jacob not only published their findings but also published 

the malware on an open source repository known as GitHub.3 This 

means virtually anyone can construct their own USB attack device and 

even improve upon the original design. There have even been “how-to” 

publications4 that step the reader through the process, making it easier 

than ever for even those without prior knowledge of USB architecture and 

implementation to successfully build an attack device.

Subsequently, the “maker community”5 has picked up on BadUSB 

by creating a business around hardware platforms that have BadUSB 

preintegrated called “MalDuino”6 – a play on words involving a popular 

1 www.blackhat.com/us-14/speakers/Karsten-Nohl.html
2 www.usb.org/home
3 https://github.com/brandonlw/Psychson
4 https://null-byte.wonderhowto.com/how-to/make-your-own-bad-usb-0165419/
5 https://en.wikipedia.org/wiki/Maker_culture
6 www.indiegogo.com/projects/malduino-badusb-arduino-usb#/
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“maker” platform named Arduino.7 Using MalDuino as a development 

platform, it is possible for attackers to integrate other interesting malware 

designed to further infiltrate the victim computer or network. Often an 

attacker exploits a vulnerability in order to stage an attack on another 

vulnerability. Attack lethality can be amplified by linking several exploits 

that expose larger attack surfaces and allow the attacker to marshal more 

resources for the next attack. An attack that began as a compromise of 

something without network connectivity may morph into a compromise 

of resources with network connectivity – that broadens the attacker’s reach 

and lethality.

 Air-Gap Security
Some of the most secure networks rely on “air-gap” security as a way 

to prevent the spread of malware through interconnected networks. 

Air-gap is an isolation technique that ensures there are no wired or 

wireless connections between a highly sensitive network and one that 

is commonly accessible to everyone, such as the Internet. The security 

principle behind air-gapping is to establish physical isolation such 

that in order to move information back and forth between the secure 

network and other networks, there needs to be a mechanical system in 

place – euphemistically termed a “sneaker-net.” The idea is that only 

trustworthy people would have physical access to the air-gap and would 

follow appropriate security practices and procedures that ensure sensitive 

networks do not fall victim to the many attack scenarios found on public 

networks.

However, air-gaps rely on the use of electronic media to “sneaker-net” 

information to and from air-gapped networks. This often involves the use 

of USB connected peripherals. The assumption is that a device that isn’t 

7 www.arduino.cc
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capable of sending or receiving electromagnetic emanations is safe to cross 

an air-gap. The fallacy of this assumption, of course, is they are not safe as 

evidenced by BadUSB.

Air-gap security has a significant usability downside in that it is 

costly to deploy, doesn’t scale well, and isn’t forward looking. The next 

generation of industrial IoT looks to other network security mechanisms 

such as VLANs that segment networks that isolate manufacturing 

equipment behind routers, static/dynamic whitelisting, and zoning/

quarantining using network firewalls.

The lesson learned by air-gap security is that attention to usability 

cannot be ignored. Security mechanisms must be designed with all 

other system requirements taken into consideration to find the security 

mechanisms that optimize trade-offs.

 Stuxnet
“Stuxnet”8 is the name given to a malware found to have successfully 

infiltrated a top security nuclear research facility in Iran in June 2010. 

The Natanz uranium enrichment facility employed air-gap security 

mechanisms due to the safety critical aspect of the uranium enrichment 

process. Furthermore, uranium enrichment processes rely on SCADA 

(Supervisory Control And Data Acquisition) systems that are commonly 

used for industrial control because of their ability to precisely control 

physical machinery and remain resilient in the face of physical system 

failures, but also incorporate popular information messaging protocols 

such as MQTT (Message Queuing Telemetry Transport), AMQP (Advanced 

Message Queuing Protocol), and DDS (Data Distribution Service).

8 www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/
presentations/2012/topic9-final/report.pdf
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SCADA systems may use programmable logic controllers (PLCs) and 

a variety of other sensors and actuators that can be customized to suit the 

needs of the particular mechanical operations in a plant or factory. PLCs 

often have USB interfaces for uploading the control logic executed by the 

PLC, but also support serial bus interfaces and protocols such as Modbus 

or 4-20mA current loops that transfer information reliably and with less 

wiring and setup. Unfortunately, these techniques did not anticipate 

security or are simply incapable of stopping attackers who have physical 

access.

Stuxnet employed a variety of techniques, some seemingly designed 

as alternative attack strategies in case some other strategy failed to pan 

out. Among them included a strategy to propagate the Stuxnet malware 

using Internet “Futbol”–themed web sites. Ultimately, Stuxnet found a 

way to program USB thumb drives that were used to update PLCs used for 

uranium enrichment centrifuges.

Stuxnet ultimately was able to cause physical damage to centrifuges 

by working within the tolerance specifications of the control system, but 

stealthily controlling the centrifuges to spin faster than usual for longer 

than usual or to adjust the rate of acceleration and deceleration in ways 

that exceeded the mechanical designer’s expected use case scenarios.

Although there still remains controversy over who created Stuxnet 

and whether it was targeting Iranian nuclear enrichment or not, statistics 

gathered by Symantec9 suggest there were unintended consequences in 

the form of compromise to “friendly” or untargeted installations. While 

the majority of infections, 58.85%, occurred in Iran, the remaining 41.15% 

affected other countries; 8.31% occurred in India, 18.22% in Indonesia, and 

1.56% in the United States. 13.05% occurred in other parts of the world.

Stuxnet is interesting because it demonstrates the possibility for 

information systems to cross over to operational systems in such a way that 

physical systems, infrastructure, the environment, and ultimately human 

9 “W32.StuxNet”. Symantec. 17 September 2010. Retrieved 2 March 2011.
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life can be harmed using only commonly available inexpensive electronics 

and software.

It marks the fusion of Information Technology (IT) with Operational 

Technology (OT). The acronym Internet of Things (IoT) takes on an 

additional and apropos meaning of Informational and Operational 

Technology (IOT).

 Designing Safe and Secure Cyber-Physical 
Systems
The preceding attack scenarios suggest we need to revisit past assumptions 

that electronic equipment is “secure” because of physical and air-gap 

isolation is incorrect. The presence of electronic “things” may be sufficient 

for some form of “networking” to be implemented involving the exchange of 

electronic things and therefore the exchange of malware that can transform 

to take advantage of different attack vectors. A more enlightened view of 

IoT may be the idea that the interconnection of all networks – including the 

exchange of physical things containing information – is the Internet.

Applying this view of the Internet, there are two additional layers to 

classes of computers10 that historically fit into three categories: (1) cloud 

servers largely composed of mainframes and super computers; (2) mini 

computers such as workstations and department or team servers; (3) 

microcomputers such as PCs, laptops, tablets, and smartphones.

IoT more commonly refers to a fourth layer consisting of smart cars, 

drones, wearable computing, and pervasive computing. However, a fifth 

layer consists of everything else that is electronic including USB thumb 

drives, cameras, MEMS,11 smart construction materials, and “Smartdust.”12

10 https://en.wikipedia.org/wiki/Classes_of_computers
11 https://en.wikipedia.org/wiki/Microelectromechanical_systems
12 https://en.wikipedia.org/wiki/Smartdust
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The layering of technology has many non-security related benefits, but 

technology layers can present new security challenges. The interaction 

between layers is often not well understood or clearly specified. This can 

result in exploitable security weaknesses. Security analysis and design 

scope should therefore be expanded to include these other layers. Another 

aspect of security analysis is to determine the “attack surface”13 – the 

environment or sum of all points where an unauthorized user can try to 

extract information or inject control not anticipated by system designers. 

A basic tenant of security design is to keep attack surface small to limit the 

potential for unanticipated interactions.

The attack surface of IoT can be viewed as a pyramid (Figure 1-1) 

where the number of possible interactions is a function of the number of 

possible “things.” Although cloud servers process large workloads, there 

are only a few cloud servers in terms of possible points of interaction. 

Cloud servers expose commonly used web interfaces that do largely a 

small set of things, but in large volumes.

The IoT pyramid also illustrates the importance of defense in depth 

as nodes at opposite ends of the pyramid tend to be separated by routers, 

gateways, and other networking equipment that can be repurposed as 

security enforcement. Network segmentation reduces the effective attack 

surface by artificially isolating IoT nodes.

Intel predicts there will be 200 billion “objects” by the year 2020.14 

An object is anything that is “smart” – that is anything that has a 

microcontroller of some kind. If we consider relative population of 

objects across a five-layer IoT pyramid, the number of objects is roughly 

exponentially larger in the layer below and the layer above is exponentially 

smaller. A simple calculation showing exponential distribution across five 

layers reveals approximately 1.4B objects at the top layer, 1.9B objects at 

13 https://en.wikipedia.org/wiki/Attack_surface
14 www.intel.com/content/www/us/en/internet-of-things/infographics/
guide-to-iot.html
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the second layer, 3.6B objects at the third layer, 13.4B objects at the fourth 

layer, and an amazing 179B objects at the fifth layer.

Amazon had around 2M cloud servers and 1M customers in 2014.15 

Alibaba had 765,000 customers in June 2017.16 Microsoft, IBM, Google, and 

others also have cloud service offerings that contribute to an estimate in 

terms of number of cloud server objects that could very well be in the 1B 

range by 2020.

15 www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-
mind-bending-size-of-amazon-s-cloud.html

16 https://intl.aliyun.com/about
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In 2015, it was estimated there were 2.6B smartphones17 and predicted 

to be 6.1B by 2020. There were about 2B PCs and laptops in 2014.18 Our 

simple calculation suggests there would be 3.6B objects at layer 3 – off by a 

factor of 1.5 or 2, but still in the ballpark.

Even with conservative estimates, these account for only 10B of the 

200B forecasted. If layer 4 accounts for 15B objects, that leaves 175B 

objects unaccounted for at layers 1–4. These estimates suggest, by far, that 

layer 5 represents the largest attack surface. That suggests there will be 

many more “Stuxnet”-like attack scenarios going forward. It also suggests 

mitigation of these attacks will be countered by additional security 

capabilities being applied to layer 4 and layer 5 objects.

Security capabilities often are required across a spectrum of 

technologies ranging from hardware to system software to application 

layers. IoT security also embraces network security and distributed 

computing security techniques. The potential exists to substantially 

increase the overall cost and complexity of security functionality for IoT 

systems. As security professionals anticipate the role security should play 

given an Internet of 200B connected things, security interoperability and 

standards are increasingly needed at layers 4 and 5 of the IoT pyramid. 

This includes the need for hardware-roots-of-trust (specially hardened 

components in hardware that resist many common vulnerabilities), 

common networking layers, and common IoT framework and object 

models. Consolidation of technology choices has a desirable consequence 

of allowing more security functionality to fit into constrained computing 

environments.

17 https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-
2020-overtaking-basic-fixed-phone-subscriptions/

18 www.reference.com/technology/many-computers-world-e2e980daa5e128d0
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 Constrained Computing and Moore’s Law
In 1965 Gordon Moore made a prediction that computing would dramatically 

increase in power, and decrease in relative cost, at an exponential pace.19 The 

computing industry perspective historically has been one that continually 

looks for “power-hungry” applications that can soak up the predicted CPU 

cycles. Ironically, that pursuit has led the computing industry to push the 

IoT pyramid higher and wider, but only recently has realized a frontier in 

the form of many (billions) chips that are power constrained. In constrained 

computing environment, the application that runs on a chip is quite small 

and functionally is relatively simple. The path to realizing Moore’s Law is 

through the number of chips – increasing in number exponentially.

Rather than consolidating more workloads on increasingly more 

powerful computers, constrained computing is about distributing 

workloads across hundreds, thousands, and even millions of nodes. 

Distributed applications are described more in terms of conceptual notions 

of computing such as “pervasive,” “mobile,” “intelligent,” “autonomous,” 

“perceptual,” “virtual,” “emotional,” and “augmented.” These adjectives 

describe properties of computation that are realized in large part due to 

distributed computing that bridges the five layers of the IoT pyramid.

Constrained computing dynamics optimizes the computing 

environment to fit specialized functions. The function is unique to sensor/

actuator capability. Hence, enhancing a distributed application may be 

realized by adding constrained nodes as well as by adding more powerful 

nodes or by moving compute-intensive operations to edge servers.

These dynamics aim to provide more flexibility at the lower layers 

of the technology stack by using, for example, virtualized PLCs where 

manufacturing equipment can be consolidated into more powerful 

gateways running multiple, redundant servers that are less expensive to 

19 www.intel.com/content/www/us/en/silicon-innovations/moores-law-
technology.html
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operate than deployments of multiple less powerful devices. Non-mission 

critical sensing over wireless technologies is an important trend where 

the cost driver is low-power sensing solutions (sometimes retrofitted 

with brownfield sensors and actuators) designed to operate without 

replacement over many years. Deployment models such as this don’t 

anticipate having extra watts for security processing.

Security however follows a counterintuitive cost model (Figure 1- 2)  

where the motivation is to make nodes more powerful – so they can 

perform security processing that applies security consistently across all 

nodes. Workload consolidation, data consolidation, and redundancy 

result in the deployment of additional nodes or more powerful nodes – all 

requiring consistently strong security capabilities and hardening.

In the Stuxnet scenario, attackers were able to connect USB thumb 

drives to air-gapped process control networks because the USB thumb 

drive didn’t have strong cryptography and authentication protections built 

into the IO control subsystem. Such sophisticated security operations 

are often determined to be “too costly” to justify bills-of-material cost 

constraints typically expected in “mass market” products.

Security functionality overhead for layer 1–3 systems typically is 

expected to be 10–15% of the total system cost. These environments 

are often very capable of supporting a common set of security features, 

algorithms, and operations such that the goal of having a network of 

equivalently protected computers is achieved. However, when moving 

compute into constrained environments, even with the dynamics of Moore’s 

Law, computing power remains constrained. As such, the percentage 

of overall functionality that is security related vs. non- security related 

increases. Our estimates suggest that as much as 60% of a constrained 

environment computer could be focused on performing security-related 

computation, leaving 40% for application-specific computing. In other 

words, the “tinification” (the process of removing unused functionality 

not needed by purpose-built embedded systems) of an application to fit 

into constrained environments results in the need to preserve more of 
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the security functionality than the non-security functionality. This leads 

business decision makers to question the viability of profits in constrained 

environments. Often these trade-off decisions lead to justification for 

weaker security, lack of firmware update capability, and no support for 

hardware root-of-trust architectures. These economic dynamics have 

led leading security thinkers to suggest the only resolution is through 

regulation.20 However, regulation aimed at even the most insignificant of IoT 

platforms would affect over 170B things – 85% of everything! If regulation 

happens to have inefficiencies, those inefficiencies would be multiplied 

170B times – a cost that could outweigh the cost of smartly applied security.

20 www.schneier.com/blog/archives/2017/02/security_and_th.html
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 Trusted IoT Networks and the Network Edge
The Internet of Things is a new term to describe an old concept – 

connected embedded computing. For as long as there has been electronic 

control, there has been connected embedded computing. Every dimension 

of process control and automation is characterized by a flavor of 

connected embedded control technology.21 In most cases, process control 

networks were connected using wires. This is no different a phenomenon 

for IP networks that first began as Ethernet22 cable. More recently wireless 

communications dominate applications where mobility or deployment 

considerations make using wires infeasible. Nevertheless, the array of 

wireless networking standards23 has evolved to take the place of wired 

equivalents. However, convergence toward a single network protocol 

remains a promise of IoT which anticipates that IPv6 (Internet Protocol)24 

will become the foundation of IoT networks – and by extension the entire 

Internet. Nevertheless, there are non-IP protocols that sometimes are 

included under the umbrella of the IoT buzz word such as Bluetooth25 

and Zigbee.26 Although these are not technically IP, there are strategies to 

encapsulate IP over non-IP networks using 6LoWPAN27 to support larger 

payloads, compression, and framing that otherwise would not be feasible. 

IPv6 encapsulation is currently supported with Bluetooth Low Energy 

(BLE) 5, IEEE 802.15.4, and ZigBee.

The interesting security challenge for encapsulated or bridged 

networks (Figure 1-3) is the expectation of end-to-end security is often 

21 https://en.wikipedia.org/wiki/List_of_automation_protocols
22 www.safaribooksonline.com/library/view/ethernet-the-definitive/ 
1565926609/ch01.html

23 https://en.wikipedia.org/wiki/Comparison_of_wireless_data_standards
24 www.ietf.org/rfc/rfc2460.txt
25 www.bluetooth.com/specifications/bluetooth-core-specification
26 www.zigbee.org/zigbee-for-developers/network-specifications/
27 https://tools.ietf.org/html/rfc4944
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not possible since security applied within one suite of IoT network 

technology must be mapped, in the clear, to an Internet-based protocol 

suite. This creates the need for a security appliance, such as a firewall, that 

maps not only distributed application data but also security semantics 

and operations. We show a simple security appliance example here. 

Subsequent chapters provide additional insights into network partitioning, 

monitoring, and responses facilitated by security appliances.

IoT networks are in a constant state of flux forming and re-forming 

coalitions of devices needed to implement a variety of distributed 

applications. We use the term “onboarding” to refer to this dynamic. 

Devices not yet recognized as members of a coalition are considered 
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Figure 1-3. Negotiating trust with IoT devices

Chapter 1  ConCeptualizing the SeCure internet of thingS



15

“untrusted,” while devices already part of the coalition are considered 

“trusted.” Membership in the coalition involves trust negotiation where 

the device presents evidence of trustworthiness; for example, the device 

may be equipped with a “root-of-trust” hardened environment containing 

a manufacturer embedded attestation key. The root-of-trust is designed to 

meet a set of security features and assurances as a basis for trust. Secure 

key storage and secure cryptographic operations are important capabilities 

of a root-of-trust that can be used to implement attestation.

Attestation protocols (Figure 1-4) allow the root-of-trust to prove to a 

verifier that it is capable of protecting secrets, identities, and data. When 

an untrusted device is onboarded into a coalition, it first attests to its 

level of trustworthiness. This allows the attestation verifier to determine 

if the desired coalition is appropriate or if some other coalition is more 

appropriate. For example, a coalition of medical devices might expect 

all coalition member devices to have been approved by a quality control 

agency and receive a statement of approval that could be included with the 

attestation exchange at onboarding. If omitted, the verifier might conclude 

the device hasn’t been vetted by the agency and recommend it join a 

coalition of personal health fitness devices (that don’t require agency 

vetting).

The attestation verifier is a process that operates at a border 

that separates trusted and untrusted. In practice, these borders are 

nondescript. They may not align with geographic, topologic, social, or 

political boundaries. Likewise, such boundary criteria could also be 

asserted as part of attestation (if combined with additional contextual 

information), making enforcement of such bounding criteria eminently 

possible.

Attestation is a form of operational integrity checking that can be 

pervasive. IoT nodes should respond to changes that might invalidate 

recent checks and respond proactively by updating integrity profiles and 

rechecking. If an attack is successful, the attestation check can detect it and 

respond appropriately.
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IoT can therefore be thought of as a connectivity graph where certain 

nodes are simultaneously connected to multiple other coalitions of 

connected nodes. The connectivity graph reveals relative importance 

of certain nodes but also relative security and safety risk as more 

highly connected nodes represent a greater potential for doing harm if 

compromised or malfunctioning.

Attestation therefore can be thought of as a fundamental capability for 

anything that is connected. It provides a first-order filter that categorizes 

IoT devices according to the risk they bring to the established coalition. If 

we consider all ventures as being composed of a collection of IoT devices, 

whether they be Smartdust or whether they are cloud servers, the value of 

the venture is collectively held by the coalition. The introduction of a new 

IoT device that may have the potential to nullify that value creates the basis 

for risk-based management approach that relies primarily on attestation and 

root-of-trust as the primary tools for value preservation and risk management.

IoT
Device

(trusted)
Trust

Negotiation
(protocol)

May I join your network?

Can you be trusted?

Yes, here is proof

Use these settings in my network

IoT
Device
(edge)

Figure 1-4. Attestation protocol
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An IoT root-of-trust (Figure 1-5) can be constructed in a variety of ways 

and can vary dramatically in terms of implementation and deployment 

costs. However, all root-of-trust designs have several minimum capabilities. 

First the IoT device is partitioned into trusted and traditional functionality. 

Traditional functionality is everything that isn’t essential to satisfying coalition 

onboarding requirements. An IoT device that can’t satisfy onboarding is 

simply an embedded or stand-alone device. It isn’t a “connected” device – at 

least not a trusted connected device. Trusted functionality is everything else 

that is needed to satisfy coalition onboarding and is trusted to work correctly.

IoT Root-of-trust

Device

Other functionality

Trusted Execution Environment
(TEE)

Contextual awareness
functionality

Secure communication
functionality

Attestation and Trust
functionality

Security functionality

Secure storage

Encryption
keys

Attestation
key

Authentication
keys

Figure 1-5. Root-of-trust architecture
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Trusted computing is defined by TechTarget28 as “Trusted computing is a 

broad term that refers to technologies and proposals for resolving computer 

security problems through hardware enhancements and associated software 

modifications.” Wikipedia29 defines a trusted system as “… a system that is 

relied upon to a specified extent to enforce a specified security policy. This is 

equivalent to saying that a trusted system is one whose failure would break a 

security policy (if a policy exists that the trusted system is trusted to enforce).”

The most essential elements of a trusted system are its trusted 

computing base (TCB). The TCB of a computer system is the set of all 

hardware, firmware, and/or software components that are critical to its 

security, in the sense that bugs or vulnerabilities occurring inside the TCB 

might jeopardize the security properties of the entire system.

Some devices have a Trusted Execution Environment (TEE) for 

executing trusted application code. The TCB and TEE cooperate to 

ensure embedded security functionality can be accessed from within the 

TEE without a significant security risk. Bugs and vulnerability in these 

components jeopardize the security properties of the device. The TEE 

may be effective at detecting, preventing, or countering security events 

occurring in other parts of the system. It is therefore extremely important 

that every IoT device have a trustworthy TCB!

The authors suggest every TCB for IoT should contain the following:

 (A) Attestation key: An asymmetric key supplied by 

the device manufacturer that establishes device 

origin authenticity. The Enhanced Privacy Identifier 

(EPID)30 can be used to attest device origin without 

28 http://searchsecurity.techtarget.com/definition/trusted-computing
29 https://en.wikipedia.org/wiki/Trusted_system
30 Proceedings: WPES ‘07 Proceedings of the 2007 ACM workshop on Privacy in 

electronic society, pp 21-30, Alexandria, Virginia, USA – October 29, 2007, ACM 
New York, NY, USA ©2007, ISBN: 978-1-59593-883-1 doi> 
https://doi.org/10.1145/1314333.1314337
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introducing a trackable identifier that violates 

privacy.

 (B) Attestation functionality: Trusted code that 

implements attestation and attestation verification 

logic.

 (C) Encryption keys: Symmetric and asymmetric keys 

used to protect device-device and device-human 

interactions that may occur in the context of a 

coalition.

 (D) Secure communication: Trusted code that 

implements cryptographic algorithms used 

to protect the confidentiality and integrity of 

information exchanged between devices and TCB 

peers. It contains support for key management 

protocols such as Kerberos,31 PKI,32 and Fluffy.33

 (E) Authentication keys: Symmetric and asymmetric 

keys used to authenticate the originators of 

messages exchanged device-device and device-

human, also in the context of a coalition.

 (F) Authentication functionality: Trusted code that 

implements identity and authentication primitives 

including support for distributed authentication 

protocols such as OAuth234 and OpenID Connect.35

31 https://web.mit.edu/kerberos/
32 www.ietf.org/rfc/rfc5280.txt
33 https://datatracker.ietf.org/doc/draft-hardjono-ace-fluffy/
34 https://tools.ietf.org/html/rfc6749
35 http://openid.net/connect/
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 (G) Secure storage: The ability to store keys, integrity 

measurements (cryptographic hash), whitelists, 

settings, and contextual information that if modified 

or deleted could result in failure of the TCB to 

correctly apply a security objective.

 (H) Contextual awareness functionality: Trusted code 

that can encrypt and authenticate stored data 

securely even if the attacker has physical access to 

the storage resource. The ability to sense and collect 

security relevant context such as time, location, 

biometrics, and other context.

 (I) Trusted execution environment functionality: 

Trusted code that correctly implements the TEE 

environment such that the TEE firmware can be 

updated securely and computing interfaces into the 

TEE are resistant to attack.

These security “building blocks” provide the core set of hardened 

functionalities that enables an IoT device to establish itself as a trustworthy 

node suitable for inclusion in one or more coalition groups of IoT devices. 

Once a member of a coalition group, a distributed application can be 

deployed securely.

 Conclusion
The Internet of Things can be described as a dynamic set of distributed 

computing coalition groups that come into existence seemingly on their 

own, without a presumption of central control or orchestration. Coalition 

groups may just as easily disappear, but IoT networks persist as a set of 

protocols, data structures, and capabilities that enable these dynamics.  

A secure IoT network is essential to a sustainable and automated distributed 
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computing on a massive scale where the tiniest of computing nodes needs 

to support a set of security capabilities that is common to all other nodes 

in the Internet including the largest cloud servers. Coalitions of devices 

will work together to manage risk and to preserve the value inherent in 

the distributed computing venture by vetting coalition memberships. 

Failure to enforce membership integrity places at risk the value of the 

coalition. These economic dynamics, once properly understood, motivate 

proper investment in security capabilities, even among the simplest of 

IoT devices. This leads to a rethinking for conventional practices that 

assume security functionality should be less than 15–10% of total system 

cost. Rather, we think an enlightened approach considers the value of 

the network is greater than the sum of its constrained endpoints. The 

cost of security is weighed against the larger value where the percentage 

investment in security technology, standards, and business practices is 

aligned. Such a perspective will make it more feasible for most relevant IoT 

security technology to exist at the right layers of the IoT pyramid.

Open Access  This chapter is licensed under the terms 

of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), which permits 

use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 
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CHAPTER 2

IoT Frameworks 
and Complexity

The complexity of things – the things within things – just seems 
to be endless. I mean nothing is easy, nothing is simple.

—Alice Munro1

 Introduction
In Chapter 1 we explored device cost dynamics when security is built-in 

from the beginning. Either the cost of the device increases or the ratio 

of device resources attributed to non-security-related functionality 

decreases. However, ignoring security results in the IoT device 

becoming the “weak link.” This chapter surveys IoT frameworks. We 

categorized them according to a consumer, industrial, or manageability 

focus though many seek broader relevance. IoT frameworks hide a 

lot of underlying complexity as the industry wrestles with embracing 

newer Internet protocols while maintaining backward compatibility. A 

plethora of standards setting groups have come to the rescue offering 

1 www.brainyquote.com/quotes/alice_munro_176434

http://www.brainyquote.com/quotes/alice_munro_176434
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insightful perspectives on framework design to accommodate broader 

interoperability goals. But this may be too much of a good thing as 

framework interoperability has become yet another interoperability 

challenge. Framework designs often emphasize differing objectives, 

interoperability, adaptability, performance, and manageability. We offer 

an idealized framework that focuses on security to add contrast to what 

the industry already has considered. This chapter is lengthy relative 

to the other chapters in part because there are many IoT framework 

standards available and each takes a different perspective. Each has 

merit but ultimately the IoT ecosystem is likely to reduce the number of 

viable frameworks. We nevertheless encourage continued IoT framework 

evolution that removes unnecessary complexity and places security by 

design at the center.

 Historical Background to IoT
Before the “Internet of Things” became a commonly used term, embedded 

control networks used for real-time distributed control were known as 

process automation protocols, also referred to as fieldbuses. Fieldbuses 

are commonly used to implement SCADA (Supervisory Control and Data 

Acquisition) networks, building automation, industrial process control, 

and manufacturing control networks. These systems tend to be extremely 

complex and difficult to manage, especially over time as the number 

of system endpoints grows and the usages demanded of these systems 

increase. SCADA systems often involve connecting programmable logic 

controllers (PLCs), proportional-integral-derivative (PID) controllers, 

sensors, actuators, and supervisory management consoles, all connected 

through fieldbus protocols. But fieldbus technology isn’t limited to a single 

protocol or even a small number of protocols. There have been more than 

a hundred fieldbus protocols entering industrial automation markets 
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in the last 20 years. The IEC-61158-12 and related standards describing 

fieldbus technologies contain over 18 families of fieldbus protocols. Some 

of these include CAN bus, BACnet, EtherCAT, Modbus, MTConnect, 

LonTalk, and ProfiNet. Wikipedia also has a fairly complete listing.3 The 

Complexity can skyrocket when multiple fieldbus protocols are used 

to create an interconnected system. Then, with the birth of IoT, these 

fieldbus protocols are required to interconnect with Internet protocols, 

in some cases by replacing a fieldbus layer with an IP layer, which adds 

further complexity. When IoT systems are built to integrate with existing 

systems, based on fieldbus protocols, IoT systems are sometimes referred 

to as brownfield IoT because they represent use cases, ecosystems, and 

solutions that existed before the introduction of Internet technologies. 

Looking forward, industrial process automation and control, building 

automation, electrical grid automation, and automobile automation 

might continue using brownfield IoT nomenclature even though Internet 

technology integration is taking place.

Nevertheless, existing brownfield systems are highly proprietary and 

vertically integrated solutions, while Internet protocols historically have 

been more open and layered and support a richer ecosystem of vendors 

and value-added suppliers. Reducing fragmentation of brownfield 

networks through IT/OT convergence is a key motivation for IoT. Possibly 

it is this openness and richness of the Internet that drives the OT industry 

toward an “Internet of Things.” Additionally, with respect to security, IT 

priorities have focused on CIA (confidentiality, integrity, and availability), 

in that order, while OT has prioritized availability and integrity above 

confidentiality. The tension between CIA trade-offs is an important 

consideration as the IT and OT come closer together.

2 IEC 61158-1:2019 “Industrial communication networks - Fieldbus specifications -  
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series”, 
International Standard, Ed. 2.0, 2019-04-10. Available at: https://webstore.iec.
ch/publication/59890

3 https://en.wikipedia.org/wiki/List_of_automation_protocols
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Instead of using existing system as the starting point, the Internet of 

Things can bring a fresh perspective. Extending Internet connectivity 

beyond desktops, laptops, smartphones, data centers, cloud computing, 

and enterprise computing to agricultural, industrial, energy, health, 

transportation, public sector, and critical infrastructure seems a 

reasonable context for understanding the momentum behind the Internet 

of Things (IoT) evolution. The use of IoT technology to implement a 

completely new IoT system spawns unique applications for operational 

automation; building such a system with wholly new technology and 

protocols is sometimes referred to as greenfield IoT technology. Some 

examples may include drone control, self-driving cars, smart cities, supply 

chain automation, and machine learning. Greenfield IoT is riding the 

Internet wave of less-proprietary, lower-cost, and increasingly ubiquitous 

network technology that revolutionized PC, data center, and mobile 

device networks in the 1990s and 2000s. IoT may also benefit from the 

wave of microprocessor, memory, power, and storage innovations in 

mobile computing that results in lower-cost but highly capable computing 

platforms.

Whether the system is a brownfield system tying existing industrial 

or manufacturing automation control system with Internet technology 

or a greenfield system using completely new protocols and devices, both 

instances of IoT systems bring a level of intricacy that necessitates some 

abstractions to improve application development efficiency and to make 

management of these systems feasible.

But it isn’t just the protocols that generate complexity in IoT systems. 

Industrial IoT systems may have multiple layers of networks connected 

through gateways. IoT systems may best be categorized as a system of 

systems. As security practitioners contemplating the prospect of securing a 

complex system of systems, we must take every opportunity to ask whether 
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the complexity is justified because we, like other security practitioners, 

believe complexity is the enemy of security.4

 IoT Ecosystem
The IoT ecosystem is extremely complicated, fragmented, and evolving. It 

evolves at different rates depending on many factors, one of which is the 

replacement cycle for a given solution or industry. The replacement cycle 

for business PCs is 3–5 years, smartphone replacement is 1–3 years. Contrast 

this with building automation where an HVAC system replacement cycle is 

15–20 years or nuclear power generation facilities that must replace failing 

parts with identical replacement parts – leaving no room for the introduction 

of innovative or more secure technologies. These refresh rates either speed 

adoption of new technologies or restrict, even inhibit, the adoption of 

technologies that might improve operations, reduce costs, or even protect lives.

Due to the many differences in various sectors of the IoT ecosystem 

(e.g., health, public, transportation, industrial, energy), the sectors appear 

to embrace Internet technology differently – in silos (refer to Figure 2-1). 

However, the market forces keeping the silos defined are due in part to the 

technical requirements unique to the usages and applications that drive 

internal market cohesion. Brownfield solutions may have benefitted from 

proprietary or vertically integrated solutions, aided by these cohesive 

market forces, long replacement cycles, and costly specialized hardware 

components. But that is unlikely to persist as IoT innovations continue 

to find technology adjacencies that spill over silo barriers causing 

technological disruptive innovation. Generally, this is a good thing. 

However, these disruptive forces breaking down the proprietary silos 

also brings new challenges that impacts security in the form of increased 

complexity, new business models and unanticipated interactions.  

4 Tom Gillis, Contributor, Network World, “Complexity is the enemy of security,” 
Aug 8, 2016. www.networkworld.com/article/3103474/security/complexity-
is-the-enemy-of-security.html
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Just as the changes in Internet protocols brought more complexity to PC 

networks in the 1990’s, Internet of Things technologies promise more 

complexity (at least initially) for industrial, control and automation systems.

IoT Analytics - Quantifying the connected world

Internet of Things - Market segmentation by industry/application
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Figure 2-1. IoT market segmentation by industry/application5

The IoT ecosystem (referring to Figure 2-2) can be understood in terms 

of concentric rings of technology used to connect distributed physical 

and logical components. The technology within a particular ecosystem is 

specialized for that ecosystem, its business models, as well as the producers 

and consumers in that market. Ecosystem-specific components are 

specialized for different aspects of an ecosystem’s distributed applications, 

resulting in unique devices that coordinate sensing, actuation, control, 

data collection, data aggregation, data analysis, risk management, and 

operations. IoT system components may be distributed because of 

physicality of sensing and actuating, or due to efficiency requirements that 

result in specialized computation. A potential unifying factor in all this is an 

interoperable, low-cost networking capability that makes distributed IoT 

possible. But satisfying the myriad needs canvasing multiple IoT segments 

using a single IoT technology seems improbable if not impossible.

5 IoT Analytics, Knud Lasse Lueth, “IoT market segments – Biggest opportunities 
in industrial manufacturing,” Oct 31, 2014. https://iot-analytics.com/
iot-market-segments-analysis/
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 Connectivity Technology

Network and connectivity are nevertheless of paramount importance. IoT 

systems must enable connections over short-, medium-, and long-range 

distances. IoT solutions often must satisfy a wide range of transmission 

quality requirements that may also need optimizations for low latency, 

isochronous, asynchronous, store-and-forward, mobility, or streaming. 

IoT systems must consider environmental disturbances such as radio 

interference or emissions from other electronic equipment, low-power 

conditions, congestion, and resource starvation scenarios. Guaranteed 

service levels also add to the mix of requirements.

Additionally, trade-off decisions impact safety, reliability, resiliency, 

security, and availability. A variety of network technologies have emerged 

to address the multifaceted needs of IoT such as Zigbee, Industrial 

Ethernet, LoRa, LPWAN, Modbus, and TSN – to name a few. Some are 

highly specialized to a specific application context such as the Control Area 

Networks (CAN), which uniquely addresses the safety critical automated 

braking systems found in many automobiles. Fieldbus protocols, such as 

Modbus, use a synchronized communications bus to ensure each PLC 

(programmable logic controller) receives the messages directed at it.

While others are more general purpose such as Wi-Fi, Bluetooth, 5G, 

and Ethernet that accommodates information networks, streaming media, 

as well as control network applications. Industrial Ethernet operating 

at very high data rates can accommodate industrial real-time control 

requirements by ensuring network utilization remains below about 10%. 

Chapter 5 will dive deeper into details of different connectivity interfaces 

and considerations facing consumer and industrial IoT.

 Messaging Technology

IoT frameworks are exposed to IoT applications using a data model 

abstraction. The framework data model describes a view of the network 

where nodes appear as flat or nested data structures, and updates to 
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data values may result in actuation of various controllable elements. The 

data model abstraction allows the applications to focus on capturing 

semantic richness and less on moving data from node to node. Data are 

represented as structured markup that easily maps to messaging transport 

technologies.

Messaging technology determines how messages flow between 

network nodes. It also facilitates the building of IoT systems that collect 

data from various nodes using disparate protocols at the expense of 

creating additional complexity in the messaging layer. Simple messaging 

is request-response based such as REST (Representational State Transfer). 

HTTP (Hypertext Transfer Protocol) and CoAP (Constrained Application 

Protocol) follow the REST methodology. Publish-subscribe messaging 

allows multiple nodes to register for notifications when a change is 

detected in a variable on a peer node. MQTT (Message Queuing Telemetry 

Transport) is a popular example of a publish-subscribe messaging system. 

Broadcast and multicast can make publish-subscribe more efficient, which 

may be used in some IP-based networks. Different protocols are useful 

in different environments, and the whole communication stack even 

down to the availability of broadcast at the network physical layer must be 

considered when developing services in an IoT system. This complexity 

is difficult for the system designer but becomes overwhelming to the IoT 

developer. This complexity becomes most evident when designing an IoT 

platform, especially when designing an IoT platform intended to service 

multiple ecosystems. Platforms manage this complexity through the use of 

IoT frameworks.

 Platform Technology

IoT platforms host applications, resources, and data useful to an IoT 

distributed application. Platforms are specialized to the type of work 

each performs. Constrained IoT platforms may optimize for connectivity, 

latency, and small footprint, while less constrained platforms at the OT 
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network edge may optimize for device offload and bridging across control 

domains. Cloud platforms optimize for compute, scalability, capacity, and 

analytics. IoT frameworks are used in platforms because they facilitate 

interoperability and connectivity by combining appropriate networking, 

protocol, and platform ingredients in ways that allow application 

portability regardless of the node’s native specialization characteristics.
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 Elements of an IoT System
This section describes the elements of an IoT system focusing on 

device architecture, network architecture (an interconnected collection 

of devices), system management architecture, and lastly framework 

architecture.

 IoT Device
The term “device” can be confusing because it means different things 

in different contexts. When viewed from a manufacturing perspective, 

the device is a physical component consisting of hardware, firmware, 

and system software. It may also be preloaded with application software 

compiled into a single image that is embedded into persistent memory.

When viewed from a network management perspective, a device 

is a node that has a network address and could be part of a collection 

of interconnected devices. There could be multiple network endpoint 

addresses per physical device. Furthermore, given multiple network 

interfaces, the same physical device could appear as multiple nodes to 

other devices.

When viewed from an IoT framework perspective, a device is a logical 

context that exposes message passing interfaces. Interfaces are used to 

exchange data that is structured according to an interface definition. 

The actual data structure as viewed from within the framework may 

differ depending on the network protocols, message passing technology, 

or system usage. A logical device may have multiple interfaces to 

the network giving the impression to peer nodes there are multiple 

physical devices. This can be confusing if network address is the only 

way to disambiguate IoT devices. IoT frameworks expose a logical IoT 

device whose identity is independent of the underlying connectivity 

layer. However, security challenges can arise when a single networking 

interface exposes shared data or control surfaces with multiple logical 
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devices. This creates an opportunity for an attacker to exfiltrate data, 

perform side- channel analysis, or maliciously control logical devices. 

Consequently, the security design should incorporate endpoint 

protection technology deeper into the system – at the logical device level.

When viewed from an application perspective, the IoT framework 

data abstractions can make it difficult for application code to tell when a 

physical device boundary is crossed. A single application may interact with 

multiple IoT framework “devices” not knowing if they are geographically 

local or remote. This is relevant to security practitioners because device 

physicality is often what defines a security boundary. Obscured security 

boundaries make it more difficult for applications to effectively apply 

security protections.

To avoid confusion, the authors try to provide clarifying context 

whenever “device” terminology is used.

 IoT Device Architectural Goals

Unlike smartphones, PCs, laptops, and servers, the device bill of materials 

(BOM) for constrained IoT devices is often under significant cost pressure. 

In addition to the expected processing requirements, IoT devices often 

must accommodate hostile operating conditions that include extreme 

temperatures, vibration, humidity, and ultraviolet radiation. Meeting BOM 

constraints implies every ingredient is scrutinized to identify the minimum 

viable hardware, firmware, and software configuration while still satisfying 

product requirements. Part substitutions may be made over the course 

of a product’s lifetime to lower production costs.6 The IoT supply chain 

competes to be the low-cost supplier, and device vendors want to foster 

this competition to drive component costs even lower. Common interfaces 

facilitate interoperability and the integration of specialized hardware with 

6 Vendors often qualify multiple suppliers for hardware components that perform 
essentially the same function but allow production lines to keep producing if one 
supplier’s supply chain happen to be disrupted.

Chapter 2  Iot Frameworks and ComplexIty



34

general purpose hardware, sensor, accelerator, and Field Programmable 

Gate Array (FPGA) processor integration traditionally is done by a device 

manufacturer, but increasingly, specialized functionality is exposed to the 

network as a service. Software layers create logical devices that may be 

dynamically defined. Software defined devices offers greater flexibility for 

tailoring IoT solutions that meet customer need. Securing software defined 

devices requires a trusted execution environment that creates trustworthy 

hardware isolation and exposes security roots of trust to the soft device.

Interoperability

Architecting a device to be interoperable with other devices or infrastructure 

already, or soon to be, on the market is of paramount importance for IoT, 

especially given the enormity of different devices in large IoT systems. Web-

based validation suites allow device vendors to verify their products will 

interoperate with a wide variety of other vendors’ products, which would 

be too numerous to exhaustively validate using direct interactions from 

device to device. Testing for interoperability with an actual device that has 

not completed development or is not yet released to market is simply not 

possible. However, web validation suites allow testing for interoperability 

with standard protocols and frameworks, ensuring compatibility with peer 

IoT devices that have not yet completed development.

Nevertheless, interoperability gaps are likely to exist. For example, data 

models developed by competing standards may have syntactic differences 

even though semantics are similar. Standard protocols may not fully 

interoperate if certification testing is missing or is not comprehensive. 

Simulation tools that virtually deploy customer-specific configurations can 

be helpful. Simulations help expose interoperability gaps in specifications 

and validation suites relating to software behavior and data definitions. 

Trial deployments and test beds are another technique for finding gaps. 

This helps find hardware-dependent incompatibilities. Trial deployments 

go live once the gaps can be corrected. Test beds can be used for 
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longer-term evolution of products with sequenced rollout of increasing 

capabilities and features while ensuring that interoperability or backward 

compatibility problems do not creep in.

It is prudent for IoT system designs to anticipate having to work 

around incompatibilities and building specific features into their design 

to compensate for such issues. Postdeployment reconfigurable layers 

between applications and embedded components give systems architects 

the ability to make corrections during simulation and trial deployment. 

Less constrained devices such as hub controllers, bridges, and gateways 

more easily accommodate reconfigurable layers as they often support a 

wider variety of network interfaces and have more computing resources 

and storage to draw upon. Nevertheless, reconfigurability comes with a 

security cost. Malware might more easily exploit reconfigurability features 

that compromise embedded system components.

Security

Security consists of both functionality and assurance disciplines. Security 

functionality typically deals with secure boot, secure key storage, and 

cryptographic algorithm acceleration, while security assurance typically 

deals with ensuring security functions work the way they are intended. 

Trusted computing technology combines security functionality with security 

assurance mechanisms so that security compromise isn’t catastrophic. 

Trusted computing components are called upon to perform recovery steps. 

All devices contain some set of trusted functionalities, upon which all other 

parts of the system assume is trustworthy and has not been compromised; 

this is called the root of trust for the device. The root of trust is normally 

involved in the secure booting of the device, holding the device’s identity 

credentials, and presenting cryptographic evidence of device claims, called 

attestation. Depending on the device, the quality of the root-of-trust may vary.

In less constrained environments, a root-of-trust could be a security 

subsystem such as a Trusted Computing Group (TCG) Trusted Platform 
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Module (TPM) or a secure storage module such as Replay Protected 

Memory Block (RPMB). It could be a secure coprocessor such as ARM 

TrustZone or a security mode of a CPU such as Intel Software Guard 

Extensions (SGX). All other software and hardware components depend 

on the root-of- trust components in some way for their security.

Typically, less constrained systems make use of multiple roots-of-trust 

and multiple trusted execution environments. For example, trusted boot 

may rely on a root-of-trust for measurement in the form of a boot ROM 

that computes an integrity value for software images loaded during boot- 

up. These integrity values are stored in another root-of-trust for storage 

that protects them until they’re queried by a remote device that verifies 

boot integrity. The remote device expects to receive an attestation report 

that is signed by a trustworthy signing key protected by a root-of-trust for 

reporting. The TPM is an example of a discrete processor that combines 

roots-of-trust for storage and reporting.

Roots-of-trust can protect application code while it executes using 

Trusted Execution Environment (TEE) technology such as Intel SGX. 

Application developers partition application functionality according to the 

functions that are security relevant and those that aren’t. Less constrained 

environments allow multiple TEE instances. Managing and deploying 

multiple trusted environments and roots of trust adds cost and complexity.

In more constrained devices, these costs may be too high. Instead, 

devices must be designed with layered trusted computing. The Trusted 

Computing Group (TCG) proposed an approach for secure constrained 

device boot, secure device identity creation, and device attestation 

(Figure 2-3) that doesn’t depend on a security coprocessor called Device 

Identity Composition Engine (DICE).

Using a DICE strategy, the root-of-trust elements are those that operate 

first when the device is reset or when it resumes from a nonoperational 

state. The DICE architecture defines a Unique Device Secret (UDS) 

that is a circuit that produces a unique number when the platform 

undergoes power reset. The UDS circuit reads low-level device firmware 
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that is used to boot and possibly operate the device once booted. 

Firmware is cryptographically hashed with the UDS that is then fed into 

a cryptographic key generation circuit to produce a device identifier. 

Cryptographic hash is a one-way function that ensures input data can’t be 

discovered by analyzing the output value. If a different firmware image is 

hashed, it will produce a different hash output value. This will cause the 

key generation circuit to produce a different device identifier than what 

results from the first firmware image. If the device identity changes from 

what the IoT network expects, the changed device identity is no longer 

trusted and must be revetted and onboarded into the network.

The device identifier is unique to the UDS secret and the firmware 

installed. The secret is immutable because it is hardware. If the firmware 

is updated, a different device identity key is generated. A controller, 

bridge, gateway, or other IoT nodes can determine if firmware changes 

because it will no longer recognize the device identifier or be able to 

verify its digital signature. If malware corrupts device firmware then 

resetting the device sill return it to a secure operational state. The UDS and 

DeviceID derivation functionality form a root of trust that is simpler than 

a traditional Trusted Platform Module (TPM), secure co-processor or TEE. 

This is better suited for cost constrained IoT devices, but also benefits TCB 

design by tailoring TCB functionality that is most appropriate for special 

purpose IoT devices.

Root-of-trust

Device

UDS

Memory /
Storage

Firmware

DevcelD

CPU

Figure 2-3. Device Identity Composition Engine
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 IoT Network
When multiple IoT devices are connected together, they form an IoT 

network. However, connectivity alone isn’t very interesting. IoT devices 

should interoperate as a distributed application. One expects IoT nodes 

will cooperate to achieve a common objective. To do this, devices need 

a few basic behaviors: (a) the ability to discover peer nodes, something 

about their function or role and interfaces they support; (b) the ability 

to connect, which may involve authenticating and constructing a secure 

channel or cryptographic association; and (c) the ability to send and 

receive formatted data, parse it, and process it according to application- 

specific semantics.

Core to IoT design is the idea of an hourglass network layering model 

(Figure 2-4) that seeks to simplify the possible choices of network layer 

protocols to Internet Protocols (IPv4 and IPv6) while permitting legacy 

SCADA, fieldbus, and embedded control physical and data link layer 

technologies to remain available either through gateways or through 

encapsulation, such as 6LoWPAN7 (IPv6 over Low-Power Wireless Personal 

Area Networks).

The top half of the hourglass hosts existing and evolving IP transport layer 

technologies, for example, the Constrained Application Protocol (CoAP)8 

supports an HTTP-like RESTful message exchange without the overhead 

required to support HTTP and TCP. The Datagram Transport Layer Security 

(DTLS)9 applies TLS-like security to CoAP. An impressive array of emerging 

protocols designed for IoT are being developed by the IETF Constrained 

RESTful Environments (CORE)10 working group. DTLS may be appropriate in 

cases where reliability and in-order guarantees are not needed.

7 https://tools.ietf.org/html/rfc4944
8 https://datatracker.ietf.org/doc/rfc7252/
9 https://datatracker.ietf.org/doc/rfc6347/
10 https://datatracker.ietf.org/wg/core/documents/
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The framework layer sits atop the hourglass consisting of a dizzying 

mix of technologies that predate IoT or have emerged as a result of it. Most 

interestingly a flurry of new standards organizations has emerged that 

seem to have insightful perspectives on how best to define IoT frameworks. 

The authors believe that much of the IoT ecosystem will coalesce around a 

common set of Internet-based technologies forming an hourglass shape.

 IoT System Management
IoT system management comprehends manageability goals for both IT 

(Information Technology) and OT (Operational Technology). Device 

lifecycle management is common to both IT and OT disciplines covering 

the full spectrum beginning with manufacturing and supply chain through 

Framework

Transport

Network

Link

Physical

Figure 2-4. IoT network layering
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all phases of operation, including decommissioning and retirement. 

Management services support device lifecycle management. These 

include security services for managing roles, access control policies, 

and cryptographic keys and certificates; software update services for 

distribution and installation of firmware, software, and security patches; 

orchestration services for coordinating distributed application behavior, 

simulation, and for handling graceful failover, resiliency, load balancing, 

and redundancy; and telemetry services report on a variety of operational, 

security, safety, and behavior components of an IoT system that may be 

used further by IoT analytics and business management.

A challenge facing IoT systems is finding a uniform and consistent 

approach to manageability given the deeply fragmented brownfield and 

greenfield IoT solutions. Proprietary and vertically integrated solutions 

often don’t interoperate with horizontal IoT framework approaches, 

and framework manageability is quite often rudimentary lacking deep 

integration.

Lack of a uniform approach to security manageability has potentially 

significant IT and OT impact. For example, application of a security patch 

in an industrial IoT deployment may require multiple security consoles 

with labor-intensive checklists that verify all nodes are patched properly. 

Access control policies may not be consistently expressed across disparate 

IoT systems where role names and syntax may differ, access enforcement 

conventions may differ and be inconsistent, or key management 

capabilities may differ and may lack scalability or equivalent security 

strengths. Security gateways may be considered as a way to address some 

of these issues, but they may require deployment of new trusted nodes 

in situations where trust semantics don’t normally expect or allow a 

universally trusted gateway system. For example, a security gateway node 

that links an industrial process automation network to a business analytics 

server might be located at a base station in a wireless edge environment 

that has limited physical security, but nevertheless must operate with full 

security privileges of both networks.
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 Device Lifecycle

Trust in logical IoT devices is (or should be) tied to trust in the physical 

layer that hosts it. In an enterprise deployment scenario, servers, PCs, 

and even smartphones can undergo a rigorous manual inspection and 

configuration step by trained security professionals. However, the scale 

at which IoT devices are deployed is seldom feasible to apply the same 

rigorous manual processes. Instead, onboarding techniques that require 

minimal or no touch are needed. IoT platforms and devices follow a 

lifecycle (Figure 2-5) that may begin during manufacturing and ends 

when the device is decommissioned or waterfalled to another owner for 

redeployment starting another lifecycle.

Manufacturing Supply Chain Deployment
Normal

Operation &
Monitoring

Manage Update Decommission

Figure 2-5. IoT device/platform lifecycle model

Attackers may target vulnerabilities earlier in the lifecycle in order 

to avoid detection and circumvent mitigation strategies that presume 

manufacturing, supply chain, and onboarding steps are free from 

compromise.

IoT frameworks make assumptions about where along the device 

lifecycle continuum the framework abstraction models begin to apply. 

Early in the lifecycle, only physical devices exist. Even if logical devices 

come into being early in the supply chain, it may still be possible for 

additional logical devices to appear subsequent to initial onboarding or 

may disappear prior to a final decommissioning step. Security of the IoT 

system may depend on how well the IoT framework layer integrates with 

the platform lifecycle.
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Manufacturing

Manufacturing processes are critical toward the establishment of 

hardware-roots-of-trust which is a term used to describe security 

building blocks having to do with establishing platform/device identities, 

protecting cryptographic keys and algorithms, and creating hardened 

execution environments and system bootstrap procedures that resist 

attacks. Features may include hardware random number generation, 

cryptographic algorithms in ASICs (Application-Specific Integrated 

Circuit), FPGA (Field Programmable Gate Array) or instructions, hardware 

fuses that seed random number generation, boot ROM, replay protected 

memory, and others.

Supply Chain

Supply chain processes protect platforms and devices as they make their 

way from manufacturers to retailers to customer first deployment. Supply 

chain participants may have physical access to hardware components that 

if replaced by malicious components could result in undetectable attack 

scenarios. Tracking platform and devices through the supply chain may 

involve the use of RFID (Radio-Frequency Identification) tags, supply chain 

UUIDs (Universally Unique Identifiers), or cryptographic device identifiers. 

Privacy may become a challenge however as tracking capabilities could be 

misused in ways that violate privacy goals. Privacy requirements need to be 

anticipated as part of supply chain tracking mechanisms.

Deployment

Deployment is concerned with initial power up, customer-specific 

configuration, and establishment of the platform/device owner. 

Then the entity responsible for adding IoT devices to their network is 

sometimes called the “owner” which implies a change of ownership and 

establishment of a “local” identity that differs from a manufacturer or 
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supply chain supplied identity. The owner operates onboarding services 

that facilitate ownership transfer, verification of supply chain provenance, 

attestation of security properties and roots of trust, issuance of credentials, 

security associations, roles, and access control policies. Taking ownership 

of many devices can be challenging given limited human resources and 

large numbers of devices. Zero-touch commissioning is immensely 

important and difficult to get right given the diversity in supply chain and 

given the spectrum of customer security and privacy expectations.

Normal Operation and Monitoring

Normal operation refers to operational states where IoT functions are 

fully enabled and ready for use. Security monitoring ensures devices and 

networks continue to function securely. IoT frameworks may choose 

to hide security monitoring operations from IoT application-level 

abstractions, but they should consider how to fail gracefully when security 

conditions require service disruption.

Manage

IoT devices require periodic management, tuning, and adjustment. Some 

management functions can occur while devices are operating normally. 

For example, addition of security credentials for dynamically added 

devices may not need to interrupt activity with existing devices. Other 

management tasks may require disruption of normal operations. For 

example, an uncalibrated actuator may result in device, process, or system 

failures if asked to operate outside its design constraints. Frameworks 

can facilitate communication of device status and availability to enable 

periodic maintenance without major disruption to peer nodes. This 

management implementation could be in-band (within the OS/FW 

control) and/or out-of-band (outside of OS/FW control).
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Update

Software and firmware updates are arguably a subset of device 

management commonly known as Software Over-the-Air (SOTA) and 

Firmware Over-the-Air (FOTA) updates. Software update management 

must consider trade-offs of propagating large image files over networks 

optimized for small messages that may be latency sensitive. IoT networks 

may have “sleepy” nodes that are not available to receive an update in a 

timely manner.

Nevertheless, software and firmware updates are essential to secure 

operation. It is inevitable that security weaknesses will exist in most 

firmware and software images. Hence, when weaknesses are found, they 

should be fixed quickly to avoid possible exploit.

Decommissioning

Decommissioning is the process of undoing onboarding, commissioning, 

and provisioning that were applied previously. Although it is expected 

that devices and frameworks will anticipate scenarios involving devices 

that don’t go through a decommissioning process to handle it gracefully, 

applying decommissioning steps helps ensure privacy objectives are met 

by removing trackable personally identifiable information (PII) or privacy- 

sensitive information before it falls into other hands. Decommissioning 

also ensures security-sensitive data, credentials, keys, and access tokens 

are removed so they aren’t used to later attack other nodes. Frameworks 

can facilitate decommissioning by orchestrating the nodes removal in a 

coordinated way. Sometimes decommissioning could entail replacing the 

device under consideration with another device consisting of the same 

persona.

Automation of the IoT device lifecycle is an important security 

capability as it helps ensure the device never enters an insecure state and 

minimizes opportunities for attacker exploit by ensuring secure lifecycle 

practices are consistently applied.
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 IoT Framework
An IoT framework is a middleware layer beneath one or more IoT 

applications that presents a network-facing application interface through 

which peer framework nodes interact. Frameworks often support multiple 

communication technologies and message passing techniques. IoT 

frameworks also expose security capabilities including hardware-roots-of-

trust to applications and peer framework nodes.

 IoT Framework Design Goals

IoT frameworks have four primary design goals: (1) reduce development 

time and bring IoT solutions to market sooner; (2) reduce apparent 

complexity of deploying and operating an IoT network; (3) improve 

application portability and interoperability; and (4) improve serviceability, 

reliability, and maintainability. Given the vast range of existing and 

emerging communication technology choices, it is untenable for 

applications to manage the combinations of possible ways to connect. 

Frameworks hide connectivity complexity beneath a higher-level 

message passing abstraction like REST and publish-subscribe. Standards 

organizations help achieve these goals through standardization of the 

framework layer interconnect, message passing interface definition, 

and data definitions leveraged by applications. Standards groups also 

document IoT system design principles, architecture, and interconnect 

options. Standards organizations and industry consortia may assist 

developers by supplying and certifying reference implementations that 

include source code. Reference code helps streamline development by 

providing implementations that pass compliance tests and correctly 

interprets standards specifications. Reference codebases are easier to 

maintain benefiting from a large diverse community of open source 

developers who cooperate by actively developing code and improving the 

codebase.

Chapter 2  Iot Frameworks and ComplexIty



46

Frameworks simplify IoT networks by creating an abstraction of the 

IoT device networks that hides much of the underlying complexity while 

exposing data, interfaces, and functions that facilitate interoperation. All 

it should take to develop an IoT application is to create an application in 

a high-level language such as Node.js that utilizes framework APIs. The 

framework provides a semantically rich description of IoT nodes, objects, 

and interactions that allow IoT network designers to focus only on node 

interaction semantics rather than on the details of connectivity.

Frameworks facilitate improved application portability. This can be 

achieved at different levels. The bottom layer of the framework is operating 

system specific. The top layer of the framework is IoT use case specific 

in that it exposes a data model abstraction that reinforces an IoT usage 

context. Some examples include lighting control, home automation, 

health monitoring, entertainment, process automation, industrial control, 

and autonomous control. IoT applications can be developed once given 

the framework abstraction and can execute on any OS the framework 

is ported to. The details of dissimilar OSs and platforms can be hidden 

where porting of framework code to another OS (source code–level 

compatibility) can happen independently of application development. 

Binary compatible platforms can migrate compiled framework code across 

platforms using the same binary. Platforms that are not binary compatible 

may rely on virtualization to host framework images or may rely on device 

management services that hide the complexity associated with paring and 

installing the right framework with the correct platform.

Frameworks enable interoperable devices in heterogeneous 

environments. Consider a hypothetical scenario where devices are 

running different OSs and HW platforms. These devices could be built 

by different platform vendors using silicon from multiple vendors 

running different OSs such as Windows IoT Embedded and VxWorks 

running different middleware stacks. This is a perfect storm scenario 

for an IoT network deployment where there are too many possible 

combinations of connectivity and message exchange options to expect 
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speedy deployments. IoT frameworks come to the rescue by building the 

connectivity intelligence into the framework – hidden from application 

view and simplified from the device and network management view.

Frameworks also facilitate seamless manageability and serviceability 

by leveraging the framework’s infrastructure to expose platform status 

information through the framework layer in accordance with the 

framework’s data model abstraction. For example, a firmware update 

availability notification may be easily propagated across an IoT network. 

If the framework supports applying a firmware update, either push or 

pull, the firmware update images may be distributed over the air using the 

connectivity solution worked out by the framework.

IoT Data Model and System Abstractions

IoT frameworks define an application layer abstraction so that applications 

interact directly with framework data. For example, a temperature 

sensor might show the current temperature (currTemp) and the average 

temperature over the course of 24 hours (aveTemp). Temperature values 

might be shown in Fahrenheit and Centigrade. Consequently, a data 

model description might be as follows:

{

    "tempSensor" = "/myTempSensor",

    {

        "currTemp"="85",

        "aveTemp"="70",

        "degrees"="Centigrade"

    }

}

Data modeling languages are used to richly describe framework 

objects according to a schema definition. Examples of data modeling 

languages include XML (eXtensible Markup Language), JSON (JavaScript 
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Object Notation), CBOR (Concise Binary Object Representation), and 

YANG (Yet Another Next Generation language) – just to name a few.

Data structures are accessed through well-defined network interfaces. 

For example, CoAP is a REST model interface that uses four methods: 

GET, PUT, POST, and DELETE to interact with framework data. A couple 

RESTful interface definition languages include RAML (Restful API 

Modeling Language) and Swagger.11

A framework node may consist of several objects such as a temperature 

sensor, camera, and light bulb. A deviceId may disambiguate multiple 

instances of a framework node. For example:

{

    "nodeType"="myDeviceType",

    "deviceID"="<UUID>",

    {

        "tempSensor" = "/myTempSensor",

        "ptzCamera" = "/myPtzCamera",

        "lightBulb" = "/myLight"

    }

}

Using these simple but powerful data modeling tools, IoT frameworks 

can describe elaborate IoT systems while hiding much of the network 

complexity that underlies connection establishment, routing, packet 

transmission, network address translation, and so on.

To a certain extent, IoT frameworks can be compared with 

Information-Centric Networking (ICN).12 ICN rethinks the network where 

named information is the centerpiece of network architecture. Rather 

11 https://swagger.io/
12 https://irtf.org/icnrg
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than focusing on nodes, network topology, and protocol layering, ICN 

focuses on end-to-end data interactions. Data doesn’t necessarily reside 

on endpoints but may be cached and replicated anywhere in the network. 

Like ICNs, the upper layer of IoT frameworks presents a data-centric 

view of the network. However, unlike ICNs existing protocol layering is 

retained. Arguably, this adds additional complexity but offers greater 

interoperability. Indeed, an ICN connectivity plugin to an IoT framework is 

a reasonable approach to bridge ICN with legacy networks.

Securing IoT messages must take an end-to-end view so that 

authentication, confidentiality, privacy, and authorization goals may be 

realized. Otherwise, the benefits of hiding complexity beneath an IoT 

framework may instead be hiding security gaps. The IoT application using 

an IoT framework may not be aware when security is managed using 

system layer interfaces. Internet protocols often have a secure alternative 

such as https for http and coaps for coap, where the “s” means security. 

A REST GET message works the same over coaps as it does for coap. The 

main difference is the Transport Layer Security (TLS) binding to the 

REST messaging protocol negotiates a secure session using credentials 

(keys and certificates) that may have been provisioned directly into the 

TLS subsystem without coordination through the framework layer. The 

framework layer may not be aware of the impact to authorization which 

can result in the framework misrepresenting actual security posture to 

IoT applications. IoT frameworks can differ significantly in their design 

and implementation attention to end-to-end security. We hope to 

illustrate this point more profoundly as we walk through a variety of IoT 

frameworks later in this chapter.
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IoT Node

IoT frameworks define a device abstraction that is a logical representation 

of a physical device. This chapter uses the term IoT node to refer to the 

logical abstraction to avoid confusion regarding the physical device. 

Frameworks can create some interesting properties regarding IoT nodes:

• They may expose multiple nodes per framework to 

give the appearance of many nodes having the same IP 

address.

• They may consolidate multiple network addresses 

terminating into a common framework node.

• They may host services and capabilities that are 

dynamic – being created and deleted according to 

RESTful messages.

• They may impose system partitioning semantics such 

as dividing nodes into domains, groups, rooms, or 

some other semantic overlay.

Nevertheless, security semantics must remain true despite the 

framework abstraction. For example, if the node describes the endpoint 

where access is controlled, data is encrypted and decrypted. Then 

protection of the physical endpoint resources should strongly correlate 

with protection of the framework node.

IoT Operations Abstraction

IoT operations consist of several node interactions facilitated by 

frameworks. These include discovery, message exchange, event 

registration, and asynchronous notification. IoT nodes typically are not 

preconfigured to recognize other nodes. They must instead be discovered. 
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Discovery allows other framework nodes to inquire regarding supported 

interfaces and data structures essential to interoperability. Discovery 

can take many forms. For example, multicast and broadcast networking 

supports unsolicited discoveries. Nodes monitoring the broadcast may be 

required to disposition discovery events even if there is no action needed. 

Devices with limited battery capacity may have shorter life expectancies 

if deployed in highly dynamic networks. Alternatively, discovery may 

be accomplished by sending discovery requests to discovery interfaces 

for specific nodes querying the relevant information. This approach 

minimizes unnecessary activity on nodes that wouldn’t otherwise need 

to participate. However, this approach may require multiple “drill down” 

discovery requests before finding the data or interface needed. Passive 

discovery employs directories or less constrained nodes that respond in 

place of other nodes that may disregard all discovery requests while in a 

low-power mode. The directory nodes satisfy the discovery phase so that 

power-constrained nodes only process the functions that they uniquely 

provide.

Discovery conventions:

• Consulting a directory of framework devices to learn 

device identities and how to connect – conceptually 

similar to LDAP (Lightweight Directory Access 

Protocol) commonly used by PCs in IT networks to 

accomplish a similar objective

• Inspecting a schema describing interfaces to learn 

which REST, publish/subscribe, and asynchronous 

notification messages can be used

• Querying the device directly to introspect its current 

state and configuration
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Note an anonymous entity may learn a tremendous amount about 
how an Iot network functions, the type of nodes involved, what work 
they’re capable of performing, and typical interaction patterns simply 
by using available discovery mechanisms. Given a small amount 
of additional information that links actual devices or users to the 
observable network, it may be relatively easy for an attacker to obtain 
or infer knowledge that otherwise is expected to be privacy sensitive.

Message exchange conventions:

• Preparing a message body whose syntax satisfies a 

recognized (standardized) data model schema

• Protecting the message using the appropriate security 

credentials

• Sending the message following the interface definition 

schema for the target node

• Collecting and processing the response message that 

similarly follows these conventions

Event handling conventions:

• Identifying objects and attributes available for 

participating in asynchronous events and conditions to 

be met that result in notifications.

• Preparing and sending a registration/subscription 

message following messaging exchange conventions.

• Maintaining context for processing asynchronous 

notifications.
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• Nodes managing registrations/subscriptions must 

maintain context for secure delivery of the notification 

message(s) potentially involving many subscribers. 

Asynchronous message delivery may involve different 

security associations and context from those used to 

process registrations/subscriptions.

 Connectivity Elements

IoT frameworks facilitate connectivity, gatewaying, and bridging. The 

following briefly summarizes how each is facilitated:

• Connectivity: Framework endpoint abstractions are 

mapped to network layer addresses and protocols 

where framework message exchange abstractions 

map to protocol specifics such as MTU (Maximum 

Transmission Unit) framing, multicasting, 

broadcasting, and packet delivery mechanisms.

• Gatewaying: Framework domain abstractions impose 

operational context for domain-specific filtering 

(hiding) traffic and performance of administrative 

duties.

• Bridging: Due to the proliferation of framework 

solutions, it is often necessary to translate from one 

framework environment to another. Framework 

bridging may have side effects where objects, 

interfaces, or semantics in one environment don’t 

exactly translate to a second.
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 Manageability Elements

IoT frameworks may expose manageability elements through the 

framework object abstraction layer as a way for other framework objects 

and resources to better manage and respond to change resulting from 

management activity. However, this is more the exception than the rule. 

Even among horizontal open standard frameworks, there are many 

examples of device vendors wishing to retain proprietary or exclusive 

control over firmware/software update, onboarding, and cloud access 

capabilities. Nevertheless, frameworks can facilitate updates occurring 

outside the IoT framework by informing other nodes regarding 

pending updates or notifying regarding changes to version information. 

Additionally, IoT frameworks may not allow the framework itself to be 

updated from within an IoT framework context.

 Security Elements

IoT frameworks need to accommodate security by ensuring endpoint 

nodes and their physical equivalents (i.e., device, process, virtual 

machine, enclave) have a secured identity, protected cryptographic keys 

and appropriately provisioned roles, credentials, and access policies. 

Endpoint security capabilities should protect sensitive data that is 

stored, transmitted, or manipulated locally outside of the IoT framework. 

Software and firmware should be protected when transmitted, installed, 

stored, and loaded for execution. Framework processing of encrypted 

data, access control decisions, and identities should be protected within 

an appropriately hardened Trusted Execution Environment (TEE) or 

isolated from non-framework aware services and interfaces. IoT device 

roots of trust should be used to protect device identities and ensure the 

appropriate firmware and software is loaded and executed.

Inherent to distributed systems is added risk associated with a 

dependence on multiple peer nodes that contribute data, processing, 

and administration to an overarching distributed application. Nodes 
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largely trust peer nodes to be in a correct operational state. However, 

this assumption of trust may not be justifiable without taking additional 

precautions to prove and verify the hardware, firmware, software, and 

operational state to peer nodes. Attestation is a security concept that 

addresses this concern but only if it is correctly implemented and 

integrated.

Consider the Cost of Cryptography

IoT systems are inherently distributed. Cryptography is an essential 

security building block technology for distributed systems. Nevertheless, 

cryptography imposes additional overhead in terms of computation, 

memory, storage, network bandwidth, and hardening. Symmetric 

cryptography generally speaking is lighter weight than asymmetric 

cryptography, and asymmetric cryptography is lighter weight than 

certificate-based asymmetric cryptography. IoT devices typically 

are designed with cost targets that may impact device cryptographic 

capabilities. Since these choices also impact interoperability, IoT 

frameworks must anticipate common cryptographic algorithms, key 

sizes, and key management infrastructures. Asymmetric cryptography is 

dominated by at least two algorithms: elliptic curve cryptography13 (ECC) 

and Rivest-Shamir-Adelman (RSA)14 algorithms. ECC has smaller key 

sizes than the RSA. ECC can accomplish the same level of security as RSA 

with key sizes that are 10–15% smaller. Key size is an important factor for 

constrained platforms as such many IoT standards require ECC.

Table 2-1 details some of the trade-offs associated with cryptography.

13 https://tools.ietf.org/html/rfc6090
14 https://tools.ietf.org/html/rfc8017
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Table 2-1. Trade-Offs Associated with the Type of Cryptography Used

Criteria Symmetric  
(Preshared Secrets)

Asymmetric  
(Raw Public/
Private Keys)

Asymmetric 
(Certified Public/
Private Keys)

Hardware 
Acceleration

not required required required

Memory Size small medium large (certificates)

Code Size small medium large (certificate 

parsing)

Message Size small medium large (certificates)

Persistent 
Storage Size

small–medium 

(depends on network 

size)

medium–large 

(depends on 

network size)

medium (depends 

on caching 

algorithms)

Security – 
Perfect 
Forward 
Secrecy (PFS)

no yes yes

Security – 
Impersonation 
Risk

high (keys are shared, 

no detection of misuse, 

no common trusted 

infrastructure, depends 

on secure storage)

medium (no 

common trusted 

infrastructure, 

depends on 

secure storage)

low (depends on 

secure storage)

Constrained 
Environment

optimized for 

Verification (benefits 

constrained servers)

Balanced optimized for 

signing (benefits 

constrained clients)

Scalability 
(number 
of nodes 
interacting)

low medium high
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Quantum computers15 present new threats to existing cryptographic 

solutions because they are more effective at solving certain types of 

mathematical problems such as the integer factorization16 problem, the 

discrete logarithmic problem,17 or the elliptic curve discrete logarithm 

problem.18 Current asymmetric cryptography algorithms reduce to one of 

these mathematical problems which are known to be solved by quantum 

computing more easily than traditional computers. Cryptographic 

algorithms are being designed that are thought to be secure against 

quantum computers are called post-quantum safe algorithms and has led 

to a new branch of cryptography study called post-quantum cryptography. 

Since asymmetric cryptography is most threatened by quantum 

computing, post-quantum asymmetric algorithm design is receiving a lot 

of attention currently. In contrast, symmetric key cryptography and hash 

functions are relatively secure against attacks using quantum computers. It 

is believed doubling the key size (e.g., from 128-bits to 256-bits) adequately 

protects against quantum computer attacks on symmetric algorithms.19

It is still too early to tell which quantum-safe algorithms will become 

an industry favorite for IoT given cost, power, and size constraints. 

However, it seems clear that where symmetric cryptography is already 

acceptable for IoT, it should continue to remain acceptable given a 

doubling of key size is the most economical quantum-safe solution. 

Quantum-safe asymmetric algorithms have much larger key size 

requirements or computation trade-offs, both of which apply to typical IoT 

platforms.

15 https://en.wikipedia.org/wiki/Quantum_computing
16 https://en.wikipedia.org/wiki/Integer_factorization
17 https://en.wikipedia.org/wiki/Discrete_logarithm
18 https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
19 Daniel J. Bernstein (2010-03-03). ”Grover vs. McEliece” (PDF).
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 Summary IoT Framework Considerations
IoT frameworks came into being as a way to simplify development and 

deployment of IoT networks. The reality is IoT networks are inherently 

complex and, in many cases, necessarily so. IoT frameworks offer 

value because they create a data model abstraction that is simpler than 

applications having to deal with a myriad of message exchange options 

and dissimilar data definition. By allowing applications to focus only on 

the semantics of IoT node behavior and node interactions, interoperability 

improves. By hiding the complexity of connection establishment, 

bridging, gatewaying, and deployment of heterogeneous platforms, 

efficiency optimizations can be applied more uniformly. Although 

frameworks may increase complexity for simple deployment situations, 

they scale as deployments grow resulting in a simpler IoT system overall. 

Frameworks have other advantages, namely, they enable multiple views 

of the IoT system so manageability, resiliency, interoperability, security, 

safety, and usability perspectives can be represented. Complexity in 

any form, however, is a security consideration because vulnerabilities 

and security weaknesses can hide within the corners of complexity. 

Security practitioners should ask whether the framework is more complex 

than needed in order to realize the expected benefits, but also avoid 

workarounds that expose new attack surfaces.

 IoT Framework Architecture
This section explores IoT framework layers in more detail. A following 

section looks at specific framework architectures that may be compared 

and contrasted. The majority of IoT framework architectures define 

three layers: (1) Data Object layer, (2) Node Interaction layer, and (3) 

Connectivity and Hardware Abstraction layer. This section also considers 

the Hardware layer, though it typically isn’t considered part of an IoT 
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framework. However, because security necessarily should have ties to 

hardware, we’ve included a Hardware layer discussion. Security is integral 

to IoT framework layers revealing additional security insights relating to 

each layer (see Figure 2-6). This section explores each framework layer in 

detail with an emphasis on security.

 Data Object Layer
The Data Object layer defines data structures that expose the “nodes” 

and their capabilities using a data definition language such as JSON.20 

One or more nodes may be hosted in the framework where one or more 

applications may interact with framework nodes via a framework API. Data 

objects are a set of attribute encapsulations. Some framework object models 

allow nested encapsulation with unlimited depth. Other frameworks limit 

nesting depth. The outermost encapsulation is the node. Since nodes 

logically correspond to an IoT network endpoint, it is given an identifier, 

NodeID, such as a Universally Unique Identifier (UUID) which is easy to 

generate dynamically given framework nodes may be transient. NodeID 

differs from DeviceID in that DeviceID is fixed in hardware. It is created 

during manufacturing and is used to facilitate device onboarding. NodeID 

typically is created in response to successful onboarding. Very constrained 

devices may use the DeviceID as the NodeID if the manufacturer has 

prevented the framework from supporting additional nodes.

The Data Object layer may define security objects such as access 

control lists (ACLs), credentials, and other device status information 

useful to management consoles and other nodes. Exposing security 

objects using the framework object model allows device and security 

management using the IoT framework infrastructure. The framework 

connectivity and interoperability properties make it a desirable ingredient 

for manageability. Security objects may expose values that are specific to a 

20 www.json.org
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node such as credentials, ACLs, and NodeID or may expose values that are 

node independent or shared such as DeviceID, firmware, and hardware 

configuration.

The Security Objects in Figure 2-6 are useful for intranetwork 

and intradomain interactions. More sophisticated internetwork and 

interdomain interactions require an additional security layer that may 

be helpful for gateway operations. The gateway application contains 

control and management logic to present nodes to a peer IoT network 

that shadow actual nodes existing deeper inside the local IoT network. 

Gateway applications might even be used to bridge non-interoperable 

IoT frameworks. A following section explores interdomain security and 

framework gateways in more detail.

 Node Interaction Layer
The Node Interaction layer contains messaging semantics and defines 

interfaces used for peer node interaction. Interface definition languages 

such as RAML and Swagger may be used to create machine- and human- 

readable interface definitions. A framework instance may support one or 

more messaging models, such as REST, publish-subscribe, and MESH. This 

layer ensures messages are formatted correctly, parses message contents, 

performs data consistency checks, and ensures messages are sent, queued, 

resent, or received properly.

Messages may require encryption and integrity protections. This layer 

maintains security associations between the local and peer nodes. Security 

associations identify the nodes, ACLs, privacy policies, and credentials 

(used to authenticate, authorize, and protect message contents). They may 

also define the security context from which to perform various security 

relevant operations such as encryption, decryption, signing, verifying 

signatures, enforcing access control, and so forth. The security context 

defines what is (or should be) the correct way to terminate the data 

exchange with peer nodes.
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There are implementation challenges associated with security 

endpoint definition due to network layering. For example, a TLS or IP 

Security (IPSec) secured channel may be shared across multiple locally 

hosted nodes, implying nodes must use shared credentials, something 

frowned upon by most security practitioners. Alternatively, acceleration 

hardware may offload packet processing which may include offloading 

security operations too.

Ideally, the Security Endpoint Context is the central point of 

enforcement where the flow of data between the Data Object layer and the 

Connectivity layer can be inspected and controlled.

 Platform Abstraction Layer
The Platform Abstraction layer defines the logical connection points 

available to framework nodes. Connection points support the messaging 

models available to the Node Interaction layer regardless of the capabilities 

of the underlying network stack. The Connectivity layer typically supports 

multiple connection points – one for each unique network stack. For 

example, the connection point, Conn-A, has a network stack consisting of 

HTTP, TCP, IP(v4 or v6), and Ethernet (Figure 2-6). A second connection 

point, Conn-B, has a network stack consisting of MQTT, TCP/UDP, IPv6, 

6LoWPAN, and IEEE802.15.4. Connection points may be dynamically 

added or removed on more sophisticated platforms, while constrained 

platforms may embed a single connection point and network stack.

In some cases, the network stack includes message security technology 

such as IPSEC and TLS. The Connectivity layer depends on the Device 

Interaction layer for security associations specific to the node-to-node 

interaction semantics. This potentially divides the security enforcement 

point between the security side and the networking side. Some platforms 

are equipped with isolated execution technology that enables security 

processing within a network stack to be offloaded to a resource-isolated 

environment here referred to as a container. An alternative approach is 
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to move data protection into the Node Interaction layer. For example, 

OSCORE21 defines a standard format for encrypting CoAP payloads 

before being given to the CoAP layer. This approach allows the security 

endpoint to move out of the protocol stack into the Node Interaction layer 

potentially simplifying implementation.

The basic idea is that the security endpoint context, data packets, 

and node-to-node security associations should exist within a suitably 

hardened container as a prerequisite for performing security relevant 

operations. Otherwise, there is opportunity for clever attackers to 

intercept, modify, view, or replace node objects.

App-A App-B App-C Mgmt App Gateway App

Node-A

MESH

Conn-A

MQTT

UDP

IP Multicast

WiFi

CoAPS

DTLS/UDP

IP

WiFi

Peer Node

API

Keys ACLs DeviceID

Segmented
Memory

Driver

HW Interface

and Hardware

HTTP

TCP

IPv6

6LoWPAN

802.15.4

Conn-B Conn-C Device

IPSEC Sec.
Asso.

Pub/Sub

OSCORE
Sec. Asso.

REST

TLS Sec.
Asso.

Data Object Layer

Node Interaction Layer

Fr
am

ew
or

k
In

te
rf

ac
e

Io
T 

Fr
am

ew
or

k

Platform Abstraction Layer

Platform Layer

Network Acceleration Crypto Acceleration

Sensor /
Actuator

Trusted Execution Environment Technology

Secure Storage Root-
of-Trust

Security Objects

Security Endpoint Contexts

Resource Isolation

Security
Context-A

Context-A
Container

Context-B
Container

Context-C
Container

Security
Context-B

Security
Context-C

Node-B Node-C ACLs Credentials Device State

(4)

(3)

(5)
(2)

(1)

Figure 2-6. IoT framework layers

21 https://core-wg.github.io/oscoap/draft-ietf-core-object-security.html
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 Platform Layer
The Platform layer beneath IoT frameworks can be divided into three 

categories: (1) networking, (2) sensor and actuator, and (3) security. The 

network layer focus is on efficient processing of network packets, quality of 

service, and power optimization. It also addresses network security threats 

related to malicious manipulation of network protocols. A common denial- 

of- service attack might flood the network with unexpectedly high volume 

of discovery packets. Discovery (aka ping) packets may not require prior 

authorization since the goal of discovery often implies finding out which 

credentials are most appropriate to use. Well-known attack mitigation 

techniques often are part of network hardware implementations, allowing 

the mitigation technique to be applied efficiently.

The sensor and actuator focus is on implementation of the main 

processing function of the IoT node which often represents the transition 

from IT to OT as native interactions are applied to the physical world. 

Otherwise, the node would just be manipulating data and couldn’t be 

considered a cyber-physical system. The device driver and API are most 

often proprietary and specific to the vendor and model of the sensor or 

actuator. Vendor-specific behavior multiplied by the already large and 

expanding collection of IoT devices multiplies the complexities associated 

with multivendor interoperability. Hiding this complexity behind a 

common data object model is a primary reason for IoT frameworks.

The security focus is on hardening security-sensitive IoT functions. 

Trusted Execution Environment (TEE) technology isolates computing 

resources according to the various system tenants. IoT frameworks allow 

multiple tenants in the form of IoT nodes – nodes that may have different 

identities, security credentials, access policies, and configurations. Even 

in constrained environments where a single node is supported, there are 

security and device management scenarios that require tenant isolation 

for nodes performing administrative duties. The industry has a variety of 

TEE technologies that could be leveraged to harden IoT workloads that 
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include Intel SGX, Intel VT-x (virtualization technology), ARM TrustZone, 

and hardware memory managers that physically partition memory and 

other compute resources.

Secure storage is an essential element in IoT devices in that 

cryptographic keys, trust anchors, access control lists, and other policies 

need to be stored in ways that resist software attacks and ideally resist 

attackers who have physical access to the device. Replay protected 

memory is helpful toward preventing attacks on key exchange protocols, 

memory replacement, firmware update, and timing attacks.

Root-of-trust hardware is essential to the creation and protection of 

device identities that may be used to attest device security properties 

to a peer node and to security boot the device. Crypto acceleration 

hardware may offer additional protections as offloading encryption and 

signing operations may involve the use of a hardened coprocessor or 

ASIC (Application-Specific Integrated Circuit). Root-of-trust hardware or 

crypto offload hardware often includes a source of entropy necessary for 

generating encryption keys and trustworthy identifiers.

 Security Challenges with IoT Frameworks
Security challenges are a reoccurring theme as we explore various IoT 

frameworks. Though they may have been designed with a wide range 

of security and privacy requirements, there are a few areas that are 

consistently problematic. IoT framework nodes are the logical endpoints 

in IoT networks, but the network layer context is often out of scope when 

operating at the framework Data Object layer (Figure 2-7).

In IP networks, endpoint nodes are identified by IP addresses, 

and routing logic is expressed in terms of IP addresses. Network layer 

identifiers are insufficient as IoT framework node identifiers. In IoT 

frameworks, nodes are logical and hence may share the same IP address 

but have different node identifiers. Linking encryption keys, authentication 
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credentials, and access control policies to IP address means security will 

not be granular enough and can’t be consistently applied.

Uniform Resource Identifiers (URIs) and object identifiers such 

as Universally Unique Identifier (UUID) may be used to reference 

the framework’s device nodes. For example, a URI might identify the 

framework context followed by an object identifier that is specific to the 

logical device instance – “href” : “oic://<Base64_encoded_UUID>/oic/d”.

Data Object Layer

Node N1 Node N2 Etc...

Figure 2-7. IoT framework nodes are the logical endpoints in IoT 
networks

The IoT framework node presents a security context where the 

security endpoint is an IP multicast address; using IPSEC implies the 

data protection ends at the network interface card or possibly inside a 

networking driver in an operating system. This leaves data exposed before 

it reaches the IoT framework’s enforcement point where the decision is 

made to which node the data belongs.

A similar concern exists using Transport Layer Security (TLS) where data 

protections end within the operating system or within a network connection 

provider service. Connection services often expose APIs that a variety of 

applications may utilize. If the service isn’t exclusive to the IoT framework, 

it is possible the cryptographic protections intended to terminate within the 

logical IoT device terminate within the service instead. Other applications 

serviced by the connection provider are at risk of becoming targets for attack 

because of the special access unwittingly given to them by the service. Care 

must be taken to ensure data carried over communication channels and 

messaging systems are protected by trusted execution environments that 

correspond to the expected logical device endpoint.
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If data is protected using message-oriented techniques such as 

JSON Web Token (JWT), data protection may be extended into the IoT 

framework data abstraction layer, but there may be secure messaging 

library that is shared by all the logical device instances. A man-in-the- 

middle (MITM) attack could be successful if malware found a way to 

intercept the data after the data protection module is finished but before 

the logical device context is in place.

An IoT framework access path is depicted in Figure 2-6 where in step 

(1) a peer node accesses the IoT device through a Wi-Fi networking stack 

at connection Conn-C. In step (2) the Conn-C access path finds the TLS 

security association and the Security Context-A in the Security Endpoint 

Contexts. In step (3) access to decryption keys, ACLs, and role credentials 

is checked. The Security Context-A is a fulcrum point in the framework 

that uniformly applies an IoT network security policy involving the peer 

nodes and Node-A. Ideally, the security context operations are performed 

in a TEE that resists man-in-the-box attacks. If access is permitted, in 

step (4) the sensor/actuator hardware may be exposed to the peer node 

through Node-A data objects at step (5). Ideally, the entire access path will 

be isolated from the other nodes and operations occurring on the same 

device as the other tenants present security threats from within the device.

 Consumer IoT Framework Standards
In this section, we explore several IoT framework architectures 

highlighting similarities and differences. In some cases, differences exist 

because different frameworks intend to address different requirements 

and use cases. In other cases, significant overlap of features and 

capabilities appears to exist because they address similar requirements but 

do so differently. This is unfortunate because it creates opportunities for 

incompatibilities. Such differences may be benign when used in isolated 

deployments but add significant complexity when interoperability across 

multiple deployments is desired.
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 Open Connectivity Foundation (OCF)
The Open Connectivity Foundation (OCF) was originally formed under 

the name Open Interconnect Consortium (OIC). Broadcom, Intel, and 

Samsung were among the initial founders of OIC and were later joined by 

Electrolux, Microsoft, and Qualcomm. IoTivity is the open source reference 

implementation of both OIC and OCF specifications. The OIC later became 

OCF when the AllSeen Alliance and OIC merged in October of 2016. The 

AllSeen Alliance is discussed in more detail in a following section.

The OCF framework (Figure 2-8) consists of three layers, Transports, 

Core Framework, and Profiles. The transport layer is a plugin interface 

that supports any number of transport plugin modules. Although the 

architecture refers to them as transports, the remaining networking layers 

(network, data link, and physical) are presumed to be provided as well. The 

OCF specifications do not prescribe how the layers are implemented, but the 

IoTivity reference implementation (see https://iotivity.org/downloads) 

may offer guidance. Support for various wired and wireless transports in 

IoTivity continues to grow. At the time of this writing, there was support for 

CoAP (UDP) over IPv4, IPv6, Ethernet, Wi-Fi, and Bluetooth LE. At the time 

of this writing, an Object Security for Constrained RESTful Environments 

(OSCORE) draft specification22 defines a REST message binding to CoAP and 

HTTP. OSCORE supports connections originating in IoT networks based on 

a UDP transport that terminates in cloud services environments or remote 

access gateways that are based on a TCP transport.

OCF transport plugin module interface is transport agnostic, making 

it possible to define transport plugin modules that implement REST 

(Representational State Transfer) semantics. This implies OCF transport 

plugins could implement message queuing techniques such as MQTT 

(Message Queuing Telemetry Transport) or XMPP (eXtensible Messaging 

and Presence Protocol) without structural modifications to the framework.

22 https://datatracker.ietf.org/doc/draft-ietf-core-object-security/
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The transport interface interaction model roughly follows an object 

lifecycle pattern called CRUDN – Create, Retrieve, Update, Delete, 

and Notify. RESTful interaction semantics easily map to a series of 

request-response exchanges for each interaction – for example, Send 

Create_Request message followed by Receive Create_Response message. 

OCF interface semantics are typically defined using RAML23 (RESTful 

API Modeling Language), although there is interest in migrating to 

Swagger24 which complies with the OpenAPI specification. The OpenAPI 

specification25 is an open source community effort aimed at defining 

robust data modeling languages and tools.
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Figure 2-8. OCF conceptual framework

 OCF Core Framework Layer

The Core Framework lies at the center of the OCF architecture. It defines 

the “resource” abstraction model which is arguably its most fundamental 

building block concept and the characteristic that most distinguishes 

it from other frameworks. An OCF resource is primarily a sequence of 

23 https://Raml.org
24 https://swagger.io/
25 https://github.com/OAI/OpenAPI-Specification
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tag-value pairs but can have nested sequences as well. Resources are 

typically described using JSON. The OCF resource model approach to 

IoT networking presumes all aspects of the network can be represented 

declaratively, as a set of resource data structures having CRUDN 

interaction semantics. The traditional notion of a network topology 

consisting of nodes having routable IP addresses is hidden behind the 

resource abstraction.

Resources have several built-in properties (tags) that are common to 

all resources such as name, resource type, interface type, and whether or 

not it is discoverable and observable. Resource names are a URI (Universal 

Resource Identifier). Property names and name prefixes that are common 

to all are reserved by the OCF specification.

For example, “rt” refers to the resource type property, “if” refers to 

resource interface type property, “uri” is the resource name property 

if expressed as a URI, and “n” refers to a resource by its friendly name. 

Resource names prefixed with “/oic” are reserved for OCF use.

Additional properties may be appended that further specialize 

the resource. For example, it might define a property representing an 

operational state such as “on-off-state” where the accepted values are 

either ON or OFF. It might have another property “dim-level” with values 

in a range from 0 to 100, representing a light’s brightness level.

This is a JSON schema representation of a simple resource:

"oic.r.switch.binary": {

    "type": "object",

        "properties": {

            "value": {

                "type": "boolean",

                "description": "Status of the switch"

            }

        }

}
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This is a RAML representation of a CRUDN RETRIEVE interface 

definition:

get:

responses :

200: body:

          application/json:

             schema: |

                 { }

The point behind using interface and data modeling languages such 

as JSON and RAML is to enable the use of automated tools for generating 

code, tests, and even human-readable documentation that makes it easier 

to develop applications that not only interoperate but also can be adapted, 

updated, or modified at various operational stages.

The Core Framework layer defines several built-in resources used to 

implement several of the services and capabilities offered by the core layer. 

These include resource discovery, data transmission, data management, 

device management, security, identity, and permissions. Several built-in 

resources are listed in Table 2-2.

Table 2-2. A Few Resources Built into an OCF Core Framework Layer

Resource Name Description Functional Area

/oic/res a resource that lists all discoverable 

resources known to the current network

discovery

/oic/p a resource that reveals details about the 

platform that hosts the oCF device

discovery

/oic/rts a resource that lists the resource type 

information for all discoverable resources

discovery

(continued)
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A JSON representation of the /oic/p resource might appear as follows. 

Note this example includes comments denoted by double slash “//” which 

isn’t defined by JSON:

/oic/p {

"rt": "oic.wk.p",

"if": ["oic.if.r"],

"pi": "ABCD123...",      //platform identifier UUID

"mnmn": "acme.org",    //platform manufacturer

"mnmo": "widget X",    //platform model number

"mnpv": "v1.0",        //platform version number

}

All properties of the /oic/p resource are read-only to support discovery 

use cases. A device management resource would likely allow update 

so a management console could configure the resource according to 

management goals.

Resource Name Description Functional Area

/oic/ifs a resource that lists the resource 

interface information for all discoverable 

resources

discovery

/oic/mon a resource that reveals observable 

resources

device management

/oic/sec/cred a resource that lists the credentials this 

device has configured

security management

/oic/sec/acl2 a resource that lists the access control 

restrictions for this device

security management

/oic/sec/dots a resource that facilitates device 

onboarding

device and security 

management

Table 2-2. (continued)
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The Core Framework specifications also define helpful building block 

resources that other resource designers may find useful such as Links and 

Collections. Links are a structure for defining a static connection between 

multiple resources. It consists of at least three parts: (1) the Context, (2) the 

Relationship, and (3) the Target and (4) additional parameters.

For example:

{

    "anchor": "/my/room/1",    //the Context

    "rel": "contains",         //the Relation

    "href": "/the/light/1",    //the Target

    "rt": "acme.light",        //the resource type

    "if": "oic.if.a"           //the interface type

}

The Collection resource is a bit like a Link resource only it contains an 

array of static connections to other resources.

For example:

/my/room/1 {

"rt": "acme.room",

"if": ["oic.if.r", "oic.if.rw"],

"color": "blue",

"dimension": "15bx15wx10h",

"links": [

    { "href":"/the/light/1", "rel":"contains", "rt":"acme.

light",    "if":["oic.if.a", "oic.if.baseline"]},

    { "href":"/the/light/2", "rel":"contains", "rt"="mycorp.

light", "if":["oic.if.s" , "oic.if.baseline"]},

    { "href":"/the/fan/1", "rel":"contains", "rt":"hiscorp.fan", 

"if":["oic.if.baseline"]}

    ]

}
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 OCF Profiles Framework Layer

OCF Profiles are libraries of resources containing common functionality 

(e.g., light bulb, pan-tilt-zoom camera). Profiles are grouped according to a 

target deployment context such as consumer, enterprise, industrial, auto, 

education, and health. Profiles are extensible. JSON validation ignores 

content not matching a schema target. OCF makes use of this behavior 

by allowing vendors to customize in any way they choose. We have mixed 

opinions regarding the use of this extensibility mechanism because, 

although it allows for post deployment customization, it also encourages 

the use of non-interoperable profiles.

The OCF data model supports resource introspection. Introspection 

can be used by a client to obtain a machine-readable description of all the 

resources, properties, and interface definition syntax. Introspection may 

be useful for systems that can learn how to interact with resources without 

prior programming.

 The OCF Device Abstraction

OCF uses Universally Unique Identifiers (UUIDs) to identify OCF 

devices. The OCF device is like an OCF resource in that it has nested OCF 

defined Core and Profile resources. Core resources facilitate discovery, 

manageability, security, and connectivity. Profile resources define device 

type–specific data and behavior.

Access to OCF resources is accomplished using URIs. The OCF 

URI contains a device identifier in the form of a UUID followed by a 

reference to its resources. A client interacts with an OCF device by issuing 

a discovery message to identify available OCF server devices. This is 

followed by a RESTful message targeted at the device with interesting 

capabilities. The device’s introspection resource may be used to gain 

additional insight regarding device capabilities and may be used to fine- 

tune subsequent interactions.
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The OCF device abstraction logically defines a security boundary. OCF 

resource accesses follow CRUDN (Create, Retrieve, Update, Delete, Notify) 

interaction semantics that are part of the RESTful interface definition (e.g., 

PUT, GET, POST, DELETE). Access control policies use CRUDN privileges 

that are applied prior to returning resource data.

There can be multiple OCF devices hosted on the same physical 

platform. Logical devices are identified independently of the physical 

platform that hosts them. This means, from the perspective of the OCF 

device, it is not possible to distinguish whether a peer OCF device is 

geographically local or remote.

 OCF Security

OCF security is exposed to devices through OCF resources. This is a 

simple yet powerful idea as all security interactions can be accomplished 

using the OCF framework. OCF security architecture has three main 

aspects: (1) access control, (2) message encryption, and (3) device 

lifecycle management. Access control is applied at the OCF device and 

resource- level granularity. It’s worth noting that access control is not 

applied at the property level (although there are some exceptions). Access 

control list (ACL) policy is configured using the /oic/sec/acl2 resource. 

This resource is an array of ACL entries where each entry may be used to 

match the resource requestor to the requested resources so that an access 

restriction, expressed as CRUDN, can be applied before the requested 

resource is returned to the requestor.

/oic/sec/acl2 {

"aclist2": [

                "subject": ...,

                "resources": [...],

                "permission": CRUDN,
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                "validity": ...,

                "aceid": INTEGER

            ]

}

The subject property is used to match the requestor. There are three 

ways this could be accomplished. One method uses the OCF device ID, 

which is a UUID. If the requesting device authenticates with a credential 

known to the local device, then the requesting device’s ID is known. 

Another method is by role name. A role certificate may be presented at 

any time by the requestor during a session. If a role is asserted, then ACL 

entries that specify a role name could be used to match the requestor. A 

third method is by connection type. OCF connectivity options allow for 

anonymous (unauthenticated) and/or encrypted message payloads. It may 

be appropriate to supply a blanket ACL entry for anonymous requestors 

that is highly restrictive and only lessen restrictions when requestor is 

authenticated. Unencrypted data similarly may require a blanket ACL rule. 

OCF supports a variety of cryptographic algorithms and key types 

including symmetric, raw asymmetric, and certified asymmetric. OCF 

devices must support symmetric keys and related algorithms. Security 

profiles may require support for raw asymmetric keys or keys with 

certificates.

Message encryption is applied by the transport layer (e.g., DTLS 

applied to CoAP messages). The use of TLS (Transport Layer Security) 

implies the endpoint where data is no longer protected by cryptography 

is somewhere in the framework but not necessarily in the OCF device 

context. The use of TLS also implies there are deployment cases where 

the TLS endpoint is actually a gateway, proxy, or firewall or another 

intermediate node that isn’t the originating OCF device. Consequently, 

the use of TLS alone can’t guarantee end-to-end data protection. To 

handle these, one of four options may be tried: the intermediary obtains 
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a copy of the OCF device’s credential, the intermediary presents its own 

OCF credential (masking the true OCF device originating the request), 

the intermediary uses its own credential but supplies a role credential 

that is common to the originating device, or the intermediary remains 

anonymous.

While there may be several ways for an intermediary to establish a 

connection legitimately, the credentials used may not adequately enable 

the original requestor the appropriate access rights. Lack of end-to-end 

message protections can complicate management and deployment of 

proper security controls. Adding this complexity runs counter to the 

philosophy of simplifying apparent complexity while hiding actual 

complexity.

OCF has a device lifecycle management model that incorporates 

device lifecycle state into the device resource model. The /oic/sec/pstat 

resource includes a property named Device Onboarding State or “dos.” 

There are five states:

• RESET: Device transitions to its default state prior to 

onboarding.

• RFOTM: Device transitions to a state ready for 

onboarding into a new network.

• RFPRO: Device transitions to a state ready for 

provisioning resources.

• RFNOP: Device transitions to a state suitable for 

normal operations.

• SRESET: Device transitions to a state subsequent 

to onboarding, but where the device may be 

recommissioned or reconfigured with other options 

normally established only at onboarding.
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The device is guaranteed to be in one of these five states throughout 

its deployment. These states map to elements of an IoT platform lifecycle 

model (see Figure 2-5). For example, a device may be in the RESET state 

during manufacturing and supply chain phases then transition to RFOTM 

in order to enter the deployment phase. It may transition to RFPRO as part 

of onboarding and initial commissioning then transition to RFNOP while 

in normal operation and monitoring phase. Management and update 

phases may or may not require a transition to RFPRO depending on how 

impactful the changes may be to the framework’s resources. Hardware or 

low-level system changes may require transitioning to SRESET in order to 

change resources and properties the framework expects are immutable. 

Decommissioning implies a transition to RESET.

OCF “dos” states can have beneficial security impact because the 

device model at the framework layer enforces restrictions that could 

otherwise be ignored (potentially resulting in security incidents) by other 

resources and applications. For example, the /oic/sec/dots contains a 

property “owned” that is only updatable when the device is onboarded 

into a network for the first time. It is read-only thereafter. If an attacker tries 

to update it in some way to force an ownership change, the device state 

model prevents it.

OCF onboarding accommodates secure supply chains. Owner 

Transfer Methods (OTMs) are secure protocols designed to work with 

platform embedded credentials such as a manufacturer’s certificate. 

OTMs rely on participation from platform vendors to establish platform 

provenance at manufacturing and through the supply chain. A variety of 

OTMs are supported having various levels of provability of supply chain 

provenance. The OTM interface is extensible, allowing improved OTM 

adoption over time.

A security challenge facing OCF frameworks is the binding between 

the lower framework layer to the platform and its security capabilities 

isn’t defined by the specification. Implementers are free to make trade-off 

decisions that likely differ from product to product and vendor to vendor.
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The OCF resource model tolerates complexity in that it supports any 

data structure representable by JSON. OCF standardized structures, Links 

and Collections, can be used to create complex relationships between 

resources enabling, for example, unlimited layers of nested resources that 

are difficult to define meaningful ACL rules. Resources can contain links 

to resources hosted on remote devices resulting in a chain of interactions 

not bounded by an end-to-end ACL policy. Encryption is achieved using 

TLS. TLS endpoints occur in the communication layer resulting in hop- 

by- hop confidentiality protection semantics. Although the OCF resource 

model complexity may be justified, its flexibility shouldn’t reach beyond 

the security mechanisms protecting it.

 AllSeen Alliance/AllJoyn
The AllSeen Alliance began in 2013 as an open source Linux Foundation 

project that defined an IoT framework aimed at consumer class home and 

small office automation use cases. AllJoyn is the open source reference 

implementation that first became available in 2016. AllSeen Alliance 

member companies included Affinegy, Arçelik, Canary, Cisco, Changhong, 

doubleTwist, Electrolux, Fon, Haier, Harman, HTC, LIFX, Liteon, LG, 

Microsoft, Muzzley, Onbiron, Panasonic, Sears, Sharp, Silicon Image, 

Sproutling, Sony, TP-Link, Two Bulls, and Wilocity. The AllSeen Alliance 

merged with the Open Connectivity Foundation in October of 2016. 

IoTivity 1.3 released in June 2017 contained support for an IoTivity to 

AllJoyn bridge.26 AllSeen deployments exist primarily as legacy networks as 

development resources have turned elsewhere.

AllJoyn architecture (Figure 2-9) consists of three classes of node, 

leaf nodes, router nodes, and bridges. Leaf nodes contain application 

code and are primarily responsible for authentication and encryption. 

Router nodes host leaf nodes – no direct application to application 

26 https://iotivity.org/downloads/iotivity-1.3.0

Chapter 2  Iot Frameworks and ComplexIty

https://en.wikipedia.org/wiki/Arçelik
https://iotivity.org/downloads/iotivity-1.3.0


79

interaction is permitted unless brokered by a D-Bus (Desktop Bus) 

agent – though application nodes may embed router node functionality 

giving the impression of direct application connectivity. Router nodes are 

responsible for message exchange that includes request-response and 

publish-subscribe support. It handles discovery, advertising, presence, 

and session management. The messaging transport is provided by D-Bus27 

technology. D-Bus is a point-to-point communications protocol built 

on top of IPS (inter-process communication) or through TCP sockets. A 

daemon process monitors bus activity processing messages on behalf of its 

connected applications. D-Bus channels are named using UNIX filesystem 

objects. An application must know which transport protocol to use and an 

appropriate D-Bus name when attempting to connect to a peer leaf node 

known as the “bus address.” D-Bus supports several status and discovery 

commands that may be helpful in determining the health of D-Bus 

daemon processes:

• Org.freedesktop.DBus.Peer is used to determine if a 

peer is alive.

• Org.freedesktop.DBus.Introspectable is used to obtain 

an XML description of the interfaces, methods, and 

signals the device implements.

• Org.freedesktop.DBus.Properties is used to expose 

native properties and attributes of connected devices 

or to simulate them if they don’t exist.

• Org.freedesktop.DBus.ObjectManager is used to query 

subobjects under its path when device objects are 

organized hierarchically.

27 https://cgit.freedesktop.org/dbus/dbus/tree/NEWS?h=dbus-1.12

Chapter 2  Iot Frameworks and ComplexIty

https://cgit.freedesktop.org/dbus/dbus/tree/NEWS?h=dbus-1.12


80

AllJoyn leaf node layers (Figure 2-10) consist of the AllJoyn Core 

that handles discovery, security, connection management, and network 

management. The AllJoyn Thin Client is an optimized subset of the AllJoyn 

Core targeting ultra-constrained environments. Message authentication 

and encryption protects the service framework and application data end- 

to- end. However, AllJoyn Thin Client nevertheless requires at least one 

routing node to complete an end-to-end connection.

The AllJoyn Service Framework implements device services. 

Onboarding, control panel, and notification services are common to all 

devices. Application-specific services are added as needed to expose 

device-specific specializations.

The AllJoyn router nodes contain an AllJoyn Core layer that contains 

message routing capabilities. However, routing nodes can be configured 

to protect all D-Bus traffic between cooperating D-Bus daemon processes 

using a common shared key. AllJoyn Management Functions perform 

advertising and discovery functions on behalf of leaf nodes. Routers 
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maintain context regarding leaf node presence and maintain a session for 

each attached leaf node. Messages involved in publish-subscribe messaging 

may have fan-out semantics requiring platform-level optimization support. 

For example, IP multicast may be an efficient way to deliver the same 

message to multiple recipients. Subscription registrations are maintained 

here as well. Message filtering can be applied by AllJoyn routers where the 

aim is congestion control given requests containing a query string.

AllJoyn bridges perform network and link layer translations when 

AllJoyn nodes are physically separated or when AllJoyn framework-level 

objects are gatewayed to a different IoT framework environment. For 

example, framework bridges may support IoTivity or OneM2M mappings.
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AllJoyn Management Functions

AllJoyn Core

AllJoyn Service Frameworks
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AllJoyn Routing Node

Figure 2-10. AllJoyn leaf and router nodes layering

 AllJoyn Security

AllJoyn security rests with the AllJoyn leaf node and with the application 

layer. Such an approach encourages end-to-end protection of data. 

Effective data-level protection at the application layer requires data 

formatting and encapsulation technology that is part of its data model. 

AllJoyn data objects are described using XML and rely on XML Security28 

for secure encapsulation. Although D-Bus can support security at the IP 

layer, it relies on the application endpoint for end-to-end data protection.

28 www.w3.org/standards/xml/security
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When the Open Connectivity Foundation and the AllSeen Alliance 

merged, they defined a bridging specification that allows OCF and AllJoyn 

devices to interact; however the OCF bridging specifications do not define 

security interoperability.

 Universal Plug and Play
Universal Plug and Play (UPnP) was originally designed for consumer 

electronics, mobile devices, home automation, and personal computer 

networks emphasizing zero configuration networking – the idea that 

setting up a service doesn’t require any manual configuration. It includes 

automatic assignment of network addresses, automatic distribution 

of hostnames, and automatic discovery of network services. Although 

UPnP envisioned interoperation with consumer electronics and home 

automation, its first international specification published in 2008 by ISO/

IEC29 before the Internet of Things became a popular buzz word.

The UPnP set of standards has evolved to better support audio/video 

equipment, remote user interfaces, quality of service, and remote access 

from the Web. As recently as 2015, the UPnP Forum published the UPnP 

Device Architecture 2.030 specification that extends into the Web through 

XMPP integration. The IoT Management and Control Architecture31 

published September 10, 2013, addresses more directly home automation 

requirements with the inclusion of sensor management.

29 ”ISO/IEC standard on UPnP device architecture makes networking simple 
and easy.” International Organization for Standardization. 10 December 2008. 
Retrieved 11 September 2014.

30 www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
31 http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-
Architecture-Overview-v1.pdf
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The UPnP protocol stack (Figure 2-11) may be regarded as IoT 

frameworks, though loosely as UPnP is tightly bound to IP and the network 

services built around IP such as DHCP, DNS, IP multicast, and so on. UPnP 

network topologies parallel that of IP network topologies.

The UPnP Device Architecture layer consists of a discovery service 

named Simple Service Discovery Protocol (SSDP) that supports passive 

discovery request-response as well as active service availability notification 

and unsolicited advertisements using local multicast addressing. The 

General Event Notification Architecture (GENA) handles the details of 

registering notification events and sending notification messages when 

events are triggered. The Simple Object Access Protocol (SOAP) uses 

XML-formatted messages that are delivered using RESTful HTTP request- 

response exchanges. UPnP also supports IP multicast events for simple 

messages that need to be broadcast to multiple UPnP nodes.

HTTP

Multicast

Messaging
(SOAP)

Notification
(GENA)

Discovery
(SSDP)

UPnP Applications

UPnP Vendor Specific Layer

UPnP Forum Standardization Layer

UPnP Device Architecture Layer

TCP / UDP

IPv4 / IPv6

Figure 2-11. UPnP protocol stack

UPnP networks (Figure 2-12) consist of two node types, control points 

and Devices. Devices host Services. Device nesting is supported; the top- 

level Device is known as the Root Device. Devices are conceptual objects 

but are identified using IP addresses. Control points contain code that 

controls devices or otherwise interacts with services.
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UPnP can be divided into six architectural elements: addressing, 

discovery, description, control, event notification, and presentation. 

Architectural elements roughly follow six phases of UPnP service and 

control point interactions:

 I. Addressing : Zero-touch configuration motivated 

the use of DHCP (Dynamic Host Configuration 

Protocol) so the device would automatically look 

for a DHCP service to obtain an IP address. If no 

DHCP service was available, the UPnP device 

will autogenerate an IP address. The device can 

automatically obtain a DNS name using DNS 

forwarding. Secure device and control point identity 

was not a major focus.

 II. Discovery: Service discovery automation is 

achieved through proactive “alive” messages that 

are broadcast periodically to listening control 

points. Control points can send discovery messages 

Control Point

Control
Code

Root Device

Device

Service

Service

Control Point

Control
Code

Service

Figure 2-12. UPnP network nodes consist of control points and 
Devices that host Services

Chapter 2  Iot Frameworks and ComplexIty



85

with filters for the class of interesting service. This 

approach removes the need for statically configured 

services enabling dynamic services (that can go 

online or go offline easily). Control points rely 

on SSDP notifications to keep them appraised of 

service online status. Service name URLs are public 

which could have privacy implications. Secure 

discovery was not a major focus.

 III. Description: Discovery reveals the existence of 

UPnP devices and services, but control points 

may require more context to determine if they 

are relevant to control point applications. Device 

description allows introspection using an XML 

description of the device structure. It includes the 

following information:

• Vendor-specific details include manufacturer 

name, model, version, serial number, and URLs to 

vendor-specific web sites.

• Service details include URLs for control, event 

notification, and service description. Service 

commands and their parameters are detailed.

• Variables that describe Runtime state are described 

in terms of data type, expected range, and event 

characteristics.

 IV. Control: Control point code is expected to identify 

which commands and data objects are supported 

by the service to construct a program sequence 

that uses them to achieve application objectives. 

Command formatting is specified using SOAP 

protocol following the request- response pattern.
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 V. Event Notification: Services built around sensors 

and physical devices may change internal state 

autonomously. Control points seeking to be appraised 

of service and variable state changes can register for 

asynchronous notifications when things change. 

Notification messages are small; if the control 

point needs more information than is available in 

the notification message, it may need to follow the 

notification with a request-response interaction. 

UPnP event notification capability is referred to as the 

General Event Notification Architecture (GENA).

 VI. Presentation: Normally, UPnP nodes operate as 

headless entities. Nevertheless, users may need 

to monitor and control things. UPnP services can 

support web browser user interfaces by returning 

a URL to a web page markup (HTML) that exposes 

service variables and control widgets.

 UPnP Security

Initially, UPnP architecture did not comprehend security. It was thought 

to be addressed in the layers beneath (network) or above (application). 

More recently The IoT Management and Control Architecture32 was added 

which included access control features for sensors was facilitated by roles 

and sensor permissions. Sensor permissions include

• ReadSensor: Control points can issue ReadSensor() 

actions to sensor objects.

• WriteSensor: Control points can issue WriteSensor() 

actions to sensor objects.

32 http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-
Architecture-Overview-v1.pdf

Chapter 2  Iot Frameworks and ComplexIty

http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-Architecture-Overview-v1.pdf
http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-Architecture-Overview-v1.pdf


87

• ConnectSensor: Control points can issue 

ConnectSensor() and DisconnectSensor() actions to 

sensor objects.

• CommandSensor: Control points can modify 

IoTManagementAndControl properties in the  

data model (which is a data repository object).

• ViewSensor: Control points can read 

IoTManagementAndControl properties in the  

data model.

UPnP sensor objects expect control point operates with a particular 

role where permissions are assigned based on the set of behaviors each 

role is expected to follow.

UPnP control points must possess one of three UPnP defined roles:

• Admin: Role can read, write, connect, command, or 

view any sensor object.

• Public: Role can read or write specific sensor objects 

(e.g., those supporting the Public role).

• Basic: Role can read or write specific sensor objects 

(e.g., those supporting the Basic role).

A group of sensors form an object that can respond to control point 

accesses. Sensor groups have their own permission classification denoted 

by a sensor command name followed by the group name (e.g., smgt:ReadS

ensor()#[SensorGroupName]). There are four permissions for Read, Write, 

Command, and View. ConnectSensor isn’t supported. Sensors inherit 

the group permissions upon joining the sensor group. Control points 

acquire the “group” access by joining the sensor group as a Control point. 

Interestingly the UPnP specification refers to group permissions as group 

roles.
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UPnP security features are optional to implement, making it difficult to 

force the ecosystem to deploy UPnP with security.

The Open Connectivity Foundation and the UPnP Forum merged in 

2016. They defined a bridging specification that allows OCF and UPnP 

devices to interact; however the OCF bridging specifications do not define 

security interoperability.

 Lightweight Machine 2 Machine (LWM2M)
The Open Mobile Alliance (OMA) defined the Lightweight Machine 2 

Machine (LWM2M)33 specification to address IoT device management. We 

have included it at the end of the section summarizing consumer class IoT 

frameworks, but it could just as easily be classified as an IoT manageability 

framework. However, the Internet Protocol for Smart Objects (IPSO) 

Alliance extended LWM2M such that it can be used to describe a variety 

of consumer class IoT devices referred to as “smart objects” borrowing 

terminology from the LWM2M “object” model. OMA and IPSO Alliance 

merged in March 27, 2018,34 forming new committees within OMA 

organization to continue its evolution as both an IoT manageability 

framework and a general-purpose IoT framework.

 LWM2M Architecture

LWM2M architecture (Figure 2-13) utilizes a LWM2M Server node to host 

device management and other applications that interact with LWM2M 

client nodes hosting one or more LWM2M objects. Servers use RESTful 

CoAP commands (GET, POST, PUT, DELETE) to read and update the 

objects. Secure access is achieved using DTLS layer of CoAPs. CoAP and 

DTLS use UDP/IP and SMS transport protocols.

33 www.openmobilealliance.org/release/LightweightM2M/
34 www.omaspecworks.org/ipso-alliance-merges-with-open-mobile-alliance-
to-form-oma-specworks/
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The LWM2M object model (Figure 2-14) is a simple but powerful 

abstraction of IoT devices. The LWM2M client is the managed node and 

corresponds to a sensor/actuator device. LWM2M nodes describe a set of 

network exposed variables called objects. A LWM2M Server may reference 

an object using a URI string that names the object plus its resources. For 

example, a LWM2M URI might appear as “/0/1” where “0” is the object 

identifier and “1” is the resource identifier. Objects contain one or more 

resources, but resources may not contain objects; in other words, nesting 

of objects is not supported. Friendly names are not supported since doing 
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Figure 2-13. LWM2M architecture showing client node with objects 
being managed by a Server node hosting device management and 
various web applications
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so was thought to make URIs unnecessarily verbose. Instead objects and 

resources are numeric values. It is possible to have an array of objects of 

the same type using same object identifier. An Object Instance Identifier 

is added between the object ID and the resource ID to qualify the object 

instance. The URI format has the following form:

/ <ObjectID> / <ObjectInstanceID> / 

<ResourceID>

Figure 2-14 shows an example object configuration consisting of two 

objects. The first contains a single object instance with three resources. 

The URI path begins with a leading slash “/” followed by the ObjectID 

referencing the first object (denoted by red arrow). It is followed by a 

second slash then the ResourceID referencing the third resource in the 

first object (denoted by a green arrow). The second object contains two 

instances of Object 2 where each instance consists of six resources. The 

URI path examples have three elements, the middle being the Object 

Instance Identifier (denoted by a blue arrow). One URI path shows an 

Object Instance Identifier with the value 1 that references the first object 

instance and the first resource instance within it. The other URI path 

references the second object instance and the sixth resource within it.
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The LWM2M object model expects IoT devices can be described 

relatively simply. The object model abstraction may hide significant actual 

complexity requiring the object model designer to think carefully about 

which device attributes need to be exposed and how best to map actual 

complexity to a simpler apparent complexity.

The example object in Figure 2-15 reveals six resources. The chart 

describes additional metadata regarding the resource including the type 

of access allowed (read vs. read/update), if it is a multi-instance object, 

the resource data type, the allowable range of data values, and the units in 

which the data is expressed.

LWM2M Client

Object 1

uri:/ 1 3/

uri:/ /2

2 2 6

1 1/

uri:/ / /

Object 2

Object Instance 1

Object Instance 2

Resource 1

Resource 1
...

...
Resource 1

Resource 6

Resource 6

Resource 2

Resource 3

Figure 2-14. LWM2M object model example showing URI references 
to data values
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The object namespace needs to be managed to avoid confusion when 

servers access client objects. The OMA reserved object identifiers 0–1023 

for OMA defined objects. 1024–2047 are reserved for future use. 2048–

10240 are allocated for third-party defined objects. For example, the IPSO 

Alliance object definitions are allocated from this range. 10241–32768 are 

assigned to public entities, vendors, or individuals for proprietary use.

Introspection is not supported except through the use of a separately 

defined introspection service – something that wasn’t defined at the time 

of this writing.

 LWM2M Device Management

LWM2M defines five device management services:

• Bootstrapping: Configures symmetric secrets, raw 

public keys, and certificates clients and service will use 

to establish DTLS sessions. LWM2M Services may be 

configured. Access control lists may also be configured.

• Remote Management: Updates operational settings 

as defined by device profiles. Triggers for controlling 

actuation may also be configured or reset as part of 

normal operation.

Resource
Name

ID Access
Type

Multiple
Instances?

Type Range Units Descriptions

Latitude

Longitude

Altitude

0 R N0 Decimal

1 R N0 Decimal

2 R N0 Decimal

Deg

Deg

m

Uncertainty 3 R N0 Decimal m

Velocity 4 R N0 Refers to
3GPP
GAD
specs

Timestamp 5 R N0 Time

Refers to
3GPP
GAD
specs

The decimal notation of latitude, e.g. -43.5723
[World Geodetic System 1984]

The decimal notation of longitude, e.g. 153.21760
[World Geodetic System 1984]

The decimal notation of Altitude in meters above sea
level.

The accuracy of the position in meters.

The velocity of the device as defined in 3GPP 23.032
GAD specification. This set of values may not be
available if the device is static.

The timestamp of when the location measurement
was performed.

Figure 2-15. Example LWM2M location object
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• Firmware Update: Client nodes report firmware version 

and firmware packages can be installed through the 

firmware update object.

• Fault Management: Device errors can be exposed 

through the fault reporting objects. These may be 

viewed by other nodes querying operational status.

• Reporting: Notification of changing sensor values 

can be configured for multiple recipients. Status of 

the notification can be monitored and configuration 

changes applied when needed.

The LWM2M architecture model reverses client and server roles 

(Figure 2-16) in comparison to other frameworks such as OCF, UPnP, and 

AllJoyn. This seems reasonable since the primary goal of LWM2M is device 

management where the device utilizes management service providers 

that bootstrap and configure the client. LWM2M supports both client- and 

server-initiated bootstrapping. Once the client device is configured, it may 

interact with other IoT nodes as an IoT service such as a sensor or actuator.

It may be reasonable to combine LWM2M for device management with 

a different IoT framework that doesn’t support device management since 

LWM2M can operate alongside it provided the other IoT framework device 

lifecycle states are aligned with the LWM2M device state model.
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 LWM2M Security

LWM2M security has two main components, DTLS secured messages 

and access control lists (ACLs) for LWM2M objects (Figure 2-17). DTLS 

supports shared secrets (symmetric) using cipher suites for preshared 

keys (PSK), raw public keys (asymmetric) using cipher suites that perform 

ephemeral Diffie-Hellman key exchange that supports perfect forward 

secrecy (PFS), and certificates (asymmetric) using cipher suites that 

support popular certificate signing algorithms such as elliptic curve 

cryptography and RSA.

Client Bootstrap
(Optional)

Registration

Notify

Observe Resource

Write Resource

Read Resource

Bootstrap Object

Endpoint Client Name, Objects

Object / Resource

Resource Value

Object / Resource, Resource Value

Object / Resource

Resource Value

Resource Value

De-register
De-register

LWM2M
Client

LWM2M
Server

Figure 2-16. LWM2M example device management lifecycle scenario
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ACL support is achieved using the Bootstrap server to provision access 

control resources to LWM2M clients seeking access to LWM2M servers.  

In the following example, the Bootstrap server provisions the security 

object in Client 1 with the ACL object with read and write access to Server 1 

(e.g., ACL:<Server 1, RW>). It also provisions Client 3 with read and write 

access to Server 2 (e.g., ACL:<Server 2, RW>).

LWM2M
Client

LWM2M
Client 3

LWM2M
Server 1

LWM2M
Server 

2

Application

Light
Switch

LWM2M
Bootstrap

Server

ACL:
<Server 1,

RW>

Registration and
resource access

Registration
and

resource
accessACL:

<Server 2,
RW>

Figure 2-17. LWM2M access control list configuration

Provisioning credentials to each of the clients to allow the Bootstrap 

server access to their security objects is part of initial device setup, but 

LWM2M doesn’t (at the time of this writing) implement onboarding 

(see the section “Deployment”). The method for establishing trust in the 

Bootstrap server by devices is vendor specific.
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 One Machine to Machine (OneM2M)
Eight global standards organizations [ARIB (Japan), ATIS (United States), 

CCSA (China), ETSI (Europe), TIA (United States), TSDSI (India),  

TTA (Korea), and TTC (Japan)] and six other industry fora, consortia, or 

standards bodies (Broadband Forum, CEN, CENELEC, GlobalPlatform, 

Next Generation M2M Consortium, OMA) collaborated to develop the 

OneM2M standard. The group, known as OneM2M,35 was formed in July 

2012. OneM2M produced the OneM2M technical specification in February 

2016.36

OneM2M is an architecturally complete IoT framework (Figure 2- 18)  

that consists of three basic layers: (1) Application layer, (2) Common 

Services layer, and (3) Network Services layer. An instantiation of a layered 

module is called an entity. An application is therefore an application entity 

(AE), a service is a common services entity (CSE), and a network module 

is a network services entity (NSE). Interfaces facilitate communication 

between entities known as Reference Points. A OneM2M reference point 

uses the nomenclature “Mc-” meaning M2M communication to the entity 

“-” – where the dash is a placeholder for the first letter of the entity name. 

For example, Mca describes a reference point connecting an Application 

Entity and a Common Services Entity. Mcn describes a reference point 

connecting a Network Services Entity to a CSE. Mcc describes a CSE to 

CSE reference point.

35 http://onem2m.org/
36 OneM2M Technical Specification, TS-0001-V1.13.1, Functional Architecture, 

2016- February-29
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Deployment scenarios may have stereotyped nodes, according to 

a logical or functional network topology. For example, Application and 

Common Services entities may cooperate to provide infrastructure 

capabilities such as manageability services, message logging, telemetry, 

and so on. OneM2M refers to these nodes as infrastructure nodes (IN). 

Other nodes may cooperate to implement an application, for example, 

HVAC control, called Application Dedicated Node (ADN) or Application 

Service Node (ASN). Nodes deployed to connect ADNs to INs or other 

ADNs are called middle nodes (MN). Bridging non-OneM2M nodes are 

given the acronym NoDN.

Nodes may contain programs that control resources on other nodes. 

Resources are composed of a set of attributes. Resources can be nested, 

called a child resource.

Nodes are identified with a globally unique identifier that is assigned 

when the node registers with a registration node hosting a registration 

common services function. Physical devices host OneM2M nodes.

AE

Infratructure Node

Middle Node

Middle Node
Application
Dedicated

Node

Application
Service

Node

Application
Dedicated
Node
Application
Dedicated
Node

Middle Node

AE

IN-CSE

CSE

CSE

CSE

AE

AE

AE

AE

AE

CSE

AE

Figure 2-18. OneM2M node topology architecture
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Entity layers are subdivided into functions. The Common Services 

Entity (Figure 2-19) defines a handful of common services functions (CSF) 

that manage device lifecycle including the following:

• Application and service layer management (ASM): 

The ASM function manages all entities hosted by any 

node excluding NoDN nodes. Management functions 

consist of two categories: (1) configuration functions 

and (2) software management functions. Configuration 

CRUDN functions expose resources used to manage 

entities, while software management functions are 

concerned with managing software and related artifacts 

associated with a software lifecycle.

• Communication management and (message) delivery 

handling: These functions manage delivery, temporary 

storage, and caching of messages. It also manages 

policies related to configuration and tuning of message 

delivery infrastructure.

• Data management and repository handling: These 

functions manage data repositories. They are 

concerned with the collection, aggregation, mediation, 

storage, and preparation for analytics and semantic 

processing.

• Device management: These functions address device 

management capabilities associated with OneM2M 

nodes and can use existing IoT device management 

frameworks such as TR-069 and LWM2M or may define 

new functions. Device management functions translate 

data, protocol, and semantics from one management 

node to another using a Management adapter module. 

Management gateways, proxies, and bridging functions 
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fall within the scope of device management functions. 

Device management functions perform device 

configuration, device diagnostics, monitoring, firmware 

management, and topology management.

• Discovery: Nodes, resources, and attributes can be 

discovered using a discovery CSF. Typically, the invoker 

supplies a query value that selects a subset of available 

possible matches. Filter criteria are expressed in terms 

of identifiers, keywords, location, and other semantic 

information.

• Group management: Nodes can be organized into 

groups. The group management CSF must validate 

group membership and whether the group member 

is capable of performing functions meaningful to the 

group. Groups are used to coordinate publication, 

broadcasts, or multicasts to multiple nodes and to 

define roles for access control.

• Location: The location CSF senses and publishes 

location information for the node. Location coordinates 

can be more than latitude-longitude coordinates but 

require knowledge of location extension semantics.

• Network service exposure: The network service 

exposure, service execution, and triggering (NSSE) 

CSF manages exposure of underlying networks and 

communication layers through Mcn reference points 

and NSE modules.

Chapter 2  Iot Frameworks and ComplexIty



100

• Registration: Entity services must register with a 

registrar CSF in order to make their services available 

for use. The registration CSF supplies a requestor with 

the node identifier where the service can be reached, 

a schedule for when it can be reached, and details for 

accessing the service.

• Security: The security CSF handles identity 

management, access control, authorization, 

authentication, security associations, data 

confidentiality, data integrity, and security system 

management. Access control list subjects can group 

nodes that enforce read or write permissions. 

ACLs are associated with resources, entities, and 

repositories. Access control can be applied to discovery 

resources but requires subject authentication and 

authorization – though an “anonymous” group could 

be defined that corresponds to an ACL entry matching 

unauthenticated subjects.

• Service charging and accounting: The SCA CSF 

manages telemetry generation and collection used to 

charge for services, events, information, and real-time 

credit control.

• Subscription and notification: The subscription CSF 

manages subscription operations and notification 

message delivery to subscribers when the subscription 

condition is met. Subscriptions are registered with 

a resource or group of resources following an access 

control check. Changes to resources are tracked at 

attribute granularity. Changes to subresources are also 

tracked but not attributes of subresources.
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IoT networks are sometimes partitioned into enclaves of subnetworks 

called domains (Figure 2-20) to improve isolation for safety, reliability, 

and security reasons. OneM2M reference point architecture envisages 

network enclaves by allowing multiple AE + CSE + NSE verticals connected 

through peer Mcc and Mca reference points. For example, a fieldbus 

domain may contain a network of closed-loop sensors and actuators 

running at real time or near real time, while an infrastructure domain may 

contain accounting, telemetry, firmware update, and other services based 

on restful client-server interactions. Still another domain may offload 

complex analytics to a data center or Cloud.

Application
Entity (AE)

Application and
Service Layer
Management

Discovery

Registration

Communication
Management/

Delivery Handling

Network Service
Exposure/Service

Ex+Triggering

Data Management
& Repository

Service Charging &
Accounting

Subscription and
Notification

Underlying Network
Service Entity (NSE)

Group
Management

Security

Location

Device
Management

Mca Reference Point

Common Services Entity (CSE)

Mcc Reference Point

Mcn Reference Point

Figure 2-19. OneM2M layering with entities and Common Services 
Entity functional modules
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OneM2M device management is built from an open-ended set of 

common services functions that may be tailored toward any number of 

existing industry standard and nonstandard device management solutions 

including TR-069,37 OMA-DM,38 and LWM2M. As such, OneM2M can be 

thought of as a framework of frameworks.

OneM2M architecture allows extremely flexible configuration of 

functional modules and extensibility options. This flexibility may be 

helpful when tailoring a solution for constrained embedded devices 

seeking to minimize resource footprint or when designing gateways, 

bridges, and framework service nodes that are scattered throughout 

a complex IoT network. However, flexibility may come with a cost as 

Field Domain

Mca

Mcn

Mca Mca

Mcn

Mcc Mcc’ To Infrastructure
Domain of other
Service Provider

Infrastructure Domain

AE AE

CSE CSE

NSE NSE

Figure 2-20. OneM2M domain architecture allows network enclave 
isolation

37 Broadband Forum Technical Report, “TR-069 CPE WAN Management Protocol,” 
Issue: 1 Amendment 6, Version 1.4, March 2018. www.broadband-forum.org/
technical/download/TR-069.pdf

38 www.openmobilealliance.org/wp/overviews/dm_overview.html
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network latencies, routing, network security, and network management 

overhead may be incurred. Hiding this complexity from system designers 

may have undesirable consequences, while exposing the flexibility (having 

simplified apparent complexity) to applications and users may also have 

undesirable consequences.

 OneM2M Security

OneM2M security design comprehends identity, authentication, 

authorization, access control, data protection, and privacy. That is to say, 

each of these security requirements was considered and addressed to a 

certain extent. However, the test determining adequacy largely depends on 

how completely the industry implements the standard and how effective 

the security mechanisms defined address the threats facing IoT networks.

OneM2M security administration begins with the provisioning of 

master credentials that enables the security CSF functions to be applied. 

Master credentials can be post-provisioned (subsequent to initial 

deployment of a CSE containing security CSFs) or pre-provisioned with 

cooperation from a device manufacturer – though the exact operation of 

onboarding protocols for pre-provisioning is out of scope.

OneM2M framework architecture abstracts away (hides) physical 

(device) boundaries. An Mcc reference point may or may not cross a device 

boundary. The same is true for Mca reference points as well. Intuitively, 

one might conclude that the use of an Mcn reference point does cross 

a physical boundary, but with IP loopback, shared memory, and other 

interprocess communication and overlay network mechanisms, Mcn also 

doesn’t describe physical boundary crossing semantics. This is relevant to 

security because attack points often occur at boundary crossings. Although 

the specification intends security CSF functionality will “protect” security- 

sensitive information, there are a wide variety of hardware and software 

mechanisms to draw from – each having differing security and privacy 

properties.
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 Industrial IoT Framework Standards
The IoT framework standards discussed up to this point primarily address 

consumer grade IoT applications and deployments. That doesn’t mean 

the standards organizations and member companies could not extend 

their architectures to accommodate requirements typically associated with 

industrial IoT. This section considers IoT frameworks that were designed 

specifically to address industrial control system requirements. Industrial 

control systems predate the Internet of Things and even predate the 

Internet. Fieldbus technology is the foundation of process automation, 

building automation, and automated manufacturing. This section 

doesn’t survey the vast expanse of “brownfield” fieldbus technology.39 

Instead, it focuses on Industrial IoT (IIoT) standards that aim to improve 

interoperability through appropriate use of inexpensive, ubiquitous 

Internet technologies and are supported by a rich ecosystem.

Industrial Internet Control Systems (or just Industrial Internet 

Systems – IIS) may be a more appropriate terminology than IoT because 

at their core are complex semiautonomous and fully autonomous process 

automation systems that operate at a level of sophistication that clearly 

goes beyond consumer IoT. They pay close attention to Quality of Service 

(QoS), Quality of Experience (QoE), and safety requirements.

The architectural principles defined by the IIC reference architecture 

serves as a reference point for evaluating the merits and demerits of IIS 

framework solutions. The next section highlights important elements of 

industrial IoT system architecture as defined by the Industrial Internet of 

Things Consortium (IIC). In subsequent sections, we also highlight the 

Open Platform Communications-Unified Architecture (OPC-UA) and Data 

Distribution Services (DDS) open source IIS frameworks.

39 <tbd Reference to industrial control systems>
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 Industrial Internet of Things Consortium (IIC) 
and OpenFog Consortium
The Industrial Internet of Things Consortium (IIC) was formed by AT&T, 

Cisco, IBM, Intel, and General Electric in November of 2016. The IIC 

created a reference architecture40 for IIS that considers common needs 

and challenges pertaining to control systems in energy, healthcare, 

manufacturing, public sector, transportation, and factory automation.

In December 2018, the IIC and OpenFog Consortium agreed to join 

forces under the name IIC.41 The OpenFog Consortium was founded by 

ARM Holdings, Cisco, Dell, Intel, Princeton University, and Microsoft in 

2015. OpenFog Consortium and IIC both focused heavily on industrial IoT 

architecture.

Industrial Internet Systems bring new levels of performance, 

scalability, interoperability, reliability, assurance, and efficiency 

to the forefront. As such, the IIC determined it should produce a 

reference architecture first (and not an IoT framework42 and a reference 

implementation). IIS systems often operate in mission critical 

environments that require real-time or near real-time responses and 

are “smart” through increased integration with higher-level networks 

that include enterprise resource planning, information technology 

administration, analytics, and big data correlation engines.

One aspect of the IIC architecture helps us understand the 

implications of transforming the largely isolated brownfield embedded 

control systems and technology into something that benefits from 

40 The Industrial Internet of Things Volume G1: Reference Architecture 
IIC:PUB:g1:V1.80:20170131 https://www.iiconsortium.org/IIC_PUB_G1_
V1.80_2017-01-31.pdf

41 www.smartindustry.com/industrynews/2018/iic-and-openfog-consortium- 
join-forces/

42 Note to reader: The IIC specification refers to sub-architecture sections as 
“frameworks” not to be confused with our usage.
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the Internet economies of scale and its robust ecosystem. Industrial 

embedded control systems have existed before the popular Internet and 

have evolved alongside it for several years. Its evolution into the IIoT seems 

inevitable, but doing so creates a complex problem for interoperability 

given the existing brownfield systems will likely continue for many years.

It is not our objective to deeply explore the IIC reference architecture 

here. However, the reader might appreciate the role of a reference 

architecture when evaluating IoT frameworks as building blocks of IIS 

systems. Different parts of an IIS ecosystem bring different viewpoints 

(Figure 2-21) of the system. The IIC reference architecture explores IIS 

from four viewpoints:

• Business viewpoint: Identifies stakeholders, business 

objectives, values, vision, and related regulatory 

context and comprehends business-oriented concerns.

• Usage viewpoint: Represents the activities, sequences, 

and functionality involving human or logical users. It 

ultimately establishes whether the IIS achieves value 

from the user’s perspective.

• Functional viewpoint: Identifies functional 

components, structures, interfaces, interactions, and 

relationships. It considers trade-offs associated with the 

interests of systems architects, component architects, 

developers, and integrators.

• Implementation viewpoint: Considers challenges 

and implications of functional components, their 

communication, and lifecycle procedures and 

dependencies.
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Although multiple viewpoints exist, security objectives can be frustrated 

if a perspective somehow becomes hidden from the others in the context 

of continuous security monitoring, threat detection, decision making, and 

response management. For example, security return on investment value 

may be weighed against performance or consumer satisfaction value. The 

user benefits of autonomous operation (without users) may be compared to 

perceived and actual benefits of user involvement in setting and evaluating 

security relevant decisions. Security functional viewpoint defines points 

where security-related enforcement and decision making may impact 

other functional goals. The implementation viewpoint applies security 

technologies involving patterns and system components in ways that are 

correctly implemented and easy to maintain and ensure correct operation of 

security functions, algorithms, and hardening.

The IIC functional viewpoint reference architecture (Figure 2- 22) 

recognizes an important understanding of IIS systems having five functional 

domains that must coexist as interoperable subsystems while ensuring 

appropriate isolation mechanisms prevent the goals of each domain from 

being compromised given failure or compromise in a peer domain.

Business Viewpoint

Usage Viewpoint

Functional Viewpoint

Implementation Viewpoint

Figure 2-21. IIC reference viewpoints
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The business domain functions as a layer on top of operations, 

information, and application domains that interact with the control 

domain. The control domain consists of a separation between cyber 

and physical systems brokered by sensing and actuation functions. User 

interactions may occur at each domain according to domain-specific 
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Figure 2-22. IIC functional viewpoint reference architecture showing 
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Quality of Experience objectives. Cross-domain interactions should carry 

the appropriate level of domain-specific context to ensure peer domain 

functions do not, in some way, misinterpret the semantics of command 

interaction, control flow, and data representation as this can result in 

failures and security vulnerabilities.

The IIC implementation viewpoint reference architecture (Figure 2- 23) 

captures an important three-tier network topology structure that recognizes 

an Edge Tier network consisting of sensor, actuator, and controller nodes 

that may share latency, resiliency, and QoS requirements that typically 

are met by Edge-class technologies. These differ from Platform Tier 

technologies used to implement scalable, reliable, available systems 

for data analytics, operations, and data transformation. Similarly, the 

Enterprise Tier consists of technologies tuned for system maintenance, 

management, and system-level controls. Inter-Tier interactions are held 

in check through bridging, gatewaying, and proxying technologies aimed 

at preserving the correct context of the peer Tier when performing control 

operations or when moving data between Tiers.

Figure 2-23. IIC implementation viewpoint reference architecture 
showing a three-tier network
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Multiple viewpoints can be combined to reveal additional insights 

regarding an IIS system. For example, Figure 2-24 shows the functional 

viewpoint architecture overlaid with the implementation viewpoint 

architecture. The Control Domain exists in the Edge Tier which contains 

the Proximity Network consisting of sensors, actuators, controllers, and 

gateways to Platform Tier. The Information and Operations Domains 

exist in the Platform Tier bridging the Access and the Service Networks. 

The Platform Tier contains data service and platform management, data 

distribution, persistence, streaming, aggregation, and transformation. 

The Operations Domain is concerned with provisioning, deployment, 

metadata, monitoring, telemetry, optimization, and access control. The 

Application and Business Domains exist in the Enterprise Tier extending 

the Service Network with business analytics, CRM, DSS, BSS, and so on 

and enterprise applications, APIs, portals, and enterprise rules.

Figure 2-24. Architectural overlay of functional and implementation 
viewpoints
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 Open Platform Communications-Unified 
Architecture (OPC-UA)
Object Linking and Embedding (OLE) is a Microsoft technology aimed 

at office automation largely based on Windows operating systems. The 

Open Platform Communications (OPC) task force extended OLE for 

machine-to-machine control and industrial automation. The task force 

formed the OPC Foundation43 in 1996 to maintain the OPC standard. OPC 

originally was based on Microsoft Windows-only COM/DCOM technology 

which was integrated with the existing OPC communications framework, 

resulting in a unified architecture called OPC-UA.

An industrial IoT network is really a layering of multiple networks 

customized to address a particular aspect of industrial operations. A typical 

IIoT system will consist of a four-layer system of networks (Figure 2- 25). 

The device-level network consists of sensor-actuator devices with real- time 

control of physical world processes, logistics, and mechanics. The protocols 

linking nodes at this layer are typically traditional brownfield technologies 

such as ProfiNet, EtherCAT, and Modbus. These systems are designed to 

operate autonomously taking into consideration safety and reliability.

The control-level network consists of shop floor controllers that 

coordinate the end-to-end flow of the industrial system. The output of one 

shop floor device may be consumed as input to another shop floor device. 

Shop floor controllers orchestrate the hand off the work item, whether 

physical, informational, or both. OPC-UA is a framework for shop floor 

machine control. Controllers host multiple device nodes, run real-time 

or near real-time operating systems, and support both fieldbus and a 

traditional Internet protocol stack based on IP and TCP.

43 www.opcfoundation.org/
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The third level is the Manufacturing Execution System (MES) that 

provides plant-, site-, or factory-level coordination of various shop floor 

networks. This network consists of PCs and servers networked using 

traditional IP networks. The fourth level focuses on Enterprise Resource 

Planning (ERP) functions that filter data from the MES level for deeper 

analytics relating to process improvement, cost optimization, and operational 

efficiency improvement. ERP applications may be hosted in an enterprise 

data center or a cloud hosting environment such as Microsoft Azure.

Figure 2-25. A four-layer system of networks for IIoT with an OPC- 
UA layer

OPC-UA is a device-centric technology that connects sensor, actuator, 

and PLC (programmable logic controller) devices to each other and to a 

larger system of PC and server class platforms. It aims to ensure device- 

level interoperability.
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The basic structure of an OPC-UA network consists of an OPC-Client 

connected to an OPC-Server. The OPC-Server connects to sensor, actuator, 

and PLC devices. The OPC-Client to OPC-Server connection is typically 

based on IP networking. The OPC-Server to control devices is typically 

based on a fieldbus technology.

 OPC-UA Framework Architecture

The OPC-UA design goals aim for platform independence, functional 

equivalence, and data interoperability through information modeling, 

extensibility, and security. Platform independence is achieved by porting 

the OPC-UA framework layer to multiple operating systems (e.g., Microsoft 

Windows, Apple OSX, Android, Linux) and hardware platforms based on 

X86, ARM, PLC, and others. As long as there is a framework instance that 

runs on the OS and hardware of interest, IIoT device interoperability exists.

Functional equivalence is the idea that OPC-UA applications operate 

consistently regardless of which operating system and hardware platform 

was used. There are six areas of functional equivalence defined:

 (1) Discovery: Devices search for peer devices, servers, 

and networks the OPC-UA application needs to 

perform its function. Plug-and-play behavior can 

be supported but requires application involvement 

to anticipate the type of objects and operations 

needed.

 (2) Address space layout: Devices implement a 

hierarchical object model where files and folders 

contain data that can be read/written across the 

network from one node to another.

 (3) Access control: Data objects have access control 

policies that control reading and writing on a per 

node basis.
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 (4) Subscriptions: Client nodes can subscribe to data 

objects monitoring and receiving updates to data 

that changes. Client nodes may specify filtering 

criteria that are applied to monitored data values 

when determining when it is appropriate to notify 

the client.

 (5) Events: Client nodes can receive asynchronous 

responses when data values satisfy a specified 

criterion.

 (6) Methods: Client nodes execute subroutines based 

on server-defined criteria.

Information models define data access semantics. Each information 

model is independent from other information models, meaning each 

model has different access control, state, and quality contexts. The OPC- 

UA framework has several built-in information models (Figure 2-26): Data 

Access (DA), Alarms and Conditions (AC), Historical Access (HA), and 

Programmable state machines (Prog). The Data Access model supports 

live (near real-time) access to sensor data. Each data element has a name 

and value. There is also a timestamp to indicate when the data was read 

and a quality component that determines if the data is valid.

Historical Access (HA) data is not real-time data, and there could be a 

deep history of values stored. SCADA and other systems support devices 

that monitor sensor readings over a longer period of time. HA objects can 

transfer historical data from sensor to framework node easily. Framework 

application may apply analytics to HA data to gain additional insights into 

operations over a period of time.

Alarms and Conditions (AC) data doesn’t have a current value. Rather 

it maintains subscriptions to other data where subscribers may specify 

conditions in which to send notifications and updates. Notifications have a 

timestamp but do not have name and quality attributes.
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Extensibility is achieved through a multilayered information model 

that supports vendor-specific, industry standard data models and native 

OPC-UA defined data models. Companion specifications define what 

information is exchanged, while OPC-UA Information Access layer defines 

how information is exchanged.

 OPC-UA Security

Security is built around two framework layers (Figure 2-27). The session 
layer addresses user authorization, authentication, and access control 

based on role and permissions. The secure channel layer provides 

message encryption and integrity protection when exchanged between 

nodes. It also can be used to authenticate applications that connect 

with the OPC-UA framework. The security channel layer relies on TLS 

(Transport Layer Security) using HTTPS. Though HTTP is also supported. 

OPC-UA relies exclusively on X.509v3 certificates to authenticate and 

authorize users and applications.

Vendor Information Model

(Companion Specifications: FDI, PLCopen, ISA 95, MDIS, ...)

DA HA ProgAC

Industry Srandards Information Models

Information Access
(Data Model and Services)

Transport - Protocol Mappings Discovery
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Figure 2-26. OPC-UA information modeling framework
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Auditing is also supported in OPC-UA security supporting forensic 

investigation.

OPC-UA applications undergo a two-step access process where 

they first access servers and second access data. Authentication policy 

is expressed in terms of server or client identity, while data access is 

expressed in terms of read/write permissions on data objects.

The German government BSI (Bundesamt für Sicherheit in der 

Informationstechnik) did an extensive security evaluation of OPC-UA to 

determine if it is safe for using in German industry. Their conclusion was 

that it was designed with a focus on security and does not contain systemic 

security vulnerabilities. This is an important observation because, unlike 

other framework approaches we’ve reviewed, security was integral to the 

framework design.

However, the way in which hardware security capabilities such as secure 

storage, cryptographic algorithm implementation, and trusted execution 

environment enforcement are left as an exercise to implementers. Given 

the platform independence design goal, it is possible if not likely different 

platforms hosting OPC-UA frameworks could have very different attack 
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• User Authorization

• Confidentiality
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• App Authentication

Communication Layer
• Confidentiality
• Integrity
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• User Authentication

Application Layer
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Channel

Transport Layer
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Figure 2-27. OPC-UA secure communications
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resistance properties. At the time of this writing, OPC-UA did not implement 

attestation mechanisms that describe implementation choices linking 

framework security to hardware and platform security.

 Data Distribution Service (DDS)
The Data Distribution Service44 (DDS) is a connectivity framework 

designed for industrial process control. It is standardized through the 

Object Management Group45 (OMG) founded in 1989. The OMG is an 

industry standards consortium that produces and maintains specifications 

for interoperable, portable, and reusable enterprise applications in 

distributed, heterogeneous environments.

DDS v1.0 was published December 2004. DDS v1.4 was published 

March 2015. Companion specifications relating to security, remote 

procedure call (RPC), and other topics are continually updated. There are 

several proprietary and open source implementations of DDS. OpenDDS46 

is a popular open source implementation.

The primary design goal is summarized as the efficient and robust 

delivery of the right information to the right place at the right time. To 

accomplish this, a data-centric publish-subscribe (DCPS) approach 

was taken. The target applications expect the DCPS framework to be 

high-performance, efficient, and predictable. To accomplish these 

goals, DDS (a) allows middleware to preallocate resources to minimize 

dynamic resource allocations, (b) avoids properties that require the use 

of unbounded or hard-to-predict resources, and (c) minimizes the need 

to make copies of the data. DDS is a strongly typed system, meaning 

the programmer directly manipulates constructs that represent data. 

Interfaces are safer due to rigorous type checking, and execution code is 

more efficient because type checking enforcement is done at compile time.

44 www.omg.org/spec/category/data-distribution-service/
45 www.omg.org
46 http://opendds.org
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DDS consists of four main entities:

• Domains (Figure 2-28): Define a global context 

in which data, data readers, and data writers have 

ubiquitous access. The domain defines the naming 

scope for identifiers. Cross-domain interactions may 

require disambiguation using a domain identity.

Data
Writer

Data
Reader

Publish Subscribe

Topic

Domain

Figure 2-28. DDS publish-subscribe data model

• Topics (Figure 2-28): Are objects that conceptually fit 

between data writers and data readers. They define 

the context in which publish- subscribe interactions 

may take place. Topic names are unambiguous within 

the domain and contain a type and QoS component 

(Figure 2-29). Type and QoS attributes apply to the 

data referenced via the topic context. QoS attributes 

are themselves DDS Topics. Topics allow expression of 

both functional and nonfunctional information.
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• Data Writers: Correspond to publishers of a publish-

subscribe interaction pattern and must create a Publisher 

instance object in order to accept subscribers or to 

prepare and publish data. Data writers communicate data 

to its publisher to initiate a publication.

• Data Readers: Correspond to the subscribers of a 

publish-subscribe interaction pattern and must create 

a Subscriber instance object in order to register to 

receive publications. Data readers communicate 

interest in a topic to initiate subscription registration.

Quality of Service (QoS) is a fundamental design consideration that is 

intimately integrated into the DDS object model. Each topic may consist 

of multiple data values distinguished by a key value. Different data values 

with the same key value represent successive values for the same data 

instance (e.g., a temperature sensor may maintain a short history of 

temperature values sensed over an interval). Different data values with 

different key values represent different data instances (e.g., multiple 

temperature sensors). QoS and type attributes apply to data instances. 

QoS interactions follow a requested-offered pattern where a data reader 

requests a particular QoS policy and the data writer tries to accommodate 

the request.

Name

Topic

Type Qo
S

Figure 2-29. DDS Topics have QoS integration
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The overall flow of a DDS interaction begins with domain participants 

(readers and writers) joining a domain (Figure 2-30). Publishers produce 

data to a data partition object, while subscribers retrieve data from the 

data partition object. Data writers offer a QoS promise on published data 

based on the data reader’s requested QoS level.

Domain
Participant

Publisher

DataWriter DataReader

Subscriber

Domain
Participant

Domain Id
joins

produces-in

offered
QoS

writes
Topic

reads
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QoS

PARTITION

DURABILITY

DEST.ORDER

RELIABILITY

LATENCY BUDGET

DEADLINE

OWENERSHIP

LIVELINESS

RxQ QoS Policies

consumes-from

joins

Figure 2-30. DDS data interaction flow

The DDS standard defines the set of possible QoS policies. These 

include the following QoS types:

• USER_DATA: Allows the application to attach 

additional information to the data object so that remote 

entities can obtain additional context that relates to 

application-specific purposes. This aids in refining 
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discovery queries and allows selection of appropriate 

security credentials or enforcement of application- 

specific security policies.

• TOPIC_DATA: Allows the application to attach 

additional information to the topic object to facilitate 

discovery for application-specific purposes.

• GROUP_DATA: Allows the application to attach 

additional information to the Publisher or Subscriber 

entity so that application-specific policies may regulate 

the way data reader listeners and data writer listeners 

behave.

• DURABILITY: Allows data to be read or written even 

when there are no current subscribers or publishers. 

Multiple degrees of data volatility can be defined.

• DURABILITY_SERVICE: Allows configuration of a 

service that implements durability attributes.

• PRESENTATION: Controls the scope of access given 

various data interdependencies. Coherent_access 

controls whether the service will preserve groupings of 

changes made by a publisher. Ordered_access controls 

whether the service will preserve the order of changes. 

Access_scope controls the scope of access in terms of 

data instance, topic, or group.

• DEADLINE: Controls the interval in which a topic 

is expected to be updated. Publishers must supply 

updates within the deadline interval, and subscribers 

can set a timer to check for most recent updates based 

on the interval.
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• LATENCY_BUDGET: Allows applications to specify 

the urgency of the message by specifying a latency 

duration.

• OWNERSHIP: Controls how data writer objects 

interact with published data. Shared access means 

multiple writers can update the data item. Exclusive 

access means only one writer can update it. SHARED- 

EXCLUSIVE means multiple updaters coordinate their 

updates.

• LIVELINESS: Controls mechanisms for determining if 

network entities are still “alive.”

• TIME_BASED_FILTER: Allows data readers to see at 

most one change to a topic at a minimum periodicity.

• PARTITION: Allows a logical partition inside a 

“physical” partition. Physical partitioning may have 

safety and security benefits, while logical partitions 

may have performance benefits.

• RELIABILITY: Allows reliability to be defined in 

terms of levels, BEST_EFFORT being the lowest and 

RELIABLE being the highest.

• TRANSPORT_PRIORITY: Allows alignment with 

transport layer QoS capabilities.

• LIFESPAN: Allows specification of when a data value 

becomes stale.

• DESTINATION_ORDER: Controls how each subscriber 

resolves the final value of the data instance when 

written by multiple writers.
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• HISTORY: Controls when data instance changes before 

it is communicated to data readers. KEEP_LAST means 

the server keeps the most recent update. KEEP_ALL 

means the server will attempt to deliver all instances of 

changed data.

• RESOURCE_LIMITS: Controls how many resources can 

be applied to achieve quality of service objectives.

• ENTITY_FACTORY: Controls the flexibility of nodes in 

their ability to replicate or produce additional entity 

instances.

• DATA_LIFECYCLE: Controls how persistent or 

temporal data are relative to the availability of either 

the data writer or data reader.

DDS QoS design is one of its features that most distinguishes it from 

other IoT and IIoT frameworks. QoS mechanisms have both safety and 

security implications in that they improve data integrity – goals common 

to both disciplines. QoS mechanisms must be implemented in ways that 

ensure the integrity of the QoS system. Otherwise, the expected quality 

of service is suspect. Hence, trustworthy implementation of the DDS 

framework is essential to realizing the QoS richness anticipated by its 

designers.

 DDS Framework Architecture

The DDS framework layering (Figure 2-31) consists of several layers 

beginning with an IP network layer. TCP and UDP transports make up 

the next layer followed by the DDS Wire Protocol for Real-Time Publish- 

Subscribe (DDSI-RTPS) layer. The DDS layer defines the data model 

abstractions described earlier. The DDS framework defines several 

vertically integrated technologies for security, remote procedure call 

(RPC), and extensions to its data typing system.
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Implied by the DDS layering architecture is a Device System layer 

that implements the IoT device capabilities including native security 

and manageability capabilities. These capabilities depend on a Device 

Hardware layer that must have ties to the actual sensor, actuator, security, 

or other hardware features. The Device System layer exposes native device 

capabilities to the DDS framework through available interfaces. Different 

DDS framework implementations may make different implementation 

choices regarding how to best integrate the framework with a specific 

device.

The DDS specification helps isolate platform-specific elements of 

DDS from platform-independent elements by specifying a platform- 

independent model (PIM) and a platform-specific model (PSM) of DDS 

structures. The PSM definition ensures porting efforts result in minimal 

impact to the semantics and operation of the PIM while still allowing 

quality integration with the native platform.
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Figure 2-31. DDS framework layering
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The PIMs and DDS layer ensure DDS applications can expect a 

consistent environment for sharing information that is strongly typed and 

syntactically interoperable. A summary of DDS application properties is as 

follows:

• Applications can autonomously and asynchronously 

read and write data that is decoupled spatially and 

temporally.

• DDS data is loosely coupled due to virtualized data 

spaces that are designed for scalability, fault tolerance, 

and heterogeneity.

• As with all distributed systems, the data model must 

consider a data consistency model. DDS defines data 

spaces that tolerate inconsistent data but eventually 

becomes consistent. Data readers will eventually see a 

write but may not observe it at the same time.

• DDS discovery model isolates discovery from network 

topology and connectivity details so that applications 

may focus on data objects that are most relevant to 

application objectives.

• The DDS data model allows location transparency 

since topics, data readers, and data writers are 

conceptually separated from the underlying physical 

devices and network nodes. Integration across Cloud, 

enterprise, plant and mission control, shop floor, or 

device networks doesn’t require redefinition of data 

syntax and semantics.

• DDS data spaces (aka domains) are decentralized. A 

DDS system may host multiple data spaces that involve 

readers and writers from any data space. There is no 

central point of failure.
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• Connectivity among DDS entities is adaptive, 

meaning connections can be established and torn 

down dynamically. The underlying communications 

infrastructure can optimize for the most efficient data 

sharing approach.

DDS domains have global data space (Figure 2-32), meaning topics 

are visible to all data writers and readers that are members of the same 

domain. Data writers and readers may be members of multiple domains 

simultaneously to allow interaction with topics from different domains. It 

is even possible to construct a domain broker that gives the illusion of the 

same topic appearing in separate domains.

DDS domain interactions can become rather complex. This complexity 

may be especially appreciated when an access control policy is needed 

that places restrictions on various data writer and data reader interactions 

that span multiple domains.
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Figure 2-32. DDS Global Data Space example
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 DDS Security

DDS security consists of three main elements (Figure 2-33): (1) RTPS 

messages with security enveloping structures, (2) token-based security 

context, and (3) pluggable security modules.

Security Enveloping

Security is closely integrated into the DDS data model. Cleartext DDS data 

messages are encapsulated within DDS enveloping structures that support 

encryption, integrity, authorization, and authentication. The RTPS system 

uses the security enveloping structures as its main messaging structure 

so that the real-time publish-subscribe optimizations are preserved even 

when security is applied.
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Figure 2-33. RTPS message encoding/decoding with secure 
encapsulation
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A cleartext RTPS message consists of an RTPS header and one 

or more RTPS submessages each containing a serialized payload. To 

prepare a cleartext message for delivery over an unsecure channel, the 

cleartext message must be transformed into a secure RTPS message. 

Figure 2-32 illustrates the transformation. Integrity-protected RTPS 

submessages are wrapped by a secure body and have a secure prefix and 

secure postfix component. The prefix defines the integrity protection 

mechanism, security context, and algorithms. The secure postfix contains 

a hash or signature of the secure body. If the RTPS submessage requires 

confidentiality protection, the serialized payload of the submessage is 

encrypted, forming a CryptoContent element consisting of a CryptoHeader 

and CryptoFooter. The CryptoHeader defines the encryption method, 

security context, and algorithms. The CryptoFooter contains the ciphertext 

version of the serialized payload. All the RTPS submessages belonging 

to the RTPS message are bound together using another layer of security 

enveloping consisting of SecureRTPSPrefix, SecureRTPSPostFix, and 

SecureBody elements. The second layer of security enveloping ensures 

submessages can’t be omitted, appended, or substituted by an attacker.

Security Tokens

All of the privileges obtainable by DDS entities are described using a security 

token data structure. There are tokens that facilitate secure discovery, 

participant permissions, and secure message exchange. Security tokens 

allow exchange of security information using the DDS messaging capability.

• Discovery tokens: Facilitate establishment of 

security contexts for subsequent secure interactions. 

The IdentityToken contains summary information 

of a domain participant in a manner that can be 

externalized and propagated using DDS discovery. 

The IdentityStatusToken contains authentication 

information of a domain participant in a manner that 
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can be externalized and propagated securely. The 

PermissionsToken contains summary information on 

the permissions for a domain participant in a manner 

that can be externalized and propagated over DDS 

discovery.

• Permissions tokens: The PermissionsCredentialToken 

encodes the permissions and access information 

for a domain participant in a manner that can be 

externalized and sent over a network. It is used by the 

access control plugin which manages domain access 

and specific reader-writer interactions.

• Message tokens: The CryptoToken contains all the 

information necessary to construct a set of keys to be 

used to encrypt and/or sign plain text transforming 

it into ciphertext or to reverse those operations. The 

MessageToken is a superclass of several message tokens 

used to maintain security context when multiple 

message exchanges are required such as authentication 

and key exchange protocols.

Security Plugin Modules

The DDS framework takes a modular approach to security so that 

platform-specific capabilities can be exposed to and utilized by DDS 

entities. There are five pluggable security modules (Figure 2-34): (1) 

authentication, (2) access control, (3) cryptography, (4) logging, and (5) 

data tagging.

• Authentication plugin: The principal joining a DDS 

domain must authenticate to a domain controller, and 

peer DDS participants may be required to perform 

mutual authentication and establish shared secrets.
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• Access control plugin: Decides whether a principal is 

allowed to perform a protected operation.

• Cryptography plugin: Generates keys and performs 

key exchange, encryption, and decryption operations. 

Computes digests and verifies message authentication 

codes. Signs and verifies signatures on messages.

• Logging plugin: Logs all security relevant events.

• Data tagging plugin: Adds data tags for each data 

sample.
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Figure 2-34. DDS security plugin module architecture
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DDS security offers a comprehensive well-integrated security solution 

that aligns well with DDS design philosophy focusing on data and 

publisher-subscriber interactions. Security is modular, enabling platform- 

specific services and hardware to be effectively utilized and incorporated.

DDS quality of service parameters though originally designed to 

meet industrial safety requirements may also help achieve security 

objectives. The OWNERSHIP and PARTITION QoS parameters capture 

expected data sharing and partitioning semantics. Security mechanisms 

used for data isolation and protection may be useful toward meeting 

these quality expectations. LIFESPAN and HISTORY properties describe 

data persistence characteristics that inform regarding object reuse 

requirements and which data may require stronger confidentiality and 

integrity protection.

However, DDS goals toward heterogeneous operation make 

assumptions regarding the quality and condition of security plugins. 

An attacker might easily compromise the plugin or spoof the plugin 

interface allowing an attack plugin to take control. Peer nodes are not 

easily able to detect such attacks. For example, DDS doesn’t appear to 

support attestation protocols that would query a peer principal’s security 

subsystem to provide proof of device provenance and integrity of the 

system firmware, software, plugins, and DDS framework layers.

 Framework Gateways
This chapter has focused almost exclusively on open standard IoT 

framework solutions, some of which have been omitted here for brevity. 

There are tens if not hundreds of brownfield frameworks with varying 

degrees of openness and standardization, but many are specific to 

an industry vertical. Cloud-connected IoT is another category of IoT 

framework integration mostly ignored here as well. Although many 

of the open standard frameworks claim interoperability with cloud 
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47 www.electronicdesign.com/embedded-revolution/iot-frameworks-ties-bind
48 https://developer.apple.com/homekit/
49 https://artik.cloud
50 www.edgexfoundry.org
51 www.businesswire.com/news/home/20180327005208/en/
IPSO-Alliance-Merges-Open-Mobile-Alliance-Form

52 https://wiki.iotivity.org/bridging_project
53 https://openconnectivity.org/draftspecs/Cleveland/CR2595_Cleveland_
Bridging_Security_20181004.pdf

environments, the IoT cloud ecosystem largely takes a walled-garden 

approach.47 Most have a proprietary IoT framework or support both 

a proprietary and open framework solutions with integration to their 

proprietary cloud back end. Some of these include Amazon Web Services 

(AWS) IoT, Apple Homekit,48 Bosch IoT Suite, Cisco IoT Cloud Connect, 

General Electric Predix, Google Cloud, IBM Watson Cloud, Microsoft 

Azure, Oracle IoT Cloud, Salesforce IoT, Samsung ARTIK Cloud Services,49 

and SAP IoT Platform. Dell’s EdgeX Foundry50 takes a slightly different 

approach enabling services at the edge, where edge refers to both the 

edge of the IoT network and the edge of the cloud hosting environments. 

The ecosystem that traditionally supplies the pipe between IoT device 

and Cloud is interested in moving up the IoT stack to add more value. IoT 

framework technologies help enable that mobility.

The IoT framework standards organizations seem to understand 

that a multitude of “standard” IoT frameworks hinders one of the main 

motivations for IoT frameworks – interoperability! Industry efforts to 

consolidate frameworks have taken place already. The AllSeen Alliance and 

UPnP Forum have merged with the Open Connectivity Foundation. The 

OpenFog Consortium joined forces with the IIC and the IPSO Alliance was 

acquired by the Open Mobile Alliance (OMA) to form OMA SpecWorks.51 

Collaborations between framework standards organizations also help 

resolve interoperability challenges. For example, the OCF is thought to be 

working on an OCF52 to OneM2M bridge53 (aka framework gateway).  

Chapter 2  Iot Frameworks and ComplexIty

http://www.electronicdesign.com/embedded-revolution/iot-frameworks-ties-bind
https://developer.apple.com/homekit/
https://artik.cloud
http://www.edgexfoundry.org
http://www.businesswire.com/news/home/20180327005208/en/IPSO-Alliance-Merges-Open-Mobile-Alliance-Form
http://www.businesswire.com/news/home/20180327005208/en/IPSO-Alliance-Merges-Open-Mobile-Alliance-Form
https://wiki.iotivity.org/bridging_project
https://openconnectivity.org/draftspecs/Cleveland/CR2595_Cleveland_Bridging_Security_20181004.pdf
https://openconnectivity.org/draftspecs/Cleveland/CR2595_Cleveland_Bridging_Security_20181004.pdf


133

But these efforts are solutions to an interoperability problem created 

by the industry’s eager response to an IoT interoperability problem. 

Ironically, the “success” of IoT seems to have created a more complex 

environment for IoT interoperability as both standard and proprietary 

“connectivity” frameworks and toolkits proliferate. Framework gateways 

naturally come to the rescue, but at what cost to usability, manageability, 

and security?

 Framework Gateway Architecture
This section outlines several approaches for gatewaying (aka bridging) 

IoT frameworks, considers security implications of each, and suggests an 

idealized architecture for secure IoT framework gateways.

 Type I Framework Gateway

A type I framework gateway (Figure 2-35) combines unmodified 

framework gateways using a common framework gateway application. 

The application performs all necessary object model translations and 

data structure mappings to achieve interoperability. The application (i.e., 

developer) must have intimate understanding of data object syntax and 

semantics for both (all?) sides of the translation. Some objects in a first 

IoT network may not have a suitable corresponding counterpart (sensor, 

actuator, controller) in the other IoT network for the applications to 

simply “wire” them together. Instead, it must create an abstraction that 

approximates an object that is recognizable and considered to be a safe 

alternative interaction. For example, a dimmable light bulb in Network A 

may support 10 levels of brightness, while a dimmer control in Network 

B supports 100 levels of control. The gateway application provides the 

mapping function that divides by 10 in one direction and multiplies by 

10 in the other direction. In some cases, there may not be a reasonable 

mapping, and the gateway application developer may take some other 
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approach such as exposing the devices to a console interface so that a user 

can resolve any mapping conflicts or ambiguities. Polyglot54 is an example 

technology that aids in the development of type I IoT framework gateway 

applications.

 Type II Framework Gateway

A type II framework gateway (Figure 2-35) expects the network 

Connectivity, Node Interaction, and Data Object layers are dissimilar, 

but there is a Data Object layer mapping object that relates Framework 

A objects with Framework B objects. A gateway application supplies 

administrative control such as installing, updating, and monitoring an 

object translation component that exists within the Data Object layer. 

Typically, designers of each interoperating framework must collaborate 

to identify semantically similar but syntactically dissimilar elements 

and their mapping functions. The design collaboration may reveal 

disconnected design semantics as well that may be clarified in related 

gateway-specific specifications or may result in specification revisions 

that clarify ambiguities. For example, one framework might expect all 

objects to be discoverable through its hosting endpoint device, while 

another framework might expect discovery is handled using a dedicated 

discovery service. The object translation layer defines the framework- 

specific discovery conventions so that endpoint devices can function 

unmodified. This might involve having the gateway device advertising 

itself as a discovery service operating on behalf of devices represented in 

a foreign network. The OCF-AllJoyn bridging specification55 is an example 

type II framework gateway that supports bidirectional bridging and device 

54 https://github.com/UniversalDevicesInc/polyglot-v2
55 https://openconnectivity.org/specs/OCF_Bridging_Specification_v1.3.0.pdf
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interactions within a common operational domain. See the“Security 

Considerations for Framework Gateways” section for more insight on 

interdomain bridging considerations.
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Figure 2-35. Layering architecture for type I and type II framework 
gateways

 Type III Framework Gateway

A type III framework gateway (Figure 2-36) anticipates a common data object 

layer is in place. However, because the lower layers are dissimilar, not all 

data objects will be common. Therefore a data object translation capability 

is also required. The Connectivity and Node Interaction layers are dissimilar, 

but there is a message translation model that relates the interface definition 

model for Framework A to the interface definition model for Framework B. 

An example message translation operation might relate publish-subscribe 

messages defined by Message Queuing Telemetry Transport (MQTT)56 to 

the publish-subscribe model defined by eXtensible Messaging and Presence 

56 MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 September 
2014. OASIS Standard. Latest version: http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/mqtt-v3.1.1.html
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Protocol (XMPP).57 Another example mapping technology is the Internet 

Engineering Task Force (IETF) OSCORE58 specification that maps HTTP 

message security to CoAP messages and vice versa.

A traditional framework may not be regarded as a type III gateway 

depending on the set of protocols and message types the framework 

supports. If a framework includes support for both HTTP and CoAP, for 

example, then mapping between may be a normal IoT framework function. 

However, given Framework A support for only HTTP and Framework B 

support for only CoAP, the type III gateway translation comes into play.
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Figure 2-36. Layering architecture for type III and type IV framework 
gateways

57 Internet Engineering Task Force (IETF) RFC 6120, March 2011. https://xmpp.
org/rfcs/rfc6120.html

58 Internet Engineering Task Force (IETF) “draft-ietf-core-object-
security-15,” Expires March 4, 2019. https://datatracker.ietf.org/doc/
draft-ietf-core-object-security/
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 Type IV Framework Gateway

The fourth framework gateway class, type IV, considers the case where 

Framework A is a superset of Framework B. The superset and subset 

frameworks remain unmodified, but applications may interact with 

devices from either framework seamlessly. The gateway function 

exists when Framework A objects are exposed to Framework B and 

when Framework A peers are different from Framework B peers. 

Though subtle, this is a system boundary crossing that requires 

security controls. An example of this scenario is OneM2M where 

LWM2M supplies the device management capabilities for a OneM2M 

framework. Nevertheless, LWM2M also may stand alone as an 

independent IoT framework. The type IV framework gateway has an 

object model where the Framework A object model is flexible enough 

to encompass the Framework B object model. Likewise, the interface 

definitions in the Node Interaction layer have a superset-subset 

relationship, and the connectivity layers are similarly encompassing. 

The gateway function may be provided as an application of the 

framework or may have embedded mapping operations. The OCF 

framework resource naming specification allows resources to be 

identified using a Uniform Resource Identifier (URI)59 of arbitrary 

nesting depth. A LWM2M object identifier is a URI that is constrained 

to two layers of nesting, and object names are numeric. The LWM2M 

namespace fits within the OCF namespace; hence an OCF to LWM2M 

gateway function could be implemented.

59 Internet Engineering Task Force (IETF), RFC 3986, January 2005. https://
tools.ietf.org/html/rfc3986
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 Security Considerations for Framework 
Gateways
Framework gateways may facilitate interdomain interactions in addition 

to facilitating interoperability between dissimilar IoT frameworks. 

Security at the framework gateway should address at least two important 

security questions: (1) Does the gateway bridge network domains and to 

what extent is the gateway trusted to perform these duties? (2) Where in 

the framework layering do authentication, authorization, integrity, and 

confidentiality protections begin and end for a given message transiting 

the gateway?

The Industrial IoT Consortium (IIC) describes brownfield-greenfield 

security integration in terms of security gateways (Figure 2-37). In this 

model, the gateway occupies both an interoperability and a security 

function. Legacy IoT endpoints may enjoy intra-brownfield interactions 

(often without native security), but when protocol directs interaction 

with the Secure Endpoints, the Security Gateway must augment legacy 

messages with message protections. This entails encrypting or signing 

messages before the Secure Gateway forwards Legacy Endpoint messages 

to Secure Endpoints. It may also require authenticating Secure Endpoints 

before allowing them to access Legacy Endpoints.

The Security Gateway function ensures crossing a network domain 

doesn’t weaken security. Security gateways may be expected to perform 

the following security operations:

• Authenticate endpoints to the gateway and gateway to 

the endpoints.

• Authenticate endpoints from a foreign domain to 

endpoints in the local domain. This may require 

creation of a virtual endpoint on the gateway device if 

interior endpoints can’t support the needed security 

capabilities.
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• Integrity and confidentiality protect messages passing 

through the gateway. The gateway may need to decrypt 

then re-encrypt using native domain’s recognized 

security associations, security algorithms, and 

protocols. On rare occasion domains have all these 

security elements in common.

• Authorize access to objects in a local domain by 

endpoints from a peer domain.

• Inspect and log activity between the domains.

• Establish endpoint credentials in the peer network 

environment. Different domains may have dissimilar 

security services for authentication, authorization, 

and key management. The gateway may be required 

to host security services on behalf of a local domain so 

that a peer domain can utilize its chosen set of security 

services.

• Perform data structure translation and protocol 

mapping functions previously described. Modification 

to data objects and protocol message that are integrity 

and confidentiality protected necessarily implies the 

gateway is authorized and trusted to perform these 

transformations.

In general, the gateway is expected to be one of the most trusted nodes 

in the network. Since it connects multiple domains, it likely needs to be the 

most trustworthy node across all the connected domains.

To achieve the preceding security goals, a Security Object layer 

(Figure 2-40) is needed in addition to the framework’s Data Object layer. 

The Security Object layer must be common to all domains that connect 

through the framework gateway; otherwise, there is little confidence that 

security for the domains is correct.

Chapter 2  Iot Frameworks and ComplexIty



140

 Security Endpoints Within the Gateway

When a message enters a framework gateway, it arrives with security 

protections specific to its native network. Those protections terminate 

somewhere within the framework gateway where it is assumed the 

gateway will preserve the security properties throughout until the 

message emerges on another network where the destination network’s 

native protections are applied. The framework gateway must satisfy 

authentication, authorization, integrity, and confidentiality protections in 

a manner that is consistent with both source and destination networks as 

the message transits through the gateway. The place where the network’s 

native protection mechanism ends or begins is referred to as a security 

endpoint. The place where confidentiality protection (i.e., encryption) 

ends (or begins) is the confidentiality endpoint. The place where network 

native authorization protection ends is the authorization endpoint and 

Secure Core Protocols

1

1 2 3

4 5 6
2 3

Security Gateway

Legacy Endpoints

Legacy
Protocols

Legacy Protocols protected by
physical & L2/L3 security

Secure Endpoints

Figure 2-37. Framework gateway as a secure endpoint/proxy to 
unsecure legacy endpoints
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so forth. The various framework gateway types have different semantics 

and make different assumptions about security endpoint termination and 

origination. This section highlights some of these differences.

Security Endpoints in Type I Gateways

The security endpoints in a type I gateway (denoted by up arrow and down 

arrow in Figure 2-38) could in theory terminate at or near the application 

interface since the gateway translation and mapping functions are applied 

at the application level. Given a scenario where security protections are 

applied directly to framework objects rather than to protocols or interfaces, 

the data confidentiality and integrity protections may persist until the 

last possible moment before the framework hands off the data to the 

application.

Most IoT frameworks require security endpoint termination within 

the framework layers or in protocol layers beneath so that the framework 

data objects can be manipulated. This implies the data will be unprotected 

through some portion of framework layering before handing off to the 

Gateway Translation Application and again in the reverse flow. The 

security expectation for type I gateways is the framework architecture 

must strictly isolate resources belonging to Framework A from resources 

belonging to Framework B. Attacks originating from Framework A should 

be ineffective at compromising Framework B resources without first 

compromising the gateway or the Framework Translation Application. 

This simplifying assumption can be quite powerful because there are few 

if any exceptional cases. Exceptional cases have a tendency to expose 

security weaknesses that lead to exploits.

Note that within each framework context, native network operations 

may require authentication endpoints for network packet delivery that 

terminate within the framework. This differs from security endpoints 

associated with application layer message confidentiality and integrity 

protection.
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Security Endpoints in Type II Gateways

A type II gateway requires translation at the Data Object layer implying 

security endpoints must exist at the base of the Data Object layer or below. 

The gateway application largely doesn’t participate except to provide 

administrative oversight; hence there isn’t an expectation the Gateway 

App should be privy to object data.

Framework A resources at the Interaction and Connectivity layers 

are strictly isolated from Framework B. However, because the object 

translation logic is shared across Network A and Network B, the Data 

Object layer, compromise of this layer implies access to both A and B 

networks. The authors feel the Data Object layer should be a third isolation 

environment where access to Framework A or Framework B isolation 

environment doesn’t imply, automatically, access to the Data Object layer 

isolation environment. Rather, the respective isolation environments 

should have well-understood interfaces and semantics for crossing 

environment boundaries. Object translation steps necessarily invoke 

environment boundary-crossing primitives.

Note that in cases where framework design choices result in a security 

endpoint terminating in the connectivity or interaction layer, for example, 

if Transport Layer Security (TLS) is used for confidentiality. The isolation 

environment must preserve confidentiality of data as it passes between the 

various isolation environment boundaries.
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Figure 2-38. Security considerations of type I and type II gateways
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Security Endpoints in Type III Gateways

A type III gateway (Figure 2-39) requires message protocol translation at 

the Node Interaction layer and may require object translation at the Data 

Object layer. Managing security endpoints that terminate at different 

layers can be tricky. If confidentiality endpoint occurs within the Data 

Object layer, then message translation can proceed in the Node Interaction 

layer since message payloads are opaque at this layer. Nevertheless, an 

authentication or authorization endpoint is required at this layer that 

authorizes a boundary crossing, for example, from Framework A to 

Framework B.

However, if A and B disagree on data object format, then the payload 

transits to the Data Object layer for object translation before it is 

repackaged into a Framework B message body. The Data Object layer must 

correctly apply confidentiality endpoint processing, possibly resulting in 

application of a Framework B–specific confidentiality endpoint before 

transitioning back to the Node Interaction layer. All of this security context 

must be preserved and must resist confused deputy attacks.

Isolation of respective connectivity layer environments from Node 

Interaction and Data Object environments seems reasonable from a 

security isolation perspective but appears concerning from a performance 

optimization perspective.

Security Endpoints in Type IV Gateways

A type IV gateway (Figure 2-39) expects data objects, interfaces, message 

formats, and network connectivity are a subset of the first framework. 

Therefore, data object, interface, and message translation might not 

even be needed. If it is needed, it occurs on the context of the superset 

framework, meaning the security endpoints that are valid for the subset 

framework are also valid for the superset framework. This is a nice 

simplifying assumption that allows for flexible isolation strategies. The 

point where the security endpoint begins can largely be configurable.
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One important consideration is whether or not interaction with 

Framework B allows access of superset data objects not normally part 

of subset objects by Framework B. Given this scenario, the boundary 

crossing occurs at the line where superset and subset objects intersect. 

Gateway isolation mechanisms should allow separation of resources 

along these lines. Success or failure at applying the isolation mechanism 

falls largely along two vectors: (a) the degree of modularity found in the 

implementation of the frameworks and (b) the level of granularity with 

which the isolation mechanism is able to conscribe resources.
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Security Framework Gateway Architecture

This section describes an idealized security framework gateway 

architecture (Figure 2-40) that more easily would support the security, 

isolation, performance, and flexibility requirements needed to facilitate 

framework gateway challenges. The meaning of an idealized architecture 

is it attempts to describe IoT framework architecture where security 

is central to the design and integrated from the start. It may serve as a 

guidepost from which to better evaluate security hardware and software 

solutions presented in subsequent chapters.
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A prominent feature in our idealized framework architecture is the 

addition of the Security Object layer containing commonly understood 

and specified security objects and data model representations. In our 

experience, many IoT framework architectures cite industry standards 

such as X.509, TLS, and COSE in response to questions of security 

interoperability. However, they do not capture the semantics of what it 

means to be secure. There have been attempts at defining security policy 

languages such as XACML and SAML, but these, or something similar, 

have not yet been integrated into IoT frameworks.
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Secure execution is another component to our idealized architecture. 

Secure execution is a hardware-supported mode of execution enterable 

when a security endpoint in the framework is required to perform security- 

related functions and exits upon completion. Since a security endpoint 

could exist at any framework layer, secure execution can be entered at 

any framework layer. Framework data are in cleartext while in the secure 

environment and ideally, confidentiality and integrity protected while 

outside the environment.

Framework context is maintained across ingress and egress transitions 

so that layer crossings can be recognized as these may correspond to 

network boundary crossings in a gatewaying usage context. The Security 

Object layer use of the Secure Execution resource preserves its isolation 

properties with respect to the other layers. Data passing between 

framework layers, which have layer isolation requirements, relies on 

the Secure Execution environment technology to enforce isolation 

requirements, these include decryption upon ingress, tenant-specific 

resource isolation while in the SE environment and encryption upon egress.

Although the authors are not aware of a secure execution technology 

that fully implements the idealized framework architecture, there are 

a few technologies that come close. For example, Intel Software Guard 

Extensions (SGX), ARM TrustZone, and virtualization have compelling 

potential. Chapter 3 explains in greater detail various Intel hardware 

security features and how they apply to IoT.

 Summary
IoT frameworks occupy an important position in IoT system design as 

an effective strategy for empowering IoT application developers to more 

easily construct rich distributed IoT applications. Many of the connectivity 

challenges resulting from fragmented brownfield systems are hidden 

behind IoT frameworks. IoT applications simply expect the dissimilarities 

Chapter 2  Iot Frameworks and ComplexIty



147

in machine control networks, process control systems, manufacturing 

execution systems, and cloud integration are conveniently “simplified” for 

all intents and purposes.

Nevertheless, the IoT ecosystem hasn’t settled on a single IoT 

framework technology that satisfies every industry and meets every need. 

Neither is there consensus over standardization of open IoT frameworks 

as there are multiple framework standards efforts. New and existing 

proprietary approaches also seem to have gained ground as the size 

of IoT grows. The recent proliferation of IoT frameworks, toolkits, and 

middleware combined with existing brownfield IoT suggests greater 

challenges to come for interoperable applications in a heterogeneous 

distributed world of IoT.

IoT framework standards organizations seem to recognize these 

challenges and have responded by merging organizations and standards. 

They have developed gatewaying and bridging technologies that let 

framework application interoperate through dissimilar frameworks. 

Noted mergers include OCF, AllJoyn, UPnP, IPSO, OMA, IIC, and OCF. 

There is continued interest in framework gateway interoperability 

among remaining frameworks, but it isn’t clear that the industry needs 

to converge to a single or even a small number of frameworks as security, 

safety, reliability, and other factors may in fact motivate keeping some 

parts of IoT systems separated.

Framework gateways are positioned on the edges of IoT networks 

addressing interoperability needs but also should be considered the most 

trusted security control points since crossing organizational domains often 

coincides with translating from one IoT network protocol to another.

This section highlighted several IoT frameworks showing how 

various IoT system integration and interoperation requirements may 

be addressed. We considered challenges facing framework application 

interoperation in an environment of multiple frameworks. The industry’s 

eager embrace of IoT frameworks has led to the need for framework 
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gateways that reassert the desire for interoperability, but also for security. 

We further consider ways to secure framework gateways looking at various 

approaches and trade-offs.

In summary, frameworks appear to offer significant value for enabling 

interoperable IoT applications by hiding much of the complexity of 

multiple connectivity technologies, messaging solutions that incorporate 

multiple hundreds or thousands of nodes, and data schemas that present 

consistent, declarative, and vendor-neutral expressions of IoT objects. 

We’ve shown that frameworks are great tools to manage IoT device 

complexity, but the security robustness or hardening can only be achieved 

by leveraging the underlying HW security capabilities dealt with in detail 

in Chapter 3 and are exposed via API and different framework and protocol 

layers by the SW as detailed in Chapter 4. The external interactions that an 

IoT device experiences during the lifecycle depend upon the stimulus from 

myriad connectivity interfaces, and this is dealt with in detail in Chapter 5.

Open Access  This chapter is licensed under the terms 
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CHAPTER 3

Base Platform 
Security Hardware 
Building Blocks

Every distraction is a possibility, Every downfall is an 
opportunity.

—Ria Cheruvu

Historically, the attacks on platforms have been transitioning from 

application-level software (SW) to user mode SW to kernel mode SW to 

firmware (FW) and now hardware (HW). The frequency of HW- and FW-

level vulnerabilities increased substantially from 2003 to 2019 and therefore 

reinforces a concrete need for HW-based security to harden the platform. 

This is evident from the data cataloged in the National Vulnerability 

Database (NVD) organized as CVEs; more information about NVD can 

be found at https://nvd.nist.gov/. The Common Vulnerabilities and 

Exposures (CVE) is a list of entries with the information that identifies a 

unique vulnerability or an exposure and is used in many cybersecurity 

products and services including the NVD; more information about CVE 

can be found at https://cve.mitre.org/. The NVD has been mined to 

derive the statistics and visualizations with pertinent search terms such 

https://nvd.nist.gov/
https://cve.mitre.org/
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as Firmware and Hardware. It is evident from Figure 3-1 (a) that the 

firmware-related CVEs have increased significantly and 2017–2018 saw the 

biggest jump when the hacker community started attacking the FW on the 

platforms. Similarly Figure 3-1 (b) shows that during the same time period, 

the HW-related CVEs also hit a peak. Please note that all these CVEs need 

to be investigated carefully for the impacted areas within a platform. But the 

trends are clearly pointing toward the HW as the last line of defense.
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Figure 3-1. (a) Firmware vulnerability trend chart1

1 https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced& 
results_type=statistics&query=Firmware&search_type=all
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This chapter describes the technologies involved in securing an IoT 

device anchored to a Hardware Root of Trust (HWRoT) and ultimately 

booting into a Trusted Execution Environment (TEE). Security in an IoT 

environment generally involves four areas of focus:

• Protecting the device

• Protecting user identity
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Figure 3-1. (b) Hardware vulnerability trend chart2

2 https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced& 
results_type=statistics&query=Hardware&search_type=all
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• Protecting the data

• Managing the security at runtime

Each of these areas are worthy of detailed explanation in itself. This 

chapter delves into the rich set of security and privacy technologies 

Intel has available in their product lines and how they may be used to 

implement secure IoT systems. Intel’s discrete CPU-PCH or System-on-

Chip (SoC) products have two classes of security features; one class of 

features are implemented in the CPU as New Instructions (NI) with some 

examples being AES-NI, SHA-NI, and so on. The second class of security 

features are implemented in the isolated security engines with examples 

including Converged Security and Manageability Engine (CSME).

Note please note that by the time this book is published, some 
new security features may be released by intel, and therefore please 
refer to intel web site or contact the relevant oem/odms for latest 
information.

 Background and Terminology
Before the actual security capabilities can be described, it is important to 

understand the terminology, the threat pyramid, the relevance of end-

to-end security, and Intel Security Essentials for leveraging built-in HW 

security technologies.

 Assets, Threats, and Threat Pyramid
Security design begins with the process of identifying a set of assets 

that are to be protected and classifying these assets according to the 

different levels of protection based on strategic or other pertinent value 
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vectors. A real-life scenario of protecting assets in our home would be 

to protect our house keys (hang on wall), wallets (place in an enclosed 

cabinet), passports, and jewelry (in a safe in the master bedroom). For 

IoT deployments, security is also determined by the return on investment 

(ROI). Figure 3-2 depicts the relationship between them.

• Assets (A): Anything valuable to us that is worth 

protecting. What assets are we protecting? It is 

pertinent to classify the assets and prioritize. Example 

asset profile = {physical devices, internal fuses, keys, 

content, data at rest/in transit, etc.}

• Threats (T): What are we protecting against? Become 

aware of threat surfaces, the areas of exposure to 

threats.

• Vulnerabilities (V): What are the known weaknesses in 

the system that can be exploited?

• Mitigation: How are we going to protect?

• Robustness rules: Specific to assets/threats. 

Documented conditions/criteria for protecting specific 

assets against specific threats.

• Threat modeling: A process to evaluate the threat 

scenarios considering the vulnerabilities for specific 

assets. This process is iterative and is expected to be 

done whenever the bill of materials (BOM) list in a 

platform changes.
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 Inverted Threat Pyramid
The threat pyramid shown in Figure 3-3 depicts the surfaces/layers 

vulnerable to cyberattacks (both physical and remote) in an IoT device. 

The volume of attacks is high at the top and requires fewer resources, 

whereas the volume of attacks at the bottom is lower and requires a high 

amount of resources. In other words, the attack surfaces have varying 

degree of exposure and mandate a defense in depth approach at the 

platform levels.
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Figure 3-2. Relationship between assets, vulnerabilities, and threats
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The rectangle outlines the IA value additions where the related 

security IP capabilities exemplify the assets that can be used to protect 

customer’s assets. The effort to create exploits at the top of the inverted 

pyramid is low, and the ROI on the compromised assets is also low. Due 

to this low effort, the number of exploits is also significantly higher. As we 

traverse down the inverted pyramid, the effort it takes to create exploits 

increases significantly along with the cost, and thereby the number of 

exploits is typically lower and targeted in nature. The bottom six layers 

could be qualified as HW, and side-channel attacks plus physical attacks 

are relevant. The discussion of such side-channel and physical attacks is 

outside the scope of this book.

 Sample IoT Device Lifecycle

The IoT device lifecycle pertaining to security is complicated with security 

involved in every phase of an IoT device lifecycle (Figure 3-4). During the 

build phase, the security SDK/API is critical for simplifying the device 
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Figure 3-3. Attack pyramid
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build. The provisioning/configuring phases would require tools that 

scale across different CPU families and involve assigning a persona to the 

IoT device. The deployment phase should be flexible for seamless and 

potential anonymity. The connectivity should comply with the relevant 

security standards and specifications. The management of these devices 

must be secure and seamless. The retirement or decommissioning phase is 

equally critical for an IoT device due to the integration of different assets/

secrets from multiple vendors in the system. For a detailed supply chain 

interactions during the lifecycle, refer to the Secure Device Onboarding 

technology.3

IoT devices have different security needs as they go through their 

lifecycle (on average it is many years significantly more than traditional 

PCs). Security is pivotal to enable IoT devices and sustain those on the 

market. Each stage of the device lifecycle has its specific requirements, 

starting from providing what is needed for onboarding a device during 

the start of its life to security management functions that secure runtime 

operations. Intel has a critical role with enabling design-in the best 

practice HW security model with solutions and ecosystem relationships. 

Intel targets to enable security capabilities and solutions for each phase 

working with the ecosystem. Security is not one-off, it evolves along the 

lifecycle with each stage having unique needs. Best practices are required 

to secure the entire lifecycle.

3 www.intel.com/content/www/us/en/internet-of-things/secure-device-
onboard.html
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Figure 3-4. IoT device lifecycle

 End-to-End (E2E) Security
While security pertaining to an IoT device is important, a practical IoT 

deployment warrants scaling security across an E2E spectrum starting with 

edge/Things connected to Network and then fog or Cloud. The typical E2E 

security involves edge/Things ➤ Gateway/Network ➤ Fog ➤ Cloud. Refer 

to Figure 3-5.
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Assets exist at different stages and often cross trust boundaries.

A typical flow (for a sensing application) is explained with 

confidentiality (encryption/decryption) and integrity (sign/verify) 

attributes:

 1. The device securely identifies with the Gateway/

Cloud (could be one time or periodic depending 

upon the policy enforcement).

 2. The device has/interfaces to sensors (smart/dumb) 

and actuators, collects the data, and controls the 

sensors and drives the actuators.

 3. Device may run some local analytics and optionally 

store the data encrypted.

 4. Device encrypts or signs (or both) (depending on 

the policy) the data and sends it to Gateway.

 5. Gateway decrypts/authenticates the data.

 6. Gateway may run some local analytics.

Network Cloud
Fog

Onsitecloud

3rd Party
Cloud

Things

Security Management

Security Management

Gateway Devices

Local Area Network Connectivity

Wide Area Network Connectivity

Data
Processing

API Libraries,
APIs, SDK

Data
Processing

Data
Management

Batch & Stream
Analytics

Storage

API Libraries,
APIs, SDK

Security Management API Libraries,
APIs, SDK

Network
Infrastructure

Figure 3-5. Typical E2E security components
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 7. Gateway encrypts/signs and sends the data to fog/

Cloud.

 8. The instances on fog/Cloud decrypt/authenticate 

the data.

 9. Cloud applications run analytics.

 10. Cloud applications encrypt/sign and store the data 

in databases.

 Security Essentials
Security Essentials is an Intel brand initiative that defines a set of 

foundational security capabilities that Intel processors and Systems on 

Chips (SoCs) will support in order to establish a secure baseline upon 

which the ecosystem can build rich, secure usage models (see Figure 3-6). 

Security Essentials establishes a set of capabilities along with technology 

options for implementing each of the targeted capabilities. This allows 

us to project a common security posture across all supported platforms, 

establish a baseline for security that the industry can rely upon, and 

promote reuse and consistency in Intel-based security solutions. Intel 

provides training, collateral, technology summits, and Technology 

Alignment Programs with customers and ecosystem partners. In 

some cases, Intel partners with Independent BIOS Vendors (IBVs) and 

Independent boot loader vendors to enable the ecosystem with fast, 

secure, and functionally safe boot loader solutions.
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Security Essentials focuses on four buckets of capabilities: Device 

Identity, Protected Boot, Protected Storage, and trusted execution 

environment. These are later explained briefly.

 Device Identity

A hardware identity refers to an immutable, unique identity for a platform. 

The identity has to be somehow inseparable from the platform. A hardware 

embedded cryptographic key, also referred to as a Hardware Root of 

Trust, can be an effective device identifier. The Trusted Computing Group 

(TCG) defines hardware-roots-of-trust as part of the Trusted Platform 

Module (TPM) specification. All TPM vendors are required to implement a 

hardware root of trust for storage. Intel® Platform Trust Technology (PTT) 

implements TPM functionality using a security engine integrated in many 

of its SoC products.

The IEEE community defines a device identity specification, IEEE 

802.1AR, that has been adopted by the TCG. This means TPM-based device 

identity complies with interoperable and industry-accepted approach for 

secure device identity.

A software (SW) identity refers to a cryptographic fingerprint (SWFP) 

that describes important software that may execute on a platform. The 

SWFP can be reliably verified given a whitelist of SWFP values known to 
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Figure 3-6. Trusted secure foundation
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be legitimate. SWFP is an important aspect of securely booting a platform 

where the goal of secure boot is to detect malicious changes to software 

images before they are loaded into memory.

The TCG defines methods for securely booting a platform where 

the SWFP of each software image loaded into memory is measured (aka 

cryptographically hashed) into a Platform Configuration Register (PCR), 

which is securely stored by a TPM. PCR measurements are available for 

comparison with whitelist values during the boot process and are available 

for attestation after the platform boots. Attestation is a protocol for 

proving to a peer platform that it booted a particular way. The attestation 

verifier might also use the whitelist to verify a peer platform node booted 

satisfactorily.

An IoT system that enforces a common and attested secure boot policy 

is a way to establish trust in a distributed set of IoT nodes. Distributed trust 

is an important component to establishing a secure IoT network.

 Protected Boot

This capability defends against sophisticated bootkits and rootkits which 

have been demonstrated that reside in very early boot code and are able 

to launch a variety of attacks on the system. These attacks materialize 

without the knowledge of OS and thereby are invincible to be detected by 

the anti-malware entities. The TCG defines an architectural requirement 

for secure platform boot by defining a root-of-trust-for-measurement 

(RTM) where the platform must provide a secure platform reset and initial 

boot executive that is implemented in hardware, but TCG stopped short of 

defining a particular implementation.

The Unified Extensible Firmware Interface (UEFI) forum defines an 

interface where the UEFI BIOS boot image can be integrity verified by the 

RTM before it can execute, thereby ensuring the remainder of the BIOS boot 

process can be performed according to TCG defined secure boot principles.
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Intel® TXT (Trusted Execution Technology) anticipates scenarios 

where a hard power reset, as a way to return to a trusted environment, is 

infeasible. Instead, Intel® TXT transitions the CPU to a secure operational 

mode using an IA instruction, then proceeds to boot a hypervisor or OS 

without invoking BIOS.

Intel Boot Guard is the hardware-based root of trust for system boot 

process. It provides an architectural enforcement of OEM boot policies and 

a protected initial measurement & verification of first OEM component. 

OEM boot policy is provided in FPF programmed by the OEM.

 Protected Storage

The Storage Networking Industry Association (SNIA) defines storage 

security as

Technical controls, which may include integrity, confidentiality 
and availability controls that protect storage resources and 
data from unauthorized users and uses.

Protected storage is a fundamental security capability required to 

support many other security capabilities. The Trusted Platform Module 

(TPM) implements secure storage primitives for several types of security 

objects including cryptographic keys, configuration registers, and whitelist 

values. Protected storage encompasses the following properties:

• Data confidentiality: Unauthorized entities cannot read 

the data.

• Data integrity: Unauthorized entities cannot modify 

the data or unauthorized data modification can be 

detected.

• Anti-replay protection: Unauthorized entities cannot 

replay/reuse stale data to storage.
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Intel® Platform Trust Technology (PTT) is an implementation of 

the TCG Trusted Platform Module specification in a SoC that relies on 

hardware isolation of flash and other memory to prevent access outside 

of the TCG defined interfaces. Intel® QuickAssist Technology (QAT) is a 

hardware data encryption accelerator that also implements key storage 

protections. A common approach for building secure storage for data that 

exceeds the capacity of hardened secure storage resources calls for bulk 

data encryptions that allow ciphertexts to be stored on traditional storage 

media, but where encryption keys are stored in hardware. It is common 

to build a hierarchy of data encryption keys so that different access and 

lifecycle controls can be applied to different data. In some cases the key 

hierarchy itself is too large to fit into hardware-protected storage; therefore 

intermediate keys may be used to encrypt data encryption keys and so on 

until the top most keys of the hierarchy can be stored in hardware.

 Trusted Execution Environment (TEE)

In general, a Trusted Execution Environment (TEE) refers to an execution 

environment that is isolated from the normal general-purpose execution 

environment. For example, the core CPU is a general-purpose execution 

environment, and a security coprocessor is an isolated environment. 

Trusted execution environments may include HW/SW/FW that establishes 

an isolated environment. By carefully controlling the infrastructure that 

produces the HW/FW/SW that implements it, the TEE can have strong 

guarantees regarding safe and reliable execution of TEE workloads. 

Typically workloads that involve the use of cryptographic keys to ensure 

confidentiality and integrity protection of data as it is transformed to and 

from ciphertext are performed using a TEE.

There are several TEE technologies available across a variety of 

architectures. ARM® TrustZone creates an isolated execution environment 

within the ARM core. Intel® Software Guard Extensions (SGX) takes a 

similar approach and allows multiple instances of trusted execution 
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environments for different applications and tenants. Intel® Converged 

Security and Manageability Engine (CSME) is a security coprocessor that 

is integrated into Intel chipsets. The CSME can be used to offload security-

sensitive operations to shield them from possible attacks from the normal 

CPU environment. Intel® TXT allows trusted execution using CPU cache 

lines as RAM to minimize dependencies on external resources. It can be 

used for general-purpose TEE operations when cache coherency isn’t 

needed. Intel® Virtualization Technology (VT) suite offers another form 

of TEE where a trusted hypervisor creates execution environments with 

distinct thread, memory, interrupt, and IO contexts. Virtualization allows 

full OS and application images to run which may be counterproductive 

to security due to increased attack surface of a large OS and application 

framework. Therefore, it may yet be appropriate to employ some other TEE 

capability in concert with virtualization.

 Built-In Security

Built-in security features are essential to protect, detect, and correct the 

security issues in a platform. These features depicted in Figure 3-7 enable 

to protect the identity and data assets on the platforms from attacks, 

detect when attacks are launched, and then aid in deploying the corrective 

measures to make the platforms resilient.
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The identity is based on HW and possesses immutable properties 

and simplified access. The data asset protection includes data at rest and 

in transit. The detection mechanisms constitute anti-malware FW/SW 

components to find the malware and then pipeline into deploying the 

corrective measures via FW and/or SW over the air updates. Intel’s value 

proposition includes three layers of ingredients as shown in Figure 3-8.

Build-in Silicon Security
Hardware Solutions for User Problems...

Protect

Identity

Simple access
with enhanced

security

Intel® Identity
Protection Technologies

Intel® Data Protection
Technologies

Intel® Platform or Device
Protection Technologies

Data safe from
theft or alteration

Malware finds
nowhere to run or

hide

Securely
updated, more

resilient systems

Data Protection Anti-Malware Resiliency

Detect Correct

Figure 3-7. HW solution pillars for user problems
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Figure 3-8. Security value propositions
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At the bottom layer, the Intel Architecture allows leveraging built-in 

security features to build the platforms at the middle layer and, at the top 

layer, create ecosystems enriched with deployment of best-in-class security 

software solutions. These solutions at the top layer enable the protection, 

detection, and corrections in both consumer and enterprise class solutions. 

Intel security assets and solutions enable building and deploying an end-to-

end system of systems as depicted later. The end-to-end system starts with 

edge devices or things on the left possessing minimal compute capacity and 

less robust security features; these edge devices are connected to Gateways/

Network, to fog, and then connected to the cloud back ends.

The scalable strategy as shown in Figure 3-9 is to provide a minimally 

viable set of security capabilities that scale from low compute MCUs to 

atom class to Core and to Xeon server, microserver class products. Across 

the product lines, the four groups of security technologies are available in 

different capacities for implementing security features. The device identity 

based on HW is key for an IoT device, and protected boot ensures that only 

well-known FW/SW is being executed and protected storage ensures the 

storage of secrets and/or data securely. The trusted execution environment 

allows execution of code at runtime in an isolated and protected 

environment immune from SW and HW attacks.

t h i n g s

Consistent HW security “capabilities” implemented across products
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Figure 3-9. Consistent HW security capabilities
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 Base Platform Security Features Overview
Let’s review the security features present in the base platform profiles 

of IA CPU/SOC at a very high level. As alluded to in previous sections, 

the security features are implemented in CPU and on dedicated security 

engines as shown in Figure 3-10.

CPU

Dedicated Security Engine:
•     ME for Core products
•     TXE for Atom products
•     SPS for Xeon products

Figure 3-10. CPU and dedicated security engines

Intel CPUs come standard with a suite of cryptographic operations 

that can be performed on the main CPU. Secure, protected encryption 

starts with a random number seed, typically provided by a pseudorandom 

number generator within the client. Intel® Secure Key provides a clean 

source of random numbers through generation in hardware, out of sight 

of malware. Intel® SGX provides TEE with smallest TCB within the CPU 

boundaries for application to utilize.

 CPU Hosted Crypto Implementations

These features include CPU new instructions for encryption/decryption, 

sign/verify, and random number generation: AES-NI, SHA-NI, SHA1 and 

SHA256, RDRAND, RDSEED, ECC. This section describes the Security 

features/primitives New Instructions (NI) as supported in the Intel CPUs 
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(as opposed to in an isolated security engine IP block). CPU crypto 

capabilities are supported by the CPU and the fabric. In the following 

sections, we will learn how the hardware-enhanced security strengthens 

Anti-Malware Defenses via the OS Guard (SMAP, SMEP), performing 

encryption/decryption, sign/verify, and random number generation. 

CPU security features and accelerators are available to trusted execution 

environments implemented by the CPU as well including Intel® SGX, 

Intel® VT, and Intel® TXT.

 Malware Protection (OS Guard)

Intel CPU/SoCs expose HW features for OS to defend the platform against 

malware attacks. The particular and effective features include CPU new 

instructions to enable Supervisor Mode Execution Prevention (SMEP) and 

Supervisor Mode Access Prevention (SMAP). The SMEP feature prevents 

the code executing in privileged mode (ring 0) from executing code in 

application mode (ring 3). SMAP is a CPU-based mechanism for user-

mode address-space protection and prevents supervisor accesses to data 

on user pages.

 OS Guard (SMEP)

SMEP when enabled prevents a specific (important) privilege escalation 

attack vector which is supervisor mode execution from user pages. The 

OS can set CR4.SMEP to enable this feature, and no changes are required 

to applications or other OS software. However, there might be some 

compatibility issues with third-party ring 0 software. The changes in VMM 

are limited to supporting/virtualizing CR4.SMEP bit and corresponding 

CPUID bit. It is important to note the non-objectives so that platform-level 

protections can be deployed appropriately. SMEP doesn’t prevent “all” 

privilege escalation attack vectors, nor does it prevent a specific class of 

vulnerability (e.g., buffer overflow).
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 OS Guard (SMAP)

SMAP extends the protection that previously was provided by SMEP and 

was developed with the Linux community, supported on kernel 3.12+ 

and KVM version 3.15+. The support depends on OS or VMM being used, 

and the CR4.SMAP has to be set to enable the feature. SMAP is analogous 

to SMEP (supervisor mode execution prevention) for data. There are 

legitimate instances where the OS needs to access user pages, and SMAP 

does provide support for those situations. Code executing in ring 0 

(supervisor mode) is prevented from accessing the data in ring 3 (user 

mode). When/if CR4.SMAP = 1, CPU generates Page Fault (#PF) for the 

following accesses: accesses to data (not instruction fetch), data is on user-

accessible page (U/S bit is 1 in all relevant paging structure entries), access 

is made with supervisor privilege which normally means CPU Privilege 

Level (CPL) < 3, applies also to supervisor accesses made with CPL = 3 

(e.g., loads from GDT on segment loads). The resulting #PF establishes 

error code in the normal way.

 Encryption/Decryption Using AES-NI

AES is a symmetric encryption standard that’s widely used in the following 

use cases: full disk encryption, data in transit encryption, and enterprise 

application–specific security. All the modern compilers support the AES 

HW accelerators, and developers can also use via C/C++ intrinsics. Intel® 

Advanced Encryption Standard New Instructions (Intel® AES-NI) is a set 

of seven new instructions in the Intel® processor series. Four instructions 

accelerate encryption and decryption. Two instructions improve key 

generation and matrix manipulation. The seventh aids in carry-less 

multiplication. By implementing some complex and costly substeps of the 

AES algorithm in hardware, Intel AES-NI and PCLMULQDQ accelerate 
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execution of the AES-based encryption. The result is faster, more secure 

encryption, which makes the use of encryption feasible in new use-cases. 

Some of the properties are outlined here:

• Improve the compute efficiency of cryptographic 

algorithms.

• Vector AES is a promotion of AES-NI to vector form, 

enables two (256-bit) or four (512-bit) lanes, and 

increases AES throughput of cores.

• FIPS197 compliant.

• Compilers, libraries, and emulator platforms are all 

available now.

• AESENC, AESENCLAST, AESDEC, AESDECLAST.

• AES Encrypt Round, AES Encrypt Last Round, AES 

Decrypt Round, AES Decrypt Last Round.

• Instructions have both register-register and register-

memory variants.

• AESIMC and AESKEYGENASSIST: Assist with AES Key 

Expansion, AES Inverse Mix Columns, and AES Key 

Generation Assist.

The platform support for AES can be determined by inspecting cpuinfo 

output and openssl commands as shown in the following:

$ grep -o aes /proc/cpuinfo

To verify the proper cipher order, use the following command:

"openssl ciphers -v"
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See the following list that shows AES at the top of the list:

Openssl speed aes-256-cbc

Openssl speed –engine aesni –evp aes-256-cbc

http://ask.xmodulo.com/check-aes-ni-enabled-openssl.html

openssl  speed –elapsed aes-128-cbc

openssl  speed –elapsed –evp aes-128-cbc

 https://software.intel.com/en-us/articles/improving-openssl-

performance

 Sign/Verify Using Intel® SHA Extensions

The Intel® SHA Extensions are a family of seven Streaming SIMD 

Extensions (SSE)–based instructions that are used together to accelerate 

the performance of processing SHA-1 and SHA-256 on Intel® Architecture 

processors (Figure 3-11). Given the growing importance of SHA in our 

everyday computing devices, the new instructions are designed to provide 

a needed boost of performance to hashing a single buffer of data. Using the 

SHA Extensions, the Intel® SHA Extensions can be implemented using direct 

assembly or through C/C++ intrinsics. The 16-byte aligned 128-bit memory 

location form of the second source operand for each instruction is defined to 

make the decoding of the instructions easier. The memory form is not really 

intended to be used in the implementation of SHA using the extensions 

since unnecessary overhead may be incurred. Availability of the Intel® SHA 

Extensions on a particular processor can be determined by checking the 

SHA CPUID bit in CPUID (EAX=07H, ECX=0):EBX.SHA [bit 29].

• New instructions in CPU to encrypt/decrypt data.

• The Intel® SHA Extensions are comprised of four SHA-1 

and three SHA-256 instructions.
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• There are two message schedule helper instructions 

each, a rounds instruction each, and an extra rounds-

related helper for SHA-1.

• FIPS Pub 180-2 compliant.

Instruction Op 1

SHA1 New Instructions

SHA256 New Instructions

SHA1RNDS4 xmm (rw) xmm/m128 (r) imm8 OF 3A CC /r ib

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r)

xmm (rw) xmm/m128 (r)

NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

<xmm0>
(implicit)

OF 38 C8 /r

OF 38 C9 /r

OF 38 CB /r

OF 38 CC /r

OF 38 CD /r

OF 38 CA /r

SHA1NEXTE

SHA1MSG1

SHA1MSG2

SHA256RNDS2

SHA256MSG1

SHA256MSG2

Op 2 Op 3 Opcode

Figure 3-11. SHA instruction family

The availability of the SHA Extensions in a platform can be detected 

using the code in Listing 3-1. It is always a good idea to check the available 

HW crypto capabilities before leveraging them.

Listing 3-1. Detecting the SHA Extensions

int CheckForIntelShaExtensions() {

    int a, b, c, d;

    // Look for CPUID.7.0.EBX[29]

    // EAX = 7, ECX = 0

    a = 7;

    c = 0;
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    asm volatile ("cpuid"

    Intel® SHA Extensions: New Instructions Supporting the

    Secure Hash Algorithm on Intel® Architecture Processors

    14

    :"=a"(a), "=b"(b), "=c"(c), "=d"(d)

    :"a"(a), "c"(c)

    );

    // Intel® SHA Extensions feature bit is EBX[29]

    return ((b >> 29) & 1);

}

 Intel® Data Protection Technology with Secure Key 
(DRNG)

This section explains about the usage of Digital Random Number 

Generator (DRNG) with the new instructions supported in IA CPUs. For 

any IoT device, the ability to generate high-quality cryptographic keys 

is crucial. Two such instructions RDRAND and RDSEED are explained 

along with the method to determine the support and the associated 

programming usage. Intel® Secure Key constitutes the Intel® 64 and IA-32  

Architectures instructions RDRAND and RDSEED and the underlying 

Digital Random Number Generator (DRNG) hardware implementation. 

High-quality keys for cryptographic protocols can be generated using 

the RDRAND instruction, and the RDSEED instruction is provided for 

seeding software-based pseudorandom number generators (PRNGs). 

RDRAND retrieves a hardware-generated random value from the NIST 

SP800-90A compliant Digital Random Bit Generator (DRGB) and stores 

it in the destination register given as an argument to the instruction. The 

size of the random value (16-, 32-, or 64-bits) is determined by the size 

of the register given. The carry flag (CF) must be checked to determine 

whether a random value was available at the time of instruction execution. 
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RDRAND is available to both OS modes: system (ring 0) or application 

(ring 3) software running on the platform. There are no hardware ring 

requirements that restrict access based on process privilege level. As such, 

RDRAND may be invoked as part of an operating system or hypervisor 

system library, a shared software library, or directly by an application. 

Before using the RDRAND or RDSEED instructions, an application or 

library should first determine whether the underlying platform supports 

the instruction and hence includes the underlying DRNG feature. This 

can be done using the CPUID instruction. In general, CPUID is used to 

return processor identification and feature information stored in the 

EAX, EBX, ECX, and EDX registers. For detailed information on CPUID, 

refer to References CPUID A and B. To be specific, support for RDRAND 

can be determined by examining bit 30 of the ECX register returned by 

CPUID, and support for RDSEED can be determined by examining bit 

31 of the EBX register. A bit value of 1 indicates processor support for 

the instruction, while a value of 0 indicates no processor support. The 

Intel Digital Random Number Generator (DRNG) is a high-quality, high-

performance, HW-based random number generator.

• It supports NIST SP 800-90 A, B, and C compliant 

functionality and is FIPS 140-2 Level 2 certifiable.

• It generates random numbers at a rate of 1 byte per 

clock.

• It is available early in the system boot/OS load process.

Both RDRAND and RDSEED return random numbers that are 

compliant to the US National Institute of Standards and Technology (NIST) 

standards on random number generators (Figure 3-12).
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As depicted in Figure 3-13, the RDRAND instruction is handled 

by microcode on each core. This includes an RNG microcode module 

that handles interactions with the DRNG hardware module on the 

processor chip. The entropy source (ES) produces random bits from a 

nondeterministic hardware process. HW AES in CBC-MAC mode distills 

the entropy into high-quality nondeterministic random numbers. The 

deterministic random bit generator (DRBG) is seeded from the conditioner.

Instruction

RDRAND SP 800-90A

SP 800-90B & C (drafts)

Cryptographically secure pseudorandom number
generator

Non-deterministic random bit generatorRDSEED

Source NIST Compliance

Figure 3-12. NIST compliance for RDRAND and RDSEED
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Figure 3-13. Random number generator inside the chip
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The availability of RDRAND and RDSEED can be detected using the 

following register bit decoding (Table 3-1).

More information can be found at: https://software.intel.com/

en-us/articles/intel-digital-random-number-generator-drng-

software-implementation-guide

Table 3-1. Feature Information Returned in the ECX Register

Leaf Register Bit Mnemonic Description

1 eCX 30 rdrand a value of 1 indicates that processor 

supports the rdrand instruction

7 eBX 18 rdseed a value of 1 indicates that processor 

supports the rdseed instruction

With the information from Table 3-1 and by leveraging the code in 

Listing 3-2, the availability of RDRAND and RDSEED can be detected in a 

platform.

Listing 3-2. Detecting DRNG Support

/* These are bits that are OR'd together */

#define DRNG_NO_SUPPORT 0x0 /* For clarity */

#define DRNG_HAS_RDRAND 0x1

#define DRNG_HAS_RDSEED 0x2

int get_drng_support ()

{

    static int drng_features= -1;

    /* So we don't call cpuid multiple times for

     * the same information */

    if ( drng_features == -1 ) {

        drng_features= DRNG_NO_SUPPORT;
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        if ( _is_intel_cpu() ) {

            cpuid_t info;

            cpuid(&info, 1, 0);

            if ( (info.ecx & 0x40000000) == 0x40000000 ) {

                drng_features|= DRNG_HAS_RDRAND;

            }

            cpuid(&info, 7, 0);

            if ( (info.ebx & 0x40000) == 0x40000 ) {

                drng_features|= DRNG_HAS_RDSEED;

            }

        }

    }

    return drng_features;

}

One of the advantages of security hardening and acceleration 

capabilities applied to the core architecture is that performance 

enhancements derived from core silicon manufacturing process 

improvements also apply to security features. In many cases, this approach 

ensures security features’ manufacturing costs scale with the other core 

features.

 Converged Security and Manageability Engine 
(CSME)
This describes the Converged Security Engine capabilities including the 

silicon, FW, and SW ingredients. This is similar to a security coprocessor 

which has its own ROM, RAM, instruction set, and an isolated execution 

environment. Refer to a simplified architecture diagram in Figure 3-14. An 

excellent deep dive can be found in the book Platform Embedded Security 

Technology Revealed (www.apress.com/9781430265719).
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Features are implemented in the isolated security execution engine 

or equivalent to a security coprocessor. CSME is an embedded subsystem 

in Platform Controller Hub (PCH). It is a mini SoC within the PCH and 

contains a small processor, SRAM, crypto blocks, and I/O’s. CSME serves 

three main platform roles: chipset (secure initialization/survivability), 

security (boot/runtime protection and enable trusted execution of 

platform applications), and manageability (optional extensions for out-of-

band network management).

CSME supports the following:

• Crypto operations, boot, DAL, manageability (AMT, in 

above atom).

• The CSME supports crypto operations, HW Root of 

Trust–based secure boot (verified and measured), 

Active Manageability Technology, and other features.

CPU

PCH

CSME
Flash

Figure 3-14. CSME block diagram
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• Content Protection: PAVP, Digital Rights Management 

(DRM)-Widevine, PlayReady, and Adobe Access. The 

CSME supports multiple DRMs for protecting the 

premium audio/video content by encrypting and/or 

digital watermarking.

• Secure Debug: DFX, JTAG lock. The CSME supports 

secure debug and manages access to DFX register 

space by allowing locking and unlocking of JTAG 

interface through which ICE emulators could be 

plugged in for debugging during pre/postproduction 

and to debug the field return parts.

• Identity Protection Technology: The CSME also 

supports protecting user’s identity via multifactor 

authentication, biometrics, iris, and others.

 Secure/Verified, Measured Boot and Boot Guard
Protecting the boot flow is critical to ensure that the device is not running 

compromised code whether it is the FW on the flash components or SW 

running from the mass storage device. Secure/verified boot is a process 

where a device authenticates the different FW/SW ingredients in the 

boot chain and establishes a chain of trust. Measured boot is a process 

where the device authenticates to a network for admission. To implement 

measured boot, the device stores the hash values of the boot chain 

ingredients, and SW entities collect these values and transmit them to a 

server for attestation.
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 Trusted Execution Technology (TXT)
The TXT is prominent in the server and microserver domain where a 

comprehensive security strategy is employed including a Measured 

Launch Environment (MLE) and instrumented OS. More about this will be 

discussed in the “Runtime Protection – Ever Vigilant” section.

 Platform Trust Technology (PTT)
PTT is a FW implementation of the Trusted Computing Group (TCG) 

Trusted Platform Module (TPM) and complies with the TPM 2.0 

specification. This FW is executed on the CSME or CSE on atom platforms. 

This feature is the most important for an IoT device which has board-level 

constraints imposed by BOM cost and real estate. PTT is essential for 

measured boot and attestation mechanisms.

 Enhanced Privacy ID (EPID)
The EPID allows a device to possess an immutable “privacy preserving 

platform identifier” – in many use cases, it isn’t required that the particular 

instance of the CPU be known, only that the platform is of a particular class 

or origin. In these situations, trust can be established without sacrificing 

privacy. Through this immutable identity, more secrets can be provisioned 

in the field during the course of the IoT device lifecycle including 

anonymous identification for provisioning of secrets, premium content, 

DRMs, and operation.

 Memory Encryption Technologies
In future processors, Intel plans to introduce two new in-memory data 

protection capabilities including Total Memory Encryption (TME) and 

Multi-Key TME, or MKTME. TME technology encrypts the platform’s 

entire memory with a single key.

Chapter 3  Base platform seCurity hardware Building BloCks



181

 TME

When enabled via BIOS configuration, this will help ensure that all 

memory accessed from the Intel CPU is encrypted, including customer 

credentials, encryption keys, and other IP or personal information on the 

external memory bus.

 MKTME

The second new technology extends TME to support multiple encryption 

keys (Multi-Key TME, or MKTME) and provides the ability to specify 

the use of a specific key for a page of memory. This architecture allows 

either CPU-generated keys or tenant-provided keys, giving full flexibility 

to customers. This means virtual machines (VMs) and containers can 

be cryptographically isolated from each other in memory with separate 

encryption keys, a big plus in multitenant cloud environments. VMs and 

containers can also be pooled to share an individual key, further extending 

scale and flexibility. This includes support for both standard DRAM and 

NVRAM. Refer to the following for more information.[4, 5]

 Dynamic Application Loader (DAL)
DAL technology allows building, deploying, and managing the lifecycle 

of a small trusted applet (Java-based applets) using the DAL SDK and 

Runtime environment.

4 https://software.intel.com/en-us/blogs/2017/12/22/intel-releases- 
new-technology-specification-for-memory-encryption

5 https://software.intel.com/sites/default/files/managed/a5/16/Multi-
Key-Total-Memory-Encryption-Spec.pdf
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 Software Guard Extensions (SGX) – IA CPU 
Instructions
SGX constitutes a new set of CPU instructions, kernel/user mode drivers 

and Runtime environment, and API/SDK. This framework allows 

developers to build the trusted parts of the application code into enclaves. 

The inherent assumption is that the partition of the application into 

trusted and untrusted domains is already done prior to implementing 

SGX. SGX can be used to seal legitimate software inside an enclave to 

protect from attacks by the malware, irrespective of the privilege levels 

whether it is ring 0 or ring 3.

 Identity Crisis
With the projected 50 billion IoT devices on the network, wouldn’t it be 

ultracritical to ensure that a device is talking to the right device at the other 

end? A masqueraded device can do lot of damage. A method to prevent this 

is to implement a device identity that’s immutable and use this identity to 

attest and provision initial secrets and additional secrets in the field during 

the course of the device’s life. The same phenomenon applies to human 

identity as well. It is vital to realize that a masqueraded device is substantially 

hard to detect and quarantine. Intel Identity Protection Technology (IPT) 

uses Dynamic Application Loader (DAL) to implement mechanisms to 

protect the user identity via multifactor authentication and others.

The device identity (ID) decision tree can be used to select the right 

ID for a particular implementation. As shown in Figure 3-15, a security 

architect/engineer can decide the right identity based on the platform 

requirements and use cases. If an identity is required but mutable 

(changeable), a SW identity may suffice, but immutable identity requires 

identity to be in HW. If this identity now has to be anonymous, select EPID, 

else the identity as supported in PTT/TPM may be adequate. The EPID’s 

cryptographic properties are briefly explained in the following section.
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 Enhanced Privacy Identifier (EPID)
The EPID is a novel technology that addresses all aspects of the active 

anonymity problem: authentication, anonymity, and revocation. Intel® 

Enhanced Privacy ID (Intel® EPID) provides an immutable hardware 

root of trust, enabling IoT networks to confidently identify devices and to 

secure their communications.

 Anonymity

Intel EPID also offers sophisticated privacy capabilities that enable 

anonymous communication to safeguard networks and customers’ 

data. EPID is an anonymous digital signature scheme with the following 

attributes (Figure 3-16): a private key for signing and a single group public 

key for verifying signature of multiple keys. EPID is an open standard: ISO/

IEC 20008/20009 and TCG Mature Technology, shipping since 2008, 2.4B 

keys since 2008.

Is identity required? Immutability 
required?

YES Anonymous?YES YES
Select 
EPID

Select
PTT/TPM

NO

Select
SW based ID

NO

NA

NO

Figure 3-15. Device identity decision tree
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As depicted in the figure, the PKI is a system with a public-private key 

pair, whereas the EPID is a system with one public key associated with 

many private keys formed into a group. In both cases, the private keys are 

provisioned into the devices, and the public keys are available to the back-

end servers for authentication/admission.

 PTT/TPM
The Endorsement Key (EK) supported in the Intel® PTT or discrete Trusted 

Platform Module (TPM) serves as a direct identity for IoT devices. An 

Endorsement Key is a special purpose TPM-resident RSA key that is never 

visible outside of the TPM. An EK certificate is used to bind an identity, in 

PKI Public Key

PKI Private Keys

EPID Public Key

pvt-
key 1

pvt-
key n

pvt-
key 2

…

Millions of Private Keys

Figure 3-16. PKI system vs. EPID
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terms of specific security attributes, to a TPM. The primary use of an EK 

certificate is to authenticate device identity during Attestation Identity Key 

(AIK) certificate issuance.

 Device Boot Integrity – Trust But Verify
Imagine the IoT device booting an image that’s not the original from boot 

storage. In this circumstance, any protections that you deploy at higher 

layers wouldn’t be adequate to protect the device. Once the immutable 

identity is ensured as explained in the previous section, it becomes vital to 

follow through by booting securely. The boot loaders such as BIOS, UEFI, 

coreboot, and FSP can be classified into pre-OS boot loaders and will be 

referred as such. Let’s unravel the ∗boot chaos with many terms employed 

in the industry today:

• Trusted Boot: Definition varies according to industry. 

Used to characterize a trusted system with a chain of 

trust.

• Secure Boot: HWRoT based. Authenticates starting with 

the first instruction executed on host (Core/Xeon/Atom).

• UEFI Secure Boot: UEFI Boot manager ensures device 

boots only signed FW and OS loaders. UEFI Driver 

signing and protocol extensions. This is also known as 

BIOS as Root of Trust.

• Windows Secure Boot: Leverages UEFI Secure Boot to 

continue into Windows OS, a Windows certification 

requirement.

• Direct Boot: An OS image such as Linux bzImage is 

loaded from stage 2 of the pre-OS boot loader.

Chapter 3  Base platform seCurity hardware Building BloCks



186

• Verified Boot: Cryptographically verifies the Initial Boot 

Block of the pre-OS boot loader or UEFI or BIOS using 

boot policy key. A verified boot using Intel Boot Guard 

is shown in Figure 3-17.

• Immutable Root-of-Trust exists in the hardware.

• Root-of-Trust protects the initial boot process.

• It uses cryptographic keys to authenticate and validate 

the integrity of the Initial Boot Block (IBB).

• IBB maintains a secure boot chain by passing control 

to the next stage boot image after authentication and 

integrity verification.

• The final stage boot image passes control to the OS 

after authentication.

• Measured Boot: Measures the Initial Boot Block (IBB) 

and subsequent stages into platform storage such as 

Trusted Platform Module (TPM) or firmware-based 

TPM or secure storage.

Root of Trust

Intel BootGuard UEFI Secure Boot Or Other Mechanism

IBB OBB OS/Apps

verifyverifyverify

Figure 3-17. Verified boot flow with Boot Guard

The following terms will be useful to understand the following 

sequence that describes the process of Measured Boot using Boot Guard as 

shown in Figure 3-18:

• Hashing algorithms typically employed include Hash_

alg = SHA1, SHA256, SHA384, SM3.

• Extending: It is a process of updating a PCR with a hash.
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• PCR: Platform Configuration Register hosted 

inside PTT/TPM. The PCR 0–7 are used for pre-OS 

environment, and PCR 8–15 are used for OS and 

beyond. Refer to the TCG TPM specification for 

recommended PCR allocations.

• The new PCR value can be computed with PCR_new = 

Hash_alg(PCR_old || Hash_alg(data_new)).

• Logging: Keeps a log of all measurements in an ACPI table.

• ACM: Intel Authenticated Code Module, integrated 

in the BIOS/UEFI/boot loader for authenticating and 

measuring the IBB.

 1. Upon power ON, CSME starts by computing the hash 

of ACM, and the hash of the ACM is stored in PCR 0.

 2. The ACM computes the hash of IBB and extends it 

into PCR 0.

 3. The IBB computes the hash of OEM Boot Block 

(OBB) aka the second stage pre-OS boot loader and 

extends the hash into PCR 0 and stores the hash of 

Platform Config Data into PCR 1.

 4. The OBB computes the hash of OS loader and stores 

the corresponding hash into PCR 4. It stores the 

hash of Firmware Boot Policy in PCR 7.

 5. The OS loader computes the hash of OS kernel and 

stores the hash into PCR 8.

 6. The OS kernel can compute the hash of the user 

mode drivers/libraries and applications and extend 

the respective hashes into PCR 8-15 to meet the 

platform chain of trust requirements.
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 Secure Boot Mechanisms
The stack below describes the lowest layer to be the HW layer, and above 

that is the firmware layer which includes the modules required to handle 

the HW IP blocks and Digital Rights Management. Above that is the 

boot loader/UEFI used to initialize the CPU and chipset. The optional 

hypervisor supports the Virtual Machine Manager (VMM) functionality. 

The upper layers include the OS ingredients for kernel and User mode. 

CSM
E

Power
ON

PCR 0 : BtGuard Policy, ACM, IBB

PCR 0 : CSME, OBB
PCR 1 : Platform Config Data

PCR 4 : OS Loader
PCR 7 : Firmware Secure BP

PCR [0-7] : Separator bet’n Firmware/OS

PCR 8 : OS Kernel

PCR 8-15 : OS Dependent

ACM
IBB

OBB
OS

Kernel
OS

Loader

Figure 3-18. Measured Boot sequence
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Above that layer are the middleware/frameworks and applications. This 

diagram (Figure 3-19) also illustrates the security goal that trust begins 

at the lowest layers and must be extended into the layers above – and 

that doing so requires conscious techniques to get it right. If/when those 

techniques fail, the stack recovers by falling back to lower layers.

The stack includes booting into application TEEs and the need to 

distinguish security-sensitive function and workloads that should be 

separated from “traditional” function and workloads. We can refer to 

the TEE and lower layers as the trusted computing base upon which the 

rest of the stack depends. The stack also supports networking and the 

idea that lower layers implementing the TCB can be linked (in an IoT 

use case) so that a Distributed TCB (DTCB) can be formed that supports 

distributed trusted workloads such as key management/migration, device 

management, SW/FW update of an IoT fog/network, and so on.

App Trusted Execution
Environment (TEE)

Applications

User Mode

Kernel Mode

OS Loader

Optional Hypervisor

Stage2 Boot Loader

Stage1 Boot Loader

Secure Boot FW

HW Rot

Chain of Trust

Authenticate

OS

Pre-OS

HW

Figure 3-19. Describes the boot flow on a core along with the chain 
of trust and signing implications
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 Secure Boot Terminology Overview

Secure Boot Types: With the Field Programmable Fuse (One Time 

Programmable) profile options within the SoC, you can configure the 

device in an unsecured boot where the boot ingredients in stages are 

assumed to be trusted and no authentication is performed, referred to in 

Figure 3-20.

• Verified Boot: Boot policies are enforced during 

the boot process. Starting with the Root of Trust for 

verification, the currently executing module verifies 

the next module against a policy. The boot process 

is stopped if secure boot guarantee is violated. It is 

important to note that this only provides assurance that 

the boot policy was enforced.

• Measured Boot: Integrity measurement is placed 

into the TPM. Starting with the Root of Trust for 

measurement, the currently executing module places 

the integrity measurement of the next module into 

the TPM. Computer is not stopped if secure boot 

guarantee is violated and provable to remote systems 

via attestation.

• Secure Boot: A boot process which implements either 

Verified Boot, Measured Boot, or both. Verified Boot 

is often referred to as Secure Boot; Measured Boot is 

often referred to as Trusted Boot (also refers to TBoot 

sometimes).
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IOT devices are inherently vulnerable to physical attacks primarily due 

to their ability to connect to billions of devices. A first step in building a 

robust device is to ensure that the very first component of the boot loader 

is authenticated. This is implemented by a method known as secure boot 

which is based on a hardware root of trust in a platform. The immutable 

code running on on-die ROM in an isolated environment on a security 

engine forms an anchor. This ROM code loads the stage 1 of the boot 

loader into security engine’s SRAM and cryptographically authenticates 

the image before executing it on the host CPU. The secure boot method 

on Intel Architecture is explained in detail including the HW and 

cryptographic blocks. Refer to Figure 3-21.

Unsecured Boot

Measured Boot

Verified Boot

Reset

Reset

Reset

Verifies against manifest
IT

Verifies against manifest

IT
Has no proof of

proper boot

OS/
Apps

OS/
Apps

OS/
Apps

Execute

Execute

Execute Verify Execute Verify

Measure Execute Measure

Assumption

Assumption

Verifies against Manifest during / after boot.
•  Local Attestation: TPM Enforces Policy
•  Remote Attestation: TPM Key signs
   measurements.

Policy applied
starting here

Execute Assumption

TPM

Figure 3-20. Types of boot
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 Overview of BIOS/UEFI Secure Boot Using Boot 
Guard Version 1.0 (BtG)
The verified boot flow using FSP+coreboot leveraging the Intel Boot Guard 

version 1.0 on Skylake platform is shown in Figure 3-21. The terms are 

explained followed by the sequence.

IPF: Infield Programmable Fuses also known as Field Programmable 

Fuses (FPF) represent storage inside the CPU/SoC for policy configuration 

and are One Time Programmable (OTP). The provisioning tools are 

provided by Intel for programming these fuses in the manufacturing flow.

Platform Power Sequence: Includes starting boot sequence for power 

rail stabilization.

Authenticated Code Module (ACM): Intel provided FW module loaded 

from flash, authenticated and executed in CPU’s cache as RAM (CAR).

Sky Lake FSP/coreboot Verified Boot (BtG 1.0)

Platform
Power

Sequence
ACM

OEM
Manifest FSP

IBB

OEM
Public Key

Hash

IPF

OEM
BP Key Hash

PubK

PubK

PrvK

PrvK

Signed
By OEM
Private Key

Signed
By OEM BP
Private Key

ACM FW authenticates the public key
ACM FW authenticates the IBB
Core Boot Stage-1 authenticates the Core Boot Stage-2

Stage-2 authenticates the Stage-3
Stage-3 authenticates OS Loader via UEFI key store or Mok List
OS Loader authenticates the Kernel via UEFI key store or Mok List
Kernel authenticates the Apps via UEFI key store or Mok List

UEFI
Variable
Services

Key
Manifest

IBB
Hash

Boot Policy
Manifest

Components
Hash

OEM
Manifest

KEK
PK
DB

DBX

UEFI
Key Store

Hash

Option
ROMs

UEFI
Payload

Core Boot
Stage-1

(BootBlock)

Core Boot
Stage-2

(RomStage)

Core Boot
Stage-3

(RamStage)
Windows
Loader

Windows

Reference Flow:  Core Boot + FSP + UEFI + Windows

Boot Policy

Figure 3-21. FSP/coreboot-based verified boot on Skylake using Boot 
Guard 1.0
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The sequence is outlined here:

• ACM authenticates Core Boot Stage-1.

• Core Boot Stage-1: Authenticates Core Boot Stage-2 

using the BPM.

• Core Boot Stage-2: Authenticates Core Boot Stage-3 

using the OEM Manifest.

• Core Boot Stage-3: Authenticates OS Loader (Windows 

or Grub/ELILO or others).

• OS Loader (Linux or Windows or RTOS): Authenticates 

kernel image.

• Kernel: Authenticates the user mode and applications.

Refer to this link for starting with coreboot: www.coreboot.org/Lesson1

Firmware Support Package (FSP) is provided by Intel for initializing 

Intel silicon, designed for integration into a boot loader of the developer's 

choice. FSP source code can be leveraged for ideas and references for 

implementing verified and measured boot using Intel Boot Guard and 

PTT/TPM; more information can be found at: https://firmware.intel.

com/learn/fsp/about-intel-fsp

 Data Protection – Securing Keys, Data at 
Rest and in Transit
At rest: Storing data/secrets/content securely on the storage and whole 

disk encryption is the most popular example. This also is a very important 

problem. If a malware or even a legitimate application can access the 

secrets that it’s not authorized, it causes an unstable device. Certain 

regulations such as General Data Protection Regulation (GDPR) mandate 

protecting the privacy of the data both at rest and in transit. For more 

information on encryption-related protection of data, refer to  
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https://ec.europa.eu/commission/sites/beta-political/files/

data- protection- factsheet-sme-obligations_en.pdf. Section (83) calls 

for encryption for confidentiality in: https://eur-lex.europa.eu/legal- 

content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

Article 6, 4 (e) also calls for encryption or pseudonymization 

of personal data which ensures reidentifying only with additional 

information. This is in contrast to anonymity where the anonymized data 

can no longer be reidentified.

Runtime protection problem: How do we protect the data and the 

code from each other in the system during Runtime? TEEs are an excellent 

method for this. Examples include SGX.

It is useful to think about theft threats and the idea that attackers 

are able to perform brute force crypto hacking as they have access to all 

the encrypted data and wrapped keys and so on. Encrypting using AES 

before storing the data on a disk makes it harder for attackers to reverse 

engineer and steal the secrets. An example use case for this is the Windows 

BitLocker technology which implements the whole disk encryption with 

strong passwords. There are increased threats due to persistent memory 

technologies supported by Optane and 3D Xpoint. These are persistent 

storage technologies making them subject to theft threats. Memory 

encryption is a mitigation where any/all data that goes out of the CPU/SOC 

on bus is encrypted whether it’s destined for DRAM or SSD. The encryption 

technologies such as AES XTS 265 and secure boot existing in Optane + 3D 

Xpoint can be utilized to protect assets concerning flash- based memory.

 Intel Platform Trust Technology (PTT)
Intel® PTT is a implementation of the Trusted Platform Module (TPM) 

2.0 specification in firmware. CSME/TXE Engine is used as cryptographic 

processor for TPM implementation. SPI flash (TXE/CSME filesystem) is 

used as secure storage. PTT currently implements only mandatory and 

recommended TPM 2.0 commands mentioned in MSFT “signal and profile 

document.”
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As shown in Figure 3-22, the PTT includes random number generator, 

encryption/decryption, sign/verify, secure key generation, secure key/data 

storage, device identity both unique and anonymous, and device attestation.

Random
Number

Generator

Intel
Platform

Trust
Technology

Encryption
(Signing)

Device
Attestation

Secure Key
Generation

Secure Key/
Data Storage

Device Identity

Unique/
Anonymous

Figure 3-22. PTT components

 Windows PTT Architecture
On Windows as shown in Figure 3-23, the host SW components include the 

Trusted Base Services (TBS), the TPM.sys kernel mode driver, and ACPI 

which interact with PTT FW through Memory Mapped IO (MMIO)–based 

Chapter 3  Base platform seCurity hardware Building BloCks



196

PTT interface. The PTT interface in turn calls into the TXE or CSME. The 

SPI storage is used as the secure storage where the keys and other secrets 

are stored encrypted and signed to ensure confidentiality and integrity. 

The CSME contains internal crypto engines and SRAM and uses SPI flash 

to store the keys in an encrypted format.

Pre-OS environment (BIOS/UEFI/coreboot) implements the following:

• Selects between available PTT/TPMs

• Enables/disables PTT/TPM

• Issues TPM clear (PPI)

• Logs measurements in TPM and ACPI for OS

Host SW BIOS

TBS

TPM.sys
ACPI

BIOS

PTT EFI
Driver

PTT Interface

PTT FW

Crypto Engines SRAM

Secure
Storage

SPI

System
Memory

CSME

Figure 3-23. Windows PTT stack

Chapter 3  Base platform seCurity hardware Building BloCks



197

 Linux PTT Software Stack
As shown in Figure 3-24, in Linux OS stack, a PTT-based application 

has multiple mechanisms to interact with PTT including PKCS #11 and 

Feature API, and an expert application developer can directly interact with 

System API.

• TPM Device Driver (TDD) handles physical data 

transmission in ring 0/kernel mode.

• TPM Command Transmission Interface (TCTI) handles 

marshalling and unmarshalling of full TPM commands.

• System API (SAPI) enables creation and handling of 

TPM objects, sessions, and policies.

• Enhanced SAPI (ESAPI) enables management of the 

created objects, sessions, and policies.

• Feature API (FAPI) designed to capture 80% of 

common use cases combining operations with profile 

definitions.

• TAB controls access to the TPM in multiple application 

scenarios.

• RM manages the limited TPM resident memory.

• PKCS #11 – WIP on TPM 2.0.

TPM through SAPI specifications and implementations are mature, 

while ESAPI and FAPI implementations are still developing.

Chapter 3  Base platform seCurity hardware Building BloCks



198

 Runtime Protection – Ever Vigilant
Most of the IoT devices spend their life in this phase where the device is 

functional and performing its intended persona. This phase is critical for 

devices that are “always on.” The assets to be protected include data, code, 

and identity. Once the chain of trust is stable (secure booted), to maintain 

the stable chain of trust, every bit and byte must be authenticated before 

admitting into the system on every supported interface (USB, serial, BT/

Wi-Fi). This objective can be achieved with high robustness level using 

a Trusted Execution Environment (TEE). The technologies available for 

implementing Runtime protections include Intel VT, SGX, CSME, and TXT.

 Intel Virtualization Technology (Intel VT)
Virtualization abstracts hardware that allows multiple workloads to share 

a common set of resources. On shared virtualized hardware, a variety of 

workloads can colocate while maintaining full isolation from each other, 

freely migrate across infrastructures, and scale as needed.

Application
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System
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TXE Engine
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Expert
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Secure
Storage
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Figure 3-24. Linux PTT stack
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CPU virtualization features enable abstraction of the full prowess 

of Intel® CPU to a virtual machine (VM). All software in the VM can run 

without any performance or compatibility hit, as if it was running natively 

on a dedicated CPU. Live migration from one Intel® CPU generation to 

another, as well as nested virtualization, is possible.

Memory virtualization features allow abstraction, isolation, and 

monitoring of memory on a per virtual machine (VM) basis. These features 

may also make live migration of VMs possible, add to fault tolerance, and 

enhance security. Example features include direct memory access (DMA) 

remapping and extended page tables (EPT), including their extensions: 

accessed and dirty bits and fast switching of EPT contexts.

I/O virtualization features facilitate offloading of multicore packet 

processing to network adapters as well as direct assignment of virtual 

machines to virtual functions, including disk I/O. Examples include 

Virtual Machine Device Queues (VMDQ), Single Root I/O Virtualization 

(SR-IOV, also a PCI-SIG standard), and Intel® Data Direct I/O Technology 

enhancements (Intel® DDIO).

Graphics Virtualization Technology (Intel® GVT) allows VMs to have 

full and/or shared assignment of the graphics processing units (GPU) 

as well as the video transcode accelerator engines integrated in Intel 

System-on-Chip products. It enables usages such as workstation remoting, 

desktop-as-a-service, media streaming, and online gaming.

Virtualization of security and network functions enables 

transformation of traditional network and security workloads into 

compute. Virtual functions can be deployed on standard high-volume 

servers anywhere in the data center, network nodes, or Cloud and smartly 

colocated with business workloads. Examples of Intel® technologies 

making it happen include Data Plane Development Kit (DPDK), Intel® 

QuickAssist Technology, and Hyperscan.

Intel® Virtualization Technology for Connectivity (Intel® VT-c) is a key 

feature of many Intel® Ethernet Controllers. With I/O virtualization and 

Quality of Service (QoS) features designed directly into the controller’s 
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silicon, Intel VT-c enables I/O virtualization that transitions the traditional 

physical network models used in data centers to more efficient virtualized 

models by providing port partitioning, multiple Rx/Tx queues, and on- 

controller QoS functionality that can be used in both virtual and nonvirtual 

server deployments.

As shown in Figure 3-25, the isolation capability enabled by VT 

technology is being utilized to create an architecture with a Trusted 

Execution Environment (TEE). The TEE is implemented as a secure VM 

with privileged execution and access to resources; examples include 

Microsoft VSM and Trusty (https://source.android.com/security/

trusty/).

Virtualization and VM Isolation components include Intel® VTx (CPU), 

Intel® VTd (I/O), VmFunc (Hypervisor).

App
TEE
App

TEE OSRich OS

VMM

VTd

1

I2CUSB

Device Device

Figure 3-25. TEE using virtualization environment
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TEE OS: Thin OS running alongside rich OS. Examples are Microsoft 

VSM, Android Trusty, and so on.

Rich OS: Regular OS that executes non-security-sensitive workloads. 

Examples are Microsoft Windows, Linux, Android, and so on.

Trusted computing base (TCB): VMM + TEE OS + TEE App.

Isolated execution: VMs are isolated from each other by the VMM.

Trusted Input/Output: Can be implemented by assigning I/O 

Controllers to different VMs.

 Software Guard Extensions (SGX)
This section explains the usage of Software Guard Extensions (SGX) for 

implementing a Trusted Execution Environment (TEE) with the new 

instructions supported in IA CPUs. For any IoT device, the ability to 

execute code that handles secrets/assets in a protected environment is 

crucial. SGX leverages the partitioning of code into trusted and untrusted 

domains which interact with each other via well-defined SGX instructions.

How does SGX work as shown in Figure 3-26? The following model 

describes the interactions between the application and the SGX enclave.

 1. Application is built with trusted and untrusted parts.

 2. Application runs and creates enclave which is 

placed in trusted memory.

 3. Trusted function is called; code running inside 

enclave sees data in clear; external access to data is 

denied.

 4. Trusted function returns; enclave data remains in 

trusted memory.
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It is important to understand the software development model for the 

benefit of the developers (Figure 3-27):

• Sensitive code and data are partitioned into an 

“enclave” module which is a shared object (.so).

• Define the enclave interface and use tools to generate 

stubs/proxies.

• SGX Libraries provide APIs (C/C++) to encapsulate 

heavy-lifting implementation.

• Use a familiar toolchain to build and debug.

Application

Privileged System Code
OS, VMM, BIOS, SMM, ...

Untrusted Part
of App

Trusted Part
of App

Create Enclave Execute

Return

Call Gate

CallTrusted Func.

(etc.)

Figure 3-26. SGX in action
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For further details, please refer to SGX web portal at: https://

software.intel.com/en-us/sgx

 Intel CSE/CSME – DAL
Intel Converged Security Engine in CSE/CSME is a dedicated engine 

for security and provides a HW root of trust for the platform. Dynamic 

Application Loader (DAL) exposes a general-purpose execution 

Untrusted TrustedTools

App Code

Processing
Component

Processing
Component

SGX
Libraries

SGX
Libraries

ptrace

Kernel

Intel SGX enabled platform

uRTS Security Services

Enclave

SGX driver

Stub/
Proxy

Stub/
Proxy

Figure 3-27. SGX SW development model
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environment and is in production use since 2011 (Sandy Bridge) and 

exists in almost every Intel-based platform. It extends the CSE FW 

by dynamically loading signed CSE applications at Runtime. It allows 

faster deployment of FW applications by decoupling the application 

development from the platform development lifecycle. The FW 

applications are stored on host filesystem, thus avoiding flash size 

considerations. DAL enables binary-level portability for applications and 

is based on a virtual machine; DAL applications are written in the Java 

programming language. Refer to Figure 3-28.
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Figure 3-28. DAL architecture
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 Isolation from Rich Execution Environment

All the trusted applications (TAs) run in an isolated environment as 

supported by DAL and with the following attributes:

• TAs run in separate Java-like VM environment.

• TA-to-TA snooping is prevented using sandboxing.

• DAL prevents TA direct access to resources of other TAs.

 Authenticity and Security

The DAL applications or TAs are subjected to the following robustness rules:

• DAL allows installation of signed and encrypted DAL 

TA in the CSE (security coprocessor).

• The TA can use the secure services, that is, secure 

storage to access SPI flash.

• Intel or OEM signed TAs can be installed.

 Portability

The TAs have the binary-level portability subjected to the following scope:

• DAL is based on a virtual machine; DAL applications 

are written in Java.

• DAL enables binary-level portability for FW 

applications across the OS and HW platform.
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Following are sample applications where DAL is deployed:

• Intel® Identity Protection Technology (Intel® IPT).

• Identity protection and e-payment: OTP (one-

time password), PTD (protected trusted display), 

PKI (public key infrastructure), NFC (near field 

communication).

• Intel® PKI (PEAT) for IT market: Symantec 

Managed PKI, Intel IT.

• McAfee (Intel Security): MFAb (Multifactor 

Authentication for Business), True Key – using IPT.

• Intel® Security Assist (ISA): A self-updater service 

which recommends security products to end users.

• China UnionPay (CUP): Implementing a Tap and Pay 

e-Commerce solution.

• Intel® Software Guard Extensions (Intel® SGX): The 

“Secure Enclaves” technology consumes CSME 

platform services using DAL.

• IOT Retail SmartPOS (Point Of Sale): Based on Atom 

platforms with Android.

 Intel Trusted Execution Technology (TXT)
Intel® Trusted Execution Technology (Intel® TXT) provides hardware- 

based security technologies to help build a solid foundation for security. 

Built into Intel’s silicon, these technologies address the increasing and 

evolving security threats across physical and virtual infrastructures by 

complementing Runtime protections such as antivirus software. Intel 

TXT also can play a role in meeting government and industry regulations 

and data protection standards by providing a hardware-based method of 

verification useful in compliance efforts.
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As shown in Figure 3-29, Intel® TXT capable processors and 

chipsets allow establishing of the “root of trust” and “Measured Launch 

Environment” (MLE) to support trust decisions; within the computing 

platform, a MLE is needed. A “root-of-trust” is also needed which 

should be established first at the silicon level and then extended to the 

entire solution stack. The technology draws upon a rich set of security/

virtualization features embedded into the IA processors and also 

integrated into the BIOS as well as other platform ingredients.
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SYSTEM
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HYPERVISOR
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www.intel.com/txt3. POLICY ACTION ENFORCED, UNTRUSTED
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DOES NOT MATCH

2. HYPERVISOR MEASURE MATCHES

Figure 3-29. TXT flow

Figure 3-30 depicts the critical enabling requirements for the 

technology in server implementations. Intel TXT is specifically designed 

to harden platforms from the emerging threats of hypervisor attacks, 

BIOS, or other firmware attacks, malicious rootkit installations, or other 

software-based attacks. It increases protection by allowing greater control 

of the launch stack through a Measured Launch Environment (MLE) and 
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enabling isolation in the boot process. More specifically, it extends the 

Virtual Machine Extensions (VMX) environment of Intel® Virtualization 

Technology (Intel® VT), permitting a verifiably secure installation, launch, 

and use of a hypervisor or operating system (OS).

A chain-of-trust built on top of Intel® TXT

Intel Kernel
Guard Tech

Intel-generated project that is useful for extending integrity
verification solutions into runtime environments.

Intel contributes optimizations to these widely used libraries for
performing cryptographic processing.

Intel-maintained project that is widely used to OS or VMM
infrastructures capable of trusted boot.

Intel-maintained project (internally known as Intel CIT 2.0) which can
be used to remotely verify platform’s trust status & create trust pools

Intel-developed solution used to verify run time integrity of workload

Intel-developed tool that can be used to remotely activate and
configure Intel TXT on multi-vendor server platforms

Enabled in Intel Silicon, BIOS & Platform – to establish a chain-
of-trust 1st in Silicon, and then extend to the entire solution stack

Intel Trusted Execution
Technology [Intel TXT]

OpenSSLOpen
Source

Binary
Licensed

Platform
Integrated

Tboot

Open
Attestation

Cloud Integrity
Technology 3.0

Platform Trust
Enabler Tool

Figure 3-30. TXT chain of trust

Intel TXT gives IT and security organizations important enhancements 

to help ensure more secure platforms; greater application, data, or virtual 

machine (VM) isolation; and improved security or compliance audit 

capabilities. Not only can it help reduce support and remediation costs, 

but it can also provide a foundation for more advanced solutions as 

security needs change to support increasingly virtualized or “multitenant” 

shared data center resources.

 Threats Mitigated
Intel assets as described earlier can be leveraged to improve the robustness 

and to defend against both zero-day and other attacks. Refer to Figure  3- 31.
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 Zero-Day Attacks
Attacks that are designed to exploit a previously unknown vulnerability are 

referred to as zero-day attacks.6 These attacks are harder to detect in time 

to minimize the damaging impact.

IoT applications: The impact of a compromise due to zero-day  

attacks can be minimized by handling all the high-value assets/secrets in 

a protected Runtime environment such as a TEE. DAL, SGX, and Trusty 

provide such defenses. Examples include remote car control in the jeep 

scenario and Ukraine power grid.

• Mitigation: Intel® Security Essentials, Intel Stratix® 

FPGA, protected boot, and attested software 

measurements can be implemented to mitigate the 

risks resulting from the preceding zero-day attacks. 

These solutions also enable a simplified TEE-based IP 

protection for ecosystem.
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Figure 3-31. Mitigation of IoT threats

6 https://csrc.nist.gov/glossary/term/zero-day-attack
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 Other Attacks
Other high impacting attacks include the distributed denial of service 

(DDOS), network attacks, and attacks on cloud infrastructures which hold 

rich troves of data.

Device Endpoint and Edge Management: The DDOS/key/password 

examples include CCTV Hijack and Mirai botnet.

• Mitigation: Intel® Secure Device Onboard can be 

deployed to mitigate the risks resulting from the 

preceding attacks. This is accomplished by not 

shipping devices with default credentials and 

instead use EPID identity designed-in for privacy 

preserving provisioning model to eliminate human 

misconfiguration with automated onboarding.

Network: Sniffers and man-in-the-middle examples include Tornado 

Siren Hijack, WPA CRACK, and Heart Bleed.

• Mitigation: Intel® Security Essentials API, Intel® 

Platform Trust Technology, Intel® Software Guard 

Extensions. Simplified HW secured key management 

and provisioning APIs. HW secured SSL transport APIs. 

PTT or TEE protected data and key storage.

Data Center and Cloud: Anonymity Proxy and ransomware examples 

include Infotainment VIN Online service app, Reaper, Thermostats, and 

WannaCry.

• Mitigation: Wind River Helix Device Cloud. Automated 

Over-the-Air (OTA) updates for firmware and software, 

provisioning, credential management, suspend, 

decommission, and firewall policy update to isolate/

quarantine.
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 Conclusion
Security is not a blanket and requires pragmatic approach. It needs 

understanding of the assets to be protected against a set of threats in a 

system consisting of a set of vulnerabilities. Intel has a lot of HW security 

assets which can be leveraged to boot an IoT device securely and continue 

building on the chain of trust tethered to a HWRoT. Intel has security 

features residing in the CPU and PCH. The device identity, boot integrity, 

data protection, and Runtime protection are the four fundamental buckets 

of capabilities for securely booting into a TEE with a relevant TCB and later 

into a distributed TCB.
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CHAPTER 4

IoT Software Security 
Building Blocks
Oleg Selajev from Oracle Labs is famous on Twitter for saying, “The ‘S’ in 

the IoT stands for security.”1 Oleg does not spell poorly; instead, he was 

bemoaning the sad state of affairs in IoT security. Despite the truth in 

Oleg’s statement, security does not have to be absent in IoT.

Chapter 3 took a comprehensive look at the hardware security 

offerings in the Intel Architecture. Putting these hardware features 

to use in an IoT platform requires software. This chapter looks at the 

software components used to secure IoT systems and how those software 

components make use of the underlying hardware security features 

described in Chapter 3.

In this chapter we define a software stack, building on top of the 

hardware all the way up to the IoT applications, and describe how to 

put the “S” back into IoT. As a way to guide our exploration of software 

security in IoT, the opening section introduces a generic architectural 

model that graphically depicts software components of a secure IoT 

device or gateway. A more detailed section is then dedicated to each 

component in our model, and we will define the necessary security 

1 www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-
no-one-is-listening/

http://www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-no-one-is-listening
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features as well as how those features contribute to the overall IoT device 

security. Our architectural model is a generalization of IoT devices, and 

no generalization is ever perfect; as Alexandre Dumas once said, “All 

generalizations are dangerous, even this one.”2 Therefore, in Chapter 6, we 

look at some actual Intel and open source software products and compare 

them with our generic model.

Due to the breadth of the software topic, this chapter is the longest 

in the book. For this reason, we have organized the sections so that 

they do not need to be consumed in a linear fashion, although they 

do build on one another. Figure 4-1 provides a map of the sections, 

and the topics covered in each one, including the security concerns 

discussed. The reader is encouraged to review the figure to find topics 

that are most relevant or interesting to them. Throughout the chapter, 

we provide forward and backward references to other sections that may 

contain additional relevant information, making navigation to the most 

interesting information a bit easier.

2 Alexandre Dumas, quote, www.brainyquote.com/quotes/alexandre_dumas_136868
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OPERATING SYSTEMS

Zephyr RTOS

Execution Separation - Processes & Threads

Memory Separation - Memory Attributes & Memory Domains

Programming Error Protections - Stack Protections

Privilege Levels - User & Supervisor Privileges

Update Consistency - Packages, RPMs, Snaps & Bundles

Wind River Pulsar Linux

Ubuntu IoT Core Linux

Intel® Clear Linux

HYPERVISORS Extended Application Containment - Virtualization

Access Controlled Secrets Protection - RPMB
Intel® ACRN

SOFTWARE SEPARATION & CONTAINMENT

Extended Application Containment - Containers & TEE’s
Kata Containers

Android Trusty
Intel® Software Guard Extensions

NETWORK STACK &  SECURITY MANAGEMENT

End-to-End Security - Message & Packet Encryption, TLS, IPSec
Network Restrictions - Firewall, IP Tables & TCP Dump

Intel Data Plane Development Kit
(DPDK)

DEVICE MANAGEMENT

System Control & Authorization - SSH and Sys Admin AuthorizationsMesh Central
Wind River Helix

SYSTEM UPDATE SERVICE

System Repair & Recovery - TCB Recovery
Secure RPMs / WUS

Intel® Turtle Creek

LANGUAGE FRAMEWORKS

Software Services - Application Availability to HW Security
JavaScript, Node.js & Sails

Java & Android
EdgeX Foundry

MESSAGE ORCHESTRATION

Message Protection - Spoofing, Deletion, Delay & Misdirection

Message Queuing Telemetry
Transport (MQTT)

OPC Unified Architecture
Constrained Application Protocol

SECURITY MANAGEMENT

Device Provisioning - Secure Authorization of Any Device to Any Cloud
Platform Integrity - Device Health & Platform Software Identification
Network Defense - Network Firewalls & Configuration
Attack Detection - Network packet logging

System Authorization - File System Privileges

Secure Device Onboarding (SDO)
TPM2 Software Stack (TSS)

TCP Wrappers
Snort & Suricata

McAfee® Embedded Control (MEC)

Figure 4-1. Section outline and security topics
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 Understanding the Fundamentals of Our 
Architectural Model
Before we explore the details of IoT software security building blocks, let 

us take a quick tour through our architectural model to establish a context 

for each of the building block components and how they fit together to 

create an IoT device. Our architectural model is shown in Figure 4-2 and 

is divided in four quadrants, where each quadrant contains software 

for a different purpose. Vertically, the figure is divided into platform 

software, which is the software that creates the platform environment, 

and application software, which is the software that creates the platform 

behaviors of the system. Horizontally, the figure is divided between the 

management plane, which handles management of the system, and the 

application/data plane, which is everything else not management related.
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Figure 4-2. Generic IoT stack diagram
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Beginning at the bottom is the hardware covered in Chapter 3. All 

hardware is implied by this element, including the processor, memory 

subsystems, flash and other storage, security coprocessors, wired and 

wireless communication hardware, or anything else physically connected 

to the processing unit and its motherboard. This chapter does not cover 

any of these elements, but refers back to the content in Chapter 3 where 

appropriate.

Directly above the hardware is the operating system/hypervisor 

element which is the system software in direct control of the hardware and 

may be a commercial or open source operating system, or it may be an 

hypervisor that creates one or more virtual hardware devices for the rest of 

the software to operate within.

The software containment element is optional, but if provided on 

the system includes technologies like containers and Trusted Execution 

Environments (TEE). This level of additional containment improves 

security by reducing privileges and controlling unintended interactions 

between applications. Both containers and virtualization with hypervisors 

provide containment. We devote a bit of time to discuss the differences 

and benefits of each.

Figure 4-2 also shows two components that are not covered 

individually, but will be interspersed among the other platform software 

components: the filesystem and the network drivers. These are shown 

in the diagram to aid in understanding the connection between the 

application part of the stack and the platform software.

Moving up from the platform software to the application software, we 

look at the management plane. The management plane software is made 

up of security management, device management, and the system update 

service. It also includes the network stack.

The network stack is most often included in the system software or 

part of the operating system. However, for our purposes, including it in 

the operating system obscures it and diminishes its importance to IoT 

systems. The network stack deserves its own separate treatment because it 
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actually enables a system to communicate with other devices, turning that 

system into an Internet of Things device. Additionally, the network stack is 

the entry point for the majority of attacks on IoT systems. It straddles both 

the application/data plane and the management plane, because it is used 

extensively by both. It includes communication protocols and network 

interfaces. The network stack subsection covers software elements needed 

to secure the network stack, like firewalls and intrusion detection systems 

(IDS). Chapter 6 is dedicated to covering the network protocols themselves.

Security management is the management software that performs 

security relevant management operations and used when exercising 

security management procedures and controls. The functionality in 

security management includes device identity and attestation, key 

distribution and certificate management, access control policy, logging 

rules, configuring and querying the system update service, and policy for 

network security, firewalls, virus scanners, and host intrusion detection 

software. Oftentimes these features are included as part of the actual 

software that performs device management. In our treatment, security 

management is separate from other management features to highlight 

adherence to the least privilege principle.3 Security management features 

should require a higher level of privilege and additional authentication for 

an administrator to activate.

The device management element includes all the management 

features that are not part of security management. This includes querying 

and managing the state of the device, rebooting/restarting the platform, 

examining and downloading log files (but not deleting log files or stopping 

logs from being generated, as this is a security management function), 

starting and stopping and restarting applications, configuring applications, 

managing databases, and configuring message queues and software 

orchestration settings.

3 Saltzer and Schroeder. The Protection of Information in Computer Systems. 1975. 
This paper defines several foundational security design principles which are 
referred to throughout this chapter.
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The system update service is the last component of the management 

plane. While this element is controlled by the security management 

element (or the device management element in some platforms), it is 

typically composed of platform and operating system–specific elements 

in order to update more than just the application software and execution 

containers on the system. Updates to system and device firmware, boot 

loaders, and BIOS normally require special software and services to 

properly coordinate the version dependencies and be able to set the 

platform into the state where such components can be updated. The 

system privilege to update firmware and trusted software on the device 

must be strictly separated from everyday management functions.

The application/data plane contains the software that creates the 

actual behavior of the IoT device. This includes language frameworks, 

message orchestration, databases, and the applications themselves. Our 

discussion of these elements is limited, because we focus only on the parts 

of these elements that leverage hardware security features.

The language frameworks contain libraries and services used by 

application software. Examples of these include the Android framework in 

Java, Node.js libraries, and the Sails framework in JavaScript.

Message orchestration enables applications on the same platform to 

communicate, but more importantly enables machine-to-machine (M2M) 

communications over the network. Protocols like MQTT, message queue, 

and publisher-subscriber frameworks (pub-sub) like Kafka fall into the 

message orchestration bucket.

Databases are an important part of IoT systems, as they allow the data 

that is generated, manipulated, and consumed by IoT systems to be stored, 

collated, and massaged. There are multiple different types of database 

systems, including SQL and NoSQL. The types of operations possible 

on data and the security and privacy of that data are dependent on the 

database chosen.
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The last element of Figure 4-2 is the applications themselves. This chapter 

is not able to cover all types of applications due to the broad diversity of 

IoT. However, in Chapter 6, several IoT use cases are explored, including a more 

detailed discussion of the security interactions and trade-offs between the 

platform and the software that is required to compose a working IoT system.

The next sections will look at each of these IoT software components in 

varying detail, and in each primary component section, we will introduce 

security topics relevant to that component.

 Operating Systems
When considering software security in any platform, the first consideration 

should be the operating system. The operating system traditionally is the 

lowest, most base level of software on any system. It controls what hardware 

is activated and limits what other software can do. The operating system 

provides the baseline feature set for all the other software on the platform. If 

the operating system does not provide some basic feature, or does not allow 

other software to control or access some aspect of the system (hardware or 

software), then no other part of the platform can make up for that gap. If a 

particular security feature is missing from the operating system, then the 

rest of the software on the platform is likely exposed to significantly more 

threats. In this section, we take a look at some basic features of operating 

systems and discuss what security capabilities the operating system should 

be contributing to the security of the platform. The following is a basic list of 

security services that an operating system should provide:

• Execution Separation: Provides structures and 

mechanisms to separate different execution units of 

programs, so that their execution does not interfere 

with other executing programs; this separation 

includes processes, threads, interrupt service routines 

(ISRs), and critical sections.

Chapter 4  Iot Software SeCurIty BuIldIng BloCkS



221

• Memory Separation: Provides mechanisms to separate 

the different types of memory used by executing 

programs; this type of separation normally includes 

process memory, thread-only stacks, shared memory, 

and memory mapped I/O.

• Privilege Levels: Provide structures to separate 

executing programs into different privilege levels; 

this separation includes task identifiers for executing 

programs, user and group identities to own executing 

programs, and administrator vs. user privilege levels.

• System authorization: Provides structures and 

mechanisms to assign rights to objects and verify the 

privilege level of execution units against those rights; 

this includes setting the default privilege level assigned 

to programs and then enforcing those privileges when 

programs access system resources, by either permitting 

or restricting certain operations. This system 

authorization mechanism allows the implementation 

of the least privilege principle.3 In systems with human 

users, this extends to authentication of users and 

assignment of privileges to programs under the user’s 

control.

• Programming Error Protections: Provide structures 

and mechanisms to stop errors in executing programs 

from enabling attackers to manipulate those errors and 

take over the platform; these typically include stack 

overflow protection, detection and prevention of heap 

corruption, and restriction on control flow redirection. 

All these mistakes result in software attacks that 

allow a hacker to inject arbitrary code and take over a 

platform. Control flow protections include protection 
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from Return-Oriented Programming (ROP) and Jump-

Oriented Programming (JOP) (see sidebar for detailed 

explanation[4, 5]).

• Access-Controlled Secrets storage: Provides 

mechanisms to store program secrets and prevent 

those secrets from being accessed by unauthorized 

users or programs, including the administrator; the 

system normally provides this through a hardware- 

backed secure storage.

WHAT IS ROP/JOP?

return-oriented programming (rop) and Jump-oriented programming (Jop) 

are two techniques used by attackers to create exploit code without having to 

download large binaries to the target platform. Buffer overruns have been used 

since the Morris Internet worm to inject code onto a platform and cause that 

code to execute.

however, various countermeasures, including dep (data execution prevention) 

and aSlr (address Space layout randomization), as well as network defenses 

that detect and prevent downloads of large binary data, have made such 

attacks more difficult. Instead of downloading new code, attackers use rop 

and Jop techniques to reuse code already on the target platform, allowing 

attackers to construct their attack code on the fly. Since most software 

today includes shared libraries, the attacker leverages this to find gadgets in 

software and libraries already existing on the platform and strings the gadgets 

together into attack code.

4 Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent advances in 
exploiting buffer overruns. Security & Privacy, IEEE, 2(4):20–27, 2004.

5 N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses. In 
USENIX Security Symposium, 2014.
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gadgets are very small segments of code in existing libraries that perform 

meaningful subfunctions, like moving data into a register or setting up for a 

system call. gadgets either end in a return statement or a jump statement, 

allowing the attacker to string multiple gadgets together to craft a new control 

flow, that, overall with many gadgets, accomplishes their evil task. rop uses 

return statements, while Jop uses jump statements. Both are effectively the 

same attack.

Choosing an operating system for an IoT platform is primarily about 

choosing the one with the best services that also executes reliably on the 

chosen platform hardware. The capabilities provided by the underlying 

hardware often affect what the operating system is capable of providing. 

Some operating systems are designed for servers, or even specifically for 

cloud deployments, while others are designed to be used in the smallest 

IoT devices. Small devices typically do not have the computing power or 

hardware features necessary for an advance operating system to execute. 

Operating systems designed for low-power processors typically do not 

have a rich set of services, because the power and performance budget 

available on the processor just will not support it. CPUs in constrained 

devices might not have a full memory management unit (MMU) with 

advanced features like total memory encryption (TME) or memory 

integrity technology. These types of features are common in server 

CPUs. Without these hardware capabilities, the operating system is left 

to provide best-effort security services. In coming to a final decision on 

what operating system to use for an IoT system, it is also important to 

evaluate the threats to the operating system and what countermeasures 

the operating system provides to neutralize those threats. You can then 

determine if the hardware chosen for your device is powerful enough to 

resist the attacks the device is likely to encounter.
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 Threats to Operating Systems
Operating systems run at the highest privilege level, with access to 

nearly everything on a platform. A successful attack on an operating 

system can garner the attacker complete control of the platform, 

often with privileged access to other platforms on the same network. 

Table 4-1 shows the products (not just operating systems) with the most 

number of distinct reported vulnerabilities, with data accumulated 

from 1999 through 2018. As this table shows, there are a large 

number of different attacks on operating systems. In fact, operating 

systems make up more than half of the top 50 products with the most 

vulnerabilities. Although there are numerous types of attacks, it is 

possible to organize operating system threats into threat classes, all of 

which execute in similar patterns.

6 www.cvedetails.com/top-50-products.php. Retrieved 9 September 2018.

Table 4-1. Products with Highest Reported Number of Vulnerabilities 

over a 20-Year Period

Product Name Vendor Name Product Type Number of Vulnerabilities

1 linux kernel linux os 2124

2 Mac os X apple os 2084

3 android google os 1925

4 firefox Mozilla application 1741

5 debian linux debian os 1670

6 Chrome google application 1546

7 Iphone os apple os 1495

8 ubuntu linux Canonical os 1123

9 windows Server 2008 Microsoft os 1110

10 flash player adobe application 1060
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Attacks typically follow a common pattern, called a cyber kill chain®, 

shown in Figure 4-3, where an attacker executes a series of steps to 

compromise a target. The attacker begins by observing the target (Step 1), 

and then deciding how to attack the system, by fashioning some type of 

weaponized code (Step 2).

The weaponized software might be a program that runs from a web 

server or a crafted response packet in a protocol. The attacker delivers 

the attack in Step 3, which might entail a spear-fishing email, or hijacking 

a network connection, or injecting spoofed packets for a protocol. The 

actual attack occurs in Steps 4 and 5, and those steps can be iterative, 

where the attacker pivots from one compromised application or piece 

of software and uses that as a base to attack another piece of software or 

system service. Each pivot intends to increase the attacker’s control of the 

platform or penetrate deeper into the network in order to gain complete 

control of the platform and the entire system.

With the background of the cyber kill chain in mind, we will review 

different classes of attacks on an operating system and describe how 

these attacks demonstrate an attacker pivoting progressively deeper into a 

system, as one attack builds on another. The following five items represent 

the common attack pattern used in Step 4, exploitation:

• Fault Injection: A fault injection creates or forces 

an execution fault in a process or thread; part of the 

responsibility for this threat rests on the applications 

themselves, but because fault injection is the first 

step to overcoming the operating system itself, the OS 

must take some responsibility to protect against the 

vulnerabilities that create this threat. The operating 

system uses containment to prevent these types 

of threats from growing into greater threats to the 

platform, but usually allows the fault to stop the 

execution of the attacked process or thread. From our 
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basic list of security services, the operating system uses 

programming error protections, including control 

flow protections and stack smashing protections, to 

mitigate this threat.

Figure 4-3. Cyber kill chain7

• Arbitrary Code Execution: Arbitrary code execution 

is the injection of an attacker’s code into a process 

or thread on the platform, causing the injected code 

to run in place of the existing process or thread, 

effectively taking on that process or thread’s identity 

7 Cyber Kill Chain Diagram, www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.html
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and authorizations. Arbitrary code execution 

clearly violates execution separation by allowing 

unauthorized code to corrupt an execution unit, but 

also violates the memory separation guarantee of an 

operating system, by allowing what should be data 

to corrupt the code executed by the platform. If fault 

injection succeeds, either because the application 

mitigations were not effective or the operating system 

did not provide any protections against fault injection, 

then the typical escalation of a fault injection is 

arbitrary code execution. An attacker places code into 

the data used to trigger the fault and constructs the 

fault injection to force execution of, or redirection to, 

the injected code as part of the fault. Buffer overflows 

and heap corruption are common mechanisms used by 

attackers to create arbitrary code execution exploits.

• Breech of Containment: Breech of containment is 

code in one execution unit observing or interfering 

with the code or data in another execution unit. Once 

an attacker has achieved arbitrary code execution, 

the next step is to leverage that power to extract 

data or further corrupt other execution flows within 

the platform. Side-channel attacks are a common 

mechanism used by attackers to extract data and 

observe program execution. Side channels are so 

dangerous because they allow a lower-privileged 

execution unit to observe a higher-privileged 

execution unit, potentially extracting secrets like 

passwords and cryptographic keys from those other 

execution units. These attacks violate memory 
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separation by allowing one program to view or infer 

data from another program; oftentimes, the way a 

program breeches the memory separation is through 

attacks on the execution separation. A common 

example of this execution separation breech is 

speculative branch prediction, although there are 

other examples as well.

• Escalation of Privilege: Escalation of privilege is 

overcoming the operating system’s authorization 

mechanisms or code that is able to assume a level 

of privilege in the operating system that should not 

have been allowed. After breeching containment 

and extracting secrets from other execution units, 

an attacker can leverage those secrets to assume a 

higher privilege level. In some cases, it is possible for 

the attacker to inject a fault into the operating system 

itself and force it to grant a privilege that should not 

have been given to the attacker’s code unit. In both 

cases, the attacker has escalated the privileges that the 

operating system grants to the attacker’s process. This 

escalation violates the expected behavior of the system 
authorization mechanisms.

• Rootkit: A rootkit is malware that penetrates into 

the operating system itself and subsumes some of 

its operations. Following arbitrary code injection, 

an attacker can chain subsequent arbitrary code 

injections, containment breeches, and/or escalation 

of privilege attacks to eventually inject the attacker’s 

code into the operating system itself. In some cases, 

the attack is a simple one-two chain; in other cases, 

it may be a series of more complex actions. If the 
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attacker can then modify the operating system 

code on disk or in flash, the attacker can remain 

permanently on the system. Once an attacker has 

achieved this level of penetration into the system, 

it is often extremely difficult to remove the attacker 

from the system without a complete rebuild of both 

the software and firmware on the device. With rootkit 

access, an adversary can normally overcome even the 

access-controlled secrets protections provided by 

the platform, making all secrets and execution units 

on the device manipulable by the attacker. A rootkit 

can actually change the behavior of the operating 

system, by modifying access control decisions, hiding 

execution units, and reducing or removing memory 

protections between different execution units through 

changes to page table allocations.

As this list illustrates, one of the most basic threats to a computing 

system is code and data corruption. The cyber kill chain outlines the 

attacker’s steps to take over a system, which usually involve a chain of 

attacks escalating an attacker’s position from injecting code into a single 

application, to interfering with another running application, to eventually 

changing the entire operating system’s behavior. The importance of code 

and data corruption protections cannot be overstated. Extrapolating from 

Turing’s theory of computation, given enough time, modifications to code 

can result in serious consequences, as has been demonstrated by various 

academic papers on ROP and JOP.8

8 Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng 
Ning. On the expressiveness of return-into-libc attacks. In Recent Advances in 
Intrusion Detection, pages 121–141. Springer, 2011.
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In the following sections, we examine several operating systems 

used in IoT systems and discuss the security features available in those 

products. Rather than repetitively inspect the same features on several 

operating systems, we select different security topics on each operating 

system to inspect in depth. However, for each operating system, we provide 

a summary to review their protections, the mitigations they have chosen, 

and their shortcomings.

 Zephyr: Real-Time Operating System for Devices
The Zephyr operating system is an open source OS designed for 

constrained devices running on microcontroller units (MCUs) or in other 

minimalistic environments. Zephyr runs on many different chips and 

architectures, including Intel® x86, ARM® Cortex-M, Tensilica® Xtensa, and 

others. Many IoT devices at the edge utilize these small processors with 

limited memory. The Zephyr documentation can be found at http://

docs.zephyrproject.org/.

In this section, we want to focus on the basic operating system 

responsibilities of containment and privilege. Since an RTOS is severely 

limited in what it can provide, these most basic features comprise almost 

all of what an RTOS can offer. Since Zephyr may not be familiar to most 

readers, it is an interesting OS to explore, and Zephyr’s simplicity makes 

it easy to highlight the limits of these protections and where usages can 

go wrong.

Zephyr, like most real-time operating systems (RTOS), is built as 

a single monolithic binary image; this means that both the operating 

system and the applications are compiled into one binary that is run on 

the platform. But unlike most other RTOS systems that were designed 

purely for size and performance requirements, Zephyr’s documentation 

states that during design, careful thought was put into the security of 

the operating system. Figure 4-4 shows the Zephyr operating system 

decomposed into application code, OS services, and the kernel. The next 
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few subsections will review how Zephyr operates and compare the security 

architecture9 against the security properties that an operating system 

should exhibit. Zephyr version 1.12.0, which is the most current version as 

of this writing, is used for this review.
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Figure 4-4. Zephyr system architecture10

 Zephyr Execution Separation

Even though the Zephyr OS and the applications are built into a single 

binary, the OS still provides execution separation. In Zephyr, the primary 

execution unit is a thread. An application is composed of multiple threads 

that run forever in an endless loop. The application is defined and built 

9 http://docs.zephyrproject.org/security/security-overview.html
10 Zephyr System Architecture Diagram, http://docs.zephyrproject.org/
security/security-overview.html
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at compile time using CMake and make; the system’s threads are defined at 

compile time or can be created dynamically at Runtime. Each thread is 

separated from other threads in time and space.

The Zephyr OS separates threads in time through scheduling, and 

the OS saves and restores thread state automatically when threads are 

put to sleep. Scheduling of threads is organized through a hierarchy of 

priorities, allowing more important threads to preempt lower-priority 

threads, ensuring that the most important jobs are completed without 

interruption. Each thread is scheduled by the OS according to its priority. 

The highest-priority threads are cooperative threads whose priority is set to 

a negative number. Cooperative threads run until completion or until they 

voluntarily yield the processor using k_yield(). Preemptive threads have a 

positive priority value and are given a certain amount of time to run or are 

preempted when they perform an action that makes them not ready to run, 

like waiting on a semaphore or reading from a device or file. Cooperative 

threads must cooperate with the system and yield back to the OS so other 

things can run; if they misbehave, they can starve a system and force 

even higher-priority threads (threads with a numerically lower priority 

value) from running. Cooperative threads should only be used for high- 

priority tasks that cannot be interrupted. If a cooperative thread has a long 

operation to execute, it should break up the long operation into smaller 

pieces with a call to k_yield() at a convenient point. k_yield() returns 

back to the operating system, and the cooperative thread gets rescheduled 

if there is a higher-priority thread with something more important to do. If 

there is no higher-priority thread waiting, k_yield() just returns back to 

the thread and the long operation can continue.

Zephyr provides other refinements to the scheduling policy, including

• k_sched_lock() and k_sched_unlock() to define 

critical sections in preemptive threads, temporarily 

preventing them from being preempted.
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• k_busy_wait () which prevents a cooperative thread 

from being preempted when it performs some type 

of wait action that would make it unready and would 

normally cause it to be preempted.

• CONFIG_METAIRQ_PRIORITIES which is a configuration 

setting to define the numerically lowest cooperative 

thread priorities, making them act like IRQs and 

actually preempt other cooperative threads.

• Threads can change their thread priority, or another 

thread’s priority, to a higher priority level (lower 

number numerically), even changing it from a 

preemptive thread to a cooperative or Meta-IRQ 

thread, if they are executing with privileges.

In addition to thread execution priorities used to enforce time 

separation of threads, Zephyr assigns a thread privilege to each thread. 

There are only two privileges, supervisory and user. By default, threads 

are assigned the supervisory privilege. This gives threads the ability to see 

all devices and access all of memory. A thread can drop its supervisory 

privilege and become a user-privileged thread by calling k_thread_user_

mode_enter(), but once becoming a user-privileged thread, it cannot 

regain its supervisory privileges. Threads can temporarily perform an 

operation at the user privilege by spawning a new thread to perform the 

task and setting that new thread’s privilege to the user privilege level.

Operating all or many threads at the supervisory privilege level is 

dangerous, since all of memory is exposed to those threads, even sensitive 

memory used by the kernel. User-privilege threads should be used as often 

as possible because Zephyr provides memory separation for user-privilege 

threads. Memory separation for user-privileged threads is discussed in the 

next section.
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Since all of Zephyr’s applications and libraries are enumerated at 

compile time, and there is no dynamic loading of applications or dynamic 

linking of libraries or other code, Zephyr reduces the attack surface created 

by interfering applications and library code conflicts.

Why does all this matter for security? Creating threads at the right 

privilege level is important for a system to remain stable in the face of 

an attack. If all threads are running at the supervisory privilege level, 

an attacker only has to find a single thread that it can attack via a buffer 

overflow and then gain control of the whole system. An attacker with 

control over a supervisory thread can see all memory, halt other threads, 

or modify stack values to create gadgets for ROP and JOP attacks, allowing 

the attacker to create their own programs with new, potentially destructive, 

functionality.

But even if user-privileged threads are enabled, if the right 

segmentation of memory partitions is not performed, user threads will be 

able to corrupt each other’s memory partitions.

If user threads are enabled and restrictive memory partitioning is used, 

this will severely limit the types of attacks a remote adversary can perform. 

This is especially true if the threads that access the network and perform 

the bulk of the work on the system are user threads. But even if an attacker 

cannot gain access to an administrative thread, if they can take over a high 

enough privileged user thread, then by using k_sched_lock(), the attacker 

can starve out other threads. This situation can be mitigated by using the 

system’s watchdog timer or even creating your own watchdog thread at the 

Meta-IRQ level to monitor and correct misbehaving threads. A detailed 

discussion of this is found later in the “Security Management” section.

 Zephyr Memory Separation

In Zephyr, all threads have their own stack region, and their state is 

swapped out when they are removed from the running state. This provides 

basic (space) separation between threads. However, this protection does 
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nothing to stop a misbehaving supervisory thread which has access to all 

of memory; and recall that by default all threads are given supervisory 

privileges. This means that thoughtful, security-aware design is required to 

build a secure system with Zephyr.

Zephyr provides user threads to address this problem of too much 

privilege. Zephyr allows threads to be created as user-privilege threads, 

or allows threads to drop their supervisory privilege and become user 

threads. Memory access afforded to user-privilege threads is restricted. 

User-privilege threads are granted access to a specific set of memory 

locations by assigning a thread to a memory domain. A memory domain 

contains one or more memory partitions. A memory partition is a 

contiguous segment of memory with defined access rights (i.e., read, 

write, execute). Thus, a memory partition can be defined as read-only, 

and another memory partition can be defined as read-write. Both these 

memory partitions can be added to the same memory domain, and one 

or more user threads can be assigned to the memory domain. All threads 

assigned to a memory domain have the same access to that memory. A 

thread can belong to more than one memory domain. Memory domains 

can be created at compile time or created dynamically at Runtime.

For x86, the definitions for memory domain rights are found in the 

Zephyr source tree at arch/x86/include/mmustructs.h. x86 allows 

partitions to be defined as read-only, read-write, read-execute, and even 

the dangerous read-write-execute. And partitions can be defined to restrict 

access to user threads, but if a permission is granted to a user thread for a 

particular memory partition, then privileged threads also have the same 

access to that memory partition. It is important, then, to structure your 

applications with as few supervisory threads as possible. This follows the 

least privilege principle.

Chapter 4  Iot Software SeCurIty BuIldIng BloCkS



236

 Zephyr Privilege Levels and System Authorization

As we already discussed, Zephyr defines two privilege levels: user and 

supervisor. The previous section discussed the impact privilege levels have 

on memory access. This section reviews how the privilege levels affect 

access to logical structures, devices, and files.

Zephyr allows for the construction of various logical structures, 

including FIFOs, LIFOs, mailboxes, and message queues. These logical 

structures allow different threads to communicate and share data. All 

these structures are mapped to memory addresses. This means that access 

to these structures can be restricted to only certain user threads, but any 

supervisory thread can access these structures as long as they know the 

address.

Physical devices, such as USB ports, SPI controllers, I2C interfaces, 

Ethernet ports, and GPIOs, are controlled by device drivers. Device drivers 

are accessible via APIs and are not restricted. Any thread merely links to 

the appropriate header file (i.e., i2c.h) and then can access the device. 

Zephyr does not implement any restrictions or authorization for device 

access.

Zephyr supports several different filesystems, including Newtron Flash 

File System (NFFS), FATFS support, and FCB (Flash Circular Buffer). The 

FATFS is an open source implementation of the well-known File Allocation 

Table (FAT) filesystem from the old PC DOS. The implementation supports 

creation of a filesystem in RAM, on MMC flash, or through a USB drive. 

No file permissions are supported on FAT, but read-only, hidden, and 

system file attributes are supported.

The Newtron Flash File System (NFFS) is a minimal filesystem for flash 

devices and provides no protections or attributes for files. The source code 

for Newtron can be found at http://github.com/apache/mynewt-nffs.
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Since Zephyr does not implement any user or persistent thread 

identity, no authorization mechanisms are found in the logical structures, 

device drivers, or for the filesystem. This can represent a security problem 

if a thread is taken over by an attacker and manipulated to perform 

malicious actions, since the thread can be modified via arbitrary code 

injection to access resources it normally would not access, and the 

operating system enforces few limitations.

 Zephyr Programming Error Protections

Zephyr does implement several safeguards to protect threads from being 

taken over by remote attackers. These safeguards include stack protections 

and memory protections. The previous sections have discussed the 

memory protections; this section reviews the stack protections.

Programming errors can create vulnerabilities in software that allow 

untrusted input to overrun or underrun buffers, writing this untrusted 

data into memory. Specially crafted inputs can result in buffer overruns 

or underruns that rewrite elements on the stack, or rewrite code pages 

in RAM, allowing an attacker to change a thread’s flow or the code that 

it executes. Zephyr implements stack protection to detect overruns on 

the stack, and then halt a thread to prevent it from executing from a 

modified stack.

Other protections, like Intel’s® Control-Flow Enforcement Technology 

that protects against ROP and JOP, are not yet implemented in Zephyr, but 

may be added in the future.

 Zephyr’s Other Security Features

While Zephyr does not directly provide secure storage, it does provide a 

few other security additions, including a cryptographic library and API for 

security modules and TEEs.
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Zephyr includes an embedded cryptographic library written by Intel, 

called TinyCrypt. This can be found in the Zephyr source tree at ext/lib/

crypto. TinyCrypt includes basic cryptographic functions including

• AES symmetric encryption using CBC, CTR, CMAC, 

and CCM modes11

• Elliptic curve asymmetric cryptography using Diffie-

Hellman (DH) or the Digital Signature Standard (DSA)

• HMAC and direct use of the hash function, SHA2- 256

Zephyr also includes the latest mbedTLS from ARM, which includes 

TLS v1.2 (Transport Layer Security) and many more cryptographic 

functions. Details on mbedTLS can be found on the web site http://tls.

mbed.org.

Zephyr also includes an API to access a hardware random number 

generator, based on the processor on the particular board that is being 

used. This allows access to true hardware entropy if the hardware supports 

it. If there is no hardware entropy source, an interface to a pseudo entropy 

function is provided (see /ext/lib/crypto/mbedtls/library/entropy_poll.c).

Currently, the APIs for hardware crypto, Trusted Platform Modules 

(TPMs) and Trusted Execution Environments (TEEs), are very limited. 

Future versions of Zephyr are planning to implement APIs for these 

devices.

11 CBC = Cipher Block Chaining, CTR = Counter mode, see https://csrc.nist.
gov/publications/detail/sp/800-38a/final

CMAC = Cipher-based Message Authentication Code, see https://csrc.nist.
gov/publications/detail/sp/800-38b/final

CCM = Counter with CBC for Message authentication, see https://nvlpubs.
nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
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 Zephyr Summary

Table 4-2 includes a summary of Zephyr compared with our operating 

system security requirements.

Table 4-2. Zephyr RTOS Security Summary

Operating System 
Security Principles

Grade Comments

Execution 
Separation

a Zephyr provides all the standard separation 

capabilities of a standard operating system, with 

flexible application of those structures to address 

real-time concerns.

Memory Separation C although some memory separation is provided, the 

ability of supervisory threads to see all of memory 

is a major weakness. Memory domains provide 

reasonable protections especially for the class of 

processors used by Zephyr.

Levels of Privilege B two levels of privilege are common in systems 

today and even in popular operating systems, 

like Microsoft windows, which has access to 

multiple different rings, but makes use of only 

two ring levels. there are however examples of 

extra protections – special supervisory modes and 

tees – that are currently lacking in Zephyr and thus 

warrant a slightly lower grade.

System 
authorization

d without any real system authorization, Zephyr 

leaves a significant gap for attacked threads 

to misbehave. while this is normal in MCus, 

improvement is required.

(continued)
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While Zephyr provides some basic security features, like memory 

regions, and separate threads with stack protections, and user and 

privilege modes, Zephyr is limited in the services and protections that 

are available due to its focus as a minimalistic RTOS. But, even in other 

more powerful operating systems, similar process and thread structures 

are used, leading to similar attacks and pitfalls, so Zephyr is instructive to 

analyze. Our security lessons from Zephyr are applicable to all platforms 

and operating systems. Threads can be attacked and therefore should run 

at the lowest privilege possible. Privileges can be abused, maliciously or 

unintentionally, and therefore guards should be in place to check proper 

behavior of the system. Memory subsystems and filesystems can be 

exploited to leak or corrupt data; therefore, cryptographic protections such 

as encryption and integrity protection should be used. As we explore other 

software on our generalized IoT system, we will highlight how a defense 

in depth approach can work to minimize risk and reduce the impact of 

successful attacks.

Table 4-2. (continued)

Operating System 
Security Principles

Grade Comments

Protection from 
programming errors

C Basic stack protection is the new normal. Control 

flow protection is the bar set by the industry today, 

which is lacking in Zephyr.

Access-Controlled 
Secrets storage

f with the combination of no filesystem authorizations 

and no special secrets storage, Zephyr leaves a 

system vulnerable to any attacked thread. Systems 

with secrets should use a Secure element or tpM to 

protect secrets, but this requires custom additions 

to Zephyr’s device support.
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 Linux Operating Systems
Linux is a common operating system used for both cloud and IoT instances. 

It is feature rich and comes in many different distributions (distros) that 

enhance or embellish one capability or another. The security properties of 

Linux are well known, and there are complete tomes that do an excellent 

job of covering this topic,12 so this section will not repeat that material here. 

Instead, this section looks at the concept of enhanced containment, but 

we do so from the perspective of an interesting IoT problem – updating the 

operating system and application software on a platform. The Linux distros 

covered here include Wind River Pulsar, Ubuntu IoT Core, and Clear Linux.

It is important to understand the update problem before progressing 

into the details of the distros. The update problem encountered in operating 

systems is one of both synchronization and access. Synchronization 

between different software elements of a system, and between the software 

and hardware of the platform, is required. An update to a system can destroy 

this synchronization. Access relates to the permissions and capability to 

update all parts of the system, including the operating system kernel, the 

boot software, and all types of firmware on the device.

A bad software update creates an incompatibility between two 

different software components on your device or an incompatibility 

between the software and the hardware of your device. An update 

problem is observed when two or more software components interfere 

with one another. The result of any of these conflicts can be a slowdown 

in operation, the failure of one or more services, a computer shutdown 

during operation (i.e., a crash), or even a failure to boot the device. It is 

not uncommon for some Linux updates to cause a failure to boot after a 

kernel update, which then requires a rebuild of the boot device in order 

to remedy the situation. A good software update requires synchronization 

between the hardware and all the software on the platform.

12 Multiple Linux topic books by Apress, www.apress.com/us/open-source/linux
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The word all introduces the other part of the update problem: Access. 

We defer the access issue until the section on secure updates, but it is 

important to understand the complexity of the update problem here 

and realize that the distributions we discuss now do not solve the whole 

problem. The access problem is caused by some updatable software on 

a device that resides in one or more difficult to reach hardware storage 

areas, normally referred to as firmware. The operating system itself may 

not be able to reach all these firmware locations. The device may need to 

be placed into a special operating mode, or an update must be submitted 

at a particular time during the boot process for the firmware update to be 

successful. This special access required to update firmware may be difficult 

or impossible to do without human intervention. If some part of the 

device’s regular software is updated, and it depends on a newer version of 

firmware that is not present on the device, the instability of a bad software 

update may be the result.

If an operating system update causes an IoT platform to fail to reboot, 

or to crash so often that a new update cannot be pushed to the device, 

this requires a human being to go out to the device and repair or replace 

it. This physical maintenance drives up the cost for IoT deployments, 

resulting in an erosion or destruction13 of the return on investment (ROI) 

for the IoT system. Driving operational costs down to preserve ROI 

requires the elimination of such physical interactions.

All three of the distributions covered in this section attempt to address 

the software update problem for IoT but do so in different ways. As we 

review these different solutions, we find the commonality is all about 

containment and finding ways to isolate the inconsistent dependencies.

13 Destruction of the ROI can occur when many devices are impacted by a bad 
system update, either simultaneously or repeatedly over time. The cost of “rolling 
a truck” to repair devices can drive operational costs to completely consume any 
profit or efficiency gained by the IoT system.
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 Pulsar: Wind River Linux

Wind River provides various different operating systems for embedded 

sectors, including IoT. VxWorks14 is a family of products representing their 

RTOS offerings. Pulsar15 is Wind River’s small, high-performance Linux 

distribution designed for manageability and IoT.

Pulsar is a binary distribution of Linux based on the Yocto Project. 

A primary focus of Pulsar is to provide a regular cadence of updates for 

the packages that are included in Pulsar, including the kernel. As shown 

in Figure 4-5, Pulsar is a container-based Linux, allowing the download 

of different features and functionality as containers. However, within the 

containers, updates are managed in a traditional manner using software 

packages.

Packaged and Tailored for Selected Hardware

Wind River Pulsar Linux  Kernel

High
Availability

Pulsar Essential
User Space

Wind River
Security Shield

Package
Repository

Wind River 3rd Party

Device
Applications

Pulsar
Headless
Device

Container

Pulsar
Desktop

Environment
Container

Pulsar
Gateway

Middleware
Container

Pulsar Containers Management

Real Time Security

Technology Base

Secure Updates
Package Updates

Figure 4-5. Pulsar Linux architecture and service updates16

14 Wind River VxWorks, www.windriver.com/products/vxworks/
15 Wind River Pulsar, www.windriver.com/products/operating-systems/pulsar/
16 From www.windriver.com/products/product-overviews/
Pulsar-Linux-Product-Overview/
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Using containers as a separation capability reduces destructive 

interactions between applications and makes the whole platform more 

stable. Additionally, by using containers, there is greater security in the 

platform as a whole, since the containers have a reduced privilege on the 

platform, making an attack on an application in a container less likely to 

leak out and affect the whole device. Pulsar can update whole applications 

on the device seamlessly by just replacing a container.

Wind River addresses the issue of stable updates by providing an 

update service over a secure channel, where the updates themselves 

are comprised of RPMs (Red Hat Package Manager), a common Linux 

update mechanism. All RPMs are signed with a Wind River RSA17 private 

key, ensuring the RPMs are genuine and not modified from what Wind 

River intended. All updates on Wind River’s package repository have gone 

through extensive testing to ensure they are stable on the Pulsar-supported 

platforms. Constant reviews of the published Common Vulnerabilities and 

Exposures (CVE) databases, and the open source mailing lists, ensure the 

latest defects and issues are addressed in the quarterly updates.

Wind River Linux includes the following features, discussed elsewhere 

in the chapter:

• Wind River Helix Device management system

• Mosquitto MQTT

• OCF and IoTivity (See Chapter 2 Consumer IoT 

Framework Standards)

• UEFI or MOK Secure Boot (See Chapter 3, Device Boot 

Integrity - Trust But Verify)

• Support for Trusted Platform Module (TPM)  

(See Chapter 3, PTT/TPM)

17 RSA (Rivest-Shamir-Adleman) is an asymmetric cryptographic algorithm that 
uses a private key to digitally sign data and a separate public key that anyone can 
use to verify the signature.
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Pulsar includes the following other technologies that improve the 

security on the device:

• Virtual private network (VPN) provided by the open 

source StrongSwan IPSec/L2TP/PPTP project.

• STIG scripts: System lockdown scripts are included in 

Pulsar to configure the system for secure deployment, 

using the US government’s Security Technical 

Implementation Guide (STIG)18 scripts.

CONTAINERS

Containers are a type of software separation technology that allows one or 

more applications, and their dependent libraries, packages, and services, to 

run in an operating system created namespace.

In an operating system, certain resources are organized into namespaces. 

for example, all the users are in a namespace; this means you can have only 

one user named root and one user named dave (users are actually based on 

numeric identifiers, but the concept still holds). If there are two users both 

named dave, they would be the same user. likewise, the same namespace 

concept exists with devices, file paths, and certain logical resources, like 

network ports and process identifiers.

Inside a container, the operating system gives the container its own 

namespace for certain types of resources. So one container can open port 

443 for a web server to listen to incoming traffic, and a different container 

can also open port 443, and there would be no conflict. outside the container, 

some type of mapping must be done to disambiguate the two network traffic 

flows (see the “Containers” section for details). In our example with the user 

identities, two containers can both have the user dave, and they would not 

18 STIG Home, https://iase.disa.mil/stigs/Pages/index.aspx
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be associated to the same user; thus there would be no conflict between 

the containers and no privilege leakages or access overlap between the 

applications in the containers.

Containers also use another kernel feature called cgroups. Cgroups create a 

kernel structure that limits the amount of memory and Cpu processing that 

is available to processes within a cgroup. this can be used to ensure the 

processes in a cgroup do not starve out other groups. this ensures that all 

containers get a fair amount of processing time, and one container cannot hog 

the Cpu and prevent applications in other containers from executing.

different containerization engines package these features in different ways 

to allow an environment to be created and managed that provides usable 

software separation for applications. these are all referred to generally as 

containers, but different containerization engines may have slightly different 

properties and controls.

 Ubuntu IoT Core

Ubuntu is a popular Debian Linux distribution that includes desktop, 

server, and cloud versions. Ubuntu IoT Core is a new distribution that 

is headless, meaning that it does not include the elements an operating 

system normally provides for a screen, keyboard, and mouse – there is no 

user interface. Ubuntu IoT Core is intended to be used on devices that do 

not have buttons; they are intended to be turned on, and the device just 

does its thing, whatever that is.

Ubuntu IoT Core runs differently from the normal Ubuntu 

distributions. It uses a construct called a snap. Everything in Ubuntu 

Core is a snap, even the kernel. Developers create snaps that contain all 

the dependencies for their application or service. Users download snaps 

from the snap store and can add in (snap in) any snap they want to their 

system. Each snap is separated from the others in Ubuntu IoT Core, using 
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similar separation constructs as containers! One difference however is 

that snaps are transactional and can be rolled back easily if there is a 

problem. Thus, trying out a snap leaves no artifacts on the system, and a 

snap can be completely removed at any time. (reference for diagram in 

Figure 4-6. https://computingforgeeks.com/install-snapd-and-snap-

applications-on-fedora/).

Snap Confinement

Snap package

Binaries

Third-party snap

OS
Interfaces

Interfaces

Private
storage

area

Figure 4-6. Ubuntu IoT Core snap architecture

A snap is actually a filesystem (the SquashFS filesystem) along with 

a YAML file that contains the snap’s metadata. A snap is completely 

relocatable and does not depend on having specific libraries or 

configurations in a particular directory, like the /etc directory. The snap 

must carry all its dependent libraries with it in the SquashFS, kind of 

like a TAR or ZIP file with everything it needs packaged up inside it. The 

code for the snap in SquashFS filesystem is read-only, but once the snap 

is installed, a writeable section of the filesystem is created. When a snap 

is installed, it can be granted permissions to access things outside its 

filesystem, like the network or devices. If the system does not grant those 

permissions, then the install fails. In this way, a snap is similar to an app in 

the Android operating system.
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Ubuntu IoT Core is claimed to be more reliable and more secure. 

Snaps are signed with cryptographic keys, just like Pulsar’s RPMs, but 

snaps manage their own dependencies and are separated from other 

applications. Ubuntu IoT Core creates isolation between applications 

(snaps) using AppArmor and Seccomp.

AppArmor19 is a security model built into the Linux kernel as part of 

the Linux Security Modules (LSM) framework. Other models supported 

by LSM include SELinux, Smack, TOMOYO Linux, and Yama. AppArmor 

allows the definition of security profiles that restrict the behavior of 

applications, and access to files (inodes), based upon a set of mandatory 

access control (MAC) policies. AppArmor comes installed with various 

preconfigured profiles to protect the system and applications, but these 

are modifiable by an administrator. Applications that do not have a policy 

defined execute in an unconfined manner (no special MAC restrictions). 

Policies reside in /etc/apparmor/ and user-specific profiles are defined in 

${HOME}/.apparmor/.

Seccomp20 is a Linux kernel mode used to limit the kernel system 

calls available to a process. Seccomp is short for secure computing 

and reduces the attack surface that the Linux kernel exposes through 

system calls. Seccomp was originally designed to expose only a certain 

set of kernel APIs available, but Seccomp 2 added filtering, allowing 

more flexible definitions of what kernel APIs are allowed to be used by 

a process. Seccomp is effective in restricting the actions an attacker can 

perform through injected code attacks, because a call to a restricted 

system call sends the SIGKILL to the process, terminating the offending 

program.

The combination of AppArmor and Seccomp allows Ubuntu 

to restrict the allowable actions of installed snaps. The inherent 

restrictions of a snap simplify the policy for these security tools, which 

19 https://gitlab.com/apparmor/apparmor/wikis/home/
20 www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
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can be complex. Additionally, the filters that restrict the snap’s actions 

actually document how the snap is supposed to behave, and what the 

app can and cannot do, which acts as a type of disclosure to the system 

administrator. In conclusion, the containerization of snaps includes a 

separate filesystem, special permissions with AppArmor and Seccomp, 

and documented interfaces to connect to other applications and 

services on the platform through the snapd service.21 Using these strong 

security protections, and the ability to rollback misbehaving snaps, 

Ubuntu IoT Core provides a secure and stable operating system for IoT 

deployments.

 Intel® Clear Linux

Clear Linux22 addresses the operating system update problem by 

allowing frequent updates to the operating system, reducing the time a 

platform lacks the most recent updates, and preventing incompatible 

updates from being downloaded and installed on a system. Clear 

Linux is designed for a Linux distribution maintainer and provides 

tools allowing the maintainer to directly consume upstream projects, 

add them to their distribution, and maintain the distribution on an 

update server that keeps all the connected systems updated. It is easy 

to see the value of Clear Linux to an IoT deployment that is using a 

customized Linux kernel.

21 https://tutorials.ubuntu.com/tutorial/advanced-snap-usage#1
22 Clear Linux, https://clearlinux.org/
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Clear Linux manages all the applications and software on the 

system using bundles instead of packages. Packages are hard to manage 

because of all the dependencies, and oftentimes different packages have 

dependencies on different versions of other packages. When two different 

packages are installed, and each requires different versions of another 

dependent package, installing both of those packages creates contention. 

Either one package will be able to use the newer (or older) version of the 

dependent package, or the application will break. Pulsar addresses this 
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contention by putting applications and services into containers, which 

separates the dependencies from each other; Ubuntu uses a similar 

approach with snaps. Clear Linux removes the contention with bundles, 

which is just a different containment mechanism. A bundle removes 

the outside dependencies and includes all the software needed for an 

application.

In Clear Linux, the operating system is completely made up of bundles. 

When one bundle is updated, it creates a completely new version of the 

OS. This new OS version is built and tested as a whole – there is no extra 

package to be added later. For the distributor, this makes updating simpler 

and guarantees that the OS update will work and will not brick the system. 

It is also the reason that updates need to be easier and happen more 

frequently.

Just making updates come faster is not really a solution. Updating an 

entire operating system every week could kill a system, not to mention 

bog down the network. Clear Linux solves this problem by including tools 

to allow updates to be smaller. Rather than an update requiring a full 

reinstall, the update can be a binary diff between versions. This is critical 

for IoT deployments, because sending down a new kernel that is multiple 

megabytes in size is just not practical over certain network connections.

 Linux Summary

Linux supports strong security capabilities in both the kernel and the 

application space. Although we did not cover all of Linux’s security 

features, Table 4-3 provides a summary of the operating system security 

features of Linux for comparison with Zephyr in our previous section.
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Table 4-3. Linux Security Summary

Operating System 
Security Principles

Grade Comments

Execution Separation a all linux distributions discussed here support 

the standard separation capabilities (process, 

threads, ISrs) of operating systems.

Memory Separation a linux utilizes the hardware memory 

management unit (MMu) to provide paged 

memory separation for all processes, with 

read-write-execute permissions. unlike Zephyr, 

even a process running as root is restricted.

Levels of Privilege a linux, like Microsoft windows, has access 

to multiple privilege rings, but makes use of 

only two ring levels. linux also supports other 

special supervisory modes and tees; for details 

see the section on containment.

System authorization a linux provides authorization for structures 

using a common user-group-other identity 

structure with read-write-execute privilege 

bits. extensions for other security models 

through the linux Security Modules (lSM) and 

other frameworks, like apparmor and Seccomp 

covered in the ubuntu section, are readily 

available and integrated into the linux kernel.

(continued)
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In this section, our discussion focused on the update features provided 

in different Linux distributions and how the distros are solving the problem 

of interfering applications and overly complex dependencies. These 

solutions used different forms of containment to solve the update problem. 

Clear Linux solves the problem by creating a new package format for 

updates called a bundle and then uses a series of tools to ensure the different 

bundles create a stable system. If an instability is found, a new update is easy 

to create by correcting a bundle. System updates are made less burdensome 

by incorporating special binary diff updates that take less time to download.

Table 4-3. (continued)

Operating System 
Security Principles

Grade Comments

Programming Error 
Protections

B Basic stack protection is provided in the linux 

kernel since version 3.1423 and is turned 

on automatically in version 4.1624 – strong 

stack protections are also an option. Control 

flow protection is not yet fully upstreamed in 

the kernel, but patches exist for 64- bit user 

applications.25

Access-Controlled 
Secrets Protection

C linux does not directly provide standard 

features for secrets storage, but support for 

the trusted platform Module (tpM), Secure 

elements, and hardware security modules 

(hSM) are prevalent.

23 https://lwn.net/Articles/584225/
24 www.thomas-krenn.com/en/wiki/Linux_Kernel_Versions
25 https://lwn.net/Articles/758245/
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Pulsar and Ubuntu take a different approach and use advanced 

features of Linux to construct special containment for applications and 

even parts of the operating system itself (in the case of Ubuntu, anyway). 

These containment features are used to create Linux containers, which we 

look at in a bit more detail in a future section.

We also noted that even with these features, the problem of access 

required to update firmware on the platform is not solved by this 

approach, and additional capabilities are needed. We look at solutions to 

the access problem in the section on secure software updates.

 Hypervisors and Virtualization
Virtualization is a generic term applied to several techniques that increase 

resource sharing and hardware utilization in a computer system. Modern 

operating systems like Linux provide virtualized memory, where more 

memory appears to be available than is actually physically present. Parts 

of memory used by idle processes are stored on disk, freeing more physical 

memory for the currently running process; short delays are incurred when 

the idle process becomes active and the operating system reloads physical 

memory with the contents from disk. Although some delays are incurred, 

they are outweighed by the benefit of having more physical memory 

available to the running process.

Platform virtualization works in much the same way, allowing multiple 

operating systems to run simultaneously on a single computer. Memory 

is virtualized, as well as the processor, storage, graphics, and other I/O 

devices on the platform. A small control program, called a hypervisor or 

Virtual Machine Manager (VMM), manages the virtualized hardware and 

mediates between the different virtual machines (VMs). Figure 4-8 shows 

a generic virtualized system. Each VM runs a guest operating system 

and application software that are logically separated from each other by 

hardware and software controls managed by the hypervisor.
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There are actually two different types of hypervisors. Figure 4-8 

depicts a Type 1 hypervisor or native hypervisor that runs directly on 

the hardware. Type 1 hypervisors are typically more performant and can 

utilize the hardware better, because they have complete control of the 

hardware. VMWare, Xen (for Linux), and Hyper-V (Microsoft) are examples 

of Type 1 hypervisors.

There are also Type 2 hypervisors, which run on top of an existing 

operating system. This allows a regular OS to run virtual machines too. 

VirtualBox by Oracle is a Type 2 hypervisor that runs on Linux. KVM is a 

Red Hat hypervisor that runs as part of the Linux kernel; some regard it is 

Type 2 hypervisor since other things can run on the Linux OS, but Red Hat 

claims it is a Type 1 hypervisor since it has direct control of the hardware 

through the kernel. Either way, it is a pretty good hypervisor. There is a 

question that frequently comes up relating hypervisors to containers. The 

question is: Which is better, containerization or virtualization? We discuss 

this later in the “Software Separation and Containment” section. For now, 

we focus on virtualization.

How does virtualization work? In Intel Architecture, virtualization 

is supported by the Virtual Machine Extensions (VMX) mode. This 

mode defines two privilege levels, one for the hypervisor, called VMX 

root operations, and one for the VMs, called VMX non-root operations. 

Virtual
Machine

VM-1

Virtualized
Hardware

Virtualized
Hardware

Server Hardware

Hypervisor
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Hardware

Virtual
Machine

VM-2

Virtual
Machine

VM-3

Figure 4-8. Generic virtualization architecture

Chapter 4  Iot Software SeCurIty BuIldIng BloCkS



256

As one might guess, the VMX root operations mode is more privileged. 

The hypervisor, operating in VMX root operations mode, initializes 

certain control registers in the processor to establish limits on the VMs. 

The hypervisor releases the VMs to execute by performing a VM-Enter 

instruction. The VMs are then executing in the restricted VMX non-root 

operations mode. When the VMs execute an instruction or perform an 

operation that is restricted by the hypervisor, a VM exit is performed by the 

processor, returning control to the hypervisor. The hypervisor can either 

perform the operation on behalf of the VM in a safe manner, or it can reject 

the operation and return some type of exception to the VM; in extreme 

cases, the hypervisor can even terminate the offending VM entirely.

The exact details of virtualized processor state are beyond the scope 

of this book. However, the curious may elect to read the Intel 64 and 

IA-32 Architectures Software Developer’s Manual Volume 3. Chapters 23 

through 33 cover VMX mode. These chapters discuss the virtual machine 

control structure (VMCS) that contains the state used by the processor to 

implement virtualization and discusses all the elements of the controlled 

state, including

• Virtual processor state, including control registers, 

debug registers, base registers, and segments

• Bit flags controlling what events cause a VM exit, for 

example, interrupts, use of IO ports, and so on

• Bit flags indicating how a VM’s state is saved when a 

VM exit is performed

• Bit flags indicating how a VM’s state is restored on VM 

entry

• Indicators for VMX aborts (the reason a VM abnormally 

exited into the hypervisor)

• Indicators for VMX exits (the reason for a normal return 

to the hypervisor)
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There is also another distinction among hypervisors. In the discussion 

earlier, we described virtualization as though the operating systems in 

the virtual machines were no different than an operating system on a 

platform that is not virtualized. When the operating systems in the VMs 

are not aware they are being virtualized, this is called full virtualization. 

In some systems, or with some applications, it is very difficult to fully 

virtualize the system. This may be because there are complex devices 

that need to be shared between the virtual machines, or it may be that an 

application has very stringent performance requirements. In these cases, 

it is counterproductive to perform full virtualization – the cost to do so 

would outweigh the benefits. In these cases, the hypervisor implements a 

para-virtualized strategy, where the operating system, device drivers, and 

perhaps even the applications themselves are aware that they are being 

virtualized and are modified in order to behave better in the virtualized 

environment. Para-virtualization is accomplished by configuring VMX in 

a way that allows the VMs themselves to perform certain operations, for 

example, the ability to directly interface with certain IO ports. The VMCS 

allows the hypervisor to give some VMs more control than other VMs. 

However, the VMs must cooperate with the hypervisor and are trusted to 

cooperate in a trustworthy fashion. Intel’s ACRN hypervisor is an example 

of a para-virtualized hypervisor, which we will discuss in more detail after 

we review the security threats to virtualization and hypervisors.

 Threats to Hypervisors
Just like operating systems, the threats to hypervisors are numerous and 

dangerous. A successful attack on a hypervisor can lead to an attacker 

acquiring complete control over the platform and every virtual machine 

running on it. NIST-SP-800-125A Revision 126 outlines the baseline set of 

26 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
125Ar1.pdf
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security functions a hypervisor should perform. These hypervisor security 

functions have similarities to the security services that we defined for 

operating systems. But because this specification limits itself to virtualization 

of servers, and specifically does not address embedded systems, we use the 

NIST set of functions as a baseline. In our list that follows, the first five items 

are from NIST and are roughly equivalent to the security services we defined 

for operating system; protection from programming errors is a sixth security 

service we add to NIST’s list. We then add three additional security services 

that are unique to IoT instances and not considered by NIST’s analysis. The 

set of security services for IoT hypervisors are

• VM Process Isolation (i.e., Execution Separation and 
Memory Separation): Each VM’s execution should be 

separated from all other VMs’ execution using multiple 

logical processor structures; a fault in one VM should 

not affect other VMs.

• Device Mediation and Access Control (i.e., Levels of 
Privilege and Access-Controlled Secrets Storage): 

Hypervisors provide methods for VMs to share access 

to devices through various methods, including giving 

VMs direct access to hardware, para- virtualization of 

the device, or device emulation within the hypervisor. 

Access to the devices must be controlled to prevent 

effects from one VM leaking over to other VMs. This 

includes controlling direct memory access (DMA) 

devices to protect both memory read and write. If 

the platform offers secrets storage, the hypervisor 

should provide access to such storage in a manner that 

prevents other VMs from interfering with each other’s 

usage, or from viewing, modifying, or using the secrets 

in that secure storage location (see Chapter 3, section 

on “Intel Virtualization Technology (Intel VT)”).
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• Prevent Abuses by Guest VMs through their 
Direct Execution of Commands (i.e., System 
Authorization): As we stated earlier, para-virtualized 

systems allow VMs to cooperate with the hypervisor; 

the hypervisors in these systems execute commands 

sent from the VMs. The hypervisor’s execution of 

commands from one VM should not affect another 

VM and should not compromise the security of the 

hypervisor or its data structures.

• VM Lifecycle Management: VM management includes 

creating, starting, stopping, and pausing VMs, as 

well as checkpointing (snapshotting) their state. This 

includes monitoring the state of VMs and various 

tools for migrating data or VM snapshots between 

physical machines. The management of VMs is 

typically performed through add-ons to the hypervisor 

or through a special management VM. These 

management services must not allow leakage of data or 

control across VMs.

• Management of Hypervisor Platform: The 

configuration of the hypervisor and the platform itself 

must be managed, including configuring devices, 

virtual networking, storage, and any VM policies. This 

management must include proper authentication of 

management requests and restriction of management 

actions to only authorized entities.

• Protection from Programming Errors: This is the 

leftover security service from our operating system 

list, but has a little different perspective when viewed 

from the virtualization perspective. The hypervisor 

must set appropriate VM aborts when a VM violates 
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restrictions on memory separation or corruption of VM 

control structures; stack smashing and heap smashing 

that occur from programming errors in one VM should 

not compromise the hypervisor or other VMs. These 

protections become much more difficult with a  para- 

virtualized hypervisor because certain structures and 

interfaces on the hypervisor are accessible to the VMs.

• Real-Time Guarantees: In embedded systems and IoT, 

control loops require real-time guarantees and many 

devices operate with real-time restrictions on read/

write operations that if violated result in data being 

lost. In a virtualized system, the hypervisor itself must 

provide these real-time guarantees in coordination 

with the VMs and their operating systems. 

• Deep Power Management: In embedded systems 

and IoT, power usage is a critical parameter. Whether 

the power envelope is restricted due to battery life 

and energy harvesting limitations or the power/

heat trade-off in an industrial environment limits 

equipment’s power budget, management of energy 

usage is essential. Due to real-time guarantees and 

the management of physical devices or equipment, 

the management of power goes far beyond what is 

normally provided in a data center or server cloud 

instance. Power management cannot be left to the 

individual guest operating systems or VMs, because 

they do not have the platform view. The hypervisor, 

in conjunction with the VMs and guest OSes, must 

manage the platform constraints appropriately to 

prevent power spikes or violations of the equipment’s 

defined heat envelope.
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• Protection from External Devices: In embedded 

systems and IoT, virtualized systems are inevitably 

connected to other devices and sensors, usually in a 

very direct way. Because these devices can be attacked 

and PWNED27 by an adversary, protection of the 

virtualized system from compromised devices is critical 

to protecting a virtualized IoT system. It should be 

noted that this goes beyond the normal protections a 

cloud server is required to enforce to protect REST APIs 

and network connections, which the IoT virtualized 

system must also do. The external IoT devices are 

normally connected to a low-level driver, an emulated 

or virtual bus implementation, or some other higher- 

privileged software component that must implement 

some type of intrusion and attack detection-prevention 

mechanism.

When examining the preceding list of necessary protections and 

the general operation of hypervisors described earlier, several threat 

vectors immediately come to the surface that are likely vulnerabilities in 

hypervisors:

• Size and complexity of the hypervisor code: The 

more complex and larger code size of a hypervisor, 

the more likely the hypervisor includes critical 

vulnerabilities, because adverse code interactions and 

defects are harder to find in larger code bases.

27 PWNED is the Internet slang for “owning” a device or computer system; it comes 
from “mistyping” the “o” in the word “own” with a letter “p,” ostensibly because 
hackers are bad typists perhaps. Its meaning goes beyond attacking and implies 
complete ownership of the attacked device such that the device is absconded 
to do whatever the attacker wishes – the device becomes part of the attacker’s 
zombie or botnet army.
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• Attack surface of the guest VMs: Since the VMs 

represent the manipulable interface to attackers, they 

represent the primary point of attack to virtualized 

systems. The more network services exposed by a 

VM, the more third-party code that is not written 

with a security mindset, and the larger the number 

of unprotected IoT devices connected to virtualized 

system, the higher the risk of vulnerabilities that can 

expose the hypervisor to attack.

• Hypervisor add-ons that have vulnerabilities: Some 

hypervisors have minimal services but allow add-ons 

or plugin modules that provide additional services, like 

management and configuration. These add-ons can 

include additional vulnerabilities.

• Device driver virtualizations that have 
vulnerabilities: Device drivers require special versions 

that provide virtualization features, which may react 

differently with different hypervisors or may operate 

differently on different hardware. These differences 

may create vulnerabilities an attacker can leverage.

Like operating systems, hypervisors are susceptible to similar classes of 

attacks. A recent survey paper28 looked at reported common vulnerabilities 

from a reputable CVE database for the top four hypervisors. Figure 4-9 

shows the types of vulnerabilities and the number of such vulnerabilities 

by product. The purpose of this table here is to highlight the most common 

attacks on hypervisors and to highlight that all hypervisors have been 

successfully attacked. The data should not be interpreted numerically 

28 Litchfield, Alan., Shahzad, Abid. A systematic Review of Vulnerabilities in 
Hypervisors and Their Detection. 23rd Americas Conference on Information 
Systems. Boston. 2017.
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to identify which hypervisor is more secure due to a lower number of 

attacks. The paper notes that although VMWare had the highest number 

of vulnerabilities over the study period (from 1999 to 2015), it was also the 

only established hypervisor product in the market for the first 8 years of the 

study period, making such rankings of hypervisor security inappropriate. 

The following list briefly reviews the most prevalent classes of attacks listed 

in Figure 4-9, describing the security principles violated:

• Denial of Service: A DoS attack causes a VM to halt 

or create such a serious VM abort that the hypervisor 

refuses to allow the VM to continue to operate. A more 

serious DoS could affect a device on the platform, 

preventing all VMs from accessing the device until 

the platform is rebooted, violating Device Mediation. 

A DoS attack on a virtualized hardware device 

represents a violation of execution separation. 

Another type of DoS attack consumes resources, 

like network socket handles, resulting in other VMs 

not being able to acquire the resource necessary to 

execute a function.
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Figure 4-9. Most common attacks on hypervisors – 16-year period
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• Stack Overflow and Arbitrary Code Execution: 

Stack smashing, heap smashing, and use-after-free 

vulnerabilities allow an attacker to execute their own 

code on the platform. This type of attack can allow 

escalation of code’s rights, allowing it to become a 

privileged user. In para-virtualized environments, this 

can cause the VM to misbehave and violate the trust 

the hypervisor places in the VM, causing an execution 

or memory separation violation (Prevent Abuses from 
Direct Execution of Commands from Guest VMs).

• Gain Information: An out-of-bounds read vulnerability 

allows a VM to access memory outside of its logical 

memory space. These vulnerabilities are common with 

virtualized drivers and VM tools. A gain information 

vulnerability represents a violation of memory 
separation.

• Gain Privileges: Gain privilege attacks are usually 

executed through add-ons, like tools and plugins. An 

example is the CVE-2017-4943 that allowed a showlog 

plugin to gain root-level privilege of the platform 

management VM that controls network settings, system 

updates, health monitoring, and device management. 

Becoming root on a para-virtualized system is 

tantamount to a compromise of the hypervisor itself, 

since root on a para-virtualized VM allows the attacker 

to easily violate the implicit para-virtualized cooperation 

agreement (Management of Hypervisor Platform).

Many of the attacks outlined are serious, but do not directly violate a 

fully virtualized system; the hypervisor can properly trap and stop attacks 

that directly violate the virtual machine’s configuration. However, when 
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the hypervisor and VMs are operating in a para-virtualized manner, 

privilege escalations in the VM and process and memory violations even 

within the VM’s logical memory space can escalate to a violation of the 

para-virtualization agreements. An attacker, operating as root within a 

para-virtualized VM, can disrupt device drivers and other critical parts of 

the VM’s operating system that have direct access to the platform hardware 

as part of the para-virtualization contract. In the next section, we look at 

ACRN, a para-virtualized hypervisor, and explore some of the strengths 

and weaknesses of this approach.
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Figure 4-10. ACRN architecture diagram

 Intel® ACRN
ACRN is a BSD open source hypervisor reference platform, built by Intel 

for the automotive industry, available at https://projectacrn.github.io.  

It is specifically designed to be a flexible and lightweight hypervisor and 

designed for real-time and safety-critical IoT deployments.

As shown in Figure 4-10, ACRN is a para-virtualized architecture 

where the guest operating systems must know they are being virtualized 

and cooperate with the hypervisor. A para-virtualized solution is required 
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in the automotive world due to the nature of some devices in the system. 

This model enables a more performant implementation and cleaner 

virtualization of these devices using virtio drivers. Notice the Service 

Virtual Machine (VM) in the top left of Figure 4-10. The Service VM 

performs some critical virtualization services for the hypervisor to avoid 

the performance penalty of full virtualization. However, support for device 

interrupts is provided directly in the hypervisor by virtualizing the PIC 

and APIC for each VM. The critical element of the Service VM is the set of 

ACRN Device Model (DM) applications that mediate between VMs and 

devices for certain operations. For example, USB and IOC (I/O Controller) 

devices are emulated in the Service VM due to their complexity, and the 

GPU is mediated by the Service VM since emulation will not provide the 

performance boost for which the GPU is often used. Because of these 

elevated privileges, the Service VM is a critical security element in the 

trusted computing base (TCB) of the ACRN platform. If not carefully 

limited, the Service VM can easily take on too much and become a security 

threat due to violation of the least privilege principle. As the number and 

complexity of the Device Models grow, the likelihood of implementation 

errors that can be leveraged by an attacker grows (see the list of common 

attack patterns discussed in the “Threats to Operating Systems” section). If 

an attacker is able to successfully attack a DM, the attacker is likely to inject 

other code inside the Service VM, having access to many other privileges 

than just the compromised DM. This is an architectural trade-off between 

necessary performance and security risk. The risk can be managed by 

ensuring every DM or other software component added to the Service VM 

is carefully verified and undergoes penetration testing to ensure there are 

no security weaknesses in those modules.

For security features, ACRN supports secure boot, a Trusted Execution 

Environment (TEE), and secure storage in a Replay Protected Memory 

Block (RPMB) in flash. Figure 4-11 shows the secure boot flow for ACRN 

when using the Slim Bootloader (SBL). The TEE and RPMB are shown in 

Figures 4-13 and 4-14, respectively.
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Secure boot on Intel devices starts in the Converged Security Engine 

(CSE), which is the common root of trust for verification for Intel platforms 

(see Chapter 3, section “Intel CSE/CSME – DAL”). The CSE verifies a digital 

signature on the SBL; the digital signature is usually produced using the 

RSA algorithm and is commonly 2048-bits or 3072-bits in length. The 

public key is part of the SBL image, but this key is verified by the CSE using 

a hash of that public key kept in fuses. The fuses prevent the key from 

being modified in the image itself.

The SBL verifies the next stage of the platform, which includes the 

ACRN hypervisor and Service Operating System (SOS) kernel, which 

are included as a single image. The SOS kernel runs in the Service VM 

as VM’s operating system. The SOS Kernel loads and verifies a Device 

Model application for each User VM that is loaded; this includes verifying 
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Figure 4-11. ACRN secure boot flow
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a virtual Slim Bootloader (vSBL) for each User VM. The SOS uses dm- 

verity29 to check the validity of the DM App and the vSBL. The vSBL then 

is responsible to boot the User VM; in the case of Android, this uses the 

Android verified boot mechanism.
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Figure 4-12. ACRN connectivity to automotive CAN bus

One of the key features in ACRN is support for real-time and 

automotive use cases. This creates extremely stringent requirements on 

the hypervisor and the VMs for real-time operations and connectivity. 

Because all VMs might require access to the CAN30 bus, an I/O Controller 

is emulated in the Service OS that serializes data onto a physical serial 

29 DM-Verity, or Device Mapper Verity, was designed for Chrome OS and also 
used by Android. DM-Verity is built into the Linux kernel and uses the kernel 
cryptographic APIs to provide transparent integrity verification for block devices. 
See the Git Repository for more details at https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-
mapper/verity.txt

30 CAN bus, Controller Area Network, is a type of local bus system developed by 
Bosch for automotive systems to connect controllers and subsystems together. 
www.canbus.us/
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bus connected to the vehicle CAN bus (Figure 4-12). In order to protect 

the vehicle, the Service OS implements a firewall in each VM’s Device 

Model application. This filter restricts the type and content of messages 

that a particular VM can place on the vehicle’s CAN bus. For example, the 

Android OS that implements the vehicle infotainment features is restricted 

from sending messages to critical ECU components for vehicle braking 

or engine control. Likewise, other VMs that render cockpit controls are 

restricted from receiving messages from USB ports in the cabin.
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Figure 4-13. ACRN trusted execution environment

ACRN supports the ARM TrustZone TEE implemented in Trusty in the 

Android OS. As shown in Figure 4-13, the ACRN hypervisor implements 

the separation of unsecure memory (in the normal world or regular 

operating system) from the secure world purely in software through 

encrypted page tables (EPTs). The CPUs are also virtualized and maintain 

the NS (not-secure) bit used in ARM to switch between two different 

contexts in the vCPU. It should be noted that the secure world can see all 
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of memory, but the normal world is restricted to see only a subset. Just 

like we discussed in the Zephyr OS, the ability of privileged users to see all 

of memory makes processes and threads in the secure world potentially 

more dangerous. It should also be noted that the Service OS also acts like 

a privileged secure process with access to additional parts of memory in 

order to support the virtualized devices.

The last security feature in ACRN that we examine is the Replay 

Protected Memory Block (RPMB). RPMB is a feature of some flash 

devices that allows an encryption key to be used to protect data, using 

both confidentiality and integrity, in a reserved flash block. The data is 

also replay protected preventing rollback attacks where an old piece of 

encrypted data overwrites a newer piece of data.
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Figure 4-14. ACRN secure storage support through RPMB

The encryption key for the RPMB is held by a trusted entity in the 

platform. In Intel platforms, this trusted entity is the CSE, and the CSE 

shares this key with a single device driver on the platform and then locks 

access to the key so no other program can gain access to the key. If the key 

is overshared, then security of the platform diminishes. During the boot 
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process, the Slim Bootloader (SBL) reads the platform seed (pSEED) from 

the CSE and passes the pSEED on to the ACRN hypervisor. Since ACRN 

must support multiple virtual machines, and all these VMs must not be 

allowed to see the other VMs’ data or be able to spoof another VM’s data 

reads or writes, ACRN cannot directly share the pSEED with the VMs. 

ACRN uses a NIST-approved key derivation function (HKDF-256) to derive 

new secrets from the pSEED, called vSEEDs for virtual seeds, and passes 

a unique vSEED to each VM. Each VM then chooses which device driver 

or process will take ownership of the vSEED. For example, in Android, the 

vSEED is given to Trusty since it is the TEE for that VM. Figure 4-14 shows 

how the seeds are then used to implement RPMB. ACRN provides the real 

RPMB key to the DM applications in the Service OS. The derived keys are 

used by each of the User VMs to protect their RPMB data; the transactions 

for each of the User VMs do not go to the RPMB flash or the ACRN 

hypervisor, but instead are routed to the Service OS. The DM App in the 

SOS for the particular VM verifies and decrypts the data it received from its 

corresponding VM and then re-encrypts the data with actual RPMB key. 

Each VM has access to a small part of the RPMB and can only write to its 

own section. This separation is enforced by the RPMB driver in the SOS 

and the ACRN hypervisor.

It is clear from Figure 4-14 and the preceding description that the Service 

OS must be trusted, since it is possible for the DM Application to forge data 

or delete RPMB data as if they were the User VM. Careful review of the 

applications in the Service OS is required to ensure no security vulnerabilities 

are present, and only trusted applications are allowed to run in the SOS.

 Real-Time and Power Management Guarantees 
in ACRN

In its current rendition, ACRN provides basic real-time and power 

management controls. ACRN maps a physical core into the guest OS for 

both real-time and power management. This means that the guest OS 

has direct control of the core and can reflect any of the operating system’s 
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real-time characteristics to the applications in its VM. A real-time Linux 

kernel, for example, would run just as effectively in ACRN as on its own 

hardware. Since the physical cores are mapped into the VM, the hypervisor 

also allows the guest operating system in the VM control over that core’s 

C-state, optimizing the core’s power consumption during idle modes. The 

P-state, controlling the package voltage-frequency setting, is coordinated 

with the VM. ACRN manages the S-state, which is reflected from the 

User OS VMs, to the Service OS, and finally the hypervisor, in an ordered 

fashion. Future versions of ACRN are planning for further power and 

real-time management controls covering devices and real-time quality of 

service.

 ACRN Summary
ACRN supports some strong security services, with RPMB secure storage 

and TrustZone TEE being two of the most significant. Many of the design 

and security trade-offs made in ACRN are a result of the performance 

requirements for automotive and IoT deployments and the need to 

interface with complex devices, such as the I/O Controller emulation in 

the Service OS for connection with the vehicle bus. Table 4-4 provides a 

summary of the hypervisor system security features for comparison with 

other systems.
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Table 4-4. ACRN Hypervisor Security Summary

Operating System 
Security Principles

Grade Comments

VM Process Isolation 
(Execution Separation)

B Because aCrn is a para-virtualized 

hypervisor, and both the Service oS and 

parts of the hypervisor are accessible to 

guest VMs, the execution separation is 

not complete. this cannot be improved, 

however, due to the need for emulated 

busses and para- virtualization of certain 

devices.

VM Process Isolation 
(Memory Separation)

B user oSs have access to both the Service 

oS and the aCrn hypervisor through some 

limited apIs. this necessarily means that 

some memory buffers and locations are 

shared, with some firewalling in place. 

errors or defects in this sharing, especially 

if the uses of additional add-ons are 

integrated, can compromise the system.

Device Mediation  
(Levels of Privilege)

B device Mediation is done in the Service 

oS, per VM, using the device Model 

application.

(continued)
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Table 4-4. (continued)

Operating System 
Security Principles

Grade Comments

Execution of Commands 
from Guest VMs

C aCrn provides separation of commands, 

mostly through the Service oS and the 

device Model. however, certain hypercalls 

go through the hypervisor itself as 

shown in figures 4-10 and 4-13. Similar 

hypercalls are used for uSB virtualization. 

this creates a disparity in where access 

controls need to be reviewed, and makes 

it harder to ensure all guest commands 

are properly mediated in every case; this 

represents a violation of the least common 

mechanism security design principle.3

VM Lifecycle C aCrn provides a VM manager (figure 4-10)  

in the Service oS; however the 

implementation is very slim. this is 

appropriate for the automotive space, 

but for generalized Iot, and especially 

for industrial usages which require 

sophisticated orchestration, the 

management features require significant 

add- ons. Because this is performed in 

the same VM as the mediation of the 

guest VMs, the likelihood of disastrous 

compromise is increased.

Management of 
Hypervisor Lifecycle

(continued)
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Operating System 
Security Principles

Grade Comments

Protection from 
programming errors

- no specific controls; however the linux oS 

and android oS, for which the hypervisor 

was designed, provide these advanced 

controls. aCrn depends on these services 

in the guest oS.

Real-Time Guarantees
and
Deep Power 
Management

a aCrn’s entire design focuses on meeting 

real-time requirements for automotive, 

including providing optimized device 

drivers and virtualized access to power 

management controls using a virtualized 

pIC and apIC.

Protections from 
External Devices

a aCrn provides a Service VM that mediates 

all external access points and utilizes 

VM-specific filters in the device Model 

to individualize protection filters per VM 

instance.

Access-Controlled 
Secrets Storage

B aCrn provides both a tee and rpMB 

secure storage. the lower grading is 

a result of the implementations being 

primarily in software, not hardware.

Table 4-4. (continued)

In this section, our discussion focused on the unique features and 

architecture of para-virtualized hypervisors. We introduced the use of 

secure storage through the RPMB and additional containment through the 

use of a TEE. TEEs are discussed in more detail in the section “Software 

Separation and Containment.” The design trade-offs for the hypervisor and 
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TEE led to potential vulnerability in the TEE due to lack of full memory 

separation – a similar problem was found in the Zephyr OS. These and 

other design trade-offs lead to some weaknesses in the system, but overall, 

the combination of hardware security features for VM separation and 

secure storage provides superior protection for the targeted IoT vertical. 

 Software Separation and Containment
Containment is a critical concept in security. Whether it is keeping the 

“bad guys” out, or protecting secrets, or just segregating high privilege 

operations from low privilege ones, separation and containment 

are paramount to safe operations. Even with the process and thread 

separation provided by the operating system, and the hardware-assisted 

virtual machine isolation, additional separation capabilities always seem 

to be useful to applications and IoT systems. In this section, we look at 

two different types of extended application containment capabilities: 

containers and Trusted Execution Environments (TEEs). We have touched 

on both of these topics already, but in this section, we unpack them to a 

deeper level.

 Containment Security Principles
The principles that apply to extended application containment are the 

same principles we talked about for operating systems, which includes

• Execution Separation

• Memory Separation

The difference between applying these principles here and applying 

them to operating systems is the particular mechanisms used to provide 

the separation. The preference is for hardware separation as it is more 

secure. Containment through hardware separation might be provided 
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using a completely different processor (see the “Trusty TEE Security 

Summary” section), or a different mode of the current processor (see the 

section on Virtualization or SGX later). Memory separation might include 

a completely different cache of memory (as in SGX and Trusty), or merely 

using some extra virtualization controls (the approach used in hypervisors 

or containers). In both cases, there are trade-offs to be made, based on the 

threats that are being addressed.

 Threats to Extended Application Containment
The threats to extended application containment typically come  

from privileged attackers. These attacks can come from a privileged 

user or might be from an unprivileged user that performs a privilege 

escalation attack to acquire higher privileges. In both cases, the 

application containment intends to remove the possibility, or reduce 

the efficacy, of attacks by privileged users (e.g., root or admin user 

accounts).

• Memory Disclosure from Privileged User: A 

privileged user leverages their access to all memory 

pages in order to read data from any application.

• Memory Tampering from Privileged User: A 

privileged user leverages their access to all memory 

pages in order to write, overwrite, or corrupt data for 

any application; they may also include making memory 

pages unavailable to an application.

• Data Leakage through Side Channels: A privileged 

user leverages their access to data caches to perform 

timing attacks allowing them to determine contents of 

application memory.
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• Execution Interference from Privileged User: A 

privileged user leverages their ability to schedule tasks 

or run tasks that have higher priority and starve or 

interrupt other applications during a critical operation.

• Execution Leakage through Side Channels: A 

privileged user leverages their ability to schedule tasks 

and uses speculative execution or timing operations to 

determine code branches executed during operation.31

Application containment techniques provide defenses against these 

attacks to varying degrees. Full separation32 is the only complete solution, 

but this increases costs and adds complexity to management and control 

of sensitive applications. The use of different containment techniques is 

a trade-off between absolute security and ease of use and utility of the 

solution. In each containment example discussed later, we highlight the 

different levels of hardware usage that improve the solution’s security level.

 Containers
Containers are a software mechanism to increase the separation between 

applications. In the “Linux Section”, we discuss how Wind River Pulsar 

uses container to improve the stability of their operating system updates; 

because services and components execute within containers with 

enhanced separation between applications, the applications are less 

31 For a discussion of the L1 Terminal Fault (L1TF) speculative execution attack 
and its specific effect on ACRN, see https://projectacrn.github.io/latest/
developer-guides/l1tf.html

32 Full separation means using a completely different processor with completely 
different memory and devices for sensitive operations.
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likely to interfere with each other, increasing system stability. Ubuntu 

IoT Core uses a similar construct to containers, which they call snaps. 

Containers and snaps utilize software techniques in the operating system 

for separation. The long-standing debate is which approach is better – 

containerization or virtualization?
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Figure 4-15. Containers and hypervisor comparison

In Figure 4-15, we show the relationship between a container software 

stack and a virtual machine (VM) software stack. What is evident from 

the diagram is the VM stack contains more layers of software due to the 

operating system in each VM.

The strength of a VM solution is the hardware separation between 

the different VMs; however, setting up the VMs and getting the operating 

systems booted in each VM takes more time. The strength of the container 

solution is faster startup time for each container and lower overhead of 

execution; the weakness in containerization is the reliance on software 

separation in the container engine and the underlying operating system. 

A best-in-class solution would be a hybrid that provides the hardware 

security of virtual machines with the speed of deployment and startup for 

containers. Kata Containers provides such a solution.
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 Kata Containers
Kata Containers is an open source project managed by the OpenStack 

Foundation, which includes technology from an Intel open source project 

called Clear Containers. Clear Containers is related to the Intel Clear Linux 

project discussed earlier in the chapter. In actuality, Kata Containers are 

really lightweight virtual machines designed to be managed like containers. 

The benefit of Kata Containers over regular containers is the increased 

security from the hardware-enforced separation provided by the hypervisor. 

This discussion of Kata Containers is based on the 1.2.0 release.33

Kata Containers uses the KVM hypervisor and works seamlessly with 

Kubernetes, Docker, and OpenStack. Other hypervisor support is being 

built and may even be available as you are reading this. Kata Containers is 

comprised of six different components, as shown in Figure 4-16.
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Figure 4-16. Kata Containers architecture

33 Kata Containers, https://katacontainers.io and https://github.com/
kata-containers/documentation
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• The Runtime, called the kata-runtime, handles 

all the Open Container Initiative (OCI) commands 

used to create and configure a container. It also starts 

the Shim instances. The kata-runtime utilizes the 

virtcontainers34 project to perform the heavy lifting in 

a platform agnostic way. Whenever an OCI command 

is run on a container, the Runtime creates a new Shim 

to connect the container engine to the container.

• The Shim, called the kata-shim, is an interface 

between the container engine (like Docker, Kubernetes, 

or OpenStack) and the created container inside the 

virtual machine. The container engine has a process 

(called the Reaper) that monitors the container, 

manages the container, and reaps the container when 

it dies or must be killed. Because Kata Containers are 

inside a virtual machine, the Reaper cannot actually 

access the container, due to the hardware separation 

in place by the VM. The Shim pretends to be the 

container, so the container engine can connect to it for 

management, and the Shim communicates with the 

actual container using an agent. The Shim links the 

standard input and output flows and any Linux signals 

from the container back to the container engine, so the 

container engine can receive them and process them 

appropriately.

• The Agent (kata-agent) is part of the minimal Clear 

Linux OS image and runs inside the VM; it provides 

communication outside the VM to the kata-runtime 

and kata-shim. The Agent creates a container sandbox 

34 https://github.com/containers/virtcontainers

Chapter 4  Iot Software SeCurIty BuIldIng BloCkS

https://github.com/containers/virtcontainers


282

based on a set of namespaces for a container to run 

inside. The namespaces include UTC, IPC, network, 

and PID35 namespaces. The Agent can support multiple 

containers running inside a VM (called a pod); however 

using Docker, only one container per pod is supported.

• The Hypervisor provides virtualization and is a 

combination of KVM with QEMU. As shown in 

Figure 4- 17, QEMU is the Virtual Machine Manager 

(VMM) and creates the virtual machine for the 

container to run in, populates it with the virtualized 

kernel, and emulates virtualized devices for the 

VM. KVM is used to control the VM, and all VM 

exits return directly back to KVM. The hypervisor 

provides a virtual socket (VSOCK) or a serial port to 

communicate with the Shim or Runtime. The serial 

port is the default, but for Linux kernels beyond v4.8, 

VSOCK is available. If a serial port is used, gRPC runs 

over Yamux on the serial port.

35 See http://man7.org/linux/man-pages/man7/namespaces.7.html, IPC = 
interprocess communication and message queues namespace, PID = process 
identifier namespace, UTS = hostname and Network Information Service (NIS) 
domain name service.
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• The Proxy is a multiplexer for the hypervisor if a 

serial port is used to connect between the Runtime 

or Shim and the hypervisor. Multiple connections are 

required because the kata-agent can communicate 

with multiple different kata-runtime instances and 

kata-shims; each instance opens its own remote 

procedure call to the Agent using gRPC, and the Agent 

connects these to the appropriate container process 

in the VM. The Proxy is not needed if a VSOCK is used 

to connect between the Runtime and the hypervisor, 

since gRPC can run directly over a virtual socket and 

then gRPC directly handles the multiple different 
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Figure 4-17. Kata Containers hypervisor architecture36

36 https://github.com/kata-containers/documentation/blob/master/
architecture.md
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communication streams. In this case, the gRPC 

connections from the kata-runtime feed directly to the 

hypervisor over a VSOCK, and the Proxy disappears 

from the architecture diagram in Figure 4-16.

• The kernel is the operating system that runs the 

container inside the virtual machine. The kernel is 

a highly optimized kernel from Clear Linux with a 

minimal memory footprint and includes only the 

services needed to run the container workload. QEMU 

virtualizes or emulates everything else. The smaller 

Linux kernel reduces the attack surface presented to 

the container, further increasing security.
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Figure 4-18. Networking with Kata Containers
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WHAT IS QEMU?

Software engineering can solve any problem using another layer of 

abstraction…except for the problem of having too many abstraction layers. 

QeMu is a special abstraction layer that solves several difficulties with 

virtualization.

recall that kVM is a type 2 hypervisor and part of the linux kernel. But, kVM 

uses all the hardware features of VMX, so it is as fast and secure as a type 

1 hypervisor. kata Containers combines QeMu with kVM for further speed 

improvements.

QeMu is a virtual machine monitor (VMM) that runs on top of an operating 

system host, like linux. QeMu is also an emulator that does binary translation 

and can even run programs compiled for different Cpus or oSs on that host. 

So, QeMu is really good at emulation.

In kata Containers, QeMu quickly boots virtual machines (VMs) for kVM 

by using emulation. a special version of QeMu provides highly optimized 

emulators to speed boot time and reduce interpretation of aCpI interfaces. 

other emulators provide the root filesystem as a persistent memory device. 

QeMu also provides hot-plugging devices, during the launch process, allowing 

devices and virtual Cpus to be added to the VM only when needed.

all this speeds the construction of VMs and makes kata Containers execute 

really fast.

Connecting containers to a network is accomplished with a virtual 

network created by the container engine on the host. The container engine 

connects this virtual network to the real network, using appropriate filters, 

including a network address filter (NAT). Docker connects the containers 
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to this network using a virtual Ethernet (veth) device. However, virtual 

machines normally use a TAP37 device. The problem in Kata Containers is 

that all devices are emulated through QEMU, and QEMU does not support 

veth interfaces. The solution implemented in Kata Containers requires  

the kata-runtime to bridge between the TAP device in QEMU and the host 

virtual network created by the container engine. Figure 4-18 shows this 

configuration graphically, with the traffic from the Docker virtual network 

running through the TAP device emulated by QEMU and then into the 

container in the VM.

Figure 4-19 shows the series of interactions between the Kata 

Containers components to create a container in a virtual machine. The 

virtcontainers library as part of the kata-runtime essentially does all the 

work to create the VM, start the Proxy, create the container sandbox that 

the container will run in, and then create the container, and finally start 

the kata-shim to communicate with the container.

Once the container is created, it can be started and used with the 

start message. In Kata Containers, the start message does not create 

the container as it does with most container engines. The container 

was already created with the create command, as shown in Figure 4-19. 

Instead, start just forwards the start message to the kata-agent, and the 

kata-agent starts the container’s primary process.

37 A TAP device copies all traffic from the network into the device, just like a “tap” 
on a phone line.
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 Kata Containers Summary

With Kata Containers, you can have security and performance. Virtual 

machines utilize hardware separation to provide increased containment 

between containers while creatively using different software abstractions 

to maintain the same software APIs to start up and control the containers 

themselves. As we saw with ACRN, there are areas of attack that could 

breech the system, including the QEMU virtualized drivers, and the Kata 

Shim and Runtime. Table 4-5 outlines the analysis of the Kata Containers 

against our containment security requirements.
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Figure 4-19. Kata Containers create command
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Table 4-5. Kata Containers Security Summary

Operating System 
Security Principles

Grade Comments

Memory Disclosure by 
Privileged User

B Most privileged attackers are restricted from 

viewing or tampering the VM memory. QeMu 

and the kVM, including their virtualized 

devices, remain as potential privileged 

attackers on the VM memory. platforms 

with multi-key total memory encryption 

(MktMe) can provide protection but should 

include integrity as well as encryption. See 

the following article for attacks on encrypted 

memory: https://arxiv.org/ftp/

arxiv/papers/1712/1712.05090.pdf

Memory Tampering by 
Privileged User

B

Execution Interference 
by Privileged User

C Most privileged attackers are restricted 

from viewing or tampering with workloads 

in the VM. QeMu and the kVM, including 

their virtualized devices, remain as potential 

privileged attackers on the VM execution, 

though this is expected and cannot be 

avoided. however, the kata Shim and 

runtime provide targets for privileged 

attackers to subvert workloads running 

in the VMs, and these processes are not 

protected.

(continued)
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Table 4-5. (continued)

Operating System 
Security Principles

Grade Comments

Data Leakage via Side 
Channels

C Side channels are most concerning for 

VMs and container systems, as there may 

be applications of different trust levels 

running inside different containers or VMs. 

updates to the linux kernel and microcode 

patches for the serious side-channel CVes 

are available. there continue to be security 

patches for kVM and QeMu, as late as 

october 30, 2018.

for additional information, see www.

qemu.org/2018/01/04/spectre/ and 

www.redhat.com/archives/rhsa-

announce/2018- October/thread.html 

for red hat kvm-qemu patches.

Execution Information 
Leakage via Side 
Channels

C execution leakage is similar to memory 

leakage and requires multi-key total 

memory encryption (MktMe) for protection 

but must also include integrity protection as 

well as encryption. Inference of execution 

is still possible under MktMe if page loads 

and misses are observable by the attacker. 

Just as we see in SgX, the operating system 

kernel remains as a potential attacker here.

(continued)

Chapter 4  Iot Software SeCurIty BuIldIng BloCkS

https://www.qemu.org/2018/01/04/spectre/
https://www.qemu.org/2018/01/04/spectre/
https://www.redhat.com/archives/rhsa-announce/2018-October/thread.html
https://www.redhat.com/archives/rhsa-announce/2018-October/thread.html


290

 Trusted Execution Environments
Even with the protections afforded to applications by containers and 

virtual machines, some applications are so sensitive that they require 

even greater separation protections. Examples of such applications 

include payment applications that deal with credit card transactions 

or authentication applications that deal with fingerprints or other 

biometrics. Trusted Execution Environments (TEEs) are application 

execution containers that are separate from the operating system and 

other applications on the platform and provide enhanced memory 

and execution separation characteristics. TEEs provide containment 

guarantees that prevent even the administrator or root from interfering 

with or peeking at the secrets of an application. This section looks at two 

such TEEs, Intel’s Software Guard Extensions (SGX) and Android Trusty.

 Software Guard Extensions

Software Guard Extensions (SGX) is a ring 3 TEE, meaning that SGX is 

directly accessible to applications, and applications running in SGX 

have the same type of privileges (ring 3) as other applications on the 

Table 4-5. (continued)

Operating System 
Security Principles

Grade Comments

Trusted I/O - trusted I/o is not supported in kata 

Containers.

Application Flexibility a any application can build into kata 

Containers, and the support of many devices 

through virtual device drivers improves the 

level of support and flexibility of the kata 

Containers solution.
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platform. SGX creates a TEE from a special memory cache and a secure 

mode of the CPU, removing the entire operating system from the trusted 

computing base (TCB); this means that unlike other TEEs, SGX does not 

even depend on secure boot to instantiate a trusted environment. For 

applications to use SGX however, the operating system must support 

access to the SGX instructions and the SGX memory cache. Support for 

SGX is available for Microsoft Windows and many Linux distributions, 

including Ubuntu Desktop. SGX has not been ported to Ubuntu IoT Core.

An application running SGX is called an enclave, and an SGX enclave 

is actually part of an application. An enclave is built like a dynamically 

loadable library (DLL) or shared object library (SO), to use Linux 

terminology. The enclave is loaded by an application and, from the 

operating system perspective, the enclave is an extension of the process 

space of the application that loaded it. There are three primary differences 

between a regular application and an enclave:

• The way the enclave memory is treated

• The way the enclave memory is loaded

• The way the enclave is executed

Memory for an enclave comes from a special pool of memory called 

the Enclave Page Cache (EPC). EPC memory is encrypted by the processor 

and is only accessible in SGX mode. Regular applications, or even the 

operating system, that try to access EPC memory see only encrypted junk. 

Only when an enclave is executing can the CPU provide the decryption key 

so the memory page contents can be viewed. Likewise writes to the EPC 

pages are also restricted. These guarantees are part of what makes SGX 

mode a TEE. Platforms must allocate memory into the EPC, thus making 

that memory unavailable for regular applications; a new feature of SGX is 

the dynamic allocation of pages to the EPC, but this is not supported on all 

processors yet.
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The second thing that makes SGX mode a TEE is the special 

way that code and data are loaded into an enclave. When a regular 

application asks the operating system for an enclave to be created, 

it provides the DLL (or SO) that contains the enclave’s code. That 

code must be signed. We will discuss how the code is signed and with 

what key in a moment. SGX includes a special loader that verifies the 

signature on the enclave as it is loading its code and data into EPC 

memory. If the signature indicates the enclave code is authentic, then 

the loader activates the enclave and the application can use the enclave 

functions. If the signature indicates the enclave has been tampered 

with or is not signed with an authorized key, then the load of the 

enclave fails. All code and initial data pages loaded into an enclave are 

verified as authentic, which indicates that the authorized party that 

signed that code also trusts that code. This makes the code running 

inside SGX trustworthy and another attribute of SGX as a TEE.

The final thing that makes SGX mode a TEE is the fact that it is 

a special mode of the CPU, and this creates execution separation 

between regular applications and enclaves. The execution of enclave 

code within SGX is separate from execution inside the operating system 

and the execution in applications. There have been side-channel 

attacks on SGX, just as there have been on other execution modes. This 

is a result of some shared micro-architectural state and shared cache 

state; there is also a dependency from SGX on the operating system to 

load and manage memory pages which creates another type of side 

channel. Changes to the CPU microcode have addressed the attacks 

that are known, and further changes are being made to hyperthreading 

mode to address additional issues. We talk more about this in the 

section on threats later.
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Creating code that can be run as an enclave requires a special key. 

This is because the enclave code must be verified by the SGX launcher 

when the enclave is loaded. The SGX launcher uses a key set by the BIOS 

during boot to verify enclave programs. If an enclave is signed using a key 

which itself is signed by the SGX launcher key in BIOS, then the enclave 

is trusted. By default, the BIOS includes an Intel key. Intel will sign an 

enclave developer’s key after they submit a formal request and fill out 

some paperwork. This means that any developer with such a key could run 

enclave code on any platform with an Intel processor. Intel realizes this 

should be a bit more controlled, so they allow the owner of the platform 

to change the key in the BIOS to a key of their own. This means that the 

platform owner can change the behavior of the SGX launcher to approve 

only enclaves that they themselves trust; this is done by changing that 

BIOS key.

SGX is a powerful mode on Intel processors that provides a trusted 

execution environment to applications. This gives applications the ability 

to put their most sensitive code inside a trusted execution container and 

keep the operation of that code, and any secrets that the code uses, away 

from other applications and even the operating system.

 SGX Security Summary

Table 4-6 provides a summary of the SGX system security features for 

comparison with other systems.
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Table 4-6. SGX TEE Security Summary

TEE Security Principles Grade Comments

Memory Disclosure by 
Privileged User

a SgX uses a separate memory cache that is 

encrypted by the Cpu and is separated from 

the operating system and other applications.

Memory Tampering by 
Privileged User

a SgX mode prevents access to memory 

pages in the epC unless an SgX application 

is executing, which locks out other 

applications and the operating system from 

tampering with the memory. page attributes 

are set and locked at page set up time 

when the enclave is loaded.

Execution Interference  
by Privileged User

B the operating system still controls the 

page tables, including allocation of pages 

and page eviction; a misbehaving oS can 

perform a doS on an enclave and perform 

some side-channel attacks using the 

enclave’s usage of pages. protection of 

secrets within an SgX enclave still requires 

the use of constant-time programming 

constructs and careful use of pages and 

cache to avoid such side-channel attacks.

(continued)
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Table 4-6. (continued)

TEE Security Principles Grade Comments

Data Leakage via Side 
Channels

C research on SgX side channels, including 

l1 terminal fault, have been reported. 

these are a result of microarchitectural 

side channels in the Cpu itself. Cpu patches 

are effective in mitigating most of these 

attacks, other than hyperthreading- based 

attacks.38 other options including forcing 

Cpu core scheduling are potential solutions. 

(https://www.usenix.org/system/

files/conference/atc18/atc18-

oleksenko.pdf)

Execution Information 
Leakage via Side 
Channels

B

Trusted I/O - trusted I/o is not supported in SgX.

Application Flexibility a any application can contain enclave code 

which can be loaded into SgX. Commercial 

development of enclaves requires a key 

from Intel, or the platform must be set up 

with a special SgX launcher key.

 Android Trusty

The Trusty TEE39 is an offering from Google that includes an operating 

system, a set of drivers for Android to communicate with Trusty, and APIs for 

applications to use applications running in Trusty. Trusty is an interesting 

TEE that has some very different properties as compared with Intel SGX.

38 https://software.intel.com/security-software-guidance/api-app/sites/
default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf

39 Google. “Trusty TEE.” https://source.android.com/security/trusty
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The first primary difference is Trusty is designed to operate on a 

completely separate processor from the main processor running the 

untrusted operating system. Trusty uses its own memory management 

unit (MMU) and provides virtualized memory for all the trusted apps 

running in Trusty. All the applications must be single threaded, though 

multithreaded applications may be provided in a future update.

The next significant difference with Trusty is that it can have access 

to devices, platform keys, and other resources and give access to those 

resources to Trusty applications. Since SGX runs in ring 3, it does not have 

privileged access to devices and does not currently have a trusted I/O 

mechanism.

The last difference in Trusty is that trusted applications are compiled 

into Trusty and run as an event-driven server. Applications cannot be 

added dynamically into Trusty – they must be designed and built into the 

Trusty kernel. And each trusted application running in Trusty is accessible 

to any application in the untrusted operating system; Trusty applications 

are not bound to a particular process in the untrusted processor.

 Trusty TEE Security Summary

Trusty is an interesting TEE that provides significant trust for platform 

developers, but it does not expose the capability for end users to create 

their own trusted applications.

Table 4-7 provides a summary of the Trusty TEE security features for 

comparison with other systems.
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Table 4-7. Trusty TEE Security Summary

TEE Security Principles Grade Comments

Memory Disclosure by 
Privileged User

a Because trusty uses a physically 

separate memory from the untrusted 

operating system and its own MMu, 

disclosure and tampering are avoided. 

the drawback is the additional hw cost 

for this separation.

Memory Tampering by 
Privileged User

a

Data Leakage via Side 
Channels

a

Execution Interference by 
Privileged User

a Because trusty uses a physically 

separate processor (or physical core) 

from the untrusted operating system and 

its own MMu, disclosure and tampering 

are avoided. the drawback is the 

additional hw cost for this separation.

Execution Information 
Leakage via Side Channels

a

Trusted I/O B trusted devices are built into the system 

and allocated when trusty software is 

compiled.

Application Flexibility d only the applications built into the trusty 

software are available – no dynamic 

loading of software applications or 

services is possible.

 Containment Summary
In this section, we reviewed different types of application containment, 

ranging from software-only containment using containers, hardware- 

assisted containment with virtual machines, hardware TEE with encrypted 

memory and special processor state with SGX, and full hardware 

separation TEE with Trusty. The more hardware used in the containment 
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solution, the greater the level of security provided by the solution. 

However, there is a balance to be had, as we saw with Trusty, because 

software is more flexible than hardware. A full hardware solution, while 

more secure, creates limitations to what can be accomplished and what 

usage models applications can execute.

 Network Stack and Security Management
This section signals the shift in our chapter from platform software 

to the management plane. Networking and connectivity are vital to 

an IoT system, and therefore the entirety of Chapter 5 is devoted to 

this subject. We leave the discussion of the network technologies and 

protocol stacks, including the threats, to that future chapter. However, 

before we leave the networking topic completely, we want to cover an 

important software library for network packet processing, the DPDK,  

as well as a few software packages that make security management 

easier.

 Intel Data Plane Development Kit
The Data Plane Development Kit (DPDK) is a set of software libraries 

and device drivers that make constructing software networking stacks 

with advanced features very easy and very performant. We talk about 

the DPDK because it is a useful component to speed the development 

of end-to-end security features and in the implementation of network 

security policies to enforce network restrictions. This library exposes 

the features and capabilities of network cards into ring 3, enabling better 

performance when processing packets at high speed. This is important 

for edge devices implementing industrial control loops, because the 

DPDK allows software to reliably receive and send packets within a 
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minimum number of CPU cycles. The Linux Foundation40 provides a 

downloadable version of the DPDK, and Intel contributes specialized 

features and drivers that directly leverage Intel silicon performance. 

The DPDK boosts packet processing throughput and provides multicore 

support, facilitates processing of packets in user space (ring 3) to avoid 

costly transitions between user and kernel space, and enables direct 

access to devices for high-speed IO.

The latest DPDK version is 18.05 and supports the following features:

• Support for multiple NIC cards, including virtualized 

drivers

• Support for cryptographic operations in cryptodev 

library

• Support for event handling in the eventdev library

• Baseband wireless in the bbdev library

• Data compression support in the compressdev library 

(new in DPDK 18.05)

Figure 4-20 shows the architecture of the DPDK library.

40 https://www.dpdk.org/ and documentation is available online at http://fast.
dpdk.org/doc/pdf-guides/
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The DPDK is very comprehensive and supports multiple hardware 

capabilities across Intel, AMD, ARM, NXP, and other hardware 

manufacturers. In keeping with our theme in this chapter, let us review 

the security capabilities and the Intel-specific hardware features that are 

supported through the DPDK.

The DPDK supports standard modes for the Advanced Encryption 

Algorithm (AES), including Cipher Block Chaining (CBC) mode, Electronic 

Code Book (ECB) mode, Counter (CTR) mode,11 and a special mode used 

primarily for block storage devices, XTS41 mode. All modes are supported 

Intel® DPDK Libraries

Buffer Management
Customer

Application

Customer
Application

Customer
Application

Queue Management

Packet Flow Classification

NIC Poll Mode Drivers

Environmental Abstraction Layer

Linux Execution Environment

Target IA Platform

Figure 4-20. The Intel DPDK library structure

41 XTS is actually considered a tweak cipher, a modification of the underlying 
cipher using parameters. XTS stands for XEX-based tweaked-codebook 
mode with ciphertext stealing. XEX is a tweak cipher mode, which stands for 
XOR-Encrypt-XOR, which was designed by Phillip Rogaway, 2004, “Efficient 
Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and 
PMAC,” http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf
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with the standard key sizes, 128-bits, 192-bits, and 256-bits. DPDK also 

supported DOCSIS encryption and DES and 3DES.42

In addition to encryption, the DPDK supports hashing algorithms 

using the SHA243 algorithms, SHA2-256, SHA2-384, and SHA2-512. The 

older SHA1 algorithm is also supported, but should only be used for 

interoperability reasons; the use of SHA2-256 should be the minimum 

requirement for IoT systems.

The DPDK supports the Intel SHA-NI and AES-NI instructions (see 

Chapter 3, section “CPU hosted Crypto implementations”), providing 

access to hardware acceleration of these algorithms. In addition, AES- 

GCM, the Galois Counter Mode of AES, is further enhanced by combining 

the AES-NI instruction with carryless multiplication instructions to speed 

performance of the Galois integrity tag calculation.44

The DPDK provides compatibility with other software and hardware 

implementations of cryptography, even providing a full software 

implementation using the OpenSSL open source cryptographic library. 

Using these different plugins for the DPDK cryptodev library, a fully 

portable application can be built that makes use of the best hardware 

features the platform has to offer. The use of the DPDK allows applications 

42 DES, Data Encryption Standard, and 3DES, Triple Data Encryption Standard, 
are older modes included only for interoperability. It is strongly recommended 
to avoid use of these modes unless they are required for interoperability. In IoT 
systems, there is no good reason to use such modes.

43 SHA, Secure Hash Algorithm, are algorithms defined in the NIST Secure Hash 
Standard (SHS) for cryptographic hash algorithms. The older version SHA1 
is deprecated for most uses today. The SHA2 family of algorithms, https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, covers multiple hash 
digest bit lengths.

44 https://software.intel.com/en-us/articles/intel-carry-less-
multiplication-instruction-and-its-usage-for-computing-
the-gcm-mode and https://software.intel.com/en-us/articles/
aes-gcm-encryption-performance-on-intel-xeon-e5-v3-processors
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direct access to the best cryptographic acceleration hardware of the Intel 

platform, and compatibility to other platform’s cryptographic accelerators 

as well.

 Security Management
Security management is the combination of active processes and 

executed procedures during installation, configuration, operation, and 

decommissioning of systems that preserves the confidentiality, integrity, 

and availability of those system and network resources for the approved 

mission(s) of the organization. This chapter focuses on software, not 

processes and procedures. However, there are software tools and agents 

that directly aid the security management process. We look at a few of 

those here, just for completeness in our discussion.

 Secure Device Onboarding

The very first issue requiring a solution in an IoT system is device 
provisioning or how to provision devices so they can connect to the 

correct back-end cloud system or device management system. A common 

solution is to preprovision devices during manufacturing to connect 

to a specific cloud agent. Microsoft Azure Sphere uses this approach. 

While it works, that solution locks the device into a specific cloud, and 

the approach can have impacts on high-speed manufacturing. A better 

approach is to provide flexible and secure onboarding for any device to 

any cloud system. Intel’s Secure Device Onboard (SDO45) provides this 

security capability using an EPID46 device identity key. Figure 4-21 shows 

the provisioning lifecycle of a device, from manufacturing to installation. 

This can be any device from a gateway or server down to a smart sensor.

45 https://software.intel.com/en-us/secure-device-onboard
46 See the discussion of Intel’s Enhanced Privacy ID (EPID) in Chapter 3.
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Figure 4-21. Intel’s Secure Device Onboard preserves device privacy 
and provisions “Any Device to Any Cloud”

SDO utilizes a few hardware security features to construct this high- 

level service, including

• The platform’s root of trust containing an identity key; 

an EPID group signature key is the preferred identity 

key, since it provides privacy for the device installation, 

but an RSA or ECDSA key may also be used.

• The Intel SDO Client firmware executing inside a TEE; 

SDO currently uses the CSME discussed in Chapter 3 

for its TEE, but SGX or Trusty are alternative TEEs for 

SDO.

• Secure storage on the device to hold the manufacturer’s 

public key, a GUID, and an ownership credential.

During manufacturing, a digital record of the device is created, which 

is referred to as the ownership credential. The ownership credential 

includes the device’s unique identifier (GUID) and the owner’s public 

key; the owner credential is signed by a private key belonging to the 

manufacturer and includes an integrity checksum to prevent modification 

or forgery of the ownership credential. The manufacturer endorses the 

ownership credential by digitally signing it with the manufacturer’s private 

key when the device is sold. This endorsement can be repeated in the 
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supply chain, allowing a deferred binding between the credentials stored 

in the device and those of the device management service (e.g., running 

within a particular AWS account) who will control the device in operation.

When the device is installed (Step 1 in Figure 4-21), the device contacts 

Intel’s Secure Device Onboard Rendezvous server and is connected with the 

device management service which was specified by the device’s owner. As a 

precursor to the device install step, the preferred device management server 

must have been registered with the SDO Rendezvous service by the device 

owner using the ownership credentials. The SDO protocol between the 

device and Rendezvous server validates the ownership credential, as well 

as the authenticity of the device and the Rendezvous server to each other. 

At the end of the SDO protocol, the device is forwarded to the proper device 

management service to complete provisioning (Step 2 in Figure 4- 21),  

allowing the device management service to install a management agent on 

the device. SDO prevents unauthorized entities from taking control of the 

device and gives the end customer flexibility to provision the device to any 

management service or cloud back end. The device management service 

can then update the device with new software and link the device to the 

preferred back-end cloud system (Steps 3 and 4 in Figure 4-21). Intel SDO 

can also be reactivated by the device owner at any time, allowing the device 

to be reprovisioned or for device resale.

Intel Secure Device Onboarding solves the first problem an IoT device 

encounters – how to securely connect to the right back-end service for 

management and operations. Using hardware security elements inherent 

in the platform, SDO provides a low-cost and flexible solution with high 

security.

 Platform Integrity

Once a device is provisioned, maintaining the integrity of the platform 

software is vital to keeping an IoT system operating. Platform integrity 

means ensuring that a device has booted the platform software intended 
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by the system and that the platform firmware, boot loader, and operating 

system have not been corrupted. Device management software can query 

the platform’s integrity state and determine if something needs to be 

updated or remediated. But, some software element must reside on the 

device to calculate the platform integrity and then communicate it up to 

the device management software in a meaningful way.

In Chapter 3, we discuss protected boot technologies included in 

Intel platforms, including PTT47 and TPMs. These hardware elements 

use software in the operating system, boot loader, and BIOS to measure 

the platform during boot. These measurements are stored in hardware- 

protected storage in PTT or the TPM. The software to access these 

measurements is included in the trusted services stack (TSS) that was 

written according to the Trusted Computing Group’s (TCG) specification 

for TPM2. As shown in Figure 4-22, this software stack is comprehensive 

and, besides platform integrity measurement, includes features for other 

TPM operations including encryption, key generation, secure storage, 

and attestation. The application-level APIs are all provided in the System 

API (SAPI)48 or the Enhanced SAPI (ESAPI)49 and are defined by the TCG; 

the FAPI is still under development. The Feature API (FAPI) would be the 

easiest to use and abstracts many details of the TPM from the application, 

while the SAPI provides near-transparent use of the TPM commands and 

responses.

47 Platform Trust Technology (PTT) and Trusted Platform Module (TPM)
48 https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_
Version-1.1_Revision-22_review_030918.pdf

49 https://trustedcomputinggroup.org/wp-content/uploads/TSS_TSS-2.0-
Enhanced-System-API_V0.9_R03_Public-Review-1.pdf
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 Network Defense

IoT systems are all about communication, and without some type of 

defensive measures, these IoT devices would be easy targets for network 

attackers. Common network defense capabilities including firewalls and 

intrusion defense software are important to add to any IoT device. Some 

devices are so small and so resource constrained that no attempt is even 

made to add any network protections. However, there are tools that can 

provide some reasonable protections and should be considered.

The first step of network defense, of course, is to limit the applications 

and services that open ports to listen for connections. In fact, if your IoT 

device is so resource constrained that you are considering putting no 

network defenses on the device, then there should be no listening services 

either – only outgoing connections. But because firewalling is the most 

basic defense, a program that intercepts the incoming network traffic to 

check for anomalies is important and should be considered.

On Linux distributions, the recommended program for network defense 

is TCP Wrappers. This program can be called from inetd or configured into 

the hosts.allow and hosts.deny configurations. TCP Wrappers allows the 

system to be configured to allow or deny connections based on the network 
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•   1:1 mapping to

TPM2 commands
•   No file I/O
•   No crypto
•   No heap
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•   Dynamic loading / diopen API
•   No crypto, heap, file I/O

TPM Access Broker and Resource Manager (TAB/RM)

•   Potentially no file IO - depends on power mgmt.
•   Power management

TPM Device Driver

•   Pre-boot log handoff
•   Device interface (CRB / polling)

•   No crypto
•   Abstract Limitations of TPM Storage

•   Requires heap
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Figure 4-22. Intel TPM2 software stack (TSS)50

50 https://software.intel.com/en-us/blogs/2018/08/29/tpm2-software- 
stack-open-source
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address and protocol. Additionally, other commands can be executed when 

rules in the TCP Wrappers configuration are triggered, such as sending 

an alert email or adding an entry to the syslog. Configuration of the TCP 

Wrappers file can provide extensive filtering and can be set up so that normal 

traffic and operations easily get through without any overhead. Other options 

for firewalling include directly using the kernel netfilter or configuring the 

netfilter through ipchains. Significant material is available both on the Web 

and in Linux books, so that information will not be repeated here.

Finally, good logging for what is happening on the network and on a 

device is vital to reconstructing an attack or understanding an attempted 

intrusion. There are numerous programs for attack detection that operate 

on both Linux and Windows and can be compiled for other operating 

systems as well. TCPdump and snort51 are common programs for detecting 

network intrusions or malformed packets on a device. Snort can be turned 

into a full-scale network intrusion detection system where devices capture 

traffic and send dangerous looking packets to a central server for deeper 

analysis. Suricata is a similar robust open source solution for intrusion 

detection. These types of intrusion detection system are very useful for 

IoT system for early detection of attacks and fast response to prevent such 

attacks from bringing down the IoT system.

 Platform Monitoring

Security management includes monitoring a device and its workload for 

anomalies, in the event that a network attacker is able to circumvent the 

network defenses in place on the device. The monitoring functions are tied 

into the device management agent on the platform, allowing problems to 

be reported back to the management servers.

In the section on Zephyr, we discussed watchdog timers used to 

monitor for long running privileged threads. Remember the problem in 

Zephyr was a privileged thread that does not yield back to the operating 

51 https://www.snort.org/
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system which can then starve out the execution of other processes on 

the system. The operating system can prevent this by using a hardware 

timer started before releasing control to the high-privileged thread; if 

the thread does not yield back in a certain amount of time, the hardware 

timer causes a non-maskable interrupt (NMI) that stops execution of 

everything else and returns control back to an interrupt service routine 

(ISR) in the operating system. When the operating system regains control, 

it can terminate the offending thread and report the situation back to the 

management service. Sometimes this doesn’t work. It often fails because 

the attacked thread had enough privileges on the system, allowing the 

attacker to disable or continually reset the timer, effectively disabling the 

watchdog.

There are other unique options for performing platform monitoring 

that can identify side-channel attacks or threads that have potentially been 

corrupted by network attackers. Several techniques are published[52, 53] 

that utilize hardware performance counters in the CPU microarchitecture 

to characterize and monitor software and detect when attacks are likely 

present. This information can be used to shut down the attacking threads 

or reboot the system into a known good state.

 McAfee Embedded Control

There is one last software capability that deserves mention in security 

management that provides some unique system authorization 

capabilities. McAfee Embedded Control (MEC)54 is a software program 

52 A Survey of Cyber Security Countermeasures Using Hardware Performance 
Counters, https://arxiv.org/pdf/1807.10868.pdf

53 Cache-Based Side-Channel Attacks Detection through Intel Cache Monitoring 
Technology and Hardware Performance Counters, https://hal.inria.fr/
hal-01762803/document

54 https://www.mcafee.com/enterprise/en-us/products/embedded-control.html
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that provides extended access control and integrity to IoT platforms. MEC 

protects both executable as well as data files on a platform, ensuring that 

those files are not accidentally or maliciously modified, even by a user with 

administrative rights. MEC creates a new privileged user on the platform 

that is only accessible through the MEC admin interface and manages 

a database of integrity checksums over directories and files specified by 

the MEC admin. MEC includes an augmented launcher that is integrated 

with the Windows or Linux operating system, allowing MEC to check the 

integrity of executable files before launch. The access control database 

allows MEC to also specify what services and devices an executable can 

access, providing even stricter control on running applications. This 

means that even if a program were maliciously corrupted at Runtime, the 

attacker would not be able to use unauthorized system resources, and ROP 

or JOP attacks would only be able to modify the use of authorized system 

resources, not fundamentally change the resources to which the program 

has access.

MEC creates a very powerful protection for IoT devices, and 

this system works extremely well when the platform’s software and 

configuration does not change regularly. MEC can be integrated easily 

in McAfee ePO device management suite as well (see the discussion in 

the “Device Management” section). In some versions of MEC, dynamic 

protection of memory is also provided, limiting the effect of buffer 

overflows. A limited version of MEC is included in Intel’s IoT Gateway 

Software Suite,55 and McAfee continues to add improvements and support 

for other operating systems in MEC. Upgrading to the fully featured 

McAfee Embedded Control Pro from the basic MEC version included in 

Intel’s IoT Gateway is a smooth transition, fully supported by the MEC 

admin interface.

55 https://shopiotmarketplace.com/iot/index.html#/details?pix=58
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 Network Stack and Security Summary
In this section we looked at various software components that can provide 

effective network defense and attack detection, and even be used to 

build comprehensive end-to-end security using the cryptographic library 

in the DPDK. Common IoT problems like platform integrity, device 
provisioning, and system authorization can be solved using specialized 

packages like the TSS, Intel SDO, and McAfee Embedded Control. While 

these problems cannot be solved for free, the cost in additional compute 

resources and Runtime RAM may likely provide the difference between 

a platform that is regularly being attacked and draining the maintenance 

and remediation budget and a platform with adequate tools and packages 

that is resilient to attack.

 Device Management
IoT systems are composed of thousands of devices, and with so many 

devices, manual management is prohibitive. In other cases, IoT devices are 

physically located in remote or difficult-to-reach locations, increasing the 

cost of sending out a repair person in a “truck roll.” Autonomous device 

management using a cloud-based management solution is essential to 

preserving an IoT system’s return on investment (ROI).

Device Agent

Device
Event Input

Command
Queue

Device Management System

Device
Information
Database

Management
Console

Figure 4-23. Notional cloud-based device management system
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Cloud-based device management systems include a few common 

elements, as shown in Figure 4-23. On the device, a management agent 

performs the actions requested by the management system and also 

provides data to the management system on the device’s health. How 

such an agent is installed on a device can sometimes be an issue; however 

device provisioning solutions like SDO covered in a prior section provide 

convenient solutions to this issue. A management console, normally 

implemented as a browser-based web application, retrieves data from the 

device management system and presents usable information to system 

administrators, allowing admins to schedule maintenance, perform 

actions on groups of devices, or even dive into details of a specific device 

to troubleshoot problems or investigate trouble tickets. The actual device 

management system in the Cloud is what separates different systems. 

Generally, each management system must have three elements:

• A Device Event Input queue allowing devices to provide 

status and report problems

• A Command Queue allowing administrators to push 

out commands to devices

• A Device Information Database containing information 

on each device in the system

The security services that device management system must provide 

include

• Authentication: Ensures that both devices and 

administrators on the device management system are 

who they claim to be. Cryptographic credentials issued 

to these parties are essential to maintaining proof of 

identity for all entities on the system.
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• Authorization: Commands to devices can be 

disruptive to the services provided by the IoT system, 

or even potentially destructive to the device itself. A 

reboot command to several devices might cause a 

temporary denial of service, but a forced operating 

system update with corrupt software could bring down 

a system for days or even months.

• Confidentiality and Integrity: Although data sent 

via device management systems do not typically 

include personally identifiable information (PII), 

the commands and device health data can contain 

sensitive information. Integrity of this data is vital to 

prevent tampering or accidental corruption of the data 

in transit, but confidentiality may also be warranted 

depending on the information contained in commands 

and data updates from devices.

• Nonrepudiation: Guaranteed proof of source 

attached to health data or even the collection of other 

environmental data around devices could be crucial to 

the IoT system. Guaranteeing data originated from a 

particular device is part of data provenance.

• Defense in Depth: Is a layering of defenses to protect 

system elements from hacking. This includes attacks 

on the devices, gateways, and on the cloud systems 

and management consoles. Because the device 

management system represents the most significant 

network attack surface, and many of the software 

elements attached to the device management 

agents require elevated privileges to perform their 

operations, the device management system itself 
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must be constructed to prevent attackers from gaining 

control over the IoT systems. Careful attention to the 

construction of both the device agent and the interfaces 

and APIs presented by the cloud system is necessary to 

prevent successful attacks.

This section reviews two different device management systems, one 

designed for small to medium deployments (Mesh Central) and one 

designed for large deployments (Helix Device Cloud).

 Mesh Central
Mesh Central is a device management solution appropriate for small- to 

medium-sized IoT deployments. Mesh is an agent technology, which 

means that each managed device must be running the Mesh Agent 

software component. Mesh allows a Mesh Administrator to gain remote 

access and control of their devices through a variety of means, including 

direct shell access, dashboards, and connection via custom web applets. 

Mesh also provides peer-to-peer (i.e., Machine-to-Machine [M2M]) 

interactions, allowing devices to communicate directly to each other, 

without a human administrator being involved; this enables the IoT M2M 

type actions for true IoT automation.

Mesh Central is an Intel open source project and has a wide array of 

services targeted for remote monitoring and management of computers 

and devices. Users can manage all their devices from a single web site, 

no matter the device location or the device position behind routers and 

proxies, and this is all possible without needing to know the device’s IP 

addresses. Mesh works by having each device generate a new unique RSA 

key pair, and the hash of the public key becomes the device’s identity. 

Mesh devices register to the Mesh Central Cloud by communicating 

to devices around them and finding a path to the Mesh servers. This 

information is found in a signed policy file that is shared among the 
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devices; however, this requires that devices be preprovisioned with a Mesh 

client and a policy file, otherwise, and IP address and a path to the device 

are needed for solutions like SDO to work properly.

The following is a partial list of the actions a Mesh Administrator can 

do to their connected devices:

• Opening a shell to run commands directly on the 

device

• Opening the device’s graphical desktop, displaying 

the device’s GUI, and providing mouse control on the 

device

• Installing, removing, and updating software on the 

device

• Activating a particular piece of software on the device 

or sending commands to that software (as if on a 

terminal on the device)

• Viewing files or logs on the device

The following is a brief list of Mesh Central architectural elements:

• Each device is referred to as a node and is identified by 

a secure, provable identifier based on a self-generated 

(device-generated) RSA public key.

• Nodes are organized into an overlay network, meaning 

routing of Mesh messages occur from the Mesh server 

to the device, but potentially hopping from one device 

in the Mesh to another device in the Mesh in order 

to reach the actual destination device; this path may 

traverse different communication networks connecting 

each device.
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• Agent and Server APIs are available for generic, secure 

messaging for Admin-to-Device and Device-to- Device 

messaging.

• Agent Software Update is provided over-the-air 

(network) using signed and verified updates.

• Direct Connection from an admin web browser (via 

web sockets) directly to devices for custom applications 

in the browser to interact with, query, or control 

devices.

• A Mesh Developer API to add custom actions into the 

Mesh Agent running on devices.

Database
(MSSQL)

MSMQ

Swarm
Server

Connections via
TCP & UDP Port 16990

INTERNET

Administrator view
thru browser or
custom web application

Some Mesh Nodes have
direct access to the internet,
but others have access only
by hopping through another
device via Mesh

Mesh of loT devices
And access gateways

AJAX Server

Figure 4-24. Mesh Central device management system architecture
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As shown in Figure 4-24, Mesh Central is actually composed of four 

different servers:

• The AJAX Server: Provides the primary interface for 

Mesh administrators

• The Swarm Server: Provides the primary interface for 

devices into Mesh

• The Database: Usually Microsoft SQL Server, stores 

data about devices

• The MSMQ: Provides message delivery among servers

Mesh operates by having a bit of software, called the Mesh Agent 

Software, on every device. This agent runs under a privileged account on 

the device so that it is able to perform management on the device (e.g., run 

software, install applications and services, activate hardware, etc.). The 

Mesh Agent also has a configuration file, called the Mesh Agent Policy File, 

that controls what the agent is allowed to do and information about the 

Mesh control server.

Table 4-8. Mesh Central Device Management Analysis

Device Management 
Security Principles

Grade Comments

Authentication C Mesh requires devices to generate their own 

identity keys in software and then registers 

devices to the Mesh Swarm server without any 

device attestation or proof from a hardware 

root of trust. this forces device administrators 

to know the hostnames of devices that should 

be registering and ignore or boot off devices 

they do not trust.

(continued)
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Device Management 
Security Principles

Grade Comments

Authorization C authorization of commands requires an 

additional key be shared from the Mesh 

administrator, because commands are not 

protected end to end, only hop to hop. without 

this additional layering of authorization (not 

natively provided by Mesh), commands could 

be forged by a rogue Mesh node.

Confidentiality and 
Integrity

a all messages traversing the Mesh are 

protected with strong integrity and 

confidentiality, and session keys are 

regenerated frequently. protections are only 

provided hop to hop, however, not end to end.

Repudiation d Mesh does not leverage a hardware root of 

trust, so all keys are software generated. while 

all the right actions (e.g., encrypted messages, 

rSa identity keys, verification by clients) are 

performed, there is no protection of credentials 

on the device if an attacker were able to 

compromise software on one of the systems.

Defense in Depth d Mesh runs the Mesh agent as root by default; 

significant rework of the client software is 

required to segment high privilege tasks to 

protected software agents.

Table 4-8. (continued)
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 Wind River Helix Device Cloud
Helix Device Cloud (HDC) is an IoT device management solution by Wind 

River. HDC is able to connect to IoT devices and gateways, manage device- 

generated data, automatically respond to device events, and perform 

remote (OTA) software updates. HDC includes a significant back-end 

system using Kafka that enables intelligent autonomous management of 

devices and provides easy and secure device onboarding and provisioning 

through Intel Secure Device Onboard (SDO). HDC adds an agent protocol 

called DXL (Data Exchange Layer) to each edge device that enables 

intelligent processing of data and secure end-to-end communication.

With Helix Device Cloud, administrators can

• Maintain secure two-way connectivity to gateways and 

devices

• Perform flexible data collection to the Cloud and even 

distribute that data across multiple edge nodes using 

DXL’s powerful edge capabilities

• Receive immediate notification of device issues and use 

HDC Agent tools for remote diagnosis and repair

• Securely onboard new devices using SDO and upgrade 

new devices when first activated in the field

• Push new updates out to connected devices

• Collect and import data from IoT devices directly to 

enterprise systems
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HDC focuses on the device management and edge aggregation 

services; HDC does not address applications and data analytics, but 

provides mechanisms for these services to reach devices through HDC 

using McAfee ePO plugins and call-outs to external services. For a more 

complete overview of HDC, see the HDC Overview whitepaper.56
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Figure 4-25. Wind River Helix Device Cloud device management 
architecture

Figure 4-25 shows the architecture of HDC. Devices connect to HDC 

Cloud using HTTP, DXL, or MQTT57 protocols, and enterprise services 

leverage the data in HDC through a set of REST APIs exposed by HDC 

on the back end. Within HDC, there are three primary components: 

the device connection protocols, the data bus that organizes and routes 

messages and events, and the database that holds structured and 

unstructured data, analytics, metadata, and compute workloads. A fourth 

56 https://software.intel.com/en-us/iot/cloud-analytics/cloud-helix
57 MQTT – Message Queuing Telemetry Transport is an ISO standard protocol 

based on the publish-subscribe design pattern. MQTT is described in more 
detail in “Message Orchestration” section.
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part of HDC provides an extension interface to add features to HDC using 

the same extension interface as McAfee ePO,58 allowing them to leverage 

each other’s extensions.

One of the most interesting elements of HDC is the data bus and real- 

time processing rules. HDC utilizes an open source topic organization 

server called Kafka. With Kafka, incoming messages from devices are 

filtered through a set of rules to determine appropriate actions. Actions 

can include storing the message data into a part of the database, passing 

the message off to an ePO plugin, generating an alert to an administrator, 

or even activating some compute element in the database to create an 

immediate response to the reporting device. In fact, with the Kafka rules, 

multiple actions can be executed as a result of receiving a single message.

HDC is a secure device management system due to its use of Intel 

Secure Device Onboard (SDO) to provision devices and the use of DXL 

for secure communication. As discussed in the section on security 

management, SDO leverages the device’s root of trust to authenticate 

the device during onboarding, ensuring the device is not being spoofed 

by an attacker. During onboarding, HDC leverages the secure channel 

authenticated with the device’s root-of-trust key to install a new device 

identity key. DXL uses this new key for authentication back to HDC 

during TLS session establishment, making all messages passed over TLS 

authenticated back to the device. SDO also installs a trust anchor key for 

the HDC server; a trust anchor key is a key that is inherently trusted for a 

particular purpose. The DXL client stores the HDC trust anchor key so that 

it can authenticate the HDC server over TLS. On platforms that support the 

SGX TEE (see the section on software containment), the DXL client uses 

SGX to protect its identity key and the trust anchor key from attack by any 

malware that is able to infiltrate the device.

58 McAfee ePO is an enterprise Policy Orchestration product that provides a unified 
and centralized management console for security management.
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Table 4-9. Helix Device Cloud Device Management Analysis

Device Management 
Security Principles

Grade Comments

Authentication a the device and hdC server are authenticated 

with rSa key pairs that were established 

over a secure channel through Sdo using a 

hardware root-of-trust key.

Authorization a all commands down to the device are 

verified as authentic through dXl using a 

trust anchor key established during device 

provisioning through Sdo.

Confidentiality and 
Integrity

a all data and commands are protected over 

tlS.

Repudiation a the strong identity keys established using 

Sdo validate the true device identity and link 

that to the rSa identity keys. any actions or 

data are tied to this identity key and cannot 

be repudiated.

Defense in Depth a dXl uses the SgX tee to ensure its 

operations and key material are not 

compromised, even if the platform is infected 

with malware.

 Device Management Summary
Managing the devices of an IoT system is critical to security. Since 

all the management services occur over the network, attacks such as 

device spoofing, message forgery, and data disclosure are all possible. 

Although basic security protections over messages are possible, in  
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IoT system, attacks on the devices themselves can compromise key 

material and lead to questions regarding the provenance of data 

collected in the Cloud. The use of hardware security capabilities, like 

hardware root-of-trust keys and Trusted Execution Environments (TEEs), 

drastically improves the security of device management systems and, 

due to the lower risk of attacks, reduces the total cost of ownership of  

IoT systems.

 System Firmware and Root-of-Trust Update 
Service
At the beginning of the chapter, in the “Operating Systems” section, 

we discussed the update problem. The Linux distributions reviewed in 

that section had different strategies for solving consistency among the 

packages and services being updated. However, the section identified 

a remaining problem regarding firmware updates which is how to gain 

the required access to firmware on the platform with the ability to 

perform updates.

Firmware is notoriously difficult to update. It typically resides in 

flash or other nonvolatile storage that is locked or inaccessible even 

to the operating system itself. The reason for this inaccessibility is 

security. Firmware is part of the most trusted parts of a system. The 

BIOS is the first part of the system that executes during power-on and 

represents the root of trust of the entire system. Other firmware may 

implement root-of-trust functions, such as system measurements, 

secure storage, or attestation reporting. Firmware in the security 

engines control cryptographic algorithms and keys. Firmware in 

network controllers (Ethernet, Wi-Fi, Bluetooth, Zigbee, LoRa) have 

access to all traffic entering and exiting the device and may even have 

access to cryptographic keys for encrypted traffic.
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On personal computer-like systems using BIOS, the standard way 

to perform secure firmware updates is through the Capsule Update.59 A 

Capsule Update is a function in the BIOS that is activated by the operating 

system. The Capsule Update function is provided the addresses of capsules 

in memory containing updates for certain firmware, and then the system 

performs a soft reset. When BIOS takes control of the platform, it verifies 

the capsules in memory, and if they are authentic and appropriate for the 

platform, the capsules are used to update the appropriate firmware. For 

Capsule Update to work properly, the operating system must be capable of 

engaging the update service.

Not all devices support the BIOS Capsule Update. And of course for 

systems without BIOS, or for IoT systems that do not use standard BIOS, 

some other solution is required. In these cases, some type of custom 

update procedure is required; as an example, see the update procedure 

required for the Infineon TPM, a standard device on many PC platforms 

(https://www.infineon.com/cms/en/product/promopages/tpm-update/ 

and https://support.microsoft.com/en-us/help/4096377/windows- 

10- update-security-processor-tpm-firmware).

 Threats to Firmware and RoT Update
Firmware update for IoT systems is being addressed by an Internet 

Engineering Task Force (IETF) working group named SUITS (Software 

Updates for Internet of Things). The SUITS working group60 compiled 

a detailed set of threats and requirements that systems implementing 

updates should adhere to.

59 https://software.intel.com/en-us/blogs/2015/06/23/better-firmware-
updates-in-linux-using-uefi-capsules and https://software.intel.com/
en-us/blogs/2017/02/04/signed-uefi-firmware-updates-in-edk-ii

60 https://datatracker.ietf.org/wg/suit/documents/ – At the time of this 
writing, all documents in SUIT are still in the draft stage, but should be approved 
as full RFCs by the time of publication.
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• Modified/Malicious Firmware Updates: The first 

threat considered when updating firmware is corrupted 

or maliciously modified firmware. If an attacker is 

able to modify the firmware in transit to the platform, 

or even during the process of updating the firmware, 

then the attacker is able to inject features into the 

device. Accidental corruption is just as dangerous since 

corruption of firmware during the update process can 

brick a system (cause the system to be permanently 

broken).

• Rollback to Old (Vulnerable) Firmware: The second 

common threat considered for firmware is rolling 

back the firmware to an older version. An attacker 

that is able to force a system to reload an older version 

of firmware may be able to force an old vulnerability 

back into the platform, allowing them to take over the 

system. This is especially dangerous since the platform 

owner erroneously believes they are protected from that 

vulnerability and may not be watching for indications of 

compromise for that particular attack. 

• Unauthorized Update Request: An often overlooked 

threat to firmware and RoT updates is the person or 

entity authorized to update firmware on the platform. 

Allowing a network attacker to force an upgrade 

of firmware is problematic. Obviously, an attacker 

successfully pushing corrupt or invalid firmware into 

a platform would create a problem, but even pushing 

a valid firmware update could create instability in 

the platform or a denial of service. Firmware update 

mechanisms should validate the entity requesting 

the update is authorized to do so, either because they 
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are acting under an administrator account or their 

request is cryptographically proven to originate from an 

authorized administrator.

• Unknown Source of Firmware: Even if an authorized 

entity issues the firmware update request, the actual 

source of the firmware (the firmware code itself) 

should come from a known and approved source. 

Firmware that is intended to update an Infineon TPM 

device should not be written by Broadcom; there are 

potential exceptions, most notably in cases where 

an OEM repackages an update for their device (i.e., 

HP repackaging a TPM update for the devices they 

manufacture). 

• Application of Incorrect Firmware: Finally, firmware 

must be matched to the system model and version 

of the hardware on which they execute. There can be 

many different revisions of hardware components, and 

firmware for one component may not operate properly 

on a different stepping or version.

 Turtle Creek System Update and Manageability 
Service
Turtle Creek is the code name for an Intel product that manages 

application and platform updates over the air for Intel® Atom, ARM, 

Core, and Xeon processors. Turtle Creek allows a system administrator 

to remotely schedule and deploy software updates and recover 

malfunctioning systems to ensure business continuity and system 

availability. It is a cloud-based system that interfaces to many other device 

management systems, including Helix Device Cloud and Mesh Central 

which were covered in a previous section.
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Turtle Creek is a microservice cloud system where each feature of the 

system is implemented by a microservice in a container hosted on the 

Cloud. This allows customized deployment of Turtle Creek features, which 

include the following capabilities:

• Update of the OS, application, and system firmware on 

supported platforms

• Recovery of platform software and firmware to known 

good status (factory reset)

• Control of system restart and shutdown

• Device telemetry reception for device health, data logs, 

and management messages

• Device diagnostics to execute pre-install and  

post-install checks

• Rollback recovery for any update

• Device system performance monitoring (e.g., 

CPU utilization, memory utilization, container 

performance)

• Centralized configuration manager that stores 

and retrieves configuration for devices used by all 

microservices, supporting various formats including 

XML, Consul database, or name-value pairs

• Comprehensive security using cryptographic signature 

verification for all packages using the TPM 2.0 for 

key and secret management and secure MQTT 

for messaging using TLS with end-to-end mutual 

authentication based on X.509 certificates.
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Figure 4-26 shows the architecture of the Turtle Creek client software. 

Turtle Creek separates updates into three different categories based on 

the type of update and the repository from which the update packages 

are retrieved. These include Application Over-the-Air (AOTA), Software 

Over-the-Air (SOTA), and Firmware Over-the-Air (FOTA). AOTA supports 

update of application and individual software vendor’s services via an 

update mechanism based on packages and signed RPMs using SMART 

and Docker container update mechanisms. SOTA supports operating 

system updates from an OS vendor’s repository, which includes the use 

of the OS standard update mechanisms, like Ubuntu Update Manager 

and Mender61 (for Yocto Linux). FOTA supports device or component 

manufacturer’s ability to update custom firmware over the air and 

integrates firmware-specific functionality to update the device firmware 

components. The primary mechanism for FOTA support is BIOS Capsule 

Update.
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Figure 4-26. Turtle Creek architecture

61 Mender is a client software embedded in Yocto that enables updates to the 
operating system to be installed. https://docs.mender.io/1.6/artifacts/
building-mender-yocto-image
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Turtle Creek’s contribution to the IoT platform is twofold. First it 

unifies multiple disparate platform and software update mechanisms 

under a single management tool, making the process of managing and 

distributing updates easier. Second, it incorporates significant security 

protections on the update process, overlaying them on top of existing 

capabilities where necessary. Turtle Creek creates a manifest format to 

convey update commands and requires this update to be signed with a 

key in the TPM. This satisfies the security requirement for authorization 

of updates and ensures that the versions and source (repository) for the 

updates are genuine. If update packages do not include an embedded 

signature or source authentication, Turtle Creek’s manifest can include 

a detached signature so the actual bits downloaded for the update can 

be verified that they have not been accidentally or maliciously modified. 

Table 4-10 outlines a more complete security analysis of Turtle Creek.

Table 4-10. Security Analysis of Turtle Creek System Update and 

Management Service

System Update 
Security Principles

Grade Comments

Protect Against 
Modified Update 
Packages

a turtle Creek enforces rSa signatures over all 

update packages.

Prevent Update 
Rollbacks

a turtle Creek maintains a database of configured 

version numbers and packages on each device 

and ensures rollbacks do not occur.

Accept only 
Authorized Update 
Requests

a update requests are received over an 

authenticated MQtt channel and are contained in 

signed manifest file.

(continued)
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System Update 
Security Principles

Grade Comments

Use only Authorized 
Update Sources

a Manifest file contains authorized source for 

download of the update mechanism.

Apply Correct 
Firmware/Software 
to the System

a Manifest file contains attributes of the update that 

are checked on install to ensure invalid updates 

are not applied.

In the event of a failed update or problems during 

update, turtle Creek is able to restore the previous 

version of the software or firmware on the system 

reducing downtime.

Table 4-10. (continued)

 System Firmware and RoT Summary
One of the most difficult problems in IoT systems is updating the base 

system firmware or recovering from a security vulnerability in a root-of- trust 

component like a TPM. Oftentimes, these firmware elements are designed 

to require a trusted administrator to manually watch over an update or 

install process. IoT devices in remote environments or hard- to- reach places 

cannot afford to miss such updates, but also cannot be sustained if a skilled 

administrator must manually install such updates. Services such as Turtle 

Creek which enable remote update of all software and firmware on a device 

are vital to both the security posture and ROI of IoT systems.

 Application-Level Language Frameworks
The application-level language frameworks are the first topic in the 

application plane of our generic IoT architectural model from Figure 4-2. 

Although we are several software layers removed from the hardware of the 
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platform, hardware-based security still plays a role in providing best-in- 

class software and services. As we look at different options in this space, we 

want to focus on how an application developer might be able to leverage 

hardware-based security features.

Application developers tend to choose an application framework based 

on the programming language they have chosen, and not vice versa. And 

particular programming languages tend to have certain frameworks that are 

popular with a majority of programmers. In this section, we will examine 

the common security APIs available within some of these frameworks and 

evaluate the ease of use for developers to utilize hardware security features.

The hardware security features focused here are partly based on the 

hardware features we have discussed throughout the previous sections 

of this chapter, as well as security features advantageous to common use 

cases encountered by IoT developers. These features include

• Access to Trusted Execution Environments (TEEs) 

to leverage highly secure containment features for 

sensitive data and operations

• Access to Secure Storage or Protected Keystores to 

protect credentials and application secrets

• Access to message and network security features to 

protect communication to other devices

• Access to cryptographic functions in hardware, 

including AES, SHA, and random number generation 

in order to build other security features not available 

from available services.

 JavaScript and Node.js or Sails
JavaScript is a common language used in IoT and web services today. It 

is an event-driven interpreted language with a rich set of frameworks. 

Node.js is one common framework, designed to build network 
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applications that handle events concurrently. Node.js is extremely 

flexible, so other frameworks are used to create more structure around 

Node.js. Sails is an example of such an extension framework.

As far as security goes, Node.js is far removed from most platform 

security features. However, the crypto API provided in Node.js is a wrapper 

around the latest OpenSSL library. This means that Node.js developers get 

access to the hardware implementations of AES-NI and SHA-NI through 

OpenSSL, as well as the hardware random number generator. Best of all, 

developers do not have to configure anything or worry about any platform 

settings – it is all handled inside OpenSSL.

One of the great advantages of Node.js is npm (node package 

manager). One of the great security problems with Node.js is also npm. 

The node package manager makes it extremely easy to add packages into 

your Node.js project. A simple install command issued on the command 

line and a require expression in the code add any package registered 

in the Node.js npm repository to your application. npm has over half 

a million packages and over three billion downloads every day.62 This 

makes using JavaScript widgets and gadgets built by others very easy (a 

great benefit!). But what are you really downloading? Are you getting the 

latest version with the latest bug fixes? Or are you installing the latest 

version that was corrupted with malware? Often developers set up their 

Node.js applications and never audit the npm repository again. This poor 

discipline proliferates security vulnerabilities.

 Java and Android
The Java programming language is the language used for Android devices, 

and because of this popularity has found its way into IoT devices as well. 

Google provides their Android Things operating system as a base OS and 

framework built on Java for small IoT devices and provides the same base 

62 https://nemethgergely.com/nodejs-security-overview/
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security for the smallest system on a module (SoM) devices as found on 

larger devices, including secure boot and a secure hardware keystore. 

Android Things is built from the base Android system, as shown in 

Figure 4-27, and uses the same kernel, hardware abstraction layer, native 

libraries, and Java API framework as the standard Android. Android Things 

is intended for smallest of devices.

Java API Framework Google Services

Native C/C++ Libraries

Hardware Abstraction Layer

Hardware

Linux Kernel

Things Support Library

Figure 4-27. Android Things architecture

Android itself is popular in many larger IoT devices, including in- 

vehicle infotainment (IVI) systems in autonomous and smart vehicles. And 

the security services available through Java and the Android framework are 

significant.63

As we discussed previously, Android supports the Trusty TEE, which 

can be used to hold sensitive applications for the platform. One of those 

applications is a hardware-backed secure keystore to protection keys. This 

prevents keys from being used by unauthorized applications or users and 

can prevent keys from being exfiltrated off the device. On Intel devices, 

the Trusty TEE can be used to provide this service, or the keystore can 

be implemented in the CSME (see Chapter 3). Android also supports a 

verified boot mechanism where the stages of boot verify each software 

component is signed with a valid cryptographic key (see Chapter 3 for 

secure boot details).

63 https://source.android.com/security/
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 EdgeX Foundry
EdgeX Foundry is a new Internet of Things framework for industrial 

edge computing sponsored by the Linux Foundation.64 EdgeX Foundry 

is platform agnostic, flexible, and extensible framework providing 

capabilities for “intelligence at the edge” for data storage, aggregation, 

analysis, and action all organized into sets of microservices using Docker 

containers.

Figure 4-28 is the platform architecture for EdgeX Foundry, which 

includes four service layers and two system services. The service layers 

are the Export services, Supporting services, Core services, and Device 

services. The system services are security and device/system management.

The Export services allows data to be communicated to the Cloud 

and supports several protocols, including REST or message queue 

protocols (see the section “Message Orchestration”); Google IoT Core 

is also supported for sending telemetry and receiving configuration 

and commands. The Device services enables connections to sensors 

and actuators and supports multiple protocols for this purpose. Some 

of these protocols are wireless or wired communications protocols 

which are covered in more detail in Chapter 5; other protocols are 

message orchestration protocols, like MQTT, which is covered in the 

section “Message Orchestration.” The Supporting services handles edge 

intelligence and analytics capabilities. The Core services is the linkage 

between northbound communications to the Cloud and southbound 

communications to the sensors and actuators.

64 https://www.edgexfoundry.org/
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The Security system service includes a security store to maintain 

cryptographic keys and credentials and an access control service to 

manage REST resources and access keys using either OAuth2 or JWT 

tokens.

The interesting part of EdgeX is the ability to rewrite any part of 

the EdgeX Foundry by modifying the Docker container that supplies 

that service and not having to contend with changing other parts of 

the system. Security services for key storage can be extended to use a 

TPM or SGX enclave for enhanced security. Encryption routines in the 

Distribution container of the Export services can be upgraded to use 

hardware-based encryption without affecting other elements of the 

Supporting or Core services. This type of flexible framework makes it 

easy to utilize the important hardware security features that make an IoT 

instance more secure.
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Figure 4-28. EdgeX Foundry architecture65

65 https://docs.edgexfoundry.org/Ch-Intro.html
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 Application-Level Framework Summary
The application framework chosen for an IoT device can make a significant 

difference on the security provided to IoT applications. Frameworks like 

Node.js have few hardware security features built into the framework, but 

make it easy to add capabilities. However, access to hardware devices is 

rather difficult through JavaScript, limiting the options for developers.

Android takes an alternative approach and builds in many 

sophisticated security features into the operating system and framework 

itself. However, limitations, such as with the Trusty TEE which cannot 

dynamically add secured applications, make adding hardware-based 

security features difficult.

EdgeX Foundry takes a different approach, using containers to  

separate functionality into microservices. This framework expends effort to  

create the connections and APIs between components so that services can  

be shared. In this model, it is much easier to upgrade a service to make use 

of hardware security features on the platform, but allow platforms that 

do not have such services to use alternative implementations. Although 

EdgeX Foundry does not have many hardware security features built 

into the framework at present, the intention to encourage platform 

differentiation through service modifications is clearly stated.

 Message Orchestration
Message orchestration performs the orderly reception and delivery of 

data and commands on an IoT platform. As briefly mentioned in “EdgeX 

Foundry” section, message orchestration protocols enable data delivery 

and reception off the platform to devices and the Cloud, but can also be 

used to move data around within an IoT platform. Message orchestration 

implements the publish-subscribe design pattern, often referred to as pub-

sub. In this design pattern, entities with data (publishers) publish their data 
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to a broker or message bus, and recipients subscribe to certain messages 

from the broker and are given only the messages for which they register. 

The beauty of this design pattern is that publishers do not need to know 

who or how many subscribers are out there, and subscribers do not have to 

be prepared to receive and parse messages that they are not interested in.

Several message orchestration protocols are common in IoT devices, 

including Message Queuing Telemetry Transport (MQTT), Constrained 

Application Protocol (CoAP), eXtensible Messaging and Presence Protocol 

(XMPP)66, and OPC Unified Architecture (OPC UA).

Message orchestration needs to deal with several security issues in 

order to be secure:

• Publishers must have an identity and must be 

authenticated against that identity so that the source of 

messages are attributable to an Authorized Publisher.

• Subscribers must have an identity and must be 

authenticated against that identity so that messages are 

delivered only to Authorized Subscribers.

• Authorized Publishers may assign access control lists to 

messages that restrict which subscribers are allowed to 

receive their messages.

• Administrators may assign access control lists to 

message types restricting Publishers from publishing 

certain message types and/or restricting Subscribers 

from receiving certain message types.

• Authorized Subscribers may register to receive message 

types that do not violate an access control list.

66 XMPP is not covered in this chapter due to space constraints, however details 
can be found in RFC 6102, https://tools.ietf.org/html/rfc6120
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• The message broker will accept a message only from an 

Authorized Publisher, and only if the message type sent 

by the Authorized Publisher does not violate an access 

control list.

• The message broker will deliver a message to an 

Authorized Subscriber only if that subscriber requested 

messages of that type, and if that subscriber is not 

prohibited from receiving that message type by a valid 

access control list.

• Messages shall be protected from unauthorized 

disclosure, tampering, unauthorized deletion, 

reordering, and message delay.

 Message Queuing Telemetry Transport
Message Queuing Telemetry Transport (MQTT) is a commonly used 

message orchestration protocol that enables sending data between entities 

on a system. The protocol is based on topic names in data packets that 

define a title for the data. Subscribers subscribe to topics; subscribers 

may use wildcards within the topic names to which they subscribe. 

MQTT operates over TCP/IP and supports basic operations, such as 

CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE, and several types of 

acknowledgment packets.

The MQTT protocol published by OASIS67 supports some basic security 

services including password-based authentication of publishers and 

subscribers and recommends the use of TLS for data privacy and integrity.

Several open source implementations of MQTT are in common use 

including Mosquitto, RabbitMQ, and HiveMQ. Table 4-11 provides a 

security analysis of Mosquitto MQTT.

67 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
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Table 4-11. Security Analysis of Mosquitto MQTT

System Update 
Security Principles

Grade Comments

Authentication of 
Publishers and 
Subscribers

B MQtt supports usernames and passwords 

natively. Mutually authenticated tlS is the 

best option for authentication over the network 

using public key certificates; using user ids 

and password is acceptable, but should be 

protected by tlS if the communication is over 

a network (broker protection of passwords 

should be addressed through secure storage).

a security vulnerability in Mosquitto up until 

1.4.12 allows a user with a specially formatted 

id to overcome the access permissions set 

by Mosquitto, allowing them to read or write 

topics they do not have permissions to access.

Access Controls on 
Message Topics

B Mosquitto provides a topic configuration 

file that allows topics to be restricted by 

anonymous users, by username, or by a 

pattern that uses the username or client name; 

access control is based on “read,” “write,” or 

“readwrite” actions. this file must be manually 

configured, and it is a bit difficult to get correct 

especially when there are many topics.

(continued)
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Table 4-11. (continued)

System Update 
Security Principles

Grade Comments

Message Privacy and 
Integrity

d no special protections are provided for 

messages, and even using tlS does not 

protect messages while they wait in the queue 

for delivery, opening the possibility for malware 

on the broker device to modify messages.

Consider adding encryption and message 

integrity to MQtt messages at the application 

layer; this provides security end to end and can 

be used to prevent repudiation attacks as well.

Message Delivery 
Protections (Deletion, 
Delay, Reordering)

d no special protections are afforded to the 

broker’s queue. the broker should not be 

run as root, but run under a special service 

user id. In some installations of Mosquitto, 

the message queue is written to disk and 

susceptible to tampering. the configuration of 

your Mosquitto installation should be examined 

to ensure any files used for queuing are 

properly protected.
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 OPC Unified Architecture

OPC-UA
Object
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Actions Objects
can take when

requested by other
objects

Variables are the
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Objects

Events are the
Alarms and

Conditions reported
by the Object

Variables Methods
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Figure 4-29. OPC-UA notional object68

OPC-UA[69, 70] is a platform-independent service-oriented architecture 

targeted to the industrial segment of IoT and is based on the earlier OPC 

Classic protocols that used the Microsoft Component Object Model 

(COM) and Distributed Component Object Model (DCOM). OPC-UA 

is therefore an object-based technology, defining objects as notionally 

shown in Figure 4-29 and using the TCP/IP protocol for communication 

between objects, which provides a much richer set of services than 

MQTT, but it is also much more complex with a 13-part specification of 

over 1200 pages.

68 https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-
Interoperability-For-Industrie4-and-IoT-EN-v5.pdf

69 OPC officially stands for Object Linking and Embedding (OLE) for Process 
Control, but since OPC-UA has moved away from strict COM and DCOM 
protocols, the full expansion of the acronym is no longer widely used.

70 https://opcfoundation.org/about/opc-technologies/opc-ua/
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OPC-UA provides communication between components (objects) 

on a device and between devices using the publisher-subscriber design 

pattern described earlier, the observer design pattern where objects notify 

other objects of events, and using direct method calls between objects 

(even across devices using a DCOM-like mechanism). OPC-UA includes 

a discovery service allowing objects and devices to find each other on a 

network.

OPC-UA defines a comprehensive security model71 based on security 

above the transport layer and uses certificate-based identities for 

applications and users. By default, all communication between devices 

is encrypted and signed, and the algorithms are negotiated at session 

establishment between the two parties, just like TLS. All applications 

are assigned a unique identity certificate, which is used to perform 

authentication during session establishment to other entities. The other 

devices/applications/servers a device is allowed to communicate with 

are defined in a trust list that contains those other applications’ identity 

certificates. Access control and rights can be managed in three different 

ways: username and passwords, Kerberos tickets, or certificates. Table 4-12 

provides a security analysis of OPC-UA.

71 www.dsinteroperability.com/OPCClassicVSUA.pdf and https://
opcfoundation.org/wp-content/uploads/2014/05/OPC-UA_Security_Model_
for_Administrators_V1.00.pdf
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Table 4-12. Security Analysis of OPC-UA

System Update 
Security Principles

Grade Comments

Authentication of 
Publishers and 
Subscribers

a opC-ua includes multiple options for 

authentication, with public key certificates being 

included by default. Issuance of these keys can 

still be an issues that need to be dealt with, 

but from a security perspective, this is the best 

solution.

Access Controls on 
Message Topics

C rough access control is provided at the trust list 

level. opC-ua applications have to implement 

their own access control in order to implement 

anything greater than just this device/application-

level trust. access control functions can take 

advantage of other information (usernames, 

certificates, kerberos tokens), but this requires 

custom programming.

Message Privacy and 
Integrity

a Message encryption and message integrity is 

built into opC-ua above the transport layer and 

can be used to prevent repudiation attacks as 

well. Session security is provided end to end.

Message Delivery 
Protections (Deletion, 
Delay, Reordering)

d for store-and-forward or pub-sub broker type 

message delivery, the application is responsible 

for creating the behavior of the application. 

although patterns exist for good design, they 

are not provided by default for applications and 

require custom programming.
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 Constrained Application Protocol
The Constrained Application Protocol (CoAP) is a web transfer protocol 

specified in IETF RFC 725272 specifically designed for devices with limited 

computation and/or on a network with limited bandwidth. CoAP is a 

lightweight HTTP protocol and based on the same request-response REST 

interaction model, using commands GET, PUT, POST, and DELETE. CoAP 

requires DTLS (Datagram Transport Layer Security, which is TLS over the 

UDP protocol) for security, and much like HTTP/TLS combination, any 

additional access control or security on the messages themselves must be 

added to the applications. Table 4-13 provides a security analysis of CoAP.

Table 4-13. Security Analysis of CoAP

System Update Security 
Principles

Grade Comments

Authentication of 
Publishers and 
Subscribers

a Mutually authenticated dtlS is the best 

option for authentication over the network 

using public key certificates; many other 

authentication options are possible, but 

would need to be integrated into the 

applications (e.g., oauth, Jwt, kerberos).

Access Controls on 
Message Topics

d no special access control is provided above 

the rough authentication performed by 

dtlS. any additional access control must be 

provided by the application.

(continued)

72 https://tools.ietf.org/html/rfc7252
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System Update Security 
Principles

Grade Comments

Message Privacy and 
Integrity

d no special protections are provided for 

messages beyond the network protections 

afforded by dtlS.

Message Delivery 
Protections (Deletion, 
Delay, Reordering)

C Messages may be transmitted with reliability 

(marked as Confirmable), and for those 

messages, deletion recovery is handled 

through the acknowledgment mechanism. 

every message has a unique 16-bit message 

id that allows detection of replay.

Table 4-13. (continued)

 Message Orchestration Summary
Message orchestration solutions vary widely in their offerings from simple 

(CoAP) to complex (OPC-UA). The security offerings for the simpler 

solutions leave much to the application to implement. One of the primary 

benefits for MQTT is the ease with which network security can be added 

with TLS, and the rich set of access controls that can be configured without 

having to add custom code. Other solutions require applications to 

implement access controls, which can result in harder to diagnose defects, 

and duplication of the access control code in many places.

 Applications
The applications are the components that give IoT devices their behaviors 

and consume and benefit from the security in the hardware and the software. 

There is much to explore in the application space, which we leave for  

Chapter 6, where we explore different vertical IoT applications in great detail.
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 Summary
Software in IoT is an enormous subject. In writing this chapter, there were 

many things that had to be left out or shortened in order to meet the page 

count and retain some semblance of a publishing deadline. If we have 

omitted your favorite IoT software component or feature, we assure you 

it is only due to the space limitations. However, we feel that the coverage 

we have provided of the software elements of an IoT stack is adequate to 

engage your design enthusiasm and get you thinking about how to expose 

useful security features in your IoT designs.

The goal of this chapter was to introduce how security could be 

provided in IoT systems, and we have shown, layer by layer, where 

platform security features can be exposed and built upon to add strong 

and effective security services to IoT devices. If the “S” for security is left 

out of our IoT devices, it is because we have not leveraged the software and 

capabilities that are available to us to make security a reality.

While it is true that the most constrained devices have less software 

and less hardware services, this should not be an excuse to remove 

security entirely. There are too many good options to solve this tough 

problem. When the constraints get tighter, it should mean that we focus 

back on the basics and jettison everything we do not need, but retain the 

most basic security capabilities. These basic security capabilities are the 

hardware features for the secure minimum viable platform enabled with 

the basic platform software – secure boot, secure identity, and secure 

storage. This is not impossible. In Chapter 6, we will show examples of 

exactly how to do this.
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Open Access  This chapter is licensed under the terms 

of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), which permits 

use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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CHAPTER 5

Connectivity 
Technologies for IoT
Internet of Things (IoT) is a set of technologies that are enabling new 

use cases and delivering services across a wide variety of markets 

and applications. When people think of IoT, they often think of home 

or personal IoT. However, IoT will play a role in many commercial 

applications such as smart manufacturing, smart cities, autonomous 

cars, building automation, and healthcare. How will an IoT-enabled 

device communicate what it knows to the Internet? Suitable connectivity 

solutions range from a multitude of wired connectivity technologies such 

as Ethernet to wireless technologies like Wi-Fi and even 5G cellular. Many 

solutions need a combination of multiple communication technologies. 

For example, a smart car system playing video or using GPS navigation 

might need 4G LTE in order to communicate with the outside world and 

Wi-Fi and Bluetooth to communicate with devices like phones and rear 

seat entertainment (RSE) used by the passengers. In this chapter, we will 

take a look at a selected set of connectivity technologies that enable these 

applications.
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 Ethernet Time-Sensitive Networking
Ethernet Time-Sensitive Networking (TSN) is reshaping the industrial 

communication landscape and laying the foundation for the convergence 

of Information Technology (IT) and Industrial Operations Technology 

(OT). TSN essentially is a set of features that have been added to standard 

Ethernet. By bringing industrial-grade robustness and reliability to 

Ethernet, TSN offers an IEEE standard communication technology that 

can be used to enable deterministic communications for industrial 

applications. Being an IEEE standard, it enables interoperability between 

standard compliant industrial devices from different suppliers. TSN 

removes the need for physical separation of critical and noncritical 

communication networks, reducing the cost of the infrastructure needed 

to allow open data exchange between operations technology network and 

enterprise/information technology network – a concept that is at the heart 

of the Industrial Internet of Things (IIoT). At the network system level, TSN 

supports deterministic communication based on network schedules that 

are distributed to devices via standard configuration interfaces.

TSN standards address a wide range of functions, and their 

implementation can be similarly broad, encompassing various hardware 

elements such as endpoints and switches, embedded software, standard 

interfaces, routing algorithms, and configuration tools. To ensure the 

highest levels of TSN performance, a system-level solution is required 

that takes each element into account and provides a seamless interface 

between them. Seamless fault-tolerant communication and enhanced 

cybersecurity with robust network planning, configuration, and 

monitoring will be a necessity in the networks of the future.
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 Legacy Ethernet-Based Connectivity in Industrial 
Applications
Today, there are multiple variants of Industrial Ethernet protocols available 

on the market. In most cases, the Industrial Ethernet protocol selected for use 

in industrial devices differs from vendor to vendor or from Industry Alliance 

to Industry Alliance, which means that devices are only compatible with other 

equipment from the same vendor or an Industry Alliance using the same 

protocol. This is known as manufacturer lock-in. It forces customers to either 

buy all industrial equipment from one vendor or a limited set of vendors 

who are part of the same Alliance. This approach may not be the most cost- 

and performance-optimized way to implement the required solution. If a 

customer chooses not to do this, there is considerable challenge of integrating 

equipment from multiple vendors into a single network system or there needs 

to be a set of protocol conversion gateways implemented between the various 

Industrial Ethernet protocols. Both options will lead to unnecessary expense 

and limit innovation on the factory floor over many years. Thus industrial 

automation architectures become hierarchical, purpose-built, and inflexible.

This approach is currently undergoing a dramatic change with the advent 

of the IIoT and Industry 4.0, which demands for full automation and greater 

insights in manufacturing. These demands are pushing industrial automation 

architectures to become more flexible and seamless to interoperate. In 

these types of increasingly converged architectures, real-time connectivity 

is essential for controlling critical processes, as well as for collecting and 

analyzing data from machines, in a timely manner. TSN offers the real-time 

connectivity capabilities that match and sometimes exceed what current 

Industrial Ethernet protocols can provide, with the added flexibility of being 

based on IEEE standards. Similar to what is the norm in the enterprise world, 

TSN Ethernet can therefore be the common communication protocol that 

connects industrial equipment from different vendors, simultaneously 

delivering the very challenging functional requirements demanded by 

mission-critical embedded and industrial applications.
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 Key Benefits of TSN
The primary strength of TSN is its status as an open standard–based 

technology, unaffiliated to any Industry Alliance or company. For an 

industrial automation market that has struggled for many years with 

multiple incompatible proprietary communication protocols, TSN brings 

several key benefits.

TSN guarantees compatibility at the network level between devices 

from multiple suppliers. This gives customers much greater choice of 

devices for building their system, avoiding manufacturer lock-in and 

enabling seamless connectivity across various subsystems and systems.

As TSN is part of the Ethernet standard family, it naturally scales with 

Ethernet, which means that the technology will not be limited in terms of 

bandwidth/speeds, thus allowing more and more sensors and actuators 

that are needed for implementing complex automation applications to be 

connected to a network system.

TSN supports standards-based network configuration capabilities. 

This means that new nodes can be added to the network and discovered 

without the need for costly downtimes and manual configuration. New 

data streams can be added to the network without the risk of disturbing 

existing traffic and without the need to reconfigure the entire network.

TSN can be used for communication between machines as well as 

from machines to enterprise systems. Communication between mission-

critical TSN-based systems and existing noncritical Ethernet-based 

systems can be achieved over the same infrastructure. In other words, non-

TSN Ethernet nodes can work over a TSN network, without modification.

Overall system costs are significantly reduced when we adopt 

standards-based technology. Consumer choice and competition will result 

in lower device prices. Research, development, and maintenance costs 

are all driven down when solution providers and customers can focus on 

one standard technology rather than a number of different proprietary 

protocols and solutions.
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Breaking down communication barriers between critical and 

noncritical systems is a foundational concept of the IIoT and Industry 

4.0. TSN enables the convergence of networks and systems that were 

previously kept separate for reasons of operational integrity, real-time 

performance, safety, and security.

TSN allows time-critical messages to be sent over the same 

communication line as all other Ethernet traffic, without disturbance 

or increase in delay and with controlled delay variation. Different traffic 

classes can coexist on the network with no impact on higher criticality 

level traffic from traffic with lower priority.

End-to-end latency is guaranteed even under heavy traffic load, and 

standard mechanisms can be used to accelerate message transport for 

high-priority communications. Thus, the most challenging motion control 

and safety-critical applications can be converged with other Ethernet 

traffic on Ethernet networks using TSN.

Convergence makes accessing data from industrial systems easier. 

With more systems on the same network, the task of gathering data from 

a wide variety of sources is simplified. Data from industrial systems can 

be sent to enterprise systems over standard Ethernet without the need 

for protocol conversion gateways. Overall system costs are significantly 

reduced by the convergence of different traffic classes on a single network 

infrastructure. Hardware and maintenance costs are lower because we 

need fewer devices and cables to build the network infrastructure.

Higher layer protocols can be combined with TSN, as the technology 

is implemented primarily at the data link layer (OSI model layer 2).1 One 

example is the Open Platform Communications-Unified Architecture 

(OPC-UA) protocol.2 

1 ISO/IEC 7498-1:1994 - Information technology - Open Systems Interconnection - 
Basic Reference Model: The Basic Model. 

2 More details on OPC-UA can be found at https://opcfoundation.org/about/
opc-technologies/opc-ua/
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 TSN Standards
Table 5-1 lists the TSN set of features that have been added to standard 

Ethernet. The features are defined and published in a number of IEEE 802.1 

standards that address topics such as timing, synchronization, forwarding, 

queuing, seamless redundancy, and stream reservation. These individual 

features extend the functionality and Quality of Service (QoS) of Ethernet 

to enable guaranteed message transmission through switched networks, 

providing the fundamental capabilities such as robustness, reliability, and 

determinism required for an industrial communication technology.

Table 5-1. List of Published IEEE Standards for TSN (March 2019)

Function Standard

time synchronization •  ieee std. 802.1astM-2011: generalized precision time 
protocol (gptp)

Bounded low 
latency

• ieee std. 802.1QavtM-2009: Credit-based shaper
• ieee std. 802.1QbvtM-2015: transmission gate scheduling
•  ieee std. 802.1QbutM-2016 & ieee std. 802.3brtM-2016 : 

frame preemption
• ieee std. 802.1QchtM-2017 : Cyclic Queuing and forwarding

reliability • ieee std. 802.1QcatM-2015 : path Control and reservation
• ieee std. 802.1CBtM-2017 : frame replication & 
elimination
• ieee std. 802.1QcitM-2017 : per-stream filtering & policing

resource 
Management

• ieee std. 802.1QattM-2010 : stream reservation protocol
•  ieee std. 802.1QcctM-2018 : srp enhancements and 

performance improvements
• ieee std. 802.1QcptM-2018 : yang model

To address new use cases and make performance improvements, many 

more IEEE standards are being defined, as listed in Table 5-2.
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The key TSN features that provide guaranteed message delivery timing 

are time synchronization and traffic scheduling. They are addressed by the 

802.1AS and 802.1Qbv standards, respectively. All devices participating 

in the TSN network are synchronized to a global time and are aware of a 

network schedule that dictates when prioritized messages will be forwarded 

from each switch. TSN makes use of multiple queues per port at the egress 

of the switch, where messages are held until a gate opens (at a time slot 

Table 5-2. List of Upcoming IEEE Standards for TSN (March 2019)

time  

synchronization

•  p802.1as-rev (Draft v8.0): time synchronization 

improvement

Bounded low 

latency

• p802.1Qcr (Draft v0.5): asynchronous traffic shaping

• p802.1Qcz (par approved): Congestion isolation

reliability •  p802.1Qcx (Draft v1.0): yang Data Model for Connectivity 

fault Management

resource 

Management

• p802.1Cs (Draft v2.1): link-local registration protocol

•  p802.1Qcj (Draft v0.4): automatic attachment to provider 

Backbone Bridging (pBB) services

•  p802.1Qcw (Draft v0.2): yang Data Models for Qbv, Qbu, 

and Qci

• p802.1Qdd (par approved): resource allocation protocol

• p802.1aBcu (Draft v0.6): llDp yang Data Model

•  p802.1CBcv (par approved): frame replication & 

elimination yang Model and MiB Module

•  p802.1CBdb (par approved): frer extended stream 

identification functions

For latest Update, check https://1.ieee802.org/tsn/

Chapter 5  ConneCtivity teChnologies for iot

https://1.ieee802.org/tsn/


354

specified by the schedule) to release queued messages for transmission. 

The timed release of messages ensures that delays in the network can be 

deterministically predicted and managed. This allows for the convergence 

of critical traffic and noncritical traffic on the same network.

The preemption feature defined in the TSN 802.1Qbu standard can be 

used to increase the efficiency of bandwidth use for noncritical messages. 

In highly converged networks, it could be the case that large low-priority 

frames are delayed by higher-priority traffic on the network and dropped. 

Preemption enables the transmission of large frames to be interrupted, 

sent in smaller fragments and reassembled at the next link. This maximizes 

bandwidth utilization for all traffic types on the TSN network. Another 

important benefit of message preemption is the reduction of transmission 

latency for so-called Express traffic, which can preempt regular (lower-

priority) Ethernet packets. Especially on lower-speed networks (e.g., 10 or 

100 megabits per second (Mbps)) carrying large regular Ethernet packets 

up to 1,500 bytes and more, the latency reduction for Express traffic can be 

useful for building converged networks.

TSN provides a standard method for achieving seamless redundancy 

for industrial communication over Ethernet. The feature allows for the 

simultaneous transmission of duplicate message copies across different paths 

in the network. The first message copy to be received in time without error is 

processed, while the other copies are discarded. This adds another layer of 

determinism to the delivery of critical messages in converged networks.

A crucial feature of TSN is the support for open, vendor-independent 

network configuration. This is achieved through the standardization in 

IEEE of YANG models for various TSN standards. These can be configured 

over the NETCONF protocol using encoding formats such as XML or 

JSON. YANG models for bridging, traffic scheduling, frame preemption, 

seamless redundancy, and policing ensure that configuration of key TSN 

features is done according to standard methods. This allows TSN networks 

to be composed of any standard compliant device from any vendor and can 

be configured by any standard compliant network configuration software.
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 TSN Profiles
TSN is essentially a toolbox of features that address various needs such 

as reliability, bounded low latency, time synchronization, and resource 

management. These capabilities are realized through various TSN 

specifications (e.g., IEEE 802.1AS-Rev, IEEE 802.1Qbv, etc.), and customers 

can choose the relevant standards to implement based on their specific 

application needs. Profile standards are being specified for some of them 

to describe which TSN standards to use and how. A TSN profile selects 

features, options, configurations, and protocols to build a bridged network 

for the given TSN application. Table 5-3 shows a list of select TSN profiles 

that are currently being defined.

Table 5-3. List of TSN Profiles (March 2019)

Industry TSN Profile

industrial 

automation

•  ieC/ieee 60802 (Draft v0.3):tsn profile for industrial 

automation

automotive  

in- vehicle 

networks

•  ieee std. 802.1BatM -2011 : audio video Bridging system 

[avB profile]

•  ieee std. 1722tM -2016: transport protocol for time-sensitive 

applications [+avtp Control format message types: flexray, 

lin, Can, Most, sensor, etc]

•  ieee std. 1722.1tM -2013: audio video Discovery, 

enumeration, Connection management and Control (avDeCC)

•  p802.1Dg (par approved): tsn profile for automotive in-

vehicle ethernet Communications

service provider 

networks

•  p802.1Df (par approved): tsn profile for service provider 

networks

(continued)
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Industry TSN Profile

Mobile fronthaul •  ieee std. 802.1CMtM -2018: tsn for fronthaul [Mobile 

fronthaul profile]

•  p802.1CMde (par approved): enhancements to fronthaul 

profiles to support new fronthaul interface, synchronization, 

and syntonization standards

Table 5-3. (continued)

The following sections provide an overview of the major TSN 

standards.

 802.1AS/AS-Rev

Enhanced Generic Precise Timing Protocol: Timing and synchronization 

are vital mechanisms for achieving deterministic communication. 802.1AS 

is a profile of the IEEE 1588 PTP (Precision Time Protocol) synchronization 

protocol that enables synchronization compatibility between different TSN 

devices (Figure 5-1). This lays the foundation for the scheduling of traffic 

through each participating network device. 802.1AS-Rev is being defined 

to add support for fault tolerance and multiple active synchronization 

masters (Figure 5-2). Multiple clock-masters for redundancy enable high 

availability of TSN networks – in cases when a grandmaster becomes 

faulty, system elements such as end nodes and bridges are still able 

to remain synchronized by obtaining the timing information from the 

redundant grandmasters. 802.1AS-Rev is also a profile of the IEEE 1588 

PTP synchronization protocol.
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Figure 5-1. 802.1AS operation3
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Figure 5-2. 802.1AS-Rev operation4

3 Figure 5a: Single grand master transmitting 2 copies using separate paths. 
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-
sens-net-for-auto-adas-socs-2018q2.html

4 Figure 5b: Multiple grand masters transmitting 2 copies using separate paths. 
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-
sens-net-for-auto-adas-socs-2018q2.html
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 802.1Qbv

Time-Aware Shaper: Scheduling of traffic is a core concept in TSN. Based 

on the shared global time provided by 802.1AS, a schedule is created and 

distributed between participating network devices. 802.1Qbv defines the 

mechanisms for controlling the flow of queued traffic through gates at the 

egress of a TSN switch (Figure 5-3). Frames are assigned to queues based 

on Quality of Service (QoS) priority. The transmission of messages from 

these queues is executed during scheduled time windows. Other queues 

will typically be blocked from transmission during these time windows, 

therefore removing the chance of scheduled traffic being impeded by 

nonscheduled traffic. In other words, there is a gate in front of each queue 

which opens at a specific point of time which is reserved for that queue. This 

means that the delay through each switch is deterministic and that message 

latency through a network of TSN-enabled components can be guaranteed. 

The IEEE 802.1Qbv standard defines up to eight queues per port for 

forwarding traffic. The scheduler is designed to separate the communication 

on the Ethernet network into fixed length, repeating time cycles.

Figure 5-3 shows an example with four queues, with a cycle time of td 

and guard band of tg. At time t0, the time-critical data queue, Queue 3 is 

open. Once that frame is transmitted, the best effort Queues 0, 1, and 2 are 

opened. Before the end of the cycle, at time t0-tg, all the non-time-critical 

data is blocked, so that the port is free to transmit the time-critical data at 

the start of the next cycle. This is essentially a time-division multiple access 

(TDMA) scheme.
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5 Time-aware shaper allows scheduling. https://www.synopsys.com/
designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-
socs-2018q2.html

IEEE 802.1 Qbv
scheduler

Queue 3

MAC
Queue 2

Queue 1

Queue 0

Q3 tg

t0 Cycle time (td)

tg

t0

Q2

Q1

Q0

t0 - tg
t0
t0 + td

= 0000 Block non-time critical data
= 1000 Time critical data queue is open
= 0111 Time critical data is done best

effort queues open

Figure 5-3. 802.1Qbv operation5

 802.1Qbu

Frame Preemption: While the 802.1Qbv mechanisms protect critical 

messages against interference from other network traffic, it does not 

necessarily result in optimal bandwidth usage or minimal communication 

latency. Where these factors are important, the preemption mechanism 

defined in 802.1Qbu can be used (Figure 5-4). 802.1Qbu allows the 

transmission of standard Ethernet or jumbo frames to be interrupted in 

order to allow the transmission of high-priority frames, and then resumed 

afterward without discarding the previously transmitted piece of the 

interrupted message. Frame preemption always operates on a link-by-link 

basis. A frame is only fragmented from one Ethernet switch to the next 

Ethernet switch, where it is reassembled.

Chapter 5  ConneCtivity teChnologies for iot

https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html


360

6 Preemption reduces latency of time-critical data streams. https://www.
synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-
for-auto-adas-socs-2018q2.html

Figure 5-4. 802.1Qbu frame preemption6

In Figure 5-4, without preemption as shown in the top, if a high-priority 

frame in Queue 3 arrives after a low-priority frame, the high-priority frame 

is delayed until the transmission of the low-priority frame is finished.  

In the case of an Ethernet port with preemption enabled, as shown in  

the bottom, the low-priority traffic passes through a preemptable MAC. 

The transmission of the low-priority frame is stopped, once a high-priority 

frame arrives and the high-priority frame from Queue 3 is allowed to 

go out. Once the transmission of the high-priority frame is completed, 

the rest of the low-priority frame is transmitted. Each partial frame is 

completed by a CRC32 for error detection. In contrast to the regular 

Ethernet CRC32, the last 16 bits are inverted to make a partial frame 

distinguishable from a standard Ethernet frame. Also the start frame 

delimiter (SFD) is changed.
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 802.1CB

Frame Replication and Elimination: Redundancy management 

implemented in 802.1CB follows similar approaches known from High-

Availability Seamless Redundancy (HSR) (IEC 62439-3 Clause 5) and 

Parallel Redundancy Protocol (PRP) (IEC 62439-3 Clause 4). It supports 

zero switch over time when a link fails or frames are dropped. To increase 

availability, redundant copies of the same messages are communicated in 

parallel over disjoint paths through the network as shown in Figure  5-5.  

Time-critical frames are expanded to include a sequence number, and 

then they are replicated where each identical copy follows a separate path 

in the network. The redundancy management mechanism then combines 

these redundant messages to generate a single stream of information 

to the receiver(s). At any point in the network where the separate paths 

join again, duplicate frames can be eliminated from the stream as shown 

in Figure 5-5. The 802.1Qca standard for Path Control and Reservation 

defines how such paths can be set up. The standard also allows for auto 

configuration.
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7 Frame Replication & Elimination Page 16. https://bcourses.berkeley.edu/
files/66071146/download?download_frd=1

 802.1Qcc

Enhanced Stream Reservation Protocol: The enhancements to Stream 

Reservation Protocol (802.1Qat) include support for more streams, 

configurable stream reservation classes and streams, better description of 

stream characteristics, support for layer 3 streaming, deterministic stream 

reservation convergence, and User Network Interface (UNI) for routing 

and reservations. 802.1Qcc supports offline and/or online configuration 

of TSN network scheduling to provide network management for control 

plane. It supports a “Central Controller” or predefined “Engineered 

Configuration” of the network.
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Figure 5-5. 802.1CB frame replication and elimination7
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8 Figure 3: Centralized Network Configuration. https://www.odva.org/
Portals/0/Library/Conference/2017-ODVA-Conference_Zuponcic_Hantel_
Klecka_Didier_TSN_Influences_on_ODVA_Technologies_FINAL.pdf

 802.1Qci

Per-Stream Filtering and Policing: This protects against faulty and/or 

malicious endpoints and switches and isolates faults to specific regions in the 

network. It works at the ingress of the switch (forwarding engine) in order to 

protect the outgoing queues from being flooded with frames. In this process, 

The fully centralized configuration model is depicted in Figure 5-6.  

It is composed of Centralized User Configuration (CUC) entity and a 

Centralized Network Configuration (CNC). Computing the configuration 

setting and enforcing it (e.g., setting up gate schedules, reserving 

resources, etc.) in bridges are done by CNC. Thus CNC will be in charge of 

configuring TSN features such as credit-based shaper, frame preemption, 

scheduled traffic, per-stream filtering and policing, and frame replication 

and elimination for reliability. The CUC is responsible for building up the 

applications’ requirements.
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Figure 5-6. 802.1Qcc centralized network configuration8
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the data packets are checked to ensure that they fit to a reserved data stream 

at the network input. If this is not the case, the packet will be filtered out and 

rejected and won’t be forwarded further. This can be leveraged to prevent 

attacks on level 2 of the OSI layer model. It utilizes well-known flow identifiers 

and policers used in the industry. Per-Stream Filtering and Policing (PSFP) 

allows filtering and policing decisions to be made on a per-stream basis. The 

various stages of data flow for one stream are depicted in Figure 5-7.

Stream Filter

Meter

Stream Gate

Queueing

Incoming Frame

Figure 5-7. 802.1Qci per-stream filtering and policing
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 802.1Qch

Cyclic Queuing and Forwarding: This defines cycles for forwarding 

traffic that is queued using 802.1Qci to assign buffers and 802.1Qbv 

to shape traffic. This cyclic enqueuing and queue draining procedure 

gives a defined (but not optimal) upper boundary for latency. Basically 

this is a simplified way to use TSN if controlled timing is desired, but 

reducing latency to absolute minimum is not highly important. The 

synchronized operations effectively allow bridges to synchronize their 

frame transmissions in a cyclic manner, achieving zero congestion loss and 

bounded latency, independently of the network topology.

In this scheme, time-sensitive streams are scheduled (enqueued and 

dequeued) at each time interval resulting in a worst-case deterministic 

delay of two times the cycle time between the sender (talker) and the next 

(intermediate) receiver (listener). As shown in Figure 5-8, each high-priority 

traffic frame scheduled on a cycle is scheduled to be received at the next 

bridge in the next cycle. A guard band before the start of the cycle prevents 

any interfering low-priority traffic from affecting the high-priority traffic. 

802.1Qch can be combined with frame preemption, to reduce the cycle 

time from the transmission time of a full size frame to the transmission 

time of a minimum size frame fragment. Thus, preemption can improve the 

performance for high-priority traffic. For this to work correctly, all frames 

must be kept to their allotted cycles, that is, all transmitted frames must be 

received during the expected cycle at the receiving bridge.
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To summarize, the network transit latency of a frame is completely 

characterized by the cycle time and the number of hops. Therefore, the 

frame latency is completely independent of the topology parameters and 

non-TSN traffic.

 802.1Qcr

Asynchronous Traffic Shaping: This provides bounded latency and 

jitter (relatively lower performance levels) without the need for time 

synchronization. It aims to smoothen traffic patterns by reshaping streams 

per hop, implementing per flow queues and prioritizing urgent traffic over 

lower-priority traffic. Previously described TSN standards such as Time-

Aware Shaper (802.1Qbv) and Cyclic Queuing and Forwarding (802.1Qch) 

depend on network-wide coordinated time and packet transmission at 

enforced periodic cycles, resulting in suboptimal utilization of available 

network bandwidth. 802.1Qcr operates asynchronously, without the need 

Bridge 1
High Priority

Traffic
Best Effort (LP)

(preempted)

High Priority
Traffic

Best Effort (LP)
(preempted)

Reduced
Guard Band

Bridge 2

Even Cycle Odd Cycle
Preemption
Overhead

Figure 5-8. 802.1Qch operation with preemption (802.1Qbu)9

9 Illustration of CQF with preemption for a linear network. https://arxiv.org/
pdf/1803.07673.pdf
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for bridges and endpoints to synchronize in time. Therefore, it is expected 

that this technique can utilize available network bandwidth efficiently 

under heavy link utilization with mixed criticality traffic.

 TSN and Security

Since TSN is Ethernet based, the security mechanisms that are state of 

the art today can be employed to secure the TSN network. Traditional 

security solutions such as firewalls will be the key to this. Since firewalls 

need to inspect packets, the resulting computational overhead in firewalls 

can create an additional transmission delay. This delay should be taken 

into account while configuring the TSN network schedules. If security 

mechanisms introduce longer delays than that are tolerable by the TSN 

application, they can be implemented at the border or periphery of the 

TSN network, such as an Industrial Demilitarized Zone that connects the 

TSN industrial control network to the rest of the IT system.

 OPC-UA Over TSN
Of the many higher layer industrial communication protocols that could be 

combined with TSN, one of the prominent ones is OPC-UA. Much like TSN, 

OPC-UA is an open, standard technology that is vendor independent and 

useful for a wide range of industrial applications. The combination of OPC-

UA and TSN therefore provides a complete open, standard, and interoperable 

solution that fulfills a plurality of industrial communication requirements.

By representing data in a uniform way, OPC-UA enables interoperability 

between devices that could not previously share data and gives you new 

insight into a wealth of information. For this reason, it has been adopted 

and integrated into products by all of the major industrial automation 

vendors. OPC-UA was originally limited to a client or server architecture; 

however the recently released publish/subscribe (PubSub) extension now 

enables multicast communication. In combination with TSN, OPC-UA 
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PubSub allows data to be sent with precise timing and thus be used for real-

time industrial applications as illustrated in Figure 5-9. In the horizontal 

direction, OPC-UA-based controller-to-controller communication can 

be done over TSN. In the vertical direction, OPC-UA-based controller-to-

cloud communication can be done directly, via a gateway or broker. This 

enables IT (Information Technology) systems having less stringent timing 

requirements to interwork with OT (Operations Technology) systems that 

need guaranteed data delivery with precise timing.

Cloud

Relay
Broker SCADAERP/MES

IT Network

Management shell

Controller Controller Controller

Management shell Management shell

OT Network

Saw

over TSN without TSN

Press

Fieldbus A Fieldbus B Fieldbus C

Robot

SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE

Figure 5-9. Factory automation network with OPC-UA over TSN

OPC-UA also enables a standard method for configuring TSN networks 

online and in a dynamic way. This does not require you to input any 

system parameters for the scheduler as these are all taken from the  

OPC-UA application parameters within each device. A broker mechanism 

as defined by the OPC Foundation provides an interface between OPC-UA 

applications and TSN scheduling software.
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 Overview of Wireless Connectivity 
Technologies
The IoT will require several wireless technologies if it’s to meet its 

potential. For example, Bluetooth Low Energy and IEEE 802.15.4 are good 

choices for battery-powered sensors, but for devices that are constantly 

moving, or are not near a LAN (local area network), such relatively short-

range wireless technologies are not suitable for connecting to the Internet.

Even if a LAN is present, manufacturers might prefer longer-range wireless 

technology for its convenience and autonomy. For example, a white goods 

manufacturer could select cellular technology over Wi-Fi because it enables 

a refrigerator or washing machine to connect to the Cloud automatically, 

eliminating the need for a consumer to enter a password to add the appliance 

to a home’s LAN. In these situations, low-power wide area networks (LPWAN) 

or Narrowband IoT technologies could come to the rescue.

 Considerations for Choosing Wireless 
Technologies for IoT
There are many wireless networking technologies that are deployed in IoT 

today, each with a different set of capabilities. Here are some of the key 

considerations when choosing these different solutions.

 Spectrum

Wireless spectrum can be characterized as either licensed or unlicensed. 

Access to licensed spectrum is typically purchased from local government 

to provide an organization exclusive access to a particular channel in a 

particular location. Operation in that channel should be largely free of 

interference from competing radios. The drawback is that the spectrum 

of interest may be extremely scarce or expensive to access. In some other 

cases, radio connectivity bands allowed in one country may not be available 
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in other geographical area for same usage. For instance, mobile networks in 

India use the 900 MHz and 1800 MHz frequency bands, while GSM (Global 

System for Mobile communications) carriers in the United States operate in 

850 MHz and 1900 MHz frequency bands. To deploy an IoT device globally, 

then it may have to support multiple radio bands making the device costly 

as well as time-consuming to develop. Even when more easily accessible, 

it can take months to gain the approval to operate, so licensed bands are 

not well suited to rapid deployments. Unlicensed spectrum is generally 

open and available to anybody to use with no exclusive rights granted to 

any particular organization or individual. The downside is that competing 

systems may occupy the same channel at different power levels leading to 

interference. Manufacturers of radio systems operating in unlicensed bands 

include capabilities in these radios to adapt their operation for this potential 

interference. These techniques include adaptive modulation, automatic 

transmit power control and out-of-band filtering, and so on.

 Range and Capacity

Several factors impact the amount of data capacity that can be delivered at 

a particular distance. Those factors include spectrum, channel bandwidth, 

transmitter power, terrain, noise immunity, and antenna size. In general, 

the longer the distance to be covered, the lower the data capacity. The 

longest propagation distance can be achieved by using a low-frequency 

narrowband channel with a high-gain antenna, while higher capacities 

could be achieved by selecting wider channels, with limited range. For 

optimal performance for each application, we need to choose the best 

combination of channel size, antenna, and radio power and modulation 

schemes to achieve the desired capacity.

A radio link can be described as being line of sight when there is a 

direct optical path between the two radios making up the link. A link 

is called non-line of sight when there is some obstruction between the 

two radios. Near line of sight is simply a partial obstruction rather than a 
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complete obstruction. In general, lower-frequency solutions have better 

propagation characteristics than higher frequencies. Higher-frequency 

solutions that operate in multi-gigahertz range are typically line-of-sight 

or near line-of-sight systems. From 1 GHz to 6 GHz range, the propagation 

characteristics capabilities will vary depending on other factors, and 

typically below 1 GHz the propagation becomes much better, making those 

frequencies suitable for longer range. Figure 5-10 shows a landscape of 

data rates and ranges of common wireless technologies.
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Figure 5-10. Range and data rate for various wireless technologies

 Network Topology

Network topology is the arrangement of the elements in a network, 

including its nodes and connections between them. Common network 

topologies used for wireless connectivity are depicted in Figure 5-11.

Chapter 5  ConneCtivity teChnologies for iot



372

Point-to-point topologies are best suited for delivering lots of capacity 

over long distances. Point-to-point connections cover longer distances that 

are less susceptible to interference as the antenna patterns are narrower  

so the energy can be focused in the direction of the desired transmission. 

PTP links are also used for short-range connections to the wireline 

backbone. Resiliency in a PTP link can be provided by deploying in 1+1 or 

other redundant configurations with parallel sets of radios.

Ring topologies are excellent for resilient operations of high-capacity 

links covering a large area. This configuration is typically used in the 

backhaul network.

Mesh networks can be built using multiple point-to-point links or 

with specialized meshing protocols to enable multiple paths from point 

A to point B. Mesh networks have the downside of each packet traversing 

Point to Point Star

MeshRing

Figure 5-11. Common network topologies
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multiple hops and so can lead to lower capacity and increased latency for a 

given infrastructure.

Point-to-multipoint (or star) networks provide scale and capacity over 

a geographic area. Point-to-multipoint networks are typically deployed to 

cover sectors or cells. The key differentiating capability to look for in point-

to-point networks is their ability to scale in the number of nodes per cell 

but also the ability to place cells next to each other without interference.

 Quality of Service

System builders and operators need to make the most efficient use of 

available spectrum by deploying multiple services on the same network 

and also making sure that mission-critical information is transmitted with 

highest priority. A network should support multiple Quality of Service (QoS) 

levels and the ability to sort traffic based on both layer 2 and layer 3 standard 

traffic classifiers. In this way, the transmitter of the data packet can mark the 

class of service or priority, and the end-to-end network will ensure that the 

packet is delivered with the desired level of low latency and availability.

 Network Management

The capability to manage a network has a direct impact on the total cost 

of ownership of the IoT system. Networking systems that allow centralized 

management of configuration, fault detection, performance tuning 

and continuous monitoring, and security validation minimize the cost 

and effort. They also reduce unplanned outages and increase system 

availability and reliability.

 Security

The security of wireless communications is growing in importance. 

Primary techniques to look for here is the ability to encrypt the over-

the-air link, using a network, mesh, or link key. Besides this we need to 
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secure management interfaces with HTTPS and SNMP. Systems should 

also provide the ability to create multiple user accounts with password 

complexity rules. Previously, many traditional automation and control 

solutions have not been exposed to security issues faced by the IT systems, 

but recently have become hacking targets as their solutions get connected to 

the Internet. Major security breaches could slow down the adoption of IoT.

As can be seen from Figure 5-12, several local area network (LAN) and 

wide area network (WAN) technologies with different levels of security and 

network management requirements need to work seamlessly to realize an 

end-to-end IoT system.

 Wi-Fi
Wi-Fi is a wireless connectivity technology based on the IEEE 802.11 

standards. Initially created for wireless local area network (WLAN) 

applications, Wi-Fi is also increasingly used for peer-to-peer and wireless 

personal area network connections (WPAN). It provides secure, reliable, 

and fast wireless connectivity. A Wi-Fi network can be used to connect 

electronic devices to each other, to the Internet, and to wired networks that 

use Ethernet technology. It can provide real-world performance similar to 
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Figure 5-12. End-to-end IoT systems need various connectivity 
technologies to work together
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that of basic wired networks. Wi-Fi networks operate in the 2.4 GHz and 

5 GHz radio bands, with some products that contain both bands (dual-

band). Wi-Fi is also pushing into a third band – the 60 GHz band – using 

ultra-wideband channels and the baseband solution originally developed 

by WiGig. The Wi-Fi Alliance is a wireless industry organization that 

promotes wireless technologies that are based on IEEE 802.11 and their 

interoperability. The Alliance also certifies products that comply with its 

specifications for Wi-Fi interoperability, security, and application-specific 

protocols.

Wi-Fi offers low power consumption and low cost relative to cellular. 

Unlike cellular, Wi-Fi operates in unlicensed spectrum, resulting also in 

lower data transmission costs. Range is limited by proximity to a wireless 

router or relays, and the quality of connection can be diminished by 

network congestion. There are several different Wi-Fi standards optimized 

for IoT applications. Next, we will take a brief look at them.

Wi-Fi Direct enables two or more devices to connect directly in the 

absence of a traditional Wi-Fi hotspot.

With the broad availability of the 802.11ac Wi-Fi standard, Wi-Fi 

operates in the 5 GHz band with wider channels (Note: 802.11n could also 

operate in 5 GHz but in smaller channels), thus enabling more capacity. 

Theoretical throughput of 11ac can exceed 1 Gbps.

Also known as Low-Power Wi-Fi, 802.11ah operates in the sub-1 GHz 

band. It is viewed as central to IoT, given support for extended range 

Wi-Fi and efficient power profile. 11ah extends Wi-Fi beyond 2.4 and 5 

GHz, enabling coverage in challenging environments such as in building, 

basements, and so on. It also supports low-cost sensors without a power 

amplifier, and minimum data rates result in short-term data bursts.

802.11p is an approved standard for vehicle-to-vehicle 

communications. It uses dedicated short-range communications (DSRC) 

for applications such as toll collection, interaction between cars, and safety 

and roadside communications.
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With the increased adoption of Wi-Fi networks for IoT applications 

arose the need for providing wireless network in places where connecting 

an access point (AP) to wired network infrastructure (e.g., a wired 

Ethernet switch) was not possible. A typical example would be the case 

of positioning an AP in the middle of a large warehouse, since the length 

of an Ethernet cable is limited to 100 meters. Some other use cases are 

the extension of an indoor wireless network to a parking lot or a campus, 

providing Wi-Fi coverage to outdoor industrial areas such as an oil refinery 

and others. Such a network can service applications like wireless security 

cameras, utility meters, flow and pressure sensors, vehicle tracking 

systems, and so on.

802.11s defines Wi-Fi mesh networking. As shown in Figure 5-13, 

mesh networks allow rapid deployment with lower-cost backhaul, and 

they make providing coverage in hard-to-wire areas easier. Inherently, 

mesh networks are self-healing, resilient, and extensible. Under the 

right conditions, they increase the range of the network due to multihop 

forwarding and provide higher bandwidth and better battery life due to the 

lower power transmissions caused by shorter hops between neighboring 

nodes.
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Wi-Fi uses TCP/IP stack for Internet connectivity. Wi-Fi technology 

is hugely popular for consumer electronics and enterprise applications 

due to its ubiquitous presence in laptops, tablets, smartphones, and home 

entertainment devices. Wi-Fi access points are deployed today in many 

public spaces such as stadiums, airports, bus and railway stations, coffee 

shops, and schools. They are also present in most homes and offices. The 

increasing demand for cost-effective and easy Internet access along with 

the interoperability and ecosystem programs run by Wi-Fi Alliance has 

contributed to the wide adoption of this technology across the world. This 

worldwide availability makes Wi-Fi a natural choice for IoT connectivity, 

for applications that can leverage existing infrastructure without the need 

for custom protocol translators or gateways.

Today, most Wi-Fi networks operate in the 2.4 GHz and 5 GHz ISM 

(industrial, scientific, and medical) band. With more channels being 

available in the 5 GHz spectrum, higher data rates are possible. Wi-Fi 

networks have a start topology, with the access point acting as an Internet 

gateway. The transmit power permitted by Wi-Fi standards are high 

enough to enable in-home coverage in many cases. In large buildings, 

multiple access points and range extenders are often deployed at different 

locations to ensure adequate coverage and to avoid dead zones. Some  

Wi-Fi products support multiple antennae and transmitter and receiver 

chains for diversity. This helps in overcoming dead zones as well as 

increases data throughput.

Wi-Fi and TCP/IP software stacks are fairly complex and big in size. 

In traditional applications like laptops, smartphones, and tablets with 

adequate processing power and memory footprint, this was not a major 

issue. IoT devices – or things – often come with very low processing power 

and memory size and are typically battery powered. Till recently, adding 

Wi-Fi connectivity to those devices was neither practical nor cost-effective. 

Today, many wireless modules with embedded microcontrollers that 

run the TCP/IP stack and Wi-Fi software are available, thus offloading 

the task of networking from the main microprocessor unit. Wi-Fi devices 
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targeted for low data rate IoT applications apply advanced sleep protocols 

and support fast on/off times to reduce the average power consumption 

dramatically. Since many IoT applications do not need the maximum 

data rates that Wi-Fi offers, intelligent power management techniques can 

efficiently draw bursts of current from the battery for very short intervals 

and keep products connected to the Internet for multiple years without 

battery replacement.

Wi-Fi modules for IoT applications typically integrate the RF frontend, 

thus eliminating the need for extensive radio design experience for the 

embedded system designer. They often come pre-certified for regulatory 

compliance such as FCC (Federal Communications Commission) in the 

United States, thus making the system certification process less time-

consuming. Wi-Fi is the most ubiquitous wireless Internet connectivity 

technology today. Its high power and complexity has been a major 

barrier for IoT developers, but new silicon devices and modules reduce 

many of these barriers and enable Wi-Fi integration into emerging IoT 

applications and battery-operated devices. On the other hand, latest Wi-Fi 

standards offer very high bandwidth and capacity where needed, such as 

in video surveillance, retail, and sports arena applications. Thus Wi-Fi can 

support a wide variety of applications. Table 5-4 summarizes the Wi-Fi 

technologies currently available in the 2.4 GHz and 5 GHz spectrum.

Table 5-4. Wi-Fi Protocol Summary

Protocol Frequency Channel 
Width

MIMO Maximum data 
rate(theoretical)

802.11ac wave2 5 ghz 80, 80+80, 

160 Mhz

Multi User 

(MU-MiMo)

1.73 gbps1

802.11ac wave1 5 ghz 80 Mhz single User 

(sU-MiMo)

866.7 Mbps1

(continued)
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To increase the relatively short range of Wi-Fi – specifically for IoT 

sensors that don’t require high data rates – 802.11ah was introduced. It 

operates in the 900 MHz and uses target wake time to reduce the amount of 

energy a device needs to stay connected to the network. Devices wake up 

for very short times at defined intervals to accept messages. It penetrates 

through walls and obstructions better than high-frequency networks. It 

is well suited for smart building applications, like smart lighting, smart 

HVAC, and smart security systems. It would also work for smart city 

applications, like parking garages and parking meters. Since there is no 

global 900 MHz standard, the adoption rate of 802.11ah is currently very 

low. Table 5-5 summarizes the key characteristics of 802.11ah.

Protocol Frequency Channel 
Width

MIMO Maximum data 
rate(theoretical)

802.11n 2.4 or 5 ghz 20, 40Mhz single User 

(sU-MiMo)

450 Mbps2

802.11g 2.4 ghz 20 Mhz n/a 54 Mbps

802.11a 5 ghz 20 Mhz n/a 54 Mbps

802.11b 2.4 ghz 20 Mhz n/a 11 Mbps

legacy 802.11 2.4 ghz 20 Mhz n/a 2 Mbps

1 2 Spatial streams with 256-QAM modulation.
2 3 Spatial streams with 64-QAM modulation.

Table 5-4. (continued)
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802.11ax represents the next phase of Wi-Fi. The Wi-Fi Alliance 

coined the term “Wi-Fi 6” when referring to the IEEE 802.11ax standard, 

indicating the sixth generation of Wi-Fi. Continued growth in the number 

of Wi-Fi-enabled devices, increased per-user traffic demand, greater 

number of users per access point (AP), higher-density Wi-Fi deployments, 

growing use of outdoor Wi-Fi, heterogeneous device and traffic types, and 

a desire for more power and spectral efficiency are all major driving forces 

behind 802.11ax. There are many 802.11ax enhancements in the 2.4 GHz 

band that will help increase the viability of Wi-Fi for Internet of Things 

Table 5-5. 802.11ah Overview

Name of Standard IEEE P802.11ah (low power WiFi)

frequency Band license-exempt bands below 1 ghz,  

excluding the tv White spaces

Channel Width 1/2/4/8/16 Mhz

range Up to 1Km (outdoor)

end node transmit power Dependent on regional regulations  

(from 1mW to 1 W)

packet size Up to 7,991 Bytes (w/o aggregation), Up to 

65,535 Bytes (with aggregation)

Uplink Data rate 150 Kbps ~ 346.666 Mbps

Downlink Data rate 150 Kbps ~ 346.666 Mbps

Devices per access point 8191

topology star, tree

end node roaming allowed allowed by other ieee 802.11 amendments 

(e.g., ieee 802.11r)

governing Body ieee 802.11 working group

status targeting 2016 release
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(IoT) applications. These include target wake time (TWT), orthogonal 

frequency-division multiple access (OFDMA), 2 MHz clients, and 

coexistence improvements with other IoT wireless technologies. With sub-

1 GHz Wi-Fi HaLow (802.11ah) having gained very little traction to date, 

there is still considerable potential for 2.4 GHz Wi-Fi in the IoT. If certain 

2.4 GHz 802.11ax implementations can offer comparable battery life to 

802.11n, or other short-range wireless IoT connectivity solutions, it may 

open new opportunities for Wi-Fi across several IoT vertical applications. 

The standard builds on the strengths of 802.11ac while adding efficiency, 

flexibility, and scalability. Table 5-6 shows the major technical differences 

between 802.11ac and 802.11ax standards.

Table 5-6. 802.11ac and 802.11ax Comparison

802.11ac 802.11ax

Bands 5 ghz 2.4 ghz and 5 ghz

Channel Bandwith 20 Mhz, 40 Mhz, 80 Mhz, 

80+80 Mhz, & 160 Mhz

20 Mhz, 40 Mhz, 80 Mhz, 

80+80 Mhz, &160 Mhz

fft sizes 64, 128, 256, 512 256, 512, 1024, 2048

subcarrier spacing 312.5 khz 78.125 khz

ofDM symbol 

Duration

3.2 us + 0.8/0.4 us Cp 12.8 us + 0.8/1.6/3.2 us Cp

highest Modulation 256-QaM 1024-QaM

Data rate: 1 spatial 

stream

433 Mbps (80 Mhz, 1 ss) 600.4 Mbps (80 Mhz, 1 ss)

Data rate: 8 spatial 

streams

6933 Mbps (160 Mhz, 8 ss) 9607.8 Mbps (160 Mhz, 8 

ss)
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For Wi-Fi connectivity technology, security has two aspects. First is 

controlling who can connect to and configure the network and equipment. 

Second aspect deals with securing the data travelling wirelessly across 

your Wi-Fi network from unauthorized access by using encryption. For the 

overall network to be secure, one should also consider measures to protect 

the gateways and the connections across the Internet using virtual private 

network (VPN), firewalls, and so on.

 Bluetooth
Bluetooth operates in the unlicensed industrial, scientific, and medical 

(ISM) band at 2.4 GHz using a spread spectrum, frequency hopping, and 

full-duplex signal at a nominal rate of 1600 hops/sec. The 2.4 GHz ISM 

band is available and unlicensed in most countries. Its range varies from 

1 m to 100 m depending on which class of radio is used. Class 2 is the most 

commonly used radio. It has a range of around 10 m and uses 2.5 mW of 

power.

Bluetooth provides a short distance wireless connection with low 

power consumption, even compared to Wi-Fi. Bluetooth Low Energy 

(also known as Bluetooth Smart or BLE) further reduces the power 

consumption profile of traditional Bluetooth. For example, Bluetooth 

devices can sustain battery life for weeks or months, while Wi-Fi can be 

hours or days. Data transfer rates are somewhat limited at about 1 Mbps 

(though theoretical throughput is up to 24 Mbps), though the range 

extends up to about 100 meters (300+ feet). Similar to Wi-Fi, Bluetooth 

can be used for machine-to-machine connections and device pairing. 

Bluetooth 4.1 was introduced in December 2013, which enables devices 

to communicate with each other before feeding that data back to a host 

and interoperates with LTE.

The Bluetooth SIG controls the Bluetooth standard. Bluetooth 

technology was originally proposed as a standard for communications 

between phones and computers. The main use case that made Bluetooth 
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initially popular was hands-free phone calls with headsets and in-vehicle 

infotainment systems in cars. With the advent of smartphones, high-

fidelity music streaming and health and fitness accessories have also 

become more popular.

Bluetooth is a PAN (personal area network) technology primarily 

used today as a cable replacement for short-range communication. It 

can be used in a point-to-point or star network topology. It supports data 

throughputs up to 2 Mbps, with up to eight connected devices.

Original Bluetooth standard is today commonly referred to as 

Bluetooth Classic, to distinguish it from Bluetooth Low Energy. Bluetooth 

Low Energy, sometimes known as Bluetooth Smart, is an addition to the 

Bluetooth specification. Bluetooth SIG adopted it in the Bluetooth 4.0 

standard in 2010 to enter the low-power IoT space.

Though Bluetooth Low Energy also uses the 2.4 GHz ISM band, it is 

not compatible with Bluetooth Classic. Bluetooth Low Energy uses 40 

2 MHz-wide channels, whereas Bluetooth Classic uses 79 1 MHz-wide 

channels. Compared to Bluetooth Classic, Bluetooth Low Energy greatly 

reduces the power consumption of Bluetooth devices by supporting lower 

data throughput and enables lengthy lives for battery-operated devices. 

Bluetooth Low Energy also offers a beaconing capability and location-

based services. Bluetooth Low Energy has proven to be very popular, 

triggering an explosion of new applications in spaces as diverse as fitness, 

toys, and automotive applications. It is now the main driving force behind 

many new Bluetooth standards.

Over the years, Bluetooth SIG has announced major revisions to the 

specifications to improve security, battery life, and easier interoperation 

with IP-based networks. For example, Bluetooth 4.2 specification added 

industrial strength security with elliptic curve cryptography (ECC)-based 

key management and Advanced Encryption Standard (AES) counter with 

cipher block chaining message authentication code (CCM) cryptography 

for message encryption.
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Bluetooth 5 offers a choice of data rates and operating ranges – 2 Mbps, 

1 Mbps, 500 Kbps, and 125 Kbps. The lower the data rates, the longer the 

ranges. The increases in range and data rate capabilities make Bluetooth 

Low Energy increasingly attractive in nonconsumer segments such as 

industrial data loggers or smart energy meters. Along with these, Bluetooth 

Low Energy’s inherent advantage of built-in compatibility with mobile 

devices, it is an excellent choice for data display and retrieval, Internet 

connectivity, and initial provisioning and configuration of IoT devices in 

the field. Table 5-7 shows a comparison of Bluetooth Classic and Bluetooth 

Low Energy technologies.

In 2017, the Bluetooth SIG released the mesh profile and mesh 

model specifications. Mesh networking technology enables the use of 

Bluetooth Low Energy for many-to-many device communications in home 

automation applications such as smart lighting, low-power wireless sensor 

networks, and so on. It also enables extended range communication using 

intermediary nodes to relay the data across the network. These new mesh 

standards are compatible with both the Bluetooth 5 and Bluetooth 4.x 

standards.

Table 5-7. Bluetooth Low Energy and Bluetooth Classic Comparison

Bluetooth Low Energy (LE) Bluetooth Classic  
[Basic Rate/Enhanced 
Data Rate (BR/EDR)]

optimized for… short burst data transmission Continuous data streaming

frequency Band 2.4 ghz isM Band  

(2.402–2.480 ghz Utilized)

2.4ghz isM Band (2.402–

2.480 ghz Utilized)

Channels 40 channels with 2 Mhz spacing 

(3 advertising channels/37 data 

channels)

79 channels with 1 Mhz 

spacing

(continued)
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Bluetooth Low Energy (LE) Bluetooth Classic  
[Basic Rate/Enhanced 
Data Rate (BR/EDR)]

Channel Usage frequency-hopping spread 

spectrum (fhss)

frequency-hopping spread 

spectrum (fhss)

Modulation gfsK gfsK, π/4 DQpsK, 8DpsK

power  

Consumption

~0.01x to 0.5x of reference 

(depending on use case)

1 (reference value)

Data rate le 2M phy: 2 Mb/s

le 1M phy: 1 Mb/s

le Coded phy (s=2): 500 Kb/s

le Coded phy (s=8): 125 Kb/s

eDr phy (8DpsK): 3 Mb/s

eDr phy (π/4 DQpsK): 2 

Mb/s

Br phy (gfsK): 1 Mb/s

Max tx power* Class 1: 100 mW (+20 dBm)

Class 1.5: 10 mW (+10 dBm)

Class 2: 2.5 mW (+4 dBm)

Class 3: 1 mW (0 dBm)

Class 1: 100 mW (+20 

dBm)

Class 2: 2.5 mW (+4 dBm)

Class 3: 1 mW (0 dBm)

network topologies point-to-point (including piconet)

BroadcastMesh

point-to-point (including 

piconet)

Table 5-7. (continued)

Security in Bluetooth mesh networking is concerned with the security 

of more than individual devices or connections between peer devices; it’s 

concerned with the security of an entire network of devices and of various 

groupings of devices in the network. Consequently, security in Bluetooth 

mesh networking is mandatory. This is achieved by implementing the 

following fundamental security measures:

• Encryption and authentication: All Bluetooth mesh 

messages are encrypted and authenticated.
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• Separation of concerns: Network security, application 

security, and device security are addressed 

independently.

• Area isolation: A Bluetooth mesh network can be 

divided into subnets, each cryptographically distinct 

and secure from the others.

• Key refresh: Security keys can be changed during the 

life of the Bluetooth mesh network via a key refresh 

procedure.

• Message obfuscation: Message obfuscation makes 

it difficult to track messages sent within the network 

and, as such, provides a privacy mechanism to make it 

difficult to track nodes.

• Replay attack protection: Bluetooth mesh security 

protects the network against replay attacks.

• Trashcan attack protection: Nodes can be removed 

from the network securely, in a way which prevents 

trashcan attacks.

• Secure device provisioning: The process by which 

devices are added to the Bluetooth mesh network to 

become nodes is a secure process.

 Zigbee
Zigbee is based on the IEEE 802.15.4 link layer and typically operates in 

the 2.4 GHz ISM band. Its networking layer has been designed with mesh 

topology operations in mind from the ground up. This provides the  

ability to scale the network geographically through multihop operations 
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(for applications such as smart meters), as well as increases fault tolerance 

and reliability as backup paths are created through the mesh between any 

two points.

Zigbee is designed, promoted, and maintained by the Zigbee Alliance. 

Zigbee 3.0, the latest specification, increases choice and flexibility for users 

and developers and delivers the confidence that products and services will 

all work together through standardization at all layers of the stack. Zigbee 

3.0 is built on the Zigbee PRO, which enhances the IEEE 802.15.4 standard 

by adding mesh network and security layers along with an application 

framework and to become a full stack, low-power certifiable, interoperable 

Zigbee solution. Zigbee provides a complete solution that enables true 

device interoperability between different manufacturers. The Zigbee 

protocol suite incorporates the Zigbee cluster library: a standard library 

of device types, data models, and behaviors built by original equipment 

manufacturers (OEMs) operating in different vertical markets and proven 

in actual deployments for many years. A rigorous certification program 

managed by the Zigbee Alliance guarantees interoperability between 

Zigbee devices, verifying device type behavior and functionality from 

an end product perspective and ensuring that products from different 

manufacturers can operate together.

The Zigbee protocol suite includes standard commissioning, security, 

network, and device management procedures. Various device types 

can join and be authenticated in the network and be factory reset or 

decommissioned in an interoperable way, guaranteeing end-to-end 

device interoperability from the start of device operation and seamlessly 

integrating with data collectors or hubs.

Zigbee-based applications mostly target the smart home and smart 

building domains, with focus in lighting and home control and physical 

security segments. Many telecom, security, and Internet service providers 

have endorsed Zigbee as the protocol of choice when introducing 

their home automation services to consumers, and many lighting 

manufacturers have a series of smart bulbs supporting this protocol.
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Zigbee takes full advantage of IEEE 802.15.4 physical radio standard 

and operation in unlicensed bands worldwide at 2.4 GHz (global), 915 MHz 

(Americas), and 868 MHz (Europe). Raw data throughput rates of 250 

Kbps can be achieved at 2.4 GHz (16 channels), 10 Kbps at 915–921 MHz 

(27 channels), and 100 Kbps at 868 MHz (63 channels). Transmission 

distances range from 10 to 100 meters, depending on power output and 

environmental characteristics. Sub-1 GHz channel transmission ranges up 

to 1 km. Table 5-8 provides a quick overview of the Zigbee technology.

Zigbee effectively uses the allocated bandwidth to convey both 

application data to operate devices and network management procedures 

like mesh and routing management with a very small energy footprint. 

Zigbee’s addressing scheme is capable of supporting hundreds of nodes 

per network (up to 64K), and multiple network coordinators can be linked 

together to support extremely large networks. The logical size of a Zigbee 

network ultimately depends on which frequency band is selected, how 

often each device on the network needs to communicate, and how much 

data loss or retransmissions can be tolerated by the application.

Table 5-8. Overview of Zigbee Technical Specifications

Solution Description

network protocol Zigbee pro 2015 (or newer)

network topology self-forming, self-healing Mesh

network Device types Coordinator (routing capable), router, end 

Device, Zigbee green power Device

network size (# of nodes) Up to 65,000

radio technology ieee 802.15.4-2011

frequency Band/Channels 2.4 ghz (isM band)

16 channels (2 Mhz wide)

(continued)
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 NFC
Near field communications (NFC) is a short-range wireless 

communication technology designed to build on existing high-frequency 

(HF) (13.56 MHz) contactless and RFID technology. Using 13.56 MHz on 

the ISM band and with a typical operating distance of up to 4 cm, today 

NFC enables an exchange rate of between 106 Kbps and 848 Kbps. NFC 

creates a short-range wireless connection able to operate in three different 

modes of operation: card emulation, read/write, and peer-to-peer. NFC 

technology enables a wide range of use cases from keyless access to 

e-wallet in smartphone and smart tags for medical applications. This is 

due to ease of implementation and the ability to embed tags into credit 

cards, smartphones, and other wearable devices.

Solution Description

Data rate 250 Kbits/sec

security Models Centralized (with install Codes support)

Distributed

encryption support aes-128 at network layer

aes-128 available at application layer

Communication  

range (average)

Up to 300+ meters (line of sight)

Up to 75–100 meters indoor

low power support sleeping end Devices

Zigbee green power Devices (energy 

harvesting)

Table 5-8. (continued)
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 GPS/GNSS
GPS is a satellite-based radio navigation system that provides users with 

location, velocity, and time information. A GPS receiver acquires each 

visible satellite’s signal and measures the individual time delays. Applying 

these time delays to known radio wave propagation characteristics allows 

the distance to each satellite to be calculated. GPS accuracy correlates 

with the number of satellites successfully acquired by a GPS receiver. New 

systems are under development, such as Glonass, Galileo, and Compass, 

which, when used in conjunction with GPS, will improve global coverage, 

reduce time to fix location, and increase performance in challenging 

environments. Location data collected by onboard GPS trackers are 

vital to many applications in the transportation industry such as fleet 

management, asset tracking, and autonomous vehicles.

 Cellular
Cellular technologies provide “always-on” connectivity to the backbone 

network – to the Cloud. Similar to mobile phones for consumer 

applications, cellular data for IoT can be connected over 2G, 3G, or 4G 

networks. Benefits include broad coverage leveraging existing base station 

infrastructure as well as mobility (e.g., cars). Potential drawbacks include 

power consumption, fees associated with data transfer over licensed 

spectrum owned by carriers, and potential gaps in coverage.

As demand for ubiquitous connectivity for IoT devices gets ever 

stronger, cellular networks can deliver reliable and secure IoT services 

using existing network infrastructure. Massive investments have been 

made in spectrum allocations and network deployments to ensure good 

coverage for the entire population in most countries. The same networks 

that are used to connect people can now be leveraged to connect things.
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Traditional cellular options such as 2G, 3G, or higher category 4G 

modems consume a lot of power and don’t fit well with applications where 

only a small amount of data is transmitted infrequently, such as smart 

meters, asset trackers, healthcare equipment, agriculture sensors, parking 

spaces, and street lights. Cellular IoT is designed to meet the requirements 

of such low-power, long-range applications. It takes existing technology 

that we already use every day for our smartphones and scales it back to 

meet the needs of low-power devices.

When it comes to analyzing cost of a communication solution, the 

total cost of ownership includes spectrum costs, infrastructure costs, and 

operational expenses. As cellular networks are already in place, very little new 

infrastructure needs to be installed. The base stations, cell towers, buildings, 

and power supply are already in place, all around the world. The technology 

also has the potential to cover hundreds of thousands of IoT devices per 

square kilometer – many more than other communication options.

No single technology or solution is ideally suited to all the different 

potential massive IoT applications, market situations, and spectrum 

availability. As a result, the mobile industry is standardizing several 

technologies, including Long-Term Evolution for Machines (LTE-M) and 

Narrowband IoT (NB-IoT). NB-IoT is ideally suited for low bandwidth, 

infrequent communication from a relatively stationary device, while 

LTE-M suits higher bandwidth or mobile and roaming applications.

A good application for NB-IoT is the use of remote environmental 

sensors to measure temperature, wind, pressure, and so on. These devices 

can send regular updates from a fixed location while optimizing battery 

use. Such a device could last for up to 10 years, or longer if solar powered 

and in the right geographical position.

Similarly, an asset tracker with condition monitoring through 

several sensors, which is mobile and roaming from country to country, 

is well served by an LTE-M solution that offers highway speed mobility, 

international roaming between countries and operators, and efficient 

firmware updates.
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Advantages of cellular connectivity for IoT include

• The use of open standards based on existing 

infrastructure means coverage will reach virtually 

everywhere where people live.

• Many devices can operate simultaneously because 

of the advanced coexistence mechanisms in the LTE 

standard and licensed band operation, as is already 

proven today with the large number of cellphones used 

concurrently within a small area.

• No limiting regulatory regulations, so you can transmit 

up to 23 dBm and negotiate for as much airtime as you 

need.

• Standard TLS/DTLS security for end-to-end security 

is supported on top of the on-air encryption of the LTE 

network aided by the SIM credentials. This keeps data 

secure from the device to the cloud server.

• As cellular network coverage increases and technologies 

are available in low-complexity, low- power variants, 

cellular technology is a great choice for the world’s IoT 

needs.

 5G Cellular
The first-generation mobile network (1G) was all about voice and used 

analogy technology. 2G enabled voice and texting (short messaging 

service – SMS) using digital technology. 3G was about voice, texting, and 

data. 4G was everything in 3G but faster, and 5G will be even faster. 5G 

will be fast enough to download a full-length HD movie in seconds. The 

transition from 2G to 4G happened in a span of about 20 years as shown in 

Figure 5-14.
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The real performance of a cellular network will vary by provider, 

their configuration of the network, the number of active connections in a 

given cell, the radio environment in a specific location, the capability of 

the device in use, plus all the other factors that affect radio performance. 

It is safe to assume that the throughput will be much closer to the lower 

bound for data throughput, and the latency will be trending toward the 

higher bound for packet latency for a given generation. Table 5-9 provides 

a summary of data rates and latency of different generations of cellular 

technologies.

User 
Experience, 

new 
verticals

Voice
SMS, data

1995 2000 2010 2020
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vvvverrrrtttticals

VoVV ice
SMS, data

Apps,
viiiiddddeoeee

Figure 5-14. Evolution of cellular technologies
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5G is much more than just faster networks. It supports the unique 

combination of high-speed connectivity, very low latency, and ubiquitous 

coverage, making it natively suitable for supporting IoT use cases. 5G will 

enable us to control more devices remotely in applications where real- time 

network performance is critical, enabling new user experiences in many 

different verticals. For example, it can be used for remote control of heavy 

machinery in hazardous environments, thereby improving worker safety. With 

its low latency, it can improve access to healthcare by enabling remote surgery. 

5G connectivity will support smart vehicles and transport infrastructure such 

as connected cars, where the variation in delay could mean the difference 

between a smooth flow of traffic and an accident. It is evident that 5G will spur 

innovation across many industries and prove to be an enabling platform for 

IoT solutions to become an integral part of our economy.

Table 5-9. Comparison of Data Rates and Latencies of Different 

Generations of Cellular Technologies

Generation Peak Data 
Rate

Practical Data 
Rate

Latency Description

1g no Data no Data no Data analog systems

2g 100s of Kbps 100–400 Kbps 300–1000 ms first digital systems 

as overlays or parallel 

to analog systems

3g 10s of Mbps 400 Kbps– 

5 Mbps

100–500 ms Dedicated digital 

networks deployed 

in parallel to analog 

systems

4g 100s of Mbps 1–50 Mbps <100 ms Digital and packet-

only networks

5g 10s of gbps tBD 1–20 ms Digital and packet-

only networks
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 Key Standards, Regulatory, and Industry Bodies 
Involved in 5G

There are multiple cellular standards and release versions, and the 

classification of any given network as 3G, 4G, or 5G is definitely too coarse. 

Here is a quick survey of the key players behind the evolution of various 

cellular technologies:

• ITU: (International Telecommunications Union) 

Agency of the UN, coordinating telecom operations 

and services globally. Their ITU-R sector is charged 

with developing future 5G standards and coordinating 

harmonized spectrum use.

• 3GPP: Collaboration between seven global 

telecommunications standards organizations engaged 

in research and development of 5G standards.

• ETSI: Organization in Europe producing globally 

applicable standards for Information and 

Communication Technologies.

• OCF: Comprised of technology suppliers for product, 

software, platform, and silicon dedicated to driving 

open standards for IoT solutions.

• IEEE: A technical professional organization dedicated 

to enabling the development of new use cases and 

standards to accelerate time to market of technologies 

developed on a consensus basis.

• 5G-ACIA: 5G Alliance for Connected Industries and 

Automation ensures the best possible applicability of 5G 

technology and 5G networks for the manufacturing and 

process industries by addressing, discussing, and evaluating 

relevant technical, regulatory, and business aspects.
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 New Use Cases Enabled by 5G

5G addresses existing, emerging, and future use cases. 3GPP (3rd Generation 

Partnership Project) has grouped the high-level use cases of 5G into three 

categories, based on the functionality and performance that 5G would need 

to enable these use cases. The three sets of use cases, primarily based on the 

5G performance attributes, are listed here and are shown in Figure 5-15:

• Enhanced Mobile Broadband (eMBB): Use cases 

requiring high data rates across a wide coverage area, 

providing immersive experiences such as augmented 

reality and virtual reality. eMBB will initially be an 

extension to existing 4G services and will be among the 

first 5G services. The three main attributes of 5G that 

enable eMBB use cases are

Higher capacity: Which makes broadband access 

available in densely populated areas, both indoors 

and outdoors, like city centers, office buildings, and 

public venues like stadiums or conference centers.

Enhanced connectivity: Broadband access must 

be available, with adequate quality of service 

everywhere to provide a consistent user experience.

Higher user mobility: Will enable mobile broadband 

services in moving vehicles including cars, buses, 

trains, and even planes.

eMBB traffic is characterized by large payloads and 

by a device connection pattern that remains stable 

over an extended time interval. This allows the 

network to schedule wireless resources to the eMBB 

devices preventing the chance of two eMBB devices 
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accessing the same resource simultaneously. The 

objective of the eMBB service is to maximize the 

data rate while guaranteeing a moderate reliability.

• Massive Machine-Type Communications (mMTC): This 

addresses the need to support a very large number 

of devices in a small area, which may only send data 

sporadically. IoT use cases such as smart homes, smart 

cities, and weather and agricultural smart sensors 

are good examples. A large number of mMTC devices 

may be connected to a given cellular network, but at a 

given time only a subset of them could be active and 

attempt to communicate their data. The large number 

of potentially active mMTC devices makes it infeasible 

to preallocate resources to individual mMTC devices. 

Instead, it is necessary to provide resources that can 

be shared through random access. The objective in the 

design of mMTC is to maximize the arrival rate that can 

be supported in a given radio resource.

• Ultra-Reliable Low-Latency Communications (URLLC): 

These use cases impose strict requirements on latency 

and reliability for mission-critical communications, 

such as remote surgery, autonomous vehicles, or 

industrial control applications. The number of 

potential devices supported per unit area is considered 

to be smaller than mMTC. Supporting URLLC 

transmissions requires a combination of scheduling, 

so as to ensure a certain amount of predictability 

in the available resources and thus support high 

reliability. Random access is also required in order to 

ensure that too many resources do NOT idle due to the 

intermittent nature of scheduled traffic. Due to the low 

Chapter 5  ConneCtivity teChnologies for iot



399

latency requirements, a URLLC transmission should be 

localized in time. Diversity, which is critical to achieve 

high reliability, can be achieved by using multiple 

frequency or spatial resources. Compared to eMBB, the 

rate of a URLLC transmission is relatively low, and the 

main requirement is ensuring a high reliability level.

 Key Technology Enablers for 5G

• 5G NR: 5G New Radio is the new air interface 

technology being defined to support the features of 

5G. The air interface specifies the radio frequency (RF) 

section of the connection between a mobile device and 

the mobile network. OFDM (orthogonal frequency- 

division multiplexing) family of waveforms will be 

used for 5G. This allows wireless network providers to 

more easily scale carrier bandwidth needed for each 

application and support diverse spectrum. 5G New 

Radio will use new spectrum well beyond the range of 

most current wireless technology, improving network 

ENHANCED MOBILE BROADBAND
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ULTRA-RELIABLE, LOW-LATENCY
COMMUNICATIONS

MASSIVE MACHINE TYPE
COMMUNICATIONS

Gigabytes in a second

3D video, UHD screens

Work and play in the cloud

Augmented reality

Industry automation
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Self driving car

Smart Home/Building

Voice

Smart City

Figure 5-15. New use cases enabled by 5G

Chapter 5  ConneCtivity teChnologies for iot



400

availability and throughput. Massive MIMO (multiple 

input multiple output) technologies enable efficient 

use of large number of antennae and, along with 3D 

beamforming technologies, allow increase in capacity, 

coverage, and cell edge performance. The 5G NR self- 

contained slot structure delivers significantly lower 

latency than LTE thanks to support for fast uplink/

downlink turnaround and scalable slot durations.

• Network Function Virtualization (NFV): Today’s 

networks are dedicated, static, and hardware 

resource-based and can’t meet tomorrow’s demands. 

Decoupling and shifting network functions from 

proprietary hardware to software-based services on 

open servers “virtualizes” the network. To support the 

many new use cases for 5G, NFV provides significant 

capabilities for communication service providers that 

will lead to more innovation, fast service deployment, 

and reduced operating expenses.

• Software-Defined Networking (SDN): SDN is a 

framework for creating intelligent networks that are 

open, programmable, and application aware. It makes 

network programmable by separating the control 

plane (telling the network what goes where) from the 

data plane (sending packets to specific destinations) – 

centralizing and automating network engineering 

tasks and reducing the amount of manual intervention 

and coordination. This drives rapid service creation, 

reducing time to market for new offerings.

• Network Slicing: This can be employed to enable 

enhanced network flexibility. SDN and NFV create 

opportunity to “slice” networks, so that a single physical 
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network can be partitioned into many virtual networks. 

Each slice is self-contained with all necessary functions 

and is customized to match the level of delivery 

complexity required by the service-level agreement, 

as illustrated in Figure 5-16. Delivering customized 

connectivity and computing power for different types 

of segments, devices, and services opens new ways for 

communication service providers to monetize their 

offering. For example, they can provide third parties with 

access to operate their slices independently, creating 

new Network-as-a-Service (NaaS) business model.

5G Promise: All mobile services via all types of devices across all industries on a single network
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Figure 5-16. Network slicing concept
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• C-RAN: Cloud or Centralized Radio Access Network 

helps to optimize network architecture by virtualizing 

base station functions; mobile base stations are 

comprised of a baseband unit (BBU), handling data 

processing, and a radio unit (RU), sending/receiving 

radio waves and managing the radio resources. 

Separating the BBU from the mobile base station radio 

unit pools data processing functions into a centralized 

server as shown in Figure 5-17. This allows multiple 

radio units to be controlled from one server reducing 

CAPEX and OPEX for communication service providers. 

This also increases the ability to address interference 

issue in high-density area and improves network 

efficiency with shared processing and load balancing.

Centralized BBU Server

Base Sta�on

Small Cell

Base Sta�on

Cloud BBU Pool

RRH

RRH

RRH

Figure 5-17. Cloud RAN concept
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 LPWAN – Low-Power Wide Area Networks
Low-power wide area network (LPWAN) technologies have low power 

draw and provide coverage to wide geographical areas. They provide 

connectivity for devices and applications that require low mobility and low 

speeds and infrequent data transfer, such as sensors. LPWAN technologies 

fill the gap between mobile cellular (3G, LTE) and short-range wireless 

(e.g., Bluetooth, Wi-Fi, and Zigbee) networks and are designed for 

machine-to-machine communications. LPWAN devices have a long 

battery life because they transmit only small packets of data at infrequent 

intervals. LPWAN solutions provide a wide area of coverage that is not 

limited by distance between the access points (i.e., base stations or towers) 

using new modulation techniques and frequency choices. They also do 

not typically require line-of-sight communications. They therefore require 

far fewer access points per unit area than traditional cellular wireless 

technologies.

There is no single standard for LPWAN, and there are a number 

of competing technologies, providing different levels of coverage and 

capacity. We will take a look at three of them.

 LoRa

LoRa Alliance is an open, nonprofit association with over 500 members 

globally among telcos, system integrators, and manufacturers. 

LoRaWAN is an open standard with a certification program to guarantee 

interoperability that is governed by the LoRa Alliance. LoRaWAN 

network semiconductor technology is proprietary to California-based 

semiconductor manufacturer Semtech. See Table 5-10 for the summary of 

technical specifications of LoRa technology.
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 Sigfox

One of the most widely deployed proprietary LPWAN technologies is 

Sigfox, which was established in France in 2009 and deployed its first 

network in mid-2012. As of August 2018, there were networks in some 

50 countries globally with a target of 60 by the end of the year. Table 5-11 

captures the key features of Sigfox.

Table 5-10. LoRa Overview

Name of Standard LoRaWAN

frequency Band 433/868/780/915 Mhz isM

Channel Width eU: 8x125khz, Us 64x125khz/8x125khz

Modulation: Chirp spread spectrum

range 2-5k (urban), 15k (rural)

end node transmit power eU:<+14dBm

Us:<+27dBm

packet size Defined by User

Uplink Data rate eU: 300 bps to 50 kbps

Us:900-100kbps

Downlink Data rate eU: 300 bps to 50 kbps

Us:900-100kbps

Devices per access point Uplink:>1M

Downlink:<100k

topology star on star

end node roaming allowed yes

governing Body lora alliance

status spec released June 2015, in deployment
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 Weightless

Cambridge-based Weightless SIG (Special Interest Group) was founded 

in 2008 to develop standards for M2M communications in white space 

(unused TV spectrum). Weightless originally developed three standards 

for different use cases which employ different technologies and 

provide varying levels of packet size and data rates. Today it promotes 

Weightless-P, which is shown in Table 5-12 – an ultra-narrowband protocol 

for bidirectional communications now known simply as Weightless 

technology.

Table 5-11. Sigfox Overview

Name of Standard SigFox

frequency Band 868 Mhz/902 Mhz isM

Channel Width Ultra narrow band

range 30-50km (rural), 3-10km (urban), 

1000km los

end node transmit power -20 dBm to 20 dBm

packet size 12 bytes

Uplink Data rate 100 bps to 140 messages/day

Downlink Data rate to 4 messages of 8 bytes/day

Devices per access point 1M

topology star

end node roaming allowed yes

governing Body sigfox (proprietary)

status in deployment
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 Comparison of Low-Power LTE and Other LPWAN 
Technologies

There are several technologies upon which LPWANs can be based as seen 

earlier and can be classified into those based on proprietary systems and 

those based on open standards.

Low-power Long-Term Evolution (LTE) has taken off since the 3rd 

Generation Partnership Project (3GPP) introduced a specification for 

two forms of the technology – LTE-M and Narrowband-IoT (NB-IoT) – 

in Release 13 of the standard. The new specification makes it easier for 

manufacturers to design and develop the inexpensive, compact, and low 

power consumption wireless LTE modems that LPWANs demand.

Table 5-12. Weightless Overview

Name of Standard Weightless

frequency Band sub-ghZ isM

Channel Width 12.5 khz

range 2km (urban)

end node transmit power 17 dBm

packet size 10 byte min

Uplink Data rate 200 bps to 100 kbps

Downlink Data rate same

Devices per access point Unlimited

topology star

end node roaming allowed yes

governing Body

status in deploymnet
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LTE is an open standard, operates in a licensed portion of the RF 

spectrum, leverages existing infrastructure for coverage, and has coexistence 

mechanisms that enable scaling to high node counts per base station.

Low-power LTE operates in up to 44 different licensed frequencies 

across the world, ranging from 450 MHz to 2.6 GHz. By using the licensed 

spectrum, the owners of the spectrum allocation (the carriers) can control 

and prioritize data, and the bands are immune from interference from 

other sources of RF radiation.

Because the spectrum allocation isn’t shared with other RF 

transmissions, the coexistence between connected devices is much easier 

to manage. LTE’s coexistence technology is based on proven frequency- 

and time-domain solutions and other mechanisms such as “autonomous 

denials” of conflicting RF signals. Consequently, LTE can support a node 

density of up to 200,000 active low-power modems per base station. 

Finally, data carried over LTE is safe from prying eyes because the standard 

has incorporated advanced security from its inception. These features 

ensure that carriers can offer reliability and high quality of service.

In contrast, proprietary technologies limit the participation in the 

vendor ecosystem and innovation in technology evolution over time. As 

they operate in unlicensed allocations of the RF spectrum (typically sub-1 

GHz), coexistence could also be a challenge. They must share RF spectrum 

with many other services. While basic interference avoidance techniques 

are employed, so many services are sharing the spectrum allocation that it is 

extremely to match the node density, reliability, and quality of service of LTE.

Proprietary LPWAN vendors are also faced with the major challenge 

of building infrastructure to support their networks. These are likely to be 

expensive and long-winded projects slowing adoption. In contrast, worldwide 

LTE infrastructure is largely in place comprising 480 networks in 157 

countries. Some upgrading (mainly of software) is required to support low-

power LTE, but this is relatively a less complex effort compared to building the 

infrastructure in the first place. Because the infrastructure is installed, support 

for low-power LTE is likely to be added rapidly, further encouraging its uptake. 
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Companies adopting low-power LTE for their IoT-connected products can 

leverage this infrastructure without bearing its build or maintenance costs, 

instead investing in their own services and business models.

 A Case Study – Smart Homes
A typical smart home gateway is illustrated in Figure 5-18.

In reality, many IoT endpoints and gateways will employ multiple 

communication technologies based on cost, improved flexibility, and 

interoperability. A primary example is connected thermostat which 

incorporates both Wi-Fi and ZigBee. Many smart meters support cellular, 

ZigBee, RF mesh, and Wi-Fi capabilities. A key advantage of Wi-Fi and 

Bluetooth is that they are already embedded in essentially all smartphones. 

This type of coexistence of multiple technologies in a single system is 

illustrated in the smart home IoT system example shown earlier. The 

gateway supports Wi-Fi and Ethernet for LAN connections that need higher 

bandwidth such as audio and video applications. PAN and mesh networks 

based on Bluetooth Low Energy and ZigBee are used for energy- efficient 
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sensors and controllers for lighting, security, and so on. The gateway provides 

WAN connectivity to Cloud using cellular technologies like LTE and 5G. Local 

analytics and intelligences provided by the gateway. The cloud service 

providers enable cloud-based applications to deliver the various services.

 Summary
There are many connectivity technologies that can be used for enabling 

IoT. Each one has its own benefits and shortcomings. One should choose 

a technology or a combination of technologies that is best suited for the 

application. Cost, ease of system integration, and security should also 

be considered along with features such as throughput, range, power 

consumption, network topology, and existing infrastructure.

The IEEE has already standardized dozens of use cases and applications 

for IoT protocols. In addition to the basic communications standards 

discussed earlier (layer 2 in the OSI stack), which handle the underlying 

communications, there is a need for standardization at higher layers of the 

stack as well. Working groups belonging to many industry alliances such 

as OPC Foundation, Industrial Internet Consortium, 5G-ACIA, and ZigBee 

Alliance and standardization bodies such as ETSI coordinate and establish 

the priorities and enabling technologies of the Industrial Internet in order to 

accelerate market adoption and drive down the barriers to entry.
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CHAPTER 6

IoT Vertical 
Applications and 
Associated Security 
Requirements

It is not the critic who counts; not the man who points out how 
the strong man stumbles, or where the doer of deeds could 
have done them better. The credit belongs to the man who is 
actually in the arena, whose face is marred by dust and sweat 
and blood.

—Theodore Roosevelt1

Throughout the previous chapters of this book, we have presented how 

different parts of an IoT system could be built and what components and 

frameworks are important and useful. In this chapter, we present what 

Intel is doing in the arena of IoT as complete vertical solutions. IoT spans a 

broad range of different markets, and therefore solutions must be tailored 

to the specific purposes of those markets and the specific security threats 

1 www.goodreads.com/author/quotes/44567.Theodore_Roosevelt

http://www.goodreads.com/author/quotes/44567.Theodore_Roosevelt
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encountered or expected in those environments. There are similarities, to 

be sure. Each industry has different security demands due to the nature 

of the information handled and the mandate to conform to particular 

regulatory and industry standard bodies’ requirements. This chapter 

will provide an overview of the different verticals, associated security 

requirements, threats, and mitigations.

The IoT ecosystem is fragmented by nature with multiple verticals, but 

at the end of the day, we strive to leverage a common set of hardware and 

software building blocks, augmented with accelerators, to meet domain 

unique requirements. Security is a horizontal capability, as we have 

shown in Chapters 3 and 4. However, because of the differences within 

each vertical market, frequently different verticals expand and enhance 

the common set of security capabilities in order to achieve what their 

particular market demands. This perspective is shown in Figure 6-1 which 

articulates unique vertical security and regulatory requirements built from 

a common set of security minimal viable platform features. Successfully 

accomplishing this customization necessitates a system of systems 

perspective, which is an understanding that no system exists in a vacuum 

but must interact with other systems – human, technological, and process. 

As we delve into each vertical market in this section, common themes from 

the security MVP will stand out to the reader, but these will be adapted 

by each domain to address security and privacy by design, security-

performance trade-offs at the system level, and integration into existing 

systems and processes – the system of systems perspective.

Before diving deeply into each vertical domain, we present a 

brief overview of each domain and point out the commonalities, and 

differences, between them.
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The Transportation Solutions domain is focused on safety and 

leverages the foundational security MVP, augmenting HW/FW/SW 

capabilities to meet the prevalent standards and regulations including SAE 

J-3101, EVITA, HIS, AutoSAR, and autonomous driving standard (levels 

L1–L5). Anti-tampering which is related to preventing and/or detecting 

an attempt to alter or modify the platform for stealing secrets is critical to 

achieving transportation safety. Anti-cloning is related to preventing and/

or detecting an attempt to copy or clone the platform including the HW/

FW/SW. Some of these capabilities may align with other verticals. The 

Transportation Solutions domain also has some unique requirements 

such as memory zeroization where the state of the memory is initialized 

to a known value (zero) to eliminate the secrets from DRAM and to meet 

safety requirements for known state of software structures and variables. 

Virtualization support in hardware is mandatory for the transportation 

domain in order to maximize hardware utilization while minimizing 

cost without compromising security – this usually involves VTd and VTx 

technologies as we saw in the ACRN hypervisor in Chapter 4.

When a capability is aligned across more than two verticals, it makes 

sense to move this capability into the security MVP foundation. This then 

implies that some verticals do not make use of every security MVP feature. 

However, as we have found at Intel, as features move into the security 

Transportation

Security MVP – {TEE: SGX, VM} {Secure Boot} {Secure Storage: PTT/TPM} {PKI Device ID}
{Crypto: HW accelerated} {FIPS 140-2}
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Figure 6-1. IoT vertical framework: enhance the foundation with 
value-added features to enable verticals
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MVP, other vertical domains begin to leverage that capability as well. An 

example of this is FIPS 140 Level 2 which is now a common requirement 

across all the verticals.

The Retail Solution domain’s security is focused on protecting the 

credit card payment information and the data in financial transactions. 

The identity of the users at the POS terminals is also of significance, 

leading to unique protections to handle personally identifiable 

information (PII). A new retail segment known as responsive retail 

addresses targeted marketing for the brick-and-mortar retailer while 

improving the shopping experience for consumers using advertisements 

customized according to the age, gender (using facial and body imaging), 

and other characteristics of the consumer. The retail domain in general 

is also heavily invested in remote manageable devices (upgradable and 

recoverable) over wired and wireless networks (in-band and out-of-

band). Provisioning devices with the proper software loads and unique 

credentials to facilitate transactions to financial institutions and suppliers 

is an important, though not unique, characteristic of retail IoT systems.

In the in-band recovery scenario, a corrupt application can be 

recovered with the help of the operating system, and a corrupt operating 

system can be recovered with the help of the BIOS/UEFI/boot loader. We 

discussed some of these capabilities in Chapter 4, where we introduced the 

difficult problem of upgrading the platform firmware, such as the BIOS/

UEFI/boot loader itself. For these situations, an out-of-band capability 

or physical access is required to recover the platform from corrupted 

firmware.

The Industrial Solutions domain covers the convergence of IT 

(information technology) with OT (operational technology), along with 

the related issues of incorporating existing systems and infrastructure 

(brownfield deployments) with new systems, capabilities, and 

infrastructure (greenfield deployments). Traditionally OT dealt with the 

factory and manufacturing floor tasks, and IT infrastructure managed 
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the office and back-end tasks. Creating a smart factory requires the 

convergence of IT and OT, allowing the data to flow seamlessly between IT 

and OT for effective decision making and factory process execution. In a 

brownfield scenario, industries have long been deploying the devices and 

equipment with legacy bus interfaces and little to no network connectivity. 

The greenfield scenario is where the equipment and devices can all be 

true IoT with maximum high (or higher) bandwidth connectivity. Bridging 

the gap between brownfield and greenfield requires the use of proxy 

gateways with network protections and network admission technologies 

using device attestation. Software orchestration is essential in Industrial 

IoT (IIOT) where standards compliant architecture such as ISA-95 and 

Software-Defined Industrial Systems (SDIS) are federated for service 

orchestration, allowing all devices to both consume and provide services. 

Security services center around integrity and availability, and device 

recovery and reprovisioning for new services or changeovers to new tasks 

must be done quickly and efficiently or the loss on revenue can be steep.

The Military, Aerospace, and Government domain has the highest 

and most robust security requirements, and the need for performant 

crypto features, including encryption/decryption, digital signature/

verification, and random number generation, has high-throughput 

requirements. This domain also demands a configurable Root of Trust 

(RoT), augmenting the Intel RoT with a particular custom hardware Root 

of Trust private to the domain with higher robustness requirements. The 

alternative roots of trust include customized RoT in an Intel SoC/PCH 

or an FPGA. Physical tamper prevention, detection, and recovery are 

key features which are also tied to the secure debug ports, protections 

from side-channel attacks on clock, and prevention/detection of power 

glitching, among a host of other hardware-specific attacks. When attesting 

the IoT devices in this domain, in addition to remote attestation, a local 

or offline attestation feature is a mandatory requirement. Many advanced 

security requirements appear first in the Government domain and then 
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slowly begin to appear in other domains. Side-channel resistance is a 

recent example; protection from covert and side channels has been a long-

standing requirement in the military domain, but not until the appearance 

of the Spectre and Meltdown attacks the side-channel protections are 

included in commercial RFPs. However, since these attacks were disclosed, 

side-channel protections are the new baseline and part of the common 

security MVP.

The Digital Surveillance System (DSS) domain is focused on network 

video recorders, networked Internet Protocol (IP) cameras, and computer 

vision accelerators. In a DSS system of systems, there is a need for multiple 

roots of trust including Intel SoC, FPGA, and Movidius. Provisioning the 

DSS cameras and video recorders is critical to prevent the IP camera–

related attacks, including the Mirai botnet attacks which used default and 

brute-force login credentials2 and the Persirai botnet which took over 

cameras using a recent zero-day vulnerability.3 DSS systems also require 

performant crypto features, since the video stream must be encrypted 

and watermarked at line rate speeds. Another critical requirement for the 

DSS segment is data provenance, authenticated and integrity-protected 

metadata and attributes attached to the video and photographic data to 

prove the data, time, location, and device used for collection.

The DSS domain encounters some unique data protection and privacy 

regulations such as EU’s General Data Protection Regulation (GDPR) and 

the California data privacy regulations which impact every type of business 

and impose severe penalties for not complying.

2 https://motherboard.vice.com/en_us/article/8q8dab/15-million- 
connected-cameras-ddos-botnet-brian-krebs

3 www.darkreading.com/attacks-breaches/new-iot-botnet-discovered-120k-
ip-cameras-at-risk-of-attack/d/d-id/1328839
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 Common Domain Requirements 
and the Security MVP
The IoT Base Platform MVP is defined with foundational building blocks 

and the realization that the security requirements are achieved, up to 

nearly 90% in many cases, through common silicon used across all the 

domains. System design is dynamic, and decision vectors usually include 

security, privacy, resiliency, availability, and safety. The MVP is a triad 

of HW, FW, and SW capabilities that enables dynamic design where the 

domain features from HW, FW, and SW are selected diligently to reflect the 

trade-offs and optimize for the relevant decision vector. The NIST Cyber-

Physical Systems Framework4 for HW and SW co-design articulates trade-

offs between the cyber and physical components of the IoT system.

Matthew Rosenquist articulated in a blog post5 that although security 

is valuable, it comes at a cost – the cost for new equipment, the cost for 

training personnel on new technology, and the cost to develop new 

processes to utilize the technology. But just because we do not pay the cost 

to build security into our systems does not mean the cost goes away. We 

still incur costs due to the risks we inherently adopt by rejecting certain 

security features and the potential (and actual costs) to clean up after a 

security incident. These choices leading to costs of failure determine the 

risk management process as shown in Figure 6-2. A potential future cost of 

a security incident must be weighed against the actual cost to add security 

and the soft cost incurred by productivity impacts due to additional 

security. Good security design involves teaming up with customers and 

end users to understand these costs and balance the overall system to 

achieve reasonable security, preventing or deterring the most egregious 

4 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-
201.pdf

5 https://itpeernetwork.intel.com/security-is-about-balancing-tradeoffs/
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and most likely threats while providing a useful and useable system. 

Often ignored are the external costs where unrelated third-party entities 

suffer the consequences of attacks, and one specific example is the DNS-

administrating company Dyn. For almost an entire day, Mirai botnet took 

down the sites including Twitter, CNN, Guardian, Netflix, and so on whose 

DNS services were being administered by Dyn.6 The optimal security is 

a balance of cost, user experience, and risk. Since the IoT domains are 

different, and the threats are ever evolving, and the user interface and 

experience paradigms change, this balancing act becomes a dynamic 

living act. The security MVP is only the start of that act. Engagement in the 

domain and balancing domain-specific requirements is the process. The 

detailed sections that follow articulate Intel’s perspective and engagement 

in these IoT-specific domains.

Cost and
Maintenance

Risk and
Compliance

Productivity and
User Experience

Enterprises

Figure 6-2. Balancing security against cost, risk, and productivity

One additional comment is warranted to the reader at this point. It has 

become a norm to employ complementary technologies such as FPGA 

accelerators, Movidius Computer Vision IP, and ASIC accelerators to meet 

the requirements from applications in various domain solutions. These 

complementary technologies augment the base platform for increased 

6 www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
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performance, HSM7 needs, functional safety, and real-time latency 

workloads. These technologies are outside the scope of this book, but 

details on these technologies can be found on the Intel web site.8 Finally, 

although we provide a reasonable overview of the use cases, threats, and 

security objectives for the domains, the following coverage is not meant 

to be comprehensive, and to do so would require a much more exhaustive 

threat modeling exercise, with subsequent peer reviews, to refine the 

threat model and design for specific products.

 Some Common Threats
Just as the domains share a common hardware and software security MVP, 

the domains have threats that are common across all vertical domains as 

well. These common threats are discussed in this section.

Device masquerading: A device employed or modified by a 

hacker is tricked to identify as a legitimate system on the IoT network. 

This sometimes can be extremely difficult to detect and rectify. The 

consequences and methods employed to launch such an attack depend 

upon the particular use case, and these idiosyncrasies are discussed next.

Boot integrity compromise: The pre-OS FW such as BIOS or 

other boot loaders can be tampered with by modifying or replacing/

reprogramming the image on flash device. This can have serious 

consequences since all other layers in the stack are on the top of this layer 

in the bootstrapping sequence.

Offline storage–related attacks: Mass storage or any removable 

storage media can be attacked offline by copying the media or stealing the 

physical media device, and then sifting through the data to find secrets, or 

using brute force techniques on keys or passwords to reveal sensitive data.

7 Hardware security module (HSM) for key storage and trusted cryptographic 
operations

8 www.intel.com
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 Retail Solutions
The retail POS devices are becoming a part of the IoT domain, and 

increasingly these devices such as the POS terminals, mobile payments, 

and so on are connected to the Internet and accessed by cashiers and staff 

using tablets and other mobile devices. In this section, we’ll discuss what is 

required to be Payment Card Industry (PCI) compliant on Intel platforms 

and a way to get there.

According to the PCI specification, the hackers are mainly interested in 

stealing the cardholder data. “By obtaining the Primary Account Number 

(PAN) and sensitive authentication data, a thief can impersonate the 

cardholder, use the card, and steal the cardholder’s identity.”

Sensitive cardholder data can be stolen from many places including a 

compromised card reader or data in a payment system database, snooping 

the store’s wireless or wired networks. Each of these is a trust boundary, 

and the assets need to be protected as they traverse each boundary.

Securing the cardholder data starts where it is captured at the point 

of sale and as it flows into the payment system. The ideal approach is 

refraining from storing any cardholder data. The protection should span 

card readers, POS systems, networks and wireless access routers, payment 

card data storage and transmission, and online payment applications and 

shopping carts.

Not complying with PCI and the associated security objectives will 

result in potential liabilities including the following: customer base 

loses confidence and goes to other merchants resulting in decreased 

sales, additional cost of reissuing new payment cards, losses from fraud 

claims, higher incremental costs of compliance, legal costs, settlements 

and judgments, fines and penalties due to financial regulation violation, 

termination of ability to accept payment cards, lost jobs (C-suite security 

and other positions), and in the worst case going out of business.

Chapter 6  Iot VertICal applICatIons and assoCIated seCurIty requIrements



423

The PCI Data Security Standard (DSS)9 version 3.2.1 high-level 

overview is reproduced in Figure 6-3, and the Intel security assets that 

enable building a PCI compliant device are discussed.

9 www.pcisecuritystandards.org/pci_security/

PCI Data Security Standard – High Level Overview

Build and Maintain a Secure
Network and Systems

1. Install and maintain a firewall configuration to protect cardholder data
Do not use vendor-supplied defaults for system passwords and other
security parameters

2.

Protect stored cardholder data
Encrypt transmission of cardholder data across open, public networks

3.
4.

Protect all systems against malware and regularly update anti-virus
software or programs
Develop and maintain secure systems and applications

5.

6.

Track and monitor all access to network resources and cardholder data
Regularly test security systems and processes

10.
11.

Maintain a policy that addresses information security for all personnel12.

Restrict access to cardholder data by business need to know

Restrict physical access to cardholder data
Identify and authenticate access to system components

7.
8.
9.

Protect Cardholder Data

Maintain a Vulnerability
Management Program

Implement Strong Access
Control Measures

Regularly Monitor and Test
Networks

Maintain an Information
Security Policy

Figure 6-3. High-level overview of PCI Data Security Standard

 Security Objectives and Requirements
Assets in a retail IoT device include the following:

• Data at rest and in transit: Cardholders’ data and 

transactional information.

• Identity of the consumer: Personally identifiable 

information (PII) should be stored under strict access 

control, preferably using encryption for data-at-rest.

• Identity of the POS device: Device’s credentials are 

essential to mitigate the remote hacker attacks and 

to have a robust connection to the device cloud 

infrastructure.
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• The hardware components: The HW BOM list in the 

platform must always be protected via a transparent 

supply chain during production and deployment and 

guarded in the field as appropriate.

• The FW including pre-OS boot loader: The FW on the 

platform is a critical asset.

• Kernel and user mode SW components: The OS kernel 

and user mode SW components including applications 

are all important assets.

 Threats
The PCI DSS standard has outlined high-level threat groups. Figure 6-4 takes 

those groups and extends it to include responsive retail. System compromise 

or theft can be realized by masquerading the retail POS device. Data at rest or 

data in transit can be stolen by leveraging offline data and network sniffers/

monitors for traffic analysis. The provisioning step can be compromised or 

missed/blocked updates can be leveraged to compromise the system. Identity 

theft and credit card disclosure of payment information are equally important 

concerns. The retail advertisement terminals can be compromised to display 

graffiti or distorted images on digital bulletin boards. The runtime environment 

of a retail POS or another device can be infected with malware to do extensive 

persistent damage to the assets on the device and on the Cloud. The following 

bills from California State Legislature mandate provisioning a unique password 

and a device certificate for unique authentication before first use:

• California Senate Bill10 No. 327, CHAPTER 886 TITLE 

1.81.26. SECURITY OF CONNECTED DEVICES, 

1798.91.04. (b) (1) and (2).

10 http://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180SB327
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• California Assembly Bill11 No. 1906, CHAPTER 860 

TITLE 1.81.26. SECURITY OF CONNECTED DEVICES, 

1798.91.04. (b) (1) and (2).

VIRUS/MALWARE

CONTENT GRAFFITI

IDENTITY THEFT

SYSTEM COMPROMISE
OR THEFT

DATA THEFT

PROVISIONING/UPDATING

Figure 6-4. Threat groups of retail segment including responsive 
retail

The same threats can be mapped to a typical platform stack shown in 

Figure 6-5, and the mitigations using Intel technologies are also included. 

The HW layer includes all the relevant HW components including the 

System on Chip, storage, SRAM, scanner, communications modules, and 

so on. The stack continues upward with boot loader FW, OS Kernel to 

services to applications.

11 https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180AB1906
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Threat #1: Allows hacker to easily break the integrity of the boot 

firmware and OS image. Hacker infiltrates the system by subverting 

execution flow. The mitigation is to implement Boot Guard as explained in 

Chapter 3 to establish a chain of trust based on a HW Root of Trust. When 

a FW is tampered and an attempt is made to boot with this unsigned FW, 

the Boot Guard will detect and will hold the device in reset to prevent 

further compromises of the sensitive assets.

Threat #2: Unauthorized actors could provision devices to their 

preferences including usernames, passwords, password reminders, and 

so on. The Intel Secure Device Onboarding technology could be leveraged 

to provision the device persona and force to change the default passwords 

with stricter ones and strong password reminders plus a dual factor 

authentication. Refer to Chapter 4 for details on SDO.

Threats #3, #7: Transaction data, logging to POS server. This is a critical 

threat for which an exploit could violate the P2PE requirements of PCI DSS 

where the cardholder’s data could be obtained by hackers on the network. 

Intel AES technology in the CPU can be used to encrypt the cardholder’s 

Threats to Device – Retail POS

Rogue provisioning2 2

INTEL® BOOT GUARD

1

1
Enforced secure boot allowing
only signed & untampered
firmware to run

INTEL® SECURE DEVICE ONBOARD
Provides service that uses HW
key to secure the rendezvous
of device to its owner

INTEL® AES-NI
Enable AES computation
without compromising
performance

INTEL® PLATFORM TRUST TECHNOLOGY

INTEL® SOFTWARE GUARD
EXTENSION

fTPM enables cryptographic
keys to be securely stored in
tampered-resistant keys vault

PKI BASED ID (PTT ENDORSEMENT KEY)
Utilize unique HW based key for
secure channel establishment

CLOUD INFRASTRUCTURE
Automate FW/SW over-the-air
update

4

4

7

7

3
3

6

6

5

5

Unsigned firmware

Unauthorized device access

Insecure data-in-transit

Insecure key storage

Separate secure and 
non-secure application realm

POS server

POS
apps

MSR SOC SRAM Scanner COMMSeMMC/
SDXC

Payment
apps

INV

Services (rmm, database, apps, IO broker)

OS

App

Services

Kernel
FW

HW

Bootloader

Figure 6-5. Threats to Retail POS devices with mitigation using Intel 
HW security building blocks
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information to enforce confidentiality. To increase the robustness of this 

part of the solution, the encryption process can be done inside an SGX 

enclave to protect from ring 0 or rootkit attacks.

Threat #4: Leaves the cryptographic keys used to protect platform 

and owner secrets easily recovered or potentially retained in storage. This 

is once again a critical task to protect the keys used for encrypting the 

cardholders’ data by storing the keys in a PTT/TPM so that these keys are 

never exposed to hackers.

Threats #5, #6: Weakness may grant remote hacker access to the 

device and in turn local network from any remote location. This is a 

powerful exploit, and mitigation requires strong device credentials such 

as the Endorsement Key in PTT/TPM to be authenticated by device cloud 

infrastructure without much manual intervention (to eliminate potential 

and expensive human errors). All the POS devices should have the firewall 

and intrusion detection systems implemented. The network routers both 

wired and wireless must have firewall and intrusion detection SW actively 

monitoring the network traffic for logging anomalies in real time and store 

the data for analytics SW. It is important to have analytics SW to mine 

these logs for patterns for zero-day or known vulnerabilities. A complete 

platform security stack built pertinent to retail Solutions with Intel security 

ingredients is shown in Figure 6-6.

Applications

Operating System

Virtual Machine
(Optional)

BIOS

Hardware

WHITELISTING

SYSTEM PROTECTION
VIRUS SCAN

SECURE OS

MALWARE PREVENTATION

ENCRPTION & DECRYPTION
INTEL® AES-NI

SECURE ENCRYPTION
INTEL® SECURE KEY

MANAGEABILITY
INTEL® AMT

BOOT ATTESTATION
INTEL® BOOT GUARD & BIOS GUARD

HARDENED OS
INTEL® OS GUARD

SECURE ISOLATION
HYPERVISOR

INTEL AMT/EMA/HDC

INTEL AMT/EMA

MANAGEABILITY

MANAGEABILITY

ENCRYPTION

Intel® Software Guard Extensions
(SGX)

PLATFORM PROTECTION
INTEL® PLATFORM TRUST TECHNOLOGY

INTEL® SOFTWARE GUARD EXTENSIONS (SGX)

Figure 6-6. Platform security stack built pertinent to Retail Solutions

Chapter 6  Iot VertICal applICatIons and assoCIated seCurIty requIrements



428

At the HW layer, the manageability with Intel Active Management 

Technology (AMT), secure boot with attestation, encryption, secure key, 

PTT/TPM, and platform protection are required to be implemented.  

UEFI/BIOS layer leverages the HW root of trust from Boot Guard and 

extends the chain of trust (transitive) to the upper layers in the stack. The 

hypervisor or VMM is optional; if present, it authenticates the VM pre-OS 

FW and the OS VMs while leveraging the VT HW capabilities to provide the 

necessary isolation between VMs. The OS is expected to be hardened by 

leveraging the Intel HW security features such as OS Guard for preventing 

ring 0 privilege escalation attacks, PTT for secure key storage, and AES 

and SHA New Instructions for performant crypto operations. The OS can 

also leverage the SGX for TEE applications and all the while enabling 

the in-band manageability features via Intel AMT. The application layer 

implements app whitelisting, virus/malware scanning, and so on.

The end-to-end data flow in a retail POS architecture is shown 

in Figure 6-7. The entities involved include the payment terminals, 

peripherals, the POS software inside an Intel-based platform, secure 

channels of communication, service provider data centers, bank gateway, 

and store servers.

POS Software

Service Provider
Data Center

Bank Gateway

Store Servers

2

1

1

3
3

4

5

TEE Applet

Figure 6-7. The end-to-end data flow in a Retail POS architecture
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 1. Native devices pair (cryptographically) directly 

with the applet for private/secure communications 

which involves mutual authentication via digital 

signatures and confidentiality through encryption/

decryption and integrity through sign/verify. 

Establish secure channels from peripherals and 

servers to process data through the TEE applet. The 

TEE applet could be an SGX application enclave 

running inside the TEE to protect the sensitive 

and valuable code and the data. This will prevent 

the exposure of credit card or other PII during 

processing in the memory since the memory 

contents are encrypted inline.

 2. Legacy devices should encrypt the data to the applet 

using the Derived Unique Key Per Transaction 

(DUKPT) with AES-256. DUKPT is a method to 

manage the key between two endpoints; this key has 

properties: unique per transaction, symmetric, is a 

derived key from Base Derivation Key (BDK) known 

to both endpoints. This key is used in the AES 

algorithm for encryption and decryption. Currently 

Triple DES (TDES) is being used, but according to 

the guidance from NIST on Transitioning the Use of 

Cryptographic Algorithms and Key Lengths, two-key 

TDES is deprecated and three-key TDES should be 

used only for 220 (64-bit) blocks and should not be 

used after 2023.12 

12 https://csrc.nist.gov/CSRC/media/Publications/sp/800-131a/rev-2/
draft/documents/sp800-131Ar2-draft.pdf
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 3. The Dock protects legacy insecure devices to 

the applet; sample devices include magnetic ink 

character recognition, keyboards, and barcode 

scanner. This Dock performs as a proxy for the legacy 

devices which inherently may be insecure and 

abstracts the devices by consuming the data in the 

clear and protecting it before sending to TEE applet.

 4. Data can be encrypted for transmission to bank 

gateways or store servers. Use TEE applet to create a 

safe place to process transactions and enact policies.

 5. Management servers manage policies and behavior 

of the system. Through a secure channel from a 

console to the applet, the provisioning of keys, 

credentials, and policies is performed. This helps 

in managing peripheral crypto keys and telemetry 

data remotely and enables pull requests to access 

transactions at the request of the retailer. 

Design trade-offs: Considering the PCI standard and vectors, 

functional safety is not a primary factor, but security and privacy are the 

critical factors. As outlined in PCI DSS standard, the resiliency in terms of 

mitigating physical attack threats is also applicable where a card reader 

could be stolen and replace legitimate devices with fraudulent devices to 

steal the card data.

 Standards – Regulatory and Industry
The PCI Digital Security Standard (PCI DSS) is one of the main standards 

that mandate most of the preceding security objectives. The PCI DSS also 

mandates FIPS 140-2 for secure storage of keys via a PTT/TPM.13

13 www.pcisecuritystandards.org/pci_security/
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 Transportation Solutions14

The solutions in a vehicle can be grouped into Software-Defined Cockpit 

(SDC) as shown in Figure 6-8. Intel Silicon and solutions enable building 

SDC applications for the next generation of advanced automotive 

electronics. The SDC itself can be subdivided into rear seat entertainment, 

digital instrument cluster, in-vehicle infotainment, and advanced driver-

assistance system (ADAS). The rear seat entertainment solutions include a 

DVD/Blu-ray player, virtual office, and connection to IVI front system and 

mobile devices with Cloud connectivity.

The digital instrument cluster unit includes display for speed, fuel 

level, odometer, trips, and so on. This cluster may also be able to project 

images on the windshield (heads-up display) with alerts for low fuel or low 

tire pressure via tire pressure monitoring system (TPMS).

The in-vehicle infotainment (IVI) unit includes the GPS-based 

navigation system, audio/video entertainment systems, and connection 

to mobile devices for phone communication and music with voice 

recognition features. This unit also includes a backup camera and cameras 

for parking assist. The unit may include gesture or touch inputs.

The advanced driver-assistance system (ADAS) is a complex system 

of systems with features including blind spot monitoring, adaptive cruise 

control, lane departure warning, cross traffic warning, brake assist and 

collision avoidance, self-parking, and driver monitoring for fatigue or 

undesirable distractions.

14 Credit: David Zage, Platform Solutions Architect from TSD for domain expertise 
and the content.
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 Connected Vehicle Infrastructure
As the vehicles start communicating with the external environment 

spanning more than just the Cloud, many IoT-related threats become 

pertinent. In Figure 6-9, the vehicle communicates with many clusters 

including GPS systems, Vehicle-to-vehicle (V2V) network, local repair shop 

or dealership network, roadside assistance network, mobile devices, Radio 

Data Systems, and Internet backbone via Internet service provider (ISP) 

through 4G/5G wireless. Some of these network clusters such as repair shops 

and roadside assistance may also connect to the Internet backbone.

The devices in a car communicate with different external entities in 

regular and autonomous driving applications:

• Vehicle to vehicle (V2V): These communications are 

occurring in real time between vehicles on the roads.

• Vehicle to infrastructure (V2I): These communications 

are occurring between the vehicle and the 

infrastructure such as dealership or an auto body shop 

or a traffic management system.

In Vehicle Experience Solutions

Rear Seat Entertainment

Advanced Driver Assistance Systems (ADAS)

Entertainment system
Virtual office

Blind spot monitoring
Adaptive cruise control
Lane departure warning
Cross-traffic warning
Brake assist and collision avoidance
Self-parking systems
Driver Monitoring

Connection to IVI front system and mobile
devices (cloud connectivity)

Digital Instrument Cluster

Display speed, fuel level, trip miles and
more
Project images on the windshield, with
alerts for low fuel or tire pressure (HUD)

In-vehicle Infotainment (IVI)

Navigation systems, radios and
Entertainment systems

Multiple cameras for surround-view
parking assist
Gesture Recognition / Touch (HMI)

Back-up camera

Connection to mobile devices for calls,
music and applications via voice
recognition

Figure 6-8. Software-Defined Cockpit – in-vehicle experience solutions
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• Vehicle to device (V2D): These communications 

are occurring between a vehicle and a device such 

as smartphone over Bluetooth, remote control key, 

wireless diagnostics device, and so on.

• Vehicle to Cloud (V2C): These communications are 

occurring between a vehicle and a private or a public 

cloud to retrieve or upload the recent traffic/weather 

updates via GPS and Radio Data interfaces.

CONNECTED INFRASTRUCTURE

GPS
V2V

Local repair
shop network

Internet
Backbone

Mobile
Devices

Radio Data
Systems (RDS)

Local
Service

Local
Service

AP

Access Point (AP)

Uni-directional
Communication

Bi-directional
Communication
Authenticate,
encrypt/decrypt/sign/verify

Open AP

External systems and networks support new
services and interactions ... and increase risk.

Road Side
Unit (RSU)

ISP

ISP

ISP

BS

BS

Roadside Assistance

Electric
Chargers

Connectivity Is More than Just Devices and the Cloud

Figure 6-9. Connected vehicle infrastructure – more than just devices 
and Cloud

 Security Objectives and Requirements
• Each electronic control unit (ECU) in the connected 

vehicle is expected to have the following security attributes:

• A unique, hardware-based ID that’s immutable and 

standards compliant

• Capability for mutual authentication

• A HW root of trust
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• Protected Boot (verified and measured)

• Secure storage for key material

• Tamper detection, prevention, and policy 

enforcement

• A Trusted Execution Environment

• All intra-car information has the option of integrity 

(hash, HMAC), confidentiality (encryption), 

authentication (digital signatures), and nonrepudiation 

(digital signatures).

• All data pertaining to users/occupants is encrypted 

to maintain privacy.

• All inter-car information is authenticated and 

has integrity (hash, HMAC) and confidentiality 

(encryption).

• Near real-time, secure over-the-air updates for SW 

and FW.

• All safety-critical operations are partitioned; other 

services are virtualized for both efficiency and security.

• Car network

• Runs Anomaly Detection SW on the device and 

the gateway within the vehicle for detecting known 

and zero-day vulnerabilities. This SW could also 

connect to a Threat Intelligence database on the 

Cloud for cross-referencing the signatures for 

quantifying and classifying against known viruses 

and malware signatures/patterns.

• Provides whitelisting for identities allowed to 

authenticate and send data externally
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 Threats
With the preceding security objectives in the context, let’s discuss the 

attacker profiles, threat surfaces, and specific threats. Figure 6-10 depicts 

five attacker profiles with diverse technical knowledge, access levels, and 

goals. A car thief possesses varied technical knowledge with wireless and/

or physical access with a goal of stealing the car which may entail disabling 

the alarm and jumping the wires to start the car and drive off. A car thief 

may employ remote attacks through Telematics Control Unit (TCU)/IVI 

and On-Board Diagnostics (e.g., On-Board Diagnostics (OBD-II) routinely 

accessed during service or tuning in the clear).

A hacker may possess medium to high technical knowledge with a 

remote/wireless access and may operate with goals to either get fame 

or steal any PII including passwords to music, credit card payment 

information, and so on. A hacker may employ device masquerading 

and launch remote attacks through Telematics Control Unit (TCU)/IVI.  

A hacker may also go after information disclosure of third-party 

algorithm/IP.

A criminal may possess medium to very high technical knowledge with 

wireless and/or physical access with an intent to harm the passengers and 

the bystanders. A criminal may employ remote attacks through Telematics 

Control Unit (TCU)/IVI and On-Board Diagnostics (e.g., OBD-II).

A workshop technician may possess medium to very high technical 

knowledge with physical access and will operate with a goal to modify the 

settings such as rewinding the odometer, fuel usage/statistics, and so on 

by leveraging the On-Board Diagnostics (e.g., OBD-II). A similar attack 

profile is where a persistent vehicle alteration is done by a legitimate 

user to modify the original design by either increasing the performance, 

jailbreaking, customizing the user interface, adding new regions into DVD/

Blu-ray player, and so on.
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A counterfeiter or a competitor may possess high to very high technical 

knowledge with physical access and may wish to study the design/

architecture to reverse engineer and steal Intellectual Property or clone 

the device. This attacker has physical access to the device in a laboratory 

environment with access to sophisticated tools/logic analyzers, IR/ 

thermal scanning, differential power analysis, and so on to monitor the 

vehicle networking bus traffic using On-Board Diagnostics (e.g., OBD-II)  

interfaces. The potential assets to be recovered could be intellectual 

property spanning Silicon, board-level HW, FW, and OS-level ingredients.

Attacker Access Goal
Technical
Knowledge

Varied

Medium - High

Medium - Very high

Medium - Very high

High - Very high

Wireless/Physical

Wireless

Wireless/Physical

Physical

Physical

Steal car

Fame

Harm passengers

Modify settings

Study architecture

Car-thief

Hacker

Criminal

Workshop/tuner

Counterfeiter/
competitor

Figure 6-10. Attacker profiles in the Transportation Solutions domain

Automotive Threat Surfaces: Refer to Figure 6-11 for distinct hackable 

areas in a vehicle. These areas can be organized into three groups, 

physical access, in-vehicle network structure, and wireless/remote access 

to the vehicle.

Physical access

• On-Board Diagnostics (e.g., OBD-II routinely accessed 

during service or tuning in the clear)

• Entertainment media (e.g., DVD, USB, etc.)

• Access to ECUs

• External sensors (vision, acoustic, radar, LIDAR, etc.)
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In-vehicle network structure

• Connections to OBD-II

• Vehicle networking bus (CAN, KLINE, MOST, Ethernet 

AVB, etc.) connections to various ECUs

Wireless access to vehicle

• Keyless entry

• Bluetooth and Bluetooth-connected devices

• TPMS

• Cellular, Internet, and applications (V2X)

• Radio/audio system(s)

• Remote telematics

15 DISTINCT HACKABLE AREAS

DSRC Based Receiver
(V2X)

Passive Keyless Entry

Remote Key

TPMS

ADAS System ECU

Lighting System ECU
(Interior & Exterior)

Airbag ECU

OBD II

USB

Bluetooth

Remote Link Type App

Vehicle Access System ECU

Steering & Breaking ECU

Engine & Transmission ECU

Smartphone

Figure 6-11. Distinct hackable areas in a vehicle
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 Mitigations
Mitigating the preceding threats would require a defense in depth 

approach as shown in Figure 6-12, beginning with securing the vehicle 

systems and followed by securing the communications:

Securing the vehicle systems includes the following assets:

• Sensors and actuators: All the sensors and actuators 

must be authenticated (digital signatures) before 

communicating and protect the integrity (sign/verify 

using SHA3) and confidentiality (using AES-256) of the 

valuable data on the bus interfaces.

• Computer vision and AI (path planning): The machine 

learning or deep learning assets such as the weights, 

training data, test/validation data, models, and so 

on must be protected by encrypting the assets on the 

storage and decrypting into the memory in a TEE. The 

details for this architecture are outside the scope of this 

book.

• Networks and ECUs: The networks and any gateways 

must have firewalls and intrusion detection systems, 

and the ECUs must be securely booted and deploy the 

HW security building blocks as listed here.

Securing communications:

• Vehicle to everything (V2X): All the devices on the 

V2X interfaces must be mutually authenticated 

(using digital signatures) before communicating and 

protect the integrity (sign/verify using SHA3) and 

confidentiality (using AES-256) of the valuable data on 

the bus interfaces.
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• Maps, code, and data to/from the Cloud: The maps 

database and access to online databases must be 

authenticated and authorized via digital signatures and 

login credentials. Any data exchange with the Cloud 

must also be subjected to the same protections.

• Infotainment, mobile devices, wearables: 

The infotainment devices and mobile devices 

including wearables/smartphones/others must be 

mutually authenticated (digital signatures) before 

communicating and protect the integrity (sign/verify 

using SHA3) and confidentiality (using AES-256) of the 

valuable data on the bus interfaces

DEFENSE-IN-DEPTH
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Figure 6-12. Defense in depth architecture

The threats explained earlier can be effectively mitigated by leveraging 

the Intel HW security building blocks shown in Figure 6-13. The boot 

integrity of the automotive systems can be secured with protected 

boot (verified and measured boot). The protected storage feature can 

be leveraged to store the keys securely and perform low bandwidth 
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encryption/decryption and sign/verify of the message data. For higher 

robustness and high bandwidth use cases, the authentication of data 

whether it is messages or others can be achieved in the TEE such as SGX 

by invoking SHA-NI in the CPU instruction set.

Hardware security building blocks:

 1. Unique Device ID using PKI compliant keys/

certificates via PTT/TPM.

 2. True RNG using the RNG instructions in the 

CPU. With reasonably good entropy to be used as a 

nonce or a seed for subsequent key generation.

 3. Verified boot using Boot Guard to ensure a HW Root 

of Trust and a robust transient chain of trust.

 4. Secure storage using PTT/TPM for both data and 

keys.

 5. Trusted Execution Environment using SGX.

 6. Cryptographic acceleration using AES and SHA new 

instructions.

 7. Key generation using PTT/TPM for application keys.

 8. Secure clock using tamper-resistant HW supplied 

timers for precise logging of retail transactions.

 9. Monotonic counters – HW supplied and tamper-

resistant counters that are guaranteed to 

increment only.

 10. Secure debug for locking/disabling the debug 

ports at the factory and ability to unlock/enable to 

securely debug.

 11. Physical tamper detection and protection against 

side-channel attacks.
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Design trade-offs: For the Transportation Solutions domain, 

functional safety, security, privacy, and resiliency are all pertinent. The 

automobiles have a long life and are safety/life critical by design; it is 

essential to integrate safety and security to prevent false positives and false 

negatives from functional safety infrastructure. There is also a need for 

the automobiles to detect the physical tamper and send a “kill pill” to the 

platform to trigger a lockdown of the security engine and vault the secrets 

to avoid unauthorized disclosure. This is critical so that Break Once Run 

Everywhere (BORE) attacks to retrieve the universal keys are mitigated.

 Standards – Regulatory and Industry
The SAE J3101 is one of the main government regulations that mandate 

most of the preceding security objectives. FIPS 140-2 L2/3 and NHTSA are 

also considered vital for the US markets.

Defense in Depth

Hardware security building blocks

Platform boot integrity and chain of trust

Secure storage (keys and data)

Secure communication

Secure debug

Tamper detection and protection from
side channel attacks

Figure 6-13. HW security building blocks for defense in depth
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 Industrial Control System (ICS) 
and Industrial IoT (IIoT)
As the manufacturers and producers seek to respond to greater pressures 

for higher production rates, lower production costs, and the ability to 

compete in a global marketplace, they continue to embrace the efficiencies 

created by a transition to Industry 4.0 and the Industrial IoT (IIoT). These 

are broad terms that encompass the concept of a combined information 

technology (IT) and operational technology (OT) and include flexible 

automation of OT processes, application of artificial intelligence to OT 

problems, automated device and process orchestration, and higher 

resiliency in the presence of system failures, to name a few of the more 

prevalent topics. In Figure 6-14, a notional diagram of an IIoT architecture 

is portrayed for the purpose of identifying security concerns and 

discussing threats and security objectives.
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This architecture in Figure 6-14 is notional because it is not created 

from any actual deployment nor is it intended to portray a particular type 

of industrial plant. Instead it depicts different types of components in an 

industrial setting that are typical of the devices Intel produces or contributes 

components for in the IIoT. The notional diagram depicts an Edge-to-

Cloud and a SCADA-to-Edge-to-Cloud architecture. On the left side of the 

diagram are various gateways that control devices. Simple devices such 

as meters, tank levels, temperature sensors, and vibration sensors can be 

controlled using a simple gateway. These gateways may control many such 

devices simultaneously. More complex devices such as industrial robots 

or CNC machines require more advanced smart gateways. These devices 

have the ability to load different types of control programs and workloads 

and may include real-time control loops that encompass line and human 

safety protocols. Finally, existing systems also need connectivity to the 

back-end IIoT systems and are connected through a service gateway that 

supports existing protocols and may translate those data elements into 

different forms to be carried in newer protocols and reformatted messages. 

All three types of gateways may be connected by various communications 

technologies including wired and wireless technology.

The back-end systems are still logically segmented into OT and IT 

concerns, though in the IIoT they may share some physical computing 

devices and servers. OT control is focused on orchestration and workload 

management and providing clear visibility of the systems and operations 

to OT engineers.

 Security Objectives and Requirements
Assets in the IIoT gateways are included in the following security 

objectives, where sub-bullets are security objectives derived from top-level 

security objectives. These objectives are aligned with the IIC.15

15 Industrial Internet Consortium. Industrial Internet of Things Volume G4: Security 
Framework. September 2016. www.iiconsortium.org/white-papers.htm
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• Data at rest and in transit: All commands received by 

the gateway from the OT/IT control centers must be 

protected from modification (integrity), duplication 

(replay), and optionally disclosure (confidentiality).

• Identity of the device: All devices shall maintain at 

least one identity public and private key pair used to 

uniquely identify the device to other entities.

• Identity of the control authority: All commands 

received by the gateway from the OT/IT control centers 

must be verified as authentic by comparing the signing 

public key with authorized trust anchor keys. This 

security objective and the previous one imply the 

following derived security objective to address trust 

anchors and identity keys.

• Protection of trust anchors and identity keys: 

All identity keys and trust anchors must be 

securely stored in the gateway to prevent use by 

unauthorized software processes/users. A trust 

anchor key is a public key of an entity (like the OT 

control center) that is inherently trusted by the 

device; an identity key is a public and private key 

pair that is used to prove the device’s identity to 

other entities. Protection of identity keys should 

include limiting the use of the identity key to a RoT 

(see Chapter 3).

• Integrity of the boot system and operating system: 

Verification of boot firmware and software, with secure 

storage of trusted measurements collected during boot, 

shall be enforced at every soft and hard boot event.
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• Trusted reporting of device health: Devices shall be 

capable of reporting their current health including 

measurements from their last boot cycle and any 

software or firmware updates performed since their 

last boot. This reporting must include a proof of origin 

signature that unambiguously attests to the source 

of the report (Root of Trust for Reporting) and all 

claimants producing data for the report (Root of Trust 

for Measurement).

• Verification of software updates, configuration, 
and workloads: All updates to the device shall come 

from an authorized source verified against one of the 

device’s trust anchors; updates shall be protected from 

modification (integrity) and verified by the device prior 

to first use that the update has not been corrupted. 

Updates include new or updated software and 

firmware, configuration files, and workloads.

• Whitelisting of applications and network endpoints: 

Devices shall maintain a whitelist of authorized 

software and the identity and address of network 

endpoints that are authorized to communicate with the 

device, and the device shall prevent the execution of 

any software not on the whitelist and ignore/terminate 

any communication streams from network endpoints 

not on the whitelist.

• Management of connected peripherals: Devices shall 

maintain a whitelist and authorized configuration of 

all connected peripherals, whether wired or wirelessly 

connected to the device, and ignore or disconnect any 

peripherals not authorized to be connected with the 

device.
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• Storage integrity: Devices shall maintain the integrity 

of stored elements including software, configuration 

files, workloads, data measurements, and processing 

logs; devices shall prevent unauthorized access to 

stored elements.

Design trade-offs: Industrial systems are designed specifically for 

harsh environments and for interoperability with existing systems and 

devices. Requirements around these constraints dominate the design 

decisions. Oftentimes, this means removing security protections, like 

encryption, because end systems cannot perform those security functions 

or intermediary systems are dependent on receiving this data unencrypted 

and do not have the capability to add this layer of protection. In addition, 

industrial type systems tend to require low power profiles, either because 

they are deployed in a remote location (oil pumping station) with limited 

power capabilities or crowded together in a small space where heat from 

power dissipation is considered a problem. In both cases, lower powered 

devices tend to have fewer security capabilities. The important trade-off 

in these cases is to support security features that address the most critical 

threat – identification of proper control authorities using protected trust 

anchors for authentication of commands, configuration, and software 

update.

 Threats
The threats to IIoT systems are composed of both external threat actors 

and insiders. Both groups can mount destructive attacks on IIoT systems, 

though most threat analysis focuses on external attackers. Figure 6-15 

identifies the primary threats and consequences.
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Threat #1: Device hijacking – An attacker uses vulnerabilities in the 

device software to inject their own software or firmware on the device and 

corrupt data, stop executing processes, falsify health or data reporting, or 

disrupt the industrial operations flow.

• Mitigation: Use of advanced containment techniques 

to isolate software, including virtualization, containers, 

and TEEs. Ability to restart workloads or execute 

workloads as microservices limits the attack surface 

and time an attack can be active.

Threat #2: Device masquerading – An attacker creates a digital twin 

of the real device and intercepts or copies data to discover proprietary 

information or to deny the real device access to important information, 

commands, or workloads.
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to spoof the status, setting the machine
to “offline” and allowing safety doors to

open, even though the robot is
still in operation.

Station 2

Figure 6-15. Primary IIoT threats and consequences16

16 Diagram from www.rambus.com/iot/industrial-iot/
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• Mitigation: Device identity and mutual authentication 

for all communications flows from the OT/IT center 

are vital to prevent these attacks. Physical and logical 

protection of the device’s identity credentials prevents 

an adversary from stealing credentials. Storage of 

a device’s unique identity credentials within a TEE 

is required to prevent the use of a digital twin to 

masquerade as the real device.

Threat #3: Application-level data tampering and denial of service – 

An attacker uses metadata spoofing or replay, SQL injection attacks, or 

resource exhaustion attacks to trick a device into performing an improper 

action or creating a temporary DoS attack on the device.

• Mitigation: End-to-end authentication of all command 

flows and proper whitelisting of network endpoints are 

critical to preventing such attacks. Recognizing and 

responding to DoS and DDoS network attacks requires 

network infrastructure and the ability to reconfigure 

network components to isolate and quarantine 

misbehaving devices.

Threat #4: Permanent denial of service (PDoS) attacks – An attacker is 

able to inject a firmware update or critical operating system update that 

damages the hardware of the device or takes the device offline requiring 

depot-level service to repair the device.

• Mitigation: All updates and changes to the device 

require an authorized command from the OT that 

is cryptographically verified from a secured trust 

anchor on the device. Device management agents with 

privileged capabilities on the device must not also have 
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direct network capability, in order to reduce network 

attacks that also give attackers elevated privileges on 

the device, because such elevated privileges allow an 

attacker to perform actions that can modify the base 

firmware and software on the device.

Threat #5: Tampering and information disclosure of OT data – An 

attacker modifies or collects data flowing between the OT center and a 

device, exposing proprietary data.

• Mitigation: All data between the OT/IT centers and the 

device should include confidentiality protection (end-

to-end security), but minimally must include integrity 

protections.

 Standards – Regulatory and Industry
There is not one standard that defines the Industrial IoT (IIoT), and 

within different segments of the industrial industry there are different 

regulatory or standards groups provide specific guidance and direction. 

It is not possible to cover all of these groups here. Generally, standards 

and industry groups attempt to create a set of interoperable frameworks 

and middleware, along with connectivity and data or protocol standards 

that enable the creation of heterogeneous system of systems to enable the 

IIoT. Figure 6-16 provides an overview of the major standards influencing 

Intel designs.

Chapter 6  Iot VertICal applICatIons and assoCIated seCurIty requIrements



450

 Digital Surveillance System
Information security in digital surveillance systems (DSS) became a public 

problem in 2015 and 2016, culminating in the Mirai DDoS attacks, the largest 

botnet-based distributed denial of service attacks ever at that time in which 

two separate attacks took Akamai and Dyn (and all their customers) offline 

for hours. Because surveillance devices often need to be accessible over the 

Internet, not to mention that the industry moved only recently from analog 

interconnections to digital IP interconnections, information security is a 

new problem for the DSS segment. What can compound this problem is the 

industry is a physical security–driven industry (as opposed to IT driven), and 

the industry’s expertise in cybersecurity for surveillance systems has lagged 

the general Internet cybersecurity awareness.

IIOT System Standards

IIOT Middleware Standards

ISA-95 Enterprise Control System Integration
ISA-62443 Security for Industrial Automation and Control Systems
IIC Industrial IOT Standards

OMG Data Distribution Service
OMG Unified Component Model

IIOT Protocol Standards

IIOT Connectivity Standards

IETF CoRE / CoAP
MQTT

4-20mA Loop
Modbus
ProfiBUS
ProfiNET
TSN Ethernet

IEEE 802.15.4WiFi
Bluetooth
2G/3G
4G/LTE
5G

OPC-Unified Architecture

The Open Group – Open Process Automation (OPAF)

Figure 6-16. Common IIoT standards, middleware, protocols, and 
connectivity standards
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The DSS segment spans more than just traditional building 

surveillance and closed-circuit TV (CCTV) systems. DSS includes mobile 

surveillance around vehicles and human beings, including vehicular 

cameras and emergency response body camera systems. And extending 

beyond simple surveillance, DSS includes the use of camera systems in 

smart cities for intelligent traffic control and smart toll collection systems. 

As briefly discussed in the last section, the use of camera systems in retail 

can aid a business in understanding customer experiences in brick-and- 

mortar retail establishments, adding extending information to the business 

intelligence systems that improve customer experience, inform decisions 

on product placement, and aid the design of store layout. As usage of 

these DSS systems increase, the opportunity for a repeat of the attacks like 

Mirai, Persirai,17 Devil’s Ivy,18 and Peekaboo19 can become more of a threat. 

Intel®’s robust hardware-based integrated security provides a capability 

stack which improves system security.

17 Trend Micro. May 9, 2017. Persirai: New Internet of Things (IoT) Botnet Targets IP 
Cameras. https://blog.trendmicro.com/trendlabs-security-intelligence/
persirai-new-internet-things-iot-botnet-targets-ip-cameras/

18 Senrio. July 18, 2017. Devil’s Ivy: Flaw in Widely Used Third-Party Code Impacts  
Millions. https://blog.senr.io/blog/devils-ivy-flaw-in-widely-used- 
third-party-code-impacts-millions

19 Threatpost. September 17, 2018. Zero-Day Bug Allows Hackers to Access CCTV 
Surveillance Cameras. https://threatpost.com/zero-day-bug-allows-
hackers-to-access-cctv-surveillance-cameras/137499/
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In Figure 6-17, the network architecture of a typical DSS system is 

portrayed. Video flows from the camera to a managed switch where 

many devices may actually be connected, including other servers and 

individual laptops. The video data is typically separated from other traffic 

on the managed switch via a protected VLAN. This does not encrypt or 

otherwise protect the traffic or video streams, it merely creates a different 

logical segment on the network reserved only for video traffic. Depending 

on the type of managed switch, this may not present much difficulty for 

an attacker to overcome. Besides the cameras, a network video recorder 

(NVR) video management system (VMS) is also connected to the managed 

switch. This system enables the recording of multiple video streams to 
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Figure 6-17. Digital Surveillance System (DSS) typical network 
architecture
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a storage array. There is typically a local storage array also connected 

to the managed switch on the VLAN, but a remote storage array in the 

Cloud provides long-term storage. This means that the NVR VMS and 

the local storage device are involved in uploading the video streams to 

the Cloud. Viewing of the video streams may be done locally, off the NVR 

VMS system, or remotely. Remote access may be enabled to the NVR VMS 

system, or more may be provided only from the Cloud, depending on the 

network security at the local installation and the security features enabled 

on the NVR VMS.20

From the network architecture in Figure 6-17, it is also seen that 

input to the NVR VMS may come from devices other than video cameras. 

Multifunction print devices are capable of capturing scanned images 

and using the NVR VMS to store those images for the user. Additionally, 

a phone can be used to pipe in multimedia including audio only, audio 

and video, or other encoded streams as a download service (where 

the phone is acting as a modem) and supply those inputs to the NVR 

VMS. These input streams are important to understand in the overall DSS 

segment, since maintaining security for devices other than IP cameras 

needs to be incorporated into the network security, monitoring, and 

patch update systems.

The Cloud segment of the DSS system includes analytics and advanced 

artificial intelligence (AI) algorithms used to process media files (audio, 

video, and still image) and collect data or file/index media according to 

criteria. This section does not address cloud security concerns, which must 

be properly accounted for in any DSS system. Cloud security is adequately 

addressed by other resources.

20 Credit: Jody Booth, Platform Solutions Architect, DSS team, IOTG, Intel – source 
of DSS Network Architecture diagram
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 Security Objectives and Requirements
Using Figure 6-17 as the target for security analysis, the DSS segment 

includes the following security objectives, which focus on the primary 

video and audio assets in the system:

• Data at rest and in transit: All incoming data streams 

received by the NVR VMS from the managed switch 

must be protected from modification (integrity), 

duplication (replay), and disclosure (confidentiality).

• Identity of the device: All devices attached to the 

managed switch should be uniquely identified; the 

use of MAC addresses is not considered secure as 

these can be spoofed by a network adversary. Devices 

should maintain at least one identity public and 

private key pair used to uniquely identify the device to 

other entities and used to set up protected (integrity 

protected) streams to the NVR VMS.

• Integrity of the boot system and operating system: 

Verification of boot firmware and software, with secure 

storage of trusted measurements collected during boot, 

shall be enforced at every soft and hard boot event 

for all elements of the system, including peripherals 

connected to the managed switch, the NVR VMS, and 

the local storage array.

• Trusted reporting of device health: Devices shall be 

capable of reporting their current health including 

measurements from their last boot cycle and any 

software or firmware updates performed since their 

last boot. This reporting must include a proof of origin 

signature that unambiguously attests to the source 

of the report (Root of Trust for Reporting) and all 
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claimants producing data for the report (Root of Trust 

for Measurement). This reporting should be collected 

by the NVR VMS system when devices connect to 

record/store their multimedia streams.

• Verification of software updates, configuration, 
and workloads: All updates to the device shall come 

from an authorized source verified against one of the 

device’s trust anchors; updates shall be protected from 

modification (integrity) and verified by the device prior 

to first use that the update has not been corrupted. 

Updates include new or updated software, firmware, 

and configuration files.

• Whitelisting of network endpoints: Devices shall 

maintain a whitelist of authorized network endpoints 

that are authorized to communicate with the device, and 

the device shall ignore/terminate any communication 

streams from network endpoints not on the whitelist.

• Management of connected peripherals: The managed 

switch shall maintain a whitelist of all connected 

peripherals, whether wired or wirelessly connected to 

the switch, and ignore or disconnect any peripherals 

not authorized to be connected with the device. 

Authentication of connected devices should be 

performed via cryptographic credentials, not merely 

MAC or IP addresses which can be spoofed.

• Storage integrity: Devices shall maintain the integrity 

of stored elements including media streams, media 

metadata, software, configuration files, and processing 

logs; devices shall prevent unauthorized access 

to stored elements. Particular care must be taken 

to protect private keys and symmetric encryption 
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keys that are used for signatures, in transit data 

confidentiality and integrity or storage confidentiality 

and integrity. Many systems are required to 

produce evidence (surveillance videos, body cams, 

vehicle cams) and this evidence must provide 

cryptographically assured provenance of the media 

files and the media file’s metadata which ensures those 

data items are free from tampering. This protection 

is paramount to support legally binding evidentiary 

claims for authenticity and originating source.

Design trade-offs: DSS systems, especially the end collection devices 

(cameras and audio recorders), are extremely cost sensitive, yet must 

compete on the ability to collect data in various formats and transmit that 

data over the network. Those two primary goals translate to specialized 

hardware capabilities. But the end devices must also operate on very 

limited power budgets, not unlike the industrial systems, and therefore 

design trade-offs tend to remove the majority of the security features. 

Based on the history of attacks these systems have encountered, protection 

of the software running on these devices are most important. Protected 

trust anchors that authenticate control authorities and authorize firmware 

and software updates have the most effect on maintaining security for 

these devices. Back-end infrastructure, such as the video recorders, 

control systems, and storage arrays, are normally standard off-the-shelf 

server class devices that can utilize the full suite of hardware and software 

protections available on the commercial market. 

 Threats
Threats to DSS systems are primarily from outside network adversaries. 

However, from some systems, privileged insiders may need to be included in 

the threat analysis, especially when such DSS systems are used for building 

or other surveillance, and a privileged insider can be coerced, bribed, 
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or forced to delete or modify evidence captured by the NVR VMS. Stolen 

credentials can also make a network outsider appear to be an authorized 

insider. The following threats should be considered in any DSS system:

Threat #1: Device hijacking – An attacker uses weak authentication 

credentials (Mirai attack) to take control of a peripheral device on the DSS 

system; or an attacker uses vulnerabilities in the peripheral device software 

(Devil’s Ivy or Perisai attacks) to inject their own software or firmware on 

the device and stop media capture, falsify metadata, or misuse the device 

computing power to perform other actions (mine for Bitcoin, perform a 

DDoS attack).

• Mitigation #1: Device credentials must be changed prior 

to installation and fielding of devices. Intel’s Secure 

Device Onboarding protocol provides a fast and secure 

mechanism to provision devices with new credentials 

and configuration without requiring specialized or highly 

skilled system installation crews. Devices must never 

have default credentials or default management logins. 

Inspection of open ports and SNMP capabilities are 

required to ensure no unauthenticated or easily guessable 

password credentials are available to an attacker.

• Mitigation #2: Although this threat is virtually the same 

as seen in other segments, the mitigation requirements 

due to power limitations and smaller compute often 

prevent using TEEs or software containers to prevent 

or limit the impact of compromised software. Frequent 

health checks on the device firmware are required to 

monitor for any potential zero-day attacks, and response 

to firmware corruption requires signed updates using a 

hardware root-of-trust (RoT) that cannot be modified by 

an attacker, even one that replaces the firmware through 

physical attack. Careful thought and study of recent 

attacks (Devil’s Ivy and Perisai) must be done.

Chapter 6  Iot VertICal applICatIons and assoCIated seCurIty requIrements



458

Threat #2: Device masquerading – An attacker creates a digital twin 

of the real device and jams or blocks transmission from the real device to 

inject false media streams into the system.

• Mitigation: Device identity must be used to set up mutually 

authenticated streams from the collection peripherals to the 

NVR VMS system; additionally the managed switch should 

perform access control on all connected devices. Physical 

and logical protection of the device’s identity credentials 

prevents an adversary from stealing credentials and 

creating an evil digital twin. Storage of a device’s unique 

identity credentials within a TEE is required to prevent the 

use of a digital twin to masquerade as the real device.

Threat #3: Permanent denial of service (PDoS) attacks – An attacker is 

able to inject a firmware update or critical operating system update that 

damages the hardware of the device or takes the device offline requiring 

depot-level service to repair the device.

• Mitigation: All updates and changes to the device 

require a signed update package that cryptographically 

verifies against a secured trust anchor on the device. No 

changes to the software, and especially the firmware, 

can be made without a signed package update 

command that comes from a trusted, authenticated 

source. Additionally, software and firmware updates 

must be protected against rollback attacks, where an 

adversary installs validly signed but older software 

versions that install an old security vulnerability onto 

the device. Rollback attacks must be prevented by using 

a protected value to store the software version number 

for the currently installed software/firmware, and this 

must be verified against the integrity-protected software 

version found in the signed software update package.
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Threat #4: Unauthorized access to surveillance data – An attacker 

gains access to surveillance footage that includes private or confidential 

information to which that attacker should not have access.

• Mitigation: Proper access control for all surveillance 

footage is required. Best practice is to encrypt 

such footage and provide access control on the 

cryptographic keys. This ensures that all copies of 

the footage are equally protected, including backups. 

This of course shifts the burden of access control 

to the keys themselves. Proper key storage should 

include hardware-based protection with two-factor 

authentication to access the keys. Since backups are 

encrypted, the backup storage of keys becomes an 

issue. Having cold or warm sites with hardware security 

modules (HSM) that are unlocked with smartcards or 

other hardware tokens is best practice.

 Standards – Regulatory and Industry
There are two primary industry standards organized around IP cameras 

and DSS: ONVIF and PSIA.21 ONVIF (Open Network Video Interface 

Forum) was formed in 2008 as a nonprofit industry organization to 

define an interoperable interface standard for IP cameras allowing better 

interoperability between different manufacturers. ONVIF was originally 

formed by Axis Communications, Bosch Security Systems, and Sony Corp, 

but now has over 480 members. ONVIF has defined four profiles for video 

cameras (Profiles S, G, Q, and T)22; however, as shown in Figure 6-18, 

necessary security features are not yet mandatory in many profiles.

21 IFSEC Global. 2014, November 23. ONVIF and PSIA: Guide to Standards 
in Video Surveillance. www.ifsecglobal.com/video-surveillance/
guide-to-standards-in-video-surveillance-onvif-v-psia/

22 Profile categories C and A are reserved for access control devices, like door locks.
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PSIA (Physical Security Interoperability Alliance) is another industry 

consortium formed in 2008 covering the interoperability of IP media 

devices, recording and content management for recorders and video 

analytics.24 PSIA was founded by 20 member companies including 

Honeywell, GE Security, and Cisco, but adoption under this specification 
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Figure 6-18. ONVIF general requirements by profile category23

23 ONVIF. (2018). ONVIF Overview. www.onvif.org/wp-content/uploads/ 
2018/10/ONVIF_Profile_Feature_overview_v2-2.pdf

24 Honeywell. (2014). IP Video Standards. www.security.honeywell.com/-/
media//Security/Resources/PDF/News%20and%20events/White%20papers/
IP_Video_Standards%20pdf
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has stalled with the last publication from this body in 2010. Although 

there are still many cameras and devices on the market carrying PSIA 

compliance, PSIA is not considered a leading force in the industry.

Of all the driving forces for security in IP cameras, GDPR and the 

California Data Privacy Law in the United States are the main concerns. 

According to the European Data Protection Supervisor (EDPS),25 

surveillance footage can be used to identify people directly or indirectly 

and therefore falls within the GDPR regulations. The EDPS provides 

guidelines26 to maintain compliance in digital surveillance systems, 

and much of this guidance focuses on policy, proper notifications 

through signage, and careful site planning and configuration. EDPS 

recommended protections cover data in transit (prevent transmissions 

from interception), data at rest (restriction on access to stored media, 

including backups), and access control, but these controls must follow 

the recommendations resulting from a threat analysis. Of all these 

issues, access control becomes the most difficult and requires good 

key management that is based in hardware-protected key storage 

and roots-of-trust. Compliance with the California law should follow 

similar guidance.

HIPAA (Health Insurance Portability and Accountability Act) may also 

be applicable in the medical field, relating to building surveillance systems 

used in hospitals and medical facilities, which must comply with the added 

burden of inference correlation between a person captured in a video feed 

within a medical facility and a person’s medical treatment privacy.

25 https://edps.europa.eu/data-protection/data-protection/
reference-library/video-surveillance_en

26 https://edps.europa.eu/sites/edp/files/publication/10-03-17_video- 
surveillance_guidelines_en.pdf
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 Summary
IoT security in the current fragmented ecosystem requires a completely 

different mindset. This includes leveraging the common Intel security 

building blocks and accelerators such as Movidius and Intel (Altera) FPGA 

solutions. It is feasible to maintain a baseline of security capabilities and 

add the domain-specific features on the top to make the security solution 

complete for deployment. In some cases, the solution may include a 

heterogeneous architecture with assets from Intel SoC and accelerators 

such as FPGA/Movidius. We have seen how the retail Solution domain 

is influenced by the PCI DSS standard and how this standard can be met 

with compliance on Intel product–based devices. We have also seen how 

the Transportation Solutions domain is changing with the connected 

vehicle concept and the plethora of threats looming over this domain. The 

specific requirements of TSD can be met using Intel security technologies. 

Industrial and Digital Surveillance System have their unique robustness 

and mandatory standards for compliance. Only a subset of IoT verticals 

are covered in this chapter, but most of these concepts apply readily to the 

medical field, gaming, print imaging, and so on.

Open Access  This chapter is licensed under the terms 

of the Creative Commons Attribution 4.0 International 

License (http://creativecommons.org/licenses/by/4.0/), which permits 

use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and 

the source, provide a link to the Creative Commons license and indicate if 

changes were made.

The images or other third party material in this chapter are included 

in the chapter’s Creative Commons license, unless indicated otherwise 

in a credit line to the material. If material is not included in the chapter’s 

Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain 

permission directly from the copyright holder.
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 APPENDIX

Conclusion
The world’s most massive living organism1 is named Pando, Latin for  

“I spread out.” It is a quaking aspen clonal colony in south-central Utah 

in the United States located at the western edge of the Colorado Plateau 

in the Fishlake National Forest. It has a shared root system that is an 

estimated 80,000 years old,2 making it one of the oldest living organisms 

as well as being the most massive. The colony of individual male trees has 

identical genetic markers due to one of its reproductive strategies, sending 

up stems cloned from its massive underground root system. The frequent 

intense forest fires that sweep through the colony trigger radicle stem 

growth that become saplings and eventually replacement trees for those 

consumed by forest fires.

Pando might very well be a reasonable metaphor for understanding 

security in the context of the Internet of Things. Even though malware, 

like forest fires, may compromise individual devices and services, 

hardware-roots-of-trust remain insulated from the effects of attack. Root-

of-trust building blocks focus on securely restarting devices and services 

that allow automated resumption and continued operation of the Internet 

of Things colony.

1 Grant, Michael C. (October 1993). “The Trembling Giant.” Discover. Vol. 14 no. 10. 
Chicago. pp. 82–89. Retrieved 8 May 2008.

2 “Quaking Aspen.” Bryce Canyon National Park. U.S. National Park Service. 
February 24, 2015. Retrieved 17 November 2018.

https://doi.org/10.1007/978-1-4842-2896-8
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In the era of personal computing, the computer virus was the 

predominant term borrowed from biology. It seemed to adequately 

characterize computer security challenges. The antivirus scan and 

computer emergency response processes that counter viral attacks follow 

a strategy summarized as detect, contain, and correct. Detection improves 

with constant profile updates used by antivirus scanners. Containment is 

achieved through various techniques to quarantine software, services, and 

devices. Vulnerabilities are corrected by installing patches and software 

updates that also resist future attacks. Detect-contain-correct has been a 

major focus for security practitioners since the first PCs were connected 

to the Internet. However, these response processes required significant 

manual intervention that insufficiently scale when billions of new nodes 

are added to the Internet of Things.

In the era of IoT, Pando may be the more appropriate security 

paradigm where the focus turns to hardware-roots-of-trust that become 

the building blocks for resilient security. Automated recovery and  

re- instantiation of trustworthy IoT endpoints and services follows an 

outbreak. Pando-style security mechanisms are still in their infancy as IoT 

evolution transitions from its first phase of massive connectivity growth to 

its second and third phases of smarter autonomous systems.

In this book, we looked at the economics of constrained devices and its 

impact on security, the role of IoT frameworks in enabling interoperability, 

improved developer experiences, and complexity hiding; we reviewed 

currently available hardware security capabilities and their role as 

hardware-roots-of-trust. We also described some of the challenges facing 

system software, virtualization, and software frameworks when trying to 

use hardware security capabilities and expose those security services to 

the various software layers above them. Attestation was highlighted as a 

way for peer nodes to evaluate trustworthiness characteristics of hardware 

security capabilities. We saw how an increase in connectivity options leads 

to increased complexity in gateways, hubs, routers, and other networking 

infrastructure as constrained endpoints continue to implement narrow 
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slices of connection technology. We also saw how system design objectives 

can lead to security, safety, availability, and usability trade-offs and how 

vertically aligned components, software, and operations rely on the 

continued preservation of vertical boundaries in light of technology that 

breaks through many of the historical technological and physical barriers.

In particular, we want to highlight several core security concepts and 

ideas that contradict conventional thinking when taken in light of very 

large-scale IoT deployments.

 Economics of Constrained Roots-of-Trust
In Chapter 1 we described the economics and impact of scaling security 

down to constrained devices which constitute the vast majority of connected 

devices in the IoT ecosystem. The traditional expectation that approximately 

5–10% of device resources being security-related becomes inverted where, in 

many cases, a majority of resources are security functionality focused. This is 

motivated by root-of-trust security capabilities that anticipate interoperable 

trusted behaviors designed to initialize, boot, discover, provision, configure, 

and decommission IoT devices without human involvement. Devices 

lacking these capabilities simply will not be allowed to connect.

 IoT Frameworks – Necessary Complexity
In Chapter 2 we observed how IoT frameworks achieve the multifaceted 

goal of enabling broad connectivity, improving device manageability, 

simplifying distributed application development and operation while 

promising increased interoperability. Unfortunately, interoperability ethos 

isn’t universally shared among framework providers as some vendors 

pursue proprietary IoT strategies and others are overeager to create a 

multitude of similar but different framework standards that further dilute 

the promise of interoperability. We further observed that IoT framework 

standards almost universally ignore specifying secure binding of security 
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functionality that incorporates hardware-roots-of-trust technology to 

framework layers that would ensure framework layers are not easily 

overtaken by malware interposers.

 Hardware Security – More Than a Toolbox
In Chapter 3 we walked through an array of hardware security technologies 

available for integration into IoT solutions. We explained essential 

protections for identity, initialization, storage, and execution require 

hardware-roots-of-trust that are secure by design. This principle should be 

common to all secure IoT platforms. We also characterized attacks on IoT 

platforms observing that attack pathology often follows a transition from 

applications to user mode, user mode to kernel mode, kernel mode to pre- 

OS boot loader, and pre-OS to hardware. Ultimately, hardware is the last 

line of defense. Hardware is also the first point of recovery when rebuilding 

a clean system. Consequently, hardware security should be where the 

most care should be applied to ensure robust predictable behavior. 

We showed how HW security elements can be used by upper layers to 

implement defense-in-depth strategies that enable layered approach to 

attack mitigation and resilient recovery.

 IOT Software – Building Blocks with Glue
In Chapter 4 we considered the role software plays in securing IoT 

solutions and showed some of the ways popular system software and 

applications approach implementation of security features. We also 

motivated the need for hardware security integration and observed that 

integration is often nontrivial requiring adaptation and rework on behalf 

of firmware and software developers. For example, a Trusted Execution 

Environment (TEE) such as Intel SGX anticipates modularizing application 

software so that security relevant operations are performed within a secure 
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enclave. System software may require modification to remove unnecessary 

features that add exploit risk and prohibit operation inside of a more secure 

virtual machine. We took a tour through multiple OSs and how they expose 

HW security features and described criteria for securely implementing and 

enabling solutions that build on top of hardware security mechanisms that 

act like security glue that holds the software layers together.

 Ethernet TSN – Everybody’s Common 
Choice?
In Chapter 5 we described a host of communications technologies that 

will be employed to one extent or another in the broad IoT landscape. 

The reality is many IoT endpoints will employ multiple communications 

technologies based on cost, improved flexibility, and interoperability 

all the while realizing the diverse security implications. The IEEE 

has standardized dozens of use cases and applications involving 

interoperation between disparate IoT protocols. Nevertheless, complexity 

for complexity’s sake isn’t justifiable as the IoT industry will inevitably 

select a few connectivity technologies that broadly satisfy requirements 

unique to IoT; in other words, the industry will find everybody’s second 

choice technology. Before the Internet Protocol (IP),3 every major 

computer vendor had a local area network solution, most of which 

didn’t interoperate. IP became everybody’s second choice option 

since supporting every possible combination of vendor proprietary 

solutions was intractable. We anticipate a second convergence phase of 

connectivity technologies will occur for the Internet of Things. Our focus 

on Ethernet TSN plus IPv6 as our first choice to replace fieldbus-based  

3 Information Sciences Institute, University of Southern California, “Internet 
Protocol DARPA Internet Program Protocol Specification,” September 1981. IETF 
RFC791. https://tools.ietf.org/html/rfc791
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solutions is in anticipation of the eventual consolidation of the 

fragmented state of brownfield IoT. We think brownfield IoT will regard 

TSN as a popular second choice.

 Security MVP – The Champion Within 
a Fractured IoT Ecosystem
In Chapter 6 we broadened the view of vertical applications addressed by 

IoT to include any industry informed by “smart” devices. Each of these 

industries has different security requirements due to the nature of the 

information handled and to meet regulatory and industry standard bodies’ 

requirements. An overview was provided of the different verticals and 

associated security requirements. IoT ecosystem is fragmented by nature 

with multiple verticals, but at the end of the day, we need a common set of 

HW/SW building blocks and augmenting accelerators to meet the domain 

unique requirements. We discussed technology layering characteristics 

where layered security functionality needs to be rooted in hardware where 

a security minimum viable platform (MVP) defines a core set of security 

ingredients that are by and large common across all nodes participating 

in the larger IoT system. Systems architects stand a better chance at 

designing secure IoT systems when the MVP set of hardware security 

capabilities is available for implementation of security enforcement points 

rather than relying on a mix of options that span the continuum of cyber 

and physical ingredients.

 The Way Forward
The journey to demystify IoT Security doesn’t end with this book. We 

anticipate there remains a huge scaling problem where the key to realizing 

secure IoT operation is anchored in autonomous response and recovery 

APPENDIX  CoNClusIoN



469

in the face of attacks. A “pragmatic” security-minded industry recognizes 

that heterogeneous networks constructed using devices having different 

HW and SW architectures, components, and capabilities are likely to 

coexist for the foreseeable future as some devices are expected to remain 

in deployment for nearly 30 years. Nevertheless, all devices need to be 

reachable and serviceable or reliably disabled and excluded. Given the 

IoT continues to be a target for attack and compromise, defense-in-depth 

layering supported by robust hardware security capabilities is essential. 

The security community refers to this as hardware-roots-of-trust, we think 

of it as a Pando security layer that isn’t easily compromised and resiliently 

restarts in the face of attack.

We’ve presented a perspective to trusted computing that is intrinsic 

to a device and is recognizable to other IoT devices; looking ahead we 

anticipate distributed trust will become commonplace where trust may be 

distributed across millions of devices. Blockchain4 technology might be a 

good example, where a consensus of participant devices may determine 

whether an individual device is configured with minimum viable root- 

of- trust capabilities. For more information about blockchain, see the 

Hyperledger Project,5 a Linux Foundation open source effort, and these 

additional references.[6, 7, 8 ]

4 Wikipedia, “blockchain” (as of this publication date). https://en.wikipedia.
org/wiki/Blockchain

5 www.hyperledger.org
6 Khwaja Shaik, “Why blockchain and IoT are best friends”, 
January 12, 2018. www.ibm.com/blogs/blockchain/2018/01/
why-blockchain-and-iot-are-best-friends/

7 Postscapes – A list of projects and companies, “Blockchains and the IoT,” January 
5, 2019. www.postscapes.com/blockchains-and-the-internet-of-things/

8 Phillip J. Windley, Ph.D., Chair Sovrin Foundation, “Identity, Sovrin, 
and the Internet of Things,” July 27, 2017. https://blog.sovrin.org/
identity-sovrin-and-the-internet-of-things-8ef911fa715d
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Security combined with artificial intelligence (AI)[9, 10, 11] and machine 

learning (ML)[12, 13] is another area ripe for innovation where Intel is 

conducting research.14 Post-quantum cryptography15 and resilient 

computing16 are additional areas of technical exploration that are out of 

scope for this book that nevertheless promise impactful Pando security 

advances.

9 Intel Artificial Intelligence Overview. www.intel.com/content/www/us/en/
analytics/artificial-intelligence/overview.html

10 Torsten George, Security Week, “The Role of Artificial Intelligence 
in Cyber Security,” January 11, 2017. www.securityweek.com/
role-artificial-intelligence-cyber-security

11 Justin Jett, Threat Post, “Security and Artificial Intelligence: 
Hype vs. Reality,” August 23, 2018. https://threatpost.com/
security-and-artificial-intelligence-hype-vs-reality/136837/

12 Jason Knight, Intel AI Products Group blog, “The Importance of 
Systems in Machine Learning,” February 15, 2018. www.intel.ai/
systems-machine-learning/#gs.4FOjLznH

13 MIT Technology Review Insights/Research, “Machine Learning-driven 
analytics: Key to digital transformation,” 2018. www.intel.com/content/www/
us/en/analytics/mit-machine-learning-advanced-analytics-key-to-
transformation.html

14 Georgia Tech Institute for Information Security & Privacy, 
“Georgia Tech Launches New Research on the Security of 
Machine-Learning Systems,” Oct 31, 2016. www.iisp.gatech.edu/
georgia-tech-launches-new-research-security-machine-learning-systems

15 Simona Samardjiska, Digital Security Group Radbound University, RIOT Summit 
2017, “Post Quantum Cryptography for the IoT.” https://riot-os.org/files/
RIOT-Summit-2017-slides/3-4-Security-session-Simona.pdf

16 Kemal A. Delic, Ubiquity, Publications of the ACM, “On Resilience of IoT 
Systems” The Internet of Things Symposium, February 2016. https://ubiquity.
acm.org/article.cfm?id=2822885

APPENDIX  CoNClusIoN

http://www.intel.com/content/www/us/en/analytics/artificial-intelligence/overview.html
http://www.intel.com/content/www/us/en/analytics/artificial-intelligence/overview.html
http://www.securityweek.com/role-artificial-intelligence-cyber-security
http://www.securityweek.com/role-artificial-intelligence-cyber-security
https://threatpost.com/security-and-artificial-intelligence-hype-vs-reality/136837/
https://threatpost.com/security-and-artificial-intelligence-hype-vs-reality/136837/
http://www.intel.ai/systems-machine-learning/#gs.4FOjLznH
http://www.intel.ai/systems-machine-learning/#gs.4FOjLznH
http://www.intel.com/content/www/us/en/analytics/mit-machine-learning-advanced-analytics-key-to-transformation.html
http://www.intel.com/content/www/us/en/analytics/mit-machine-learning-advanced-analytics-key-to-transformation.html
http://www.intel.com/content/www/us/en/analytics/mit-machine-learning-advanced-analytics-key-to-transformation.html
http://www.iisp.gatech.edu/georgia-tech-launches-new-research-security-machine-learning-systems
http://www.iisp.gatech.edu/georgia-tech-launches-new-research-security-machine-learning-systems
https://riot-os.org/files/RIOT-Summit-2017-slides/3-4-Security-session-Simona.pdf
https://riot-os.org/files/RIOT-Summit-2017-slides/3-4-Security-session-Simona.pdf
https://ubiquity.acm.org/article.cfm?id=2822885
https://ubiquity.acm.org/article.cfm?id=2822885


471© The Author(s) 2020 
S. Cheruvu et al., Demystifying Internet of Things Security,  
https://doi.org/10.1007/978-1-4842-2896-8

Index

A
Access control lists (ACLs), 59
Access control policy (ACL), 74
Access point (AP), 376
ACRNTM

architecture diagram, 265
connectivity-automotive  

CAN bus, 268
DM applications, 266
para-virtualized  

architecture, 265
pSEED and vSEEDs, 271
RPMB flash block, 270

CSE, 271
real-time and power 

management controls, 271
secure boot flow, 267
security feature, 270
service VM, 266
SOS kernel, 267
system security features, 

272–276
TEE implementation, 269

Air-gap security, 3, 4
AllJoyn security, 81
AllSeen Alliance, 78–81

Application and service layer 
management (ASM), 98

Application-level language 
frameworks

Android devices, 331, 332
architectural model, 329
EdgeX Foundry, 333–335
hardware-based  

security, 330
Java, 331, 332
JavaScript, 330
NodeJS/Sails, 331
security features, 335, 336

Authenticated Code Module 
(ACM), 192

B
Bill of materials (BOM), 33
Blockchain technology, 469
Bluetooth Low Energy  

(BLE), 383, 384
Bluetooth operates, 383

advantage of, 385
BLE, 383, 384
fundamental security  

measures, 386

https://doi.org/10.1007/978-1-4842-2896-8


472

mesh profile and model 
specifications, 385

personal area network, 384
security of, 386
SIG controls, 383
specifications, 384

Boot integrity compromise, 421

C
Cellular technologies

advantages of, 393
broad coverage leveraging, 391
communication solution, 392
5G Cellular, 393

data rates and  
latencies, 395

evolution of, 394
5G New Radio, 399
network slicing concept, 401
performance attributes, 397
standards and release 

versions, 396
technology enablers, 

399–403
LTE-M, 392
ubiquitous connectivity, 391

Centralized network configuration 
(CNC), 363

Cloud/Centralized radio access 
network (C-RAN), 402

Common services functions  
(CSF), 98

Common vulnerabilities and 
exposures (CVE), 149

firmware, 150
hardware vulnerability, 151

Connectivity technologies, 347
Ethernet TSN, 348
wireless technologies, 369

Constrained Application Protocol 
(CoAP), 343, 344

Containers, 245, 246, 278
Converged security and 

manageability engine 
(CSME)

block diagram, 177, 178
out-of-band, 178

Converged Security Engine (CSE)/
CSME-DAL, 267

DAL architecture, 204
isolation, 205
portability, 205
robustness rules, 205

Cryptography, 55–57
Cyber-physical systems, 1, 63

attack surface, 7
classes of, 6
networking, 6
pyramid, 7, 8
security capabilities, 9

D
Data distribution service (DDS)

data interaction flow, 120
DCPS approach, 117

Bluetooth operates (cont.)

INDEX



473

entities, 118
framework layering, 123–126
global data space, 126
OMG, 117
policies, 120–123
primary design goal, 117
publish-subscribe  

data model, 118
QoS integration, 118, 119
requested-offered pattern, 119
security

enveloping structures,  
127, 128

plugin modules, 129–131
secure encapsulation, 127
token data structure, 128

Data plane development  
kit (DPDK)

architecture of, 299
cryptography, 301
encryption, 301
end-to-end security, 298
features, 299
library structure, 300
network restrictions, 298
SHA-NI and AES-NI 

instructions, 301
Data protection

Intel PTT
components, 194, 195
Linux PTT software stack, 197
pre-OS environment, 196
Windows PTT architecture, 

195, 196

runtime protection problem, 194
theft threats, 194

Device identity composition 
engine (DICE), 36

Device lifecycle, 41
decommissioning process, 44
deployment, 42
logical devices, 41
management functions, 43
manufacturing processes, 42
normal operation, 43
platform model, 41
security monitoring, 43
software and firmware  

updates, 44
supply chain processes, 42

Device management, 310
authentication and 

authorization, 311
cloud-based system, 311
confidentiality and integrity, 312
defense in depth, 312
elements, 311
mesh central, 313–316
nonrepudiation, 312
provisioning solutions, 311
security requirement, 321
security services, 311
Wind River HDC, 318

administrators, 318
analysis, 321
architecture, 319
Kafka, 320
SDO leverages, 320

INDEX



474

Device masquerading, 421
Digital random number generator 

(DRNG), 173–177
Digital rights management  

(DRM), 179
Digital surveillance systems  

(DSS), 418
CCTV systems, 451
cloud segment, 453
information security, 450
network architecture, 452
NVR VMS system, 453
regulatory and industry, 459
security objectives and 

requirements, 454–456
threats

device hijacking, 457
device masquerading, 458
PDoS attacks, 458
unauthorized access, 459

Dynamic application loader (DAL), 
181

architecture, 204
authenticity and security, 205
CSE/CSME, 203
isolation, 205
portability, 205

E
Edge X Foundry, 333–335
Elliptic curve cryptography  

(ECC), 55
Encrypted page cache (EPC), 291

Encrypted page tables  
(EPTs), 269

End-to-end (E2E)  
security, 157–159

Enhanced mobile broadband 
(eMBB), 397

Enhanced privacy identifier 
(EPID), 180

active anonymity problem, 183
vs. PKI system, 184

Enterprise resource planning (ERP) 
functions, 112

Ethernet TSN, see Time- Sensitive 
Networking (TSN)

European data protection 
supervisor (EDPS), 461

F
Firmware and RoT, 149

capsule update function, 323
nonvolatile storage, 322
threats, 323–325
turtle creek system and 

manageability service, 
325–329

Framework architectures
data object layer, 59, 60
layers, 58
node interaction layer, 60
platform abstraction layer, 61
platform layer

categories, 63
cyber-physical system, 63

INDEX



475

discovery packets, 63
root-of-trust hardware, 64
secure storage, 64

security challenges
access path, 66
connection services, 65
endpoint nodes, 64
logical endpoints, 65
message-oriented 

techniques, 66
Framework designs, 24

abstraction, 46
application portability, 46
bridging, 53
brownfield systems, 25, 26
connectivity, 53
data model and system 

abstractions, 47–49
description, 47
ICN connectivity plugin, 49
REST GET message, 49

design goals, 45
ecosystem, 28

physical and logical 
components, 28

replacement cycle, 27
existing system, 26
gatewaying, 53
gateways

connectivity and node 
interaction layers, 135

network connectivity, 134
security considerations, 

138–146

security endpoints, 140
standards, 132
superset and subset 

frameworks, 137
unmodified framework 

gateways, 133
walled-garden  

approach, 132
historical movements, 24
interoperable devices, 46
manageability  

elements, 54
messaging transport 

technologies, 30
ModBus, 25
network and connectivity, 29
nodes, 50, 51
operations abstraction, 50

discovery conventions, 51
event handling  

conventions, 52
message exchange 

conventions, 52
platforms, 30, 31
SCADA systems, 24
security elements

cryptography, 55–57
physical equivalents, 54
post-quantum, 57
quantum computers, 57

system interconnected  
system, 25

system of systems, 26
weak link, 23

INDEX



476

G
Gateways

connectivity and node 
interaction layers, 135

network connectivity, 134
security considerations

architecture, 144
endpoints, 140
idealized security 

framework, 145
interaction and connectivity 

layers, 142
message protocol 

translation, 143
operations, 138
secure endpoint/unsecure 

legacy endpoints, 140
security questions, 138
type I gateway, 141
type IV gateway, 143
vectors, 144

standards, 132
superset and subset 

frameworks, 137
unmodified framework 

gateways, 133
walled-garden  

approach, 132
General data privacy regulation 

(GDPR), 193
Global navigation satellite system 

(GNSS), 391
Global positioning system  

(GPS), 391

H
Hardware (HW), 149
Hardware Root of Trust  

(HWRoT), 151
Helix Device Cloud (HDC), 318
Historical access (HA) data, 114
Hyperledger Project, 469
Hypervisors/VMM

ACRNTM (see ACRNTM)
elements of, 256
generic virtualization 

architecture, 255
native hypervisor, 255
physical memory, 254
threads, 257

deep power management, 260
DoS attack, 263
embedded systems, 261
principles, 263
privilege, 264
security services, 258–260
stack smashing and heap 

smashing, 264
vulnerabilities, 261, 262

VirtualBox, 255
VMX mode, 255

I
Industrial control system (ICS), 442

notional architecture, 442
regulatory and industry, 449, 450
security objectives and 

requirements, 443–446

INDEX



477

threats and consequences, 
446–449

application-level data 
tampering, 448

denial of service, 448
device hijacking, 447
masquerading, 447
PDoS attacks, 448
tampering and information 

disclosure, 449
Industrial internet of things 

consortium (IIC)
architecture, 106
cross-domain interactions, 109
functional domains, 108
functional viewpoint 

architecture, 110
implementation viewpoint, 109
industrial internet systems, 105
operational domain, 110
reference viewpoints, 107

Industrial IoT (IIoT), 26, 29, 104, 
105, 111, 417, 442–443, 449

Industrial solutions domain, 416
Infield programmable  

fuses (IPF), 192
Information-centric networking 

(ICN), 48
Intel virtualization technology 

(Intel VT), 198
CPU virtualization, 199
environment, 200
graphics, 199
I/O operation, 199

isolated execution, 201
memory, 199

International telecommunications 
union (ITU), 396

Internet of Things (IoT)
antivirus scan, 464
constrained devices, 464
device

application perspective, 33
architectural goals, 33
composition engine, 37
cryptographic  

generation, 37
DICE strategy, 36
interfaces, 32
interoperability gaps, 34
persistent memory, 32
root of trust, 35
security functionality, 35

economics and scaling  
security, 465

ecosystem, 468
elements of, 32
Ethernet TSN, 467, 468
framework

designs (see Framework 
designs)

layers, 466
Glue, 466
hardware security  

technologies, 466
malware, 463
network, 38, 39
roots-of-trust, 464

INDEX



478

system management
device lifecycle, 41–44
IT and OT, 39
uniform and consistent 

approach, 40
vulnerabilities, 464

In-vehicle infotainment (IVI)  
unit, 431

J
JavaScript, 330
Jump-oriented programming 

(JOP), 222

K
Kafka, 320
Kata containers

agent, 281
architecture, 280
containers, 285
create command, 287
hypervisor architecture, 283
interactions, 286
kernel, 284
networks, 284
Proxy, 283
QEMU, 285
runtime, 281
security requirements,  

287, 289, 290
shim, 281

L
Lightweight Machine 2 Machine 

(LWM2M)
access control list  

configuration, 95
architecture

client nodes, 88, 89
location object, 92
object model, 89, 91
URI format, 90

device management  
services, 92, 93

security, 94–96
specification, 88

Linux, 241
access problem, 242
AppArmor, 248
Clear Linux addresses, 249–251
containers, 245, 246
deployment chain, 250
distros, 241
pulsar architecture and service 

updates, 243
Seccomp, 248
security capabilities, 251–254
software components, 241
synchronization, 241
Ubuntu, 246–249
Wind River, 243–245

Long-Term Evolution for Machines 
(LTE-M), 392

Low-power long-term evolution 
(LTE), 406

Internet of Things (IoT) (cont.)

INDEX



479

Low-power wide area network 
(LPWAN) technologies

LoRa technology, 403, 404
low-power LTE, 406–408
mobile cellular (3G, LTE) and 

short-range wireless, 403
proprietary technologies, 407
Sigfox, 404–406
weightless, 405

M
MalDuino software, 3
Massive machine-type 

communications  
(mMTC), 398

McAfee embedded control  
(MEC), 308

Mesh central
analysis, 316
architectural elements, 314, 315
connected devices, 314
peer-to-peer, 313
remote monitoring and 

management, 313
server components, 316

Message orchestration, 335
constrained application 

protocol, 343, 344
MQTT operates, 337–340
OPC unified architecture, 

340–343
protocols, 336
several security issues, 336

Message queue telemetry transport 
(MQTT), 337–340

Messaging transport  
technologies, 30

Military, aerospace, and 
government domain, 417

Mitigations
building blocks, 440
communications, 438
data center and cloud, 210
depth architecture, 439
design trade-offs, 441
device endpoint and edge 

management, 210
HW security building blocks, 441
network, 210
threats of, 208
vehicle system, 438–441
zero-day attacks, 209

Moore’s Law, 10
Multi-Key TME/MKTME, 180
Multiple connectivity  

technologies, 408

N
National vulnerability database 

(NVD), 149
Near field communications  

(NFC), 390
Network design

layering options, 38, 39
objective, 38
protocols, 38

INDEX



480

Network edge and IoT networks, 13
attestation protocols, 15, 16
building blocks, 20
connected embedded 

computing, 13
Ethernet, 13
flux and re-forming coalitions, 14
Internet Protocol, 13
negotiating trust, 14
root-of-trust architecture, 17
security appliance, 14
TCB system, 18–20
trusted computing, 18
wireless networking  

standards, 13
Network function virtualization 

(NFV), 400
Network management, 373
Network slicing, 400
Network topologies, 372–374
NodeJS/Sails, 331

O
Offline storage–related attacks, 421
One Machine to Machine 

(OneM2M)
ASM function, 98
common services functions, 98
communication management, 98
data repositories, 98
deployment scenarios, 97
device management, 98
discovery, 99

domain architecture, 102
entities, 96, 101
group management, 99
layers, 96
location, 99
network service exposure, 99
node topology architecture, 97
partners, 96
registration, 100
resources, 97
security design, 100, 103
subscription, 100

OPC Unified Architecture,  
340–343

Open Connectivity Foundation 
(OCF), 67

AllJoyn security, 81
AllSeen Alliance, 78–81
built-in resources, 70
collection resource, 72
conceptual framework, 68
core framework layer, 68–72
CRUDN, 68
device abstraction, 73
introspection, 73
JSON schema representation, 69
links, 72
profiles, 73
RAML representation, 70
resource model approach, 69
REST message, 67
security architecture

access control policy, 74, 75
aspects, 74

INDEX



481

device onboarding  
statedos, 76

message encryption, 75
OTM interface, 77
RESET, 76
resource model, 78
RFOTM, 77

transport layer, 67
Open Fog Consortium, see 

Industrial internet of things 
consortium (IIC)

Open Platform Communications- 
Unified Architecture 
(OPC-UA)

control-level network, 111
ERP functions, 112
four-layer system, 112
framework architecture, 113–115
functional equivalence, 113
secure channel layer, 115–117
session layer addresses, 115
unified architecture, 111

Operating system, 220
access-controlled secrets 

storage, 222
execution units, 220
Linux, 241–254
memory separation, 221
privilege levels, 221
programming error  

protections, 221
system authorization, 221
threats

access-controlled secrets 
protections, 229

arbitrary code execution, 226
breech of containment, 227
code and data corruption, 229
cyber kill chain, 225
escalation of privilege, 228
execution and memory 

separation, 227
fault injection, 225
programming error 

protections, 226
rootkit, 228
system authorization 

mechanisms, 228
vulnerabilities, 224

Zephyr (see Zephyr operating 
system)

Original equipment manufacturers 
(OEMs), 388

Orthogonal frequency-division 
multiplexing (OFDM), 399

Owner transfer methods  
(OTMs), 77

P
Pando (massive living  

organism), 463
Para-virtualization, 257
Payment card industry (PCI), 422
Permanent denial of service 

(PDoS) attacks, 448, 458

INDEX



482

Personal area network (PAN), 384
Platform controller hub (PCH), 178
Platform trust technology (PTT), 

180, 194
Precision time protocol (PTP), 356
Programmable logic controllers 

(PLCs), 5

Q
QEMU, 285
Quality of service (QoS),  

119, 358, 373

R
Range and capacity, 370, 371
Real-time operating systems 

(RTOS), 230
Replay protected memory block 

(RPMB), 270
Representational State Transfer 

(REST), 67
Retail solution domain, 416

cardholder data, 422
objectives and requirements, 423
PCI Data Security Standard, 423
PCI specification, 422
regulatory and industry, 430
sensitive cardholder data, 422
threats

cryptographic keys, 427
end-to-end data flow, 428–430
hacker, 426

HW security building  
blocks, 426

platform security stack, 427
responsive retail, 425
system compromise, 424
transaction data, 426
unauthorized actors, 426
unique authentication, 424

Return-oriented programming 
(ROP), 222

Rivest-Shamir-Adelman  
(RSA), 55

Root-of-Trust (RoT)
device, 36
firmware (see Firmware and 

RoT)
platform layer, 64

S
SDO leverages, 320
Security capabilities, 1, 9
Security hardware design

assets, threats and  
pyramid, 152, 153

base platform profiles
CPU and dedicated security 

engines, 167
encryption/decryption 

(AES-NI), 169–171
hosted crypto 

implementations, 167
Intel data protectionDRNG, 

173–177

INDEX



483

malware protection (OS 
Guard), 168

sign/verify (Intel SHA 
extensions), 171–173

SMAP, 169
SMEP, 168

boot flow, 179
CSME (see Converged Security 

and Manageability Engine 
(CSME))

DAL technology, 181
data protection (see Data 

protection)
device boot integrity, 185

ACM modules, 187
BIOS/UEFI secure boot, 192
booting methods, 185, 186
measured boot sequence, 188
mechanisms, 188
process of, 186
sequences, 193
Skylake, 192
terminology overview, 190
trust and signing 

implications, 189
types of, 191

device identity (ID), 182
decision tree, 182, 183
EPID technology, 183
PTT/TPM, 184

E2E Security, 157–159
EPID, 180
essentials

boot, 161, 162

built-in security  
features, 164–166

hardware identity, 160
HW solution pillars, 165
scalable strategy, 166
software (SW) identity, 160
storage, 162, 163
TEE, 163
trusted secure  

foundation, 159, 160
value propositions, 165

inverted threat pyramid, 154
attack pyramid, 155
device lifecycle, 155, 157

measured boot, 179
memory encryption 

technologies, 180
PTT, 180
runtime protection, 198

Intel CSE/CSME–DAL, 
203–206

Intel TXT, 206–208
SGX technology, 201–203
virtualization, 198–201

SGX/CPU instructions, 182
threat mitigation, 208, 209

high impacting attacks, 210
zero-day attacks, 209

TXT, 180
Security management, 302

attack detection, 307
McAfee embedded control, 308
monitoring, 307
network defense, 306

INDEX



484

platform integrity, 304
secure device  

onboarding, 302–304
Sigfox, 404–406
Smart home system, 408
Sneaker-net information, 3
Software-defined cockpit (SDC), 431
Software-defined networking 

(SDN), 400
Software guard extensions  

(SGX), 182, 201–203
BIOS key, 293
code and data, 292
differences, 291
enclave, 291
EPC memory, 291
execution modes, 292
meaning, 290
system security, 293

Software stack, 213
applications, 344
architectural model, 216

application/data plane, 219
containment element, 217
databases, 219
device management 

element, 218
generic stack diagram, 216
language frameworks, 219
message orchestration, 219
network stack, 217
security management, 218
system update service, 219

containment and separation, 276
capabilities, 276
containers, 278
containment solution, 297
extended application, 277
Kata Containers, 280–290
security principles, 276
TEEs, 290–297

hypervisors and  
virtualization, 254

network stack and security 
management, 298–310

operating systems (see 
Operating systems)

section outline and security, 215
Spectrum, 369, 370
StuxNet, 4–6
Supervisory Control and Data 

Acquisition (SCADA) 
systems, 4, 24

Supervisory mode access 
protection (SMAP), 168

Supervisory mode execution 
protection (SMEP), 168

T
TechTarget, 18
Time-Sensitive Networking  

(TSN), 348
benefits of, 350–352
communication, 350
embedded and industrial 

applications, 349

Security management (cont.)

INDEX



485

end-to-end latency, 351
factory automation  

network, 368
features, 353
functions and  

implementation, 348
IEEE standard, 348
OPC-UA, 367, 368
preemption feature, 354
profiles, 355

asynchronous traffic shaping 
(802.1Qcr), 366

cycling queuing and 
forwarding (802.1Qch),  
365

enhanced generic precise 
timing protocol (802.1AS/
ASRev), 356–358

frame preemption 
(802.1Qbu), 359–361

frame replication and 
elimination (802.1CB), 
362–364

per-stream filtering and 
policing (802.1Qci),  
363, 364

security mechanisms, 367
stream reservation protocol 

(802.1Qcc), 362, 363
time-aware shaper 

(802.1Qbv), 358
publish/subscribe (PubSub) 

extension, 367
standard Ethernet, 352–355

Total memory encryption  
(TME), 180

Transportation solutions, 431
connected vehicle 

infrastructure, 433, 434
in-vehicle experience  

solutions, 432
mitigations (see Mitigations)
security objectives and 

requirements, 433, 434
standards, 441
threats

attacker profiles, 435, 436
automotive threat  

surfaces, 436
distinct hackable areas, 437
hacker technology, 435
on-board diagnostics, 435
physical access, 436

Transportation Solutions  
domain, 415

Transport layer security  
(TLS), 49

Trusted computing base  
(TCB), 18, 266

Trusted execution environments 
(TEEs)

SGX technology, 290
BIOS key, 293
code and data, 292
differences, 291
enclave, 291
EPC memory, 291
execution modes, 292

INDEX



486

meaning, 290
system security, 293

system security features, 296
trusty, 295

Trusted execution environment 
(TEE), 63, 163, 269

Trusted Execution Technology 
(TXT), 180, 206–208

Trusted Platform Module  
(TPM), 162, 184

Turtle Creek system
architecture, 327
capabilities, 326
FOTA, 327
update and management 

service, 328

U
Ubuntu, 246–249
Ultra-reliable low-latency 

communications  
(URLLC), 398

Unique device secret (UDS), 36
Universal Plug and Play (UPnP)

architectural elements, 84
audio/video equipment, 82
control point code, 85
description, 85
device architecture layer, 83
discovery automation, 84
event notification, 86

network nodes, 84
presentation, 86
protocol stack, 83
security, 86, 87
zero configuration  

networking, 82
USB thumb drive, 2

air-gap security, 3, 4
constrained computing

conceptual notions, 10
counterintuitive cost  

model, 11
dynamics, 10
power-hungry  

applications, 10
security vs. functionality, 12
Stuxnet scenario, 11
tinification, 11, 12

cyber-physical systems, 6–9
GitHub, 2
IoT and network edge, 13–20
maker community, 2
MalDuino, 3
malware/malicious software, 2
Moore’s Law, 10
StuxNet, 4–6

V
Vertical applications

balancing security, 420
domain requirements, 419–421
DSS domain, 418
ecosystem, 414

Trusted execution environments 
(TEEs) (cont.)

INDEX



487

framework, 414, 415
industrial solutions  

domain, 416
military, aerospace, and 

government domain, 417
retail solution domain, 416
threats, 421
transportation solutions 

domain, 415
Virtualization, see Hypervisors/

VMM
Virtual machine extensions (VMX) 

mode, 255
virtual Slim Bootloader  

(vSBL), 268

W, X, Y
Weightless, 406
Wi-Fi network, 374

802.11ac and 802.11ax 
comparison, 382

access point, 376
cellular, 375
classic and mesh wireless, 377
industrial, scientific, and 

medical band, 378
interoperability, 375
Low-Power, 375
mesh networking, 376
modules, 379
overview, 381
summarization, 379
TCP/IP software stacks, 378

Wireless connectivity technologies
Bluetooth, 383–387
cellular (see Cellular 

technologies)
GPS/GNSS, 391
LPWAN technologies,  

403–408
network management, 373
network topology, 371–373
NFC, 390
overview, 369
QoS, 373
range and capacity, 370, 371
security of, 373
smart home gateway, 408
spectrum, 369, 370
Wi-Fi, 374–383
Zigbee, 387–390

Z
Zephyr operating system

architecture, 231
cooperative threads, 232
execution separation, 231–234
memory domain and  

partition, 235
memory separation, 234, 235
preemptive threads, 232
privilege levels, 236
programming errors, 237
refinements, 232
requirements, 239
RTOS, 230

INDEX



488

security modules and TEEs, 237
system authorization, 236–238

Zero configuration networking, 82
Zigbee

advantage of, 389
multihop operations, 387
protocol suite, 388
specification, 388
technical specifications, 389, 390

Zephyr operating system (cont.)

INDEX


	Table of Contents
	About the Authors
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Conceptualizing the Secure Internet of Things
	The BadUSB Thumb Drive
	Air-Gap Security
	Stuxnet
	Designing Safe and Secure Cyber-Physical Systems
	Constrained Computing and Moore’s Law
	Trusted IoT Networks and the Network Edge
	Conclusion

	Chapter 2: IoT Frameworks and Complexity
	Introduction
	Historical Background to IoT
	IoT Ecosystem
	Connectivity Technology
	Messaging Technology
	Platform Technology


	Elements of an IoT System
	IoT Device
	IoT Device Architectural Goals
	Interoperability
	Security


	IoT Network
	IoT System Management
	Device Lifecycle
	Manufacturing
	Supply Chain
	Deployment
	Normal Operation and Monitoring
	Manage
	Update
	Decommissioning


	IoT Framework
	IoT Framework Design Goals
	IoT Data Model and System Abstractions
	IoT Node
	IoT Operations Abstraction

	Connectivity Elements
	Manageability Elements
	Security Elements
	Consider the Cost of Cryptography


	Summary IoT Framework Considerations

	IoT Framework Architecture
	Data Object Layer
	Node Interaction Layer
	Platform Abstraction Layer
	Platform Layer
	Security Challenges with IoT Frameworks

	Consumer IoT Framework Standards
	Open Connectivity Foundation (OCF)
	OCF Core Framework Layer
	OCF Profiles Framework Layer
	The OCF Device Abstraction
	OCF Security

	AllSeen Alliance/AllJoyn
	AllJoyn Security

	Universal Plug and Play
	UPnP Security

	Lightweight Machine 2 Machine (LWM2M)
	LWM2M Architecture
	LWM2M Device Management
	LWM2M Security

	One Machine to Machine (OneM2M)
	OneM2M Security


	Industrial IoT Framework Standards
	Industrial Internet of Things Consortium (IIC) and OpenFog Consortium
	Open Platform Communications-Unified Architecture (OPC-UA)
	OPC-UA Framework Architecture
	OPC-UA Security

	Data Distribution Service (DDS)
	DDS Framework Architecture
	DDS Security
	Security Enveloping
	Security Tokens
	Security Plugin Modules



	Framework Gateways
	Framework Gateway Architecture
	Type I Framework Gateway
	Type II Framework Gateway
	Type III Framework Gateway
	Type IV Framework Gateway

	Security Considerations for Framework Gateways
	Security Endpoints Within the Gateway
	Security Endpoints in Type I Gateways
	Security Endpoints in Type II Gateways
	Security Endpoints in Type III Gateways
	Security Endpoints in Type IV Gateways
	Security Framework Gateway Architecture



	Summary

	Chapter 3: Base Platform Security Hardware Building Blocks
	Background and Terminology
	Assets, Threats, and Threat Pyramid
	Inverted Threat Pyramid
	Sample IoT Device Lifecycle

	End-to-End (E2E) Security
	Security Essentials
	Device Identity
	Protected Boot
	Protected Storage
	Trusted Execution Environment (TEE)
	Built-In Security

	Base Platform Security Features Overview
	CPU Hosted Crypto Implementations
	Malware Protection (OS Guard)
	OS Guard (SMEP)
	OS Guard (SMAP)
	Encryption/Decryption Using AES-NI
	Sign/Verify Using Intel® SHA Extensions
	Intel® Data Protection Technology with Secure Key (DRNG)

	Converged Security and Manageability Engine (CSME)
	Secure/Verified, Measured Boot and Boot Guard
	Trusted Execution Technology (TXT)
	Platform Trust Technology (PTT)
	Enhanced Privacy ID (EPID)
	Memory Encryption Technologies
	TME
	MKTME

	Dynamic Application Loader (DAL)
	Software Guard Extensions (SGX) – IA CPU Instructions

	Identity Crisis
	Enhanced Privacy Identifier (EPID)
	Anonymity

	PTT/TPM

	Device Boot Integrity – Trust But Verify
	Secure Boot Mechanisms
	Secure Boot Terminology Overview

	Overview of BIOS/UEFI Secure Boot Using Boot Guard Version 1.0 (BtG)

	Data Protection – Securing Keys, Data at Rest and in Transit
	Intel Platform Trust Technology (PTT)
	Windows PTT Architecture
	Linux PTT Software Stack

	Runtime Protection – Ever Vigilant
	Intel Virtualization Technology (Intel VT)
	Software Guard Extensions (SGX)
	Intel CSE/CSME – DAL
	Isolation from Rich Execution Environment
	Authenticity and Security
	Portability

	Intel Trusted Execution Technology (TXT)

	Threats Mitigated
	Zero-Day Attacks
	Other Attacks

	Conclusion
	References


	Chapter 4: IoT Software Security Building Blocks
	Understanding the Fundamentals of Our Architectural Model
	Operating Systems
	Threats to Operating Systems
	Zephyr: Real-Time Operating System for Devices
	Zephyr Execution Separation
	Zephyr Memory Separation
	Zephyr Privilege Levels and System Authorization
	Zephyr Programming Error Protections
	Zephyr’s Other Security Features
	Zephyr Summary

	Linux Operating Systems
	Pulsar: Wind River Linux
	Ubuntu IoT Core
	Intel® Clear Linux
	Linux Summary


	Hypervisors and Virtualization
	Threats to Hypervisors
	Intel® ACRN
	Real-Time and Power Management Guarantees in ACRN

	ACRN Summary

	Software Separation and Containment
	Containment Security Principles
	Threats to Extended Application Containment
	Containers
	Kata Containers
	Kata Containers Summary

	Trusted Execution Environments
	Software Guard Extensions
	SGX Security Summary
	Android Trusty
	Trusty TEE Security Summary

	Containment Summary

	Network Stack and Security Management
	Intel Data Plane Development Kit
	Security Management
	Secure Device Onboarding
	Platform Integrity
	Network Defense
	Platform Monitoring
	McAfee Embedded Control

	Network Stack and Security Summary

	Device Management
	Mesh Central
	Wind River Helix Device Cloud
	Device Management Summary

	System Firmware and Root-of-Trust Update Service
	Threats to Firmware and RoT Update
	Turtle Creek System Update and Manageability Service
	System Firmware and RoT Summary

	Application-Level Language Frameworks
	JavaScript and Node.js or Sails
	Java and Android
	EdgeX Foundry
	Application-Level Framework Summary

	Message Orchestration
	Message Queuing Telemetry Transport
	OPC Unified Architecture
	Constrained Application Protocol
	Message Orchestration Summary

	Applications
	Summary

	Chapter 5: Connectivity Technologies for IoT
	Ethernet Time-Sensitive Networking
	Legacy Ethernet-Based Connectivity in Industrial Applications
	Key Benefits of TSN
	TSN Standards
	TSN Profiles
	802.1AS/AS-Rev
	802.1Qbv
	802.1Qbu
	802.1CB
	802.1Qcc
	802.1Qci
	802.1Qch
	802.1Qcr
	TSN and Security

	OPC-UA Over TSN

	Overview of Wireless Connectivity Technologies
	Considerations for Choosing Wireless Technologies for IoT
	Spectrum
	Range and Capacity
	Network Topology
	Quality of Service
	Network Management
	Security

	Wi-Fi
	Bluetooth
	Zigbee
	NFC
	GPS/GNSS
	Cellular
	5G Cellular
	Key Standards, Regulatory, and Industry Bodies Involved in 5G
	New Use Cases Enabled by 5G
	Key Technology Enablers for 5G

	LPWAN – Low-Power Wide Area Networks
	LoRa
	Sigfox
	Weightless
	Comparison of Low-Power LTE and Other LPWAN Technologies

	A Case Study – Smart Homes

	Summary
	References

	Chapter 6: IoT Vertical Applications and Associated Security Requirements
	Common Domain Requirements and the Security MVP
	Some Common Threats
	Retail Solutions
	Security Objectives and Requirements
	Threats
	Standards – Regulatory and Industry

	Transportation Solutions14
	Connected Vehicle Infrastructure
	Security Objectives and Requirements
	Threats
	Mitigations
	Standards – Regulatory and Industry

	Industrial Control System (ICS) and Industrial IoT (IIoT)
	Security Objectives and Requirements
	Threats
	Standards – Regulatory and Industry

	Digital Surveillance System
	Security Objectives and Requirements
	Threats
	Standards – Regulatory and Industry

	Summary

	Appendix: Conclusion
	Economics of Constrained Roots-of-Trust
	IoT Frameworks – Necessary Complexity
	Hardware Security – More Than a Toolbox
	IOT Software – Building Blocks with Glue
	Ethernet TSN – Everybody’s Common Choice?
	Security MVP – The Champion Within a Fractured IoT Ecosystem
	The Way Forward

	Index

