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0 Introduction

The fundamental question of metaphysics is what exists, not in any particular
structure, but in general. To answer this question requires determination of
the nature of existence, or more concretely, what it means for something to
exist. Thus a worthwhile metaphysics should provide an explicit criterion for
existence. A wide variety of such criteria have been proposed, and these can be
divided into broad categories based on how they handle abstracta, in particular
mathematical objects. Platonistic metaphysical accounts incorporate physical
objects and mathematical objects as disjoint categories, but require an account
of how these two categories of objects interact, which is a vexing philosophical
question [6]. One way to handle this issue is to eliminate one of these two
categories, and this is precisely what is done in nominalistic accounts, which
admit the existence of physical objects but not of mathematical objects.

Mathematics Physics
?

Platonism (tradition of Plato)

Mathematics Physics

Nominalism (tradition of Aristotle)

Mathematics Physics

Mathematical metaphysics (possibly tradition of Pythagoras)

A third option immediately presents itself, which is a metaphysical account
that admits the existence of mathematical objects but not of physical objects.
Because it is intuitively obvious that physical objects exist, this appears absurd,
and so it should not be surprising that few philosophers have considered it. The
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absurdity is only prima facie, however, because just as mathematical objects
can be viewed as mental constructions, etc. on a nominalistic account, so on a
purely mathematical account physical objects can be seen as identical with cer-
tain mathematical objects (which from a Platonistic viewpoint could be thought
of as perfect mathematical models of these objects.) It is possibly reasonable
to interpret the Pythagorean metaphysical position as one in which all objects,
including physical ones, are purely mathematical [2], and more recently such
thinkers as Tegmark [5] have noted virtues of this position and even advocated
it. However, such advocacy is relegated to a tiny minority, and it is the au-
thor’s intention to show that mathematical metaphysics is indeed tenable from
a philosophical perspective, and in fact provides novel solutions to a variety of
perennial philosophical problems.

As the reader surely recognizes, the position taken up in this paper is very
radical, and a few words on why its pursuit is worthwhile may be in order.
First, many problems remain with the platonistic and nominalistic metaphysical
accounts despite centuries of intense study. Mathematical metaphysics provides
novel solutions to a number of these problems, which suggests it should be
given at least some consideration alongside platonism and nominalism. Even if
a philosopher’s goal is to defend either platonist or nominalist metaphysics (or
other positions regarding mathematical objects), knowledge of mathematical
metaphysics and its means of solution of platonist and nominalist problems can
certainly be valuable for inspiring means by which to approach these problems
from less radical (or other radical) perspectives. In addition, mathematical
metaphysics can be seen as an extreme form of some more common traditions
(for example ontic structural realism [1]), and consequently promises to shed
light on these positions, perhaps through use as a toy metaphysics. However,
the author does not wish mathematical metaphysics to be relegated to the status
of a toy, and will treat the position as a serious alternative to platonism and
nominalism.

The structure of this paper is as follows. Section 1 states the position of
mathematical metaphysics in detail. Section 2 examines a litany of objections
to this position, and answers them. Section 3 examines how a proponent of
mathematical metaphysics might solve various perennial philosophical prob-
lems. Section 4 describes possible consequences of accepting the position of
mathematical metaphysics for a human individual or society.

1 What Mathematical Metaphysics Is

Quite simply, the position of mathematical metaphysics is that an object exists
if and only if it is an element of some mathematical structure. To be is to be
a mathematical object. The terms employed in this characterization appear
unproblematic to a working mathematician, but to the philosopher of mathe-
matics it is clear that much work remains before this position has been described
precisely. First, let us examine the notion of a mathematical structure. The
most common precise explication of this notion is set-theoretic: A relational
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structure by definition consists of a tuple of relations, some of which are unary
and describe domains of various sorts of individuals (most commonly just one
sort), and the others of which are relations of sorts constructed from the sorts
of individuals. This explication of the notion of structure is adequate for most
mathematical purposes, but it is easy to argue that it is both too specific and
too broad. The precise definition is too specific because it rules out some intu-
itively appealing structural descriptions, in particular the characterization of a
simple undirected graph as a pair (V,E) where V is a set (of vertices) and E is
a collection of unordered pairs of elements of V (the edges of the graph). The
problem here is that E need not be a relation, in the standard set-theoretic sense
that a relation is a set of (Kuratowski) ordered pairs. The common definition of
structure is also too broad because it admits multiple distinct characterizations
of what should intuitively be the same structure, for example the two tuples
(G, ∗, e, −1) and (G, ∗) both representing (what is intuitively) the same group.

The former problem can be ignored given a sufficiently strong set theory,
because any collection of sets A can be coded by a relational structure which is
interdefinable with A. The latter can perhaps be solved by regarding two struc-
tures as equivalent if both can be extended to the same structure via addition
of definable relations (this can be checked by adding all definable relations to
both structures and verifying the results agree), and regarding rearrangements
of a tuple and relabellings of individuals as representing the same structure (we
do not employ unordered collections of relations so as to not trivialize duality
relations like (A,∨,∧) as the dual of (A,∧,∨) in lattice theory). Since what
is definable depends strongly on the language used for definitions and its se-
mantics, this obviates the importance of specifying both the language of the
structure and its semantics. For example, in general far more is definable with
the infinitary logic Lω1ω than with ordinary first-order logic, and definitions
employing the standard Kripke semantics for intuitionistic predicate logic have
quite different content from definitions utilizing the canonical semantics for first-
order logic. Thus to fully specify a structure we must specify a tuple of relations,
a language built from these relations and logical symbols, and a semantics for
that language. Again there is a problem because different languages can be
equivalent (e.g. propositional logic with connectives {¬,∧} vs. propositional
logic with connectives {¬,∨}), and different means of defining semantics can
be equivalent (e.g. differences in how models are defined, for example classical
propositional models may be taken to be simply sets (of true atomic propo-
sitions), or two-valued truth functions defined for atomic propositions). This
problem is solved as usual by regarding structures with definitionally equivalent
languages or semantics to be the same. Thus we see that a reasonable defini-
tion of a structure is a tuple of relations together with a language built from
those relations and logical symbols plus a semantics for that language, with all
of this taken modulo definitional equivalence (of both relations and the logical
language), relabelling of individuals and reordering of relations in the tuple, and
equivalence of semantics. Having proposed this definition for the term ’struc-
ture,’ we shall refer to a simple tuple of relations as a relational structure, and
to a relational structure representing a structure just in case it is an element
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of the equivalence class which is the structure. For readers concerned that the
equivalence classes which we are here calling structures can be too big to be
sets, observe that Scott’s trick can be employed.

A problem remains, because in order to make this definition of structure
precise, we must be working in some background theory (a metatheory in logical
parlance). How are we to define this metatheory precisely, and its language,
semantics, models, etc.? The most reasonable way to do this appears to be
embedding the metatheory in a still larger theory (call it a metametatheory, or 2-
metatheory), but clearly this only pushes the problem back a step. To truly solve
the problem we need to keep pushing: Have an n-metatheory for each natural
number n, an ω-metatheory serving as metatheory for all of n-metatheories, an
(ω+ 1)-metatheory serving as metatheory for the ω-metatheory, and indeed an
α-metatheory for each ordinal α. In fact, any model of set theory has bounded
ordinals in some larger model (regard the universe of such a model as a set
and keep building the cumulative hierarchy), so we can continue this process
even further, etc. Thus we see that this hierarchy of metatheories has no end
in a very strong sense. However, everything receives a precise meaning from
each higher level, so such a scheme nicely bootstraps the notion of meaning.
Traditionally this position would be rejected because it leads to infinite regress
in the definition of meaning and infinite regressions are considered unacceptable.
However, I see no reason an infinite regression should be unacceptable unless
it leads to a contradiction (there is no infinite descending sequence of natural
numbers, for example), and it is clear that no contradiction arises here provided
all the metatheories are consistent.

One should worry, however, about which metatheories are being used. Type
theory (higher-order logic) and set theory provide quite different general metathe-
ories, with set theory generally being stronger in mathematical practice (in terms
of consistency strength, though certainly very strong type theories are also stud-
ied). The metamathematics of intuitionistic logic is quite different depending on
whether it is developed with a classical or an intuitionistic metatheory [3]. For-
tunately, dealing with this problem in the context of mathematical metaphysics
is simple: All metatheories are valid, and all possible ways of building up a
tower of metatheories should be considered, with particular ones being specified
as necessary. Any structure at any level of this branching tree of metatheories
counts as a ‘mathematical structure’ for purposes of the mathematical meta-
physics existence criterion. Note that any collection of subtowers of this tower
of metatheories can be embedded into a sufficiently strong version of any of
the standard foundations for mathematics (set theory, type theory, or category
theory, in either classical or intuitionistic form), and so the various towers of
theories form a directed system.

One might be reasonably concerned about where this hierarchy of metathe-
ories starts. Our definition of structure associates an object language with each
structure, so an individual structure might be regarded as the zeroth level. How-
ever, what the first level should be is unclear. An intuitive answer is that it
should be a foundation for mathematics such as simple type theory with the
natural numbers, or Zermelo-Fraenkel set theory, but I see no need to be that

4



restrictive (which has the added benefit of avoiding the need to define the term
‘foundation for mathematics’). The level above a given structure A can be any
other structure B which is rich enough to contain the relations of some rela-
tional structure representing A and to define the language and semantics of A.
Note that this entails that new languages with respect to which structures can
be defined can appear as we ascend the hierarchy of metatheories; it is not the
case that all languages must appear at the first level.

Now that we have explored what the notion of ‘mathematical structure’
means, we should ask what it means to be an element of a mathematical struc-
ture. A straightforward interpretation is that an element of a mathematical
structure is just an individual from that structure. A more generous interpre-
tation counts all the relations of a structure as ‘elements’ as well. Fortunately,
given our understanding of the term ‘mathematical structure,’ it does not mat-
ter which interpretation we adopt: All the relations of a structure A are elements
of some structure (say the transitive closure of the tuple A in a set-theoretic
metatheory), and hence satisfy the existence criterion of mathematical meta-
physics. Thus we see that this existence criterion is very precise and at the
same time very lenient (in that it admits the existence of a broad range of ob-
jects, perhaps the broadest imaginable). Note that because the empty structure
is a structure, literally any collection of axioms in any logic is witnessed by
some structure (namely the empty structure). This is because the empty struc-
ture satisfies classical contradictions (in the standard model-theoretic sense of
satisfaction), and hence can accommodate as true any assertion from any logic
(one can simply take a classical metatheory for an arbitrary logic and conclude
anything about that logic in the empty structure, whose theory can serve as a
metatheory for itself). Also, a structure is nonempty iff its theory is consistent;
so any object which can be characterized in a consistent theory exists. Since it
is natural to interpret mathematical structures as possible worlds, we see that
mathematical metaphysics entails the existence of a Lewis-like assemblage of
possible worlds.

Having given a precise characterization of mathematical metaphysics, it is
worthwhile to pause briefly to compare it further to Platonism and nominalism.
We have already seen how mathematical metaphysics eliminates the mysterious
Platonic bridge between the mathematical and physical realms (physical objects
simply are certain mathematical objects). In addition, the plethora of possible
worlds in mathematical metaphysics gives plenty of material to support any
plausible definition of what it means for a (mathematical) object to be physi-
cal, whereas Platonism and nominalism traditionally support only one possible
physical world, raising the vexing question of why certain physical objects exist,
while others which clearly could exist do not. Mathematical metaphysics, in ren-
dering this question irrelevant by accomodating a huge array of possible worlds,
also solves the problem of how to deal with the intuitive notion of possiblility
in standard Platonist and nominalist accounts where there is only one physi-
cal (‘concrete’ or ‘real’) world. Finally, the elimination of abstracta demanded
by nominalism has proved to be technically extremely difficult in the context
of modern scientific theories, and mathematical metaphysics clearly eliminates
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this problem by embracing abstracta as first-class entities existing in the same
sense as physical objects (which are, after all, particular mathematical objects).
To briefly illustrate the difficulty with eliminating abstracta in nominalism, con-
sider the question of whether a composite physical object such as an atom exists
on a nominalistic account. Intuitively it should, and forbidding such composites
complicates the formal statements of physical theories immensely. However, if
an atom does exist, it should be a structured collection of elementary particles.
Furthermore collections of atoms can form objects which plausibly exist (such
as molecules), and collections of these can form still larger objects which we
should like to say exist (such as threads, which may constitute a pocket, which
may be a component of a pair of trousers, etc.). Thus it appears that we can
start with a physical collection and iterate the powerset operation to obtain
the existence of all hereditarily finite sets, which is anathema to the nominalist
stance. This is also a problem for Platonism, since the same argument can be
used to import some mathematical objects (specifically hereditarily finite sets)
into the physical realm. One possible solution from the Platonist and nomi-
nalist perspective on this issue is to allow the existence of aggregate objects
and acknowledge that some objects stand in a ‘part of’ relation to others (the
back is part of the chair). Of course this relation does not exist on a nominal-
ist account, but nevertheless nominalists do allow objects to bear relations to
other objects. However, it remains unclear which aggregate objects should be
admitted existence in this case: If we consider 267 randomly chosen electrons
from the table I am writing at, do they form an aggregate which is part of the
table? The cleanest solution which I perceive is to simply reject the traditional
metaphysical systems and pursue mathematical metaphysics.

2 What Mathematical Metaphysics Is Not

Now that we have precisely characterized the position of mathematical meta-
physics, we consider a range of objections and how these can be met by a
proponent metaphysician. The objections likely account for the fact that this
metaphysical position has hardly ever been seriously considered, but the answers
open novel conceptual avenues for approaching a broad range of philosophical
issues.

2.1 Objections concerning physical objects

Perhaps the most obvious objection to the existence criterion of mathematical
metaphysics is that it clearly omits an entire category of extant objects: the
physical objects. Intuitively, physical objects are not mathematical objects,
and so this objection appears to be decisive. However, philosophers are in the
business of challenging intuition, and in fact this intuition is easily challenged.
Physicists have been increasingly successful in precisely characterizing the be-
haviour of physical systems through mathematical models, and it is not too
difficult to imagine that there might be perfect mathematical models for physi-
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cal systems. Given a perfect model for a physical system, what is the difference
between the model and the system? This is a difficult question for which to
provide a precise answer, but mathematical metaphysics provides an enticingly
simple answer: There is no such difference; a physical system is identical with
its perfect mathematical model. In order to sustain the objection that physical
objects are not mathematical objects, the objector must provide some means
of distinguishing physical objects from mathematical objects. We now consider
several possible means, and find each inadequate.

(i) Physical entities always fail to perfectly instantiate mathematical objects.

Though it is common to call a physical object a triangle, such objects
are always imperfect representations of true mathematical triangles: the
sides of a physical triangle always have some thickness, its angles never
add to precisely 180◦, etc. The problem here is what is meant by ‘physical
triangle.’ Given a standard mathematical definition of a (non-degenerate)
triangle as the union of three geodesics between three points (one between
each pair of points), none of which lies on a geodesic between the other
two, we find that so-called ‘physical triangles’ are not triangles at all.
Instead, they are complex configurations of atoms (which are themselves
complex configurations of elementary particles). It is plausible that a
precise definition of a ‘physical approximate triangle’ could be given with
sufficient patience (and knowledge of a perfect mathematical model of the
physical world), in which case the triangles we see in the physical world
would perfectly instantiate the concept of a physical approximate triangle.
See section 3.6 below on soft concepts for related discussion.

One might still ask whether a mathematical triangle in the standard sense
could exist in the physical world, and given the quite general mathemati-
cal definition of a triangle in the preceding paragraph, this certainly seems
plausible. In particular, if spacetime is a Riemannian manifold as postu-
lated by the general theory of relativity, then the spacetime points lying on
any of three geodesics none of whose endpoints lie on a geodesic between
the other two constitute a triangle which is plausibly called physical. It
is certainly possible to challenge the assertion that spacetime points are
physical entities, or that sets of physical entities need be physical, but we
do see that under a sufficiently broad understanding for what it means for
an entity to be physical, physical triangles likely do exist.

This objection can be given an epistemic twist by noting that apparently
humans can have perfect knowledge of mathematical objects, but cannot
have perfect knowledge of physical objects (there is always measurement
error, uncertainty about the veracity of our sense-data, etc.). The solution
is to note that were we to know a perfect mathematical model of the phys-
ical universe, we could have certain knowledge about physical objects by
proving theorems about the perfect mathematical model which on mathe-
matical metaphysics is identical to the physical world. This would certainly
give us perfect knowledge about physical objects, but one might then ask
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whether we have any knowledge of physical objects at all. If by knowledge
of a proposition p we mean possession of a proof of p, then we have very
little knowledge indeed about the physical world. However, mathematical
metaphysics is also perfectly capable of supporting less strict definitions
of knowledge, provided everything about it is made precise (which should
be possible assuming mathematical metaphysics is true). For example,
defining knowledge as justified true belief is valid (even though it has un-
intuitive consequences) provided we can give precise definitions of what
it means for a proposition to be justified to an agent and what it means
for an agent to believe a proposition. Section 3.6 is again relevant to this
discussion.

(ii) Mathematical objects are atemporal, whereas physical objects exist in
time.

Here we must consider carefully what is meant by ‘temporal.’ Given a
mathematical model of time, there are certainly mathematical objects
which exist ‘in time’ (for example, if we model time as R and space as
R3, then the origin of R3 exists at every time). The fact that an unchang-
ing structure can support dynamics is familiar to physicists (spacetime is a
fixed mathematical structure, and the static worldlines of particles deter-
mine the time-evolution of the particle’s positions relative to a given frame
of reference), and is the basis for tenseless theories of time in philosophy
(McTaggart’s B-series). Thus we have that physical objects simply exist in
a structure equipped with time, and hence certainly can be mathematical.

(iii) Mathematical objects are causally inert, while physical objects are capable
of causal relations.

Working with precise mathematical definitions and models of causality is
now a major area of inquiry in philosophy and statistics (among other
fields), and so we can handle this objection in a manner analogous to the
response to the temporality objection. In particular, given a general defi-
nition of causality, one can find the causal structure of any mathematical
structure for which causality makes sense, and thus obtain mathematical
objects which have causal relations to each other and hence are not causally
inert. Given a perfect mathematical model of the physical universe and
assuming it is the sort of mathematical object for which causality makes
sense (otherwise we must have gotten either the definition of causality or
the model for the physical universe wrong), one can deduce the causal
structure of the physical universe and conclude what physical events cause
which other physical events, with everything still being a mathematical
object.

(iv) Mathematical objects are deterministic, whereas physical objects can be-
have nondeterministically.

Since mathematicians frequently discuss processes which are nondetermin-
istic, we should do well to examine what they mean. A stochastic process,
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studied in probability theory, is a sequence (say (Xn : n ∈ N)) of random
variables, which are themselves measurable functions from a probability
space (Ω,F ,P) into a measurable space (S,G). The intuitive interpreta-
tion is that for ω ∈ Ω, Xn(ω) is the value of the random variable Xn at the
possible world ω, and the probability that Xn is an element of A, where
A ∈ G, is P{ω ∈ Ω: Xn(ω) ∈ A}. Thus we see that a stochastic process
is nondeterministic in the sense that it can proceed differently in different
possible worlds (the sequence (Xn(ω) : n ∈ N) depends on which world
ω one observes it in). Since mathematical stochastic processes have been
very successful in modelling of statistical and quantum mechanical systems
(to name two physical use-cases), it seems very plausible that the nonde-
terminism of the physical world can be perfectly mathematically modelled
using probability spaces, complete with their possible worlds.

A significant problem when modelling the nondeterministic behaviour of
physical systems using a probability space of possible worlds is determin-
ing the significance of the probability measure. Intuitively, the probability
measure of an event E (set of worlds) should give the probability that E
occurs, but it is a difficult philosophical problem to determine what this
means. Let us look at an example: If a photon encounters a perfect un-
biased beamsplitter, the probability that it passes through is 1/2 and the
probability that it is reflected is 1/2. Consequently, under our mathemat-
ical interpretation of probability, the measure of the set of possible worlds
where the photon passes through the beamsplitter is 1/2 and the same is
true of the set of worlds where the photon is reflected. Less precisely and
more colloquially, the photon passes through the beamsplitter in half of
the possible worlds, and is reflected in half of them. Thus if we were to
direct a photon into this beamsplitter, we should not be at all surprised if
it were transmitted, and also would be completely unsurprised if it were
reflected. If the beamsplitter only reflected photons with probability 1/3,
we should be mildly surprised if it were reflected, while if it reflected photos
with probability 1/1000 we should be quite surprised if the photon were
reflected. Furthermore, if we repeatedly directed photons into a beam-
splitter which reflects them with probability p, we should expect to find
the proportion of photons reflected approaching p (the rate of convergence
we should expect can be derived from the strong law of large numbers).

Although the preceding discussion of the photons seems intuitively innocu-
ous, we must ask what it means to be surprised if an event happens, and
why we are more surprised when events with lower probability do occur.
To illustrate why there is a problem here, consider choosing a real number
uniformly at random from the interval (0, 1). Clearly, with probability one
(in fact, certainly) we shall obtain some real number (call it x), but for any
real number y fixed in advance (including x), the probability that we will
choose y is zero. Thus with probability one (in fact, certainly) an event
with probability zero (namely choosing some specific real number) must
occur, and so we may plausibly argue that we should not be surprised when
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an event of probability zero occurs. In a sense this is true: If we examine
the result of a random process and find that it only occurs with probability
zero, this is not in itself reason for surprise. What would be surprising is
if we correctly predicted that an outcome which has probability zero will
occur. More generally, if we predict in advance that an event with small
probability will occur, this is reason for surprise.

We have phrased the interpretation of probability in terms of the mental
condition of surprise because it will be argued below that minds have as-
sociated probability measures which determine the level of surprise which
would be experienced by the mind were it to find itself in a world or future
with certain properties. This argument is given in the discussion of ‘worlds
imagined’ in the following subsection; the essential purpose is to explain
why some possible futures are far more plausible than others (for exam-
ple, it would be absurd to think that you may wake up tomorrow with an
elephant’s nose, but according to mathematical metaphysics that is pos-
sible since it results in no contradiction). To conclude, we have seen that
once again an apparently non-mathematical property of physical objects
(nondeterminism) can be seen as mathematical by using the mathemati-
cal tools which have been developed by physicists, mathematicians, and
others to cope with it.

(v) There can be multiple physical objects with precisely the same structure,
but mathematical objects with precisely the same structure are identical.

First, I should point out that on the mathematical metaphysics view of
structure as independent of embedding into a larger structure (discussed
in section 1), it is true that objects with exactly the same structure are
identical. However, a given structure may be embedded into a larger struc-
ture in many ways: For example, the naturals can be embedded into the
reals by any of the maps n 7→ kn for k ∈ N, and a structure A can be
represented by many set-theoretic tuples of relations. This meets the ob-
jection (likely noted by mathematicians) that there exist isomorphisms
between distinct structures; this is true in a set-theoretic sense, but from
the perspective of mathematical metaphysics the different representations
of A have additional, set-theoretic structure which distinguishes them (one
representation may use reals which are Dedekind cuts, while another em-
ploys Cauchy sequences), and we still have that there is only one object
with exactly the structure of A, nothing more.

The mathematical discussion of the preceding paragraph is directly rele-
vant to the objection we are examining: For if multiple physical objects
have exactly the same internal structure, they must be distinguished by
distinct embeddings into the physical universe. Indeed, a collection of
photons which apparently all have the same structure are distinguished by
positions in spacetime (if two were to inhabit the same point in spacetime,
their wavefunctions would combine to produce a different object), and
the spacetime location of a photon adds additional structure to the pho-
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ton, so that the photons may very well be identical in every other respect
and hence literally identical if the relations of the photons to the external
world are forgotten (mathematically this would correspond to applying a
forgetful functor, which we see is non-injective).

2.2 Objections concerning fictitious worlds

In this section we examine the consequences of the Lewis-like assemblage of
possible worlds whose existence is entailed by mathematical metaphysics (as
seen in section 1), and why this does not lead to absurdity.

(i) Worlds imagined

According to the mathematical metaphysician, there is a possible world
where all the events of Shakespeare’s The Twelfth Night occur exactly as
described in the play (which is not very precisely, but we can sidestep
that issue by specifying one of the many mathematical models which intu-
itively describe a world where all the events of The Twelfth Night occur).
The same remarks apply to any work of fiction that is not inconsistent,
whether or not it has actually been written, and this strikes one intu-
itively as absurd. Surely there is a sense in which our world is real, and
all these fictitious worlds are, well, fictitious. Indeed there is, but it is a
matter of perspective. On mathematical metaphysics, any intelligence S,
being a mathematical object, will find itself embedded in some possible
world w which we might call its world of experience, and will think of
worlds disagreeing with that experience as fictitious. However, if a world
w′ disagreeing with w in ways which can be experienced by S contains
an intelligence S′, then from the perspective of S′, w′ is real and w is
fictitious. There is no logical problem here; merely a need to adjust our
intuition.

However, one may still wonder how we know which world is the real world
for us. We imagine a single, distinguished world which is ‘real,’ but it is
extremely difficult to give an explicit definition of that world. In modal
logic models, the distinguished real world is often just assumed as part of
the structure of the model. Any reasonable definition of the real world
will make it a domain of our experience, but there are parts of the real
world which are not in the domain of our direct experience (e.g. the cen-
ter of the sun), and there are multiple worlds which serve equally well as
domains of our experience. To give a simple example, suppose the ob-
served universe for a certain class of intelligent beings looks like Z3 : the
beings can move one spatial unit per unit time, and the direction of the
spatial unit moved can be up or down or to either side. At each time,
some of the elements of the spatial lattice at that time (isomorphic to Z2

) are labelled with states of consciousness, and these labels characterize
our beings. Through scientific study, the beings arrive at the theory that
their universe is characterized by a function on Z3 (this function giving
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the position and state of all objects at all times). Is this theory correct?
Let us assume that everything in the experience of our beings accords per-
fectly with this model of their universe, so that in a strong scientific sense
it is correct. Nevertheless, it would also be perfectly consistent with the
experience of these beings for their universe to contain points outside their
scientific model. Suppose one of our beings claims that there are spatial
points infinitely distant from him (and so also all the other beings, who we
may reasonably suppose are at any time contained in some finite sublat-
tice of Z2). Others may decry this theory as unscientific because it cannot
be substantiated in a finite amount of time, and perhaps they are correct
(this depends on precisely what we mean by a ‘scientific’ hypothesis, a
point to which we shall return later in section 4.2). Does this necessarily
mean that the bold suggestion of our not-entirely-empirically-minded be-
ing is incorrect? Under the assumptions of mathematical metaphysics, it
certainly does not. For example, we may take a nonstandard model Z∗ of
Z, which necessarily contains Z-chains, and think of the universe of our
beings as a function on (Z∗)3 rather than Z3 . All the elements of these
Z-chains are points infinitely distant from the beings, just as our bold
metaphysician-being claimed to exist. Do they really exist in the world
of our beings? Assuming (as seems eminently reasonable) that our beings
theory of their universe is first-order, they have no means available to them
for distinguishing between these two universes (assuming any method they
use must provide an answer within a finite amount of time). If instead we
allow our beings an infinite amount of time to test their hypotheses, we
find that this unscientific theory of our metaphysician-being is in fact em-
pirically testable: A being need only walk in some direction for an infinite
amount of time, and after an infinite amount of time has passed, he will
find himself at a spatial point infinitely distant from his starting point.
One might want to deal with these difficulties by requiring as a point of
methodology that a physical model should be as small as is consistent with
the observations. However, let us suppose that our beings can only observe
objects within some fixed finite distance of their position. Then at each
time there is some finite sublattice of Z2 which suffices for a description
(via a function) of everything observable to the beings at that time. The
universe of the beings could then be taken to be the time-indexed union
of these finite sublattices, and we should obtain a physical model smaller
than the Z3 model and still sufficient to describe everything observable by
the beings. However, this is intuitively less elegant than the Z3 model, so
one might like to avoid a scientific methodology which requires the use of
such small models. What I should like to argue is that the precise model
is indeterminate: A being exists simultaneously in all universes which are
consistent with his experience.

In a sense what we have examined above–a metaphysician who claims there
is more in the world than science can establish–was the easy case. What if
our metaphysician makes claims which appear to contradict science? For

12



example, let us now think of the world with which we are familiar, and
suppose both Peter and John have the experience of sitting in a room
together and engaging in a philosophical discussion. Peter claims that in
fact they are not in the same room, but rather in a swamp separated by
one hundred meters. He says their experience of the room is merely a con-
struction of their minds, hiding from them the reality of their situation. Is
Peter correct? It is apparent that the situation Peter describes is consistent
with all their experiences and any experiment they could possibly perform,
and so by our criterion for which worlds a consciousness is embedded in
(anything consistent with the experiences of that consciousness), we see
that Peter is in fact correct, insofar as his and Johns consciousnesses are
indeed embedded in worlds where they are in a swamp separated by one
hundred meters and their minds generate an artificial experience of sitting
in a room. However, he is also incorrect insofar as there are other worlds
where they actually are sitting in a room, and yet other worlds where they
are in fact in a desert, etc. Thus we see that our position has resulted
in a peculiar pluralism about reality. But surely some classes of possible
worlds are more likely than others; intuitively what Peter and John are
actually experiencing is their discussion in a single room together, and
the swamp world, though possible, is highly unlikely. To formalize these
thoughts, we must ask what is meant by likely. The standard mathematical
theory of this notion is that of probability, and I believe this will suffice
(as it did in the discussion of nondeterministic physical processes in the
preceding subsection). What we want to say is that for any consciousness
there is a probability measure on possible worlds consistent with the expe-
rience of that consciousness, and properties of these worlds which are true
with high probability (especially probability 1) will be considered by the
consciousness as likely to hold in reality. From whence do we obtain this
probability measure? Since this is associated with conscious experience of
reality, I suspect and will assume in the sequel that this probability mea-
sure can be obtained from a consciousness. That is, given a consciousness,
one can define a probability measure associated with that consciousness
such that the possible worlds experienced by the consciousness tend to
be those with high probability. As was discussed in the nondeterminism
objection in the preceding subsection, it should be noted that some events
with low probability should be expected to occur (in fact it is common
that some event with probability zero must occur), but a consciousness
would be surprised if it could successfully predict that an outcome with
low probability will occur as the outcome of a specific event. This surprise
is unformalized and somehow tied to the probability measure associated
with the consciousness, but in this paper I have nothing further to add.
Exploring the connection between mind and probability further is intru-
iging from any philsophical perspective, and mathematical metaphysics
offers an interesting new perspective to approach it from.

One apparent difficulty with the account of minds and experiences we
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have been giving is the existence of dreams. We appear to have direct
experience of something unreal in dreams, but since dream worlds are
conceivable, they are possible and hence exist according to mathematical
metaphysics. Thus are experiences in dreams just as real as experiences in
what we intuitively consider to be reality? This is true in the same sense
that the swamp world from the preceding paragraph was just as real as
the world perceived by Peter and John. However, perhaps we can use the
language of probability to be more precise. It is clear that the dream state
is an altered state of consciousness, and so we should not be surprised
to find that the probability measure associated with a consciousness is
related to experience in a different way during a state of dreaming rather
than a wakeful state. Our experience indicates that objects in the physical
world are stable and can be manipulated at will only by physical means,
but objects in a dream are ephemeral and can be manipulated not only
by what is perceived in the dream as physical means, but also by direct
mental manipulation (for example, it is common for one to be able to fly
in a dream by simple mental exertion, which is obviously contradictory
to our experience of the physical world). It seems reasonable to say that
the probability that we stay in the real world throughout our lives, with
dreams being merely patterns of interaction of neurons in our brains, is
much higher than the probability that we somehow travel between the
real world and various dream worlds each time we dream and wake, even
though the latter is possible and hence does occur. Therefore we conclude
that the former is what is occurring in reality.

(ii) Alien worlds.

We can imagine a world so completely alien from the physical world of
our experience that it seems absurd to regard it as a possible world (for
example the structure (ω1, <)). Thus it would appear that mathematical
metaphysics permits too broad a range of possible worlds. However, we
can also view this as simply an artifact of the precise definition of ‘possible
world’ which we have chosen (namely taking this term to be synonymous
with ‘mathematical structure’). If a more restrictive definition of ’pos-
sible world’ is more convenient for some purposes (e.g. physical world,
or world consistent with my experience thus far), then certainly mathe-
matical metaphysics is open to such an alternative definition. The main
difficulty is making such a more restrictive definition precise.

2.3 Objections concerning minds

Before getting to the objections, let us examine more explicitly what a mind
should be, given mathematical metaphysics. We saw in the section on fictitious
worlds that just as the structure of the natural numbers is simultaneously em-
bedded in every structure which contains an object and a successor function,
so a mind (there called a consciousness) is simultaneously embedded in every
structure which contains that mind as a substructure. Thus a mind does not
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inhabit a single world, but rather participates simultaneously in a multitude of
worlds: every world in which it is logically possible for that mind to participate.
It is important to note here that for a mind M to participate in a world w, the
world w must contain a structure isomorphic to M ; it is not sufficient for M to
be an object in w. To see why, note that we may take a collection of countably
many minds and define a successor function to obtain a model of the natural
numbers. However, none of the minds participate in this world; they are merely
the structural placeholders for numbers, which are not conscious in any ordinary
sense. Also, when a mind is instantiated in many worlds, one might ask what
it means for different instantiations to be the same mind. The answer is that
two structures instantiate the same mind iff they are isomorphic as minds (a
notion which cannot be made precise without a precise understanding of what
it means to be a mind, but this need not concern us yet).

This view of minds clearly results in a problem for our intuition, because
the world of our conscious experience appears to be just one world, not every
world we could possibly participate in. For example, it is consistent with my
experience that I am a crustacean at the bottom of an ocean being deceived by
Descartes demon. Thus on mathematical metaphysics, that is my situation in
some possible worlds. However, we intuitively say that such a state of affairs
is extraordinarily improbable. On what grounds do we make that judgment? I
cannot ultimately give better than intuitive grounds, but I can explain a mech-
anism by which we can perhaps better understand our experience of apparently
just one world. As mentioned before, I do not know how to give a mathe-
matically precise definition of a mind, but let us suppose that we have such a
definition, and that through this we find naturally associated to each mind a
probability measure such that the experience of the mind accords with the mea-
sure: If a class of worlds has small measure, the mind rarely finds its experience
aligning with these worlds, while if a class of worlds has large measure, the mind
regularly finds its experience aligning with these worlds. Thus such a mind gen-
erally does not find itself surprised by accurate predictions of low-probability
events, as we outlined in the section on nondeterminism in section 2.1.

In a sense a mind participates ‘more fully’ in classes of worlds to which it
assigns high probability than those to which it assigns low probability, though
it is simultaneously instantiated in all worlds which are in any way consistent
with its experience, including those of very low probability. If a mind were to
follow a possible future in which it only experiences events it considers to have
low probability, it would be thoroughly and consistently surprised. However,
note that the probability measure associated to a mind is allowed to change
with time, so if the world I am accustomed to were to vanish and I found myself
decidedly in a swamp world, my probability measure would quickly adapt to
assign high probability to the regular happenings of the swamp world.

Some explanatory remarks are in order. First, I am assuming that minds
are essentially temporally extended entities, while states of consciousness are
not. Thus we may find that in some world w there is an instant of time t where
the structure of a state of consciousness c which is part of a mind M can be
found, but not so for any later instant of time. In this scenario, M participates
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in w through c at time t but subsequent to that ceases to participate in w (since
no state of consciousness c which is part of M can be found in w after time
t), so that I should say its experience ceases to align with w after time t. One
might point out here that if the states of consciousness are simply two symbols,
these would be found in any world containing at least two objects, thus causing
difficulty for the above discussion. Here I should say that minds do not have
experiences instantaneously, but rather over short spans of time. Thus though
the symbols can be found in nearly any world, their temporal sequence across
a short span of time can be found in many fewer worlds. We can therefore
reasonably assume that the states of consciousness encode information about
the states immediately preceding and following (just because two symbols may
suffice does not mean this is the representation we must use). This is similar to
the mathematical notion of a germ.

Now let us note that a single state of consciousness may simultaneously
participate in many minds. Suppose a mind M finds itself in state c at time t.
What future states will that mind enter? It will enter all future states which
are consistent with the state of consciousness c having occurred at time t, and
with the definition of a mind (which we have assumed known). Intuitively, there
are very many paths the mind could take into the future, all consistent with its
being a mind and having had state c at time t. We are now in a position to say
with greater precision what I mean by a mind rarely finding its experience to
align with classes of worlds of small measure, and regularly finding its experience
to align with worlds of large measure. The set of possible futures of a mind is
also equipped with a probability measure (which should be determined by the
measures associated to the mind at each time t), and with high probability
the mind finds itself on a path from a class with large measure, while with
low probability it finds itself on a path from a class with small measure, where
again probability is interpreted in the intrinsically mental sense of determining
expected experience. It is also important to note that if a mind finds itself in
state c at time t, its past is not entirely determined. It is intuitively obvious
that there are many possible ways a mind could have come to that state at that
time, and so all of these occur. However, the memories of the mind are clearly
related to a probability measure on past worldlines leading to the present in
which the mind finds itself, and so we have an explanation for the apparent
determinateness of the past.

Since minds are not bound to any particular world (but rather simultane-
ously embedded in many worlds), and are constantly branching in both the
future and past directions, we have a neat way to explain what is meant by an
action that a mind could have performed. If a mind is in state c at time t and
there is some future path where it performs the action A, than M can perform
action A, in a weak sense. If furthermore the probability of the class of futures
where it does in fact perform A is reasonably large, then M can perform action
A in a stronger sense. If there is some past path to a state c out of which there
exists a future path along which M performs A, then M could have performed
A in a weak sense, while if both of these paths have reasonably high probability,
then M could have performed A in a stronger sense. One might ask whether
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at any moment there are any actions a mind could not have performed. The
answer depends on exactly how we define ‘mind’ and ‘action,’ (if we define them
so any mind performed every action in some possible past, then the answer is
no), but what we can say definitively is that a mind M could not have performed
an action A if and only if the assertion ‘M performed A’ is inconsistent given
the definitions of M , the ‘performance’ relation, and A.

Perhaps a few technical remarks about measures on sets of worlds are in
order. The collection of all possible worlds is very large, larger than any proper
class in any particular model of Goedel-Bernays set theory. Thus one might
worry about what kinds of probability measure make sense on such a space.
However, the class of worlds which are potential physical models of the world
we experience appears to be much smaller. In fact, assuming any physical
system can be modelled by a Borel function on a manifold, we have that there
are only 2ℵ0 many physically possible worlds. Thus we may reasonably assume
that the probability measure of a physical mind is concentrated on these worlds,
in the sense that any set of worlds disjoint from this set of physically possible
worlds has measure zero.

Having reviewed and expounded upon the view of minds which mathematical
metaphysics naturally leads to, we examine some specific objections.

(i) The Matrix objection

If physical objects are mathematical, why can we not manipulate them
with our minds in the same way that we manipulate abstract mathemati-
cal objects, thus resulting in a world in which reality-manipulating actions
like those in The Matrix are possible? First, one must note that under
mathematical metaphysics, matrix-like actions are indeed possible. How-
ever, it appears that the probability of finding oneself in a world where
these actions occur is small. Since we can intuitively manipulate abstract
mathematical objects, how can this be so? The answer lies in the distinc-
tion between holding an object and holding a thought about an object: Our
minds have the ability to think about mathematical objects in a rather less
constrained way than they have the ability to manipulate physical objects.
This is because the (mathematical) relation of manipulation is mediated
through our physical bodies, while the relation of thinking about is me-
diated through our minds as physically instantiated in our brains. Note
that the physical body and brain are still mathematical objects on this ac-
count; what distinguishes them as physical is their presence in a physical
structure, namely our universe. That the universe is physical should follow
from the definition of ‘physical,’ though unfortunately a precise character-
ization of which structures should count as physical appears to be out of
reach for the time being.

We can take the matrix objection further. Suppose you are holding a
spoon. You can conceive of the spoon bending purely in response to your
mental exertion, and therefore in some possible worlds it does. Suppose
you are about to exert your mind in just this way, an exertion which we
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may say occurs at time s. The current time is some t < s. At time t, it
is possible that at time s the spoon will indeed bend in response to your
mental exertion, and thus the event that it does indeed bend is in your
future at time t. Would it not then be appropriate to say that the spoon
will bend in response to your mental exertion at time t? Yes, but this is
only in the sense that you are in a swamp world. Just as consciousness
induces a probability measure on possible present worlds, so it induces
a probability measure on possible future trajectories, as we saw in the
introduction to this section. At time t there are future trajectories where
the spoon bends at time s, but our experience indicates that this is highly
unlikely, so we conclude that the measure of the set of such trajectories is
small.

(ii) Boltzmann brains

Assuming a physical universe rather similar to our own, it appears that
Boltzmann brains are by far the statistically most likely instantiations of
consciousness. Here I understand Boltzmann brains to be brains which
randomly assemble from high-entropy surroundings, complete with de-
tailed memories of a non-existent past, and disappear back into the high-
entropy background after just enough time to have some thoughts. Thus
we should expect that there are far more Boltzmann brains than brains
which evolved from an even lower entropy past, and hence should expect
that we are Boltzmann brains. It seems to me that this is in a sense correct;
a random brain which instantiated a small interval of my thoughts should
be a Boltzmann brain with high probability. However, the experiences of
Boltzmann brains presumably vary wildly and are short-lived on average,
so the stream of events which is deemed most likely by the probability
measure associated with my consciousness is more stable. An evolution
from a low-entropy past singularity certainly seems like a good candidate
for a stable past and future (following the second law of thermodynamics),
and indeed this is what is predicted by modern physics. Thus although
Boltzmann brains are far more common than brains which exist in a non-
equilibrium universe (such as our own), we should not be surprised to find
that we do not have the experience of Boltzmann brains.

(iii) Minds can make choices, while mathematical objects cannot.

To deal with this objection we simply need to understand what a choice
means, just as the objections that mathematical objects are atemporal and
acausal were met by understanding what time and causality mean. A mind
M can be said to make a choice at time t iff there are at least two states
it may assume at that time which will lead to different futures. Assum-
ing as in mathematial metaphysics that minds can be perfectly modelled
as mathematical objects, it is clear that mathematical objects can make
choices; all that is needed is for the mathematical object to model a mind
and satisfy the aforementioned property.
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(iv) Minds can manipulate mathematical objects, while mathematical objects
cannot manipulate anything.

Now we need to understand what manipulating a mathematical object
means. A natural answer would be that a mind manipulates a mathemati-
cal object if it forms a substructure of itself which instantiates some prop-
erties of the mathematical object, and then evolves this substructure until
extracting some knowledge (or at least belief) about the structure. Since
the mind can by assumption of mathematical metaphysics be perfectly
modelled as a mathematical object, we see that mathematical objects can
indeed manipulate other mathematical objects.

(v) Minds can have direct knowledge of themselves, while they can only have
knowledge of mathematical objects through mathematical proof.

The problem here is equivocation between two different meanings of ‘knowl-
edge.’ The first is a mental sense roughly corresponding to our intuitive
notion of knowledge; the second is the precise mathematical sense of math-
ematical proof. In the strict mathematical proof sense, a mind does not
know anything about itself unless it has a perfect mathematical model of
itself and proofs of those facts which it knows about itself. Similarly, our
intuition provides a guide to knowledge concerning mathematical objects
in much the same way it provides a guide to knowledge of ourselves. There
is no incompatibility between the two clauses of this objection when we
understand ‘knowledge’ in these two distinct senses.

Before moving on, I note quickly that Nagel [4] finds it difficult to see how
a complete physical (let alone mathematical) description of a bat could
fully capture what it is like to be a bat. This is not exactly an objection
concerning minds, and the best way I can see to deal with it is to ask
what sort of entity ‘what it is like to be a bat’ is; perhaps if we knew
this, we could capture it mathematically. Otherwise, I see no reason to
worry about such entities as ‘what it is like to be a bat;’ perhaps these
are nothing more than linguistic utterances which trigger responses in our
brains but do not refer to an object.

3 What Mathematical Metaphysics Does

Having dealt with some intuitive objections to the position of the mathematical
metaphysician, we now examine what positive philosophical benefits can be
derived from it. We shall look at some of what mathematical metaphysics
has to offer in the areas of epistemology (3.1), philosophy of mathematics and
science (3.2,3.3), philosophical logic (3.4,3.5), semantics of natural language
(3.6), physics (3.7), and general metaphysics (3.8) by examining a specific way
that the mode of thought of the mathematical metaphysician clarifies some
perennial issues.
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3.1 Precise epistemology

The quest for a precise characterization of what it means to know has a long his-
tory in philosophy and has proven exceedingly difficult without incurring major
compromises. Mathematical metaphysics does not provide a perfect solution,
but at least provides a very natural candidate for the semantics of knowledge:
An agent a knows a proposition ϕ if and only if the agent possesses a proof of
ϕ. This entails that humans know very little indeed about the physical world
(and furthermore very little can be known at present as we are not in possession
of a perfect mathematical model for the physical world), a contention that was
briefly examined in the last paragraph concerning the first objection in section
2.1. However, this definition does have some very nice consequences from the
point of view of epistemic logic. In particular, if we interpret Ka(ϕ) to mean
that agent a can form a proof of ϕ using knowledge he already possesses, then
the following rules of epistemic logic hold:

(K) Ka(ϕ) ∧Ka(ϕ→ ψ) ` Ka(ψ)

(Truth) Ka(ϕ) ` ϕ

(Positive Introspection) Ka(ϕ) ` Ka(Ka(ϕ))

Note that negative introspection, the assertion that ¬Ka(ϕ) ` Ka(¬Ka(ϕ)),
does not necessarily hold, because in particular for constructive logics there may
be no proof possible that a proposition lacks a proof. Axiom (K) follows easily
since we regard Ka(ψ) to mean not that a knows ψ immediately, but rather
can conclude that ψ is true upon reflection (by giving a proof). The (Truth)
axiom formalizes a fundamental intuition that if we know something, it is true.
Given this, the (Positive Introspection) axiom can cause difficulty for accounts
of knowledge which allow it to be derived from sources which are not completely
reliable, as then it is possible that an agent a has justification for belief in ϕ
from an unreliable source, and that ϕ happens to be true and a knows ϕ, but
Ka(Ka(ϕ)) is false because agent a does not know that he knows ϕ because he
does not know ϕ is true due to the unreliable source of justification, and hence
because of his knowledge of (K) and the truth axiom cannot justify belief in
Ka(Ka(ϕ)). We shall not be detained here by a discussion of how traditional
and contemporary accounts of knowledge deal with this issue, but note that it is
intuitively very plausible that the only completely reliable source of knowledge
is mathematical proof, in which case knowledge as mathematical proof is the
only explication of knowledge which avoids unreliable sources.

3.2 Precise connection between mathematics and physics

Mathematical metaphysics avoids the mysterious Platonic bridge between the
mathematical and the physical by simply identifying physical objects with cer-
tain mathematical objects. Thus Wigner’s question [6] about why mathematics
is relevant to the physical world is easily answered: The mathematics which
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constitutes the physical world is certainly relevant to it. One might still worry
that since we do not have a perfect mathematical model of the physical world,
the mathematical tools we think are relevant to the physical world may not
actually be. It is true that, for instance, spacetime could turn out to be dis-
crete, thus invalidating the assumption that it is a Riemannian manifold; but
certainly even if spacetime is not literally a Riemannian manifold there is some
sense in which it is well-approximated by such a manifold. Assuming such ap-
proximations are relevant to the physical world, the mathematical tools used
by physicists today should (mostly) still be relevant to the physical world even
if it is wildly different than what the use of these mathematical tools assumes.
To strengthen our intuition that these approximations are indeed relevant to
the physical world, we may consider classical Newtonian mechanics, which is
an approximation to both quantum mechanics and general relativity and yet
immensely useful for making a wide range of predictions concerning the phys-
ical world. Surely there is a well-defined sense in which Newtonian mechanics
is mathematically associated to a perfect mathematical model of the physical
universe as a relevant approximation.

Another possible concern is that if all structures satisfying a mathematical
definition of what it means to be physical really are physical, then why are
not all the perfect mathematical models studied by applied mathematicians
physical in our universe? This conundrum appears to rest on a dual meaning
of the word ‘physical:’ I have been referring both to physical worlds in general
(mathematical structures which fit the definition of physical structures), and
‘the’ physical world, namely our universe. It should be noted again that which
world is ‘the’ physical world depends on the context of a discourse. Beings from
a physical world completely different from ours (except that they still employ
the English language to express their thoughts) would consider their world to
be the physical world, while those of us in our physical universe would disagree.
Perfect mathematical models of physical worlds other than our own appear
to us to be purely abstract rather than concrete simply because we live in a
certain physical world and define ‘concrete’ with reference to that world. In
other worlds, our world would seem purely abstract.

One final note is that since our minds are simultaneously embedded into all
worlds consistent with their experience, many worlds which we would normally
consider purely abstract are ‘real’ in the sense that our minds are instantiated in
them. Of course we can try to define ‘the’ real world as the world with highest
probability, but such a world may fail to exist. What is intuitively clear is that
the coherence of our experience suggests we experience primarily the embedding
of our minds into a single structure.

3.3 Precise meaning of structure and isomorphism

Philosophers of science, particularly structuralists, often discuss the structure of
physical systems and their correspondence to mathematical models via isomor-
phisms, but unfortunately the precise meanings of these terms in the context
of physical objects are rarely made clear. Mathematical metaphysics makes
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available a simple and compelling solution to this problem: The structure of a
physical system is simply its mathematical structure (the collection of its compo-
nents together with all their relations), and isomorphism has the precise meaning
which it is given by mathematicians. Again mathematical metaphysics provides
a neat way to avoid the mysterious Platonic bridge between the mathematical
and physical realms by simply collapsing the physical into the mathematical.

3.4 Precise meaning of alethic modality

Since mathematical metaphysics entails the existence of an object fitting any
consistent description, it allows us to conclude the existence of a Lewis-like as-
semblage of possible worlds, which then makes available a natural interpretation
of necessity as truth in every possible world and possibility as falsehood in ev-
ery possible world. However, this notion is not interesting if we allow every
structure as a possible world (if the empty strucuture is allowed, everything is
possible and by duality nothing is necessary; while if the empty structure is ex-
cluded but a sufficient variety of other structures are allowed, only logical truths
are necessary). Consequently necessity and possibility should be interpreted in
a restricted domain of structures, say physical structures, or plausible histories
and futures of the physical universe we perceive. One might then reasonably ask
what it is that makes a modality ‘alethic;’ because of the natural interpretation
of necessity as truth in all possible worlds and possibility as truth in some possi-
ble world, it seems natural (assuming Kripke semantics for modal logic) to call
a modality alethic if and only if its accessability relation is complete (connects
every pair of worlds).

3.5 Precise meaning of probability

Pinning down exactly what it means for a particular event to have a certain
probability is a long-standing philsophical problem which appears to still be far
from solution. Mathematical metaphysics does not offer a complete solution,
but does offer a framework for further work which appears quite promising. This
is described in the answer to the objection from section 2.1 that mathematical
objects cannot be nondeterministic, unlike physical objects, and further pursued
in the introduction to section 3, but we briefly review it here. The concept of
probability makes sense for a probability space, the points of which are possible
worlds. An agent does not necessarily know what properties hold of the possible
world w which he is in, but would be surprised if he could correctly predict that w
has some property which holds with low probability. The meaning of ‘surprised’
here should be made precise and does not correspond exactly to common usage,
but it should be reasonably intuitively clear what is going on. Thus because the
probability of an event (property of worlds) is linked to an occurrence in the
agent’s mind (surprise), we find that the probability measure is linked to the
agent’s mind and governs what sorts of experiences are unsurprising. To put
things another way, we should expect to find ourselves in a reasonably generic
world among those we could possibly inhabit, and genericity is determined by a
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probability measure associated to our minds (and hence indirectly experiences).
Certainly this was not very precise, and it leaves many questions open, but it
at least opens an interesting direction for future inquiry.

3.6 Explication of soft concepts

Philosophers consistently find it very important to be precise about their use
of terms, but for concepts like ‘beauty,’ ‘chair,’ or ‘green,’ it appears to be
impossible or at least impractical to be completely precise. Such concepts I call
soft concepts. Mathematical metaphysics offers no help with the difficulty of
making soft concepts precise, but at least gives reason to believe this can indeed
be done, and perhaps some idea of what that would look like.

Let us start with the concept of ‘green.’ To simplify our discussion we
shall restrict our attention to which range of wavelengths of light should be
considered green. It is clear that not just any range is acceptable (certainly
nothing which is obviously blue should count as green, for example), and that
the precise boundaries of the range of green wavelengths are difficult to specify.
For an object of a colour near one of these boundaries, some people may say
it is green, others may say it is not, and still others may suspend judgment.
Thus it seems we have a two-parameter family of candidate definitions of green,
where one parameter is the left endpoint of the range and the other its right
endpoint (we could increase the number of parameters by deciding whether
to include or exclude each endpoint, but will ignore that issue for simplicity).
These parameters themselves are restricted to a certain range, and we assume
this range is fixed (otherwise we could iterate the process and give ranges for the
endpoints of the parameter ranges, etc.). Each choice of a pair of parameters
gives a possible definition of green. Which one is the ‘right one’ depends on
our definition of ‘right,’ and it is certainly intuitively plausible that any of these
definitions is the right definition in some contexts. We have not specified a
range of wavelengths until choosing a pair of parameters, but it is notable that
the whole ensemble of possible definitions of green forms a single mathematical
object and can be seen as giving precise meaning to the phrase ‘the soft concept
“green.”’

The concept of ‘chair’ is somewhat more complicated since it is not easily
reducible to a few parameters as in the case of colours, and perhaps has some-
thing to do with the soft concept of purpose (must a chair have the purpose
of being sat upon?). The concept of beauty is yet more complicated since peo-
ple’s judgment varies more wildly over time than for the other two concepts we
have considered, and it is conceivable that two people would disagree in every
instance about what is beautiful. However, it is still very intuitively plausible
that a family of possible definitions can be distinguished for each of these soft
concepts, and that this family will have a structure which we may identify with
the soft concept.
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3.7 Quantum Physics

The famous measurement problem of quantum physics is the question of how
and why wavefunctions collapse when observed. For example, if a photon passes
through a beamsplitter, its wavefunction takes both paths and can even inter-
fere with itself, but as soon as the location of the photon is measured the wave-
function collapses into a reasonably well-defined location (bound by Heisenberg
uncertainty, of course). Mathematical metaphysics provides an intriguing way
of thinking about this: Since minds are simultaneously embedded in all pos-
sible worlds consistent with their experience, perhaps the photon appears to
have taken multiple paths until its location is measured because following ei-
ther path is fully consistent with our experience until we make an attempt to
measure the location of the photon. Certainly there is more work to be done
here, such as determining why wavefunctions can interfere with each other on
such an account, but this does look philosophically promising.

Another interesting consequence of mathematical metaphysics which is re-
lated to quantum physics is the fact that mathematical metaphysics implies
the existence of an Everett-style many-worlds ensemble. Since the many-worlds
interpretation of quantum mechanics is widely regarded as solving the quan-
tum measurement problem, we have found a major problem in physics whose
solution is provided by mathematical metaphysics. Also, the discussion of the
preceding paragraph may still shed light on why wavefunctions collapse at the
times they do.

3.8 Ontological maximalism

As mentioned near the end of section I, the class of all mathematical objects
is extremely broad; perhaps the broadest imaginable class of objects. Thus the
ontology of mathematical metaphysics is not conservative at all, but is rather
maximal in a sense (it includes as many mathematical objects as can possibly
exist). Since many philosophers strive to do with as few ontological commit-
ments as possible, we shall do well to examine how a position of ontological
maximalism might be justified.

The justification that I offer is that ontological maximalism is very intuitive:
If it is consistent for an object to exist, why should it not? What harm could
it do? This is related to the attitude of set theorists that cardinal numbers as
large as consistent should exist, and to the intuition that there is no reason to
avoid passing to a conservative extension of a given theory when convenient,
even one with new ontological commitments (as in the passage from Zermelo-
Fraenkel set theory to von Neuman-Bernays-Goedel set theory). Because of
this intuition, one might wonder why philosophers have such a strong tendency
toward avoiding ontological commitments. My opinion is that they seek to pro-
tect their arguments from attack by reducing their assumptions and ontological
commitments as much as possible. This is certainly a valuable pursuit, just as it
is valuable in mathematics to prove a theorem from a minimum of assumptions,
but it really is not necessary once we have accepted the position of mathemati-
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cal metaphysics. Because philosophers naturally seek to make their arguments
as independent of particular metaphysical assumptions as possible, we should
expect them to continue avoiding ontological commitment if necessary, but this
does not reduce the intuitive appeal of ontological maximalism.

4 How Mathematical Metaphysics Might Be Used

In this section we explore ways of thinking in the framework of mathematical
metaphysics which would plausibly be seen as relevant to the everyday lives of
people who are not philosophers.

4.1 Universal immortality

A surprising consequence of the view of minds taken in the defense of math-
ematical metaphysics above is that all minds are immortal in the sense that
there exist times arbitrarily far into the mind’s future. One way to see this is
to note that there is no contradiction which results from a mind continuing to
exist arbitrarily far into the future, and so this certainly occurs in some possible
worlds. Because a mind only has experience in worlds where it exists, this shows
that minds always have an immortal experience (the possible futures in which
a mind dies will not be followed past the point of death).

One might worry that the assumption that it is consistent for any mind to be
immortal is too strong, especially in the context of an argument that all minds
are immortal. This can be partially remedied by the following argument using
weaker assumptions:

(0) Time has the structure of an ordered commutative monoid without largest
element (whose operation is thought of as addition of time intervals).

(i) If a mind M is alive at a time t, then there exists ε > 0 such that M is alive
at time t+ ε.

(ii) If a mind M is alive at every time in a bounded set T , then M is alive at
a time s such that s ≥ t for every t ∈ T .

Premises (i) and (ii) can be collapsed into

(ii’) If a mind M is alive at every time in a bounded set T , then M is alive at
a time s such that s > t for every t ∈ T ,

but perhaps (i) and (ii) are separately more plausible than (ii’). Premise (0)
asserts some minimal and highly intuitive structure for time. Premise (i) would
perhaps be unintuitive in a single world, but it does seem very plausible that
in the infinite ensemble of possible futures of M there exists one where M lives
a tiny bit longer. The last assumption is a kind of closure assumption which
roughly says a mind cannot suddenly disappear, and certainly has the weakest
intuitive justification of the three premises. From these assumptions, we have
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that for every mind M , if M is alive at time t, then for every time s there exists
a time s′ ≥ s such that M is alive at time s′, which intuitively means that M
is immortal.

To see this, assume M is a mind which is alive at time t, and let s ≥ t.
By transfinite induction, construct a sequences (tα), (εα) such that for every
ordinal α, M is alive at time tα, εα > 0, and the following conditions hold:

(a) t0 = t

(b) t(α+ 1) = tα + εα

(c) For limit β, if (tα : α < β) is bounded choose tβ such that tβ ≥ tα for every
α < β; otherwise halt the construction.

This is possible because M is alive at t0 by assumption, εα as in (b) exists
by premise (ii), and tβ as in (c) exists by premise (iii). If the collection of
times is not a proper class in the set-theoretic sense, this construction must
eventually halt (certainly before stage κ where κ is the cardinality of the set
of times). If the set of times is a proper class, this construction need not halt
at any ordinal stage, but this problem can be solved by embedding the entire
model of set theory (say N ) in which we are working into a larger structure
(call it N ′) which contains the set of all ordinals in N . N ′ then witnesses that
the construction must halt. Supposing the construction halts at stage β, we
have that (tα : α < β) is unbounded, and so for every time s there exists a time
s′ ≥ s such that M is alive at time s′, as was to be proved.

Any of the assumptions of the argument just given can certainly be chal-
lenged, and they appear in order of plausibility (at least according to the au-
thor’s assessment). In particular, one could imagine a mind M which ceases
to be alive at a time s > 0 (so M does not exist at any time s′ ≥ s) but is
alive at every time 0 < t < s; such a mind can satisfy premise (i) but cannot
satisfy premise (ii) (or else we should conclude the contradiction that M is in
fact alive at time s). However, the above argument from premises (0)–(ii) at
least strengthens the earlier claim that it is consistent for any mind to continue
existing indefinitely.

Note that in the above argument we assumed nothing about how one can
tell whether two states of consciousness belong to the same mind, or whether a
mind can cease to exist for an interval of time and then come back into existence.
Intuitively I should think that two states of consciousness belong to the same
mind iff there is a ‘consciously continuous’ path of states between them; this
terminology is merely suggestive, and I have no idea how to make it precise. Note
that this leaves open the possibility that the same state of consciousness can
belong to different minds; indeed we should expect this given the highly plausible
conclusion that a mind may posses multiple possible futures. Furthermore, a
consciously continuous path of states need not necessarily be continuous in time,
and so the possibility that a mind may cease to exist for a period of time and
then return is also left open. A somewhat intuitively plausible case where this
may occur is a deep coma.
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One might easily think that the exact same arguments as those used to
conclude that all minds are immortal can be used to show that any object
continues to exist indefinitely. Since we have used the term ‘object’ to refer to
an element of a mathematical structure, it certainly is possible for an object x
to cease to exist in a temporal structure (in the sense that there exists a time
t such that x does not exist at any time t′ ≥ t). However, there is a sense in
which the argument does still work when we view the future of an object in
time as indeterminate: for any element x of the world at time t in a temporal
structure N there exists a temporal structure N ′ which agrees with N up to
t and is such that x is an element of the world at time t′ in N ′ for every t′ ≥ t.
This intuitively means that an object which exists at some time t will continue
to exist indefinitely in some possible futures.

4.2 Scientific truth and methodology

First let us note that scientific truth is a soft concept in the sense of section
III.6, and so admits various interpretations. The term ‘scientific knowledge’ as
it is used in practice has a time-indexed definition which is totally impractical
to make precise, but we shall see that mathematical metaphysics makes feasible
a modification of the verificationist criterion for scientific truth.

Since observers are simultaneously embedded in many possible physical uni-
verses, one might wonder how we can gain scientific knowledge of the real world.
First, we should note that ‘real world’ is a soft concept whose precise definition
we should not expect to be universally agreed upon, though we should certainly
expect scientific generalities to hold on a subset of the possible worlds in which
we are embedded that has high probability (this is part of the soft concept of
scientific truth). This certainly opens the door to the possibility of multiple
incompatible physical theories which describe reality equally well, and the fact
that just this situation appears to hold with quantum mechanics and general
relativity gives some plausibility to the assertion that the real world is under-
determined. However, it certainly is consistent with mathematical metaphysics
that there is a unique perfect model of the physics of our universe.

How are we to go about answering questions concerning our universe? One
way is to seek uncertain knowledge (a soft concept as discussed in sections
3.1,3.6), and that is what is pursued in practice. However, in order to really an-
swer a question we should obtain certain knowledge about it. This is generally
regarded as impossible or completely impractical, but surprisingly on mathemat-
ical metaphysics there is a simple way to certain knowledge concerning physical
objects. All one needs to do is test a hypothesis in every conceivable way, which
can certainly take an infinite amount of time, but this is available by the argu-
ment for immortality from the preceding paragraph. Because of this method of
obtaining certain knowledge, a verificationist interpretation of scientific truth is
perfectly reasonable given mathematical metaphysics, provided we are willing
to wait infinitely long for verification. Using this methodology, one can obtain
every empirical fact, and thus prove everything which can be known empirically
about physical objects. Since non-empirical information about physical objects
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is simply an artifact of the embedding into a mathematical structure, this in
fact yields everything which can be known about a physical object. Perhaps
these musings are not useful for practical scientific methodology, but this is at
least an interesting thought.

4.3 Framework for examining theological arguments

It is a fun and interesting exercise to see how some standard arguments for the
existence of God fare under mathematical metaphysics.

(i) Ontological argument

There are many different versions of this argument, but a basic modern
one due to Plantinga (a modal ontological argument) is as follows:

(a) If God exists, he exists necessarily.

(b) It is possible that God exists.

Conclusion God exists, necessarily.

From premise (b) and the general logical assumption that a nonempty
possible world exists, we have that there exists a world w where God
exists. Consequently by (a) God exists necessarily and hence in every
possible world.

That there is something wrong is clear, because this entails God exists
in the empty world (or if we exclude the empty world, that God is a
natural number, etc.). The problem seems to be with premise (a): On
mathematical metaphysics, nothing exists necessarily (from the point of
view of all structures being regarded as possible worlds), and so (a) is
impossible. Thus if (a) is a true assumption about God then God does not
exist. It is certainly possible for this argument to succeed by restricting
attention to a subset of the possible worlds, but in that case the subset
was of course necessarily chosen so all its members contain God, which
trivializes the argument.

(ii) Leibniz cosmological argument

(a) Anything contingent has a cause

(b) There are no cycles or infinite regressions of causes

(c) Contingent things exist

Conclusion There exists a necessary cause.

Premise (b) could be suspect depending on one’s notion of causality, and
both (a) and (b) are certainly suspect in structures lacking any notion of
causality (or perhaps even time). However, in addition to the intuition that
everything exists contingently because nothing exists in the empty struc-
ture, we also have that everything exists necessarily in a broader sense
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because all structures are fixed and unchanging; they and their compo-
nents cannot be created or destroyed (from a perspective external to the
structures). This latter notion of necessary existence seems to me most ap-
propriate for analyzing the Leibniz cosmological argument, in which case
(c) is false but the conclusion is true (all causes are necessary). Certainly
my judgment of how to interpret necessary existence in this context can
be challenged, but the above response to the Leibniz cosmological argu-
ment does appear to be worth investigating. A final remark which will
be pursued further when we examine the next argument is that the nec-
essary cause which the Leibniz cosmological argument need not have any
connection with God.

(iii) Kalam cosmological argument

(a) Anything which begins to exist has a cause

(b) The universe began to exist

Conclusion The universe has a cause.

This is perhaps the best-studied argument for the existence of God in re-
cent Christian philosophy. Let us begin by examining the first premise.
Whether this is true depends on the definition of cause, which unfortu-
nately is far from clear. For example, do virtual particles have causes?
One could define the notion of cause such that the first premise is true,
but it is not clear whether such a definition can be made to correspond to
intuition. Let us grant the first premise for now. In order to understand
what we have granted and to begin examining the second premise, we must
understand what it means for something to begin to exist. A straightfor-
ward definition would be that x begins to exist at time t iff x exists at
time t and for every time s < t, x does not exist at time s. However,
this does not appear to make sense in the case of the universe, because
in order for there to be time, the universe must exist, and so there is no
time before the universe existed. Thus the second premise seems highly
suspect. Even if we grant the whole argument, this does not at all lead
to the conclusion that the cause of the universe must be God. We could
define it to be God (keeping in mind that there could be many causes,
and so we may end up with many gods), but then we are simply using
an unfamiliar meaning of the word God. However, assuming the intuitive
notion of God is coherent, it is possible that this being exists and created
the universe, thereby causing it to exist. Consequently this did happen in
some pasts of our universe (rendering any consistent account of creation
true in a weak sense), but it is not at all clear that the probability of such
a past should be high (or even nonzero).

(iv) Teleological argument

It is clearly possible for life to come into being without a designer (after
all, one possibility for the history of our universe is that it popped into
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existence five minutes ago, completely uncaused), and so a designer is not
necessary for life. One might still ask whether it is most probable that life
was designed; this seems to me a task for scientific argument, and I have
nothing further to add here.

(v) Moral argument

The argument is that adherence to a system of morality cannot be norma-
tive without a being which determines what is moral. On mathematical
metaphysics, any system of morality can be defined (say by saying which
actions in all possible worlds are moral according to this system, and per-
haps as a soft concept), and no being is needed to determine this definition.
As to why a particular definition used is normative, our minds have moral
sensibilities as part of their structure, and so our personal morality is de-
termined from our minds, and morality in a society is determined by the
interactions of many minds, etc. This does imply that morality is rela-
tive (what is considered moral by one mind may not be by another), but
such relativity does not necessarily imply loss of normativity; it merely
implies that normativity is also relative, which is certainly plausible (it is
obligatory to remove one’s shoes before entering a mosque but not before
entering a church).

4.4 Religious pluralism

On mathematical metaphysics, minds are simultaneously embedded into all
worlds which contain their structure, and these quite clearly include worlds
where the central premises of various religions are true. Thus one can mean-
ingfully say that the religions are true, and this could perhaps be given as an
argument for practicing them. However, one must keep in mind that in the same
sense we are in a swamp world; probabilities do have bearing on our experience.
Thus one might ask what is the probability of various religions. I should say for
most religions it is significantly lower than that of worlds which developed with
histories considered scientifically plausible, simply because most religions posit
events which would be considered highly unlikely if one were to claim that they
happened today. Thus perhaps we can reject most religions on the same grounds
that we reject the hypothesis that we are living in a swamp world. What is this
rejection? It is not rejection of the veracity of religions, because the religions
are true in the sense made precise above. It is also not rejection of the practice
of religions, which is largely a cultural phenomenon. Rather it is rejection of the
scientific truth of most religions, where scientific truth means roughly truth in a
mathematical model with structure such that the probability that our universe
is such a structure is high (see discussion in section 4.2). It should be noted that
it is possible for a religion to make no claims which are scientifically unlikely, in
which case our argument in this paragraph has no bearing on deciding whether
it is true in the ‘real world,’ a soft concept which we nevertheless have a good
intuitive grasp of.
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One might well object that this is simply an intuitive judgment against
religion, with no more force than the judgment of the religiously inclined that
their religion is true with high probability. This objection is valid; however, it
seems to me much more difficult to argue that any particular religion is true
with high probability than to note that events which would today be considered
to have very low probability are assumed by most religions to have occurred,
and so by the intuitive principle that the past should be similar to the present,
conclude that the probability of most religions is low.

However, a believer may certainly find his religious experience sufficiently
compelling to warrant belief, and in fact mathematical metaphysics can be used
to provide support for such a belief, especially if it does not entail any specific
physical predictions. The line of reasoning is the same as that in the Matrix ob-
jection from section 2.3: Assuming the believer’s religious beliefs are consistent
with his experience (if not he had best revise them), there are possible worlds in
which he is embedded and such that the claims of his religion are true. If he re-
gards these worlds as the most relevant, there is a well-defined sense in which he
may say his religion is true in the ‘real’ world (which intuitively must certainly
be relevant). In fact, it is conceivable that a religious person could strengthen
his faith by concluding using mathematical metaphysics that it is true, which
requires only the very weak assumption that it is consistent (having already
made the strong assumption that mathematical metaphysics is true), and then
supporting the apparently very lenient claim that it is relevant to himself (and
perhaps others).

4.5 Relativity of Reality and Action

On mathematical metaphysics, everything consistent with my current experi-
ence actually does occur (in some of the worlds into which my mind is embed-
ded), and so if I do something and then immediately claim I did not do it, my
claim is in a sense true (since there are possible pasts where I did not in fact do
it, and everyones memory is failing in such a way that it appears I did). Thus
when we say what happens, we generally do not mean this simpliciter, but rather
what happens with high probability. Why should high probability, rather than
truth simpliciter, be what is most important to us when evaluating everyday
situations? It appears that this is because what happens with high probability
is what matters for our experience; what happens with high probability is what
actually happens (with rare exceptions).

5 Conclusion

We have seen that mathematical metaphysics is a natural alternative to nomi-
nalism for eliminating the mysterious Platonic bridge between the mathematical
and the physical. We saw in section 1 that this position can be stated very pre-
cisely, in section 2 that it meets intuitive objections brought against it (it should
be clear from the discussion in that section how a wide array of similar objec-
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tions can be met), in section 3 that it has sufficient advantages to be worth
studying, and in section 4 that this position has consequences which could
well be relevant to society and the everyday lives of non-philosophers. Both
Platonism and nominalism have been studied extensively for centuries, while
mathematical metaphysics has almost no adherents and nearly all are from this
century (Tegmark [5] comes to mind), so one should expect to find the position
of mathematical metaphysics far less developed than the Platonist and nomi-
nalist positions. The fact that mathematical metaphysics provides such a novel
perspective on many traditional philosophical problems is reason in itself to
study it alongside the more traditional metaphysical stances on mathematical
objects, and if it does turn out that mathematical metaphysics provides a much
more robust metaphysics than Platonism and nominalism, perhaps philosophers
will eventually recognize this and the position will become more common.
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