
Demystifying
Internet of
Things Security

Successful IoT Device/Edge and
Platform Security Deployment
—
Sunil Cheruvu
Anil Kumar
Ned Smith
David M. Wheeler

Demystifying Internet
of Things Security

Successful IoT Device/Edge
and Platform Security

Deployment

Sunil Cheruvu
Anil Kumar
Ned Smith
David M. Wheeler

Demystifying Internet of Things Security: Successful IoT Device/Edge and Platform
Security Deployment

Sunil Cheruvu
Chandler, AZ, USA

Anil Kumar
Chandler, AZ, USA

ISBN-13 (pbk): 978-1-4842-2895-1 ISBN-13 (electronic): 978-1-4842-2896-8
https://doi.org/10.1007/978-1-4842-2896-8

Copyright © 2020 by The Editor(s) (if applicable) and The Author(s)

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Open Access This book is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book's product page, located at www.apress.com/978-1-4842-2895-1. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ned Smith
Beaverton, OR, USA

David M. Wheeler
Gilbert, AZ, USA

https://doi.org/10.1007/978-1-4842-2896-8

I dedicate this book to my readers for their curiosity
to learn. My wife Sunitha, a divine presence and

guidance constantly channels my creative energy to
empower the world with my wisdom. My daughter, Ria is

an inspiration with her intuitive perspective, and her
critique of the draft was instrumental in transforming

the content for the audience.

— Sunil Cheruvu

To my wife Manju and children, Induja and Abhiram for
their constant encouragement, support and curiosity during

the writing process. I want to thank my parents, teachers
and friends for their continued guidance in learning new

things and sharing my knowledge with others.

— Anil Kumar

This book is dedicated my wife KJ who gives unconditional
support for all the things I aspire to both vocationally and

otherwise and to our children Hayden, Addison, Gavin and
Janelle for courageously pursuing their dreams; and to

Thomas for always being willing to think out of the box.

— Ned Smith

To my lovely wife – Without your encouraging support,
strategic insights, and challenging questions, I would not

have accomplished all that I have. To my wonderful
children – Listen to your mother!

— David M. Wheeler

v

About the Authors ��xiii

Acknowledgments ��xvii

Foreword ���xix

Introduction ���xxi

Table of Contents

Chapter 1: Conceptualizing the Secure Internet of Things �������������������1

The BadUSB Thumb Drive ���2

Air-Gap Security ��3

Stuxnet ��4

Designing Safe and Secure Cyber-Physical Systems ���6

Constrained Computing and Moore’s Law ��10

Trusted IoT Networks and the Network Edge ��13

Conclusion ��20

Chapter 2: IoT Frameworks and Complexity ��������������������������������������23

Introduction ���23

Historical Background to IoT ���24

IoT Ecosystem ���27

Elements of an IoT System ���32

IoT Device ��32

IoT Network ���38

IoT System Management ���39

vi

IoT Framework���45

Summary IoT Framework Considerations ���58

IoT Framework Architecture ��58

Data Object Layer ��59

Node Interaction Layer ��60

Platform Abstraction Layer ��61

Platform Layer ���63

Security Challenges with IoT Frameworks ��64

Consumer IoT Framework Standards ��66

Open Connectivity Foundation (OCF) ���67

AllSeen Alliance/AllJoyn ��78

Universal Plug and Play ���82

Lightweight Machine 2 Machine (LWM2M) ��88

One Machine to Machine (OneM2M) ���96

Industrial IoT Framework Standards ���104

Industrial Internet of Things Consortium (IIC) and OpenFog Consortium �����105

Open Platform Communications-Unified Architecture (OPC-UA) �����������������111

Data Distribution Service (DDS) ���117

Framework Gateways ���131

Framework Gateway Architecture ���133

Security Considerations for Framework Gateways �������������������������������������138

Summary���146

Chapter 3: Base Platform Security Hardware Building Blocks ���������149

Background and Terminology ���152

Assets, Threats, and Threat Pyramid ���152

Inverted Threat Pyramid ��154

Table of ConTenTs

vii

End-to-End (E2E) Security ���157

Security Essentials ��159

Base Platform Security Features Overview ���167

Converged Security and Manageability Engine (CSME) �������������������������������177

Secure/Verified, Measured Boot and Boot Guard ��179

Trusted Execution Technology (TXT) ��180

Platform Trust Technology (PTT) ��180

Enhanced Privacy ID (EPID) ���180

Memory Encryption Technologies ��180

Dynamic Application Loader (DAL) ��181

Software Guard Extensions (SGX) – IA CPU Instructions �����������������������������182

Identity Crisis ��182

Enhanced Privacy Identifier (EPID) ��183

PTT/TPM ��184

Device Boot Integrity – Trust But Verify ���185

Secure Boot Mechanisms ��188

Overview of BIOS/UEFI Secure Boot Using Boot Guard Version 1�0 (BtG) ����192

Data Protection – Securing Keys, Data at Rest and in Transit ���������������������������193

Intel Platform Trust Technology (PTT) ��194

Windows PTT Architecture ���195

Linux PTT Software Stack ��197

Runtime Protection – Ever Vigilant ���198

Intel Virtualization Technology (Intel VT) ��198

Software Guard Extensions (SGX) ��201

Intel CSE/CSME – DAL ���203

Intel Trusted Execution Technology (TXT) ��206

Table of ConTenTs

viii

Threats Mitigated ��208

Zero-Day Attacks ���209

Other Attacks ���210

Conclusion ��211

References ��211

Chapter 4: IoT Software Security Building Blocks ����������������������������213

Understanding the Fundamentals of Our Architectural Model ��������������������������216

Operating Systems ��220

Threats to Operating Systems ���224

Zephyr: Real-Time Operating System for Devices ���������������������������������������230

Linux Operating Systems ���241

Hypervisors and Virtualization ��254

Threats to Hypervisors ��257

Intel® ACRN ��265

ACRN Summary ���272

Software Separation and Containment ���276

Containment Security Principles ���276

Threats to Extended Application Containment ���277

Containers ���278

Kata Containers ���280

Trusted Execution Environments ���290

Containment Summary ��297

Network Stack and Security Management ���298

Intel Data Plane Development Kit ��298

Security Management ���302

Network Stack and Security Summary ���310

Table of ConTenTs

ix

Device Management ���310

Mesh Central ���313

Wind River Helix Device Cloud ���318

Device Management Summary ���321

System Firmware and Root-of-Trust Update Service��322

Threats to Firmware and RoT Update ��323

Turtle Creek System Update and Manageability Service �����������������������������325

System Firmware and RoT Summary ��329

Application-Level Language Frameworks ���329

JavaScript and Node�js or Sails ���330

Java and Android ���331

EdgeX Foundry ��333

Application-Level Framework Summary ���335

Message Orchestration ���335

Message Queuing Telemetry Transport ���337

OPC Unified Architecture ���340

Constrained Application Protocol ���343

Message Orchestration Summary ���344

Applications ��344

Summary���345

Chapter 5: Connectivity Technologies for IoT �����������������������������������347

Ethernet Time-Sensitive Networking ��348

Legacy Ethernet-Based Connectivity in Industrial Applications ������������������349

Key Benefits of TSN ���350

TSN Standards ���352

TSN Profiles ���355

OPC-UA Over TSN ��367

Table of ConTenTs

x

Overview of Wireless Connectivity Technologies ��369

Considerations for Choosing Wireless Technologies for IoT ������������������������369

Wi-Fi ��374

Bluetooth ���383

Zigbee ��387

NFC ��390

GPS/GNSS ��391

Cellular ��391

5 G Cellular ��393

LPWAN – Low-Power Wide Area Networks ��403

A Case Study – Smart Homes ��408

Summary���409

References ��409

Chapter 6: IoT Vertical Applications and Associated
Security Requirements ���413

Common Domain Requirements and the Security MVP ������������������������������������419

Some Common Threats ���421

Retail Solutions ���422

Security Objectives and Requirements��423

Threats ��424

Standards – Regulatory and Industry ��430

Transportation Solutions ���431

Connected Vehicle Infrastructure ��432

Security Objectives and Requirements��433

Threats ��435

Mitigations ���438

Standards – Regulatory and Industry ��441

Table of ConTenTs

xi

Industrial Control System (ICS) and Industrial IoT (IIoT) ������������������������������������442

Security Objectives and Requirements��443

Threats ��446

Standards – Regulatory and Industry ��449

Digital Surveillance System ��450

Security Objectives and Requirements��454

Threats ��456

Standards – Regulatory and Industry ��459

Summary���462

Appendix: Conclusion ���463

Economics of Constrained Roots-of-Trust ��465

IoT Frameworks – Necessary Complexity ���465

Hardware Security – More Than a Toolbox ���466

IOT Software – Building Blocks with Glue ���466

Ethernet TSN – Everybody’s Common Choice? ���467

Security MVP – The Champion Within a Fractured IoT Ecosystem ��������������������468

The Way Forward ��468

Index ���471

Table of ConTenTs

xiii

About the Authors

Sunil Cheruvu is a Principal Engineer in the Platform Engineering Division

of Internet of Things Group (IOTG) at Intel Corporation and has been

involved in architecting complex embedded systems involving HW/FW/

SW for almost 27 years on Intel/ARM/MIPS/PowerPC architectures. At

Intel, he is the chief IoT Security architect and leads the end-2-end security

architecture for embedded devices including the scaling of security (from

below Atom to Xeon products) on multiple operating systems including

RTOS. He is the subject matter expert for IOTG security across Intel and

industry. He frequently interacts with many customers in architect-2-

architect capacity from multiple IoT segments including Industrial, Digital

Surveillance Systems, Retail, Transportation, Medical/Healthcare, Gaming,

Print Imaging, and Military/Aerospace/Government. Due to the uniqueness

of IoT deice lifespan and the required robustness, he drives architectural

initiatives such as Post Quantum readiness, physical & side-channel attack

mitigations, and alternative/configurable roots of trust (via FPGA, ASIC/IP,

etc.) for IOTG. In previous roles at Intel, he owned the content protection &

system-level architecture of conditional access and trusted data path (end-

to-end premium content protection within a SoC). He also lead the BIOS/

UEFI development on IOTG’s first SoC and programmed VBIOS/UEFI GOP

& embedded pre-OS graphics drivers in embedded group.

At Microsoft as a SW Design Engineer, he was the tech lead for vehicle

networking (CAN, KLINE, MOST) on ARM based platform involving the

NDIS bus and protocol driver stacks. He took these stacks through the

threat modeling and implemented the resolutions in what was released

as the Windows Mobile for Automotive (WMfA) platform. At Conexant

Systems as a senior SW staff engineer, he designed and implemented the

xiv

code for SCDMA & secure NAND Flash driver in ARM based DOCSIS 2.x

compliant Cable Modems. At 3com Corporation, as senior SW engineer, he

implemented the code for Telco return NT kernel mode drivers, embedded

ROM webserver, and Baseline Privacy security in DOCSIS 1.x compliant

cable modems.

Anil Kumar is a Principal Engineer in the Platform Engineering Division

of IOTG at Intel Corporation and is responsible for the Connectivity

Platform Architecture across IOTG. In this role, he lead the effort with

the planning team to create IOTG’s first ever roadmap for connectivity

solutions. He is currently driving platform and chip-level integration of

several key connectivity and communication technologies which are

critical for cyber-physical systems. Anil joined Intel in 2007 as a design

engineer in Digital Home Group. He served as a Platform Architect for

several Intel Architecture–based Media Processors for TV and Set-Top

Box applications. As the Platform Architect in Intel Media Group, Anil has

led several designs that resulted in award-winning consumer electronic

device designs at CES. The world’s first Google TV devices were based on

reference design efforts led by Anil as well. Prior to joining Intel, Anil held

design engineering positions at multinational companies such as Fujitsu

and Alcatel. He was instrumental in taking several designs from concept to

production throughout his career.

Ned Smith is a Principal Security Architect in Intel’s Open Technology

Center developing trusted edge computing technologies. He co-chairs the

IETF Remote Attestation Procedures working group. He developed the Open

Connectivity Foundation (OCF) security specification for IoT devices and

was a security architect for Intel® vPro™ and related security technologies.

He co-chaired the Trusted Computing Group’s (TCG) Infrastructure and

Trusted Network Communication (TNC) working groups. He developed

the Common Data Security Architecture (CDSA) specification in The Open

Group. He holds over 150 US patents. He received Intel’s Top Inventor award

abouT THe auTHors

xv

in 2016 and was runner up for Intel’s distinguished inventor award in 2018.

His professional interests include trusted computing for cloud, edge, IoT and

blockchain. His non-professional interests including scuba, motorcycles and

genealogy.

David M. Wheeler is a Senior Principal Engineer in the Platform Security

Division of IAGS at Intel Corporation and has 30 years’ experience in

software, security, and networking. In his current role, Dave is responsible

for research and development of new cryptographic algorithms

and protocols, security APIs, and libraries across Intel including for

IoT platforms, performs security reviews on Intel’s cryptographic

implementations, and represents Intel at the IETF. Within the Internet

of Things, Dave has contributed to Intel’s Software-Defined Industrial

Systems architecture and IOTG’s Health Application Platform. Prior to

Intel, Dave held various lead software and systems architecture positions

at Motorola, Honeywell Bull, General Dynamics, as well as his own

consulting firm. Dave has designed and built several hardware security

engines, including a Type 2 security coprocessor for a software-defined

radio and the Intel Wireless Trust Module, a hardware cryptographic

coprocessor on the Intel XScale processor. He has implemented several

cryptographic libraries and protocol layers, including an IPSec-type

implementation for an SDR radio; header compression protocol layers

for IP, TCP, and UDP over multicast; a connectionless network layer

protocol; two-factor authentication verification over RADIUS for a firewall

VPN, PPP for serial; an instant messaging protocol over Bluetooth; and

many others. Dave has been a key contributor to other full-stack product

implementations including Intel’s Blue River Network appliance and

several complete public Internet applications in PHP, JavaScript/Sails, and

even VBScript. Dave has also worked on smartcard security for banking

and gaming applications at a startup, Touch Technology. While at Motorola

in 1992, Dave authored the “Security Association Management Protocol”

abouT THe auTHors

xvi

for the National Security Agency and subsequently spoke nationally about

key management and key management protocols. He has led clean-

room implementations for ISAKMP, IKEv2, and a custom network-keying

protocol. Dave’s extensive experience in security, networking, software,

and hardware is leveraged across a broad segment of Intel’s Internet of

Things to make Intel’s products and software projects secure.

abouT THe auTHors

xvii

Acknowledgments

For a book such as this, one that covers a myriad of specialized topics, it

is difficult to single out only a few people to appreciate because so many

actually contributed to the content in both direct and indirect ways.

We would like to thank our Intel IOTG management, Michael R. Crews

and Michael Carboni, for providing unconditional support throughout the

process. And a special thanks must be given to Sunil, our lead author, for

keeping us all on track and always inspiring us to keep working toward our

goal.

Each of us as authors received support from many colleagues at Intel

who provided information, reviewed content, and answered questions.

Our special thanks to those who contributed significantly to this process

including Mats Agerstam, Jody Booth, Vincent Cao, Geoffrey Cooper, Jan

Krueger, Tony Martin, Srini Musti, Al Elizondo, Imran Desai, Maurice Ma,

Mike Taborn, Anahit Tarkhanyan, Yu Wang, Matt Wood, Anthony Xu,

Dave Zage, Anthony Chun, Todd Cramer, Mitchell Dzurick, and many

others. We especially want to thank Geoffrey Cooper for reading,

rereading, and then reading again too many drafts of our chapters and

Mats Agerstam for his many insightful contributions.

We offer our sincere gratitude to numerous others across Intel

Corporation who have shared their experiences and knowledge in various

meetings, SAFE reviews, crypto reviews, and the countless presentations

that we as authors are privileged to be a part. Your contributions have

helped us comprehend security in various IoT domains and we learn more

from you every day – Thank You!

xviii

We also wish to thank many colleagues in our industry with whom we

have worked to define and align our architectures, standards and open

source contributions for the betterment of secure computing.

— Sunil Cheruvu

— Anil Kumar

— David M. Wheeler

— Ned Smith

aCknowledgmenTs

xix

Foreword

In 1989 I walked into the Distributed Systems Laboratory as an

undergraduate in the Electrical Engineering department at University of

Pennsylvania and it seemed as if I didn’t leave that lab until I received a

doctorate 6 years later. Combining compute and communications has

been a professional passion ever since as I’ve lead a range of initiatives at

Intel Corporation in protecting video and audio content, bring networks

and digital technologies into the home, securing compute infrastructure,

and preparing for a new generation of distributed applications popularly

referred to as the Internet of Things (IoT).

IoT’s connection and computerization is a pervasive trend

transforming everything we do and the infrastructure which supports

us. From smart cities and homes to Industry 4.0, enterprises, critical

infrastructure, healthcare, retail, and wearables, vast flows of data,

increasingly processed using machine learning algorithms, are altering our

existence. This unprecedented scale, pervasiveness, and interconnectivity

also creates an environment where the security and integrity of these

applications becomes a paramount concern. One only has to look to the

headlines where attacks on critical infrastructure such as power generation

and distribution, vulnerabilities in our automobiles, and malware in the

devices such as webcams, smartphones, and PCs which we bring into our

homes, highlight our collective vulnerability. Given the extensive attack

surfaces being created and the asymmetry between attackers needing to

find a single vulnerability to exploit while defenders have to find and close

all vulnerabilities, IoT creates an unmatched set of security challenges.

During my journey, I’ve had the pleasure of working with many experts

in their respective fields. These authors are the best when it comes to

xx

offering practical guidance in addressing the IoT Security challenges. This

timely book will build your knowledge about the IoT security challenges

and remedies from the ground up, starting with the fundamental security

building blocks and extending into available IoT frameworks and specific

vertical applications. Please join us in the critical mission of securing IoT

applications, and by extension, our future!

— Brendan Traw

Intel Senior Fellow

Hillsboro, Oregon

July 2019

foreword

xxi

Introduction

The Internet of Things (IoT) is a general term describing any device used

to collect data from the world around us and then share that data across

the Internet where the data can be intelligently processed to provide

information and services. This definition can be extended to an industrial

closed loop control system where data is acquired, coalesced with related

data, transmitted to an intelligent station, analyzed, and then acted upon

to influence the environment.

The technology consulting firm Gartner, Inc. forecasts that 20.4 billion

connected things will be in use worldwide by 2020. The total spending

on endpoints and services will reach nearly $3 trillion in 2020.1 They also

forecast that worldwide spending on IoT security2 is expected to reach $3.1

billion by 2021. In a similar study, IDC Forecasts Worldwide Technology

Spending on the Internet of Things will experience a compound annual

growth rate (CAGR) of 13.6% over the 2017–2022 forecast period and reach

$1.2 trillion in 2022.3

The authors believe that IoT is a ripe field for not just securing the IoT

devices but also for innovations in secure system design, secure building

block technologies, and secure hardware and software development

practices that together turn the Internet of Things into the Secure Internet

of Things.

1 www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-
8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-
from-2016

2 www.gartner.com/newsroom/id/3869181
3 www.idc.com/getdoc.jsp?containerId=prUS43994118

http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
http://www.gartner.com/newsroom/id/3869181
http://www.idc.com/getdoc.jsp?containerId=prUS43994118

xxii

The IoT ecosystem is at an inflection point, and Intel has developed

a roadmap of products and services which comprehend this growth and

enables customers to participate in the IoT ecosystem transformation

from a collection of disjointed, vertically integrated suppliers of embedded

technologies into an ecosystem of interoperable and flexible building

block technologies. This transformation has three evolutionary phases:

Phase 1: Connect previously unconnected devices

through a multitude of interfaces and gateways

eventually converging on the Cloud.

Phase 2: Make devices smarter and more secure

where the connected devices are empowered to

make more important decisions and become more

aware of their environment and context, while

security is resiliently maintained.

Phase 3: Increase the degree of autonomous

operation while maintaining security where the

smart devices require less dependence on back-end

services – to dictate policies and to make decisions,

becoming devices that can dynamically join or leave

a network, can resiliently recover from failures,

proactively update system software, and even learn

to optimize operational efficiency.

Up through calendar year 2018, the industry, largely, has experienced a

transition to Phase 1. We’re now seeing dramatic shifts toward Phases 2 and

3 throughout the industry. We anticipate the future will be all about making

IoT systems secure as a prerequisite to paving the way for a smarter and

more autonomous IoT. Some may argue that IoT isn’t a new phenomenon,

and some say it’s revolutionizing the compute domain where compute

happens from Edge networks to cloud services. Our perspective is that IoT is

actually both evolutionary and revolutionary – IoT will advance and reshape

InTroduCTIon

xxiii

the existing (brownfield) infrastructure while at the same time revolutionize

and create new (greenfield) markets, processes, and ecosystems. IoT will

disrupt some businesses, transform others, and create entirely new ones.

That is both evolutionary and revolutionary!

In this expanding world of IoT, security becomes critical since the

attack surface expands in intricate and profound ways when connecting

billions of new and previously unconnected devices. Connecting

devices that have not historically been part of the Internet world is a

bit like throwing the innocent to the wolves. Security is a vital part of

the IoT transformation to connectedness. The data4 from the National

Vulnerability Database (NVD) pertaining to “CVSS5 Severity Distribution

Over Time” shows that during 2016–2018, the number of vulnerabilities

with medium severity tripled (3359 vs. 8912) and those with high severity

doubled (2469 vs. 4317). During the same period, the total number

of vulnerabilities almost tripled. A search6 for IoT in the NVD from

2016 to 2018 resulted in 89 hits with several critical and high severity

vulnerabilities in IIoT gateways and in other IoT devices. Therefore it is

not enough to simply connect these devices; the imperative is that these

devices authenticate mutually and authorize services all while protecting

the confidentiality, integrity, and privacy of the data they collect and share

between elements of the system. It is critical to have end-to-end security

including each element along the data and control paths from sensor and

actuator, to edge and gateway, all the way to the Cloud, protecting both the

device and their associated data, interfaces, and software. Edge devices

range from the lowest-power MCU-based devices to Intel Atom, all the way

up to high-performance Intel Core/Xeon-based platforms.

4 https://nvd.nist.gov/general/visualizations/
vulnerability-visualizations/cvss-severity-distribution-over-time

5 Common Vulnerability Scoring System (CVSS) : https://nvd.nist.gov/
vuln-metrics/cvss

6 https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_
type=overview&query=IoT&search_type=last3years

InTroduCTIon

https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=IoT&search_type=last3years
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=IoT&search_type=last3years

xxiv

It is important to understand that the anatomy of IoT hacks is radically

different from typical consumer or enterprise computing. Consider the

example of a hypothetical shutdown of the electrical grid via a domestic,

Wi-Fi-connected oven and a ransomware attack that encrypts the firmware

in a connected oven rendering it unusable. In both cases the oven

becomes inoperable. The difference is in how the device owner needs

to respond to the outage. A systemic outage of the power grid marshals

resources to address the issue fairly quickly as the impact is more broadly

felt. This outage will garner attention from government and private sector

professionals because of its broad indiscriminate impact. Consumers

could overcome the outage by resorting to local power generation sources

to keep appliances, lights, and local networks running. Conversely, a

localized malware compromise of a single oven requires the home owner

themselves to be the first to respond and diagnose. If the malware is

virulent, and noticed by network operators, the home network may be

quarantined to prevent further spreading. The home network owner may

be required to prove to network operators that the home network is free

from malware before being reconnected. This is a significant burden

to most appliance owners – a burden many do not have the skills to

adequately carry. The IoT phenomenon brings an important paradigm

shift where the focus of our attention turns from tactile devices like a

smartphone to a network-of-networks and a system-of-systems where

the misbehavior of a few devices may have systemic consequences. And

at times those consequences may be broadly felt, while at other times fall

fully on an unsuspecting and unprepared few.

Nevertheless, the IoT paradigm shift doesn’t seem to fully persuade

security practitioners to carefully regard the security design of every

connected device. Some even ask: What is so unique about IoT that it

requires unique security knowledge or expertise? How is it different from

say PCs and servers? What devices qualify as purely or only IoT things?

Any CPU spanning from MCU class to Atom to Core to Xeon to Xeon-SP

InTroduCTIon

xxv

can be a “thing” that is connected to the Internet. So what’s unique? From

our perspective, the challenge in IoT can be framed as follows:

• The Device Lifecycle is unique since IoT devices often

have a much longer replacement cycle than PCs and

smartphones (sometimes up to 30 years). Few of us

are still using their 10-year-old PC, but many of us can

identify components in our offices, public buildings,

transportation systems, HVAC systems, water treatment

systems, and factories that may be much older. Long

replacement cycles imply embedded systems with

security vulnerabilities have embedded attack vectors.

• Security objectives and robustness rules vary greatly

across multiple verticals/domains. Here are a few

examples: AutoSAR and the numerous standards

impacting the automotive domain – Automotive

E-safety Vehicle Intrusion proTected Applications

(EVITA)/Secure Hardware Extension (SHE)/

AUTomotive Open System Architecture, Retail Payment

Card Industry (PCI), Medical Health Insurance

Portability and Accountability Act (HIPAA), naming

only a few.

• Multiple Operating Systems must be considered in IoT

systems to address diverse operational requirements.

Some examples include Linux-Yocto, Wind River Linux,

Android, Windows IoT/Enterprise/Client, VxWorks,

QNX, and many other proprietary implementations.

Interoperability and consistency in service operations,

system update capabilities, and driver support are only

a few of the obstacles encountered in supporting such a

diverse field of operating systems on a single hardware

platform.

InTroduCTIon

xxvi

• System on Chip (SoC) and CPU with embedded

security capabilities and features can vary significantly

across vendors’ MCU products and even within the

same vendors’ products including Intel Atom, Core,

Xeon, and Xeon-SP architectures, making design of

end-to-end services and security more challenging.

• There are multiple pre-OS boot loaders and platform

initialization software, for example, Firmware Support

Package (FSP) + Coreboot, Intel Slim Bootloader, UEFI,

Legacy BIOS, Deep Embedded, and other types of

firmware that are used across the various IoT segments,

all of which complicate IoT platform design and field

support. Inadequate field update mechanism would

result in attacks on initialization software implying that

attackers are able to load and configure malware.

• The stakeholders are many and scattered –

independent BIOS/boot loader vendors, board

vendors, independent maker community design and

integration shops, OEM/ODM, tiered SW/HW System

Integrators, and Middleware providers. Producing a

coalesced platform with consistent and interoperable

features and services in such a diverse ecosystem is

formidable. This implies security processes such as

incident response, forensics, compliance, and system

design must maintain healthy ecosystem interactions

to prevent security issues from falling into the “cracks.”

• Hypervisors are a critical part of the security equation

since they provide needed isolation and protection.

Some of these include Wind River Virtualization Profile,

InTroduCTIon

xxvii

Xen, VMWare, RTS, and ACRN. However, hypervisors

also add system complexity as they impact operating

systems, device drivers, and platform firmware.

• Managing these devices on heterogeneous networks

is a huge challenge that requires a cradle-to-grave

lifecycle approach; this includes provisioning,

commissioning, decommissioning, software update,

and other operational management tasks. Safety

and regulatory aspects of security are also inherently

present.

Security is not just a single step but instead a journey since what is

secured this minute may not be secure the next minute and also because

security has to be comprehended in all phases of the IoT device lifecycle.

This book aims to diverge from a generic discussion of technologies

presented by existing literature. It instead strives to inform readers of the

methodology and intuition associated with implementing secure systems

that were designed to be secure and presents focused insights gathered

from the authors’ years of experience in the security domain.

While this book represents a snapshot in time, the IoT ecosystem is

not stationary. The anatomy of threats is dynamic, and more applications

are being designed and deployed every day. The National Vulnerability

Database (NVD) mining reveals that the threats are consistently moving

down the stack, and they are now at the firmware and hardware level.

This makes constant improvement through security by design critical,

and security design cannot start with the application developer, but

must begin at the silicon design and manufacturing phase and continue

through platform development, software design, system installation, and

sustaining operations. This is where a partnership with Intel begins to pay

out enormous benefits that continue long into the system lifecycle.

InTroduCTIon

xxviii

Design of IoT devices cannot consider only their own security.

IoT devices that are designed for security must still interoperate with

other devices and systems that may not be built with the same security

measures. Interoperability requires commonly accepted standards and

regulations that help ensure behavior of the singleton as well as a system of

devices is consistent from vendor to vendor and from product to product.

More standards are being created and regulations are being enacted to

address many of the IoT security concerns, including protecting the user’s

data, identity, and other valuable assets.

Managing risk in an IoT environment is inherently a formidable task.

As Mike Crews, Director of Architecture in Intel Corporation’s Internet

of Things Group (IoTG) – a staunch believer in Security – opines, “Every

vertical domain – whether it is Retail, or Industrial, or Digital Surveillance

System – is just one ‘Jeep Hack’ incident7 away from encountering the

potential risks in not deploying and managing the security lifecycle of the

IoT Devices.” His opinion is vertical domain business owners have to be

well informed, feel responsible, and must judiciously invest in securing

their own assets as well as the assets of their customers.

The authors believe there are three principles that support security

by design which we have interwoven throughout this book. They are by

no means trivial to achieve in real systems, and instead require a lot of

commitment from all participants in the IoT ecosystem. The principles to

evaluate features that are secure by design include

• Simple to Implement by leveraging relevant standard

Application Programming Interface (API), frameworks,

and Software Development Kits (SDK) to develop the

IoT device

7 www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

InTroduCTIon

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

xxix

• Seamless to Deploy by leveraging relevant standard

and scalable provisioning tools and associated

collateral to deploy IoT devices in the field

• Easy to Manage by leveraging the standard

management technologies, tools, and associated

collateral to manage the IoT device lifecycle

After reading this book, we anticipate readers will be empowered

with the knowledge and tools needed to recognize security trade-offs

in IoT system design and software architecture and to identify the

relevant hardware building block ingredients that underpin secure IoT

deployments. We believe the solutions presented here provide reasonable

security trade-offs and follow the secure by design principles. The chapters

of this book aim to enlighten the reader’s understanding to address the

following:

• Chapter 1: How the IoT ecosystem differs from the PC

and data center ecosystem and how those differences

impact security.

• Chapter 2: What are IoT frameworks and how design

choices in different frameworks affect security,

interoperability, and usability trade-offs.

• Chapter 3: What are the relevant hardware security

features and building block technologies – as the

authors believe, hardware security is the last line of

defense.

• Chapter 4: How to approach building secure firmware,

system software, and applications that leverage

hardware security capabilities.

InTroduCTIon

xxx

• Chapter 5: Which security properties affect IoT

connectivity and what impact do they have on network

and system designs given the IoT paradigm shift toward

Network of Networks (NoN) and system of systems.

• Chapter 6: What other requirements affecting IoT

verticals are relevant to security and why security is not

a simple blanket but instead must be designed from the

beginning with a foundational layer common across all

verticals and then built up using vertical-specific stack

components and application services. We also discuss

key standards impacting some of the IoT verticals.

From this book, readers will gather an overview of the different security

building blocks available in Intel Architecture (IA)–based IoT platforms.

Readers will also be able to understand the threat pyramid, secure boot,

chain of trust, and the SW stack leading up to defense in depth. Readers

will also be able to comprehend the connectivity interfaces with security

implications and IoT verticals with their unique security requirements and

associated standards and regulations.

We invite you to join us on our journey demystifying IoT security!

InTroduCTIon

1© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_1

CHAPTER 1

Conceptualizing
the Secure Internet
of Things
In this chapter we relate several iconic attacks on cyber-physical IoT

systems to illustrate the clever ways attackers are able to achieve their

objectives. The physicality of cyber-physical systems and resource

limitations of constrained IoT devices present new challenges, both for

attackers and systems designers. This chapter explores security trade-off

consequences resulting from design decisions aimed at reducing device

cost. We advocate more enlightened perspectives that consider the value

of the device in terms of the broader network and system value. The

security front line often is a constrained device requiring world-class

security capabilities such as hardware underpinnings for cryptography,

integrity protection, storage, and attestation. Devices that don’t provide

the basic building blocks of security are the weak links in the system –

which systems designers aim to quarantine.

2

 The BadUSB Thumb Drive
In 2014 Karsten Nohl and Jacob Lell presented proof-of-concept

malicious software at Black Hat USA 20141 that demonstrated how USB

is fundamentally broken. The malware infects USB firmware rather than

simply placing malicious applications on the storage area. USB firmware

is trusted by most every USB controller to behave properly, as defined by

the USB Consortium specifications.2 However, as long as USB firmware

works within the framework defined by the standard, malware can

cause the USB controller to give the USB firmware unintended access to

the host computer. This is unfortunate as the lack of attention given to

security implies a potential for exploits that includes key-logging, privilege

escalation, data exfiltration, identity and access misdirection, session

hijacking, and denial-of-service.

Karsten and Jacob not only published their findings but also published

the malware on an open source repository known as GitHub.3 This

means virtually anyone can construct their own USB attack device and

even improve upon the original design. There have even been “how-to”

publications4 that step the reader through the process, making it easier

than ever for even those without prior knowledge of USB architecture and

implementation to successfully build an attack device.

Subsequently, the “maker community”5 has picked up on BadUSB

by creating a business around hardware platforms that have BadUSB

preintegrated called “MalDuino”6 – a play on words involving a popular

1 www.blackhat.com/us-14/speakers/Karsten-Nohl.html
2 www.usb.org/home
3 https://github.com/brandonlw/Psychson
4 https://null-byte.wonderhowto.com/how-to/make-your-own-bad-usb-0165419/
5 https://en.wikipedia.org/wiki/Maker_culture
6 www.indiegogo.com/projects/malduino-badusb-arduino-usb#/

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www.blackhat.com/us-14/speakers/Karsten-Nohl.html
http://www.usb.org/home
https://github.com/brandonlw/Psychson
https://null-byte.wonderhowto.com/how-to/make-your-own-bad-usb-0165419/
https://en.wikipedia.org/wiki/Maker_culture
http://www.indiegogo.com/projects/malduino-badusb-arduino-usb#/

3

“maker” platform named Arduino.7 Using MalDuino as a development

platform, it is possible for attackers to integrate other interesting malware

designed to further infiltrate the victim computer or network. Often an

attacker exploits a vulnerability in order to stage an attack on another

vulnerability. Attack lethality can be amplified by linking several exploits

that expose larger attack surfaces and allow the attacker to marshal more

resources for the next attack. An attack that began as a compromise of

something without network connectivity may morph into a compromise

of resources with network connectivity – that broadens the attacker’s reach

and lethality.

 Air-Gap Security
Some of the most secure networks rely on “air-gap” security as a way

to prevent the spread of malware through interconnected networks.

Air-gap is an isolation technique that ensures there are no wired or

wireless connections between a highly sensitive network and one that

is commonly accessible to everyone, such as the Internet. The security

principle behind air-gapping is to establish physical isolation such

that in order to move information back and forth between the secure

network and other networks, there needs to be a mechanical system in

place – euphemistically termed a “sneaker-net.” The idea is that only

trustworthy people would have physical access to the air-gap and would

follow appropriate security practices and procedures that ensure sensitive

networks do not fall victim to the many attack scenarios found on public

networks.

However, air-gaps rely on the use of electronic media to “sneaker-net”

information to and from air-gapped networks. This often involves the use

of USB connected peripherals. The assumption is that a device that isn’t

7 www.arduino.cc

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www.arduino.cc

4

capable of sending or receiving electromagnetic emanations is safe to cross

an air-gap. The fallacy of this assumption, of course, is they are not safe as

evidenced by BadUSB.

Air-gap security has a significant usability downside in that it is

costly to deploy, doesn’t scale well, and isn’t forward looking. The next

generation of industrial IoT looks to other network security mechanisms

such as VLANs that segment networks that isolate manufacturing

equipment behind routers, static/dynamic whitelisting, and zoning/

quarantining using network firewalls.

The lesson learned by air-gap security is that attention to usability

cannot be ignored. Security mechanisms must be designed with all

other system requirements taken into consideration to find the security

mechanisms that optimize trade-offs.

 Stuxnet
“Stuxnet”8 is the name given to a malware found to have successfully

infiltrated a top security nuclear research facility in Iran in June 2010.

The Natanz uranium enrichment facility employed air-gap security

mechanisms due to the safety critical aspect of the uranium enrichment

process. Furthermore, uranium enrichment processes rely on SCADA

(Supervisory Control And Data Acquisition) systems that are commonly

used for industrial control because of their ability to precisely control

physical machinery and remain resilient in the face of physical system

failures, but also incorporate popular information messaging protocols

such as MQTT (Message Queuing Telemetry Transport), AMQP (Advanced

Message Queuing Protocol), and DDS (Data Distribution Service).

8 www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/
presentations/2012/topic9-final/report.pdf

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/presentations/2012/topic9-final/report.pdf
http://www2.cs.arizona.edu/~collberg/Teaching/466-566/2012/Resources/presentations/2012/topic9-final/report.pdf

5

SCADA systems may use programmable logic controllers (PLCs) and

a variety of other sensors and actuators that can be customized to suit the

needs of the particular mechanical operations in a plant or factory. PLCs

often have USB interfaces for uploading the control logic executed by the

PLC, but also support serial bus interfaces and protocols such as Modbus

or 4-20mA current loops that transfer information reliably and with less

wiring and setup. Unfortunately, these techniques did not anticipate

security or are simply incapable of stopping attackers who have physical

access.

Stuxnet employed a variety of techniques, some seemingly designed

as alternative attack strategies in case some other strategy failed to pan

out. Among them included a strategy to propagate the Stuxnet malware

using Internet “Futbol”–themed web sites. Ultimately, Stuxnet found a

way to program USB thumb drives that were used to update PLCs used for

uranium enrichment centrifuges.

Stuxnet ultimately was able to cause physical damage to centrifuges

by working within the tolerance specifications of the control system, but

stealthily controlling the centrifuges to spin faster than usual for longer

than usual or to adjust the rate of acceleration and deceleration in ways

that exceeded the mechanical designer’s expected use case scenarios.

Although there still remains controversy over who created Stuxnet

and whether it was targeting Iranian nuclear enrichment or not, statistics

gathered by Symantec9 suggest there were unintended consequences in

the form of compromise to “friendly” or untargeted installations. While

the majority of infections, 58.85%, occurred in Iran, the remaining 41.15%

affected other countries; 8.31% occurred in India, 18.22% in Indonesia, and

1.56% in the United States. 13.05% occurred in other parts of the world.

Stuxnet is interesting because it demonstrates the possibility for

information systems to cross over to operational systems in such a way that

physical systems, infrastructure, the environment, and ultimately human

9 “W32.StuxNet”. Symantec. 17 September 2010. Retrieved 2 March 2011.

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www.symantec.com/security_response/writeup.jsp?docid=2010-071400-3123-99
https://en.wikipedia.org/wiki/Symantec

6

life can be harmed using only commonly available inexpensive electronics

and software.

It marks the fusion of Information Technology (IT) with Operational

Technology (OT). The acronym Internet of Things (IoT) takes on an

additional and apropos meaning of Informational and Operational

Technology (IOT).

 Designing Safe and Secure Cyber-Physical
Systems
The preceding attack scenarios suggest we need to revisit past assumptions

that electronic equipment is “secure” because of physical and air-gap

isolation is incorrect. The presence of electronic “things” may be sufficient

for some form of “networking” to be implemented involving the exchange of

electronic things and therefore the exchange of malware that can transform

to take advantage of different attack vectors. A more enlightened view of

IoT may be the idea that the interconnection of all networks – including the

exchange of physical things containing information – is the Internet.

Applying this view of the Internet, there are two additional layers to

classes of computers10 that historically fit into three categories: (1) cloud

servers largely composed of mainframes and super computers; (2) mini

computers such as workstations and department or team servers; (3)

microcomputers such as PCs, laptops, tablets, and smartphones.

IoT more commonly refers to a fourth layer consisting of smart cars,

drones, wearable computing, and pervasive computing. However, a fifth

layer consists of everything else that is electronic including USB thumb

drives, cameras, MEMS,11 smart construction materials, and “Smartdust.”12

10 https://en.wikipedia.org/wiki/Classes_of_computers
11 https://en.wikipedia.org/wiki/Microelectromechanical_systems
12 https://en.wikipedia.org/wiki/Smartdust

Chapter 1 ConCeptualizing the SeCure internet of thingS

https://en.wikipedia.org/wiki/Classes_of_computers
https://en.wikipedia.org/wiki/Microelectromechanical_systems
https://en.wikipedia.org/wiki/Smartdust

7

The layering of technology has many non-security related benefits, but

technology layers can present new security challenges. The interaction

between layers is often not well understood or clearly specified. This can

result in exploitable security weaknesses. Security analysis and design

scope should therefore be expanded to include these other layers. Another

aspect of security analysis is to determine the “attack surface”13 – the

environment or sum of all points where an unauthorized user can try to

extract information or inject control not anticipated by system designers.

A basic tenant of security design is to keep attack surface small to limit the

potential for unanticipated interactions.

The attack surface of IoT can be viewed as a pyramid (Figure 1-1)

where the number of possible interactions is a function of the number of

possible “things.” Although cloud servers process large workloads, there

are only a few cloud servers in terms of possible points of interaction.

Cloud servers expose commonly used web interfaces that do largely a

small set of things, but in large volumes.

The IoT pyramid also illustrates the importance of defense in depth

as nodes at opposite ends of the pyramid tend to be separated by routers,

gateways, and other networking equipment that can be repurposed as

security enforcement. Network segmentation reduces the effective attack

surface by artificially isolating IoT nodes.

Intel predicts there will be 200 billion “objects” by the year 2020.14

An object is anything that is “smart” – that is anything that has a

microcontroller of some kind. If we consider relative population of

objects across a five-layer IoT pyramid, the number of objects is roughly

exponentially larger in the layer below and the layer above is exponentially

smaller. A simple calculation showing exponential distribution across five

layers reveals approximately 1.4B objects at the top layer, 1.9B objects at

13 https://en.wikipedia.org/wiki/Attack_surface
14 www.intel.com/content/www/us/en/internet-of-things/infographics/
guide-to-iot.html

Chapter 1 ConCeptualizing the SeCure internet of thingS

https://en.wikipedia.org/wiki/Attack_surface
http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

8

the second layer, 3.6B objects at the third layer, 13.4B objects at the fourth

layer, and an amazing 179B objects at the fifth layer.

Amazon had around 2M cloud servers and 1M customers in 2014.15

Alibaba had 765,000 customers in June 2017.16 Microsoft, IBM, Google, and

others also have cloud service offerings that contribute to an estimate in

terms of number of cloud server objects that could very well be in the 1B

range by 2020.

15 www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-
mind-bending-size-of-amazon-s-cloud.html

16 https://intl.aliyun.com/about

Less
Constrained

Cloud
Servers

Enterprise
Servers &

Workstations

Laptops,
Phones, Tablets,

Networking Equipment

Automation, Wearables,
Cars, Transportation,

Drones, Medical, Energy

MEMS, Construction
materials,
Smart dust

More
Constrained

Internet-of-Things Pyramid

Few

Number
of

Devices

Many

IoT
Frame-
works

Roots-
of-

trust

Future? Future?Future?

IT

IP

OT

Figure 1-1. Internet of Things pyramid

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
http://www.bloomberg.com/news/2014-11-14/5-numbers-that-illustrate-the-mind-bending-size-of-amazon-s-cloud.html
https://intl.aliyun.com/about

9

In 2015, it was estimated there were 2.6B smartphones17 and predicted

to be 6.1B by 2020. There were about 2B PCs and laptops in 2014.18 Our

simple calculation suggests there would be 3.6B objects at layer 3 – off by a

factor of 1.5 or 2, but still in the ballpark.

Even with conservative estimates, these account for only 10B of the

200B forecasted. If layer 4 accounts for 15B objects, that leaves 175B

objects unaccounted for at layers 1–4. These estimates suggest, by far, that

layer 5 represents the largest attack surface. That suggests there will be

many more “Stuxnet”-like attack scenarios going forward. It also suggests

mitigation of these attacks will be countered by additional security

capabilities being applied to layer 4 and layer 5 objects.

Security capabilities often are required across a spectrum of

technologies ranging from hardware to system software to application

layers. IoT security also embraces network security and distributed

computing security techniques. The potential exists to substantially

increase the overall cost and complexity of security functionality for IoT

systems. As security professionals anticipate the role security should play

given an Internet of 200B connected things, security interoperability and

standards are increasingly needed at layers 4 and 5 of the IoT pyramid.

This includes the need for hardware-roots-of-trust (specially hardened

components in hardware that resist many common vulnerabilities),

common networking layers, and common IoT framework and object

models. Consolidation of technology choices has a desirable consequence

of allowing more security functionality to fit into constrained computing

environments.

17 https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-
2020-overtaking-basic-fixed-phone-subscriptions/

18 www.reference.com/technology/many-computers-world-e2e980daa5e128d0

Chapter 1 ConCeptualizing the SeCure internet of thingS

https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/
https://techcrunch.com/2015/06/02/6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/
http://www.reference.com/technology/many-computers-world-e2e980daa5e128d0

10

 Constrained Computing and Moore’s Law
In 1965 Gordon Moore made a prediction that computing would dramatically

increase in power, and decrease in relative cost, at an exponential pace.19 The

computing industry perspective historically has been one that continually

looks for “power-hungry” applications that can soak up the predicted CPU

cycles. Ironically, that pursuit has led the computing industry to push the

IoT pyramid higher and wider, but only recently has realized a frontier in

the form of many (billions) chips that are power constrained. In constrained

computing environment, the application that runs on a chip is quite small

and functionally is relatively simple. The path to realizing Moore’s Law is

through the number of chips – increasing in number exponentially.

Rather than consolidating more workloads on increasingly more

powerful computers, constrained computing is about distributing

workloads across hundreds, thousands, and even millions of nodes.

Distributed applications are described more in terms of conceptual notions

of computing such as “pervasive,” “mobile,” “intelligent,” “autonomous,”

“perceptual,” “virtual,” “emotional,” and “augmented.” These adjectives

describe properties of computation that are realized in large part due to

distributed computing that bridges the five layers of the IoT pyramid.

Constrained computing dynamics optimizes the computing

environment to fit specialized functions. The function is unique to sensor/

actuator capability. Hence, enhancing a distributed application may be

realized by adding constrained nodes as well as by adding more powerful

nodes or by moving compute-intensive operations to edge servers.

These dynamics aim to provide more flexibility at the lower layers

of the technology stack by using, for example, virtualized PLCs where

manufacturing equipment can be consolidated into more powerful

gateways running multiple, redundant servers that are less expensive to

19 www.intel.com/content/www/us/en/silicon-innovations/moores-law-
technology.html

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html
http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html

11

operate than deployments of multiple less powerful devices. Non-mission

critical sensing over wireless technologies is an important trend where

the cost driver is low-power sensing solutions (sometimes retrofitted

with brownfield sensors and actuators) designed to operate without

replacement over many years. Deployment models such as this don’t

anticipate having extra watts for security processing.

Security however follows a counterintuitive cost model (Figure 1- 2)

where the motivation is to make nodes more powerful – so they can

perform security processing that applies security consistently across all

nodes. Workload consolidation, data consolidation, and redundancy

result in the deployment of additional nodes or more powerful nodes – all

requiring consistently strong security capabilities and hardening.

In the Stuxnet scenario, attackers were able to connect USB thumb

drives to air-gapped process control networks because the USB thumb

drive didn’t have strong cryptography and authentication protections built

into the IO control subsystem. Such sophisticated security operations

are often determined to be “too costly” to justify bills-of-material cost

constraints typically expected in “mass market” products.

Security functionality overhead for layer 1–3 systems typically is

expected to be 10–15% of the total system cost. These environments

are often very capable of supporting a common set of security features,

algorithms, and operations such that the goal of having a network of

equivalently protected computers is achieved. However, when moving

compute into constrained environments, even with the dynamics of Moore’s

Law, computing power remains constrained. As such, the percentage

of overall functionality that is security related vs. non- security related

increases. Our estimates suggest that as much as 60% of a constrained

environment computer could be focused on performing security-related

computation, leaving 40% for application-specific computing. In other

words, the “tinification” (the process of removing unused functionality

not needed by purpose-built embedded systems) of an application to fit

into constrained environments results in the need to preserve more of

Chapter 1 ConCeptualizing the SeCure internet of thingS

12

the security functionality than the non-security functionality. This leads

business decision makers to question the viability of profits in constrained

environments. Often these trade-off decisions lead to justification for

weaker security, lack of firmware update capability, and no support for

hardware root-of-trust architectures. These economic dynamics have

led leading security thinkers to suggest the only resolution is through

regulation.20 However, regulation aimed at even the most insignificant of IoT

platforms would affect over 170B things – 85% of everything! If regulation

happens to have inefficiencies, those inefficiencies would be multiplied

170B times – a cost that could outweigh the cost of smartly applied security.

20 www.schneier.com/blog/archives/2017/02/security_and_th.html

Resource
Utilization

Less
Constrained

Device

More
Constrained

Device

85%

Security Functionality
Other Functionality

15%
40%

60%

“tini-fication”
scales differently

for security
functionality

Figure 1-2. Nonlinear “tinification” of security vs. other functionality

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://www.schneier.com/blog/archives/2017/02/security_and_th.html

13

 Trusted IoT Networks and the Network Edge
The Internet of Things is a new term to describe an old concept –

connected embedded computing. For as long as there has been electronic

control, there has been connected embedded computing. Every dimension

of process control and automation is characterized by a flavor of

connected embedded control technology.21 In most cases, process control

networks were connected using wires. This is no different a phenomenon

for IP networks that first began as Ethernet22 cable. More recently wireless

communications dominate applications where mobility or deployment

considerations make using wires infeasible. Nevertheless, the array of

wireless networking standards23 has evolved to take the place of wired

equivalents. However, convergence toward a single network protocol

remains a promise of IoT which anticipates that IPv6 (Internet Protocol)24

will become the foundation of IoT networks – and by extension the entire

Internet. Nevertheless, there are non-IP protocols that sometimes are

included under the umbrella of the IoT buzz word such as Bluetooth25

and Zigbee.26 Although these are not technically IP, there are strategies to

encapsulate IP over non-IP networks using 6LoWPAN27 to support larger

payloads, compression, and framing that otherwise would not be feasible.

IPv6 encapsulation is currently supported with Bluetooth Low Energy

(BLE) 5, IEEE 802.15.4, and ZigBee.

The interesting security challenge for encapsulated or bridged

networks (Figure 1-3) is the expectation of end-to-end security is often

21 https://en.wikipedia.org/wiki/List_of_automation_protocols
22 www.safaribooksonline.com/library/view/ethernet-the-definitive/
1565926609/ch01.html

23 https://en.wikipedia.org/wiki/Comparison_of_wireless_data_standards
24 www.ietf.org/rfc/rfc2460.txt
25 www.bluetooth.com/specifications/bluetooth-core-specification
26 www.zigbee.org/zigbee-for-developers/network-specifications/
27 https://tools.ietf.org/html/rfc4944

Chapter 1 ConCeptualizing the SeCure internet of thingS

https://en.wikipedia.org/wiki/List_of_automation_protocols
http://www.safaribooksonline.com/library/view/ethernet-the-definitive/1565926609/ch01.html
http://www.safaribooksonline.com/library/view/ethernet-the-definitive/1565926609/ch01.html
https://en.wikipedia.org/wiki/Comparison_of_wireless_data_standards
http://www.ietf.org/rfc/rfc2460.txt
http://www.bluetooth.com/specifications/bluetooth-core-specification
http://www.zigbee.org/zigbee-for-developers/network-specifications/
https://tools.ietf.org/html/rfc4944

14

not possible since security applied within one suite of IoT network

technology must be mapped, in the clear, to an Internet-based protocol

suite. This creates the need for a security appliance, such as a firewall, that

maps not only distributed application data but also security semantics

and operations. We show a simple security appliance example here.

Subsequent chapters provide additional insights into network partitioning,

monitoring, and responses facilitated by security appliances.

IoT networks are in a constant state of flux forming and re-forming

coalitions of devices needed to implement a variety of distributed

applications. We use the term “onboarding” to refer to this dynamic.

Devices not yet recognized as members of a coalition are considered

Trusted
Devices

Trust
Negotiation

Device
with root-
of-trust

loT
Device

loT
Device

loT
Device

loT
Device

loT
Device

loT
Device

Untrusted Devices

X Firewall

Figure 1-3. Negotiating trust with IoT devices

Chapter 1 ConCeptualizing the SeCure internet of thingS

15

“untrusted,” while devices already part of the coalition are considered

“trusted.” Membership in the coalition involves trust negotiation where

the device presents evidence of trustworthiness; for example, the device

may be equipped with a “root-of-trust” hardened environment containing

a manufacturer embedded attestation key. The root-of-trust is designed to

meet a set of security features and assurances as a basis for trust. Secure

key storage and secure cryptographic operations are important capabilities

of a root-of-trust that can be used to implement attestation.

Attestation protocols (Figure 1-4) allow the root-of-trust to prove to a

verifier that it is capable of protecting secrets, identities, and data. When

an untrusted device is onboarded into a coalition, it first attests to its

level of trustworthiness. This allows the attestation verifier to determine

if the desired coalition is appropriate or if some other coalition is more

appropriate. For example, a coalition of medical devices might expect

all coalition member devices to have been approved by a quality control

agency and receive a statement of approval that could be included with the

attestation exchange at onboarding. If omitted, the verifier might conclude

the device hasn’t been vetted by the agency and recommend it join a

coalition of personal health fitness devices (that don’t require agency

vetting).

The attestation verifier is a process that operates at a border

that separates trusted and untrusted. In practice, these borders are

nondescript. They may not align with geographic, topologic, social, or

political boundaries. Likewise, such boundary criteria could also be

asserted as part of attestation (if combined with additional contextual

information), making enforcement of such bounding criteria eminently

possible.

Attestation is a form of operational integrity checking that can be

pervasive. IoT nodes should respond to changes that might invalidate

recent checks and respond proactively by updating integrity profiles and

rechecking. If an attack is successful, the attestation check can detect it and

respond appropriately.

Chapter 1 ConCeptualizing the SeCure internet of thingS

16

IoT can therefore be thought of as a connectivity graph where certain

nodes are simultaneously connected to multiple other coalitions of

connected nodes. The connectivity graph reveals relative importance

of certain nodes but also relative security and safety risk as more

highly connected nodes represent a greater potential for doing harm if

compromised or malfunctioning.

Attestation therefore can be thought of as a fundamental capability for

anything that is connected. It provides a first-order filter that categorizes

IoT devices according to the risk they bring to the established coalition. If

we consider all ventures as being composed of a collection of IoT devices,

whether they be Smartdust or whether they are cloud servers, the value of

the venture is collectively held by the coalition. The introduction of a new

IoT device that may have the potential to nullify that value creates the basis

for risk-based management approach that relies primarily on attestation and

root-of-trust as the primary tools for value preservation and risk management.

IoT
Device

(trusted)
Trust

Negotiation
(protocol)

May I join your network?

Can you be trusted?

Yes, here is proof

Use these settings in my network

IoT
Device
(edge)

Figure 1-4. Attestation protocol

Chapter 1 ConCeptualizing the SeCure internet of thingS

17

An IoT root-of-trust (Figure 1-5) can be constructed in a variety of ways

and can vary dramatically in terms of implementation and deployment

costs. However, all root-of-trust designs have several minimum capabilities.

First the IoT device is partitioned into trusted and traditional functionality.

Traditional functionality is everything that isn’t essential to satisfying coalition

onboarding requirements. An IoT device that can’t satisfy onboarding is

simply an embedded or stand-alone device. It isn’t a “connected” device – at

least not a trusted connected device. Trusted functionality is everything else

that is needed to satisfy coalition onboarding and is trusted to work correctly.

IoT Root-of-trust

Device

Other functionality

Trusted Execution Environment
(TEE)

Contextual awareness
functionality

Secure communication
functionality

Attestation and Trust
functionality

Security functionality

Secure storage

Encryption
keys

Attestation
key

Authentication
keys

Figure 1-5. Root-of-trust architecture

Chapter 1 ConCeptualizing the SeCure internet of thingS

18

Trusted computing is defined by TechTarget28 as “Trusted computing is a

broad term that refers to technologies and proposals for resolving computer

security problems through hardware enhancements and associated software

modifications.” Wikipedia29 defines a trusted system as “… a system that is

relied upon to a specified extent to enforce a specified security policy. This is

equivalent to saying that a trusted system is one whose failure would break a

security policy (if a policy exists that the trusted system is trusted to enforce).”

The most essential elements of a trusted system are its trusted

computing base (TCB). The TCB of a computer system is the set of all

hardware, firmware, and/or software components that are critical to its

security, in the sense that bugs or vulnerabilities occurring inside the TCB

might jeopardize the security properties of the entire system.

Some devices have a Trusted Execution Environment (TEE) for

executing trusted application code. The TCB and TEE cooperate to

ensure embedded security functionality can be accessed from within the

TEE without a significant security risk. Bugs and vulnerability in these

components jeopardize the security properties of the device. The TEE

may be effective at detecting, preventing, or countering security events

occurring in other parts of the system. It is therefore extremely important

that every IoT device have a trustworthy TCB!

The authors suggest every TCB for IoT should contain the following:

 (A) Attestation key: An asymmetric key supplied by

the device manufacturer that establishes device

origin authenticity. The Enhanced Privacy Identifier

(EPID)30 can be used to attest device origin without

28 http://searchsecurity.techtarget.com/definition/trusted-computing
29 https://en.wikipedia.org/wiki/Trusted_system
30 Proceedings: WPES ‘07 Proceedings of the 2007 ACM workshop on Privacy in

electronic society, pp 21-30, Alexandria, Virginia, USA – October 29, 2007, ACM
New York, NY, USA ©2007, ISBN: 978-1-59593-883-1 doi>
https://doi.org/10.1145/1314333.1314337

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://searchsecurity.techtarget.com/definition/trusted-computing
https://en.wikipedia.org/wiki/Trusted_system
http://www.acm.org/sigs/sigsac/ccs
http://www.acm.org/publications
https://doi.org/10.1145/1314333.1314337

19

introducing a trackable identifier that violates

privacy.

 (B) Attestation functionality: Trusted code that

implements attestation and attestation verification

logic.

 (C) Encryption keys: Symmetric and asymmetric keys

used to protect device-device and device-human

interactions that may occur in the context of a

coalition.

 (D) Secure communication: Trusted code that

implements cryptographic algorithms used

to protect the confidentiality and integrity of

information exchanged between devices and TCB

peers. It contains support for key management

protocols such as Kerberos,31 PKI,32 and Fluffy.33

 (E) Authentication keys: Symmetric and asymmetric

keys used to authenticate the originators of

messages exchanged device-device and device-

human, also in the context of a coalition.

 (F) Authentication functionality: Trusted code that

implements identity and authentication primitives

including support for distributed authentication

protocols such as OAuth234 and OpenID Connect.35

31 https://web.mit.edu/kerberos/
32 www.ietf.org/rfc/rfc5280.txt
33 https://datatracker.ietf.org/doc/draft-hardjono-ace-fluffy/
34 https://tools.ietf.org/html/rfc6749
35 http://openid.net/connect/

Chapter 1 ConCeptualizing the SeCure internet of thingS

https://web.mit.edu/kerberos/
http://www.ietf.org/rfc/rfc5280.txt
https://datatracker.ietf.org/doc/draft-hardjono-ace-fluffy/
https://tools.ietf.org/html/rfc6749
http://openid.net/connect/

20

 (G) Secure storage: The ability to store keys, integrity

measurements (cryptographic hash), whitelists,

settings, and contextual information that if modified

or deleted could result in failure of the TCB to

correctly apply a security objective.

 (H) Contextual awareness functionality: Trusted code

that can encrypt and authenticate stored data

securely even if the attacker has physical access to

the storage resource. The ability to sense and collect

security relevant context such as time, location,

biometrics, and other context.

 (I) Trusted execution environment functionality:

Trusted code that correctly implements the TEE

environment such that the TEE firmware can be

updated securely and computing interfaces into the

TEE are resistant to attack.

These security “building blocks” provide the core set of hardened

functionalities that enables an IoT device to establish itself as a trustworthy

node suitable for inclusion in one or more coalition groups of IoT devices.

Once a member of a coalition group, a distributed application can be

deployed securely.

 Conclusion
The Internet of Things can be described as a dynamic set of distributed

computing coalition groups that come into existence seemingly on their

own, without a presumption of central control or orchestration. Coalition

groups may just as easily disappear, but IoT networks persist as a set of

protocols, data structures, and capabilities that enable these dynamics.

A secure IoT network is essential to a sustainable and automated distributed

Chapter 1 ConCeptualizing the SeCure internet of thingS

21

computing on a massive scale where the tiniest of computing nodes needs

to support a set of security capabilities that is common to all other nodes

in the Internet including the largest cloud servers. Coalitions of devices

will work together to manage risk and to preserve the value inherent in

the distributed computing venture by vetting coalition memberships.

Failure to enforce membership integrity places at risk the value of the

coalition. These economic dynamics, once properly understood, motivate

proper investment in security capabilities, even among the simplest of

IoT devices. This leads to a rethinking for conventional practices that

assume security functionality should be less than 15–10% of total system

cost. Rather, we think an enlightened approach considers the value of

the network is greater than the sum of its constrained endpoints. The

cost of security is weighed against the larger value where the percentage

investment in security technology, standards, and business practices is

aligned. Such a perspective will make it more feasible for most relevant IoT

security technology to exist at the right layers of the IoT pyramid.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 1 ConCeptualizing the SeCure internet of thingS

http://creativecommons.org/licenses/by/4.0/

23© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_2

CHAPTER 2

IoT Frameworks
and Complexity

The complexity of things – the things within things – just seems
to be endless. I mean nothing is easy, nothing is simple.

—Alice Munro1

 Introduction
In Chapter 1 we explored device cost dynamics when security is built-in

from the beginning. Either the cost of the device increases or the ratio

of device resources attributed to non-security-related functionality

decreases. However, ignoring security results in the IoT device

becoming the “weak link.” This chapter surveys IoT frameworks. We

categorized them according to a consumer, industrial, or manageability

focus though many seek broader relevance. IoT frameworks hide a

lot of underlying complexity as the industry wrestles with embracing

newer Internet protocols while maintaining backward compatibility. A

plethora of standards setting groups have come to the rescue offering

1 www.brainyquote.com/quotes/alice_munro_176434

http://www.brainyquote.com/quotes/alice_munro_176434

24

insightful perspectives on framework design to accommodate broader

interoperability goals. But this may be too much of a good thing as

framework interoperability has become yet another interoperability

challenge. Framework designs often emphasize differing objectives,

interoperability, adaptability, performance, and manageability. We offer

an idealized framework that focuses on security to add contrast to what

the industry already has considered. This chapter is lengthy relative

to the other chapters in part because there are many IoT framework

standards available and each takes a different perspective. Each has

merit but ultimately the IoT ecosystem is likely to reduce the number of

viable frameworks. We nevertheless encourage continued IoT framework

evolution that removes unnecessary complexity and places security by

design at the center.

 Historical Background to IoT
Before the “Internet of Things” became a commonly used term, embedded

control networks used for real-time distributed control were known as

process automation protocols, also referred to as fieldbuses. Fieldbuses

are commonly used to implement SCADA (Supervisory Control and Data

Acquisition) networks, building automation, industrial process control,

and manufacturing control networks. These systems tend to be extremely

complex and difficult to manage, especially over time as the number

of system endpoints grows and the usages demanded of these systems

increase. SCADA systems often involve connecting programmable logic

controllers (PLCs), proportional-integral-derivative (PID) controllers,

sensors, actuators, and supervisory management consoles, all connected

through fieldbus protocols. But fieldbus technology isn’t limited to a single

protocol or even a small number of protocols. There have been more than

a hundred fieldbus protocols entering industrial automation markets

Chapter 2 Iot Frameworks and ComplexIty

25

in the last 20 years. The IEC-61158-12 and related standards describing

fieldbus technologies contain over 18 families of fieldbus protocols. Some

of these include CAN bus, BACnet, EtherCAT, Modbus, MTConnect,

LonTalk, and ProfiNet. Wikipedia also has a fairly complete listing.3 The

Complexity can skyrocket when multiple fieldbus protocols are used

to create an interconnected system. Then, with the birth of IoT, these

fieldbus protocols are required to interconnect with Internet protocols,

in some cases by replacing a fieldbus layer with an IP layer, which adds

further complexity. When IoT systems are built to integrate with existing

systems, based on fieldbus protocols, IoT systems are sometimes referred

to as brownfield IoT because they represent use cases, ecosystems, and

solutions that existed before the introduction of Internet technologies.

Looking forward, industrial process automation and control, building

automation, electrical grid automation, and automobile automation

might continue using brownfield IoT nomenclature even though Internet

technology integration is taking place.

Nevertheless, existing brownfield systems are highly proprietary and

vertically integrated solutions, while Internet protocols historically have

been more open and layered and support a richer ecosystem of vendors

and value-added suppliers. Reducing fragmentation of brownfield

networks through IT/OT convergence is a key motivation for IoT. Possibly

it is this openness and richness of the Internet that drives the OT industry

toward an “Internet of Things.” Additionally, with respect to security, IT

priorities have focused on CIA (confidentiality, integrity, and availability),

in that order, while OT has prioritized availability and integrity above

confidentiality. The tension between CIA trade-offs is an important

consideration as the IT and OT come closer together.

2 IEC 61158-1:2019 “Industrial communication networks - Fieldbus specifications -
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series”,
International Standard, Ed. 2.0, 2019-04-10. Available at: https://webstore.iec.
ch/publication/59890

3 https://en.wikipedia.org/wiki/List_of_automation_protocols

Chapter 2 Iot Frameworks and ComplexIty

https://webstore.iec.ch/publication/59890
https://webstore.iec.ch/publication/59890
https://en.wikipedia.org/wiki/List_of_automation_protocols

26

Instead of using existing system as the starting point, the Internet of

Things can bring a fresh perspective. Extending Internet connectivity

beyond desktops, laptops, smartphones, data centers, cloud computing,

and enterprise computing to agricultural, industrial, energy, health,

transportation, public sector, and critical infrastructure seems a

reasonable context for understanding the momentum behind the Internet

of Things (IoT) evolution. The use of IoT technology to implement a

completely new IoT system spawns unique applications for operational

automation; building such a system with wholly new technology and

protocols is sometimes referred to as greenfield IoT technology. Some

examples may include drone control, self-driving cars, smart cities, supply

chain automation, and machine learning. Greenfield IoT is riding the

Internet wave of less-proprietary, lower-cost, and increasingly ubiquitous

network technology that revolutionized PC, data center, and mobile

device networks in the 1990s and 2000s. IoT may also benefit from the

wave of microprocessor, memory, power, and storage innovations in

mobile computing that results in lower-cost but highly capable computing

platforms.

Whether the system is a brownfield system tying existing industrial

or manufacturing automation control system with Internet technology

or a greenfield system using completely new protocols and devices, both

instances of IoT systems bring a level of intricacy that necessitates some

abstractions to improve application development efficiency and to make

management of these systems feasible.

But it isn’t just the protocols that generate complexity in IoT systems.

Industrial IoT systems may have multiple layers of networks connected

through gateways. IoT systems may best be categorized as a system of

systems. As security practitioners contemplating the prospect of securing a

complex system of systems, we must take every opportunity to ask whether

Chapter 2 Iot Frameworks and ComplexIty

27

the complexity is justified because we, like other security practitioners,

believe complexity is the enemy of security.4

 IoT Ecosystem
The IoT ecosystem is extremely complicated, fragmented, and evolving. It

evolves at different rates depending on many factors, one of which is the

replacement cycle for a given solution or industry. The replacement cycle

for business PCs is 3–5 years, smartphone replacement is 1–3 years. Contrast

this with building automation where an HVAC system replacement cycle is

15–20 years or nuclear power generation facilities that must replace failing

parts with identical replacement parts – leaving no room for the introduction

of innovative or more secure technologies. These refresh rates either speed

adoption of new technologies or restrict, even inhibit, the adoption of

technologies that might improve operations, reduce costs, or even protect lives.

Due to the many differences in various sectors of the IoT ecosystem

(e.g., health, public, transportation, industrial, energy), the sectors appear

to embrace Internet technology differently – in silos (refer to Figure 2-1).

However, the market forces keeping the silos defined are due in part to the

technical requirements unique to the usages and applications that drive

internal market cohesion. Brownfield solutions may have benefitted from

proprietary or vertically integrated solutions, aided by these cohesive

market forces, long replacement cycles, and costly specialized hardware

components. But that is unlikely to persist as IoT innovations continue

to find technology adjacencies that spill over silo barriers causing

technological disruptive innovation. Generally, this is a good thing.

However, these disruptive forces breaking down the proprietary silos

also brings new challenges that impacts security in the form of increased

complexity, new business models and unanticipated interactions.

4 Tom Gillis, Contributor, Network World, “Complexity is the enemy of security,”
Aug 8, 2016. www.networkworld.com/article/3103474/security/complexity-
is-the-enemy-of-security.html

Chapter 2 Iot Frameworks and ComplexIty

http://www.networkworld.com/article/3103474/security/complexity-is-the-enemy-of-security.html
http://www.networkworld.com/article/3103474/security/complexity-is-the-enemy-of-security.html

28

Just as the changes in Internet protocols brought more complexity to PC

networks in the 1990’s, Internet of Things technologies promise more

complexity (at least initially) for industrial, control and automation systems.

IoT Analytics - Quantifying the connected world

Internet of Things - Market segmentation by industry/application

Global
level

Customer type

Main category

Industries/
applications

IoT world market

Consumer-facing
(loT2C)

Business-facing
(loT2B)

Home Lifestyle Health Mobility

1

Retail Health Energy Mobility Cities Manufact. OtherPublic&
Services

Home
automation

Wearable
computing
Entertain-
ment & Music
Family
Leisure

Fitness Connected
cars

Stores
Shops Measurement

Diagnosis
Surgery
Patient care

Transmission&
Distribution

Aerospace&
Airports
MarineFossil
Rail&Stations
Automotive
Traffic

Infrastructure
Water/
Wastewater
HVAC
Lighting
Security

Mining Schools Environment
Military
Agriculture
Hospitality

Universities
Government
Banking
Insurance

Commercial
services

Admin-
istration

Oil&Gas

Supply Chain

Contin.
Production

Discrete
production

Life safety

Nuclear
Alternative

Monitoring

ConvenienceeBikes
Monitoring
Measurement
Diagnosis

Pets
Toys
Drones

Home
improvement
Energy
efficiency

We consider the following application as adjacent to the Internet of Things but not part of it: Car sharing, ePayment

For more information, go to www.iot-analytics.com IoT-analytics.com 2014. All rights reserved.

2

1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 2g 2h

Figure 2-1. IoT market segmentation by industry/application5

The IoT ecosystem (referring to Figure 2-2) can be understood in terms

of concentric rings of technology used to connect distributed physical

and logical components. The technology within a particular ecosystem is

specialized for that ecosystem, its business models, as well as the producers

and consumers in that market. Ecosystem-specific components are

specialized for different aspects of an ecosystem’s distributed applications,

resulting in unique devices that coordinate sensing, actuation, control,

data collection, data aggregation, data analysis, risk management, and

operations. IoT system components may be distributed because of

physicality of sensing and actuating, or due to efficiency requirements that

result in specialized computation. A potential unifying factor in all this is an

interoperable, low-cost networking capability that makes distributed IoT

possible. But satisfying the myriad needs canvasing multiple IoT segments

using a single IoT technology seems improbable if not impossible.

5 IoT Analytics, Knud Lasse Lueth, “IoT market segments – Biggest opportunities
in industrial manufacturing,” Oct 31, 2014. https://iot-analytics.com/
iot-market-segments-analysis/

Chapter 2 Iot Frameworks and ComplexIty

https://iot-analytics.com/iot-market-segments-analysis/
https://iot-analytics.com/iot-market-segments-analysis/

29

 Connectivity Technology

Network and connectivity are nevertheless of paramount importance. IoT

systems must enable connections over short-, medium-, and long-range

distances. IoT solutions often must satisfy a wide range of transmission

quality requirements that may also need optimizations for low latency,

isochronous, asynchronous, store-and-forward, mobility, or streaming.

IoT systems must consider environmental disturbances such as radio

interference or emissions from other electronic equipment, low-power

conditions, congestion, and resource starvation scenarios. Guaranteed

service levels also add to the mix of requirements.

Additionally, trade-off decisions impact safety, reliability, resiliency,

security, and availability. A variety of network technologies have emerged

to address the multifaceted needs of IoT such as Zigbee, Industrial

Ethernet, LoRa, LPWAN, Modbus, and TSN – to name a few. Some are

highly specialized to a specific application context such as the Control Area

Networks (CAN), which uniquely addresses the safety critical automated

braking systems found in many automobiles. Fieldbus protocols, such as

Modbus, use a synchronized communications bus to ensure each PLC

(programmable logic controller) receives the messages directed at it.

While others are more general purpose such as Wi-Fi, Bluetooth, 5G,

and Ethernet that accommodates information networks, streaming media,

as well as control network applications. Industrial Ethernet operating

at very high data rates can accommodate industrial real-time control

requirements by ensuring network utilization remains below about 10%.

Chapter 5 will dive deeper into details of different connectivity interfaces

and considerations facing consumer and industrial IoT.

 Messaging Technology

IoT frameworks are exposed to IoT applications using a data model

abstraction. The framework data model describes a view of the network

where nodes appear as flat or nested data structures, and updates to

Chapter 2 Iot Frameworks and ComplexIty

30

data values may result in actuation of various controllable elements. The

data model abstraction allows the applications to focus on capturing

semantic richness and less on moving data from node to node. Data are

represented as structured markup that easily maps to messaging transport

technologies.

Messaging technology determines how messages flow between

network nodes. It also facilitates the building of IoT systems that collect

data from various nodes using disparate protocols at the expense of

creating additional complexity in the messaging layer. Simple messaging

is request-response based such as REST (Representational State Transfer).

HTTP (Hypertext Transfer Protocol) and CoAP (Constrained Application

Protocol) follow the REST methodology. Publish-subscribe messaging

allows multiple nodes to register for notifications when a change is

detected in a variable on a peer node. MQTT (Message Queuing Telemetry

Transport) is a popular example of a publish-subscribe messaging system.

Broadcast and multicast can make publish-subscribe more efficient, which

may be used in some IP-based networks. Different protocols are useful

in different environments, and the whole communication stack even

down to the availability of broadcast at the network physical layer must be

considered when developing services in an IoT system. This complexity

is difficult for the system designer but becomes overwhelming to the IoT

developer. This complexity becomes most evident when designing an IoT

platform, especially when designing an IoT platform intended to service

multiple ecosystems. Platforms manage this complexity through the use of

IoT frameworks.

 Platform Technology

IoT platforms host applications, resources, and data useful to an IoT

distributed application. Platforms are specialized to the type of work

each performs. Constrained IoT platforms may optimize for connectivity,

latency, and small footprint, while less constrained platforms at the OT

Chapter 2 Iot Frameworks and ComplexIty

31

network edge may optimize for device offload and bridging across control

domains. Cloud platforms optimize for compute, scalability, capacity, and

analytics. IoT frameworks are used in platforms because they facilitate

interoperability and connectivity by combining appropriate networking,

protocol, and platform ingredients in ways that allow application

portability regardless of the node’s native specialization characteristics.

Health

WiFi

Zigbee
Mqtt

FS20

Fog

Edge

BLE
Bluetooth

Energy

Industry

Transport

LoRa

REST 5G

LTE

Public Sphere

Data Analysis

Platforms

Protocols

Networks

Devices

Device
Mgmt.

Data
bases

CoAP

Industrial
Wireless

Industrial
Ethernet

GATT

Cloud

M2M

OPC UA TSN

ProfiNET

TSN

Modbus

LPWAN
oneM2MID Mgmt.

Big Data

Stream
Analytics Business Rules

Management

Prescriptice
AnalyticsloT

Figure 2-2. IoT ecosystem

Chapter 2 Iot Frameworks and ComplexIty

32

 Elements of an IoT System
This section describes the elements of an IoT system focusing on

device architecture, network architecture (an interconnected collection

of devices), system management architecture, and lastly framework

architecture.

 IoT Device
The term “device” can be confusing because it means different things

in different contexts. When viewed from a manufacturing perspective,

the device is a physical component consisting of hardware, firmware,

and system software. It may also be preloaded with application software

compiled into a single image that is embedded into persistent memory.

When viewed from a network management perspective, a device

is a node that has a network address and could be part of a collection

of interconnected devices. There could be multiple network endpoint

addresses per physical device. Furthermore, given multiple network

interfaces, the same physical device could appear as multiple nodes to

other devices.

When viewed from an IoT framework perspective, a device is a logical

context that exposes message passing interfaces. Interfaces are used to

exchange data that is structured according to an interface definition.

The actual data structure as viewed from within the framework may

differ depending on the network protocols, message passing technology,

or system usage. A logical device may have multiple interfaces to

the network giving the impression to peer nodes there are multiple

physical devices. This can be confusing if network address is the only

way to disambiguate IoT devices. IoT frameworks expose a logical IoT

device whose identity is independent of the underlying connectivity

layer. However, security challenges can arise when a single networking

interface exposes shared data or control surfaces with multiple logical

Chapter 2 Iot Frameworks and ComplexIty

33

devices. This creates an opportunity for an attacker to exfiltrate data,

perform side- channel analysis, or maliciously control logical devices.

Consequently, the security design should incorporate endpoint

protection technology deeper into the system – at the logical device level.

When viewed from an application perspective, the IoT framework

data abstractions can make it difficult for application code to tell when a

physical device boundary is crossed. A single application may interact with

multiple IoT framework “devices” not knowing if they are geographically

local or remote. This is relevant to security practitioners because device

physicality is often what defines a security boundary. Obscured security

boundaries make it more difficult for applications to effectively apply

security protections.

To avoid confusion, the authors try to provide clarifying context

whenever “device” terminology is used.

 IoT Device Architectural Goals

Unlike smartphones, PCs, laptops, and servers, the device bill of materials

(BOM) for constrained IoT devices is often under significant cost pressure.

In addition to the expected processing requirements, IoT devices often

must accommodate hostile operating conditions that include extreme

temperatures, vibration, humidity, and ultraviolet radiation. Meeting BOM

constraints implies every ingredient is scrutinized to identify the minimum

viable hardware, firmware, and software configuration while still satisfying

product requirements. Part substitutions may be made over the course

of a product’s lifetime to lower production costs.6 The IoT supply chain

competes to be the low-cost supplier, and device vendors want to foster

this competition to drive component costs even lower. Common interfaces

facilitate interoperability and the integration of specialized hardware with

6 Vendors often qualify multiple suppliers for hardware components that perform
essentially the same function but allow production lines to keep producing if one
supplier’s supply chain happen to be disrupted.

Chapter 2 Iot Frameworks and ComplexIty

34

general purpose hardware, sensor, accelerator, and Field Programmable

Gate Array (FPGA) processor integration traditionally is done by a device

manufacturer, but increasingly, specialized functionality is exposed to the

network as a service. Software layers create logical devices that may be

dynamically defined. Software defined devices offers greater flexibility for

tailoring IoT solutions that meet customer need. Securing software defined

devices requires a trusted execution environment that creates trustworthy

hardware isolation and exposes security roots of trust to the soft device.

Interoperability

Architecting a device to be interoperable with other devices or infrastructure

already, or soon to be, on the market is of paramount importance for IoT,

especially given the enormity of different devices in large IoT systems. Web-

based validation suites allow device vendors to verify their products will

interoperate with a wide variety of other vendors’ products, which would

be too numerous to exhaustively validate using direct interactions from

device to device. Testing for interoperability with an actual device that has

not completed development or is not yet released to market is simply not

possible. However, web validation suites allow testing for interoperability

with standard protocols and frameworks, ensuring compatibility with peer

IoT devices that have not yet completed development.

Nevertheless, interoperability gaps are likely to exist. For example, data

models developed by competing standards may have syntactic differences

even though semantics are similar. Standard protocols may not fully

interoperate if certification testing is missing or is not comprehensive.

Simulation tools that virtually deploy customer-specific configurations can

be helpful. Simulations help expose interoperability gaps in specifications

and validation suites relating to software behavior and data definitions.

Trial deployments and test beds are another technique for finding gaps.

This helps find hardware-dependent incompatibilities. Trial deployments

go live once the gaps can be corrected. Test beds can be used for

Chapter 2 Iot Frameworks and ComplexIty

35

longer-term evolution of products with sequenced rollout of increasing

capabilities and features while ensuring that interoperability or backward

compatibility problems do not creep in.

It is prudent for IoT system designs to anticipate having to work

around incompatibilities and building specific features into their design

to compensate for such issues. Postdeployment reconfigurable layers

between applications and embedded components give systems architects

the ability to make corrections during simulation and trial deployment.

Less constrained devices such as hub controllers, bridges, and gateways

more easily accommodate reconfigurable layers as they often support a

wider variety of network interfaces and have more computing resources

and storage to draw upon. Nevertheless, reconfigurability comes with a

security cost. Malware might more easily exploit reconfigurability features

that compromise embedded system components.

Security

Security consists of both functionality and assurance disciplines. Security

functionality typically deals with secure boot, secure key storage, and

cryptographic algorithm acceleration, while security assurance typically

deals with ensuring security functions work the way they are intended.

Trusted computing technology combines security functionality with security

assurance mechanisms so that security compromise isn’t catastrophic.

Trusted computing components are called upon to perform recovery steps.

All devices contain some set of trusted functionalities, upon which all other

parts of the system assume is trustworthy and has not been compromised;

this is called the root of trust for the device. The root of trust is normally

involved in the secure booting of the device, holding the device’s identity

credentials, and presenting cryptographic evidence of device claims, called

attestation. Depending on the device, the quality of the root-of-trust may vary.

In less constrained environments, a root-of-trust could be a security

subsystem such as a Trusted Computing Group (TCG) Trusted Platform

Chapter 2 Iot Frameworks and ComplexIty

36

Module (TPM) or a secure storage module such as Replay Protected

Memory Block (RPMB). It could be a secure coprocessor such as ARM

TrustZone or a security mode of a CPU such as Intel Software Guard

Extensions (SGX). All other software and hardware components depend

on the root-of- trust components in some way for their security.

Typically, less constrained systems make use of multiple roots-of-trust

and multiple trusted execution environments. For example, trusted boot

may rely on a root-of-trust for measurement in the form of a boot ROM

that computes an integrity value for software images loaded during boot-

up. These integrity values are stored in another root-of-trust for storage

that protects them until they’re queried by a remote device that verifies

boot integrity. The remote device expects to receive an attestation report

that is signed by a trustworthy signing key protected by a root-of-trust for

reporting. The TPM is an example of a discrete processor that combines

roots-of-trust for storage and reporting.

Roots-of-trust can protect application code while it executes using

Trusted Execution Environment (TEE) technology such as Intel SGX.

Application developers partition application functionality according to the

functions that are security relevant and those that aren’t. Less constrained

environments allow multiple TEE instances. Managing and deploying

multiple trusted environments and roots of trust adds cost and complexity.

In more constrained devices, these costs may be too high. Instead,

devices must be designed with layered trusted computing. The Trusted

Computing Group (TCG) proposed an approach for secure constrained

device boot, secure device identity creation, and device attestation

(Figure 2-3) that doesn’t depend on a security coprocessor called Device

Identity Composition Engine (DICE).

Using a DICE strategy, the root-of-trust elements are those that operate

first when the device is reset or when it resumes from a nonoperational

state. The DICE architecture defines a Unique Device Secret (UDS)

that is a circuit that produces a unique number when the platform

undergoes power reset. The UDS circuit reads low-level device firmware

Chapter 2 Iot Frameworks and ComplexIty

37

that is used to boot and possibly operate the device once booted.

Firmware is cryptographically hashed with the UDS that is then fed into

a cryptographic key generation circuit to produce a device identifier.

Cryptographic hash is a one-way function that ensures input data can’t be

discovered by analyzing the output value. If a different firmware image is

hashed, it will produce a different hash output value. This will cause the

key generation circuit to produce a different device identifier than what

results from the first firmware image. If the device identity changes from

what the IoT network expects, the changed device identity is no longer

trusted and must be revetted and onboarded into the network.

The device identifier is unique to the UDS secret and the firmware

installed. The secret is immutable because it is hardware. If the firmware

is updated, a different device identity key is generated. A controller,

bridge, gateway, or other IoT nodes can determine if firmware changes

because it will no longer recognize the device identifier or be able to

verify its digital signature. If malware corrupts device firmware then

resetting the device sill return it to a secure operational state. The UDS and

DeviceID derivation functionality form a root of trust that is simpler than

a traditional Trusted Platform Module (TPM), secure co-processor or TEE.

This is better suited for cost constrained IoT devices, but also benefits TCB

design by tailoring TCB functionality that is most appropriate for special

purpose IoT devices.

Root-of-trust

Device

UDS

Memory /
Storage

Firmware

DevcelD

CPU

Figure 2-3. Device Identity Composition Engine

Chapter 2 Iot Frameworks and ComplexIty

38

 IoT Network
When multiple IoT devices are connected together, they form an IoT

network. However, connectivity alone isn’t very interesting. IoT devices

should interoperate as a distributed application. One expects IoT nodes

will cooperate to achieve a common objective. To do this, devices need

a few basic behaviors: (a) the ability to discover peer nodes, something

about their function or role and interfaces they support; (b) the ability

to connect, which may involve authenticating and constructing a secure

channel or cryptographic association; and (c) the ability to send and

receive formatted data, parse it, and process it according to application-

specific semantics.

Core to IoT design is the idea of an hourglass network layering model

(Figure 2-4) that seeks to simplify the possible choices of network layer

protocols to Internet Protocols (IPv4 and IPv6) while permitting legacy

SCADA, fieldbus, and embedded control physical and data link layer

technologies to remain available either through gateways or through

encapsulation, such as 6LoWPAN7 (IPv6 over Low-Power Wireless Personal

Area Networks).

The top half of the hourglass hosts existing and evolving IP transport layer

technologies, for example, the Constrained Application Protocol (CoAP)8

supports an HTTP-like RESTful message exchange without the overhead

required to support HTTP and TCP. The Datagram Transport Layer Security

(DTLS)9 applies TLS-like security to CoAP. An impressive array of emerging

protocols designed for IoT are being developed by the IETF Constrained

RESTful Environments (CORE)10 working group. DTLS may be appropriate in

cases where reliability and in-order guarantees are not needed.

7 https://tools.ietf.org/html/rfc4944
8 https://datatracker.ietf.org/doc/rfc7252/
9 https://datatracker.ietf.org/doc/rfc6347/
10 https://datatracker.ietf.org/wg/core/documents/

Chapter 2 Iot Frameworks and ComplexIty

https://tools.ietf.org/html/rfc4944
https://datatracker.ietf.org/doc/rfc7252/
https://datatracker.ietf.org/doc/rfc6347/
https://datatracker.ietf.org/wg/core/documents/

39

The framework layer sits atop the hourglass consisting of a dizzying

mix of technologies that predate IoT or have emerged as a result of it. Most

interestingly a flurry of new standards organizations has emerged that

seem to have insightful perspectives on how best to define IoT frameworks.

The authors believe that much of the IoT ecosystem will coalesce around a

common set of Internet-based technologies forming an hourglass shape.

 IoT System Management
IoT system management comprehends manageability goals for both IT

(Information Technology) and OT (Operational Technology). Device

lifecycle management is common to both IT and OT disciplines covering

the full spectrum beginning with manufacturing and supply chain through

Framework

Transport

Network

Link

Physical

Figure 2-4. IoT network layering

Chapter 2 Iot Frameworks and ComplexIty

40

all phases of operation, including decommissioning and retirement.

Management services support device lifecycle management. These

include security services for managing roles, access control policies,

and cryptographic keys and certificates; software update services for

distribution and installation of firmware, software, and security patches;

orchestration services for coordinating distributed application behavior,

simulation, and for handling graceful failover, resiliency, load balancing,

and redundancy; and telemetry services report on a variety of operational,

security, safety, and behavior components of an IoT system that may be

used further by IoT analytics and business management.

A challenge facing IoT systems is finding a uniform and consistent

approach to manageability given the deeply fragmented brownfield and

greenfield IoT solutions. Proprietary and vertically integrated solutions

often don’t interoperate with horizontal IoT framework approaches,

and framework manageability is quite often rudimentary lacking deep

integration.

Lack of a uniform approach to security manageability has potentially

significant IT and OT impact. For example, application of a security patch

in an industrial IoT deployment may require multiple security consoles

with labor-intensive checklists that verify all nodes are patched properly.

Access control policies may not be consistently expressed across disparate

IoT systems where role names and syntax may differ, access enforcement

conventions may differ and be inconsistent, or key management

capabilities may differ and may lack scalability or equivalent security

strengths. Security gateways may be considered as a way to address some

of these issues, but they may require deployment of new trusted nodes

in situations where trust semantics don’t normally expect or allow a

universally trusted gateway system. For example, a security gateway node

that links an industrial process automation network to a business analytics

server might be located at a base station in a wireless edge environment

that has limited physical security, but nevertheless must operate with full

security privileges of both networks.

Chapter 2 Iot Frameworks and ComplexIty

41

 Device Lifecycle

Trust in logical IoT devices is (or should be) tied to trust in the physical

layer that hosts it. In an enterprise deployment scenario, servers, PCs,

and even smartphones can undergo a rigorous manual inspection and

configuration step by trained security professionals. However, the scale

at which IoT devices are deployed is seldom feasible to apply the same

rigorous manual processes. Instead, onboarding techniques that require

minimal or no touch are needed. IoT platforms and devices follow a

lifecycle (Figure 2-5) that may begin during manufacturing and ends

when the device is decommissioned or waterfalled to another owner for

redeployment starting another lifecycle.

Manufacturing Supply Chain Deployment
Normal

Operation &
Monitoring

Manage Update Decommission

Figure 2-5. IoT device/platform lifecycle model

Attackers may target vulnerabilities earlier in the lifecycle in order

to avoid detection and circumvent mitigation strategies that presume

manufacturing, supply chain, and onboarding steps are free from

compromise.

IoT frameworks make assumptions about where along the device

lifecycle continuum the framework abstraction models begin to apply.

Early in the lifecycle, only physical devices exist. Even if logical devices

come into being early in the supply chain, it may still be possible for

additional logical devices to appear subsequent to initial onboarding or

may disappear prior to a final decommissioning step. Security of the IoT

system may depend on how well the IoT framework layer integrates with

the platform lifecycle.

Chapter 2 Iot Frameworks and ComplexIty

42

Manufacturing

Manufacturing processes are critical toward the establishment of

hardware-roots-of-trust which is a term used to describe security

building blocks having to do with establishing platform/device identities,

protecting cryptographic keys and algorithms, and creating hardened

execution environments and system bootstrap procedures that resist

attacks. Features may include hardware random number generation,

cryptographic algorithms in ASICs (Application-Specific Integrated

Circuit), FPGA (Field Programmable Gate Array) or instructions, hardware

fuses that seed random number generation, boot ROM, replay protected

memory, and others.

Supply Chain

Supply chain processes protect platforms and devices as they make their

way from manufacturers to retailers to customer first deployment. Supply

chain participants may have physical access to hardware components that

if replaced by malicious components could result in undetectable attack

scenarios. Tracking platform and devices through the supply chain may

involve the use of RFID (Radio-Frequency Identification) tags, supply chain

UUIDs (Universally Unique Identifiers), or cryptographic device identifiers.

Privacy may become a challenge however as tracking capabilities could be

misused in ways that violate privacy goals. Privacy requirements need to be

anticipated as part of supply chain tracking mechanisms.

Deployment

Deployment is concerned with initial power up, customer-specific

configuration, and establishment of the platform/device owner.

Then the entity responsible for adding IoT devices to their network is

sometimes called the “owner” which implies a change of ownership and

establishment of a “local” identity that differs from a manufacturer or

Chapter 2 Iot Frameworks and ComplexIty

43

supply chain supplied identity. The owner operates onboarding services

that facilitate ownership transfer, verification of supply chain provenance,

attestation of security properties and roots of trust, issuance of credentials,

security associations, roles, and access control policies. Taking ownership

of many devices can be challenging given limited human resources and

large numbers of devices. Zero-touch commissioning is immensely

important and difficult to get right given the diversity in supply chain and

given the spectrum of customer security and privacy expectations.

Normal Operation and Monitoring

Normal operation refers to operational states where IoT functions are

fully enabled and ready for use. Security monitoring ensures devices and

networks continue to function securely. IoT frameworks may choose

to hide security monitoring operations from IoT application-level

abstractions, but they should consider how to fail gracefully when security

conditions require service disruption.

Manage

IoT devices require periodic management, tuning, and adjustment. Some

management functions can occur while devices are operating normally.

For example, addition of security credentials for dynamically added

devices may not need to interrupt activity with existing devices. Other

management tasks may require disruption of normal operations. For

example, an uncalibrated actuator may result in device, process, or system

failures if asked to operate outside its design constraints. Frameworks

can facilitate communication of device status and availability to enable

periodic maintenance without major disruption to peer nodes. This

management implementation could be in-band (within the OS/FW

control) and/or out-of-band (outside of OS/FW control).

Chapter 2 Iot Frameworks and ComplexIty

44

Update

Software and firmware updates are arguably a subset of device

management commonly known as Software Over-the-Air (SOTA) and

Firmware Over-the-Air (FOTA) updates. Software update management

must consider trade-offs of propagating large image files over networks

optimized for small messages that may be latency sensitive. IoT networks

may have “sleepy” nodes that are not available to receive an update in a

timely manner.

Nevertheless, software and firmware updates are essential to secure

operation. It is inevitable that security weaknesses will exist in most

firmware and software images. Hence, when weaknesses are found, they

should be fixed quickly to avoid possible exploit.

Decommissioning

Decommissioning is the process of undoing onboarding, commissioning,

and provisioning that were applied previously. Although it is expected

that devices and frameworks will anticipate scenarios involving devices

that don’t go through a decommissioning process to handle it gracefully,

applying decommissioning steps helps ensure privacy objectives are met

by removing trackable personally identifiable information (PII) or privacy-

sensitive information before it falls into other hands. Decommissioning

also ensures security-sensitive data, credentials, keys, and access tokens

are removed so they aren’t used to later attack other nodes. Frameworks

can facilitate decommissioning by orchestrating the nodes removal in a

coordinated way. Sometimes decommissioning could entail replacing the

device under consideration with another device consisting of the same

persona.

Automation of the IoT device lifecycle is an important security

capability as it helps ensure the device never enters an insecure state and

minimizes opportunities for attacker exploit by ensuring secure lifecycle

practices are consistently applied.

Chapter 2 Iot Frameworks and ComplexIty

45

 IoT Framework
An IoT framework is a middleware layer beneath one or more IoT

applications that presents a network-facing application interface through

which peer framework nodes interact. Frameworks often support multiple

communication technologies and message passing techniques. IoT

frameworks also expose security capabilities including hardware-roots-of-

trust to applications and peer framework nodes.

 IoT Framework Design Goals

IoT frameworks have four primary design goals: (1) reduce development

time and bring IoT solutions to market sooner; (2) reduce apparent

complexity of deploying and operating an IoT network; (3) improve

application portability and interoperability; and (4) improve serviceability,

reliability, and maintainability. Given the vast range of existing and

emerging communication technology choices, it is untenable for

applications to manage the combinations of possible ways to connect.

Frameworks hide connectivity complexity beneath a higher-level

message passing abstraction like REST and publish-subscribe. Standards

organizations help achieve these goals through standardization of the

framework layer interconnect, message passing interface definition,

and data definitions leveraged by applications. Standards groups also

document IoT system design principles, architecture, and interconnect

options. Standards organizations and industry consortia may assist

developers by supplying and certifying reference implementations that

include source code. Reference code helps streamline development by

providing implementations that pass compliance tests and correctly

interprets standards specifications. Reference codebases are easier to

maintain benefiting from a large diverse community of open source

developers who cooperate by actively developing code and improving the

codebase.

Chapter 2 Iot Frameworks and ComplexIty

46

Frameworks simplify IoT networks by creating an abstraction of the

IoT device networks that hides much of the underlying complexity while

exposing data, interfaces, and functions that facilitate interoperation. All

it should take to develop an IoT application is to create an application in

a high-level language such as Node.js that utilizes framework APIs. The

framework provides a semantically rich description of IoT nodes, objects,

and interactions that allow IoT network designers to focus only on node

interaction semantics rather than on the details of connectivity.

Frameworks facilitate improved application portability. This can be

achieved at different levels. The bottom layer of the framework is operating

system specific. The top layer of the framework is IoT use case specific

in that it exposes a data model abstraction that reinforces an IoT usage

context. Some examples include lighting control, home automation,

health monitoring, entertainment, process automation, industrial control,

and autonomous control. IoT applications can be developed once given

the framework abstraction and can execute on any OS the framework

is ported to. The details of dissimilar OSs and platforms can be hidden

where porting of framework code to another OS (source code–level

compatibility) can happen independently of application development.

Binary compatible platforms can migrate compiled framework code across

platforms using the same binary. Platforms that are not binary compatible

may rely on virtualization to host framework images or may rely on device

management services that hide the complexity associated with paring and

installing the right framework with the correct platform.

Frameworks enable interoperable devices in heterogeneous

environments. Consider a hypothetical scenario where devices are

running different OSs and HW platforms. These devices could be built

by different platform vendors using silicon from multiple vendors

running different OSs such as Windows IoT Embedded and VxWorks

running different middleware stacks. This is a perfect storm scenario

for an IoT network deployment where there are too many possible

combinations of connectivity and message exchange options to expect

Chapter 2 Iot Frameworks and ComplexIty

47

speedy deployments. IoT frameworks come to the rescue by building the

connectivity intelligence into the framework – hidden from application

view and simplified from the device and network management view.

Frameworks also facilitate seamless manageability and serviceability

by leveraging the framework’s infrastructure to expose platform status

information through the framework layer in accordance with the

framework’s data model abstraction. For example, a firmware update

availability notification may be easily propagated across an IoT network.

If the framework supports applying a firmware update, either push or

pull, the firmware update images may be distributed over the air using the

connectivity solution worked out by the framework.

IoT Data Model and System Abstractions

IoT frameworks define an application layer abstraction so that applications

interact directly with framework data. For example, a temperature

sensor might show the current temperature (currTemp) and the average

temperature over the course of 24 hours (aveTemp). Temperature values

might be shown in Fahrenheit and Centigrade. Consequently, a data

model description might be as follows:

{

 "tempSensor" = "/myTempSensor",

 {

 "currTemp"="85",

 "aveTemp"="70",

 "degrees"="Centigrade"

 }

}

Data modeling languages are used to richly describe framework

objects according to a schema definition. Examples of data modeling

languages include XML (eXtensible Markup Language), JSON (JavaScript

Chapter 2 Iot Frameworks and ComplexIty

48

Object Notation), CBOR (Concise Binary Object Representation), and

YANG (Yet Another Next Generation language) – just to name a few.

Data structures are accessed through well-defined network interfaces.

For example, CoAP is a REST model interface that uses four methods:

GET, PUT, POST, and DELETE to interact with framework data. A couple

RESTful interface definition languages include RAML (Restful API

Modeling Language) and Swagger.11

A framework node may consist of several objects such as a temperature

sensor, camera, and light bulb. A deviceId may disambiguate multiple

instances of a framework node. For example:

{

 "nodeType"="myDeviceType",

 "deviceID"="<UUID>",

 {

 "tempSensor" = "/myTempSensor",

 "ptzCamera" = "/myPtzCamera",

 "lightBulb" = "/myLight"

 }

}

Using these simple but powerful data modeling tools, IoT frameworks

can describe elaborate IoT systems while hiding much of the network

complexity that underlies connection establishment, routing, packet

transmission, network address translation, and so on.

To a certain extent, IoT frameworks can be compared with

Information-Centric Networking (ICN).12 ICN rethinks the network where

named information is the centerpiece of network architecture. Rather

11 https://swagger.io/
12 https://irtf.org/icnrg

Chapter 2 Iot Frameworks and ComplexIty

https://swagger.io/
https://irtf.org/icnrg

49

than focusing on nodes, network topology, and protocol layering, ICN

focuses on end-to-end data interactions. Data doesn’t necessarily reside

on endpoints but may be cached and replicated anywhere in the network.

Like ICNs, the upper layer of IoT frameworks presents a data-centric

view of the network. However, unlike ICNs existing protocol layering is

retained. Arguably, this adds additional complexity but offers greater

interoperability. Indeed, an ICN connectivity plugin to an IoT framework is

a reasonable approach to bridge ICN with legacy networks.

Securing IoT messages must take an end-to-end view so that

authentication, confidentiality, privacy, and authorization goals may be

realized. Otherwise, the benefits of hiding complexity beneath an IoT

framework may instead be hiding security gaps. The IoT application using

an IoT framework may not be aware when security is managed using

system layer interfaces. Internet protocols often have a secure alternative

such as https for http and coaps for coap, where the “s” means security.

A REST GET message works the same over coaps as it does for coap. The

main difference is the Transport Layer Security (TLS) binding to the

REST messaging protocol negotiates a secure session using credentials

(keys and certificates) that may have been provisioned directly into the

TLS subsystem without coordination through the framework layer. The

framework layer may not be aware of the impact to authorization which

can result in the framework misrepresenting actual security posture to

IoT applications. IoT frameworks can differ significantly in their design

and implementation attention to end-to-end security. We hope to

illustrate this point more profoundly as we walk through a variety of IoT

frameworks later in this chapter.

Chapter 2 Iot Frameworks and ComplexIty

50

IoT Node

IoT frameworks define a device abstraction that is a logical representation

of a physical device. This chapter uses the term IoT node to refer to the

logical abstraction to avoid confusion regarding the physical device.

Frameworks can create some interesting properties regarding IoT nodes:

• They may expose multiple nodes per framework to

give the appearance of many nodes having the same IP

address.

• They may consolidate multiple network addresses

terminating into a common framework node.

• They may host services and capabilities that are

dynamic – being created and deleted according to

RESTful messages.

• They may impose system partitioning semantics such

as dividing nodes into domains, groups, rooms, or

some other semantic overlay.

Nevertheless, security semantics must remain true despite the

framework abstraction. For example, if the node describes the endpoint

where access is controlled, data is encrypted and decrypted. Then

protection of the physical endpoint resources should strongly correlate

with protection of the framework node.

IoT Operations Abstraction

IoT operations consist of several node interactions facilitated by

frameworks. These include discovery, message exchange, event

registration, and asynchronous notification. IoT nodes typically are not

preconfigured to recognize other nodes. They must instead be discovered.

Chapter 2 Iot Frameworks and ComplexIty

51

Discovery allows other framework nodes to inquire regarding supported

interfaces and data structures essential to interoperability. Discovery

can take many forms. For example, multicast and broadcast networking

supports unsolicited discoveries. Nodes monitoring the broadcast may be

required to disposition discovery events even if there is no action needed.

Devices with limited battery capacity may have shorter life expectancies

if deployed in highly dynamic networks. Alternatively, discovery may

be accomplished by sending discovery requests to discovery interfaces

for specific nodes querying the relevant information. This approach

minimizes unnecessary activity on nodes that wouldn’t otherwise need

to participate. However, this approach may require multiple “drill down”

discovery requests before finding the data or interface needed. Passive

discovery employs directories or less constrained nodes that respond in

place of other nodes that may disregard all discovery requests while in a

low-power mode. The directory nodes satisfy the discovery phase so that

power-constrained nodes only process the functions that they uniquely

provide.

Discovery conventions:

• Consulting a directory of framework devices to learn

device identities and how to connect – conceptually

similar to LDAP (Lightweight Directory Access

Protocol) commonly used by PCs in IT networks to

accomplish a similar objective

• Inspecting a schema describing interfaces to learn

which REST, publish/subscribe, and asynchronous

notification messages can be used

• Querying the device directly to introspect its current

state and configuration

Chapter 2 Iot Frameworks and ComplexIty

52

Note an anonymous entity may learn a tremendous amount about
how an Iot network functions, the type of nodes involved, what work
they’re capable of performing, and typical interaction patterns simply
by using available discovery mechanisms. Given a small amount
of additional information that links actual devices or users to the
observable network, it may be relatively easy for an attacker to obtain
or infer knowledge that otherwise is expected to be privacy sensitive.

Message exchange conventions:

• Preparing a message body whose syntax satisfies a

recognized (standardized) data model schema

• Protecting the message using the appropriate security

credentials

• Sending the message following the interface definition

schema for the target node

• Collecting and processing the response message that

similarly follows these conventions

Event handling conventions:

• Identifying objects and attributes available for

participating in asynchronous events and conditions to

be met that result in notifications.

• Preparing and sending a registration/subscription

message following messaging exchange conventions.

• Maintaining context for processing asynchronous

notifications.

Chapter 2 Iot Frameworks and ComplexIty

53

• Nodes managing registrations/subscriptions must

maintain context for secure delivery of the notification

message(s) potentially involving many subscribers.

Asynchronous message delivery may involve different

security associations and context from those used to

process registrations/subscriptions.

 Connectivity Elements

IoT frameworks facilitate connectivity, gatewaying, and bridging. The

following briefly summarizes how each is facilitated:

• Connectivity: Framework endpoint abstractions are

mapped to network layer addresses and protocols

where framework message exchange abstractions

map to protocol specifics such as MTU (Maximum

Transmission Unit) framing, multicasting,

broadcasting, and packet delivery mechanisms.

• Gatewaying: Framework domain abstractions impose

operational context for domain-specific filtering

(hiding) traffic and performance of administrative

duties.

• Bridging: Due to the proliferation of framework

solutions, it is often necessary to translate from one

framework environment to another. Framework

bridging may have side effects where objects,

interfaces, or semantics in one environment don’t

exactly translate to a second.

Chapter 2 Iot Frameworks and ComplexIty

54

 Manageability Elements

IoT frameworks may expose manageability elements through the

framework object abstraction layer as a way for other framework objects

and resources to better manage and respond to change resulting from

management activity. However, this is more the exception than the rule.

Even among horizontal open standard frameworks, there are many

examples of device vendors wishing to retain proprietary or exclusive

control over firmware/software update, onboarding, and cloud access

capabilities. Nevertheless, frameworks can facilitate updates occurring

outside the IoT framework by informing other nodes regarding

pending updates or notifying regarding changes to version information.

Additionally, IoT frameworks may not allow the framework itself to be

updated from within an IoT framework context.

 Security Elements

IoT frameworks need to accommodate security by ensuring endpoint

nodes and their physical equivalents (i.e., device, process, virtual

machine, enclave) have a secured identity, protected cryptographic keys

and appropriately provisioned roles, credentials, and access policies.

Endpoint security capabilities should protect sensitive data that is

stored, transmitted, or manipulated locally outside of the IoT framework.

Software and firmware should be protected when transmitted, installed,

stored, and loaded for execution. Framework processing of encrypted

data, access control decisions, and identities should be protected within

an appropriately hardened Trusted Execution Environment (TEE) or

isolated from non-framework aware services and interfaces. IoT device

roots of trust should be used to protect device identities and ensure the

appropriate firmware and software is loaded and executed.

Inherent to distributed systems is added risk associated with a

dependence on multiple peer nodes that contribute data, processing,

and administration to an overarching distributed application. Nodes

Chapter 2 Iot Frameworks and ComplexIty

55

largely trust peer nodes to be in a correct operational state. However,

this assumption of trust may not be justifiable without taking additional

precautions to prove and verify the hardware, firmware, software, and

operational state to peer nodes. Attestation is a security concept that

addresses this concern but only if it is correctly implemented and

integrated.

Consider the Cost of Cryptography

IoT systems are inherently distributed. Cryptography is an essential

security building block technology for distributed systems. Nevertheless,

cryptography imposes additional overhead in terms of computation,

memory, storage, network bandwidth, and hardening. Symmetric

cryptography generally speaking is lighter weight than asymmetric

cryptography, and asymmetric cryptography is lighter weight than

certificate-based asymmetric cryptography. IoT devices typically

are designed with cost targets that may impact device cryptographic

capabilities. Since these choices also impact interoperability, IoT

frameworks must anticipate common cryptographic algorithms, key

sizes, and key management infrastructures. Asymmetric cryptography is

dominated by at least two algorithms: elliptic curve cryptography13 (ECC)

and Rivest-Shamir-Adelman (RSA)14 algorithms. ECC has smaller key

sizes than the RSA. ECC can accomplish the same level of security as RSA

with key sizes that are 10–15% smaller. Key size is an important factor for

constrained platforms as such many IoT standards require ECC.

Table 2-1 details some of the trade-offs associated with cryptography.

13 https://tools.ietf.org/html/rfc6090
14 https://tools.ietf.org/html/rfc8017

Chapter 2 Iot Frameworks and ComplexIty

https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc8017

56

Table 2-1. Trade-Offs Associated with the Type of Cryptography Used

Criteria Symmetric
(Preshared Secrets)

Asymmetric
(Raw Public/
Private Keys)

Asymmetric
(Certified Public/
Private Keys)

Hardware
Acceleration

not required required required

Memory Size small medium large (certificates)

Code Size small medium large (certificate

parsing)

Message Size small medium large (certificates)

Persistent
Storage Size

small–medium

(depends on network

size)

medium–large

(depends on

network size)

medium (depends

on caching

algorithms)

Security –
Perfect
Forward
Secrecy (PFS)

no yes yes

Security –
Impersonation
Risk

high (keys are shared,

no detection of misuse,

no common trusted

infrastructure, depends

on secure storage)

medium (no

common trusted

infrastructure,

depends on

secure storage)

low (depends on

secure storage)

Constrained
Environment

optimized for

Verification (benefits

constrained servers)

Balanced optimized for

signing (benefits

constrained clients)

Scalability
(number
of nodes
interacting)

low medium high

Chapter 2 Iot Frameworks and ComplexIty

57

Quantum computers15 present new threats to existing cryptographic

solutions because they are more effective at solving certain types of

mathematical problems such as the integer factorization16 problem, the

discrete logarithmic problem,17 or the elliptic curve discrete logarithm

problem.18 Current asymmetric cryptography algorithms reduce to one of

these mathematical problems which are known to be solved by quantum

computing more easily than traditional computers. Cryptographic

algorithms are being designed that are thought to be secure against

quantum computers are called post-quantum safe algorithms and has led

to a new branch of cryptography study called post-quantum cryptography.

Since asymmetric cryptography is most threatened by quantum

computing, post-quantum asymmetric algorithm design is receiving a lot

of attention currently. In contrast, symmetric key cryptography and hash

functions are relatively secure against attacks using quantum computers. It

is believed doubling the key size (e.g., from 128-bits to 256-bits) adequately

protects against quantum computer attacks on symmetric algorithms.19

It is still too early to tell which quantum-safe algorithms will become

an industry favorite for IoT given cost, power, and size constraints.

However, it seems clear that where symmetric cryptography is already

acceptable for IoT, it should continue to remain acceptable given a

doubling of key size is the most economical quantum-safe solution.

Quantum-safe asymmetric algorithms have much larger key size

requirements or computation trade-offs, both of which apply to typical IoT

platforms.

15 https://en.wikipedia.org/wiki/Quantum_computing
16 https://en.wikipedia.org/wiki/Integer_factorization
17 https://en.wikipedia.org/wiki/Discrete_logarithm
18 https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
19 Daniel J. Bernstein (2010-03-03). ”Grover vs. McEliece” (PDF).

Chapter 2 Iot Frameworks and ComplexIty

https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
http://cr.yp.to/codes/grovercode-20100303.pdf

58

 Summary IoT Framework Considerations
IoT frameworks came into being as a way to simplify development and

deployment of IoT networks. The reality is IoT networks are inherently

complex and, in many cases, necessarily so. IoT frameworks offer

value because they create a data model abstraction that is simpler than

applications having to deal with a myriad of message exchange options

and dissimilar data definition. By allowing applications to focus only on

the semantics of IoT node behavior and node interactions, interoperability

improves. By hiding the complexity of connection establishment,

bridging, gatewaying, and deployment of heterogeneous platforms,

efficiency optimizations can be applied more uniformly. Although

frameworks may increase complexity for simple deployment situations,

they scale as deployments grow resulting in a simpler IoT system overall.

Frameworks have other advantages, namely, they enable multiple views

of the IoT system so manageability, resiliency, interoperability, security,

safety, and usability perspectives can be represented. Complexity in

any form, however, is a security consideration because vulnerabilities

and security weaknesses can hide within the corners of complexity.

Security practitioners should ask whether the framework is more complex

than needed in order to realize the expected benefits, but also avoid

workarounds that expose new attack surfaces.

 IoT Framework Architecture
This section explores IoT framework layers in more detail. A following

section looks at specific framework architectures that may be compared

and contrasted. The majority of IoT framework architectures define

three layers: (1) Data Object layer, (2) Node Interaction layer, and (3)

Connectivity and Hardware Abstraction layer. This section also considers

the Hardware layer, though it typically isn’t considered part of an IoT

Chapter 2 Iot Frameworks and ComplexIty

59

framework. However, because security necessarily should have ties to

hardware, we’ve included a Hardware layer discussion. Security is integral

to IoT framework layers revealing additional security insights relating to

each layer (see Figure 2-6). This section explores each framework layer in

detail with an emphasis on security.

 Data Object Layer
The Data Object layer defines data structures that expose the “nodes”

and their capabilities using a data definition language such as JSON.20

One or more nodes may be hosted in the framework where one or more

applications may interact with framework nodes via a framework API. Data

objects are a set of attribute encapsulations. Some framework object models

allow nested encapsulation with unlimited depth. Other frameworks limit

nesting depth. The outermost encapsulation is the node. Since nodes

logically correspond to an IoT network endpoint, it is given an identifier,

NodeID, such as a Universally Unique Identifier (UUID) which is easy to

generate dynamically given framework nodes may be transient. NodeID

differs from DeviceID in that DeviceID is fixed in hardware. It is created

during manufacturing and is used to facilitate device onboarding. NodeID

typically is created in response to successful onboarding. Very constrained

devices may use the DeviceID as the NodeID if the manufacturer has

prevented the framework from supporting additional nodes.

The Data Object layer may define security objects such as access

control lists (ACLs), credentials, and other device status information

useful to management consoles and other nodes. Exposing security

objects using the framework object model allows device and security

management using the IoT framework infrastructure. The framework

connectivity and interoperability properties make it a desirable ingredient

for manageability. Security objects may expose values that are specific to a

20 www.json.org

Chapter 2 Iot Frameworks and ComplexIty

http://www.json.org

60

node such as credentials, ACLs, and NodeID or may expose values that are

node independent or shared such as DeviceID, firmware, and hardware

configuration.

The Security Objects in Figure 2-6 are useful for intranetwork

and intradomain interactions. More sophisticated internetwork and

interdomain interactions require an additional security layer that may

be helpful for gateway operations. The gateway application contains

control and management logic to present nodes to a peer IoT network

that shadow actual nodes existing deeper inside the local IoT network.

Gateway applications might even be used to bridge non-interoperable

IoT frameworks. A following section explores interdomain security and

framework gateways in more detail.

 Node Interaction Layer
The Node Interaction layer contains messaging semantics and defines

interfaces used for peer node interaction. Interface definition languages

such as RAML and Swagger may be used to create machine- and human-

readable interface definitions. A framework instance may support one or

more messaging models, such as REST, publish-subscribe, and MESH. This

layer ensures messages are formatted correctly, parses message contents,

performs data consistency checks, and ensures messages are sent, queued,

resent, or received properly.

Messages may require encryption and integrity protections. This layer

maintains security associations between the local and peer nodes. Security

associations identify the nodes, ACLs, privacy policies, and credentials

(used to authenticate, authorize, and protect message contents). They may

also define the security context from which to perform various security

relevant operations such as encryption, decryption, signing, verifying

signatures, enforcing access control, and so forth. The security context

defines what is (or should be) the correct way to terminate the data

exchange with peer nodes.

Chapter 2 Iot Frameworks and ComplexIty

61

There are implementation challenges associated with security

endpoint definition due to network layering. For example, a TLS or IP

Security (IPSec) secured channel may be shared across multiple locally

hosted nodes, implying nodes must use shared credentials, something

frowned upon by most security practitioners. Alternatively, acceleration

hardware may offload packet processing which may include offloading

security operations too.

Ideally, the Security Endpoint Context is the central point of

enforcement where the flow of data between the Data Object layer and the

Connectivity layer can be inspected and controlled.

 Platform Abstraction Layer
The Platform Abstraction layer defines the logical connection points

available to framework nodes. Connection points support the messaging

models available to the Node Interaction layer regardless of the capabilities

of the underlying network stack. The Connectivity layer typically supports

multiple connection points – one for each unique network stack. For

example, the connection point, Conn-A, has a network stack consisting of

HTTP, TCP, IP(v4 or v6), and Ethernet (Figure 2-6). A second connection

point, Conn-B, has a network stack consisting of MQTT, TCP/UDP, IPv6,

6LoWPAN, and IEEE802.15.4. Connection points may be dynamically

added or removed on more sophisticated platforms, while constrained

platforms may embed a single connection point and network stack.

In some cases, the network stack includes message security technology

such as IPSEC and TLS. The Connectivity layer depends on the Device

Interaction layer for security associations specific to the node-to-node

interaction semantics. This potentially divides the security enforcement

point between the security side and the networking side. Some platforms

are equipped with isolated execution technology that enables security

processing within a network stack to be offloaded to a resource-isolated

environment here referred to as a container. An alternative approach is

Chapter 2 Iot Frameworks and ComplexIty

62

to move data protection into the Node Interaction layer. For example,

OSCORE21 defines a standard format for encrypting CoAP payloads

before being given to the CoAP layer. This approach allows the security

endpoint to move out of the protocol stack into the Node Interaction layer

potentially simplifying implementation.

The basic idea is that the security endpoint context, data packets,

and node-to-node security associations should exist within a suitably

hardened container as a prerequisite for performing security relevant

operations. Otherwise, there is opportunity for clever attackers to

intercept, modify, view, or replace node objects.

App-A App-B App-C Mgmt App Gateway App

Node-A

MESH

Conn-A

MQTT

UDP

IP Multicast

WiFi

CoAPS

DTLS/UDP

IP

WiFi

Peer Node

API

Keys ACLs DeviceID

Segmented
Memory

Driver

HW Interface

and Hardware

HTTP

TCP

IPv6

6LoWPAN

802.15.4

Conn-B Conn-C Device

IPSEC Sec.
Asso.

Pub/Sub

OSCORE
Sec. Asso.

REST

TLS Sec.
Asso.

Data Object Layer

Node Interaction Layer

Fr
am

ew
or

k
In

te
rf

ac
e

Io
T

Fr
am

ew
or

k

Platform Abstraction Layer

Platform Layer

Network Acceleration Crypto Acceleration

Sensor /
Actuator

Trusted Execution Environment Technology

Secure Storage Root-
of-Trust

Security Objects

Security Endpoint Contexts

Resource Isolation

Security
Context-A

Context-A
Container

Context-B
Container

Context-C
Container

Security
Context-B

Security
Context-C

Node-B Node-C ACLs Credentials Device State

(4)

(3)

(5)
(2)

(1)

Figure 2-6. IoT framework layers

21 https://core-wg.github.io/oscoap/draft-ietf-core-object-security.html

Chapter 2 Iot Frameworks and ComplexIty

https://core-wg.github.io/oscoap/draft-ietf-core-object-security.html

63

 Platform Layer
The Platform layer beneath IoT frameworks can be divided into three

categories: (1) networking, (2) sensor and actuator, and (3) security. The

network layer focus is on efficient processing of network packets, quality of

service, and power optimization. It also addresses network security threats

related to malicious manipulation of network protocols. A common denial-

of- service attack might flood the network with unexpectedly high volume

of discovery packets. Discovery (aka ping) packets may not require prior

authorization since the goal of discovery often implies finding out which

credentials are most appropriate to use. Well-known attack mitigation

techniques often are part of network hardware implementations, allowing

the mitigation technique to be applied efficiently.

The sensor and actuator focus is on implementation of the main

processing function of the IoT node which often represents the transition

from IT to OT as native interactions are applied to the physical world.

Otherwise, the node would just be manipulating data and couldn’t be

considered a cyber-physical system. The device driver and API are most

often proprietary and specific to the vendor and model of the sensor or

actuator. Vendor-specific behavior multiplied by the already large and

expanding collection of IoT devices multiplies the complexities associated

with multivendor interoperability. Hiding this complexity behind a

common data object model is a primary reason for IoT frameworks.

The security focus is on hardening security-sensitive IoT functions.

Trusted Execution Environment (TEE) technology isolates computing

resources according to the various system tenants. IoT frameworks allow

multiple tenants in the form of IoT nodes – nodes that may have different

identities, security credentials, access policies, and configurations. Even

in constrained environments where a single node is supported, there are

security and device management scenarios that require tenant isolation

for nodes performing administrative duties. The industry has a variety of

TEE technologies that could be leveraged to harden IoT workloads that

Chapter 2 Iot Frameworks and ComplexIty

64

include Intel SGX, Intel VT-x (virtualization technology), ARM TrustZone,

and hardware memory managers that physically partition memory and

other compute resources.

Secure storage is an essential element in IoT devices in that

cryptographic keys, trust anchors, access control lists, and other policies

need to be stored in ways that resist software attacks and ideally resist

attackers who have physical access to the device. Replay protected

memory is helpful toward preventing attacks on key exchange protocols,

memory replacement, firmware update, and timing attacks.

Root-of-trust hardware is essential to the creation and protection of

device identities that may be used to attest device security properties

to a peer node and to security boot the device. Crypto acceleration

hardware may offer additional protections as offloading encryption and

signing operations may involve the use of a hardened coprocessor or

ASIC (Application-Specific Integrated Circuit). Root-of-trust hardware or

crypto offload hardware often includes a source of entropy necessary for

generating encryption keys and trustworthy identifiers.

 Security Challenges with IoT Frameworks
Security challenges are a reoccurring theme as we explore various IoT

frameworks. Though they may have been designed with a wide range

of security and privacy requirements, there are a few areas that are

consistently problematic. IoT framework nodes are the logical endpoints

in IoT networks, but the network layer context is often out of scope when

operating at the framework Data Object layer (Figure 2-7).

In IP networks, endpoint nodes are identified by IP addresses,

and routing logic is expressed in terms of IP addresses. Network layer

identifiers are insufficient as IoT framework node identifiers. In IoT

frameworks, nodes are logical and hence may share the same IP address

but have different node identifiers. Linking encryption keys, authentication

Chapter 2 Iot Frameworks and ComplexIty

65

credentials, and access control policies to IP address means security will

not be granular enough and can’t be consistently applied.

Uniform Resource Identifiers (URIs) and object identifiers such

as Universally Unique Identifier (UUID) may be used to reference

the framework’s device nodes. For example, a URI might identify the

framework context followed by an object identifier that is specific to the

logical device instance – “href” : “oic://<Base64_encoded_UUID>/oic/d”.

Data Object Layer

Node N1 Node N2 Etc...

Figure 2-7. IoT framework nodes are the logical endpoints in IoT
networks

The IoT framework node presents a security context where the

security endpoint is an IP multicast address; using IPSEC implies the

data protection ends at the network interface card or possibly inside a

networking driver in an operating system. This leaves data exposed before

it reaches the IoT framework’s enforcement point where the decision is

made to which node the data belongs.

A similar concern exists using Transport Layer Security (TLS) where data

protections end within the operating system or within a network connection

provider service. Connection services often expose APIs that a variety of

applications may utilize. If the service isn’t exclusive to the IoT framework,

it is possible the cryptographic protections intended to terminate within the

logical IoT device terminate within the service instead. Other applications

serviced by the connection provider are at risk of becoming targets for attack

because of the special access unwittingly given to them by the service. Care

must be taken to ensure data carried over communication channels and

messaging systems are protected by trusted execution environments that

correspond to the expected logical device endpoint.

Chapter 2 Iot Frameworks and ComplexIty

66

If data is protected using message-oriented techniques such as

JSON Web Token (JWT), data protection may be extended into the IoT

framework data abstraction layer, but there may be secure messaging

library that is shared by all the logical device instances. A man-in-the-

middle (MITM) attack could be successful if malware found a way to

intercept the data after the data protection module is finished but before

the logical device context is in place.

An IoT framework access path is depicted in Figure 2-6 where in step

(1) a peer node accesses the IoT device through a Wi-Fi networking stack

at connection Conn-C. In step (2) the Conn-C access path finds the TLS

security association and the Security Context-A in the Security Endpoint

Contexts. In step (3) access to decryption keys, ACLs, and role credentials

is checked. The Security Context-A is a fulcrum point in the framework

that uniformly applies an IoT network security policy involving the peer

nodes and Node-A. Ideally, the security context operations are performed

in a TEE that resists man-in-the-box attacks. If access is permitted, in

step (4) the sensor/actuator hardware may be exposed to the peer node

through Node-A data objects at step (5). Ideally, the entire access path will

be isolated from the other nodes and operations occurring on the same

device as the other tenants present security threats from within the device.

 Consumer IoT Framework Standards
In this section, we explore several IoT framework architectures

highlighting similarities and differences. In some cases, differences exist

because different frameworks intend to address different requirements

and use cases. In other cases, significant overlap of features and

capabilities appears to exist because they address similar requirements but

do so differently. This is unfortunate because it creates opportunities for

incompatibilities. Such differences may be benign when used in isolated

deployments but add significant complexity when interoperability across

multiple deployments is desired.

Chapter 2 Iot Frameworks and ComplexIty

67

 Open Connectivity Foundation (OCF)
The Open Connectivity Foundation (OCF) was originally formed under

the name Open Interconnect Consortium (OIC). Broadcom, Intel, and

Samsung were among the initial founders of OIC and were later joined by

Electrolux, Microsoft, and Qualcomm. IoTivity is the open source reference

implementation of both OIC and OCF specifications. The OIC later became

OCF when the AllSeen Alliance and OIC merged in October of 2016. The

AllSeen Alliance is discussed in more detail in a following section.

The OCF framework (Figure 2-8) consists of three layers, Transports,

Core Framework, and Profiles. The transport layer is a plugin interface

that supports any number of transport plugin modules. Although the

architecture refers to them as transports, the remaining networking layers

(network, data link, and physical) are presumed to be provided as well. The

OCF specifications do not prescribe how the layers are implemented, but the

IoTivity reference implementation (see https://iotivity.org/downloads)

may offer guidance. Support for various wired and wireless transports in

IoTivity continues to grow. At the time of this writing, there was support for

CoAP (UDP) over IPv4, IPv6, Ethernet, Wi-Fi, and Bluetooth LE. At the time

of this writing, an Object Security for Constrained RESTful Environments

(OSCORE) draft specification22 defines a REST message binding to CoAP and

HTTP. OSCORE supports connections originating in IoT networks based on

a UDP transport that terminates in cloud services environments or remote

access gateways that are based on a TCP transport.

OCF transport plugin module interface is transport agnostic, making

it possible to define transport plugin modules that implement REST

(Representational State Transfer) semantics. This implies OCF transport

plugins could implement message queuing techniques such as MQTT

(Message Queuing Telemetry Transport) or XMPP (eXtensible Messaging

and Presence Protocol) without structural modifications to the framework.

22 https://datatracker.ietf.org/doc/draft-ietf-core-object-security/

Chapter 2 Iot Frameworks and ComplexIty

https://iotivity.org/downloads
https://datatracker.ietf.org/doc/draft-ietf-core-object-security/

68

The transport interface interaction model roughly follows an object

lifecycle pattern called CRUDN – Create, Retrieve, Update, Delete,

and Notify. RESTful interaction semantics easily map to a series of

request-response exchanges for each interaction – for example, Send

Create_Request message followed by Receive Create_Response message.

OCF interface semantics are typically defined using RAML23 (RESTful

API Modeling Language), although there is interest in migrating to

Swagger24 which complies with the OpenAPI specification. The OpenAPI

specification25 is an open source community effort aimed at defining

robust data modeling languages and tools.

Resource Model Resource Model

Security, Identity & Permissions Security, Identity & Permissions

Application

API - Language Mapping API - Language Mapping

Transport Abstraction Transport Abstraction

Discovery Comms Device
Management Discovery Comms Device

Management

Local
IP

Local
IP

Shared Transport

LE

Protocol Plug-In
Manager

Protocol Plug-In

Comms

Resource

Figure 2-8. OCF conceptual framework

 OCF Core Framework Layer

The Core Framework lies at the center of the OCF architecture. It defines

the “resource” abstraction model which is arguably its most fundamental

building block concept and the characteristic that most distinguishes

it from other frameworks. An OCF resource is primarily a sequence of

23 https://Raml.org
24 https://swagger.io/
25 https://github.com/OAI/OpenAPI-Specification

Chapter 2 Iot Frameworks and ComplexIty

https://raml.org
https://swagger.io/
https://github.com/OAI/OpenAPI-Specification

69

tag-value pairs but can have nested sequences as well. Resources are

typically described using JSON. The OCF resource model approach to

IoT networking presumes all aspects of the network can be represented

declaratively, as a set of resource data structures having CRUDN

interaction semantics. The traditional notion of a network topology

consisting of nodes having routable IP addresses is hidden behind the

resource abstraction.

Resources have several built-in properties (tags) that are common to

all resources such as name, resource type, interface type, and whether or

not it is discoverable and observable. Resource names are a URI (Universal

Resource Identifier). Property names and name prefixes that are common

to all are reserved by the OCF specification.

For example, “rt” refers to the resource type property, “if” refers to

resource interface type property, “uri” is the resource name property

if expressed as a URI, and “n” refers to a resource by its friendly name.

Resource names prefixed with “/oic” are reserved for OCF use.

Additional properties may be appended that further specialize

the resource. For example, it might define a property representing an

operational state such as “on-off-state” where the accepted values are

either ON or OFF. It might have another property “dim-level” with values

in a range from 0 to 100, representing a light’s brightness level.

This is a JSON schema representation of a simple resource:

"oic.r.switch.binary": {

 "type": "object",

 "properties": {

 "value": {

 "type": "boolean",

 "description": "Status of the switch"

 }

 }

}

Chapter 2 Iot Frameworks and ComplexIty

70

This is a RAML representation of a CRUDN RETRIEVE interface

definition:

get:

responses :

200: body:

 application/json:

 schema: |

 { }

The point behind using interface and data modeling languages such

as JSON and RAML is to enable the use of automated tools for generating

code, tests, and even human-readable documentation that makes it easier

to develop applications that not only interoperate but also can be adapted,

updated, or modified at various operational stages.

The Core Framework layer defines several built-in resources used to

implement several of the services and capabilities offered by the core layer.

These include resource discovery, data transmission, data management,

device management, security, identity, and permissions. Several built-in

resources are listed in Table 2-2.

Table 2-2. A Few Resources Built into an OCF Core Framework Layer

Resource Name Description Functional Area

/oic/res a resource that lists all discoverable

resources known to the current network

discovery

/oic/p a resource that reveals details about the

platform that hosts the oCF device

discovery

/oic/rts a resource that lists the resource type

information for all discoverable resources

discovery

(continued)

Chapter 2 Iot Frameworks and ComplexIty

71

A JSON representation of the /oic/p resource might appear as follows.

Note this example includes comments denoted by double slash “//” which

isn’t defined by JSON:

/oic/p {

"rt": "oic.wk.p",

"if": ["oic.if.r"],

"pi": "ABCD123...", //platform identifier UUID

"mnmn": "acme.org", //platform manufacturer

"mnmo": "widget X", //platform model number

"mnpv": "v1.0", //platform version number

}

All properties of the /oic/p resource are read-only to support discovery

use cases. A device management resource would likely allow update

so a management console could configure the resource according to

management goals.

Resource Name Description Functional Area

/oic/ifs a resource that lists the resource

interface information for all discoverable

resources

discovery

/oic/mon a resource that reveals observable

resources

device management

/oic/sec/cred a resource that lists the credentials this

device has configured

security management

/oic/sec/acl2 a resource that lists the access control

restrictions for this device

security management

/oic/sec/dots a resource that facilitates device

onboarding

device and security

management

Table 2-2. (continued)

Chapter 2 Iot Frameworks and ComplexIty

72

The Core Framework specifications also define helpful building block

resources that other resource designers may find useful such as Links and

Collections. Links are a structure for defining a static connection between

multiple resources. It consists of at least three parts: (1) the Context, (2) the

Relationship, and (3) the Target and (4) additional parameters.

For example:

{

 "anchor": "/my/room/1", //the Context

 "rel": "contains", //the Relation

 "href": "/the/light/1", //the Target

 "rt": "acme.light", //the resource type

 "if": "oic.if.a" //the interface type

}

The Collection resource is a bit like a Link resource only it contains an

array of static connections to other resources.

For example:

/my/room/1 {

"rt": "acme.room",

"if": ["oic.if.r", "oic.if.rw"],

"color": "blue",

"dimension": "15bx15wx10h",

"links": [

 { "href":"/the/light/1", "rel":"contains", "rt":"acme.

light", "if":["oic.if.a", "oic.if.baseline"]},

 { "href":"/the/light/2", "rel":"contains", "rt"="mycorp.

light", "if":["oic.if.s" , "oic.if.baseline"]},

 { "href":"/the/fan/1", "rel":"contains", "rt":"hiscorp.fan",

"if":["oic.if.baseline"]}

]

}

Chapter 2 Iot Frameworks and ComplexIty

73

 OCF Profiles Framework Layer

OCF Profiles are libraries of resources containing common functionality

(e.g., light bulb, pan-tilt-zoom camera). Profiles are grouped according to a

target deployment context such as consumer, enterprise, industrial, auto,

education, and health. Profiles are extensible. JSON validation ignores

content not matching a schema target. OCF makes use of this behavior

by allowing vendors to customize in any way they choose. We have mixed

opinions regarding the use of this extensibility mechanism because,

although it allows for post deployment customization, it also encourages

the use of non-interoperable profiles.

The OCF data model supports resource introspection. Introspection

can be used by a client to obtain a machine-readable description of all the

resources, properties, and interface definition syntax. Introspection may

be useful for systems that can learn how to interact with resources without

prior programming.

 The OCF Device Abstraction

OCF uses Universally Unique Identifiers (UUIDs) to identify OCF

devices. The OCF device is like an OCF resource in that it has nested OCF

defined Core and Profile resources. Core resources facilitate discovery,

manageability, security, and connectivity. Profile resources define device

type–specific data and behavior.

Access to OCF resources is accomplished using URIs. The OCF

URI contains a device identifier in the form of a UUID followed by a

reference to its resources. A client interacts with an OCF device by issuing

a discovery message to identify available OCF server devices. This is

followed by a RESTful message targeted at the device with interesting

capabilities. The device’s introspection resource may be used to gain

additional insight regarding device capabilities and may be used to fine-

tune subsequent interactions.

Chapter 2 Iot Frameworks and ComplexIty

74

The OCF device abstraction logically defines a security boundary. OCF

resource accesses follow CRUDN (Create, Retrieve, Update, Delete, Notify)

interaction semantics that are part of the RESTful interface definition (e.g.,

PUT, GET, POST, DELETE). Access control policies use CRUDN privileges

that are applied prior to returning resource data.

There can be multiple OCF devices hosted on the same physical

platform. Logical devices are identified independently of the physical

platform that hosts them. This means, from the perspective of the OCF

device, it is not possible to distinguish whether a peer OCF device is

geographically local or remote.

 OCF Security

OCF security is exposed to devices through OCF resources. This is a

simple yet powerful idea as all security interactions can be accomplished

using the OCF framework. OCF security architecture has three main

aspects: (1) access control, (2) message encryption, and (3) device

lifecycle management. Access control is applied at the OCF device and

resource- level granularity. It’s worth noting that access control is not

applied at the property level (although there are some exceptions). Access

control list (ACL) policy is configured using the /oic/sec/acl2 resource.

This resource is an array of ACL entries where each entry may be used to

match the resource requestor to the requested resources so that an access

restriction, expressed as CRUDN, can be applied before the requested

resource is returned to the requestor.

/oic/sec/acl2 {

"aclist2": [

 "subject": ...,

 "resources": [...],

 "permission": CRUDN,

Chapter 2 Iot Frameworks and ComplexIty

75

 "validity": ...,

 "aceid": INTEGER

]

}

The subject property is used to match the requestor. There are three

ways this could be accomplished. One method uses the OCF device ID,

which is a UUID. If the requesting device authenticates with a credential

known to the local device, then the requesting device’s ID is known.

Another method is by role name. A role certificate may be presented at

any time by the requestor during a session. If a role is asserted, then ACL

entries that specify a role name could be used to match the requestor. A

third method is by connection type. OCF connectivity options allow for

anonymous (unauthenticated) and/or encrypted message payloads. It may

be appropriate to supply a blanket ACL entry for anonymous requestors

that is highly restrictive and only lessen restrictions when requestor is

authenticated. Unencrypted data similarly may require a blanket ACL rule.

OCF supports a variety of cryptographic algorithms and key types

including symmetric, raw asymmetric, and certified asymmetric. OCF

devices must support symmetric keys and related algorithms. Security

profiles may require support for raw asymmetric keys or keys with

certificates.

Message encryption is applied by the transport layer (e.g., DTLS

applied to CoAP messages). The use of TLS (Transport Layer Security)

implies the endpoint where data is no longer protected by cryptography

is somewhere in the framework but not necessarily in the OCF device

context. The use of TLS also implies there are deployment cases where

the TLS endpoint is actually a gateway, proxy, or firewall or another

intermediate node that isn’t the originating OCF device. Consequently,

the use of TLS alone can’t guarantee end-to-end data protection. To

handle these, one of four options may be tried: the intermediary obtains

Chapter 2 Iot Frameworks and ComplexIty

76

a copy of the OCF device’s credential, the intermediary presents its own

OCF credential (masking the true OCF device originating the request),

the intermediary uses its own credential but supplies a role credential

that is common to the originating device, or the intermediary remains

anonymous.

While there may be several ways for an intermediary to establish a

connection legitimately, the credentials used may not adequately enable

the original requestor the appropriate access rights. Lack of end-to-end

message protections can complicate management and deployment of

proper security controls. Adding this complexity runs counter to the

philosophy of simplifying apparent complexity while hiding actual

complexity.

OCF has a device lifecycle management model that incorporates

device lifecycle state into the device resource model. The /oic/sec/pstat

resource includes a property named Device Onboarding State or “dos.”

There are five states:

• RESET: Device transitions to its default state prior to

onboarding.

• RFOTM: Device transitions to a state ready for

onboarding into a new network.

• RFPRO: Device transitions to a state ready for

provisioning resources.

• RFNOP: Device transitions to a state suitable for

normal operations.

• SRESET: Device transitions to a state subsequent

to onboarding, but where the device may be

recommissioned or reconfigured with other options

normally established only at onboarding.

Chapter 2 Iot Frameworks and ComplexIty

77

The device is guaranteed to be in one of these five states throughout

its deployment. These states map to elements of an IoT platform lifecycle

model (see Figure 2-5). For example, a device may be in the RESET state

during manufacturing and supply chain phases then transition to RFOTM

in order to enter the deployment phase. It may transition to RFPRO as part

of onboarding and initial commissioning then transition to RFNOP while

in normal operation and monitoring phase. Management and update

phases may or may not require a transition to RFPRO depending on how

impactful the changes may be to the framework’s resources. Hardware or

low-level system changes may require transitioning to SRESET in order to

change resources and properties the framework expects are immutable.

Decommissioning implies a transition to RESET.

OCF “dos” states can have beneficial security impact because the

device model at the framework layer enforces restrictions that could

otherwise be ignored (potentially resulting in security incidents) by other

resources and applications. For example, the /oic/sec/dots contains a

property “owned” that is only updatable when the device is onboarded

into a network for the first time. It is read-only thereafter. If an attacker tries

to update it in some way to force an ownership change, the device state

model prevents it.

OCF onboarding accommodates secure supply chains. Owner

Transfer Methods (OTMs) are secure protocols designed to work with

platform embedded credentials such as a manufacturer’s certificate.

OTMs rely on participation from platform vendors to establish platform

provenance at manufacturing and through the supply chain. A variety of

OTMs are supported having various levels of provability of supply chain

provenance. The OTM interface is extensible, allowing improved OTM

adoption over time.

A security challenge facing OCF frameworks is the binding between

the lower framework layer to the platform and its security capabilities

isn’t defined by the specification. Implementers are free to make trade-off

decisions that likely differ from product to product and vendor to vendor.

Chapter 2 Iot Frameworks and ComplexIty

78

The OCF resource model tolerates complexity in that it supports any

data structure representable by JSON. OCF standardized structures, Links

and Collections, can be used to create complex relationships between

resources enabling, for example, unlimited layers of nested resources that

are difficult to define meaningful ACL rules. Resources can contain links

to resources hosted on remote devices resulting in a chain of interactions

not bounded by an end-to-end ACL policy. Encryption is achieved using

TLS. TLS endpoints occur in the communication layer resulting in hop-

by- hop confidentiality protection semantics. Although the OCF resource

model complexity may be justified, its flexibility shouldn’t reach beyond

the security mechanisms protecting it.

 AllSeen Alliance/AllJoyn
The AllSeen Alliance began in 2013 as an open source Linux Foundation

project that defined an IoT framework aimed at consumer class home and

small office automation use cases. AllJoyn is the open source reference

implementation that first became available in 2016. AllSeen Alliance

member companies included Affinegy, Arçelik, Canary, Cisco, Changhong,

doubleTwist, Electrolux, Fon, Haier, Harman, HTC, LIFX, Liteon, LG,

Microsoft, Muzzley, Onbiron, Panasonic, Sears, Sharp, Silicon Image,

Sproutling, Sony, TP-Link, Two Bulls, and Wilocity. The AllSeen Alliance

merged with the Open Connectivity Foundation in October of 2016.

IoTivity 1.3 released in June 2017 contained support for an IoTivity to

AllJoyn bridge.26 AllSeen deployments exist primarily as legacy networks as

development resources have turned elsewhere.

AllJoyn architecture (Figure 2-9) consists of three classes of node,

leaf nodes, router nodes, and bridges. Leaf nodes contain application

code and are primarily responsible for authentication and encryption.

Router nodes host leaf nodes – no direct application to application

26 https://iotivity.org/downloads/iotivity-1.3.0

Chapter 2 Iot Frameworks and ComplexIty

https://en.wikipedia.org/wiki/Arçelik
https://iotivity.org/downloads/iotivity-1.3.0

79

interaction is permitted unless brokered by a D-Bus (Desktop Bus)

agent – though application nodes may embed router node functionality

giving the impression of direct application connectivity. Router nodes are

responsible for message exchange that includes request-response and

publish-subscribe support. It handles discovery, advertising, presence,

and session management. The messaging transport is provided by D-Bus27

technology. D-Bus is a point-to-point communications protocol built

on top of IPS (inter-process communication) or through TCP sockets. A

daemon process monitors bus activity processing messages on behalf of its

connected applications. D-Bus channels are named using UNIX filesystem

objects. An application must know which transport protocol to use and an

appropriate D-Bus name when attempting to connect to a peer leaf node

known as the “bus address.” D-Bus supports several status and discovery

commands that may be helpful in determining the health of D-Bus

daemon processes:

• Org.freedesktop.DBus.Peer is used to determine if a

peer is alive.

• Org.freedesktop.DBus.Introspectable is used to obtain

an XML description of the interfaces, methods, and

signals the device implements.

• Org.freedesktop.DBus.Properties is used to expose

native properties and attributes of connected devices

or to simulate them if they don’t exist.

• Org.freedesktop.DBus.ObjectManager is used to query

subobjects under its path when device objects are

organized hierarchically.

27 https://cgit.freedesktop.org/dbus/dbus/tree/NEWS?h=dbus-1.12

Chapter 2 Iot Frameworks and ComplexIty

https://cgit.freedesktop.org/dbus/dbus/tree/NEWS?h=dbus-1.12

80

AllJoyn leaf node layers (Figure 2-10) consist of the AllJoyn Core

that handles discovery, security, connection management, and network

management. The AllJoyn Thin Client is an optimized subset of the AllJoyn

Core targeting ultra-constrained environments. Message authentication

and encryption protects the service framework and application data end-

to- end. However, AllJoyn Thin Client nevertheless requires at least one

routing node to complete an end-to-end connection.

The AllJoyn Service Framework implements device services.

Onboarding, control panel, and notification services are common to all

devices. Application-specific services are added as needed to expose

device-specific specializations.

The AllJoyn router nodes contain an AllJoyn Core layer that contains

message routing capabilities. However, routing nodes can be configured

to protect all D-Bus traffic between cooperating D-Bus daemon processes

using a common shared key. AllJoyn Management Functions perform

advertising and discovery functions on behalf of leaf nodes. Routers

App

App

App

App

App

App

App

App

App

Ethernet

WiFi

BT / Thread

AllJoyn
Router

AllJoyn
Router

AllJoyn
Router

AllJoyn
Router

Bridge

Bridge

Bridge

App
(Leaf Node)

Figure 2-9. Example AllJoyn network topology

Chapter 2 Iot Frameworks and ComplexIty

81

maintain context regarding leaf node presence and maintain a session for

each attached leaf node. Messages involved in publish-subscribe messaging

may have fan-out semantics requiring platform-level optimization support.

For example, IP multicast may be an efficient way to deliver the same

message to multiple recipients. Subscription registrations are maintained

here as well. Message filtering can be applied by AllJoyn routers where the

aim is congestion control given requests containing a query string.

AllJoyn bridges perform network and link layer translations when

AllJoyn nodes are physically separated or when AllJoyn framework-level

objects are gatewayed to a different IoT framework environment. For

example, framework bridges may support IoTivity or OneM2M mappings.

AllJoyn Leaf Node

Onboarding

Discovery Security
Connection

Management
Network

Management

Control Panel Notifications
Advertising
& Discovery

Sessions &
Presence

Fan-out
Stor&Forwd

Subscrib &
Filtering

Message Router

AllJoyn Thin Client

AllJoyn Application Layer

AllJoyn Management Functions

AllJoyn Core

AllJoyn Service Frameworks

AllJoyn Core

Physical Layer Physical Layer

AllJoyn Routing Node

Figure 2-10. AllJoyn leaf and router nodes layering

 AllJoyn Security

AllJoyn security rests with the AllJoyn leaf node and with the application

layer. Such an approach encourages end-to-end protection of data.

Effective data-level protection at the application layer requires data

formatting and encapsulation technology that is part of its data model.

AllJoyn data objects are described using XML and rely on XML Security28

for secure encapsulation. Although D-Bus can support security at the IP

layer, it relies on the application endpoint for end-to-end data protection.

28 www.w3.org/standards/xml/security

Chapter 2 Iot Frameworks and ComplexIty

http://www.w3.org/standards/xml/security

82

When the Open Connectivity Foundation and the AllSeen Alliance

merged, they defined a bridging specification that allows OCF and AllJoyn

devices to interact; however the OCF bridging specifications do not define

security interoperability.

 Universal Plug and Play
Universal Plug and Play (UPnP) was originally designed for consumer

electronics, mobile devices, home automation, and personal computer

networks emphasizing zero configuration networking – the idea that

setting up a service doesn’t require any manual configuration. It includes

automatic assignment of network addresses, automatic distribution

of hostnames, and automatic discovery of network services. Although

UPnP envisioned interoperation with consumer electronics and home

automation, its first international specification published in 2008 by ISO/

IEC29 before the Internet of Things became a popular buzz word.

The UPnP set of standards has evolved to better support audio/video

equipment, remote user interfaces, quality of service, and remote access

from the Web. As recently as 2015, the UPnP Forum published the UPnP

Device Architecture 2.030 specification that extends into the Web through

XMPP integration. The IoT Management and Control Architecture31

published September 10, 2013, addresses more directly home automation

requirements with the inclusion of sensor management.

29 ”ISO/IEC standard on UPnP device architecture makes networking simple
and easy.” International Organization for Standardization. 10 December 2008.
Retrieved 11 September 2014.

30 www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
31 http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-
Architecture-Overview-v1.pdf

Chapter 2 Iot Frameworks and ComplexIty

http://www.iso.org/iso/pressrelease.htm?refid=Ref1185
http://www.iso.org/iso/pressrelease.htm?refid=Ref1185
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-Architecture-Overview-v1.pdf
http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-Architecture-Overview-v1.pdf

83

The UPnP protocol stack (Figure 2-11) may be regarded as IoT

frameworks, though loosely as UPnP is tightly bound to IP and the network

services built around IP such as DHCP, DNS, IP multicast, and so on. UPnP

network topologies parallel that of IP network topologies.

The UPnP Device Architecture layer consists of a discovery service

named Simple Service Discovery Protocol (SSDP) that supports passive

discovery request-response as well as active service availability notification

and unsolicited advertisements using local multicast addressing. The

General Event Notification Architecture (GENA) handles the details of

registering notification events and sending notification messages when

events are triggered. The Simple Object Access Protocol (SOAP) uses

XML-formatted messages that are delivered using RESTful HTTP request-

response exchanges. UPnP also supports IP multicast events for simple

messages that need to be broadcast to multiple UPnP nodes.

HTTP

Multicast

Messaging
(SOAP)

Notification
(GENA)

Discovery
(SSDP)

UPnP Applications

UPnP Vendor Specific Layer

UPnP Forum Standardization Layer

UPnP Device Architecture Layer

TCP / UDP

IPv4 / IPv6

Figure 2-11. UPnP protocol stack

UPnP networks (Figure 2-12) consist of two node types, control points

and Devices. Devices host Services. Device nesting is supported; the top-

level Device is known as the Root Device. Devices are conceptual objects

but are identified using IP addresses. Control points contain code that

controls devices or otherwise interacts with services.

Chapter 2 Iot Frameworks and ComplexIty

84

UPnP can be divided into six architectural elements: addressing,

discovery, description, control, event notification, and presentation.

Architectural elements roughly follow six phases of UPnP service and

control point interactions:

 I. Addressing : Zero-touch configuration motivated

the use of DHCP (Dynamic Host Configuration

Protocol) so the device would automatically look

for a DHCP service to obtain an IP address. If no

DHCP service was available, the UPnP device

will autogenerate an IP address. The device can

automatically obtain a DNS name using DNS

forwarding. Secure device and control point identity

was not a major focus.

 II. Discovery: Service discovery automation is

achieved through proactive “alive” messages that

are broadcast periodically to listening control

points. Control points can send discovery messages

Control Point

Control
Code

Root Device

Device

Service

Service

Control Point

Control
Code

Service

Figure 2-12. UPnP network nodes consist of control points and
Devices that host Services

Chapter 2 Iot Frameworks and ComplexIty

85

with filters for the class of interesting service. This

approach removes the need for statically configured

services enabling dynamic services (that can go

online or go offline easily). Control points rely

on SSDP notifications to keep them appraised of

service online status. Service name URLs are public

which could have privacy implications. Secure

discovery was not a major focus.

 III. Description: Discovery reveals the existence of

UPnP devices and services, but control points

may require more context to determine if they

are relevant to control point applications. Device

description allows introspection using an XML

description of the device structure. It includes the

following information:

• Vendor-specific details include manufacturer

name, model, version, serial number, and URLs to

vendor-specific web sites.

• Service details include URLs for control, event

notification, and service description. Service

commands and their parameters are detailed.

• Variables that describe Runtime state are described

in terms of data type, expected range, and event

characteristics.

 IV. Control: Control point code is expected to identify

which commands and data objects are supported

by the service to construct a program sequence

that uses them to achieve application objectives.

Command formatting is specified using SOAP

protocol following the request- response pattern.

Chapter 2 Iot Frameworks and ComplexIty

86

 V. Event Notification: Services built around sensors

and physical devices may change internal state

autonomously. Control points seeking to be appraised

of service and variable state changes can register for

asynchronous notifications when things change.

Notification messages are small; if the control

point needs more information than is available in

the notification message, it may need to follow the

notification with a request-response interaction.

UPnP event notification capability is referred to as the

General Event Notification Architecture (GENA).

 VI. Presentation: Normally, UPnP nodes operate as

headless entities. Nevertheless, users may need

to monitor and control things. UPnP services can

support web browser user interfaces by returning

a URL to a web page markup (HTML) that exposes

service variables and control widgets.

 UPnP Security

Initially, UPnP architecture did not comprehend security. It was thought

to be addressed in the layers beneath (network) or above (application).

More recently The IoT Management and Control Architecture32 was added

which included access control features for sensors was facilitated by roles

and sensor permissions. Sensor permissions include

• ReadSensor: Control points can issue ReadSensor()

actions to sensor objects.

• WriteSensor: Control points can issue WriteSensor()

actions to sensor objects.

32 http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-
Architecture-Overview-v1.pdf

Chapter 2 Iot Frameworks and ComplexIty

http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-Architecture-Overview-v1.pdf
http://upnp.org/specs/iotmc/UPnP-iotmc-IoTManagementAndControl-Architecture-Overview-v1.pdf

87

• ConnectSensor: Control points can issue

ConnectSensor() and DisconnectSensor() actions to

sensor objects.

• CommandSensor: Control points can modify

IoTManagementAndControl properties in the

data model (which is a data repository object).

• ViewSensor: Control points can read

IoTManagementAndControl properties in the

data model.

UPnP sensor objects expect control point operates with a particular

role where permissions are assigned based on the set of behaviors each

role is expected to follow.

UPnP control points must possess one of three UPnP defined roles:

• Admin: Role can read, write, connect, command, or

view any sensor object.

• Public: Role can read or write specific sensor objects

(e.g., those supporting the Public role).

• Basic: Role can read or write specific sensor objects

(e.g., those supporting the Basic role).

A group of sensors form an object that can respond to control point

accesses. Sensor groups have their own permission classification denoted

by a sensor command name followed by the group name (e.g., smgt:ReadS

ensor()#[SensorGroupName]). There are four permissions for Read, Write,

Command, and View. ConnectSensor isn’t supported. Sensors inherit

the group permissions upon joining the sensor group. Control points

acquire the “group” access by joining the sensor group as a Control point.

Interestingly the UPnP specification refers to group permissions as group

roles.

Chapter 2 Iot Frameworks and ComplexIty

88

UPnP security features are optional to implement, making it difficult to

force the ecosystem to deploy UPnP with security.

The Open Connectivity Foundation and the UPnP Forum merged in

2016. They defined a bridging specification that allows OCF and UPnP

devices to interact; however the OCF bridging specifications do not define

security interoperability.

 Lightweight Machine 2 Machine (LWM2M)
The Open Mobile Alliance (OMA) defined the Lightweight Machine 2

Machine (LWM2M)33 specification to address IoT device management. We

have included it at the end of the section summarizing consumer class IoT

frameworks, but it could just as easily be classified as an IoT manageability

framework. However, the Internet Protocol for Smart Objects (IPSO)

Alliance extended LWM2M such that it can be used to describe a variety

of consumer class IoT devices referred to as “smart objects” borrowing

terminology from the LWM2M “object” model. OMA and IPSO Alliance

merged in March 27, 2018,34 forming new committees within OMA

organization to continue its evolution as both an IoT manageability

framework and a general-purpose IoT framework.

 LWM2M Architecture

LWM2M architecture (Figure 2-13) utilizes a LWM2M Server node to host

device management and other applications that interact with LWM2M

client nodes hosting one or more LWM2M objects. Servers use RESTful

CoAP commands (GET, POST, PUT, DELETE) to read and update the

objects. Secure access is achieved using DTLS layer of CoAPs. CoAP and

DTLS use UDP/IP and SMS transport protocols.

33 www.openmobilealliance.org/release/LightweightM2M/
34 www.omaspecworks.org/ipso-alliance-merges-with-open-mobile-alliance-
to-form-oma-specworks/

Chapter 2 Iot Frameworks and ComplexIty

http://www.openmobilealliance.org/release/LightweightM2M/
http://www.omaspecworks.org/ipso-alliance-merges-with-open-mobile-alliance-to-form-oma-specworks/
http://www.omaspecworks.org/ipso-alliance-merges-with-open-mobile-alliance-to-form-oma-specworks/

89

The LWM2M object model (Figure 2-14) is a simple but powerful

abstraction of IoT devices. The LWM2M client is the managed node and

corresponds to a sensor/actuator device. LWM2M nodes describe a set of

network exposed variables called objects. A LWM2M Server may reference

an object using a URI string that names the object plus its resources. For

example, a LWM2M URI might appear as “/0/1” where “0” is the object

identifier and “1” is the resource identifier. Objects contain one or more

resources, but resources may not contain objects; in other words, nesting

of objects is not supported. Friendly names are not supported since doing

Device
Management
Application

M2M Web
Application

LWM2M Server

LWM2M Client

M2M Device

LWM2M

Objects

Objects

CoAP

DTLS SMS

UDP

Stack
Efficient Payload
CoAP Protocol
DTLS Security
UDP or SMS Bearer

Interfaces
Bootstrappping

Registration
Object / Resource Access

Reporting

M2M Web
Application

Figure 2-13. LWM2M architecture showing client node with objects
being managed by a Server node hosting device management and
various web applications

Chapter 2 Iot Frameworks and ComplexIty

90

so was thought to make URIs unnecessarily verbose. Instead objects and

resources are numeric values. It is possible to have an array of objects of

the same type using same object identifier. An Object Instance Identifier

is added between the object ID and the resource ID to qualify the object

instance. The URI format has the following form:

/ <ObjectID> / <ObjectInstanceID> /

<ResourceID>

Figure 2-14 shows an example object configuration consisting of two

objects. The first contains a single object instance with three resources.

The URI path begins with a leading slash “/” followed by the ObjectID

referencing the first object (denoted by red arrow). It is followed by a

second slash then the ResourceID referencing the third resource in the

first object (denoted by a green arrow). The second object contains two

instances of Object 2 where each instance consists of six resources. The

URI path examples have three elements, the middle being the Object

Instance Identifier (denoted by a blue arrow). One URI path shows an

Object Instance Identifier with the value 1 that references the first object

instance and the first resource instance within it. The other URI path

references the second object instance and the sixth resource within it.

Chapter 2 Iot Frameworks and ComplexIty

91

The LWM2M object model expects IoT devices can be described

relatively simply. The object model abstraction may hide significant actual

complexity requiring the object model designer to think carefully about

which device attributes need to be exposed and how best to map actual

complexity to a simpler apparent complexity.

The example object in Figure 2-15 reveals six resources. The chart

describes additional metadata regarding the resource including the type

of access allowed (read vs. read/update), if it is a multi-instance object,

the resource data type, the allowable range of data values, and the units in

which the data is expressed.

LWM2M Client

Object 1

uri:/ 1 3/

uri:/ /2

2 2 6

1 1/

uri:/ / /

Object 2

Object Instance 1

Object Instance 2

Resource 1

Resource 1
...

...
Resource 1

Resource 6

Resource 6

Resource 2

Resource 3

Figure 2-14. LWM2M object model example showing URI references
to data values

Chapter 2 Iot Frameworks and ComplexIty

92

The object namespace needs to be managed to avoid confusion when

servers access client objects. The OMA reserved object identifiers 0–1023

for OMA defined objects. 1024–2047 are reserved for future use. 2048–

10240 are allocated for third-party defined objects. For example, the IPSO

Alliance object definitions are allocated from this range. 10241–32768 are

assigned to public entities, vendors, or individuals for proprietary use.

Introspection is not supported except through the use of a separately

defined introspection service – something that wasn’t defined at the time

of this writing.

 LWM2M Device Management

LWM2M defines five device management services:

• Bootstrapping: Configures symmetric secrets, raw

public keys, and certificates clients and service will use

to establish DTLS sessions. LWM2M Services may be

configured. Access control lists may also be configured.

• Remote Management: Updates operational settings

as defined by device profiles. Triggers for controlling

actuation may also be configured or reset as part of

normal operation.

Resource
Name

ID Access
Type

Multiple
Instances?

Type Range Units Descriptions

Latitude

Longitude

Altitude

0 R N0 Decimal

1 R N0 Decimal

2 R N0 Decimal

Deg

Deg

m

Uncertainty 3 R N0 Decimal m

Velocity 4 R N0 Refers to
3GPP
GAD
specs

Timestamp 5 R N0 Time

Refers to
3GPP
GAD
specs

The decimal notation of latitude, e.g. -43.5723
[World Geodetic System 1984]

The decimal notation of longitude, e.g. 153.21760
[World Geodetic System 1984]

The decimal notation of Altitude in meters above sea
level.

The accuracy of the position in meters.

The velocity of the device as defined in 3GPP 23.032
GAD specification. This set of values may not be
available if the device is static.

The timestamp of when the location measurement
was performed.

Figure 2-15. Example LWM2M location object

Chapter 2 Iot Frameworks and ComplexIty

93

• Firmware Update: Client nodes report firmware version

and firmware packages can be installed through the

firmware update object.

• Fault Management: Device errors can be exposed

through the fault reporting objects. These may be

viewed by other nodes querying operational status.

• Reporting: Notification of changing sensor values

can be configured for multiple recipients. Status of

the notification can be monitored and configuration

changes applied when needed.

The LWM2M architecture model reverses client and server roles

(Figure 2-16) in comparison to other frameworks such as OCF, UPnP, and

AllJoyn. This seems reasonable since the primary goal of LWM2M is device

management where the device utilizes management service providers

that bootstrap and configure the client. LWM2M supports both client- and

server-initiated bootstrapping. Once the client device is configured, it may

interact with other IoT nodes as an IoT service such as a sensor or actuator.

It may be reasonable to combine LWM2M for device management with

a different IoT framework that doesn’t support device management since

LWM2M can operate alongside it provided the other IoT framework device

lifecycle states are aligned with the LWM2M device state model.

Chapter 2 Iot Frameworks and ComplexIty

94

 LWM2M Security

LWM2M security has two main components, DTLS secured messages

and access control lists (ACLs) for LWM2M objects (Figure 2-17). DTLS

supports shared secrets (symmetric) using cipher suites for preshared

keys (PSK), raw public keys (asymmetric) using cipher suites that perform

ephemeral Diffie-Hellman key exchange that supports perfect forward

secrecy (PFS), and certificates (asymmetric) using cipher suites that

support popular certificate signing algorithms such as elliptic curve

cryptography and RSA.

Client Bootstrap
(Optional)

Registration

Notify

Observe Resource

Write Resource

Read Resource

Bootstrap Object

Endpoint Client Name, Objects

Object / Resource

Resource Value

Object / Resource, Resource Value

Object / Resource

Resource Value

Resource Value

De-register
De-register

LWM2M
Client

LWM2M
Server

Figure 2-16. LWM2M example device management lifecycle scenario

Chapter 2 Iot Frameworks and ComplexIty

95

ACL support is achieved using the Bootstrap server to provision access

control resources to LWM2M clients seeking access to LWM2M servers.

In the following example, the Bootstrap server provisions the security

object in Client 1 with the ACL object with read and write access to Server 1

(e.g., ACL:<Server 1, RW>). It also provisions Client 3 with read and write

access to Server 2 (e.g., ACL:<Server 2, RW>).

LWM2M
Client

LWM2M
Client 3

LWM2M
Server 1

LWM2M
Server

2

Application

Light
Switch

LWM2M
Bootstrap

Server

ACL:
<Server 1,

RW>

Registration and
resource access

Registration
and

resource
accessACL:

<Server 2,
RW>

Figure 2-17. LWM2M access control list configuration

Provisioning credentials to each of the clients to allow the Bootstrap

server access to their security objects is part of initial device setup, but

LWM2M doesn’t (at the time of this writing) implement onboarding

(see the section “Deployment”). The method for establishing trust in the

Bootstrap server by devices is vendor specific.

Chapter 2 Iot Frameworks and ComplexIty

96

 One Machine to Machine (OneM2M)
Eight global standards organizations [ARIB (Japan), ATIS (United States),

CCSA (China), ETSI (Europe), TIA (United States), TSDSI (India),

TTA (Korea), and TTC (Japan)] and six other industry fora, consortia, or

standards bodies (Broadband Forum, CEN, CENELEC, GlobalPlatform,

Next Generation M2M Consortium, OMA) collaborated to develop the

OneM2M standard. The group, known as OneM2M,35 was formed in July

2012. OneM2M produced the OneM2M technical specification in February

2016.36

OneM2M is an architecturally complete IoT framework (Figure 2- 18)

that consists of three basic layers: (1) Application layer, (2) Common

Services layer, and (3) Network Services layer. An instantiation of a layered

module is called an entity. An application is therefore an application entity

(AE), a service is a common services entity (CSE), and a network module

is a network services entity (NSE). Interfaces facilitate communication

between entities known as Reference Points. A OneM2M reference point

uses the nomenclature “Mc-” meaning M2M communication to the entity

“-” – where the dash is a placeholder for the first letter of the entity name.

For example, Mca describes a reference point connecting an Application

Entity and a Common Services Entity. Mcn describes a reference point

connecting a Network Services Entity to a CSE. Mcc describes a CSE to

CSE reference point.

35 http://onem2m.org/
36 OneM2M Technical Specification, TS-0001-V1.13.1, Functional Architecture,

2016- February-29

Chapter 2 Iot Frameworks and ComplexIty

http://onem2m.org/

97

Deployment scenarios may have stereotyped nodes, according to

a logical or functional network topology. For example, Application and

Common Services entities may cooperate to provide infrastructure

capabilities such as manageability services, message logging, telemetry,

and so on. OneM2M refers to these nodes as infrastructure nodes (IN).

Other nodes may cooperate to implement an application, for example,

HVAC control, called Application Dedicated Node (ADN) or Application

Service Node (ASN). Nodes deployed to connect ADNs to INs or other

ADNs are called middle nodes (MN). Bridging non-OneM2M nodes are

given the acronym NoDN.

Nodes may contain programs that control resources on other nodes.

Resources are composed of a set of attributes. Resources can be nested,

called a child resource.

Nodes are identified with a globally unique identifier that is assigned

when the node registers with a registration node hosting a registration

common services function. Physical devices host OneM2M nodes.

AE

Infratructure Node

Middle Node

Middle Node
Application
Dedicated

Node

Application
Service

Node

Application
Dedicated
Node
Application
Dedicated
Node

Middle Node

AE

IN-CSE

CSE

CSE

CSE

AE

AE

AE

AE

AE

CSE

AE

Figure 2-18. OneM2M node topology architecture

Chapter 2 Iot Frameworks and ComplexIty

98

Entity layers are subdivided into functions. The Common Services

Entity (Figure 2-19) defines a handful of common services functions (CSF)

that manage device lifecycle including the following:

• Application and service layer management (ASM):

The ASM function manages all entities hosted by any

node excluding NoDN nodes. Management functions

consist of two categories: (1) configuration functions

and (2) software management functions. Configuration

CRUDN functions expose resources used to manage

entities, while software management functions are

concerned with managing software and related artifacts

associated with a software lifecycle.

• Communication management and (message) delivery

handling: These functions manage delivery, temporary

storage, and caching of messages. It also manages

policies related to configuration and tuning of message

delivery infrastructure.

• Data management and repository handling: These

functions manage data repositories. They are

concerned with the collection, aggregation, mediation,

storage, and preparation for analytics and semantic

processing.

• Device management: These functions address device

management capabilities associated with OneM2M

nodes and can use existing IoT device management

frameworks such as TR-069 and LWM2M or may define

new functions. Device management functions translate

data, protocol, and semantics from one management

node to another using a Management adapter module.

Management gateways, proxies, and bridging functions

Chapter 2 Iot Frameworks and ComplexIty

99

fall within the scope of device management functions.

Device management functions perform device

configuration, device diagnostics, monitoring, firmware

management, and topology management.

• Discovery: Nodes, resources, and attributes can be

discovered using a discovery CSF. Typically, the invoker

supplies a query value that selects a subset of available

possible matches. Filter criteria are expressed in terms

of identifiers, keywords, location, and other semantic

information.

• Group management: Nodes can be organized into

groups. The group management CSF must validate

group membership and whether the group member

is capable of performing functions meaningful to the

group. Groups are used to coordinate publication,

broadcasts, or multicasts to multiple nodes and to

define roles for access control.

• Location: The location CSF senses and publishes

location information for the node. Location coordinates

can be more than latitude-longitude coordinates but

require knowledge of location extension semantics.

• Network service exposure: The network service

exposure, service execution, and triggering (NSSE)

CSF manages exposure of underlying networks and

communication layers through Mcn reference points

and NSE modules.

Chapter 2 Iot Frameworks and ComplexIty

100

• Registration: Entity services must register with a

registrar CSF in order to make their services available

for use. The registration CSF supplies a requestor with

the node identifier where the service can be reached,

a schedule for when it can be reached, and details for

accessing the service.

• Security: The security CSF handles identity

management, access control, authorization,

authentication, security associations, data

confidentiality, data integrity, and security system

management. Access control list subjects can group

nodes that enforce read or write permissions.

ACLs are associated with resources, entities, and

repositories. Access control can be applied to discovery

resources but requires subject authentication and

authorization – though an “anonymous” group could

be defined that corresponds to an ACL entry matching

unauthenticated subjects.

• Service charging and accounting: The SCA CSF

manages telemetry generation and collection used to

charge for services, events, information, and real-time

credit control.

• Subscription and notification: The subscription CSF

manages subscription operations and notification

message delivery to subscribers when the subscription

condition is met. Subscriptions are registered with

a resource or group of resources following an access

control check. Changes to resources are tracked at

attribute granularity. Changes to subresources are also

tracked but not attributes of subresources.

Chapter 2 Iot Frameworks and ComplexIty

101

IoT networks are sometimes partitioned into enclaves of subnetworks

called domains (Figure 2-20) to improve isolation for safety, reliability,

and security reasons. OneM2M reference point architecture envisages

network enclaves by allowing multiple AE + CSE + NSE verticals connected

through peer Mcc and Mca reference points. For example, a fieldbus

domain may contain a network of closed-loop sensors and actuators

running at real time or near real time, while an infrastructure domain may

contain accounting, telemetry, firmware update, and other services based

on restful client-server interactions. Still another domain may offload

complex analytics to a data center or Cloud.

Application
Entity (AE)

Application and
Service Layer
Management

Discovery

Registration

Communication
Management/

Delivery Handling

Network Service
Exposure/Service

Ex+Triggering

Data Management
& Repository

Service Charging &
Accounting

Subscription and
Notification

Underlying Network
Service Entity (NSE)

Group
Management

Security

Location

Device
Management

Mca Reference Point

Common Services Entity (CSE)

Mcc Reference Point

Mcn Reference Point

Figure 2-19. OneM2M layering with entities and Common Services
Entity functional modules

Chapter 2 Iot Frameworks and ComplexIty

102

OneM2M device management is built from an open-ended set of

common services functions that may be tailored toward any number of

existing industry standard and nonstandard device management solutions

including TR-069,37 OMA-DM,38 and LWM2M. As such, OneM2M can be

thought of as a framework of frameworks.

OneM2M architecture allows extremely flexible configuration of

functional modules and extensibility options. This flexibility may be

helpful when tailoring a solution for constrained embedded devices

seeking to minimize resource footprint or when designing gateways,

bridges, and framework service nodes that are scattered throughout

a complex IoT network. However, flexibility may come with a cost as

Field Domain

Mca

Mcn

Mca Mca

Mcn

Mcc Mcc’ To Infrastructure
Domain of other
Service Provider

Infrastructure Domain

AE AE

CSE CSE

NSE NSE

Figure 2-20. OneM2M domain architecture allows network enclave
isolation

37 Broadband Forum Technical Report, “TR-069 CPE WAN Management Protocol,”
Issue: 1 Amendment 6, Version 1.4, March 2018. www.broadband-forum.org/
technical/download/TR-069.pdf

38 www.openmobilealliance.org/wp/overviews/dm_overview.html

Chapter 2 Iot Frameworks and ComplexIty

http://www.broadband-forum.org/technical/download/TR-069.pdf
http://www.broadband-forum.org/technical/download/TR-069.pdf
http://www.openmobilealliance.org/wp/overviews/dm_overview.html

103

network latencies, routing, network security, and network management

overhead may be incurred. Hiding this complexity from system designers

may have undesirable consequences, while exposing the flexibility (having

simplified apparent complexity) to applications and users may also have

undesirable consequences.

 OneM2M Security

OneM2M security design comprehends identity, authentication,

authorization, access control, data protection, and privacy. That is to say,

each of these security requirements was considered and addressed to a

certain extent. However, the test determining adequacy largely depends on

how completely the industry implements the standard and how effective

the security mechanisms defined address the threats facing IoT networks.

OneM2M security administration begins with the provisioning of

master credentials that enables the security CSF functions to be applied.

Master credentials can be post-provisioned (subsequent to initial

deployment of a CSE containing security CSFs) or pre-provisioned with

cooperation from a device manufacturer – though the exact operation of

onboarding protocols for pre-provisioning is out of scope.

OneM2M framework architecture abstracts away (hides) physical

(device) boundaries. An Mcc reference point may or may not cross a device

boundary. The same is true for Mca reference points as well. Intuitively,

one might conclude that the use of an Mcn reference point does cross

a physical boundary, but with IP loopback, shared memory, and other

interprocess communication and overlay network mechanisms, Mcn also

doesn’t describe physical boundary crossing semantics. This is relevant to

security because attack points often occur at boundary crossings. Although

the specification intends security CSF functionality will “protect” security-

sensitive information, there are a wide variety of hardware and software

mechanisms to draw from – each having differing security and privacy

properties.

Chapter 2 Iot Frameworks and ComplexIty

104

 Industrial IoT Framework Standards
The IoT framework standards discussed up to this point primarily address

consumer grade IoT applications and deployments. That doesn’t mean

the standards organizations and member companies could not extend

their architectures to accommodate requirements typically associated with

industrial IoT. This section considers IoT frameworks that were designed

specifically to address industrial control system requirements. Industrial

control systems predate the Internet of Things and even predate the

Internet. Fieldbus technology is the foundation of process automation,

building automation, and automated manufacturing. This section

doesn’t survey the vast expanse of “brownfield” fieldbus technology.39

Instead, it focuses on Industrial IoT (IIoT) standards that aim to improve

interoperability through appropriate use of inexpensive, ubiquitous

Internet technologies and are supported by a rich ecosystem.

Industrial Internet Control Systems (or just Industrial Internet

Systems – IIS) may be a more appropriate terminology than IoT because

at their core are complex semiautonomous and fully autonomous process

automation systems that operate at a level of sophistication that clearly

goes beyond consumer IoT. They pay close attention to Quality of Service

(QoS), Quality of Experience (QoE), and safety requirements.

The architectural principles defined by the IIC reference architecture

serves as a reference point for evaluating the merits and demerits of IIS

framework solutions. The next section highlights important elements of

industrial IoT system architecture as defined by the Industrial Internet of

Things Consortium (IIC). In subsequent sections, we also highlight the

Open Platform Communications-Unified Architecture (OPC-UA) and Data

Distribution Services (DDS) open source IIS frameworks.

39 <tbd Reference to industrial control systems>

Chapter 2 Iot Frameworks and ComplexIty

105

 Industrial Internet of Things Consortium (IIC)
and OpenFog Consortium
The Industrial Internet of Things Consortium (IIC) was formed by AT&T,

Cisco, IBM, Intel, and General Electric in November of 2016. The IIC

created a reference architecture40 for IIS that considers common needs

and challenges pertaining to control systems in energy, healthcare,

manufacturing, public sector, transportation, and factory automation.

In December 2018, the IIC and OpenFog Consortium agreed to join

forces under the name IIC.41 The OpenFog Consortium was founded by

ARM Holdings, Cisco, Dell, Intel, Princeton University, and Microsoft in

2015. OpenFog Consortium and IIC both focused heavily on industrial IoT

architecture.

Industrial Internet Systems bring new levels of performance,

scalability, interoperability, reliability, assurance, and efficiency

to the forefront. As such, the IIC determined it should produce a

reference architecture first (and not an IoT framework42 and a reference

implementation). IIS systems often operate in mission critical

environments that require real-time or near real-time responses and

are “smart” through increased integration with higher-level networks

that include enterprise resource planning, information technology

administration, analytics, and big data correlation engines.

One aspect of the IIC architecture helps us understand the

implications of transforming the largely isolated brownfield embedded

control systems and technology into something that benefits from

40 The Industrial Internet of Things Volume G1: Reference Architecture
IIC:PUB:g1:V1.80:20170131 https://www.iiconsortium.org/IIC_PUB_G1_
V1.80_2017-01-31.pdf

41 www.smartindustry.com/industrynews/2018/iic-and-openfog-consortium-
join-forces/

42 Note to reader: The IIC specification refers to sub-architecture sections as
“frameworks” not to be confused with our usage.

Chapter 2 Iot Frameworks and ComplexIty

https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf
http://www.smartindustry.com/industrynews/2018/iic-and-openfog-consortium-join-forces/
http://www.smartindustry.com/industrynews/2018/iic-and-openfog-consortium-join-forces/

106

the Internet economies of scale and its robust ecosystem. Industrial

embedded control systems have existed before the popular Internet and

have evolved alongside it for several years. Its evolution into the IIoT seems

inevitable, but doing so creates a complex problem for interoperability

given the existing brownfield systems will likely continue for many years.

It is not our objective to deeply explore the IIC reference architecture

here. However, the reader might appreciate the role of a reference

architecture when evaluating IoT frameworks as building blocks of IIS

systems. Different parts of an IIS ecosystem bring different viewpoints

(Figure 2-21) of the system. The IIC reference architecture explores IIS

from four viewpoints:

• Business viewpoint: Identifies stakeholders, business

objectives, values, vision, and related regulatory

context and comprehends business-oriented concerns.

• Usage viewpoint: Represents the activities, sequences,

and functionality involving human or logical users. It

ultimately establishes whether the IIS achieves value

from the user’s perspective.

• Functional viewpoint: Identifies functional

components, structures, interfaces, interactions, and

relationships. It considers trade-offs associated with the

interests of systems architects, component architects,

developers, and integrators.

• Implementation viewpoint: Considers challenges

and implications of functional components, their

communication, and lifecycle procedures and

dependencies.

Chapter 2 Iot Frameworks and ComplexIty

107

Although multiple viewpoints exist, security objectives can be frustrated

if a perspective somehow becomes hidden from the others in the context

of continuous security monitoring, threat detection, decision making, and

response management. For example, security return on investment value

may be weighed against performance or consumer satisfaction value. The

user benefits of autonomous operation (without users) may be compared to

perceived and actual benefits of user involvement in setting and evaluating

security relevant decisions. Security functional viewpoint defines points

where security-related enforcement and decision making may impact

other functional goals. The implementation viewpoint applies security

technologies involving patterns and system components in ways that are

correctly implemented and easy to maintain and ensure correct operation of

security functions, algorithms, and hardening.

The IIC functional viewpoint reference architecture (Figure 2- 22)

recognizes an important understanding of IIS systems having five functional

domains that must coexist as interoperable subsystems while ensuring

appropriate isolation mechanisms prevent the goals of each domain from

being compromised given failure or compromise in a peer domain.

Business Viewpoint

Usage Viewpoint

Functional Viewpoint

Implementation Viewpoint

Figure 2-21. IIC reference viewpoints

Chapter 2 Iot Frameworks and ComplexIty

108

The business domain functions as a layer on top of operations,

information, and application domains that interact with the control

domain. The control domain consists of a separation between cyber

and physical systems brokered by sensing and actuation functions. User

interactions may occur at each domain according to domain-specific

System Characteristics

Cros
sc

utt
ing

 Fu
nc

tio
ns

Trustworthiness

Functional Domains

Intelligent & Resilient Control

Industrial Analytics

Distributed Data M
anagem

ent

Connectivity

...

Business

Control

Physical Systems

Sense Actuation

Op
er

at
io

ns

In
fo

rm
at

io
n

Ap
pl

ic
at

io
n

Safe
ty

Sec
uri

ty

Res
ilie

nc
e

Reli
ab

ilit
y

Pri
va

cy

Sca
lab

ilit
y

...

Figure 2-22. IIC functional viewpoint reference architecture showing
various functional domains

Chapter 2 Iot Frameworks and ComplexIty

109

Quality of Experience objectives. Cross-domain interactions should carry

the appropriate level of domain-specific context to ensure peer domain

functions do not, in some way, misinterpret the semantics of command

interaction, control flow, and data representation as this can result in

failures and security vulnerabilities.

The IIC implementation viewpoint reference architecture (Figure 2- 23)

captures an important three-tier network topology structure that recognizes

an Edge Tier network consisting of sensor, actuator, and controller nodes

that may share latency, resiliency, and QoS requirements that typically

are met by Edge-class technologies. These differ from Platform Tier

technologies used to implement scalable, reliable, available systems

for data analytics, operations, and data transformation. Similarly, the

Enterprise Tier consists of technologies tuned for system maintenance,

management, and system-level controls. Inter-Tier interactions are held

in check through bridging, gatewaying, and proxying technologies aimed

at preserving the correct context of the peer Tier when performing control

operations or when moving data between Tiers.

Figure 2-23. IIC implementation viewpoint reference architecture
showing a three-tier network

Chapter 2 Iot Frameworks and ComplexIty

110

Multiple viewpoints can be combined to reveal additional insights

regarding an IIS system. For example, Figure 2-24 shows the functional

viewpoint architecture overlaid with the implementation viewpoint

architecture. The Control Domain exists in the Edge Tier which contains

the Proximity Network consisting of sensors, actuators, controllers, and

gateways to Platform Tier. The Information and Operations Domains

exist in the Platform Tier bridging the Access and the Service Networks.

The Platform Tier contains data service and platform management, data

distribution, persistence, streaming, aggregation, and transformation.

The Operations Domain is concerned with provisioning, deployment,

metadata, monitoring, telemetry, optimization, and access control. The

Application and Business Domains exist in the Enterprise Tier extending

the Service Network with business analytics, CRM, DSS, BSS, and so on

and enterprise applications, APIs, portals, and enterprise rules.

Figure 2-24. Architectural overlay of functional and implementation
viewpoints

Chapter 2 Iot Frameworks and ComplexIty

111

 Open Platform Communications-Unified
Architecture (OPC-UA)
Object Linking and Embedding (OLE) is a Microsoft technology aimed

at office automation largely based on Windows operating systems. The

Open Platform Communications (OPC) task force extended OLE for

machine-to-machine control and industrial automation. The task force

formed the OPC Foundation43 in 1996 to maintain the OPC standard. OPC

originally was based on Microsoft Windows-only COM/DCOM technology

which was integrated with the existing OPC communications framework,

resulting in a unified architecture called OPC-UA.

An industrial IoT network is really a layering of multiple networks

customized to address a particular aspect of industrial operations. A typical

IIoT system will consist of a four-layer system of networks (Figure 2- 25).

The device-level network consists of sensor-actuator devices with real- time

control of physical world processes, logistics, and mechanics. The protocols

linking nodes at this layer are typically traditional brownfield technologies

such as ProfiNet, EtherCAT, and Modbus. These systems are designed to

operate autonomously taking into consideration safety and reliability.

The control-level network consists of shop floor controllers that

coordinate the end-to-end flow of the industrial system. The output of one

shop floor device may be consumed as input to another shop floor device.

Shop floor controllers orchestrate the hand off the work item, whether

physical, informational, or both. OPC-UA is a framework for shop floor

machine control. Controllers host multiple device nodes, run real-time

or near real-time operating systems, and support both fieldbus and a

traditional Internet protocol stack based on IP and TCP.

43 www.opcfoundation.org/

Chapter 2 Iot Frameworks and ComplexIty

http://www.opcfoundation.org/

112

The third level is the Manufacturing Execution System (MES) that

provides plant-, site-, or factory-level coordination of various shop floor

networks. This network consists of PCs and servers networked using

traditional IP networks. The fourth level focuses on Enterprise Resource

Planning (ERP) functions that filter data from the MES level for deeper

analytics relating to process improvement, cost optimization, and operational

efficiency improvement. ERP applications may be hosted in an enterprise

data center or a cloud hosting environment such as Microsoft Azure.

Figure 2-25. A four-layer system of networks for IIoT with an OPC-
UA layer

OPC-UA is a device-centric technology that connects sensor, actuator,

and PLC (programmable logic controller) devices to each other and to a

larger system of PC and server class platforms. It aims to ensure device-

level interoperability.

Chapter 2 Iot Frameworks and ComplexIty

113

The basic structure of an OPC-UA network consists of an OPC-Client

connected to an OPC-Server. The OPC-Server connects to sensor, actuator,

and PLC devices. The OPC-Client to OPC-Server connection is typically

based on IP networking. The OPC-Server to control devices is typically

based on a fieldbus technology.

 OPC-UA Framework Architecture

The OPC-UA design goals aim for platform independence, functional

equivalence, and data interoperability through information modeling,

extensibility, and security. Platform independence is achieved by porting

the OPC-UA framework layer to multiple operating systems (e.g., Microsoft

Windows, Apple OSX, Android, Linux) and hardware platforms based on

X86, ARM, PLC, and others. As long as there is a framework instance that

runs on the OS and hardware of interest, IIoT device interoperability exists.

Functional equivalence is the idea that OPC-UA applications operate

consistently regardless of which operating system and hardware platform

was used. There are six areas of functional equivalence defined:

 (1) Discovery: Devices search for peer devices, servers,

and networks the OPC-UA application needs to

perform its function. Plug-and-play behavior can

be supported but requires application involvement

to anticipate the type of objects and operations

needed.

 (2) Address space layout: Devices implement a

hierarchical object model where files and folders

contain data that can be read/written across the

network from one node to another.

 (3) Access control: Data objects have access control

policies that control reading and writing on a per

node basis.

Chapter 2 Iot Frameworks and ComplexIty

114

 (4) Subscriptions: Client nodes can subscribe to data

objects monitoring and receiving updates to data

that changes. Client nodes may specify filtering

criteria that are applied to monitored data values

when determining when it is appropriate to notify

the client.

 (5) Events: Client nodes can receive asynchronous

responses when data values satisfy a specified

criterion.

 (6) Methods: Client nodes execute subroutines based

on server-defined criteria.

Information models define data access semantics. Each information

model is independent from other information models, meaning each

model has different access control, state, and quality contexts. The OPC-

UA framework has several built-in information models (Figure 2-26): Data

Access (DA), Alarms and Conditions (AC), Historical Access (HA), and

Programmable state machines (Prog). The Data Access model supports

live (near real-time) access to sensor data. Each data element has a name

and value. There is also a timestamp to indicate when the data was read

and a quality component that determines if the data is valid.

Historical Access (HA) data is not real-time data, and there could be a

deep history of values stored. SCADA and other systems support devices

that monitor sensor readings over a longer period of time. HA objects can

transfer historical data from sensor to framework node easily. Framework

application may apply analytics to HA data to gain additional insights into

operations over a period of time.

Alarms and Conditions (AC) data doesn’t have a current value. Rather

it maintains subscriptions to other data where subscribers may specify

conditions in which to send notifications and updates. Notifications have a

timestamp but do not have name and quality attributes.

Chapter 2 Iot Frameworks and ComplexIty

115

Extensibility is achieved through a multilayered information model

that supports vendor-specific, industry standard data models and native

OPC-UA defined data models. Companion specifications define what

information is exchanged, while OPC-UA Information Access layer defines

how information is exchanged.

 OPC-UA Security

Security is built around two framework layers (Figure 2-27). The session
layer addresses user authorization, authentication, and access control

based on role and permissions. The secure channel layer provides

message encryption and integrity protection when exchanged between

nodes. It also can be used to authenticate applications that connect

with the OPC-UA framework. The security channel layer relies on TLS

(Transport Layer Security) using HTTPS. Though HTTP is also supported.

OPC-UA relies exclusively on X.509v3 certificates to authenticate and

authorize users and applications.

Vendor Information Model

(Companion Specifications: FDI, PLCopen, ISA 95, MDIS, ...)

DA HA ProgAC

Industry Srandards Information Models

Information Access
(Data Model and Services)

Transport - Protocol Mappings Discovery

Se
cu

rit
y

Robustness

Information
Models

OPC UA
Base

Figure 2-26. OPC-UA information modeling framework

Chapter 2 Iot Frameworks and ComplexIty

116

Auditing is also supported in OPC-UA security supporting forensic

investigation.

OPC-UA applications undergo a two-step access process where

they first access servers and second access data. Authentication policy

is expressed in terms of server or client identity, while data access is

expressed in terms of read/write permissions on data objects.

The German government BSI (Bundesamt für Sicherheit in der

Informationstechnik) did an extensive security evaluation of OPC-UA to

determine if it is safe for using in German industry. Their conclusion was

that it was designed with a focus on security and does not contain systemic

security vulnerabilities. This is an important observation because, unlike

other framework approaches we’ve reviewed, security was integral to the

framework design.

However, the way in which hardware security capabilities such as secure

storage, cryptographic algorithm implementation, and trusted execution

environment enforcement are left as an exercise to implementers. Given

the platform independence design goal, it is possible if not likely different

platforms hosting OPC-UA frameworks could have very different attack

OPC UA Client

Application Layer

Communication Layer

• User Authorization

• Confidentiality
• Integrity
• App Authentication

Communication Layer
• Confidentiality
• Integrity
• App Authentication

• User Authentication

Application Layer
• User Authorization
• User Authentication

Session

Secure
Channel

Transport Layer

OPC UA Server

Figure 2-27. OPC-UA secure communications

Chapter 2 Iot Frameworks and ComplexIty

117

resistance properties. At the time of this writing, OPC-UA did not implement

attestation mechanisms that describe implementation choices linking

framework security to hardware and platform security.

 Data Distribution Service (DDS)
The Data Distribution Service44 (DDS) is a connectivity framework

designed for industrial process control. It is standardized through the

Object Management Group45 (OMG) founded in 1989. The OMG is an

industry standards consortium that produces and maintains specifications

for interoperable, portable, and reusable enterprise applications in

distributed, heterogeneous environments.

DDS v1.0 was published December 2004. DDS v1.4 was published

March 2015. Companion specifications relating to security, remote

procedure call (RPC), and other topics are continually updated. There are

several proprietary and open source implementations of DDS. OpenDDS46

is a popular open source implementation.

The primary design goal is summarized as the efficient and robust

delivery of the right information to the right place at the right time. To

accomplish this, a data-centric publish-subscribe (DCPS) approach

was taken. The target applications expect the DCPS framework to be

high-performance, efficient, and predictable. To accomplish these

goals, DDS (a) allows middleware to preallocate resources to minimize

dynamic resource allocations, (b) avoids properties that require the use

of unbounded or hard-to-predict resources, and (c) minimizes the need

to make copies of the data. DDS is a strongly typed system, meaning

the programmer directly manipulates constructs that represent data.

Interfaces are safer due to rigorous type checking, and execution code is

more efficient because type checking enforcement is done at compile time.

44 www.omg.org/spec/category/data-distribution-service/
45 www.omg.org
46 http://opendds.org

Chapter 2 Iot Frameworks and ComplexIty

http://www.omg.org/spec/category/data-distribution-service/
http://www.omg.org
http://opendds.org

118

DDS consists of four main entities:

• Domains (Figure 2-28): Define a global context

in which data, data readers, and data writers have

ubiquitous access. The domain defines the naming

scope for identifiers. Cross-domain interactions may

require disambiguation using a domain identity.

Data
Writer

Data
Reader

Publish Subscribe

Topic

Domain

Figure 2-28. DDS publish-subscribe data model

• Topics (Figure 2-28): Are objects that conceptually fit

between data writers and data readers. They define

the context in which publish- subscribe interactions

may take place. Topic names are unambiguous within

the domain and contain a type and QoS component

(Figure 2-29). Type and QoS attributes apply to the

data referenced via the topic context. QoS attributes

are themselves DDS Topics. Topics allow expression of

both functional and nonfunctional information.

Chapter 2 Iot Frameworks and ComplexIty

119

• Data Writers: Correspond to publishers of a publish-

subscribe interaction pattern and must create a Publisher

instance object in order to accept subscribers or to

prepare and publish data. Data writers communicate data

to its publisher to initiate a publication.

• Data Readers: Correspond to the subscribers of a

publish-subscribe interaction pattern and must create

a Subscriber instance object in order to register to

receive publications. Data readers communicate

interest in a topic to initiate subscription registration.

Quality of Service (QoS) is a fundamental design consideration that is

intimately integrated into the DDS object model. Each topic may consist

of multiple data values distinguished by a key value. Different data values

with the same key value represent successive values for the same data

instance (e.g., a temperature sensor may maintain a short history of

temperature values sensed over an interval). Different data values with

different key values represent different data instances (e.g., multiple

temperature sensors). QoS and type attributes apply to data instances.

QoS interactions follow a requested-offered pattern where a data reader

requests a particular QoS policy and the data writer tries to accommodate

the request.

Name

Topic

Type Qo
S

Figure 2-29. DDS Topics have QoS integration

Chapter 2 Iot Frameworks and ComplexIty

120

The overall flow of a DDS interaction begins with domain participants

(readers and writers) joining a domain (Figure 2-30). Publishers produce

data to a data partition object, while subscribers retrieve data from the

data partition object. Data writers offer a QoS promise on published data

based on the data reader’s requested QoS level.

Domain
Participant

Publisher

DataWriter DataReader

Subscriber

Domain
Participant

Domain Id
joins

produces-in

offered
QoS

writes
Topic

reads

requested
QoS

PARTITION

DURABILITY

DEST.ORDER

RELIABILITY

LATENCY BUDGET

DEADLINE

OWENERSHIP

LIVELINESS

RxQ QoS Policies

consumes-from

joins

Figure 2-30. DDS data interaction flow

The DDS standard defines the set of possible QoS policies. These

include the following QoS types:

• USER_DATA: Allows the application to attach

additional information to the data object so that remote

entities can obtain additional context that relates to

application-specific purposes. This aids in refining

Chapter 2 Iot Frameworks and ComplexIty

121

discovery queries and allows selection of appropriate

security credentials or enforcement of application-

specific security policies.

• TOPIC_DATA: Allows the application to attach

additional information to the topic object to facilitate

discovery for application-specific purposes.

• GROUP_DATA: Allows the application to attach

additional information to the Publisher or Subscriber

entity so that application-specific policies may regulate

the way data reader listeners and data writer listeners

behave.

• DURABILITY: Allows data to be read or written even

when there are no current subscribers or publishers.

Multiple degrees of data volatility can be defined.

• DURABILITY_SERVICE: Allows configuration of a

service that implements durability attributes.

• PRESENTATION: Controls the scope of access given

various data interdependencies. Coherent_access

controls whether the service will preserve groupings of

changes made by a publisher. Ordered_access controls

whether the service will preserve the order of changes.

Access_scope controls the scope of access in terms of

data instance, topic, or group.

• DEADLINE: Controls the interval in which a topic

is expected to be updated. Publishers must supply

updates within the deadline interval, and subscribers

can set a timer to check for most recent updates based

on the interval.

Chapter 2 Iot Frameworks and ComplexIty

122

• LATENCY_BUDGET: Allows applications to specify

the urgency of the message by specifying a latency

duration.

• OWNERSHIP: Controls how data writer objects

interact with published data. Shared access means

multiple writers can update the data item. Exclusive

access means only one writer can update it. SHARED-

EXCLUSIVE means multiple updaters coordinate their

updates.

• LIVELINESS: Controls mechanisms for determining if

network entities are still “alive.”

• TIME_BASED_FILTER: Allows data readers to see at

most one change to a topic at a minimum periodicity.

• PARTITION: Allows a logical partition inside a

“physical” partition. Physical partitioning may have

safety and security benefits, while logical partitions

may have performance benefits.

• RELIABILITY: Allows reliability to be defined in

terms of levels, BEST_EFFORT being the lowest and

RELIABLE being the highest.

• TRANSPORT_PRIORITY: Allows alignment with

transport layer QoS capabilities.

• LIFESPAN: Allows specification of when a data value

becomes stale.

• DESTINATION_ORDER: Controls how each subscriber

resolves the final value of the data instance when

written by multiple writers.

Chapter 2 Iot Frameworks and ComplexIty

123

• HISTORY: Controls when data instance changes before

it is communicated to data readers. KEEP_LAST means

the server keeps the most recent update. KEEP_ALL

means the server will attempt to deliver all instances of

changed data.

• RESOURCE_LIMITS: Controls how many resources can

be applied to achieve quality of service objectives.

• ENTITY_FACTORY: Controls the flexibility of nodes in

their ability to replicate or produce additional entity

instances.

• DATA_LIFECYCLE: Controls how persistent or

temporal data are relative to the availability of either

the data writer or data reader.

DDS QoS design is one of its features that most distinguishes it from

other IoT and IIoT frameworks. QoS mechanisms have both safety and

security implications in that they improve data integrity – goals common

to both disciplines. QoS mechanisms must be implemented in ways that

ensure the integrity of the QoS system. Otherwise, the expected quality

of service is suspect. Hence, trustworthy implementation of the DDS

framework is essential to realizing the QoS richness anticipated by its

designers.

 DDS Framework Architecture

The DDS framework layering (Figure 2-31) consists of several layers

beginning with an IP network layer. TCP and UDP transports make up

the next layer followed by the DDS Wire Protocol for Real-Time Publish-

Subscribe (DDSI-RTPS) layer. The DDS layer defines the data model

abstractions described earlier. The DDS framework defines several

vertically integrated technologies for security, remote procedure call

(RPC), and extensions to its data typing system.

Chapter 2 Iot Frameworks and ComplexIty

124

Implied by the DDS layering architecture is a Device System layer

that implements the IoT device capabilities including native security

and manageability capabilities. These capabilities depend on a Device

Hardware layer that must have ties to the actual sensor, actuator, security,

or other hardware features. The Device System layer exposes native device

capabilities to the DDS framework through available interfaces. Different

DDS framework implementations may make different implementation

choices regarding how to best integrate the framework with a specific

device.

The DDS specification helps isolate platform-specific elements of

DDS from platform-independent elements by specifying a platform-

independent model (PIM) and a platform-specific model (PSM) of DDS

structures. The PSM definition ensures porting efforts result in minimal

impact to the semantics and operation of the PIM while still allowing

quality integration with the native platform.

App-A

DDS Layer

DDSI-RTPS Layer

TCP UDP

IP

Device Hardware Layer

Device System LayerDD
S

Se
cu

rit
y

DD
S

RP
C

DD
S

X-
Ty

pe
s

PIM

PIM PIM PIM
Domains Topics

Readers

Mgmt.

RTOS

Sensor Actuator Crypto

Security Device

Writers

PSM

PSM PSM PSM

App-B App-C

Figure 2-31. DDS framework layering

Chapter 2 Iot Frameworks and ComplexIty

125

The PIMs and DDS layer ensure DDS applications can expect a

consistent environment for sharing information that is strongly typed and

syntactically interoperable. A summary of DDS application properties is as

follows:

• Applications can autonomously and asynchronously

read and write data that is decoupled spatially and

temporally.

• DDS data is loosely coupled due to virtualized data

spaces that are designed for scalability, fault tolerance,

and heterogeneity.

• As with all distributed systems, the data model must

consider a data consistency model. DDS defines data

spaces that tolerate inconsistent data but eventually

becomes consistent. Data readers will eventually see a

write but may not observe it at the same time.

• DDS discovery model isolates discovery from network

topology and connectivity details so that applications

may focus on data objects that are most relevant to

application objectives.

• The DDS data model allows location transparency

since topics, data readers, and data writers are

conceptually separated from the underlying physical

devices and network nodes. Integration across Cloud,

enterprise, plant and mission control, shop floor, or

device networks doesn’t require redefinition of data

syntax and semantics.

• DDS data spaces (aka domains) are decentralized. A

DDS system may host multiple data spaces that involve

readers and writers from any data space. There is no

central point of failure.

Chapter 2 Iot Frameworks and ComplexIty

126

• Connectivity among DDS entities is adaptive,

meaning connections can be established and torn

down dynamically. The underlying communications

infrastructure can optimize for the most efficient data

sharing approach.

DDS domains have global data space (Figure 2-32), meaning topics

are visible to all data writers and readers that are members of the same

domain. Data writers and readers may be members of multiple domains

simultaneously to allow interaction with topics from different domains. It

is even possible to construct a domain broker that gives the illusion of the

same topic appearing in separate domains.

DDS domain interactions can become rather complex. This complexity

may be especially appreciated when an access control policy is needed

that places restrictions on various data writer and data reader interactions

that span multiple domains.

DDS Global Data Space

Domain A

Publish

Publish

Publish

Publish

Publish

Publish Broker Subscribe
Subscribe

Subscribe

Subscribe
Subscribe

Subscribe
Data

Writer

Data
Reader

Data
Reader

Data
Reader

Data
Writer

Data
Writer

Domain B

Domain C
Domain D

Topic
A

Topic
B

Topic
D

Topic
D

Topic
C

Data
Reader

Data
Reader

Figure 2-32. DDS Global Data Space example

Chapter 2 Iot Frameworks and ComplexIty

127

 DDS Security

DDS security consists of three main elements (Figure 2-33): (1) RTPS

messages with security enveloping structures, (2) token-based security

context, and (3) pluggable security modules.

Security Enveloping

Security is closely integrated into the DDS data model. Cleartext DDS data

messages are encapsulated within DDS enveloping structures that support

encryption, integrity, authorization, and authentication. The RTPS system

uses the security enveloping structures as its main messaging structure

so that the real-time publish-subscribe optimizations are preserved even

when security is applied.

RTPS Header
RTPS Header

SecureRTPSPrefix

SecureRTPSPrefix

SecureBody

SecurePrefix

SecurePostfix

CryptoHeader

Cr
yp

to
Co

nt
en

t

CryptoHeader

SecureBody

Message Transformation

Secure encoding

Secure decoding

RTPS SubMessage

RTPS SubMessage
RTPS SubMessage

RTPS SubMessage

SerializedPayload

SerializedPayload SerializedPayload

SerializedPayload*

Figure 2-33. RTPS message encoding/decoding with secure
encapsulation

Chapter 2 Iot Frameworks and ComplexIty

128

A cleartext RTPS message consists of an RTPS header and one

or more RTPS submessages each containing a serialized payload. To

prepare a cleartext message for delivery over an unsecure channel, the

cleartext message must be transformed into a secure RTPS message.

Figure 2-32 illustrates the transformation. Integrity-protected RTPS

submessages are wrapped by a secure body and have a secure prefix and

secure postfix component. The prefix defines the integrity protection

mechanism, security context, and algorithms. The secure postfix contains

a hash or signature of the secure body. If the RTPS submessage requires

confidentiality protection, the serialized payload of the submessage is

encrypted, forming a CryptoContent element consisting of a CryptoHeader

and CryptoFooter. The CryptoHeader defines the encryption method,

security context, and algorithms. The CryptoFooter contains the ciphertext

version of the serialized payload. All the RTPS submessages belonging

to the RTPS message are bound together using another layer of security

enveloping consisting of SecureRTPSPrefix, SecureRTPSPostFix, and

SecureBody elements. The second layer of security enveloping ensures

submessages can’t be omitted, appended, or substituted by an attacker.

Security Tokens

All of the privileges obtainable by DDS entities are described using a security

token data structure. There are tokens that facilitate secure discovery,

participant permissions, and secure message exchange. Security tokens

allow exchange of security information using the DDS messaging capability.

• Discovery tokens: Facilitate establishment of

security contexts for subsequent secure interactions.

The IdentityToken contains summary information

of a domain participant in a manner that can be

externalized and propagated using DDS discovery.

The IdentityStatusToken contains authentication

information of a domain participant in a manner that

Chapter 2 Iot Frameworks and ComplexIty

129

can be externalized and propagated securely. The

PermissionsToken contains summary information on

the permissions for a domain participant in a manner

that can be externalized and propagated over DDS

discovery.

• Permissions tokens: The PermissionsCredentialToken

encodes the permissions and access information

for a domain participant in a manner that can be

externalized and sent over a network. It is used by the

access control plugin which manages domain access

and specific reader-writer interactions.

• Message tokens: The CryptoToken contains all the

information necessary to construct a set of keys to be

used to encrypt and/or sign plain text transforming

it into ciphertext or to reverse those operations. The

MessageToken is a superclass of several message tokens

used to maintain security context when multiple

message exchanges are required such as authentication

and key exchange protocols.

Security Plugin Modules

The DDS framework takes a modular approach to security so that

platform-specific capabilities can be exposed to and utilized by DDS

entities. There are five pluggable security modules (Figure 2-34): (1)

authentication, (2) access control, (3) cryptography, (4) logging, and (5)

data tagging.

• Authentication plugin: The principal joining a DDS

domain must authenticate to a domain controller, and

peer DDS participants may be required to perform

mutual authentication and establish shared secrets.

Chapter 2 Iot Frameworks and ComplexIty

130

• Access control plugin: Decides whether a principal is

allowed to perform a protected operation.

• Cryptography plugin: Generates keys and performs

key exchange, encryption, and decryption operations.

Computes digests and verifies message authentication

codes. Signs and verifies signatures on messages.

• Logging plugin: Logs all security relevant events.

• Data tagging plugin: Adds data tags for each data

sample.

Token

SecurityPlugin

«discovery»
IdentityToken

Token
CryptoToken

«interface»
Authentication

«interface»
Cryptographic

CryptoKeyExchange
CryptoKeyFactory
CryptoTransform

SecurityPlugin

«interface»
DataTagging

SecurityPlugin

«interface»
Logging

SecurityPlugin

«interface»
Access control

«primitive»
IdentityHandle

«primitive»
SharedSecretHandle

«primitive»
PermissionsHandle

«create»

«create»

«create»

«create»

«create»

«create»

«use»

«use»

enable_logging(): void+
+
+

log(): void
set_log_options(): boolean «use»

«use»

«discovery»
PermissionsToken

Token

Figure 2-34. DDS security plugin module architecture

Chapter 2 Iot Frameworks and ComplexIty

131

DDS security offers a comprehensive well-integrated security solution

that aligns well with DDS design philosophy focusing on data and

publisher-subscriber interactions. Security is modular, enabling platform-

specific services and hardware to be effectively utilized and incorporated.

DDS quality of service parameters though originally designed to

meet industrial safety requirements may also help achieve security

objectives. The OWNERSHIP and PARTITION QoS parameters capture

expected data sharing and partitioning semantics. Security mechanisms

used for data isolation and protection may be useful toward meeting

these quality expectations. LIFESPAN and HISTORY properties describe

data persistence characteristics that inform regarding object reuse

requirements and which data may require stronger confidentiality and

integrity protection.

However, DDS goals toward heterogeneous operation make

assumptions regarding the quality and condition of security plugins.

An attacker might easily compromise the plugin or spoof the plugin

interface allowing an attack plugin to take control. Peer nodes are not

easily able to detect such attacks. For example, DDS doesn’t appear to

support attestation protocols that would query a peer principal’s security

subsystem to provide proof of device provenance and integrity of the

system firmware, software, plugins, and DDS framework layers.

 Framework Gateways
This chapter has focused almost exclusively on open standard IoT

framework solutions, some of which have been omitted here for brevity.

There are tens if not hundreds of brownfield frameworks with varying

degrees of openness and standardization, but many are specific to

an industry vertical. Cloud-connected IoT is another category of IoT

framework integration mostly ignored here as well. Although many

of the open standard frameworks claim interoperability with cloud

Chapter 2 Iot Frameworks and ComplexIty

132

47 www.electronicdesign.com/embedded-revolution/iot-frameworks-ties-bind
48 https://developer.apple.com/homekit/
49 https://artik.cloud
50 www.edgexfoundry.org
51 www.businesswire.com/news/home/20180327005208/en/
IPSO-Alliance-Merges-Open-Mobile-Alliance-Form

52 https://wiki.iotivity.org/bridging_project
53 https://openconnectivity.org/draftspecs/Cleveland/CR2595_Cleveland_
Bridging_Security_20181004.pdf

environments, the IoT cloud ecosystem largely takes a walled-garden

approach.47 Most have a proprietary IoT framework or support both

a proprietary and open framework solutions with integration to their

proprietary cloud back end. Some of these include Amazon Web Services

(AWS) IoT, Apple Homekit,48 Bosch IoT Suite, Cisco IoT Cloud Connect,

General Electric Predix, Google Cloud, IBM Watson Cloud, Microsoft

Azure, Oracle IoT Cloud, Salesforce IoT, Samsung ARTIK Cloud Services,49

and SAP IoT Platform. Dell’s EdgeX Foundry50 takes a slightly different

approach enabling services at the edge, where edge refers to both the

edge of the IoT network and the edge of the cloud hosting environments.

The ecosystem that traditionally supplies the pipe between IoT device

and Cloud is interested in moving up the IoT stack to add more value. IoT

framework technologies help enable that mobility.

The IoT framework standards organizations seem to understand

that a multitude of “standard” IoT frameworks hinders one of the main

motivations for IoT frameworks – interoperability! Industry efforts to

consolidate frameworks have taken place already. The AllSeen Alliance and

UPnP Forum have merged with the Open Connectivity Foundation. The

OpenFog Consortium joined forces with the IIC and the IPSO Alliance was

acquired by the Open Mobile Alliance (OMA) to form OMA SpecWorks.51

Collaborations between framework standards organizations also help

resolve interoperability challenges. For example, the OCF is thought to be

working on an OCF52 to OneM2M bridge53 (aka framework gateway).

Chapter 2 Iot Frameworks and ComplexIty

http://www.electronicdesign.com/embedded-revolution/iot-frameworks-ties-bind
https://developer.apple.com/homekit/
https://artik.cloud
http://www.edgexfoundry.org
http://www.businesswire.com/news/home/20180327005208/en/IPSO-Alliance-Merges-Open-Mobile-Alliance-Form
http://www.businesswire.com/news/home/20180327005208/en/IPSO-Alliance-Merges-Open-Mobile-Alliance-Form
https://wiki.iotivity.org/bridging_project
https://openconnectivity.org/draftspecs/Cleveland/CR2595_Cleveland_Bridging_Security_20181004.pdf
https://openconnectivity.org/draftspecs/Cleveland/CR2595_Cleveland_Bridging_Security_20181004.pdf

133

But these efforts are solutions to an interoperability problem created

by the industry’s eager response to an IoT interoperability problem.

Ironically, the “success” of IoT seems to have created a more complex

environment for IoT interoperability as both standard and proprietary

“connectivity” frameworks and toolkits proliferate. Framework gateways

naturally come to the rescue, but at what cost to usability, manageability,

and security?

 Framework Gateway Architecture
This section outlines several approaches for gatewaying (aka bridging)

IoT frameworks, considers security implications of each, and suggests an

idealized architecture for secure IoT framework gateways.

 Type I Framework Gateway

A type I framework gateway (Figure 2-35) combines unmodified

framework gateways using a common framework gateway application.

The application performs all necessary object model translations and

data structure mappings to achieve interoperability. The application (i.e.,

developer) must have intimate understanding of data object syntax and

semantics for both (all?) sides of the translation. Some objects in a first

IoT network may not have a suitable corresponding counterpart (sensor,

actuator, controller) in the other IoT network for the applications to

simply “wire” them together. Instead, it must create an abstraction that

approximates an object that is recognizable and considered to be a safe

alternative interaction. For example, a dimmable light bulb in Network A

may support 10 levels of brightness, while a dimmer control in Network

B supports 100 levels of control. The gateway application provides the

mapping function that divides by 10 in one direction and multiplies by

10 in the other direction. In some cases, there may not be a reasonable

mapping, and the gateway application developer may take some other

Chapter 2 Iot Frameworks and ComplexIty

134

approach such as exposing the devices to a console interface so that a user

can resolve any mapping conflicts or ambiguities. Polyglot54 is an example

technology that aids in the development of type I IoT framework gateway

applications.

 Type II Framework Gateway

A type II framework gateway (Figure 2-35) expects the network

Connectivity, Node Interaction, and Data Object layers are dissimilar,

but there is a Data Object layer mapping object that relates Framework

A objects with Framework B objects. A gateway application supplies

administrative control such as installing, updating, and monitoring an

object translation component that exists within the Data Object layer.

Typically, designers of each interoperating framework must collaborate

to identify semantically similar but syntactically dissimilar elements

and their mapping functions. The design collaboration may reveal

disconnected design semantics as well that may be clarified in related

gateway-specific specifications or may result in specification revisions

that clarify ambiguities. For example, one framework might expect all

objects to be discoverable through its hosting endpoint device, while

another framework might expect discovery is handled using a dedicated

discovery service. The object translation layer defines the framework-

specific discovery conventions so that endpoint devices can function

unmodified. This might involve having the gateway device advertising

itself as a discovery service operating on behalf of devices represented in

a foreign network. The OCF-AllJoyn bridging specification55 is an example

type II framework gateway that supports bidirectional bridging and device

54 https://github.com/UniversalDevicesInc/polyglot-v2
55 https://openconnectivity.org/specs/OCF_Bridging_Specification_v1.3.0.pdf

Chapter 2 Iot Frameworks and ComplexIty

https://github.com/UniversalDevicesInc/polyglot-v2
https://openconnectivity.org/specs/OCF_Bridging_Specification_v1.3.0.pdf

135

interactions within a common operational domain. See the“Security

Considerations for Framework Gateways” section for more insight on

interdomain bridging considerations.

Gateway Management App

Gateway Translation App

Type I Gateway Type II Gateway

Framework
A

Framework
B

Framework A
Connectivity

and
Interaction

Layers

Framework B
Connectivity

and
Interaction

Layers

Data Object Layer

Object Translation

Figure 2-35. Layering architecture for type I and type II framework
gateways

 Type III Framework Gateway

A type III framework gateway (Figure 2-36) anticipates a common data object

layer is in place. However, because the lower layers are dissimilar, not all

data objects will be common. Therefore a data object translation capability

is also required. The Connectivity and Node Interaction layers are dissimilar,

but there is a message translation model that relates the interface definition

model for Framework A to the interface definition model for Framework B.

An example message translation operation might relate publish-subscribe

messages defined by Message Queuing Telemetry Transport (MQTT)56 to

the publish-subscribe model defined by eXtensible Messaging and Presence

56 MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 September
2014. OASIS Standard. Latest version: http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/mqtt-v3.1.1.html

Chapter 2 Iot Frameworks and ComplexIty

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

136

Protocol (XMPP).57 Another example mapping technology is the Internet

Engineering Task Force (IETF) OSCORE58 specification that maps HTTP

message security to CoAP messages and vice versa.

A traditional framework may not be regarded as a type III gateway

depending on the set of protocols and message types the framework

supports. If a framework includes support for both HTTP and CoAP, for

example, then mapping between may be a normal IoT framework function.

However, given Framework A support for only HTTP and Framework B

support for only CoAP, the type III gateway translation comes into play.

Data Object Layer Data Object Layer

Node Interaction Layer

Framework A
Connectivity

Layer

Framework A
Connectivity
Layer

Framework B
Connectivity

Layer

Framework B
Connectivity

Layer

In
te

rf
ac

e
A

In
te

rf
ac

e
B

Interface A

Interface B

Node Interaction Layer

Object Translation Fw-A Objects

Fw-B Objects

Message Translation

Type III Gateway Type IV Gateway

Figure 2-36. Layering architecture for type III and type IV framework
gateways

57 Internet Engineering Task Force (IETF) RFC 6120, March 2011. https://xmpp.
org/rfcs/rfc6120.html

58 Internet Engineering Task Force (IETF) “draft-ietf-core-object-
security-15,” Expires March 4, 2019. https://datatracker.ietf.org/doc/
draft-ietf-core-object-security/

Chapter 2 Iot Frameworks and ComplexIty

https://xmpp.org/rfcs/rfc6120.html
https://xmpp.org/rfcs/rfc6120.html
https://datatracker.ietf.org/doc/draft-ietf-core-object-security/
https://datatracker.ietf.org/doc/draft-ietf-core-object-security/

137

 Type IV Framework Gateway

The fourth framework gateway class, type IV, considers the case where

Framework A is a superset of Framework B. The superset and subset

frameworks remain unmodified, but applications may interact with

devices from either framework seamlessly. The gateway function

exists when Framework A objects are exposed to Framework B and

when Framework A peers are different from Framework B peers.

Though subtle, this is a system boundary crossing that requires

security controls. An example of this scenario is OneM2M where

LWM2M supplies the device management capabilities for a OneM2M

framework. Nevertheless, LWM2M also may stand alone as an

independent IoT framework. The type IV framework gateway has an

object model where the Framework A object model is flexible enough

to encompass the Framework B object model. Likewise, the interface

definitions in the Node Interaction layer have a superset-subset

relationship, and the connectivity layers are similarly encompassing.

The gateway function may be provided as an application of the

framework or may have embedded mapping operations. The OCF

framework resource naming specification allows resources to be

identified using a Uniform Resource Identifier (URI)59 of arbitrary

nesting depth. A LWM2M object identifier is a URI that is constrained

to two layers of nesting, and object names are numeric. The LWM2M

namespace fits within the OCF namespace; hence an OCF to LWM2M

gateway function could be implemented.

59 Internet Engineering Task Force (IETF), RFC 3986, January 2005. https://
tools.ietf.org/html/rfc3986

Chapter 2 Iot Frameworks and ComplexIty

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

138

 Security Considerations for Framework
Gateways
Framework gateways may facilitate interdomain interactions in addition

to facilitating interoperability between dissimilar IoT frameworks.

Security at the framework gateway should address at least two important

security questions: (1) Does the gateway bridge network domains and to

what extent is the gateway trusted to perform these duties? (2) Where in

the framework layering do authentication, authorization, integrity, and

confidentiality protections begin and end for a given message transiting

the gateway?

The Industrial IoT Consortium (IIC) describes brownfield-greenfield

security integration in terms of security gateways (Figure 2-37). In this

model, the gateway occupies both an interoperability and a security

function. Legacy IoT endpoints may enjoy intra-brownfield interactions

(often without native security), but when protocol directs interaction

with the Secure Endpoints, the Security Gateway must augment legacy

messages with message protections. This entails encrypting or signing

messages before the Secure Gateway forwards Legacy Endpoint messages

to Secure Endpoints. It may also require authenticating Secure Endpoints

before allowing them to access Legacy Endpoints.

The Security Gateway function ensures crossing a network domain

doesn’t weaken security. Security gateways may be expected to perform

the following security operations:

• Authenticate endpoints to the gateway and gateway to

the endpoints.

• Authenticate endpoints from a foreign domain to

endpoints in the local domain. This may require

creation of a virtual endpoint on the gateway device if

interior endpoints can’t support the needed security

capabilities.

Chapter 2 Iot Frameworks and ComplexIty

139

• Integrity and confidentiality protect messages passing

through the gateway. The gateway may need to decrypt

then re-encrypt using native domain’s recognized

security associations, security algorithms, and

protocols. On rare occasion domains have all these

security elements in common.

• Authorize access to objects in a local domain by

endpoints from a peer domain.

• Inspect and log activity between the domains.

• Establish endpoint credentials in the peer network

environment. Different domains may have dissimilar

security services for authentication, authorization,

and key management. The gateway may be required

to host security services on behalf of a local domain so

that a peer domain can utilize its chosen set of security

services.

• Perform data structure translation and protocol

mapping functions previously described. Modification

to data objects and protocol message that are integrity

and confidentiality protected necessarily implies the

gateway is authorized and trusted to perform these

transformations.

In general, the gateway is expected to be one of the most trusted nodes

in the network. Since it connects multiple domains, it likely needs to be the

most trustworthy node across all the connected domains.

To achieve the preceding security goals, a Security Object layer

(Figure 2-40) is needed in addition to the framework’s Data Object layer.

The Security Object layer must be common to all domains that connect

through the framework gateway; otherwise, there is little confidence that

security for the domains is correct.

Chapter 2 Iot Frameworks and ComplexIty

140

 Security Endpoints Within the Gateway

When a message enters a framework gateway, it arrives with security

protections specific to its native network. Those protections terminate

somewhere within the framework gateway where it is assumed the

gateway will preserve the security properties throughout until the

message emerges on another network where the destination network’s

native protections are applied. The framework gateway must satisfy

authentication, authorization, integrity, and confidentiality protections in

a manner that is consistent with both source and destination networks as

the message transits through the gateway. The place where the network’s

native protection mechanism ends or begins is referred to as a security

endpoint. The place where confidentiality protection (i.e., encryption)

ends (or begins) is the confidentiality endpoint. The place where network

native authorization protection ends is the authorization endpoint and

Secure Core Protocols

1

1 2 3

4 5 6
2 3

Security Gateway

Legacy Endpoints

Legacy
Protocols

Legacy Protocols protected by
physical & L2/L3 security

Secure Endpoints

Figure 2-37. Framework gateway as a secure endpoint/proxy to
unsecure legacy endpoints

Chapter 2 Iot Frameworks and ComplexIty

141

so forth. The various framework gateway types have different semantics

and make different assumptions about security endpoint termination and

origination. This section highlights some of these differences.

Security Endpoints in Type I Gateways

The security endpoints in a type I gateway (denoted by up arrow and down

arrow in Figure 2-38) could in theory terminate at or near the application

interface since the gateway translation and mapping functions are applied

at the application level. Given a scenario where security protections are

applied directly to framework objects rather than to protocols or interfaces,

the data confidentiality and integrity protections may persist until the

last possible moment before the framework hands off the data to the

application.

Most IoT frameworks require security endpoint termination within

the framework layers or in protocol layers beneath so that the framework

data objects can be manipulated. This implies the data will be unprotected

through some portion of framework layering before handing off to the

Gateway Translation Application and again in the reverse flow. The

security expectation for type I gateways is the framework architecture

must strictly isolate resources belonging to Framework A from resources

belonging to Framework B. Attacks originating from Framework A should

be ineffective at compromising Framework B resources without first

compromising the gateway or the Framework Translation Application.

This simplifying assumption can be quite powerful because there are few

if any exceptional cases. Exceptional cases have a tendency to expose

security weaknesses that lead to exploits.

Note that within each framework context, native network operations

may require authentication endpoints for network packet delivery that

terminate within the framework. This differs from security endpoints

associated with application layer message confidentiality and integrity

protection.

Chapter 2 Iot Frameworks and ComplexIty

142

Security Endpoints in Type II Gateways

A type II gateway requires translation at the Data Object layer implying

security endpoints must exist at the base of the Data Object layer or below.

The gateway application largely doesn’t participate except to provide

administrative oversight; hence there isn’t an expectation the Gateway

App should be privy to object data.

Framework A resources at the Interaction and Connectivity layers

are strictly isolated from Framework B. However, because the object

translation logic is shared across Network A and Network B, the Data

Object layer, compromise of this layer implies access to both A and B

networks. The authors feel the Data Object layer should be a third isolation

environment where access to Framework A or Framework B isolation

environment doesn’t imply, automatically, access to the Data Object layer

isolation environment. Rather, the respective isolation environments

should have well-understood interfaces and semantics for crossing

environment boundaries. Object translation steps necessarily invoke

environment boundary-crossing primitives.

Note that in cases where framework design choices result in a security

endpoint terminating in the connectivity or interaction layer, for example,

if Transport Layer Security (TLS) is used for confidentiality. The isolation

environment must preserve confidentiality of data as it passes between the

various isolation environment boundaries.

Gateway Management App

Gateway Translation App

Type I Gateway Type II Gateway

Cleartext

Ciphertext

Object Translation

Framework
A

Framework
B

Data Object Layer

Framework A
Connectivity

and
Interaction

Layers

Framework B
Connectivity

and
Interaction

Layers

Figure 2-38. Security considerations of type I and type II gateways

Chapter 2 Iot Frameworks and ComplexIty

143

Security Endpoints in Type III Gateways

A type III gateway (Figure 2-39) requires message protocol translation at

the Node Interaction layer and may require object translation at the Data

Object layer. Managing security endpoints that terminate at different

layers can be tricky. If confidentiality endpoint occurs within the Data

Object layer, then message translation can proceed in the Node Interaction

layer since message payloads are opaque at this layer. Nevertheless, an

authentication or authorization endpoint is required at this layer that

authorizes a boundary crossing, for example, from Framework A to

Framework B.

However, if A and B disagree on data object format, then the payload

transits to the Data Object layer for object translation before it is

repackaged into a Framework B message body. The Data Object layer must

correctly apply confidentiality endpoint processing, possibly resulting in

application of a Framework B–specific confidentiality endpoint before

transitioning back to the Node Interaction layer. All of this security context

must be preserved and must resist confused deputy attacks.

Isolation of respective connectivity layer environments from Node

Interaction and Data Object environments seems reasonable from a

security isolation perspective but appears concerning from a performance

optimization perspective.

Security Endpoints in Type IV Gateways

A type IV gateway (Figure 2-39) expects data objects, interfaces, message

formats, and network connectivity are a subset of the first framework.

Therefore, data object, interface, and message translation might not

even be needed. If it is needed, it occurs on the context of the superset

framework, meaning the security endpoints that are valid for the subset

framework are also valid for the superset framework. This is a nice

simplifying assumption that allows for flexible isolation strategies. The

point where the security endpoint begins can largely be configurable.

Chapter 2 Iot Frameworks and ComplexIty

144

One important consideration is whether or not interaction with

Framework B allows access of superset data objects not normally part

of subset objects by Framework B. Given this scenario, the boundary

crossing occurs at the line where superset and subset objects intersect.

Gateway isolation mechanisms should allow separation of resources

along these lines. Success or failure at applying the isolation mechanism

falls largely along two vectors: (a) the degree of modularity found in the

implementation of the frameworks and (b) the level of granularity with

which the isolation mechanism is able to conscribe resources.

Data Object Layer Data Object Layer

Node Interaction Layer

Framework A
Connectivity

Layer

Framework A
Connectivity
Layer

Framework B
Connectivity

Layer

Framework B
Connectivity

Layer

In
te

rf
ac

e
A

In
te

rf
ac

e
B

Interface A

Interface B

Node Interaction Layer

Object Translation Fw-A Objects

Fw-B Objects

Message Translation

Type III Gateway Type IV Gateway

Cleartext

Ciphertext

Figure 2-39. Security considerations of type III and type IV gateways

Security Framework Gateway Architecture

This section describes an idealized security framework gateway

architecture (Figure 2-40) that more easily would support the security,

isolation, performance, and flexibility requirements needed to facilitate

framework gateway challenges. The meaning of an idealized architecture

is it attempts to describe IoT framework architecture where security

is central to the design and integrated from the start. It may serve as a

guidepost from which to better evaluate security hardware and software

solutions presented in subsequent chapters.

Chapter 2 Iot Frameworks and ComplexIty

145

A prominent feature in our idealized framework architecture is the

addition of the Security Object layer containing commonly understood

and specified security objects and data model representations. In our

experience, many IoT framework architectures cite industry standards

such as X.509, TLS, and COSE in response to questions of security

interoperability. However, they do not capture the semantics of what it

means to be secure. There have been attempts at defining security policy

languages such as XACML and SAML, but these, or something similar,

have not yet been integrated into IoT frameworks.

Data Object Layer

Security Object Layer

Node Interaction Layer

Security
Hardware

Se
cu

re
 E

xe
cu

tio
n

Framework A
Connectivity

Layer

Framework B
Connectivity

Layer

In
te

rf
ac

e
A

In
te

rf
ac

e
B

Object Translation

Message Translation

Common Security Model
Ingress

Egress

Cleartext

Ciphertext

Figure 2-40. Idealized security framework gateway

Chapter 2 Iot Frameworks and ComplexIty

146

Secure execution is another component to our idealized architecture.

Secure execution is a hardware-supported mode of execution enterable

when a security endpoint in the framework is required to perform security-

related functions and exits upon completion. Since a security endpoint

could exist at any framework layer, secure execution can be entered at

any framework layer. Framework data are in cleartext while in the secure

environment and ideally, confidentiality and integrity protected while

outside the environment.

Framework context is maintained across ingress and egress transitions

so that layer crossings can be recognized as these may correspond to

network boundary crossings in a gatewaying usage context. The Security

Object layer use of the Secure Execution resource preserves its isolation

properties with respect to the other layers. Data passing between

framework layers, which have layer isolation requirements, relies on

the Secure Execution environment technology to enforce isolation

requirements, these include decryption upon ingress, tenant-specific

resource isolation while in the SE environment and encryption upon egress.

Although the authors are not aware of a secure execution technology

that fully implements the idealized framework architecture, there are

a few technologies that come close. For example, Intel Software Guard

Extensions (SGX), ARM TrustZone, and virtualization have compelling

potential. Chapter 3 explains in greater detail various Intel hardware

security features and how they apply to IoT.

 Summary
IoT frameworks occupy an important position in IoT system design as

an effective strategy for empowering IoT application developers to more

easily construct rich distributed IoT applications. Many of the connectivity

challenges resulting from fragmented brownfield systems are hidden

behind IoT frameworks. IoT applications simply expect the dissimilarities

Chapter 2 Iot Frameworks and ComplexIty

147

in machine control networks, process control systems, manufacturing

execution systems, and cloud integration are conveniently “simplified” for

all intents and purposes.

Nevertheless, the IoT ecosystem hasn’t settled on a single IoT

framework technology that satisfies every industry and meets every need.

Neither is there consensus over standardization of open IoT frameworks

as there are multiple framework standards efforts. New and existing

proprietary approaches also seem to have gained ground as the size

of IoT grows. The recent proliferation of IoT frameworks, toolkits, and

middleware combined with existing brownfield IoT suggests greater

challenges to come for interoperable applications in a heterogeneous

distributed world of IoT.

IoT framework standards organizations seem to recognize these

challenges and have responded by merging organizations and standards.

They have developed gatewaying and bridging technologies that let

framework application interoperate through dissimilar frameworks.

Noted mergers include OCF, AllJoyn, UPnP, IPSO, OMA, IIC, and OCF.

There is continued interest in framework gateway interoperability

among remaining frameworks, but it isn’t clear that the industry needs

to converge to a single or even a small number of frameworks as security,

safety, reliability, and other factors may in fact motivate keeping some

parts of IoT systems separated.

Framework gateways are positioned on the edges of IoT networks

addressing interoperability needs but also should be considered the most

trusted security control points since crossing organizational domains often

coincides with translating from one IoT network protocol to another.

This section highlighted several IoT frameworks showing how

various IoT system integration and interoperation requirements may

be addressed. We considered challenges facing framework application

interoperation in an environment of multiple frameworks. The industry’s

eager embrace of IoT frameworks has led to the need for framework

Chapter 2 Iot Frameworks and ComplexIty

148

gateways that reassert the desire for interoperability, but also for security.

We further consider ways to secure framework gateways looking at various

approaches and trade-offs.

In summary, frameworks appear to offer significant value for enabling

interoperable IoT applications by hiding much of the complexity of

multiple connectivity technologies, messaging solutions that incorporate

multiple hundreds or thousands of nodes, and data schemas that present

consistent, declarative, and vendor-neutral expressions of IoT objects.

We’ve shown that frameworks are great tools to manage IoT device

complexity, but the security robustness or hardening can only be achieved

by leveraging the underlying HW security capabilities dealt with in detail

in Chapter 3 and are exposed via API and different framework and protocol

layers by the SW as detailed in Chapter 4. The external interactions that an

IoT device experiences during the lifecycle depend upon the stimulus from

myriad connectivity interfaces, and this is dealt with in detail in Chapter 5.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 2 Iot Frameworks and ComplexIty

http://creativecommons.org/licenses/by/4.0/

149© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_3

CHAPTER 3

Base Platform
Security Hardware
Building Blocks

Every distraction is a possibility, Every downfall is an
opportunity.

—Ria Cheruvu

Historically, the attacks on platforms have been transitioning from

application-level software (SW) to user mode SW to kernel mode SW to

firmware (FW) and now hardware (HW). The frequency of HW- and FW-

level vulnerabilities increased substantially from 2003 to 2019 and therefore

reinforces a concrete need for HW-based security to harden the platform.

This is evident from the data cataloged in the National Vulnerability

Database (NVD) organized as CVEs; more information about NVD can

be found at https://nvd.nist.gov/. The Common Vulnerabilities and

Exposures (CVE) is a list of entries with the information that identifies a

unique vulnerability or an exposure and is used in many cybersecurity

products and services including the NVD; more information about CVE

can be found at https://cve.mitre.org/. The NVD has been mined to

derive the statistics and visualizations with pertinent search terms such

https://nvd.nist.gov/
https://cve.mitre.org/

150

as Firmware and Hardware. It is evident from Figure 3-1 (a) that the

firmware-related CVEs have increased significantly and 2017–2018 saw the

biggest jump when the hacker community started attacking the FW on the

platforms. Similarly Figure 3-1 (b) shows that during the same time period,

the HW-related CVEs also hit a peak. Please note that all these CVEs need

to be investigated carefully for the impacted areas within a platform. But the

trends are clearly pointing toward the HW as the last line of defense.

1999
0

100

200

300

400

500

Results Type: Statistics

Search Parameters:

Total Matches By Year (Snapshot from April 2019)

2000 2002 2004 2006 2008 2010

Year

2012 2014 2016 2018

2005 2007 2009 2011 2013 2015 2017 20192001 2003

Keyword (text search): Firmware

Search Type: Search All

of

 V
ul

ne
ra

bi
lit

ie
s

M
ee

tin
g

Sp
ec

ifi
ed

 L
im

ita
tio

ns

Figure 3-1. (a) Firmware vulnerability trend chart1

1 https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&
results_type=statistics&query=Firmware&search_type=all

Chapter 3 Base platform seCurity hardware Building BloCks

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Firmware&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Firmware&search_type=all

151

This chapter describes the technologies involved in securing an IoT

device anchored to a Hardware Root of Trust (HWRoT) and ultimately

booting into a Trusted Execution Environment (TEE). Security in an IoT

environment generally involves four areas of focus:

• Protecting the device

• Protecting user identity

2001
0

10

20

30

40

50

Results Type: Statistics

Search Parameters:

Total Matches By Year (Snapshot from April 2019)

2002 2004 2006 2008 2010 2012

Year

2014 2016 2018

2007 2009 2011 2013 2015 2017 20192003 2005

Keyword (text search): Hardware

Search Type: Search All

of

 V
ul

ne
ra

bi
lit

ie
s

M
ee

tin
g

Sp
ec

ifi
ed

 L
im

ita
tio

ns

Figure 3-1. (b) Hardware vulnerability trend chart2

2 https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&
results_type=statistics&query=Hardware&search_type=all

Chapter 3 Base platform seCurity hardware Building BloCks

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Hardware&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Hardware&search_type=all

152

• Protecting the data

• Managing the security at runtime

Each of these areas are worthy of detailed explanation in itself. This

chapter delves into the rich set of security and privacy technologies

Intel has available in their product lines and how they may be used to

implement secure IoT systems. Intel’s discrete CPU-PCH or System-on-

Chip (SoC) products have two classes of security features; one class of

features are implemented in the CPU as New Instructions (NI) with some

examples being AES-NI, SHA-NI, and so on. The second class of security

features are implemented in the isolated security engines with examples

including Converged Security and Manageability Engine (CSME).

Note please note that by the time this book is published, some
new security features may be released by intel, and therefore please
refer to intel web site or contact the relevant oem/odms for latest
information.

 Background and Terminology
Before the actual security capabilities can be described, it is important to

understand the terminology, the threat pyramid, the relevance of end-

to-end security, and Intel Security Essentials for leveraging built-in HW

security technologies.

 Assets, Threats, and Threat Pyramid
Security design begins with the process of identifying a set of assets

that are to be protected and classifying these assets according to the

different levels of protection based on strategic or other pertinent value

Chapter 3 Base platform seCurity hardware Building BloCks

153

vectors. A real-life scenario of protecting assets in our home would be

to protect our house keys (hang on wall), wallets (place in an enclosed

cabinet), passports, and jewelry (in a safe in the master bedroom). For

IoT deployments, security is also determined by the return on investment

(ROI). Figure 3-2 depicts the relationship between them.

• Assets (A): Anything valuable to us that is worth

protecting. What assets are we protecting? It is

pertinent to classify the assets and prioritize. Example

asset profile = {physical devices, internal fuses, keys,

content, data at rest/in transit, etc.}

• Threats (T): What are we protecting against? Become

aware of threat surfaces, the areas of exposure to

threats.

• Vulnerabilities (V): What are the known weaknesses in

the system that can be exploited?

• Mitigation: How are we going to protect?

• Robustness rules: Specific to assets/threats.

Documented conditions/criteria for protecting specific

assets against specific threats.

• Threat modeling: A process to evaluate the threat

scenarios considering the vulnerabilities for specific

assets. This process is iterative and is expected to be

done whenever the bill of materials (BOM) list in a

platform changes.

Chapter 3 Base platform seCurity hardware Building BloCks

154

 Inverted Threat Pyramid
The threat pyramid shown in Figure 3-3 depicts the surfaces/layers

vulnerable to cyberattacks (both physical and remote) in an IoT device.

The volume of attacks is high at the top and requires fewer resources,

whereas the volume of attacks at the bottom is lower and requires a high

amount of resources. In other words, the attack surfaces have varying

degree of exposure and mandate a defense in depth approach at the

platform levels.

V2A2

A1

A3

Threat Surface

Threat Surface

Threat Surface

V3

V1

V2

V4

Threats

Figure 3-2. Relationship between assets, vulnerabilities, and threats

Chapter 3 Base platform seCurity hardware Building BloCks

155

The rectangle outlines the IA value additions where the related

security IP capabilities exemplify the assets that can be used to protect

customer’s assets. The effort to create exploits at the top of the inverted

pyramid is low, and the ROI on the compromised assets is also low. Due

to this low effort, the number of exploits is also significantly higher. As we

traverse down the inverted pyramid, the effort it takes to create exploits

increases significantly along with the cost, and thereby the number of

exploits is typically lower and targeted in nature. The bottom six layers

could be qualified as HW, and side-channel attacks plus physical attacks

are relevant. The discussion of such side-channel and physical attacks is

outside the scope of this book.

 Sample IoT Device Lifecycle

The IoT device lifecycle pertaining to security is complicated with security

involved in every phase of an IoT device lifecycle (Figure 3-4). During the

build phase, the security SDK/API is critical for simplifying the device

Apps/Framework

Middleware

User mode

Kernel

OS loader

Hypervisor

BIOS/Boot Loader

Mutable Flash parts

Security/P-unit FW

Volume of attacks
is high with low
complexity

Volume of attacks
is low with high
complexity

Prevalent
Attack
Pyramid

Fuses (under/over voltage, etc.)

Physical ports (PCIe DMA bus master, DDR
analyzer, etc.)

Chip top layer scraping, Differential Power
analysis, etc.)

Figure 3-3. Attack pyramid

Chapter 3 Base platform seCurity hardware Building BloCks

156

build. The provisioning/configuring phases would require tools that

scale across different CPU families and involve assigning a persona to the

IoT device. The deployment phase should be flexible for seamless and

potential anonymity. The connectivity should comply with the relevant

security standards and specifications. The management of these devices

must be secure and seamless. The retirement or decommissioning phase is

equally critical for an IoT device due to the integration of different assets/

secrets from multiple vendors in the system. For a detailed supply chain

interactions during the lifecycle, refer to the Secure Device Onboarding

technology.3

IoT devices have different security needs as they go through their

lifecycle (on average it is many years significantly more than traditional

PCs). Security is pivotal to enable IoT devices and sustain those on the

market. Each stage of the device lifecycle has its specific requirements,

starting from providing what is needed for onboarding a device during

the start of its life to security management functions that secure runtime

operations. Intel has a critical role with enabling design-in the best

practice HW security model with solutions and ecosystem relationships.

Intel targets to enable security capabilities and solutions for each phase

working with the ecosystem. Security is not one-off, it evolves along the

lifecycle with each stage having unique needs. Best practices are required

to secure the entire lifecycle.

3 www.intel.com/content/www/us/en/internet-of-things/secure-device-
onboard.html

Chapter 3 Base platform seCurity hardware Building BloCks

http://www.intel.com/content/www/us/en/internet-of-things/secure-device-onboard.html
http://www.intel.com/content/www/us/en/internet-of-things/secure-device-onboard.html

157

Develop

• Simplicity
 (SDK/API)

Retire

• Salvage the
 sensitive data upon
 Decommission

Configure

• Tools that scale
 across CPU/SoC and
 OSs

Build

• Tools that scale
• OxM customization

Manage

• FW updates, recovery
• Device Management

Connect

• Multiple PHY/MAC

Deploy

• Seamless/Anonymous

Figure 3-4. IoT device lifecycle

 End-to-End (E2E) Security
While security pertaining to an IoT device is important, a practical IoT

deployment warrants scaling security across an E2E spectrum starting with

edge/Things connected to Network and then fog or Cloud. The typical E2E

security involves edge/Things ➤ Gateway/Network ➤ Fog ➤ Cloud. Refer

to Figure 3-5.

Chapter 3 Base platform seCurity hardware Building BloCks

158

Assets exist at different stages and often cross trust boundaries.

A typical flow (for a sensing application) is explained with

confidentiality (encryption/decryption) and integrity (sign/verify)

attributes:

 1. The device securely identifies with the Gateway/

Cloud (could be one time or periodic depending

upon the policy enforcement).

 2. The device has/interfaces to sensors (smart/dumb)

and actuators, collects the data, and controls the

sensors and drives the actuators.

 3. Device may run some local analytics and optionally

store the data encrypted.

 4. Device encrypts or signs (or both) (depending on

the policy) the data and sends it to Gateway.

 5. Gateway decrypts/authenticates the data.

 6. Gateway may run some local analytics.

Network Cloud
Fog

Onsitecloud

3rd Party
Cloud

Things

Security Management

Security Management

Gateway Devices

Local Area Network Connectivity

Wide Area Network Connectivity

Data
Processing

API Libraries,
APIs, SDK

Data
Processing

Data
Management

Batch & Stream
Analytics

Storage

API Libraries,
APIs, SDK

Security Management API Libraries,
APIs, SDK

Network
Infrastructure

Figure 3-5. Typical E2E security components

Chapter 3 Base platform seCurity hardware Building BloCks

159

 7. Gateway encrypts/signs and sends the data to fog/

Cloud.

 8. The instances on fog/Cloud decrypt/authenticate

the data.

 9. Cloud applications run analytics.

 10. Cloud applications encrypt/sign and store the data

in databases.

 Security Essentials
Security Essentials is an Intel brand initiative that defines a set of

foundational security capabilities that Intel processors and Systems on

Chips (SoCs) will support in order to establish a secure baseline upon

which the ecosystem can build rich, secure usage models (see Figure 3-6).

Security Essentials establishes a set of capabilities along with technology

options for implementing each of the targeted capabilities. This allows

us to project a common security posture across all supported platforms,

establish a baseline for security that the industry can rely upon, and

promote reuse and consistency in Intel-based security solutions. Intel

provides training, collateral, technology summits, and Technology

Alignment Programs with customers and ecosystem partners. In

some cases, Intel partners with Independent BIOS Vendors (IBVs) and

Independent boot loader vendors to enable the ecosystem with fast,

secure, and functionally safe boot loader solutions.

Chapter 3 Base platform seCurity hardware Building BloCks

160

Security Essentials focuses on four buckets of capabilities: Device

Identity, Protected Boot, Protected Storage, and trusted execution

environment. These are later explained briefly.

 Device Identity

A hardware identity refers to an immutable, unique identity for a platform.

The identity has to be somehow inseparable from the platform. A hardware

embedded cryptographic key, also referred to as a Hardware Root of

Trust, can be an effective device identifier. The Trusted Computing Group

(TCG) defines hardware-roots-of-trust as part of the Trusted Platform

Module (TPM) specification. All TPM vendors are required to implement a

hardware root of trust for storage. Intel® Platform Trust Technology (PTT)

implements TPM functionality using a security engine integrated in many

of its SoC products.

The IEEE community defines a device identity specification, IEEE

802.1AR, that has been adopted by the TCG. This means TPM-based device

identity complies with interoperable and industry-accepted approach for

secure device identity.

A software (SW) identity refers to a cryptographic fingerprint (SWFP)

that describes important software that may execute on a platform. The

SWFP can be reliably verified given a whitelist of SWFP values known to

Device Attack Surfaces “Baseline Trust Capabilities”

THINGS NETWORK CLOUD

Applications
High Volume,
Low Complexity

Low Volume,
High Complexity

Operating System

Hardware

Security technologies should be rooted in HW to harden the platform

Virtual Machine
(Optional)

Trusted Execution

Tr
an

si
tiv

e
Tr

us
t C

ha
in

Th
re

at
s

Protected Data, Keys, Identity

“Ingredients”
used for a variety
of security usage
models

Consistent
implementation
platforms

Crypto Protected Boot

Figure 3-6. Trusted secure foundation

Chapter 3 Base platform seCurity hardware Building BloCks

161

be legitimate. SWFP is an important aspect of securely booting a platform

where the goal of secure boot is to detect malicious changes to software

images before they are loaded into memory.

The TCG defines methods for securely booting a platform where

the SWFP of each software image loaded into memory is measured (aka

cryptographically hashed) into a Platform Configuration Register (PCR),

which is securely stored by a TPM. PCR measurements are available for

comparison with whitelist values during the boot process and are available

for attestation after the platform boots. Attestation is a protocol for

proving to a peer platform that it booted a particular way. The attestation

verifier might also use the whitelist to verify a peer platform node booted

satisfactorily.

An IoT system that enforces a common and attested secure boot policy

is a way to establish trust in a distributed set of IoT nodes. Distributed trust

is an important component to establishing a secure IoT network.

 Protected Boot

This capability defends against sophisticated bootkits and rootkits which

have been demonstrated that reside in very early boot code and are able

to launch a variety of attacks on the system. These attacks materialize

without the knowledge of OS and thereby are invincible to be detected by

the anti-malware entities. The TCG defines an architectural requirement

for secure platform boot by defining a root-of-trust-for-measurement

(RTM) where the platform must provide a secure platform reset and initial

boot executive that is implemented in hardware, but TCG stopped short of

defining a particular implementation.

The Unified Extensible Firmware Interface (UEFI) forum defines an

interface where the UEFI BIOS boot image can be integrity verified by the

RTM before it can execute, thereby ensuring the remainder of the BIOS boot

process can be performed according to TCG defined secure boot principles.

Chapter 3 Base platform seCurity hardware Building BloCks

162

Intel® TXT (Trusted Execution Technology) anticipates scenarios

where a hard power reset, as a way to return to a trusted environment, is

infeasible. Instead, Intel® TXT transitions the CPU to a secure operational

mode using an IA instruction, then proceeds to boot a hypervisor or OS

without invoking BIOS.

Intel Boot Guard is the hardware-based root of trust for system boot

process. It provides an architectural enforcement of OEM boot policies and

a protected initial measurement & verification of first OEM component.

OEM boot policy is provided in FPF programmed by the OEM.

 Protected Storage

The Storage Networking Industry Association (SNIA) defines storage

security as

Technical controls, which may include integrity, confidentiality
and availability controls that protect storage resources and
data from unauthorized users and uses.

Protected storage is a fundamental security capability required to

support many other security capabilities. The Trusted Platform Module

(TPM) implements secure storage primitives for several types of security

objects including cryptographic keys, configuration registers, and whitelist

values. Protected storage encompasses the following properties:

• Data confidentiality: Unauthorized entities cannot read

the data.

• Data integrity: Unauthorized entities cannot modify

the data or unauthorized data modification can be

detected.

• Anti-replay protection: Unauthorized entities cannot

replay/reuse stale data to storage.

Chapter 3 Base platform seCurity hardware Building BloCks

163

Intel® Platform Trust Technology (PTT) is an implementation of

the TCG Trusted Platform Module specification in a SoC that relies on

hardware isolation of flash and other memory to prevent access outside

of the TCG defined interfaces. Intel® QuickAssist Technology (QAT) is a

hardware data encryption accelerator that also implements key storage

protections. A common approach for building secure storage for data that

exceeds the capacity of hardened secure storage resources calls for bulk

data encryptions that allow ciphertexts to be stored on traditional storage

media, but where encryption keys are stored in hardware. It is common

to build a hierarchy of data encryption keys so that different access and

lifecycle controls can be applied to different data. In some cases the key

hierarchy itself is too large to fit into hardware-protected storage; therefore

intermediate keys may be used to encrypt data encryption keys and so on

until the top most keys of the hierarchy can be stored in hardware.

 Trusted Execution Environment (TEE)

In general, a Trusted Execution Environment (TEE) refers to an execution

environment that is isolated from the normal general-purpose execution

environment. For example, the core CPU is a general-purpose execution

environment, and a security coprocessor is an isolated environment.

Trusted execution environments may include HW/SW/FW that establishes

an isolated environment. By carefully controlling the infrastructure that

produces the HW/FW/SW that implements it, the TEE can have strong

guarantees regarding safe and reliable execution of TEE workloads.

Typically workloads that involve the use of cryptographic keys to ensure

confidentiality and integrity protection of data as it is transformed to and

from ciphertext are performed using a TEE.

There are several TEE technologies available across a variety of

architectures. ARM® TrustZone creates an isolated execution environment

within the ARM core. Intel® Software Guard Extensions (SGX) takes a

similar approach and allows multiple instances of trusted execution

Chapter 3 Base platform seCurity hardware Building BloCks

164

environments for different applications and tenants. Intel® Converged

Security and Manageability Engine (CSME) is a security coprocessor that

is integrated into Intel chipsets. The CSME can be used to offload security-

sensitive operations to shield them from possible attacks from the normal

CPU environment. Intel® TXT allows trusted execution using CPU cache

lines as RAM to minimize dependencies on external resources. It can be

used for general-purpose TEE operations when cache coherency isn’t

needed. Intel® Virtualization Technology (VT) suite offers another form

of TEE where a trusted hypervisor creates execution environments with

distinct thread, memory, interrupt, and IO contexts. Virtualization allows

full OS and application images to run which may be counterproductive

to security due to increased attack surface of a large OS and application

framework. Therefore, it may yet be appropriate to employ some other TEE

capability in concert with virtualization.

 Built-In Security

Built-in security features are essential to protect, detect, and correct the

security issues in a platform. These features depicted in Figure 3-7 enable

to protect the identity and data assets on the platforms from attacks,

detect when attacks are launched, and then aid in deploying the corrective

measures to make the platforms resilient.

Chapter 3 Base platform seCurity hardware Building BloCks

165

The identity is based on HW and possesses immutable properties

and simplified access. The data asset protection includes data at rest and

in transit. The detection mechanisms constitute anti-malware FW/SW

components to find the malware and then pipeline into deploying the

corrective measures via FW and/or SW over the air updates. Intel’s value

proposition includes three layers of ingredients as shown in Figure 3-8.

Build-in Silicon Security
Hardware Solutions for User Problems...

Protect

Identity

Simple access
with enhanced

security

Intel® Identity
Protection Technologies

Intel® Data Protection
Technologies

Intel® Platform or Device
Protection Technologies

Data safe from
theft or alteration

Malware finds
nowhere to run or

hide

Securely
updated, more

resilient systems

Data Protection Anti-Malware Resiliency

Detect Correct

Figure 3-7. HW solution pillars for user problems

Intel’s Security Value Propositions

Solutions
Protect, Detect, and Correct
solutions for Consumer and

Enterprise

Deliver Best-in-class Security
Software Solutions & Services

Create New Security
Platforms and Ecosystems

Drive Built-In Security
into Silicon Architecture

For OEMs, ISV’s, SI’s, Security
Practitioners

Architecture for Secure Experiences
and Security Workloads

Platforms

Architecture

Figure 3-8. Security value propositions

Chapter 3 Base platform seCurity hardware Building BloCks

166

At the bottom layer, the Intel Architecture allows leveraging built-in

security features to build the platforms at the middle layer and, at the top

layer, create ecosystems enriched with deployment of best-in-class security

software solutions. These solutions at the top layer enable the protection,

detection, and corrections in both consumer and enterprise class solutions.

Intel security assets and solutions enable building and deploying an end-to-

end system of systems as depicted later. The end-to-end system starts with

edge devices or things on the left possessing minimal compute capacity and

less robust security features; these edge devices are connected to Gateways/

Network, to fog, and then connected to the cloud back ends.

The scalable strategy as shown in Figure 3-9 is to provide a minimally

viable set of security capabilities that scale from low compute MCUs to

atom class to Core and to Xeon server, microserver class products. Across

the product lines, the four groups of security technologies are available in

different capacities for implementing security features. The device identity

based on HW is key for an IoT device, and protected boot ensures that only

well-known FW/SW is being executed and protected storage ensures the

storage of secrets and/or data securely. The trusted execution environment

allows execution of code at runtime in an isolated and protected

environment immune from SW and HW attacks.

t h i n g s

Consistent HW security “capabilities” implemented across products

n e t w o r k

Fog

Software
Identification

ATOM
PROTECTED BOOT

PROTECTED STORAGE
TRUSTED EXECUTION

HW & SW IDENTIFICATION

CORE XEON

Device
Identification

Protected
Boot

Protected
Storage

Trusted
Execution

C l o u d

Figure 3-9. Consistent HW security capabilities

Chapter 3 Base platform seCurity hardware Building BloCks

167

 Base Platform Security Features Overview
Let’s review the security features present in the base platform profiles

of IA CPU/SOC at a very high level. As alluded to in previous sections,

the security features are implemented in CPU and on dedicated security

engines as shown in Figure 3-10.

CPU

Dedicated Security Engine:
• ME for Core products
• TXE for Atom products
• SPS for Xeon products

Figure 3-10. CPU and dedicated security engines

Intel CPUs come standard with a suite of cryptographic operations

that can be performed on the main CPU. Secure, protected encryption

starts with a random number seed, typically provided by a pseudorandom

number generator within the client. Intel® Secure Key provides a clean

source of random numbers through generation in hardware, out of sight

of malware. Intel® SGX provides TEE with smallest TCB within the CPU

boundaries for application to utilize.

 CPU Hosted Crypto Implementations

These features include CPU new instructions for encryption/decryption,

sign/verify, and random number generation: AES-NI, SHA-NI, SHA1 and

SHA256, RDRAND, RDSEED, ECC. This section describes the Security

features/primitives New Instructions (NI) as supported in the Intel CPUs

Chapter 3 Base platform seCurity hardware Building BloCks

168

(as opposed to in an isolated security engine IP block). CPU crypto

capabilities are supported by the CPU and the fabric. In the following

sections, we will learn how the hardware-enhanced security strengthens

Anti-Malware Defenses via the OS Guard (SMAP, SMEP), performing

encryption/decryption, sign/verify, and random number generation.

CPU security features and accelerators are available to trusted execution

environments implemented by the CPU as well including Intel® SGX,

Intel® VT, and Intel® TXT.

 Malware Protection (OS Guard)

Intel CPU/SoCs expose HW features for OS to defend the platform against

malware attacks. The particular and effective features include CPU new

instructions to enable Supervisor Mode Execution Prevention (SMEP) and

Supervisor Mode Access Prevention (SMAP). The SMEP feature prevents

the code executing in privileged mode (ring 0) from executing code in

application mode (ring 3). SMAP is a CPU-based mechanism for user-

mode address-space protection and prevents supervisor accesses to data

on user pages.

 OS Guard (SMEP)

SMEP when enabled prevents a specific (important) privilege escalation

attack vector which is supervisor mode execution from user pages. The

OS can set CR4.SMEP to enable this feature, and no changes are required

to applications or other OS software. However, there might be some

compatibility issues with third-party ring 0 software. The changes in VMM

are limited to supporting/virtualizing CR4.SMEP bit and corresponding

CPUID bit. It is important to note the non-objectives so that platform-level

protections can be deployed appropriately. SMEP doesn’t prevent “all”

privilege escalation attack vectors, nor does it prevent a specific class of

vulnerability (e.g., buffer overflow).

Chapter 3 Base platform seCurity hardware Building BloCks

169

 OS Guard (SMAP)

SMAP extends the protection that previously was provided by SMEP and

was developed with the Linux community, supported on kernel 3.12+

and KVM version 3.15+. The support depends on OS or VMM being used,

and the CR4.SMAP has to be set to enable the feature. SMAP is analogous

to SMEP (supervisor mode execution prevention) for data. There are

legitimate instances where the OS needs to access user pages, and SMAP

does provide support for those situations. Code executing in ring 0

(supervisor mode) is prevented from accessing the data in ring 3 (user

mode). When/if CR4.SMAP = 1, CPU generates Page Fault (#PF) for the

following accesses: accesses to data (not instruction fetch), data is on user-

accessible page (U/S bit is 1 in all relevant paging structure entries), access

is made with supervisor privilege which normally means CPU Privilege

Level (CPL) < 3, applies also to supervisor accesses made with CPL = 3

(e.g., loads from GDT on segment loads). The resulting #PF establishes

error code in the normal way.

 Encryption/Decryption Using AES-NI

AES is a symmetric encryption standard that’s widely used in the following

use cases: full disk encryption, data in transit encryption, and enterprise

application–specific security. All the modern compilers support the AES

HW accelerators, and developers can also use via C/C++ intrinsics. Intel®

Advanced Encryption Standard New Instructions (Intel® AES-NI) is a set

of seven new instructions in the Intel® processor series. Four instructions

accelerate encryption and decryption. Two instructions improve key

generation and matrix manipulation. The seventh aids in carry-less

multiplication. By implementing some complex and costly substeps of the

AES algorithm in hardware, Intel AES-NI and PCLMULQDQ accelerate

Chapter 3 Base platform seCurity hardware Building BloCks

170

execution of the AES-based encryption. The result is faster, more secure

encryption, which makes the use of encryption feasible in new use-cases.

Some of the properties are outlined here:

• Improve the compute efficiency of cryptographic

algorithms.

• Vector AES is a promotion of AES-NI to vector form,

enables two (256-bit) or four (512-bit) lanes, and

increases AES throughput of cores.

• FIPS197 compliant.

• Compilers, libraries, and emulator platforms are all

available now.

• AESENC, AESENCLAST, AESDEC, AESDECLAST.

• AES Encrypt Round, AES Encrypt Last Round, AES

Decrypt Round, AES Decrypt Last Round.

• Instructions have both register-register and register-

memory variants.

• AESIMC and AESKEYGENASSIST: Assist with AES Key

Expansion, AES Inverse Mix Columns, and AES Key

Generation Assist.

The platform support for AES can be determined by inspecting cpuinfo

output and openssl commands as shown in the following:

$ grep -o aes /proc/cpuinfo

To verify the proper cipher order, use the following command:

"openssl ciphers -v"

Chapter 3 Base platform seCurity hardware Building BloCks

171

See the following list that shows AES at the top of the list:

Openssl speed aes-256-cbc

Openssl speed –engine aesni –evp aes-256-cbc

http://ask.xmodulo.com/check-aes-ni-enabled-openssl.html

openssl speed –elapsed aes-128-cbc

openssl speed –elapsed –evp aes-128-cbc

 https://software.intel.com/en-us/articles/improving-openssl-

performance

 Sign/Verify Using Intel® SHA Extensions

The Intel® SHA Extensions are a family of seven Streaming SIMD

Extensions (SSE)–based instructions that are used together to accelerate

the performance of processing SHA-1 and SHA-256 on Intel® Architecture

processors (Figure 3-11). Given the growing importance of SHA in our

everyday computing devices, the new instructions are designed to provide

a needed boost of performance to hashing a single buffer of data. Using the

SHA Extensions, the Intel® SHA Extensions can be implemented using direct

assembly or through C/C++ intrinsics. The 16-byte aligned 128-bit memory

location form of the second source operand for each instruction is defined to

make the decoding of the instructions easier. The memory form is not really

intended to be used in the implementation of SHA using the extensions

since unnecessary overhead may be incurred. Availability of the Intel® SHA

Extensions on a particular processor can be determined by checking the

SHA CPUID bit in CPUID (EAX=07H, ECX=0):EBX.SHA [bit 29].

• New instructions in CPU to encrypt/decrypt data.

• The Intel® SHA Extensions are comprised of four SHA-1

and three SHA-256 instructions.

Chapter 3 Base platform seCurity hardware Building BloCks

http://ask.xmodulo.com/check-aes-ni-enabled-openssl.html
https://software.intel.com/en-us/articles/improving-openssl-performance
https://software.intel.com/en-us/articles/improving-openssl-performance

172

• There are two message schedule helper instructions

each, a rounds instruction each, and an extra rounds-

related helper for SHA-1.

• FIPS Pub 180-2 compliant.

Instruction Op 1

SHA1 New Instructions

SHA256 New Instructions

SHA1RNDS4 xmm (rw) xmm/m128 (r) imm8 OF 3A CC /r ib

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r)

xmm (rw) xmm/m128 (r)

NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

<xmm0>
(implicit)

OF 38 C8 /r

OF 38 C9 /r

OF 38 CB /r

OF 38 CC /r

OF 38 CD /r

OF 38 CA /r

SHA1NEXTE

SHA1MSG1

SHA1MSG2

SHA256RNDS2

SHA256MSG1

SHA256MSG2

Op 2 Op 3 Opcode

Figure 3-11. SHA instruction family

The availability of the SHA Extensions in a platform can be detected

using the code in Listing 3-1. It is always a good idea to check the available

HW crypto capabilities before leveraging them.

Listing 3-1. Detecting the SHA Extensions

int CheckForIntelShaExtensions() {

 int a, b, c, d;

 // Look for CPUID.7.0.EBX[29]

 // EAX = 7, ECX = 0

 a = 7;

 c = 0;

Chapter 3 Base platform seCurity hardware Building BloCks

173

 asm volatile ("cpuid"

 Intel® SHA Extensions: New Instructions Supporting the

 Secure Hash Algorithm on Intel® Architecture Processors

 14

 :"=a"(a), "=b"(b), "=c"(c), "=d"(d)

 :"a"(a), "c"(c)

);

 // Intel® SHA Extensions feature bit is EBX[29]

 return ((b >> 29) & 1);

}

 Intel® Data Protection Technology with Secure Key
(DRNG)

This section explains about the usage of Digital Random Number

Generator (DRNG) with the new instructions supported in IA CPUs. For

any IoT device, the ability to generate high-quality cryptographic keys

is crucial. Two such instructions RDRAND and RDSEED are explained

along with the method to determine the support and the associated

programming usage. Intel® Secure Key constitutes the Intel® 64 and IA-32

Architectures instructions RDRAND and RDSEED and the underlying

Digital Random Number Generator (DRNG) hardware implementation.

High-quality keys for cryptographic protocols can be generated using

the RDRAND instruction, and the RDSEED instruction is provided for

seeding software-based pseudorandom number generators (PRNGs).

RDRAND retrieves a hardware-generated random value from the NIST

SP800-90A compliant Digital Random Bit Generator (DRGB) and stores

it in the destination register given as an argument to the instruction. The

size of the random value (16-, 32-, or 64-bits) is determined by the size

of the register given. The carry flag (CF) must be checked to determine

whether a random value was available at the time of instruction execution.

Chapter 3 Base platform seCurity hardware Building BloCks

174

RDRAND is available to both OS modes: system (ring 0) or application

(ring 3) software running on the platform. There are no hardware ring

requirements that restrict access based on process privilege level. As such,

RDRAND may be invoked as part of an operating system or hypervisor

system library, a shared software library, or directly by an application.

Before using the RDRAND or RDSEED instructions, an application or

library should first determine whether the underlying platform supports

the instruction and hence includes the underlying DRNG feature. This

can be done using the CPUID instruction. In general, CPUID is used to

return processor identification and feature information stored in the

EAX, EBX, ECX, and EDX registers. For detailed information on CPUID,

refer to References CPUID A and B. To be specific, support for RDRAND

can be determined by examining bit 30 of the ECX register returned by

CPUID, and support for RDSEED can be determined by examining bit

31 of the EBX register. A bit value of 1 indicates processor support for

the instruction, while a value of 0 indicates no processor support. The

Intel Digital Random Number Generator (DRNG) is a high-quality, high-

performance, HW-based random number generator.

• It supports NIST SP 800-90 A, B, and C compliant

functionality and is FIPS 140-2 Level 2 certifiable.

• It generates random numbers at a rate of 1 byte per

clock.

• It is available early in the system boot/OS load process.

Both RDRAND and RDSEED return random numbers that are

compliant to the US National Institute of Standards and Technology (NIST)

standards on random number generators (Figure 3-12).

Chapter 3 Base platform seCurity hardware Building BloCks

175

As depicted in Figure 3-13, the RDRAND instruction is handled

by microcode on each core. This includes an RNG microcode module

that handles interactions with the DRNG hardware module on the

processor chip. The entropy source (ES) produces random bits from a

nondeterministic hardware process. HW AES in CBC-MAC mode distills

the entropy into high-quality nondeterministic random numbers. The

deterministic random bit generator (DRBG) is seeded from the conditioner.

Instruction

RDRAND SP 800-90A

SP 800-90B & C (drafts)

Cryptographically secure pseudorandom number
generator

Non-deterministic random bit generatorRDSEED

Source NIST Compliance

Figure 3-12. NIST compliance for RDRAND and RDSEED

Processor Chip

Random Number Generator

Hardware
Entropy
Source

Hardware
AES-CBC-

MAC Based
Conditioner

Hardware
SP800-90
AES CTR

Based
DRBG

RDRAND
Instruction

RDRAND
Instruction

Ra
w

Se
ed

Core 0

Core N-1

Figure 3-13. Random number generator inside the chip

Chapter 3 Base platform seCurity hardware Building BloCks

176

The availability of RDRAND and RDSEED can be detected using the

following register bit decoding (Table 3-1).

More information can be found at: https://software.intel.com/

en-us/articles/intel-digital-random-number-generator-drng-

software-implementation-guide

Table 3-1. Feature Information Returned in the ECX Register

Leaf Register Bit Mnemonic Description

1 eCX 30 rdrand a value of 1 indicates that processor

supports the rdrand instruction

7 eBX 18 rdseed a value of 1 indicates that processor

supports the rdseed instruction

With the information from Table 3-1 and by leveraging the code in

Listing 3-2, the availability of RDRAND and RDSEED can be detected in a

platform.

Listing 3-2. Detecting DRNG Support

/* These are bits that are OR'd together */

#define DRNG_NO_SUPPORT 0x0 /* For clarity */

#define DRNG_HAS_RDRAND 0x1

#define DRNG_HAS_RDSEED 0x2

int get_drng_support ()

{

 static int drng_features= -1;

 /* So we don't call cpuid multiple times for

 * the same information */

 if (drng_features == -1) {

 drng_features= DRNG_NO_SUPPORT;

Chapter 3 Base platform seCurity hardware Building BloCks

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide

177

 if (_is_intel_cpu()) {

 cpuid_t info;

 cpuid(&info, 1, 0);

 if ((info.ecx & 0x40000000) == 0x40000000) {

 drng_features|= DRNG_HAS_RDRAND;

 }

 cpuid(&info, 7, 0);

 if ((info.ebx & 0x40000) == 0x40000) {

 drng_features|= DRNG_HAS_RDSEED;

 }

 }

 }

 return drng_features;

}

One of the advantages of security hardening and acceleration

capabilities applied to the core architecture is that performance

enhancements derived from core silicon manufacturing process

improvements also apply to security features. In many cases, this approach

ensures security features’ manufacturing costs scale with the other core

features.

 Converged Security and Manageability Engine
(CSME)
This describes the Converged Security Engine capabilities including the

silicon, FW, and SW ingredients. This is similar to a security coprocessor

which has its own ROM, RAM, instruction set, and an isolated execution

environment. Refer to a simplified architecture diagram in Figure 3-14. An

excellent deep dive can be found in the book Platform Embedded Security

Technology Revealed (www.apress.com/9781430265719).

Chapter 3 Base platform seCurity hardware Building BloCks

https://www.apress.com/9781430265719

178

Features are implemented in the isolated security execution engine

or equivalent to a security coprocessor. CSME is an embedded subsystem

in Platform Controller Hub (PCH). It is a mini SoC within the PCH and

contains a small processor, SRAM, crypto blocks, and I/O’s. CSME serves

three main platform roles: chipset (secure initialization/survivability),

security (boot/runtime protection and enable trusted execution of

platform applications), and manageability (optional extensions for out-of-

band network management).

CSME supports the following:

• Crypto operations, boot, DAL, manageability (AMT, in

above atom).

• The CSME supports crypto operations, HW Root of

Trust–based secure boot (verified and measured),

Active Manageability Technology, and other features.

CPU

PCH

CSME
Flash

Figure 3-14. CSME block diagram

Chapter 3 Base platform seCurity hardware Building BloCks

179

• Content Protection: PAVP, Digital Rights Management

(DRM)-Widevine, PlayReady, and Adobe Access. The

CSME supports multiple DRMs for protecting the

premium audio/video content by encrypting and/or

digital watermarking.

• Secure Debug: DFX, JTAG lock. The CSME supports

secure debug and manages access to DFX register

space by allowing locking and unlocking of JTAG

interface through which ICE emulators could be

plugged in for debugging during pre/postproduction

and to debug the field return parts.

• Identity Protection Technology: The CSME also

supports protecting user’s identity via multifactor

authentication, biometrics, iris, and others.

 Secure/Verified, Measured Boot and Boot Guard
Protecting the boot flow is critical to ensure that the device is not running

compromised code whether it is the FW on the flash components or SW

running from the mass storage device. Secure/verified boot is a process

where a device authenticates the different FW/SW ingredients in the

boot chain and establishes a chain of trust. Measured boot is a process

where the device authenticates to a network for admission. To implement

measured boot, the device stores the hash values of the boot chain

ingredients, and SW entities collect these values and transmit them to a

server for attestation.

Chapter 3 Base platform seCurity hardware Building BloCks

180

 Trusted Execution Technology (TXT)
The TXT is prominent in the server and microserver domain where a

comprehensive security strategy is employed including a Measured

Launch Environment (MLE) and instrumented OS. More about this will be

discussed in the “Runtime Protection – Ever Vigilant” section.

 Platform Trust Technology (PTT)
PTT is a FW implementation of the Trusted Computing Group (TCG)

Trusted Platform Module (TPM) and complies with the TPM 2.0

specification. This FW is executed on the CSME or CSE on atom platforms.

This feature is the most important for an IoT device which has board-level

constraints imposed by BOM cost and real estate. PTT is essential for

measured boot and attestation mechanisms.

 Enhanced Privacy ID (EPID)
The EPID allows a device to possess an immutable “privacy preserving

platform identifier” – in many use cases, it isn’t required that the particular

instance of the CPU be known, only that the platform is of a particular class

or origin. In these situations, trust can be established without sacrificing

privacy. Through this immutable identity, more secrets can be provisioned

in the field during the course of the IoT device lifecycle including

anonymous identification for provisioning of secrets, premium content,

DRMs, and operation.

 Memory Encryption Technologies
In future processors, Intel plans to introduce two new in-memory data

protection capabilities including Total Memory Encryption (TME) and

Multi-Key TME, or MKTME. TME technology encrypts the platform’s

entire memory with a single key.

Chapter 3 Base platform seCurity hardware Building BloCks

181

 TME

When enabled via BIOS configuration, this will help ensure that all

memory accessed from the Intel CPU is encrypted, including customer

credentials, encryption keys, and other IP or personal information on the

external memory bus.

 MKTME

The second new technology extends TME to support multiple encryption

keys (Multi-Key TME, or MKTME) and provides the ability to specify

the use of a specific key for a page of memory. This architecture allows

either CPU-generated keys or tenant-provided keys, giving full flexibility

to customers. This means virtual machines (VMs) and containers can

be cryptographically isolated from each other in memory with separate

encryption keys, a big plus in multitenant cloud environments. VMs and

containers can also be pooled to share an individual key, further extending

scale and flexibility. This includes support for both standard DRAM and

NVRAM. Refer to the following for more information.[4, 5]

 Dynamic Application Loader (DAL)
DAL technology allows building, deploying, and managing the lifecycle

of a small trusted applet (Java-based applets) using the DAL SDK and

Runtime environment.

4 https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-
new-technology-specification-for-memory-encryption

5 https://software.intel.com/sites/default/files/managed/a5/16/Multi-
Key-Total-Memory-Encryption-Spec.pdf

Chapter 3 Base platform seCurity hardware Building BloCks

https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryption
https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryption
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

182

 Software Guard Extensions (SGX) – IA CPU
Instructions
SGX constitutes a new set of CPU instructions, kernel/user mode drivers

and Runtime environment, and API/SDK. This framework allows

developers to build the trusted parts of the application code into enclaves.

The inherent assumption is that the partition of the application into

trusted and untrusted domains is already done prior to implementing

SGX. SGX can be used to seal legitimate software inside an enclave to

protect from attacks by the malware, irrespective of the privilege levels

whether it is ring 0 or ring 3.

 Identity Crisis
With the projected 50 billion IoT devices on the network, wouldn’t it be

ultracritical to ensure that a device is talking to the right device at the other

end? A masqueraded device can do lot of damage. A method to prevent this

is to implement a device identity that’s immutable and use this identity to

attest and provision initial secrets and additional secrets in the field during

the course of the device’s life. The same phenomenon applies to human

identity as well. It is vital to realize that a masqueraded device is substantially

hard to detect and quarantine. Intel Identity Protection Technology (IPT)

uses Dynamic Application Loader (DAL) to implement mechanisms to

protect the user identity via multifactor authentication and others.

The device identity (ID) decision tree can be used to select the right

ID for a particular implementation. As shown in Figure 3-15, a security

architect/engineer can decide the right identity based on the platform

requirements and use cases. If an identity is required but mutable

(changeable), a SW identity may suffice, but immutable identity requires

identity to be in HW. If this identity now has to be anonymous, select EPID,

else the identity as supported in PTT/TPM may be adequate. The EPID’s

cryptographic properties are briefly explained in the following section.

Chapter 3 Base platform seCurity hardware Building BloCks

183

 Enhanced Privacy Identifier (EPID)
The EPID is a novel technology that addresses all aspects of the active

anonymity problem: authentication, anonymity, and revocation. Intel®

Enhanced Privacy ID (Intel® EPID) provides an immutable hardware

root of trust, enabling IoT networks to confidently identify devices and to

secure their communications.

 Anonymity

Intel EPID also offers sophisticated privacy capabilities that enable

anonymous communication to safeguard networks and customers’

data. EPID is an anonymous digital signature scheme with the following

attributes (Figure 3-16): a private key for signing and a single group public

key for verifying signature of multiple keys. EPID is an open standard: ISO/

IEC 20008/20009 and TCG Mature Technology, shipping since 2008, 2.4B

keys since 2008.

Is identity required? Immutability
required?

YES Anonymous?YES YES
Select
EPID

Select
PTT/TPM

NO

Select
SW based ID

NO

NA

NO

Figure 3-15. Device identity decision tree

Chapter 3 Base platform seCurity hardware Building BloCks

184

As depicted in the figure, the PKI is a system with a public-private key

pair, whereas the EPID is a system with one public key associated with

many private keys formed into a group. In both cases, the private keys are

provisioned into the devices, and the public keys are available to the back-

end servers for authentication/admission.

 PTT/TPM
The Endorsement Key (EK) supported in the Intel® PTT or discrete Trusted

Platform Module (TPM) serves as a direct identity for IoT devices. An

Endorsement Key is a special purpose TPM-resident RSA key that is never

visible outside of the TPM. An EK certificate is used to bind an identity, in

PKI Public Key

PKI Private Keys

EPID Public Key

pvt-
key 1

pvt-
key n

pvt-
key 2

…

Millions of Private Keys

Figure 3-16. PKI system vs. EPID

Chapter 3 Base platform seCurity hardware Building BloCks

185

terms of specific security attributes, to a TPM. The primary use of an EK

certificate is to authenticate device identity during Attestation Identity Key

(AIK) certificate issuance.

 Device Boot Integrity – Trust But Verify
Imagine the IoT device booting an image that’s not the original from boot

storage. In this circumstance, any protections that you deploy at higher

layers wouldn’t be adequate to protect the device. Once the immutable

identity is ensured as explained in the previous section, it becomes vital to

follow through by booting securely. The boot loaders such as BIOS, UEFI,

coreboot, and FSP can be classified into pre-OS boot loaders and will be

referred as such. Let’s unravel the ∗boot chaos with many terms employed

in the industry today:

• Trusted Boot: Definition varies according to industry.

Used to characterize a trusted system with a chain of

trust.

• Secure Boot: HWRoT based. Authenticates starting with

the first instruction executed on host (Core/Xeon/Atom).

• UEFI Secure Boot: UEFI Boot manager ensures device

boots only signed FW and OS loaders. UEFI Driver

signing and protocol extensions. This is also known as

BIOS as Root of Trust.

• Windows Secure Boot: Leverages UEFI Secure Boot to

continue into Windows OS, a Windows certification

requirement.

• Direct Boot: An OS image such as Linux bzImage is

loaded from stage 2 of the pre-OS boot loader.

Chapter 3 Base platform seCurity hardware Building BloCks

186

• Verified Boot: Cryptographically verifies the Initial Boot

Block of the pre-OS boot loader or UEFI or BIOS using

boot policy key. A verified boot using Intel Boot Guard

is shown in Figure 3-17.

• Immutable Root-of-Trust exists in the hardware.

• Root-of-Trust protects the initial boot process.

• It uses cryptographic keys to authenticate and validate

the integrity of the Initial Boot Block (IBB).

• IBB maintains a secure boot chain by passing control

to the next stage boot image after authentication and

integrity verification.

• The final stage boot image passes control to the OS

after authentication.

• Measured Boot: Measures the Initial Boot Block (IBB)

and subsequent stages into platform storage such as

Trusted Platform Module (TPM) or firmware-based

TPM or secure storage.

Root of Trust

Intel BootGuard UEFI Secure Boot Or Other Mechanism

IBB OBB OS/Apps

verifyverifyverify

Figure 3-17. Verified boot flow with Boot Guard

The following terms will be useful to understand the following

sequence that describes the process of Measured Boot using Boot Guard as

shown in Figure 3-18:

• Hashing algorithms typically employed include Hash_

alg = SHA1, SHA256, SHA384, SM3.

• Extending: It is a process of updating a PCR with a hash.

Chapter 3 Base platform seCurity hardware Building BloCks

187

• PCR: Platform Configuration Register hosted

inside PTT/TPM. The PCR 0–7 are used for pre-OS

environment, and PCR 8–15 are used for OS and

beyond. Refer to the TCG TPM specification for

recommended PCR allocations.

• The new PCR value can be computed with PCR_new =

Hash_alg(PCR_old || Hash_alg(data_new)).

• Logging: Keeps a log of all measurements in an ACPI table.

• ACM: Intel Authenticated Code Module, integrated

in the BIOS/UEFI/boot loader for authenticating and

measuring the IBB.

 1. Upon power ON, CSME starts by computing the hash

of ACM, and the hash of the ACM is stored in PCR 0.

 2. The ACM computes the hash of IBB and extends it

into PCR 0.

 3. The IBB computes the hash of OEM Boot Block

(OBB) aka the second stage pre-OS boot loader and

extends the hash into PCR 0 and stores the hash of

Platform Config Data into PCR 1.

 4. The OBB computes the hash of OS loader and stores

the corresponding hash into PCR 4. It stores the

hash of Firmware Boot Policy in PCR 7.

 5. The OS loader computes the hash of OS kernel and

stores the hash into PCR 8.

 6. The OS kernel can compute the hash of the user

mode drivers/libraries and applications and extend

the respective hashes into PCR 8-15 to meet the

platform chain of trust requirements.

Chapter 3 Base platform seCurity hardware Building BloCks

188

 Secure Boot Mechanisms
The stack below describes the lowest layer to be the HW layer, and above

that is the firmware layer which includes the modules required to handle

the HW IP blocks and Digital Rights Management. Above that is the

boot loader/UEFI used to initialize the CPU and chipset. The optional

hypervisor supports the Virtual Machine Manager (VMM) functionality.

The upper layers include the OS ingredients for kernel and User mode.

CSM
E

Power
ON

PCR 0 : BtGuard Policy, ACM, IBB

PCR 0 : CSME, OBB
PCR 1 : Platform Config Data

PCR 4 : OS Loader
PCR 7 : Firmware Secure BP

PCR [0-7] : Separator bet’n Firmware/OS

PCR 8 : OS Kernel

PCR 8-15 : OS Dependent

ACM
IBB

OBB
OS

Kernel
OS

Loader

Figure 3-18. Measured Boot sequence

Chapter 3 Base platform seCurity hardware Building BloCks

189

Above that layer are the middleware/frameworks and applications. This

diagram (Figure 3-19) also illustrates the security goal that trust begins

at the lowest layers and must be extended into the layers above – and

that doing so requires conscious techniques to get it right. If/when those

techniques fail, the stack recovers by falling back to lower layers.

The stack includes booting into application TEEs and the need to

distinguish security-sensitive function and workloads that should be

separated from “traditional” function and workloads. We can refer to

the TEE and lower layers as the trusted computing base upon which the

rest of the stack depends. The stack also supports networking and the

idea that lower layers implementing the TCB can be linked (in an IoT

use case) so that a Distributed TCB (DTCB) can be formed that supports

distributed trusted workloads such as key management/migration, device

management, SW/FW update of an IoT fog/network, and so on.

App Trusted Execution
Environment (TEE)

Applications

User Mode

Kernel Mode

OS Loader

Optional Hypervisor

Stage2 Boot Loader

Stage1 Boot Loader

Secure Boot FW

HW Rot

Chain of Trust

Authenticate

OS

Pre-OS

HW

Figure 3-19. Describes the boot flow on a core along with the chain
of trust and signing implications

Chapter 3 Base platform seCurity hardware Building BloCks

190

 Secure Boot Terminology Overview

Secure Boot Types: With the Field Programmable Fuse (One Time

Programmable) profile options within the SoC, you can configure the

device in an unsecured boot where the boot ingredients in stages are

assumed to be trusted and no authentication is performed, referred to in

Figure 3-20.

• Verified Boot: Boot policies are enforced during

the boot process. Starting with the Root of Trust for

verification, the currently executing module verifies

the next module against a policy. The boot process

is stopped if secure boot guarantee is violated. It is

important to note that this only provides assurance that

the boot policy was enforced.

• Measured Boot: Integrity measurement is placed

into the TPM. Starting with the Root of Trust for

measurement, the currently executing module places

the integrity measurement of the next module into

the TPM. Computer is not stopped if secure boot

guarantee is violated and provable to remote systems

via attestation.

• Secure Boot: A boot process which implements either

Verified Boot, Measured Boot, or both. Verified Boot

is often referred to as Secure Boot; Measured Boot is

often referred to as Trusted Boot (also refers to TBoot

sometimes).

Chapter 3 Base platform seCurity hardware Building BloCks

191

IOT devices are inherently vulnerable to physical attacks primarily due

to their ability to connect to billions of devices. A first step in building a

robust device is to ensure that the very first component of the boot loader

is authenticated. This is implemented by a method known as secure boot

which is based on a hardware root of trust in a platform. The immutable

code running on on-die ROM in an isolated environment on a security

engine forms an anchor. This ROM code loads the stage 1 of the boot

loader into security engine’s SRAM and cryptographically authenticates

the image before executing it on the host CPU. The secure boot method

on Intel Architecture is explained in detail including the HW and

cryptographic blocks. Refer to Figure 3-21.

Unsecured Boot

Measured Boot

Verified Boot

Reset

Reset

Reset

Verifies against manifest
IT

Verifies against manifest

IT
Has no proof of

proper boot

OS/
Apps

OS/
Apps

OS/
Apps

Execute

Execute

Execute Verify Execute Verify

Measure Execute Measure

Assumption

Assumption

Verifies against Manifest during / after boot.
• Local Attestation: TPM Enforces Policy
• Remote Attestation: TPM Key signs
 measurements.

Policy applied
starting here

Execute Assumption

TPM

Figure 3-20. Types of boot

Chapter 3 Base platform seCurity hardware Building BloCks

192

 Overview of BIOS/UEFI Secure Boot Using Boot
Guard Version 1.0 (BtG)
The verified boot flow using FSP+coreboot leveraging the Intel Boot Guard

version 1.0 on Skylake platform is shown in Figure 3-21. The terms are

explained followed by the sequence.

IPF: Infield Programmable Fuses also known as Field Programmable

Fuses (FPF) represent storage inside the CPU/SoC for policy configuration

and are One Time Programmable (OTP). The provisioning tools are

provided by Intel for programming these fuses in the manufacturing flow.

Platform Power Sequence: Includes starting boot sequence for power

rail stabilization.

Authenticated Code Module (ACM): Intel provided FW module loaded

from flash, authenticated and executed in CPU’s cache as RAM (CAR).

Sky Lake FSP/coreboot Verified Boot (BtG 1.0)

Platform
Power

Sequence
ACM

OEM
Manifest FSP

IBB

OEM
Public Key

Hash

IPF

OEM
BP Key Hash

PubK

PubK

PrvK

PrvK

Signed
By OEM
Private Key

Signed
By OEM BP
Private Key

ACM FW authenticates the public key
ACM FW authenticates the IBB
Core Boot Stage-1 authenticates the Core Boot Stage-2

Stage-2 authenticates the Stage-3
Stage-3 authenticates OS Loader via UEFI key store or Mok List
OS Loader authenticates the Kernel via UEFI key store or Mok List
Kernel authenticates the Apps via UEFI key store or Mok List

UEFI
Variable
Services

Key
Manifest

IBB
Hash

Boot Policy
Manifest

Components
Hash

OEM
Manifest

KEK
PK
DB

DBX

UEFI
Key Store

Hash

Option
ROMs

UEFI
Payload

Core Boot
Stage-1

(BootBlock)

Core Boot
Stage-2

(RomStage)

Core Boot
Stage-3

(RamStage)
Windows
Loader

Windows

Reference Flow: Core Boot + FSP + UEFI + Windows

Boot Policy

Figure 3-21. FSP/coreboot-based verified boot on Skylake using Boot
Guard 1.0

Chapter 3 Base platform seCurity hardware Building BloCks

193

The sequence is outlined here:

• ACM authenticates Core Boot Stage-1.

• Core Boot Stage-1: Authenticates Core Boot Stage-2

using the BPM.

• Core Boot Stage-2: Authenticates Core Boot Stage-3

using the OEM Manifest.

• Core Boot Stage-3: Authenticates OS Loader (Windows

or Grub/ELILO or others).

• OS Loader (Linux or Windows or RTOS): Authenticates

kernel image.

• Kernel: Authenticates the user mode and applications.

Refer to this link for starting with coreboot: www.coreboot.org/Lesson1

Firmware Support Package (FSP) is provided by Intel for initializing

Intel silicon, designed for integration into a boot loader of the developer's

choice. FSP source code can be leveraged for ideas and references for

implementing verified and measured boot using Intel Boot Guard and

PTT/TPM; more information can be found at: https://firmware.intel.

com/learn/fsp/about-intel-fsp

 Data Protection – Securing Keys, Data at
Rest and in Transit
At rest: Storing data/secrets/content securely on the storage and whole

disk encryption is the most popular example. This also is a very important

problem. If a malware or even a legitimate application can access the

secrets that it’s not authorized, it causes an unstable device. Certain

regulations such as General Data Protection Regulation (GDPR) mandate

protecting the privacy of the data both at rest and in transit. For more

information on encryption-related protection of data, refer to

Chapter 3 Base platform seCurity hardware Building BloCks

http://www.coreboot.org/Lesson1
https://firmware.intel.com/learn/fsp/about-intel-fsp
https://firmware.intel.com/learn/fsp/about-intel-fsp

194

https://ec.europa.eu/commission/sites/beta-political/files/

data- protection- factsheet-sme-obligations_en.pdf. Section (83) calls

for encryption for confidentiality in: https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

Article 6, 4 (e) also calls for encryption or pseudonymization

of personal data which ensures reidentifying only with additional

information. This is in contrast to anonymity where the anonymized data

can no longer be reidentified.

Runtime protection problem: How do we protect the data and the

code from each other in the system during Runtime? TEEs are an excellent

method for this. Examples include SGX.

It is useful to think about theft threats and the idea that attackers

are able to perform brute force crypto hacking as they have access to all

the encrypted data and wrapped keys and so on. Encrypting using AES

before storing the data on a disk makes it harder for attackers to reverse

engineer and steal the secrets. An example use case for this is the Windows

BitLocker technology which implements the whole disk encryption with

strong passwords. There are increased threats due to persistent memory

technologies supported by Optane and 3D Xpoint. These are persistent

storage technologies making them subject to theft threats. Memory

encryption is a mitigation where any/all data that goes out of the CPU/SOC

on bus is encrypted whether it’s destined for DRAM or SSD. The encryption

technologies such as AES XTS 265 and secure boot existing in Optane + 3D

Xpoint can be utilized to protect assets concerning flash- based memory.

 Intel Platform Trust Technology (PTT)
Intel® PTT is a implementation of the Trusted Platform Module (TPM)

2.0 specification in firmware. CSME/TXE Engine is used as cryptographic

processor for TPM implementation. SPI flash (TXE/CSME filesystem) is

used as secure storage. PTT currently implements only mandatory and

recommended TPM 2.0 commands mentioned in MSFT “signal and profile

document.”

Chapter 3 Base platform seCurity hardware Building BloCks

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-sme-obligations_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-sme-obligations_en.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

195

As shown in Figure 3-22, the PTT includes random number generator,

encryption/decryption, sign/verify, secure key generation, secure key/data

storage, device identity both unique and anonymous, and device attestation.

Random
Number

Generator

Intel
Platform

Trust
Technology

Encryption
(Signing)

Device
Attestation

Secure Key
Generation

Secure Key/
Data Storage

Device Identity

Unique/
Anonymous

Figure 3-22. PTT components

 Windows PTT Architecture
On Windows as shown in Figure 3-23, the host SW components include the

Trusted Base Services (TBS), the TPM.sys kernel mode driver, and ACPI

which interact with PTT FW through Memory Mapped IO (MMIO)–based

Chapter 3 Base platform seCurity hardware Building BloCks

196

PTT interface. The PTT interface in turn calls into the TXE or CSME. The

SPI storage is used as the secure storage where the keys and other secrets

are stored encrypted and signed to ensure confidentiality and integrity.

The CSME contains internal crypto engines and SRAM and uses SPI flash

to store the keys in an encrypted format.

Pre-OS environment (BIOS/UEFI/coreboot) implements the following:

• Selects between available PTT/TPMs

• Enables/disables PTT/TPM

• Issues TPM clear (PPI)

• Logs measurements in TPM and ACPI for OS

Host SW BIOS

TBS

TPM.sys
ACPI

BIOS

PTT EFI
Driver

PTT Interface

PTT FW

Crypto Engines SRAM

Secure
Storage

SPI

System
Memory

CSME

Figure 3-23. Windows PTT stack

Chapter 3 Base platform seCurity hardware Building BloCks

197

 Linux PTT Software Stack
As shown in Figure 3-24, in Linux OS stack, a PTT-based application

has multiple mechanisms to interact with PTT including PKCS #11 and

Feature API, and an expert application developer can directly interact with

System API.

• TPM Device Driver (TDD) handles physical data

transmission in ring 0/kernel mode.

• TPM Command Transmission Interface (TCTI) handles

marshalling and unmarshalling of full TPM commands.

• System API (SAPI) enables creation and handling of

TPM objects, sessions, and policies.

• Enhanced SAPI (ESAPI) enables management of the

created objects, sessions, and policies.

• Feature API (FAPI) designed to capture 80% of

common use cases combining operations with profile

definitions.

• TAB controls access to the TPM in multiple application

scenarios.

• RM manages the limited TPM resident memory.

• PKCS #11 – WIP on TPM 2.0.

TPM through SAPI specifications and implementations are mature,

while ESAPI and FAPI implementations are still developing.

Chapter 3 Base platform seCurity hardware Building BloCks

198

 Runtime Protection – Ever Vigilant
Most of the IoT devices spend their life in this phase where the device is

functional and performing its intended persona. This phase is critical for

devices that are “always on.” The assets to be protected include data, code,

and identity. Once the chain of trust is stable (secure booted), to maintain

the stable chain of trust, every bit and byte must be authenticated before

admitting into the system on every supported interface (USB, serial, BT/

Wi-Fi). This objective can be achieved with high robustness level using

a Trusted Execution Environment (TEE). The technologies available for

implementing Runtime protections include Intel VT, SGX, CSME, and TXT.

 Intel Virtualization Technology (Intel VT)
Virtualization abstracts hardware that allows multiple workloads to share

a common set of resources. On shared virtualized hardware, a variety of

workloads can colocate while maintaining full isolation from each other,

freely migrate across infrastructures, and scale as needed.

Application
PKCS #11

Feature API (FAPI)

System API (SAPI)
TPM Command Transmission Interface (TCTI)

TAB
User space

System
Memory

TXE Engine

Kernel space

Resource Manager

TPM Device Driver (TDD)

Enhanced SystemAPI (ESAPI)

Expert
TPM Application

BIOS
BIOS

PTT EFI
Driver

PTT Interface

PTT FW

Crypto Engines SRAM

Secure
Storage

SPI

Figure 3-24. Linux PTT stack

Chapter 3 Base platform seCurity hardware Building BloCks

199

CPU virtualization features enable abstraction of the full prowess

of Intel® CPU to a virtual machine (VM). All software in the VM can run

without any performance or compatibility hit, as if it was running natively

on a dedicated CPU. Live migration from one Intel® CPU generation to

another, as well as nested virtualization, is possible.

Memory virtualization features allow abstraction, isolation, and

monitoring of memory on a per virtual machine (VM) basis. These features

may also make live migration of VMs possible, add to fault tolerance, and

enhance security. Example features include direct memory access (DMA)

remapping and extended page tables (EPT), including their extensions:

accessed and dirty bits and fast switching of EPT contexts.

I/O virtualization features facilitate offloading of multicore packet

processing to network adapters as well as direct assignment of virtual

machines to virtual functions, including disk I/O. Examples include

Virtual Machine Device Queues (VMDQ), Single Root I/O Virtualization

(SR-IOV, also a PCI-SIG standard), and Intel® Data Direct I/O Technology

enhancements (Intel® DDIO).

Graphics Virtualization Technology (Intel® GVT) allows VMs to have

full and/or shared assignment of the graphics processing units (GPU)

as well as the video transcode accelerator engines integrated in Intel

System-on-Chip products. It enables usages such as workstation remoting,

desktop-as-a-service, media streaming, and online gaming.

Virtualization of security and network functions enables

transformation of traditional network and security workloads into

compute. Virtual functions can be deployed on standard high-volume

servers anywhere in the data center, network nodes, or Cloud and smartly

colocated with business workloads. Examples of Intel® technologies

making it happen include Data Plane Development Kit (DPDK), Intel®

QuickAssist Technology, and Hyperscan.

Intel® Virtualization Technology for Connectivity (Intel® VT-c) is a key

feature of many Intel® Ethernet Controllers. With I/O virtualization and

Quality of Service (QoS) features designed directly into the controller’s

Chapter 3 Base platform seCurity hardware Building BloCks

200

silicon, Intel VT-c enables I/O virtualization that transitions the traditional

physical network models used in data centers to more efficient virtualized

models by providing port partitioning, multiple Rx/Tx queues, and on-

controller QoS functionality that can be used in both virtual and nonvirtual

server deployments.

As shown in Figure 3-25, the isolation capability enabled by VT

technology is being utilized to create an architecture with a Trusted

Execution Environment (TEE). The TEE is implemented as a secure VM

with privileged execution and access to resources; examples include

Microsoft VSM and Trusty (https://source.android.com/security/

trusty/).

Virtualization and VM Isolation components include Intel® VTx (CPU),

Intel® VTd (I/O), VmFunc (Hypervisor).

App
TEE
App

TEE OSRich OS

VMM

VTd

1

I2CUSB

Device Device

Figure 3-25. TEE using virtualization environment

Chapter 3 Base platform seCurity hardware Building BloCks

https://source.android.com/security/trusty/
https://source.android.com/security/trusty/

201

TEE OS: Thin OS running alongside rich OS. Examples are Microsoft

VSM, Android Trusty, and so on.

Rich OS: Regular OS that executes non-security-sensitive workloads.

Examples are Microsoft Windows, Linux, Android, and so on.

Trusted computing base (TCB): VMM + TEE OS + TEE App.

Isolated execution: VMs are isolated from each other by the VMM.

Trusted Input/Output: Can be implemented by assigning I/O

Controllers to different VMs.

 Software Guard Extensions (SGX)
This section explains the usage of Software Guard Extensions (SGX) for

implementing a Trusted Execution Environment (TEE) with the new

instructions supported in IA CPUs. For any IoT device, the ability to

execute code that handles secrets/assets in a protected environment is

crucial. SGX leverages the partitioning of code into trusted and untrusted

domains which interact with each other via well-defined SGX instructions.

How does SGX work as shown in Figure 3-26? The following model

describes the interactions between the application and the SGX enclave.

 1. Application is built with trusted and untrusted parts.

 2. Application runs and creates enclave which is

placed in trusted memory.

 3. Trusted function is called; code running inside

enclave sees data in clear; external access to data is

denied.

 4. Trusted function returns; enclave data remains in

trusted memory.

Chapter 3 Base platform seCurity hardware Building BloCks

202

It is important to understand the software development model for the

benefit of the developers (Figure 3-27):

• Sensitive code and data are partitioned into an

“enclave” module which is a shared object (.so).

• Define the enclave interface and use tools to generate

stubs/proxies.

• SGX Libraries provide APIs (C/C++) to encapsulate

heavy-lifting implementation.

• Use a familiar toolchain to build and debug.

Application

Privileged System Code
OS, VMM, BIOS, SMM, ...

Untrusted Part
of App

Trusted Part
of App

Create Enclave Execute

Return

Call Gate

CallTrusted Func.

(etc.)

Figure 3-26. SGX in action

Chapter 3 Base platform seCurity hardware Building BloCks

203

For further details, please refer to SGX web portal at: https://

software.intel.com/en-us/sgx

 Intel CSE/CSME – DAL
Intel Converged Security Engine in CSE/CSME is a dedicated engine

for security and provides a HW root of trust for the platform. Dynamic

Application Loader (DAL) exposes a general-purpose execution

Untrusted TrustedTools

App Code

Processing
Component

Processing
Component

SGX
Libraries

SGX
Libraries

ptrace

Kernel

Intel SGX enabled platform

uRTS Security Services

Enclave

SGX driver

Stub/
Proxy

Stub/
Proxy

Figure 3-27. SGX SW development model

Chapter 3 Base platform seCurity hardware Building BloCks

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

204

environment and is in production use since 2011 (Sandy Bridge) and

exists in almost every Intel-based platform. It extends the CSE FW

by dynamically loading signed CSE applications at Runtime. It allows

faster deployment of FW applications by decoupling the application

development from the platform development lifecycle. The FW

applications are stored on host filesystem, thus avoiding flash size

considerations. DAL enables binary-level portability for applications and

is based on a virtual machine; DAL applications are written in the Java

programming language. Refer to Figure 3-28.

Open to malware and
rooting/jailbreaking

Rich OS Secure OS

HW Secure Resources

Host Operating System (REE) CSE - TEE
Trusted

App
Payment

Trusted
App

Content
protection

Trusted
App

Identity
protection

Apps

TEE Client API

TEE Internal API

Hardware Platform

TSM
Proxy

TA Service
Manager

Micro Run Time
Environment

Trusted App
mgmt

API
IPC\HECI

Isolation of sensitive
assets

Figure 3-28. DAL architecture

Chapter 3 Base platform seCurity hardware Building BloCks

205

 Isolation from Rich Execution Environment

All the trusted applications (TAs) run in an isolated environment as

supported by DAL and with the following attributes:

• TAs run in separate Java-like VM environment.

• TA-to-TA snooping is prevented using sandboxing.

• DAL prevents TA direct access to resources of other TAs.

 Authenticity and Security

The DAL applications or TAs are subjected to the following robustness rules:

• DAL allows installation of signed and encrypted DAL

TA in the CSE (security coprocessor).

• The TA can use the secure services, that is, secure

storage to access SPI flash.

• Intel or OEM signed TAs can be installed.

 Portability

The TAs have the binary-level portability subjected to the following scope:

• DAL is based on a virtual machine; DAL applications

are written in Java.

• DAL enables binary-level portability for FW

applications across the OS and HW platform.

Chapter 3 Base platform seCurity hardware Building BloCks

206

Following are sample applications where DAL is deployed:

• Intel® Identity Protection Technology (Intel® IPT).

• Identity protection and e-payment: OTP (one-

time password), PTD (protected trusted display),

PKI (public key infrastructure), NFC (near field

communication).

• Intel® PKI (PEAT) for IT market: Symantec

Managed PKI, Intel IT.

• McAfee (Intel Security): MFAb (Multifactor

Authentication for Business), True Key – using IPT.

• Intel® Security Assist (ISA): A self-updater service

which recommends security products to end users.

• China UnionPay (CUP): Implementing a Tap and Pay

e-Commerce solution.

• Intel® Software Guard Extensions (Intel® SGX): The

“Secure Enclaves” technology consumes CSME

platform services using DAL.

• IOT Retail SmartPOS (Point Of Sale): Based on Atom

platforms with Android.

 Intel Trusted Execution Technology (TXT)
Intel® Trusted Execution Technology (Intel® TXT) provides hardware-

based security technologies to help build a solid foundation for security.

Built into Intel’s silicon, these technologies address the increasing and

evolving security threats across physical and virtual infrastructures by

complementing Runtime protections such as antivirus software. Intel

TXT also can play a role in meeting government and industry regulations

and data protection standards by providing a hardware-based method of

verification useful in compliance efforts.

Chapter 3 Base platform seCurity hardware Building BloCks

207

As shown in Figure 3-29, Intel® TXT capable processors and

chipsets allow establishing of the “root of trust” and “Measured Launch

Environment” (MLE) to support trust decisions; within the computing

platform, a MLE is needed. A “root-of-trust” is also needed which

should be established first at the silicon level and then extended to the

entire solution stack. The technology draws upon a rich set of security/

virtualization features embedded into the IA processors and also

integrated into the BIOS as well as other platform ingredients.

HARDWARE

INTEL TXT

HARDWARE

SYSTEM

HYPERVISOR

HARDWARE
HYPERVISOR

NO MATCH
HARDWARE

HYPERVISOR

HARDWARE
HYPERVISOR

MATCH

OSI
APPS

OSI
APPS

1. SYSTEM POWERS ON AND INTEL TXT
VERIFIES SYSTEM BIOS, CRITICAL
FIRMWARE AND THEN HYPERVISOR

3. OS AND APPLICATIONS ARE
LAUNCHED, PLATFORM
TRUST STATUS ATTESTABLE

www.intel.com/txt3. POLICY ACTION ENFORCED, UNTRUSTED
STATUS ATTESTABLE

2. HYPERVISOR MEASURE
DOES NOT MATCH

2. HYPERVISOR MEASURE MATCHES

Figure 3-29. TXT flow

Figure 3-30 depicts the critical enabling requirements for the

technology in server implementations. Intel TXT is specifically designed

to harden platforms from the emerging threats of hypervisor attacks,

BIOS, or other firmware attacks, malicious rootkit installations, or other

software-based attacks. It increases protection by allowing greater control

of the launch stack through a Measured Launch Environment (MLE) and

Chapter 3 Base platform seCurity hardware Building BloCks

208

enabling isolation in the boot process. More specifically, it extends the

Virtual Machine Extensions (VMX) environment of Intel® Virtualization

Technology (Intel® VT), permitting a verifiably secure installation, launch,

and use of a hypervisor or operating system (OS).

A chain-of-trust built on top of Intel® TXT

Intel Kernel
Guard Tech

Intel-generated project that is useful for extending integrity
verification solutions into runtime environments.

Intel contributes optimizations to these widely used libraries for
performing cryptographic processing.

Intel-maintained project that is widely used to OS or VMM
infrastructures capable of trusted boot.

Intel-maintained project (internally known as Intel CIT 2.0) which can
be used to remotely verify platform’s trust status & create trust pools

Intel-developed solution used to verify run time integrity of workload

Intel-developed tool that can be used to remotely activate and
configure Intel TXT on multi-vendor server platforms

Enabled in Intel Silicon, BIOS & Platform – to establish a chain-
of-trust 1st in Silicon, and then extend to the entire solution stack

Intel Trusted Execution
Technology [Intel TXT]

OpenSSLOpen
Source

Binary
Licensed

Platform
Integrated

Tboot

Open
Attestation

Cloud Integrity
Technology 3.0

Platform Trust
Enabler Tool

Figure 3-30. TXT chain of trust

Intel TXT gives IT and security organizations important enhancements

to help ensure more secure platforms; greater application, data, or virtual

machine (VM) isolation; and improved security or compliance audit

capabilities. Not only can it help reduce support and remediation costs,

but it can also provide a foundation for more advanced solutions as

security needs change to support increasingly virtualized or “multitenant”

shared data center resources.

 Threats Mitigated
Intel assets as described earlier can be leveraged to improve the robustness

and to defend against both zero-day and other attacks. Refer to Figure 3- 31.

Chapter 3 Base platform seCurity hardware Building BloCks

209

 Zero-Day Attacks
Attacks that are designed to exploit a previously unknown vulnerability are

referred to as zero-day attacks.6 These attacks are harder to detect in time

to minimize the damaging impact.

IoT applications: The impact of a compromise due to zero-day

attacks can be minimized by handling all the high-value assets/secrets in

a protected Runtime environment such as a TEE. DAL, SGX, and Trusty

provide such defenses. Examples include remote car control in the jeep

scenario and Ukraine power grid.

• Mitigation: Intel® Security Essentials, Intel Stratix®

FPGA, protected boot, and attested software

measurements can be implemented to mitigate the

risks resulting from the preceding zero-day attacks.

These solutions also enable a simplified TEE-based IP

protection for ecosystem.

IoT Threats-Edge to Cloud Portfolio Protections

IoT Applications

Security
Development

Zero Day
Exploits

Types of
Attacks

Recent
IoT

Attacks

The
Solution

Solutions Rooted In HW Security

Zero Day
App Exploit

Anonymity
Proxy

Ransomware
DDOS

Attacks
Key

Attacks
Password
Attacks

Sniffers
Attacks

Key
Attacks

Man in
Middle

Device
Endpoint

Things

Edge
Management

Gateways &
Fog Compare

Network

Secure
Communication

Data Center & Cloud

IT & OT Device
Management

Back-end

Data & Analytic
Service Providers

Figure 3-31. Mitigation of IoT threats

6 https://csrc.nist.gov/glossary/term/zero-day-attack

Chapter 3 Base platform seCurity hardware Building BloCks

https://csrc.nist.gov/glossary/term/zero-day-attack

210

 Other Attacks
Other high impacting attacks include the distributed denial of service

(DDOS), network attacks, and attacks on cloud infrastructures which hold

rich troves of data.

Device Endpoint and Edge Management: The DDOS/key/password

examples include CCTV Hijack and Mirai botnet.

• Mitigation: Intel® Secure Device Onboard can be

deployed to mitigate the risks resulting from the

preceding attacks. This is accomplished by not

shipping devices with default credentials and

instead use EPID identity designed-in for privacy

preserving provisioning model to eliminate human

misconfiguration with automated onboarding.

Network: Sniffers and man-in-the-middle examples include Tornado

Siren Hijack, WPA CRACK, and Heart Bleed.

• Mitigation: Intel® Security Essentials API, Intel®

Platform Trust Technology, Intel® Software Guard

Extensions. Simplified HW secured key management

and provisioning APIs. HW secured SSL transport APIs.

PTT or TEE protected data and key storage.

Data Center and Cloud: Anonymity Proxy and ransomware examples

include Infotainment VIN Online service app, Reaper, Thermostats, and

WannaCry.

• Mitigation: Wind River Helix Device Cloud. Automated

Over-the-Air (OTA) updates for firmware and software,

provisioning, credential management, suspend,

decommission, and firewall policy update to isolate/

quarantine.

Chapter 3 Base platform seCurity hardware Building BloCks

211

 Conclusion
Security is not a blanket and requires pragmatic approach. It needs

understanding of the assets to be protected against a set of threats in a

system consisting of a set of vulnerabilities. Intel has a lot of HW security

assets which can be leveraged to boot an IoT device securely and continue

building on the chain of trust tethered to a HWRoT. Intel has security

features residing in the CPU and PCH. The device identity, boot integrity,

data protection, and Runtime protection are the four fundamental buckets

of capabilities for securely booting into a TEE with a relevant TCB and later

into a distributed TCB.

 References
• https://software.intel.com/en-us/articles/

intel-sha-extensions

• https://software.intel.com/en-us/articles/

intel-advanced-encryption-standard-

instructions- aes-ni

• www.intel.com/content/dam/doc/white-paper/

enterprise-security-aes-ni-white-paper.pdf

• https://software.intel.com/sites/default/

files/m/d/4/1/d/8/10TB24_Breakthrough_AES_

Performance_with_Intel_AES_New_Instructions.

final.secure.pdf

Chapter 3 Base platform seCurity hardware Building BloCks

https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf

212

Security Hacks

• http://spectrum.ieee.org/cars-that-think/

transportation/self-driving/hackers-take-

control-of-a-moving-jeep

• http://spectrum.ieee.org/automaton/robotics/

robotics-hardware/video-friday-bacteria-

driving-robot-drone-with-gun-freaky-snakebot

• CPUID A: Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 2: Instruction Set

Reference, A-Z. [Online] http://www.intel.com/

content/www/us/en/processors/architectures-

software-developermanuals.html.

• CPUID B: Intel® Processor Identification and the CPUID

Instruction. [Online] April 2012. http://www.intel.

com/content/www/us/en/processors/processor-

identification-cpuidinstruction-note.html.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 3 Base platform seCurity hardware Building BloCks

http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-bacteria-driving-robot-drone-with-gun-freaky-snakebot
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-bacteria-driving-robot-drone-with-gun-freaky-snakebot
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-bacteria-driving-robot-drone-with-gun-freaky-snakebot
http://www.intel.com/content/www/us/en/processors/architectures-software-developermanuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developermanuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developermanuals.html
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuidinstruction-note.html
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuidinstruction-note.html
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuidinstruction-note.html
http://creativecommons.org/licenses/by/4.0/

213© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_4

CHAPTER 4

IoT Software Security
Building Blocks
Oleg Selajev from Oracle Labs is famous on Twitter for saying, “The ‘S’ in

the IoT stands for security.”1 Oleg does not spell poorly; instead, he was

bemoaning the sad state of affairs in IoT security. Despite the truth in

Oleg’s statement, security does not have to be absent in IoT.

Chapter 3 took a comprehensive look at the hardware security

offerings in the Intel Architecture. Putting these hardware features

to use in an IoT platform requires software. This chapter looks at the

software components used to secure IoT systems and how those software

components make use of the underlying hardware security features

described in Chapter 3.

In this chapter we define a software stack, building on top of the

hardware all the way up to the IoT applications, and describe how to

put the “S” back into IoT. As a way to guide our exploration of software

security in IoT, the opening section introduces a generic architectural

model that graphically depicts software components of a secure IoT

device or gateway. A more detailed section is then dedicated to each

component in our model, and we will define the necessary security

1 www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-
no-one-is-listening/

http://www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-no-one-is-listening
http://www.cnet.com/news/iot-attacks-hacker-kaspersky-are-getting-worse-and-no-one-is-listening

214

features as well as how those features contribute to the overall IoT device

security. Our architectural model is a generalization of IoT devices, and

no generalization is ever perfect; as Alexandre Dumas once said, “All

generalizations are dangerous, even this one.”2 Therefore, in Chapter 6, we

look at some actual Intel and open source software products and compare

them with our generic model.

Due to the breadth of the software topic, this chapter is the longest

in the book. For this reason, we have organized the sections so that

they do not need to be consumed in a linear fashion, although they

do build on one another. Figure 4-1 provides a map of the sections,

and the topics covered in each one, including the security concerns

discussed. The reader is encouraged to review the figure to find topics

that are most relevant or interesting to them. Throughout the chapter,

we provide forward and backward references to other sections that may

contain additional relevant information, making navigation to the most

interesting information a bit easier.

2 Alexandre Dumas, quote, www.brainyquote.com/quotes/alexandre_dumas_136868

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://www.brainyquote.com/quotes/alexandre_dumas_136868

215

OPERATING SYSTEMS

Zephyr RTOS

Execution Separation - Processes & Threads

Memory Separation - Memory Attributes & Memory Domains

Programming Error Protections - Stack Protections

Privilege Levels - User & Supervisor Privileges

Update Consistency - Packages, RPMs, Snaps & Bundles

Wind River Pulsar Linux

Ubuntu IoT Core Linux

Intel® Clear Linux

HYPERVISORS Extended Application Containment - Virtualization

Access Controlled Secrets Protection - RPMB
Intel® ACRN

SOFTWARE SEPARATION & CONTAINMENT

Extended Application Containment - Containers & TEE’s
Kata Containers

Android Trusty
Intel® Software Guard Extensions

NETWORK STACK & SECURITY MANAGEMENT

End-to-End Security - Message & Packet Encryption, TLS, IPSec
Network Restrictions - Firewall, IP Tables & TCP Dump

Intel Data Plane Development Kit
(DPDK)

DEVICE MANAGEMENT

System Control & Authorization - SSH and Sys Admin AuthorizationsMesh Central
Wind River Helix

SYSTEM UPDATE SERVICE

System Repair & Recovery - TCB Recovery
Secure RPMs / WUS

Intel® Turtle Creek

LANGUAGE FRAMEWORKS

Software Services - Application Availability to HW Security
JavaScript, Node.js & Sails

Java & Android
EdgeX Foundry

MESSAGE ORCHESTRATION

Message Protection - Spoofing, Deletion, Delay & Misdirection

Message Queuing Telemetry
Transport (MQTT)

OPC Unified Architecture
Constrained Application Protocol

SECURITY MANAGEMENT

Device Provisioning - Secure Authorization of Any Device to Any Cloud
Platform Integrity - Device Health & Platform Software Identification
Network Defense - Network Firewalls & Configuration
Attack Detection - Network packet logging

System Authorization - File System Privileges

Secure Device Onboarding (SDO)
TPM2 Software Stack (TSS)

TCP Wrappers
Snort & Suricata

McAfee® Embedded Control (MEC)

Figure 4-1. Section outline and security topics

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

216

 Understanding the Fundamentals of Our
Architectural Model
Before we explore the details of IoT software security building blocks, let

us take a quick tour through our architectural model to establish a context

for each of the building block components and how they fit together to

create an IoT device. Our architectural model is shown in Figure 4-2 and

is divided in four quadrants, where each quadrant contains software

for a different purpose. Vertically, the figure is divided into platform

software, which is the software that creates the platform environment,

and application software, which is the software that creates the platform

behaviors of the system. Horizontally, the figure is divided between the

management plane, which handles management of the system, and the

application/data plane, which is everything else not management related.

Application/Data Plane

Applications

Application Softw
are

Platform
 Softw

are

Message Orchestration

Language Frameworks

Software Containment

Operating System / Hypervisor

Hardware

Authorization
& Msg Security

Security API

TEE

Key Store Secure Boot

Actuation
& Command

Data
Reporting

Artificial
Intelligence Analytics

Databases

Netw
ork Stack

System
 Update Service

Device M
anagem

ent

Security M
anagem

ent

Management Plane

Netw
ork Security

Netw
ork

Drivers

File
System

Figure 4-2. Generic IoT stack diagram

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

217

Beginning at the bottom is the hardware covered in Chapter 3. All

hardware is implied by this element, including the processor, memory

subsystems, flash and other storage, security coprocessors, wired and

wireless communication hardware, or anything else physically connected

to the processing unit and its motherboard. This chapter does not cover

any of these elements, but refers back to the content in Chapter 3 where

appropriate.

Directly above the hardware is the operating system/hypervisor

element which is the system software in direct control of the hardware and

may be a commercial or open source operating system, or it may be an

hypervisor that creates one or more virtual hardware devices for the rest of

the software to operate within.

The software containment element is optional, but if provided on

the system includes technologies like containers and Trusted Execution

Environments (TEE). This level of additional containment improves

security by reducing privileges and controlling unintended interactions

between applications. Both containers and virtualization with hypervisors

provide containment. We devote a bit of time to discuss the differences

and benefits of each.

Figure 4-2 also shows two components that are not covered

individually, but will be interspersed among the other platform software

components: the filesystem and the network drivers. These are shown

in the diagram to aid in understanding the connection between the

application part of the stack and the platform software.

Moving up from the platform software to the application software, we

look at the management plane. The management plane software is made

up of security management, device management, and the system update

service. It also includes the network stack.

The network stack is most often included in the system software or

part of the operating system. However, for our purposes, including it in

the operating system obscures it and diminishes its importance to IoT

systems. The network stack deserves its own separate treatment because it

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

218

actually enables a system to communicate with other devices, turning that

system into an Internet of Things device. Additionally, the network stack is

the entry point for the majority of attacks on IoT systems. It straddles both

the application/data plane and the management plane, because it is used

extensively by both. It includes communication protocols and network

interfaces. The network stack subsection covers software elements needed

to secure the network stack, like firewalls and intrusion detection systems

(IDS). Chapter 6 is dedicated to covering the network protocols themselves.

Security management is the management software that performs

security relevant management operations and used when exercising

security management procedures and controls. The functionality in

security management includes device identity and attestation, key

distribution and certificate management, access control policy, logging

rules, configuring and querying the system update service, and policy for

network security, firewalls, virus scanners, and host intrusion detection

software. Oftentimes these features are included as part of the actual

software that performs device management. In our treatment, security

management is separate from other management features to highlight

adherence to the least privilege principle.3 Security management features

should require a higher level of privilege and additional authentication for

an administrator to activate.

The device management element includes all the management

features that are not part of security management. This includes querying

and managing the state of the device, rebooting/restarting the platform,

examining and downloading log files (but not deleting log files or stopping

logs from being generated, as this is a security management function),

starting and stopping and restarting applications, configuring applications,

managing databases, and configuring message queues and software

orchestration settings.

3 Saltzer and Schroeder. The Protection of Information in Computer Systems. 1975.
This paper defines several foundational security design principles which are
referred to throughout this chapter.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

219

The system update service is the last component of the management

plane. While this element is controlled by the security management

element (or the device management element in some platforms), it is

typically composed of platform and operating system–specific elements

in order to update more than just the application software and execution

containers on the system. Updates to system and device firmware, boot

loaders, and BIOS normally require special software and services to

properly coordinate the version dependencies and be able to set the

platform into the state where such components can be updated. The

system privilege to update firmware and trusted software on the device

must be strictly separated from everyday management functions.

The application/data plane contains the software that creates the

actual behavior of the IoT device. This includes language frameworks,

message orchestration, databases, and the applications themselves. Our

discussion of these elements is limited, because we focus only on the parts

of these elements that leverage hardware security features.

The language frameworks contain libraries and services used by

application software. Examples of these include the Android framework in

Java, Node.js libraries, and the Sails framework in JavaScript.

Message orchestration enables applications on the same platform to

communicate, but more importantly enables machine-to-machine (M2M)

communications over the network. Protocols like MQTT, message queue,

and publisher-subscriber frameworks (pub-sub) like Kafka fall into the

message orchestration bucket.

Databases are an important part of IoT systems, as they allow the data

that is generated, manipulated, and consumed by IoT systems to be stored,

collated, and massaged. There are multiple different types of database

systems, including SQL and NoSQL. The types of operations possible

on data and the security and privacy of that data are dependent on the

database chosen.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

220

The last element of Figure 4-2 is the applications themselves. This chapter

is not able to cover all types of applications due to the broad diversity of

IoT. However, in Chapter 6, several IoT use cases are explored, including a more

detailed discussion of the security interactions and trade-offs between the

platform and the software that is required to compose a working IoT system.

The next sections will look at each of these IoT software components in

varying detail, and in each primary component section, we will introduce

security topics relevant to that component.

 Operating Systems
When considering software security in any platform, the first consideration

should be the operating system. The operating system traditionally is the

lowest, most base level of software on any system. It controls what hardware

is activated and limits what other software can do. The operating system

provides the baseline feature set for all the other software on the platform. If

the operating system does not provide some basic feature, or does not allow

other software to control or access some aspect of the system (hardware or

software), then no other part of the platform can make up for that gap. If a

particular security feature is missing from the operating system, then the

rest of the software on the platform is likely exposed to significantly more

threats. In this section, we take a look at some basic features of operating

systems and discuss what security capabilities the operating system should

be contributing to the security of the platform. The following is a basic list of

security services that an operating system should provide:

• Execution Separation: Provides structures and

mechanisms to separate different execution units of

programs, so that their execution does not interfere

with other executing programs; this separation

includes processes, threads, interrupt service routines

(ISRs), and critical sections.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

221

• Memory Separation: Provides mechanisms to separate

the different types of memory used by executing

programs; this type of separation normally includes

process memory, thread-only stacks, shared memory,

and memory mapped I/O.

• Privilege Levels: Provide structures to separate

executing programs into different privilege levels;

this separation includes task identifiers for executing

programs, user and group identities to own executing

programs, and administrator vs. user privilege levels.

• System authorization: Provides structures and

mechanisms to assign rights to objects and verify the

privilege level of execution units against those rights;

this includes setting the default privilege level assigned

to programs and then enforcing those privileges when

programs access system resources, by either permitting

or restricting certain operations. This system

authorization mechanism allows the implementation

of the least privilege principle.3 In systems with human

users, this extends to authentication of users and

assignment of privileges to programs under the user’s

control.

• Programming Error Protections: Provide structures

and mechanisms to stop errors in executing programs

from enabling attackers to manipulate those errors and

take over the platform; these typically include stack

overflow protection, detection and prevention of heap

corruption, and restriction on control flow redirection.

All these mistakes result in software attacks that

allow a hacker to inject arbitrary code and take over a

platform. Control flow protections include protection

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

222

from Return-Oriented Programming (ROP) and Jump-

Oriented Programming (JOP) (see sidebar for detailed

explanation[4, 5]).

• Access-Controlled Secrets storage: Provides

mechanisms to store program secrets and prevent

those secrets from being accessed by unauthorized

users or programs, including the administrator; the

system normally provides this through a hardware-

backed secure storage.

WHAT IS ROP/JOP?

return-oriented programming (rop) and Jump-oriented programming (Jop)

are two techniques used by attackers to create exploit code without having to

download large binaries to the target platform. Buffer overruns have been used

since the Morris Internet worm to inject code onto a platform and cause that

code to execute.

however, various countermeasures, including dep (data execution prevention)

and aSlr (address Space layout randomization), as well as network defenses

that detect and prevent downloads of large binary data, have made such

attacks more difficult. Instead of downloading new code, attackers use rop

and Jop techniques to reuse code already on the target platform, allowing

attackers to construct their attack code on the fly. Since most software

today includes shared libraries, the attacker leverages this to find gadgets in

software and libraries already existing on the platform and strings the gadgets

together into attack code.

4 Jonathan Pincus and Brandon Baker. Beyond stack smashing: Recent advances in
exploiting buffer overruns. Security & Privacy, IEEE, 2(4):20–27, 2004.

5 N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern defenses. In
USENIX Security Symposium, 2014.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

223

gadgets are very small segments of code in existing libraries that perform

meaningful subfunctions, like moving data into a register or setting up for a

system call. gadgets either end in a return statement or a jump statement,

allowing the attacker to string multiple gadgets together to craft a new control

flow, that, overall with many gadgets, accomplishes their evil task. rop uses

return statements, while Jop uses jump statements. Both are effectively the

same attack.

Choosing an operating system for an IoT platform is primarily about

choosing the one with the best services that also executes reliably on the

chosen platform hardware. The capabilities provided by the underlying

hardware often affect what the operating system is capable of providing.

Some operating systems are designed for servers, or even specifically for

cloud deployments, while others are designed to be used in the smallest

IoT devices. Small devices typically do not have the computing power or

hardware features necessary for an advance operating system to execute.

Operating systems designed for low-power processors typically do not

have a rich set of services, because the power and performance budget

available on the processor just will not support it. CPUs in constrained

devices might not have a full memory management unit (MMU) with

advanced features like total memory encryption (TME) or memory

integrity technology. These types of features are common in server

CPUs. Without these hardware capabilities, the operating system is left

to provide best-effort security services. In coming to a final decision on

what operating system to use for an IoT system, it is also important to

evaluate the threats to the operating system and what countermeasures

the operating system provides to neutralize those threats. You can then

determine if the hardware chosen for your device is powerful enough to

resist the attacks the device is likely to encounter.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

224

 Threats to Operating Systems
Operating systems run at the highest privilege level, with access to

nearly everything on a platform. A successful attack on an operating

system can garner the attacker complete control of the platform,

often with privileged access to other platforms on the same network.

Table 4-1 shows the products (not just operating systems) with the most

number of distinct reported vulnerabilities, with data accumulated

from 1999 through 2018. As this table shows, there are a large

number of different attacks on operating systems. In fact, operating

systems make up more than half of the top 50 products with the most

vulnerabilities. Although there are numerous types of attacks, it is

possible to organize operating system threats into threat classes, all of

which execute in similar patterns.

6 www.cvedetails.com/top-50-products.php. Retrieved 9 September 2018.

Table 4-1. Products with Highest Reported Number of Vulnerabilities

over a 20-Year Period

Product Name Vendor Name Product Type Number of Vulnerabilities

1 linux kernel linux os 2124

2 Mac os X apple os 2084

3 android google os 1925

4 firefox Mozilla application 1741

5 debian linux debian os 1670

6 Chrome google application 1546

7 Iphone os apple os 1495

8 ubuntu linux Canonical os 1123

9 windows Server 2008 Microsoft os 1110

10 flash player adobe application 1060

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://www.cvedetails.com/top-50-products.php

225

Attacks typically follow a common pattern, called a cyber kill chain®,

shown in Figure 4-3, where an attacker executes a series of steps to

compromise a target. The attacker begins by observing the target (Step 1),

and then deciding how to attack the system, by fashioning some type of

weaponized code (Step 2).

The weaponized software might be a program that runs from a web

server or a crafted response packet in a protocol. The attacker delivers

the attack in Step 3, which might entail a spear-fishing email, or hijacking

a network connection, or injecting spoofed packets for a protocol. The

actual attack occurs in Steps 4 and 5, and those steps can be iterative,

where the attacker pivots from one compromised application or piece

of software and uses that as a base to attack another piece of software or

system service. Each pivot intends to increase the attacker’s control of the

platform or penetrate deeper into the network in order to gain complete

control of the platform and the entire system.

With the background of the cyber kill chain in mind, we will review

different classes of attacks on an operating system and describe how

these attacks demonstrate an attacker pivoting progressively deeper into a

system, as one attack builds on another. The following five items represent

the common attack pattern used in Step 4, exploitation:

• Fault Injection: A fault injection creates or forces

an execution fault in a process or thread; part of the

responsibility for this threat rests on the applications

themselves, but because fault injection is the first

step to overcoming the operating system itself, the OS

must take some responsibility to protect against the

vulnerabilities that create this threat. The operating

system uses containment to prevent these types

of threats from growing into greater threats to the

platform, but usually allows the fault to stop the

execution of the attacked process or thread. From our

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

226

basic list of security services, the operating system uses

programming error protections, including control

flow protections and stack smashing protections, to

mitigate this threat.

Figure 4-3. Cyber kill chain7

• Arbitrary Code Execution: Arbitrary code execution

is the injection of an attacker’s code into a process

or thread on the platform, causing the injected code

to run in place of the existing process or thread,

effectively taking on that process or thread’s identity

7 Cyber Kill Chain Diagram, www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.html

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
http://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

227

and authorizations. Arbitrary code execution

clearly violates execution separation by allowing

unauthorized code to corrupt an execution unit, but

also violates the memory separation guarantee of an

operating system, by allowing what should be data

to corrupt the code executed by the platform. If fault

injection succeeds, either because the application

mitigations were not effective or the operating system

did not provide any protections against fault injection,

then the typical escalation of a fault injection is

arbitrary code execution. An attacker places code into

the data used to trigger the fault and constructs the

fault injection to force execution of, or redirection to,

the injected code as part of the fault. Buffer overflows

and heap corruption are common mechanisms used by

attackers to create arbitrary code execution exploits.

• Breech of Containment: Breech of containment is

code in one execution unit observing or interfering

with the code or data in another execution unit. Once

an attacker has achieved arbitrary code execution,

the next step is to leverage that power to extract

data or further corrupt other execution flows within

the platform. Side-channel attacks are a common

mechanism used by attackers to extract data and

observe program execution. Side channels are so

dangerous because they allow a lower-privileged

execution unit to observe a higher-privileged

execution unit, potentially extracting secrets like

passwords and cryptographic keys from those other

execution units. These attacks violate memory

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

228

separation by allowing one program to view or infer

data from another program; oftentimes, the way a

program breeches the memory separation is through

attacks on the execution separation. A common

example of this execution separation breech is

speculative branch prediction, although there are

other examples as well.

• Escalation of Privilege: Escalation of privilege is

overcoming the operating system’s authorization

mechanisms or code that is able to assume a level

of privilege in the operating system that should not

have been allowed. After breeching containment

and extracting secrets from other execution units,

an attacker can leverage those secrets to assume a

higher privilege level. In some cases, it is possible for

the attacker to inject a fault into the operating system

itself and force it to grant a privilege that should not

have been given to the attacker’s code unit. In both

cases, the attacker has escalated the privileges that the

operating system grants to the attacker’s process. This

escalation violates the expected behavior of the system
authorization mechanisms.

• Rootkit: A rootkit is malware that penetrates into

the operating system itself and subsumes some of

its operations. Following arbitrary code injection,

an attacker can chain subsequent arbitrary code

injections, containment breeches, and/or escalation

of privilege attacks to eventually inject the attacker’s

code into the operating system itself. In some cases,

the attack is a simple one-two chain; in other cases,

it may be a series of more complex actions. If the

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

229

attacker can then modify the operating system

code on disk or in flash, the attacker can remain

permanently on the system. Once an attacker has

achieved this level of penetration into the system,

it is often extremely difficult to remove the attacker

from the system without a complete rebuild of both

the software and firmware on the device. With rootkit

access, an adversary can normally overcome even the

access-controlled secrets protections provided by

the platform, making all secrets and execution units

on the device manipulable by the attacker. A rootkit

can actually change the behavior of the operating

system, by modifying access control decisions, hiding

execution units, and reducing or removing memory

protections between different execution units through

changes to page table allocations.

As this list illustrates, one of the most basic threats to a computing

system is code and data corruption. The cyber kill chain outlines the

attacker’s steps to take over a system, which usually involve a chain of

attacks escalating an attacker’s position from injecting code into a single

application, to interfering with another running application, to eventually

changing the entire operating system’s behavior. The importance of code

and data corruption protections cannot be overstated. Extrapolating from

Turing’s theory of computation, given enough time, modifications to code

can result in serious consequences, as has been demonstrated by various

academic papers on ROP and JOP.8

8 Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng
Ning. On the expressiveness of return-into-libc attacks. In Recent Advances in
Intrusion Detection, pages 121–141. Springer, 2011.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

230

In the following sections, we examine several operating systems

used in IoT systems and discuss the security features available in those

products. Rather than repetitively inspect the same features on several

operating systems, we select different security topics on each operating

system to inspect in depth. However, for each operating system, we provide

a summary to review their protections, the mitigations they have chosen,

and their shortcomings.

 Zephyr: Real-Time Operating System for Devices
The Zephyr operating system is an open source OS designed for

constrained devices running on microcontroller units (MCUs) or in other

minimalistic environments. Zephyr runs on many different chips and

architectures, including Intel® x86, ARM® Cortex-M, Tensilica® Xtensa, and

others. Many IoT devices at the edge utilize these small processors with

limited memory. The Zephyr documentation can be found at http://

docs.zephyrproject.org/.

In this section, we want to focus on the basic operating system

responsibilities of containment and privilege. Since an RTOS is severely

limited in what it can provide, these most basic features comprise almost

all of what an RTOS can offer. Since Zephyr may not be familiar to most

readers, it is an interesting OS to explore, and Zephyr’s simplicity makes

it easy to highlight the limits of these protections and where usages can

go wrong.

Zephyr, like most real-time operating systems (RTOS), is built as

a single monolithic binary image; this means that both the operating

system and the applications are compiled into one binary that is run on

the platform. But unlike most other RTOS systems that were designed

purely for size and performance requirements, Zephyr’s documentation

states that during design, careful thought was put into the security of

the operating system. Figure 4-4 shows the Zephyr operating system

decomposed into application code, OS services, and the kernel. The next

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://docs.zephyrproject.org/
http://docs.zephyrproject.org/

231

few subsections will review how Zephyr operates and compare the security

architecture9 against the security properties that an operating system

should exhibit. Zephyr version 1.12.0, which is the most current version as

of this writing, is used for this review.

Ap
pl

ic
at

io
n

Se
rv

ic
es

De
vi

ce
M

an
ag

em
en

t

Th
re

ad

I2
C

SP
I

UA
RT

GP
IO

Fi
le

 S
ys

te
m

Lo
gg

in
g/

De
bu

g

Da
ta

ba
se

/
Pr

op
er

tie
s

Cr
yp

to

IP
C

Se
ns

or
s

......

Application

Smart Objects / High Level APIs / Data Models

LWM2M MQTT HTTP CoAP

TLS

TCP/UDP

15.4 BLE Wi-Fi

Low Level API

Kernel Services / Schedulers

Power Management

Platform

Radios Sensors Crypto HW Flash

NFC ...

IPv6/IPv4
RPL

6LoWPAN

DTLS

...

OS
 S

er
vi

ce
s

ke
rn

el

Figure 4-4. Zephyr system architecture10

 Zephyr Execution Separation

Even though the Zephyr OS and the applications are built into a single

binary, the OS still provides execution separation. In Zephyr, the primary

execution unit is a thread. An application is composed of multiple threads

that run forever in an endless loop. The application is defined and built

9 http://docs.zephyrproject.org/security/security-overview.html
10 Zephyr System Architecture Diagram, http://docs.zephyrproject.org/
security/security-overview.html

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://docs.zephyrproject.org/security/security-overview.html
http://docs.zephyrproject.org/security/security-overview.html
http://docs.zephyrproject.org/security/security-overview.html

232

at compile time using CMake and make; the system’s threads are defined at

compile time or can be created dynamically at Runtime. Each thread is

separated from other threads in time and space.

The Zephyr OS separates threads in time through scheduling, and

the OS saves and restores thread state automatically when threads are

put to sleep. Scheduling of threads is organized through a hierarchy of

priorities, allowing more important threads to preempt lower-priority

threads, ensuring that the most important jobs are completed without

interruption. Each thread is scheduled by the OS according to its priority.

The highest-priority threads are cooperative threads whose priority is set to

a negative number. Cooperative threads run until completion or until they

voluntarily yield the processor using k_yield(). Preemptive threads have a

positive priority value and are given a certain amount of time to run or are

preempted when they perform an action that makes them not ready to run,

like waiting on a semaphore or reading from a device or file. Cooperative

threads must cooperate with the system and yield back to the OS so other

things can run; if they misbehave, they can starve a system and force

even higher-priority threads (threads with a numerically lower priority

value) from running. Cooperative threads should only be used for high-

priority tasks that cannot be interrupted. If a cooperative thread has a long

operation to execute, it should break up the long operation into smaller

pieces with a call to k_yield() at a convenient point. k_yield() returns

back to the operating system, and the cooperative thread gets rescheduled

if there is a higher-priority thread with something more important to do. If

there is no higher-priority thread waiting, k_yield() just returns back to

the thread and the long operation can continue.

Zephyr provides other refinements to the scheduling policy, including

• k_sched_lock() and k_sched_unlock() to define

critical sections in preemptive threads, temporarily

preventing them from being preempted.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

233

• k_busy_wait () which prevents a cooperative thread

from being preempted when it performs some type

of wait action that would make it unready and would

normally cause it to be preempted.

• CONFIG_METAIRQ_PRIORITIES which is a configuration

setting to define the numerically lowest cooperative

thread priorities, making them act like IRQs and

actually preempt other cooperative threads.

• Threads can change their thread priority, or another

thread’s priority, to a higher priority level (lower

number numerically), even changing it from a

preemptive thread to a cooperative or Meta-IRQ

thread, if they are executing with privileges.

In addition to thread execution priorities used to enforce time

separation of threads, Zephyr assigns a thread privilege to each thread.

There are only two privileges, supervisory and user. By default, threads

are assigned the supervisory privilege. This gives threads the ability to see

all devices and access all of memory. A thread can drop its supervisory

privilege and become a user-privileged thread by calling k_thread_user_

mode_enter(), but once becoming a user-privileged thread, it cannot

regain its supervisory privileges. Threads can temporarily perform an

operation at the user privilege by spawning a new thread to perform the

task and setting that new thread’s privilege to the user privilege level.

Operating all or many threads at the supervisory privilege level is

dangerous, since all of memory is exposed to those threads, even sensitive

memory used by the kernel. User-privilege threads should be used as often

as possible because Zephyr provides memory separation for user-privilege

threads. Memory separation for user-privileged threads is discussed in the

next section.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

234

Since all of Zephyr’s applications and libraries are enumerated at

compile time, and there is no dynamic loading of applications or dynamic

linking of libraries or other code, Zephyr reduces the attack surface created

by interfering applications and library code conflicts.

Why does all this matter for security? Creating threads at the right

privilege level is important for a system to remain stable in the face of

an attack. If all threads are running at the supervisory privilege level,

an attacker only has to find a single thread that it can attack via a buffer

overflow and then gain control of the whole system. An attacker with

control over a supervisory thread can see all memory, halt other threads,

or modify stack values to create gadgets for ROP and JOP attacks, allowing

the attacker to create their own programs with new, potentially destructive,

functionality.

But even if user-privileged threads are enabled, if the right

segmentation of memory partitions is not performed, user threads will be

able to corrupt each other’s memory partitions.

If user threads are enabled and restrictive memory partitioning is used,

this will severely limit the types of attacks a remote adversary can perform.

This is especially true if the threads that access the network and perform

the bulk of the work on the system are user threads. But even if an attacker

cannot gain access to an administrative thread, if they can take over a high

enough privileged user thread, then by using k_sched_lock(), the attacker

can starve out other threads. This situation can be mitigated by using the

system’s watchdog timer or even creating your own watchdog thread at the

Meta-IRQ level to monitor and correct misbehaving threads. A detailed

discussion of this is found later in the “Security Management” section.

 Zephyr Memory Separation

In Zephyr, all threads have their own stack region, and their state is

swapped out when they are removed from the running state. This provides

basic (space) separation between threads. However, this protection does

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

235

nothing to stop a misbehaving supervisory thread which has access to all

of memory; and recall that by default all threads are given supervisory

privileges. This means that thoughtful, security-aware design is required to

build a secure system with Zephyr.

Zephyr provides user threads to address this problem of too much

privilege. Zephyr allows threads to be created as user-privilege threads,

or allows threads to drop their supervisory privilege and become user

threads. Memory access afforded to user-privilege threads is restricted.

User-privilege threads are granted access to a specific set of memory

locations by assigning a thread to a memory domain. A memory domain

contains one or more memory partitions. A memory partition is a

contiguous segment of memory with defined access rights (i.e., read,

write, execute). Thus, a memory partition can be defined as read-only,

and another memory partition can be defined as read-write. Both these

memory partitions can be added to the same memory domain, and one

or more user threads can be assigned to the memory domain. All threads

assigned to a memory domain have the same access to that memory. A

thread can belong to more than one memory domain. Memory domains

can be created at compile time or created dynamically at Runtime.

For x86, the definitions for memory domain rights are found in the

Zephyr source tree at arch/x86/include/mmustructs.h. x86 allows

partitions to be defined as read-only, read-write, read-execute, and even

the dangerous read-write-execute. And partitions can be defined to restrict

access to user threads, but if a permission is granted to a user thread for a

particular memory partition, then privileged threads also have the same

access to that memory partition. It is important, then, to structure your

applications with as few supervisory threads as possible. This follows the

least privilege principle.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

236

 Zephyr Privilege Levels and System Authorization

As we already discussed, Zephyr defines two privilege levels: user and

supervisor. The previous section discussed the impact privilege levels have

on memory access. This section reviews how the privilege levels affect

access to logical structures, devices, and files.

Zephyr allows for the construction of various logical structures,

including FIFOs, LIFOs, mailboxes, and message queues. These logical

structures allow different threads to communicate and share data. All

these structures are mapped to memory addresses. This means that access

to these structures can be restricted to only certain user threads, but any

supervisory thread can access these structures as long as they know the

address.

Physical devices, such as USB ports, SPI controllers, I2C interfaces,

Ethernet ports, and GPIOs, are controlled by device drivers. Device drivers

are accessible via APIs and are not restricted. Any thread merely links to

the appropriate header file (i.e., i2c.h) and then can access the device.

Zephyr does not implement any restrictions or authorization for device

access.

Zephyr supports several different filesystems, including Newtron Flash

File System (NFFS), FATFS support, and FCB (Flash Circular Buffer). The

FATFS is an open source implementation of the well-known File Allocation

Table (FAT) filesystem from the old PC DOS. The implementation supports

creation of a filesystem in RAM, on MMC flash, or through a USB drive.

No file permissions are supported on FAT, but read-only, hidden, and

system file attributes are supported.

The Newtron Flash File System (NFFS) is a minimal filesystem for flash

devices and provides no protections or attributes for files. The source code

for Newtron can be found at http://github.com/apache/mynewt-nffs.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://github.com/apache/mynewt-nffs

237

Since Zephyr does not implement any user or persistent thread

identity, no authorization mechanisms are found in the logical structures,

device drivers, or for the filesystem. This can represent a security problem

if a thread is taken over by an attacker and manipulated to perform

malicious actions, since the thread can be modified via arbitrary code

injection to access resources it normally would not access, and the

operating system enforces few limitations.

 Zephyr Programming Error Protections

Zephyr does implement several safeguards to protect threads from being

taken over by remote attackers. These safeguards include stack protections

and memory protections. The previous sections have discussed the

memory protections; this section reviews the stack protections.

Programming errors can create vulnerabilities in software that allow

untrusted input to overrun or underrun buffers, writing this untrusted

data into memory. Specially crafted inputs can result in buffer overruns

or underruns that rewrite elements on the stack, or rewrite code pages

in RAM, allowing an attacker to change a thread’s flow or the code that

it executes. Zephyr implements stack protection to detect overruns on

the stack, and then halt a thread to prevent it from executing from a

modified stack.

Other protections, like Intel’s® Control-Flow Enforcement Technology

that protects against ROP and JOP, are not yet implemented in Zephyr, but

may be added in the future.

 Zephyr’s Other Security Features

While Zephyr does not directly provide secure storage, it does provide a

few other security additions, including a cryptographic library and API for

security modules and TEEs.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

238

Zephyr includes an embedded cryptographic library written by Intel,

called TinyCrypt. This can be found in the Zephyr source tree at ext/lib/

crypto. TinyCrypt includes basic cryptographic functions including

• AES symmetric encryption using CBC, CTR, CMAC,

and CCM modes11

• Elliptic curve asymmetric cryptography using Diffie-

Hellman (DH) or the Digital Signature Standard (DSA)

• HMAC and direct use of the hash function, SHA2- 256

Zephyr also includes the latest mbedTLS from ARM, which includes

TLS v1.2 (Transport Layer Security) and many more cryptographic

functions. Details on mbedTLS can be found on the web site http://tls.

mbed.org.

Zephyr also includes an API to access a hardware random number

generator, based on the processor on the particular board that is being

used. This allows access to true hardware entropy if the hardware supports

it. If there is no hardware entropy source, an interface to a pseudo entropy

function is provided (see /ext/lib/crypto/mbedtls/library/entropy_poll.c).

Currently, the APIs for hardware crypto, Trusted Platform Modules

(TPMs) and Trusted Execution Environments (TEEs), are very limited.

Future versions of Zephyr are planning to implement APIs for these

devices.

11 CBC = Cipher Block Chaining, CTR = Counter mode, see https://csrc.nist.
gov/publications/detail/sp/800-38a/final

CMAC = Cipher-based Message Authentication Code, see https://csrc.nist.
gov/publications/detail/sp/800-38b/final

CCM = Counter with CBC for Message authentication, see https://nvlpubs.
nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://tls.mbed.org
http://tls.mbed.org
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://csrc.nist.gov/publications/detail/sp/800-38b/final
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf

239

 Zephyr Summary

Table 4-2 includes a summary of Zephyr compared with our operating

system security requirements.

Table 4-2. Zephyr RTOS Security Summary

Operating System
Security Principles

Grade Comments

Execution
Separation

a Zephyr provides all the standard separation

capabilities of a standard operating system, with

flexible application of those structures to address

real-time concerns.

Memory Separation C although some memory separation is provided, the

ability of supervisory threads to see all of memory

is a major weakness. Memory domains provide

reasonable protections especially for the class of

processors used by Zephyr.

Levels of Privilege B two levels of privilege are common in systems

today and even in popular operating systems,

like Microsoft windows, which has access to

multiple different rings, but makes use of only

two ring levels. there are however examples of

extra protections – special supervisory modes and

tees – that are currently lacking in Zephyr and thus

warrant a slightly lower grade.

System
authorization

d without any real system authorization, Zephyr

leaves a significant gap for attacked threads

to misbehave. while this is normal in MCus,

improvement is required.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

240

While Zephyr provides some basic security features, like memory

regions, and separate threads with stack protections, and user and

privilege modes, Zephyr is limited in the services and protections that

are available due to its focus as a minimalistic RTOS. But, even in other

more powerful operating systems, similar process and thread structures

are used, leading to similar attacks and pitfalls, so Zephyr is instructive to

analyze. Our security lessons from Zephyr are applicable to all platforms

and operating systems. Threads can be attacked and therefore should run

at the lowest privilege possible. Privileges can be abused, maliciously or

unintentionally, and therefore guards should be in place to check proper

behavior of the system. Memory subsystems and filesystems can be

exploited to leak or corrupt data; therefore, cryptographic protections such

as encryption and integrity protection should be used. As we explore other

software on our generalized IoT system, we will highlight how a defense

in depth approach can work to minimize risk and reduce the impact of

successful attacks.

Table 4-2. (continued)

Operating System
Security Principles

Grade Comments

Protection from
programming errors

C Basic stack protection is the new normal. Control

flow protection is the bar set by the industry today,

which is lacking in Zephyr.

Access-Controlled
Secrets storage

f with the combination of no filesystem authorizations

and no special secrets storage, Zephyr leaves a

system vulnerable to any attacked thread. Systems

with secrets should use a Secure element or tpM to

protect secrets, but this requires custom additions

to Zephyr’s device support.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

241

 Linux Operating Systems
Linux is a common operating system used for both cloud and IoT instances.

It is feature rich and comes in many different distributions (distros) that

enhance or embellish one capability or another. The security properties of

Linux are well known, and there are complete tomes that do an excellent

job of covering this topic,12 so this section will not repeat that material here.

Instead, this section looks at the concept of enhanced containment, but

we do so from the perspective of an interesting IoT problem – updating the

operating system and application software on a platform. The Linux distros

covered here include Wind River Pulsar, Ubuntu IoT Core, and Clear Linux.

It is important to understand the update problem before progressing

into the details of the distros. The update problem encountered in operating

systems is one of both synchronization and access. Synchronization

between different software elements of a system, and between the software

and hardware of the platform, is required. An update to a system can destroy

this synchronization. Access relates to the permissions and capability to

update all parts of the system, including the operating system kernel, the

boot software, and all types of firmware on the device.

A bad software update creates an incompatibility between two

different software components on your device or an incompatibility

between the software and the hardware of your device. An update

problem is observed when two or more software components interfere

with one another. The result of any of these conflicts can be a slowdown

in operation, the failure of one or more services, a computer shutdown

during operation (i.e., a crash), or even a failure to boot the device. It is

not uncommon for some Linux updates to cause a failure to boot after a

kernel update, which then requires a rebuild of the boot device in order

to remedy the situation. A good software update requires synchronization

between the hardware and all the software on the platform.

12 Multiple Linux topic books by Apress, www.apress.com/us/open-source/linux

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://www.apress.com/us/open-source/linux

242

The word all introduces the other part of the update problem: Access.

We defer the access issue until the section on secure updates, but it is

important to understand the complexity of the update problem here

and realize that the distributions we discuss now do not solve the whole

problem. The access problem is caused by some updatable software on

a device that resides in one or more difficult to reach hardware storage

areas, normally referred to as firmware. The operating system itself may

not be able to reach all these firmware locations. The device may need to

be placed into a special operating mode, or an update must be submitted

at a particular time during the boot process for the firmware update to be

successful. This special access required to update firmware may be difficult

or impossible to do without human intervention. If some part of the

device’s regular software is updated, and it depends on a newer version of

firmware that is not present on the device, the instability of a bad software

update may be the result.

If an operating system update causes an IoT platform to fail to reboot,

or to crash so often that a new update cannot be pushed to the device,

this requires a human being to go out to the device and repair or replace

it. This physical maintenance drives up the cost for IoT deployments,

resulting in an erosion or destruction13 of the return on investment (ROI)

for the IoT system. Driving operational costs down to preserve ROI

requires the elimination of such physical interactions.

All three of the distributions covered in this section attempt to address

the software update problem for IoT but do so in different ways. As we

review these different solutions, we find the commonality is all about

containment and finding ways to isolate the inconsistent dependencies.

13 Destruction of the ROI can occur when many devices are impacted by a bad
system update, either simultaneously or repeatedly over time. The cost of “rolling
a truck” to repair devices can drive operational costs to completely consume any
profit or efficiency gained by the IoT system.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

243

 Pulsar: Wind River Linux

Wind River provides various different operating systems for embedded

sectors, including IoT. VxWorks14 is a family of products representing their

RTOS offerings. Pulsar15 is Wind River’s small, high-performance Linux

distribution designed for manageability and IoT.

Pulsar is a binary distribution of Linux based on the Yocto Project.

A primary focus of Pulsar is to provide a regular cadence of updates for

the packages that are included in Pulsar, including the kernel. As shown

in Figure 4-5, Pulsar is a container-based Linux, allowing the download

of different features and functionality as containers. However, within the

containers, updates are managed in a traditional manner using software

packages.

Packaged and Tailored for Selected Hardware

Wind River Pulsar Linux Kernel

High
Availability

Pulsar Essential
User Space

Wind River
Security Shield

Package
Repository

Wind River 3rd Party

Device
Applications

Pulsar
Headless
Device

Container

Pulsar
Desktop

Environment
Container

Pulsar
Gateway

Middleware
Container

Pulsar Containers Management

Real Time Security

Technology Base

Secure Updates
Package Updates

Figure 4-5. Pulsar Linux architecture and service updates16

14 Wind River VxWorks, www.windriver.com/products/vxworks/
15 Wind River Pulsar, www.windriver.com/products/operating-systems/pulsar/
16 From www.windriver.com/products/product-overviews/
Pulsar-Linux-Product-Overview/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://www.windriver.com/products/vxworks/
http://www.windriver.com/products/operating-systems/pulsar/
http://www.windriver.com/products/product-overviews/Pulsar-Linux-Product-Overview/
http://www.windriver.com/products/product-overviews/Pulsar-Linux-Product-Overview/

244

Using containers as a separation capability reduces destructive

interactions between applications and makes the whole platform more

stable. Additionally, by using containers, there is greater security in the

platform as a whole, since the containers have a reduced privilege on the

platform, making an attack on an application in a container less likely to

leak out and affect the whole device. Pulsar can update whole applications

on the device seamlessly by just replacing a container.

Wind River addresses the issue of stable updates by providing an

update service over a secure channel, where the updates themselves

are comprised of RPMs (Red Hat Package Manager), a common Linux

update mechanism. All RPMs are signed with a Wind River RSA17 private

key, ensuring the RPMs are genuine and not modified from what Wind

River intended. All updates on Wind River’s package repository have gone

through extensive testing to ensure they are stable on the Pulsar-supported

platforms. Constant reviews of the published Common Vulnerabilities and

Exposures (CVE) databases, and the open source mailing lists, ensure the

latest defects and issues are addressed in the quarterly updates.

Wind River Linux includes the following features, discussed elsewhere

in the chapter:

• Wind River Helix Device management system

• Mosquitto MQTT

• OCF and IoTivity (See Chapter 2 Consumer IoT

Framework Standards)

• UEFI or MOK Secure Boot (See Chapter 3, Device Boot

Integrity - Trust But Verify)

• Support for Trusted Platform Module (TPM)

(See Chapter 3, PTT/TPM)

17 RSA (Rivest-Shamir-Adleman) is an asymmetric cryptographic algorithm that
uses a private key to digitally sign data and a separate public key that anyone can
use to verify the signature.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

245

Pulsar includes the following other technologies that improve the

security on the device:

• Virtual private network (VPN) provided by the open

source StrongSwan IPSec/L2TP/PPTP project.

• STIG scripts: System lockdown scripts are included in

Pulsar to configure the system for secure deployment,

using the US government’s Security Technical

Implementation Guide (STIG)18 scripts.

CONTAINERS

Containers are a type of software separation technology that allows one or

more applications, and their dependent libraries, packages, and services, to

run in an operating system created namespace.

In an operating system, certain resources are organized into namespaces.

for example, all the users are in a namespace; this means you can have only

one user named root and one user named dave (users are actually based on

numeric identifiers, but the concept still holds). If there are two users both

named dave, they would be the same user. likewise, the same namespace

concept exists with devices, file paths, and certain logical resources, like

network ports and process identifiers.

Inside a container, the operating system gives the container its own

namespace for certain types of resources. So one container can open port

443 for a web server to listen to incoming traffic, and a different container

can also open port 443, and there would be no conflict. outside the container,

some type of mapping must be done to disambiguate the two network traffic

flows (see the “Containers” section for details). In our example with the user

identities, two containers can both have the user dave, and they would not

18 STIG Home, https://iase.disa.mil/stigs/Pages/index.aspx

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://iase.disa.mil/stigs/Pages/index.aspx

246

be associated to the same user; thus there would be no conflict between

the containers and no privilege leakages or access overlap between the

applications in the containers.

Containers also use another kernel feature called cgroups. Cgroups create a

kernel structure that limits the amount of memory and Cpu processing that

is available to processes within a cgroup. this can be used to ensure the

processes in a cgroup do not starve out other groups. this ensures that all

containers get a fair amount of processing time, and one container cannot hog

the Cpu and prevent applications in other containers from executing.

different containerization engines package these features in different ways

to allow an environment to be created and managed that provides usable

software separation for applications. these are all referred to generally as

containers, but different containerization engines may have slightly different

properties and controls.

 Ubuntu IoT Core

Ubuntu is a popular Debian Linux distribution that includes desktop,

server, and cloud versions. Ubuntu IoT Core is a new distribution that

is headless, meaning that it does not include the elements an operating

system normally provides for a screen, keyboard, and mouse – there is no

user interface. Ubuntu IoT Core is intended to be used on devices that do

not have buttons; they are intended to be turned on, and the device just

does its thing, whatever that is.

Ubuntu IoT Core runs differently from the normal Ubuntu

distributions. It uses a construct called a snap. Everything in Ubuntu

Core is a snap, even the kernel. Developers create snaps that contain all

the dependencies for their application or service. Users download snaps

from the snap store and can add in (snap in) any snap they want to their

system. Each snap is separated from the others in Ubuntu IoT Core, using

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

247

similar separation constructs as containers! One difference however is

that snaps are transactional and can be rolled back easily if there is a

problem. Thus, trying out a snap leaves no artifacts on the system, and a

snap can be completely removed at any time. (reference for diagram in

Figure 4-6. https://computingforgeeks.com/install-snapd-and-snap-

applications-on-fedora/).

Snap Confinement

Snap package

Binaries

Third-party snap

OS
Interfaces

Interfaces

Private
storage

area

Figure 4-6. Ubuntu IoT Core snap architecture

A snap is actually a filesystem (the SquashFS filesystem) along with

a YAML file that contains the snap’s metadata. A snap is completely

relocatable and does not depend on having specific libraries or

configurations in a particular directory, like the /etc directory. The snap

must carry all its dependent libraries with it in the SquashFS, kind of

like a TAR or ZIP file with everything it needs packaged up inside it. The

code for the snap in SquashFS filesystem is read-only, but once the snap

is installed, a writeable section of the filesystem is created. When a snap

is installed, it can be granted permissions to access things outside its

filesystem, like the network or devices. If the system does not grant those

permissions, then the install fails. In this way, a snap is similar to an app in

the Android operating system.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://computingforgeeks.com/install-snapd-and-snap-applications-on-fedora/
https://computingforgeeks.com/install-snapd-and-snap-applications-on-fedora/

248

Ubuntu IoT Core is claimed to be more reliable and more secure.

Snaps are signed with cryptographic keys, just like Pulsar’s RPMs, but

snaps manage their own dependencies and are separated from other

applications. Ubuntu IoT Core creates isolation between applications

(snaps) using AppArmor and Seccomp.

AppArmor19 is a security model built into the Linux kernel as part of

the Linux Security Modules (LSM) framework. Other models supported

by LSM include SELinux, Smack, TOMOYO Linux, and Yama. AppArmor

allows the definition of security profiles that restrict the behavior of

applications, and access to files (inodes), based upon a set of mandatory

access control (MAC) policies. AppArmor comes installed with various

preconfigured profiles to protect the system and applications, but these

are modifiable by an administrator. Applications that do not have a policy

defined execute in an unconfined manner (no special MAC restrictions).

Policies reside in /etc/apparmor/ and user-specific profiles are defined in

${HOME}/.apparmor/.

Seccomp20 is a Linux kernel mode used to limit the kernel system

calls available to a process. Seccomp is short for secure computing

and reduces the attack surface that the Linux kernel exposes through

system calls. Seccomp was originally designed to expose only a certain

set of kernel APIs available, but Seccomp 2 added filtering, allowing

more flexible definitions of what kernel APIs are allowed to be used by

a process. Seccomp is effective in restricting the actions an attacker can

perform through injected code attacks, because a call to a restricted

system call sends the SIGKILL to the process, terminating the offending

program.

The combination of AppArmor and Seccomp allows Ubuntu

to restrict the allowable actions of installed snaps. The inherent

restrictions of a snap simplify the policy for these security tools, which

19 https://gitlab.com/apparmor/apparmor/wikis/home/
20 www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://gitlab.com/apparmor/apparmor/wikis/home/
http://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

249

can be complex. Additionally, the filters that restrict the snap’s actions

actually document how the snap is supposed to behave, and what the

app can and cannot do, which acts as a type of disclosure to the system

administrator. In conclusion, the containerization of snaps includes a

separate filesystem, special permissions with AppArmor and Seccomp,

and documented interfaces to connect to other applications and

services on the platform through the snapd service.21 Using these strong

security protections, and the ability to rollback misbehaving snaps,

Ubuntu IoT Core provides a secure and stable operating system for IoT

deployments.

 Intel® Clear Linux

Clear Linux22 addresses the operating system update problem by

allowing frequent updates to the operating system, reducing the time a

platform lacks the most recent updates, and preventing incompatible

updates from being downloaded and installed on a system. Clear

Linux is designed for a Linux distribution maintainer and provides

tools allowing the maintainer to directly consume upstream projects,

add them to their distribution, and maintain the distribution on an

update server that keeps all the connected systems updated. It is easy

to see the value of Clear Linux to an IoT deployment that is using a

customized Linux kernel.

21 https://tutorials.ubuntu.com/tutorial/advanced-snap-usage#1
22 Clear Linux, https://clearlinux.org/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://tutorials.ubuntu.com/tutorial/advanced-snap-usage#1
https://clearlinux.org/

250

Clear Linux manages all the applications and software on the

system using bundles instead of packages. Packages are hard to manage

because of all the dependencies, and oftentimes different packages have

dependencies on different versions of other packages. When two different

packages are installed, and each requires different versions of another

dependent package, installing both of those packages creates contention.

Either one package will be able to use the newer (or older) version of the

dependent package, or the application will break. Pulsar addresses this

Bundles

...

Kata Container
Engine

Dm
-v

er
ity

aw
s-

gr
ee

ng
ra

ss
-

io
t

Az
ur

e-
io

t-
sd

k

cl
ou

d-
co

nt
ro

l

w
eb

-
se

rv
er

-
ba

si
c

zs
h

Te
le

m
et

ry

sw
up

d

Cl
ou

d
In

te
gr

at
ed

Ad
va

nc
ed

Or
ch

es
tr

at
or

Linux Kernel

Hardware

Figure 4-7. Clear Linux deployment chain

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

251

contention by putting applications and services into containers, which

separates the dependencies from each other; Ubuntu uses a similar

approach with snaps. Clear Linux removes the contention with bundles,

which is just a different containment mechanism. A bundle removes

the outside dependencies and includes all the software needed for an

application.

In Clear Linux, the operating system is completely made up of bundles.

When one bundle is updated, it creates a completely new version of the

OS. This new OS version is built and tested as a whole – there is no extra

package to be added later. For the distributor, this makes updating simpler

and guarantees that the OS update will work and will not brick the system.

It is also the reason that updates need to be easier and happen more

frequently.

Just making updates come faster is not really a solution. Updating an

entire operating system every week could kill a system, not to mention

bog down the network. Clear Linux solves this problem by including tools

to allow updates to be smaller. Rather than an update requiring a full

reinstall, the update can be a binary diff between versions. This is critical

for IoT deployments, because sending down a new kernel that is multiple

megabytes in size is just not practical over certain network connections.

 Linux Summary

Linux supports strong security capabilities in both the kernel and the

application space. Although we did not cover all of Linux’s security

features, Table 4-3 provides a summary of the operating system security

features of Linux for comparison with Zephyr in our previous section.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

252

Table 4-3. Linux Security Summary

Operating System
Security Principles

Grade Comments

Execution Separation a all linux distributions discussed here support

the standard separation capabilities (process,

threads, ISrs) of operating systems.

Memory Separation a linux utilizes the hardware memory

management unit (MMu) to provide paged

memory separation for all processes, with

read-write-execute permissions. unlike Zephyr,

even a process running as root is restricted.

Levels of Privilege a linux, like Microsoft windows, has access

to multiple privilege rings, but makes use of

only two ring levels. linux also supports other

special supervisory modes and tees; for details

see the section on containment.

System authorization a linux provides authorization for structures

using a common user-group-other identity

structure with read-write-execute privilege

bits. extensions for other security models

through the linux Security Modules (lSM) and

other frameworks, like apparmor and Seccomp

covered in the ubuntu section, are readily

available and integrated into the linux kernel.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

253

In this section, our discussion focused on the update features provided

in different Linux distributions and how the distros are solving the problem

of interfering applications and overly complex dependencies. These

solutions used different forms of containment to solve the update problem.

Clear Linux solves the problem by creating a new package format for

updates called a bundle and then uses a series of tools to ensure the different

bundles create a stable system. If an instability is found, a new update is easy

to create by correcting a bundle. System updates are made less burdensome

by incorporating special binary diff updates that take less time to download.

Table 4-3. (continued)

Operating System
Security Principles

Grade Comments

Programming Error
Protections

B Basic stack protection is provided in the linux

kernel since version 3.1423 and is turned

on automatically in version 4.1624 – strong

stack protections are also an option. Control

flow protection is not yet fully upstreamed in

the kernel, but patches exist for 64- bit user

applications.25

Access-Controlled
Secrets Protection

C linux does not directly provide standard

features for secrets storage, but support for

the trusted platform Module (tpM), Secure

elements, and hardware security modules

(hSM) are prevalent.

23 https://lwn.net/Articles/584225/
24 www.thomas-krenn.com/en/wiki/Linux_Kernel_Versions
25 https://lwn.net/Articles/758245/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://lwn.net/Articles/584225/
http://www.thomas-krenn.com/en/wiki/Linux_Kernel_Versions
https://www.kernel.org/doc/Documentation/security/self-protection.txt

254

Pulsar and Ubuntu take a different approach and use advanced

features of Linux to construct special containment for applications and

even parts of the operating system itself (in the case of Ubuntu, anyway).

These containment features are used to create Linux containers, which we

look at in a bit more detail in a future section.

We also noted that even with these features, the problem of access

required to update firmware on the platform is not solved by this

approach, and additional capabilities are needed. We look at solutions to

the access problem in the section on secure software updates.

 Hypervisors and Virtualization
Virtualization is a generic term applied to several techniques that increase

resource sharing and hardware utilization in a computer system. Modern

operating systems like Linux provide virtualized memory, where more

memory appears to be available than is actually physically present. Parts

of memory used by idle processes are stored on disk, freeing more physical

memory for the currently running process; short delays are incurred when

the idle process becomes active and the operating system reloads physical

memory with the contents from disk. Although some delays are incurred,

they are outweighed by the benefit of having more physical memory

available to the running process.

Platform virtualization works in much the same way, allowing multiple

operating systems to run simultaneously on a single computer. Memory

is virtualized, as well as the processor, storage, graphics, and other I/O

devices on the platform. A small control program, called a hypervisor or

Virtual Machine Manager (VMM), manages the virtualized hardware and

mediates between the different virtual machines (VMs). Figure 4-8 shows

a generic virtualized system. Each VM runs a guest operating system

and application software that are logically separated from each other by

hardware and software controls managed by the hypervisor.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

255

There are actually two different types of hypervisors. Figure 4-8

depicts a Type 1 hypervisor or native hypervisor that runs directly on

the hardware. Type 1 hypervisors are typically more performant and can

utilize the hardware better, because they have complete control of the

hardware. VMWare, Xen (for Linux), and Hyper-V (Microsoft) are examples

of Type 1 hypervisors.

There are also Type 2 hypervisors, which run on top of an existing

operating system. This allows a regular OS to run virtual machines too.

VirtualBox by Oracle is a Type 2 hypervisor that runs on Linux. KVM is a

Red Hat hypervisor that runs as part of the Linux kernel; some regard it is

Type 2 hypervisor since other things can run on the Linux OS, but Red Hat

claims it is a Type 1 hypervisor since it has direct control of the hardware

through the kernel. Either way, it is a pretty good hypervisor. There is a

question that frequently comes up relating hypervisors to containers. The

question is: Which is better, containerization or virtualization? We discuss

this later in the “Software Separation and Containment” section. For now,

we focus on virtualization.

How does virtualization work? In Intel Architecture, virtualization

is supported by the Virtual Machine Extensions (VMX) mode. This

mode defines two privilege levels, one for the hypervisor, called VMX

root operations, and one for the VMs, called VMX non-root operations.

Virtual
Machine

VM-1

Virtualized
Hardware

Virtualized
Hardware

Server Hardware

Hypervisor

Virtualized
Hardware

Virtual
Machine

VM-2

Virtual
Machine

VM-3

Figure 4-8. Generic virtualization architecture

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

256

As one might guess, the VMX root operations mode is more privileged.

The hypervisor, operating in VMX root operations mode, initializes

certain control registers in the processor to establish limits on the VMs.

The hypervisor releases the VMs to execute by performing a VM-Enter

instruction. The VMs are then executing in the restricted VMX non-root

operations mode. When the VMs execute an instruction or perform an

operation that is restricted by the hypervisor, a VM exit is performed by the

processor, returning control to the hypervisor. The hypervisor can either

perform the operation on behalf of the VM in a safe manner, or it can reject

the operation and return some type of exception to the VM; in extreme

cases, the hypervisor can even terminate the offending VM entirely.

The exact details of virtualized processor state are beyond the scope

of this book. However, the curious may elect to read the Intel 64 and

IA-32 Architectures Software Developer’s Manual Volume 3. Chapters 23

through 33 cover VMX mode. These chapters discuss the virtual machine

control structure (VMCS) that contains the state used by the processor to

implement virtualization and discusses all the elements of the controlled

state, including

• Virtual processor state, including control registers,

debug registers, base registers, and segments

• Bit flags controlling what events cause a VM exit, for

example, interrupts, use of IO ports, and so on

• Bit flags indicating how a VM’s state is saved when a

VM exit is performed

• Bit flags indicating how a VM’s state is restored on VM

entry

• Indicators for VMX aborts (the reason a VM abnormally

exited into the hypervisor)

• Indicators for VMX exits (the reason for a normal return

to the hypervisor)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

257

There is also another distinction among hypervisors. In the discussion

earlier, we described virtualization as though the operating systems in

the virtual machines were no different than an operating system on a

platform that is not virtualized. When the operating systems in the VMs

are not aware they are being virtualized, this is called full virtualization.

In some systems, or with some applications, it is very difficult to fully

virtualize the system. This may be because there are complex devices

that need to be shared between the virtual machines, or it may be that an

application has very stringent performance requirements. In these cases,

it is counterproductive to perform full virtualization – the cost to do so

would outweigh the benefits. In these cases, the hypervisor implements a

para-virtualized strategy, where the operating system, device drivers, and

perhaps even the applications themselves are aware that they are being

virtualized and are modified in order to behave better in the virtualized

environment. Para-virtualization is accomplished by configuring VMX in

a way that allows the VMs themselves to perform certain operations, for

example, the ability to directly interface with certain IO ports. The VMCS

allows the hypervisor to give some VMs more control than other VMs.

However, the VMs must cooperate with the hypervisor and are trusted to

cooperate in a trustworthy fashion. Intel’s ACRN hypervisor is an example

of a para-virtualized hypervisor, which we will discuss in more detail after

we review the security threats to virtualization and hypervisors.

 Threats to Hypervisors
Just like operating systems, the threats to hypervisors are numerous and

dangerous. A successful attack on a hypervisor can lead to an attacker

acquiring complete control over the platform and every virtual machine

running on it. NIST-SP-800-125A Revision 126 outlines the baseline set of

26 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
125Ar1.pdf

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125Ar1.pdf

258

security functions a hypervisor should perform. These hypervisor security

functions have similarities to the security services that we defined for

operating systems. But because this specification limits itself to virtualization

of servers, and specifically does not address embedded systems, we use the

NIST set of functions as a baseline. In our list that follows, the first five items

are from NIST and are roughly equivalent to the security services we defined

for operating system; protection from programming errors is a sixth security

service we add to NIST’s list. We then add three additional security services

that are unique to IoT instances and not considered by NIST’s analysis. The

set of security services for IoT hypervisors are

• VM Process Isolation (i.e., Execution Separation and
Memory Separation): Each VM’s execution should be

separated from all other VMs’ execution using multiple

logical processor structures; a fault in one VM should

not affect other VMs.

• Device Mediation and Access Control (i.e., Levels of
Privilege and Access-Controlled Secrets Storage):

Hypervisors provide methods for VMs to share access

to devices through various methods, including giving

VMs direct access to hardware, para- virtualization of

the device, or device emulation within the hypervisor.

Access to the devices must be controlled to prevent

effects from one VM leaking over to other VMs. This

includes controlling direct memory access (DMA)

devices to protect both memory read and write. If

the platform offers secrets storage, the hypervisor

should provide access to such storage in a manner that

prevents other VMs from interfering with each other’s

usage, or from viewing, modifying, or using the secrets

in that secure storage location (see Chapter 3, section

on “Intel Virtualization Technology (Intel VT)”).

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

259

• Prevent Abuses by Guest VMs through their
Direct Execution of Commands (i.e., System
Authorization): As we stated earlier, para-virtualized

systems allow VMs to cooperate with the hypervisor;

the hypervisors in these systems execute commands

sent from the VMs. The hypervisor’s execution of

commands from one VM should not affect another

VM and should not compromise the security of the

hypervisor or its data structures.

• VM Lifecycle Management: VM management includes

creating, starting, stopping, and pausing VMs, as

well as checkpointing (snapshotting) their state. This

includes monitoring the state of VMs and various

tools for migrating data or VM snapshots between

physical machines. The management of VMs is

typically performed through add-ons to the hypervisor

or through a special management VM. These

management services must not allow leakage of data or

control across VMs.

• Management of Hypervisor Platform: The

configuration of the hypervisor and the platform itself

must be managed, including configuring devices,

virtual networking, storage, and any VM policies. This

management must include proper authentication of

management requests and restriction of management

actions to only authorized entities.

• Protection from Programming Errors: This is the

leftover security service from our operating system

list, but has a little different perspective when viewed

from the virtualization perspective. The hypervisor

must set appropriate VM aborts when a VM violates

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

260

restrictions on memory separation or corruption of VM

control structures; stack smashing and heap smashing

that occur from programming errors in one VM should

not compromise the hypervisor or other VMs. These

protections become much more difficult with a para-

virtualized hypervisor because certain structures and

interfaces on the hypervisor are accessible to the VMs.

• Real-Time Guarantees: In embedded systems and IoT,

control loops require real-time guarantees and many

devices operate with real-time restrictions on read/

write operations that if violated result in data being

lost. In a virtualized system, the hypervisor itself must

provide these real-time guarantees in coordination

with the VMs and their operating systems.

• Deep Power Management: In embedded systems

and IoT, power usage is a critical parameter. Whether

the power envelope is restricted due to battery life

and energy harvesting limitations or the power/

heat trade-off in an industrial environment limits

equipment’s power budget, management of energy

usage is essential. Due to real-time guarantees and

the management of physical devices or equipment,

the management of power goes far beyond what is

normally provided in a data center or server cloud

instance. Power management cannot be left to the

individual guest operating systems or VMs, because

they do not have the platform view. The hypervisor,

in conjunction with the VMs and guest OSes, must

manage the platform constraints appropriately to

prevent power spikes or violations of the equipment’s

defined heat envelope.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

261

• Protection from External Devices: In embedded

systems and IoT, virtualized systems are inevitably

connected to other devices and sensors, usually in a

very direct way. Because these devices can be attacked

and PWNED27 by an adversary, protection of the

virtualized system from compromised devices is critical

to protecting a virtualized IoT system. It should be

noted that this goes beyond the normal protections a

cloud server is required to enforce to protect REST APIs

and network connections, which the IoT virtualized

system must also do. The external IoT devices are

normally connected to a low-level driver, an emulated

or virtual bus implementation, or some other higher-

privileged software component that must implement

some type of intrusion and attack detection-prevention

mechanism.

When examining the preceding list of necessary protections and

the general operation of hypervisors described earlier, several threat

vectors immediately come to the surface that are likely vulnerabilities in

hypervisors:

• Size and complexity of the hypervisor code: The

more complex and larger code size of a hypervisor,

the more likely the hypervisor includes critical

vulnerabilities, because adverse code interactions and

defects are harder to find in larger code bases.

27 PWNED is the Internet slang for “owning” a device or computer system; it comes
from “mistyping” the “o” in the word “own” with a letter “p,” ostensibly because
hackers are bad typists perhaps. Its meaning goes beyond attacking and implies
complete ownership of the attacked device such that the device is absconded
to do whatever the attacker wishes – the device becomes part of the attacker’s
zombie or botnet army.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

262

• Attack surface of the guest VMs: Since the VMs

represent the manipulable interface to attackers, they

represent the primary point of attack to virtualized

systems. The more network services exposed by a

VM, the more third-party code that is not written

with a security mindset, and the larger the number

of unprotected IoT devices connected to virtualized

system, the higher the risk of vulnerabilities that can

expose the hypervisor to attack.

• Hypervisor add-ons that have vulnerabilities: Some

hypervisors have minimal services but allow add-ons

or plugin modules that provide additional services, like

management and configuration. These add-ons can

include additional vulnerabilities.

• Device driver virtualizations that have
vulnerabilities: Device drivers require special versions

that provide virtualization features, which may react

differently with different hypervisors or may operate

differently on different hardware. These differences

may create vulnerabilities an attacker can leverage.

Like operating systems, hypervisors are susceptible to similar classes of

attacks. A recent survey paper28 looked at reported common vulnerabilities

from a reputable CVE database for the top four hypervisors. Figure 4-9

shows the types of vulnerabilities and the number of such vulnerabilities

by product. The purpose of this table here is to highlight the most common

attacks on hypervisors and to highlight that all hypervisors have been

successfully attacked. The data should not be interpreted numerically

28 Litchfield, Alan., Shahzad, Abid. A systematic Review of Vulnerabilities in
Hypervisors and Their Detection. 23rd Americas Conference on Information
Systems. Boston. 2017.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

263

to identify which hypervisor is more secure due to a lower number of

attacks. The paper notes that although VMWare had the highest number

of vulnerabilities over the study period (from 1999 to 2015), it was also the

only established hypervisor product in the market for the first 8 years of the

study period, making such rankings of hypervisor security inappropriate.

The following list briefly reviews the most prevalent classes of attacks listed

in Figure 4-9, describing the security principles violated:

• Denial of Service: A DoS attack causes a VM to halt

or create such a serious VM abort that the hypervisor

refuses to allow the VM to continue to operate. A more

serious DoS could affect a device on the platform,

preventing all VMs from accessing the device until

the platform is rebooted, violating Device Mediation.

A DoS attack on a virtualized hardware device

represents a violation of execution separation.

Another type of DoS attack consumes resources,

like network socket handles, resulting in other VMs

not being able to acquire the resource necessary to

execute a function.

DoS 66

VMWare

48

30

8

13

11

1

5

17

54

3

256

30

KVM

2

4

2

3

2

7

50

5

Hyper-V

3

1

1

1

11

232

Total

65

63

21

13

11

1

9

35

85

3

131

Xen

12

28

10

16

24

221

Code Execution

Stack overflow

Memory Corruption

Cross-Site Scripting

Directory Traversal

HTTP response splitting

Bypass something

Gain information

Gain privileges

Cross Site Request Forgery

Total

Figure 4-9. Most common attacks on hypervisors – 16-year period

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

264

• Stack Overflow and Arbitrary Code Execution:

Stack smashing, heap smashing, and use-after-free

vulnerabilities allow an attacker to execute their own

code on the platform. This type of attack can allow

escalation of code’s rights, allowing it to become a

privileged user. In para-virtualized environments, this

can cause the VM to misbehave and violate the trust

the hypervisor places in the VM, causing an execution

or memory separation violation (Prevent Abuses from
Direct Execution of Commands from Guest VMs).

• Gain Information: An out-of-bounds read vulnerability

allows a VM to access memory outside of its logical

memory space. These vulnerabilities are common with

virtualized drivers and VM tools. A gain information

vulnerability represents a violation of memory
separation.

• Gain Privileges: Gain privilege attacks are usually

executed through add-ons, like tools and plugins. An

example is the CVE-2017-4943 that allowed a showlog

plugin to gain root-level privilege of the platform

management VM that controls network settings, system

updates, health monitoring, and device management.

Becoming root on a para-virtualized system is

tantamount to a compromise of the hypervisor itself,

since root on a para-virtualized VM allows the attacker

to easily violate the implicit para-virtualized cooperation

agreement (Management of Hypervisor Platform).

Many of the attacks outlined are serious, but do not directly violate a

fully virtualized system; the hypervisor can properly trap and stop attacks

that directly violate the virtual machine’s configuration. However, when

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

265

the hypervisor and VMs are operating in a para-virtualized manner,

privilege escalations in the VM and process and memory violations even

within the VM’s logical memory space can escalate to a violation of the

para-virtualization agreements. An attacker, operating as root within a

para-virtualized VM, can disrupt device drivers and other critical parts of

the VM’s operating system that have direct access to the platform hardware

as part of the para-virtualization contract. In the next section, we look at

ACRN, a para-virtualized hypervisor, and explore some of the strengths

and weaknesses of this approach.

Service VM
Android
World

Trusty
World

User

Kernel

User

Kernel

Firmware (UEFI, SlimBoot etc.)

SOC Platform (Apollo Lake etc.)CSE

VMX non-root
operation

VMX root
operation

User

Kernel

VM
Manager

Linux VM Android VM

Kernel Mediators

virtio
FE Drivers

virtio
FE Drivers

Keystore

Virtual Firmware Virtual Firmware

Keystore

VMX

VT-d EPT VM API Trusty API

Hypercalls

vPIC/vLAPIC/
vIOAPIC/vMSI

ACRN Hypervisor

Native Device Driver

ACRN Device Model
(Mediators)

Figure 4-10. ACRN architecture diagram

 Intel® ACRN
ACRN is a BSD open source hypervisor reference platform, built by Intel

for the automotive industry, available at https://projectacrn.github.io.

It is specifically designed to be a flexible and lightweight hypervisor and

designed for real-time and safety-critical IoT deployments.

As shown in Figure 4-10, ACRN is a para-virtualized architecture

where the guest operating systems must know they are being virtualized

and cooperate with the hypervisor. A para-virtualized solution is required

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://projectacrn.github.io

266

in the automotive world due to the nature of some devices in the system.

This model enables a more performant implementation and cleaner

virtualization of these devices using virtio drivers. Notice the Service

Virtual Machine (VM) in the top left of Figure 4-10. The Service VM

performs some critical virtualization services for the hypervisor to avoid

the performance penalty of full virtualization. However, support for device

interrupts is provided directly in the hypervisor by virtualizing the PIC

and APIC for each VM. The critical element of the Service VM is the set of

ACRN Device Model (DM) applications that mediate between VMs and

devices for certain operations. For example, USB and IOC (I/O Controller)

devices are emulated in the Service VM due to their complexity, and the

GPU is mediated by the Service VM since emulation will not provide the

performance boost for which the GPU is often used. Because of these

elevated privileges, the Service VM is a critical security element in the

trusted computing base (TCB) of the ACRN platform. If not carefully

limited, the Service VM can easily take on too much and become a security

threat due to violation of the least privilege principle. As the number and

complexity of the Device Models grow, the likelihood of implementation

errors that can be leveraged by an attacker grows (see the list of common

attack patterns discussed in the “Threats to Operating Systems” section). If

an attacker is able to successfully attack a DM, the attacker is likely to inject

other code inside the Service VM, having access to many other privileges

than just the compromised DM. This is an architectural trade-off between

necessary performance and security risk. The risk can be managed by

ensuring every DM or other software component added to the Service VM

is carefully verified and undergoes penetration testing to ensure there are

no security weaknesses in those modules.

For security features, ACRN supports secure boot, a Trusted Execution

Environment (TEE), and secure storage in a Replay Protected Memory

Block (RPMB) in flash. Figure 4-11 shows the secure boot flow for ACRN

when using the Slim Bootloader (SBL). The TEE and RPMB are shown in

Figures 4-13 and 4-14, respectively.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

267

Secure boot on Intel devices starts in the Converged Security Engine

(CSE), which is the common root of trust for verification for Intel platforms

(see Chapter 3, section “Intel CSE/CSME – DAL”). The CSE verifies a digital

signature on the SBL; the digital signature is usually produced using the

RSA algorithm and is commonly 2048-bits or 3072-bits in length. The

public key is part of the SBL image, but this key is verified by the CSE using

a hash of that public key kept in fuses. The fuses prevent the key from

being modified in the image itself.

The SBL verifies the next stage of the platform, which includes the

ACRN hypervisor and Service Operating System (SOS) kernel, which

are included as a single image. The SOS kernel runs in the Service VM

as VM’s operating system. The SOS Kernel loads and verifies a Device

Model application for each User VM that is loaded; this includes verifying

Stitched as
one image

CSE

SBL

SOS

ACRN

SOS Kernel

Device Model
APP1

vSBL: Android OS Loader

Android VM 1

vSBL: Initialization

Android OSTrusty OS

Figure 4-11. ACRN secure boot flow

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

268

a virtual Slim Bootloader (vSBL) for each User VM. The SOS uses dm-

verity29 to check the validity of the DM App and the vSBL. The vSBL then

is responsible to boot the User VM; in the case of Android, this uses the

Android verified boot mechanism.

ACRN Device Model

ACRN Hypervisor

Service OS
User OS

User OS

User OS
IOC

Application

IOC Driver
(CBC drive)

IOC Driver
(CBC drive)

Virtual UART

Physical UART
IOC Hardware

(MCU)
CAN Bus

IOC BE service
(filter to emulate the

whitelisted CMD only)

UART
Emulation

Figure 4-12. ACRN connectivity to automotive CAN bus

One of the key features in ACRN is support for real-time and

automotive use cases. This creates extremely stringent requirements on

the hypervisor and the VMs for real-time operations and connectivity.

Because all VMs might require access to the CAN30 bus, an I/O Controller

is emulated in the Service OS that serializes data onto a physical serial

29 DM-Verity, or Device Mapper Verity, was designed for Chrome OS and also
used by Android. DM-Verity is built into the Linux kernel and uses the kernel
cryptographic APIs to provide transparent integrity verification for block devices.
See the Git Repository for more details at https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-
mapper/verity.txt

30 CAN bus, Controller Area Network, is a type of local bus system developed by
Bosch for automotive systems to connect controllers and subsystems together.
www.canbus.us/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/verity.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/verity.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/device-mapper/verity.txt
http://www.canbus.us/

269

bus connected to the vehicle CAN bus (Figure 4-12). In order to protect

the vehicle, the Service OS implements a firewall in each VM’s Device

Model application. This filter restricts the type and content of messages

that a particular VM can place on the vehicle’s CAN bus. For example, the

Android OS that implements the vehicle infotainment features is restricted

from sending messages to critical ECU components for vehicle braking

or engine control. Likewise, other VMs that render cockpit controls are

restricted from receiving messages from USB ports in the cabin.

Android
trusty apps

Trusty
driver

vCPU
switch

Normal
world
context

Secure
world
context

Trusty OS kernel

trusted
apps

vCPU
switch

switch

ACRN Hypervisor

User OSService OS

Android World Trusty World

Hypercall

User

kernel

Normal
world
context

Secure
world
context

Secure world EPT

Normal world EPT

Android VM memoryMemory Normal World
memory

Figure 4-13. ACRN trusted execution environment

ACRN supports the ARM TrustZone TEE implemented in Trusty in the

Android OS. As shown in Figure 4-13, the ACRN hypervisor implements

the separation of unsecure memory (in the normal world or regular

operating system) from the secure world purely in software through

encrypted page tables (EPTs). The CPUs are also virtualized and maintain

the NS (not-secure) bit used in ARM to switch between two different

contexts in the vCPU. It should be noted that the secure world can see all

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

270

of memory, but the normal world is restricted to see only a subset. Just

like we discussed in the Zephyr OS, the ability of privileged users to see all

of memory makes processes and threads in the secure world potentially

more dangerous. It should also be noted that the Service OS also acts like

a privileged secure process with access to additional parts of memory in

order to support the virtualized devices.

The last security feature in ACRN that we examine is the Replay

Protected Memory Block (RPMB). RPMB is a feature of some flash

devices that allows an encryption key to be used to protect data, using

both confidentiality and integrity, in a reserved flash block. The data is

also replay protected preventing rollback attacks where an old piece of

encrypted data overwrites a newer piece of data.

UOS1
UOS2

UOS3Service OS (VM#0)

Android Trusty

Crypto TA

RPMB Proxy
Daemon

RPMB cdev
(/dev/vrpmb)

RPMB FE
(virtio-rpmb)

vSBL /
vOSLoader

SS TA

Vrkey#1

Vrkey#1

Vrkey#1

rkey

ACRN DM

RPMB BE

Vrkey#1

rkey

ACRN DM

RPMB BE

Vrkey#1

rkey

rkey

ACRN DM

RPMB BE

user

RPMB
Blk#0

RPMB
Blk#1

RPMB
Blk#2

RPMB
(rsvd)

Single RPMB Partition/Unit

VrKey# = HKDF(SHA256, rkey, VMID#)
vrkey is random number generated per-reboot.

User
Data

Partition

eMMC/UFS
NVMe

ACRN hypervisor

kernel

RPMB Driver
(eMMC/UFS/NVMe)

Figure 4-14. ACRN secure storage support through RPMB

The encryption key for the RPMB is held by a trusted entity in the

platform. In Intel platforms, this trusted entity is the CSE, and the CSE

shares this key with a single device driver on the platform and then locks

access to the key so no other program can gain access to the key. If the key

is overshared, then security of the platform diminishes. During the boot

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

271

process, the Slim Bootloader (SBL) reads the platform seed (pSEED) from

the CSE and passes the pSEED on to the ACRN hypervisor. Since ACRN

must support multiple virtual machines, and all these VMs must not be

allowed to see the other VMs’ data or be able to spoof another VM’s data

reads or writes, ACRN cannot directly share the pSEED with the VMs.

ACRN uses a NIST-approved key derivation function (HKDF-256) to derive

new secrets from the pSEED, called vSEEDs for virtual seeds, and passes

a unique vSEED to each VM. Each VM then chooses which device driver

or process will take ownership of the vSEED. For example, in Android, the

vSEED is given to Trusty since it is the TEE for that VM. Figure 4-14 shows

how the seeds are then used to implement RPMB. ACRN provides the real

RPMB key to the DM applications in the Service OS. The derived keys are

used by each of the User VMs to protect their RPMB data; the transactions

for each of the User VMs do not go to the RPMB flash or the ACRN

hypervisor, but instead are routed to the Service OS. The DM App in the

SOS for the particular VM verifies and decrypts the data it received from its

corresponding VM and then re-encrypts the data with actual RPMB key.

Each VM has access to a small part of the RPMB and can only write to its

own section. This separation is enforced by the RPMB driver in the SOS

and the ACRN hypervisor.

It is clear from Figure 4-14 and the preceding description that the Service

OS must be trusted, since it is possible for the DM Application to forge data

or delete RPMB data as if they were the User VM. Careful review of the

applications in the Service OS is required to ensure no security vulnerabilities

are present, and only trusted applications are allowed to run in the SOS.

 Real-Time and Power Management Guarantees
in ACRN

In its current rendition, ACRN provides basic real-time and power

management controls. ACRN maps a physical core into the guest OS for

both real-time and power management. This means that the guest OS

has direct control of the core and can reflect any of the operating system’s

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

272

real-time characteristics to the applications in its VM. A real-time Linux

kernel, for example, would run just as effectively in ACRN as on its own

hardware. Since the physical cores are mapped into the VM, the hypervisor

also allows the guest operating system in the VM control over that core’s

C-state, optimizing the core’s power consumption during idle modes. The

P-state, controlling the package voltage-frequency setting, is coordinated

with the VM. ACRN manages the S-state, which is reflected from the

User OS VMs, to the Service OS, and finally the hypervisor, in an ordered

fashion. Future versions of ACRN are planning for further power and

real-time management controls covering devices and real-time quality of

service.

 ACRN Summary
ACRN supports some strong security services, with RPMB secure storage

and TrustZone TEE being two of the most significant. Many of the design

and security trade-offs made in ACRN are a result of the performance

requirements for automotive and IoT deployments and the need to

interface with complex devices, such as the I/O Controller emulation in

the Service OS for connection with the vehicle bus. Table 4-4 provides a

summary of the hypervisor system security features for comparison with

other systems.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

273

Table 4-4. ACRN Hypervisor Security Summary

Operating System
Security Principles

Grade Comments

VM Process Isolation
(Execution Separation)

B Because aCrn is a para-virtualized

hypervisor, and both the Service oS and

parts of the hypervisor are accessible to

guest VMs, the execution separation is

not complete. this cannot be improved,

however, due to the need for emulated

busses and para- virtualization of certain

devices.

VM Process Isolation
(Memory Separation)

B user oSs have access to both the Service

oS and the aCrn hypervisor through some

limited apIs. this necessarily means that

some memory buffers and locations are

shared, with some firewalling in place.

errors or defects in this sharing, especially

if the uses of additional add-ons are

integrated, can compromise the system.

Device Mediation
(Levels of Privilege)

B device Mediation is done in the Service

oS, per VM, using the device Model

application.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

274

Table 4-4. (continued)

Operating System
Security Principles

Grade Comments

Execution of Commands
from Guest VMs

C aCrn provides separation of commands,

mostly through the Service oS and the

device Model. however, certain hypercalls

go through the hypervisor itself as

shown in figures 4-10 and 4-13. Similar

hypercalls are used for uSB virtualization.

this creates a disparity in where access

controls need to be reviewed, and makes

it harder to ensure all guest commands

are properly mediated in every case; this

represents a violation of the least common

mechanism security design principle.3

VM Lifecycle C aCrn provides a VM manager (figure 4-10)

in the Service oS; however the

implementation is very slim. this is

appropriate for the automotive space,

but for generalized Iot, and especially

for industrial usages which require

sophisticated orchestration, the

management features require significant

add- ons. Because this is performed in

the same VM as the mediation of the

guest VMs, the likelihood of disastrous

compromise is increased.

Management of
Hypervisor Lifecycle

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

275

Operating System
Security Principles

Grade Comments

Protection from
programming errors

- no specific controls; however the linux oS

and android oS, for which the hypervisor

was designed, provide these advanced

controls. aCrn depends on these services

in the guest oS.

Real-Time Guarantees
and
Deep Power
Management

a aCrn’s entire design focuses on meeting

real-time requirements for automotive,

including providing optimized device

drivers and virtualized access to power

management controls using a virtualized

pIC and apIC.

Protections from
External Devices

a aCrn provides a Service VM that mediates

all external access points and utilizes

VM-specific filters in the device Model

to individualize protection filters per VM

instance.

Access-Controlled
Secrets Storage

B aCrn provides both a tee and rpMB

secure storage. the lower grading is

a result of the implementations being

primarily in software, not hardware.

Table 4-4. (continued)

In this section, our discussion focused on the unique features and

architecture of para-virtualized hypervisors. We introduced the use of

secure storage through the RPMB and additional containment through the

use of a TEE. TEEs are discussed in more detail in the section “Software

Separation and Containment.” The design trade-offs for the hypervisor and

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

276

TEE led to potential vulnerability in the TEE due to lack of full memory

separation – a similar problem was found in the Zephyr OS. These and

other design trade-offs lead to some weaknesses in the system, but overall,

the combination of hardware security features for VM separation and

secure storage provides superior protection for the targeted IoT vertical.

 Software Separation and Containment
Containment is a critical concept in security. Whether it is keeping the

“bad guys” out, or protecting secrets, or just segregating high privilege

operations from low privilege ones, separation and containment

are paramount to safe operations. Even with the process and thread

separation provided by the operating system, and the hardware-assisted

virtual machine isolation, additional separation capabilities always seem

to be useful to applications and IoT systems. In this section, we look at

two different types of extended application containment capabilities:

containers and Trusted Execution Environments (TEEs). We have touched

on both of these topics already, but in this section, we unpack them to a

deeper level.

 Containment Security Principles
The principles that apply to extended application containment are the

same principles we talked about for operating systems, which includes

• Execution Separation

• Memory Separation

The difference between applying these principles here and applying

them to operating systems is the particular mechanisms used to provide

the separation. The preference is for hardware separation as it is more

secure. Containment through hardware separation might be provided

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

277

using a completely different processor (see the “Trusty TEE Security

Summary” section), or a different mode of the current processor (see the

section on Virtualization or SGX later). Memory separation might include

a completely different cache of memory (as in SGX and Trusty), or merely

using some extra virtualization controls (the approach used in hypervisors

or containers). In both cases, there are trade-offs to be made, based on the

threats that are being addressed.

 Threats to Extended Application Containment
The threats to extended application containment typically come

from privileged attackers. These attacks can come from a privileged

user or might be from an unprivileged user that performs a privilege

escalation attack to acquire higher privileges. In both cases, the

application containment intends to remove the possibility, or reduce

the efficacy, of attacks by privileged users (e.g., root or admin user

accounts).

• Memory Disclosure from Privileged User: A

privileged user leverages their access to all memory

pages in order to read data from any application.

• Memory Tampering from Privileged User: A

privileged user leverages their access to all memory

pages in order to write, overwrite, or corrupt data for

any application; they may also include making memory

pages unavailable to an application.

• Data Leakage through Side Channels: A privileged

user leverages their access to data caches to perform

timing attacks allowing them to determine contents of

application memory.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

278

• Execution Interference from Privileged User: A

privileged user leverages their ability to schedule tasks

or run tasks that have higher priority and starve or

interrupt other applications during a critical operation.

• Execution Leakage through Side Channels: A

privileged user leverages their ability to schedule tasks

and uses speculative execution or timing operations to

determine code branches executed during operation.31

Application containment techniques provide defenses against these

attacks to varying degrees. Full separation32 is the only complete solution,

but this increases costs and adds complexity to management and control

of sensitive applications. The use of different containment techniques is

a trade-off between absolute security and ease of use and utility of the

solution. In each containment example discussed later, we highlight the

different levels of hardware usage that improve the solution’s security level.

 Containers
Containers are a software mechanism to increase the separation between

applications. In the “Linux Section”, we discuss how Wind River Pulsar

uses container to improve the stability of their operating system updates;

because services and components execute within containers with

enhanced separation between applications, the applications are less

31 For a discussion of the L1 Terminal Fault (L1TF) speculative execution attack
and its specific effect on ACRN, see https://projectacrn.github.io/latest/
developer-guides/l1tf.html

32 Full separation means using a completely different processor with completely
different memory and devices for sensitive operations.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://projectacrn.github.io/latest/developer-guides/l1tf.html
https://projectacrn.github.io/latest/developer-guides/l1tf.html

279

likely to interfere with each other, increasing system stability. Ubuntu

IoT Core uses a similar construct to containers, which they call snaps.

Containers and snaps utilize software techniques in the operating system

for separation. The long-standing debate is which approach is better –

containerization or virtualization?

Container 1

Ap
p

1

Bins/Libs Bins/Libs Bins/Libs

Bins/Libs

vBoot vBoot

Type-1 Hypervisor

vBoot

Operating
System

Operating System

Containerization Engine

Hardware Hardware

Operating
System

Operating
System

Bins/Libs Bins/Libs

Ap
p

2

M
ic

ro
Se

rv
ic

e

Ap
p

3

Ap
p

1

Ap
p

2

M
ic

ro
Se

rv
ic

e

Ap
p

3Container 2 Container 3

VM 1 VM 2 VM 3

Figure 4-15. Containers and hypervisor comparison

In Figure 4-15, we show the relationship between a container software

stack and a virtual machine (VM) software stack. What is evident from

the diagram is the VM stack contains more layers of software due to the

operating system in each VM.

The strength of a VM solution is the hardware separation between

the different VMs; however, setting up the VMs and getting the operating

systems booted in each VM takes more time. The strength of the container

solution is faster startup time for each container and lower overhead of

execution; the weakness in containerization is the reliance on software

separation in the container engine and the underlying operating system.

A best-in-class solution would be a hybrid that provides the hardware

security of virtual machines with the speed of deployment and startup for

containers. Kata Containers provides such a solution.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

280

 Kata Containers
Kata Containers is an open source project managed by the OpenStack

Foundation, which includes technology from an Intel open source project

called Clear Containers. Clear Containers is related to the Intel Clear Linux

project discussed earlier in the chapter. In actuality, Kata Containers are

really lightweight virtual machines designed to be managed like containers.

The benefit of Kata Containers over regular containers is the increased

security from the hardware-enforced separation provided by the hypervisor.

This discussion of Kata Containers is based on the 1.2.0 release.33

Kata Containers uses the KVM hypervisor and works seamlessly with

Kubernetes, Docker, and OpenStack. Other hypervisor support is being

built and may even be available as you are reading this. Kata Containers is

comprised of six different components, as shown in Figure 4-16.

Your Choice of Container Engine

Container Container

VM 2VM 1

I/O OCI cmd/spec

gRPC

Proxy

kata-shim kata-runtime

Co
m

m
an

d

Co
m

m
an

d

EX
EC

EX
EC

kata-agent kata-agent

kernelkernel

Linux Operating System
vSerial
Device

KVM Hypervisor

Hardware

Figure 4-16. Kata Containers architecture

33 Kata Containers, https://katacontainers.io and https://github.com/
kata-containers/documentation

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://katacontainers.io
https://github.com/kata-containers/documentation
https://github.com/kata-containers/documentation

281

• The Runtime, called the kata-runtime, handles

all the Open Container Initiative (OCI) commands

used to create and configure a container. It also starts

the Shim instances. The kata-runtime utilizes the

virtcontainers34 project to perform the heavy lifting in

a platform agnostic way. Whenever an OCI command

is run on a container, the Runtime creates a new Shim

to connect the container engine to the container.

• The Shim, called the kata-shim, is an interface

between the container engine (like Docker, Kubernetes,

or OpenStack) and the created container inside the

virtual machine. The container engine has a process

(called the Reaper) that monitors the container,

manages the container, and reaps the container when

it dies or must be killed. Because Kata Containers are

inside a virtual machine, the Reaper cannot actually

access the container, due to the hardware separation

in place by the VM. The Shim pretends to be the

container, so the container engine can connect to it for

management, and the Shim communicates with the

actual container using an agent. The Shim links the

standard input and output flows and any Linux signals

from the container back to the container engine, so the

container engine can receive them and process them

appropriately.

• The Agent (kata-agent) is part of the minimal Clear

Linux OS image and runs inside the VM; it provides

communication outside the VM to the kata-runtime

and kata-shim. The Agent creates a container sandbox

34 https://github.com/containers/virtcontainers

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://github.com/containers/virtcontainers

282

based on a set of namespaces for a container to run

inside. The namespaces include UTC, IPC, network,

and PID35 namespaces. The Agent can support multiple

containers running inside a VM (called a pod); however

using Docker, only one container per pod is supported.

• The Hypervisor provides virtualization and is a

combination of KVM with QEMU. As shown in

Figure 4- 17, QEMU is the Virtual Machine Manager

(VMM) and creates the virtual machine for the

container to run in, populates it with the virtualized

kernel, and emulates virtualized devices for the

VM. KVM is used to control the VM, and all VM

exits return directly back to KVM. The hypervisor

provides a virtual socket (VSOCK) or a serial port to

communicate with the Shim or Runtime. The serial

port is the default, but for Linux kernels beyond v4.8,

VSOCK is available. If a serial port is used, gRPC runs

over Yamux on the serial port.

35 See http://man7.org/linux/man-pages/man7/namespaces.7.html, IPC =
interprocess communication and message queues namespace, PID = process
identifier namespace, UTS = hostname and Network Information Service (NIS)
domain name service.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://man7.org/linux/man-pages/man7/namespaces.7.html

283

• The Proxy is a multiplexer for the hypervisor if a

serial port is used to connect between the Runtime

or Shim and the hypervisor. Multiple connections are

required because the kata-agent can communicate

with multiple different kata-runtime instances and

kata-shims; each instance opens its own remote

procedure call to the Agent using gRPC, and the Agent

connects these to the appropriate container process

in the VM. The Proxy is not needed if a VSOCK is used

to connect between the Runtime and the hypervisor,

since gRPC can run directly over a virtual socket and

then gRPC directly handles the multiple different

Container

VM 1

kata-agent

vkernel

Hardware

QEMU VMM

Virtio Services

virtio
services

vhost KVM Hypervisor

Linux Operating System

VMX Non-Root Mode

VMX Root Mode

VM
-E

XI
Ts

Di
re

ct
 to

 K
VM

Figure 4-17. Kata Containers hypervisor architecture36

36 https://github.com/kata-containers/documentation/blob/master/
architecture.md

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://github.com/kata-containers/documentation/blob/master/architecture.md
https://github.com/kata-containers/documentation/blob/master/architecture.md

284

communication streams. In this case, the gRPC

connections from the kata-runtime feed directly to the

hypervisor over a VSOCK, and the Proxy disappears

from the architecture diagram in Figure 4-16.

• The kernel is the operating system that runs the

container inside the virtual machine. The kernel is

a highly optimized kernel from Clear Linux with a

minimal memory footprint and includes only the

services needed to run the container workload. QEMU

virtualizes or emulates everything else. The smaller

Linux kernel reduces the attack surface presented to

the container, further increasing security.

Your Choice of Container Engine

Container

VM 1

kata-agent

kata-runtime

vkernel

vEth Device

Docker
Network
Bridge

Container Engine
Networking Namespace

gRPC

Container
Networking
Namespace

Hardware

QEMU VMM

TAP Device

vSock
Device

KVM Hypervisor

Linux Operating System

Figure 4-18. Networking with Kata Containers

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

285

WHAT IS QEMU?

Software engineering can solve any problem using another layer of

abstraction…except for the problem of having too many abstraction layers.

QeMu is a special abstraction layer that solves several difficulties with

virtualization.

recall that kVM is a type 2 hypervisor and part of the linux kernel. But, kVM

uses all the hardware features of VMX, so it is as fast and secure as a type

1 hypervisor. kata Containers combines QeMu with kVM for further speed

improvements.

QeMu is a virtual machine monitor (VMM) that runs on top of an operating

system host, like linux. QeMu is also an emulator that does binary translation

and can even run programs compiled for different Cpus or oSs on that host.

So, QeMu is really good at emulation.

In kata Containers, QeMu quickly boots virtual machines (VMs) for kVM

by using emulation. a special version of QeMu provides highly optimized

emulators to speed boot time and reduce interpretation of aCpI interfaces.

other emulators provide the root filesystem as a persistent memory device.

QeMu also provides hot-plugging devices, during the launch process, allowing

devices and virtual Cpus to be added to the VM only when needed.

all this speeds the construction of VMs and makes kata Containers execute

really fast.

Connecting containers to a network is accomplished with a virtual

network created by the container engine on the host. The container engine

connects this virtual network to the real network, using appropriate filters,

including a network address filter (NAT). Docker connects the containers

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

286

to this network using a virtual Ethernet (veth) device. However, virtual

machines normally use a TAP37 device. The problem in Kata Containers is

that all devices are emulated through QEMU, and QEMU does not support

veth interfaces. The solution implemented in Kata Containers requires

the kata-runtime to bridge between the TAP device in QEMU and the host

virtual network created by the container engine. Figure 4-18 shows this

configuration graphically, with the traffic from the Docker virtual network

running through the TAP device emulated by QEMU and then into the

container in the VM.

Figure 4-19 shows the series of interactions between the Kata

Containers components to create a container in a virtual machine. The

virtcontainers library as part of the kata-runtime essentially does all the

work to create the VM, start the Proxy, create the container sandbox that

the container will run in, and then create the container, and finally start

the kata-shim to communicate with the container.

Once the container is created, it can be started and used with the

start message. In Kata Containers, the start message does not create

the container as it does with most container engines. The container

was already created with the create command, as shown in Figure 4-19.

Instead, start just forwards the start message to the kata-agent, and the

kata-agent starts the container’s primary process.

37 A TAP device copies all traffic from the network into the device, just like a “tap”
on a phone line.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

287

 Kata Containers Summary

With Kata Containers, you can have security and performance. Virtual

machines utilize hardware separation to provide increased containment

between containers while creatively using different software abstractions

to maintain the same software APIs to start up and control the containers

themselves. As we saw with ACRN, there are areas of attack that could

breech the system, including the QEMU virtualized drivers, and the Kata

Shim and Runtime. Table 4-5 outlines the analysis of the Kata Containers

against our containment security requirements.

Docker

create

CreateSandbox()

End of CreateSandbox()

End of create

CreateSandbox()

Sandbox Created

CreateContainer()

Container Created

Start Shim

ReadStdout() (blocking call)

ReadStderr() (blocking call)

WaitProcess() (blocking call)

createNetwork()

Execute PreStart Hooks

Start VM (inside the netns)

VM started

Starte Proxy

Connect the VM

Sandbox
Ready

Container
Ready

kata-runtime virtcontainers hypervisor proxy agent shim

Docker kata-runtime virtcontainers hypervisor proxy agent shim

Figure 4-19. Kata Containers create command

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

288

Table 4-5. Kata Containers Security Summary

Operating System
Security Principles

Grade Comments

Memory Disclosure by
Privileged User

B Most privileged attackers are restricted from

viewing or tampering the VM memory. QeMu

and the kVM, including their virtualized

devices, remain as potential privileged

attackers on the VM memory. platforms

with multi-key total memory encryption

(MktMe) can provide protection but should

include integrity as well as encryption. See

the following article for attacks on encrypted

memory: https://arxiv.org/ftp/

arxiv/papers/1712/1712.05090.pdf

Memory Tampering by
Privileged User

B

Execution Interference
by Privileged User

C Most privileged attackers are restricted

from viewing or tampering with workloads

in the VM. QeMu and the kVM, including

their virtualized devices, remain as potential

privileged attackers on the VM execution,

though this is expected and cannot be

avoided. however, the kata Shim and

runtime provide targets for privileged

attackers to subvert workloads running

in the VMs, and these processes are not

protected.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://arxiv.org/ftp/arxiv/papers/1712/1712.05090.pdf
https://arxiv.org/ftp/arxiv/papers/1712/1712.05090.pdf

289

Table 4-5. (continued)

Operating System
Security Principles

Grade Comments

Data Leakage via Side
Channels

C Side channels are most concerning for

VMs and container systems, as there may

be applications of different trust levels

running inside different containers or VMs.

updates to the linux kernel and microcode

patches for the serious side-channel CVes

are available. there continue to be security

patches for kVM and QeMu, as late as

october 30, 2018.

for additional information, see www.

qemu.org/2018/01/04/spectre/ and

www.redhat.com/archives/rhsa-

announce/2018- October/thread.html

for red hat kvm-qemu patches.

Execution Information
Leakage via Side
Channels

C execution leakage is similar to memory

leakage and requires multi-key total

memory encryption (MktMe) for protection

but must also include integrity protection as

well as encryption. Inference of execution

is still possible under MktMe if page loads

and misses are observable by the attacker.

Just as we see in SgX, the operating system

kernel remains as a potential attacker here.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://www.qemu.org/2018/01/04/spectre/
https://www.qemu.org/2018/01/04/spectre/
https://www.redhat.com/archives/rhsa-announce/2018-October/thread.html
https://www.redhat.com/archives/rhsa-announce/2018-October/thread.html

290

 Trusted Execution Environments
Even with the protections afforded to applications by containers and

virtual machines, some applications are so sensitive that they require

even greater separation protections. Examples of such applications

include payment applications that deal with credit card transactions

or authentication applications that deal with fingerprints or other

biometrics. Trusted Execution Environments (TEEs) are application

execution containers that are separate from the operating system and

other applications on the platform and provide enhanced memory

and execution separation characteristics. TEEs provide containment

guarantees that prevent even the administrator or root from interfering

with or peeking at the secrets of an application. This section looks at two

such TEEs, Intel’s Software Guard Extensions (SGX) and Android Trusty.

 Software Guard Extensions

Software Guard Extensions (SGX) is a ring 3 TEE, meaning that SGX is

directly accessible to applications, and applications running in SGX

have the same type of privileges (ring 3) as other applications on the

Table 4-5. (continued)

Operating System
Security Principles

Grade Comments

Trusted I/O - trusted I/o is not supported in kata

Containers.

Application Flexibility a any application can build into kata

Containers, and the support of many devices

through virtual device drivers improves the

level of support and flexibility of the kata

Containers solution.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

291

platform. SGX creates a TEE from a special memory cache and a secure

mode of the CPU, removing the entire operating system from the trusted

computing base (TCB); this means that unlike other TEEs, SGX does not

even depend on secure boot to instantiate a trusted environment. For

applications to use SGX however, the operating system must support

access to the SGX instructions and the SGX memory cache. Support for

SGX is available for Microsoft Windows and many Linux distributions,

including Ubuntu Desktop. SGX has not been ported to Ubuntu IoT Core.

An application running SGX is called an enclave, and an SGX enclave

is actually part of an application. An enclave is built like a dynamically

loadable library (DLL) or shared object library (SO), to use Linux

terminology. The enclave is loaded by an application and, from the

operating system perspective, the enclave is an extension of the process

space of the application that loaded it. There are three primary differences

between a regular application and an enclave:

• The way the enclave memory is treated

• The way the enclave memory is loaded

• The way the enclave is executed

Memory for an enclave comes from a special pool of memory called

the Enclave Page Cache (EPC). EPC memory is encrypted by the processor

and is only accessible in SGX mode. Regular applications, or even the

operating system, that try to access EPC memory see only encrypted junk.

Only when an enclave is executing can the CPU provide the decryption key

so the memory page contents can be viewed. Likewise writes to the EPC

pages are also restricted. These guarantees are part of what makes SGX

mode a TEE. Platforms must allocate memory into the EPC, thus making

that memory unavailable for regular applications; a new feature of SGX is

the dynamic allocation of pages to the EPC, but this is not supported on all

processors yet.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

292

The second thing that makes SGX mode a TEE is the special

way that code and data are loaded into an enclave. When a regular

application asks the operating system for an enclave to be created,

it provides the DLL (or SO) that contains the enclave’s code. That

code must be signed. We will discuss how the code is signed and with

what key in a moment. SGX includes a special loader that verifies the

signature on the enclave as it is loading its code and data into EPC

memory. If the signature indicates the enclave code is authentic, then

the loader activates the enclave and the application can use the enclave

functions. If the signature indicates the enclave has been tampered

with or is not signed with an authorized key, then the load of the

enclave fails. All code and initial data pages loaded into an enclave are

verified as authentic, which indicates that the authorized party that

signed that code also trusts that code. This makes the code running

inside SGX trustworthy and another attribute of SGX as a TEE.

The final thing that makes SGX mode a TEE is the fact that it is

a special mode of the CPU, and this creates execution separation

between regular applications and enclaves. The execution of enclave

code within SGX is separate from execution inside the operating system

and the execution in applications. There have been side-channel

attacks on SGX, just as there have been on other execution modes. This

is a result of some shared micro-architectural state and shared cache

state; there is also a dependency from SGX on the operating system to

load and manage memory pages which creates another type of side

channel. Changes to the CPU microcode have addressed the attacks

that are known, and further changes are being made to hyperthreading

mode to address additional issues. We talk more about this in the

section on threats later.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

293

Creating code that can be run as an enclave requires a special key.

This is because the enclave code must be verified by the SGX launcher

when the enclave is loaded. The SGX launcher uses a key set by the BIOS

during boot to verify enclave programs. If an enclave is signed using a key

which itself is signed by the SGX launcher key in BIOS, then the enclave

is trusted. By default, the BIOS includes an Intel key. Intel will sign an

enclave developer’s key after they submit a formal request and fill out

some paperwork. This means that any developer with such a key could run

enclave code on any platform with an Intel processor. Intel realizes this

should be a bit more controlled, so they allow the owner of the platform

to change the key in the BIOS to a key of their own. This means that the

platform owner can change the behavior of the SGX launcher to approve

only enclaves that they themselves trust; this is done by changing that

BIOS key.

SGX is a powerful mode on Intel processors that provides a trusted

execution environment to applications. This gives applications the ability

to put their most sensitive code inside a trusted execution container and

keep the operation of that code, and any secrets that the code uses, away

from other applications and even the operating system.

 SGX Security Summary

Table 4-6 provides a summary of the SGX system security features for

comparison with other systems.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

294

Table 4-6. SGX TEE Security Summary

TEE Security Principles Grade Comments

Memory Disclosure by
Privileged User

a SgX uses a separate memory cache that is

encrypted by the Cpu and is separated from

the operating system and other applications.

Memory Tampering by
Privileged User

a SgX mode prevents access to memory

pages in the epC unless an SgX application

is executing, which locks out other

applications and the operating system from

tampering with the memory. page attributes

are set and locked at page set up time

when the enclave is loaded.

Execution Interference
by Privileged User

B the operating system still controls the

page tables, including allocation of pages

and page eviction; a misbehaving oS can

perform a doS on an enclave and perform

some side-channel attacks using the

enclave’s usage of pages. protection of

secrets within an SgX enclave still requires

the use of constant-time programming

constructs and careful use of pages and

cache to avoid such side-channel attacks.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

295

Table 4-6. (continued)

TEE Security Principles Grade Comments

Data Leakage via Side
Channels

C research on SgX side channels, including

l1 terminal fault, have been reported.

these are a result of microarchitectural

side channels in the Cpu itself. Cpu patches

are effective in mitigating most of these

attacks, other than hyperthreading- based

attacks.38 other options including forcing

Cpu core scheduling are potential solutions.

(https://www.usenix.org/system/

files/conference/atc18/atc18-

oleksenko.pdf)

Execution Information
Leakage via Side
Channels

B

Trusted I/O - trusted I/o is not supported in SgX.

Application Flexibility a any application can contain enclave code

which can be loaded into SgX. Commercial

development of enclaves requires a key

from Intel, or the platform must be set up

with a special SgX launcher key.

 Android Trusty

The Trusty TEE39 is an offering from Google that includes an operating

system, a set of drivers for Android to communicate with Trusty, and APIs for

applications to use applications running in Trusty. Trusty is an interesting

TEE that has some very different properties as compared with Intel SGX.

38 https://software.intel.com/security-software-guidance/api-app/sites/
default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf

39 Google. “Trusty TEE.” https://source.android.com/security/trusty

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/security-software-guidance/api-app/sites/default/files/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://source.android.com/security/trusty

296

The first primary difference is Trusty is designed to operate on a

completely separate processor from the main processor running the

untrusted operating system. Trusty uses its own memory management

unit (MMU) and provides virtualized memory for all the trusted apps

running in Trusty. All the applications must be single threaded, though

multithreaded applications may be provided in a future update.

The next significant difference with Trusty is that it can have access

to devices, platform keys, and other resources and give access to those

resources to Trusty applications. Since SGX runs in ring 3, it does not have

privileged access to devices and does not currently have a trusted I/O

mechanism.

The last difference in Trusty is that trusted applications are compiled

into Trusty and run as an event-driven server. Applications cannot be

added dynamically into Trusty – they must be designed and built into the

Trusty kernel. And each trusted application running in Trusty is accessible

to any application in the untrusted operating system; Trusty applications

are not bound to a particular process in the untrusted processor.

 Trusty TEE Security Summary

Trusty is an interesting TEE that provides significant trust for platform

developers, but it does not expose the capability for end users to create

their own trusted applications.

Table 4-7 provides a summary of the Trusty TEE security features for

comparison with other systems.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

297

Table 4-7. Trusty TEE Security Summary

TEE Security Principles Grade Comments

Memory Disclosure by
Privileged User

a Because trusty uses a physically

separate memory from the untrusted

operating system and its own MMu,

disclosure and tampering are avoided.

the drawback is the additional hw cost

for this separation.

Memory Tampering by
Privileged User

a

Data Leakage via Side
Channels

a

Execution Interference by
Privileged User

a Because trusty uses a physically

separate processor (or physical core)

from the untrusted operating system and

its own MMu, disclosure and tampering

are avoided. the drawback is the

additional hw cost for this separation.

Execution Information
Leakage via Side Channels

a

Trusted I/O B trusted devices are built into the system

and allocated when trusty software is

compiled.

Application Flexibility d only the applications built into the trusty

software are available – no dynamic

loading of software applications or

services is possible.

 Containment Summary
In this section, we reviewed different types of application containment,

ranging from software-only containment using containers, hardware-

assisted containment with virtual machines, hardware TEE with encrypted

memory and special processor state with SGX, and full hardware

separation TEE with Trusty. The more hardware used in the containment

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

298

solution, the greater the level of security provided by the solution.

However, there is a balance to be had, as we saw with Trusty, because

software is more flexible than hardware. A full hardware solution, while

more secure, creates limitations to what can be accomplished and what

usage models applications can execute.

 Network Stack and Security Management
This section signals the shift in our chapter from platform software

to the management plane. Networking and connectivity are vital to

an IoT system, and therefore the entirety of Chapter 5 is devoted to

this subject. We leave the discussion of the network technologies and

protocol stacks, including the threats, to that future chapter. However,

before we leave the networking topic completely, we want to cover an

important software library for network packet processing, the DPDK,

as well as a few software packages that make security management

easier.

 Intel Data Plane Development Kit
The Data Plane Development Kit (DPDK) is a set of software libraries

and device drivers that make constructing software networking stacks

with advanced features very easy and very performant. We talk about

the DPDK because it is a useful component to speed the development

of end-to-end security features and in the implementation of network

security policies to enforce network restrictions. This library exposes

the features and capabilities of network cards into ring 3, enabling better

performance when processing packets at high speed. This is important

for edge devices implementing industrial control loops, because the

DPDK allows software to reliably receive and send packets within a

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

299

minimum number of CPU cycles. The Linux Foundation40 provides a

downloadable version of the DPDK, and Intel contributes specialized

features and drivers that directly leverage Intel silicon performance.

The DPDK boosts packet processing throughput and provides multicore

support, facilitates processing of packets in user space (ring 3) to avoid

costly transitions between user and kernel space, and enables direct

access to devices for high-speed IO.

The latest DPDK version is 18.05 and supports the following features:

• Support for multiple NIC cards, including virtualized

drivers

• Support for cryptographic operations in cryptodev

library

• Support for event handling in the eventdev library

• Baseband wireless in the bbdev library

• Data compression support in the compressdev library

(new in DPDK 18.05)

Figure 4-20 shows the architecture of the DPDK library.

40 https://www.dpdk.org/ and documentation is available online at http://fast.
dpdk.org/doc/pdf-guides/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://www.dpdk.org/
http://fast.dpdk.org/doc/pdf-guides/
http://fast.dpdk.org/doc/pdf-guides/

300

The DPDK is very comprehensive and supports multiple hardware

capabilities across Intel, AMD, ARM, NXP, and other hardware

manufacturers. In keeping with our theme in this chapter, let us review

the security capabilities and the Intel-specific hardware features that are

supported through the DPDK.

The DPDK supports standard modes for the Advanced Encryption

Algorithm (AES), including Cipher Block Chaining (CBC) mode, Electronic

Code Book (ECB) mode, Counter (CTR) mode,11 and a special mode used

primarily for block storage devices, XTS41 mode. All modes are supported

Intel® DPDK Libraries

Buffer Management
Customer

Application

Customer
Application

Customer
Application

Queue Management

Packet Flow Classification

NIC Poll Mode Drivers

Environmental Abstraction Layer

Linux Execution Environment

Target IA Platform

Figure 4-20. The Intel DPDK library structure

41 XTS is actually considered a tweak cipher, a modification of the underlying
cipher using parameters. XTS stands for XEX-based tweaked-codebook
mode with ciphertext stealing. XEX is a tweak cipher mode, which stands for
XOR-Encrypt-XOR, which was designed by Phillip Rogaway, 2004, “Efficient
Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and
PMAC,” http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

301

with the standard key sizes, 128-bits, 192-bits, and 256-bits. DPDK also

supported DOCSIS encryption and DES and 3DES.42

In addition to encryption, the DPDK supports hashing algorithms

using the SHA243 algorithms, SHA2-256, SHA2-384, and SHA2-512. The

older SHA1 algorithm is also supported, but should only be used for

interoperability reasons; the use of SHA2-256 should be the minimum

requirement for IoT systems.

The DPDK supports the Intel SHA-NI and AES-NI instructions (see

Chapter 3, section “CPU hosted Crypto implementations”), providing

access to hardware acceleration of these algorithms. In addition, AES-

GCM, the Galois Counter Mode of AES, is further enhanced by combining

the AES-NI instruction with carryless multiplication instructions to speed

performance of the Galois integrity tag calculation.44

The DPDK provides compatibility with other software and hardware

implementations of cryptography, even providing a full software

implementation using the OpenSSL open source cryptographic library.

Using these different plugins for the DPDK cryptodev library, a fully

portable application can be built that makes use of the best hardware

features the platform has to offer. The use of the DPDK allows applications

42 DES, Data Encryption Standard, and 3DES, Triple Data Encryption Standard,
are older modes included only for interoperability. It is strongly recommended
to avoid use of these modes unless they are required for interoperability. In IoT
systems, there is no good reason to use such modes.

43 SHA, Secure Hash Algorithm, are algorithms defined in the NIST Secure Hash
Standard (SHS) for cryptographic hash algorithms. The older version SHA1
is deprecated for most uses today. The SHA2 family of algorithms, https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf, covers multiple hash
digest bit lengths.

44 https://software.intel.com/en-us/articles/intel-carry-less-
multiplication-instruction-and-its-usage-for-computing-
the-gcm-mode and https://software.intel.com/en-us/articles/
aes-gcm-encryption-performance-on-intel-xeon-e5-v3-processors

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/aes-gcm-encryption-performance-on-intel-xeon-e5-v3-processors
https://software.intel.com/en-us/articles/aes-gcm-encryption-performance-on-intel-xeon-e5-v3-processors

302

direct access to the best cryptographic acceleration hardware of the Intel

platform, and compatibility to other platform’s cryptographic accelerators

as well.

 Security Management
Security management is the combination of active processes and

executed procedures during installation, configuration, operation, and

decommissioning of systems that preserves the confidentiality, integrity,

and availability of those system and network resources for the approved

mission(s) of the organization. This chapter focuses on software, not

processes and procedures. However, there are software tools and agents

that directly aid the security management process. We look at a few of

those here, just for completeness in our discussion.

 Secure Device Onboarding

The very first issue requiring a solution in an IoT system is device
provisioning or how to provision devices so they can connect to the

correct back-end cloud system or device management system. A common

solution is to preprovision devices during manufacturing to connect

to a specific cloud agent. Microsoft Azure Sphere uses this approach.

While it works, that solution locks the device into a specific cloud, and

the approach can have impacts on high-speed manufacturing. A better

approach is to provide flexible and secure onboarding for any device to

any cloud system. Intel’s Secure Device Onboard (SDO45) provides this

security capability using an EPID46 device identity key. Figure 4-21 shows

the provisioning lifecycle of a device, from manufacturing to installation.

This can be any device from a gateway or server down to a smart sensor.

45 https://software.intel.com/en-us/secure-device-onboard
46 See the discussion of Intel’s Enhanced Privacy ID (EPID) in Chapter 3.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://software.intel.com/en-us/secure-device-onboard

303

Device Management
Service Agent

Secure Intel HW
Root of Trust

Zero-Touch Onboarding
(anonymous identity +

encrypted channel)

ANY DEVICE
MANAGEMENT

SERVICE

DATA
FORWARDING

for analytics, etc.

CUSTOMER’s IOT
PLATFORM

and Cloud Analytics

Secure Update
Device image and corporate

key download

CONNECTED
DEVICE 1

3

2 4

Figure 4-21. Intel’s Secure Device Onboard preserves device privacy
and provisions “Any Device to Any Cloud”

SDO utilizes a few hardware security features to construct this high-

level service, including

• The platform’s root of trust containing an identity key;

an EPID group signature key is the preferred identity

key, since it provides privacy for the device installation,

but an RSA or ECDSA key may also be used.

• The Intel SDO Client firmware executing inside a TEE;

SDO currently uses the CSME discussed in Chapter 3

for its TEE, but SGX or Trusty are alternative TEEs for

SDO.

• Secure storage on the device to hold the manufacturer’s

public key, a GUID, and an ownership credential.

During manufacturing, a digital record of the device is created, which

is referred to as the ownership credential. The ownership credential

includes the device’s unique identifier (GUID) and the owner’s public

key; the owner credential is signed by a private key belonging to the

manufacturer and includes an integrity checksum to prevent modification

or forgery of the ownership credential. The manufacturer endorses the

ownership credential by digitally signing it with the manufacturer’s private

key when the device is sold. This endorsement can be repeated in the

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

304

supply chain, allowing a deferred binding between the credentials stored

in the device and those of the device management service (e.g., running

within a particular AWS account) who will control the device in operation.

When the device is installed (Step 1 in Figure 4-21), the device contacts

Intel’s Secure Device Onboard Rendezvous server and is connected with the

device management service which was specified by the device’s owner. As a

precursor to the device install step, the preferred device management server

must have been registered with the SDO Rendezvous service by the device

owner using the ownership credentials. The SDO protocol between the

device and Rendezvous server validates the ownership credential, as well

as the authenticity of the device and the Rendezvous server to each other.

At the end of the SDO protocol, the device is forwarded to the proper device

management service to complete provisioning (Step 2 in Figure 4- 21),

allowing the device management service to install a management agent on

the device. SDO prevents unauthorized entities from taking control of the

device and gives the end customer flexibility to provision the device to any

management service or cloud back end. The device management service

can then update the device with new software and link the device to the

preferred back-end cloud system (Steps 3 and 4 in Figure 4-21). Intel SDO

can also be reactivated by the device owner at any time, allowing the device

to be reprovisioned or for device resale.

Intel Secure Device Onboarding solves the first problem an IoT device

encounters – how to securely connect to the right back-end service for

management and operations. Using hardware security elements inherent

in the platform, SDO provides a low-cost and flexible solution with high

security.

 Platform Integrity

Once a device is provisioned, maintaining the integrity of the platform

software is vital to keeping an IoT system operating. Platform integrity

means ensuring that a device has booted the platform software intended

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

305

by the system and that the platform firmware, boot loader, and operating

system have not been corrupted. Device management software can query

the platform’s integrity state and determine if something needs to be

updated or remediated. But, some software element must reside on the

device to calculate the platform integrity and then communicate it up to

the device management software in a meaningful way.

In Chapter 3, we discuss protected boot technologies included in

Intel platforms, including PTT47 and TPMs. These hardware elements

use software in the operating system, boot loader, and BIOS to measure

the platform during boot. These measurements are stored in hardware-

protected storage in PTT or the TPM. The software to access these

measurements is included in the trusted services stack (TSS) that was

written according to the Trusted Computing Group’s (TCG) specification

for TPM2. As shown in Figure 4-22, this software stack is comprehensive

and, besides platform integrity measurement, includes features for other

TPM operations including encryption, key generation, secure storage,

and attestation. The application-level APIs are all provided in the System

API (SAPI)48 or the Enhanced SAPI (ESAPI)49 and are defined by the TCG;

the FAPI is still under development. The Feature API (FAPI) would be the

easiest to use and abstracts many details of the TPM from the application,

while the SAPI provides near-transparent use of the TPM commands and

responses.

47 Platform Trust Technology (PTT) and Trusted Platform Module (TPM)
48 https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_
Version-1.1_Revision-22_review_030918.pdf

49 https://trustedcomputinggroup.org/wp-content/uploads/TSS_TSS-2.0-
Enhanced-System-API_V0.9_R03_Public-Review-1.pdf

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_Version-1.1_Revision-22_review_030918.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_SAPI_Version-1.1_Revision-22_review_030918.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_TSS-2.0-Enhanced-System-API_V0.9_R03_Public-Review-1.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_TSS-2.0-Enhanced-System-API_V0.9_R03_Public-Review-1.pdf

306

 Network Defense

IoT systems are all about communication, and without some type of

defensive measures, these IoT devices would be easy targets for network

attackers. Common network defense capabilities including firewalls and

intrusion defense software are important to add to any IoT device. Some

devices are so small and so resource constrained that no attempt is even

made to add any network protections. However, there are tools that can

provide some reasonable protections and should be considered.

The first step of network defense, of course, is to limit the applications

and services that open ports to listen for connections. In fact, if your IoT

device is so resource constrained that you are considering putting no

network defenses on the device, then there should be no listening services

either – only outgoing connections. But because firewalling is the most

basic defense, a program that intercepts the incoming network traffic to

check for anomalies is important and should be considered.

On Linux distributions, the recommended program for network defense

is TCP Wrappers. This program can be called from inetd or configured into

the hosts.allow and hosts.deny configurations. TCP Wrappers allows the

system to be configured to allow or deny connections based on the network

TCG TPM2 SOFTWARE STACK: DESIGN
System API (SAPI)
• 1:1 mapping to

TPM2 commands
• No file I/O
• No crypto
• No heap

Enhanced SAPI (ESAPI)

• Provides Cryptographic
functions for sessions

• Requires heap / does
memory allocations

• Additional utility functions

• No file I/O

Feature API (FAPI)
Application

APP-1

APP-2

APP-3

FAPI Crypto
Library

Marshalling

ESAPI

SAPI

TPM Command Transmission Interface (TCTI)

TPM Access Broker (TAB) & Resource Manager (RM)

TPM Device Driver

• No implementation yet
• File IO

• Must be able to do retries
• Context based state
• Must support static linking

• Spec in draft form

TPM Command Transmission Interface (TCTI)

• Decouple APIs from command transport / IPC
• Abstract command / response mechanism,

• Dynamic loading / diopen API
• No crypto, heap, file I/O

TPM Access Broker and Resource Manager (TAB/RM)

• Potentially no file IO - depends on power mgmt.
• Power management

TPM Device Driver

• Pre-boot log handoff
• Device interface (CRB / polling)

• No crypto
• Abstract Limitations of TPM Storage

• Requires heap

U
s
e
r

K
e
r
n
e
l

Figure 4-22. Intel TPM2 software stack (TSS)50

50 https://software.intel.com/en-us/blogs/2018/08/29/tpm2-software-
stack-open-source

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://software.intel.com/en-us/blogs/2018/08/29/tpm2-software-stack-open-source
https://software.intel.com/en-us/blogs/2018/08/29/tpm2-software-stack-open-source

307

address and protocol. Additionally, other commands can be executed when

rules in the TCP Wrappers configuration are triggered, such as sending

an alert email or adding an entry to the syslog. Configuration of the TCP

Wrappers file can provide extensive filtering and can be set up so that normal

traffic and operations easily get through without any overhead. Other options

for firewalling include directly using the kernel netfilter or configuring the

netfilter through ipchains. Significant material is available both on the Web

and in Linux books, so that information will not be repeated here.

Finally, good logging for what is happening on the network and on a

device is vital to reconstructing an attack or understanding an attempted

intrusion. There are numerous programs for attack detection that operate

on both Linux and Windows and can be compiled for other operating

systems as well. TCPdump and snort51 are common programs for detecting

network intrusions or malformed packets on a device. Snort can be turned

into a full-scale network intrusion detection system where devices capture

traffic and send dangerous looking packets to a central server for deeper

analysis. Suricata is a similar robust open source solution for intrusion

detection. These types of intrusion detection system are very useful for

IoT system for early detection of attacks and fast response to prevent such

attacks from bringing down the IoT system.

 Platform Monitoring

Security management includes monitoring a device and its workload for

anomalies, in the event that a network attacker is able to circumvent the

network defenses in place on the device. The monitoring functions are tied

into the device management agent on the platform, allowing problems to

be reported back to the management servers.

In the section on Zephyr, we discussed watchdog timers used to

monitor for long running privileged threads. Remember the problem in

Zephyr was a privileged thread that does not yield back to the operating

51 https://www.snort.org/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://www.snort.org/

308

system which can then starve out the execution of other processes on

the system. The operating system can prevent this by using a hardware

timer started before releasing control to the high-privileged thread; if

the thread does not yield back in a certain amount of time, the hardware

timer causes a non-maskable interrupt (NMI) that stops execution of

everything else and returns control back to an interrupt service routine

(ISR) in the operating system. When the operating system regains control,

it can terminate the offending thread and report the situation back to the

management service. Sometimes this doesn’t work. It often fails because

the attacked thread had enough privileges on the system, allowing the

attacker to disable or continually reset the timer, effectively disabling the

watchdog.

There are other unique options for performing platform monitoring

that can identify side-channel attacks or threads that have potentially been

corrupted by network attackers. Several techniques are published[52, 53]

that utilize hardware performance counters in the CPU microarchitecture

to characterize and monitor software and detect when attacks are likely

present. This information can be used to shut down the attacking threads

or reboot the system into a known good state.

 McAfee Embedded Control

There is one last software capability that deserves mention in security

management that provides some unique system authorization

capabilities. McAfee Embedded Control (MEC)54 is a software program

52 A Survey of Cyber Security Countermeasures Using Hardware Performance
Counters, https://arxiv.org/pdf/1807.10868.pdf

53 Cache-Based Side-Channel Attacks Detection through Intel Cache Monitoring
Technology and Hardware Performance Counters, https://hal.inria.fr/
hal-01762803/document

54 https://www.mcafee.com/enterprise/en-us/products/embedded-control.html

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://arxiv.org/pdf/1807.10868.pdf
https://hal.inria.fr/hal-01762803/document
https://hal.inria.fr/hal-01762803/document
https://www.mcafee.com/enterprise/en-us/products/embedded-control.html

309

that provides extended access control and integrity to IoT platforms. MEC

protects both executable as well as data files on a platform, ensuring that

those files are not accidentally or maliciously modified, even by a user with

administrative rights. MEC creates a new privileged user on the platform

that is only accessible through the MEC admin interface and manages

a database of integrity checksums over directories and files specified by

the MEC admin. MEC includes an augmented launcher that is integrated

with the Windows or Linux operating system, allowing MEC to check the

integrity of executable files before launch. The access control database

allows MEC to also specify what services and devices an executable can

access, providing even stricter control on running applications. This

means that even if a program were maliciously corrupted at Runtime, the

attacker would not be able to use unauthorized system resources, and ROP

or JOP attacks would only be able to modify the use of authorized system

resources, not fundamentally change the resources to which the program

has access.

MEC creates a very powerful protection for IoT devices, and

this system works extremely well when the platform’s software and

configuration does not change regularly. MEC can be integrated easily

in McAfee ePO device management suite as well (see the discussion in

the “Device Management” section). In some versions of MEC, dynamic

protection of memory is also provided, limiting the effect of buffer

overflows. A limited version of MEC is included in Intel’s IoT Gateway

Software Suite,55 and McAfee continues to add improvements and support

for other operating systems in MEC. Upgrading to the fully featured

McAfee Embedded Control Pro from the basic MEC version included in

Intel’s IoT Gateway is a smooth transition, fully supported by the MEC

admin interface.

55 https://shopiotmarketplace.com/iot/index.html#/details?pix=58

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://shopiotmarketplace.com/iot/index.html#/details?pix=58

310

 Network Stack and Security Summary
In this section we looked at various software components that can provide

effective network defense and attack detection, and even be used to

build comprehensive end-to-end security using the cryptographic library

in the DPDK. Common IoT problems like platform integrity, device
provisioning, and system authorization can be solved using specialized

packages like the TSS, Intel SDO, and McAfee Embedded Control. While

these problems cannot be solved for free, the cost in additional compute

resources and Runtime RAM may likely provide the difference between

a platform that is regularly being attacked and draining the maintenance

and remediation budget and a platform with adequate tools and packages

that is resilient to attack.

 Device Management
IoT systems are composed of thousands of devices, and with so many

devices, manual management is prohibitive. In other cases, IoT devices are

physically located in remote or difficult-to-reach locations, increasing the

cost of sending out a repair person in a “truck roll.” Autonomous device

management using a cloud-based management solution is essential to

preserving an IoT system’s return on investment (ROI).

Device Agent

Device
Event Input

Command
Queue

Device Management System

Device
Information
Database

Management
Console

Figure 4-23. Notional cloud-based device management system

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

311

Cloud-based device management systems include a few common

elements, as shown in Figure 4-23. On the device, a management agent

performs the actions requested by the management system and also

provides data to the management system on the device’s health. How

such an agent is installed on a device can sometimes be an issue; however

device provisioning solutions like SDO covered in a prior section provide

convenient solutions to this issue. A management console, normally

implemented as a browser-based web application, retrieves data from the

device management system and presents usable information to system

administrators, allowing admins to schedule maintenance, perform

actions on groups of devices, or even dive into details of a specific device

to troubleshoot problems or investigate trouble tickets. The actual device

management system in the Cloud is what separates different systems.

Generally, each management system must have three elements:

• A Device Event Input queue allowing devices to provide

status and report problems

• A Command Queue allowing administrators to push

out commands to devices

• A Device Information Database containing information

on each device in the system

The security services that device management system must provide

include

• Authentication: Ensures that both devices and

administrators on the device management system are

who they claim to be. Cryptographic credentials issued

to these parties are essential to maintaining proof of

identity for all entities on the system.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

312

• Authorization: Commands to devices can be

disruptive to the services provided by the IoT system,

or even potentially destructive to the device itself. A

reboot command to several devices might cause a

temporary denial of service, but a forced operating

system update with corrupt software could bring down

a system for days or even months.

• Confidentiality and Integrity: Although data sent

via device management systems do not typically

include personally identifiable information (PII),

the commands and device health data can contain

sensitive information. Integrity of this data is vital to

prevent tampering or accidental corruption of the data

in transit, but confidentiality may also be warranted

depending on the information contained in commands

and data updates from devices.

• Nonrepudiation: Guaranteed proof of source

attached to health data or even the collection of other

environmental data around devices could be crucial to

the IoT system. Guaranteeing data originated from a

particular device is part of data provenance.

• Defense in Depth: Is a layering of defenses to protect

system elements from hacking. This includes attacks

on the devices, gateways, and on the cloud systems

and management consoles. Because the device

management system represents the most significant

network attack surface, and many of the software

elements attached to the device management

agents require elevated privileges to perform their

operations, the device management system itself

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

313

must be constructed to prevent attackers from gaining

control over the IoT systems. Careful attention to the

construction of both the device agent and the interfaces

and APIs presented by the cloud system is necessary to

prevent successful attacks.

This section reviews two different device management systems, one

designed for small to medium deployments (Mesh Central) and one

designed for large deployments (Helix Device Cloud).

 Mesh Central
Mesh Central is a device management solution appropriate for small- to

medium-sized IoT deployments. Mesh is an agent technology, which

means that each managed device must be running the Mesh Agent

software component. Mesh allows a Mesh Administrator to gain remote

access and control of their devices through a variety of means, including

direct shell access, dashboards, and connection via custom web applets.

Mesh also provides peer-to-peer (i.e., Machine-to-Machine [M2M])

interactions, allowing devices to communicate directly to each other,

without a human administrator being involved; this enables the IoT M2M

type actions for true IoT automation.

Mesh Central is an Intel open source project and has a wide array of

services targeted for remote monitoring and management of computers

and devices. Users can manage all their devices from a single web site,

no matter the device location or the device position behind routers and

proxies, and this is all possible without needing to know the device’s IP

addresses. Mesh works by having each device generate a new unique RSA

key pair, and the hash of the public key becomes the device’s identity.

Mesh devices register to the Mesh Central Cloud by communicating

to devices around them and finding a path to the Mesh servers. This

information is found in a signed policy file that is shared among the

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

314

devices; however, this requires that devices be preprovisioned with a Mesh

client and a policy file, otherwise, and IP address and a path to the device

are needed for solutions like SDO to work properly.

The following is a partial list of the actions a Mesh Administrator can

do to their connected devices:

• Opening a shell to run commands directly on the

device

• Opening the device’s graphical desktop, displaying

the device’s GUI, and providing mouse control on the

device

• Installing, removing, and updating software on the

device

• Activating a particular piece of software on the device

or sending commands to that software (as if on a

terminal on the device)

• Viewing files or logs on the device

The following is a brief list of Mesh Central architectural elements:

• Each device is referred to as a node and is identified by

a secure, provable identifier based on a self-generated

(device-generated) RSA public key.

• Nodes are organized into an overlay network, meaning

routing of Mesh messages occur from the Mesh server

to the device, but potentially hopping from one device

in the Mesh to another device in the Mesh in order

to reach the actual destination device; this path may

traverse different communication networks connecting

each device.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

315

• Agent and Server APIs are available for generic, secure

messaging for Admin-to-Device and Device-to- Device

messaging.

• Agent Software Update is provided over-the-air

(network) using signed and verified updates.

• Direct Connection from an admin web browser (via

web sockets) directly to devices for custom applications

in the browser to interact with, query, or control

devices.

• A Mesh Developer API to add custom actions into the

Mesh Agent running on devices.

Database
(MSSQL)

MSMQ

Swarm
Server

Connections via
TCP & UDP Port 16990

INTERNET

Administrator view
thru browser or
custom web application

Some Mesh Nodes have
direct access to the internet,
but others have access only
by hopping through another
device via Mesh

Mesh of loT devices
And access gateways

AJAX Server

Figure 4-24. Mesh Central device management system architecture

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

316

As shown in Figure 4-24, Mesh Central is actually composed of four

different servers:

• The AJAX Server: Provides the primary interface for

Mesh administrators

• The Swarm Server: Provides the primary interface for

devices into Mesh

• The Database: Usually Microsoft SQL Server, stores

data about devices

• The MSMQ: Provides message delivery among servers

Mesh operates by having a bit of software, called the Mesh Agent

Software, on every device. This agent runs under a privileged account on

the device so that it is able to perform management on the device (e.g., run

software, install applications and services, activate hardware, etc.). The

Mesh Agent also has a configuration file, called the Mesh Agent Policy File,

that controls what the agent is allowed to do and information about the

Mesh control server.

Table 4-8. Mesh Central Device Management Analysis

Device Management
Security Principles

Grade Comments

Authentication C Mesh requires devices to generate their own

identity keys in software and then registers

devices to the Mesh Swarm server without any

device attestation or proof from a hardware

root of trust. this forces device administrators

to know the hostnames of devices that should

be registering and ignore or boot off devices

they do not trust.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

317

Device Management
Security Principles

Grade Comments

Authorization C authorization of commands requires an

additional key be shared from the Mesh

administrator, because commands are not

protected end to end, only hop to hop. without

this additional layering of authorization (not

natively provided by Mesh), commands could

be forged by a rogue Mesh node.

Confidentiality and
Integrity

a all messages traversing the Mesh are

protected with strong integrity and

confidentiality, and session keys are

regenerated frequently. protections are only

provided hop to hop, however, not end to end.

Repudiation d Mesh does not leverage a hardware root of

trust, so all keys are software generated. while

all the right actions (e.g., encrypted messages,

rSa identity keys, verification by clients) are

performed, there is no protection of credentials

on the device if an attacker were able to

compromise software on one of the systems.

Defense in Depth d Mesh runs the Mesh agent as root by default;

significant rework of the client software is

required to segment high privilege tasks to

protected software agents.

Table 4-8. (continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

318

 Wind River Helix Device Cloud
Helix Device Cloud (HDC) is an IoT device management solution by Wind

River. HDC is able to connect to IoT devices and gateways, manage device-

generated data, automatically respond to device events, and perform

remote (OTA) software updates. HDC includes a significant back-end

system using Kafka that enables intelligent autonomous management of

devices and provides easy and secure device onboarding and provisioning

through Intel Secure Device Onboard (SDO). HDC adds an agent protocol

called DXL (Data Exchange Layer) to each edge device that enables

intelligent processing of data and secure end-to-end communication.

With Helix Device Cloud, administrators can

• Maintain secure two-way connectivity to gateways and

devices

• Perform flexible data collection to the Cloud and even

distribute that data across multiple edge nodes using

DXL’s powerful edge capabilities

• Receive immediate notification of device issues and use

HDC Agent tools for remote diagnosis and repair

• Securely onboard new devices using SDO and upgrade

new devices when first activated in the field

• Push new updates out to connected devices

• Collect and import data from IoT devices directly to

enterprise systems

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

319

HDC focuses on the device management and edge aggregation

services; HDC does not address applications and data analytics, but

provides mechanisms for these services to reach devices through HDC

using McAfee ePO plugins and call-outs to external services. For a more

complete overview of HDC, see the HDC Overview whitepaper.56

HTTP
REST

Streams

Realtime
Processing

Rules

DXL Brokers
MQTT
DXL

HTTP
etc...

Unstructured Structured

Compute Analytics

Metadata

Data
Collectors

Agent
Handlers

API Gatew
ay

(M
ashery)

UDM
Agent

McAfee
ePO Agent

Other
Services

Gateway
(Moon Island)

Edge
Device

Data Bus

ePO App Server

Bridge

queries

auth

asset

policy

telemetry

provision

...

OTA

Other
Parties,
Systems

Targeted
Consoles

Admin
Console

Figure 4-25. Wind River Helix Device Cloud device management
architecture

Figure 4-25 shows the architecture of HDC. Devices connect to HDC

Cloud using HTTP, DXL, or MQTT57 protocols, and enterprise services

leverage the data in HDC through a set of REST APIs exposed by HDC

on the back end. Within HDC, there are three primary components:

the device connection protocols, the data bus that organizes and routes

messages and events, and the database that holds structured and

unstructured data, analytics, metadata, and compute workloads. A fourth

56 https://software.intel.com/en-us/iot/cloud-analytics/cloud-helix
57 MQTT – Message Queuing Telemetry Transport is an ISO standard protocol

based on the publish-subscribe design pattern. MQTT is described in more
detail in “Message Orchestration” section.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://software.intel.com/en-us/iot/cloud-analytics/cloud-helix

320

part of HDC provides an extension interface to add features to HDC using

the same extension interface as McAfee ePO,58 allowing them to leverage

each other’s extensions.

One of the most interesting elements of HDC is the data bus and real-

time processing rules. HDC utilizes an open source topic organization

server called Kafka. With Kafka, incoming messages from devices are

filtered through a set of rules to determine appropriate actions. Actions

can include storing the message data into a part of the database, passing

the message off to an ePO plugin, generating an alert to an administrator,

or even activating some compute element in the database to create an

immediate response to the reporting device. In fact, with the Kafka rules,

multiple actions can be executed as a result of receiving a single message.

HDC is a secure device management system due to its use of Intel

Secure Device Onboard (SDO) to provision devices and the use of DXL

for secure communication. As discussed in the section on security

management, SDO leverages the device’s root of trust to authenticate

the device during onboarding, ensuring the device is not being spoofed

by an attacker. During onboarding, HDC leverages the secure channel

authenticated with the device’s root-of-trust key to install a new device

identity key. DXL uses this new key for authentication back to HDC

during TLS session establishment, making all messages passed over TLS

authenticated back to the device. SDO also installs a trust anchor key for

the HDC server; a trust anchor key is a key that is inherently trusted for a

particular purpose. The DXL client stores the HDC trust anchor key so that

it can authenticate the HDC server over TLS. On platforms that support the

SGX TEE (see the section on software containment), the DXL client uses

SGX to protect its identity key and the trust anchor key from attack by any

malware that is able to infiltrate the device.

58 McAfee ePO is an enterprise Policy Orchestration product that provides a unified
and centralized management console for security management.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

321

Table 4-9. Helix Device Cloud Device Management Analysis

Device Management
Security Principles

Grade Comments

Authentication a the device and hdC server are authenticated

with rSa key pairs that were established

over a secure channel through Sdo using a

hardware root-of-trust key.

Authorization a all commands down to the device are

verified as authentic through dXl using a

trust anchor key established during device

provisioning through Sdo.

Confidentiality and
Integrity

a all data and commands are protected over

tlS.

Repudiation a the strong identity keys established using

Sdo validate the true device identity and link

that to the rSa identity keys. any actions or

data are tied to this identity key and cannot

be repudiated.

Defense in Depth a dXl uses the SgX tee to ensure its

operations and key material are not

compromised, even if the platform is infected

with malware.

 Device Management Summary
Managing the devices of an IoT system is critical to security. Since

all the management services occur over the network, attacks such as

device spoofing, message forgery, and data disclosure are all possible.

Although basic security protections over messages are possible, in

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

322

IoT system, attacks on the devices themselves can compromise key

material and lead to questions regarding the provenance of data

collected in the Cloud. The use of hardware security capabilities, like

hardware root-of-trust keys and Trusted Execution Environments (TEEs),

drastically improves the security of device management systems and,

due to the lower risk of attacks, reduces the total cost of ownership of

IoT systems.

 System Firmware and Root-of-Trust Update
Service
At the beginning of the chapter, in the “Operating Systems” section,

we discussed the update problem. The Linux distributions reviewed in

that section had different strategies for solving consistency among the

packages and services being updated. However, the section identified

a remaining problem regarding firmware updates which is how to gain

the required access to firmware on the platform with the ability to

perform updates.

Firmware is notoriously difficult to update. It typically resides in

flash or other nonvolatile storage that is locked or inaccessible even

to the operating system itself. The reason for this inaccessibility is

security. Firmware is part of the most trusted parts of a system. The

BIOS is the first part of the system that executes during power-on and

represents the root of trust of the entire system. Other firmware may

implement root-of-trust functions, such as system measurements,

secure storage, or attestation reporting. Firmware in the security

engines control cryptographic algorithms and keys. Firmware in

network controllers (Ethernet, Wi-Fi, Bluetooth, Zigbee, LoRa) have

access to all traffic entering and exiting the device and may even have

access to cryptographic keys for encrypted traffic.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

323

On personal computer-like systems using BIOS, the standard way

to perform secure firmware updates is through the Capsule Update.59 A

Capsule Update is a function in the BIOS that is activated by the operating

system. The Capsule Update function is provided the addresses of capsules

in memory containing updates for certain firmware, and then the system

performs a soft reset. When BIOS takes control of the platform, it verifies

the capsules in memory, and if they are authentic and appropriate for the

platform, the capsules are used to update the appropriate firmware. For

Capsule Update to work properly, the operating system must be capable of

engaging the update service.

Not all devices support the BIOS Capsule Update. And of course for

systems without BIOS, or for IoT systems that do not use standard BIOS,

some other solution is required. In these cases, some type of custom

update procedure is required; as an example, see the update procedure

required for the Infineon TPM, a standard device on many PC platforms

(https://www.infineon.com/cms/en/product/promopages/tpm-update/

and https://support.microsoft.com/en-us/help/4096377/windows-

10- update-security-processor-tpm-firmware).

 Threats to Firmware and RoT Update
Firmware update for IoT systems is being addressed by an Internet

Engineering Task Force (IETF) working group named SUITS (Software

Updates for Internet of Things). The SUITS working group60 compiled

a detailed set of threats and requirements that systems implementing

updates should adhere to.

59 https://software.intel.com/en-us/blogs/2015/06/23/better-firmware-
updates-in-linux-using-uefi-capsules and https://software.intel.com/
en-us/blogs/2017/02/04/signed-uefi-firmware-updates-in-edk-ii

60 https://datatracker.ietf.org/wg/suit/documents/ – At the time of this
writing, all documents in SUIT are still in the draft stage, but should be approved
as full RFCs by the time of publication.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://www.infineon.com/cms/en/product/promopages/tpm-update/
https://support.microsoft.com/en-us/help/4096377/windows-10-update-security-processor-tpm-firmware
https://support.microsoft.com/en-us/help/4096377/windows-10-update-security-processor-tpm-firmware
https://software.intel.com/en-us/blogs/2015/06/23/better-firmware-updates-in-linux-using-uefi-capsules
https://software.intel.com/en-us/blogs/2015/06/23/better-firmware-updates-in-linux-using-uefi-capsules
https://software.intel.com/en-us/blogs/2017/02/04/signed-uefi-firmware-updates-in-edk-ii
https://software.intel.com/en-us/blogs/2017/02/04/signed-uefi-firmware-updates-in-edk-ii
https://datatracker.ietf.org/wg/suit/documents/

324

• Modified/Malicious Firmware Updates: The first

threat considered when updating firmware is corrupted

or maliciously modified firmware. If an attacker is

able to modify the firmware in transit to the platform,

or even during the process of updating the firmware,

then the attacker is able to inject features into the

device. Accidental corruption is just as dangerous since

corruption of firmware during the update process can

brick a system (cause the system to be permanently

broken).

• Rollback to Old (Vulnerable) Firmware: The second

common threat considered for firmware is rolling

back the firmware to an older version. An attacker

that is able to force a system to reload an older version

of firmware may be able to force an old vulnerability

back into the platform, allowing them to take over the

system. This is especially dangerous since the platform

owner erroneously believes they are protected from that

vulnerability and may not be watching for indications of

compromise for that particular attack.

• Unauthorized Update Request: An often overlooked

threat to firmware and RoT updates is the person or

entity authorized to update firmware on the platform.

Allowing a network attacker to force an upgrade

of firmware is problematic. Obviously, an attacker

successfully pushing corrupt or invalid firmware into

a platform would create a problem, but even pushing

a valid firmware update could create instability in

the platform or a denial of service. Firmware update

mechanisms should validate the entity requesting

the update is authorized to do so, either because they

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

325

are acting under an administrator account or their

request is cryptographically proven to originate from an

authorized administrator.

• Unknown Source of Firmware: Even if an authorized

entity issues the firmware update request, the actual

source of the firmware (the firmware code itself)

should come from a known and approved source.

Firmware that is intended to update an Infineon TPM

device should not be written by Broadcom; there are

potential exceptions, most notably in cases where

an OEM repackages an update for their device (i.e.,

HP repackaging a TPM update for the devices they

manufacture).

• Application of Incorrect Firmware: Finally, firmware

must be matched to the system model and version

of the hardware on which they execute. There can be

many different revisions of hardware components, and

firmware for one component may not operate properly

on a different stepping or version.

 Turtle Creek System Update and Manageability
Service
Turtle Creek is the code name for an Intel product that manages

application and platform updates over the air for Intel® Atom, ARM,

Core, and Xeon processors. Turtle Creek allows a system administrator

to remotely schedule and deploy software updates and recover

malfunctioning systems to ensure business continuity and system

availability. It is a cloud-based system that interfaces to many other device

management systems, including Helix Device Cloud and Mesh Central

which were covered in a previous section.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

326

Turtle Creek is a microservice cloud system where each feature of the

system is implemented by a microservice in a container hosted on the

Cloud. This allows customized deployment of Turtle Creek features, which

include the following capabilities:

• Update of the OS, application, and system firmware on

supported platforms

• Recovery of platform software and firmware to known

good status (factory reset)

• Control of system restart and shutdown

• Device telemetry reception for device health, data logs,

and management messages

• Device diagnostics to execute pre-install and

post-install checks

• Rollback recovery for any update

• Device system performance monitoring (e.g.,

CPU utilization, memory utilization, container

performance)

• Centralized configuration manager that stores

and retrieves configuration for devices used by all

microservices, supporting various formats including

XML, Consul database, or name-value pairs

• Comprehensive security using cryptographic signature

verification for all packages using the TPM 2.0 for

key and secret management and secure MQTT

for messaging using TLS with end-to-end mutual

authentication based on X.509 certificates.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

327

Figure 4-26 shows the architecture of the Turtle Creek client software.

Turtle Creek separates updates into three different categories based on

the type of update and the repository from which the update packages

are retrieved. These include Application Over-the-Air (AOTA), Software

Over-the-Air (SOTA), and Firmware Over-the-Air (FOTA). AOTA supports

update of application and individual software vendor’s services via an

update mechanism based on packages and signed RPMs using SMART

and Docker container update mechanisms. SOTA supports operating

system updates from an OS vendor’s repository, which includes the use

of the OS standard update mechanisms, like Ubuntu Update Manager

and Mender61 (for Yocto Linux). FOTA supports device or component

manufacturer’s ability to update custom firmware over the air and

integrates firmware-specific functionality to update the device firmware

components. The primary mechanism for FOTA support is BIOS Capsule

Update.

Message
Broker

Linux Kernel

HardwareETH Wi-Fi Storage TPM

Mesh Central

HDC

Other*

AOTA
Utility

Turtle Creek

TRTL Update
Manager

(Containers,
File/Block OTA)

SOTA
Utility

Cloud
Adapters

FOTA
Utility

Package
Manager

SE
CU

RI
TY Te
le

m
et

ry
Ag

en
t

Di
ag

no
st

ic
s

Ag
en

t

Co
nf

ig
ur

at
io

n
M

an
ag

er
Ag

en
t

Di
sp

at
ch

er
Ag

en
t

Figure 4-26. Turtle Creek architecture

61 Mender is a client software embedded in Yocto that enables updates to the
operating system to be installed. https://docs.mender.io/1.6/artifacts/
building-mender-yocto-image

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://docs.mender.io/1.6/artifacts/building-mender-yocto-image
https://docs.mender.io/1.6/artifacts/building-mender-yocto-image

328

Turtle Creek’s contribution to the IoT platform is twofold. First it

unifies multiple disparate platform and software update mechanisms

under a single management tool, making the process of managing and

distributing updates easier. Second, it incorporates significant security

protections on the update process, overlaying them on top of existing

capabilities where necessary. Turtle Creek creates a manifest format to

convey update commands and requires this update to be signed with a

key in the TPM. This satisfies the security requirement for authorization

of updates and ensures that the versions and source (repository) for the

updates are genuine. If update packages do not include an embedded

signature or source authentication, Turtle Creek’s manifest can include

a detached signature so the actual bits downloaded for the update can

be verified that they have not been accidentally or maliciously modified.

Table 4-10 outlines a more complete security analysis of Turtle Creek.

Table 4-10. Security Analysis of Turtle Creek System Update and

Management Service

System Update
Security Principles

Grade Comments

Protect Against
Modified Update
Packages

a turtle Creek enforces rSa signatures over all

update packages.

Prevent Update
Rollbacks

a turtle Creek maintains a database of configured

version numbers and packages on each device

and ensures rollbacks do not occur.

Accept only
Authorized Update
Requests

a update requests are received over an

authenticated MQtt channel and are contained in

signed manifest file.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

329

System Update
Security Principles

Grade Comments

Use only Authorized
Update Sources

a Manifest file contains authorized source for

download of the update mechanism.

Apply Correct
Firmware/Software
to the System

a Manifest file contains attributes of the update that

are checked on install to ensure invalid updates

are not applied.

In the event of a failed update or problems during

update, turtle Creek is able to restore the previous

version of the software or firmware on the system

reducing downtime.

Table 4-10. (continued)

 System Firmware and RoT Summary
One of the most difficult problems in IoT systems is updating the base

system firmware or recovering from a security vulnerability in a root-of- trust

component like a TPM. Oftentimes, these firmware elements are designed

to require a trusted administrator to manually watch over an update or

install process. IoT devices in remote environments or hard- to- reach places

cannot afford to miss such updates, but also cannot be sustained if a skilled

administrator must manually install such updates. Services such as Turtle

Creek which enable remote update of all software and firmware on a device

are vital to both the security posture and ROI of IoT systems.

 Application-Level Language Frameworks
The application-level language frameworks are the first topic in the

application plane of our generic IoT architectural model from Figure 4-2.

Although we are several software layers removed from the hardware of the

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

330

platform, hardware-based security still plays a role in providing best-in-

class software and services. As we look at different options in this space, we

want to focus on how an application developer might be able to leverage

hardware-based security features.

Application developers tend to choose an application framework based

on the programming language they have chosen, and not vice versa. And

particular programming languages tend to have certain frameworks that are

popular with a majority of programmers. In this section, we will examine

the common security APIs available within some of these frameworks and

evaluate the ease of use for developers to utilize hardware security features.

The hardware security features focused here are partly based on the

hardware features we have discussed throughout the previous sections

of this chapter, as well as security features advantageous to common use

cases encountered by IoT developers. These features include

• Access to Trusted Execution Environments (TEEs)

to leverage highly secure containment features for

sensitive data and operations

• Access to Secure Storage or Protected Keystores to

protect credentials and application secrets

• Access to message and network security features to

protect communication to other devices

• Access to cryptographic functions in hardware,

including AES, SHA, and random number generation

in order to build other security features not available

from available services.

 JavaScript and Node.js or Sails
JavaScript is a common language used in IoT and web services today. It

is an event-driven interpreted language with a rich set of frameworks.

Node.js is one common framework, designed to build network

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

331

applications that handle events concurrently. Node.js is extremely

flexible, so other frameworks are used to create more structure around

Node.js. Sails is an example of such an extension framework.

As far as security goes, Node.js is far removed from most platform

security features. However, the crypto API provided in Node.js is a wrapper

around the latest OpenSSL library. This means that Node.js developers get

access to the hardware implementations of AES-NI and SHA-NI through

OpenSSL, as well as the hardware random number generator. Best of all,

developers do not have to configure anything or worry about any platform

settings – it is all handled inside OpenSSL.

One of the great advantages of Node.js is npm (node package

manager). One of the great security problems with Node.js is also npm.

The node package manager makes it extremely easy to add packages into

your Node.js project. A simple install command issued on the command

line and a require expression in the code add any package registered

in the Node.js npm repository to your application. npm has over half

a million packages and over three billion downloads every day.62 This

makes using JavaScript widgets and gadgets built by others very easy (a

great benefit!). But what are you really downloading? Are you getting the

latest version with the latest bug fixes? Or are you installing the latest

version that was corrupted with malware? Often developers set up their

Node.js applications and never audit the npm repository again. This poor

discipline proliferates security vulnerabilities.

 Java and Android
The Java programming language is the language used for Android devices,

and because of this popularity has found its way into IoT devices as well.

Google provides their Android Things operating system as a base OS and

framework built on Java for small IoT devices and provides the same base

62 https://nemethgergely.com/nodejs-security-overview/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://nemethgergely.com/nodejs-security-overview/

332

security for the smallest system on a module (SoM) devices as found on

larger devices, including secure boot and a secure hardware keystore.

Android Things is built from the base Android system, as shown in

Figure 4-27, and uses the same kernel, hardware abstraction layer, native

libraries, and Java API framework as the standard Android. Android Things

is intended for smallest of devices.

Java API Framework Google Services

Native C/C++ Libraries

Hardware Abstraction Layer

Hardware

Linux Kernel

Things Support Library

Figure 4-27. Android Things architecture

Android itself is popular in many larger IoT devices, including in-

vehicle infotainment (IVI) systems in autonomous and smart vehicles. And

the security services available through Java and the Android framework are

significant.63

As we discussed previously, Android supports the Trusty TEE, which

can be used to hold sensitive applications for the platform. One of those

applications is a hardware-backed secure keystore to protection keys. This

prevents keys from being used by unauthorized applications or users and

can prevent keys from being exfiltrated off the device. On Intel devices,

the Trusty TEE can be used to provide this service, or the keystore can

be implemented in the CSME (see Chapter 3). Android also supports a

verified boot mechanism where the stages of boot verify each software

component is signed with a valid cryptographic key (see Chapter 3 for

secure boot details).

63 https://source.android.com/security/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://source.android.com/security/

333

 EdgeX Foundry
EdgeX Foundry is a new Internet of Things framework for industrial

edge computing sponsored by the Linux Foundation.64 EdgeX Foundry

is platform agnostic, flexible, and extensible framework providing

capabilities for “intelligence at the edge” for data storage, aggregation,

analysis, and action all organized into sets of microservices using Docker

containers.

Figure 4-28 is the platform architecture for EdgeX Foundry, which

includes four service layers and two system services. The service layers

are the Export services, Supporting services, Core services, and Device

services. The system services are security and device/system management.

The Export services allows data to be communicated to the Cloud

and supports several protocols, including REST or message queue

protocols (see the section “Message Orchestration”); Google IoT Core

is also supported for sending telemetry and receiving configuration

and commands. The Device services enables connections to sensors

and actuators and supports multiple protocols for this purpose. Some

of these protocols are wireless or wired communications protocols

which are covered in more detail in Chapter 5; other protocols are

message orchestration protocols, like MQTT, which is covered in the

section “Message Orchestration.” The Supporting services handles edge

intelligence and analytics capabilities. The Core services is the linkage

between northbound communications to the Cloud and southbound

communications to the sensors and actuators.

64 https://www.edgexfoundry.org/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://www.edgexfoundry.org/

334

The Security system service includes a security store to maintain

cryptographic keys and credentials and an access control service to

manage REST resources and access keys using either OAuth2 or JWT

tokens.

The interesting part of EdgeX is the ability to rewrite any part of

the EdgeX Foundry by modifying the Docker container that supplies

that service and not having to contend with changing other parts of

the system. Security services for key storage can be extended to use a

TPM or SGX enclave for enhanced security. Encryption routines in the

Distribution container of the Export services can be upgraded to use

hardware-based encryption without affecting other elements of the

Supporting or Core services. This type of flexible framework makes it

easy to utilize the important hardware security features that make an IoT

instance more secure.

LOOSELY-COUPLED MICROSERVICES FRAMEWORK

EXPORT SERVICES

CLIENT REGISTRATION

RULES ENGINE

CORE DATA COMMAND METADATA REGISTRY & CONFIG

SCHEDULING
ALERTS &

NOTIFICATIONS
LOGGING

ADDITIONAL
SERVICES

DEVICE +
 SYSTEM

 M
ANAGEM

ENT

SE
CU

RI
TY

SE
CU

RI
TY

 S
ER

VI
CE

S

DISTRIBUTION ADDITIONAL SERVICES

REQUIRED INTEROPERABILITY FOUNDATION

REPLACEABLE REFERENCE SERVICES

CHOICE OF
PROTOCOL

“NORTHBOUND” INFRASTRUCTURE AND APPLICATIONS

“SOUTHBOUND” DEVICES, SENSORS AND ACTUATORS

ALL MICROSERVICES INTERCOMMUNICATE VIA APIs

SUPPORTING SERVICES

CORE SERVICES

LOCAL M
GM

T
CONSOLE

ADDITIONAL
SERVICES

CONTAINER
DEPLOYM

ENT

REST OPC-UA MODBUS BACNET ZIGBEE BLE MQTT SNMP VIRTUAL

(ANY COMBINATION OF STANDARD OR PROPRIETARY PROTOCOLS VIA SDK)DEVICE SERVICES

ADD’L
DEVICE

SERVICES

Figure 4-28. EdgeX Foundry architecture65

65 https://docs.edgexfoundry.org/Ch-Intro.html

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://docs.edgexfoundry.org/Ch-Intro.html

335

 Application-Level Framework Summary
The application framework chosen for an IoT device can make a significant

difference on the security provided to IoT applications. Frameworks like

Node.js have few hardware security features built into the framework, but

make it easy to add capabilities. However, access to hardware devices is

rather difficult through JavaScript, limiting the options for developers.

Android takes an alternative approach and builds in many

sophisticated security features into the operating system and framework

itself. However, limitations, such as with the Trusty TEE which cannot

dynamically add secured applications, make adding hardware-based

security features difficult.

EdgeX Foundry takes a different approach, using containers to

separate functionality into microservices. This framework expends effort to

create the connections and APIs between components so that services can

be shared. In this model, it is much easier to upgrade a service to make use

of hardware security features on the platform, but allow platforms that

do not have such services to use alternative implementations. Although

EdgeX Foundry does not have many hardware security features built

into the framework at present, the intention to encourage platform

differentiation through service modifications is clearly stated.

 Message Orchestration
Message orchestration performs the orderly reception and delivery of

data and commands on an IoT platform. As briefly mentioned in “EdgeX

Foundry” section, message orchestration protocols enable data delivery

and reception off the platform to devices and the Cloud, but can also be

used to move data around within an IoT platform. Message orchestration

implements the publish-subscribe design pattern, often referred to as pub-

sub. In this design pattern, entities with data (publishers) publish their data

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

336

to a broker or message bus, and recipients subscribe to certain messages

from the broker and are given only the messages for which they register.

The beauty of this design pattern is that publishers do not need to know

who or how many subscribers are out there, and subscribers do not have to

be prepared to receive and parse messages that they are not interested in.

Several message orchestration protocols are common in IoT devices,

including Message Queuing Telemetry Transport (MQTT), Constrained

Application Protocol (CoAP), eXtensible Messaging and Presence Protocol

(XMPP)66, and OPC Unified Architecture (OPC UA).

Message orchestration needs to deal with several security issues in

order to be secure:

• Publishers must have an identity and must be

authenticated against that identity so that the source of

messages are attributable to an Authorized Publisher.

• Subscribers must have an identity and must be

authenticated against that identity so that messages are

delivered only to Authorized Subscribers.

• Authorized Publishers may assign access control lists to

messages that restrict which subscribers are allowed to

receive their messages.

• Administrators may assign access control lists to

message types restricting Publishers from publishing

certain message types and/or restricting Subscribers

from receiving certain message types.

• Authorized Subscribers may register to receive message

types that do not violate an access control list.

66 XMPP is not covered in this chapter due to space constraints, however details
can be found in RFC 6102, https://tools.ietf.org/html/rfc6120

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://tools.ietf.org/html/rfc6120

337

• The message broker will accept a message only from an

Authorized Publisher, and only if the message type sent

by the Authorized Publisher does not violate an access

control list.

• The message broker will deliver a message to an

Authorized Subscriber only if that subscriber requested

messages of that type, and if that subscriber is not

prohibited from receiving that message type by a valid

access control list.

• Messages shall be protected from unauthorized

disclosure, tampering, unauthorized deletion,

reordering, and message delay.

 Message Queuing Telemetry Transport
Message Queuing Telemetry Transport (MQTT) is a commonly used

message orchestration protocol that enables sending data between entities

on a system. The protocol is based on topic names in data packets that

define a title for the data. Subscribers subscribe to topics; subscribers

may use wildcards within the topic names to which they subscribe.

MQTT operates over TCP/IP and supports basic operations, such as

CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE, and several types of

acknowledgment packets.

The MQTT protocol published by OASIS67 supports some basic security

services including password-based authentication of publishers and

subscribers and recommends the use of TLS for data privacy and integrity.

Several open source implementations of MQTT are in common use

including Mosquitto, RabbitMQ, and HiveMQ. Table 4-11 provides a

security analysis of Mosquitto MQTT.

67 http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

338

Table 4-11. Security Analysis of Mosquitto MQTT

System Update
Security Principles

Grade Comments

Authentication of
Publishers and
Subscribers

B MQtt supports usernames and passwords

natively. Mutually authenticated tlS is the

best option for authentication over the network

using public key certificates; using user ids

and password is acceptable, but should be

protected by tlS if the communication is over

a network (broker protection of passwords

should be addressed through secure storage).

a security vulnerability in Mosquitto up until

1.4.12 allows a user with a specially formatted

id to overcome the access permissions set

by Mosquitto, allowing them to read or write

topics they do not have permissions to access.

Access Controls on
Message Topics

B Mosquitto provides a topic configuration

file that allows topics to be restricted by

anonymous users, by username, or by a

pattern that uses the username or client name;

access control is based on “read,” “write,” or

“readwrite” actions. this file must be manually

configured, and it is a bit difficult to get correct

especially when there are many topics.

(continued)

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

339

Table 4-11. (continued)

System Update
Security Principles

Grade Comments

Message Privacy and
Integrity

d no special protections are provided for

messages, and even using tlS does not

protect messages while they wait in the queue

for delivery, opening the possibility for malware

on the broker device to modify messages.

Consider adding encryption and message

integrity to MQtt messages at the application

layer; this provides security end to end and can

be used to prevent repudiation attacks as well.

Message Delivery
Protections (Deletion,
Delay, Reordering)

d no special protections are afforded to the

broker’s queue. the broker should not be

run as root, but run under a special service

user id. In some installations of Mosquitto,

the message queue is written to disk and

susceptible to tampering. the configuration of

your Mosquitto installation should be examined

to ensure any files used for queuing are

properly protected.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

340

 OPC Unified Architecture

OPC-UA
Object

Methods are the
Actions Objects
can take when

requested by other
objects

Variables are the
Properties and
State held by

Objects

Events are the
Alarms and

Conditions reported
by the Object

Variables Methods

Event
E1
E2
En

Figure 4-29. OPC-UA notional object68

OPC-UA[69, 70] is a platform-independent service-oriented architecture

targeted to the industrial segment of IoT and is based on the earlier OPC

Classic protocols that used the Microsoft Component Object Model

(COM) and Distributed Component Object Model (DCOM). OPC-UA

is therefore an object-based technology, defining objects as notionally

shown in Figure 4-29 and using the TCP/IP protocol for communication

between objects, which provides a much richer set of services than

MQTT, but it is also much more complex with a 13-part specification of

over 1200 pages.

68 https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-
Interoperability-For-Industrie4-and-IoT-EN-v5.pdf

69 OPC officially stands for Object Linking and Embedding (OLE) for Process
Control, but since OPC-UA has moved away from strict COM and DCOM
protocols, the full expansion of the acronym is no longer widely used.

70 https://opcfoundation.org/about/opc-technologies/opc-ua/

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN-v5.pdf
https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN-v5.pdf
https://opcfoundation.org/about/opc-technologies/opc-ua/

341

OPC-UA provides communication between components (objects)

on a device and between devices using the publisher-subscriber design

pattern described earlier, the observer design pattern where objects notify

other objects of events, and using direct method calls between objects

(even across devices using a DCOM-like mechanism). OPC-UA includes

a discovery service allowing objects and devices to find each other on a

network.

OPC-UA defines a comprehensive security model71 based on security

above the transport layer and uses certificate-based identities for

applications and users. By default, all communication between devices

is encrypted and signed, and the algorithms are negotiated at session

establishment between the two parties, just like TLS. All applications

are assigned a unique identity certificate, which is used to perform

authentication during session establishment to other entities. The other

devices/applications/servers a device is allowed to communicate with

are defined in a trust list that contains those other applications’ identity

certificates. Access control and rights can be managed in three different

ways: username and passwords, Kerberos tickets, or certificates. Table 4-12

provides a security analysis of OPC-UA.

71 www.dsinteroperability.com/OPCClassicVSUA.pdf and https://
opcfoundation.org/wp-content/uploads/2014/05/OPC-UA_Security_Model_
for_Administrators_V1.00.pdf

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://www.dsinteroperability.com/OPCClassicVSUA.pdf
https://opcfoundation.org/wp-content/uploads/2014/05/OPC-UA_Security_Model_for_Administrators_V1.00.pdf
https://opcfoundation.org/wp-content/uploads/2014/05/OPC-UA_Security_Model_for_Administrators_V1.00.pdf
https://opcfoundation.org/wp-content/uploads/2014/05/OPC-UA_Security_Model_for_Administrators_V1.00.pdf

342

Table 4-12. Security Analysis of OPC-UA

System Update
Security Principles

Grade Comments

Authentication of
Publishers and
Subscribers

a opC-ua includes multiple options for

authentication, with public key certificates being

included by default. Issuance of these keys can

still be an issues that need to be dealt with,

but from a security perspective, this is the best

solution.

Access Controls on
Message Topics

C rough access control is provided at the trust list

level. opC-ua applications have to implement

their own access control in order to implement

anything greater than just this device/application-

level trust. access control functions can take

advantage of other information (usernames,

certificates, kerberos tokens), but this requires

custom programming.

Message Privacy and
Integrity

a Message encryption and message integrity is

built into opC-ua above the transport layer and

can be used to prevent repudiation attacks as

well. Session security is provided end to end.

Message Delivery
Protections (Deletion,
Delay, Reordering)

d for store-and-forward or pub-sub broker type

message delivery, the application is responsible

for creating the behavior of the application.

although patterns exist for good design, they

are not provided by default for applications and

require custom programming.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

343

 Constrained Application Protocol
The Constrained Application Protocol (CoAP) is a web transfer protocol

specified in IETF RFC 725272 specifically designed for devices with limited

computation and/or on a network with limited bandwidth. CoAP is a

lightweight HTTP protocol and based on the same request-response REST

interaction model, using commands GET, PUT, POST, and DELETE. CoAP

requires DTLS (Datagram Transport Layer Security, which is TLS over the

UDP protocol) for security, and much like HTTP/TLS combination, any

additional access control or security on the messages themselves must be

added to the applications. Table 4-13 provides a security analysis of CoAP.

Table 4-13. Security Analysis of CoAP

System Update Security
Principles

Grade Comments

Authentication of
Publishers and
Subscribers

a Mutually authenticated dtlS is the best

option for authentication over the network

using public key certificates; many other

authentication options are possible, but

would need to be integrated into the

applications (e.g., oauth, Jwt, kerberos).

Access Controls on
Message Topics

d no special access control is provided above

the rough authentication performed by

dtlS. any additional access control must be

provided by the application.

(continued)

72 https://tools.ietf.org/html/rfc7252

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

https://tools.ietf.org/html/rfc7252

344

System Update Security
Principles

Grade Comments

Message Privacy and
Integrity

d no special protections are provided for

messages beyond the network protections

afforded by dtlS.

Message Delivery
Protections (Deletion,
Delay, Reordering)

C Messages may be transmitted with reliability

(marked as Confirmable), and for those

messages, deletion recovery is handled

through the acknowledgment mechanism.

every message has a unique 16-bit message

id that allows detection of replay.

Table 4-13. (continued)

 Message Orchestration Summary
Message orchestration solutions vary widely in their offerings from simple

(CoAP) to complex (OPC-UA). The security offerings for the simpler

solutions leave much to the application to implement. One of the primary

benefits for MQTT is the ease with which network security can be added

with TLS, and the rich set of access controls that can be configured without

having to add custom code. Other solutions require applications to

implement access controls, which can result in harder to diagnose defects,

and duplication of the access control code in many places.

 Applications
The applications are the components that give IoT devices their behaviors

and consume and benefit from the security in the hardware and the software.

There is much to explore in the application space, which we leave for

Chapter 6, where we explore different vertical IoT applications in great detail.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

345

 Summary
Software in IoT is an enormous subject. In writing this chapter, there were

many things that had to be left out or shortened in order to meet the page

count and retain some semblance of a publishing deadline. If we have

omitted your favorite IoT software component or feature, we assure you

it is only due to the space limitations. However, we feel that the coverage

we have provided of the software elements of an IoT stack is adequate to

engage your design enthusiasm and get you thinking about how to expose

useful security features in your IoT designs.

The goal of this chapter was to introduce how security could be

provided in IoT systems, and we have shown, layer by layer, where

platform security features can be exposed and built upon to add strong

and effective security services to IoT devices. If the “S” for security is left

out of our IoT devices, it is because we have not leveraged the software and

capabilities that are available to us to make security a reality.

While it is true that the most constrained devices have less software

and less hardware services, this should not be an excuse to remove

security entirely. There are too many good options to solve this tough

problem. When the constraints get tighter, it should mean that we focus

back on the basics and jettison everything we do not need, but retain the

most basic security capabilities. These basic security capabilities are the

hardware features for the secure minimum viable platform enabled with

the basic platform software – secure boot, secure identity, and secure

storage. This is not impossible. In Chapter 6, we will show examples of

exactly how to do this.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

346

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 4 Iot Software SeCurIty BuIldIng BloCkS

http://creativecommons.org/licenses/by/4.0/

347© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_5

CHAPTER 5

Connectivity
Technologies for IoT
Internet of Things (IoT) is a set of technologies that are enabling new

use cases and delivering services across a wide variety of markets

and applications. When people think of IoT, they often think of home

or personal IoT. However, IoT will play a role in many commercial

applications such as smart manufacturing, smart cities, autonomous

cars, building automation, and healthcare. How will an IoT-enabled

device communicate what it knows to the Internet? Suitable connectivity

solutions range from a multitude of wired connectivity technologies such

as Ethernet to wireless technologies like Wi-Fi and even 5G cellular. Many

solutions need a combination of multiple communication technologies.

For example, a smart car system playing video or using GPS navigation

might need 4G LTE in order to communicate with the outside world and

Wi-Fi and Bluetooth to communicate with devices like phones and rear

seat entertainment (RSE) used by the passengers. In this chapter, we will

take a look at a selected set of connectivity technologies that enable these

applications.

348

 Ethernet Time-Sensitive Networking
Ethernet Time-Sensitive Networking (TSN) is reshaping the industrial

communication landscape and laying the foundation for the convergence

of Information Technology (IT) and Industrial Operations Technology

(OT). TSN essentially is a set of features that have been added to standard

Ethernet. By bringing industrial-grade robustness and reliability to

Ethernet, TSN offers an IEEE standard communication technology that

can be used to enable deterministic communications for industrial

applications. Being an IEEE standard, it enables interoperability between

standard compliant industrial devices from different suppliers. TSN

removes the need for physical separation of critical and noncritical

communication networks, reducing the cost of the infrastructure needed

to allow open data exchange between operations technology network and

enterprise/information technology network – a concept that is at the heart

of the Industrial Internet of Things (IIoT). At the network system level, TSN

supports deterministic communication based on network schedules that

are distributed to devices via standard configuration interfaces.

TSN standards address a wide range of functions, and their

implementation can be similarly broad, encompassing various hardware

elements such as endpoints and switches, embedded software, standard

interfaces, routing algorithms, and configuration tools. To ensure the

highest levels of TSN performance, a system-level solution is required

that takes each element into account and provides a seamless interface

between them. Seamless fault-tolerant communication and enhanced

cybersecurity with robust network planning, configuration, and

monitoring will be a necessity in the networks of the future.

Chapter 5 ConneCtivity teChnologies for iot

349

 Legacy Ethernet-Based Connectivity in Industrial
Applications
Today, there are multiple variants of Industrial Ethernet protocols available

on the market. In most cases, the Industrial Ethernet protocol selected for use

in industrial devices differs from vendor to vendor or from Industry Alliance

to Industry Alliance, which means that devices are only compatible with other

equipment from the same vendor or an Industry Alliance using the same

protocol. This is known as manufacturer lock-in. It forces customers to either

buy all industrial equipment from one vendor or a limited set of vendors

who are part of the same Alliance. This approach may not be the most cost-

and performance-optimized way to implement the required solution. If a

customer chooses not to do this, there is considerable challenge of integrating

equipment from multiple vendors into a single network system or there needs

to be a set of protocol conversion gateways implemented between the various

Industrial Ethernet protocols. Both options will lead to unnecessary expense

and limit innovation on the factory floor over many years. Thus industrial

automation architectures become hierarchical, purpose-built, and inflexible.

This approach is currently undergoing a dramatic change with the advent

of the IIoT and Industry 4.0, which demands for full automation and greater

insights in manufacturing. These demands are pushing industrial automation

architectures to become more flexible and seamless to interoperate. In

these types of increasingly converged architectures, real-time connectivity

is essential for controlling critical processes, as well as for collecting and

analyzing data from machines, in a timely manner. TSN offers the real-time

connectivity capabilities that match and sometimes exceed what current

Industrial Ethernet protocols can provide, with the added flexibility of being

based on IEEE standards. Similar to what is the norm in the enterprise world,

TSN Ethernet can therefore be the common communication protocol that

connects industrial equipment from different vendors, simultaneously

delivering the very challenging functional requirements demanded by

mission-critical embedded and industrial applications.

Chapter 5 ConneCtivity teChnologies for iot

350

 Key Benefits of TSN
The primary strength of TSN is its status as an open standard–based

technology, unaffiliated to any Industry Alliance or company. For an

industrial automation market that has struggled for many years with

multiple incompatible proprietary communication protocols, TSN brings

several key benefits.

TSN guarantees compatibility at the network level between devices

from multiple suppliers. This gives customers much greater choice of

devices for building their system, avoiding manufacturer lock-in and

enabling seamless connectivity across various subsystems and systems.

As TSN is part of the Ethernet standard family, it naturally scales with

Ethernet, which means that the technology will not be limited in terms of

bandwidth/speeds, thus allowing more and more sensors and actuators

that are needed for implementing complex automation applications to be

connected to a network system.

TSN supports standards-based network configuration capabilities.

This means that new nodes can be added to the network and discovered

without the need for costly downtimes and manual configuration. New

data streams can be added to the network without the risk of disturbing

existing traffic and without the need to reconfigure the entire network.

TSN can be used for communication between machines as well as

from machines to enterprise systems. Communication between mission-

critical TSN-based systems and existing noncritical Ethernet-based

systems can be achieved over the same infrastructure. In other words, non-

TSN Ethernet nodes can work over a TSN network, without modification.

Overall system costs are significantly reduced when we adopt

standards-based technology. Consumer choice and competition will result

in lower device prices. Research, development, and maintenance costs

are all driven down when solution providers and customers can focus on

one standard technology rather than a number of different proprietary

protocols and solutions.

Chapter 5 ConneCtivity teChnologies for iot

351

Breaking down communication barriers between critical and

noncritical systems is a foundational concept of the IIoT and Industry

4.0. TSN enables the convergence of networks and systems that were

previously kept separate for reasons of operational integrity, real-time

performance, safety, and security.

TSN allows time-critical messages to be sent over the same

communication line as all other Ethernet traffic, without disturbance

or increase in delay and with controlled delay variation. Different traffic

classes can coexist on the network with no impact on higher criticality

level traffic from traffic with lower priority.

End-to-end latency is guaranteed even under heavy traffic load, and

standard mechanisms can be used to accelerate message transport for

high-priority communications. Thus, the most challenging motion control

and safety-critical applications can be converged with other Ethernet

traffic on Ethernet networks using TSN.

Convergence makes accessing data from industrial systems easier.

With more systems on the same network, the task of gathering data from

a wide variety of sources is simplified. Data from industrial systems can

be sent to enterprise systems over standard Ethernet without the need

for protocol conversion gateways. Overall system costs are significantly

reduced by the convergence of different traffic classes on a single network

infrastructure. Hardware and maintenance costs are lower because we

need fewer devices and cables to build the network infrastructure.

Higher layer protocols can be combined with TSN, as the technology

is implemented primarily at the data link layer (OSI model layer 2).1 One

example is the Open Platform Communications-Unified Architecture

(OPC-UA) protocol.2

1 ISO/IEC 7498-1:1994 - Information technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model.

2 More details on OPC-UA can be found at https://opcfoundation.org/about/
opc-technologies/opc-ua/

Chapter 5 ConneCtivity teChnologies for iot

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

352

 TSN Standards
Table 5-1 lists the TSN set of features that have been added to standard

Ethernet. The features are defined and published in a number of IEEE 802.1

standards that address topics such as timing, synchronization, forwarding,

queuing, seamless redundancy, and stream reservation. These individual

features extend the functionality and Quality of Service (QoS) of Ethernet

to enable guaranteed message transmission through switched networks,

providing the fundamental capabilities such as robustness, reliability, and

determinism required for an industrial communication technology.

Table 5-1. List of Published IEEE Standards for TSN (March 2019)

Function Standard

time synchronization • ieee std. 802.1astM-2011: generalized precision time
protocol (gptp)

Bounded low
latency

• ieee std. 802.1QavtM-2009: Credit-based shaper
• ieee std. 802.1QbvtM-2015: transmission gate scheduling
• ieee std. 802.1QbutM-2016 & ieee std. 802.3brtM-2016 :

frame preemption
• ieee std. 802.1QchtM-2017 : Cyclic Queuing and forwarding

reliability • ieee std. 802.1QcatM-2015 : path Control and reservation
• ieee std. 802.1CBtM-2017 : frame replication &
elimination
• ieee std. 802.1QcitM-2017 : per-stream filtering & policing

resource
Management

• ieee std. 802.1QattM-2010 : stream reservation protocol
• ieee std. 802.1QcctM-2018 : srp enhancements and

performance improvements
• ieee std. 802.1QcptM-2018 : yang model

To address new use cases and make performance improvements, many

more IEEE standards are being defined, as listed in Table 5-2.

Chapter 5 ConneCtivity teChnologies for iot

353

The key TSN features that provide guaranteed message delivery timing

are time synchronization and traffic scheduling. They are addressed by the

802.1AS and 802.1Qbv standards, respectively. All devices participating

in the TSN network are synchronized to a global time and are aware of a

network schedule that dictates when prioritized messages will be forwarded

from each switch. TSN makes use of multiple queues per port at the egress

of the switch, where messages are held until a gate opens (at a time slot

Table 5-2. List of Upcoming IEEE Standards for TSN (March 2019)

time

synchronization

• p802.1as-rev (Draft v8.0): time synchronization

improvement

Bounded low

latency

• p802.1Qcr (Draft v0.5): asynchronous traffic shaping

• p802.1Qcz (par approved): Congestion isolation

reliability • p802.1Qcx (Draft v1.0): yang Data Model for Connectivity

fault Management

resource

Management

• p802.1Cs (Draft v2.1): link-local registration protocol

• p802.1Qcj (Draft v0.4): automatic attachment to provider

Backbone Bridging (pBB) services

• p802.1Qcw (Draft v0.2): yang Data Models for Qbv, Qbu,

and Qci

• p802.1Qdd (par approved): resource allocation protocol

• p802.1aBcu (Draft v0.6): llDp yang Data Model

• p802.1CBcv (par approved): frame replication &

elimination yang Model and MiB Module

• p802.1CBdb (par approved): frer extended stream

identification functions

For latest Update, check https://1.ieee802.org/tsn/

Chapter 5 ConneCtivity teChnologies for iot

https://1.ieee802.org/tsn/

354

specified by the schedule) to release queued messages for transmission.

The timed release of messages ensures that delays in the network can be

deterministically predicted and managed. This allows for the convergence

of critical traffic and noncritical traffic on the same network.

The preemption feature defined in the TSN 802.1Qbu standard can be

used to increase the efficiency of bandwidth use for noncritical messages.

In highly converged networks, it could be the case that large low-priority

frames are delayed by higher-priority traffic on the network and dropped.

Preemption enables the transmission of large frames to be interrupted,

sent in smaller fragments and reassembled at the next link. This maximizes

bandwidth utilization for all traffic types on the TSN network. Another

important benefit of message preemption is the reduction of transmission

latency for so-called Express traffic, which can preempt regular (lower-

priority) Ethernet packets. Especially on lower-speed networks (e.g., 10 or

100 megabits per second (Mbps)) carrying large regular Ethernet packets

up to 1,500 bytes and more, the latency reduction for Express traffic can be

useful for building converged networks.

TSN provides a standard method for achieving seamless redundancy

for industrial communication over Ethernet. The feature allows for the

simultaneous transmission of duplicate message copies across different paths

in the network. The first message copy to be received in time without error is

processed, while the other copies are discarded. This adds another layer of

determinism to the delivery of critical messages in converged networks.

A crucial feature of TSN is the support for open, vendor-independent

network configuration. This is achieved through the standardization in

IEEE of YANG models for various TSN standards. These can be configured

over the NETCONF protocol using encoding formats such as XML or

JSON. YANG models for bridging, traffic scheduling, frame preemption,

seamless redundancy, and policing ensure that configuration of key TSN

features is done according to standard methods. This allows TSN networks

to be composed of any standard compliant device from any vendor and can

be configured by any standard compliant network configuration software.

Chapter 5 ConneCtivity teChnologies for iot

355

 TSN Profiles
TSN is essentially a toolbox of features that address various needs such

as reliability, bounded low latency, time synchronization, and resource

management. These capabilities are realized through various TSN

specifications (e.g., IEEE 802.1AS-Rev, IEEE 802.1Qbv, etc.), and customers

can choose the relevant standards to implement based on their specific

application needs. Profile standards are being specified for some of them

to describe which TSN standards to use and how. A TSN profile selects

features, options, configurations, and protocols to build a bridged network

for the given TSN application. Table 5-3 shows a list of select TSN profiles

that are currently being defined.

Table 5-3. List of TSN Profiles (March 2019)

Industry TSN Profile

industrial

automation

• ieC/ieee 60802 (Draft v0.3):tsn profile for industrial

automation

automotive

in- vehicle

networks

• ieee std. 802.1BatM -2011 : audio video Bridging system

[avB profile]

• ieee std. 1722tM -2016: transport protocol for time-sensitive

applications [+avtp Control format message types: flexray,

lin, Can, Most, sensor, etc]

• ieee std. 1722.1tM -2013: audio video Discovery,

enumeration, Connection management and Control (avDeCC)

• p802.1Dg (par approved): tsn profile for automotive in-

vehicle ethernet Communications

service provider

networks

• p802.1Df (par approved): tsn profile for service provider

networks

(continued)

Chapter 5 ConneCtivity teChnologies for iot

356

Industry TSN Profile

Mobile fronthaul • ieee std. 802.1CMtM -2018: tsn for fronthaul [Mobile

fronthaul profile]

• p802.1CMde (par approved): enhancements to fronthaul

profiles to support new fronthaul interface, synchronization,

and syntonization standards

Table 5-3. (continued)

The following sections provide an overview of the major TSN

standards.

 802.1AS/AS-Rev

Enhanced Generic Precise Timing Protocol: Timing and synchronization

are vital mechanisms for achieving deterministic communication. 802.1AS

is a profile of the IEEE 1588 PTP (Precision Time Protocol) synchronization

protocol that enables synchronization compatibility between different TSN

devices (Figure 5-1). This lays the foundation for the scheduling of traffic

through each participating network device. 802.1AS-Rev is being defined

to add support for fault tolerance and multiple active synchronization

masters (Figure 5-2). Multiple clock-masters for redundancy enable high

availability of TSN networks – in cases when a grandmaster becomes

faulty, system elements such as end nodes and bridges are still able

to remain synchronized by obtaining the timing information from the

redundant grandmasters. 802.1AS-Rev is also a profile of the IEEE 1588

PTP synchronization protocol.

Chapter 5 ConneCtivity teChnologies for iot

357

BridgeGrand
master

Listener

Bridge

Bridge Bridge

Bridge Bridge

Figure 5-1. 802.1AS operation3

BridgeGrand
master

Grand
master

Listener

Bridge

Bridge Bridge

Bridge Bridge

Figure 5-2. 802.1AS-Rev operation4

3 Figure 5a: Single grand master transmitting 2 copies using separate paths.
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-
sens-net-for-auto-adas-socs-2018q2.html

4 Figure 5b: Multiple grand masters transmitting 2 copies using separate paths.
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-
sens-net-for-auto-adas-socs-2018q2.html

Chapter 5 ConneCtivity teChnologies for iot

https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html

358

 802.1Qbv

Time-Aware Shaper: Scheduling of traffic is a core concept in TSN. Based

on the shared global time provided by 802.1AS, a schedule is created and

distributed between participating network devices. 802.1Qbv defines the

mechanisms for controlling the flow of queued traffic through gates at the

egress of a TSN switch (Figure 5-3). Frames are assigned to queues based

on Quality of Service (QoS) priority. The transmission of messages from

these queues is executed during scheduled time windows. Other queues

will typically be blocked from transmission during these time windows,

therefore removing the chance of scheduled traffic being impeded by

nonscheduled traffic. In other words, there is a gate in front of each queue

which opens at a specific point of time which is reserved for that queue. This

means that the delay through each switch is deterministic and that message

latency through a network of TSN-enabled components can be guaranteed.

The IEEE 802.1Qbv standard defines up to eight queues per port for

forwarding traffic. The scheduler is designed to separate the communication

on the Ethernet network into fixed length, repeating time cycles.

Figure 5-3 shows an example with four queues, with a cycle time of td

and guard band of tg. At time t0, the time-critical data queue, Queue 3 is

open. Once that frame is transmitted, the best effort Queues 0, 1, and 2 are

opened. Before the end of the cycle, at time t0-tg, all the non-time-critical

data is blocked, so that the port is free to transmit the time-critical data at

the start of the next cycle. This is essentially a time-division multiple access

(TDMA) scheme.

Chapter 5 ConneCtivity teChnologies for iot

359

5 Time-aware shaper allows scheduling. https://www.synopsys.com/
designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-
socs-2018q2.html

IEEE 802.1 Qbv
scheduler

Queue 3

MAC
Queue 2

Queue 1

Queue 0

Q3 tg

t0 Cycle time (td)

tg

t0

Q2

Q1

Q0

t0 - tg
t0
t0 + td

= 0000 Block non-time critical data
= 1000 Time critical data queue is open
= 0111 Time critical data is done best

effort queues open

Figure 5-3. 802.1Qbv operation5

 802.1Qbu

Frame Preemption: While the 802.1Qbv mechanisms protect critical

messages against interference from other network traffic, it does not

necessarily result in optimal bandwidth usage or minimal communication

latency. Where these factors are important, the preemption mechanism

defined in 802.1Qbu can be used (Figure 5-4). 802.1Qbu allows the

transmission of standard Ethernet or jumbo frames to be interrupted in

order to allow the transmission of high-priority frames, and then resumed

afterward without discarding the previously transmitted piece of the

interrupted message. Frame preemption always operates on a link-by-link

basis. A frame is only fragmented from one Ethernet switch to the next

Ethernet switch, where it is reassembled.

Chapter 5 ConneCtivity teChnologies for iot

https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html

360

6 Preemption reduces latency of time-critical data streams. https://www.
synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-
for-auto-adas-socs-2018q2.html

Figure 5-4. 802.1Qbu frame preemption6

In Figure 5-4, without preemption as shown in the top, if a high-priority

frame in Queue 3 arrives after a low-priority frame, the high-priority frame

is delayed until the transmission of the low-priority frame is finished.

In the case of an Ethernet port with preemption enabled, as shown in

the bottom, the low-priority traffic passes through a preemptable MAC.

The transmission of the low-priority frame is stopped, once a high-priority

frame arrives and the high-priority frame from Queue 3 is allowed to

go out. Once the transmission of the high-priority frame is completed,

the rest of the low-priority frame is transmitted. Each partial frame is

completed by a CRC32 for error detection. In contrast to the regular

Ethernet CRC32, the last 16 bits are inverted to make a partial frame

distinguishable from a standard Ethernet frame. Also the start frame

delimiter (SFD) is changed.

Chapter 5 ConneCtivity teChnologies for iot

https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html
https://www.synopsys.com/designware-ip/technical-bulletin/ether-time-sens-net-for-auto-adas-socs-2018q2.html

361

 802.1CB

Frame Replication and Elimination: Redundancy management

implemented in 802.1CB follows similar approaches known from High-

Availability Seamless Redundancy (HSR) (IEC 62439-3 Clause 5) and

Parallel Redundancy Protocol (PRP) (IEC 62439-3 Clause 4). It supports

zero switch over time when a link fails or frames are dropped. To increase

availability, redundant copies of the same messages are communicated in

parallel over disjoint paths through the network as shown in Figure 5-5.

Time-critical frames are expanded to include a sequence number, and

then they are replicated where each identical copy follows a separate path

in the network. The redundancy management mechanism then combines

these redundant messages to generate a single stream of information

to the receiver(s). At any point in the network where the separate paths

join again, duplicate frames can be eliminated from the stream as shown

in Figure 5-5. The 802.1Qca standard for Path Control and Reservation

defines how such paths can be set up. The standard also allows for auto

configuration.

Chapter 5 ConneCtivity teChnologies for iot

362

7 Frame Replication & Elimination Page 16. https://bcourses.berkeley.edu/
files/66071146/download?download_frd=1

 802.1Qcc

Enhanced Stream Reservation Protocol: The enhancements to Stream

Reservation Protocol (802.1Qat) include support for more streams,

configurable stream reservation classes and streams, better description of

stream characteristics, support for layer 3 streaming, deterministic stream

reservation convergence, and User Network Interface (UNI) for routing

and reservations. 802.1Qcc supports offline and/or online configuration

of TSN network scheduling to provide network management for control

plane. It supports a “Central Controller” or predefined “Engineered

Configuration” of the network.

B

Talker Replicates
Listener Removes

Duplicates

B

B B

BBT

L

B

Bridge Replicates
Listener Removes

Duplicates

B

B B

BBT

L

B

Bridge Replicates
Bridge Removes

Duplicates

B

B B

BBT

L

Figure 5-5. 802.1CB frame replication and elimination7

Chapter 5 ConneCtivity teChnologies for iot

https://bcourses.berkeley.edu/files/66071146/download?download_frd=1
https://bcourses.berkeley.edu/files/66071146/download?download_frd=1

363

8 Figure 3: Centralized Network Configuration. https://www.odva.org/
Portals/0/Library/Conference/2017-ODVA-Conference_Zuponcic_Hantel_
Klecka_Didier_TSN_Influences_on_ODVA_Technologies_FINAL.pdf

 802.1Qci

Per-Stream Filtering and Policing: This protects against faulty and/or

malicious endpoints and switches and isolates faults to specific regions in the

network. It works at the ingress of the switch (forwarding engine) in order to

protect the outgoing queues from being flooded with frames. In this process,

The fully centralized configuration model is depicted in Figure 5-6.

It is composed of Centralized User Configuration (CUC) entity and a

Centralized Network Configuration (CNC). Computing the configuration

setting and enforcing it (e.g., setting up gate schedules, reserving

resources, etc.) in bridges are done by CNC. Thus CNC will be in charge of

configuring TSN features such as credit-based shaper, frame preemption,

scheduled traffic, per-stream filtering and policing, and frame replication

and elimination for reliability. The CUC is responsible for building up the

applications’ requirements.

Centralized
User

Configuration
(CUC)

Centralized
Network

Configuration
(CNC)

Talker End Stations Listener End Stations
Bridges

User/Network
Configuration

Interface
(UNI)

Network
Management

ProtocolStream
Data

End
 S

ta
tio

n
(“U

se
r”)

 C
onf

ig
ur

at
io

n
Pro

to
co

l End Station (“User”) Configuration Protocol

Stream
Data

Figure 5-6. 802.1Qcc centralized network configuration8

Chapter 5 ConneCtivity teChnologies for iot

https://www.odva.org/Portals/0/Library/Conference/2017-ODVA-Conference_Zuponcic_Hantel_Klecka_Didier_TSN_Influences_on_ODVA_Technologies_FINAL.pdf
https://www.odva.org/Portals/0/Library/Conference/2017-ODVA-Conference_Zuponcic_Hantel_Klecka_Didier_TSN_Influences_on_ODVA_Technologies_FINAL.pdf
https://www.odva.org/Portals/0/Library/Conference/2017-ODVA-Conference_Zuponcic_Hantel_Klecka_Didier_TSN_Influences_on_ODVA_Technologies_FINAL.pdf

364

the data packets are checked to ensure that they fit to a reserved data stream

at the network input. If this is not the case, the packet will be filtered out and

rejected and won’t be forwarded further. This can be leveraged to prevent

attacks on level 2 of the OSI layer model. It utilizes well-known flow identifiers

and policers used in the industry. Per-Stream Filtering and Policing (PSFP)

allows filtering and policing decisions to be made on a per-stream basis. The

various stages of data flow for one stream are depicted in Figure 5-7.

Stream Filter

Meter

Stream Gate

Queueing

Incoming Frame

Figure 5-7. 802.1Qci per-stream filtering and policing

Chapter 5 ConneCtivity teChnologies for iot

365

 802.1Qch

Cyclic Queuing and Forwarding: This defines cycles for forwarding

traffic that is queued using 802.1Qci to assign buffers and 802.1Qbv

to shape traffic. This cyclic enqueuing and queue draining procedure

gives a defined (but not optimal) upper boundary for latency. Basically

this is a simplified way to use TSN if controlled timing is desired, but

reducing latency to absolute minimum is not highly important. The

synchronized operations effectively allow bridges to synchronize their

frame transmissions in a cyclic manner, achieving zero congestion loss and

bounded latency, independently of the network topology.

In this scheme, time-sensitive streams are scheduled (enqueued and

dequeued) at each time interval resulting in a worst-case deterministic

delay of two times the cycle time between the sender (talker) and the next

(intermediate) receiver (listener). As shown in Figure 5-8, each high-priority

traffic frame scheduled on a cycle is scheduled to be received at the next

bridge in the next cycle. A guard band before the start of the cycle prevents

any interfering low-priority traffic from affecting the high-priority traffic.

802.1Qch can be combined with frame preemption, to reduce the cycle

time from the transmission time of a full size frame to the transmission

time of a minimum size frame fragment. Thus, preemption can improve the

performance for high-priority traffic. For this to work correctly, all frames

must be kept to their allotted cycles, that is, all transmitted frames must be

received during the expected cycle at the receiving bridge.

Chapter 5 ConneCtivity teChnologies for iot

366

To summarize, the network transit latency of a frame is completely

characterized by the cycle time and the number of hops. Therefore, the

frame latency is completely independent of the topology parameters and

non-TSN traffic.

 802.1Qcr

Asynchronous Traffic Shaping: This provides bounded latency and

jitter (relatively lower performance levels) without the need for time

synchronization. It aims to smoothen traffic patterns by reshaping streams

per hop, implementing per flow queues and prioritizing urgent traffic over

lower-priority traffic. Previously described TSN standards such as Time-

Aware Shaper (802.1Qbv) and Cyclic Queuing and Forwarding (802.1Qch)

depend on network-wide coordinated time and packet transmission at

enforced periodic cycles, resulting in suboptimal utilization of available

network bandwidth. 802.1Qcr operates asynchronously, without the need

Bridge 1
High Priority

Traffic
Best Effort (LP)

(preempted)

High Priority
Traffic

Best Effort (LP)
(preempted)

Reduced
Guard Band

Bridge 2

Even Cycle Odd Cycle
Preemption
Overhead

Figure 5-8. 802.1Qch operation with preemption (802.1Qbu)9

9 Illustration of CQF with preemption for a linear network. https://arxiv.org/
pdf/1803.07673.pdf

Chapter 5 ConneCtivity teChnologies for iot

https://arxiv.org/pdf/1803.07673.pdf
https://arxiv.org/pdf/1803.07673.pdf

367

for bridges and endpoints to synchronize in time. Therefore, it is expected

that this technique can utilize available network bandwidth efficiently

under heavy link utilization with mixed criticality traffic.

 TSN and Security

Since TSN is Ethernet based, the security mechanisms that are state of

the art today can be employed to secure the TSN network. Traditional

security solutions such as firewalls will be the key to this. Since firewalls

need to inspect packets, the resulting computational overhead in firewalls

can create an additional transmission delay. This delay should be taken

into account while configuring the TSN network schedules. If security

mechanisms introduce longer delays than that are tolerable by the TSN

application, they can be implemented at the border or periphery of the

TSN network, such as an Industrial Demilitarized Zone that connects the

TSN industrial control network to the rest of the IT system.

 OPC-UA Over TSN
Of the many higher layer industrial communication protocols that could be

combined with TSN, one of the prominent ones is OPC-UA. Much like TSN,

OPC-UA is an open, standard technology that is vendor independent and

useful for a wide range of industrial applications. The combination of OPC-

UA and TSN therefore provides a complete open, standard, and interoperable

solution that fulfills a plurality of industrial communication requirements.

By representing data in a uniform way, OPC-UA enables interoperability

between devices that could not previously share data and gives you new

insight into a wealth of information. For this reason, it has been adopted

and integrated into products by all of the major industrial automation

vendors. OPC-UA was originally limited to a client or server architecture;

however the recently released publish/subscribe (PubSub) extension now

enables multicast communication. In combination with TSN, OPC-UA

Chapter 5 ConneCtivity teChnologies for iot

368

PubSub allows data to be sent with precise timing and thus be used for real-

time industrial applications as illustrated in Figure 5-9. In the horizontal

direction, OPC-UA-based controller-to-controller communication can

be done over TSN. In the vertical direction, OPC-UA-based controller-to-

cloud communication can be done directly, via a gateway or broker. This

enables IT (Information Technology) systems having less stringent timing

requirements to interwork with OT (Operations Technology) systems that

need guaranteed data delivery with precise timing.

Cloud

Relay
Broker SCADAERP/MES

IT Network

Management shell

Controller Controller Controller

Management shell Management shell

OT Network

Saw

over TSN without TSN

Press

Fieldbus A Fieldbus B Fieldbus C

Robot

SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE SLAVE

Figure 5-9. Factory automation network with OPC-UA over TSN

OPC-UA also enables a standard method for configuring TSN networks

online and in a dynamic way. This does not require you to input any

system parameters for the scheduler as these are all taken from the

OPC-UA application parameters within each device. A broker mechanism

as defined by the OPC Foundation provides an interface between OPC-UA

applications and TSN scheduling software.

Chapter 5 ConneCtivity teChnologies for iot

369

 Overview of Wireless Connectivity
Technologies
The IoT will require several wireless technologies if it’s to meet its

potential. For example, Bluetooth Low Energy and IEEE 802.15.4 are good

choices for battery-powered sensors, but for devices that are constantly

moving, or are not near a LAN (local area network), such relatively short-

range wireless technologies are not suitable for connecting to the Internet.

Even if a LAN is present, manufacturers might prefer longer-range wireless

technology for its convenience and autonomy. For example, a white goods

manufacturer could select cellular technology over Wi-Fi because it enables

a refrigerator or washing machine to connect to the Cloud automatically,

eliminating the need for a consumer to enter a password to add the appliance

to a home’s LAN. In these situations, low-power wide area networks (LPWAN)

or Narrowband IoT technologies could come to the rescue.

 Considerations for Choosing Wireless
Technologies for IoT
There are many wireless networking technologies that are deployed in IoT

today, each with a different set of capabilities. Here are some of the key

considerations when choosing these different solutions.

 Spectrum

Wireless spectrum can be characterized as either licensed or unlicensed.

Access to licensed spectrum is typically purchased from local government

to provide an organization exclusive access to a particular channel in a

particular location. Operation in that channel should be largely free of

interference from competing radios. The drawback is that the spectrum

of interest may be extremely scarce or expensive to access. In some other

cases, radio connectivity bands allowed in one country may not be available

Chapter 5 ConneCtivity teChnologies for iot

370

in other geographical area for same usage. For instance, mobile networks in

India use the 900 MHz and 1800 MHz frequency bands, while GSM (Global

System for Mobile communications) carriers in the United States operate in

850 MHz and 1900 MHz frequency bands. To deploy an IoT device globally,

then it may have to support multiple radio bands making the device costly

as well as time-consuming to develop. Even when more easily accessible,

it can take months to gain the approval to operate, so licensed bands are

not well suited to rapid deployments. Unlicensed spectrum is generally

open and available to anybody to use with no exclusive rights granted to

any particular organization or individual. The downside is that competing

systems may occupy the same channel at different power levels leading to

interference. Manufacturers of radio systems operating in unlicensed bands

include capabilities in these radios to adapt their operation for this potential

interference. These techniques include adaptive modulation, automatic

transmit power control and out-of-band filtering, and so on.

 Range and Capacity

Several factors impact the amount of data capacity that can be delivered at

a particular distance. Those factors include spectrum, channel bandwidth,

transmitter power, terrain, noise immunity, and antenna size. In general,

the longer the distance to be covered, the lower the data capacity. The

longest propagation distance can be achieved by using a low-frequency

narrowband channel with a high-gain antenna, while higher capacities

could be achieved by selecting wider channels, with limited range. For

optimal performance for each application, we need to choose the best

combination of channel size, antenna, and radio power and modulation

schemes to achieve the desired capacity.

A radio link can be described as being line of sight when there is a

direct optical path between the two radios making up the link. A link

is called non-line of sight when there is some obstruction between the

two radios. Near line of sight is simply a partial obstruction rather than a

Chapter 5 ConneCtivity teChnologies for iot

371

complete obstruction. In general, lower-frequency solutions have better

propagation characteristics than higher frequencies. Higher-frequency

solutions that operate in multi-gigahertz range are typically line-of-sight

or near line-of-sight systems. From 1 GHz to 6 GHz range, the propagation

characteristics capabilities will vary depending on other factors, and

typically below 1 GHz the propagation becomes much better, making those

frequencies suitable for longer range. Figure 5-10 shows a landscape of

data rates and ranges of common wireless technologies.

Cellular (3G, 4G/LTE, 5G)

NFC

Zigbee

Wi-Fi
(802.11 a/b/g/n/ac/ax/ah)

Bluetooth

BA
N

0.01 1 10 100

Ra
ng

e
(m

)

Data Rate (Mbps)
1000

Proprietary

Sub-GHz 2.4GHz

Low Power
Wide Area Networks

LoRa, SigFox etc.

1

10

100

>1000

PA
N

LA
N

W
AN

BAN Body Area Network
PAN Personal Area Network
LAN Local Area Network
WAN Wide Area Network

Figure 5-10. Range and data rate for various wireless technologies

 Network Topology

Network topology is the arrangement of the elements in a network,

including its nodes and connections between them. Common network

topologies used for wireless connectivity are depicted in Figure 5-11.

Chapter 5 ConneCtivity teChnologies for iot

372

Point-to-point topologies are best suited for delivering lots of capacity

over long distances. Point-to-point connections cover longer distances that

are less susceptible to interference as the antenna patterns are narrower

so the energy can be focused in the direction of the desired transmission.

PTP links are also used for short-range connections to the wireline

backbone. Resiliency in a PTP link can be provided by deploying in 1+1 or

other redundant configurations with parallel sets of radios.

Ring topologies are excellent for resilient operations of high-capacity

links covering a large area. This configuration is typically used in the

backhaul network.

Mesh networks can be built using multiple point-to-point links or

with specialized meshing protocols to enable multiple paths from point

A to point B. Mesh networks have the downside of each packet traversing

Point to Point Star

MeshRing

Figure 5-11. Common network topologies

Chapter 5 ConneCtivity teChnologies for iot

373

multiple hops and so can lead to lower capacity and increased latency for a

given infrastructure.

Point-to-multipoint (or star) networks provide scale and capacity over

a geographic area. Point-to-multipoint networks are typically deployed to

cover sectors or cells. The key differentiating capability to look for in point-

to-point networks is their ability to scale in the number of nodes per cell

but also the ability to place cells next to each other without interference.

 Quality of Service

System builders and operators need to make the most efficient use of

available spectrum by deploying multiple services on the same network

and also making sure that mission-critical information is transmitted with

highest priority. A network should support multiple Quality of Service (QoS)

levels and the ability to sort traffic based on both layer 2 and layer 3 standard

traffic classifiers. In this way, the transmitter of the data packet can mark the

class of service or priority, and the end-to-end network will ensure that the

packet is delivered with the desired level of low latency and availability.

 Network Management

The capability to manage a network has a direct impact on the total cost

of ownership of the IoT system. Networking systems that allow centralized

management of configuration, fault detection, performance tuning

and continuous monitoring, and security validation minimize the cost

and effort. They also reduce unplanned outages and increase system

availability and reliability.

 Security

The security of wireless communications is growing in importance.

Primary techniques to look for here is the ability to encrypt the over-

the-air link, using a network, mesh, or link key. Besides this we need to

Chapter 5 ConneCtivity teChnologies for iot

374

secure management interfaces with HTTPS and SNMP. Systems should

also provide the ability to create multiple user accounts with password

complexity rules. Previously, many traditional automation and control

solutions have not been exposed to security issues faced by the IT systems,

but recently have become hacking targets as their solutions get connected to

the Internet. Major security breaches could slow down the adoption of IoT.

As can be seen from Figure 5-12, several local area network (LAN) and

wide area network (WAN) technologies with different levels of security and

network management requirements need to work seamlessly to realize an

end-to-end IoT system.

 Wi-Fi
Wi-Fi is a wireless connectivity technology based on the IEEE 802.11

standards. Initially created for wireless local area network (WLAN)

applications, Wi-Fi is also increasingly used for peer-to-peer and wireless

personal area network connections (WPAN). It provides secure, reliable,

and fast wireless connectivity. A Wi-Fi network can be used to connect

electronic devices to each other, to the Internet, and to wired networks that

use Ethernet technology. It can provide real-world performance similar to

Things

Security Management

Local Area Network Connectivity

Wide Area Network Connectivity

Data
Processing

API Libraries,
APIs, SDK

Security Management

Gateway Devices

Network
InfrastructureData

Processing

Data
Management

3rd Party
Cloud

Batch & Stream
Analytics

Storage

API Libraries,
APIs, SDK

Security Management API Libraries,
APIs, SDK

Network Cloud

Figure 5-12. End-to-end IoT systems need various connectivity
technologies to work together

Chapter 5 ConneCtivity teChnologies for iot

375

that of basic wired networks. Wi-Fi networks operate in the 2.4 GHz and

5 GHz radio bands, with some products that contain both bands (dual-

band). Wi-Fi is also pushing into a third band – the 60 GHz band – using

ultra-wideband channels and the baseband solution originally developed

by WiGig. The Wi-Fi Alliance is a wireless industry organization that

promotes wireless technologies that are based on IEEE 802.11 and their

interoperability. The Alliance also certifies products that comply with its

specifications for Wi-Fi interoperability, security, and application-specific

protocols.

Wi-Fi offers low power consumption and low cost relative to cellular.

Unlike cellular, Wi-Fi operates in unlicensed spectrum, resulting also in

lower data transmission costs. Range is limited by proximity to a wireless

router or relays, and the quality of connection can be diminished by

network congestion. There are several different Wi-Fi standards optimized

for IoT applications. Next, we will take a brief look at them.

Wi-Fi Direct enables two or more devices to connect directly in the

absence of a traditional Wi-Fi hotspot.

With the broad availability of the 802.11ac Wi-Fi standard, Wi-Fi

operates in the 5 GHz band with wider channels (Note: 802.11n could also

operate in 5 GHz but in smaller channels), thus enabling more capacity.

Theoretical throughput of 11ac can exceed 1 Gbps.

Also known as Low-Power Wi-Fi, 802.11ah operates in the sub-1 GHz

band. It is viewed as central to IoT, given support for extended range

Wi-Fi and efficient power profile. 11ah extends Wi-Fi beyond 2.4 and 5

GHz, enabling coverage in challenging environments such as in building,

basements, and so on. It also supports low-cost sensors without a power

amplifier, and minimum data rates result in short-term data bursts.

802.11p is an approved standard for vehicle-to-vehicle

communications. It uses dedicated short-range communications (DSRC)

for applications such as toll collection, interaction between cars, and safety

and roadside communications.

Chapter 5 ConneCtivity teChnologies for iot

376

With the increased adoption of Wi-Fi networks for IoT applications

arose the need for providing wireless network in places where connecting

an access point (AP) to wired network infrastructure (e.g., a wired

Ethernet switch) was not possible. A typical example would be the case

of positioning an AP in the middle of a large warehouse, since the length

of an Ethernet cable is limited to 100 meters. Some other use cases are

the extension of an indoor wireless network to a parking lot or a campus,

providing Wi-Fi coverage to outdoor industrial areas such as an oil refinery

and others. Such a network can service applications like wireless security

cameras, utility meters, flow and pressure sensors, vehicle tracking

systems, and so on.

802.11s defines Wi-Fi mesh networking. As shown in Figure 5-13,

mesh networks allow rapid deployment with lower-cost backhaul, and

they make providing coverage in hard-to-wire areas easier. Inherently,

mesh networks are self-healing, resilient, and extensible. Under the

right conditions, they increase the range of the network due to multihop

forwarding and provide higher bandwidth and better battery life due to the

lower power transmissions caused by shorter hops between neighboring

nodes.

Chapter 5 ConneCtivity teChnologies for iot

377

Classic 802.11 WLAN

WLAN with Mesh

AP

AP

AP

AP

Wired Infrastructure

Wired Infrastructure

STA
STA

STA
STA

STA
STA

STA
STA

STA

STA

STA

STA
STA

STA

STA
STA

= radio link

= mesh radio
 link

Mesh
AP

Mesh
AP

Mesh
AP

Mesh
AP

Mesh
AP

Figure 5-13. Comparison of classic and mesh wireless local area
network topologies

Chapter 5 ConneCtivity teChnologies for iot

378

Wi-Fi uses TCP/IP stack for Internet connectivity. Wi-Fi technology

is hugely popular for consumer electronics and enterprise applications

due to its ubiquitous presence in laptops, tablets, smartphones, and home

entertainment devices. Wi-Fi access points are deployed today in many

public spaces such as stadiums, airports, bus and railway stations, coffee

shops, and schools. They are also present in most homes and offices. The

increasing demand for cost-effective and easy Internet access along with

the interoperability and ecosystem programs run by Wi-Fi Alliance has

contributed to the wide adoption of this technology across the world. This

worldwide availability makes Wi-Fi a natural choice for IoT connectivity,

for applications that can leverage existing infrastructure without the need

for custom protocol translators or gateways.

Today, most Wi-Fi networks operate in the 2.4 GHz and 5 GHz ISM

(industrial, scientific, and medical) band. With more channels being

available in the 5 GHz spectrum, higher data rates are possible. Wi-Fi

networks have a start topology, with the access point acting as an Internet

gateway. The transmit power permitted by Wi-Fi standards are high

enough to enable in-home coverage in many cases. In large buildings,

multiple access points and range extenders are often deployed at different

locations to ensure adequate coverage and to avoid dead zones. Some

Wi-Fi products support multiple antennae and transmitter and receiver

chains for diversity. This helps in overcoming dead zones as well as

increases data throughput.

Wi-Fi and TCP/IP software stacks are fairly complex and big in size.

In traditional applications like laptops, smartphones, and tablets with

adequate processing power and memory footprint, this was not a major

issue. IoT devices – or things – often come with very low processing power

and memory size and are typically battery powered. Till recently, adding

Wi-Fi connectivity to those devices was neither practical nor cost-effective.

Today, many wireless modules with embedded microcontrollers that

run the TCP/IP stack and Wi-Fi software are available, thus offloading

the task of networking from the main microprocessor unit. Wi-Fi devices

Chapter 5 ConneCtivity teChnologies for iot

379

targeted for low data rate IoT applications apply advanced sleep protocols

and support fast on/off times to reduce the average power consumption

dramatically. Since many IoT applications do not need the maximum

data rates that Wi-Fi offers, intelligent power management techniques can

efficiently draw bursts of current from the battery for very short intervals

and keep products connected to the Internet for multiple years without

battery replacement.

Wi-Fi modules for IoT applications typically integrate the RF frontend,

thus eliminating the need for extensive radio design experience for the

embedded system designer. They often come pre-certified for regulatory

compliance such as FCC (Federal Communications Commission) in the

United States, thus making the system certification process less time-

consuming. Wi-Fi is the most ubiquitous wireless Internet connectivity

technology today. Its high power and complexity has been a major

barrier for IoT developers, but new silicon devices and modules reduce

many of these barriers and enable Wi-Fi integration into emerging IoT

applications and battery-operated devices. On the other hand, latest Wi-Fi

standards offer very high bandwidth and capacity where needed, such as

in video surveillance, retail, and sports arena applications. Thus Wi-Fi can

support a wide variety of applications. Table 5-4 summarizes the Wi-Fi

technologies currently available in the 2.4 GHz and 5 GHz spectrum.

Table 5-4. Wi-Fi Protocol Summary

Protocol Frequency Channel
Width

MIMO Maximum data
rate(theoretical)

802.11ac wave2 5 ghz 80, 80+80,

160 Mhz

Multi User

(MU-MiMo)

1.73 gbps1

802.11ac wave1 5 ghz 80 Mhz single User

(sU-MiMo)

866.7 Mbps1

(continued)

Chapter 5 ConneCtivity teChnologies for iot

380

To increase the relatively short range of Wi-Fi – specifically for IoT

sensors that don’t require high data rates – 802.11ah was introduced. It

operates in the 900 MHz and uses target wake time to reduce the amount of

energy a device needs to stay connected to the network. Devices wake up

for very short times at defined intervals to accept messages. It penetrates

through walls and obstructions better than high-frequency networks. It

is well suited for smart building applications, like smart lighting, smart

HVAC, and smart security systems. It would also work for smart city

applications, like parking garages and parking meters. Since there is no

global 900 MHz standard, the adoption rate of 802.11ah is currently very

low. Table 5-5 summarizes the key characteristics of 802.11ah.

Protocol Frequency Channel
Width

MIMO Maximum data
rate(theoretical)

802.11n 2.4 or 5 ghz 20, 40Mhz single User

(sU-MiMo)

450 Mbps2

802.11g 2.4 ghz 20 Mhz n/a 54 Mbps

802.11a 5 ghz 20 Mhz n/a 54 Mbps

802.11b 2.4 ghz 20 Mhz n/a 11 Mbps

legacy 802.11 2.4 ghz 20 Mhz n/a 2 Mbps

1 2 Spatial streams with 256-QAM modulation.
2 3 Spatial streams with 64-QAM modulation.

Table 5-4. (continued)

Chapter 5 ConneCtivity teChnologies for iot

381

802.11ax represents the next phase of Wi-Fi. The Wi-Fi Alliance

coined the term “Wi-Fi 6” when referring to the IEEE 802.11ax standard,

indicating the sixth generation of Wi-Fi. Continued growth in the number

of Wi-Fi-enabled devices, increased per-user traffic demand, greater

number of users per access point (AP), higher-density Wi-Fi deployments,

growing use of outdoor Wi-Fi, heterogeneous device and traffic types, and

a desire for more power and spectral efficiency are all major driving forces

behind 802.11ax. There are many 802.11ax enhancements in the 2.4 GHz

band that will help increase the viability of Wi-Fi for Internet of Things

Table 5-5. 802.11ah Overview

Name of Standard IEEE P802.11ah (low power WiFi)

frequency Band license-exempt bands below 1 ghz,

excluding the tv White spaces

Channel Width 1/2/4/8/16 Mhz

range Up to 1Km (outdoor)

end node transmit power Dependent on regional regulations

(from 1mW to 1 W)

packet size Up to 7,991 Bytes (w/o aggregation), Up to

65,535 Bytes (with aggregation)

Uplink Data rate 150 Kbps ~ 346.666 Mbps

Downlink Data rate 150 Kbps ~ 346.666 Mbps

Devices per access point 8191

topology star, tree

end node roaming allowed allowed by other ieee 802.11 amendments

(e.g., ieee 802.11r)

governing Body ieee 802.11 working group

status targeting 2016 release

Chapter 5 ConneCtivity teChnologies for iot

382

(IoT) applications. These include target wake time (TWT), orthogonal

frequency-division multiple access (OFDMA), 2 MHz clients, and

coexistence improvements with other IoT wireless technologies. With sub-

1 GHz Wi-Fi HaLow (802.11ah) having gained very little traction to date,

there is still considerable potential for 2.4 GHz Wi-Fi in the IoT. If certain

2.4 GHz 802.11ax implementations can offer comparable battery life to

802.11n, or other short-range wireless IoT connectivity solutions, it may

open new opportunities for Wi-Fi across several IoT vertical applications.

The standard builds on the strengths of 802.11ac while adding efficiency,

flexibility, and scalability. Table 5-6 shows the major technical differences

between 802.11ac and 802.11ax standards.

Table 5-6. 802.11ac and 802.11ax Comparison

802.11ac 802.11ax

Bands 5 ghz 2.4 ghz and 5 ghz

Channel Bandwith 20 Mhz, 40 Mhz, 80 Mhz,

80+80 Mhz, & 160 Mhz

20 Mhz, 40 Mhz, 80 Mhz,

80+80 Mhz, &160 Mhz

fft sizes 64, 128, 256, 512 256, 512, 1024, 2048

subcarrier spacing 312.5 khz 78.125 khz

ofDM symbol

Duration

3.2 us + 0.8/0.4 us Cp 12.8 us + 0.8/1.6/3.2 us Cp

highest Modulation 256-QaM 1024-QaM

Data rate: 1 spatial

stream

433 Mbps (80 Mhz, 1 ss) 600.4 Mbps (80 Mhz, 1 ss)

Data rate: 8 spatial

streams

6933 Mbps (160 Mhz, 8 ss) 9607.8 Mbps (160 Mhz, 8

ss)

Chapter 5 ConneCtivity teChnologies for iot

383

For Wi-Fi connectivity technology, security has two aspects. First is

controlling who can connect to and configure the network and equipment.

Second aspect deals with securing the data travelling wirelessly across

your Wi-Fi network from unauthorized access by using encryption. For the

overall network to be secure, one should also consider measures to protect

the gateways and the connections across the Internet using virtual private

network (VPN), firewalls, and so on.

 Bluetooth
Bluetooth operates in the unlicensed industrial, scientific, and medical

(ISM) band at 2.4 GHz using a spread spectrum, frequency hopping, and

full-duplex signal at a nominal rate of 1600 hops/sec. The 2.4 GHz ISM

band is available and unlicensed in most countries. Its range varies from

1 m to 100 m depending on which class of radio is used. Class 2 is the most

commonly used radio. It has a range of around 10 m and uses 2.5 mW of

power.

Bluetooth provides a short distance wireless connection with low

power consumption, even compared to Wi-Fi. Bluetooth Low Energy

(also known as Bluetooth Smart or BLE) further reduces the power

consumption profile of traditional Bluetooth. For example, Bluetooth

devices can sustain battery life for weeks or months, while Wi-Fi can be

hours or days. Data transfer rates are somewhat limited at about 1 Mbps

(though theoretical throughput is up to 24 Mbps), though the range

extends up to about 100 meters (300+ feet). Similar to Wi-Fi, Bluetooth

can be used for machine-to-machine connections and device pairing.

Bluetooth 4.1 was introduced in December 2013, which enables devices

to communicate with each other before feeding that data back to a host

and interoperates with LTE.

The Bluetooth SIG controls the Bluetooth standard. Bluetooth

technology was originally proposed as a standard for communications

between phones and computers. The main use case that made Bluetooth

Chapter 5 ConneCtivity teChnologies for iot

384

initially popular was hands-free phone calls with headsets and in-vehicle

infotainment systems in cars. With the advent of smartphones, high-

fidelity music streaming and health and fitness accessories have also

become more popular.

Bluetooth is a PAN (personal area network) technology primarily

used today as a cable replacement for short-range communication. It

can be used in a point-to-point or star network topology. It supports data

throughputs up to 2 Mbps, with up to eight connected devices.

Original Bluetooth standard is today commonly referred to as

Bluetooth Classic, to distinguish it from Bluetooth Low Energy. Bluetooth

Low Energy, sometimes known as Bluetooth Smart, is an addition to the

Bluetooth specification. Bluetooth SIG adopted it in the Bluetooth 4.0

standard in 2010 to enter the low-power IoT space.

Though Bluetooth Low Energy also uses the 2.4 GHz ISM band, it is

not compatible with Bluetooth Classic. Bluetooth Low Energy uses 40

2 MHz-wide channels, whereas Bluetooth Classic uses 79 1 MHz-wide

channels. Compared to Bluetooth Classic, Bluetooth Low Energy greatly

reduces the power consumption of Bluetooth devices by supporting lower

data throughput and enables lengthy lives for battery-operated devices.

Bluetooth Low Energy also offers a beaconing capability and location-

based services. Bluetooth Low Energy has proven to be very popular,

triggering an explosion of new applications in spaces as diverse as fitness,

toys, and automotive applications. It is now the main driving force behind

many new Bluetooth standards.

Over the years, Bluetooth SIG has announced major revisions to the

specifications to improve security, battery life, and easier interoperation

with IP-based networks. For example, Bluetooth 4.2 specification added

industrial strength security with elliptic curve cryptography (ECC)-based

key management and Advanced Encryption Standard (AES) counter with

cipher block chaining message authentication code (CCM) cryptography

for message encryption.

Chapter 5 ConneCtivity teChnologies for iot

385

Bluetooth 5 offers a choice of data rates and operating ranges – 2 Mbps,

1 Mbps, 500 Kbps, and 125 Kbps. The lower the data rates, the longer the

ranges. The increases in range and data rate capabilities make Bluetooth

Low Energy increasingly attractive in nonconsumer segments such as

industrial data loggers or smart energy meters. Along with these, Bluetooth

Low Energy’s inherent advantage of built-in compatibility with mobile

devices, it is an excellent choice for data display and retrieval, Internet

connectivity, and initial provisioning and configuration of IoT devices in

the field. Table 5-7 shows a comparison of Bluetooth Classic and Bluetooth

Low Energy technologies.

In 2017, the Bluetooth SIG released the mesh profile and mesh

model specifications. Mesh networking technology enables the use of

Bluetooth Low Energy for many-to-many device communications in home

automation applications such as smart lighting, low-power wireless sensor

networks, and so on. It also enables extended range communication using

intermediary nodes to relay the data across the network. These new mesh

standards are compatible with both the Bluetooth 5 and Bluetooth 4.x

standards.

Table 5-7. Bluetooth Low Energy and Bluetooth Classic Comparison

Bluetooth Low Energy (LE) Bluetooth Classic
[Basic Rate/Enhanced
Data Rate (BR/EDR)]

optimized for… short burst data transmission Continuous data streaming

frequency Band 2.4 ghz isM Band

(2.402–2.480 ghz Utilized)

2.4ghz isM Band (2.402–

2.480 ghz Utilized)

Channels 40 channels with 2 Mhz spacing

(3 advertising channels/37 data

channels)

79 channels with 1 Mhz

spacing

(continued)

Chapter 5 ConneCtivity teChnologies for iot

386

Bluetooth Low Energy (LE) Bluetooth Classic
[Basic Rate/Enhanced
Data Rate (BR/EDR)]

Channel Usage frequency-hopping spread

spectrum (fhss)

frequency-hopping spread

spectrum (fhss)

Modulation gfsK gfsK, π/4 DQpsK, 8DpsK

power

Consumption

~0.01x to 0.5x of reference

(depending on use case)

1 (reference value)

Data rate le 2M phy: 2 Mb/s

le 1M phy: 1 Mb/s

le Coded phy (s=2): 500 Kb/s

le Coded phy (s=8): 125 Kb/s

eDr phy (8DpsK): 3 Mb/s

eDr phy (π/4 DQpsK): 2

Mb/s

Br phy (gfsK): 1 Mb/s

Max tx power* Class 1: 100 mW (+20 dBm)

Class 1.5: 10 mW (+10 dBm)

Class 2: 2.5 mW (+4 dBm)

Class 3: 1 mW (0 dBm)

Class 1: 100 mW (+20

dBm)

Class 2: 2.5 mW (+4 dBm)

Class 3: 1 mW (0 dBm)

network topologies point-to-point (including piconet)

BroadcastMesh

point-to-point (including

piconet)

Table 5-7. (continued)

Security in Bluetooth mesh networking is concerned with the security

of more than individual devices or connections between peer devices; it’s

concerned with the security of an entire network of devices and of various

groupings of devices in the network. Consequently, security in Bluetooth

mesh networking is mandatory. This is achieved by implementing the

following fundamental security measures:

• Encryption and authentication: All Bluetooth mesh

messages are encrypted and authenticated.

Chapter 5 ConneCtivity teChnologies for iot

387

• Separation of concerns: Network security, application

security, and device security are addressed

independently.

• Area isolation: A Bluetooth mesh network can be

divided into subnets, each cryptographically distinct

and secure from the others.

• Key refresh: Security keys can be changed during the

life of the Bluetooth mesh network via a key refresh

procedure.

• Message obfuscation: Message obfuscation makes

it difficult to track messages sent within the network

and, as such, provides a privacy mechanism to make it

difficult to track nodes.

• Replay attack protection: Bluetooth mesh security

protects the network against replay attacks.

• Trashcan attack protection: Nodes can be removed

from the network securely, in a way which prevents

trashcan attacks.

• Secure device provisioning: The process by which

devices are added to the Bluetooth mesh network to

become nodes is a secure process.

 Zigbee
Zigbee is based on the IEEE 802.15.4 link layer and typically operates in

the 2.4 GHz ISM band. Its networking layer has been designed with mesh

topology operations in mind from the ground up. This provides the

ability to scale the network geographically through multihop operations

Chapter 5 ConneCtivity teChnologies for iot

388

(for applications such as smart meters), as well as increases fault tolerance

and reliability as backup paths are created through the mesh between any

two points.

Zigbee is designed, promoted, and maintained by the Zigbee Alliance.

Zigbee 3.0, the latest specification, increases choice and flexibility for users

and developers and delivers the confidence that products and services will

all work together through standardization at all layers of the stack. Zigbee

3.0 is built on the Zigbee PRO, which enhances the IEEE 802.15.4 standard

by adding mesh network and security layers along with an application

framework and to become a full stack, low-power certifiable, interoperable

Zigbee solution. Zigbee provides a complete solution that enables true

device interoperability between different manufacturers. The Zigbee

protocol suite incorporates the Zigbee cluster library: a standard library

of device types, data models, and behaviors built by original equipment

manufacturers (OEMs) operating in different vertical markets and proven

in actual deployments for many years. A rigorous certification program

managed by the Zigbee Alliance guarantees interoperability between

Zigbee devices, verifying device type behavior and functionality from

an end product perspective and ensuring that products from different

manufacturers can operate together.

The Zigbee protocol suite includes standard commissioning, security,

network, and device management procedures. Various device types

can join and be authenticated in the network and be factory reset or

decommissioned in an interoperable way, guaranteeing end-to-end

device interoperability from the start of device operation and seamlessly

integrating with data collectors or hubs.

Zigbee-based applications mostly target the smart home and smart

building domains, with focus in lighting and home control and physical

security segments. Many telecom, security, and Internet service providers

have endorsed Zigbee as the protocol of choice when introducing

their home automation services to consumers, and many lighting

manufacturers have a series of smart bulbs supporting this protocol.

Chapter 5 ConneCtivity teChnologies for iot

389

Zigbee takes full advantage of IEEE 802.15.4 physical radio standard

and operation in unlicensed bands worldwide at 2.4 GHz (global), 915 MHz

(Americas), and 868 MHz (Europe). Raw data throughput rates of 250

Kbps can be achieved at 2.4 GHz (16 channels), 10 Kbps at 915–921 MHz

(27 channels), and 100 Kbps at 868 MHz (63 channels). Transmission

distances range from 10 to 100 meters, depending on power output and

environmental characteristics. Sub-1 GHz channel transmission ranges up

to 1 km. Table 5-8 provides a quick overview of the Zigbee technology.

Zigbee effectively uses the allocated bandwidth to convey both

application data to operate devices and network management procedures

like mesh and routing management with a very small energy footprint.

Zigbee’s addressing scheme is capable of supporting hundreds of nodes

per network (up to 64K), and multiple network coordinators can be linked

together to support extremely large networks. The logical size of a Zigbee

network ultimately depends on which frequency band is selected, how

often each device on the network needs to communicate, and how much

data loss or retransmissions can be tolerated by the application.

Table 5-8. Overview of Zigbee Technical Specifications

Solution Description

network protocol Zigbee pro 2015 (or newer)

network topology self-forming, self-healing Mesh

network Device types Coordinator (routing capable), router, end

Device, Zigbee green power Device

network size (# of nodes) Up to 65,000

radio technology ieee 802.15.4-2011

frequency Band/Channels 2.4 ghz (isM band)

16 channels (2 Mhz wide)

(continued)

Chapter 5 ConneCtivity teChnologies for iot

390

 NFC
Near field communications (NFC) is a short-range wireless

communication technology designed to build on existing high-frequency

(HF) (13.56 MHz) contactless and RFID technology. Using 13.56 MHz on

the ISM band and with a typical operating distance of up to 4 cm, today

NFC enables an exchange rate of between 106 Kbps and 848 Kbps. NFC

creates a short-range wireless connection able to operate in three different

modes of operation: card emulation, read/write, and peer-to-peer. NFC

technology enables a wide range of use cases from keyless access to

e-wallet in smartphone and smart tags for medical applications. This is

due to ease of implementation and the ability to embed tags into credit

cards, smartphones, and other wearable devices.

Solution Description

Data rate 250 Kbits/sec

security Models Centralized (with install Codes support)

Distributed

encryption support aes-128 at network layer

aes-128 available at application layer

Communication

range (average)

Up to 300+ meters (line of sight)

Up to 75–100 meters indoor

low power support sleeping end Devices

Zigbee green power Devices (energy

harvesting)

Table 5-8. (continued)

Chapter 5 ConneCtivity teChnologies for iot

391

 GPS/GNSS
GPS is a satellite-based radio navigation system that provides users with

location, velocity, and time information. A GPS receiver acquires each

visible satellite’s signal and measures the individual time delays. Applying

these time delays to known radio wave propagation characteristics allows

the distance to each satellite to be calculated. GPS accuracy correlates

with the number of satellites successfully acquired by a GPS receiver. New

systems are under development, such as Glonass, Galileo, and Compass,

which, when used in conjunction with GPS, will improve global coverage,

reduce time to fix location, and increase performance in challenging

environments. Location data collected by onboard GPS trackers are

vital to many applications in the transportation industry such as fleet

management, asset tracking, and autonomous vehicles.

 Cellular
Cellular technologies provide “always-on” connectivity to the backbone

network – to the Cloud. Similar to mobile phones for consumer

applications, cellular data for IoT can be connected over 2G, 3G, or 4G

networks. Benefits include broad coverage leveraging existing base station

infrastructure as well as mobility (e.g., cars). Potential drawbacks include

power consumption, fees associated with data transfer over licensed

spectrum owned by carriers, and potential gaps in coverage.

As demand for ubiquitous connectivity for IoT devices gets ever

stronger, cellular networks can deliver reliable and secure IoT services

using existing network infrastructure. Massive investments have been

made in spectrum allocations and network deployments to ensure good

coverage for the entire population in most countries. The same networks

that are used to connect people can now be leveraged to connect things.

Chapter 5 ConneCtivity teChnologies for iot

392

Traditional cellular options such as 2G, 3G, or higher category 4G

modems consume a lot of power and don’t fit well with applications where

only a small amount of data is transmitted infrequently, such as smart

meters, asset trackers, healthcare equipment, agriculture sensors, parking

spaces, and street lights. Cellular IoT is designed to meet the requirements

of such low-power, long-range applications. It takes existing technology

that we already use every day for our smartphones and scales it back to

meet the needs of low-power devices.

When it comes to analyzing cost of a communication solution, the

total cost of ownership includes spectrum costs, infrastructure costs, and

operational expenses. As cellular networks are already in place, very little new

infrastructure needs to be installed. The base stations, cell towers, buildings,

and power supply are already in place, all around the world. The technology

also has the potential to cover hundreds of thousands of IoT devices per

square kilometer – many more than other communication options.

No single technology or solution is ideally suited to all the different

potential massive IoT applications, market situations, and spectrum

availability. As a result, the mobile industry is standardizing several

technologies, including Long-Term Evolution for Machines (LTE-M) and

Narrowband IoT (NB-IoT). NB-IoT is ideally suited for low bandwidth,

infrequent communication from a relatively stationary device, while

LTE-M suits higher bandwidth or mobile and roaming applications.

A good application for NB-IoT is the use of remote environmental

sensors to measure temperature, wind, pressure, and so on. These devices

can send regular updates from a fixed location while optimizing battery

use. Such a device could last for up to 10 years, or longer if solar powered

and in the right geographical position.

Similarly, an asset tracker with condition monitoring through

several sensors, which is mobile and roaming from country to country,

is well served by an LTE-M solution that offers highway speed mobility,

international roaming between countries and operators, and efficient

firmware updates.

Chapter 5 ConneCtivity teChnologies for iot

393

Advantages of cellular connectivity for IoT include

• The use of open standards based on existing

infrastructure means coverage will reach virtually

everywhere where people live.

• Many devices can operate simultaneously because

of the advanced coexistence mechanisms in the LTE

standard and licensed band operation, as is already

proven today with the large number of cellphones used

concurrently within a small area.

• No limiting regulatory regulations, so you can transmit

up to 23 dBm and negotiate for as much airtime as you

need.

• Standard TLS/DTLS security for end-to-end security

is supported on top of the on-air encryption of the LTE

network aided by the SIM credentials. This keeps data

secure from the device to the cloud server.

• As cellular network coverage increases and technologies

are available in low-complexity, low- power variants,

cellular technology is a great choice for the world’s IoT

needs.

 5G Cellular
The first-generation mobile network (1G) was all about voice and used

analogy technology. 2G enabled voice and texting (short messaging

service – SMS) using digital technology. 3G was about voice, texting, and

data. 4G was everything in 3G but faster, and 5G will be even faster. 5G

will be fast enough to download a full-length HD movie in seconds. The

transition from 2G to 4G happened in a span of about 20 years as shown in

Figure 5-14.

Chapter 5 ConneCtivity teChnologies for iot

394

The real performance of a cellular network will vary by provider,

their configuration of the network, the number of active connections in a

given cell, the radio environment in a specific location, the capability of

the device in use, plus all the other factors that affect radio performance.

It is safe to assume that the throughput will be much closer to the lower

bound for data throughput, and the latency will be trending toward the

higher bound for packet latency for a given generation. Table 5-9 provides

a summary of data rates and latency of different generations of cellular

technologies.

User
Experience,

new
verticals

Voice
SMS, data

1995 2000 2010 2020

Apps,
video

User
Experience,

new
vvvverrrrtttticals

VoVV ice
SMS, data

Apps,
viiiiddddeoeee

Figure 5-14. Evolution of cellular technologies

Chapter 5 ConneCtivity teChnologies for iot

395

5G is much more than just faster networks. It supports the unique

combination of high-speed connectivity, very low latency, and ubiquitous

coverage, making it natively suitable for supporting IoT use cases. 5G will

enable us to control more devices remotely in applications where real- time

network performance is critical, enabling new user experiences in many

different verticals. For example, it can be used for remote control of heavy

machinery in hazardous environments, thereby improving worker safety. With

its low latency, it can improve access to healthcare by enabling remote surgery.

5G connectivity will support smart vehicles and transport infrastructure such

as connected cars, where the variation in delay could mean the difference

between a smooth flow of traffic and an accident. It is evident that 5G will spur

innovation across many industries and prove to be an enabling platform for

IoT solutions to become an integral part of our economy.

Table 5-9. Comparison of Data Rates and Latencies of Different

Generations of Cellular Technologies

Generation Peak Data
Rate

Practical Data
Rate

Latency Description

1g no Data no Data no Data analog systems

2g 100s of Kbps 100–400 Kbps 300–1000 ms first digital systems

as overlays or parallel

to analog systems

3g 10s of Mbps 400 Kbps–

5 Mbps

100–500 ms Dedicated digital

networks deployed

in parallel to analog

systems

4g 100s of Mbps 1–50 Mbps <100 ms Digital and packet-

only networks

5g 10s of gbps tBD 1–20 ms Digital and packet-

only networks

Chapter 5 ConneCtivity teChnologies for iot

396

 Key Standards, Regulatory, and Industry Bodies
Involved in 5G

There are multiple cellular standards and release versions, and the

classification of any given network as 3G, 4G, or 5G is definitely too coarse.

Here is a quick survey of the key players behind the evolution of various

cellular technologies:

• ITU: (International Telecommunications Union)

Agency of the UN, coordinating telecom operations

and services globally. Their ITU-R sector is charged

with developing future 5G standards and coordinating

harmonized spectrum use.

• 3GPP: Collaboration between seven global

telecommunications standards organizations engaged

in research and development of 5G standards.

• ETSI: Organization in Europe producing globally

applicable standards for Information and

Communication Technologies.

• OCF: Comprised of technology suppliers for product,

software, platform, and silicon dedicated to driving

open standards for IoT solutions.

• IEEE: A technical professional organization dedicated

to enabling the development of new use cases and

standards to accelerate time to market of technologies

developed on a consensus basis.

• 5G-ACIA: 5G Alliance for Connected Industries and

Automation ensures the best possible applicability of 5G

technology and 5G networks for the manufacturing and

process industries by addressing, discussing, and evaluating

relevant technical, regulatory, and business aspects.

Chapter 5 ConneCtivity teChnologies for iot

397

 New Use Cases Enabled by 5G

5G addresses existing, emerging, and future use cases. 3GPP (3rd Generation

Partnership Project) has grouped the high-level use cases of 5G into three

categories, based on the functionality and performance that 5G would need

to enable these use cases. The three sets of use cases, primarily based on the

5G performance attributes, are listed here and are shown in Figure 5-15:

• Enhanced Mobile Broadband (eMBB): Use cases

requiring high data rates across a wide coverage area,

providing immersive experiences such as augmented

reality and virtual reality. eMBB will initially be an

extension to existing 4G services and will be among the

first 5G services. The three main attributes of 5G that

enable eMBB use cases are

Higher capacity: Which makes broadband access

available in densely populated areas, both indoors

and outdoors, like city centers, office buildings, and

public venues like stadiums or conference centers.

Enhanced connectivity: Broadband access must

be available, with adequate quality of service

everywhere to provide a consistent user experience.

Higher user mobility: Will enable mobile broadband

services in moving vehicles including cars, buses,

trains, and even planes.

eMBB traffic is characterized by large payloads and

by a device connection pattern that remains stable

over an extended time interval. This allows the

network to schedule wireless resources to the eMBB

devices preventing the chance of two eMBB devices

Chapter 5 ConneCtivity teChnologies for iot

398

accessing the same resource simultaneously. The

objective of the eMBB service is to maximize the

data rate while guaranteeing a moderate reliability.

• Massive Machine-Type Communications (mMTC): This

addresses the need to support a very large number

of devices in a small area, which may only send data

sporadically. IoT use cases such as smart homes, smart

cities, and weather and agricultural smart sensors

are good examples. A large number of mMTC devices

may be connected to a given cellular network, but at a

given time only a subset of them could be active and

attempt to communicate their data. The large number

of potentially active mMTC devices makes it infeasible

to preallocate resources to individual mMTC devices.

Instead, it is necessary to provide resources that can

be shared through random access. The objective in the

design of mMTC is to maximize the arrival rate that can

be supported in a given radio resource.

• Ultra-Reliable Low-Latency Communications (URLLC):

These use cases impose strict requirements on latency

and reliability for mission-critical communications,

such as remote surgery, autonomous vehicles, or

industrial control applications. The number of

potential devices supported per unit area is considered

to be smaller than mMTC. Supporting URLLC

transmissions requires a combination of scheduling,

so as to ensure a certain amount of predictability

in the available resources and thus support high

reliability. Random access is also required in order to

ensure that too many resources do NOT idle due to the

intermittent nature of scheduled traffic. Due to the low

Chapter 5 ConneCtivity teChnologies for iot

399

latency requirements, a URLLC transmission should be

localized in time. Diversity, which is critical to achieve

high reliability, can be achieved by using multiple

frequency or spatial resources. Compared to eMBB, the

rate of a URLLC transmission is relatively low, and the

main requirement is ensuring a high reliability level.

 Key Technology Enablers for 5G

• 5G NR: 5G New Radio is the new air interface

technology being defined to support the features of

5G. The air interface specifies the radio frequency (RF)

section of the connection between a mobile device and

the mobile network. OFDM (orthogonal frequency-

division multiplexing) family of waveforms will be

used for 5G. This allows wireless network providers to

more easily scale carrier bandwidth needed for each

application and support diverse spectrum. 5G New

Radio will use new spectrum well beyond the range of

most current wireless technology, improving network

ENHANCED MOBILE BROADBAND

FUTURE IMT

ULTRA-RELIABLE, LOW-LATENCY
COMMUNICATIONS

MASSIVE MACHINE TYPE
COMMUNICATIONS

Gigabytes in a second

3D video, UHD screens

Work and play in the cloud

Augmented reality

Industry automation

Mission critical application

Self driving car

Smart Home/Building

Voice

Smart City

Figure 5-15. New use cases enabled by 5G

Chapter 5 ConneCtivity teChnologies for iot

400

availability and throughput. Massive MIMO (multiple

input multiple output) technologies enable efficient

use of large number of antennae and, along with 3D

beamforming technologies, allow increase in capacity,

coverage, and cell edge performance. The 5G NR self-

contained slot structure delivers significantly lower

latency than LTE thanks to support for fast uplink/

downlink turnaround and scalable slot durations.

• Network Function Virtualization (NFV): Today’s

networks are dedicated, static, and hardware

resource-based and can’t meet tomorrow’s demands.

Decoupling and shifting network functions from

proprietary hardware to software-based services on

open servers “virtualizes” the network. To support the

many new use cases for 5G, NFV provides significant

capabilities for communication service providers that

will lead to more innovation, fast service deployment,

and reduced operating expenses.

• Software-Defined Networking (SDN): SDN is a

framework for creating intelligent networks that are

open, programmable, and application aware. It makes

network programmable by separating the control

plane (telling the network what goes where) from the

data plane (sending packets to specific destinations) –

centralizing and automating network engineering

tasks and reducing the amount of manual intervention

and coordination. This drives rapid service creation,

reducing time to market for new offerings.

• Network Slicing: This can be employed to enable

enhanced network flexibility. SDN and NFV create

opportunity to “slice” networks, so that a single physical

Chapter 5 ConneCtivity teChnologies for iot

401

network can be partitioned into many virtual networks.

Each slice is self-contained with all necessary functions

and is customized to match the level of delivery

complexity required by the service-level agreement,

as illustrated in Figure 5-16. Delivering customized

connectivity and computing power for different types

of segments, devices, and services opens new ways for

communication service providers to monetize their

offering. For example, they can provide third parties with

access to operate their slices independently, creating

new Network-as-a-Service (NaaS) business model.

5G Promise: All mobile services via all types of devices across all industries on a single network

Mobile Broadband
(20 Gbps)

Massive IoT
(200,000/Km2)

Mission-critical IoT
(1ms)

Service/Device Service/Industry

Network Slicing

Mobile Broadband
(20 Gbps)

Massive IoT
(200,000/Km2)

Mission-critical IoT
(1ms) Single 5G Network

Communication,
Internet

Logistics,
Agriculture,
Climate

Mission-critical
Network

Communication,
Internet

Logistics,
Agriculture,
Climate

Automobile,
Factory

Mobile Broadband Slice

Massive IoT Slice

Mission critical IoT Slice

Multiple 5G Networks

Broadband
Network

Massive IoT
Network

Automobile,
Factory

Figure 5-16. Network slicing concept

Chapter 5 ConneCtivity teChnologies for iot

402

• C-RAN: Cloud or Centralized Radio Access Network

helps to optimize network architecture by virtualizing

base station functions; mobile base stations are

comprised of a baseband unit (BBU), handling data

processing, and a radio unit (RU), sending/receiving

radio waves and managing the radio resources.

Separating the BBU from the mobile base station radio

unit pools data processing functions into a centralized

server as shown in Figure 5-17. This allows multiple

radio units to be controlled from one server reducing

CAPEX and OPEX for communication service providers.

This also increases the ability to address interference

issue in high-density area and improves network

efficiency with shared processing and load balancing.

Centralized BBU Server

Base Sta�on

Small Cell

Base Sta�on

Cloud BBU Pool

RRH

RRH

RRH

Figure 5-17. Cloud RAN concept

Chapter 5 ConneCtivity teChnologies for iot

403

 LPWAN – Low-Power Wide Area Networks
Low-power wide area network (LPWAN) technologies have low power

draw and provide coverage to wide geographical areas. They provide

connectivity for devices and applications that require low mobility and low

speeds and infrequent data transfer, such as sensors. LPWAN technologies

fill the gap between mobile cellular (3G, LTE) and short-range wireless

(e.g., Bluetooth, Wi-Fi, and Zigbee) networks and are designed for

machine-to-machine communications. LPWAN devices have a long

battery life because they transmit only small packets of data at infrequent

intervals. LPWAN solutions provide a wide area of coverage that is not

limited by distance between the access points (i.e., base stations or towers)

using new modulation techniques and frequency choices. They also do

not typically require line-of-sight communications. They therefore require

far fewer access points per unit area than traditional cellular wireless

technologies.

There is no single standard for LPWAN, and there are a number

of competing technologies, providing different levels of coverage and

capacity. We will take a look at three of them.

 LoRa

LoRa Alliance is an open, nonprofit association with over 500 members

globally among telcos, system integrators, and manufacturers.

LoRaWAN is an open standard with a certification program to guarantee

interoperability that is governed by the LoRa Alliance. LoRaWAN

network semiconductor technology is proprietary to California-based

semiconductor manufacturer Semtech. See Table 5-10 for the summary of

technical specifications of LoRa technology.

Chapter 5 ConneCtivity teChnologies for iot

404

 Sigfox

One of the most widely deployed proprietary LPWAN technologies is

Sigfox, which was established in France in 2009 and deployed its first

network in mid-2012. As of August 2018, there were networks in some

50 countries globally with a target of 60 by the end of the year. Table 5-11

captures the key features of Sigfox.

Table 5-10. LoRa Overview

Name of Standard LoRaWAN

frequency Band 433/868/780/915 Mhz isM

Channel Width eU: 8x125khz, Us 64x125khz/8x125khz

Modulation: Chirp spread spectrum

range 2-5k (urban), 15k (rural)

end node transmit power eU:<+14dBm

Us:<+27dBm

packet size Defined by User

Uplink Data rate eU: 300 bps to 50 kbps

Us:900-100kbps

Downlink Data rate eU: 300 bps to 50 kbps

Us:900-100kbps

Devices per access point Uplink:>1M

Downlink:<100k

topology star on star

end node roaming allowed yes

governing Body lora alliance

status spec released June 2015, in deployment

Chapter 5 ConneCtivity teChnologies for iot

405

 Weightless

Cambridge-based Weightless SIG (Special Interest Group) was founded

in 2008 to develop standards for M2M communications in white space

(unused TV spectrum). Weightless originally developed three standards

for different use cases which employ different technologies and

provide varying levels of packet size and data rates. Today it promotes

Weightless-P, which is shown in Table 5-12 – an ultra-narrowband protocol

for bidirectional communications now known simply as Weightless

technology.

Table 5-11. Sigfox Overview

Name of Standard SigFox

frequency Band 868 Mhz/902 Mhz isM

Channel Width Ultra narrow band

range 30-50km (rural), 3-10km (urban),

1000km los

end node transmit power -20 dBm to 20 dBm

packet size 12 bytes

Uplink Data rate 100 bps to 140 messages/day

Downlink Data rate to 4 messages of 8 bytes/day

Devices per access point 1M

topology star

end node roaming allowed yes

governing Body sigfox (proprietary)

status in deployment

Chapter 5 ConneCtivity teChnologies for iot

406

 Comparison of Low-Power LTE and Other LPWAN
Technologies

There are several technologies upon which LPWANs can be based as seen

earlier and can be classified into those based on proprietary systems and

those based on open standards.

Low-power Long-Term Evolution (LTE) has taken off since the 3rd

Generation Partnership Project (3GPP) introduced a specification for

two forms of the technology – LTE-M and Narrowband-IoT (NB-IoT) –

in Release 13 of the standard. The new specification makes it easier for

manufacturers to design and develop the inexpensive, compact, and low

power consumption wireless LTE modems that LPWANs demand.

Table 5-12. Weightless Overview

Name of Standard Weightless

frequency Band sub-ghZ isM

Channel Width 12.5 khz

range 2km (urban)

end node transmit power 17 dBm

packet size 10 byte min

Uplink Data rate 200 bps to 100 kbps

Downlink Data rate same

Devices per access point Unlimited

topology star

end node roaming allowed yes

governing Body

status in deploymnet

Chapter 5 ConneCtivity teChnologies for iot

407

LTE is an open standard, operates in a licensed portion of the RF

spectrum, leverages existing infrastructure for coverage, and has coexistence

mechanisms that enable scaling to high node counts per base station.

Low-power LTE operates in up to 44 different licensed frequencies

across the world, ranging from 450 MHz to 2.6 GHz. By using the licensed

spectrum, the owners of the spectrum allocation (the carriers) can control

and prioritize data, and the bands are immune from interference from

other sources of RF radiation.

Because the spectrum allocation isn’t shared with other RF

transmissions, the coexistence between connected devices is much easier

to manage. LTE’s coexistence technology is based on proven frequency-

and time-domain solutions and other mechanisms such as “autonomous

denials” of conflicting RF signals. Consequently, LTE can support a node

density of up to 200,000 active low-power modems per base station.

Finally, data carried over LTE is safe from prying eyes because the standard

has incorporated advanced security from its inception. These features

ensure that carriers can offer reliability and high quality of service.

In contrast, proprietary technologies limit the participation in the

vendor ecosystem and innovation in technology evolution over time. As

they operate in unlicensed allocations of the RF spectrum (typically sub-1

GHz), coexistence could also be a challenge. They must share RF spectrum

with many other services. While basic interference avoidance techniques

are employed, so many services are sharing the spectrum allocation that it is

extremely to match the node density, reliability, and quality of service of LTE.

Proprietary LPWAN vendors are also faced with the major challenge

of building infrastructure to support their networks. These are likely to be

expensive and long-winded projects slowing adoption. In contrast, worldwide

LTE infrastructure is largely in place comprising 480 networks in 157

countries. Some upgrading (mainly of software) is required to support low-

power LTE, but this is relatively a less complex effort compared to building the

infrastructure in the first place. Because the infrastructure is installed, support

for low-power LTE is likely to be added rapidly, further encouraging its uptake.

Chapter 5 ConneCtivity teChnologies for iot

408

Companies adopting low-power LTE for their IoT-connected products can

leverage this infrastructure without bearing its build or maintenance costs,

instead investing in their own services and business models.

 A Case Study – Smart Homes
A typical smart home gateway is illustrated in Figure 5-18.

In reality, many IoT endpoints and gateways will employ multiple

communication technologies based on cost, improved flexibility, and

interoperability. A primary example is connected thermostat which

incorporates both Wi-Fi and ZigBee. Many smart meters support cellular,

ZigBee, RF mesh, and Wi-Fi capabilities. A key advantage of Wi-Fi and

Bluetooth is that they are already embedded in essentially all smartphones.

This type of coexistence of multiple technologies in a single system is

illustrated in the smart home IoT system example shown earlier. The

gateway supports Wi-Fi and Ethernet for LAN connections that need higher

bandwidth such as audio and video applications. PAN and mesh networks

based on Bluetooth Low Energy and ZigBee are used for energy- efficient

Home Gateway

Appliance
Diag.

iIOT SmartHome
Service Object 1

iIOT SmartHome
Engine

Accelerators

iIOT SmartHome
Service Object 2

Application Framework

Rule Engine

Virtual Devices

IOTivity Framework (Device Abstraction)

Comm Abstraction

WiFi

S SS A S A S A AA S A S A AA S A S AA

WiFi Edge Devices BLE Edge Devices ZigBee Edge Devices

Service Provider and/or User Installed Devices

Cellular(LTE/5G)

Home Service/Utility
Provider Cloud

Ethernet Edge Devices

BLE ZigBee Ethernet

User Auth

Rule Engine

• Refrigerator
• Water Unit Utility

• Gas
• Electric

• WM
• Water
• City

Services

Security

• Access
• Alarm

Services

• Video
Monitor

Analytics

Manageability &
Security

Local
Storage

HomeLake Engine In
te

l
Se

cu
rit

y
&

Ed
ge

 M
gm

t.

Linux Kernel, Drivers, Operating System

Platform HW BIOS & BSP

Analytics

iIOT SmartHome
Service Object “n”

Figure 5-18. Smart home system using multiple connectivity
technologies

Chapter 5 ConneCtivity teChnologies for iot

409

sensors and controllers for lighting, security, and so on. The gateway provides

WAN connectivity to Cloud using cellular technologies like LTE and 5G. Local

analytics and intelligences provided by the gateway. The cloud service

providers enable cloud-based applications to deliver the various services.

 Summary
There are many connectivity technologies that can be used for enabling

IoT. Each one has its own benefits and shortcomings. One should choose

a technology or a combination of technologies that is best suited for the

application. Cost, ease of system integration, and security should also

be considered along with features such as throughput, range, power

consumption, network topology, and existing infrastructure.

The IEEE has already standardized dozens of use cases and applications

for IoT protocols. In addition to the basic communications standards

discussed earlier (layer 2 in the OSI stack), which handle the underlying

communications, there is a need for standardization at higher layers of the

stack as well. Working groups belonging to many industry alliances such

as OPC Foundation, Industrial Internet Consortium, 5G-ACIA, and ZigBee

Alliance and standardization bodies such as ETSI coordinate and establish

the priorities and enabling technologies of the Industrial Internet in order to

accelerate market adoption and drive down the barriers to entry.

 References

 1. IEEE Time-Sensitive Networking Task Group:

https://1.ieee802.org/tsn/

 2. P60802 – Time-Sensitive Networking Profile for

Industrial Automation: https://standards.ieee.

org/project/60802.html

Chapter 5 ConneCtivity teChnologies for iot

https://1.ieee802.org/tsn/
https://standards.ieee.org/project/60802.html
https://standards.ieee.org/project/60802.html

410

 3. Wi-Fi Alliance: www.wi-fi.org/discover-wi-fi

 4. Bluetooth SIG: www.bluetooth.com/bluetooth-

resources

 5. Zigbee Alliance: www.zigbee.org/zigbee-for-

developers/zigbee-3-0/

 6. 3GPP: www.3gpp.org/

 7. Industrial Internet Consortium: www.iiconsortium.

org/

 8. OPC Foundation: https://opcfoundation.org/

 9. 5G Alliance for Connected Industries and

Automation (5G-ACIA): www.5g-acia.org/

 10. Time-Sensitive Networking Standards: IEEE

Communications Standards Magazine (Volume: 2,

Issue: 2, JUNE 2018). https://ieeexplore.ieee.

org/document/8412457

 11. Avnu Alliance: The Business Impact of TSN for

Industrial Systems Whitepaper. https://avnu.org/

business-impact-paper/

 12. Time-Sensitive Networking: From Theory to

Implementation in Industrial Automation. www.

intel.com/content/dam/www/programmable/

us/en/pdfs/literature/wp/wp-01279-time-

sensitive-networking-from-theory-to-

implementation-in-industrial- automation.pdf

 13. Ultra-Low Latency (ULL) Networks: The IEEE TSN

and IETF DetNet Standards and Related 5G ULL

Research. https://arxiv.org/pdf/1803.07673.pdf

Chapter 5 ConneCtivity teChnologies for iot

https://www.wi-fi.org/discover-wi-fi
http://www.bluetooth.com/bluetooth-resources
http://www.bluetooth.com/bluetooth-resources
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
http://www.zigbee.org/zigbee-for-developers/zigbee-3-0/
http://www.3gpp.org/
http://www.iiconsortium.org/
http://www.iiconsortium.org/
https://opcfoundation.org/
http://www.5g-acia.org/
https://ieeexplore.ieee.org/document/8412457
https://ieeexplore.ieee.org/document/8412457
https://avnu.org/business-impact-paper/
https://avnu.org/business-impact-paper/
http://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
http://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
http://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
http://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
http://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01279-time-sensitive-networking-from-theory-to-implementation-in-industrial-automation.pdf
https://arxiv.org/pdf/1803.07673.pdf

411

 14. A Survey on 5G Networks for the Internet of Things:

Communication Technologies and Challenges.

https://ieeexplore.ieee.org/document/8141874

 15. 5G Technology Overview, Intel: www.intel.com/

content/www/us/en/wireless-network/5g-

technology-overview.html

 16. Intel Wireless Solutions: www.intel.com/content/

www/us/en/products/wireless.html

 17. Intel® IoT Industry Solutions for Smart

Manufacturing: www.intel.com/content/www/

us/en/internet-of-things/infographics/

iot-industry-solutions-smart-manufacturing-

infographic.html

 18. Smart Homes with Intel® Internet of Things (IoT)

Technologies: www.intel.com/content/www/us/en/

internet-of-things/smart-home.html

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 5 ConneCtivity teChnologies for iot

https://ieeexplore.ieee.org/document/8141874
http://www.intel.com/content/www/us/en/wireless-network/5g-technology-overview.html
http://www.intel.com/content/www/us/en/wireless-network/5g-technology-overview.html
http://www.intel.com/content/www/us/en/wireless-network/5g-technology-overview.html
http://www.intel.com/content/www/us/en/products/wireless.html
http://www.intel.com/content/www/us/en/products/wireless.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-industry-solutions-smart-manufacturing-infographic.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-industry-solutions-smart-manufacturing-infographic.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-industry-solutions-smart-manufacturing-infographic.html
http://www.intel.com/content/www/us/en/internet-of-things/infographics/iot-industry-solutions-smart-manufacturing-infographic.html
http://www.intel.com/content/www/us/en/internet-of-things/smart-home.html
http://www.intel.com/content/www/us/en/internet-of-things/smart-home.html
http://creativecommons.org/licenses/by/4.0/

413© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_6

CHAPTER 6

IoT Vertical
Applications and
Associated Security
Requirements

It is not the critic who counts; not the man who points out how
the strong man stumbles, or where the doer of deeds could
have done them better. The credit belongs to the man who is
actually in the arena, whose face is marred by dust and sweat
and blood.

—Theodore Roosevelt1

Throughout the previous chapters of this book, we have presented how

different parts of an IoT system could be built and what components and

frameworks are important and useful. In this chapter, we present what

Intel is doing in the arena of IoT as complete vertical solutions. IoT spans a

broad range of different markets, and therefore solutions must be tailored

to the specific purposes of those markets and the specific security threats

1 www.goodreads.com/author/quotes/44567.Theodore_Roosevelt

http://www.goodreads.com/author/quotes/44567.Theodore_Roosevelt

414

encountered or expected in those environments. There are similarities, to

be sure. Each industry has different security demands due to the nature

of the information handled and the mandate to conform to particular

regulatory and industry standard bodies’ requirements. This chapter

will provide an overview of the different verticals, associated security

requirements, threats, and mitigations.

The IoT ecosystem is fragmented by nature with multiple verticals, but

at the end of the day, we strive to leverage a common set of hardware and

software building blocks, augmented with accelerators, to meet domain

unique requirements. Security is a horizontal capability, as we have

shown in Chapters 3 and 4. However, because of the differences within

each vertical market, frequently different verticals expand and enhance

the common set of security capabilities in order to achieve what their

particular market demands. This perspective is shown in Figure 6-1 which

articulates unique vertical security and regulatory requirements built from

a common set of security minimal viable platform features. Successfully

accomplishing this customization necessitates a system of systems

perspective, which is an understanding that no system exists in a vacuum

but must interact with other systems – human, technological, and process.

As we delve into each vertical market in this section, common themes from

the security MVP will stand out to the reader, but these will be adapted

by each domain to address security and privacy by design, security-

performance trade-offs at the system level, and integration into existing

systems and processes – the system of systems perspective.

Before diving deeply into each vertical domain, we present a

brief overview of each domain and point out the commonalities, and

differences, between them.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

415

The Transportation Solutions domain is focused on safety and

leverages the foundational security MVP, augmenting HW/FW/SW

capabilities to meet the prevalent standards and regulations including SAE

J-3101, EVITA, HIS, AutoSAR, and autonomous driving standard (levels

L1–L5). Anti-tampering which is related to preventing and/or detecting

an attempt to alter or modify the platform for stealing secrets is critical to

achieving transportation safety. Anti-cloning is related to preventing and/

or detecting an attempt to copy or clone the platform including the HW/

FW/SW. Some of these capabilities may align with other verticals. The

Transportation Solutions domain also has some unique requirements

such as memory zeroization where the state of the memory is initialized

to a known value (zero) to eliminate the secrets from DRAM and to meet

safety requirements for known state of software structures and variables.

Virtualization support in hardware is mandatory for the transportation

domain in order to maximize hardware utilization while minimizing

cost without compromising security – this usually involves VTd and VTx

technologies as we saw in the ACRN hypervisor in Chapter 4.

When a capability is aligned across more than two verticals, it makes

sense to move this capability into the security MVP foundation. This then

implies that some verticals do not make use of every security MVP feature.

However, as we have found at Intel, as features move into the security

Transportation

Security MVP – {TEE: SGX, VM} {Secure Boot} {Secure Storage: PTT/TPM} {PKI Device ID}
{Crypto: HW accelerated} {FIPS 140-2}

Standard Compliance
• Security + Functional

Safety

• HW supported &
Hardened Virtualization

• Anti-tampering +
memory zeroization

• Anti-cloning

• SAEJ3101
• Innovation for OEMs

Retail Solutions
Remote Manageability

• vPro Active Management
Technology

• AMT 5G WWAN
• Provisioning
• Recovery
• Predictive analytics

• Hardened Virtualization
• Future Manageability

Industrial
Intrinsic Security to IIoT Gateways

• Provisioning & Life Cycle
Management

• Network Protection &
Attestation

• SW Orchestration, Software
Defined Industrial Systems
(SDIS)

• Hardened Virtualization

Military/Aero/Govt
Ruggedized & Robust

• Memory encryption
• Configurable RoT

• Offline attestation

• FIPS Certification

• Physical Tamper
Detection/Prevention

• Configurability:
Debug Disable,
power, clock

• Performant Crypto

Digital Surveillance
System

Intrinsic Security
NVR & Gateways

• Provisioning

• Video watermarking

• Multiple RoT with
FPGA and Movidius

• Encrypted/Authenticated
Video streams

Consistency

Figure 6-1. IoT vertical framework: enhance the foundation with
value-added features to enable verticals

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

416

MVP, other vertical domains begin to leverage that capability as well. An

example of this is FIPS 140 Level 2 which is now a common requirement

across all the verticals.

The Retail Solution domain’s security is focused on protecting the

credit card payment information and the data in financial transactions.

The identity of the users at the POS terminals is also of significance,

leading to unique protections to handle personally identifiable

information (PII). A new retail segment known as responsive retail

addresses targeted marketing for the brick-and-mortar retailer while

improving the shopping experience for consumers using advertisements

customized according to the age, gender (using facial and body imaging),

and other characteristics of the consumer. The retail domain in general

is also heavily invested in remote manageable devices (upgradable and

recoverable) over wired and wireless networks (in-band and out-of-

band). Provisioning devices with the proper software loads and unique

credentials to facilitate transactions to financial institutions and suppliers

is an important, though not unique, characteristic of retail IoT systems.

In the in-band recovery scenario, a corrupt application can be

recovered with the help of the operating system, and a corrupt operating

system can be recovered with the help of the BIOS/UEFI/boot loader. We

discussed some of these capabilities in Chapter 4, where we introduced the

difficult problem of upgrading the platform firmware, such as the BIOS/

UEFI/boot loader itself. For these situations, an out-of-band capability

or physical access is required to recover the platform from corrupted

firmware.

The Industrial Solutions domain covers the convergence of IT

(information technology) with OT (operational technology), along with

the related issues of incorporating existing systems and infrastructure

(brownfield deployments) with new systems, capabilities, and

infrastructure (greenfield deployments). Traditionally OT dealt with the

factory and manufacturing floor tasks, and IT infrastructure managed

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

417

the office and back-end tasks. Creating a smart factory requires the

convergence of IT and OT, allowing the data to flow seamlessly between IT

and OT for effective decision making and factory process execution. In a

brownfield scenario, industries have long been deploying the devices and

equipment with legacy bus interfaces and little to no network connectivity.

The greenfield scenario is where the equipment and devices can all be

true IoT with maximum high (or higher) bandwidth connectivity. Bridging

the gap between brownfield and greenfield requires the use of proxy

gateways with network protections and network admission technologies

using device attestation. Software orchestration is essential in Industrial

IoT (IIOT) where standards compliant architecture such as ISA-95 and

Software-Defined Industrial Systems (SDIS) are federated for service

orchestration, allowing all devices to both consume and provide services.

Security services center around integrity and availability, and device

recovery and reprovisioning for new services or changeovers to new tasks

must be done quickly and efficiently or the loss on revenue can be steep.

The Military, Aerospace, and Government domain has the highest

and most robust security requirements, and the need for performant

crypto features, including encryption/decryption, digital signature/

verification, and random number generation, has high-throughput

requirements. This domain also demands a configurable Root of Trust

(RoT), augmenting the Intel RoT with a particular custom hardware Root

of Trust private to the domain with higher robustness requirements. The

alternative roots of trust include customized RoT in an Intel SoC/PCH

or an FPGA. Physical tamper prevention, detection, and recovery are

key features which are also tied to the secure debug ports, protections

from side-channel attacks on clock, and prevention/detection of power

glitching, among a host of other hardware-specific attacks. When attesting

the IoT devices in this domain, in addition to remote attestation, a local

or offline attestation feature is a mandatory requirement. Many advanced

security requirements appear first in the Government domain and then

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

418

slowly begin to appear in other domains. Side-channel resistance is a

recent example; protection from covert and side channels has been a long-

standing requirement in the military domain, but not until the appearance

of the Spectre and Meltdown attacks the side-channel protections are

included in commercial RFPs. However, since these attacks were disclosed,

side-channel protections are the new baseline and part of the common

security MVP.

The Digital Surveillance System (DSS) domain is focused on network

video recorders, networked Internet Protocol (IP) cameras, and computer

vision accelerators. In a DSS system of systems, there is a need for multiple

roots of trust including Intel SoC, FPGA, and Movidius. Provisioning the

DSS cameras and video recorders is critical to prevent the IP camera–

related attacks, including the Mirai botnet attacks which used default and

brute-force login credentials2 and the Persirai botnet which took over

cameras using a recent zero-day vulnerability.3 DSS systems also require

performant crypto features, since the video stream must be encrypted

and watermarked at line rate speeds. Another critical requirement for the

DSS segment is data provenance, authenticated and integrity-protected

metadata and attributes attached to the video and photographic data to

prove the data, time, location, and device used for collection.

The DSS domain encounters some unique data protection and privacy

regulations such as EU’s General Data Protection Regulation (GDPR) and

the California data privacy regulations which impact every type of business

and impose severe penalties for not complying.

2 https://motherboard.vice.com/en_us/article/8q8dab/15-million-
connected-cameras-ddos-botnet-brian-krebs

3 www.darkreading.com/attacks-breaches/new-iot-botnet-discovered-120k-
ip-cameras-at-risk-of-attack/d/d-id/1328839

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
https://motherboard.vice.com/en_us/article/8q8dab/15-million-connected-cameras-ddos-botnet-brian-krebs
http://www.darkreading.com/attacks-breaches/new-iot-botnet-discovered-120k-ip-cameras-at-risk-of-attack/d/d-id/1328839
http://www.darkreading.com/attacks-breaches/new-iot-botnet-discovered-120k-ip-cameras-at-risk-of-attack/d/d-id/1328839

419

 Common Domain Requirements
and the Security MVP
The IoT Base Platform MVP is defined with foundational building blocks

and the realization that the security requirements are achieved, up to

nearly 90% in many cases, through common silicon used across all the

domains. System design is dynamic, and decision vectors usually include

security, privacy, resiliency, availability, and safety. The MVP is a triad

of HW, FW, and SW capabilities that enables dynamic design where the

domain features from HW, FW, and SW are selected diligently to reflect the

trade-offs and optimize for the relevant decision vector. The NIST Cyber-

Physical Systems Framework4 for HW and SW co-design articulates trade-

offs between the cyber and physical components of the IoT system.

Matthew Rosenquist articulated in a blog post5 that although security

is valuable, it comes at a cost – the cost for new equipment, the cost for

training personnel on new technology, and the cost to develop new

processes to utilize the technology. But just because we do not pay the cost

to build security into our systems does not mean the cost goes away. We

still incur costs due to the risks we inherently adopt by rejecting certain

security features and the potential (and actual costs) to clean up after a

security incident. These choices leading to costs of failure determine the

risk management process as shown in Figure 6-2. A potential future cost of

a security incident must be weighed against the actual cost to add security

and the soft cost incurred by productivity impacts due to additional

security. Good security design involves teaming up with customers and

end users to understand these costs and balance the overall system to

achieve reasonable security, preventing or deterring the most egregious

4 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-
201.pdf

5 https://itpeernetwork.intel.com/security-is-about-balancing-tradeoffs/

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf
https://itpeernetwork.intel.com/security-is-about-balancing-tradeoffs/

420

and most likely threats while providing a useful and useable system.

Often ignored are the external costs where unrelated third-party entities

suffer the consequences of attacks, and one specific example is the DNS-

administrating company Dyn. For almost an entire day, Mirai botnet took

down the sites including Twitter, CNN, Guardian, Netflix, and so on whose

DNS services were being administered by Dyn.6 The optimal security is

a balance of cost, user experience, and risk. Since the IoT domains are

different, and the threats are ever evolving, and the user interface and

experience paradigms change, this balancing act becomes a dynamic

living act. The security MVP is only the start of that act. Engagement in the

domain and balancing domain-specific requirements is the process. The

detailed sections that follow articulate Intel’s perspective and engagement

in these IoT-specific domains.

Cost and
Maintenance

Risk and
Compliance

Productivity and
User Experience

Enterprises

Figure 6-2. Balancing security against cost, risk, and productivity

One additional comment is warranted to the reader at this point. It has

become a norm to employ complementary technologies such as FPGA

accelerators, Movidius Computer Vision IP, and ASIC accelerators to meet

the requirements from applications in various domain solutions. These

complementary technologies augment the base platform for increased

6 www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

421

performance, HSM7 needs, functional safety, and real-time latency

workloads. These technologies are outside the scope of this book, but

details on these technologies can be found on the Intel web site.8 Finally,

although we provide a reasonable overview of the use cases, threats, and

security objectives for the domains, the following coverage is not meant

to be comprehensive, and to do so would require a much more exhaustive

threat modeling exercise, with subsequent peer reviews, to refine the

threat model and design for specific products.

 Some Common Threats
Just as the domains share a common hardware and software security MVP,

the domains have threats that are common across all vertical domains as

well. These common threats are discussed in this section.

Device masquerading: A device employed or modified by a

hacker is tricked to identify as a legitimate system on the IoT network.

This sometimes can be extremely difficult to detect and rectify. The

consequences and methods employed to launch such an attack depend

upon the particular use case, and these idiosyncrasies are discussed next.

Boot integrity compromise: The pre-OS FW such as BIOS or

other boot loaders can be tampered with by modifying or replacing/

reprogramming the image on flash device. This can have serious

consequences since all other layers in the stack are on the top of this layer

in the bootstrapping sequence.

Offline storage–related attacks: Mass storage or any removable

storage media can be attacked offline by copying the media or stealing the

physical media device, and then sifting through the data to find secrets, or

using brute force techniques on keys or passwords to reveal sensitive data.

7 Hardware security module (HSM) for key storage and trusted cryptographic
operations

8 www.intel.com

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.intel.com

422

 Retail Solutions
The retail POS devices are becoming a part of the IoT domain, and

increasingly these devices such as the POS terminals, mobile payments,

and so on are connected to the Internet and accessed by cashiers and staff

using tablets and other mobile devices. In this section, we’ll discuss what is

required to be Payment Card Industry (PCI) compliant on Intel platforms

and a way to get there.

According to the PCI specification, the hackers are mainly interested in

stealing the cardholder data. “By obtaining the Primary Account Number

(PAN) and sensitive authentication data, a thief can impersonate the

cardholder, use the card, and steal the cardholder’s identity.”

Sensitive cardholder data can be stolen from many places including a

compromised card reader or data in a payment system database, snooping

the store’s wireless or wired networks. Each of these is a trust boundary,

and the assets need to be protected as they traverse each boundary.

Securing the cardholder data starts where it is captured at the point

of sale and as it flows into the payment system. The ideal approach is

refraining from storing any cardholder data. The protection should span

card readers, POS systems, networks and wireless access routers, payment

card data storage and transmission, and online payment applications and

shopping carts.

Not complying with PCI and the associated security objectives will

result in potential liabilities including the following: customer base

loses confidence and goes to other merchants resulting in decreased

sales, additional cost of reissuing new payment cards, losses from fraud

claims, higher incremental costs of compliance, legal costs, settlements

and judgments, fines and penalties due to financial regulation violation,

termination of ability to accept payment cards, lost jobs (C-suite security

and other positions), and in the worst case going out of business.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

423

The PCI Data Security Standard (DSS)9 version 3.2.1 high-level

overview is reproduced in Figure 6-3, and the Intel security assets that

enable building a PCI compliant device are discussed.

9 www.pcisecuritystandards.org/pci_security/

PCI Data Security Standard – High Level Overview

Build and Maintain a Secure
Network and Systems

1. Install and maintain a firewall configuration to protect cardholder data
Do not use vendor-supplied defaults for system passwords and other
security parameters

2.

Protect stored cardholder data
Encrypt transmission of cardholder data across open, public networks

3.
4.

Protect all systems against malware and regularly update anti-virus
software or programs
Develop and maintain secure systems and applications

5.

6.

Track and monitor all access to network resources and cardholder data
Regularly test security systems and processes

10.
11.

Maintain a policy that addresses information security for all personnel12.

Restrict access to cardholder data by business need to know

Restrict physical access to cardholder data
Identify and authenticate access to system components

7.
8.
9.

Protect Cardholder Data

Maintain a Vulnerability
Management Program

Implement Strong Access
Control Measures

Regularly Monitor and Test
Networks

Maintain an Information
Security Policy

Figure 6-3. High-level overview of PCI Data Security Standard

 Security Objectives and Requirements
Assets in a retail IoT device include the following:

• Data at rest and in transit: Cardholders’ data and

transactional information.

• Identity of the consumer: Personally identifiable

information (PII) should be stored under strict access

control, preferably using encryption for data-at-rest.

• Identity of the POS device: Device’s credentials are

essential to mitigate the remote hacker attacks and

to have a robust connection to the device cloud

infrastructure.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.pcisecuritystandards.org/pci_security/

424

• The hardware components: The HW BOM list in the

platform must always be protected via a transparent

supply chain during production and deployment and

guarded in the field as appropriate.

• The FW including pre-OS boot loader: The FW on the

platform is a critical asset.

• Kernel and user mode SW components: The OS kernel

and user mode SW components including applications

are all important assets.

 Threats
The PCI DSS standard has outlined high-level threat groups. Figure 6-4 takes

those groups and extends it to include responsive retail. System compromise

or theft can be realized by masquerading the retail POS device. Data at rest or

data in transit can be stolen by leveraging offline data and network sniffers/

monitors for traffic analysis. The provisioning step can be compromised or

missed/blocked updates can be leveraged to compromise the system. Identity

theft and credit card disclosure of payment information are equally important

concerns. The retail advertisement terminals can be compromised to display

graffiti or distorted images on digital bulletin boards. The runtime environment

of a retail POS or another device can be infected with malware to do extensive

persistent damage to the assets on the device and on the Cloud. The following

bills from California State Legislature mandate provisioning a unique password

and a device certificate for unique authentication before first use:

• California Senate Bill10 No. 327, CHAPTER 886 TITLE

1.81.26. SECURITY OF CONNECTED DEVICES,

1798.91.04. (b) (1) and (2).

10 http://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180SB327

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327
http://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB327

425

• California Assembly Bill11 No. 1906, CHAPTER 860

TITLE 1.81.26. SECURITY OF CONNECTED DEVICES,

1798.91.04. (b) (1) and (2).

VIRUS/MALWARE

CONTENT GRAFFITI

IDENTITY THEFT

SYSTEM COMPROMISE
OR THEFT

DATA THEFT

PROVISIONING/UPDATING

Figure 6-4. Threat groups of retail segment including responsive
retail

The same threats can be mapped to a typical platform stack shown in

Figure 6-5, and the mitigations using Intel technologies are also included.

The HW layer includes all the relevant HW components including the

System on Chip, storage, SRAM, scanner, communications modules, and

so on. The stack continues upward with boot loader FW, OS Kernel to

services to applications.

11 https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill_id=201720180AB1906

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB1906
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB1906

426

Threat #1: Allows hacker to easily break the integrity of the boot

firmware and OS image. Hacker infiltrates the system by subverting

execution flow. The mitigation is to implement Boot Guard as explained in

Chapter 3 to establish a chain of trust based on a HW Root of Trust. When

a FW is tampered and an attempt is made to boot with this unsigned FW,

the Boot Guard will detect and will hold the device in reset to prevent

further compromises of the sensitive assets.

Threat #2: Unauthorized actors could provision devices to their

preferences including usernames, passwords, password reminders, and

so on. The Intel Secure Device Onboarding technology could be leveraged

to provision the device persona and force to change the default passwords

with stricter ones and strong password reminders plus a dual factor

authentication. Refer to Chapter 4 for details on SDO.

Threats #3, #7: Transaction data, logging to POS server. This is a critical

threat for which an exploit could violate the P2PE requirements of PCI DSS

where the cardholder’s data could be obtained by hackers on the network.

Intel AES technology in the CPU can be used to encrypt the cardholder’s

Threats to Device – Retail POS

Rogue provisioning2 2

INTEL® BOOT GUARD

1

1
Enforced secure boot allowing
only signed & untampered
firmware to run

INTEL® SECURE DEVICE ONBOARD
Provides service that uses HW
key to secure the rendezvous
of device to its owner

INTEL® AES-NI
Enable AES computation
without compromising
performance

INTEL® PLATFORM TRUST TECHNOLOGY

INTEL® SOFTWARE GUARD
EXTENSION

fTPM enables cryptographic
keys to be securely stored in
tampered-resistant keys vault

PKI BASED ID (PTT ENDORSEMENT KEY)
Utilize unique HW based key for
secure channel establishment

CLOUD INFRASTRUCTURE
Automate FW/SW over-the-air
update

4

4

7

7

3
3

6

6

5

5

Unsigned firmware

Unauthorized device access

Insecure data-in-transit

Insecure key storage

Separate secure and
non-secure application realm

POS server

POS
apps

MSR SOC SRAM Scanner COMMSeMMC/
SDXC

Payment
apps

INV

Services (rmm, database, apps, IO broker)

OS

App

Services

Kernel
FW

HW

Bootloader

Figure 6-5. Threats to Retail POS devices with mitigation using Intel
HW security building blocks

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

427

information to enforce confidentiality. To increase the robustness of this

part of the solution, the encryption process can be done inside an SGX

enclave to protect from ring 0 or rootkit attacks.

Threat #4: Leaves the cryptographic keys used to protect platform

and owner secrets easily recovered or potentially retained in storage. This

is once again a critical task to protect the keys used for encrypting the

cardholders’ data by storing the keys in a PTT/TPM so that these keys are

never exposed to hackers.

Threats #5, #6: Weakness may grant remote hacker access to the

device and in turn local network from any remote location. This is a

powerful exploit, and mitigation requires strong device credentials such

as the Endorsement Key in PTT/TPM to be authenticated by device cloud

infrastructure without much manual intervention (to eliminate potential

and expensive human errors). All the POS devices should have the firewall

and intrusion detection systems implemented. The network routers both

wired and wireless must have firewall and intrusion detection SW actively

monitoring the network traffic for logging anomalies in real time and store

the data for analytics SW. It is important to have analytics SW to mine

these logs for patterns for zero-day or known vulnerabilities. A complete

platform security stack built pertinent to retail Solutions with Intel security

ingredients is shown in Figure 6-6.

Applications

Operating System

Virtual Machine
(Optional)

BIOS

Hardware

WHITELISTING

SYSTEM PROTECTION
VIRUS SCAN

SECURE OS

MALWARE PREVENTATION

ENCRPTION & DECRYPTION
INTEL® AES-NI

SECURE ENCRYPTION
INTEL® SECURE KEY

MANAGEABILITY
INTEL® AMT

BOOT ATTESTATION
INTEL® BOOT GUARD & BIOS GUARD

HARDENED OS
INTEL® OS GUARD

SECURE ISOLATION
HYPERVISOR

INTEL AMT/EMA/HDC

INTEL AMT/EMA

MANAGEABILITY

MANAGEABILITY

ENCRYPTION

Intel® Software Guard Extensions
(SGX)

PLATFORM PROTECTION
INTEL® PLATFORM TRUST TECHNOLOGY

INTEL® SOFTWARE GUARD EXTENSIONS (SGX)

Figure 6-6. Platform security stack built pertinent to Retail Solutions

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

428

At the HW layer, the manageability with Intel Active Management

Technology (AMT), secure boot with attestation, encryption, secure key,

PTT/TPM, and platform protection are required to be implemented.

UEFI/BIOS layer leverages the HW root of trust from Boot Guard and

extends the chain of trust (transitive) to the upper layers in the stack. The

hypervisor or VMM is optional; if present, it authenticates the VM pre-OS

FW and the OS VMs while leveraging the VT HW capabilities to provide the

necessary isolation between VMs. The OS is expected to be hardened by

leveraging the Intel HW security features such as OS Guard for preventing

ring 0 privilege escalation attacks, PTT for secure key storage, and AES

and SHA New Instructions for performant crypto operations. The OS can

also leverage the SGX for TEE applications and all the while enabling

the in-band manageability features via Intel AMT. The application layer

implements app whitelisting, virus/malware scanning, and so on.

The end-to-end data flow in a retail POS architecture is shown

in Figure 6-7. The entities involved include the payment terminals,

peripherals, the POS software inside an Intel-based platform, secure

channels of communication, service provider data centers, bank gateway,

and store servers.

POS Software

Service Provider
Data Center

Bank Gateway

Store Servers

2

1

1

3
3

4

5

TEE Applet

Figure 6-7. The end-to-end data flow in a Retail POS architecture

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

429

 1. Native devices pair (cryptographically) directly

with the applet for private/secure communications

which involves mutual authentication via digital

signatures and confidentiality through encryption/

decryption and integrity through sign/verify.

Establish secure channels from peripherals and

servers to process data through the TEE applet. The

TEE applet could be an SGX application enclave

running inside the TEE to protect the sensitive

and valuable code and the data. This will prevent

the exposure of credit card or other PII during

processing in the memory since the memory

contents are encrypted inline.

 2. Legacy devices should encrypt the data to the applet

using the Derived Unique Key Per Transaction

(DUKPT) with AES-256. DUKPT is a method to

manage the key between two endpoints; this key has

properties: unique per transaction, symmetric, is a

derived key from Base Derivation Key (BDK) known

to both endpoints. This key is used in the AES

algorithm for encryption and decryption. Currently

Triple DES (TDES) is being used, but according to

the guidance from NIST on Transitioning the Use of

Cryptographic Algorithms and Key Lengths, two-key

TDES is deprecated and three-key TDES should be

used only for 220 (64-bit) blocks and should not be

used after 2023.12

12 https://csrc.nist.gov/CSRC/media/Publications/sp/800-131a/rev-2/
draft/documents/sp800-131Ar2-draft.pdf

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

https://csrc.nist.gov/CSRC/media/Publications/sp/800-131a/rev-2/draft/documents/sp800-131Ar2-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-131a/rev-2/draft/documents/sp800-131Ar2-draft.pdf

430

 3. The Dock protects legacy insecure devices to

the applet; sample devices include magnetic ink

character recognition, keyboards, and barcode

scanner. This Dock performs as a proxy for the legacy

devices which inherently may be insecure and

abstracts the devices by consuming the data in the

clear and protecting it before sending to TEE applet.

 4. Data can be encrypted for transmission to bank

gateways or store servers. Use TEE applet to create a

safe place to process transactions and enact policies.

 5. Management servers manage policies and behavior

of the system. Through a secure channel from a

console to the applet, the provisioning of keys,

credentials, and policies is performed. This helps

in managing peripheral crypto keys and telemetry

data remotely and enables pull requests to access

transactions at the request of the retailer.

Design trade-offs: Considering the PCI standard and vectors,

functional safety is not a primary factor, but security and privacy are the

critical factors. As outlined in PCI DSS standard, the resiliency in terms of

mitigating physical attack threats is also applicable where a card reader

could be stolen and replace legitimate devices with fraudulent devices to

steal the card data.

 Standards – Regulatory and Industry
The PCI Digital Security Standard (PCI DSS) is one of the main standards

that mandate most of the preceding security objectives. The PCI DSS also

mandates FIPS 140-2 for secure storage of keys via a PTT/TPM.13

13 www.pcisecuritystandards.org/pci_security/

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.pcisecuritystandards.org/pci_security/

431

 Transportation Solutions14

The solutions in a vehicle can be grouped into Software-Defined Cockpit

(SDC) as shown in Figure 6-8. Intel Silicon and solutions enable building

SDC applications for the next generation of advanced automotive

electronics. The SDC itself can be subdivided into rear seat entertainment,

digital instrument cluster, in-vehicle infotainment, and advanced driver-

assistance system (ADAS). The rear seat entertainment solutions include a

DVD/Blu-ray player, virtual office, and connection to IVI front system and

mobile devices with Cloud connectivity.

The digital instrument cluster unit includes display for speed, fuel

level, odometer, trips, and so on. This cluster may also be able to project

images on the windshield (heads-up display) with alerts for low fuel or low

tire pressure via tire pressure monitoring system (TPMS).

The in-vehicle infotainment (IVI) unit includes the GPS-based

navigation system, audio/video entertainment systems, and connection

to mobile devices for phone communication and music with voice

recognition features. This unit also includes a backup camera and cameras

for parking assist. The unit may include gesture or touch inputs.

The advanced driver-assistance system (ADAS) is a complex system

of systems with features including blind spot monitoring, adaptive cruise

control, lane departure warning, cross traffic warning, brake assist and

collision avoidance, self-parking, and driver monitoring for fatigue or

undesirable distractions.

14 Credit: David Zage, Platform Solutions Architect from TSD for domain expertise
and the content.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

432

 Connected Vehicle Infrastructure
As the vehicles start communicating with the external environment

spanning more than just the Cloud, many IoT-related threats become

pertinent. In Figure 6-9, the vehicle communicates with many clusters

including GPS systems, Vehicle-to-vehicle (V2V) network, local repair shop

or dealership network, roadside assistance network, mobile devices, Radio

Data Systems, and Internet backbone via Internet service provider (ISP)

through 4G/5G wireless. Some of these network clusters such as repair shops

and roadside assistance may also connect to the Internet backbone.

The devices in a car communicate with different external entities in

regular and autonomous driving applications:

• Vehicle to vehicle (V2V): These communications are

occurring in real time between vehicles on the roads.

• Vehicle to infrastructure (V2I): These communications

are occurring between the vehicle and the

infrastructure such as dealership or an auto body shop

or a traffic management system.

In Vehicle Experience Solutions

Rear Seat Entertainment

Advanced Driver Assistance Systems (ADAS)

Entertainment system
Virtual office

Blind spot monitoring
Adaptive cruise control
Lane departure warning
Cross-traffic warning
Brake assist and collision avoidance
Self-parking systems
Driver Monitoring

Connection to IVI front system and mobile
devices (cloud connectivity)

Digital Instrument Cluster

Display speed, fuel level, trip miles and
more
Project images on the windshield, with
alerts for low fuel or tire pressure (HUD)

In-vehicle Infotainment (IVI)

Navigation systems, radios and
Entertainment systems

Multiple cameras for surround-view
parking assist
Gesture Recognition / Touch (HMI)

Back-up camera

Connection to mobile devices for calls,
music and applications via voice
recognition

Figure 6-8. Software-Defined Cockpit – in-vehicle experience solutions

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

433

• Vehicle to device (V2D): These communications

are occurring between a vehicle and a device such

as smartphone over Bluetooth, remote control key,

wireless diagnostics device, and so on.

• Vehicle to Cloud (V2C): These communications are

occurring between a vehicle and a private or a public

cloud to retrieve or upload the recent traffic/weather

updates via GPS and Radio Data interfaces.

CONNECTED INFRASTRUCTURE

GPS
V2V

Local repair
shop network

Internet
Backbone

Mobile
Devices

Radio Data
Systems (RDS)

Local
Service

Local
Service

AP

Access Point (AP)

Uni-directional
Communication

Bi-directional
Communication
Authenticate,
encrypt/decrypt/sign/verify

Open AP

External systems and networks support new
services and interactions ... and increase risk.

Road Side
Unit (RSU)

ISP

ISP

ISP

BS

BS

Roadside Assistance

Electric
Chargers

Connectivity Is More than Just Devices and the Cloud

Figure 6-9. Connected vehicle infrastructure – more than just devices
and Cloud

 Security Objectives and Requirements
• Each electronic control unit (ECU) in the connected

vehicle is expected to have the following security attributes:

• A unique, hardware-based ID that’s immutable and

standards compliant

• Capability for mutual authentication

• A HW root of trust

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

434

• Protected Boot (verified and measured)

• Secure storage for key material

• Tamper detection, prevention, and policy

enforcement

• A Trusted Execution Environment

• All intra-car information has the option of integrity

(hash, HMAC), confidentiality (encryption),

authentication (digital signatures), and nonrepudiation

(digital signatures).

• All data pertaining to users/occupants is encrypted

to maintain privacy.

• All inter-car information is authenticated and

has integrity (hash, HMAC) and confidentiality

(encryption).

• Near real-time, secure over-the-air updates for SW

and FW.

• All safety-critical operations are partitioned; other

services are virtualized for both efficiency and security.

• Car network

• Runs Anomaly Detection SW on the device and

the gateway within the vehicle for detecting known

and zero-day vulnerabilities. This SW could also

connect to a Threat Intelligence database on the

Cloud for cross-referencing the signatures for

quantifying and classifying against known viruses

and malware signatures/patterns.

• Provides whitelisting for identities allowed to

authenticate and send data externally

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

435

 Threats
With the preceding security objectives in the context, let’s discuss the

attacker profiles, threat surfaces, and specific threats. Figure 6-10 depicts

five attacker profiles with diverse technical knowledge, access levels, and

goals. A car thief possesses varied technical knowledge with wireless and/

or physical access with a goal of stealing the car which may entail disabling

the alarm and jumping the wires to start the car and drive off. A car thief

may employ remote attacks through Telematics Control Unit (TCU)/IVI

and On-Board Diagnostics (e.g., On-Board Diagnostics (OBD-II) routinely

accessed during service or tuning in the clear).

A hacker may possess medium to high technical knowledge with a

remote/wireless access and may operate with goals to either get fame

or steal any PII including passwords to music, credit card payment

information, and so on. A hacker may employ device masquerading

and launch remote attacks through Telematics Control Unit (TCU)/IVI.

A hacker may also go after information disclosure of third-party

algorithm/IP.

A criminal may possess medium to very high technical knowledge with

wireless and/or physical access with an intent to harm the passengers and

the bystanders. A criminal may employ remote attacks through Telematics

Control Unit (TCU)/IVI and On-Board Diagnostics (e.g., OBD-II).

A workshop technician may possess medium to very high technical

knowledge with physical access and will operate with a goal to modify the

settings such as rewinding the odometer, fuel usage/statistics, and so on

by leveraging the On-Board Diagnostics (e.g., OBD-II). A similar attack

profile is where a persistent vehicle alteration is done by a legitimate

user to modify the original design by either increasing the performance,

jailbreaking, customizing the user interface, adding new regions into DVD/

Blu-ray player, and so on.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

436

A counterfeiter or a competitor may possess high to very high technical

knowledge with physical access and may wish to study the design/

architecture to reverse engineer and steal Intellectual Property or clone

the device. This attacker has physical access to the device in a laboratory

environment with access to sophisticated tools/logic analyzers, IR/

thermal scanning, differential power analysis, and so on to monitor the

vehicle networking bus traffic using On-Board Diagnostics (e.g., OBD-II)

interfaces. The potential assets to be recovered could be intellectual

property spanning Silicon, board-level HW, FW, and OS-level ingredients.

Attacker Access Goal
Technical
Knowledge

Varied

Medium - High

Medium - Very high

Medium - Very high

High - Very high

Wireless/Physical

Wireless

Wireless/Physical

Physical

Physical

Steal car

Fame

Harm passengers

Modify settings

Study architecture

Car-thief

Hacker

Criminal

Workshop/tuner

Counterfeiter/
competitor

Figure 6-10. Attacker profiles in the Transportation Solutions domain

Automotive Threat Surfaces: Refer to Figure 6-11 for distinct hackable

areas in a vehicle. These areas can be organized into three groups,

physical access, in-vehicle network structure, and wireless/remote access

to the vehicle.

Physical access

• On-Board Diagnostics (e.g., OBD-II routinely accessed

during service or tuning in the clear)

• Entertainment media (e.g., DVD, USB, etc.)

• Access to ECUs

• External sensors (vision, acoustic, radar, LIDAR, etc.)

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

437

In-vehicle network structure

• Connections to OBD-II

• Vehicle networking bus (CAN, KLINE, MOST, Ethernet

AVB, etc.) connections to various ECUs

Wireless access to vehicle

• Keyless entry

• Bluetooth and Bluetooth-connected devices

• TPMS

• Cellular, Internet, and applications (V2X)

• Radio/audio system(s)

• Remote telematics

15 DISTINCT HACKABLE AREAS

DSRC Based Receiver
(V2X)

Passive Keyless Entry

Remote Key

TPMS

ADAS System ECU

Lighting System ECU
(Interior & Exterior)

Airbag ECU

OBD II

USB

Bluetooth

Remote Link Type App

Vehicle Access System ECU

Steering & Breaking ECU

Engine & Transmission ECU

Smartphone

Figure 6-11. Distinct hackable areas in a vehicle

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

438

 Mitigations
Mitigating the preceding threats would require a defense in depth

approach as shown in Figure 6-12, beginning with securing the vehicle

systems and followed by securing the communications:

Securing the vehicle systems includes the following assets:

• Sensors and actuators: All the sensors and actuators

must be authenticated (digital signatures) before

communicating and protect the integrity (sign/verify

using SHA3) and confidentiality (using AES-256) of the

valuable data on the bus interfaces.

• Computer vision and AI (path planning): The machine

learning or deep learning assets such as the weights,

training data, test/validation data, models, and so

on must be protected by encrypting the assets on the

storage and decrypting into the memory in a TEE. The

details for this architecture are outside the scope of this

book.

• Networks and ECUs: The networks and any gateways

must have firewalls and intrusion detection systems,

and the ECUs must be securely booted and deploy the

HW security building blocks as listed here.

Securing communications:

• Vehicle to everything (V2X): All the devices on the

V2X interfaces must be mutually authenticated

(using digital signatures) before communicating and

protect the integrity (sign/verify using SHA3) and

confidentiality (using AES-256) of the valuable data on

the bus interfaces.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

439

• Maps, code, and data to/from the Cloud: The maps

database and access to online databases must be

authenticated and authorized via digital signatures and

login credentials. Any data exchange with the Cloud

must also be subjected to the same protections.

• Infotainment, mobile devices, wearables:

The infotainment devices and mobile devices

including wearables/smartphones/others must be

mutually authenticated (digital signatures) before

communicating and protect the integrity (sign/verify

using SHA3) and confidentiality (using AES-256) of the

valuable data on the bus interfaces

DEFENSE-IN-DEPTH

GPS

V2X antenna

Occupant safety
Surround sensors
Brake control system
Electric power streering
CAN bus

Electric Chargers Mobile Devices

ISP

BS

BS
Baseline IoT Security Architecture

SO
FT

W
AR

E
HA

RD
W

AR
E

Tr
us

t a
nd

 C
on

te
xt

Trusted Execution Environment

Hardware and Software Identities

Protected Boot Protected Storage

Over-the-air updates
IDPS/anomaly detection
Network enforcement
Certificate management services
Anti-malware and remote monitoring
Biometrics

Fast cryptographic performance
Device identification
Isolated execution
(Message) authentication

iOS

Figure 6-12. Defense in depth architecture

The threats explained earlier can be effectively mitigated by leveraging

the Intel HW security building blocks shown in Figure 6-13. The boot

integrity of the automotive systems can be secured with protected

boot (verified and measured boot). The protected storage feature can

be leveraged to store the keys securely and perform low bandwidth

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

440

encryption/decryption and sign/verify of the message data. For higher

robustness and high bandwidth use cases, the authentication of data

whether it is messages or others can be achieved in the TEE such as SGX

by invoking SHA-NI in the CPU instruction set.

Hardware security building blocks:

 1. Unique Device ID using PKI compliant keys/

certificates via PTT/TPM.

 2. True RNG using the RNG instructions in the

CPU. With reasonably good entropy to be used as a

nonce or a seed for subsequent key generation.

 3. Verified boot using Boot Guard to ensure a HW Root

of Trust and a robust transient chain of trust.

 4. Secure storage using PTT/TPM for both data and

keys.

 5. Trusted Execution Environment using SGX.

 6. Cryptographic acceleration using AES and SHA new

instructions.

 7. Key generation using PTT/TPM for application keys.

 8. Secure clock using tamper-resistant HW supplied

timers for precise logging of retail transactions.

 9. Monotonic counters – HW supplied and tamper-

resistant counters that are guaranteed to

increment only.

 10. Secure debug for locking/disabling the debug

ports at the factory and ability to unlock/enable to

securely debug.

 11. Physical tamper detection and protection against

side-channel attacks.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

441

Design trade-offs: For the Transportation Solutions domain,

functional safety, security, privacy, and resiliency are all pertinent. The

automobiles have a long life and are safety/life critical by design; it is

essential to integrate safety and security to prevent false positives and false

negatives from functional safety infrastructure. There is also a need for

the automobiles to detect the physical tamper and send a “kill pill” to the

platform to trigger a lockdown of the security engine and vault the secrets

to avoid unauthorized disclosure. This is critical so that Break Once Run

Everywhere (BORE) attacks to retrieve the universal keys are mitigated.

 Standards – Regulatory and Industry
The SAE J3101 is one of the main government regulations that mandate

most of the preceding security objectives. FIPS 140-2 L2/3 and NHTSA are

also considered vital for the US markets.

Defense in Depth

Hardware security building blocks

Platform boot integrity and chain of trust

Secure storage (keys and data)

Secure communication

Secure debug

Tamper detection and protection from
side channel attacks

Figure 6-13. HW security building blocks for defense in depth

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

442

 Industrial Control System (ICS)
and Industrial IoT (IIoT)
As the manufacturers and producers seek to respond to greater pressures

for higher production rates, lower production costs, and the ability to

compete in a global marketplace, they continue to embrace the efficiencies

created by a transition to Industry 4.0 and the Industrial IoT (IIoT). These

are broad terms that encompass the concept of a combined information

technology (IT) and operational technology (OT) and include flexible

automation of OT processes, application of artificial intelligence to OT

problems, automated device and process orchestration, and higher

resiliency in the presence of system failures, to name a few of the more

prevalent topics. In Figure 6-14, a notional diagram of an IIoT architecture

is portrayed for the purpose of identifying security concerns and

discussing threats and security objectives.

Data Ingest

Data Ingest

Analysis

Execution
Containers

Pr
ot

oc
ol

s
Pr

ot
oc

ol
s

Pr
ot

oc
ol

s

Manage

Orchestration
& Workload

Mgmnt

Security
Management

Security
Intelligence &

Analytics

Device &
Asset

Mgmnt

Network
Security

Security Policies &
Metadata

Device
Attestation

Storage
Cluster

Data

HMI

Controller

Container
Images

Apps

High-Availability Virtualization

High-Availability Virtualization

Compute
Cluster

Agent

Industrial Ethernet
ProfiNET
Time-Sensitive Network
Modbus

Wi-Fi + LP WiFi
Bluetooth + BTLE
3G/4G/LTE (GPRS)
Zigbee®, Zwave®

RFIG

Security

Manage

Agent

Security

Manage

Agent

Security

Simple Device Gateway

Smart Gateway
OT Control Center

IT Control Center
Service Gateway

SC
AD

A
Sy

st
em

(B
ro

w
nf

ie
ld

)

Re
al

-T
im

e
Se

rv
ic

e
Bu

s

Command

Command

Figure 6-14. Notional Industrial IoT architecture

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

443

This architecture in Figure 6-14 is notional because it is not created

from any actual deployment nor is it intended to portray a particular type

of industrial plant. Instead it depicts different types of components in an

industrial setting that are typical of the devices Intel produces or contributes

components for in the IIoT. The notional diagram depicts an Edge-to-

Cloud and a SCADA-to-Edge-to-Cloud architecture. On the left side of the

diagram are various gateways that control devices. Simple devices such

as meters, tank levels, temperature sensors, and vibration sensors can be

controlled using a simple gateway. These gateways may control many such

devices simultaneously. More complex devices such as industrial robots

or CNC machines require more advanced smart gateways. These devices

have the ability to load different types of control programs and workloads

and may include real-time control loops that encompass line and human

safety protocols. Finally, existing systems also need connectivity to the

back-end IIoT systems and are connected through a service gateway that

supports existing protocols and may translate those data elements into

different forms to be carried in newer protocols and reformatted messages.

All three types of gateways may be connected by various communications

technologies including wired and wireless technology.

The back-end systems are still logically segmented into OT and IT

concerns, though in the IIoT they may share some physical computing

devices and servers. OT control is focused on orchestration and workload

management and providing clear visibility of the systems and operations

to OT engineers.

 Security Objectives and Requirements
Assets in the IIoT gateways are included in the following security

objectives, where sub-bullets are security objectives derived from top-level

security objectives. These objectives are aligned with the IIC.15

15 Industrial Internet Consortium. Industrial Internet of Things Volume G4: Security
Framework. September 2016. www.iiconsortium.org/white-papers.htm

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.iiconsortium.org/white-papers.htm

444

• Data at rest and in transit: All commands received by

the gateway from the OT/IT control centers must be

protected from modification (integrity), duplication

(replay), and optionally disclosure (confidentiality).

• Identity of the device: All devices shall maintain at

least one identity public and private key pair used to

uniquely identify the device to other entities.

• Identity of the control authority: All commands

received by the gateway from the OT/IT control centers

must be verified as authentic by comparing the signing

public key with authorized trust anchor keys. This

security objective and the previous one imply the

following derived security objective to address trust

anchors and identity keys.

• Protection of trust anchors and identity keys:

All identity keys and trust anchors must be

securely stored in the gateway to prevent use by

unauthorized software processes/users. A trust

anchor key is a public key of an entity (like the OT

control center) that is inherently trusted by the

device; an identity key is a public and private key

pair that is used to prove the device’s identity to

other entities. Protection of identity keys should

include limiting the use of the identity key to a RoT

(see Chapter 3).

• Integrity of the boot system and operating system:

Verification of boot firmware and software, with secure

storage of trusted measurements collected during boot,

shall be enforced at every soft and hard boot event.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

445

• Trusted reporting of device health: Devices shall be

capable of reporting their current health including

measurements from their last boot cycle and any

software or firmware updates performed since their

last boot. This reporting must include a proof of origin

signature that unambiguously attests to the source

of the report (Root of Trust for Reporting) and all

claimants producing data for the report (Root of Trust

for Measurement).

• Verification of software updates, configuration,
and workloads: All updates to the device shall come

from an authorized source verified against one of the

device’s trust anchors; updates shall be protected from

modification (integrity) and verified by the device prior

to first use that the update has not been corrupted.

Updates include new or updated software and

firmware, configuration files, and workloads.

• Whitelisting of applications and network endpoints:

Devices shall maintain a whitelist of authorized

software and the identity and address of network

endpoints that are authorized to communicate with the

device, and the device shall prevent the execution of

any software not on the whitelist and ignore/terminate

any communication streams from network endpoints

not on the whitelist.

• Management of connected peripherals: Devices shall

maintain a whitelist and authorized configuration of

all connected peripherals, whether wired or wirelessly

connected to the device, and ignore or disconnect any

peripherals not authorized to be connected with the

device.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

446

• Storage integrity: Devices shall maintain the integrity

of stored elements including software, configuration

files, workloads, data measurements, and processing

logs; devices shall prevent unauthorized access to

stored elements.

Design trade-offs: Industrial systems are designed specifically for

harsh environments and for interoperability with existing systems and

devices. Requirements around these constraints dominate the design

decisions. Oftentimes, this means removing security protections, like

encryption, because end systems cannot perform those security functions

or intermediary systems are dependent on receiving this data unencrypted

and do not have the capability to add this layer of protection. In addition,

industrial type systems tend to require low power profiles, either because

they are deployed in a remote location (oil pumping station) with limited

power capabilities or crowded together in a small space where heat from

power dissipation is considered a problem. In both cases, lower powered

devices tend to have fewer security capabilities. The important trade-off

in these cases is to support security features that address the most critical

threat – identification of proper control authorities using protected trust

anchors for authentication of commands, configuration, and software

update.

 Threats
The threats to IIoT systems are composed of both external threat actors

and insiders. Both groups can mount destructive attacks on IIoT systems,

though most threat analysis focuses on external attackers. Figure 6-15

identifies the primary threats and consequences.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

447

Threat #1: Device hijacking – An attacker uses vulnerabilities in the

device software to inject their own software or firmware on the device and

corrupt data, stop executing processes, falsify health or data reporting, or

disrupt the industrial operations flow.

• Mitigation: Use of advanced containment techniques

to isolate software, including virtualization, containers,

and TEEs. Ability to restart workloads or execute

workloads as microservices limits the attack surface

and time an attack can be active.

Threat #2: Device masquerading – An attacker creates a digital twin

of the real device and intercepts or copies data to discover proprietary

information or to deny the real device access to important information,

commands, or workloads.

Threat
Device Hijacking

Threat
Application Level
Denial of Service

(PDoS)
Enterprise or Outside World

Least Trusted

Most Trusted

Alarm Server

Application
Server

Process Control Network Process Control Network

HMI Operator
Station

Database
Server

Controller Server

Countermeasures
Device Identification
and Access Control,
Security Lifecycle

Management

Countermeasures
Authentication,

Encryption, Access
Control and

Application Level
DDoS Protection,

Security Monitoring
and Analysis

Threat
Permanent Denial of

Service (PDoS)

Threat
Man in-the-Middle

Countermeasures
Authentication,

Encryption, Access
Control and

Application Level
DDoS Protection,

Security Monitoring
and Analysis

Countermeasures
Authentication and
Encryption, Security

Lifecycle
Management

...

...

...

...

...

...

...

...

...

...

...

...

DMZ Firewall

SCADA Network

Gateway

Engineering
Station

Station 1

An attacker gains control of the robotic arm
and alters the original programmed

manufacturing flow.

Attacker gains control of the active robot
to spoof the status, setting the machine
to “offline” and allowing safety doors to

open, even though the robot is
still in operation.

Station 2

Figure 6-15. Primary IIoT threats and consequences16

16 Diagram from www.rambus.com/iot/industrial-iot/

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.rambus.com/iot/industrial-iot/

448

• Mitigation: Device identity and mutual authentication

for all communications flows from the OT/IT center

are vital to prevent these attacks. Physical and logical

protection of the device’s identity credentials prevents

an adversary from stealing credentials. Storage of

a device’s unique identity credentials within a TEE

is required to prevent the use of a digital twin to

masquerade as the real device.

Threat #3: Application-level data tampering and denial of service –

An attacker uses metadata spoofing or replay, SQL injection attacks, or

resource exhaustion attacks to trick a device into performing an improper

action or creating a temporary DoS attack on the device.

• Mitigation: End-to-end authentication of all command

flows and proper whitelisting of network endpoints are

critical to preventing such attacks. Recognizing and

responding to DoS and DDoS network attacks requires

network infrastructure and the ability to reconfigure

network components to isolate and quarantine

misbehaving devices.

Threat #4: Permanent denial of service (PDoS) attacks – An attacker is

able to inject a firmware update or critical operating system update that

damages the hardware of the device or takes the device offline requiring

depot-level service to repair the device.

• Mitigation: All updates and changes to the device

require an authorized command from the OT that

is cryptographically verified from a secured trust

anchor on the device. Device management agents with

privileged capabilities on the device must not also have

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

449

direct network capability, in order to reduce network

attacks that also give attackers elevated privileges on

the device, because such elevated privileges allow an

attacker to perform actions that can modify the base

firmware and software on the device.

Threat #5: Tampering and information disclosure of OT data – An

attacker modifies or collects data flowing between the OT center and a

device, exposing proprietary data.

• Mitigation: All data between the OT/IT centers and the

device should include confidentiality protection (end-

to-end security), but minimally must include integrity

protections.

 Standards – Regulatory and Industry
There is not one standard that defines the Industrial IoT (IIoT), and

within different segments of the industrial industry there are different

regulatory or standards groups provide specific guidance and direction.

It is not possible to cover all of these groups here. Generally, standards

and industry groups attempt to create a set of interoperable frameworks

and middleware, along with connectivity and data or protocol standards

that enable the creation of heterogeneous system of systems to enable the

IIoT. Figure 6-16 provides an overview of the major standards influencing

Intel designs.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

450

 Digital Surveillance System
Information security in digital surveillance systems (DSS) became a public

problem in 2015 and 2016, culminating in the Mirai DDoS attacks, the largest

botnet-based distributed denial of service attacks ever at that time in which

two separate attacks took Akamai and Dyn (and all their customers) offline

for hours. Because surveillance devices often need to be accessible over the

Internet, not to mention that the industry moved only recently from analog

interconnections to digital IP interconnections, information security is a

new problem for the DSS segment. What can compound this problem is the

industry is a physical security–driven industry (as opposed to IT driven), and

the industry’s expertise in cybersecurity for surveillance systems has lagged

the general Internet cybersecurity awareness.

IIOT System Standards

IIOT Middleware Standards

ISA-95 Enterprise Control System Integration
ISA-62443 Security for Industrial Automation and Control Systems
IIC Industrial IOT Standards

OMG Data Distribution Service
OMG Unified Component Model

IIOT Protocol Standards

IIOT Connectivity Standards

IETF CoRE / CoAP
MQTT

4-20mA Loop
Modbus
ProfiBUS
ProfiNET
TSN Ethernet

IEEE 802.15.4WiFi
Bluetooth
2G/3G
4G/LTE
5G

OPC-Unified Architecture

The Open Group – Open Process Automation (OPAF)

Figure 6-16. Common IIoT standards, middleware, protocols, and
connectivity standards

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

451

The DSS segment spans more than just traditional building

surveillance and closed-circuit TV (CCTV) systems. DSS includes mobile

surveillance around vehicles and human beings, including vehicular

cameras and emergency response body camera systems. And extending

beyond simple surveillance, DSS includes the use of camera systems in

smart cities for intelligent traffic control and smart toll collection systems.

As briefly discussed in the last section, the use of camera systems in retail

can aid a business in understanding customer experiences in brick-and-

mortar retail establishments, adding extending information to the business

intelligence systems that improve customer experience, inform decisions

on product placement, and aid the design of store layout. As usage of

these DSS systems increase, the opportunity for a repeat of the attacks like

Mirai, Persirai,17 Devil’s Ivy,18 and Peekaboo19 can become more of a threat.

Intel®’s robust hardware-based integrated security provides a capability

stack which improves system security.

17 Trend Micro. May 9, 2017. Persirai: New Internet of Things (IoT) Botnet Targets IP
Cameras. https://blog.trendmicro.com/trendlabs-security-intelligence/
persirai-new-internet-things-iot-botnet-targets-ip-cameras/

18 Senrio. July 18, 2017. Devil’s Ivy: Flaw in Widely Used Third-Party Code Impacts
Millions. https://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-
third-party-code-impacts-millions

19 Threatpost. September 17, 2018. Zero-Day Bug Allows Hackers to Access CCTV
Surveillance Cameras. https://threatpost.com/zero-day-bug-allows-
hackers-to-access-cctv-surveillance-cameras/137499/

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-code-impacts-millions
https://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-code-impacts-millions
https://threatpost.com/zero-day-bug-allows-hackers-to-access-cctv-surveillance-cameras/137499/
https://threatpost.com/zero-day-bug-allows-hackers-to-access-cctv-surveillance-cameras/137499/

452

In Figure 6-17, the network architecture of a typical DSS system is

portrayed. Video flows from the camera to a managed switch where

many devices may actually be connected, including other servers and

individual laptops. The video data is typically separated from other traffic

on the managed switch via a protected VLAN. This does not encrypt or

otherwise protect the traffic or video streams, it merely creates a different

logical segment on the network reserved only for video traffic. Depending

on the type of managed switch, this may not present much difficulty for

an attacker to overcome. Besides the cameras, a network video recorder

(NVR) video management system (VMS) is also connected to the managed

switch. This system enables the recording of multiple video streams to

camera1

monitor

monitor

NVR VMS

Video Storage / Analytics Server

Video Storage / Analytics Server

Edge / Cloud on premises
Cloud

Internet Modem / Router

ISP

Cloud

ISP Client access

Download stream
Upnp
Telnet

Port forwarding
DDNS

Cloud Phone Home
VPN

GP Server

Laptop

camera2
camera3 camera4

Multifunction Print Device
i Phone

Managed Switch

Protected VLAN

ISP network or
internet WAN

WAN public internet

General Use LAN General Use LAN

Figure 6-17. Digital Surveillance System (DSS) typical network
architecture

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

453

a storage array. There is typically a local storage array also connected

to the managed switch on the VLAN, but a remote storage array in the

Cloud provides long-term storage. This means that the NVR VMS and

the local storage device are involved in uploading the video streams to

the Cloud. Viewing of the video streams may be done locally, off the NVR

VMS system, or remotely. Remote access may be enabled to the NVR VMS

system, or more may be provided only from the Cloud, depending on the

network security at the local installation and the security features enabled

on the NVR VMS.20

From the network architecture in Figure 6-17, it is also seen that

input to the NVR VMS may come from devices other than video cameras.

Multifunction print devices are capable of capturing scanned images

and using the NVR VMS to store those images for the user. Additionally,

a phone can be used to pipe in multimedia including audio only, audio

and video, or other encoded streams as a download service (where

the phone is acting as a modem) and supply those inputs to the NVR

VMS. These input streams are important to understand in the overall DSS

segment, since maintaining security for devices other than IP cameras

needs to be incorporated into the network security, monitoring, and

patch update systems.

The Cloud segment of the DSS system includes analytics and advanced

artificial intelligence (AI) algorithms used to process media files (audio,

video, and still image) and collect data or file/index media according to

criteria. This section does not address cloud security concerns, which must

be properly accounted for in any DSS system. Cloud security is adequately

addressed by other resources.

20 Credit: Jody Booth, Platform Solutions Architect, DSS team, IOTG, Intel – source
of DSS Network Architecture diagram

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

454

 Security Objectives and Requirements
Using Figure 6-17 as the target for security analysis, the DSS segment

includes the following security objectives, which focus on the primary

video and audio assets in the system:

• Data at rest and in transit: All incoming data streams

received by the NVR VMS from the managed switch

must be protected from modification (integrity),

duplication (replay), and disclosure (confidentiality).

• Identity of the device: All devices attached to the

managed switch should be uniquely identified; the

use of MAC addresses is not considered secure as

these can be spoofed by a network adversary. Devices

should maintain at least one identity public and

private key pair used to uniquely identify the device to

other entities and used to set up protected (integrity

protected) streams to the NVR VMS.

• Integrity of the boot system and operating system:

Verification of boot firmware and software, with secure

storage of trusted measurements collected during boot,

shall be enforced at every soft and hard boot event

for all elements of the system, including peripherals

connected to the managed switch, the NVR VMS, and

the local storage array.

• Trusted reporting of device health: Devices shall be

capable of reporting their current health including

measurements from their last boot cycle and any

software or firmware updates performed since their

last boot. This reporting must include a proof of origin

signature that unambiguously attests to the source

of the report (Root of Trust for Reporting) and all

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

455

claimants producing data for the report (Root of Trust

for Measurement). This reporting should be collected

by the NVR VMS system when devices connect to

record/store their multimedia streams.

• Verification of software updates, configuration,
and workloads: All updates to the device shall come

from an authorized source verified against one of the

device’s trust anchors; updates shall be protected from

modification (integrity) and verified by the device prior

to first use that the update has not been corrupted.

Updates include new or updated software, firmware,

and configuration files.

• Whitelisting of network endpoints: Devices shall

maintain a whitelist of authorized network endpoints

that are authorized to communicate with the device, and

the device shall ignore/terminate any communication

streams from network endpoints not on the whitelist.

• Management of connected peripherals: The managed

switch shall maintain a whitelist of all connected

peripherals, whether wired or wirelessly connected to

the switch, and ignore or disconnect any peripherals

not authorized to be connected with the device.

Authentication of connected devices should be

performed via cryptographic credentials, not merely

MAC or IP addresses which can be spoofed.

• Storage integrity: Devices shall maintain the integrity

of stored elements including media streams, media

metadata, software, configuration files, and processing

logs; devices shall prevent unauthorized access

to stored elements. Particular care must be taken

to protect private keys and symmetric encryption

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

456

keys that are used for signatures, in transit data

confidentiality and integrity or storage confidentiality

and integrity. Many systems are required to

produce evidence (surveillance videos, body cams,

vehicle cams) and this evidence must provide

cryptographically assured provenance of the media

files and the media file’s metadata which ensures those

data items are free from tampering. This protection

is paramount to support legally binding evidentiary

claims for authenticity and originating source.

Design trade-offs: DSS systems, especially the end collection devices

(cameras and audio recorders), are extremely cost sensitive, yet must

compete on the ability to collect data in various formats and transmit that

data over the network. Those two primary goals translate to specialized

hardware capabilities. But the end devices must also operate on very

limited power budgets, not unlike the industrial systems, and therefore

design trade-offs tend to remove the majority of the security features.

Based on the history of attacks these systems have encountered, protection

of the software running on these devices are most important. Protected

trust anchors that authenticate control authorities and authorize firmware

and software updates have the most effect on maintaining security for

these devices. Back-end infrastructure, such as the video recorders,

control systems, and storage arrays, are normally standard off-the-shelf

server class devices that can utilize the full suite of hardware and software

protections available on the commercial market.

 Threats
Threats to DSS systems are primarily from outside network adversaries.

However, from some systems, privileged insiders may need to be included in

the threat analysis, especially when such DSS systems are used for building

or other surveillance, and a privileged insider can be coerced, bribed,

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

457

or forced to delete or modify evidence captured by the NVR VMS. Stolen

credentials can also make a network outsider appear to be an authorized

insider. The following threats should be considered in any DSS system:

Threat #1: Device hijacking – An attacker uses weak authentication

credentials (Mirai attack) to take control of a peripheral device on the DSS

system; or an attacker uses vulnerabilities in the peripheral device software

(Devil’s Ivy or Perisai attacks) to inject their own software or firmware on

the device and stop media capture, falsify metadata, or misuse the device

computing power to perform other actions (mine for Bitcoin, perform a

DDoS attack).

• Mitigation #1: Device credentials must be changed prior

to installation and fielding of devices. Intel’s Secure

Device Onboarding protocol provides a fast and secure

mechanism to provision devices with new credentials

and configuration without requiring specialized or highly

skilled system installation crews. Devices must never

have default credentials or default management logins.

Inspection of open ports and SNMP capabilities are

required to ensure no unauthenticated or easily guessable

password credentials are available to an attacker.

• Mitigation #2: Although this threat is virtually the same

as seen in other segments, the mitigation requirements

due to power limitations and smaller compute often

prevent using TEEs or software containers to prevent

or limit the impact of compromised software. Frequent

health checks on the device firmware are required to

monitor for any potential zero-day attacks, and response

to firmware corruption requires signed updates using a

hardware root-of-trust (RoT) that cannot be modified by

an attacker, even one that replaces the firmware through

physical attack. Careful thought and study of recent

attacks (Devil’s Ivy and Perisai) must be done.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

458

Threat #2: Device masquerading – An attacker creates a digital twin

of the real device and jams or blocks transmission from the real device to

inject false media streams into the system.

• Mitigation: Device identity must be used to set up mutually

authenticated streams from the collection peripherals to the

NVR VMS system; additionally the managed switch should

perform access control on all connected devices. Physical

and logical protection of the device’s identity credentials

prevents an adversary from stealing credentials and

creating an evil digital twin. Storage of a device’s unique

identity credentials within a TEE is required to prevent the

use of a digital twin to masquerade as the real device.

Threat #3: Permanent denial of service (PDoS) attacks – An attacker is

able to inject a firmware update or critical operating system update that

damages the hardware of the device or takes the device offline requiring

depot-level service to repair the device.

• Mitigation: All updates and changes to the device

require a signed update package that cryptographically

verifies against a secured trust anchor on the device. No

changes to the software, and especially the firmware,

can be made without a signed package update

command that comes from a trusted, authenticated

source. Additionally, software and firmware updates

must be protected against rollback attacks, where an

adversary installs validly signed but older software

versions that install an old security vulnerability onto

the device. Rollback attacks must be prevented by using

a protected value to store the software version number

for the currently installed software/firmware, and this

must be verified against the integrity-protected software

version found in the signed software update package.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

459

Threat #4: Unauthorized access to surveillance data – An attacker

gains access to surveillance footage that includes private or confidential

information to which that attacker should not have access.

• Mitigation: Proper access control for all surveillance

footage is required. Best practice is to encrypt

such footage and provide access control on the

cryptographic keys. This ensures that all copies of

the footage are equally protected, including backups.

This of course shifts the burden of access control

to the keys themselves. Proper key storage should

include hardware-based protection with two-factor

authentication to access the keys. Since backups are

encrypted, the backup storage of keys becomes an

issue. Having cold or warm sites with hardware security

modules (HSM) that are unlocked with smartcards or

other hardware tokens is best practice.

 Standards – Regulatory and Industry
There are two primary industry standards organized around IP cameras

and DSS: ONVIF and PSIA.21 ONVIF (Open Network Video Interface

Forum) was formed in 2008 as a nonprofit industry organization to

define an interoperable interface standard for IP cameras allowing better

interoperability between different manufacturers. ONVIF was originally

formed by Axis Communications, Bosch Security Systems, and Sony Corp,

but now has over 480 members. ONVIF has defined four profiles for video

cameras (Profiles S, G, Q, and T)22; however, as shown in Figure 6-18,

necessary security features are not yet mandatory in many profiles.

21 IFSEC Global. 2014, November 23. ONVIF and PSIA: Guide to Standards
in Video Surveillance. www.ifsecglobal.com/video-surveillance/
guide-to-standards-in-video-surveillance-onvif-v-psia/

22 Profile categories C and A are reserved for access control devices, like door locks.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.ifsecglobal.com/video-surveillance/guide-to-standards-in-video-surveillance-onvif-v-psia/
http://www.ifsecglobal.com/video-surveillance/guide-to-standards-in-video-surveillance-onvif-v-psia/

460

PSIA (Physical Security Interoperability Alliance) is another industry

consortium formed in 2008 covering the interoperability of IP media

devices, recording and content management for recorders and video

analytics.24 PSIA was founded by 20 member companies including

Honeywell, GE Security, and Cisco, but adoption under this specification

Features

Profiles

G

General

Device Client Device Client Device Client Device Client Device Client Device Client

Q S T C A

System Settings

WS-Username Token

Digest Authentication

RTP/UDP

RTP/RTSP/HTTP/TCP

RTP/RTSP/HTTPS/TCP

M

M

C

M

M

C

C C

C C

C C

C C

C C

M C M

M

C

M M

M M

M M

M M

M C

M C

M C

M C

M M

M M

C C M C

C O

C

M

MM

MM C C

M M

M M

M M

M M

M C M C

M C

M C

M M

M M

M M

M C

M C

M C

M C

M M

M M

M M

M M

CC C

C CC C

C C

M C

M C

M C

M C

M M

M M

O M

C

M

C

RTP/RTSP/TCP/WebSocket

RTP/UDP Multicast

User Authentication

User Handling

Query Services and Capabilities

Device Discovery

Default Access Policy

Network Configuration

Zero Configuration

Firmware Upgrade

Backup and Restore

TLS Configuration

IP Address Filtering

NTP

Automatic IP Assignment

Media Profile Configuration

Media Transport
M1M1

Figure 6-18. ONVIF general requirements by profile category23

23 ONVIF. (2018). ONVIF Overview. www.onvif.org/wp-content/uploads/
2018/10/ONVIF_Profile_Feature_overview_v2-2.pdf

24 Honeywell. (2014). IP Video Standards. www.security.honeywell.com/-/
media//Security/Resources/PDF/News%20and%20events/White%20papers/
IP_Video_Standards%20pdf

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://www.onvif.org/wp-content/uploads/2018/10/ONVIF_Profile_Feature_overview_v2-2.pdf
http://www.onvif.org/wp-content/uploads/2018/10/ONVIF_Profile_Feature_overview_v2-2.pdf
http://www.security.honeywell.com/-/media//Security/Resources/PDF/News%20and%20events/White%20papers/IP_Video_Standards%20pdf
http://www.security.honeywell.com/-/media//Security/Resources/PDF/News%20and%20events/White%20papers/IP_Video_Standards%20pdf
http://www.security.honeywell.com/-/media//Security/Resources/PDF/News%20and%20events/White%20papers/IP_Video_Standards%20pdf

461

has stalled with the last publication from this body in 2010. Although

there are still many cameras and devices on the market carrying PSIA

compliance, PSIA is not considered a leading force in the industry.

Of all the driving forces for security in IP cameras, GDPR and the

California Data Privacy Law in the United States are the main concerns.

According to the European Data Protection Supervisor (EDPS),25

surveillance footage can be used to identify people directly or indirectly

and therefore falls within the GDPR regulations. The EDPS provides

guidelines26 to maintain compliance in digital surveillance systems,

and much of this guidance focuses on policy, proper notifications

through signage, and careful site planning and configuration. EDPS

recommended protections cover data in transit (prevent transmissions

from interception), data at rest (restriction on access to stored media,

including backups), and access control, but these controls must follow

the recommendations resulting from a threat analysis. Of all these

issues, access control becomes the most difficult and requires good

key management that is based in hardware-protected key storage

and roots-of-trust. Compliance with the California law should follow

similar guidance.

HIPAA (Health Insurance Portability and Accountability Act) may also

be applicable in the medical field, relating to building surveillance systems

used in hospitals and medical facilities, which must comply with the added

burden of inference correlation between a person captured in a video feed

within a medical facility and a person’s medical treatment privacy.

25 https://edps.europa.eu/data-protection/data-protection/
reference-library/video-surveillance_en

26 https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-
surveillance_guidelines_en.pdf

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

https://edps.europa.eu/data-protection/data-protection/reference-library/video-surveillance_en
https://edps.europa.eu/data-protection/data-protection/reference-library/video-surveillance_en
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf
https://edps.europa.eu/sites/edp/files/publication/10-03-17_video-surveillance_guidelines_en.pdf

462

 Summary
IoT security in the current fragmented ecosystem requires a completely

different mindset. This includes leveraging the common Intel security

building blocks and accelerators such as Movidius and Intel (Altera) FPGA

solutions. It is feasible to maintain a baseline of security capabilities and

add the domain-specific features on the top to make the security solution

complete for deployment. In some cases, the solution may include a

heterogeneous architecture with assets from Intel SoC and accelerators

such as FPGA/Movidius. We have seen how the retail Solution domain

is influenced by the PCI DSS standard and how this standard can be met

with compliance on Intel product–based devices. We have also seen how

the Transportation Solutions domain is changing with the connected

vehicle concept and the plethora of threats looming over this domain. The

specific requirements of TSD can be met using Intel security technologies.

Industrial and Digital Surveillance System have their unique robustness

and mandatory standards for compliance. Only a subset of IoT verticals

are covered in this chapter, but most of these concepts apply readily to the

medical field, gaming, print imaging, and so on.

Open Access This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 6 Iot VertICal applICatIons and assoCIated seCurIty requIrements

http://creativecommons.org/licenses/by/4.0/

463© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8

 APPENDIX

Conclusion
The world’s most massive living organism1 is named Pando, Latin for

“I spread out.” It is a quaking aspen clonal colony in south-central Utah

in the United States located at the western edge of the Colorado Plateau

in the Fishlake National Forest. It has a shared root system that is an

estimated 80,000 years old,2 making it one of the oldest living organisms

as well as being the most massive. The colony of individual male trees has

identical genetic markers due to one of its reproductive strategies, sending

up stems cloned from its massive underground root system. The frequent

intense forest fires that sweep through the colony trigger radicle stem

growth that become saplings and eventually replacement trees for those

consumed by forest fires.

Pando might very well be a reasonable metaphor for understanding

security in the context of the Internet of Things. Even though malware,

like forest fires, may compromise individual devices and services,

hardware-roots-of-trust remain insulated from the effects of attack. Root-

of-trust building blocks focus on securely restarting devices and services

that allow automated resumption and continued operation of the Internet

of Things colony.

1 Grant, Michael C. (October 1993). “The Trembling Giant.” Discover. Vol. 14 no. 10.
Chicago. pp. 82–89. Retrieved 8 May 2008.

2 “Quaking Aspen.” Bryce Canyon National Park. U.S. National Park Service.
February 24, 2015. Retrieved 17 November 2018.

https://doi.org/10.1007/978-1-4842-2896-8

464

In the era of personal computing, the computer virus was the

predominant term borrowed from biology. It seemed to adequately

characterize computer security challenges. The antivirus scan and

computer emergency response processes that counter viral attacks follow

a strategy summarized as detect, contain, and correct. Detection improves

with constant profile updates used by antivirus scanners. Containment is

achieved through various techniques to quarantine software, services, and

devices. Vulnerabilities are corrected by installing patches and software

updates that also resist future attacks. Detect-contain-correct has been a

major focus for security practitioners since the first PCs were connected

to the Internet. However, these response processes required significant

manual intervention that insufficiently scale when billions of new nodes

are added to the Internet of Things.

In the era of IoT, Pando may be the more appropriate security

paradigm where the focus turns to hardware-roots-of-trust that become

the building blocks for resilient security. Automated recovery and

re- instantiation of trustworthy IoT endpoints and services follows an

outbreak. Pando-style security mechanisms are still in their infancy as IoT

evolution transitions from its first phase of massive connectivity growth to

its second and third phases of smarter autonomous systems.

In this book, we looked at the economics of constrained devices and its

impact on security, the role of IoT frameworks in enabling interoperability,

improved developer experiences, and complexity hiding; we reviewed

currently available hardware security capabilities and their role as

hardware-roots-of-trust. We also described some of the challenges facing

system software, virtualization, and software frameworks when trying to

use hardware security capabilities and expose those security services to

the various software layers above them. Attestation was highlighted as a

way for peer nodes to evaluate trustworthiness characteristics of hardware

security capabilities. We saw how an increase in connectivity options leads

to increased complexity in gateways, hubs, routers, and other networking

infrastructure as constrained endpoints continue to implement narrow

APPENDIX CoNClusIoN

465

slices of connection technology. We also saw how system design objectives

can lead to security, safety, availability, and usability trade-offs and how

vertically aligned components, software, and operations rely on the

continued preservation of vertical boundaries in light of technology that

breaks through many of the historical technological and physical barriers.

In particular, we want to highlight several core security concepts and

ideas that contradict conventional thinking when taken in light of very

large-scale IoT deployments.

 Economics of Constrained Roots-of-Trust
In Chapter 1 we described the economics and impact of scaling security

down to constrained devices which constitute the vast majority of connected

devices in the IoT ecosystem. The traditional expectation that approximately

5–10% of device resources being security-related becomes inverted where, in

many cases, a majority of resources are security functionality focused. This is

motivated by root-of-trust security capabilities that anticipate interoperable

trusted behaviors designed to initialize, boot, discover, provision, configure,

and decommission IoT devices without human involvement. Devices

lacking these capabilities simply will not be allowed to connect.

 IoT Frameworks – Necessary Complexity
In Chapter 2 we observed how IoT frameworks achieve the multifaceted

goal of enabling broad connectivity, improving device manageability,

simplifying distributed application development and operation while

promising increased interoperability. Unfortunately, interoperability ethos

isn’t universally shared among framework providers as some vendors

pursue proprietary IoT strategies and others are overeager to create a

multitude of similar but different framework standards that further dilute

the promise of interoperability. We further observed that IoT framework

standards almost universally ignore specifying secure binding of security

APPENDIX CoNClusIoN

466

functionality that incorporates hardware-roots-of-trust technology to

framework layers that would ensure framework layers are not easily

overtaken by malware interposers.

 Hardware Security – More Than a Toolbox
In Chapter 3 we walked through an array of hardware security technologies

available for integration into IoT solutions. We explained essential

protections for identity, initialization, storage, and execution require

hardware-roots-of-trust that are secure by design. This principle should be

common to all secure IoT platforms. We also characterized attacks on IoT

platforms observing that attack pathology often follows a transition from

applications to user mode, user mode to kernel mode, kernel mode to pre-

OS boot loader, and pre-OS to hardware. Ultimately, hardware is the last

line of defense. Hardware is also the first point of recovery when rebuilding

a clean system. Consequently, hardware security should be where the

most care should be applied to ensure robust predictable behavior.

We showed how HW security elements can be used by upper layers to

implement defense-in-depth strategies that enable layered approach to

attack mitigation and resilient recovery.

 IOT Software – Building Blocks with Glue
In Chapter 4 we considered the role software plays in securing IoT

solutions and showed some of the ways popular system software and

applications approach implementation of security features. We also

motivated the need for hardware security integration and observed that

integration is often nontrivial requiring adaptation and rework on behalf

of firmware and software developers. For example, a Trusted Execution

Environment (TEE) such as Intel SGX anticipates modularizing application

software so that security relevant operations are performed within a secure

APPENDIX CoNClusIoN

467

enclave. System software may require modification to remove unnecessary

features that add exploit risk and prohibit operation inside of a more secure

virtual machine. We took a tour through multiple OSs and how they expose

HW security features and described criteria for securely implementing and

enabling solutions that build on top of hardware security mechanisms that

act like security glue that holds the software layers together.

 Ethernet TSN – Everybody’s Common
Choice?
In Chapter 5 we described a host of communications technologies that

will be employed to one extent or another in the broad IoT landscape.

The reality is many IoT endpoints will employ multiple communications

technologies based on cost, improved flexibility, and interoperability

all the while realizing the diverse security implications. The IEEE

has standardized dozens of use cases and applications involving

interoperation between disparate IoT protocols. Nevertheless, complexity

for complexity’s sake isn’t justifiable as the IoT industry will inevitably

select a few connectivity technologies that broadly satisfy requirements

unique to IoT; in other words, the industry will find everybody’s second

choice technology. Before the Internet Protocol (IP),3 every major

computer vendor had a local area network solution, most of which

didn’t interoperate. IP became everybody’s second choice option

since supporting every possible combination of vendor proprietary

solutions was intractable. We anticipate a second convergence phase of

connectivity technologies will occur for the Internet of Things. Our focus

on Ethernet TSN plus IPv6 as our first choice to replace fieldbus-based

3 Information Sciences Institute, University of Southern California, “Internet
Protocol DARPA Internet Program Protocol Specification,” September 1981. IETF
RFC791. https://tools.ietf.org/html/rfc791

APPENDIX CoNClusIoN

https://tools.ietf.org/html/rfc791

468

solutions is in anticipation of the eventual consolidation of the

fragmented state of brownfield IoT. We think brownfield IoT will regard

TSN as a popular second choice.

 Security MVP – The Champion Within
a Fractured IoT Ecosystem
In Chapter 6 we broadened the view of vertical applications addressed by

IoT to include any industry informed by “smart” devices. Each of these

industries has different security requirements due to the nature of the

information handled and to meet regulatory and industry standard bodies’

requirements. An overview was provided of the different verticals and

associated security requirements. IoT ecosystem is fragmented by nature

with multiple verticals, but at the end of the day, we need a common set of

HW/SW building blocks and augmenting accelerators to meet the domain

unique requirements. We discussed technology layering characteristics

where layered security functionality needs to be rooted in hardware where

a security minimum viable platform (MVP) defines a core set of security

ingredients that are by and large common across all nodes participating

in the larger IoT system. Systems architects stand a better chance at

designing secure IoT systems when the MVP set of hardware security

capabilities is available for implementation of security enforcement points

rather than relying on a mix of options that span the continuum of cyber

and physical ingredients.

 The Way Forward
The journey to demystify IoT Security doesn’t end with this book. We

anticipate there remains a huge scaling problem where the key to realizing

secure IoT operation is anchored in autonomous response and recovery

APPENDIX CoNClusIoN

469

in the face of attacks. A “pragmatic” security-minded industry recognizes

that heterogeneous networks constructed using devices having different

HW and SW architectures, components, and capabilities are likely to

coexist for the foreseeable future as some devices are expected to remain

in deployment for nearly 30 years. Nevertheless, all devices need to be

reachable and serviceable or reliably disabled and excluded. Given the

IoT continues to be a target for attack and compromise, defense-in-depth

layering supported by robust hardware security capabilities is essential.

The security community refers to this as hardware-roots-of-trust, we think

of it as a Pando security layer that isn’t easily compromised and resiliently

restarts in the face of attack.

We’ve presented a perspective to trusted computing that is intrinsic

to a device and is recognizable to other IoT devices; looking ahead we

anticipate distributed trust will become commonplace where trust may be

distributed across millions of devices. Blockchain4 technology might be a

good example, where a consensus of participant devices may determine

whether an individual device is configured with minimum viable root-

of- trust capabilities. For more information about blockchain, see the

Hyperledger Project,5 a Linux Foundation open source effort, and these

additional references.[6, 7, 8]

4 Wikipedia, “blockchain” (as of this publication date). https://en.wikipedia.
org/wiki/Blockchain

5 www.hyperledger.org
6 Khwaja Shaik, “Why blockchain and IoT are best friends”,
January 12, 2018. www.ibm.com/blogs/blockchain/2018/01/
why-blockchain-and-iot-are-best-friends/

7 Postscapes – A list of projects and companies, “Blockchains and the IoT,” January
5, 2019. www.postscapes.com/blockchains-and-the-internet-of-things/

8 Phillip J. Windley, Ph.D., Chair Sovrin Foundation, “Identity, Sovrin,
and the Internet of Things,” July 27, 2017. https://blog.sovrin.org/
identity-sovrin-and-the-internet-of-things-8ef911fa715d

APPENDIX CoNClusIoN

https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Blockchain
http://www.hyperledger.org
http://www.ibm.com/blogs/blockchain/2018/01/why-blockchain-and-iot-are-best-friends/
http://www.ibm.com/blogs/blockchain/2018/01/why-blockchain-and-iot-are-best-friends/
http://www.postscapes.com/blockchains-and-the-internet-of-things/
https://blog.sovrin.org/identity-sovrin-and-the-internet-of-things-8ef911fa715d
https://blog.sovrin.org/identity-sovrin-and-the-internet-of-things-8ef911fa715d

470

Security combined with artificial intelligence (AI)[9, 10, 11] and machine

learning (ML)[12, 13] is another area ripe for innovation where Intel is

conducting research.14 Post-quantum cryptography15 and resilient

computing16 are additional areas of technical exploration that are out of

scope for this book that nevertheless promise impactful Pando security

advances.

9 Intel Artificial Intelligence Overview. www.intel.com/content/www/us/en/
analytics/artificial-intelligence/overview.html

10 Torsten George, Security Week, “The Role of Artificial Intelligence
in Cyber Security,” January 11, 2017. www.securityweek.com/
role-artificial-intelligence-cyber-security

11 Justin Jett, Threat Post, “Security and Artificial Intelligence:
Hype vs. Reality,” August 23, 2018. https://threatpost.com/
security-and-artificial-intelligence-hype-vs-reality/136837/

12 Jason Knight, Intel AI Products Group blog, “The Importance of
Systems in Machine Learning,” February 15, 2018. www.intel.ai/
systems-machine-learning/#gs.4FOjLznH

13 MIT Technology Review Insights/Research, “Machine Learning-driven
analytics: Key to digital transformation,” 2018. www.intel.com/content/www/
us/en/analytics/mit-machine-learning-advanced-analytics-key-to-
transformation.html

14 Georgia Tech Institute for Information Security & Privacy,
“Georgia Tech Launches New Research on the Security of
Machine-Learning Systems,” Oct 31, 2016. www.iisp.gatech.edu/
georgia-tech-launches-new-research-security-machine-learning-systems

15 Simona Samardjiska, Digital Security Group Radbound University, RIOT Summit
2017, “Post Quantum Cryptography for the IoT.” https://riot-os.org/files/
RIOT-Summit-2017-slides/3-4-Security-session-Simona.pdf

16 Kemal A. Delic, Ubiquity, Publications of the ACM, “On Resilience of IoT
Systems” The Internet of Things Symposium, February 2016. https://ubiquity.
acm.org/article.cfm?id=2822885

APPENDIX CoNClusIoN

http://www.intel.com/content/www/us/en/analytics/artificial-intelligence/overview.html
http://www.intel.com/content/www/us/en/analytics/artificial-intelligence/overview.html
http://www.securityweek.com/role-artificial-intelligence-cyber-security
http://www.securityweek.com/role-artificial-intelligence-cyber-security
https://threatpost.com/security-and-artificial-intelligence-hype-vs-reality/136837/
https://threatpost.com/security-and-artificial-intelligence-hype-vs-reality/136837/
http://www.intel.ai/systems-machine-learning/#gs.4FOjLznH
http://www.intel.ai/systems-machine-learning/#gs.4FOjLznH
http://www.intel.com/content/www/us/en/analytics/mit-machine-learning-advanced-analytics-key-to-transformation.html
http://www.intel.com/content/www/us/en/analytics/mit-machine-learning-advanced-analytics-key-to-transformation.html
http://www.intel.com/content/www/us/en/analytics/mit-machine-learning-advanced-analytics-key-to-transformation.html
http://www.iisp.gatech.edu/georgia-tech-launches-new-research-security-machine-learning-systems
http://www.iisp.gatech.edu/georgia-tech-launches-new-research-security-machine-learning-systems
https://riot-os.org/files/RIOT-Summit-2017-slides/3-4-Security-session-Simona.pdf
https://riot-os.org/files/RIOT-Summit-2017-slides/3-4-Security-session-Simona.pdf
https://ubiquity.acm.org/article.cfm?id=2822885
https://ubiquity.acm.org/article.cfm?id=2822885

471© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8

Index

A
Access control lists (ACLs), 59
Access control policy (ACL), 74
Access point (AP), 376
ACRNTM

architecture diagram, 265
connectivity-automotive

CAN bus, 268
DM applications, 266
para-virtualized

architecture, 265
pSEED and vSEEDs, 271
RPMB flash block, 270

CSE, 271
real-time and power

management controls, 271
secure boot flow, 267
security feature, 270
service VM, 266
SOS kernel, 267
system security features,

272–276
TEE implementation, 269

Air-gap security, 3, 4
AllJoyn security, 81
AllSeen Alliance, 78–81

Application and service layer
management (ASM), 98

Application-level language
frameworks

Android devices, 331, 332
architectural model, 329
EdgeX Foundry, 333–335
hardware-based

security, 330
Java, 331, 332
JavaScript, 330
NodeJS/Sails, 331
security features, 335, 336

Authenticated Code Module
(ACM), 192

B
Bill of materials (BOM), 33
Blockchain technology, 469
Bluetooth Low Energy

(BLE), 383, 384
Bluetooth operates, 383

advantage of, 385
BLE, 383, 384
fundamental security

measures, 386

https://doi.org/10.1007/978-1-4842-2896-8

472

mesh profile and model
specifications, 385

personal area network, 384
security of, 386
SIG controls, 383
specifications, 384

Boot integrity compromise, 421

C
Cellular technologies

advantages of, 393
broad coverage leveraging, 391
communication solution, 392
5G Cellular, 393

data rates and
latencies, 395

evolution of, 394
5G New Radio, 399
network slicing concept, 401
performance attributes, 397
standards and release

versions, 396
technology enablers,

399–403
LTE-M, 392
ubiquitous connectivity, 391

Centralized network configuration
(CNC), 363

Cloud/Centralized radio access
network (C-RAN), 402

Common services functions
(CSF), 98

Common vulnerabilities and
exposures (CVE), 149

firmware, 150
hardware vulnerability, 151

Connectivity technologies, 347
Ethernet TSN, 348
wireless technologies, 369

Constrained Application Protocol
(CoAP), 343, 344

Containers, 245, 246, 278
Converged security and

manageability engine
(CSME)

block diagram, 177, 178
out-of-band, 178

Converged Security Engine (CSE)/
CSME-DAL, 267

DAL architecture, 204
isolation, 205
portability, 205
robustness rules, 205

Cryptography, 55–57
Cyber-physical systems, 1, 63

attack surface, 7
classes of, 6
networking, 6
pyramid, 7, 8
security capabilities, 9

D
Data distribution service (DDS)

data interaction flow, 120
DCPS approach, 117

Bluetooth operates (cont.)

INDEX

473

entities, 118
framework layering, 123–126
global data space, 126
OMG, 117
policies, 120–123
primary design goal, 117
publish-subscribe

data model, 118
QoS integration, 118, 119
requested-offered pattern, 119
security

enveloping structures,
127, 128

plugin modules, 129–131
secure encapsulation, 127
token data structure, 128

Data plane development
kit (DPDK)

architecture of, 299
cryptography, 301
encryption, 301
end-to-end security, 298
features, 299
library structure, 300
network restrictions, 298
SHA-NI and AES-NI

instructions, 301
Data protection

Intel PTT
components, 194, 195
Linux PTT software stack, 197
pre-OS environment, 196
Windows PTT architecture,

195, 196

runtime protection problem, 194
theft threats, 194

Device identity composition
engine (DICE), 36

Device lifecycle, 41
decommissioning process, 44
deployment, 42
logical devices, 41
management functions, 43
manufacturing processes, 42
normal operation, 43
platform model, 41
security monitoring, 43
software and firmware

updates, 44
supply chain processes, 42

Device management, 310
authentication and

authorization, 311
cloud-based system, 311
confidentiality and integrity, 312
defense in depth, 312
elements, 311
mesh central, 313–316
nonrepudiation, 312
provisioning solutions, 311
security requirement, 321
security services, 311
Wind River HDC, 318

administrators, 318
analysis, 321
architecture, 319
Kafka, 320
SDO leverages, 320

INDEX

474

Device masquerading, 421
Digital random number generator

(DRNG), 173–177
Digital rights management

(DRM), 179
Digital surveillance systems

(DSS), 418
CCTV systems, 451
cloud segment, 453
information security, 450
network architecture, 452
NVR VMS system, 453
regulatory and industry, 459
security objectives and

requirements, 454–456
threats

device hijacking, 457
device masquerading, 458
PDoS attacks, 458
unauthorized access, 459

Dynamic application loader (DAL),
181

architecture, 204
authenticity and security, 205
CSE/CSME, 203
isolation, 205
portability, 205

E
Edge X Foundry, 333–335
Elliptic curve cryptography

(ECC), 55
Encrypted page cache (EPC), 291

Encrypted page tables
(EPTs), 269

End-to-end (E2E)
security, 157–159

Enhanced mobile broadband
(eMBB), 397

Enhanced privacy identifier
(EPID), 180

active anonymity problem, 183
vs. PKI system, 184

Enterprise resource planning (ERP)
functions, 112

Ethernet TSN, see Time- Sensitive
Networking (TSN)

European data protection
supervisor (EDPS), 461

F
Firmware and RoT, 149

capsule update function, 323
nonvolatile storage, 322
threats, 323–325
turtle creek system and

manageability service,
325–329

Framework architectures
data object layer, 59, 60
layers, 58
node interaction layer, 60
platform abstraction layer, 61
platform layer

categories, 63
cyber-physical system, 63

INDEX

475

discovery packets, 63
root-of-trust hardware, 64
secure storage, 64

security challenges
access path, 66
connection services, 65
endpoint nodes, 64
logical endpoints, 65
message-oriented

techniques, 66
Framework designs, 24

abstraction, 46
application portability, 46
bridging, 53
brownfield systems, 25, 26
connectivity, 53
data model and system

abstractions, 47–49
description, 47
ICN connectivity plugin, 49
REST GET message, 49

design goals, 45
ecosystem, 28

physical and logical
components, 28

replacement cycle, 27
existing system, 26
gatewaying, 53
gateways

connectivity and node
interaction layers, 135

network connectivity, 134
security considerations,

138–146

security endpoints, 140
standards, 132
superset and subset

frameworks, 137
unmodified framework

gateways, 133
walled-garden

approach, 132
historical movements, 24
interoperable devices, 46
manageability

elements, 54
messaging transport

technologies, 30
ModBus, 25
network and connectivity, 29
nodes, 50, 51
operations abstraction, 50

discovery conventions, 51
event handling

conventions, 52
message exchange

conventions, 52
platforms, 30, 31
SCADA systems, 24
security elements

cryptography, 55–57
physical equivalents, 54
post-quantum, 57
quantum computers, 57

system interconnected
system, 25

system of systems, 26
weak link, 23

INDEX

476

G
Gateways

connectivity and node
interaction layers, 135

network connectivity, 134
security considerations

architecture, 144
endpoints, 140
idealized security

framework, 145
interaction and connectivity

layers, 142
message protocol

translation, 143
operations, 138
secure endpoint/unsecure

legacy endpoints, 140
security questions, 138
type I gateway, 141
type IV gateway, 143
vectors, 144

standards, 132
superset and subset

frameworks, 137
unmodified framework

gateways, 133
walled-garden

approach, 132
General data privacy regulation

(GDPR), 193
Global navigation satellite system

(GNSS), 391
Global positioning system

(GPS), 391

H
Hardware (HW), 149
Hardware Root of Trust

(HWRoT), 151
Helix Device Cloud (HDC), 318
Historical access (HA) data, 114
Hyperledger Project, 469
Hypervisors/VMM

ACRNTM (see ACRNTM)
elements of, 256
generic virtualization

architecture, 255
native hypervisor, 255
physical memory, 254
threads, 257

deep power management, 260
DoS attack, 263
embedded systems, 261
principles, 263
privilege, 264
security services, 258–260
stack smashing and heap

smashing, 264
vulnerabilities, 261, 262

VirtualBox, 255
VMX mode, 255

I
Industrial control system (ICS), 442

notional architecture, 442
regulatory and industry, 449, 450
security objectives and

requirements, 443–446

INDEX

477

threats and consequences,
446–449

application-level data
tampering, 448

denial of service, 448
device hijacking, 447
masquerading, 447
PDoS attacks, 448
tampering and information

disclosure, 449
Industrial internet of things

consortium (IIC)
architecture, 106
cross-domain interactions, 109
functional domains, 108
functional viewpoint

architecture, 110
implementation viewpoint, 109
industrial internet systems, 105
operational domain, 110
reference viewpoints, 107

Industrial IoT (IIoT), 26, 29, 104,
105, 111, 417, 442–443, 449

Industrial solutions domain, 416
Infield programmable

fuses (IPF), 192
Information-centric networking

(ICN), 48
Intel virtualization technology

(Intel VT), 198
CPU virtualization, 199
environment, 200
graphics, 199
I/O operation, 199

isolated execution, 201
memory, 199

International telecommunications
union (ITU), 396

Internet of Things (IoT)
antivirus scan, 464
constrained devices, 464
device

application perspective, 33
architectural goals, 33
composition engine, 37
cryptographic

generation, 37
DICE strategy, 36
interfaces, 32
interoperability gaps, 34
persistent memory, 32
root of trust, 35
security functionality, 35

economics and scaling
security, 465

ecosystem, 468
elements of, 32
Ethernet TSN, 467, 468
framework

designs (see Framework
designs)

layers, 466
Glue, 466
hardware security

technologies, 466
malware, 463
network, 38, 39
roots-of-trust, 464

INDEX

478

system management
device lifecycle, 41–44
IT and OT, 39
uniform and consistent

approach, 40
vulnerabilities, 464

In-vehicle infotainment (IVI)
unit, 431

J
JavaScript, 330
Jump-oriented programming

(JOP), 222

K
Kafka, 320
Kata containers

agent, 281
architecture, 280
containers, 285
create command, 287
hypervisor architecture, 283
interactions, 286
kernel, 284
networks, 284
Proxy, 283
QEMU, 285
runtime, 281
security requirements,

287, 289, 290
shim, 281

L
Lightweight Machine 2 Machine

(LWM2M)
access control list

configuration, 95
architecture

client nodes, 88, 89
location object, 92
object model, 89, 91
URI format, 90

device management
services, 92, 93

security, 94–96
specification, 88

Linux, 241
access problem, 242
AppArmor, 248
Clear Linux addresses, 249–251
containers, 245, 246
deployment chain, 250
distros, 241
pulsar architecture and service

updates, 243
Seccomp, 248
security capabilities, 251–254
software components, 241
synchronization, 241
Ubuntu, 246–249
Wind River, 243–245

Long-Term Evolution for Machines
(LTE-M), 392

Low-power long-term evolution
(LTE), 406

Internet of Things (IoT) (cont.)

INDEX

479

Low-power wide area network
(LPWAN) technologies

LoRa technology, 403, 404
low-power LTE, 406–408
mobile cellular (3G, LTE) and

short-range wireless, 403
proprietary technologies, 407
Sigfox, 404–406
weightless, 405

M
MalDuino software, 3
Massive machine-type

communications
(mMTC), 398

McAfee embedded control
(MEC), 308

Mesh central
analysis, 316
architectural elements, 314, 315
connected devices, 314
peer-to-peer, 313
remote monitoring and

management, 313
server components, 316

Message orchestration, 335
constrained application

protocol, 343, 344
MQTT operates, 337–340
OPC unified architecture,

340–343
protocols, 336
several security issues, 336

Message queue telemetry transport
(MQTT), 337–340

Messaging transport
technologies, 30

Military, aerospace, and
government domain, 417

Mitigations
building blocks, 440
communications, 438
data center and cloud, 210
depth architecture, 439
design trade-offs, 441
device endpoint and edge

management, 210
HW security building blocks, 441
network, 210
threats of, 208
vehicle system, 438–441
zero-day attacks, 209

Moore’s Law, 10
Multi-Key TME/MKTME, 180
Multiple connectivity

technologies, 408

N
National vulnerability database

(NVD), 149
Near field communications

(NFC), 390
Network design

layering options, 38, 39
objective, 38
protocols, 38

INDEX

480

Network edge and IoT networks, 13
attestation protocols, 15, 16
building blocks, 20
connected embedded

computing, 13
Ethernet, 13
flux and re-forming coalitions, 14
Internet Protocol, 13
negotiating trust, 14
root-of-trust architecture, 17
security appliance, 14
TCB system, 18–20
trusted computing, 18
wireless networking

standards, 13
Network function virtualization

(NFV), 400
Network management, 373
Network slicing, 400
Network topologies, 372–374
NodeJS/Sails, 331

O
Offline storage–related attacks, 421
One Machine to Machine

(OneM2M)
ASM function, 98
common services functions, 98
communication management, 98
data repositories, 98
deployment scenarios, 97
device management, 98
discovery, 99

domain architecture, 102
entities, 96, 101
group management, 99
layers, 96
location, 99
network service exposure, 99
node topology architecture, 97
partners, 96
registration, 100
resources, 97
security design, 100, 103
subscription, 100

OPC Unified Architecture,
340–343

Open Connectivity Foundation
(OCF), 67

AllJoyn security, 81
AllSeen Alliance, 78–81
built-in resources, 70
collection resource, 72
conceptual framework, 68
core framework layer, 68–72
CRUDN, 68
device abstraction, 73
introspection, 73
JSON schema representation, 69
links, 72
profiles, 73
RAML representation, 70
resource model approach, 69
REST message, 67
security architecture

access control policy, 74, 75
aspects, 74

INDEX

481

device onboarding
statedos, 76

message encryption, 75
OTM interface, 77
RESET, 76
resource model, 78
RFOTM, 77

transport layer, 67
Open Fog Consortium, see

Industrial internet of things
consortium (IIC)

Open Platform Communications-
Unified Architecture
(OPC-UA)

control-level network, 111
ERP functions, 112
four-layer system, 112
framework architecture, 113–115
functional equivalence, 113
secure channel layer, 115–117
session layer addresses, 115
unified architecture, 111

Operating system, 220
access-controlled secrets

storage, 222
execution units, 220
Linux, 241–254
memory separation, 221
privilege levels, 221
programming error

protections, 221
system authorization, 221
threats

access-controlled secrets
protections, 229

arbitrary code execution, 226
breech of containment, 227
code and data corruption, 229
cyber kill chain, 225
escalation of privilege, 228
execution and memory

separation, 227
fault injection, 225
programming error

protections, 226
rootkit, 228
system authorization

mechanisms, 228
vulnerabilities, 224

Zephyr (see Zephyr operating
system)

Original equipment manufacturers
(OEMs), 388

Orthogonal frequency-division
multiplexing (OFDM), 399

Owner transfer methods
(OTMs), 77

P
Pando (massive living

organism), 463
Para-virtualization, 257
Payment card industry (PCI), 422
Permanent denial of service

(PDoS) attacks, 448, 458

INDEX

482

Personal area network (PAN), 384
Platform controller hub (PCH), 178
Platform trust technology (PTT),

180, 194
Precision time protocol (PTP), 356
Programmable logic controllers

(PLCs), 5

Q
QEMU, 285
Quality of service (QoS),

119, 358, 373

R
Range and capacity, 370, 371
Real-time operating systems

(RTOS), 230
Replay protected memory block

(RPMB), 270
Representational State Transfer

(REST), 67
Retail solution domain, 416

cardholder data, 422
objectives and requirements, 423
PCI Data Security Standard, 423
PCI specification, 422
regulatory and industry, 430
sensitive cardholder data, 422
threats

cryptographic keys, 427
end-to-end data flow, 428–430
hacker, 426

HW security building
blocks, 426

platform security stack, 427
responsive retail, 425
system compromise, 424
transaction data, 426
unauthorized actors, 426
unique authentication, 424

Return-oriented programming
(ROP), 222

Rivest-Shamir-Adelman
(RSA), 55

Root-of-Trust (RoT)
device, 36
firmware (see Firmware and

RoT)
platform layer, 64

S
SDO leverages, 320
Security capabilities, 1, 9
Security hardware design

assets, threats and
pyramid, 152, 153

base platform profiles
CPU and dedicated security

engines, 167
encryption/decryption

(AES-NI), 169–171
hosted crypto

implementations, 167
Intel data protectionDRNG,

173–177

INDEX

483

malware protection (OS
Guard), 168

sign/verify (Intel SHA
extensions), 171–173

SMAP, 169
SMEP, 168

boot flow, 179
CSME (see Converged Security

and Manageability Engine
(CSME))

DAL technology, 181
data protection (see Data

protection)
device boot integrity, 185

ACM modules, 187
BIOS/UEFI secure boot, 192
booting methods, 185, 186
measured boot sequence, 188
mechanisms, 188
process of, 186
sequences, 193
Skylake, 192
terminology overview, 190
trust and signing

implications, 189
types of, 191

device identity (ID), 182
decision tree, 182, 183
EPID technology, 183
PTT/TPM, 184

E2E Security, 157–159
EPID, 180
essentials

boot, 161, 162

built-in security
features, 164–166

hardware identity, 160
HW solution pillars, 165
scalable strategy, 166
software (SW) identity, 160
storage, 162, 163
TEE, 163
trusted secure

foundation, 159, 160
value propositions, 165

inverted threat pyramid, 154
attack pyramid, 155
device lifecycle, 155, 157

measured boot, 179
memory encryption

technologies, 180
PTT, 180
runtime protection, 198

Intel CSE/CSME–DAL,
203–206

Intel TXT, 206–208
SGX technology, 201–203
virtualization, 198–201

SGX/CPU instructions, 182
threat mitigation, 208, 209

high impacting attacks, 210
zero-day attacks, 209

TXT, 180
Security management, 302

attack detection, 307
McAfee embedded control, 308
monitoring, 307
network defense, 306

INDEX

484

platform integrity, 304
secure device

onboarding, 302–304
Sigfox, 404–406
Smart home system, 408
Sneaker-net information, 3
Software-defined cockpit (SDC), 431
Software-defined networking

(SDN), 400
Software guard extensions

(SGX), 182, 201–203
BIOS key, 293
code and data, 292
differences, 291
enclave, 291
EPC memory, 291
execution modes, 292
meaning, 290
system security, 293

Software stack, 213
applications, 344
architectural model, 216

application/data plane, 219
containment element, 217
databases, 219
device management

element, 218
generic stack diagram, 216
language frameworks, 219
message orchestration, 219
network stack, 217
security management, 218
system update service, 219

containment and separation, 276
capabilities, 276
containers, 278
containment solution, 297
extended application, 277
Kata Containers, 280–290
security principles, 276
TEEs, 290–297

hypervisors and
virtualization, 254

network stack and security
management, 298–310

operating systems (see
Operating systems)

section outline and security, 215
Spectrum, 369, 370
StuxNet, 4–6
Supervisory Control and Data

Acquisition (SCADA)
systems, 4, 24

Supervisory mode access
protection (SMAP), 168

Supervisory mode execution
protection (SMEP), 168

T
TechTarget, 18
Time-Sensitive Networking

(TSN), 348
benefits of, 350–352
communication, 350
embedded and industrial

applications, 349

Security management (cont.)

INDEX

485

end-to-end latency, 351
factory automation

network, 368
features, 353
functions and

implementation, 348
IEEE standard, 348
OPC-UA, 367, 368
preemption feature, 354
profiles, 355

asynchronous traffic shaping
(802.1Qcr), 366

cycling queuing and
forwarding (802.1Qch),
365

enhanced generic precise
timing protocol (802.1AS/
ASRev), 356–358

frame preemption
(802.1Qbu), 359–361

frame replication and
elimination (802.1CB),
362–364

per-stream filtering and
policing (802.1Qci),
363, 364

security mechanisms, 367
stream reservation protocol

(802.1Qcc), 362, 363
time-aware shaper

(802.1Qbv), 358
publish/subscribe (PubSub)

extension, 367
standard Ethernet, 352–355

Total memory encryption
(TME), 180

Transportation solutions, 431
connected vehicle

infrastructure, 433, 434
in-vehicle experience

solutions, 432
mitigations (see Mitigations)
security objectives and

requirements, 433, 434
standards, 441
threats

attacker profiles, 435, 436
automotive threat

surfaces, 436
distinct hackable areas, 437
hacker technology, 435
on-board diagnostics, 435
physical access, 436

Transportation Solutions
domain, 415

Transport layer security
(TLS), 49

Trusted computing base
(TCB), 18, 266

Trusted execution environments
(TEEs)

SGX technology, 290
BIOS key, 293
code and data, 292
differences, 291
enclave, 291
EPC memory, 291
execution modes, 292

INDEX

486

meaning, 290
system security, 293

system security features, 296
trusty, 295

Trusted execution environment
(TEE), 63, 163, 269

Trusted Execution Technology
(TXT), 180, 206–208

Trusted Platform Module
(TPM), 162, 184

Turtle Creek system
architecture, 327
capabilities, 326
FOTA, 327
update and management

service, 328

U
Ubuntu, 246–249
Ultra-reliable low-latency

communications
(URLLC), 398

Unique device secret (UDS), 36
Universal Plug and Play (UPnP)

architectural elements, 84
audio/video equipment, 82
control point code, 85
description, 85
device architecture layer, 83
discovery automation, 84
event notification, 86

network nodes, 84
presentation, 86
protocol stack, 83
security, 86, 87
zero configuration

networking, 82
USB thumb drive, 2

air-gap security, 3, 4
constrained computing

conceptual notions, 10
counterintuitive cost

model, 11
dynamics, 10
power-hungry

applications, 10
security vs. functionality, 12
Stuxnet scenario, 11
tinification, 11, 12

cyber-physical systems, 6–9
GitHub, 2
IoT and network edge, 13–20
maker community, 2
MalDuino, 3
malware/malicious software, 2
Moore’s Law, 10
StuxNet, 4–6

V
Vertical applications

balancing security, 420
domain requirements, 419–421
DSS domain, 418
ecosystem, 414

Trusted execution environments
(TEEs) (cont.)

INDEX

487

framework, 414, 415
industrial solutions

domain, 416
military, aerospace, and

government domain, 417
retail solution domain, 416
threats, 421
transportation solutions

domain, 415
Virtualization, see Hypervisors/

VMM
Virtual machine extensions (VMX)

mode, 255
virtual Slim Bootloader

(vSBL), 268

W, X, Y
Weightless, 406
Wi-Fi network, 374

802.11ac and 802.11ax
comparison, 382

access point, 376
cellular, 375
classic and mesh wireless, 377
industrial, scientific, and

medical band, 378
interoperability, 375
Low-Power, 375
mesh networking, 376
modules, 379
overview, 381
summarization, 379
TCP/IP software stacks, 378

Wireless connectivity technologies
Bluetooth, 383–387
cellular (see Cellular

technologies)
GPS/GNSS, 391
LPWAN technologies,

403–408
network management, 373
network topology, 371–373
NFC, 390
overview, 369
QoS, 373
range and capacity, 370, 371
security of, 373
smart home gateway, 408
spectrum, 369, 370
Wi-Fi, 374–383
Zigbee, 387–390

Z
Zephyr operating system

architecture, 231
cooperative threads, 232
execution separation, 231–234
memory domain and

partition, 235
memory separation, 234, 235
preemptive threads, 232
privilege levels, 236
programming errors, 237
refinements, 232
requirements, 239
RTOS, 230

INDEX

488

security modules and TEEs, 237
system authorization, 236–238

Zero configuration networking, 82
Zigbee

advantage of, 389
multihop operations, 387
protocol suite, 388
specification, 388
technical specifications, 389, 390

Zephyr operating system (cont.)

INDEX

	Table of Contents
	About the Authors
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Conceptualizing the Secure Internet of Things
	The BadUSB Thumb Drive
	Air-Gap Security
	Stuxnet
	Designing Safe and Secure Cyber-Physical Systems
	Constrained Computing and Moore’s Law
	Trusted IoT Networks and the Network Edge
	Conclusion

	Chapter 2: IoT Frameworks and Complexity
	Introduction
	Historical Background to IoT
	IoT Ecosystem
	Connectivity Technology
	Messaging Technology
	Platform Technology

	Elements of an IoT System
	IoT Device
	IoT Device Architectural Goals
	Interoperability
	Security

	IoT Network
	IoT System Management
	Device Lifecycle
	Manufacturing
	Supply Chain
	Deployment
	Normal Operation and Monitoring
	Manage
	Update
	Decommissioning

	IoT Framework
	IoT Framework Design Goals
	IoT Data Model and System Abstractions
	IoT Node
	IoT Operations Abstraction

	Connectivity Elements
	Manageability Elements
	Security Elements
	Consider the Cost of Cryptography

	Summary IoT Framework Considerations

	IoT Framework Architecture
	Data Object Layer
	Node Interaction Layer
	Platform Abstraction Layer
	Platform Layer
	Security Challenges with IoT Frameworks

	Consumer IoT Framework Standards
	Open Connectivity Foundation (OCF)
	OCF Core Framework Layer
	OCF Profiles Framework Layer
	The OCF Device Abstraction
	OCF Security

	AllSeen Alliance/AllJoyn
	AllJoyn Security

	Universal Plug and Play
	UPnP Security

	Lightweight Machine 2 Machine (LWM2M)
	LWM2M Architecture
	LWM2M Device Management
	LWM2M Security

	One Machine to Machine (OneM2M)
	OneM2M Security

	Industrial IoT Framework Standards
	Industrial Internet of Things Consortium (IIC) and OpenFog Consortium
	Open Platform Communications-Unified Architecture (OPC-UA)
	OPC-UA Framework Architecture
	OPC-UA Security

	Data Distribution Service (DDS)
	DDS Framework Architecture
	DDS Security
	Security Enveloping
	Security Tokens
	Security Plugin Modules

	Framework Gateways
	Framework Gateway Architecture
	Type I Framework Gateway
	Type II Framework Gateway
	Type III Framework Gateway
	Type IV Framework Gateway

	Security Considerations for Framework Gateways
	Security Endpoints Within the Gateway
	Security Endpoints in Type I Gateways
	Security Endpoints in Type II Gateways
	Security Endpoints in Type III Gateways
	Security Endpoints in Type IV Gateways
	Security Framework Gateway Architecture

	Summary

	Chapter 3: Base Platform Security Hardware Building Blocks
	Background and Terminology
	Assets, Threats, and Threat Pyramid
	Inverted Threat Pyramid
	Sample IoT Device Lifecycle

	End-to-End (E2E) Security
	Security Essentials
	Device Identity
	Protected Boot
	Protected Storage
	Trusted Execution Environment (TEE)
	Built-In Security

	Base Platform Security Features Overview
	CPU Hosted Crypto Implementations
	Malware Protection (OS Guard)
	OS Guard (SMEP)
	OS Guard (SMAP)
	Encryption/Decryption Using AES-NI
	Sign/Verify Using Intel® SHA Extensions
	Intel® Data Protection Technology with Secure Key (DRNG)

	Converged Security and Manageability Engine (CSME)
	Secure/Verified, Measured Boot and Boot Guard
	Trusted Execution Technology (TXT)
	Platform Trust Technology (PTT)
	Enhanced Privacy ID (EPID)
	Memory Encryption Technologies
	TME
	MKTME

	Dynamic Application Loader (DAL)
	Software Guard Extensions (SGX) – IA CPU Instructions

	Identity Crisis
	Enhanced Privacy Identifier (EPID)
	Anonymity

	PTT/TPM

	Device Boot Integrity – Trust But Verify
	Secure Boot Mechanisms
	Secure Boot Terminology Overview

	Overview of BIOS/UEFI Secure Boot Using Boot Guard Version 1.0 (BtG)

	Data Protection – Securing Keys, Data at Rest and in Transit
	Intel Platform Trust Technology (PTT)
	Windows PTT Architecture
	Linux PTT Software Stack

	Runtime Protection – Ever Vigilant
	Intel Virtualization Technology (Intel VT)
	Software Guard Extensions (SGX)
	Intel CSE/CSME – DAL
	Isolation from Rich Execution Environment
	Authenticity and Security
	Portability

	Intel Trusted Execution Technology (TXT)

	Threats Mitigated
	Zero-Day Attacks
	Other Attacks

	Conclusion
	References

	Chapter 4: IoT Software Security Building Blocks
	Understanding the Fundamentals of Our Architectural Model
	Operating Systems
	Threats to Operating Systems
	Zephyr: Real-Time Operating System for Devices
	Zephyr Execution Separation
	Zephyr Memory Separation
	Zephyr Privilege Levels and System Authorization
	Zephyr Programming Error Protections
	Zephyr’s Other Security Features
	Zephyr Summary

	Linux Operating Systems
	Pulsar: Wind River Linux
	Ubuntu IoT Core
	Intel® Clear Linux
	Linux Summary

	Hypervisors and Virtualization
	Threats to Hypervisors
	Intel® ACRN
	Real-Time and Power Management Guarantees in ACRN

	ACRN Summary

	Software Separation and Containment
	Containment Security Principles
	Threats to Extended Application Containment
	Containers
	Kata Containers
	Kata Containers Summary

	Trusted Execution Environments
	Software Guard Extensions
	SGX Security Summary
	Android Trusty
	Trusty TEE Security Summary

	Containment Summary

	Network Stack and Security Management
	Intel Data Plane Development Kit
	Security Management
	Secure Device Onboarding
	Platform Integrity
	Network Defense
	Platform Monitoring
	McAfee Embedded Control

	Network Stack and Security Summary

	Device Management
	Mesh Central
	Wind River Helix Device Cloud
	Device Management Summary

	System Firmware and Root-of-Trust Update Service
	Threats to Firmware and RoT Update
	Turtle Creek System Update and Manageability Service
	System Firmware and RoT Summary

	Application-Level Language Frameworks
	JavaScript and Node.js or Sails
	Java and Android
	EdgeX Foundry
	Application-Level Framework Summary

	Message Orchestration
	Message Queuing Telemetry Transport
	OPC Unified Architecture
	Constrained Application Protocol
	Message Orchestration Summary

	Applications
	Summary

	Chapter 5: Connectivity Technologies for IoT
	Ethernet Time-Sensitive Networking
	Legacy Ethernet-Based Connectivity in Industrial Applications
	Key Benefits of TSN
	TSN Standards
	TSN Profiles
	802.1AS/AS-Rev
	802.1Qbv
	802.1Qbu
	802.1CB
	802.1Qcc
	802.1Qci
	802.1Qch
	802.1Qcr
	TSN and Security

	OPC-UA Over TSN

	Overview of Wireless Connectivity Technologies
	Considerations for Choosing Wireless Technologies for IoT
	Spectrum
	Range and Capacity
	Network Topology
	Quality of Service
	Network Management
	Security

	Wi-Fi
	Bluetooth
	Zigbee
	NFC
	GPS/GNSS
	Cellular
	5G Cellular
	Key Standards, Regulatory, and Industry Bodies Involved in 5G
	New Use Cases Enabled by 5G
	Key Technology Enablers for 5G

	LPWAN – Low-Power Wide Area Networks
	LoRa
	Sigfox
	Weightless
	Comparison of Low-Power LTE and Other LPWAN Technologies

	A Case Study – Smart Homes

	Summary
	References

	Chapter 6: IoT Vertical Applications and Associated Security Requirements
	Common Domain Requirements and the Security MVP
	Some Common Threats
	Retail Solutions
	Security Objectives and Requirements
	Threats
	Standards – Regulatory and Industry

	Transportation Solutions14
	Connected Vehicle Infrastructure
	Security Objectives and Requirements
	Threats
	Mitigations
	Standards – Regulatory and Industry

	Industrial Control System (ICS) and Industrial IoT (IIoT)
	Security Objectives and Requirements
	Threats
	Standards – Regulatory and Industry

	Digital Surveillance System
	Security Objectives and Requirements
	Threats
	Standards – Regulatory and Industry

	Summary

	Appendix: Conclusion
	Economics of Constrained Roots-of-Trust
	IoT Frameworks – Necessary Complexity
	Hardware Security – More Than a Toolbox
	IOT Software – Building Blocks with Glue
	Ethernet TSN – Everybody’s Common Choice?
	Security MVP – The Champion Within a Fractured IoT Ecosystem
	The Way Forward

	Index

