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Preface

Many books have been written on the subject. Many of them are quite lengthy and the beginner
of Electrical Engineering may find the level very difficult. This book is intended to be easy and
bringing the readers the important information regarding some basic and fundamental topics of
electrical engineering. Important theoretical and mathematical results are given with the
accompanying lengthy proofs, which | think is the main characteristic of the book. Solved
numerical problems have been added to give the students the confidence in understanding the
material presented. This book covers the topics of basic electrical engineering with the objective
of learning and motivation. Easy explanation of topics and plenty of solved relevant examples is
the principal features of this book. Four to five practice problems have been included at the end
of each chapter in the first edition and hopefully it will be extended in the upcoming editions.
The First chapter of the book includes the traditional topics of Ohm’s law, Kichhoff’'s Laws,
resistive analysis, features of capacitors and inductors. The second chapter presents Mesh and
Nodal analysis for resistive networks as well as networks containing impedances. Phasor Algebra
has been added to understand the analysis of the mentioned complex networks. Chapter three
covers generation of ac voltage, its fundamentals, phasor analysis of series combinations and
resonance. Chapter four discusses phasor analysis of parallel ac circuits and anti resonace.
Chapter five has been dedicated to network theorems like Thevenin’s theorem, Norton’s
Theorem, Maximum power transfer theorem, Superposition Theorem and Reciprocity Theorem.
Three phase circuits with balanced and unbalanced loads have been analyzed in chapter six.
Finally chapter seven describes the magnetic circuits, single phase transformer and magnetic
force on current carrying conductors.

| have reflected my 20 years of teaching experience in the book. This book may be used
as a reference book for the subjects of Basic Electrical Engineering and Linear Circuit Analysis. |
will appreciate the comments and suggestions of my colleagues and students for the
improvement of the book.

Regards

Dr. Gulzar Ahmad
Associate Professor
Department of Electrical Engineering
University of Engineering & Technology Peshawar, Pakistan



Chapter 1

Basic Circuit Elements and Fundamental Laws

1-1 Electrical Energy and Voltage

The amount of energy that is required to move a charge of Q coulomb from one point to
another point against the electric field intensity is known as electrical energy. Constant
electrical energy is denoted by W and time varying electrical energy is represented
by w. The unit of electrical energy is watt second. Figure 1.1 explains electrical energy.

::}- Electric Field Intensity

A B

+— Q Coulomb

Figure 1.1: Electrical Energy

Electric field intensity is the force per unit positive charge in volts per meter and it is
denoted by E. If d defines the distance between points A and B, then electrical energy
can be calculated as

W = Fd (1.1)
W = QEd (1.2)

The amount of energy that is required to move a unit positive charge from one point to
another point against the electric field intensity is known as voltage or potential
difference between the two points. Time Constant voltage is denoted by V and time
varying voltage is represented by v. The unit of voltage is volt. Figure 1.2 explains voltage
between points A and B

::::.— Electric Field Intensity

A B

4—— 1 Coulomb

Figure 1.2: Voltage or Potential Difference



The voltage between points A and B is given by

V=

w
2 (1.3)

Therefore

V =Ed (1.4)

The rate of motion of charge in a conductor defines current. Time constant current is

represented by I and the time varying current is denoted by i. Current is given by
equation 1.5.

_Q
I = T (1.5)

We know that energy per unit time is known as power. Time constant power is
represented by P and the time varying power is denoted by p . The unit of power is watt
and power is given by equation 1.6.

p== (1.6)
pP= % (1.7)

Therefore electrical power can be calculated with the help of voltage and current
P=VI (1.8)

D 1.1: A 12V battery is charged for 4 hours with a current of 2A. 60% of the energy is
stored as chemical energy and the remaining energy is lost. If electricity costs Rs 0.02 per
watt-second, then determine the cost of charging the battery, the amount of energy that
is stored as chemical energy and the energy that is lost.

Solution:
V=12V
[ =2A

t =4 % 3600 = 14400 seconds



P =VI = 24 Watts
W = Pt = 345600 Watt Second
Cost = 345600 x 0.02 = Rs 6912
The amount of energy stored as chemical energy = 345600 X 0.6 = 207360 Jouls
The amount of energy lost = 345600 — 207360 = 138240 watt-second.

1-2 Resistor and Ohm’s Law

Resistor is a passive circuit element, if it is connected across a voltage source (active
circuit element), it will take energy from the source. A resistor is connected across a
variable voltage source as shown in Figure 1.3.

+
Vs VR§R

Figure 1.3: Circuit Diagram for Ohm’s Law

Ohm’s law states that the voltage across a resistor is directly proportional to the current
in the resistor provided the resistance of the resistor is held constant.
Mathematically

Vg X1

By increasing voltage across the resistor, the current increases linearly as demonstrated
in Figure 1.4.

Where R is the constant of proportionality in equation 1.9. The resistance of a conductor
depends upon the material, length and cross sectional area of the conductor and is given
by

R=2 (1.10)



Where p in equation 1.10 represents resistivity of the material of the conductor,
represents length and A represents cross-sectional area. The currentiin the above
mentioned voltage source flows from the negative terminal of the voltage towards the
positive terminal. This type of voltage is known as voltage rise. While the same current
flows from the positive polarity of the voltage vz towards the negative polarity, so this
type of voltage is known as voltage drop. Kirchhoff’s voltage law states that sum of the
voltage rises in a loop is always equal to sum of the voltage drops.

So

Us = Vr

The graphical representation of ohm’s law is given in Figure 1.4. The relationship
between voltage and current is a straight line passing through the origin of the two
coordinates. This type of relationship is called linear relationship. Any circuit element

Linear relationship

- ‘I.-rR
Figure 1.4: Graphical Representation of Ohm’s Law

that has a linear relationship between voltage and current is known as linear circuit
element. Resistor is a linear circuit element and other examples are inductor and
capacitor. According to the law of conservation of energy the power supplied by the
voltage source in Figure 1.3 will be equal to the power consumed by the resistor. The
power consumed by the resistor is converted to heat energy that is dissipated in the air.
The time varying power consumed by the resistor can be calculated with the help of any
one the following three equations

Ds = DPgr = Vg X1 (1.12)



pr = i?R (1.12)
_ & 1.13
Pr =7 (1.13)

D 1.2: Let the voltage across the source in the circuit diagram of Figure 1.3 is 10V and
resistance of the resistor is 5Q. Determine the current in the resistor and power
consumed by it.

Solution:

pr = iR =4 x5=20W

1-3  Capacitor

It is a passive circuit element that stores electrical energy in its electric field and this is
why it is known as energy storing device. It consists of two metallic plates having area of
Am?. A dielectric material with dielectric constant of ¢, is placed between the two
plates. The distance between the two plates of the capacitor is denoted by d . The
symbol of a capacitor is shown in Figure 1.5.

| ™ Metalic Plate

Dielectric Material

Figure 1.5: Symbol of Capacitor

The capacitance of a capacitor can be varied by varying any one the three parameters in
equation 1.14.

C=— (1.14)
As mentioned earlier, Ais the area of the metallic plate, €is the permittivity of the

dielectric material and d represents separation between the plates. A time varying

10



voltage is applied across the capacitor as shown in Figure 1.6. Charge starts accumulating
on the plates of the capacitor and it depends on the applied voltage.

Figure 1.6: Capacitor in a Circuit
By increasing voltage across the capacitor charge on the plates will increase linearly and
vice versa.
q X v
q=Cv, (1.15)

Where C is the constant of proportionality. Differentiating both sides of the above
equation with respect to time, we obtain

U -cz (1.16)
dt dt

d . . . .
As d—z represents the time varying current in the capacitor, Therefore

dve
dt

i =C (1.17)

The above equation reveals that if we apply dc voltage source across a capacitor it will
block the dc current. In other words capacitor behaves like an open circuit for dc voltage.
The differential voltage across a capacitor can be determined using following equation.

dv, = idt (1.18)

Integrating both sides of equation 1.18, we obtain the time varying voltage across the
capacitor

v, = %fidt (1.19)

11



According to KVL, the only voltage rise v in the loop will be equal to the only voltage
drop v, thatis

Vs = Vg, (1.20)

According to the law of conservation of energy power supplied by the voltage source in
Figure 1.6 will be equal to the power taken by the capacitor.

Ds =Dc =V, X1 (1.212)
Putting the value of i in equation 1.21, we get the following equation.

dve

P = Cvcg (1.22)
The differential energy that is stored in the electric field of this capacitor is given by
dw =p,. X dt
dw = Cv, dv, (1.23)

The integration on both sides gives the total energy that is stored in the electric field of
this capacitor.

w = % Cv? (1.24)

1-4  Inductor and Faraday’s Law

Inductor is basically a coil of N turns as shown in Figure 1.7. A simple straight conductor
also behaves like inductor but its inductive effect is very small as compared to a coil
having N turns.

Coil of N Turns

000000

Figure 1.7: Symbol of Inductor
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A time varying voltage is applied across the inductor as shown in Figure 1.8. Current
starts flowing and this current generates time varying magnetic flux of @ weber in the
vicinity of the inductor. This time varying magnetic flux can be calculated with the help
of following equation.

Q= El (1.25)
Inductance L is given by

L =— (1.26)

+

Vs C) L Vi

Figure 1.8: Inductor in a Circuit

Equation 1.26 reveals that a simple straight conductor also behaves like an inductor and
its inductance can be calculated as

L=~ (1.27)

N2 _ & (1.28)

The inductor is located in its own time varying magnetic field and variation in the
strength of the magnetic field will induce some voltage across this inductor, which is
given by the mathematical model of Faraday’s Law

Ndo
CalrTs

13



This is the time varying voltage across the inductor which can be determined with the
help of following equation as well

_ Lai

v, == (1.29)

The above equation reveals that if we apply a DC voltage across an inductor, then it will
behave like an ideal conductor (short circuit) as the voltage across this inductor will be
zero. The differential current in an inductor can be determined using following equation.

1
dl = vadt

Integrating both sides of the above equation, we obtain the time varying current in the
inductor.

i=-[vdt (1.30)

According to KVL, the only voltage rise v, in the loop will be equal to the only voltage
drop v, ,thatis

Ve =V (1.31)

According to the law of conservation of energy power supplied by the voltage source in
Figure 1.8 will be equal to the power taken by the inductor.

ps =pL =V X1 (1.32)
Putting the value of v; in equation 1.32, we obtain
p, = Lij—i (1.33)
The differential energy that is stored in the magnetic field of this inductor is given by
dw =p; X dt (1.34)

The integration on both sides gives the total energy that is stored in the magnetic field
of this inductor

14



fdw=Lfidi

w == Li2 (1.35)

D 1.3: Consider the sketch for v, as shown in Figure 1.9. Sketch iand p. as a function
of time. Capacitance of the capacitor is 10F.

i __,+| I__ v
Ve ; ; } t

Figure 1.9: Capacitor and Sketch for the Voltage across the Capacitor
Solution:
We divide the graph into three regions.
Region # 1: 0<st<1)

In this region v, is a straight line passing through the origin. Equation of this straight line
is
v.=mt+c

Where m = 2 is the slope of this line and as the line is passing through the origin
therefore ¢ = 0.
So

v, =2t

Region # 2: (1<t<3)

The voltage in this region is constant, therefore

v, =2V

15



Region # 3: B3<t<4)

In this region v, is a straight line that does not pass through the origin. The equation of
this straight line is
v.=mt+c

The slope of this lineis-2and ¢ = 8
Therefore
v, = —2t+8

Let us determine i in all these three regions

Region # 1: 0<t<1)
As
v, = 2t
Therefore
_ dv, _
i = CE =204
Region # 2: (1<t<3)
As
v,=2V
Therefore
dv,
[ = rr =04
Region # 3: B<t<4)
As
v.=-2t+8YV
Therefore

'—Cdvc— 20 A
PES e T

Therefore sketch for the current is shown in Figure 1.10.

16



i

20A

-20A

Figure 1.10: Sketch for the Current in the Capacitor

Let us determine p. in all these three regions:

Region # 1: 0<t<1)
As

v, =2t
and

i =204
Therefore

Region # 2: (1<t<3)
As

v,=2V
and

i =0A4
Therefore

Pc=v.Xi=0 W

Region # 3: B3<t<4)
As
v.=-2t+8YV
and
i=-20A4
Therefore

17



Pc=v.Xi=40t—-160 W

Therefore sketch for the power is shown in Figure 1.11.
“'Pc

40W

1 I/
_40W 3

Figure 1.11: Sketch for the Power taken by the Capacitor

D 1.4: Consider the sketch for i as shown in Figure 1.12. Sketch v; and p;, as a function
of time. Inductance of the inductor is 10H.

i L =10H

L )

Figure 1.12: Inductor and Sketch for Current in the Inductor
Solution:
We divide the graph into two regions.
Region # 1: o0<t<1)

In this region i is a straight line passing through the origin. Equation of this straight line
is

i=mt+c

18



Where m = 2 is the slope of this line and as the line is passing through the origin,
therefore ¢ = 0.
So

Region # 2: (1<t<?2)

In this region i is a straight line that does not pass through the origin. Equation of this
straight line is
i=mt+c

The slope of this lineis -2 and ¢ = 4
Therefore
i=-2t+4

Let us determine v, in all these two regions

Region # 1: o0<t<1)
As

Therefore

Region # 2: (1<t<2)

As
i=-2t+47V
Therefore

di
v, =L =-20V

Therefore sketch for the voltage is shown in Figure 1.13

19



Vo

20V

=20V

Figure 1.13: Sketch for the Voltage across the Inductor

Let us determine p; in all these two regions:

Region # 1: 0<t<1)
As
i =2t
and
v, =20V
Therefore

pszLXi =40t W

Region # 2: 1<t<?2)
As
i=-=2t+4V
and
v, =—=20V
Therefore

pL:vLXi :40t_80W

Therefore sketch for the power is shown in Figure 1.14

400
./I o

- 40N

Figure 1.14: Sketch for the Power taken by the Inductor

20



1-5 Kirchhoff’s Voltage Law

This law is known as KVL and is used to find out unknown electrical quantities in a
circuit. This law states that sum of the voltage rises in a loop is always equal to sum of
the voltage drops in the loop. Consider a series combination of three resistors as shown
in Figure 1.15.

R1 R2 R3
o - + - + -
V1 V2 Vs
I A
|
I
L

Vs

Figure 1.15: Series Circuit

A constant voltage is applied across this series circuit and this voltage source results in a
current I that flows in the clockwise direction in the loop. We apply KVL to the given
loop

Ve=V+V,+1; (1.36)

Equation 1.36 can be rearranged as
Vs + (_V1) + (_Vz) + (_V3) =0

This equation justifies another statement of KVL. In light of this equation algebraic sum
of all the voltages in a specific direction in a loop is always equal to zero. Keep it in mind
that we place a plus sign with the voltage rise and a minus sign with the voltage drop in
this regard.

Voltage drop across R; in accordance with ohm’s law is given by

Vl = IRl (1.37)
Voltage drop across R, in accordance with ohm’s law is given by

V2 = IRZ (1.38)

21



Voltage drop across R; is given by
V3 = IR3 (1.39)

Putting all these values in equation 1.36, we obtain

The current in this series circuit can be found using equation 1.40. Now we replace the
series combination of all the three resistors by a single resistor such that the resistance
of this single resistor is equal to the total resistance of the series circuit. The equivalent
circuit of the above mentioned series circuit is shown in Figure 1.16. Applying KVL to this
equivalent circuit, we obtain the following equation

Vs =Vp (1.412)

Vs
Figure 1.16: Equivalent Circuit

Voltage drop across Ry in accordance with ohm’s law is given by
VT = IRT (1.42)
Putting this value in equation 1.41, we obtain
Vs = IRy (1.43)

Comparing equation 1.43 with equation 1.40, we obtain total resistance of the series
combination of Figure 1.15.

22



According to the law of conservation of energy power supplied by the voltage source in
Figure 1.15 will be equal to the total power taken by the entire circuit.

Power supplied by the voltage source = P¢ =V |
Power consumed by R, = P, = I?R,
Power consumed by R, = P, = I’R,
Power consumed by R; = P; = %R,

As P, = Py, therefore

D 1.5: Consider the series circuit as shown in Figure 1.17. The DC voltage source across
this series combination is of 10V. Find the current, the voltage drop across each resistor
and the power consumed by the entire circuit.

R1=20 Ra2 =130 R3 =50

Vs = 10v
Figure 1.17: Series Circuit

Solution:
Using equation 1.40, we can calculate the current.

VS :I(R1+R2+R3)

23



Vs 10
Ri+R,+R; 10

I=1A
Voltage drop across R, is
V1 = IR1 = 2V
Voltage drop across R, is
V, =IR, =3V
Voltage drop across Rj is
V3 =1R; =5V

Power supplied by the voltage source = P =V, [ =10 X 1 = 10W

1-6 Capacitors in a Series Circuit

Consider a series combination of three capacitors as shown in Figure 1.18. A time
varying voltage is applied across this series circuit which results in a time varying current
i that flows in the clockwise direction in the loop. We apply kVL to the given loop which
states that sum of the voltage rises in this loop will be equal to sum of the voltage drops.

US:v1+v2+v3 (146)
C Ca Cs
i
i W ¥s V3
F "
+\-—l"_
VE

Figure 1.18: Series Circuit of Capacitors

Equation 1.46 can be rearranged as

vs + (—v) + (1) + (—v3) =0

24



This equation justifies another statement of KVL. In light of this equation KVL states that
algebraic sum of all the voltages in a specific direction in a loop is always equal to zero.
Keep it in mind that we place a plus sign with the voltage rise and a minus sign with the
voltage drop in this regard.

Voltage drop across C; is

_ 1

v = idt (1.47)
C1
Voltage drop across C, is
1 ,.
v, = —[idt (1.48)
C,
Voltage drop across C; is
1 ;.
vy =—| idt (1.49)
C3

Putting all these values in equation 1.46, we obtain

v = — [ idt + — [ idt +— [ idt (1.50)
G C; Cs
1 1 1 .
or Vg = (C—1 tot C—3) [ idt (1.51)

Now we replace the series combination of all the three capacitors by a single capacitor
such that the capacitance of this single capacitor is equal to the total capacitance of the
series circuit. The equivalent circuit of the above mentioned series circuit is given in
Figure 1.19. Applying KVL to this equivalent circuit, we obtain the following equation.

Ve =V (1.52)
S T

Cr

L& V.

Figure 1.19: Equivalent Circuit

25



Voltage drop across Cr is
1 ;.
v = — [ idt (1.53)
Cr

Comparing equation 1.53 with equation 1.51, we obtain the total capacitance of the
series combination of Figure 1.18.

&= G5+ (159

1-7 Kirchhoff’s Current Law

This law is known as KCL and is used to find out the unknown electrical quantities in a
circuit. This law states that sum of all the currents flowing towards a node is always
equal to sum of all the currents flowing away from the node. Consider the parallel
combination of three resistors as shown in Figure 1.20. A constant voltage is applied
across this parallel circuit and this voltage source results in current I;, I, and I3 as shown
in the figure. We apply KCL to the single node of this parallel circuit.

IS = 11 + 12 + 13 (155)
Ig Mode
> | I
+ L 4B ¥l I3
— + R + R + R
VS — v, % Lo, % 2V, 3

Figure 1.20: Parallel Circuit
It can be easily established that
Ve=V, =V, =V, (1.56)
Voltage drop across R; is

Vy =LR,
Therefore

26



L= T (1.57)
Voltage drop across R, is

Vo, = LR,
Therefore

=V

I, = R, (1.58)
Voltage drop across Rj is

V3 = 3R
Therefore

—Vs

Putting all these values of currents in equation 1.55, we obtain

1 1 1
Now we replace the parallel combination of all the three resistors by a single resistor
such that the resistance of this single resistor is equal to the total resistance of the
parallel circuit. The equivalent circuit of the above mentioned parallel circuit is shown in
Figure 1.21. Applying Ohm’s law to this equivalent circuit, we obtain the following

equation.
1%
=2 (1.61)
Rt
Ig Node
. |
- oo —— |
t +
— R
Vg — 'ifT T

Figure 1.21: Equivalent Circuit
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Comparing equation 1.61 with equation 1.60, we obtain the total resistance of the
parallel combination of Figure 1.20.

-1 (1.62)
Rr  (Ry+R,+R3) :

According to the law of conservation of energy power supplied by the voltage source in
Figure 1.20 will be equal to the total power taken by the entire circuit.

Power supplied by the voltage source = P =V, I
Power consumed by R, = P, = I?R,;
Power consumed by R, = P, = IZR,
Power consumed by R; = P; = IZR;

As P, = Py therefore

D 1.6: Consider the parallel circuit as shown in Figure 1.22. The DC voltage across this
parallel combination is 16V. Find the currents and the power consumed by the entire

circuit.
Solution:
Current through resistor R is
L=s
Ry
16
I = - = 84
|§ I Node I
¥4 ¥lo I3

|+

16V_— 29% 40% 80

Figure 1.22: Circuit for D # 1.6

28



Current through resistor R, is

Vs
I, =—
I, = 16_ 4A
2 - 4 -
Current through resistor R5 is
Vs
I3 = —
37 R,
I o_ 2A
3= Qg =

Power consumed by resistor R; is

P, =I?R, = 64 X2 =128W
Power consumed by resistor R, is

P, =IZR, = 16 X 4 = 64W

Power consumed by resistor R is
P; =1?2R; =4 x8=32W
Total power consumed by the entire circuit is
Py = Py + P, + P; = 224W
Current Supplied by the source is
[s=0L+1,+1; =144
Power Supplied by the source is

Pg = Vil = 16 X 14 = 224W

D 1.7: Consider the parallel circuit as shown in Figure 1.23. Find the unknown currents,
the node voltage V', the power consumed by the entire circuit and the power supplied
by the current sources.

Solution:

29



Applying KCL to the node
Is=L+1,+13
Sum of the current flowing towards the node is
Is = 8A

Current through resistor R, is

Node (V)

W=
VA
il
AA%
ral=
VAV

3A

Figure 1.23: Circuit for D # 1.7

Current through resistor R, is

|4
IZ = R_Z =3V
Current through resistor R is
|4
13 = R_3 =2V

Putting the values in equation 1.64, we obtain
8=3V+3V+2V
V =1 Volt

So the current [; is 3A, the current [, is 3Aand I; is 2A.

Power consumed by resistor R; is

1

Power consumed by resistor R, is

30
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P, = IZR, =9x%=3W
Power consumed by resistor R is

P; = IR, =4><%=2W
Total power consumed by the entire circuit is

P, =P, + P, + P; =8W

Power supplied by the first current source

Pg; =1x5=5W
Power supplied by the second current source

Ps, =1x3=3W
Total power supplied by the two current sources

Ps = 8W

1-8 Capacitors in a Parallel Circuit

Consider a parallel combination of three capacitors as shown in Figure 1.24. A time
varying voltage is applied across this parallel circuit which results in time varying
currents i , i, and i3 as shown in the figure.

Ls

LW
7

+

vS() C,0= C,—= (=

Figure 1.24: Parallel Circuit
We apply KCL to the single node of this parallel circuit.
is = il + iz + i3 (1.65)

This is a parallel circuit and the voltage across each one of the three capacitors is equal
to the source voltage. The current in C; is given by
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ih=0C it
Current in C, is given by
. dvs
l, = Czﬁ
And current in C3 can be calculated as
. dvs
h=Gg

(1.66)

(1.67)

(1.68)

Putting all these values in equation 1.65, we get the source current.

dv
I = (C1 +C; + C3)d_ts

(1.69)

Now we replace the parallel combination of all the three capacitors by a single capacitor

such that the capacitance of this single capacitor is equal to the total capacitance of the

parallel circuit. The equivalent circuit of the above mentioned parallel circuit is given in

Figure 1.25. Applying KVL to this equivalent circu

US=UT

it, we obtain the following equation.

(1.70)

w

w0

Figure 1.25: Equivalent Circuit

The source current in the equivalent circuit is calculated as

Is = (CT)
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Comparing equation 1.71 with equation 1.69, we get the total capacitance of the
parallel circuit.
CT = C1 + C2 + C3 (172)

D 1.8: Consider the circuit as shown in Figure 1.26. Find the unknown currents and
voltages if the voltage across the capacitor is v, = 4e~ ¢ volts.

i1 5H

oy ‘i lia

e -2

<
1 %]
&
| s}
[#5)
=
, 0
|

Figure 1.26: Circuit for D # 1.8
Solution:
As the time varying voltage across the capacitor is known so we can calculate it’s
current.

dv
iy = Cd—tc = —8e7t A

The resistor is in parallel with the capacitor, therefore
ve = vg = 4e L volts
Current in the resistor is

v
i =?R= 12¢t A

Applying KCL to the node
il = i2 +l3 = 4e_tA
Voltage across the inductor is
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di
v, = LE = —2e~t volts

Applying KVL to the first loop of the given circuit, we obtain the source voltage.

t

vs=v, + Vg =2e”" wvolts

1-9 Source Conversion

A voltage source can be converted into a current source and a current source can be
converted into a voltage source. The internal resistance of an ideal voltage source is
zero and the voltage across the two terminals of an ideal voltage source remains the
same under load as well as no load condition. However, the voltage across the two
terminals of a practical voltage source decreases under load condition due to the
voltage drop in its internal resistance.

0 -0

(a) (b)

Figure 1.27: (a) Ideal Voltage Source ( b ) Ideal Current Source
The internal resistance of an ideal current source is infinity and the current delivered by
a practical current source decreases under load condition due to the flow of current in
its shunt internal resistance. An ideal voltage source and an ideal current source are
shown in Figure 1.27. Consider a practical voltage source having an internal resistance of
R ohms as shown in Figure 1.28 (a). It can be converted into a practical current source
as shown in Figure 1.28 (b).The current I delivered by the current source is

Vs

Is=3 (1.73)
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The resistance R is connected in parallel with the current source which is its internal
resistance. Conversely if we want to convert this current source into voltage source then
voltage of the voltage source can be found as

Vs = IsRg (1.74)

The internal resistance of the current source should be connected in series with the
voltage source.

(

(a) (b)

Figure 1.28: (a ) Practical Voltage Source ( b ) Practical Current Source

1-10 Charging of a Capacitor

Consider the circuit shown in Figure 1.29. There is no voltage across the capacitor and it
is charged with the help of DC voltage source.

R
s a” VWA

!

Figure 1.29: Arrangement for Charging of a Capacitor
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The switch S of the circuit is open and there is no current in the circuit. A capacitor
blocks DC current under steady state condition. If the switch S of the circuit is closed
then initially there will be a charging current and once the capacitor is fully charged then
there will be no more current in the series circuit. Obviously the charging current will be
a time varying current. Switch S of the series circuit is closed at t = 0, as shown in Figure
1.30. The initial condition for the circuit is as under

Attimet=0,v, =0

There will be a time varying current in the circuit during charging period and this current
will result in a time varying voltage drop across the resistor and a time varying voltage
drop across the capacitor. RC is known as the time constant of this RC series circuit and
it is denoted by 1.

S : e II:i
—— 1
+ V- +V, -
+
\ W
S oo

Figure 1.30: Charging Current in the Capacitor

Applying KVL to the loop, the following equation is obtained.

VS = UR + UC (175)
As
UR == lR
Therefore
VS = lR + UC (176)
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The current in the capacitor is calculated as

. dve
l—C?

Putting the value of current in equation 1.76, the following equation is attained.

dv,
VS = RC_ + vC (177)
dt
Equation 1.77 can be written as
_dvc _ _dt 1 78
(Vs_vc)_ RC (1.78)
Integrating both sides of equation 1.78
—dve j‘ —dt
(Vs —ve) RC
—t
ln( VS - Uc) =—4 K (179)

RC

Where K is the constant of integration which is calculated with the help of initial
condition. Replacing t and v, by zero in equation 1.79, we get the value of K

K = 1n VS
—t
So In(Vs —ve) :ﬁ-l_ In Vg

1(Vs—vc>_—t
"Tv )TkRe
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Anti logarithm on both side on both sides yields

Ve — v 3
S _ oTRe
Vs

t
vC = VS - VSG_RC

t
UC = VS (1—6_R_C) (180)

This is how the voltage across the capacitor increases with time. Sketch of this voltage
as a function of time is shown in Figure 1.31.

— Charging time —_—
Figure 1.31: Voltage across the Capacitor
Under steady state condition voltage across the capacitor equals to voltage across the
source, that is

UC: VS

Charge on the plates of the capacitor grows with respect to time as shown in Figure
1.32.
t
Cve= CVs(1—e RrC)

t
q= CVs(1—e Rc) (1.81)
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Differentiating both sides of equation 1.81 with respect to time gives the charging
current.

d t
dq _ Vs &
dt R
. Vs _t
Il=—e RC (1.82)
R
q
-
eV, F-———————— — = |
I
[
I
I
I
I
I
| >t
-—— Charging time —

Figure 1.32: Charge on the Capacitor

The charging current is a time varying current as shown in Figure 1.33. Initially there is a

Y%
R

Figure 1.33: Charging Current
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maximum value of the charging current in the circuit and then it decreases exponentially
with respect to time. After some time there will be no current due to this exponential
decay.

1-11 Discharging of Capacitor

It is assumed that the following circuit is in steady state condition and voltage across
the capacitor is equal to voltage across the source.

R
S i
— wy: .

— )

Figure 1.34: Arrangement for Discharging of a Capacitor

In order to disconnect the source from the circuit, position of the switch is changed at
time t = 0, as shown in Figure 1.35. The initial condition for the circuit is

Attimet=0,v, = Vs

— Y

B 5.

R
[ VIAA
0 + V- + V. -

Figure 1.35: Discharging of a Capacitor
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The capacitor discharges through the series resistor and the circuit obeys the following
equation in accordance with KVL.

0 = vR + vC (183)
As
UR = lR
Therefore
0=iR+ v, (1.84)

Current in the capacitor is calculated as

) dvc
t=Car

Putting the value of current in equation 1.84, the following equation is attained.

dv,
0= RCE + ve (185)
Equation 1.85 can be written as
dve  —dt 186
o) ~ RC (1.86)
Integrating both sides of equation 1.86, we obtain
dve [ —dt
(ve) B RC
In (v)) = — + K 1.87
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Where K is the constant of integration which is calculated with the help of initial

condition. Replacing t by zero and v by Vs in equation 1.87, we get the value of K

K = ln VS
So

ln(vc) = ;_é + ln VS

1 (vc)__t
"\v.) ke

Anti logarithm on both sides yields

Figure 1.36: Voltage across Capacitor

(1.88)

This is how the voltage across the capacitor decreases with time. Sketch of this voltage

as a function of time is shown in Figure 1.36.

t
C UC = CVS e—ﬁ

t
q= CVse RrC

42
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Charge on the plates of the capacitor decreases with respect to time as shown in Figure
1.37.

CV

Figure 1.37: Charge on Capacitor

Differentiating both sides of equation 1.89 with respect to time, we obtain the
discharging current.

dq__ Y &

dt R

, vg L

i=— ¢ RC (1.90)
R

The discharging current is a time varying current as shown in Figure 1.38. Initially the
current has a maximum value and then it decreases exponentially with respect to time.
Minus sign with the current shows that assumed direction of the discharging current is
wrong.

A |m{

Figure 1.38: Discharging Current
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D 1.9: A 20uF capacitor is charged to a potential difference of 400V and then discharged
through a 100KQ resistor. Calculate the time constant, initial value of discharging
current and voltage across the capacitor after 2 second.

Solution:

Time constant of RC series circuit = 7 = RC = 2 seconds

The discharging current is given by

TR
400
"= 7100000 " "™
Now
_t
UC = Vse RC
At t=2 sec ve = Vel

ve = 400e~1 = 147.15V

D.10: 8uF capacitor is charged to a potential difference of 200V through a series 0.5MQ
resistor. Calculate the time constant, initial value of charging current, current in the
capacitor after 4 second, voltage across the capacitor after 4 second and the time taken
for the potential difference across the capacitor to grow to 160V.

Solution:

Time constant of RC series circuit = 7 = RC = 4 seconds
The charging current is given by
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The initial value of the current takes placeatt=0

TR
__0 _
T 0.5x 106 na
At t=4
V.
=g
=290 4715
L= 05 x108¢ 4715wl
At t=4

Ve = Vs(l—e_%)
ve=Vs(1—e™1)
ve=200(1—e"1)=1264V

Now to calculate t

t
UC: Vs(l_e—ﬁ)

t
160 = 200(1 — e %)

_t

e 4=0.2
o2
i no.
t = 6.44 Sec

Exercise

Q 1.1: Calculate the total current and all the branch currents in the following circuit.
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I Node (V)

2[]‘1-"(

Figure 1.39
Answer: I =11A, I, =4A, I, =5Aand 5 =2A

Q 1.2: Calculate voltage of the voltage source in the following circuit, if current in the
inductor is 4e 2t A.

Vi l s
+ + i + 1
Vg e s H v, o= 4F
Figure 1.40

Answer: vs = 8e2t V

Q 1.3: A portion of the circuit is shown in Figure 1.41. Using KCL, calculate current in the
capacitor i; = 2sint,and v, = 8cost.

. -— i3 2 Q
—} AVAVAYAY:
1_|: +— i4

4 + ;
v, &% - H
4
1‘i2
Figure 1.41
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Answer: iz = 4sint

Q 1.4: Sketch for voltage across the capacitor of 1F is shown in Figure 1.42. Sketch the
current, charge and power as a function of time.
Ve
4v

+ 1 - 3

1 2
Figure 1.42 forQ 1.4

Chapter 2
Mesh and Nodal Analysis

2-1 Mesh Analysis

Consider a circuit having two loops as shown in Figure 2.1. We assume that the currents
I; and I, flow in the clockwise direction in loop no 1 and loop no 2 respectively. The
current in resistor Ry is I;, while the current in resistor R; is I, . As resistor R, belongs
to loop no 1 as well as loop no 2, therefore current in this resistor will either be (I; — I,)
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or (I, — I,) depending upon the numerical values of these two currents. While making
calculations for loop no 1 we will assume that current through this common resistor R,
is (I; — I,) and while making calculations for loop no 2 we will assume that current
through the same common resistor R, is (I, — I;).

R,
A%

R'3
VA
+

Figure 2.1: Circuit with two Loops

"|+

We apply KVL to loop no 1 which states that sum of the voltage rises in loop no 1 will be
equal to sum of the voltage drops.

E, = LR, + (I, — LR, (2.1)
Equation no 2.1 can be written as
(Ry + R + (=R, = E; (2.2)

(R, + R,) is sum of all the resistances of loop no 1 and this sum is represented by R, ,
which is known as the total self resistance of loop 1.

(Rl + Rz) = Rqq (2.3)

If we ignore minus sign with R, in equation 2.2, then it is the resistance of the resistor
that belongs to loop 1 as well as loop 2. This common resistor R, is represented by R, ,
thatis

(—Rz) = Ry (2.4)
Putting these values in equation 2.2, we obtain the following equation

Rllll + R1212 == El (2.5)

Now let us apply KVL to loop 2

48



- EZ = 12R3 + (12 - II)RZ (2.6)
Equation no 2.6 can be written as

(Rz + R3)I, + (=R, = —E, (2.7)

(R, + R3) is sum of all the resistance of loop no 2 and this sum is represented by R, ,
that is known as the total self resistance of loop 2.

(Rz + R3) = Ry, (2.8)

If we ignore minus sign with R, for the time being in equation 2.7, then it is the
resistance of the resistor that belongs to loop 2 as well as loop 1. This common resistor
R, is represented by R,, , that is

(=Rz) = Ry (2.9)

Putting these values in equation 2.7, we obtain the following equation
R2111 + R2212 = _E2 (210)

We ignore minus sign with E, for the time being and write equation 2.5 and equation
2.10 once again

Ryl + Ripl, = Ey (A)
Ry11; + Ry I, = E; (B)

Equations A & B are known as standard loop equations for a circuit having two loops.
The number of standard loop equations depends on the number of loops in a circuit. As
there are two loops in the mentioned circuit, this is why we have got two equations. Let
us write standard loop equations for a circuit having three loops.

Ri1ly + Rizl; + Rysl; = Ey
Ry11 + Ryzly + Rzl = E;
R311; + R3y1; + Rzl = Ej

Now, let us write standard loop equations for a circuit having n loops.
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Ri1li + Rizl; + Rysls + -+ Ryl = E; (1)
Ry1 Iy + Ryply + Rysls + -+ + Ryl = E (2)

R31l; + R3pl; + Ry3ls + -+ + Ryl = E3 (3)

Ry ly + Rpply + Ryl + -+ Ry, = By (n)

Equations A & B can be written in matrices format
R11 RIZ][II] [El]
= 2.11
Ra Ry llL ™ LE, 2-11)

[R][1] = [V]

In generic form we have

The size of [R] is 2 X 2 and it depends on the no of loops in the circuit. As there are two
loops in the given circuit, this is why the size of the R matrix is 2 X 2. If there are three
loops in a circuit, then the size of the R matrix will be 3 X 3 and so on. R;; and R, lie
on the diagonal of the R matrix and all these diagonal elements are positive. The off
diagonal elements of the R matrix will either be negative or positive depending upon
the directions of the loop currents I; and I,. For example we consider the off diagonal
element R;, of the R matrix. As the loop currents I, and I, are in opposite directions in
R, , this is why there was a minus sign with this resistance. If the loop currents I; and
I, are in the same directions in R, , then there will be a plus sign with this resistance.
Similarly E; & E, will either be positive or negative. Keeping in view the direction of the
loop current I; , the voltage E; is a voltage rise, this is why there is a plus sign with this
voltage. Keeping in view the direction of the loop current I, , the voltage E, is a voltage
drop, this is why there is a minus sign with this voltage. We find the currents I;and I,
with the help of crammer’s rule.
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R11 El
R21 EZ
R11 R12
R21 R22

12=

D 2.1: Consider the circuit in Figure 2.2. Apply standard loop equations to calculate the
power consumed by the circuit and the power supplied by the two sources.

Rlzzﬂ Jﬁiﬁ:zﬂ

Figure 2.2: Circuit for D # 2.1

Solution:
As there are two loops in the entire network, so the standard loop equations in generic
form will be
Ry Rlz] [11]: [El]
Ry1 Ry L E,

R, =2+1=3Q

Ry, =R,y = —10Q

Ry, =2+1=30Q
E, =8V

E, = —8V

The standard loop equations in matrices format for the given circuit are as follows

5 SE]=[E]



Applying Cramer’s Rule
s
-1 3

11= ?=2A

12
L=r3—"1

IV
I, =_Tl6=—2,4

The minus sign indicates that the assumed direction of the current I, is wrong.

Current through the 2Q resistorof loop1=1, =2 A

Current through the 2Q resistor of loop2=1, = -2 A

Current through the 1Q resistor=(I; — I,) = 4 A

Power consumed by the 2() resistor of loop1=P, =8 W

Power consumed by the 2() resistor of loop2=P, =8 W

Power consumed by the 1Q resistor=P; = 16 W
Power consumed by the entire circuit =P, =32 W

Power supplied by the source of loop 1 = E;[; =16 W

Power supplied by the source of loop 2 = E,I, =16 W

Total power supplied by the two sources = 32W

D 2.2: Consider the circuit in Figure 2.3. Apply standard loop equations to calculate the
power consumed by the circuit and the power supplied by the source.
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Figure 2.3: Circuit for D # 2.2

Solution:

As there are two loops in the entire network, so the standard loop equations in generic

form will be
Rll RlZ][Il]z[El]
Ry1 Ry L E,
R11 = 2 + 1 = 3Q
R12 = R21 = _1Q
RZZ = 2 + 1 = 3.(2
E, =8V
E, =0V
The standard loop equations in matrices format for the given circuit are as follows
3 —11[hL]_718
[—1 3] [12]_ [0]
Applying Cramer’s Rule
8 -1
_ | 0 3 | _ 24

Il—m— ry =34

3 8 8
IZ = _| 31 _01_| = g = 1A
-1 3

53



Current through the 2Q resistor of loop1=1;, =3 A

Current through the 2Q resistor of loop2=1, =14

Current through the 1Q resistor=(I; —I,) = 2 A

Power consumed by the 2Q resistor of loop1=P; = 18 W

Power consumed by the 2Q resistor of loop2=P, =2 W

Power consumed by the 1Q resistor=P; =4 W

Power consumed by the entire circuit = P, =24 W

Power supplied by the source = EjI; = 24 W

D 2.3: Consider the circuit in Figure 2.4. Apply standard loop equations to calculate the
currentsin Ry, R; and Rs .

Ri=2q Ry =10
VWA VWA

Eqi= E1UV Iy %Rr_"?ﬂ P §R4

Figure 2.4: Circuit for D # 2.3
Solution: As there are three loops in the entire network, so the standard loop equations
in generic form will be

R11 R12 R13 11 E1
R21 R22 R23 12 = Ez
R31 R32 R33 13 Es

R11:2+2:4Q

R12 S R21 S _29
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There is no common resistor between loop 1 and loop 3 therefore

Ri3 = R3; = 0Q
and
Rz3 = R3; = —20Q)
R33=2+2=4‘Q

E; =10V
There is no voltage source in loop 2 as well as loop 3, therefore

EZ = E3 = 0 V
4 =2 0 I 10
-2 5 =21]|L|=]|0
0 -2 4 1L 0
Determinant of the R matrix is
4 =2 0
-2 5 —2 | =64—-16=48
0 -2 4
Current through R, is I
10 -2 O
0 5 =2 160
_10 =2 41_ _
I = 8 18 3.3334
Current through R; is I,
4 10 0
-2 0 =2 80
_10o 0 41 _°Y _
I, = 18 18 1.67 A
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Current through Rs is I3

4 -2 10
—2 5 0 '
I 0 15 = 08334

D 2.4: Consider the circuit in Figure 2.4b. Apply standard loop equations to calculate the
currentsin Ry, R; and R; .

Ri =60 Ry =180 R;=40

Figure 2.4b: CircuitforD # 2.4

Solution:
As there are three loops in the entire network, so the standard loop equations in generic
form will be
Ri1 Rz Ru3|[h E;
Ry1 Ry Rys [12 =|E; ]
R31 R3; Ra3lllz Es
Ry; =110

Riz = Ry; = =50
There is no common resistor between loop 1 and loop 3 therefore
Ri3 = R3; = 0Q
R,, = 27Q

R23 = R32 = _49
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R33 == SQ
E, = 50V

There is no voltage source in loop 2 as well as loop 3, therefore

E2=E3=0V

11 -5 01[1h 50
-5 27 -4 ||lL|=]0o0
—4 8 I3 0

0
11 -5 0
-5 27 =4 | = 2000
0 —4 8
Current through R, is I;
50 -5 0
0 27 —4
| = 0 —4 gl 10,000 _
1= 2000 ~ 2000
Current through R; is I,
11 50 0
-5 0 -4
[ = 0 0 gl 2000 _
z2 2000 © 2000
Current through R is I3
11 -5 50
5 27 0
[ = 0 —4 ol 1000 _
3 2000 "~ 2000

2-2 Nodal Analysis
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Consider the circuit having two nodes as shown in Figure 2.5. The voltage at node 1 is
V; and the voltage at node 2 is V.

4 R, Vi 13 R, V2 Rg I5
> M — M\ VWA >

Figure 2.5: Circuit for Nodal Analysis

Applying KCL to node 1
Il = 12 + 13 (2.12)

Applying KCL to node 2
I;=1,+ I (2.13)

There are three loops in this circuit as shown in Figure 2.6. We apply KVL to all these
three loops to find out equations for all the five currents.
Applying KVL to loop 1

El = IlRl + Vl (2.14)
Therefore
E, -V
Il — M (2.15)
Rq
4 Ry AR R, V2 Rs |5
VA VA VA
i I2 l |4l +
=L + + =l

Figure 2.6: Circuit for Nodal Analysis with Loop Currents

58



The current I, can be calculated as

I, = R_z (2.16)
Applying KVL to loop 2, we obtain V;
V1 - I3R3 + VZ (217)
Therefore
V.-V
13 = M (2.18)
R3
The current I, can be calculated as
_r
I, = R, (2.19)
Applying KVL to loop 3, we obtain V,
VZ = 15R5 + Ez (220)
Therefore
V,—E
I = (Va—Es) (2.21)
Rs
Putting the values in equation 2.12
E, -V V V=V
(Eq 1):_1+(1 2) (2.22)
Ry R; R3
Rearranging this equation, we obtain
o1 _t _ 5
(R1 + R, + R3) Vl + ( R3) V2 N Ry (223)

Reciprocal of resistance is known as conductance that is represented by G. We replace

E
R—l by I41, Therefore equation 2.23 can be written as
1

(Gl + GZ + G3) Vl + (_Gg) V2 = Igl (2.24)

G4, G, and Gzhave been connected to node 1 as shown in Figure 2.7, this is why the sum
of all these three conductance is represented by G;;. We ignore the minus sign with G5
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for the time being, as Gzhas been connected to node 1 as well as node 2, therefore it is
represented by G4,
(G Vi +(Gi)) Vo = Iy (2.25)

Similarly putting the values of I3, I, and I5 in equation in equation 2.13, we have

(Vi—V3) _ 23 + (Vo—E3) (2.26)
Rs R, Rs

Rearranging this equation, we obtain

L 1.1 _E
(- . Vi + (R3 o RS) V=2 (2.27)
E
Replacing R—Z by I,,, Therefore equation 2.27 can be written as
5
(_63) V1 + (G3 + G4 + G5) VZ = Igz (228)

G3, G, and Gshave been connected to node 2 as shown in Figure 2.7, this is why the sum
of all these three conductance is represented by G,,. We ignore minus sign with G5 for
the time being, as Gzhas been connected to node 1 as well as node 2, therefore it is
represented by G,;

(G Vi + (G Vo = I, (2.29)

We write equation 2.25 and equation 2.29 once again

(G Vi +(G) Vo = Iy (2.30)
(G Vi +(G) Vy = Iy, (2.31)
I G4 vi 13 O3 V2 Gs s
— —— i —
+ I.? l J4l +
E4 ; Gs 54 —_.;__ E2
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Figure 2.7: Equivalent Circuit with Conductance

These two equations are known as standard node equations for a circuit having two

nodes. The number of standard node equations depends on the number of nodes in a

circuit. As there are two nodes in the mentioned circuit, this is why we have got two

equations. Let us write the standard node equations for a circuit having three nodes.

(G Vi +(Gip) Vo + (Gi3) Va3 = Iy
(Ga) Vi + (G Vo + (Ga3) V3 = Iy
(G31) Vi + (G32) Vo + (G33) V3 = g3
Following are the standard node equations for a circuit having n nodes.
(G Vi + (G) Vo + (Gi3) Vs + 4 (Gip) Vo = Iy
(G2) Vi + (G2 Vo + (Ga3) V3 + -+ (Gn) Vy = Iy

(G3) Vi +(G3) Vo + (G33) V3 + -+ (Gap) V,y = I3

(Gn) + (Gr2) Vo + (Gr3) Vs + -+ + (Grp) Vi = Iy
Equations 2.30 & 2.31 can be written in matrices format as in equation 2.35.
Gig Glz] [Vl ] — [Igl]
Ga1 G2 11V Ig2
In generic form we have

[G][V]=1[1]

(2.32)
(2.33)

(2.34)

(1)
(2)
(3)

(n)

(2.35)

Size of [G] is 2 X 2 and it depends on the number of nodes in the circuit. As there are

two nodes in the given circuit, this is why size of the G matrix is 2 X 2. If there are three

nodes in a circuit, then size of the G matrix will be 3 X 3 and so on. G;; and G, lie on

the diagonal of the G matrix and all these diagonal elements are positive. The off
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diagonal elements of the G matrix are negative. We will find the currents V; and V, with
the help of crammer’s rule.

Iy Gqg

v, ly; Gy

Gll GIZ

G21 GZZ
G111

GZI I 2
=T
11 12

GZI GZZ

D 2.5: Consider the circuit in Figure 2.8 once again. Apply standard node equations to
calculate all the three currents.

I1 Ri=20 Node 2 Ryi=20n

Figure 2.8: Circuit for D # 2.5

Solution:

As there is a single node in the given circuit, therefore the size of the G matrix will be
1 X 1 and the standard node equation will be in the following format.

[611][V1] = [Igl]
V; is voltage at the node

-l
n=92"2"1"
i —E1—8—4A
91 T R, T2



So the standard node equation for the given circuit will be

2V1=4‘
V1=2V
I=Gﬁ—%)=@—2)=3A
1 R, 2
I %—2—1A
2T Ry 2
I %—Z—ZA
TR, 1

D 2.6: Consider the circuit in Figure 2.9. Apply standard node equations to calculate all
the five currents.

Figure 2.9: Circuit for D # 2.6
Solution:

As there are two nodes in the given circuit, therefore the size of the G matrix will be 2 X
2 and the standard node equations will be in the following format.

G11 G12] [ 4} ] — [Igl ]
Gy1 Gl LV Igz
V, & V, are the voltages at node 1 and node 2 respectively

1
2

PR
1=

G
11 1

1
Gz1 = Gz :_I:_l
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I, = 0 A; as no voltage source has been connected to node 2. So the standard node

equations for the given circuit will be

2 2w ]=15]

5 —1
V. ——|0 1 =D 3333y
! _| 2 —1|_ 3 7
-1 2
|2 5| .
__l-1 ol _5_
v, __| 5 _1|—3—1.666V
-1 2
(E,—V,) (10-3.333) 6.67
I = = = =3334
1 R, 2 2
L=212333 66
"R, 2 7
(v, -V,) (333-1.66) 166
I, = n - - = =1664
=tz 108 a5 4
YR, 2 7
o=tz 108 a3s 4
*"Rs 2 7

D 2.7: Consider the circuit in Figure 2.9b. Apply standard node equations to calculate all

the five currents.
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i, Ri=sa v 13, Ryz130 v2 _15, Rs=4n
TAYATE TATATA VIAA

5OV — 3R3=5n %R,d:a,n

Figure 2.9b: Circuit for D # 2.7
Solution:
As there are two nodes in the given circuit, therefore the size of the G matrix will be 2 X
2 and the standard node equations will be in the following format.

611 012] [ V1 ] — [Igl ]
G21 Gl LV Ig2

V) &V, are the voltages at the node 1 and node 2 respectively

G —1+1+1—0422
= 5 18
1
G,y =Gy, = —— = —0.055
21 12 18
G —1+1+1—0505
2274 4718
i —E1—50—833A
9 R 6

I;, = 0 A; as no voltage source has been connected to node 2. So the standard node
equations for the given circuit will be

0.422 —0.055] [ 4} ] _ [8.33]
—0.055 050511V, 0
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|8.33 —0.055
_ 0

05051 _ 4208
i =70422 -0055 " oz21 20V
—0.055 0.505
0.422 8.33| 045
__1-0055 o |_0458 _
Vo == 0.21 0.21 2V
E, -V 50 — 20
11=( 1R1 ) _( _ )=5A
v, — V. 20 — 2
13=(1R3 2) _( - )=1A
__2_ 0.5A4
TRy 4

2-3 Representation of Phasors

For the analysis of AC circuits, we need to represent the current and voltage with the
help of phasor quantities. Phasor might be a scalar quantity or a vector quantity.
Basically it depends on nature of the original quantity, if the original quantity is scalar,
then the phasor will be a scalar phasor and if the original quantity is a vector then the
phasor will be a vector phasor. There are four ways to represent a phasor.
(i) Rectangular Form
Phasor is a complex quantity that has a real component a and imaginary component b.
Mathematically a phasor quantity is represented as

Z=a+jb (2.36)
Where

j=v-1
This form of representation is known as rectangular form. Graphical representation of a
phasor quantity is given in Figure 2.10.
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y-eﬂxis [Axis of imaginaries)

-

Z b

sl x-axis [Axis of reals)

Figure 2.10: Graphical Representation of a Phasor

(ii) Trigonometric Form
Consider Figure 2.10, the magnitude of the real component a is given by

a=|Z|cos@ (2.37)
and the magnitude of the imaginary component b is given by

b =1Z|sin@ (2.38)

Putting the values of a and b in equation 2.36, we obtain
Z =|Z|(cos 8 + jsin6) (2.39)

This form of representation is known as trigonometric form. Where |Z| represents the
magnitude of the phasor and 0 represents the angle of the phasor. In order to find the
magnitude of this phasor, we apply Pythagoras theorem on the right angle triangle
shown in Figure 2.10.

|Z|? = a? + b?

So magnitude of Z can be calculated as

|Z| = Va? + b? (2.40)
As
b
tanf = —
a

67



So angle of Z can be calculated as

_1b

6 = tan " (2.41)
(iii) Exponential Form
We know that
e/® = cosf + jsinf (2.42)
and
e J% = cos —jsinf (2.43)

Putting the value of cos 8 + j sin @ in equation 2.39, we get
Z =Z|e/? (2.44)
This form of representation is known as exponential form.

(iv) Polar Form

The two important parameters of a phasor quantity are its magnitude and its angle. If
we know these two important parameters, we can represent the same phasor in
trigonometric as well as exponential form. So simply we can represent a phasor as

Z =1Z| 26 (2.45)

The first quantity on the right hand side of equation 2.45 represents the magnitude of
phasor and the second quantity represents its angle. This simple form is known as polar
form.

2-4 Addition of Phasors

The addition of two or more than two phasors results in a new phasor. We consider two
phasors Z; and Z, in exponential as well as polar form

Zy = |Z,|e/%* = |Z,|26, (2.46)
ZZ = |Z2|e]92 = |Zz|492 (2.47)

Let us add these two phasors in exponential form
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Z,=2,+27,
Zy = |Z,1e/% +|Z,|e/?? (2.48)

It is very difficult to find out the magnitude as well as the angle of the resultant phasor
from the right hand side of equation 2.48. So, it is difficult to add two or more than two
phasors, if they are in exponential form. Now Let us add these two phasors in polar
form.

Zo=21+17,

Once again, it is very difficult to find out the magnitude as well as the angle of the
resultant phasor from the right hand side of equation 2.49. So, it is difficult to add two
or more than two phasors if they are in polar form. So obviously, we have to convert
these phasors into rectangular form for the sake of addition.

Zi=aq +jb;
Z,=a,+jb,

The addition of these two phsors results in a new phasor Z,.
Zeo=271+%+12,

Zg = (ay +jby ) + (az + jby)
Za = (al + az ) +_](b1 + bz) (2.50)

The real component of the resultant phasor is (a; + a, ) and its imaginary component
is (by + by )

2-5 Subtraction of Phasors

The subtraction of one phasor from another phasor results in a new phasor. We
consider two phasors Z; and Z, in exponential as well as polar form

Zy = |Z,|e/%* = |Z,|26, (2.51)

Zy = |Z,1e/%% = |7, 26, (2.52)
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Let us subtract Z, from Z;
Zs=172y—12,

Zs = |Z,|e/t — |Z,|el?? (2.53)

It is very difficult to find out the magnitude as well as the angle of the resultant phasor
from the right hand side of equation 2.53. So, it is difficult to subtract one phasor from
another one, if they are in exponential form. Now Let us subtract Z, from Z; in polar

form.
ZS = Z1 - ZZ

ZS = |21|L91 - |22|492 (2.54)

Once again, it is very difficult to find out the magnitude as well as the angle of the
resultant phasor from the right hand side of equation 2.54. So, it is difficult to subtract
one phasor from another one if they are in polar form. So obviously we have to convert
these phasors into rectangular form for the sake of subtraction as well.

Zi=aq +jb;
Zy =a; +jb,
The subtraction of Z, from Z; results in a new phasor Z,.
Zy=27,—12,
Zg = (ay +jb, ) — (az +jb;)
Zg=(a;—ay) +j(by — by) (2.55)

The real component of the resultant phasor is (a; — a, ) and its imaginary component
iS (bl - bz ).

2-6  Multiplication of Phasors

The multiplication of two or more than two phasors results in a new phasor. We
consider two phasors Z; and Z, in rectangular form

Zy=a;+jby
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Z,=ay+jb,
Let us multiply Z; by Z,
ZM = Zl X ZZ

Zy = (a; +jb, ) X (a; + jb,)
Zy = (aya; — byb,) + j(a,b, + ayby) (2.56)

The real component of the resultant phasor is (a,a, — byb,) and its imaginary
component is (a;b, + a,b;). Now Let us multiply Z, and Z; in exponential form:

Iy =21X2Z,
Zy = 12,170 x |Z,|e’?? (2.57)
Zy = |Z1|1Z,]e/t x /92 (2.58)
Zy = 1Z4|1Z,]e/®1+62) (2.59)

The magnitude of the resultant phasor is |Z;||Z,| and its angle is (6; + 6,). We can
multiply the two phasors in polar form as well

Zy=2ZyXZ,

Zy = 2,146, x |Z,| 20,

Zy = |Z1||Z,|2(6, + 6,) (2.60)
We argue that it is convenient to multiply two or more than two phasors in polar form.

2-7  Division of Phasors
The division of one phasor by another one results in a new phasor. We consider two
phasors Z; and Z, in rectangular form

Zy=a;+jb;

Z, =ay +jb,
Let us divide Z; by Z,
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Zg _Z_z
(a1 +jb1)
a (az +jb2)

We multiply and divide the right hand side of the above equation by the conjugate of Z,

_ (a1 + jb, ) % (az _jbz)
d (az +jb2) (az _jbz)

_ (a,a; + bib;) j(a2b1 —a1by)
(a2 + by”) (a2 + by?)

d

Now Let us divide Z; by Z, in exponential form

Zy
Zd = Z_Z
_ |Z1|ejg1
%4 = 1z 1072
Z,| . .
Zg = —|ZZ| elf1 x ¢=J02
|Z:] .
7. = e](91—92)
7z,

This last equation reveals that this mathematical operation is convenient in polar form.

D 2.8: Convert the following phasor into trigonometric, exponential and polar form.

Z;=3+j4
Solution:
The magnitude of the phasor is calculated as

|Z] = (3%2+4%)=5
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The angle of the phasor is calculated as
4
0 = tan‘1§ = 53.1°
This phasor in trigonometric form is as under

Z = 5(c0s53.1° + j sin 53.19)

This phasor in exponential form is as under

7 = 56j53.1O
This phasor in polar form is as under

Z=5+£53.1°

D 2.9: Convert the following phasor into rectangular form.

Z =10436.8°
Solution:
Real component of this phasor is

a=10cos36.8=8
Imaginary component of this phasor is

b=10sin36.8=16

The same phasor in rectangular form can be written as

Z=8+j6
D 2.10: Add the following two phasors.
Z, =10436.8°
Z, =54£53.1°

Solution:
We add the two phasors into rectangular form

7, =8+j6
ZaZZl-I-ZZ
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Z,=@B+3)+j(6+4)
Z,=11+4j10

Now we convert the resultant phasor into polar form

| Z,| = /(121) + (100)

| Z,| = 14.86

0=t ‘110—42270
= tan T
Z, =14.86242.27°
D 2.11: Subtract Z, phasor from Z,

Z, = 10,36.8°
Z, = 5£53.1°

Solution: We add the two phasors into rectangular form

Z; =8+j6
Z,=3+j4
Zy=14,—12,

Z;=(8-3)+j(6—4)
Z,=5+2

Now we convert the resultant phasor into polar form

| Zs| = \/(25) + (4)

| Z,| = 5.38

f=tan1-==21.8°

Ul N
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Z, = 5.38221.8°

D 2.12: Multiply Z, and Z;
Z; =10236.8°

ZZ - 5453.10

Zy = 50£53.1° + 36.8°

Zy = 50£89.9°
D 2.13: Divide Z; by Z,
Z; =10436.8°
Z, =5£53.1°
Zy
Zyg=+
a=7
7. - 10436.8°
47 5453.1°

Z4=12£36.8°—-53.1"=2,-16.8°

2-8 Impedance Network for Mesh Analysis

Consider a circuit having two loops as shown in Figure 2.11. We shall discuss the phasor
values of AC voltage and AC current in Chapter 3. We shall discuss the impedance of the
AC circuit in Chapter 3 as well .We assume that the currents I; and I, flow in the
clockwise direction in loop no 1 and loop no 2 respectively. The current in Z; is I;, while
the current in Zsis I, . As Z, belongs to loop no 1 as well as loop no 2, therefore the
current in this impedance will either be (I; — I,) or (I, — I;) depending upon the
numerical values of these two currents. While making calculations for loop no 1 we will
assume that the current through this common impedance Z, is (I; — I,) and while
making calculations for loop no 2 we will assume that the current through this same
common impedance Z, is (I, — I).

75



Figure 2.11: Circuit with two Loops

We apply KVL to loop no 1 which states that sum of the voltage rises in loop no 1 will be
equal to sum of the voltage drops.

E1 = Ilzl + (11 - 12) ZZ (2.61)
Equation no 2.61 can be written as

(Z1+Z)L + (=Z,)I, = E; (2.62)

(Z, + Z,) is sum of all the impedances of loop no 1 and this sum is represented by Z,, ,
which is known as the total self impedance of loop 1.

(Zy+Z,) =74y (2.63)

If we ignore minus sign with Z, in equation 2.62 for the time being then this impedance
belongs to loop 1 as well as loop 2. This common impedance Z, is represented by Z;,,
thatis

(=Zy) = Zy, (2.64)

Putting these values in equation 2.62, we obtain the following equation

Zi i + 731, = Ey (2.65)
Now let us apply KVL to loop 2
—E,=LZ;+ U, —1,)Z, (2.66)
Equation no 2.66 can be written as
(Zy+ Z3)I, + (—Z,)1, = —E, (2.67)
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(Z, + Z3) is sum of all the impedances of loop no 2 and this sum is represented by Z,, ,
that is known as the total self impedances of loop 2.

(Z, + Z3) =2y (2.68)

If we ignore minus sign with Z, in equation 2.67 for the time being then this impedance
belongs to loop 1 as well as loop 2. This common impedance Z, is represented by Z,, ,
that is

(=Zy) = Zp (2.69)

Putting these values in equation 2.67, we obtain the following equation
Zyly + Zyl; = —E; (2.70)

We ignore minus sign with E, for the time being and write equation 2.65 and equation
2.70 once again
Zi1h + 2L, =By (A)

Zyly + Zy0; = E; (B)

Equations A & B are known as standard loop equations for a circuit having two loops.
The number of standard loop equations depends on the number of loops in a circuit. As
there are two loops in the mentioned circuit, this is why we have got two equations. Let
us write the standard loop equations for a circuit having three loops.

lell + 212]2 + 21313 = El (271)
22111 + 22212 + 22313 = E2 (2.72)
231]1 + 23212 + 23313 = E3 (2.73)

Now, let us write the standard loop equations for a circuit having n loops.

Zily + Zyyly + Zsls + o+ Zyy 0, = Ey (1)
Zorly + Zypply + Zy3l3 + -+ Zyn 1, = E; (2)
Zyily + Zsyly + Zg3ls + o+ Z3p 1, = Es (3)
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anll + ZnZIZ + Zn313 + ot ZnnIn = En (n)

Equations A & B can be written in matrices format

Z11 Z12H11] [51]
= 2.74
Zn ZnllL]TLE (2.74)
In generic form we have

[Z]1[1] = [V]

The size of [Z] is 2 X 2 and it depends on the no of loops in the circuit. As there are two
loops in the given circuit, this is why the size of the Z matrix is 2 X 2. If there are three
loops in a circuit, then the size of the Z matrix will be 3 X 3 and so on. Z;; and Z,, lie
on the diagonal of the Z matrix and all these diagonal elements are positive. The off
diagonal elements of the Z matrix will either be negative or positive depending upon
the directions of the loop currents I, and I,. For example we consider the off diagonal
element Z;, of the Z matrix. As the loop currents I; and I, are in opposite directions in
Z1, , this is why there was a minus sign with this impedance. If the loop currents I; and
I, are in the same directions in Z;, , then there will be a plus sign with this impedance.
Similarly E; & E, will either be positive or negative. Keeping in view the direction of the
loop current I, , the voltage E; is a voltage rise, this is why there is a plus sign with this
voltage. Keeping in view the direction of the loop current I, , the voltage E, is a voltage
drop, this is why there is a minus sign with this voltage.

We will find the currents I;and I, with the help of crammer’s rule.

El ZlZ
EZ ZZZ
le ZlZ
ZZl ZZZ

11:

le El

D 2.14: Using Standard Loop equations calculate all the three currents of the following
circuit.
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Figure 2.12: Circuit for D # 2.14

Solution:

Standard loop equations in matrices format are as under

Now

le ZlZ][ll]z[El]
ZZl ZZZ IZ EZ

Z,=34j4Q, 2y, =2, =-3Q,Z,,=8—j6Q, E, =10V and E, =5V

So the standard loop equations in matrices format for this circuit are

The same equations can be written as

[ 3 + j4 -3 ][11]_[10'
| L L5

We will find the currents I;and I, with the help of crammer’s rule.

-3 8-—j6
[5,53.1° -3 ] I ]
-3 102 —-36.8°11[1; |
|10 -3 |
I 5 102 — 36.8°
1 |5453.10 -3 |
-3 102 — 36.8°
112.42 — 32.21°
11 =

41.44219.8°

L =27124-1241° A

79

:[150]



5£53.1° 10|
-3 5
5£53.1° -3 |
-3 102 —36.8°

12=

L 49.24,23.96°
27 41.44,19.8°

I, =1.192£4.16° A

=1L -1
I3 =2712—- 12.41° —1.1924.16°

I;=162-2531° 4

D 2.15: Using Standard Loop equations calculate all the three currents of the following
circuit

40

j60 i
2

l —

I

A%

Figure 2.13: Circuit for D # 2.15
Solution:
Standard loop equations in matrices format are as under

le ZlZ][Il]:[El]
Z21 Z22 12 E2
Now
Z11:3+j4Q,Z]_2:ZZl:_39,Z22:8_j6ﬂ, E1:10VandE2:0V

So the standard loop equations in matrices format for this circuit are

3+j4 =3 ][11]:[10]
-3 8—j61|1, 0
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The same equations can be written as
[3 + j4 ] [ ] _ [10]
-3 8 — ]6 Lo
5£53.1° [ ] _ [10]
-3 102 — 36 8° 0

We will find the currents I;and I, with the help of crammer’s rules.

|10 104_—336.80 |
5253.1° -3 |
-3 102 — 36.8°

Il=

L 1002 — 36.81°
17 41.44,219.8°

I, =241217° A

5£53.1° 10|
-3
5£53.1° -3 |
-3 102 —36.8°

12=

B 30
T 41.44,19.8°

I, =—0.722£19.8° A

L=0—-1,

I; =241 217° —0.722—19.8°
I; = 1.65 £34.65° A

D 2.16: Using Standard Loop equations calculate the power supplied by the source and

the powers consumed by the two resistors.
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Figure 2.13b: Circuit for D # 2.16

Solution:
Standard loop equations in matrices format are as under

le ZlZ][Il]z[El]
ZZl ZZZ IZ EZ

le=10—j5Q,le=221=j59,222=3—jﬂ, E1=50V andE2=0V

Now

So the standard loop equations in matrices format for this circuit are
[10—]5 Jj5 ][11]2[50]
Jj5 3—jlll; 0

We will find the currents I;and I, with the help of crammer’s rules.

50 1'5|
- 0 3—j
1_|10—j5 j5|
J5 3—J
150 — j50
11=—.
50 —j25
6—j2
"t
6—j2
SR
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63221840

— 0
h =52 —5eg = 283481474
|10 —j5 50
- j5 0
2= |10—j5 j5
J5 3—]
. —j250
27 50 —j25
250 £—90°
=4.47 £—63.4° A

L2 =559, 2650

Power supplied by source

PS = VSII COS 91

Ps = 50 X 2.83 X coscos 8.14 = 140 W

Power consumed by 10 ohms resistor

P, = (2.83)2x10 =80 W

Power consumed by 3 ohms resistor

P, = (447)2%x3 =60 W

Impedance Network for Nodal Analysis

Consider the circuit having two nodes as shown in Figure 2.14. The voltage at node 1 is

V; and the voltage at node 2 is V,. Applying KCL to node 1

Applying KCL to node 2

11212+I3

13:I4+15

There are three loops in this circuit as shown in Figure 2.15. We apply KVL to all these

three loops to find out equations for all the five currents.
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Figure 2.14: Impedance Circuit for Nodal Analysis

Applying KVL to loop 1

E1 = 11Z1 + V1 (277)
Therefore
E{-V.
I, = (E17Vh) (2.78)
Z1
14 Z, V1 I3 Z, V2 Zg I5
1 e | e— | =1

+ +
e O 7 )z ) nlzn” s YO =

Figure 2.15: Circuit for Nodal Analysis with Loop Currents

The current I, can be calculated as

Y
I, = 7, (2.79)
Applying KVL to loop 2, we obtain
Vl = 1323 + VZ (2.80)
Therefore
_ (1-)
I3 = . (2.81)
The current I, can be calculated as
_
I, = . (2.82)



Applying KVL to loop 3, we get

V,=1sZ5s+E, (2.83)
Therefore
Vo,—E
15 — M (2.84)
Zs

Putting the values in equation 2.75

(E1—V1) _ 4 (V1 -13)

+ — (2.85)
Zy Z; Z3
Rearranging this equation, we obtain
1.1 _1 Y
(z1 tant 23) it ( Z3) 2=7 (2.86)

Reciprocal of impedance is known as admittance that is represented by Y. We replace

E
Z_l by 1,4, Therefore equation 2.86 can be written as
1

(Yl + YZ + Y3) V1 + (_Ys) V2 = Igl (287)

Y;, Y, and Y; have been connected to node 1 as shown in Figure 2.16, this is why the
sum of all these three admittances is represented by Y;;. We ignore minus sign with Y3
for the time being, as Y5 has been connected to node 1 as well as node 2, therefore it is

represented by Y;,.

(D) Vi+ ) Vo= 1y (2.88)
Similarly putting the values of I3, I, and I in equation in equation 2.76

(V1=Va) _V n (Ex—V2) (2.89)

Z3 Zy Zy
Rearranging this equation, we obtain

(urGeen-z e
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E
Replacing Z—z by I,,, Therefore equation 2.90 can be written as
5

(—Y3) V1 + (Y3 + Y4 + Ys) Vz - Igz (291)

Y3, Y, and Y;have been connected to node 2 as shown in Figure 2.16, this is why the sum
of all these three impedances is represented by Y,,. We ignore minus sign with Y; for
the time being, as Yzhas been connected to node 1 as well as node 2, therefore it is
represented by Y,;.

() Vi + (V) V= Iy, (2.92)

We write equation 2.88 and equation 2.92 once again
(M) + X)) Vo = Iy (2.93)
(Y21) Vi + (Yzz) V, = IgZ (2.94)

These two equations are known as standard node equations for a circuit having two
nodes. The number of standard node equations depends on the number of nodes in a
circuit. As there are two nodes in the mentioned circuit, this is why we have got two
equations.

It 1 V1o I3 3 V2 > 15
— p— n A e | & i
|
-|| lF l"’l &

«Q w] o« On

Figure 2.16: Equivalent Circuit with Admittance

Let us write the standard node equations for a circuit having three nodes.
() Vi+ V) Vo + Yi3) V3 = Iy (2.95)

(Vo) Vi + (Vo) Vo + (Ya3) Vi = gy (2.96)
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(Y3 Vi 4+ (Y3) Vo + (Ya3) V3 = g3 (2.97)

Following are the standard node equations for a circuit having n nodes.

(M) Vi+ M) Vo + (Vi) Vs + o+ (Vi) Vi, = g (1)
(L) Vi+ (V) Vot (Ya3) Va + 4+ (Vo) Vo = gy (2)
() Vi + (Ya) Vo + (Ya3) Vs + 4+ (Ya) V= g3 (3)
(D Vi + (V) Vot (Vo) Vs + o+ () V= Ign (n)

Equations 2.93 & 2.94 can be written in matrices format
Y14 Y12] [Vl] [Igl]
= 2.98
AR | 1A il U (2.98)

[YT[V]=1I]

In generic form we have

Size of [Y]is 2 X 2 and it depends on the number of nodes in the circuit. As there are
two nodes in the given circuit, this is why size of the Y matrix is 2 X 2. If there are three
nodes in a circuit, then the size of the Y matrix will be 3 X 3 and so on. Y;; and Y,, lie
on the diagonal of the Y matrix and all these diagonal elements are positive. The off
diagonal elements of the Y matrix are negative. We will find the currents V;and V, with
the help of crammer’s rule.

Iy, Y
1 Y.
v, = g2 22
Vi, Y
Yor Yo
Yii Ipn
Y. 1
v, = 21 g2
Yii. Yo
Y50 Yo
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D 2.17: Using Standard Node equations, calculate V; and V,.

1 1 1
30 Vq 30 v, 30
VWA ' VWA VWA
C)”W 1q L C) 5V
8 8
Figure 2.17: Circuit for D # 2.17
Solution:
Standard node equations in matrices format are as under
i vl =[]
Y1 Yo
Now
Y, =6—j8, Y, =Y, =-3,Y,,=6+j8, I;; =304 and [y, = 15 A.

So the standard loop equations in matrices format for this circuit are

°5 e el ] =15
104:353.10 1045310[ ] [

We find voltages V;and V, with the help of crammer’s rule.

30 -3
Vo= 15  102£53.1°
1 102—53.1° -3
-3 10£53.1°

321.98,46.849
= 91
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V, = 3.615 246.84° V

102 -53.1° 30
v, -3 57 15

216.332 —33.7°
91

V, =23824-33.7° V

D 2.18: Using Standard Node equations, calculate V; and V,.

2
2
2

Figure 2.18: Circuit for D # 2.18

Solution:

Standard node equations in matrices format are as under
é e ]=1]
Y21 Y22

Y11:6_j8, Y12:Y21:_3 ,Y22:6+j8, 191:3014 and IgZZOA.

Now

So the standard loop equations in matrices format for this circuit are

°% 6+,8H |-

1042 —53.1° [ ] [30]
-3 10453 1°
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We find voltages V; and V, with the help of crammer’s rules.

|30 -3 |

Vo= 0 10,53.1°

L 102.—53.10 -3 |
-3 10453.10

_300£53.1°

1= 91

Vy =3.296 £53.1° V

102 —53.1° 30
—3 0
91

Exercise

Q 2.1: Using Standard Loop equations, find V; and current in R;.

s
+ gRlzzn §R4=10

Figure 2.19: Circuit for Q # 2.1
Answer:V; =333V and Il = 2334
Q 2.2: Consider the circuit in Figure 2.19, find V; and current in R with the help of

Standard Node equations to verify the answers.
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Q 2.3: Consider the circuit in Figure 2.20, find currentin Ry, R, and R; with the help of
Standard Node equations.

RI-SQ R;-ggn

Eq= __— ":“-15\.;

_5"1.-’

Figure 2.20: Circuit for Q # 2.3
Answer:[; = 142 A,1, = 1.14 Aand I; = 0.2884

Q 2.4: Consider the circuit in Figure 2.20, find currentin R;, R, and R; with the help of
Standard Loop equations to verify the answers.
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Chapter 3
AC Fundamentals and Series Circuits

3-1 Generation of AC voltage

Consider a simple generator as shown in Figure 3.1. Magnetic flux flows from the
isolated North Pole towards the isolated South Pole. A single conductor is placed on the
rotating part and this rotating part of the generator is known as rotor. Two ends of the
conductor are represented by a and a’. The rotor will be rotated in the counter
clockwise direction. The portion of a generator that is stationary is known as stator.

wt=0, 2w
a
E— ot -
» —_—
. .
N s 3 S

—2 2
—
—_— ] —_

a|

T

Figure 3.1: A simple Generator

Basically rotor is in the form of a cylinder. Side view of the rotor is shown in Figure 3.2.

|

Rotor +— Conductor

Figure 3.2: Side View of the Rotor

Faraday’s law states that when a conductor rotates in a constant magnetic field, voltage
is induced across the conductor. In other words, when a conductor cuts magnetic flux,
voltage is induced in the conductor. Let us explain how a conductor cuts magnetic flux.
When direction of motion of the conductor is parallel to the magnetic flux, it does not
cut any flux and no voltage will be induced across the conductor in accordance with
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Faraday’s law. When direction of motion of the conductor makes an angle less than 90°
with respect to the magnetic flux, it cuts some flux and some voltage will be induced
across the conductor. When direction of motion of the conductor is perpendicular to the
magnetic flux, it cuts maximum flux and maximum voltage will be induced across the
conductor.

Let end a of the conductor starts rotation in the counter clockwise direction from its
initial position i.e. wt = 0. The direction of motion of the conductor is parallel to the
magnetic flux; it does not cut any flux so no voltage is induced across the conductor in
accordance with Faraday’s law. This scenario is shown in Figure 3.3.

Direction of motion of the conductor ¢«———

wt=0, 21
a
—_— ot -
—_— .
—_— —
N T 3 S
-2 2
—
—_—i —_——— =

a
™

Figure 3.3: No Voltage Induction

Let end a of the conductor reaches new position i.e. wt = g The direction of motion of

the conductor at this position is perpendicular to the magnetic flux; it cuts maximum
flux so maximum voltage is induced across the conductor in accordance with Faraday’s
law. This scenario is shown in Figure 3.4. We will show it with the help of Fleming’s right
hand rule that terminal a of the voltage source under this scenario will be positive.

wt=0, 21
E— _
— .
3
N Tga Rotor & 2T )
—| -2 2
- -
S DR .
A — _

™

Direction of motion of the conductor

Figure 3.4: Maximum Voltage Induction
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Let end a of the conductor reaches the new position i.e. wt = m. The direction of
motion of the conductor is parallel to the magnetic flux; it does not cut any flux so no
voltage is induced across the conductor in accordance with Faraday’s law. This scenario
is shown in Figure 3.5.

wt=0, 2r
al
e . =
]
R —
P — N
N x 3n S
— 2
—_— =
—_— —_—
e

x —» Direction of motion of the conductor
Figure 3.5: No Voltage Induction

Let end a of the conductor reaches new position i.e. wt = 3;” Once again the direction

of motion of the conductor at this position is perpendicular to the magnetic flux; it cuts
maximum flux so maximum voltage is induced across the conductor. The conductor
moves in the upward direction over here. This scenario is shown in Figure 3.6. We will
show it with the help of Fleming’s right hand rule that terminal a of the voltage source
under this scenario will be negative.

Direction of motion of the conductor

wt=0, 2w
E— —_— | —-
- —_— | —
—.. _ —..—
N Iga Rotor ajpdn S

— 2
— >
D —— S

T

Figure 3.6: Maximum Voltage Induction

Let end a of the conductor moves back to its initial position i.e. wt = 2m, The direction
of motion of the conductor is parallel to the magnetic flux; it does not cut any flux so no
voltage is induced across the conductor. This scenario is shown in Figure 3.7.
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Direction of motion of the conductor ¢———

wt=0,2w

a
N = -
_— .
— —

N s 3z S
—2 2

—
—_— .
R =

]

a|

T

Figure 3.7: No Voltage Induction

If we plot voltage vs with respect to wt, we get a sinusoidal waveform for this AC
voltage as shown in Figure 3.8.

Ve

it

it

Figure 3.8: Waveform for AC Voltage

This AC voltage varies with time and it justifies the following equation that is known as
the instantaneous equation of the AC voltage.

vg = 1, sin wt (3.1)

I}, in the above equation is known as the peak or maximum value of AC voltage and w is
known as the angular frequency. The time taken by one cycle is known as time period

that is denoted by T. The number of cycles per second is called frequency that is
denoted by f.

In T seconds the AC voltage attains = 1 cycle.
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In 1 second the AC voltage attains = % cycles.

That is
1
f=z

The cycle of the waveform in Figure 3.8 repeats itself at

wt = 2w ,4m , 61, ... ... ...

So
wT =21
and
21
0=
That is
w = 2nf

(3.2)

(3.3)

As discussed earlier the single conductor of this simple generator will act as a voltage
source. According to Fleming’s right hand rule the thumb indicates direction of the
motion of the conductor, index finger indicates direction of the flow of magnetic flux

and the middle finger indicates direction of the induced current in the conductor.

Fleming’s Right Hand Rule as shown in Figure 3.9.

Motion

Flux

&

Figure 3.9: Fleming’s Right Hand Rule

If we apply this rule on Figure 3.4, then end a of the conductor will be positive as shown

in Figure 3.10, because the current flows from the negative terminal of a voltage source

to the positive terminal.

Direction of induced current

+ —

Vg

Figure 3.10: Direction of Induced Current
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If we apply this rule on Figure 3.6, then end a of the conductor will be negative as
shown in Figure 3.11, because the current flows from the negative terminal of a voltage
source to the positive terminal.

Direction of induced current

Figure 3.11: Direction of Induced Current

3-2 RMS Value or Effective Value of AC voltage

The RMS or effective value of AC voltage is constant. If average value of the AC power
delivered by an AC voltage source to a resistor is equal to the power supplied by a DC
voltage source to the same resistor, then the effective or RMS value of the AC voltage is
equal to the DC voltage. Consider the circuit as shown in Figure 3.12. A DC voltage is
applied across a resistor R and if we apply KVL to this loop, then we get the following
equation.

I||:
+ V-

Figure 3.12: DC Voltage across a Resistor

DC power taken by the resistor is
Pr = — (3.4)

Now let us apply an AC voltage across the same resistor R as shown in Figure 3.13. KVL
states that voltage across the source will be equal to the voltage across the resistor.
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Us = VR
The instantaneous equation of the AC voltage is
vs =V, sin wt (3.5)
The instantaneous equation of the AC power taken by the resistor can be calculated as

1752

Pr= (3.6)

Figure 3.13: AC Voltage across the Resistor

sz 2
Pr = —p~ sin wt (3.7)

The average value of this AC power is calculated as
21
Pr = ! f dwt 3.8
R~ 5o pbr aw (3.8)
0
Putting the value of p; in equation 3.8, we get
Pr=—| — dwt (3.9

If the power in equation 3.9 is equal to the DC power, then the effective value of the AC
voltage will be equal to the DC voltage Vs. That is
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2 2T
LR 3.10
R 2z) R % (3.10)
0

or

1 21
VSZ = %f USZ d(l)t
0

Therefore the RMS or effective value of the AC voltage can be calculated with the help
of the following equation.

1 2T
VSTmS = E‘[O USZ dwt (311)

This equation can be written as

’1 T
VSTmS = ;fo 1752 dt (312)

Putting the value of v in equation 3.11, we obtain the following equation.

2
Vs ms = Vzlnfozn sin? wt dwt (3.13)
Let us replace sin? wt by
1 —cos2wt
2
14 2 n27
m
Vs s = Ef (1 — cos2wt) dwt (3.14)
0
14 2 21 21
Ve rms = |—— U dwt —f cos 2wt da)tl (3.15)
am |J, 0
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As
fozn cos 2wt dwt = 0

Therefore
V2 [ r21
Vs, = /;[fo dwt] (3.16)
So
Vm
VSrms = ﬁ (3.17)

D 3.1: RMS value of the AC voltage in Pakistan is 220V and its frequency is 50 Hz, write
the instantaneous equation of this AC voltage.

Solution:
VSrms = 220V
f=50Hz
w =2nf = 100m ras/sec
As
Vin
Vsrms - ﬁ
Therefore
Vin = \/E VSrms
V, =220V2 V
As
vs =V, sin wt
Therefore

vg = 220V2sin 100mt  volts
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3-3 RMS Value of AC current

The RMS or effective value of AC current is constant. If average value of the AC power
delivered by an AC voltage source to a resistor is equal to the power supplied by a DC
voltage source, then the effective or RMS value of the AC current is equal to the DC
current. Consider the circuit as shown in Figure 3.14. A DC voltage is applied across a
resistor R and the DC power taken by the resistor in terms of current is given by

Pg = IR (3.18)
I R
VA
+ vy -
R
{1]¢
- VS -

Figure 3.14: DC Current in the Resistor

Now let us apply an AC voltage across the same resistor R as shown in Figure 3.15. KVL
states that the voltage across the source will be equal to the voltage across the resistor.

US = UR
The instantaneous equation of the AC voltage is
vg = 1}, sin wt (3.19)

The instantaneous equation of the AC current in the resistor can be calculated as

=5 3.20
L= R ( . )
V
i = % sin wt (3.21)
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Figure 3.15: AC Current in the Resistor

As the maximum value of the current is

Vn
R

L,
Therefore
i = I, sinwt (3.22)

The instantaneous equation of the AC power taken by the resistor can be calculated as

pr = i°R (3.23)

pr = IR sin? wt (3.24)

The average value of this AC power is calculated as
1 p2m
Pr = gfo pr dwt (3.25)

Putting the value of pj in equation 3.25, we get

Pp=— [." i*R dwt (3.26)

_Zn

If the power in equation 3.26 is equal to the DC power, then the effective value of the
AC current will be equal to the DC current I. That is

2R = %foz" iR dot (3.27)

or
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2,
12 =if0nlzdwt

Therefore the RMS or effective value of the AC current can be calculated with the help

of the following equation.

1 2.
Lims = /Efo i2 dwt

1 ,T.
Lrms = ;fo i2dt

This equation can be written as

Putting the value of i in equation 3.28, we obtain the following equation.

2 2 i
Lims = Izinfo " sin? wt dwt
Let us replace sin? wt by
1 —cos2wt
2
2 2
Lims = ;lnfo "(1 — cos 2wt) dwt

Lrms = \/% [fOZTE dwt — fozn cos 2wt dwt]

As
fozn cos 2wt dwt =0
Therefore
’Imz 2
Irms = ; [fO 4 dwt]
So

I rms

[
V2
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D 3.2: The maximum value of an AC current is 14.14 A as shown in the following figure.
Calculate its average and RMS value.

As

i

1414 A 1
o T 2 i
Figure 3.16: Circuit for D # 3.2
Solution:
I, = 1414 A
Ly,
Lrms = ﬁ
Therefore
14.14
Lrms = W
Lms = 10 A

Instantaneous expression for this AC current is
i = I, sinwt

The average value of this AC current is

1 ,m .
Lipe = ;fo idwt

Lipe = %fon I,,, sin wt dwt
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[

Lipe = - [-coswt |
21
lyye = Tm
2 X 1414
ave = T
lpve =9 A

D 3.3: The maximum value of the time varying current in the following waveform is 2 A.

i
A

2A 1
/ =t

0 1

Figure 3.17: Waveform for D # 3.3
Calculate its average and RMS value.
Solution:

The pattern repeats itself after 1 second; therefore the time period of the waveform is 1
second.

T =1sec
Equation of the current in 1st cycle is given by
i =2t ; 0<tg1l

Average value of the current is calculated as

T

11,
Iave :T_]‘ldt

0

Putting the values in the above equation
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1

1
Iave == If 2t dt
0

_t2 1
lyye = 2 7

L 0

[ 1
lyye = 2 E
lgve = 1A

RMS value of the current is calculated as

4
Irms = §
Loms = 1154 A

D 3.4: The maximum value of the time varying current in the following waveformis 2 A

.Calculate its average and RMS value.
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2A

-2AT

Figure 3.18: Waveform for D # 3.4

Solution:

The pattern repeats itself after 2 seconds; therefore the time period of the waveform is
2 seconds.

T = 2 sec
We consider the equation of the current in 1st cycle

i=24; 0

IA
~
IA
—_

And i=-24,; 1

IA
o~
IA
N

The average value of the current is calculated as

T

11,
Iave :Tfldt

0

Putting the values in the above equation

1 1 2
Ia,,e=§[f2dt+f—2dt
0 1

[ (t)o—(t)F ]

Iave -

NN

lowe =04
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The RMS value of the current is calculated as

1 ,T.
Lrms = ,’ ;fo i2dt

I =\[§[f01dt+f12dt]

Lrms =+/2[1 + 1]
Lrms = V4
Lims =2 A

D 3.5: The maximum value of the time varying current in the following waveform is 10 A
Calculate its average and RMS value.

i

10 A

* Lt
0 s 2w in

Figure 3.19: Waveform for D # 3.5
Solution:

The pattern repeats itself after m radians; therefore one cycle is from 0to m, so we
consider the equation of the current in 1st cycle

i =10sin wt ; 0 <wt<sm

The average value of the current is calculated as
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T
lype = ;f 10 sin wt dwt
0
10 .
lyve = - [- coswt ]]
2X 1
lyye = T =
20
lyye = —
l4pe = 6.366 A

The RMS value of the current is calculated as

T

1 .
Lims = ;j- i“dt
0

s
100 [
Lims = ?f sin? wt dwt

0

100 (™
Lims = o J;) (1 — cos2wt) dwt

100 T T
Loms = > f dwt—f cos 2wtdwt
0 0
100 T
Irms = E f dwt
0
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10
Irms = ﬁ

Iyms = 7.07 A

D 3.6: The maximum value of the time varying current in the following waveform is 10 A
Calculate its average and RMS value.

L

10A 1

* Lt

0 T 2w 3n
Figure 3.20: Waveform for D # 3.6
Solution:

The pattern repeats itself after 27 radians; therefore one cycle is from 0 to 27, so we
consider the equation of the current in 1st cycle

i =10sin wt ; 0 <wt<sm
i=0; mT <wt<2m

Average value of the current is calculated as

T 21

1
Iave:E flOsina)tdwt+f 0 X dwt

0 T

10 )
lipe = > [- cos wt |7

2% Iy

ave 27_[
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10
s

Iave

Iye =3.18 4

RMS value of the current is calculated as

21
1
Lims = Elj 100 sin? a)tdwt+J 02 X dwt

T

100
Lims = \/ U (1 — cos2wt) dwtl
100 T
Loms = \/ {f dwt —f cos Zwtdwt}l
0

- (2

Loms = V25
Lims = 54

3-4 AC Voltage across a Resistor

Consider a simple circuit comprising a resistor and an AC voltage source as shown in
Figure 3.21. Voltage across the source is equal to the voltage across the resistor in
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accordance with KVL.
Vs = Vg

Instantaneous equation of the AC voltage is

vs =V, sin wt (3.35)
3 Ra
VWA
+ v -
R
F o,
Pt
N
+ vS -

Figure 3.21: AC voltage across a Resistor

Waveform for this ac voltage is shown in Figure 3.22.

V.

wt

Figure 3.22: Waveform for AC voltage

Instantaneous equation of the AC current in the resistor can be calculated as

= = (3.36)
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i = V?’" sin wt (3.37)

As maximum value of the current is given by

Vn

I,

Ratio of the maximum value of voltage to the maximum value of current defines
resistance of the resistor

R = m
L,
Therefore
i = I, sinwt (3.38)

Waveform for this ac current is shown in Figure 3.23. The comparison of the voltage
waveform with the waveform for the current reveals that current in a resistor is always
in phase with the voltage across the resistor. In other words there is no phase difference
between voltage across a resistor and current.

L
4

uit

Figure 3.23: Waveform for AC Current

Instantaneous equation of the AC power taken by a resistor can be calculated with the
help of equation 3.39.

pr = i’R (3.39)
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Pr = I,°R sin? wt (3.40)

Waveform for this ac power is shown in Figure 3.24.

R
1 R}
wt
0 i d 2n ix
Figure 3.24: Waveform for AC Power
Average value of this AC power is calculated as
1 1
Pr=—[, prdwt (3.41)
Putting the value of pjp in equation 3.41, we get
1 .
Py = ;fo L,°R sin? wt dwt (3.42)
_In?R (.
Pr = Tfo sin? wt dwt (3.43)
Let us replace sin? wt by
1 —cos2wt
2
2
Pp = ’";nR Jy (1 = cos 2wt) dwt (3.44)
Im?R [ T
Pp ="— [ dwt — [ cos 2wt dwt]
As
fozn cos 2wt dwt = 0
Therefore
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P, = ImZR fnd(l)t
R 2n 0
2

I,%R

P, =
R 2

I?’R (3.45)
Where [ in equation 3.45 stands for RMS value of AC current.

3-5 AC Voltage across an Inductor

Consider a simple circuit comprising an inductor and an AC voltage source as shown in
Figure 3.25. Voltage across the source is equal to the voltage across the inductor in
accordance with KVL.

US = UL
Instantaneous equation of the AC current is

i =1, sinwt

¥ .

N
Vs
Figure 3.25: AC Voltage across an Inductor

Waveform for this ac current is shown in Figure 3.26. Instantaneous equation of the AC
voltage across the inductor can be calculated as

UL :LE
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s

Figure 3.26: Waveform for AC Current

v, = I,,(wL) cos wt (3.46)
Maximum value of this AC voltage is
Vim = I (wl)

So

Where wL represents the resistance offered by the inductor to the flow of AC current
and this resistance is known as inductive reactance which is represented by X; .

X, = wl = 2nfL

As frequency of DC voltage is zero, therefore inductor does not offer any resistance to
the flow of DC current. Equation no 3.46 can be written as

v, = I,,X; coswt (3.47)
Or
v, = I, X, sin(wt 4+ 90°)

Waveform of this AC voltage across the inductor is shown in Figure 3.27.
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I

il
2

Figure 3.27: Waveform for AC Voltage across Inductor

Comparison of the voltage waveform with the waveform for the current reveals that
current in an inductor lags behind the voltage by 90°. In other words there is a phase
difference of 90° between voltage across an inductor and current. The instantaneous

equation for the AC power taken by an inductor from the AC voltage source can be
calculated as

PL = VL X1
p. = [, X, coswt X [, sin wt
pL = ImZXL sin wt cos wt

L,%X,
2

pL = sin 2wt (3.48)

Waveform for the time varying ac power taken by this inductor from the AC voltage

source is given in Figure 3.28. When the current increases from 0 to g the power flows
toward the inductor and when the current decreases from g tom , the same power

flows back to the source. Average value of the AC power can be computed as

1 (™ I,°X
PLz—f mz L sin2wtd wt
0
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(0t

Figure 3.28: Waveform for AC Power taken by Inductor

L2X, (T
p=2=L Lj 2 sin 2wtd wt
i ),
L,%X,
P, = - 2wt]T
L e [—cos2wt] G
PL=0

Thus the average power consumed by an inductor under ideal condition is zero.

3-6 AC Voltage across a Capacitor

Consider a simple circuit comprising a capacitor and an AC voltage source as shown in
Figure 3.29. Voltage across the source is equal to the voltage across the capacitor in

accordance with KVL.

Figure 3.29: AC Voltage across a Capacitor

Instantaneous equation of the AC current is
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i = I, sinwt

Waveform for this ac current is shown in Figure 3.30.

o Ll

Figure 3.30: Waveform for AC Current

Instantaneous equation of the AC voltage across the capacitor can be calculated as

1 rdi
Ve =¢) ae
Ve = @0) Ccos W
Maximum value of this AC voltage is
cm — (Q)C)

So

(1>_V6m
wC) I,

Where w—lc represents the resistance offered by the capacitor to the flow of AC current

and this resistance is known as capacitive reactance which is represented by X..
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v - 11
€7 wC  2mfC

As frequency of DC voltage is zero, therefore capacitor offers infinite resistance to the
flow of DC current. In other words it blocks DC current and this characteristic of
capacitor has lots of applications in electronic devices. Thus voltage across a capacitor
can be written as

ve = =1, X cos wt (3.49)
Or
ve = L,Xc sin(wt —90°)
Waveform of this AC voltage across the inductor is shown in Figure 3.31.
Ve

Ve m

pa | =
[¥5]
ra S
[ ]
ra |

Figure 3.31: Waveform for AC Voltage across Capacitor

Comparison of the voltage waveform with the waveform for the current reveals that
voltage across a capacitor lags behind the current by 90°. In other words there is a
phase difference of 90° between voltage across a capacitor and current. The
instantaneous equation for the AC power taken by a capacitor from the AC voltage
source can be calculated as

pc = Ve X1

pc = —1,Xc coswt X I, sin wt

Pc = —ImZXC sin wt cos wt

Pc = —Imz%sin 2wt (3.50)
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Waveform for the time varying ac power taken by this capacitor from the AC voltage
source is given in Figure 3.32.

Ll

Figure 3.32: Waveform for AC Power taken by Capacitor

Average value of the AC power can be computed as

1 (™ —I,,%X,
PC=—f — "€ sin 2wtd wt
), 2
L2 Xc (™
p.=-2=L CJ. 2 sin 2wtd wt
i ),
I,2X
P.=— m4nc[—c052wt]’5
PC:0

Thus a capacitor does not consume power under ideal condition.

3-7 RL Series Circuit

Consider a series circuit that consists of a resistor, an inductor and an AC voltage source
as shown in Figure 3.33. Voltage across the source is equal to the sum of the voltage
across the resistor and the voltage across the inductor in accordance with KVL.

Vs = Vg + v (3.51)
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Figure 3.33: RL Series Circuit
Equation for the alternating current in this series circuit is
i = I, sinwt

Waveform for this ac current is shown in Figure 3.34. The AC current results in a voltage
drop across the resistor that is in phase with the current.

URziR

vgp = LR sin wt

o Ll

Figure 3.34: AC Current in RL Series Circuit

Waveform for the AC voltage across the resistor is shown in Figure 3.35.
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it

Figure 3.35: AC Voltage across Resistor

AC voltage across the inductor is calculated as

di
v, = LE

v, = [, X} cos wt

Voltage across the inductor leads the current by 90° as shown in Figure 3.36.

]

\ + Wit
2 3m
2\/ 2

Figure 3.36: AC voltage across Inductor

VL m

N

Putting the values of v; and v, in equation 3.51, we obtain the following equation for
source voltage.

vg = IR sin wt + [,, X; cos wt (3.52)

The total resistance offered by the series circuit to the flow of AC current is called
impedance. The impedance is represented by Z. The right hand side of equation 3.52
gives us the source voltage. The source voltage is AC voltage that varies sinusoidaly with
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time. This AC voltage will have a maximum value and a proper phase angle. It is difficult
to find the maximum value of the source voltage and its phase angle from the right hand
side of the mentioned equation. Therefore we write the general equation for the AC
voltage.

vs = W, sin(wt + 6) (3.53)

We replace the series combination of resistor and inductor in Figure 3.33 by a single
circuit element such that the resistance of this single circuit element equals to the
impedance of the series circuit. The equivalent circuit is shown in Figure 3.37.

; 7
—

Figure 3.37: Equivalent Circuit
Applying KVL to the equivalent circuit, we get
US = UZ

This equation implies that the maximum value of the source voltage will be equal to the
maximum value of the voltage across Z.

Um = Umz
The maximum voltage across the impedance Z is
U =Vmz = InZ

Putting this value of v, in equation 3.53, we obtain the following equation for the
source voltage.

vg = I, Z sin (wt + 6) (3.54)
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vs = I,,Z cos 6 sin wt + I,,,Z sin 6 cos wt (3.55)
Comparing equation 3.55 with equation 3.52, we have

R =Zcos@ (3.56)

X, =Zsin6 (3.57)

Squaring and adding the above two equations

R? = Z?%cos?6

+ X,> =7%sin%0

R*+X,? =272

The impedance of the series circuit can be calculated as

Z =+ R?+X,* (3.58)
Dividing equation 3.57 by equation 3.56, we get
X

tanf = —
an R

So the phase angle of the source voltage can be computed with the help of following
equation.

Power taken by R is
pr = L,°R sin? wt
Power taken by L is

I,°X
m L sin 2wt
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According to law of conservation of energy the power supplied by the source will be

equal to sum of the powers consumed by resistor and inductor.

Ps = Pr T DL

Im*Xy,

ps = "R sin® wt + "L sin 2wt

The average value of the AC power supplied by the source can be computed as

=P+ P

(3.59)

As the average value of the power consumed by resistor is I2R and the average value of

the power consumed by the inductor is zero, therefore

P, = IR

D 3.7: Consider the RL series circuit as shown in the following figure. The equation for

AC current in this series circuit is

i = 10V/2sin 1007t

Find vg, v, vs, pr and p;,

] 30 40
— M 0
+ V- + V -
R L
~
+ VS "

Figure 3.38: RL Series Circuit for D # 3.7
Solution:

Impedance of this RL series circuit is
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Z=3+j4 Q
We convert this impedance into polar form
Z =54£53.1° Q
Maximum value of the current is
I,=10V2 A
Angular frequency of the AC source is
w = 1007 T4/,

The time varying AC voltage across the resistor is

vgp = I, R sin wt

Vg = 30+/2sin 1007t
The time varying AC voltage across the inductor is

v, = [, X} cos wt

v, = 40v/2 cos 100t volts
The time varying AC voltage across the source is

vg = I, Z sin(wt + 6)

vs = 50v/2sin(1007t + 53.1%)
Power taken by the resistor is given by

pr = L,°R sin? wt

pr = 600sin?2 100t W

Power taken by the inductor is given by
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I,*X
pL = m2 L sin 20t

p., = 400sin 2007t w

D 3.8: Consider the RL series circuit as shown in Figure 3.38. Determine the RMS values
of the AC current and all the three voltages. Calculate the average power consumed by
the circuit as well.

Solution:
Maximum value of the current is

I,=10V2 A
So, the RMS value of the current is
Loms =10 A
Maximum value of the voltage across R is
Vam =302 V
So, the RMS value of the voltage across R is
Viyms =30V
Maximum value of the voltage across L is
Vim =40V2 V
So, the RMS value of the voltage across L is
Vipms =40V
Maximum value of the voltage across the source is
V,=50V2 V

So, the RMS value of the voltage across the source is
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VS = 50 %4
Power consumed by the circuit is: P, =I°R
P, =300W

D 3.9: Consider the RL series circuit as shown in the following figure. The equation for
the AC current in this series circuit is

i = 5v2sin 1007t

] 8 0 60
— MA AT
+. Mo = + V -
B
=~
-+ Vs

Figure 3.39: RL Series Circuit for D # 3.9
Find vg, v, vs, pr and p;,
Solution:

Impedance of this RL series circuit is

Z=8+j6 Q
We convert this impedance into polar form

Z =10436.8° O

Maximum value of the current is
IL,=5V2 A

Angular frequency of the AC source is
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w = 1007 T4/,

Instantaneous voltage across the resistor is

vgp = LR sin wt

vg = 40+/2sin 1007t
Instantaneous voltage across the inductor is

v, = [, X}, cos wt

v, = 30v/2cos 1007t volts
Instantaneous voltage across the source is

vs = I, Z sin(wt + 0)

vg = 502 sin(1007t 4+ 36.8°) wvolts
Instantaneous power taken by the resistor is given by

pr = I, 2R sin? wt

pr = 400sin? 100t W
Instantaneous power taken by the inductor is given by

I,*X
pL = m2 L sin 2wt

p, = 150sin 200t W

D 3.10: Consider the RL series circuit as shown in Figure 3.39. Determine RMS values of
the AC current and all the three voltages. Calculate the average power consumed by the
circuit as well.

Solution:
Maximum value of the current is
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So, the RMS value of the current is

Lons =5A
Maximum value of the voltage across R is

Vam = 402 V
So, the RMS value of the voltage across R is

VRyms =40V
Maximum value of the voltage across L is

Vim =30V2 V
So, the RMS value of the voltage across L is

Vipms =30V
Maximum value of the voltage across the source is

V,=50v2 V

So, the RMS value of the voltage across the source is

Vs =50V
Power consumed by the circuit is: P, =I°R
P, =200W

3-8 RC Series Circuit

Consider a series circuit that consists of a resistor, a capacitor and an AC voltage source
as shown in Figure 3.40. Voltage across the source will be equal to the sum of the
voltage across the resistor and the voltage across the capacitor in accordance with KVL.

Vs = Vg + V¢ (3.60)
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Instantaneous equation for the alternating current in this series circuit is given by

i = I, sinwt

i R C
= 11
VWA 11
+ "‘erR - + Ve -
S,
+ -
VS

Figure 3.40: RC Series Circuit

Waveform for this ac current is shown in Figure 3.41.

it

Figure 3.41: AC Current in RC Series Circuit

The AC current results in a voltage drop across the resistor that is in phase with the
current.

UR:lR

vg = [, R sin wt
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Waveform for the AC voltage across the resistor is shown in Figure 3.42. It follows the

pattern of the waveform for the current and this is why they are in phase.

it

Figure 3.42: AC Voltage across Resistor

Instantaneous voltage across the capacitor is calculated as

1
Ve = Ej- ldt

ve = —I, X cos wt

Voltage across the capacitor lags behind the current by 90° as shown in Figure 3.43.

Vem

Ve

|

Figure 3.43: AC Voltage across Capacitor

Putting the values of vy and v, in equation 3.60, we obtain the following equation for

source voltage.

vs = IR sin wt — [,, X, cos wt (3.61)
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The total resistance offered by the series circuit to the flow of AC current is called
impedance. The impedance is represented by Z. The right hand side of equation 3.61
gives us the source voltage. The source voltage is AC voltage that varies sinusoidaly with
time. This AC voltage will have a maximum value and a proper phase angle. It is difficult
to find the maximum value of the source voltage and its phase angle from the right hand
side of the mentioned equation. Therefore we write the general equation for the AC
voltage.

vs =V, sin(wt — 0) (3.62)

We replace the series combination of resistor and capacitor in Figure 3.40 by a single
circuit element such that the resistance of this single circuit element equals to the
impedance of the series circuit. The equivalent circuit is shown in Figure 3.44.

Figure 3.44: Equivalent Circuit
Applying KVL to the equivalent circuit, we get
US = UZ

This equation implies that the maximum value of the source voltage will be equal to the
maximum value of the voltage across Z.

Um = Umz
Maximum voltage across the impedance Z is
U =Vmz = InZ

Putting this value of v, in equation 3.62, we obtain the following equation for the
source voltage.
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vg = I, Z sin(wt — 0)

vs = I, Z cos 0 sin wt — I,,Z sin 6 cos wt
Comparing equation 3.64 with equation 3.61, we have

R =Zcosf

Xe=Zsin6
Squaring and adding the above two equations

R? =Z?%cos?0
+ X% =7Z%sin? 6

R* +X;* =277

Impedance of the series circuit can be calculated as

Z= /RZ + X

Dividing equation 3.66 by equation 3.65, we get

X;
tan§ = —
an R

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

So the phase angle of the source voltage can be computed with the help of following

equation

Xc
6 =tan 1 —
an R

The time varying power taken by the resistor is given by
pr = L,°R sin? wt

The time varying power taken by the capacitor is given by
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¢
Pc = mTCsin 2wt

According to law of conservation of energy power supplied by the source will be equal
to sum of the powers consumed by resistor and capacitor.

Ps = DPr *+ Dc

2 2 ImZXC .
ps = I,"R sin” wt — 5 sin 2wt (3.68)
The average value of the AC power supplied by the source can be computed as

P =Pp+ P

As the average value of the power consumed by resistor is I2R and the average value of
the power consumed by the capacitor is zero, therefore
P, =I?R

D 3.11: Consider the RC series circuit as shown in the following figure. The equation for

the AC current in this series circuitis i = 10v/2 sin 100t. Find vg, v, Vs, pr and pc.

i 30 40
— Y |
# V. = P
<,
+ -
Vs

Figure 3.45: RC Series Circuit for D # 3.11
Solution:

Impedance of this RC series circuit is

Z=3-j40Q
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We convert this impedance into polar form

Z =54-53.1° Q

Maximum value of the current is
I,=10v2 A

Angular frequency of the AC source is
w = 1007 T4/,
The time varying AC voltage across the resistor is
Vg = LR sin wt
Ve = 30V/2sin 1007t
The time varying AC voltage across the capacitor is
ve = —I, X cos wt
ve = —40v/2 cos 100mt volts
The time varying AC voltage across the source is
vg = I,,Z sin(wt — 0)
vg = 50/2sin(1007t — 53.1°)

Power taken by the resistor is

Pr = L,°R sin? wt
prp = 600sin? 100t W
Power taken by the capacitor is

L, X,
2

Dc=— sin 2wt

pc = —400sin 2007t w
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D 3.12: Consider the RC series circuit as shown in Figure 3.45. Determine the RMS values
of the AC current and all the three voltages. Calculate the average power consumed by
the circuit as well.

Solution:
Maximum value of the current is

I, =10v2 A
So, the RMS value of the current is
Loms =10 A
Maximum value of the voltage across R is
Vam =30V2 V
So, the RMS value of the voltage across R is
Viyms =30V
Maximum value of the voltage across C is

Ve, =40V2  V
So, the RMS value of the voltage across C is

Verms =40V
Maximum value of the voltage across the source is

V, =50V2 V
So, the RMS value of the voltage across the source is

Vs =50V
Power consumed by the circuitis: P, = I?R

P, =300 W
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D 3.13: Consider the RC series circuit as shown in the following figure. The equation for
the AC current in this series circuit is given by

i = 5v2sin 1007t

. 80 6Q
— MA 11
+ I"I.-FR - + jlrilc =5
>
+ —
1|L""5

Figure 3.46: RL Series Circuit for D # 3.13

Find vg, v¢, v, pr and pc.

Solution:

Impedance of this RL series circuit is

Z=8-j6Q

We convert this impedance into polar form

Z =102-36.8° O
Maximum value of the current is

IL,=5V2 A

Angular frequency of the AC source is

w = 1007T rad/sec

Instantaneous voltage across the resistor is

vg = [, R sin wt
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vg = 4042 sin 1007t
Instantaneous voltage across the capacitor is

Ve = —1,,Xc cos wt

ve = —30v/2cos 1007t volts
Instantaneous voltage across the source is

vg = I,,Z sin(wt — 6)

vs = 50v/2sin(1007t — 36.8°) wvolts
The time varying power taken by the resistor is

pr = I,*R sin? wt

pr = 400sin? 100t W

The time varying power taken by the capacitor is

L.%X
m CsinZwt

Pc = —

pc = —150sin 200t W

D 3.14: Consider the RC series circuit as shown in Figure 3.46. Determine the RMS values
of the AC current and all the three voltages. Calculate the average power consumed by
the circuit as well.

Solution:
Maximum value of the current is

So, the RMS value of the current is
Loms =5A
Maximum value of the voltage across R is
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Vam = 40V2  V
So, the RMS value of the voltage across R is
VRyms =40V
Maximum value of the voltage across C is
Vem =30V2  V
So, the RMS value of the voltage across C is
Verms =30V
Maximum value of the voltage across the source is
V,=50v2 V
So, the RMS value of the voltage across the source is
Vs =50V
Power consumed by the circuit is: P, =I°R=200W

3-9 RLC Series Circuit

Consider a series circuit that consists of a resistor, an inductor, a capacitor and an AC

voltage source as shown in Figure 3.47. The voltage across the source will be equal to
the sum of the voltage across the resistor, the voltage across the inductor and the

voltage across the capacitor in accordance with KVL.
US = UR + UL + UC

i
o

R
VWA 000 1}
'\_.a‘ 4 ] :C

4

+ VS

Figure 3.47: RLC Series Circuit
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Equation for the alternating current in this series circuit is given by
i = I, sinwt

Waveform for this ac current is shown in Figure 3.48.

L1

Figure 3.48: AC current in RLC Series Circuit

We already know that this AC current results in a voltage drop across the resistor that is
in phase with the current.

UR = lR
vgp = LR sin wt

Waveform for the AC voltage across the resistor is shown in Figure 3.49. It follows the
pattern of the waveform for the current and this is why they are in phase.

it

Figure 3.49: AC Voltage across Resistor
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Instantaneous voltage across the inductor is calculated as

vL=LE

v, = [, X} cos wt

The voltage across the inductor leads the current by 90° as shown in Figure 3.50.

L

S E
<
L

e

Figure 3.50: AC Voltage across Inductor

Instantaneous voltage across the capacitor is calculated as

!
Ve==|1
7 c
ve = —I1, X cos wt
The voltage across the capacitor lags behind the current by 90° as shown in Figure 3.51.
¥

Vem ¢

ra |

Figure 3.51: AC Voltage across Capacitor
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Putting the values of vy, v, and v in equation 3.69, we obtain the following equation
for source voltage.

vs = L, R sin wt + [,, X} cos wt — [,, X, cos wt
vs = I, R sin wt + I,,,(X; —X) cos wt (3.70)

Where (X, — X¢) is the net reactance of the RLC series circuit.The total resistance
offered by the series circuit to the flow of AC current is called impedance. The
impedance is represented by Z. The right hand side of equation 3.70 gives us the source
voltage. The source voltage is AC voltage that varies sinusoidaly with time. This AC
voltage will have a maximum value and a proper phase angle. It is difficult to find the
maximum value of the source voltage and its phase angle from the right hand side of the
mentioned equation. Therefore we write the general equation for the AC voltage.

vs = Vi, sin(wt + 6) (3.71)

We replace the series combination of resistor, inductor and capacitor in Figure 3.47 by a
single circuit element such that the resistance of this single circuit element equals to the
impedance of the series circuit. The equivalent circuit of the above mentioned series
circuit is shown in Figure 3.52.

0)

lf:S -
Figure 3.52: Equivalent Circuit
Applying KVL to the equivalent circuit, we get
US = UZ

This equation implies that the maximum value of the source voltage will be equal to the
maximum value of the voltage across Z.
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Um = Umz
The maximum voltage across the impedance Z is
Um = Vmz = InZ

Putting this value of v, in equation 3.71, we obtain the following equation for the
source voltage.

vs = I, Z sin(wt + 6) (3.72)
vs = I, Z cos 8 sin wt * [,,,Z sin 6 cos wt (3.73)
Comparing equation 3.73 with equation 3.70, we have
R =Zcosb@ (3.74)
(X, —Xc) = Zsin6 (3.75)
Squaring and adding the above two equations

R? =Z%cos?6
+ (X, — Xc)? =Z%sin% 6

RZ + (XL _Xc)z = ZZ

The impedance of the series circuit can be calculated as

Z =\/R? + (X, — X¢)? (3.76)
Dividing equation 3.75 by equation 3.74, we get

(X, — Xc)

tan @ =
an R

So the phase angle of the source voltage can be computed with the help of following
equation
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_ (X —Xe)

0=t
an R

If X; > X, then 8 is positive so this circuit will behave like inductive circuit, If X; < X,
then 6 is negative so this series circuit will behave like capacitive circuit. If X; = X,
then @ is zero and this circuit will behave like resistive circuit. The last condition is
known as resonance condition.

Power taken by the resistor is
pr = I,*R sin? wt

Power taken by the inductor is

I,2X
pL = — L sin 2wt
Power taken by the capacitor is
¢
Pc = mTCsin 2wt

According to law of conservation of energy the power supplied by the source will be
equal to sum of the powers consumed by resistor, inductor and capacitor.

Ps =DPrt DL+ DPc
ps = I,°R sin? wt + @sin 2wt — Imz%sin 2wt (3.77)
Average value of the AC power supplied by the source can be computed as
P, = PR+ P, + P,

As the average value of the power consumed by resistor is 2R and the average value of
the powers consumed by the inductor as well as capacitor are zero, therefore

P, = IR
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D 3.15: Consider the RLC series circuit as shown in the following figure. The equation for

the AC current in this series circuit is i = 10+/2 sin 1007, find all the unknown electrical
quantities.

L 30 8Q 40
e
W T 1
- VR = + VL -+ Ve -
S
+ -
Vg

Figure 3.53: RLC Series Circuit for D # 3.15
Solution:

Impedance of the series circuit is given by

Z =\R?+ (X, — X¢)?

z= 7T E-a7

Z=50Q
Angle of the impedance is

As X; > X, and 8 is positive, so this circuit will behave like inductive circuit. Maximum
value of the current is given by

L,=10v2 A
Angular frequency of the AC source is
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w = 1007 rad/sec

Instantaneous voltage across the resistor is

Vg = I, R sin wt
vg = 30v/25sin 1007t

Instantaneous voltage across the inductor is

v, = I, X; cos wt

v, = 80v2cos100nt volts
Instantaneous voltage across the capacitor is

ve = =L X cos wt

ve = —40v/2 cos 1007t  volts
Instantaneous voltage across the source is

vg = I, Z sin(wt + )

vg = 50/2sin(100mt + 53.1°) wvolts
Instantaneous equation of the power taken by the resistor is

Pr = L,°R sin? wt

prp = 600sin? 100wt W
Instantaneous equation of the power taken by the inductor is

pL = @sin 2wt

p. = 800sin 200mt w

Instantaneous equation of the power taken by the capacitor is
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Im®Xc .
pc = —"‘Tcsm 2wt

pc = 400sin 2007t w

D 3.16: Consider the RLC series circuit as shown in Figure 3.53. Determine the RMS
values of the AC current and all the four voltages. Calculate the average power
consumed by the circuit as well.

Solution:
Maximum value of the current is

I,=10V2 A

So, the RMS value of the current is

Loms =10 A
Maximum value of the voltage across R is

Vam =302 V
So, the RMS value of the voltage across R is

Viyms =30V
Maximum value of the voltage across L is

Vim =80v2 V
So, the RMS value of the voltage across L is

Vipms =80V
Maximum value of the voltage across C is

Vem =402V
So, the RMS value of the voltage across C is

VCT‘TI’lS = 4’0V
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Maximum value of the voltage across the source is
V,=50v2 V

So, the RMS value of the voltage across the source is

VS = 50 V
Power consumed by the circuit is: P, =I°R
P, =300W

D 3.17: Consider the RLC series circuit as shown in the following figure. The equation for
the AC current in this series circuit is i = 5v/2 sin 1007t.

i g0 B0 140
— W I [~
i A V- s Ve -
S
"
\LS

Figure 3.54: RLC Series Circuit for D # 3.17
Find all the unknown quantities.
Solution:
Impedance of this RLC series circuit is
Z=8-j6
We convert this impedance into polar form
Z =102-36.8° O

As X; < X and 6 is negative so this circuit will behave like capacitive circuit.
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Maximum value of the current is
I,=5V2 A
Angular frequency of the AC source is
w =100 7/,
Instantaneous equation of voltage across the resistor is
Vg = I, R sin wt
vp = 40+/2sin 1007t

Instantaneous equation of voltage across the inductor is
v, = [, X} cos wt

v, = 40v2 cos 100wt  volts
Instantaneous equation of voltage across the capacitor is

Ve = —1,,Xc cos wt

ve = —70v/2cos 100mt volts
Instantaneous equation of voltage across the source is

vg = I, Z sin(wt + 6)

vg = 504/2sin(100mt — 36.8°)
Instantaneous power taken by the resistor is

Pr = L,°R sin? wt

pr = 400sin? 100wt W

Power taken by the inductor is
Im?XL .
pL =", sin 2wt
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p. = 200sin 2007t w
Power taken by the capacitor is
Im?X¢

Pc = —Tsin 2wt

pc = —350sin 2007t w

D 3.18: Consider the RLC series circuit as shown in Figure 3.54. Determine the RMS
values of the AC current and all the four voltages. Calculate the average power
consumed by the circuit as well.

Solution:
Maximum value of the current is

I,=5V2 A

So, the RMS value of the current is
Lims =54

Maximum value of the voltage across R is

Vam = 402 V
So, the RMS value of the voltage across R is

Viyms = 40V
Maximum value of the voltage across L is

Vim =40V2 V
So, the RMS value of the voltage across L is

Vipms =40V
Maximum value of the voltage across C is

Ve = 7082  V
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So, the RMS value of the voltage across C is
Verms =70V
Maximum value of the voltage across the source is

V,=50v2 V

So, the RMS value of the voltage across the source is

Vs =50V
Power consumed by the circuit is: P, =I?R
P, =200W

3-10 Phasor Analysis of RL Series Circuit

Consider a series circuit that consists of a resistor, an inductor and an AC voltage source
as shown in Figure 3.55. Equation for the alternating current in this series circuit is given
by

i = I, sinwt

I R L
— VWA EELJJE
£ AL = + V-
S,
+ VS

Figure 3.55: Phasor Analysis of RL Series Circuit

The phase angle of this ac current is zero, we want to write the phasor value of this
current. RMS value of this AC current is given by
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oo dm
rms = 7>
Therefore the Phasor value of the AC current
I = I,,,,20° (Polar form)

The above phasor is in polar form; let us convert it into rectangular form

I = Ly (Rectangular form)
The time varying voltage across the resistor is

Vg = LR sin wt
RMS value of this AC Voltage is

LR
Vers = ﬁ

VerS = ITmSR

The phase angle of this AC voltage is zero. Therefore phasor value of the AC voltage
across the resistor is

Vi = LnsR20° (Polar form)

We convert the above phasor into rectangular form

Vg = LomsR (Rectangular form)

The time varying ac voltage across the inductor is
v, = I, X, sin(wt + 90°)

RMS value of this AC Voltage is
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VerS = IrmsXL

As the phase angle of this AC voltage is 90°. Therefore the phasor value of the AC
voltage across the inductor is given by

V, = Ly X,290° (Polar form)
We convert this phasor into rectangular form
Vi, = Lrms XL, (Rectangular form)

Consider the phasor diagram of the RL series circuit as shown in Figure 3.56.The phasor
for the AC current in the series circuit is a reference phasor. The voltage across the
resistor is in phase with the current and voltage across the inductor leads the current by
90°. We apply KVL to the series circuit which states that phasor sum of the voltage rises
in the loop will be equal to the phasor sum of voltage drops.

VS = VR + VL
Instantaneous equation of voltage across the source is

vs = I, Z sin( wt + 6)

Ve=IZ _
V=1,
g 90
1 [ (Reference Phasor)
VH: IR

Figure 3.56: Phasor diagram of RL series circuit

RMS value of this AC Voltage is

N

[

Vsrms = ﬁ
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V. = ImsZ (3.78)

As the phase angle of this AC voltage is 0, therefore the phasor value of the AC voltage
is
Vs = L2260 (Polar form)

Ignoring the phasor for the AC current in the phasor diagram, we obtain a voltage
triangle as shown in Figure 3.57.

1 X

IR
Figure 3.57: Voltage Triangle

If we divide all the three sides of the voltage triangle by current, we obtain another
triangle that is known as Impedance Triangle as shown in Figure 3.58.

R
Figure 3.58: Impedance Triangle

It is clear from the impedance triangle that the impedance of the RL series circuit is a
complex quantity, that is

Z =R+ jX, (3.79)
The power factor of this RL series circuit is calculated with the help of following
equation. Power factor is represented by pf and the power factor of an inductive
circuit is known as lagging power factor.
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R
cosf =—

Z
pf = cosf
The power supplied by the source is
Pi = Lyms'R
As
Ve
rms 7

Therefore the power supplied by the source is

R
P = Vsrms X Irms X z
Py = Vs, X Ims X cos b (3.80)

D 3.19: The RMS value of the applied voltage across the series combination of Figure
3.59is 100 V. Calculate the power supplied by the source and draw its phasor diagram.

i 40 30

+ V- + V-
&

+ VS -

Figure 3.59: RL Series Circuit for D # 3.19
Solution:

Z=4+j3Q

Z =51£36.8° Q
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RMS value of the current

I — VSrms
rms Z

100

rms = ?

Lms =204

Voltage across the resistor

Veyms = IrmsR
Veyms =80V
Voltage across the inductor
VerS = LrmsXL
Vipms = 60V

Phasor diagram of this RL series circuit is as under

V=60V

80

e [ =20 A

'L-"H: g0V

Power supplied by the source is
By = Vs, o X Lrms X cos 6
As cos36.8° = 0.8

P, =100 x20x0.8
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P, = 1600 W

3-11 Phasor Analysis of RC Series Circuit

Consider a series circuit that consists of a resistor, a capacitor and an AC voltage source
as shown in Figure 3.60.

1 R C
+ V, - t oy,
~
+ ‘u’s =

Figure 3.60: Phasor Analysis of RC Series Circuit

Equation for the alternating current in this series circuit is
i = I, sinwt

The phase angle of this ac current is zero, we want to write the phasor value of this
current. RMS value of this AC current is given by

Irms -

~IER

Therefore the Phasor value of the AC current

I =1,,20° (Polar form)

The above phasor is in polar form; let us convert it into rectangular form

I = Ly (Rectangular form)

The time varying voltage across the resistor is
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vgp = I, R sin wt
RMS value of this AC Voltage is

IR

Vers = \/E

VerS = LmsR

The phase angle of this AC voltage is zero. Therefore the phasor value of the AC voltage
across the resistor is
Vg = LynsR20° (Polar form)

We convert the above phasor into rectangular form

Ve = LonsR (Rectangular form)

The time varying ac voltage across the capacitor is
ve = L, Xc sin(wt —90°)

RMS value of this AC Voltage is
_ ImXC

Ve rms — \/E

VC rms = ITmS XC

As the phase angle of this AC voltage is —90°. Therefore the phasor value of the AC
voltage across the capacitor is
Ve = LypsXc2 —90° (Polar form)

We convert this phasor into rectangular form
Ve = —J LrmsXc (Rectangular form)

Consider the phasor diagram of the RC series circuit as shown in Figure 3.61.The phasor
for the AC current in the series circuit is a reference phasor. The voltage across the
resistor is in phase with the current and voltage across the capacitor lags behind the
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current by 90°. We apply KVL to the series circuit which states that phasor sum of the
voltage rises in the loop will be equal to the phasor sum of voltage drops.

VS=VR+VC

Figure 3.61: Phasor Diagram of RC Series Circuit

The time varying ac voltage across the source is

vs = I, Z sin(wt — 0)

RMS value of this AC Voltage is

Ln.Z
VSrms = ﬁ
Vsrms = LmsZ (3.81)

As the phase angle of this AC voltage is 8. Therefore the phasor value of the AC voltage
is
Vs = LpsZ2 —0 (Polar form)

Ignoring the phasor for the AC current in the phasor diagram, we obtain a voltage
triangle as shown in Figure 3.62.

Figure 3.62: Voltage Triangle
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If we divide all the three sides of the voltage triangle by current, we obtain another
triangle that is known as Impedance Triangle as shown in Figure 3.63.

R

Figure 3.63: Impedance Triangle

It is clear from the impedance triangle that the impedance of the RC series circuit is a
complex quantity, that is

Z=R-—jX, (3.82)

The power factor of this RL series circuit is calculated with the help of following
equation. Power factor is represented by pf and the power factor of a capacitive circuit
is known as leading power factor.

g = R

cosf = Z
pf = cos@

The power supplied by the source is
P = IrmszR
As

Vsrms
Irms = T

Therefore the power supplied by the source is
R
PS = VSrmS X Irms X E
B =Vs XLy XcosO (3.83)
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D 3.20: The RMS value of the applied voltage across the series combination of Figure
3.64is 100 V. Calculate the power supplied by the source and draw its phasor diagram.

1 R=40 Xo=3.0
— | |
i G |
R Ve
S,
+ ‘u’s

Figure 3.64: RC Series Circuit for D # 3.20
Solution:

Z=4-j3Q
Z=5,-368° Q

RMS value of the current

Vsrms
Irms = T
100

rms = T
Lms =204

Voltage across the resistor

Vers = IrmSR

Ve,ms =80V
Voltage across the capacitor

VC rms = Irms XC

VCrms = 60V
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The phasor diagram of this RC series circuit is as under

v,= B0V

= =204
L]

V:ED.I'U'P
c

power supplied by the source is

P =Vs, o X Lrms X cOS 6
As cos36.8° = 0.8

P, =100 x20x0.8

P, =1600 W

3-12 Phasor Analysis of RLC Series Circuit

Consider a series circuit that consists of a resistor, an inductor, a capacitor and an AC
voltage source as shown in Figure 3. 65. Equation for the alternating current in this

series circuit is given by
i = I, sinwt

The phase angle of this ac current is zero, we want to write the phasor value of this
current. RMS value of this AC current is
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¥ AT
+ VS -
Figure 3.65: Phasor Analysis of RLC Series Circuit

Therefore the Phasor value of the AC current
I = I,,,,20° (Polar form)
The above phasor is in polar form; let us convert it into rectangular form
I = Iy (Rectangular form)
Instantaneous equation of voltage across the resistor is
vgp = I, R sin wt
RMS value of this AC Voltage is

L,R
Vers = ﬁ

VerS = IT‘mSR

The phase angle of this AC voltage is zero. Therefore the phasor value of the AC voltage
across the resistor is

Ve = L,sR20° (Polar form)

We convert the above phasor into rectangular form

Vg = LomsR (Rectangular form)
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Instantaneous equation of voltage across the inductor is
v, = I, X, sin(wt +90°)
RMS value of this AC Voltage is

In Xy,
Vers = \/z

VerS = IrmsXL

As the phase angle of this AC voltage is 90°. Therefore the phasor value of the AC
voltage across the inductor is

V, = L X,290° (Polar form)
We convert this phasor into rectangular form

V., =j Lms X1 (Rectangular form)

Instantaneous equation of voltage across the capacitor is

ve = I Xc sin(wt —90°)

The RMS value of this AC Voltage is
ImXC
VCrms = \/E

VC rms = IT‘mS XC

As the phase angle of this AC voltage is —90°. Therefore the phasor value of the AC
voltage across the capacitor is

Ve = LpsXc2 —90° (Polar form)
We convert this phasor into rectangular form
Ve = —j LomsXc (Rectangular form)
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We apply KVL to the series circuit which states that phasor sum of the voltage rises in
the loop will be equal to the phasor sum of voltage drops.

VS=VR+VL+VC

Consider three different natures of the circuit to draw its phasor diagrams. If the circuit
behaves like inductive circuit then the voltage across the resistor is in phase with the
current and the net voltage across the inductor and capacitor leads the current by 90°
as shown in Figure 3.66.

Ve=12Z - -
LT;'!{XL Xec)

'l.-"'H: IR
Figure 3.66: Phasor Diagram of RLC Series Circuit

If the circuit behaves like capacitive circuit then the voltage across the resistor is in
phase with the current and the net voltage across the inductor and capacitor lags
behind the current by 90° as shown in Figure 3.67.

Figure 3.67: Phasor Diagram of RLC Series Circuit

If the circuit behaves like resistive circuit then the voltage across the resistor is in phase
with the current and the net voltage across the inductor and capacitor is zero as shown
in Figure 3.68.

167



Figure 3.68: Phasor Diagram of RLC Series Circuit
Instantaneous equation of voltage across the source is
vs = I, Z sin(wt + 0)

RMS value of this AC Voltage is

LnZ
Vsrms = ﬁ
Vsrms = LmsZ (3.84)

As the phase angle of this AC voltage is 0. Therefore the phasor value of the AC voltage
is
Vs = LpsZ24 1+ 0 (Polar form)

Let us assume that the series circuit behaves like inductive circuit, then its impedance
triangle is shown in Figure 3.69.

(X -xc}

R

Figure 3.69: Impedance Triangle

It is clear from the impedance triangle that the impedance of the RLC series circuit is a
complex quantity, that is

Z=R+j(X,—Xc) (3.85)

The power factor of this RLC series circuit is calculated with the help of following
equation. Power factor is represented by pf.
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R
cosf =—

Z
pf = cosf
The power supplied by the source is
Pi = Lyms'R
As
Ve
rms 7

Therefore the power supplied by the source is

R
Py = Ve X Irms X Z

Py = Vs, X Ims X cos b (3.86)

D 3.21: The RMS value of the applied voltage across the series combination of Figure
3.70is 100 V. Calculate the power supplied by the source and draw its phasor diagram.

I R= 40 KL:EQ }{E: 30
— | |
W BV F R,

&
V.o -

+

Figure 3.70: RLC Series Circuit for D # 3.21
Solution:

Z=4+j3Q
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Z =5£36.8° Q

RMS value of the current is

I — VSrms
rms Z

100

rms = ?

Lms =204

Voltage across the resistor is
Veyms = IrmsR
Veyms =80V
Voltage across the inductor is
VerS = LrmsXL
Vipms = 120V
Voltage across the capacitor is

VC rms = ITmS XC

60V

Ve rms

The circuit is inductive and the phasor diagram of this RC series circuit is as under

fL{-VE,J:ﬁGV

80
1 . | =20A

'I.-"R= g0V
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Power supplied by the source is
P = Vs, o X Lrms X COSO

As cos 36.8° = 0.8
P, =100 x 20 x 0.8

P, = 1600 W

3-13 Resonant Circuit

Consider RLC series circuit as shown in Figure 3.71. Frequency of the AC voltage source
is varied from 0 to co. As

X, = 2nfL
So the inductive reactance will increase from 0 to oo and as

. - 1
¢ 2nfc

So the capacitive reactance will decrease from oo to 0. At a particular frequency the
inductive reactance of the circuit will become equal to the capacitive reactance and this
frequency is known as resonant frequency.

I R L ICI
— 2
F R Y F Gy -

S
+ VS -

Figure 3.71: RLC Series Circuit

The resonant frequency is denoted by f,. The following equation is justified under
resonance condition.
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2nf L = _27Tf C
T
P 1
" 2nVIC

Impedance of this RLC series circuit is calculated as

Obviously the series circuit will offer minimum impedance to the flow of AC current and
there will be a maximum current in the circuit under resonance condition.

Zmin =R (under resonance condition)
Vs
Lnax = R

The sketch of the impedance as a function of frequency is shown in Figure 3.72. By
increasing frequency from 0 to f,., the impedance decreases from oo to R and By
increasing frequency from f, to oo, the impedance increases from R to co. The circuit
behaves like capacitive circuit in region no 1 and the power factor of the circuit in this
region is leading power factor. The same circuit behaves like inductive circuit in region
no 2 and the power factor of the circuit in this region is lagging power factor.

Region 1 Region 2

v
—h

f,

Figure 3.72: Impedance Curve
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Sketch of the current as s function of frequency is shown in Figure 3.73. Initially the
current in the circuit increases with increase in frequency, it reaches the maximum value
at resonant frequency and then it decreases. This curve is known as resonance curve for
RLC series circuit.

max

W
—

f,

Figure 3.73: Resonance Curve

Graphical relationship between inductive reactance, capacitive reactance and frequency
is shown in Figure 3.74. There is a linear relationship between the inductive reactance
and frequency.

Xe

Figure 3.74: Reactance Graph
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The voltage across the resistor is equal to the voltage across the source under
resonance condition, that is

D 3.22: Calculate the resonant frequency, I,V and draw the phasor diagram under
resonance condition.

I R=40 L=8mH C=4pF
—
AS 0000 ::

e
e/

V5=5DU

Figure 3.75: RLC Series Circuit for D # 3.22
Solution:

1

ﬂzZm/R

1

fr = 2mV8 X 4 x 100

fr =889.7 Hz
Vs
Imax = E

50
Imax:EZSA

X, =2nf,L =44.72Q

1
X, = =4472 ()
¢ 2nf,.C
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Vi = LpaxR =50V

The phasor diagram is shown in Figure 3.76. The three electrical quantities that is
voltage across the source, voltage across the resistor and current in the series circuit are

in phase.
V =V =50V
R 5
. p |=5A
Figure 3.76: Phasor Diagram under Resonance Condition
Exercise:

Q 3.1: Consider the RL series circuit in Figure 3.77; determine the impedance, current in
the circuit and power supplied by the voltage source, if the root mean square value of
the source voltage is, Vs = 20 V.

. 40 40
— MW T
+ V_ - + V -
R L
F~ 2\
St
+ —~ e
Ve

Figure 3.77: Circuit for Q 3.1
Answer: Z = 5.65 £45,1 =354 A, Ps=50W

Q 3.2: Consider the circuit in Figure 3.78; determine the impedance, current in the
circuit and power supplied by the voltage source, if Vg =30V

i 40 50
- 11
J\?"‘ 1
¥ - + =
L~ )
s
R "\_;,J

Figure 3.78: Circuit for Q 3.2
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Answer: Z = 5.38 £68.2,1 =557 A, Ps =62 W

Q 3.3: Consider the circuit in Figure 3.79; determine the impedance, current in the
circuit and power supplied by the voltage source, if Vo = 50 V.

‘ 30 100 50
—
WA c'w—ll—
+ 'U + vV

E

)

-,

Ve

Figure 3.79: Circuit for Q 3.3

Answer: Z = 5.83 £59, I =8.57 A, Pg = 2203 W

Q 3.4: Consider the circuit in Figure 3.79; find the instantaneous equations of the
current and all the four voltages. The frequency of the source is 50Hz.

Answer: i = 8.57+/2 sin 1001t,
vg = 25.71+/2 sin 100mt,

v, = 58.71V2 sin (1007t +§)
ve = 42.85v/2 sin (1007t — g)

vs = 5042 sin (1007t + 59)
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Chapter 4
AC Parallel Circuits

4-1 Impedance Method for Inductive Circuit

Consider a parallel circuit as shown in Figure 4.1. There are two inductive branches in
the circuit. The total current delivered by the AC source is I. This current divides into
two parts at the node. The current in the first branch is I; and the current in the second
branch of the parallel circuit is I,. The voltage across the source appears across the first
as well as the second inductive branch of the circuit.

—
ViAA 0000

E, L=Ryt iX,
—

S
+ VS -

Figure 4.1: Inductive Parallel Circuit
Let the source voltage is
Ve =Vs, o £0°
Impedance of first inductive branch is
Zy =Ry +jX, = 121126,
Impedance of second inductive branch is
Zy =Ry +jX; = |Z5]20,

Current in first inductive branch is

177



I =

0
o Vo 20
! |Z1| 26,

Vs
L=—2m/—-9
VA !

Il = |11| L — 91 (4.1)

The current I, lags behind the source voltage by 6,. The same current in rectangular
form is

I = Ig —jlp (4.2)

Current in second inductive branch is

Vs
I, =—
2 7,
= Vs,ms £0°
2 |Z,] 26,
Vs
L=—""m,—9
27|z, 2
12 = |12| 4 — 92 (4.3)

The current I, lags behind the source voltage by 8,. The same current in rectangular
form is

Iy = Ioz = jlp2 (4.4)
KCL states that phasor sum of the currents flowing towards the node is equal to phasor

sum of the currents flowing away from the node. Thus the total current is equal to the
phasor sum of I; and I,.

I:I:L‘l'lz
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I'= (g1 +1a2) —J Up1 + Ip2)
I'=1I,—jl

We convert the total current into polar form
[=|Il2-6 (4.5)

The phasor diagram of the parallel circuit is shown in Figure 4.2. The phasor for the
source voltage is a reference phasor. The current I; lags behind the source voltage by

01, The current I, lags behind the source voltage by 8, and The total current lags
behind the source voltage by 6.

I

Figure 4.2: Phasor Diagram for Inductive Parallel Circuit

The impedance Triangles of first as well as second inductive branches are shown in
Figure 4.3 and 4.4 respectively.

61

R4

Figure 4.3: Impedance Triangle of First Branch
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Power factor of first inductive branch is

pfi = cos6,
Where
R,
0, =—
cos 6, Z,

Power consumed by first inductive branch is

P1 = Vsrmsl1rms CoSs 91
or

P, R,

= Ilrms

62

Py

Figure 4.4: Impedance Triangle of Second Branch

Power factor of second inductive branch is

pf, = cos6,
Where
R,
0, =—
cos 0, Z

2

Power consumed by second inductive branch is

PZ - VSTTI‘LSIZTTI'IS COSQZ
Or
P, ’R,

= Izrms

180
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The power supplied by the source
Ps =Vs. . JrmscOSO (4.8)
Where cos 6 is the power factor of the entire circuit.

D 4.1: Consider the parallel circuit as shown in Figure 4.5. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the currents, power factors,
powers taken by the two branches and power supplied by the source.

I, Z=3+j40

e AN e ] ot
12 Z,=4+ j30

>
+ ".,,,-"S :

Figure 4.5: Parallel Circuit for D # 4.1

Solution:

Z4 in polar form is

Z, =54£53.1°Q
Z, in polar form is
Z,=5236.8°0Q
Current in first inductive branch is
Vs
I, =—



_ 100
"~ 5£53.10

I
I, =202£-53.1%4
In rectangular form

I, =12—-j16 A

Current in second inductive branch is

Vs
I, =—
_ 100
27 5,36.80

I, =202—-36.8°4
In rectangular form
I,=16—j12 A
The total current in accordance with KCL is
=1L+
[=(12+16)—j (16 +12)

[=28—-j28A
In polar form

I =39.62—45%4

Power factor of first inductive branch is

pfl = 0.6

Power consumed by first inductive branch is

Pl = Vsrmsllrms COSQl
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P, =100x 20 x 0.6
P; =1200W

Power factor of second inductive branch is
pf = 0.8

Power consumed by second inductive branch is
P, =Vs, o, COSO,
P, =100x 20x 0.8
P, =1600 W

The power supplied by the source
Py = Vs, Jrms COSO

cos 8 is the power factor of the entire circuit and it is equal to 0.707
Ps =100 % 39.6 X 0.707
Ps = 2800 W

4-2 Impedance Method for Capacitive Circuit

Consider a parallel circuit as shown in Figure 4.6. There are two capacitive branches in
the circuit. The total current delivered by the AC source is I. This current divides into
two parts at the node. The current in the first branch is I; and the current in the second
branch of the parallel circuit is I,. The voltage across the source appears across the first
as well as the second capacitive branch of the circuit.

Let the source voltage is
VS = VSTTI‘LS 400
Impedance of first capacitive branch is

Zl = Rl _]Xl = |Z1|L_91
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I, IRy

AR { |
| 12 £;=Ry—jXy =
— A i |
[1
>
+ VS =

Figure 4.6: Capacitive Parallel Circuit

Impedance of second capacitive branch is

Z, =R, —jX, = |Z,|2 -6,
Current in first capacitive branch is

(4.9)
The current [; leads the source voltage by 8,. The same current in rectangular form is

11 = Ial +_]Ib1 (4.10)

Current in second capacitive branch is



0
Vs ms 40

[, = —rms —"
SR VA
Vs
I — rms LH
Lozl TR
12 - |12| 402 (4.11)

The current I, leads the source voltage by 6,. The same current in rectangular form is

12 = Iaz +j1b2 (4.12)

KCL states that phasor sum of the currents flowing towards the node is equal to the

phasor sum of the currents flowing away from the node. Thus the total current is equal
to the phasor sum of [; and I,.

=1+
I'= (g1 +1a2) +J (Up1 + 1p2)
I=1,+jI,
Total current in polar form is given by equation 4.13.

= |1|.6 (4.13)

e

:"u"S

Figure 4.7: Phasor Diagram for Capacitive Parallel Circuit
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Phasor diagram of the parallel circuit is shown in Figure 4.7. The phasor for the source
voltage is a reference phasor. The current I; leads the source voltage by 6, the current
I, leads the source voltage by 8, and the total current leads the source voltage by 6.

The impedance triangles of first as well as second capacitive branch are shown in Figure

4.8 and 4.9 respectively.

Figure 4.8: Impedance Triangle of first Branch

Power factor of first capacitive branch is

pfi = cos6,
Where
R,
6, =—
cos 6, Z:

Power consumed by first capacitive branch is
Pl = Vsrmsllrms COS 91

or
P,=1_ °R
1 lrms ‘1

Power factor of second capacitive branch is

pf, = cos6,
Where

R,
cos B, = 7
2
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Figure 4.9: Impedance Triangle of second Branch

Power consumed by second capacitive branch is

PZ = VSTmSIZTmS COS 92 (415)
or

P,=1_ "R,
Using equation 4.16, power supplied by the source can be calculated.

Py =Vs. . Jrms oSO (4.16)
Where cos 8 is the power factor of the entire circuit.

D 4.2: Consider the parallel circuit as shown in Figure 4.10. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the currents, power factors,
powers taken by the two branches and power supplied by the source.

I, Z1=3-]4 0

- 11
ViAA 1 1|
—12 22:4—],30
— _ww— |
11
S,
+ VS :

Figure 4.10: Parallel Circuit for D # 4.2
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Solution:
Z4 in polar form is

Z; =54-53.1°Q
Z, in polar form is

Z,=5,-368°Q

Current in first capacitive branch is

Vs
I, ==
L 100
175, -5310

I, =204£53.1° 4
In rectangular form
I, =12+j16 A

Current in second capacitive branch is

Vs
L, =—
2 Zz
L 100
27 5,-36.80

I, =20236.8° 4
In rectangular form
I, =16+j12 A

The total current in accordance with KCL is
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I=01L+1I
[=(12+16)+j (16 +12)

[=28+j28A
In polar form

I =39.6245° A

Power factor of first capacitive branch is

pfi = 0.6
Power consumed by first capacitive branch is
P, =V i, . COSO;
P; =100x20x 0.6
P, =1200 W
Power factor of second capacitive branch is

pf = 0.8

Power consumed by second capacitive branch is

P,=Vs I cOSO,

P, =100 x 20x 0.8

P, = 1600 W
Power supplied by the source

Ps = Vs  LmscosO

cos @ is the power factor of the entire circuit and it is equal to 0.707

Ps =100 X 39.6 X 0.707 = 2800 W
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4-3 Impedance Method for Parallel Circuit

Consider a parallel circuit as shown in Figure 4.11. There are two branches in the circuit.
The total current delivered by the AC source is I. This current divides into two parts at
the node. The current in the inductive branch is I; and the current in the capacitive
branch of the parallel circuit is I,. Voltage across the source appears across the first as
well as the second branch of the circuit.

e A et T
12 L,=Ry —] X,
— A i |
11
S
+ "u"s 5

Figure 4.11: Parallel Circuit
Let the source voltage is in polar form
Ve =Vs, o £0°
Impedance of inductive branch is
Zy =Ry +jX, = 121126,
Impedance of capacitive branch is
Zy =Ry —jX; = |Z3]l2 -6,

Current in inductive branch is



0
o Vo 20
! |Z1| 26,

Vs
L=—Im/—9
YTz !

Il - |11| L — 91 (4.17)

The current I, lags behind the source voltage by 6,. The same current in rectangular

form is
L = lg —jlpy (4.18)
Current in second branch is
Vs
I, ==
VSrms £0°

Vs
I — rms 49
Pzl T

The current I, leads the source voltage by 6,. The same current in rectangular form is
12 = Iaz +_]Ib2 (4.20)

KCL states that phasor sum of the currents flowing towards the node is equal to the
phasor sum of the currents flowing away from the node. Thus the total current is equal
to the phasor sum of I; and I,.

I=1+I

I'= (g +1a2) +J (Up2 — Ip2)
I=1,%jI,
Total current in polar form is given by equation 4.21.
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I=|llz+6 (4.21)

We discuss three different conditions here. If 8 is positive then the total current will
lead the applied voltage and the entire circuit will act like a capacitive circuit. The power
factor of the parallel circuit will be a leading power factor and the phasor diagram will
be as shown in Figure 4.12. The phasor for the source voltage is a reference phasor. The

current I, lags behind the source voltage by 6,, The current I, leads the source voltage
by 6,.

Iz

I
Figure 4.12: Phasor Diagram for Capacitive Behavior

If 8 is negative then the total current will lag behind the applied voltage and the entire
circuit will act like a inductive circuit. The power factor of the parallel circuit will be a
lagging power factor and the phasor diagram will be as shown in Figure 4.13.

I

Figure 4.13: Phasor Diagram for Inductive Behavior
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If 6 is zero then the total current will be in phase with the applied voltage and the entire
circuit will act like a pure resistive circuit. The power factor of the parallel circuit will be
unity power factor and the phasor diagram will be as shown in Figure 4.14.This
condition is known as anti-resonance condition.

Iz

8 S

Figure 4.14: Phasor Diagram for Resistive Behavior

The impedance triangles of inductive as well as second branch are shown in Figure 4.15
and 4.16 respectively. Power factor of inductive branch is given by

pfi = cos6,
Where
Ry
6, =—
cos 8, Z:
Zq
X
1
B
R

Figure 4.15: Impedance Triangle of Inductive Branch

Power consumed by inductive branch is

Pl = VSTTI‘LSI:LT‘TI'IS COS 91 (4.22)
Or
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Py = I1rm52R1
R
82
X3
L3

Figure 4.16: Impedance Triangle of Capacitive Branch

Power factor of capacitive branch is

pfa = cos6,
Where
R,
g, =—=
cosf; =~

2
Power consumed by capacitive branch is

PZ = VSTmSIZTmS COS 02
Or

P, = IzrmszRZ
The power supplied by the source

Ps = Vs, Jrms oSO

cos B is the power factor of the entire circuit.

(4.23)

(4.24)

D 4.3: Consider the parallel circuit as shown in Figure 4.17. The RMS value of the source

voltage is 100V and its phase angle is zero. Calculate the currents, power factors,

powers taken by the two branches and power supplied by the source.
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Figure 4.17: Parallel Circuit for D # 4.3
Solution:

Z4 in polar form is
Z;=5£53.1°Q
Z, in polar form is

Z, =5,-36.8°Q

Current in inductive branch is

Vs
L ==
1 7,
L 100
17 5,53.10

I, =20£-53.1%4
In rectangular form

L=12—-j16 4
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Current in capacitive branch is

Vs
I, =—
_ 100
27 5,-36.8°

I, =20436.8°A
In rectangular form
I,=16+j12 A
The total current in accordance with KCL is
=1L+
[=(12+16)+j (16 +12)

[=28—-j4A
In polar form

1=28282.—-8.13%4

As 0O is negative, the current lags behind the source voltage and entire circuit behaves
like an inductive circuit. Power factor of inductive branch is given by

pfi = 0.6

Power consumed by inductive branch is
p=Vs I CcosO,
P; =100 x 20 X 0.6
P; =1200W

Power factor of capacitive branch is

pfz = 0.8
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Power consumed by capacitive branch is
Py = Vs, ol COS O
P, =100 20x 0.8
P, =1600 W
The power supplied by the source
Ps = Vs, JrmsCOSO
cos 8 is the power factor of the entire circuit and it is equal to 0.9899
Ps =100 x 28.28 x 0.9899
Ps = 2800 W

D 4.4: Consider the parallel circuit as shown in Figure 4.18. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the currents, power factors,
powers taken by the two branches and power supplied by the source.

[2 Z,=3-j4 0
— w— |
11
&,
+ VS =

Figure 4.18: Parallel Circuit for D # 4.4
Solution:

Z4 in polar form is
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Z,=52368°Q

Z, in polar form is

Z,=52-53.1°Q

Current in inductive branch is

Vs
I, =—
_ 100
17 5,36.80

I, =202—-36.8°4A

In rectangular form

I =16—j12 A
Current in capacitive branch is
Vs
| —
2 7,
100
> 5,-53.1°

I, =20453.1°4
In rectangular form

I, =12+j16 A
The total current in accordance with KCL is

Izll‘l'lz
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I=(12+16)+j (16 — 12)

[=28+j4A
In polar form

I =28.2848.13° A

As B is positive, the current leads the source voltage and entire circuit behaves like a
capacitive circuit. Power factor of inductive branch is pf; = 0.8, so power consumed
by inductive branch is given by

P, =V, i, . COSO;
P, =100x20x0.8
P; =1600 W

Power factor of capacitive branch is pf, = 0.6,s0 power consumed by capacitive
branch is

P,=Vs I cOSO,
P, =100 x 20 x 0.6
P, =1200 W
The power supplied by the source is
Ps = Vs, . Jrms oSO
cos 6 is the power factor of the entire circuit and it is equal to 0.9899

Ps =100 x 28.28 X 0.9899
P = 2800 W
D 4.5: Consider the parallel circuit as shown in Figure 4.19. The RMS value of the source

voltage is 100V and its phase angle is zero. Calculate the currents, power factors,
powers taken by the two branches and power supplied by the source.
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i
+ VS =

Figure 4.19: Parallel Circuit for D # 4.5

Solution:
Z4 in polar form is

Z;=5236.8°0
Z, in polar form is

Z,=5,-368°0Q

Current in inductive branch is

Vs
L ==
1 Zl
L 100
17 5,36.80

I, =202-36.8°4
In rectangular form

L=16—j124
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Current in capacitive branch is

Vs
I, =—
L 100
27 5,-36.80

I, =20236.8°4
In rectangular form

I, =16+j12A
The total current in accordance with KCL is

I=1L+1,
I=(16+16)+j (12 —12)

I=32A
In polar form

1 =32£0°4

As B is zero, the total current is in phase with source voltage and entire circuit behaves
like a resistive circuit. Power factor of inductive branch is pf; = 0.8, so power
consumed by inductive branch is

Pl = VSrmsllrms C0591
P, =100x 20X 0.8

P, = 1600 W

Power factor of capacitive branch is pf, = 0.8, so power consumed by capacitive
branch is given by

PZ = VSTmSIZTmS COS 02

P, =100 x 20 x 0.8
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P, = 1600 W

The power supplied by the source
Py = Vs, Jrms cOS O

cos 6 is power factor of the entire circuit and it is equal to 1
Ps =100x32x%1
P = 3200 W

4-4 Admittance Method for Inductive Circuit

Consider a parallel circuit as shown in Figure 4.20. There are two inductive branches in
the circuit. The total current delivered by the AC source is I. This current divides into
two parts at the node. The current in the first branch is I; and the current in the second
branch of the parallel circuit is I,. The voltage across the source appears across the first
as well as the second inductive branch of the circuit. Let the source voltage is in polra
form

VS = VSTTnS LOO
Impedance of first inductive branch is
Z1 =R +JjX;

Impedance of second inductive branch is

Z, =Ry +fX2
Current in first inductive branch is
Vs
I, =—
1 7
h=v(z)

The reciprocal of impedance is known as admittance and it is represented by Y.
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ks Z3=Ryt J X,
— AN N —
1
™
+ VS =
Figure 4.20: Inductive Parallel Circuit
v - 1
Therefore
L = VY
v - 1
YR +jX
1 R, —jX
Y, = __x 1 ] 1
Ry +jX; Ry —jX;
¥ = R, . X
YTRZ4x2 IR+ X2

(4.25)

(4.26)

The real component of admittance is known as conductance which is represented by G

And imaginary component is known as susceptance which is represented by B. So

G, = Ry
VUR24 X2
X1
B, =——0©
VURZ4 X2
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Putting the values in equation 4.25
I = Vs(G, — jBy)
Iy = Iy = jlps
L= || ¢£-6, (4.27)

The current I, lags behind the source voltage by 6. Current in second inductive branch

is given by
Vs
I —_
k=v(7)
2= Vs 7,
The admittance of the second branch is
v = 1
2 = 7,
Therefore
IZ = V5Y2 (428)
v = 1
Ry +jX,
1 R, —jX
Y, = 5 2 J 2
R, +jX, Ry, —jX,
y, =" e (4.29)
2T R+ %2 TR+ %, '

The real component of admittance is known as conductance which is represented by G
And imaginary component is known as susceptance which is represented by B. So
R,
G,=—>2>
2 R+ X2
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Xz

B, = ——%
27T R + X,°

Therefore
I, = VS(GZ _sz)

I; = Igp = jlp;
L= |L]|2-0, (4.30)
Total current in the parallel circuit is given by
=1L+
I'=(lgg +1a2) = Upy + Ip2)
I=1,—-jI,
We convert the total current into polar form
[=|Il2-6 (4.31)

The admittance triangles of first as well as second inductive branches are shown in

Figure 4.21 and 4.22 respectively.

Gy

84

Y4

Figure 4.21: Admittance Triangle of first Branch

Power factor of first inductive branch is

pfi = cos6,
Where
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Gy
cosf; = A
1

Power consumed by first inductive branch is

P, =V . COSO;
Or

P, R,

= Ilrms

Bz

Figure 4.22: Admittance Triangle of second Branch

Power factor of second inductive branch is

pf, = cos0,
Where
G,
0, =—
cos 6, Y,

Power consumed by second inductive branch is
PZ = VSTmSIZTmS COS 92
Or

P, ’R,

= Izrms

The power supplied by the source

Ps =Vs . LrmsCOSO
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D 4.6: Consider the parallel circuit as shown in Figure 4.23. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the currents, power factors,
powers taken by the two branches and power supplied by the source.

14 Z1=6+j8

e AN e T o
1, 2,=8+j6
2,

AA% 0000 —

S,
+ VS i

Figure 4.23: Parallel Circuit for D # 4.6.

Solution:
€= 1!2121[-?:)(12
G, = % O
P1= Rlz)-(l—lez
B, = % o

L =V (Gl _jBl)

11=100(6 8)

100 J 100
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I, =102 —753.1°4

G, = R,
2T R+ X2
8
Gy=—— U
27100
X,
B,=——%
27T R + X,°
6
By=— U
27100
8 6
’2=1°°(m‘1m
I,=8—j64

I, =102-36.8°4

As
I =L+ I,

I=14—-j14 A
I =19.7924—-45°A
P, = I,*R,

P, = 600 W

P, = L,’R,

P, =800W

Power Supplied by the source
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PS= P1+ PZ

4-5 Admittance Method for Capacitive Circuit

Consider a parallel circuit as shown in Figure 4.24. There are two capacitive branches in
the circuit. The total current delivered by the AC source is I. This current divides into
two parts at the node. The current in the first branch is I; and the current in the second
branch of the parallel circuit is I,.

I, Z=Ry—jX

— I
I2 Z,=Ry —j %,
m— Y, | |
I1
~
+ VS e

Figure 4.24: Capacitive Parallel Circuit

The voltage across the source appears across the first as well as the second branch of
the circuit. Let the source voltage is

Ve =Vs, o £0°
Impedance of first capacitive branch is
Zy =R —jXy
Impedance of second capacitive branch is
Z; =Ry — jX;

Current in first inductive branch is
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1
’1=Vs(z—)
1

Admittance of the first branch is represented by Y;.

1
=7

Y,
Therefore
I, =VsY;
1

Y, =———
VTR —jXy

1 R, + X,
Y1 = - X -
Ry —jXy Ry +jX;

Ry X1

Y; +J

TRZ+ X2 ’RE+X,?

Therefore

Putting the values in equation 4.32
I = Vs(Gy + jBy)
Iy = Igy +jlps

L = || 26,
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Current in second capacitive branch is

Vs
I —_
2 ZZ
k=v(7)
2= Vs 7,
The admittance of the second branch is
v = 1
2 — ZZ
Therefore
12 = V5Y2
v = 1
2" Ry —jX,
1 R, +jX,

Y, = X
2 R, —jX; Ry +jX,

v, = R, ny X;
2T R+ X2 TR+ X,
The real and imaginary components are

R,

G, =—>2>

2 R+ X,°
X,

B, =——=

2T R+ X2

Therefore
I = Vs(Gz +sz)

I = Iz + jlp;

I, = |I,| 26,
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Application of KCL on the node gives the total current.
=L+
I'= (g1 + Ia2) +J (p1 + Ipz2)
I[=1,+jI,

We convert the total current into polar form
I = |46

The total admittance of the circuit is equal to sum of ¥; and Y,

Y=Y,+Y,

The admittance triangle of first branch is shown in Figure 4.25.

81

Gy

Figure 4.25: Admittance Triangle of first Branch

Power factor of first capacitive branch is

pfi = cos6,
Where
G4
0 e g—
cos 6, Y,

Power consumed by first branch is

Pl = Vsrmsllrms COSQl
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Or

2 R,

= Ilrms

The admittance Triangle of second branch is shown in Figure 4.26.

=

Figure 4.26: Admittance Triangle of second Branch

Power factor of second branch is

pf, = cos6,
Where
G,
0 —_— —
cos 6, 7

2
Power consumed by second branch is
PZ = VSTmSIZTmS COS 02
Or

P, ’R,

= Izrms
The power supplied by the source

Ps =Vs . JrmsCOSO

Let us solve a few numerical problems related to parallel capacitive circuit to
understand this topic.
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D 4.7: Consider the parallel circuit as shown in Figure 4.27. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the currents, power factors,
powers taken by the two branches and power supplied by the source.

i, Z1=6-j8

— M | |
[2 Z,=8 — |6
— | |
1
>
+ "..,-"S =

Figure 4.27: Parallel Circuit for D # 4.7

Solution:
€= 1!2121[-?:)(12
Gy = % o
B; = % o

L =V (Gl +jB1)

I=100 (<& 4 8)
1= (100 /700
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L=6+j84

I, =10453.1° 4

G, = R,
2T R+ X2
8
_ 8 0
Gz 100
X,
B, =— "% _
2T R+ X,°
6
By=— U
27100
I —100( 8 i 6)
2= 100 "7 100
I,=8+j6A4

I, =10 236.8° 4

As
I =L+ I,

[=14+j14 A

I =19.79£45° A
Py = 112R1

P, =600W

PZ = IZZRZ
P, = 800 W

Power Supplied by the source
PS = Pl + P2
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P, = 1400 W

4-6 Admittance Method for Parallel Circuit
Consider a parallel circuit as shown in Figure 4.28. There are two branches in the circuit.
The total current delivered by the AC source is 1.

—

Vit 0000
] I2 L,=Ry —j X5
— i |
11
>
+ VS 5

Figure 4.28: Parallel Circuit

This current divides into two parts at the node. The current in the inductive branch is I;
and the current in the capacitive branch of the parallel circuit is I,. The voltage across
the source appears across the first as well as the second capacitive branch of the circuit.

Let the source voltage is
Ve =Vs, o £0°
Impedance of inductive branch is
Zy =R +jXy
Impedance of capacitive branch is
Z; =Ry — jX;

Current in inductive branch is
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Therefore
Il = VSY1 (4.39)
v - 1
VTR + )Xy
1 R, —jX
Y, = % 1 ] 1
Ry +jXy Ry —jXq

Y, = 2R1 ~—j 2X1 - (4.40)
RZ+X, R+ X,

Therefore
Ry

G, =——t
VUR24 X2

B, = %1
VURZ4 X2

So current in inductive branch is
I = VS(Gl _jBl)

I = Igq — jlps

Il = |11| L — 91 (4.41)
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Current in capacitive branch is

Vs
I —_
k=v(7)
2= Vs 7,
Admittance of the capacitive branch is
v = 1
Therefore
I, =VsY,
v = 1
2R, —jX,
1 R, +jX
Y, = __ o2 ] 2
R, —jX, Ry +jX,
R, X,
Y, = +j
2 R+ %2 TR+ X,
So
R,
G,=——"—
2T R+ X2
X,
B, =——%
27T R+ X,°
Therefore

I = Vs(Gz +sz)
I = Iz + jlp;

I, = |I,| 26,
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KCL gives you the total current.
=1L+
I'= (g1 +152) +J (=lps + 1p2)
I'=1I,%jlp

We convert the total current into polar form

I=|Il2+6 (4.45)
The nature of the circuit depends on the value of 8 as discussed earlier. The admittance
Triangle of inductive branches is shown in Figure 4.29.

iy

84

Y4

Figure 4.29: Admittance Triangle of first Branch

Power factor of inductive branch is

pfi = cos6,
Where
G
cosf, = Y—ll

Power consumed by inductive branch is

Pl = VSTmSI:LTTTLS COS 01
Or

2 R,

= Ilrms

The admittance triangle of capacitive branches is shown in Figure 4.30.
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Power factor of capacitive branch is

pf, = cosb,
Where

=

Figure 4.30: Admittance Triangle of second Branch

G,
cos 0, = A
2

Power consumed by capacitive branch is

PZ = VSTmSIZTmS COS 02
Or

P, ’R,

= Izrms
The power supplied by the source
Ps = Vs, Jrms oSO

D 4.8: Consider the parallel circuit as shown in Figure 4.31. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the three currents in the circuit.

Solution:

Ry

Gi=— 0
VUR24 X2
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6

_% o
100

Gy
X1

B, =— "% _
VT R24 X2

[ Z,= 6+j8Q
vV 0000

LU

1 Z,=8-j60
W |

Frw )\

i
+ ‘u’S o

Figure 4.31: Circuit for D # 4.8

8

_ 8% ©
100

B,

L =V (Gl _jBl)

1—100(6 '8)
1= 100’100

L=6—-j8A

I, =102£-53.1° 4

G, = R,
2T R+ X,°
8
e

02_100
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2=R22+X22

6
By=—— U
27100
1—100(8 ny 6)
2= 100 "7 100

I, =102,36.8°4

As
I =1L+ I

I=14—j2 A
I =14.142-8.13°4

The Circuit behaves like Inductive circuit.

4-7 Time Varying Quantities in Parallel Circuit

CaseNo 1

Consider a parallel circuit as shown in Figure 4.32. There are two inductive branches in
the circuit. The total current delivered by the AC source is i. This current divides into
two parts at the node. The current in the first branch is i; and the current in the second
branch of the parallel circuit is i,. The voltage across the source appears across the first
as well as the second inductive branch of the circuit.

Phasor value of source voltage is
— 0
Ve =V, .20
Maximum value of the source voltage is calculated as

Vp =V2 Vs,
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Figure 4.32: Inductive Parallel Circuit
The instantaneous voltage across the source is calculated as
Vg = \/Z_VSrms sin(wt + 0) (4.46)
Current in first inductive branch is
L = |Ll2-6
Maximum value of the current [ is calculated as
Ly = \/2_ |1

|I;] is the RMS value of the current in the first inductive branch. The instantaneous
current in first branch is calculated as

The current i, lags behind the source voltage by 8;. Current in second inductive branch
is

I = || 2-6,
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The current I, lags behind the source voltage by 8,. The maximum value of this current
is calculated as

Iy = \/2_ |12|

|I,] is the RMS value of the current in the second inductive branch. The instantaneous
current in second branch is calculated as

The total current in polar form is
I=|Ilz—-6

The current I lags behind the source voltage by 6. The maximum value of this current is
calculated as

L, =2 ||

|I]is the RMS value of the total current in the circuit. The total instantaneous current in
circuit is calculated as

i =2 |I|sin(wt — 6) (4.49)

Case No 2

Consider a parallel circuit as shown in Figure 4.33. There are two capacitive branches in
the circuit. The total current delivered by the AC source is i. This current divides into
two parts at the node. The current in the first branch is i; and the current in the second
branch of the parallel circuit is i,.

Phasor value of source voltage is given by
— 0
Ve =V, .20
Maximum value of the source voltage is calculated as

Vp =V2 Vs,
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+ Vg -

Figure 4.33: Capacitive Parallel Circuit
The instantaneous voltage across the source is calculated as
vs =2 Vs, ms Sin(wt + 0) (4.50)
Current in first capacitive branch is
I = || 26,
Maximum value of the current [ is calculated as
Ly = \/2_ |1

|I;] is the RMS value of the current in the first capacitive branch. The instantaneous
current in first branch is calculated as

The current i, leads the source voltage by 8;. Current in second capacitive branch is

I, = |I,| 26,

The current I, leads the source voltage by 6,. The maximum value of this current is
calculated as
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Iy = \/2_ |12|

|I,| is the RMS value of the current in the second branch. The instantaneous current in
second branch is calculated as

i, = V2 |L,| sin(wt + 6,) (4.52)
The total current in polar form is
I = |I|.8

The current I leads the source voltage by 8. The maximum value of this current is
calculated as

L, =2 ||

|I]is the RMS value of the total current in the circuit. The total instantaneous current in
circuit is calculated as

i =2 |I|sin(wt + 6) (4.53)

Case No 3

Consider a parallel circuit as shown in Figure 4.34. There are two branches in the circuit.
The total current delivered by the AC source is i. This current divides into two parts at
the node. The current in the first branch is i; and the current in the second branch of
the parallel circuit is i,.

Phasor value of source voltage is
— 0
Ve =V, .20
Maximum value of the source voltage is calculated as
Vn =V2 Vs

The instantaneous voltage across the source is calculated as
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ve =2 Vs, sin(wt + 0) (4.54)

—
L, =Ry~ iX;
—

vy, | |

A
O
+ VS “F
Figure 4.34: Parallel Circuit

Current in inductive branch is
L = |Ll2-6,
Maximum value of the current [ is calculated as

Iy = \/2_ |11|

|I,] is the RMS value of the current in the inductive branch. The instantaneous current in
first branch is calculated as

The current i; lags behind the source voltage by 8;. Current in capacitive branch is

I, = |I,| 26,

The current I, leads the source voltage by 6,. The maximum value of this current is
calculated as

Iy = \/2_ |12|
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|I,| is the RMS value of the current in the second inductive branch. The instantaneous
current in second branch is calculated as

i, = V2 |I,| sin(wt + 6,) (4.56)

The total current in polar form is
I=1|Il¢+8

The maximum value of this current is calculated as

L, =2 ||

|I] is the RMS value of the total current in the circuit. The total instantaneous current in
circuit is calculated as

i =2 |I]sin(wt + 6) (4.57)

D 4.9: Consider the parallel circuit as shown in Figure 4.35. The RMS value of the source
voltage is 100V and its phase angle is zero. Calculate the instantaneous values of all
three currents in the circuit. Let f = 50 Hz.

L, Z,= 6+j80
—
VAN D) e
8 Z,=8-j60
—
VA i |

©

+ ‘US [~
Figure 4.35: Circuit for D # 4.9
Solution:
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Phasor value of source voltage is

Vs =100 20° V
Maximum value of the source voltage is calculated as

V, =100V2 V
The instantaneous voltage across the source is calculated as

vs = 100V/2 sin(1007t + 0)

G, = Ry
YT R24+ X2
6

o]
G, = —
17100
X

B, =——1
YTRA2+ X2

8 ©

B =100

L =V (Gl _jBl)

I —100( 6 . 8)
1= 100’100
I, =6-84

I, =104-53.1° A
Maximum value of the current [ is calculated as
Iy =102 A
The instantaneous current in first branch is calculated as
i; = 10v/2 sin(1007t — 53.1°) A
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The current i, lags behind the source voltage by 53.1°.

27T R+ X2
8
U
G, = ——
27100
27T R + X,°
6
U
B, = —
27100
I —100( 8 i 6)
2= 100 "7 100
L,=8+j64

I, =10236.8° A

The maximum value of this current is calculated as

Iz = 10V2 A

Instantaneous equation of the current in second branch is calculated as
i, = 10v2 sin(1007t + 36.8°) A4
As
I =1L+ I,
[=14—-j2 A
I =14.142-8.13%4

Maximum value of this current is calculated as
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I, =1414V2 A

The total instantaneous current in circuit is calculated as

i = 14.14v/2 sin(1007t — 8.13%) 4

The circuit behaves like Inductive circuit.

4-8 Anti Resonance

Consider the parallel circuit as shown in Figure 4.36. Frequency of the AC voltage source
is varied from 0 to co. As
X, = 2nfL

So the inductive reactance will increase from 0 to oo and as

. - 1
¢ 2nfc

So the capacitive reactance will decrease from oo to 0.

Figure 4.36: Anti Resonant Circuit

At a particular frequency the inductive reactance of the circuit will become equal to the
capacitive reactance and this frequency is known as resonant frequency. On the other
hand if we consider the susceptance of the inductive branch then it is given by
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—J
B, = —

L XL

—J
B, = ——
L7 2nfL

So the inductive susceptance will decrease from oo to 0. While the susceptance of the
capacitive branch is given by

B, = XLC = j2nfC
Obviously the capacitive susceptance will increase from 0 to oo. At a particular
frequency the inductive susceptance of the circuit will become equal to the capacitive
susceptance and this frequency is known as anti- resonant frequency. The anti-resonant
frequency is denoted by f,.. The following equation is justified under resonance
condition.

BL=BC

2f.C =
R )

1
- 2mVIC

Admittance of this parallel circuit is calculated as

fr (4.58)

Y =j(Bc—BL)

Obviously the parallel circuit will offer zero admittance to the flow of AC current and
there will be no current in the circuit under resonance condition.

Yiin =0 (under resonance condition)
Lpin =VsY =0

The sketch of the admittance as a function of frequency is shown in Figure 4.37. By
increasing frequency from 0 to f, , the admittance decreases from oo to 0 and then By
increasing frequency from f, to oo, the admittance increases from 0 to co. The circuit
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behaves like inductive circuit in region no 1 and the power factor of the circuit in this
region is lagging power factor. The same circuit behaves like capacitive circuit in region
no 2 and the power factor of the circuit in this region is leading power factor.

Region 1 Region 2

v
—

f.

Figure 4.37: Admittance Curve

The sketch of the current as s function of frequency is shown in Figure 4.37. Initially the
current in the circuit deceases with increase in frequency, it reaches the minimum value
of zero at resonant frequency and then it increases. This curve is known as anti-
resonance curve for the parallel circuit.

I
&

f,

Figure 4.38: Anti-Resonance Curve
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The graphical relationship between inductive susceptance, capacitive susceptance and
frequency is shown in Figure 4.39. There is a linear relationship between the capacitive
susceptance and frequency and the inductive susceptance decreases from infinity to
zero.

BC F Y

Figure 4.39: Susceptance Graph
Exercise:

Q 4.1: Consider the parallel circuit in Figure 4.40. Calculate all the currents in the circuit.
RMS value of the source voltage is 100V.

L4 40

—
0000

L, 40

— e I |
| I |

1&
Ny
o/
+ Vo —

Figure 4.40: Circuit for Q 4.1
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Answers: [; =2524—90A4,1; =2524904, =04

Q 4.2: Consider the parallel circuit in Figure 4.40. Write the instantaneous equations of
all the currents in the circuit and the applied voltage. RMS value of the source voltage is
100V.

Answer: i; = 25 /2 sin(100mt —90) A, i, = 25 V2 sin(1007t + 90) A
vs = 100 /2 sin(100mt) V

Q 4.3: Consider the parallel circuit in Figure 4.41. Calculate all the phasor currents in the
circuit. RMS value of the source voltage is 100V.Determine the power supplied by the
source.

Ly 12+j16 Q
—

VA 0000 =
Lo
= I L
T i
&,
+ V S =

Figure 4.41: Circuit for Q 4.3
Answers: [, =524 —53.1A,1;, =204904, I =16.27 £79.38A4,P = 299.83 W

Q 4.4: Consider the parallel circuit in Figure 4.41. Write the instantaneous equations of
all the currents in the circuit and the applied voltage. RMS value of the source voltage is
100v.

Answer: i; = 5+/2 sin(100nt — 53.1) A, i, = 20 V2 sin( 1007t + 90) A
i =16.27+/2 sin(100mt + 79.38) A, vg = 100 /2 sin(1007t) A
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Chapter 5
Network Theorems

5-1 Thevenin’s Theorem

Current in a passive circuit element, voltage across a passive circuit element and power
consumed by a passive circuit element can be computed with the help of Thevenin’s
theorem. According to this theorem if we want to calculate current in a load resistor
connected across terminals A & B of a linear bilateral complex network, then the load
resistance of the network can be connected to a voltage source V-, having an internal
resistance of Ry, . Vrp, is the open circuited voltage across terminals A & B of the
complex linear bilateral network and Ry, is equivalent resistance of the network while
looking back to the network from terminals A & B with all voltage sources replaced by
short circuits. As an example consider a linear bilateral network as shown in Figure 5.1.

1 2
VA VA
+ A
Il R
VS () L
- B B

Figure 5.1: A Linear Bilateral Network

This network can be replaced by its Thevenin’s equivalent circuit as shown in Figure 5.2.

() Vi

Figure 5.2: Thevenin’s Equivalent Circuit
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To calculate V-, , the load resistance R, is removed from terminals A and B of the linear
bilateral network as shown in Figure 5.3. The voltage across terminals A and B is
calculated that is equal to Vrp,.

L=
YU (R +RY)
Vrn = 1R, (5.1)
1_1.. R, R,
AA l AT
+ + A

Vs () Vin
. . T B

Figure 5.3: Circuit for Calculation of Vi,

To Calculate Ry, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.4. R, is the equivalent resistance of this circuit while looking back
to it from terminals A & B.

Figure 5.4: Circuit for Calculation of Ry,

RiR;

R = ——"
™ ™ R, +R,

The current I in the load resistance is calculated with the help of the Thevenin’s
equivalent circuit shown in Figure 5.2.
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Vra

|=— T
(Rrp + Ry)

D 5.1: Using Thevenin’s theorem find the current in the load resistor of the following

circuit.
R, =100 R, =100
ViV AT
. A
Il R =50
VS =20V ) 2
=] B
Figure 5.4: Circuit for D #5.1
Solution:

To calculate Vy, , the load resistance R; is removed from terminals A and B of the linear
bilateral network as shown in Figure 5.5. The voltage across terminals A and B is
calculated that is equal to V.

20

L, =——
1710+ 10)

L=1A

Vep =1x10=10V

R, =100 R, =100
VWA VWA
i L

+ 11 1 A

Vo=20v () , 7o

_ Ty

Figure 5.5: Circuit for Calculation of V),
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To calculate Ryj, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.5b. Ry is the equivalent resistance of this circuit while looking
back to it from terminals A & B.

R, =100
VA VA

A

TB

Figure 5.5b: Circuit for Calculation of Ry,

. _10x10
Th =10 + 10
RTh=5‘Q

The original circuit can be replaced by its Thevenin’s equivalent circuit as shown in
Figure 5.6.

Figure 5.6: Thevenin’s Equivalent Circuit

The current I in the load resistance is calculated with the help of the Thevenin’s
equivalent circuit.
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Vra

|]=—-——
(Rrp + Ry)

10

=679

I=1A

D 5.2: Using Thevenin’s theorem find the current in the load resistor of the following

circuit.
R,=100 A R=5Q B
TATAYA —/\/\/ 2
——
+
Vo=20v () R2=1UO§ R3=5Q§
Figure 5.7: Circuit for D # 5.2
Solution:

To calculate Vyy, , the load resistance R; is removed from terminals A and B of the linear
bilateral network as shown in Figure 5.8. The voltage across terminals A and B is
calculated that is equal to Vpy,.

R,=10Q A B

+ I

Vo=20v () R2=100§ R3=59§

Figure 5.8: Circuit for Calculation of Vp,
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L 20
1710+ 10)
Il=1A

Vep =1x10=10V

To calculate Ry, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.9.

R,=102 A B
W\ . —
‘_

Figure 5.9: Circuit for Calculation of Ry,

Ry, is the equivalent resistance of this circuit while looking back to it from terminals A
& B.

10 x 10
Rrn =5+ 10770
Ryp =10 Q

The original circuit can be replaced by its Thevenin’s equivalent circuit as shown in
Figure 5.10. The current I in the load resistance is calculated with the help of the
Thevenin’s equivalent circuit.



50

<
I
=
=
N
N’
e
VIAS
A
i
i

Figure 5.10: Thevenin’s Equivalent Circuit

D 5.3: Using Thevenin’s theorem find the current in capacitor of the following circuit

j100

A

V=100L0 @

20 = j100

TEI

Figure 5.11: Circuit for D #5.3

Solution:
To calculate Vy, , the capacitor is removed from terminals A and B of the linear bilateral
network as shown in Figure 5.12. The voltage across terminals A and B is calculated that
is equal to V.

j100

+1A

—

C
@ 4 _ = 100
V=100 L0
1|IIIIIIITh
- TB

Figure 5.12: Circuit for Calculation of V),
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L 100
17 (j104+j10)

Il=_j5A
Vep == —j5AXj10 =50V

To calculate Zgy, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.13. Z;, is the equivalent impedance of this circuit while looking
back to it from terminals A & B.

j100

—0000™

Tlf-\

j10Q

0000

TEI

Figure 5.13: Circuit for Calculation of Z,

j10xj 10
Zthn =7 h
j10+,10

ZTh=j5.Q

The original circuit can be replaced by its Thevenin’s equivalent circuit as shown in
Figure 5.14.

i
o]
[ e

<
:rll
3
-
=
/?\
U/
11
I
o
0

i
B

Figure 5.14: Thevenin’s Equivalent Circuit
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Vra

| =———
Zrn+Z)

,__ 50
RERE

1=16.672—90°4A

5-2 Norton’s Theorem

Current in a passive circuit element, voltage across a passive circuit element and power
consumed by a passive circuit element can be computed with the help of Norton’s
theorem. According to this theorem if we want to calculate current in a load resistor
connected across terminals A & B of a linear bilateral complex network, then the load
resistance of the network can be connected to a current source I, having internal
resistance of Ry, . Isy is the short circuited current in terminals A & B of the complex
linear bilateral network and Ry, is equivalent resistance of the network while looking
back to the network from terminals A & B with all voltage sources replaced by short
circuits and all current sources replaced by open circuits. As an example consider a
linear bilateral network as shown in Figure 5.15.

R, R,

VA VA
" A
Il R
Vs () i
- B

Figure 5.15: A Linear Bilateral Network

This network can be replaced by its Norton’s equivalent circuit as shown in Figure 5.16.
There is a practical current source in the Norton’s equivalent circuit, whose shunt
internal resistance is represented by Ryj,. This shunt resistance Ry, is calculated the
same way as explained in Thevenin’s Theorem. The load resistor R; is connected in
parallel with the current source.
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Figure 5.16: Norton’s Equivalent Circuit

To calculate Igy, , the load resistance R; is short circuited as shown in Figure 5.17. The
current in terminals A and B is calculated that is equal to Ig,.

Vs
Igp ==
Sh Rl
R, R,
TATATS l TATATS
Z A
Ish l
v O
- m B

Figure 5.17: Circuit for Calculation of I,

We have already mentioned that the shunt resistance Ry, is calculated the same way as
explained in Thevenin’s Theorem. So in order to calculate Ryj , the voltage source Vs of
the linear bilateral network is replaced by its internal resistance as shown in Figure 5.18.
Ry is the equivalent resistance of this circuit while looking back to it from terminals A
& B.

RiR,
Ry = ———
T ™R, +R,
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Figure 5.18: Circuit for Calculation of Rpp,

The current I in the load resistance is calculated with the help of the Norton’s
equivalent circuit shown in Figure 5.16.

_ Isp X Rypy
(Rrn +Ry)

D 5.4: Using Norton’s theorem, find the current in the load resistor of the following
circuit.

R, =100 R, =100
VA Vi
" A
Il B =26
VS:Q[]V ) |
- B

Figure 5.19: Circuit for D #5.4
Solution:
To calculate Iy, , the load resistance R is short circuited as shown in Figure 5.20. The
current in terminals A and B is calculated, that is equal to Ig,.
Vs

Igp = —
Sh R1
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15h=_=2A

R, =100 R, =100

+

V =20V () fon l

_ = B

Figure 5.20: Circuit for Calculation of I

To calculate Ry, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.21. Ry is the equivalent resistance of this circuit while looking
back to it from terminals A & B.

R, =100
VWA vWWA

e

TB

Figure 5.21: Circuit for Calculation of Ry,

r ~10x 10
TR =10 + 10
RThZSQ

The original circuit can be replaced by its Norton’s equivalent circuit as shown in Figure
5.22.
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T A G) %Rn:m Il% R, =50

2
B

Figure 5.22 Norton’s Equivalent Circuit

The current I in the load resistance is calculated with the help of the Norton’s
equivalent circuit.

_ Isp X Rypy
(Rrn +Ry)

[ 2x%5
“(5+45)

I=1A

D 5.5: Using Norton’s theorem find the current in the load resistor of the following

circuit.
R,=100Q A RL:EO B
VAV Y
—_—
+
Vo=20v () R2=mo§ R3:50§
Figure 5.23: Circuit for D #5.5
Solution:

248



To calculate I, , the load resistance R is short circuited as shown in Figure 5.24. The
current in terminals A and B is calculated that is equal to Ig,.

20 20|
_1=10 0
Sk =120 —10

10 15

L 200
Sh™ (300 — 100)

I,=1A4

R1=1[}Q A
TATATA 3 5

+ |sh

V=20V () R2=1[}0§ R3=5Q%

Figure 5.24: Circuit for Calculation of Ig,

To calculate Ry, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.25. Ry, is the equivalent resistance of this circuit while looking
back to it from terminals A & B.

R,=100 A B
W . —
-—

Figure 5.25: Circuit for Calculation of Ry,
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10 x 10

Rrn =5+ 10770
Ry = 10 O

The original circuit can be replaced by its Norton’s equivalent circuit as shown in Figure
5.26.

L..=14A G) gﬂwzmO Ilg R =50

&
B
Figure 5.26: Norton’s Equivalent Circuit

The current I in the load resistance is calculated as

_ Isp X Rypy
(Rrn +Ry)

[ 1x 10
- (10+5)
1=0.67A

D 5.6: Using Norton’s Equivalent theorem find the current in capacitor of the circuit

shown in Figure 5.27.

Solution:
To calculate Iy, , the load resistance R is short circuited as shown in Figure 5.28. The

current in terminals A and B is calculated that is equal to Igy,.

o 100
ShT10
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I, =—j 10 A

j100

—0000"

1
K ={ j100Q
V=100 L0 @ N

V=100 LO @ lsh l

Figure 5.27: Circuit for D # 5.6

j100

— 00

Figure 5.28: Circuit for Calculation of Ig,

To calculate Zgy, , the voltage source Vs of the linear bilateral network is short circuited

as shown in Figure 5.29. Z 1, is the equivalent impedance of this circuit while looking

back to it from terminals A & B.

i100
T A
| = j100Q
<

TEI

Figure 5.29: Circuit for Calculation of Z;),
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j10 %10
ZThzf
j 10+ 10

ZTh=jSQ

The original circuit can be replaced by its Norton’s equivalent circuit as shown in Figure
5.30.

A
e
X . I .
casiad =t |50 -2
I, = 410A G) J l e Q
&
B
Figure 5.30: Norton’s Equivalent Circuit
_ Isp X Zrp
Zrn+Z,)
_ —j10xj5
- (G5-/2)
/- 50
=73

I =16.67 £—-90°A4

5-3 Maximum Power Transfer Theorem

This is a very important theorem and has lots of applications in power as well as
communication engineering. This theorem states that a practical voltage source will
transfer maximum power to the load resistance if the load resistance is equal to the
internal resistance of the source. Consider a Thevinen’s equivalent circuit as shown in
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Figure 5.31.

o () Vi

Figure 5.31: Thevenin’s Equivalent Circuit

According to this theorem the source will transfer maximum power to the load
resistance R; if

R, = Rpp

Let us prove this equation. The current in load resistance can be calculated as

L Vn
(Rrn + Ry)
PL = IZRL (52)

Putting the value of current in equation 5.2, we obtain

[(RTh + RL)] R,

P, =Vp? [—]

ETUT Ry + RL)?

We assume that the load resistance is variable. We change the value of R; to find the
condition for maximum power P, . We differentiate P, with respect to R; and equate
it to zero.

dp, _ [ ]
dR, ~ ™ dR, Ry + R,)?

=0
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Vo2 (Rrn + R)? = 2R, (Rrp + R)| 0
™ (Rrn + RL)*

(Rrn + Ry)? — 2R, (Rr, + R,) =0
RThZ + RLZ + ZRLRTh - ZRLRTh - ZRLZ - 0
RThZ - RLZ =0

R, = Rrp (5.3)

As

[m] R

So putting R, = Ry, in above equation, the maximum value of the power can be
calculated as

p __ V'R
bmax ™ (Rp, + Ryy)?

p
Lmax — 4R,

Maximum power will be transferred to the load impedance Z; of Figure 5.32, if it is
equal to the conjugate of Z, that is

ZL:ZTh*
LTh A
-
+
Al
z
"n.-an L
2.
B

Figure 5.32: Thevenin’s Equivalent Circuit
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D 5.7: Consider the following circuit and find the value of R; for the transfer of

maximum power to it. Determine this maximum power as well.

+

V=100V ()

R1=EUQ
VAW
R2=5Q§ R, é

. A

Solution:

Figure 5.33: Circuit for D # 5.7

The circuit is converted to Thevenin’s equivalent circuit. To find Vr, , the load resistance

R} is removed from terminals A and B of the circuit as shown in Figure 5.34.

+

Ve =100V (

R,=200

VWA —1a
L'

R2=59§ Th

Figure 5.34: Circuit for Calculation of V;j,

The voltage across terminals A and B is calculated that is equal to V.

Vo = (100) ><5
Th — 25

VTh S ZOV
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To calculate Ry, , the voltage source Vs of the linear bilateral network is short circuited
as shown in Figure 5.35. Ry, is the equivalent resistance of this circuit while looking
back to it from terminals A & B.

R1:2[]Q
VWA

«— mA

R2=Eﬂ§

TB

Figure 5.35: Circuit for Calculation of R,

R _20><5
Th = 20+5
R =40

The Thevenin’s equivalent circuit for Maximum power transfer theorem is shown in
Figure 5.36.

RTh =40 A
VA &
+
v :zuv<> é R =40
Th
i
B

Figure 5.36: Thevenin’s Equivalent Circuit

The condition for the maximum power to be delivered by the source to the load is
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RTh = RTh=4Q

Now

PLmax=25W

D 5.8: Consider the following circuit and find the value of R; for the transfer of
maximum power to it. Determine this maximum power as well.

+

VS:'1'5"J<) R,=200 3 S R, =50

Figure 5.37: Circuit for D # 5.8

Solution:

The circuit is converted to Thevenin’s equivalent circuit. To find V,, , the load resistance
R; is removed from terminals A and B of the circuit as shown in Figure 5.38. Obviously
there will be no flow of current in the following circuit and V-, will be equal to the
source voltage.

VTh:VSZZOV
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+

VS:1'BV() R,-200 3 S R,=50

Figure 5.38: Circuit for Calculation of Vi,

To find Ry, the voltage source Vs of the linear bilateral network is short circuited as

shown in Figure 5.39. Ry, is the equivalent resistance of this circuit while looking back
to it from terminals A & B.

A B
| E
—_—

R,=20 3 S R,=50

Figure 5.39: Circuit for Calculation of Ry,

. _20%5
Th = 20+5
RTh:RL:4Q
Rp =40 A
Vi &
+
I
vV =18V % R =88
Th
8
B

Figure 5.40: Thevenin’s Equivalent Circuit
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The Thevenin’s equivalent circuit for Maximum power transfer theorem is shown in
Figure 5.40.

I=2A
Now
P, _ Vrn”
max ~ 4R,
_(e)?

Py, =16 W

5-4 Superposition Theorem

This theorem has a number of applications in the course of Electromagnetic Field
Theory. This theorem states that in any linear bilateral circuit that has more than one
voltage source, the current in any element is the sum of the currents due to each
voltage source separately and all other sources are replaced by their internal resistance.
As an example consider the circuit given in Figure 5.41. The currents I, , I, and I5 can be
calculated with the help of Superposition theorem.

R1 R,
VAR VAN
— —
+ Il 13 +

wQ e Qv

Figure 5. 41: Linear Bilateral Circuit for Superposition Theorem

The second voltage source is replaced by short circuit as shown in Figure 5.42 and the
currents in all the three resistors are calculated due to voltage source V; independently.
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R, R,

WA VA
—» —»
I I

i 3

v () Ililgﬂz

Figure 5.42: V, replaced by 0

After replacing V, by 0, The current in R, is I;, the current in R, is I," and the current
in Ry is I3'. All these three currents in the circuits are caused by the voltage source V.

Now the first voltage source is replaced by short circuit as shown in Figure 5.43 and the
currents in all the three resistors are calculated due to voltage source V, independently.

R, R,
VA VAV
- -
II;_ 1II +

s | SR, O v.

Figure 5.43: V, replaced by O

After replacing V; by 0, The current in Ry is I,", the current in R, is I,” and the current
in Rz is I3"". All these three currents in the circuits are caused by the voltage source V.
According to Superposition Theorem

11 = 11, - 11” (5'4)
12 = 12, + 12” (5.5)
13 = 13, - 13” (5.6)

D 5.8: Consider the following circuit and find all the three currents using Superposition
Theorem.
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<13
13

v;mv() Igléggzﬁo () V, =10V

Figure 5.44: Circuit for D #5.8

The second voltage source is replaced by short circuit as shown in Figure 5.45 and the
currents in all the three resistors are calculated due to voltage source V; independently.
After replacing V, by 0, The current in R, is I;, the current in R, is I," and the current
in Ry is I3'. All these three currents in the circuits are caused by the voltage source V.

:-lgf
ek

Figure 5.45: V, replaced by O

Using Standard loop equations, we have

10 —6] [11’]:[10]
—6 10l [13'] " Lo
10 —6
- 10 10
L7110 -6
—6 10
100
64
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11, == 1.56 A

|10 10|
I ! — _6 0
3 10 -6
—6 10
L= 60
37 64
13' =094 4

I, =156 —094=062A4

Now the first voltage source is replaced by short circuit as shown in Figure 5.46 and the
currents in all the three resistors are calculated due to voltage source V, independently.
After replacing V; by 0, The current in Ry is I;", the currentin R, is I,”’ and the current
in Ry is I3". All these three currents in the circuits are caused by the voltage source V,.

R_]:qﬂ R3:4Q

VA VA

-— -—

I“ 1” +
i

Inziéﬂzzam () V, =10V

Figure 5.46: V; replaced by O

Using Standard loop equations, we have

E% Ig ] [1113] - [100]

| 0 -6
=210 10
- |10 -6

-6 10
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I”:—
1 764

I," =094 4
10 0
I =1=6_10

110 -6
-6 10

1”—-100
37 64

IL," =156 4

L,"” =156—0.94=062A4

According to Superposition Theorem
L=1L-1"
[; =156 -0.94 = 0.624
L=L+L"
[, =0.62+0.62=1244

13 — 13, _ 1311

I3 =094 —-156=-0.624

D 5.9: Consider the following circuit and find voltage across R; and power consumed by

R using Superposition Theorem.

Solution:

The second voltage source is replaced by short circuit as shown in Figure 5.48 and the
currents in R; is calculated due to voltage source V; independently. We determine the
three currents in Figure 5.48 with the help of standard loop equations. You may apply

any other convenient method in this regard.
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=50 R, =50

+

1 B
vl=20v<) > | 3R,=10 0 () V, =10V
*

e
I

Figure 5.47: Circuit for D #5.9
After replacing V, by 0, The current in R; is I3'. This current is caused by the voltage

source V/;.

= 58 R, =50

+

v;znv() el S,s

Sk
53

Figure 5.48: V, replaced by O

Using Standard loop equations, we have

—10[ ] [20

|15 20

Iy = —10
10 15

200

=175

L' =164
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Now the first voltage source is replaced by short circuit as shown in Figure 5.49 and the
currents in R; is calculated due to voltage source V, independently. After replacing V;
by 0, the current in R5 is I3". This current is caused by the voltage source V.

R,=40 R, =40
WA VA
-— -
I]. 13

Illziéﬂ,z:ﬁﬂ () VE:1DV
+

Figure 5.49: V; replaced by O

Using Standard loop equations, we have

— IL"
—1150 11§] [IZ] - [_20]

15 0 |
L) = —-10 -10
3 15 -10
-10 15
, —150
3 T "o¢
125
L"=-12A4
According to Superposition Theorem
13 — 131 _ 13”

I3=16+12=28A4
Voltage across R3
Vg, =28X5=14V

Power consumed by R;is P = (2.8)2 x5 =39.2W
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5-5 Reciprocity Theorem

This theorem states that if a voltage V in one branch of a reciprocal circuit results in a
current I in another branch, then if the voltage V is shifted from the first to the second
branch, it will produce the same current in the first branch where the voltage has been
replaced by its internal resistance. Consider the circuit given in Figure 5.50, the voltage
V in the first branch induces a current I in the branch containing R3.

+

v 3R, )4

Figure 5.50: Source in the first Branch

If the voltage V is moved from the first branch to the third branch as shown in Figure
5.51, then it will induce the same current I in the branch containing R; in accordance
with reciprocity theorem. There should be only one voltage source in the circuit and the
polarities of the voltage source in the second branch should be in the direction of the
current.

R, R,
VAN VAV

IT(/’) %RE ()V

Figure 5.51: Source in the third Branch
D 5.10: Consider the following reciprocal circuit and verify the reciprocity theorem.
Solution:

Using standard loop equations we calculate [
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75
_1-3 0
A
-3 7
P
40
I =0375A
R,=40 R,=40
A Vi

v=sv () 2R,=30 @)

Figure 5.52: Circuit for D # 5.10
The voltage is moved to the branch containing Ammeter as shown in the following
Figure.

R_I:qg R3:4O
VA VA

IT(/‘) SR,=30 ();v:w

Figure 5.53: Circuit for D # 5.10
s 5
5 5

I

15

I=—
40

[ =0.3754
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D 5.11: Consider the following reciprocal circuit and verify the reciprocity theorem.
R,=20 R,=40
TATAT) VA

+

V:E\:'() SR,=30 (/‘)ll

Figure 5.54: Circuit for D #5.11

Solution:

Using standard loop equations we calculate [

[ =0.6924

The voltage is moved to the branch containing Ammeter as shown in the following
Figure.

R ’ =20 R 3= 40
VAT VY

]TQ;\ %RE=30 (\U:E\J

e

X

Figure 5.55: Circuit for D #5.11
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_le 7|
A

I

18

I=2—6

I =0.692 A

Exercise:
Q 5.1: Consider the circuit diagram as shown in Figure 5.56. Using Thevenin’s Theorem,

determine the current in the load resistor of 5 Q.

=
|
[y ]
Lo ]
=
.---—-\'
L
i
Fd
n
=
=
VWA
—
-—
Wi
-
Il
wn
=

Figure 5.56: Circuit for Q #5.1

Answer: 1.84 A.

Q 5.2: Consider the circuit diagram as shown in Figure 5.57. Using Norton’s Theorem,
determine the current in the load resistor of 2 Q.

VS:EUV () RL= 20

Figure 5.57: Circuit for Q # 5.2
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Answer: 2.5 A.

Q 5.3: Consider the circuit diagram as shown in Figure 5.56. Determine the Maximum
power transferred to the load resistor of 5 Q.

Answer: 16.92 W.
Q 5.4: Determine the current in resistor R; and verify Reciprocity Theorem.

R,=200
W

+

‘Iu"szg[]yr (:] R2:1nn g Il R3=1UD

Figure 5.58: Circuit for Q # 5.4

Answer: 0.6 A
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Chapter 6
Three Phase Circuits

6-1 Star Connected Voltage Source

Consider three phase star connected voltage source as shown in Figure 6.1. All the three
voltages V,, Vi and V. are equal in magnitude and 120° apart.

A
» A
&
+ I
~ A 20 Von
- J' v,
N
Vo /-240 — ~
C P "
[~ o) VB £-120
+, S . At
— — v
c \ B
B
C

Figure 6.1: Star Connected Three Phase Voltage Source

The line to neutral voltage is known as phase voltage and the line to line voltage is
known as line voltage. This system is known as three phase four wire balanced system.
The phase voltages of ABC sequence are given as under

VA = VALO
VB = VBL - 120
VC = Vcﬁ - 240

The above mentioned phase voltages of ABC sequence may be written in the following
format as well

VA = VA490
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VB = VBL_ 30

VC = Vcé - 150

As all the three voltages V,, Vg and V, are equal in magnitude and 120° apart,
therefore their phasor sum will be equal to zero.

Vit Vg + Vo =V420 4 Vgz — 120 + Voz — 240 (6.1)
Vit Vi + Vo = Vop 20 + Ve, £ — 120 + Vp, 2 — 240
Vit Vot Ve=Vop(120+12—120+12—240)

Vo + Vg+ Ve =Vpp( 1+ cos—120+j sin —120 + cos —240 + j sin — 240)
V, + Vg+ Ve=Vpp(1—05+j0.866—0.5—j0.866)
Vi, + Va+ Vo=0 (6.2)

The phasor diagram of these three voltages is shown in Figure 6.2.

Vo

120 120

120

Figure 6.2: Phasor Diagram

The line voltages are Vg, V4c and Vg4 and they are not equal to the phase voltages in
star connected source. To find the relationship between the line and the phase voltage
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in a star connected source, consider the following equations. The ABC sequence has

been considered for the line to line voltages.

Ve = Vg — V¢ (6.3)
VAC = VC - VA (64)
VBA = VA - VB (65)

If we consider Figure 6.3 then equations 6.3, 6.4 and 6.5 can be written as

VA = VB A + VB
VB = VCB + VC
VC = VAC + VA

Figure 6.3: Line to Line and Line to Neutral Voltages

If we consider V5 as a reference phasor, then V. and Vz, can be related to it with the
help of the Phasor diagram as shown in Figure 6.4. All these line voltages are equal in
magnitude and 120 degree apart. Obviously phasor sum of these line to line voltages

will result in zero.

Mathematically

Vep = Veg 20
VAC S VAC L — 120
VBA = VBA L — 240
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CB

Vac

Figure 6.4: Phasor Diagram of the Line Voltages

The phasor sum of Vg and — V- results in the line voltage Vg as shown in Figure 6.5.
The angle between Vg and — V. is 60°.

Va
-
-y
F oA
oy
o
”:- "‘hhh
) Ve S -y
7 il
™ ~
/ ..rll"" ""lr[
l'_lll"'
'H.ll' -
c
Ve

Figure 6.5: Relationship between Line and Phase Voltage

Reconsider the triangle in the above mentioned figure, the triangle is shown in Figure
6.6. It is clear from the given voltage triangle that

Ves = (Vg + V)2 + (1,)2 (6.6)
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Figure 6.6: Voltage Triangle

VCB = \/VBZ + V12 + VZZ + 2V3V1 (67)

Where V; = V. cos60and V, = V,sin60. Putting these values in equation 6.7, we
obtain

Vep = \/VBZ + (V¢ cos 60)2 + (V. sin 60)2 + 2V, V cos 60

1
Veg = \/VBZ + VCZ(cos2 60 + sin? 60) + 2V X V. X >

VCB :\/VBZ +VC2 +VB X VC

VCB = \/VBZ + VCZ + VC2

As VB = VC = VPh and VCB= VL

Therefore

V, = JVth + VPh2 + VPh2

V., = V3 Vpy (6.8)
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6-2 Star Connected Balanced Load

Consider three phase star connected balanced load across a star connected voltage
source as shown in Figure 6.7. This configuration is known as star- star configuration.
The phase currents in this configuration are equal to the line currents.
La A

Figure 6.7: Star- Star Configuration

As the load is balanced, therefore

Z, =720
Zb = ZLB
Z.=17.0

The phase voltages of ABC sequence are given as under
Vy = Vpp20
Vg = Vppst — 120
Ve = Vpps — 240
The phase currents in the star connected load are equal to the line currents, That is

I, = Ipp
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It has already been derived that

V, = \/§VPh

If the line impedance is ignored, then

Vpn

I, =
Vpn

La=—2/—9

S/

IA = IPhL_H (6.9)
Vpn

Iy = —2

v,
I=—2,-120-6

Z
Vpn
l- =
Cc ZC

Vpn
. =—2/—-240—6
¢z

All these three current are equal in magnitude and 120 degrees apart, their phasor sum
will be equal to zero.

IA +IB+IC:IN:0

Thus in the star connected three phase balanced system the neutral current is zero. In
other words there is no need to connect the neutral wire in the three phase balanced
system. The phasor diagram is shown in Figure 6.8.
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Figure 6.8: Phasor Diagram

Power consumed by Z,

P, = Vpy X Ipp, X cos@
Power consumed by Z,,

Py, = Vpp X Ipp X cos @
Power consumed by Z,

P. = Vpp X Ipy X cos B
The total power consumed by the load is

Ps=P,+ P, + P,

PS:3X VPhX IPhXCOSH

As
Vi
Vpp = —=
Ph \/§
Therefore Ps=+3x V, x I, X cosf
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D 6.1: Consider the three phase circuit as shown in Figure 6.9. Determine the three
currents and the powers consumed by each branch of the load. Determine the power
supplied by the voltage source as well. The star connected load is a balanced load with

Z,=5s531Q.

A
»
A+
w 100 £ 0
M
a0 -/\-
100£ "\.f: :' w\: 100 &~ =120
+ j ______/'. .'\_‘____,.-I +
C \

Figure 6.9: Three Phase Circuit for D #6.1
The phase voltages of ABC sequence are given as under
Vy,=10040 V
Vg =1002£—-120 V
Ve =1002—-240V
The line voltage is
V, =V3Vp, =1732V

If the line impedance is ignored, then
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will be equal to zero.

IA:Z_1
100
IA—?L—531

[,=202—-531 4

Vg
Iy =2
100
IB = ?L —120-531

Ig =204—-1731 A

Ve
Ip ===
C Zc
100
lo =——4-240-53.1

I =202£—-2931 A

All these three current are equal in magnitude and 120 degrees apart, their phasor sum

IA +IB+IC:IN:0

The phase currents in the star connected load are equal to the line currents, That is

I, = Ipp

Power consumed by each branch

P1: Vphx IPhXCOSQ
P; =100 % 20x 0.6

P, = 1200 W
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Total power consumed by the load is
P, =3Xx P, =3600W
Power supplied by the source
P =3 X Vpp X Ipp, X cosB
Ps =3x100x20x0.6
Ps = 3600 W

D 6.2: Consider the three phase circuit as shown in Figure 6.10. Determine the three
currents and the powers consumed by each branch of the load. Determine the power
supplied by the voltage source as well. The star connected load is a balanced load with

Z,=102368Q.

A
»
T
w 100 £ 0
M
oap —/\—
1002 ~ : :r "\.f\: 100 £ - 120
+ 3 ___‘_/'. .'\_1___,;' +
C \

Figure 6.10: Three Phase Circuit for D # 6.2
The phase voltages of ABC sequence are given as under
V, =10040 V

Vs =1002—120 V
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Ve =1002—240 V

If the line impedance is ignored, then

Va
I —_
I, = 1004 36.8
4710

I[,=102-368 4

Vg
Iy =2

I, = 1004 120 — 36.8
B~ 10 '
I =102 —156.8 4

Ve
I = —
C Zc
I —1004 240 — 36.8
710 '

I =1024—-2768 A

All these three current are equal in magnitude and 120 degrees apart, their phasor sum
will be equal to zero.

IA +IB+IC:IN:0

Power consumed by each branch
Py = Vpp X Ipp X cosO
P; =100x10x 0.8
P; =800W
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Total power consumed by the load is
P, =3x P, =2400W
Power supplied by the source
P =3 X Vpp X Ipp, X cosB
Ps =3x100x10x0.8

Py = 2400 W

6-3 Delta Connected Balanced Load

Consider three phase delta connected balanced load across a delta connected voltage
source as shown in Figure 6.11. This configuration is known as delta- delta configuration.
The phase voltages in this configuration are equal to the line voltages.

VL= Vpn
A La
- +
v [-120 v £-240
AC i T
+ -
B Ig
c 2\ . ¢
v L0
CB
Ie

Figure 6.11: Delta Connected Balanced Load

As the load is balanced, therefore the load in any branch is
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Z, =170
The phase/ line voltages of ABC sequence are given as under
Vep = Vpns0
Vac = Vppt — 120

VBA = VphL — 240

The phase currents in the delta connected load are not equal to the line currents; it will

be proved later that

I, = ‘/glph
If the line impedance is ignored, then

Icp = %

Icg = Ipp2 — 0 (6.12)
Iyc = I;ilc

Lyc =%4—120—9

Iye = Ippt —120-106 (6.13)
Ips = ];L;A

v,
IBA=7PhL—240—9
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IBA == IPhL_240_9 (6.14)

All these three phase current are equal in magnitude and 120 degrees apart, their
phasor sum will be equal to zero.

ICB +IAC + IBA = 0

Apply KCL to node A which states that phasor sum of the currents flowing towards node
A will be equal to the phasor sum of the currents flowing away from the node.

Iy = Isc — Ipa (6.15)
Apply KCL to node B

Ig = Igs — Icp (6.16)
Apply KCL to node C

Ice = Icp — Iac (6.17)

The phasor sum of these line currents is equal to zero.
IA + IB + IC = 0

The phasor diagram of the phase currents is depicted in Figure 6.12.

ICB

120 120

120

IEIA Lic
Figure 6.12: phasor Diagram of the Phase Currents

The phasor sum of I4- and — Iz, results in the line current 1, as shown in Figure 6.13.
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BA e
- oy
- I S
- 'FQED A .
L
7
‘_-‘
- -1
I - BA
BA I
AC

Figure 6.13: Relationship between Line and Phase Currents

Reconsider the triangle in the above mentioned figure, the triangle is shown in Figure
6.14.

Figure 6.14: Currents Triangle

It is clear from the given current triangle that

Iy = (L + 1)? + (1,)?

I, = J L + 1> + L% + 2 Iyl (6.18)

Where I; = Ig4cos60and [, = I, sin 60. Putting these values in equation 6.18, we
obtain

I, = J Lic® + (Ig c0s60)2 + (54 5in60)2 + 2 I, Iz, cos 60
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1
I, = \/IACZ + Iga%(cos? 60 + sin2 60) + 2 I, Ig4 ¥ 7

Iy = \[IACZ + IBAZ + lyc Ipa
AS IAC = IBA = Iph and IA= IL

Therefore

I, = \[IPhZ + Ipp” + Ipp”

I, = ‘/glph
Power consumed by each branch of the delta load
Py = Vpp X Ipp X cosB
The total power consumed by the delta load is
P.=3X P,

Power supplied by the source

PS:3X VphXIphXCOSH

As
I

IPh:ﬁ

Ps=+3x V, x I, X cos@

(6.19)

D 6.3: Consider the three phase circuit as shown in Figure 6.15. Determine the phase

currents, the line currents and the powers consumed each branch of the load.

Determine the power supplied by the voltage source as well. The delta connected load
is a balanced load with Z; = 10 £53.1 Q. The line to line voltages of ABC sequence are;
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VCB = 100 LO

A A
- +
: -24
100 [120 £ ) o) 100 [ -240
+ -
B Ig
(o
- +
100 L0
le
Figure 6.15: Circuit for D # 6.3
Solution:

Z,=7,=25,=10253.10Q

VCB
I = —
CB Zl

I —1004 53.1
CB_10 "

Ig =102 —53.1 A

VAC
L, = —2%
AC Z1
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00
IAC == 1_04 - 120 - 53.1

Le=102-1731 A

VBA

I, =
BA Z1

I —1004 240 —53.1
BA™ 10 '

Izy =102—1293.1 A

All these three phase current are equal in magnitude and 120 degrees apart, their
phasor sum will be equal to zero.

ICB +IAC + IBA = 0
Apply KCL to node A

Iy = Ipc — Ipa
I, =10£—-173.1-102—-293.1
I, =-13.92 —j10.39
I, =17.374—-1432 A
Apply KCL to node B
Ip = Ips — Icp
Ig =104 —-293.1-10£-53.1
Ig = —2.08 +j17.19
Ig =17.374—-263.1 A

Apply KCLto node C

Ic = Icp — Igc
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I =10£—-531-104£-173.1
Ir=6—j8+10+/1.2
I =16—j6.8
I =17374-23.1 A
Power consumed by each branch of the delta load
P; = Vpy X Ipp, X cos@

Py

100 x 10 x 0.6
P, =600 W
Total power consumed by the delta load is
P, =3x P, =1800 W
Power supplied by the source
Ps =3 X Vpp X Ipp X cosB
Ps =3 x100x 10 x 0.6 =1800 W
or
Ps =3 x V, x I, X cos 0
Ps =3 x 100 x 17.37 x 0.6 = 1800 W

6-4 Delta Connected Unbalanced Load

Consider three phase delta connected unbalanced load across a delta connected voltage
source as shown in Figure 6.16. This configuration is known as delta- delta configuration.
The phase voltages in this configuration are equal to the line voltages.

Vi, = Vpp
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The phase/ line voltages of ABC sequence are given as under
Veg = V20
Vae =V, £ —120
Vga =V, 2 — 240

As the load is unbalanced, therefore

ZCB = Z1 Lel
ZAC = ZZ 492
ZBA = Z3 493

If the line impedance is ignored, then

=

Figure 6.16: Delta Connected Unbalanced Load
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i —VLL 9
CB_Z1 1

ICB - Il L — 91 (6.20)
Vac

Lo = 2C

AC ZAC

I —VLL 120 — 6
AC_Z2 2

IAC = 12L - 120 - 92 (6.21)
VBA

Igg = —

BA ZBA

Vi
IBA =—4— 24‘0_93
Z3

IBA = 134 — 240 — 93 (622)

Apply KCL to node A which states that phasor sum of the currents flowing towards node
A will be equal to the phasor sum of the currents flowing away from the node.

Iy = Iyc — Ipa (6.23)
Apply KCL to node B

Ig =Igy — Icp (6.24)
Apply KCLto node C

Ie = Icp — Iac (6.25)

Since the phasor sum of the quantities on the right hand sides of equation 23 to 25 is
zero, therefore phasor sum of the line currents is zero.

IA +IB+ ICZO
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Power consumed by branch CB
P, =V, X I; Xcos#,
Power consumed by branch AC
P, =V, X I, Xcos6,
Power consumed by branch BA
P; = V, X I3 X cosB;
The total power consumed by the unbalanced delta load is given by
P= P+ P,+P;

D 6.4: Consider three phase delta connected unbalanced load across a delta connected
voltage source as shown in Figure 6.17. Calculate the phase currents, line currents and
powers. The phase/ line voltages of ABC sequence are

-

Figure 6.17: Delta connected Unbalanced Load for D # 6.4
Veg = 10020

Ve = 1002 — 120
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Vga = 1002 — 240
The load is unbalanced, therefore

Zeg =102£00Q

Zyc=102-30Q

ZBA = 10 4309

Solution:
Ves
[y = —=
CB 7
100 ;0
8 =70
Icg=1020 A
Vac
[ = —
AC Znc
I —1004 120 + 30
T
IAC = 10 4 — 90 A
o= Vea
BA Zoa
I —1004 240 — 30
BA = T

Igq =102 —270 = 10290 A

Apply KCL to node A which states that phasor sum of the currents flowing towards node
A will be equal to the phasor sum of the currents flowing away from the node.

Iy = Iyc — Ipa
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I, =10£—-90—-10490 = 202—-904
Apply KCL to node B

Ip = Ipg — Ics

Ig =10490—-10 = —-10 +,10

Iy =10v/2 2135 A
Apply KCL to node C

Ie = Icp — Iac

I =10—10£-90

I =10+ /10

I, =10V2 245 A
Power consumed by branch CB

P, =V, X I; Xcosb,

P; =100x10x1=1000 W

Power consumed by branch AC
PZ = VLX IZXC0592

P, =100 X 10 X cos 30 = 866W

Power consumed by branch BA

P; =V, X I3 X cosb;

P; =100 % 10 X cos 30 = 866W
The total power consumed by the unbalanced delta load is

P: P1+ P2+P3=2732W
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6-5 Three Phase Four Wire Star Connected Unbalanced Load

Consider three phase star connected unbalanced load across a star connected voltage
source as shown in Figure 6.18.

y =

Ta A

Figure 6.18: Star- Star Unbalanced Configuration

As the load is unbalanced, therefore

Za = 21401
Zb = 22L02
ZC = Z3493

The phase voltages of ABC sequence are given as under
V) = Vpp290
VB = VPhL - 30

Ve = Vpps — 150

If the line impedance is ignored, then
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v,
I,=-22,90-8,

Zy

IA - Il L90 - 91 (6.26)
Vp

Ig = 2
Ve

Iy =—27-30-

b= s =300,

Iy = I,z —30— 6, (6.27)
Ve

I, ==X

C ZC
Vpn

Ir=——24—-150-6

Cc Z3 3

The phasor sum all these three currents will be equal to neutral current.

IA + IB + IC = IN
Power consumed by Z,

P, = Vpp X I, X cos by
Power consumed by Z;,

P, = Vpp X I, X cos B,
Power consumed by Z,

P. = Vpp X I3 X cos 0O,
The total power consumed by the load is
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Ps =P, + P, + P,

D 6.5: Consider three phase four wire star connected unbalanced load across a star
connected voltage source as shown in Figure 6.19. Calculate the phase currents, neutral
current and powers. The phase voltages of ABC sequence are given as under

V, =100490

Vg = 1002 — 30

Ve =100 — 150
The load is unbalanced, therefore

Zy

10 £0 Q)

Zy=102-30Q

Z,=102300Q

Solution:



100

I, =—— 290 —
" =10 0-0

Vp
I, = —

1004 30 + 30
BE™ 10
Iz =10 20

Ve
. =—
C Zc
I —1004 150 — 30
7 10

[ =102-180=-104
The phasor sum all these three current will be equal to neutral current.
Iy +1Izg+ 1= 1y
Iy =102490+10—-10=10290 A
Power consumed by Z,
P, = Vpp X I, X cos by
P, =100 x 10 x 1=1000 W

Power consumed by Z;,
Pb = VPh X 12 XCOSQZ

P, = 100 X 10 X cos 30= 866 W
Power consumed by Z,

PC = VPh X I3XC0593
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P. =100 X 10 X cos 30=866 W
The total power consumed by the load is

Ps =P, + P, + P.=2732W
6-6 Star Delta Conversion

The star connected load can be converted to delta connected load with the help of
Figure 6.20 and equations 6.29-6.31.

Figure 6.20: Star Delta Conversion

| ZyZy+ ZoZo + 2.2,

6.29
: 7 (6:29)
Ly Vv Z, Z, +7Z.7Z
2:ab a‘c c“b (6.30)
Zy
2y +Z,Z,+7Z.Z
Z:ab a%c c“b (6.31)

3 Za

The delta connected load can be converted to star connected load with the help of
Figure 6.20 and equations 6.32-6.34.

ZoZ3

l,=— 6.32
¢ I+ Z,+ 7, ( )
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Z1Z3

Ly =——— 6.33

b 7,4+ Z, (6.33)
AVA

Z =—- 6.34

© Zi+Zy,+ Z4 ( )

Exercise:

Q 6.1: Determine the phase currents and power supplied by the source in the following

three phase circuit.
A A
+ =
I ]
o

IV, =104 90 Ven []REZED

V. =104150 —7 NN

Figure 6.21: Three Phase Circuit for Q 6.1
Answer: [, =2290 A, Iz=224—-30A4, I =24—-1504, Pg=60W

Q 6.2: Consider the circuit shown in Figure 6.21. Write the instantaneous equations of
all the phase voltages and phase currents.

Answer: v, = 102 sin(100mt + 90), vz = 102 sin( 100zt — 30)
ve = 102 sin( 100wt — 150), iy = 22 sin( 1007t + 90)

ip = 22 sin(100mt — 30), i, = 2+/2 sin(100xt — 150)
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Q 6.3: Determine the phase currents and power supplied by the source in the following
three phase balanced circuit. Vp,, = 60V and Rg4 = Rcg = Ry = 20 Q.

Figure 6.22: Three Phase Circuit for Q 6.3
Answer: Iop =340A,14 =34—120A, Iz =324—-240A,Ps =540W

Q 6.4: Consider the circuit shown in Figure 6.22. Write the instantaneous equations of
all the phase voltages and phase currents.

Answer: Vep = 602 sin(100mt ), vac = 60+/2 sin(1007t — 120)
vga = 602 sin( 1007t — 240), icp = 32 sin(1007nt),

iac = 32 sin(100mt — 120), iz, = 3 V2 sin( 1007t — 240),
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Chapter 7
Magnetic Circuits and Forces

7-1 Magnetic Flux

Consider an isolated fixed North Pole that can move from one place to another place as
shown in Figure 7.1. There will be magnetic field in the vicinity of this isolated North
Pole. If we place a movable isolated north pole in the magnetic field of fixed North Pole
it will move along a straight line due the force of repulsion. The path or line followed by
an isolated north pole in a magnetic field is known as magnetic flux. It is a scalar
quantity and is represented by @. The unit of flux is Weber.

Fixed Morth Pole
Mawvable Morth Pole

@ Magnetic Flux i

Figure 7.1: Magnetic Flux

We may change the place of the movable isolated North Pole around the fixed one and
can trace many more lines. In other words the number of magnetic lines of forces set up
in @ magnetic circuit is called Magnetic Flux. It is analogous to electric current in an
electric circuit.

7-2  Magnetic Flux Density

Consider lines of magnetic force @ passing through a surface A as shown in Figure 7.2.
All the lines are normal to the surface. The magnetic flux per unit area defines magnetic
flux density and it is represented by B. It is a vector quantity and its unit is weber /m? or
Tesla T. Mathematically

So
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There is another way to compute magnetic flux density. We consider differential
magnetic flux d@ passing through a small portion of the given surface that is dA.
According to the definition, the magnetic flux per unit area can be calculated as

ag

B=d_A

Hence the differential magnetic flux passing through the differential area can be
computed as under

d@ = BdA

A )z

Figure 7.2: Magnetic Flux Density

Magnetic Flux density is related to magnetic field intensity with the help of following
equation.

B=uH

The unit of magnetic field intensity is ampere per meter. It is a vector quantity as well.
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7-3  Simple Magnetic Circuit

Magnetic circuit is analogous to electric circuit. The magnetic quantities

analogous to electric quantities are given in Table 7.1.

Table 7.1: Analogous Quantities

Electric Quantities AnangS:st?:izfnetic
Voltage=V MMF = NI
Current Magnetic Flux
Resistance Reluctance
Conductivity Permeability

Consider a simple electric circuit as shown in Figure 7.3.

I R
—
VWA
+ v,

Figure 7.3: Simple Electric Circuit

which are

Current in the resistor results in

a voltage drop across it that is equal to the voltage across the source in accordance with

KVL.

VS:VR
Ve = IR
Vs
==
R
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A simple magnetic circuit is analogous to a simple electric circuit as shown in Figure 7.4.

@ —»-

M
Y A A A AN S
I

I ‘ll MMF=N1
Figure 7.4: Simple Magnetic Circuit

Mean length of the rectangular material is £, its permeability is i and its cross sectional
area is A. The current in the coil of N turns is I ampere. The current in the coil generates
a magnetic flux of @ Weber that circulates in the clockwise direction in the material. The
direction of the flux in a magnetic circuit can be found with the help of right hand rule.
The equivalent circuit of this simple magnetic circuit is shown in Figure 7.5.

@ R
—' M

N
N/

MMEF =NI

Figure 7.5: Equivalent Magnetic Circuit
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The magnetic field intensity is directly proportional to the product of the number of
turns and current and is inversely proportional to the mean length of the material of the
magnetic circuit.

i NI
“ —_—
'
The constant of proportionality is 1, so
. NI
Y
NI = H?

The product of the number of turns and current define magneto motive force which is
denoted by MMF. So

MMF = NI = H? (7.3)
As
B
H=—
u
And
B - [
A
Therefore
= [
= A

Putting the value of H on the right hand side of equation 7.3, the following equation is
obtained.

¢
MMF = QJH—A (7.4)
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The reluctance offered by the material to the flow of magnetic flux is denoted by R and
is given by

Therefore the MMF can be computed with the help of following equation.
MMF = @R (7.5)
Equation 7.5 is analogous to equation 7.1.

D 7.1: Consider the simple magnetic circuit as shown in Figure 7.6. Mean length,
crossectional area and permeability of the rectangular ring material are 2m, 4 X
10~*m?and 16000. The current in the coil of 1000 turns is 4 Ampere. Determine the
magnetic flux in the circuit.

@

M
Y A A A A S
11

I 'Il MMF=N1
Figure 7.6: Magnetic Circuit for D # 7.1
Solution:

£=2m, A=4x10"*m?, u =16000,N = 1000T and [ = 44
The reluctance of the circuit is
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R

~ 16000 x 4 x 104

R =2488x 103 AT/,

MMF = NI = 4000 AT

The equivalent circuit is shown in Figure 7.7.

3
@ R =2488X 10 AT/Wh
—

VWA

MMEF,

Gt

\__/
AMF = A000AT

Figure 7.7: Equivalent Circuit

_ MMF

R

4000

= 2488 x 108 Ole Wb

7-4 Series Magnetic Circuit

Let us review the electrical series circuits as shown in Figure 7.8. According to KVL the

voltage across the source will be equal to sum of the voltages across R; , R, and R;.

VS: V1+V2+V3
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TATAYL TATAYL TATAYL
+ -+ -+ -
v
Y, Y 3
)
Y
1IMIrS

Figure 7.8: Electrical Series Circuit

Voltage across the resistor R, is given by

V, =1R, (7.7)
Voltage across the resistor R, is

V, = IR, (7.8)
Voltage across the resistor R5 is

V3 = IR (7.9)

Putting the values of V;, V, and V5 in equation 7.6
Vs = I(Ry + R, + R3) (7.10)

Where (R; + R, + R3) s the total resistance of the series circuit that is represented by
Ry . A series magnetic circuit is analogous to electrical series circuit. Consider three
different materials connected in series as shown in Figure 7.9. The current in the coil
generates magnetic flux that flows in all the three materials of the circuit. Material no 2
is an airgap and its reluctance is very large. The reason behind it is that its relative
permeability is very small. In order to analyze this series magnetic circuit, we
require knowing the reluctance of each material. This has already been mentioned
that reluctance is related to mean length, crossectional area, and permeability of the
material.
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[+ mMumF=-M1
Figure 7.9: Series Magnetic Circuit
The characteristics of all the three materials are discussed in detail.

Material No 1
Mean length = ¢
Crossectinal area = A,
Permeability =

Reluctance of the 1t material is given by

Material No 2

Mean length =4,

Crossectinalarea = 4,

Permeability =U,

311



Reluctance of the 2nd material is given by
?,
Uz Ay

R2=

Material No 3
Mean length = £,
Crossectinal area = A5
Permeability =U3

Reluctance of the 3rd material
Uz As

R3

Equivalent circuit of the above mentioned series magnetic circuit that comprises three
different materials is shown in Figure 7.10.

R4 R2 R3
ATATA VWA VWA
MMFy  MMFz MMF;

=

MMF =NI

@
e

Figure 7.10: Equivalent Circuit
MMF = NI
We apply a law to the equivalent magnetic circuit and the law is analogous to KVL
MMF = MMF, + MMF, + MMF; (7.112)

Equation 7.11 is analogous to equation 7.6. The MMF which is required to maintain the
magnetic flux of @ Wb in R, is given by



This Equation no 7.12 is analogous to equation 7.7. The MMF which is required to
maintain the magnetic flux of @ Wb in R, is given by

MMF, = @R, (7.13)

This Equation no 7.13 is analogous to equation 7.8. The MMF which is required to
maintain the magnetic flux of @ Wb in R is given by

MMF; = @R, (7.14)

Equation no 7.14 is analogous to equation 7.9. Putting the values in equation 7.11, we
obtain

This last equation is analogous to equation 7.10 and (R; + R, + R3) is the total
reluctance of the series magnetic circuit that is denoted by R.

D 7.2: Consider the series magnetic circuit that comprises two materials as shown in
Figure 7.11. If the current in the coil of 1000 turns is 2A, then determine the flux in the
circuit. The characteristics of the two materials are given as under.

Material No 1
Mean length =4{¢,=2m,
2

Crossectinalarea = A4; =4x10™* m

Permeability =u; = 16000

Reluctance of the 1%t material is

21
R, = = 2488 x 103 AT
! U1 Aq /Wb
Material No 2
Mean length =4{,=1m
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Crossectinalarea = A, =4 x 10™* m?

Permeability =u, =1600
Reluctance of the 2nd material is

Uz Ay

=1244x10* AT/

R

N =1000T

I =24

@
e

M

Y A A A AN SNV
- -

It wmvr=m1

Figure 7.11: Series Magnetic Circuit

Solution: The equivalent circuit is shown in Figure 7.12. The total reluctance of the
series circuit is

Rr = (Ry +R,) = 14928 x 10* AT/

MMF = NI = 2000 AT

AS MMF =@ (R, + R,)
Therefore
g = MMF
(R1+ Ry)
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] A Ea
—
VA VA
MMF4 MMF 2
"
MMF =NI

Figure 7.12: Equivalent Circuit

d= 2000
~(149.28 x 10%)
@=133mWb

7-5 Parallel Magnetic Circuit

Consider the series parallel circuit shown in Figure 7.13. Apply KCL to the node of the

given circuit
I = Il + 12 (7.16)
I
-+ R4 Node
+ ".."1 - Ly 124.
+ + +

R R
‘u’S () ‘u’z 2 ‘u'3 3

Figure 7.13: Series Parallel Electric Circuit

Application of KVL to loop 1 as well as loop 2 results in the following equations.
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Vo=V, +V, (7.17)

V, =V, (7.18)
Obviously equation no 7.17 can be written in the following format

Vs =V, +V; (7.19)
Where V;, = IR, V, = 1R, and V; = [, R;.

Consider a parallel magnetic circuit which is analogous to the above mentioned series
parallel circuit. There are three limbs of the parallel magnetic circuit as shown in Figure
7.14. The section that carries the total magnetic flux @ defines the left limb, the section
that carries the magnetic flux @, defines the central limb and the section that carries the
magnetic flux @, defines the right limb of the given magnetic circuit. The total magnetic
flux that is generated by the current in the coil of left limb divides in to two parts at the
node.

This equation is analogous to equation no 7.16. The characteristics of all the three
sections of the parallel magnetic circuit are discussed in detail.

P —» Node B2 _,
I 1
— E_‘H
= +
=
v (2)
= M

Figure 7.14: Parallel Magnetic Circuit
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1. LeftLimb

Mean length = ¥,

Crossectinal area = A,

Permeability =
Reluctance of the left limb
ty
R, =
! U1 Aq
2. Central Limb
Mean length =47,

Crossectinalarea = A,

Permeability =U,
Reluctance of the central limb
t;
R, =
2 Uz Ay
3. Right Limb
Mean length = {3

Crossectinal area = A,
Permeability =U;

Reluctance of the right limb is given by
Uz Az

R3

317



The equivalent circuit of the mentioned magnetic circuit is given in Figure 7.15. R,
defines the reluctance of the left limb, R, defines the reluctance of the central limb
while R defines the reluctance of the right limb of the parallel magnetic circuit.

@
— R1 Mode
MMF, D14 @z
?'-LT'-LFC) MMF, S R2 MMF; SR3

Figure 7.15: Equivalent Circuit

Application of a law that is analogous to KVL to loop 1 as well as loop 2 results in the
following equations.

MMF = MMF, + MMF, (7.21)

MMF, = MMF, (7.22)

Where MMF = NI, the above two equations are analogous to equations 7.17 and 7.18.
Obviously equation no 7.21 can be written in the following format,

MMF = MMF, + MMF, (7.23)
Where MMF, = @R,, MMF, = 3;R, and MMF; = @,R5.

D 7.3: Consider the parallel magnetic circuit as shown in Figure 7.16. The coil is placed
on the left limb. Determine the current in the coil of 50 turns to produce the magnetic
flux of 1.4 X 10~* Wb in the right limb. The characteristics of the two materials are
given as under.

1. LeftLimb
Mean length = ¢, =02m,
Crossectinal area = A; = 6 X 10™*m?

Permeability = u; = 6.25%x1073
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2. Central Limb
Mean length = £, =0.05m
Crossectinalarea = A, = 6 X 10™*m?
Permeability = u,=625%x1073
3. Right Limb
Mean length = ¢£;=0.2m,

Crossectinal area = A; = 6 X 10™*m?

Permeability = u3 = 3.05x1073
N=50T
=7 @, =14%x10"* Wb

E‘l—l' E.‘lz—h

AWM I —
_‘59-

LN=
=

Figure 7.16: Parallel Magnetic Circuit

Solution: The equivalent circuit is shown in Figure 7.17. we determine the reluctance of
each material;

Reluctance of the left limb
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2

= =53.33 x 103 AT
Ry A 53.33 0 /Wb
Reluctance of the central limb
R, =2~ 1333 x 103 AT/
2 Uz A . Wb
Reluctance of the right limb
Ry =% = 10928 10° AT/
3 Us A3 . Wb

Let us determine flux in the central limb with following equation.

MMF, = MMF,
61732 = ﬂ2733
@
- R1 Mode
MMF, D14 @2y
MMF () MMF, SRz MMF; 2R3

Figure 7.17: Equivalent Circuit

g2:R3
@, = %,
_ 14 x107* x 109.28 x 10°
= 13.33 x 103

@, =12.29x10~* Wh

b=0,+9,
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B3=1229%x10"*+1.4x107*=13.79 x 10~*

MMF = NI
AS MMF = MMF, + MMF,
Therefore NI =0@R, + @R,

507 =13.79 x 107* x 53.33 x 103 + 12.29 x 10™* x 13.33 x 103
501 = 89.95
=184

7-6  Single Phase Transformer

A single phase ideal transformer is shown in Figure 7.18. The core of the transformer is
either made of iron or steel. There are two windings of a single phase AC transformer;
Winding on the primary side of a transformer is known as primary winding and winding
on secondary side of a transformer is known as secondary winding. The core of a
transformer provides a path of low reluctance to flow of magnetic flux. AC voltage is
applied across the primary winding that results in a primary current i;. Primary current
in the primary coil produces time varying magnetic flux that circulates either in
clockwise or counter clockwise direction in the core. Equation for the primary current is

iy = Iy Sin wt (7.24)

D —»

Secondary winding

Primary winding Core

Figure 7.18: Single Phase Transformer
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Equation for the time varying magnetic flux is
@ = @,,sinwt (7.25)

This time varying magnetic flux induces a time varying voltage across the primary
winding and this voltage is termed as self induced voltage. This self induced voltage
across the primary winding of the transformer can be calculated with the help of
Faraday’s law.

ag
€1 = N1E

d .
e, = NlE( @,, sin wt)

e; = Nyw @,, sin(wt + 90) (7.26)

The induced voltage across the primary winding leads the primary current by 90°.
According to KVL the voltage across the source in the primary loop equals to this
induced voltage.

v, =e
Therefore equation for the primary voltage is

v; = Nyw @,, sin(wt + 90) (7.27)
Maximum value of the Primary voltage is

Vin1 = Ny @, (7.28)

RMS value of the Primary voltage is

V, = 0.707N,w @,p, (7.29)

As the magnetic flux circulates in the core, it induces a voltage in the secondary winding
of the transformer. This induction is called mutual induction and the induced voltage
across the secondary winding can be found with the help of Faradays’ mathematical
model.
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e, = sz

d .
e, = NZE( @,, sin wt)

e, = Nyw @, sin(wt + 90) (7.30)
The induced voltage across the secondary winding leads the primary current by 90° as
well. According to KVL the voltage across the resistor in the secondary loop equals to

this induced voltage.

Uy = €,
Therefore equation for the secondary voltage is

v, = Nyw @, sin(wt + 90) (7.31)
Maximum value of the secondary voltage is

Vinz = Now By, (7.32)
RMS value of the secondary voltage is

V, =0.707N,w @, (7.33)

Dividing equation 7.29 by 7.33, we obtain the turn ratio of the transformer.

Vi _ N
V, N
N,
V= (7.34)

If N, > N;, thenV, > V; and the transformer will step up level of the primary voltage
and will be known as step up transformer. In this case the resistance of the secondary
winding is greater than the resistance of primary winding. If N, < N; , then V, < V; and
the transformer will reduce level of the primary voltage and will be known as step down
transformer. In this case resistance of the primary winding is greater than resistance of
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the secondary winding. Under ideal condition there will be no losses in the transformer
and VA on primary side will be equal to VA on secondary side.

Vil =W, 1,
Therefore the turn ratio may be computed as

Ny, I

N, I

Schematic diagram of a single phase transformer is displayed in Figure 7.18b.

==

Figure 7.18b: Schematic Diagram of Transformer

7-7 Force on a Current Carrying Conductor

When a current carrying conductor is placed in magnetic field, it experiences a force.
Force is a vector quantity having magnitude as well as direction. Vector quantities are
represented by bold letters. Consider a current carrying conductor which is located in
magnetic field as shown in Figure 7.19. This conductor will experience a force which is
directly proportional to strength of the magnetic field, length of conductor, current in
the conductor and sine of the angle between length and magnetic field.

F =ILBsinf (7.35)

The above equation means that if current in the conductor is parallel to the magnetic
flux density, then no force will be exerted on the conductor. So, proper orientation of
the magnetic field plays an important role. As force is a vector quantity, in order to find
out the direction of this force, length of the conductor is considered as a vector quantity
in the direction of the current.
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|

Y =

Figure 7.19: Current Carrying Conductor in a Magnetic Field

The direction of the cross product L X B is the direction of the force on the current
carrying conductor. So the direction as well as magnitude of this force can be found with
the following equation.

F=ILXB (7.36)
Another way to find this force is to consider a very small portion of the current carrying
conductor, represented by d€ as shown in Figure 7.20.

A -
B
L 8
di
IT
Y =

Figure 7.20: Differential Current Element in a Magnetic Field
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d¥ is a vector quantity and this differential vector is always in direction of the current.
The differential force on the differential portion of the current carrying conductor is
calculated with the help of equation 7.37.

dF = Id¢ X B (7.37)

If we want to compute the total force on the current carrying conductor, we need to
integrate both sides of equation 7.37.

F=[Id¢xB (7.38)

7-8 Force on a Moving Charge

A current carrying conductor is placed in a magnetic field as shown in Figure 7.21. the
force which is experienced by this conductor is given by

F=[Id¢xB (7.39)

Current in this conductor is due to motion of free charge as the rate of motion of charge
defines current. The total free charge which is in motion in the above mentioned
conductor is Q coulomb.

dQ
=
& -
B
L 5|
dL
IT
Y Q

Figure 7.21: Current Carrying Conductor in a Magnetic Field
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Multiplying both sides of the above equation by d€, we obtain the following equation

de
1de =dQ—

We assume that the free charge inside the conductor travels distance d® in time dt,
de . . .
then o represents velocity of the free charge inside the conductor. Velocity of the free

charge is represented by V. So
Id¢ =dQV

In light of the above equation, the force on the current carrying conductor can be found
as

F=[dQ (VxB) (7.40)

Let us assume that the free charge moves with a uniform velocity Vin a uniform

[ae=0

So force on the charge that moves in a magnetic field B is given by

magnetic field B, then

F=Q (VXB) (7.41)

Now, let us assume that charge Q moves in a magnetic as well as electric field as shown
in Figure 7.22.

v B

I/

Q — = E

Figure 7.22: Moving Charge in a Magnetic as well as Electric Field

There are two sources that exert force on the moving charge, electric and magnetic
field. In order to find the total force on the moving charge we apply Superposition
theorem. The Force on the moving charge in the absence of electric field is given by

327



F;=Q(V xB) (7.42)
Force on the moving charge in the absence of magnetic field is given by

F, =QE (7.43)
Vector sum of these two forces results in the total force on the moving charge

F=F{+F,

F=Q[(VXxB)+E] (7.44)
This last equation is known as Lorentz Force Equation.

7-9 Force between two Current Carrying Conductors

Two current carrying conductors are placed in the magnetic fields of each other as
shown as in Figure 7.23. The current I, in the first conductor will produce a magnetic
field By in accordance with Biot-Savart Law and it will exert a force F, on the second
current carrying conductor. Similarly the current I, in the second conductor will produce
a magnetic field B, in accordance with Biot-Savart Law and it will exert a force F; on
the first current carrying conductor. The ongoing discussion implies that when two
current carrying conductors are placed close to each other then there is either a force of
attraction or a force of repulsion between them. The nature of the force depends upon
the directions of the two currents which will be explored in the upcoming discussion.
Force experienced by the first conductor due to the magnetic field of the second
conductor is computed using the following equation.

F1 = flld'gl X BZ (745)

Where d¥; is the differential length vector of the first current carrying conductor in
direction of the current I;. Experimentally the force of repulsion between two current
carrying conductors is found with an apparatus known as Current Balance. Force
experienced by the second conductor due to the magnetic field of the first conductor is
computed using the following equation.

FZ = f[zd'ez X B1 (746)
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P

— —

Figure 7.23: Two Current Carrying Conductors

Where d¥, is the differential length vector of the second current carrying conductor in
direction of the current I,. This fact should be kept in mind that bold letters in these
equations denote vector quantities. This is law of nature that things tend to move from
a place of higher potential to a place of lower potential. If we apply right hand rule on
the two current carrying conductors of Figure 7.24, the magnetic flux cancel the effect
of each other in the space between these two conductors.

1 2

=
=
F—1 3

Higher Magnetic Lower Magnetic Higher Magnetic
Field Region Field Region Field Region

diy I di; [
11T IzT

Figure 7.24: Force of Attraction between two Current Carrying Conductors

329



Obviously these two conductors will tend to move from a place of higher magnetic field
to a place of lower magnetic field and there will be a force of attraction between them.
So it is concluded that if the currents in these conductors are in same direction, then
there will be a force of attraction between the conductors. If we apply right hand rule
on the two current carrying conductors of Figure 7.25, the magnetic flux reinforce the
effect of each other in the space between these two conductors.

Lower Magnetic Higher Magnetic Lower Magnetic
Field Region Field Region Field Region

diy [ di; [

q

— =

Figure 7.25: Force of Repulsion between two Current Carrying Conductors

Obviously these two conductors will tend to move from a place of higher magnetic field
to a place of lower magnetic field and there will be a force of repulsion between them.
So it is concluded that if the currents in these conductors are in opposite direction, then
there will be a force of repulsion between the conductors.

7-10 Force on a Current Carrying Loop

A rectangular current carrying loop is placed in a magnetic field as shown in Figure 7.26.
The loop carries current in the counter clockwise direction and is located in Z =0
plane. a, , @, and a, are the unit vectors along x, y and z-axis respectively. Force will
act on the current carrying loop and we need to find out the total force on the loop. In
order to find the total force acting on the current carrying loop, we find the force on
side ab, side bc, side cd and side da. Vector sum of forces on the four sides of the loop
results in the total force. For calculation of these forces, we recall the following

equation.
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F=ILXB (7.47)

Force on side ab

F,, =ILxB (7.48)

Where L = —La, and B = Ba,

Therefore L X B = —La, X Ba, = —LBa,

Figure 7.26: Current Carrying Loop
Fop = —ILBa, (7.49)

Force on side bc
Fp. =ILXB (7.50)

Where L = —Wa, and B = Ba,
Therefore LX B = —Wa, X Ba, =0
Fy. =—IWa, X Ba, =0 (7.51)

Force on side cd
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F.q=ILXB (7.52)
Where L = La, and B = Ba,
Therefore L X B = La, X Ba, = LBa,

F.q = ILBa, (7.53)
Force on side da

Fgo=ILXB (7.54)
Where L = Wa, and B = Ba,
Therefore LX B = Wa, X Ba, =0

Fyo.=1Wa, XBa, =0 (7.55)

Force on side ab is in the direction of negative y-axis, while force on side cd is in the
direction of positive y-axis as shown in Figure 7.27. In presence of these two forces the
current carrying loop will rotate in the clockwise direction around z-axis with a uniform
angular velocity and will be in state of equilibrium.

Rotation

ay

il

ab

Figure 7.27: Rotation of Current Carrying Loop
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The total force on the loop will be equal to the vector sum of all the four forces. That is

Exercise

F=Fab +Fbc+ ch+ Fda

F = —-ILBa, + ILBa, =0

Q 7.1 : Consider a series magnetic circuit as shown in Figure 7.28. Determine the

current in the coil of 400 turns, if it produces a magnetic flux of 2mWhb. The details of

the materials are;
1. Material 1

2. Material 2

3. Material 3

Mean length = £, =02m,

Crossectinal area = A; = 6 X 10™*m?

Permeability =y = 6.25x1073

Mean length = £, =0.05m

Crossectinal area = A, = 6 X 10~*m?

Permeability = U, =625%x1073

Mean length = ¥¢;=0.2m,
Crossectinal area = A; = 6 X 10~ *m?

Permeability = uz = 3.05x1073
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[+ MMF=M1
Figure 7.28: Circuit forQ 7.1
Answer: 0.88A

Q 7.2 : Consider a parallel magnetic circuit as shown in Figure 7.29. Determine the
current in the coil of 400 turns, if it produces total magnetic flux of 2mWb in material 1.
(b) Find the flux in the central as well as right limb. The details of the materials are;

4. Material 1
Mean length = ¢, =02m,
Crossectinal area = 4; = 6 X 10~*m?
Permeability =y = 6.25%x1073

5. Material 2
Mean length = 4¥¢,=0.05m

Crossectinalarea = A, = 6 X 10™4m?
Permeability = u,=625%x1073

6. Material 3

Mean length = £;=0.2m,
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Crossectinal area = A3 = 6 X 10~ *m?

Permeability = pu3 = 3.05x1073
g Node D2 5
e
1 1
= @4
= ‘
£
v (2)
2 N

Figure 7.29: Circuit forQ 7.2

Answer: 0.32 A, 1.78 mWb and 0.217 mWb

Q 7.3 : Consider a charge of 2mC moving with a velocity of 3 X 10°a, m/s in a
magnetic flux density of 2 x 1073 a, T.Determine the magnetic force on it.

Answer:12 az N

Q 7.4 : Consider a charge of 2mC located in the electric field of 4 x 103 a; V/m.
Determine the electric force on it.

Answer: 8 az N

Q 7.5 : Consider a charge of 2mC moving with a velocity of 3 X 10° a,, m/s in a
magnetic flux density of 2 x 1073 a, T.if electric field of 4 X 103 a; V/m also exists

in the vicinity of the moving charge, then determine the net force on the charge.

Answer: 20 a;z N
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The book has been written for undergraduate students of Electrical Engineering. The author
has reflected his 22 years of undergraduate level teaching experience in the book. This book is
intended to be easy and bringing the readers the important information regarding some basic
and fundamental topics of electrical engineering. Important theoretical and mathematical
results are given with the accompanying lengthy proofs, which is the main characteristic of

the book. Solved numerical problems have been added to give the students the confidence in
understanding the material presented.
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