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Preface

Statistical thinking will one day be as necessary a qualification for efficient citizenship as the ability to
read and write. – Samuel Wilkes, 1951, paraphrasing H. G. Wells from Mankind in the Making

The value of statistical thinking is now accepted by researchers and practitioners from a broad range of endeavors.
This viewpoint has become common wisdom in a world of big data. The challenge for statistics educators is to adapt
their pedagogy to accommodate the circumstances associated to the information age. This choice of pedagogy should
be attuned to the quantitative capabilities and scientific background of the students as well as the intended use of their
newly acquired knowledge of statistics.

Many university students, presumed to be proficient in college algebra, are taught a variety of procedures and
standard tests under a well-developed pedagogy. This approach is sufficiently refined so that students have a good
intuitive understanding of the underlying principles presented in the course. However, if the statistical needs presented
by a given scientific question fall outside the battery of methods presented in the standard curriculum, then students
are typically at a loss to adjust the procedures to accommodate the additional demand.

On the other hand, undergraduate students majoring in mathematics frequently have a course on the theory of
statistics as a part of their program of study. In this case, the standard curriculum repeatedly finds itself close to the
very practically minded subject that statistics is. However, the demands of the syllabus provide very little time to
explore these applications with any sustained attention.

Our goal is to find a middle ground.
Despite the fact that calculus is a routine tool in the development of statistics, the benefits to students who have

learned calculus are infrequently employed in the statistics curriculum. The objective of this book is to meet this need
with a one semester course in statistics that moves forward in recognition of the coherent body of knowledge provided
by statistical theory having an eye consistently on the application of the subject. Such a course may not be able to
achieve the same degree of completeness now presented by the two more standard courses described above. However,
it ought to able to achieve some important goals:

• leaving students capable of understanding what statistical thinking is and how to integrate this with scientific
procedures and quantitative modeling and

• learning how to ask statistics experts productive questions, and how to implement their ideas using statistical
software and other computational tools.

Inevitably, many important topics are not included in this book. In addition, I have chosen to incorporate abbre-
viated introductions of some more advanced topics. Such topics can be skipped in a first pass through the material.
However, one value of a textbook is that it can serve as a reference in future years. The context for some parts of
the exposition will become more clear as students continue their own education in statistics. In these cases, the more
advanced pieces can serve as a bridge from this book to more well developed accounts. My goal is not to compose a
stand alone treatise, but rather to build a foundation that allows those who have worked through this book to introduce
themselves to many exciting topics both in statistics and in its areas of application.
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Who Should Use this Book
The major prerequisites are comfort with calculus and a strong interest in questions that can benefit from statistical
analysis. Willingness to engage in explorations utilizing statistical software is an important additional requirement.
The original audience for the course associated to this book are undergraduate students minoring in mathematics.
These student have typically completed a course in multivariate calculus. Many have been exposed to either linear
algebra or differential equations. They enroll in this course because they want to obtain a better understanding of
their own core subject. Even though we regularly rely on the mechanics of calculus and occasionally need to work
with matrices, this is not a textbook for a mathematics course, but rather a textbook that is dedicated to a higher level
of understanding of the concepts and practical applications of statistics. In this regard, it relies on a solid grasp of
concepts and structures in calculus and algebra.

With the advance and adoption of the Common Core State Standards in mathematics, we can anticipate that
primary and secondary school students will experience a broader exposure to statistics through their school years. As
a consequence, we will need to develop a curriculum for teachers and future teachers so that they can take content in
statistics and turn that into curriculum for their students. This book can serve as a source of that content.

In addition, those engaged both in industry and in scholarly research are experiencing a surge in the need to
design more complex experiments and analyze more diverse data types. Universities and industry are responding with
advanced educational opportunities to extend statistics education beyond the theory of probability and statistics, linear
models and design of experiments to more modern approaches that include stochastic processes, machine learning and
data mining, Bayesian statistics, and statistical computing. This book can serve as an entry point for these critical
topics in statistics.

An Annotated Syllabus
The four parts of the course - organizing and collecting data, an introduction to probability, estimation procedures and
hypothesis testing - are the building blocks of many statistics courses. We highlight some of the particular features in
this book.

Organizing and Collecting Data

Much of this is standard and essential - organizing categorical and quantitative data, appropriately displayed as contin-
gency tables, bar charts, histograms, boxplots, time plots, and scatterplots, and summarized using medians, quartiles,
means, weighted means, trimmed means, standard deviations, correlations and regression lines. We use this as an
opportunity to introduce to the statistical software package R and to add additional summaries like the empirical cu-
mulative distribution function and the empirical survival function. One example incorporating the use of this is the
comparison of the lifetimes of wildtype and transgenic mosquitoes and a discussion of the best strategy to display and
summarize data if the goal is to examine the differences in these two genotypes of mosquitoes in their ability to carry
and spread malaria. A bit later, we will do an integration by parts exercise to show that the mean of a non-negative
continuous random variable is the area under its survival function.

Collecting data under a good design is introduced early in the text and discussion of the underlying principles of
experimental design is an abiding issue throughout the text. With each new mathematical or statistical concept comes
an enhanced understanding of what an experiment might uncover through a more sophisticated design than what was
previously thought possible. The students are given readings on design of experiment and examples using R to create
a sample under variety of protocols.

Introduction to Probability

Probability theory is the analysis of random phenomena. It is built on the axioms of probability and is explored, for
example, through the introduction of random variables. The goal of probability theory is to uncover properties arising
from the phenomena under study. Statistics is devoted to the analysis of data. One goal of statistical science is to
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articulate as well as possible what model of random phenomena underlies the production of the data. The focus of this
section of the course is to develop those probabilistic ideas that relate most directly to the needs of statistics.

Thus, we must study the axioms and basic properties of probability to the extent that the students understand
conditional probability and independence. Conditional probability is necessary to develop Bayes formula which we
will later use to give a taste of the Bayesian approach to statistics. Independence will be needed to describe the
likelihood function in the case of an experimental design that is based on independent observations. Densities for
continuous random variables and mass function for discrete random variables are necessary to write these likelihood
functions explicitly. Expectation will be used to standardize a sample sum or sample mean and to perform method of
moments estimates.

Random variables are developed for a variety of reasons. Some, like the binomial, negative binomial, Poisson or
the gamma random variable, arise from considerations based on Bernoulli trials or exponential waiting. The hyperge-
ometric random variable helps us understand the difference between sampling with and without replacement. The F ,
t and chi-square random variables will later become test statistics. Uniform random variables are the ones simulated
by random number generators. Because of the central limit theorem, the normal family is the most important among
the list of parametric families of random variables.

The flavor of the text returns to becoming more authentically statistical with the law of large numbers and the
central limit theorem. These are largely developed using simulation explorations and first applied to simple Monte
Carlo techniques and importance sampling to estimate the value of an definite integrals. One cautionary tale is an
example of the failure of these simulation techniques when applied without careful analysis. If one uses, for example,
Cauchy random variables in the evaluation of some quantity, then the simulated sample means can appear to be
converging only to experience an abrupt and unpredictable jump. The lack of convergence of an improper integral
reveals the difficulty. The central object of study is, of course, the central limit theorem. It is developed both in terms
of sample sums and sample means and proportions and used in relatively standard ways to estimate probabilities.
However, in this book, we can introduce the delta method which adds ideas associated to the central limit theorem to
the context of propagation of error.

Estimation
In the simplest possible terms, the goal of estimation theory is to answer the question: What is that number? An
estimate is a statistic, i. e., a function of the data. We look to two types of estimation techniques - method of moments
and maximum likelihood and several criteria for an estimator using, for example, variance and bias. Several examples
including mark and recapture and the distribution of fitness effects from genetic data are developed for both types of
estimators. The variance of an estimator is approximated using the delta method for method of moments estimators
and using Fisher information for maximum likelihood estimators. An analysis of bias is based on quadratic Taylor
series approximations and the properties of expectations. Both classes of estimators are often consistent. This implies
that the bias decreases towards zero with an increasing number of observations. R is routinely used in simulations to
gain insight into the quality of estimators.

The point estimation techniques are followed by interval estimation and, notably, by confidence intervals. This
brings us to the familiar one and two sample t-intervals for population means and one and two sample z-intervals for
population proportions. In addition, we can return to the delta method and the observed Fisher information to construct
confidence intervals associated respectively to method of moment estimators and and maximum likelihood estimators.
We also add a brief introduction on bootstrap confidence intervals and Bayesian credible intervals in order to provide
a broader introduction to strategies for parameter estimation.

Hypothesis Testing
For hypothesis testing, we first establish the central issues - null and alternative hypotheses, type I and type II errors,
test statistics and critical regions, significance and power. We then present the ideas behind the use of likelihood ratio
tests as best tests for a simple hypothesis. This is motivated by a game designed to explain the importance of the
Neyman Pearson lemma. This approach leads us to well-known diagnostics of an experimental design, notably, the
receiver operating characteristic and power curves.
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Extensions of the Neyman Pearson lemma form the basis for the t test for means, the chi-square test for goodness
of fit, and the F test for analysis of variance. These results follow from the application of optimization techniques
from calculus, including the use of Lagrange multipliers to develop goodness of fit tests. The Bayesian approach
to hypothesis testing is explored for the case of simple hypothesis using morphometric measurements, in this case a
butterfly wingspan, to test whether a habitat has been invaded by a mimic species.

The desire of a powerful test is articulated in a variety of ways. In engineering terms, power is called sensitivity.
We illustrate this with a radon detector. An insensitive instrument is a risky purchase. This can be either because
the instrument is substandard in the detection of fluctuations or poor in the statistical basis for the algorithm used to
determine a change in radon level. An insensitive detector has the undesirable property of not sounding its alarm when
the radon level has indeed risen.

The course ends by looking at the logic of hypotheses testing and the results of different likelihood ratio analyses
applied to a variety of experimental designs. The delta method allows us to extend the resulting test statistics to
multivariate nonlinear transformations of the data. The textbook concludes with a practical view of the consequences
of this analysis through case studies in a variety of disciplines including, for example, genetics, health, ecology,
and bee biology. This will serve to introduce us to the well known t procedure for inference of the mean, both the
likelihood-based G2 test and the traditional chi-square test for discrete distributions and contingency tables, and the
F test for one-way analysis of variance. We add short descriptions for the corresponding non-parametric procedures,
namely, permutation, ranked-sum and signed-rank tests for quantitative data, and exact tests for categorical data

Exercises and Problems
One obligatory statement in the preface of a book such as this is to note the necessity of working problems. The mate-
rial can only be mastered by grappling with the issues through the application to engaging and substantive questions.
In this book, we address this imperative through exercises and through problems. The exercises, integrated into the
textbook narrative, are of two basic types. The first is largely mathematical or computational exercises that are meant
to provide or extend the derivation of a useful identity or data analysis technique. These experiences will prepare the
student to perform the calculations that routinely occur in investigations that use statistical thinking. The second type
form a collection of questions that are meant to affirm the understanding of a particular concept.

Problems are collected at the end of each of the four parts of the book. While the ordering of the problems generally
follows the flow of the text, they are designed to be more extensive and integrative. These problems often incorporate
several concepts and will call on a variety of problem solving strategies combining handwritten work with the use of
statistical software. Without question, the best problems are those that the students chose from their own interests.
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Topic 1

Displaying Data

There are two goals when presenting data: convey your story and establish credibility. - Edward Tufte

Statistics is a mathematical science that is concerned with the collection, analysis, interpretation or explanation,
and presentation of data. Properly used statistical principles are essential in guiding any inquiry informed by data and,
especially in the phase of data exploration, is routinely a fundamental source for discovery and innovation. Insights
from data may come from a well conceived visualization of the data, from modern methods of statistical learning and
model selection as well as from time-honored formal statistical procedures.

The first encounters one has to data are through graphical displays and numerical summaries. The goal is to find
an elegant method for this presentation that is at the same time both objective and informative - making clear with a
few lines or a few numbers the salient features of the data. In this sense, data presentation is at the same time an art, a
science, and an obligation to impartiality.

In the section, we will describe some of the standard presentations of data and at the same time, taking the opportu-
nity to introduce some of the commands that the software package R provides to draw figures and compute summaries
of the data.

1.1 Types of Data
A data set provides information about a group of individuals. These individuals are, typically, representatives chosen
from a population under study. Data on the individuals are meant, either informally or formally, to allow us to make
inferences about the population. We shall later discuss how to define a population, how to choose individuals in the
population and how to collect data on these individuals.

• Individuals are the objects described by the data.

• Variables are characteristics of an individual. In order to present data, we must first recognize the types of data
under consideration.

– Categorical variables partition the individuals into classes. Other names for categorical variables are
levels or factors. One special type of categorical variables are ordered categorical variables that suggest
a ranking, say small. medium, large or mild, moderate, severe.

– Quantitative variables are those for which arithmetic operations like addition and differences make sense.

Example 1.1 (individuals and variables). We consider two populations - the first is the nations of the world and the
second is the people who live in those countries. Below is a collection of variables that might be used to study these
populations.
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nations people
population size age

time zones height
average rainfall gender
life expectancy ethnicities
mean income annual income
literacy rate literacy
capital city mother’s maiden name
largest river marital status

Exercise 1.2. Classify the variables as quantitative or categorical in the example above.

The naming of variables and their classification as categorical or quantitative may seem like a simple, even trite,
exercise. However, the first steps in designing an experiment and deciding on which individuals to include and which
information to collect are vital to the success of the experiment. For example, if your goal is to measure the time for
an animal (insect, bird, mammal) to complete some task under different (genetic, environmental, learning) conditions,
then, you may decide to have a single quantitative variable - the time to complete the task. However, an animal in
your study may not attempt the task, may not complete the task, or may perform the task. As a consequence, your
data analysis will run into difficulties if you do not add a categorical variable to include these possible outcomes of an
experiment.

Exercise 1.3. Give examples of variables for the population of vertebrates, of proteins.

1.2 Categorical Data

1.2.1 Pie Chart
A pie chart is a circular chart divided into sectors, illustrating relative magnitudes in frequencies or percents. In a pie
chart, the area is proportional to the quantity it represents.

Example 1.4. As the nation debates strategies for delivering health insurance, let’s look at the sources of funds and
the types of expenditures.

  

Figure 1.1: 2008 United States health care (a) expenditures (b) income sources, Source: Centers for Medicare and Medicaid Services, Office of
the Actuary, National Health Statistics Group
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Exercise 1.5. How do you anticipate that this pie chart will evolve over the next decade? Which pie slices are likely
to become larger? smaller? On what do you base your predictions?

Example 1.6. From UNICEF, we read “The proportion of children who reach their fifth birthday is one of the most
fundamental indicators of a country’s concern for its people. Child survival statistics are a poignant indicator of the
priority given to the services that help a child to flourish: adequate supplies of nutritious food, the availability of high-
quality health care and easy access to safe water and sanitation facilities, as well as the family’s overall economic
condition and the health and status of women in the community. ”

Example 1.7. Gene Ontology (GO) project is a bioinformatics initiative whose goal is to provide unified terminology
of genes and their products. The project began in 1998 as a collaboration between three model organism databases,
Drosophila, yeast, and mouse. The GO Consortium presently includes many databases, spanning repositories for
plant, animal and microbial genomes. This project is supported by National Human Genome Research Institute. See

http://www.geneontology.org/

Figure 1.2: The 25 most frequent Biological Process Gene Ontology (GO) terms.
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To make a simple pie chart in R for the proportion of AIDS cases among US males by transmission category.

> males<- c(58,18,16,7,1)
> pie(males)

This many be sufficient for your own personal use. However, if we want to use a pie chart in a presentation, we
will have to provide some essential details. For a more descriptive pie chart, one has to become accustomed to learning
to interact with the software to settle on a graph that is satisfactory to the situation.

• Define some colors ideal for black and white print.

> colors <- c("white","grey70","grey90","grey50","black")

• Calculate the percentage for each category.

> male_labels <- round(males/sum(males)*100, 1)

The number 1 indicates rounded to one decimal place.

> male_labels <- paste(male_labels, "\%", sep=" ")

This adds a space and a percent sign.

• Create a pie chart with defined heading and custom colors and labels and create a legend.

> pie(males, main="Proportion of AIDS Cases among Males by Transmission Category
+ Diagnosed - USA, 2005", col=colors, labels=male_labels, cex=0.8)
> legend("topright", c("Male-male contact","Injection drug use (IDU)",
+ "High-risk heterosexual contact","Male-male contact and IDU","Other"),
+ cex=0.8,fill=colors)

The entry cex=0.8 indicates that the legend has a type set that is 80% of the font size of the main title.

58 %

18 % 16 %

7 %

1 %

Proportion of AIDS Cases among Males by Transmission Category Diagnosed − USA, 2005

Male−male contact
Injection drug use (IDU)
High−risk heterosexual contact
Male−male contact and IDU
Other
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1.2.2 Bar Charts
Because the human eye is good at judging linear measures and poor at judging relative areas, a bar chart or bar graph
is often preferable to pie charts as a way to display categorical data.

To make a simple bar graph in R,

> barplot(males)

For a more descriptive bar chart with information on females:

• Enter the data for females and create a 5× 2 array.

> females <- c(0,71,27,0,2)
> hiv<-array(c(males,females), dim=c(5,2))

• Generate side-by-side bar graphs and create a legend,

> barplot(hiv, main="Proportion of AIDS Cases by Sex and Transmission Category
+ Diagnosed - USA, 2005", ylab= "percent", beside=TRUE,
+ names.arg = c("Males", "Females"),col=colors)
> legend("topright", c("Male-male contact","Injection drug use (IDU)",
+ "High-risk heterosexual contact","Male-male contact and IDU","Other"),
+ cex=0.8,fill=colors)

Males Females

Proportion of AIDS Cases by Sex and Transmission Category
Diagnosed − USA, 2005

pe
rc

en
t

0
10

20
30

40
50

60
70 Male−male contact

Injection drug use (IDU)
High−risk heterosexual contact
Male−male contact and IDU
Other

Example 1.8. Next we examine a segmented bar plot. This shows the ancestral sources of genes for 75 populations
throughout Asia. the data are based on information gathered from 50,000 genetic markers. The designations for the
groups were decided by the software package STRUCTURE.

1.3 Two-way Tables
Relationships between two categorical variables can be shown through a two-way table (also known as a contingency
table , cross tabulation table or a cross classifying table ).
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Figure 1.3: Dispaying human genetic diversity for 75 populations in Asia. The software program STRUCTURE here infers 14 source populations,
10 of them major. The length of each segment in the bar is the estimate by STRUCTURE of the fraction of the genome in the sample that has
ancestors among the given source population.
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Example 1.9. In 1964, Surgeon General Dr. Luther Leonidas Terry published a landmark report saying that smoking
may be hazardous to health. This led to many influential reports on the topic, including the study of the smoking habits
of 5375 high school children in Tucson in 1967. Here is a two-way table summarizing some of the results.

student student
smokes does not smoke total

2 parents smoke 400 1380 1780
1 parent smokes 416 1823 2239
0 parents smoke 188 1168 1356

total 1004 4371 5375

• The row variable is the parents smoking habits.

• The column variable is the student smoking habits.

• The cells display the counts for each of the categories of row and column variables.

A two-way table with r rows and c columns is often called an r by c table (written r × c).

The totals along each of the rows and columns give the marginal distributions. We can create a segmented bar
graph as follows:

> smoking<-matrix(c(400,1380,416,1823,188,1168),ncol=3)
> colnames(smoking)<-c("2 parents","1 parent", "0 parents")
> rownames(smoking)<-c("smokes","does not smoke")
> smoking

2 parents 1 parent 0 parents
smokes 400 416 188
does not smoke 1380 1823 1168
> barplot(smoking,legend=rownames(smoking))
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Example 1.10. Hemoglobin E is a variant of hemoglobin with a mutation in the β globin gene causing substitution of
glutamic acid for lysine at position 26 of the β globin chain. HbE (E is the one letter abbreviation for glutamic acid.)
is the second most common abnormal hemoglobin after sickle cell hemoglobin (HbS). HbE is common from India to
Southeast Asia. The β chain of HbE is synthesized at a reduced rate compare to normal hemoglobin (HbA) as the HbE
produces an alternate splicing site within an exon.

It has been suggested that Hemoglobin E provides some protection against malaria virulence when heterozygous,
but is causes anemia when homozygous. The circumstance in which the heterozygotes for the alleles under considera-
tion have a higher adaptive value than the homozygote is called balancing selection.

The table below gives the counts of differing hemoglobin genotypes on two Indonesian islands.

genotype AA AE EE
Flores 128 6 0
Sumba 119 78 4

Because the heterozygotes are rare on Flores, it appears malaria is less prevalent there since the heterozygote does
not provide an adaptive advantage.

Exercise 1.11. Make a segmented barchart of the data on hemoglobin genotypes. Have each bar display the distribu-
tion of genotypes on the two Indonesian islands.

1.4 Histograms and the Empirical Cumulative Distribution Function
Histograms are a common visual representation of a quantitative variable. Histograms summarize the data using
rectangles to display either frequencies or proportions as normalized frequencies. In making a histogram, we

• Divide the range of data into bins of equal width (usually, but not always).

• Count the number of observations in each class.

• Draw the histogram rectangles representing frequencies or percents by area.

Interpret the histogram by giving

• the overall pattern

– the center

– the spread

– the shape (symmetry, skewness, peaks)

• and deviations from the pattern

– outliers

– gaps

The direction of the skewness is the direction of the longer of the two tails (left or right) of the distribution.
No one choice for the number of bins is considered best. One possible choice for larger data sets is Sturges’

formula to choose b1 + log2 nc bins. (b·c, the floor function, is obtained by rounding down to the next integer.)

Exercise 1.12. The histograms in Figure 1.4 shows the distribution of lengths of a normal strain and mutant strain of
Bacillus subtilis. Describe the distributions.

Example 1.13. Taking the age of the presidents of the United States at the time of their inauguration and creating its
histogram, empirical cumulative distribution function and boxplot in R is accomplished as follows.
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Figure 1.4: Histogram of lengths of Bacillus subtilis. Solid lines indicate wild type and dashed line mutant strain.

> age<- c(57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,
54,42,51,56,55,51,54,51,60,61,43,55,56,61,52,69,64,46,54,47,70)
> par(mfrow=c(1,2))
> hist(age)
> plot(ecdf(age),xlab="age",main="Age of Presidents at the Time of Inauguaration",

sub="Empriical Cumulative Distribution Function")
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So the age of presidents at the time of inauguration range from the early forties to the late sixties with the frequency
starting their tenure peaking in the early fifties. The histogram in generally symmetric about 55 years with spread from
around 40 to 70 years.

The empirical cumulative distribution function Fn(x) gives, for each value x, the fraction of the data less than
or equal to x. If the number of observations is n, then

Fn(x) =
1

n
#(observations less than or equal to x).
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Thus, Fn(x) = 0 for any value of x less than all of the observed values and Fn(x) = 1 for any x greater than
all of the observed values. In between, we will see jumps that are multiples of the 1/n. For example, in the empirical
cumulative distribution function for the age of the presidents, we will see a jump of size 4/45 at x = 57 to indicate the
fact that 4 of the 44 presidents were 57 at the time of their inauguration.

For an alternative method to create a graph of the empirical cumulative distribution function, first place the
observations in order from smallest to largest. For the age of presidents data, we can accomplish this in R by writing
sort(age). Next match these up with the integral multiples of the 1 over the number of observations. In R, we enter
1:length(age)/length(age). Finally, type="s" to give us the steps described above.

> plot(sort(age),1:length(age)/length(age),type="s",ylim=c(0,1),
main = c("Age of Presidents at the Time of Inauguration"),
sub=("Empiricial Cumulative Distribution Function"),
xlab=c("age"),ylab=c("cumulative fraction"))

Exercise 1.14. Give the fraction of presidents whose age at inauguration was under 60. What is the range for the age
at inauguration of the youngest fifth of the presidents?

Exercise 1.15. The histogram for data on the length of three bacterial strains is shown below. Lengths are given in
microns. Below the histograms (but not necessarily directly below) are empirical cumulative distribution functions
corresponding to these three histograms.
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Match the histograms to their respective empirical cumulative distribution functions.

In looking at life span data, the natural question is “What fraction of the individuals have survived a given length
of time?” The survival function Sn(x) gives, for each value x, the fraction of the data greater than or equal to x. If
the number of observations is n, then

Sn(x) =
1

n
#(observations greater than x) =

1

n
(n−#(observations less than or equal to x))

= 1− 1

n
#(observations less than or equal to x) = 1− Fn(x)
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1.5 Scatterplots
We now consider two dimensional data. The values of the first variable x1, x2, . . . , xn are assumed known and in an
experiment and are often set by the experimenter. This variable is called the explanatory, predictor, discriptor, or
input variables and in a two dimensional scatterplot of the data display its values on the horizontal axis. The values
y1, y2 . . . , yn, taken from observations with input x1, x2, . . . , xn are called the response or target variable and its
values are displayed on the vertical axis. In describing a scatterplot, take into consideration

• the form, for example,

– linear

– curved relationships

– clusters

• the direction,

– a positive or negative association

• and the strength of the aspects of the scatterplot.

Example 1.16. Genetic evolution is based on mutation. Consequently, one fundamental question in evolutionary
biology is the rate of de novo mutations. To investigate this question in humans, Kong et al, sequenced the entire
genomes of 78 Icelandic trios and recorded the age of the parents and the number of de novo mutations in the offspring.

The plot shows a moderate positive linear association, children of older parent have, on average, more mutations.
The number of mutations range from ∼ 40 for children of younger parents to ∼ 100 for children of older parents. We
will later learn that the father is the major source of this difference with age.

Example 1.17 (Fossils of the Archeopteryx). The name Archeopteryx derives from the ancient Greek meaning “ancient
feather” or “ancient wing”. Archeopteryx is generally accepted by palaeontologists as being the oldest known bird.
Archaeopteryx lived in the Late Jurassic Period around 150 million years ago, in what is now southern Germany
during a time when Europe was an archipelago of islands in a shallow warm tropical sea. The first complete specimen
of Archaeopteryx was announced in 1861, only two years after Charles Darwin published On the Origin of Species,

13



Introduction to the Science of Statistics Displaying Data

and thus became a key piece of evidence in the debate over evolution. Below are the lengths in centimeters of the
femur and humerus for the five specimens of Archeopteryx that have preserved both bones.

femur 38 56 59 64 74
humerus 41 63 70 72 84

> femur<-c(38,56,59,64,74)
> humerus<-c(41,63,70,72,84)
> plot(femur, humerus,main=c("Bone Lengths for Archeopteryx"))

Unless we have a specific scientific question, we have no real reason for a choice of the explanatory variable.
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Describe the scatterplot.

Example 1.18. This historical data show the 20 largest banks in 1974. Values given in billions of dollars.

Bank 1 2 3 4 5 6 7 8 9 10
Assets 49.0 42.3 36.6 16.4 14.9 14.2 13.5 13.4 13.2 11.8
Income 218.8 265.6 170.9 85.9 88.1 63.6 96.9 60.9 144.2 53.6
Bank 11 12 13 14 15 16 17 18 19 20
Assets 11.6 9.5 9.4 7.5 7.2 6.7 6.0 4.6 3.8 3.4
Income 42.9 32.4 68.3 48.6 32.2 42.7 28.9 40.7 13.8 22.2
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Describe the scatterplot.
In 1972, Michele Sindona, a banker with close ties to the Mafia, along with a purportedly bogus Freemasonic

lodge, and the Nixon administration purchased controlling interest in Bank 19, Long Island’s Franklin National Bank.
As a result of his acquisition of a controlling stake in Franklin, Sindona had a money laundering operation to aid his
alleged ties to Vatican Bank and the Sicilian drug cartel. Sindona used the bank’s ability to transfer funds, produce
letters of credit, and trade in foreign currencies to begin building a banking empire in the United States. In mid-1974,
management revealed huge losses and depositors started taking out large withdrawals, causing the bank to have to
borrow over $1 billion from the Federal Reserve Bank. On 8 October 1974, the bank was declared insolvent due to
mismanagement and fraud, involving losses in foreign currency speculation and poor loan policies.

What would you expect to be a feature on this scatterplot of a failing bank? Does the Franklin Bank have this
feature?

1.6 Time Plots

Some data sets come with an order of events, say ordered by time.

Example 1.19. The modern history of petroleum began in the 19th century with the refining of kerosene from crude oil.
The world’s first commercial oil wells were drilled in the 1850s in Poland and in Romania.The first oil well in North
America was in Oil Springs, Ontario, Canada in 1858. The US petroleum industry began with Edwin Drake’s drilling
of a 69-foot deep oil well in 1859 on Oil Creek near Titusville, Pennsylvania for the Seneca Oil Company. The industry
grew through the 1800s, driven by the demand for kerosene and oil lamps. The introduction of the internal combustion
engine in the early part of the 20th century provided a demand that has largely sustained the industry to this day.
Today, about 90% of vehicular fuel needs are met by oil. Petroleum also makes up 40% of total energy consumption
in the United States, but is responsible for only 2% of electricity generation. Oil use increased exponentially until the
world oil crises of the 1970s.
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Worldwide Oil Production

Million Million Million
Year Barrels Year Barrels Year Barrels
1880 30 1940 2150 1972 18584
1890 77 1945 2595 1974 20389
1900 149 1950 3803 1976 20188
1905 215 1955 5626 1978 21922
1910 328 1960 7674 1980 21722
1915 432 1962 8882 1982 19411
1920 689 1964 10310 1984 19837
1925 1069 1966 12016 1986 20246
1930 1412 1968 14014 1988 21338
1935 1655 1970 16690

With the data given in two columns oil and year, the time plot plot(year,oil,type="b") is given on
the left side of the figure below. This uses type="b" that puts both lines and circles on the plot.
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Figure 1.5: Oil production (left) and the logarithm of oil production (right) from 1880 to 1988.

Sometimes a transformation of the data can reveal the structure of the time series. For example, if we wish to
examine an exponential increase displayed in the oil production plot, then we can take the base 10 logarithm of the
production and give its time series plot. This is shown in the plot on the right above. (In R, we write log(x) for the
natural logarithm and log(x,10) for the base 10 logarithm.)

Exercise 1.20. What happened in the mid 1970s that resulted in the long term departure from exponential growth in
the use of oil?
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Example 1.21. The Intergovernmental Panel on Climate Change (IPCC) is a scientific intergovernmental body tasked
with evaluating the risk of climate change caused by human activity. The panel was established in 1988 by the
World Meteorological Organization and the United Nations Environment Programme, two organizations of the United
Nations. The IPCC does not perform original research but rather uses three working groups who synthesize research
and prepare a report. In addition, the IPCC prepares a summary report. The Fourth Assessment Report (AR4) was
completed in early 2007. The fifth was released in 2014.

Below is the first graph from the 2007 Climate Change Synthesis Report: Summary for Policymakers.
The technique used to draw the curves on the graphs is called local regression. At the risk of discussing concepts

that have not yet been introduced, let’s describe the technique behind local regression. Typically, at each point in the
data set, the goal is to draw a linear or quadratic function. The function is determined using weighted least squares,
giving most weight to nearby points and less weight to points further away. The graphs above show the approximating
curves. The blue regions show areas within two standard deviations of the estimate (called a confidence interval). The
goal of local regression is to provide a smooth approximation to the data and a sense of the uncertainty of the data. In
practice, local regression requires a large data set to work well.
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Example 1.22. The next figure give a time series plot of a single molecule experiment showing the movement of kinesin
along a microtubule. In this case the kinesin has at its foot a glass bead and its heads are attached to a microtubule.
The position of the glass bead is determined by using a laser beam and the optical properties of the bead to locate the
bead and provide a force on the kinesin molecule. In this time plot, the load on the microtubule has a force of 3.5 pN
and the concentration of ATP is 100µM. What is the source of fluctuations in this time series plot of bead position?
How would you expect this time plot to change with changes in ATP concentration and with changes in force?

1.7 Answers to Selected Exercises
1.11. Here are the R commands:

> genotypes<-matrix(c(128,6,0,119,78,4),ncol=2)
> colnames(genotypes)<-c("Flores","Sumba")
> rownames(genotypes)<-c("AA","AE","EE")
> genotypes

Flores Sumba
AA 128 119
AE 6 78
EE 0 4
> barplot(genotypes,legend=rownames(genotypes),args.legend=list(x="topleft"))

The legend was moved to the left side to avoid crowding with the taller bar for the data on Sumba.
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1.12. The lengths of the normal strain has its center at 2.5 microns and range from 1.5 to 5 microns. It is somewhat
skewed right with no outliers. The mutant strain has its center at 5 or 6 microns. Its range is from 2 to 14 microns and
it is slightly skewed right. It has not outliers.

1.14. Look at the graph to the point above the value 60 years. Look left from this point to note that it corresponds to a
value of 0.80.

Look at the graph to the point right from the value 0.20. Look down to note that it corresponds to 49 years. .

1.15. Match histogram wild1f to wilddaf. Note that both show the range is from 2 to 5 microns and that about half of
the data lies between 2 and 3 microns. Match histogram wild2f with wildcf. The data is relatively uniform from 3.5
to 6.5 microns. Finally, match histogram wild3f with wildbf. The range is from 2 to 8 microns with most of the data
between 3 and 6 microns. .

1.22. The fluctuation are due to the many bombardments with other molecules in the cell, most frequently, water
molecules.

As force increases, we expect the velocity to increase - to a point. If the force is too large, then the kinesin is ripped
away from the microtubule. As ATP concentration increases, we expect the velocity to increase - again, to a point. If
ATP concentration is sufficiently large, then the biochemical processes are saturated.
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Topic 2

Describing Distributions with Numbers

There are three kinds of lies: lies, damned lies, and statistics. - Benjamin Disraeli

It is easy to lie with statistics. It is hard to tell the truth without it. - Andrejs Dunkels

We next look at quantitative data. Recall that in this case, these data can be subject to the operations of arithmetic.
In particular, we can add or subtract observation values, we can sort them and rank them from lowest to highest.

We will look at two fundamental properties of these observations. The first is a measure of the center value for
the data, i.e., the median or the mean. Associated to this measure, we add a second value that describes how these
observations are spread or dispersed about this given measure of center.

The median is the central observation of the data after it is sorted from the lowest to highest observations. In
addition, to give a sense of the spread in the data, we often give the smallest and largest observations as well as the
observed value that is 1/4 and 3/4 of the way up this list, known at the first and third quartiles. This difference, known
as the interquartile range is a measure of the spread or the dispersion of the data. For the mean, we commonly use
the standard deviation to describe the spread of the data.

These concepts are described in more detail in this section.

2.1 Measuring Center

2.1.1 Medians
The median take the middle value for x1, x2, . . . , xn after the data has been sorted from smallest to largest,

x(1), x(2), . . . , x(n).

(x(k) is called the k-th order statistic. Sorting can be accomplished in R by using the sort command.)
If n is odd, then this is just the value of the middle observation x((n+1)/2). If n is even, then the two values closest

to the center are averaged.
1

2
(x(n/2) + x(n/2+1)).

If we store the data in R in a vector x, we can write median(x) to compute the median.

2.1.2 Means
For a collection of numeric data, x1, x2, . . . , xn, the sample mean is the numerical average

x̄ =
1

n
(x1 + x2 + . . .+ xn) =

1

n

n∑

i=1

xi
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Alternatively, if the value x occurs n(x) times in the data, then use the distributive property to see that

x̄ =
1

n

∑

x

xn(x) =
∑

x

xp(x), where p(x) =
n(x)

n
.

So the mean x̄ depends only on the proportion of observations p(x) for each value of x.

Example 2.1. For the data set {1, 2, 2, 2, 3, 3, 4, 4, 4, 5}, we have n = 10 and the sum

1 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 5 = 1n(1) + 2n(2) + 3n(3) + 4n(4) + 5n(5)

= 1(1) + 2(3) + 3(2) + 4(3) + 5(1) = 30

Thus, x̄ = 30/10 = 3.

Example 2.2. For the data on the length in microns of wild type Bacillus subtilis data, we have

length x frequency n(x) proportion p(x) product xp(x)
1.5 18 0.090 0.135
2.0 71 0.355 0.710
2.5 48 0.240 0.600
3.0 37 0.185 0.555
3.5 16 0.080 0.280
4.0 6 0.030 0.120
4.5 4 0.020 0.090
sum 200 1 2.490

So the sample mean x̄ = 2.49.

If we store the data in R in a vector x, we can write mean(x) which is equal to sum(x)/length(x) to
compute the mean.

To extend this idea a bit, we can take a real-valued function h and instead consider the observations h(x1), h(x2), . . . , h(xn),
then

h(x) =
1

n
(h(x1) + h(x2) + . . .+ h(xn)) =

1

n

n∑

i=1

h(xi) =
1

n

∑

x

h(x)n(x) =
∑

x

h(x)p(x).

Exercise 2.3. Let x̄n be the sample mean for the quantitative data x1, x2, . . . , xn. For an additional observation
xn+1, use x̄ to give a formula for x̄n+1, the mean of n + 1 observations. Generalize this formula for the case of k
additional observations xn+1 . . . , xn+k

Many times, we do not want to give the same weight to each observation. For example, in computing a student’s
grade point average, we begin by setting values xi corresponding to grades ( A 7→ 4, B 7→ 3 and so on) and giving
weights w1, w2, . . . , wn equal to the number of units in a course. We then compute the grade point average as a
weighted mean. To do this:

• Multiply the value of each course by its weight xiwi. This is called the number of quality points for the course.

• Add up the quality points:

x1w1 + x2w2 + . . .+ xnwn =

n∑

i=1

xiwi

• Add up the weights, i. e., the number of units attempted:

w1 + w2 + . . .+ wn =

n∑

i=1

wi
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Figure 2.1: Empirical Survival Function for the Bacterial Data. This figure displays how the area under the survival function to the right of the
y-axis and above the x-axis is the mean value x̄ for non-negative data. For x = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5. This area is the sum of the area
of the retangles displayed. The width of each of the rectangles is x and the height is equal to p(x). Thus, the area is the product xp(x). The sum of
these areas are presented in Example 2.2 to compute the sample mean.

• Divide the total quality points by the number of units attempted:

x1w1 + x2w2 + . . .+ xnwn
w1 + w2 + . . .+ wn

=

∑n
i=1 xiwi∑n
i=1 wi

. (2.1)

If we let

pj = wj/

n∑

i=1

wi

be the proportion or fraction of the weight given to the j-th observation, then we can rewrite (2.1) as
n∑

i=1

xipi.

If we store the weights in a vector w, then we can compute the weighted mean using weighted.mean(x,w)

If an extremely high observation is changed to be even higher, then the mean follows this change while the median
does not. For this reason, the mean is said to be sensitive to outliers while the median is not. To reduce the impact of
extreme outliers on the mean as a measure of center, we can also consider a truncated mean or trimmed mean. The
p trimmed mean is obtained by discarding both the lower and the upper p×100% of the data and taking the arithmetic
mean of the remaining data.

In R, we write mean(x, trim = p) where p, a number between 0 and 0.5, is the fraction of observations to
be trimmed from each end before the mean is computed.

Note that the median can be regarded as the 50% trimmed mean. The median does not change with a changes in
the extreme observations. Such a property is called a resistant measure. On the other hand, the mean is not a resistant
measure.
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Exercise 2.4. Give the relationship between the median and the mean for a (a) left skewed, (b) symmetric, or (c) right
skewed distribution.

2.2 Measuring Spread

2.2.1 Five Number Summary
The first and third quartile, Q1 and Q3, are, respectively, the median of the lower half and the upper half of the data.
The five number summary of the data are the values of the minimum, Q1, the median, Q3 and the maximum. These
values, along with the mean, are given in R using summary(x). Returning to the data set on the age of presidents:

> summary(age)
Min. 1st Qu. Median Mean 3rd Qu. Max.

42.00 51.00 55.00 54.98 58.00 70.00

We can display the five number summary using a boxplot.

> boxplot(age, main = c("Age of Presidents at the Time of Inauguration"))

45
50

55
60

65
70

Age of Presidents at the Time of Inauguration

The value Q3−Q1 is called the interquartile range and is denoted by IQR. It is found in R with the command IQR.
Outliers are somewhat arbitrarily chosen to be those above Q3 + 3

2IQR and below Q1 − 3
2IQR. With this criterion,

the ages of Ronald Reagan and Donald Trump, considered outliers, are displayed by the two circles at the top of the
boxplot. The boxplot command has the default value range = 1.5 in the choice of displaying outliers. This can
be altered to loosen or tighten this criterion.

Exercise 2.5. Use the range command to create a boxplot for the age of the presidents at the time of their inaugu-
ration using as outliers any value above Q3 + IQR and below Q1 − IQR as the criterion for outliers. How many
outliers does this boxplot have?
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Example 2.6. Consider a two column data set. Column 1 - MPH - gives car gas milage. Column 2 - origin - gives
the country of origin for the car. We can create side by side boxplots with the command

> boxplot(MPG,Origin)

to produce

2.2.2 Sample Variance and Standard Deviation

The sample variance averages the square of the differences from the mean

var(x) = s2
x =

1

n− 1

n∑

i=1

(xi − x̄)2.

The sample standard deviation, sx, is the square root of the sample variance. We shall soon learn the rationale for
the decision to divide by n− 1. However, we shall also encounter circumstances in which division by n is preferable.
We will routinely drop the subscript x and write s to denote standard deviation if there is no ambiguity.

Example 2.7. For the data set on Bacillus subtilis data, we have x̄ = 498/200 = 2.49

length, x frequency, n(x) x− x̄ (x− x̄)2 (x− x̄)2n(x)
1.5 18 -0.99 0.9801 17.6418
2.0 71 -0.49 0.2401 17.0471
2.5 48 0.01 0.0001 0.0048
3.0 37 0.51 0.2601 9.6237
3.5 16 1.01 1.0201 16.3216
4.0 6 1.51 2.2801 13.6806
4.5 4 2.01 4.0401 16.1604
sum 200 90.4800

So the sample variance s2
x = 90.48/199 = 0.4546734 and standard deviation sx = 0.6742947. To accomplish

this in R
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> bacteria<-c(rep(1.5,18),rep(2.0,71),rep(2.5,48),rep(3,37),rep(3.5,16),rep(4,6),
+ rep(4.5,4))
> length(bacteria)
[1] 200
> mean(bacteria)
[1] 2.49
> var(bacteria)
[1] 0.4546734
> sd(bacteria)
[1] 0.6742947

For quantitative variables that take on positive values, we can take the ratio of the standard deviation to the mean

cvx =
sx
x̄
,

called the coefficient of variation as a measure of the relative variability of the observations. Note that cvx is a pure
number and has no units.

For the data of bacteria lengths, the coefficient of variability is

cvx =
0.6742947

2.49
= 0.2708011,

Exercise 2.8. Show that
∑n
i=1(xi − x̄) = 0.

We now begin to describe the rationale for the division by n− 1 rather than n in the definition of the variance. To
introduce the next exercise, define the sum of squares about the value α,

SS(α) =

n∑

i=1

(xi − α)2.

Exercise 2.9. Flip a fair coin 16 times, recording the number of heads. Repeat this activity 20 times, giving x1, . . . , x20

heads. Our instincts say that the mean should be 8. Compute SS(8). Next find x̄ for the data you generated and
compute SS(x̄). Notice that SS(8) > SS(x̄).

Note that in repeating the experiment of flipping a fair coin 16 times and recording the number of heads, we would
like to compute the variation about 8, the value that our intuition tells us is the true mean. In many circumstances, we
do not have such intuition. Thus, we doing the best we can by computing x̄, the mean from the data. In this case, the
variation about the sample mean is smaller than the variation about what may be called a true mean. Thus, division
of
∑n
i=1(xi − x̄)2 by n systematically underestimates the variance. The definition of sample variance is based on the

fact that this can be compensated for this by dividing by something small than n. We will learn why the appropriate
choice is n− 1 when we investigate Unbiased Estimation in Topic 13.

To show that the phenomena in Exercise 2.9 is true more broadly, we next perform a little algebra. This is similar
to the computation of the parallel axis theorem in physics. The parallel axis theorem is used to determine the moment
of inertia of a rigid body about any axis, given the moment of inertia of the object about the parallel axis through the
object’s center of mass (x̄) and the perpendicular distance between the axes. In this case, we a looking at the rigid
motion of a finite number of equal point masses.

In the formula for SS(α), divide the difference in the value of each observation xi to the value α into the difference
to the sample mean x̄ and then the distance from the sample mean to α (i.e. x̄− α).

SS(α) =

n∑

i=1

((xi − x̄) + (x̄− α))2 =

n∑

i=1

(xi − x̄)2 + 2

n∑

i=1

(xi − x̄)(x̄− α) +

n∑

i=1

(x̄− α)2

=

n∑

i=1

(xi − x̄)2 +

n∑

i=1

(x̄− α)2 =

n∑

i=1

(xi − x̄)2 + n(x̄− α)2.
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By Exercise 2.8, the cross term above 2
∑n
i=1(xi − x̄)(x̄− α) equals to zero. Thus, we have partitioned the sums of

squares into two levels. The first term gives the sums of squares about the sample mean x̄. The second gives square of
the difference between x̄ and the chosen value α. We shall see this idea of partitioning in other contexts.

Note that the minimum value of SS(α) can be obtained by minimizing the second term. This takes place at α = x̄.
Thus,

min
α
SS(α) = SS(x̄) =

n∑

i=1

(xi − x̄)2.

Our second use for this identity provides an alternative method to compute the variance. Take α = 0 to see that

SS(0) =

n∑

i=1

x2
i =

n∑

i=1

(xi − x̄)2 + nx̄2. Thus,
n∑

i=1

(xi − x̄)2 =

n∑

i=1

x2
i − nx̄2.

Divide by n− 1 to see that

s2 =
1

n− 1

(
n∑

i=1

x2
i − nx̄2

)
. (2.2)

Exercise 2.10. The following formulas may be useful in aggregating data. Suppose you have data sets collected on
two consecutive days with the following summary statistics.

number of standard
day observations mean deviation
1 n1 x̄1 s1

2 n2 x̄2 s2

Now combine the observations of the two days and use this to show that the combined mean

x̄ =
n1x̄1 + n2x̄2

n1 + n2

and the combined variance

s2 =
1

n1 + n2 − 1

(
(n1 − 1)s2

1 + n1x̄
2
1 + (n2 − 1)s2

2 + n2x̄
2
2 − (n1 + n2)x̄2

)
.

(Hint: Use (2.2)).

Exercise 2.11. For the data set x1, x2, . . . , xn, let

yi = a+ bxi.

Give the summary statistics for the y data set given the corresponding values of the x data set. (Consider carefully the
consequences of the fact that a might be less than 0.)

Among these, the quadratic identity
var(x+ bx) = b2var(x)

is one of the most frequently used and useful in all of statistics.

2.3 Quantiles and Standardized Variables
A single observation, say 87 on a exam, gives little information about the performance on the exam. One way to
include more about this observation would be to give the value of the empirical cumulative distribution function.
Thus,

Fn(87) = 0.7223
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tells us that about 72% of the exam scores were below 87. This is sometimes reported by saying that 87 is the 0.7223
quantile for the exam scores.

We can determine this value using the R command quantile. For the ages of presidents at inauguration, we
have that the 72% quantile is 57 year old.

> quantile(age,0.72)
72%
57

Thus, for example, for the ages of the president, we have that IQR(age) can also be computed using the command
quantile(age,3/4) - quantile(age,1/4). R returns the value 7. The quantile command on its own
returns the five number summary.

0% 25% 50% 75% 100%
42 51 55 58 70

Another, and perhaps more common use of the term quantiles is a general term for partitioning ranked data into
equal parts. For example, quartiles partitions the data into 4 equal parts. Percentiles partitions the data into 100 equal
parts. Thus, the k-th q-tile is the value in the data for which k/q of the values are below the given value. This naturally
leads to some rounding issues which leads to a large variety of small differences in the definition of quantiles.

Exercise 2.12. For the example above, describe the quintile, decile, and percentile of the observation 87.

A second way to evaluate a score of 87 is to related it to the mean. Thus, if the mean x̄ = 76. Then, we might say
that the exam score is 11 points above the mean. If the scores are quite spread out, then 11 points above the mean is
just a little above average. If the scores are quite tightly spread, then 11 points is quite a bit above average. Thus, for
comparisons, we will sometimes use the standardized version of xi,

zi =
xi − x̄
sx

.

The observations zi have mean 0 and standard deviation 1. The value zi is also called the standard score , the z-value,
the z-score, and the normal score. An individual z-score, zi, gives the number of standard deviations an observation
xi is above (or below) the mean.

The R command scale transforms the data to the standard score. For the ages of the presidents, we use the scale
command to show the standardized ages. The head command show the first 6 rows of the output for presidents from
George Washington to John Qunicy Adams.

> head(data.frame(scale(age),(age-mean(age))/sd(age)))
scale.age. X.age...mean.age...sd.age.

1 0.3076569 0.3076569
2 0.9162091 0.9162091
3 0.3076569 0.3076569
4 0.3076569 0.3076569
5 0.4597950 0.4597950
6 0.3076569 0.3076569

Exercise 2.13. What are the units of the standard score? What is the relationship of the standard score of an obser-
vation xi and yi = axi + b?

2.4 Quantile-Quantile Plots
In addition to side by side boxplots or histograms, we can also compare two cumulative distribution function directly
with the quantile-quantile or Q-Q plot. If the quantitative data sets x and y have the same number of observations,
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Figure 2.2: age of first seizure (left) side-by-side boxplots, (center) empirical cumulative distribution functions, (right) Q-Q plot with Q1, the
median, and Q3 indicated by the solid red dots. The solid line on the plot has intercept 0 and slope 1. (missense age=nonsense age)

then this is simply plot(sort(x),sort(y)). In this case the Q-Q plot matches each of the quantiles for the two
data sets. If the data sets have an unequal number of observations, then observations from the larger data are reduced
by interpolation to create data sets of equal length and the Q-Q plot is plot(sort(xred),sort(yred)) for the
reduced data sets xred and yred.

Example 2.14. Dravet syndrome, also known as Severe Myoclonic Epilepsy of Infancy (SMEI), is a rare and catas-
trophic form of intractable epilepsy that begins in infancy. A recent study looks at de novo mutations in the DNA
sequence SCN1A that codes for a sodium channel protein. An improperly functioning sodium channel can have severe
consequences for brain function.

The two basic types of mutations under study are point mutations, called missense and nonsense mutations. A
missense mutation results in a change in an amino acid in the SCN1A protein, whereas a nonsense mutation results in
a truncated, incomplete, and usually nonfunctional protein segment that is degraded.

Here is the age of first seizure in a study of 264 Japanese children. Age is in months.

age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
missense 0 1 6 15 20 21 21 9 8 5 7 3 2 1 0 1
nonsense 1 1 7 18 30 27 24 16 11 3 2 0 2 1 0 1

We enter the data into R using rep, the repeat command and prepare a summary.

> missense<-c(1,rep(2,6),rep(3,15),rep(4,20),rep(5,21),rep(6,21),rep(7,9),rep(8,8),
rep(9,5),rep(10,7),11,11,11,12,12,13,15)

> nonsense<-c(0,1,rep(2,7),rep(3,18),rep(4,30),rep(5,27),rep(6,24),rep(7,16),
rep(8,11),rep(9,3),10,10,12,12,13,15)

> summary(missense)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 4.0 5.0 5.8 7.0 15.0

> summary(nonsense)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 4.000 5.000 5.326 6.250 15.000

29



Introduction to the Science of Statistics Describing Distributions with Numbers

The side-by-side boxplots, empirical cumulative distribution functions, and the Q-Q plot . The R code is below.

> par(mfrow=c(1,3))
> boxplot(missense,nonsense,names=c("missense","nonsense"))
> plot(sort(missense),1:length(missense)/length(missense),type="s",

xlab=c("age in months"),ylab=c("fraction below"),xlim=c(0,15),
ylim=c(0,1),col="red")

> par(new=TRUE)
> plot(sort(nonsense),1:length(nonsense)/length(nonsense),type="s",

xlab=c(""), ylab=c(""),xlim=c(0,15),ylim=c(0,1),col="blue")
> legend("topleft",c("missense","nonsense"),fill=c("red","blue"))
> qqplot(missense,nonsense,xlim=c(0,15),ylim=c(0,15))
> abline(a=0,b=1)

The points on the Q-Q plot indicate values having equal quantiles for the age of first seizure. The command
abline(a=0,b=1) adds the line through the origin of slope 1. If the points on the Q-Q plot are generally above the
line, then the vertical axis variable (nonsense) have larger values. Correspondingly, if the points are generally below
the line, then the horizontal axis variable (missense) have larger values.

To see the first and third quartiles, Q1 and Q3 as well as the median, we use the points and the quantile
commands.

> q<-c(0.25,0.50,0.75)
> points(quantile(missense,q),quantile(nonsense,q),col="red",pch=19)

The points command was used to add the three solid red dots. Moving from lower left to upper right, dots
coordinates that are the the values for Q1, (4, 4), the median, (5, 5), and Q3, (7, 6.25), for the two data sets.

Exercise 2.15. The mean time of first seizure is slightly higher for patients with a missense mutation. Explain how
this can be seen for each of the plots that compare the two data sets.

2.5 Answers to Selected Exercises
2.3. Check the formula

x̄n+1 =
n

n+ 1
x̄n +

1

n+ 1
xn+1.

For k additional observations, write

x̄n,k+n =
1

k
(xn+1 + · · ·+ xn+k).

Then the mean of the n+ k observations is

x̄n+k =
n

n+ k
x̄n +

k

n+ k
x̄n,k+n.

2.4 (a) If the distribution is skewed left, then the mean follows the tail and is less than the median. (b) For a symmetric
distribution, the mean and the median are equal. (c) If the distribution is skewed right, then the mean is greater than
the median.

2.5. The boxplot has 5 outliers. Three are above Q3 + IQR and two are below Q3 − IQR.

2.8. Divide the sum into 2 terms.
n∑

i=1

(xi − x̄) =

n∑

i=1

xi − nx̄ = n

(
1

n

n∑

i=1

xi − x̄
)

= 0.
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2.9. This can be obtained by flipping coins. In R, we shall learn that the command to simulate this is rbinom(20,16,0.5).
Here are the data. Focusing on the first three columns, we see a total of 166 heads in the 20 observations. Thus,
x̄ = 8.3.

heads counts heats×counts counts×(heads-8)2 counts×(heads-x̄)2

4 1 4 1 · (4− 8)2 = 16 1 · (4− 8.3)2 = 18.49
5 1 5 1 · (5− 8)2 = 9 1 · (5− 8.3)2 = 10.89
6 2 12 2 · (6− 8)2 = 8 2 · (6− 8.3)2 = 10.58
7 2 14 2 · (7− 8)2 = 2 2 · (7− 8.3)2 = 5.07
8 5 40 5 · (8− 8)2 = 0 5 · (8− 8.3)2 = 0.45
9 3 27 3 · (9− 8)2 = 3 3 · (9− 8.3)2 = 1.47
10 3 30 3 · (10− 8)2 = 12 3 · (10− 8.3)2 = 8.67
11 2 22 2 · (11− 8)2 = 18 2 · (11− 8.3)2 = 14.58
12 1 12 1 · (12− 8)2 = 16 1 · (12− 8.3)2 = 13.69

sum 20 166 SS(8) = 84 SS(α) = 82.2

Notice that SS(8) > SS(x̄).

2.10. Let x1,1, x1,2 . . . , x1,n1 denote the observed values on day 1 and x2,1, x2,2 . . . , x2,n2 denote the observed values
on day 2. The mean of the combined data

x̄ =
1

n1 + n2

(
n1∑

i=1

x1,i +

n2∑

i=1

x2,i

)
=

1

n1 + n2
(n1x̄1 + n2x̄2)

Using (2.2), we find that

s2 =
1

n1 + n2 − 1

(
n1∑

i=1

x2
1,i +

n2∑

i=1

x2
2,i − (n1 + n2)x̄2

)
.

Use (2.2) twice more to see that

n1∑

i=1

x2
1,i = (n1 − 1)s2

1 + n1x̄
2
1 and

n2∑

i=1

x2
2,i = (n2 − 1)s2

2 + n2x̄
2
2

Now substitute the sums in the line above into the equation for s2.

2.11.

statistic
median If mx is the median for the x observations, then a+ bmx is the median of the y observations.
mean ȳ = a+ bx̄

variance var(y) = b2var(x)
standard deviation sy = |b|sx

first quartile If Q1 is the first quartile of the x observations and if b > 0, then a+ bQ1 is the first quartile
of the y observations. If b < 0, then a+ bQ3 is the first quartile of the y observations.

third quartile If Q3 is the third quartile of the x observations and if b > 0, then a+ bQ3 is the third quartile
of the y observations. If b < 0, then a = BQ1 is the third quartile of the y observations.

interquartile range IQR(y) = |b|IQR(x).
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To verify the quadratic identity for the variance:

var(y) =
1

n− 1

n∑

i=1

(yi − ȳ)2 =
1

n− 1

n∑

i=1

((a+ bxi)− (a+ bx̄))2 =
1

n− 1

n∑

i=1

(b(xi − x̄))2 = b2var(x).

2.12.

S(α) =

n∑

i=1

(xi − α)2. Thus, S′(α) = −2

n∑

i=1

(xi − α)

and S′(x̄) = 0. Next, S′′(α) = 2n for all α and thus S′′(x̄) = 2n > 0. Consequently, x̄ is a minimum.

2.13. 87 is between the 3-rd and the 4-th quintile, between the 7-th and the 8-th decile and the 72-nd and 73-rd
percentile.

2.14. Both the numerator and the denominator of the z-score have the same units. Their ratio is thus unitless. The
standard score for y,

zyi =
yi − ȳ
sy

=
(axi + b)− (ax̄+ b)

|a|sx
=
a(xi − x̄)

|a|sx
=

a

|a|z
x
i .

Thus, if a > 0, the two standard scores are the same. If a < 0, the two standard scores are the negative of one another.

2.15. (left) The boxplots agree for Q1 and the median, but the missense children show a higher skew to the right,
giving a higher mean.

(center) Recall that the area under the survival function and thus the area above the empirical cumulative distribu-
tion function is the mean. The cumulative distribution function rises more quickly for the nonsense distribution. Thus,
the area above it is smaller and so the mean is smaller.

(right) The points are on or below the line missense age = nonsense age. Thus, for a given quantile, the missense
value is at least as big ans the nonsense and thus the mean is bigger for the age of first seizure for missense children.
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Topic 3

Correlation and Regression

Reflection soon made it clear to me that not only were the two new problems identical in principle with
the old one of kinship which I had already solved, but that all three of them were no more than special
cases of a much more general problem–namely, that of Correlation. - Sir Francis Galton

My object is to place beyond doubt the existence of a simple and far-reaching law that governs the
hereditary transmission ... that the mean filial regression towards mediocrity was directly proportional to
the parental deviation from it. - Sir Francis Galton

In this section, we shall take a careful look at the nature of linear relationships found in the data used to construct a
scatterplot. The first of these, correlation, examines this relationship in a symmetric manner. The second, regression,
considers the relationship of a response variable as determined by one or more explanatory variables. Correlation
focuses primarily on association, while regression is designed to help make predictions. Consequently, the first does
not attempt to establish any cause and effect. The second is a often used as a tool to establish causality.

3.1 Covariance and Correlation
quantitative

vectors observations
v = (v1, . . . , vn) x = (x1, . . . , xn)
w = (w1, . . . , wn) y = (y1, . . . , yn)

norm-squared variance
||v||2 =

∑n
i=1 v

2
i s2

x = 1
n−1

∑n
i=1(xi − x̄)2

norm standard deviation
||v|| sx

inner product covariance
〈v,w〉 =

∑n
i=1 viwi cov(x,y) = 1

n−1

∑n
i=1(xi − x̄)(yi − ȳ)

cosine correlation
cos θ = 〈v,w〉

||v|| ||w|| r = cov(x,y)
sxsy

Table I: Analogies between vectors and quantitative observations.

The covariance measures the linear relation-
ship between a pair of quantitative measures

x1, x2, . . . , xn and y1, y2, . . . , yn

on the same sample of n individuals. Begin-
ning with the definition of variance, the defi-
nition of covariance is similar to the relation-
ship between the square of the norm ||v||2 of
a vector v and the inner product 〈v, w〉 of two
vectors v and w.

cov(x, y) =
1

n− 1

n∑

i=1

(xi − x̄)(yi − ȳ).

A positive covariance means that the
terms (xi − x̄)(yi − ȳ) in the sum are more likely to be positive than negative. This occurs whenever the x and
y variables are more often both above or below the mean in tandem than not. Just like the situation in which the inner
product of a vector with itself yields the square of the norm, the covariance of x with itself cov(x, x) = s2

x is the
variance of x.

Exercise 3.1. Explain in words what a negative covariance signifies, and what a covariance near 0 signifies.
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We next look at several exercises that call for algebraic manipulations of the formula for covariance or closely
related functions.

Exercise 3.2. Derive the alternative expression for the covariance:

cov(x, y) =
1

n− 1

(
n∑

i=1

xiyi − nx̄ȳ
)
.

Exercise 3.3. cov(ax+b, cy+d) = ac ·cov(x, y). How does a change in units (say from centimeters to meters) affect
the covariance?

Thus, covariance as a measure of association has the drawback that its value depends on the units of measurement.
This shortcoming is remedied by using the correlation.

Definition 3.4. The correlation, r, is the covariance of the standardized versions of x and y.

r(x, y) =
1

n− 1

n∑

i=1

(
xi − x̄
sx

)(
yi − ȳ
sy

)
=

cov(x, y)

sxsy
.

The observations x and y are called uncorrelated if r(x, y) = 0.

Exercise 3.5. r(ax + b, cy + d) = ±r(x, y). How does a change in units (say from centimeters to meters) affect the
correlation? The plus sign occurs if a · c > 0 and the minus sign occurs if a · c < 0.

Sometimes we will drop (x, y) if there is no ambiguity and simply write r for the correlation.

Exercise 3.6. Show that
s2
x+y = s2

x + s2
y + 2cov(x, y) = s2

x + s2
y + 2rsxsy. (3.1)

Give the analogy between this formula and the law of cosines.

−0.5 0 0.5 1 1.5 2 2.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

θ
sx

sy

sx+y

Figure 3.1: The analogy of the sample standard deviations
and the law of cosines in equation (3.1). Here, the corrre-
lation r = − cos θ.

In particular if the two observations are uncorrelated we have the
Pythagorean identity

s2
x+y = s2

x + s2
y. (3.2)

We will now look to uncover some of the properties of correla-
tion. The next steps are to show that the correlation is always a num-
ber between −1 and 1 and to determine the relationship between the
two variables in the case that the correlation takes on one of the two
possible extreme values.

Exercise 3.7 (Cauchy-Schwarz inequality). For two sequences
v1, · · · , vn and w1, . . . , wn, show that

(
n∑

i=1

viwi

)2

≤
(

n∑

i=1

v2
i

)(
n∑

i=1

w2
i

)
. (3.3)

Written in terms of norms and inner products, the Cauchy-Schwarz
inequality becomes 〈v, w〉2 ≤ ||v||2||w||2.

(Hint:
∑n
i=1(vi +wiζ)2 is a non-negative quadratic expression in the variable ζ and consider the discriminant in

the quadratic formula.) If the discriminant is zero, then we have equality in (3.3) and we have that
∑n
i=1(vi+wiζ)2 =

0 for exactly one value of ζ.
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Figure 3.2: Scatterplots showing differing levels of the correlation r
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We shall use inequality (3.3) by choosing vi = xi − x̄ and wi = yi − ȳ to obtain

(
n∑

i=1

(xi − x̄)(yi − ȳ)

)2

≤
(

n∑

i=1

(xi − x̄)2

)(
n∑

i=1

(yi − ȳ)2

)
,

(
1

n− 1

n∑

i=1

(xi − x̄)(yi − ȳ)

)2

≤
(

1

n− 1

n∑

i=1

(xi − x̄)2

)(
1

n− 1

n∑

i=1

(yi − ȳ)2

)
,

cov(x, y)2 ≤ s2
xs

2
y

cov(x, y)2

s2
xs

2
y

≤ 1

Consequently, we find that
r2 ≤ 1 or − 1 ≤ r ≤ 1.

When we have |r| = 1, then we have equality in (3.3). In addition, for some value of ζ we have that

n∑

i=1

((xi − x̄) + (yi − ȳ)ζ)2 = 0.

The only way for a sum of nonnegative terms to add to give zero is for each term in the sum to be zero, i.e.,

(xi − x̄) + (yi − ȳ)ζ = 0, for all i = 1, . . . , n. (3.4)

Thus xi and yi are linearly related.
yi = α+ βxi.

In this case, the sign of r is the same as the sign of β.

Exercise 3.8. For an alternative derivation that −1 ≤ r ≤ 1. Use equation (3.1) with x and y standardized observa-
tions. Use this to determine ζ in equation (3.4) (Hint: Consider the separate cases s2

x+y for the r = −1 and s2
x−y for

the r = 1.)

We can see how this looks for simulated data. Choose a value for r between −1 and +1.

>x<-rnorm(100)
>z<-rnorm(100)
>y<-r*x + sqrt(1-rˆ2)*z

Example of plots of the output of this simulation are given in Figure 3.1. For the moment, the object of this
simulation is to obtain an intuitive feeling for differing values for correlation. We shall soon see that this is the
simulation of pairs of normal random variables with the desired correlation. From the discussion above, we can see
that the scatterplot would lie on a straight line for the values r = ±1.

For the Archeopteryx data on bone lengths, we have the correlation

> cor(femur, humerus)
[1] 0.9941486

Thus, the data land very nearly on a line with positive slope.
For the banks in 1974, we have the correlation

> cor(income,assets)
[1] 0.9325191
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3.2 Linear Regression
Covariance and correlation are measures of linear association. For the Archeopteryx measurements, we learn that the
relationship in the length of the femur and the humerus is very nearly linear.

We now turn to situations in which the value of the first variable xi will be considered to be explanatory or
predictive. The corresponding output observation yi, taken from the input xi, is called the response. For example,
can we explain or predict the income of banks from its assets? In this case, assets is the explanatory variable and
income is the response.

In linear regression, the response variable is linearly related to the explanatory variable (also known as the co-
variate), but is subject to deviation, discrepency, or to error. We write

yi = α+ βxi + εi. (3.5)

Our goal is, given the data, the xi’s and yi’s, to find α and β that determines the line having the best fit to the
data. The principle of least squares regression states that the best choice of this linear relationship is the one that
minimizes the square in the vertical distance from the y values in the data and the y values on the regression line. This
choice reflects the fact that the values of x are set by the experimenter and are thus assumed known. Thus, the “error”
appears in the value of the response variable y.

This principle leads to a minimization problem for

SS(α, β) =

n∑

i=1

ε2i =

n∑

i=1

(yi − (α+ βxi))
2. (3.6)

In other words, given the data, determine the values for α and β that minimizes the sum of squares SS. Let’s the
denote by α̂ and β̂ the value for α and β that minimize SS.

Take the partial derivative with respect to α.

∂

∂α
SS(α, β) = −2

n∑

i=1

(yi − α− βxi)

At the values α̂ and β̂, this partial derivative is 0. Consequently

0 =

n∑

i=1

(yi − α̂− β̂xi)
n∑

i=1

yi =

n∑

i=1

(α̂− β̂xi).

Now, divide by both sides of the equation by n to obtain

ȳ = α̂+ β̂x̄. (3.7)

Thus, we see that the center of mass point (x̄, ȳ) is on the regression line. To emphasize this fact, we rewrite (3.5)
in slope-point form.

yi − ȳ = β(xi − x̄) + εi. (3.8)

We then apply this to the sums of squares criterion (3.6) to obtain a condition that depends on β,

S̃S(β) =

n∑

i=1

ε2i =

n∑

i=1

((yi − ȳ)− β(xi − x̄))2. (3.9)

Now, differentiate with respect to β and set this equation to zero for the value β̂.

d

dβ
S̃S(β) = −2

n∑

i=1

((yi − ȳ)− β̂(xi − x̄))(xi − x̄) = 0.
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Thus,
n∑

i=1

(yi − ȳ)(xi − x̄) = β̂

n∑

i=1

(xi − x̄)2

1

n− 1

n∑

i=1

(yi − ȳ)(xi − x̄) = β̂
1

n− 1

n∑

i=1

(xi − x̄)2

cov(x, y) = β̂var(x)

Now solve for β̂.

β̂ =
cov(x, y)

var(x)
. (3.10)

In summary, to determine the regression line.

ŷi = α̂+ β̂xi,

we use (3.10) to determine β̂ and then (3.7) to solve for

α̂ = ȳ − β̂x̄.
We call ŷi the fit for the value xi.

Notice that the units of α (and α̂) are the same as the units of the response variable, y. For the slope,

units of β̂ = units of β =
units of y
units of x

.

You can check that the formula for β̂ in (3.10) has this property.

Example 3.9. Let’s begin with 6 points and derive by hand the equation for regression line.

x -2 -1 0 1 2 3
y -3 -1 -2 0 4 2

Add the x and y values and divide by n = 6 to see that x̄ = 0.5 and ȳ = 0.

xi yi xi − x̄ yi − ȳ (xi − x̄)(yi − ŷ) (xi − x̄)2

-2 -3 -2.5 -3 7.5 6.25
-1 -1 -1.5 -1 1.5 2.25
0 -2 -0.5 -2 1.0 0.25
1 0 0.5 0 0.0 0.25
2 4 1.5 4 6.0 2.25
3 2 2.5 2 5.0 6.25
sum 0 0 cov(x, y) = 21/5 var(x) = 17.50/5

Thus,

β̂ =
21/5

17.5/5
= 1.2 and α̂ = 0− 1.2× 0.5 = −0.6

As seen in this example, fits are rarely perfect. The difference between the fit and the data is an estimate ε̂i for the
error εi. This difference is called the residual. So,

ε̂i = RESIDUALi = DATAi − FITi = yi − ŷi
or, by rearranging terms,

DATAi = FITi + RESIDUALi, or yi = ŷi + ε̂i.
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Figure 3.3: Scatterplot and the regression line for the six point data set below. The regression line is the choice that minimizes the square of the
vertical distances from the observation values to the line, indicated here in green. Notice that the total length of the positive residuals (the lengths of
the green line segments above the regression line) is equal to the total length of the negative residuals. This property is derived in equation (3.11).
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We can rewrite equation (3.6) with ε̂i estimating the error in (3.5).

0 =

n∑

i=1

(yi − α̂− β̂xi) =

n∑

i=1

(yi − ŷi) =

n∑

i=1

ε̂i (3.11)

to see that the sum of the residuals is 0. Thus, we started with a criterion for a line of best fit, namely, least squares,
and discover that a consequence of this criterion the regression line has the property that the sum of the residual values
is 0. This is illustrated in Figure 3.3.

Let’s check this property for the example above.

DATA FIT RESIDUAL
xi yi ŷi ŷi − yi
-2 -3 -3.0 0
-1 -1 -1.8 0.8
0 -2 -0.6 -1.4
1 0 0.6 -0.6
2 4 1.8 2.2
3 2 3.0 -1.0

total 0
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Generally speaking, we will look at a residual plot, the plot of the residuals versus the explanatory variable, to
assess the appropriateness of a regression line. Specifically, we will look for circumstances in which the explanatory
variable and the residuals have no systematic pattern.

Exercise 3.10. Use R to perform the following operations on the data set in Example 3.9.

1. Enter the data and make a scatterplot.

2. Use the lm command to find the equation of the regression line.

3. Use the abline command to draw the regression line on the scatterplot.

4. Use the resid and the predict command command to find the residuals and place them in a data.frame
with x and y

5. Draw the residual plot and use abline to add the horizontal line at 0.

We next show three examples of the residuals plotting against the value of the explanatory variable.

-

6

a
a

a

a
a
a a a a a

a a
a

a
a a a a

a
a a

a a a

a

Regression fits the data well - homoscedasticity

-

6

a a a a a
a
a a

a
a

a a

a
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a

a
a a

a a

a

a

a a

Prediction is less accurate for large x, an example of heteroscedasticity
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-

6

a a
a a

a a a a a a a a a a
a a a a a a a a a a a

Data has a curve. A straight line fits the data poorly.

For any value of x, we can use the regression line to estimate or predict a value for y. We must be careful in using
this prediction outside the range of x. This extrapolation will not be valid if the relationship between x and y is not
known to be linear in this extended region.

Example 3.11. For the 1974 bank data set, the regression line

̂income = 7.680 + 4.975 · assets.

So, each dollar in assets brings in about $5 income.
For a bank having 10 billion dollars in assets, the predicted income is 56.430 billion dollars. However, if we

extrapolate this down to very small banks, we would predict nonsensically that a bank with no assets would have
an income of 7.68 billion dollars. This illustrates the caution necessary to perform a reliable prediction through an
extrapolation.

In addition for this data set, we see that three banks have assets much greater than the others. Thus, we should con-
sider examining the regression lines omitting the information from these three banks. If a small number of observations
has a large impact on our results, we call these points influential.

Obtaining the regression line in R is straightforward:

> lm(income˜assets)

Call:
lm(formula = income ˜ assets)

Coefficients:
(Intercept) assets

7.680 4.975

Example 3.12 (regression line in standardized coordinates). Sir Francis Galton was the first to use the term regression
in his study Regression towards mediocrity in hereditary stature. The rationale for this term and the relationship
between regression and correlation can be best seen if we convert the observations into a standardized form.

First, write the regression line to point-slope form.

ŷi − ȳ = β̂(xi − x̄).

Because the slope

β̂ =
cov(x, y)

var(x)
=
rsxsy
s2
x

=
rsy
sx

,

we can rewrite the point-slope form as
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Figure 3.4: Scatterplots of standardized variables and their regression lines. The red lines show the case in which x is the explanatory variable and
the blue lines show the case in which y is the explanatory variable.

ŷi − ȳ =
rsy
sx

(xi − x̄) or
ŷi − ȳ
sy

= r
xi − x̄
sx

, ŷ∗i = rx∗i . (3.12)

where the asterisk is used to indicate that we are stating our observations in standardized form. In words, if we use
this standardized form, then the slope of the regression line is the correlation.

For Galton’s example, let’s use the height of a male as the explanatory variable and the height of his adult son as
the response. If we observe a correlation r = 0.6 and consider a man whose height is 1 standard deviation above the
mean, then we predict that the son’s height is 0.6 standard deviations above the mean. If a man whose height is 0.5
standard deviation below the mean, then we predict that the son’s height is 0.3 standard deviations below the mean.
In either case, our prediction for the son is a height that is closer to the mean then the father’s height. This is the
“regression” that Galton had in mind.

Exercise 3.13. Compute the regression line for the 6 pairs of observations above assuming that y is the explanatory
variable. Show that the two region lines differ by showing that the product of the slopes in not equal to one.

Exercise 3.14. Create a scatterplot of the x and y variables with correlation r = 0.5 and place both the regression
lines on the scatter, Verify that they cross at (x̄, ȳ).

From the discussion above, we can see that if we reverse the role of the explanatory and response variable, then
we change the regression line. This should be intuitively obvious since in the first case, we are minimizing the total
square vertical distance and in the second, we are minimizing the total square horizontal distance. In the most extreme
circumstance, cov(x, y) = 0. In this case, the value xi of an observation is no help in predicting the response variable.
Thus, as the formula states, when x is the explanatory variable the regression line has slope 0 - it is a horizontal line
through ȳ. Correspondingly, when y is the explanatory variable, the regression is a vertical line through x̄. Intuitively,
if x and y are uncorrelated, then the best prediction we can make for yi given the value of xi is just the sample mean
ȳ and the best prediction we can make for xi given the value of yi is the sample mean x̄.

More formally, the two regression equations are

ŷ∗i = rx∗i and x̂∗i = ry∗i .

These equations have slopes r and 1/r. This is shown by example in Figure 3.2.

Exercise 3.15. Continuing the previous example, let β̂x be the slope of the regression line obtained from regressing y
on x and β̂y be the slope of the regression line obtained from regressing x on y. Show that the product of the slopes
β̂xβ̂y = r2, the square of the correlation.
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Because the point (x̄, ȳ) is on the regression line, we see from the exercise above that two regression lines coincide
precisely when the slopes are reciprocals, namely precisely when r2 = 1. This occurs for the values r = 1 and
r = −1.

Exercise 3.16. Show that the FIT, ŷ, and the RESIDUALS, y − ŷ are uncorrelated.
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−0.05
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Figure 3.5: The relationship of the standard deviations of the
DATA, the FIT, and the RESIDUALS. s2DATA = s2FIT +
s2RESID . We call r2 the coefficient of determination and say
that r2 of the variation in the response variable is due to the fit and
the rest 1− r2 is due to the residuals.

Let’s again write the regression line in point slope form

FITi − ȳ = ŷi − ȳ = r
sy
sx

(xi − x̄).

Using the quadratic identity for variance we find that

s2
FIT = r2

s2
y

s2
x

s2
x = r2s2

y = r2s2
DATA.

Thus, the variance in the FIT is reduced from the variance in
the DATA by a factor of r2 and

r2 =
s2
FIT

s2
DATA

.

Exercise 3.17. Use the equation above to show that

r2 =
SSFIT
SSDATA

where the sums of squares of the fit or the variation of the fit, SSFIT =
∑n
i=1(ŷi − ȳ)2 ,and the sums of squares

of the data or the variation of the data, SSDATA =
∑n
i=1(yi − ȳ)2.

Because the fit and the residuals are uncorrelated, the Pythagorean identity (3.2) applies and we see that that

s2
DATA = s2

FIT + s2
RESIDUAL = r2s2

DATA + s2
RESIDUAL

s2
RESIDUAL = (1− r2)s2

DATA.

This leads to the expression

r2 = 1− s2
RESIDUAL

s2
DATA

= 1− SSRESIDUAL
SSDATA

where the sums of squares of the residuals or the variation of the residuals, SSRESIDUAL =
∑n
i=1(yi − ŷ)2.

Thus, r2 of the variance in the data can be explained by the fit. As a consequence of this computation, many
statistical software tools report r2 as a part of the linear regression analysis. For this reason, r2 is sometimes called
the coefficient of determination. The remaining 1 − r2 of the variance in the data is found in the residuals. We saw
a similar partitioning of the variation in Topic 2: Describing Distributions with Numbers when we first introduced the
concept of variance. We shall see it again in Topic 22: Analysis of Variance.

Exercise 3.18. For some situations, the circumstances dictate that the line contain the origin (α = 0). Use a least
squares criterion to show that the slope of the regression line

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

R accommodates this circumstance with the commands lm(y∼x-1) or lm(y∼0+x). Note that in this case,
the sum of the residuals is not necessarily equal to zero. For least squares regression, this property followed from
∂SS(α, β)/∂α = 0 where α is the y-intercept.
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Figure 3.6: (left) scatterplot with regression line in blue (right) residual plot with horizontal axis in red

Example 3.19. We continue to investigate the relationship of age of parents to the de novo mutations in the offspring
for the 78 Icelandic trios. We use the average age of the parents to predict the number of mutations in the offspring.
Thus, age is on the horizontal axis. We can quickly obtain the regression line using R.

> mutations.lm<- lm(mutations˜age)
> summary(mutations.lm)
Call:
lm(formula = mutations ˜ age)
Residuals:

Min 1Q Median 3Q Max
-15.7849 -7.1364 -0.1244 5.1745 24.3591
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.8145 5.5034 0.511 0.611
age 2.1255 0.1904 11.164 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 8.79 on 76 degrees of freedom
Multiple R-squared: 0.6212,Adjusted R-squared: 0.6162
F-statistic: 124.6 on 1 and 76 DF, p-value: < 2.2e-16

Thus, the regression line has the equation.

̂mutations = 2.815 + 2.125 age.

The value for the coefficient of determination, r2, is 0.6212, the variation in the data explained by the fit.
Next, we plot the data and add the regression line to the plot.

> mutations.lm<-lm(mutations˜age)
> plot(age,mutation)
> abline(mutations.lm,col="blue")

We continue our analysis in calling for the residuals, making a residual plot, and creating a horizontal line at 0.

> residuals<-resid(mutations.lm)
> plot(age,residuals)
> abline(h=0,col="red")

44



Introduction to the Science of Statistics Correlation and Regression

The command h=0 add a horizontal line at 0. A similar command v=0 adds a vertical line. Finally, we can use
the regression line to predict the number of mutations for parents whose average age is 20, 30, or 40.

> agepredict<-c(20,30,40)
> predictions<-predict(mutations.lm,newdata=data.frame(age=agepredict))
> data.frame(agepredict,predictions)

agepredict predictions
1 20 45.32367
2 30 66.57824
3 40 87.83281

3.2.1 Transformed Variables
For pairs of observations (x1, y1), . . . , (xn, yn), the linear relationship may exist not with these variables, but rather
with transformation of the variables. In this case we have,

g(yi) = α+ βψ(xi) + εi. (3.13)

A common choice to to perform linear regression on the variables ỹ = g(y) and x̃ = ψ(x) using the least squares
criterion. In this case, g is called the link function

For example, if
yi = Aekxi+εi ,

we take logarithms,
ln yi = lnA+ kxi + εi

So, in (3.13), the link function g(yi) = ln yi. The parameters are α = lnA and β = k.
Before we look at an example, let’s review a few basic properties of logarithms

Remark 3.20 (logarithms). We will use both log, the base 10 common logarthm, and ln, the base e natural loga-
rithm. Common logarithms more readily help us see orders of magnitude. For example, if log y = 5, then we know
that y = 105 = 100, 000. if log y = −1, then we know that y = 10−1 = 1/10. Typically, we will use natural
logarithms when we want to emphasize instantaneous rates of growth. To understand how this works, consider the
differential equation

dy

dt
= ky.

We are saying that the instantaneous rate of growth of y is proportional to y with constant of proportionality k. The
solution to this equation is

y = y0e
kt or ln y = ln y0 + kt

where y0 is the initial value for y. This gives a linear relationship between ln y and t. The two values of logarithm
have a simple relationship. If we write

x = 10a. Then log x = a and lnx = a ln 10.

Thus, by substituting for a, we find that

lnx = log x · ln 10 = 2.3026 log x.

In R, the command for the natural logarithm of x is log(x). For the common logarithm, it is log(x,10).

Example 3.21. In the data on world oil production, the relationship between the explanatory variable and response
variable is nonlinear but can be made to be linear with a simple transformation, the common logarithm. Call the new
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response variable logbarrel. The explanatory variable remains year. With these variables, we can use a regression
line to help describe the data. Here the model is

log yi = α+ βxi + εi. (3.14)

Regression is the first example of a class of statistical models called linear models. At this point we emphasize that
linear refers to the appearance of the parameters α and β linearly in the function (3.14). This acknowledges that, in
this circumstance, the values xi and yi are known. Indeed, they are the data. Using the principle of least squares, our
goal is to give an estimate using the principle of least squares to α̂ and β̂ for the values of α and β. R accomplishes
this gaol with the command lm (for linear model. Here is the output.

> summary(lm(logbarrel˜year))

Call:
lm(formula = logbarrel ˜ year)

Residuals:
Min 1Q Median 3Q Max

-0.25562 -0.03390 0.03149 0.07220 0.12922

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.159e+01 1.301e+00 -39.64 <2e-16 ***
year 2.675e-02 6.678e-04 40.05 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1115 on 27 degrees of freedom
Multiple R-Squared: 0.9834,Adjusted R-squared: 0.9828
F-statistic: 1604 on 1 and 27 DF, p-value: < 2.2e-16

Note that the output outputs the five number summary for the residuals and reports a coefficient of determination
r2 = 0.9828. Thus, the correlation is r = 0.9914 is very nearly one and so the data lies very close to the regression
line.

For world oil production, we obtained the relationship

̂log(barrel) = −51.59 + 0.02675 · year
between the common logarithm of the number of millions of barrels of oil and the year. If we rewrite the equation in
exponential form, we obtain, for some constant value, A,

b̂arrel = A100.02675·year = Aek̂·year.

Thus, k̂ gives the instantaneous growth rate that best fits the data. This is obtained by converting from a common
logarithm to a natural logarithm.

k̂ = 0.02675 ln 10 = 0.0616

.
Consequently, the use of oil sustained a growth of 6% per year over a span of a hundred years.

Next, we will look for finer scale structure in the scatterplot by examining the residual plot.

> use<-lm(logbarrel˜year)
> plot(year,resid(use))
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Exercise 3.22. Remove the data points after the oil crisis of the mid 1970s, find the regression line and the instanta-
neous growth rate that best fits the data. Look at the residual plot and use fact about American history to explain why
the residuals increase until 1920’s, decrease until the early 1940’s and increase again until the early 1970’s.

Example 3.23 (Michaelis-Menten Kinetics). In this example, we will have to use a more sophisticated line of reason-
ing to create a linear relationship between a explanatory and response variable. Consider the chemical reaction in
which an enzyme catalyzes the action on a substrate.

E + S
k1
�
k−1

ES
k2→ E + P (3.15)

Here

• E0 is the total amount of enzyme.

• E is the free enzyme.

• S is the substrate.

• ES is the substrate-bound enzyme.

• P is the product.

• V = d[P ]/dt is the production rate.

The numbers above or below the arrows gives the reaction rates. Using the symbol [ · ] to indicate concentration,
notice that the enzyme, E0, is either free or bound to the substrate. Its total concentration is, therefore,

[E0] = [E] + [ES], and, thus [E] = [E0]− [ES] (3.16)

Our goal is to relate the production rate V to the substrate concentration [S]. Because the total concentration [E0] is
set by the experimenter, we can assume that it is a known quantity.

The law of mass action turns the chemical reactions in (3.15) into differential equations. In particular, the reac-
tions, focusing on the substrate-bound enzyme and the product, gives the equations

d[ES]

dt
= k1[E][S]− [ES](k−1 + k2) and V =

d[P ]

dt
= k2[ES] (3.17)
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We can meet our goal if we can find an equation for V = k2[ES] that depends only on [S], the substrate concen-
tration. Let’s look at data,

[S] (mM) 1 2 5 10 20
V (nmol/sec) 1.0 1.5 2.2 2.5 2.9
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If we wish to use linear regression, then we will have to transform the data. In this case, we will develop the
Michaelis-Menten transformation applied to situations in which the concentration of the substrate-bound enzyme (and
hence also the unbound enzyme) changes much more slowly than those of the product and substrate.

0 ≈ d[ES]

dt

In words, the substrate-bound enzyme is nearly in steady state. Using the law of mass action equation (3.17) for
d[ES]/dt, we can rearrange terms to conclude that

[ES] ≈ k1[E][S]

k−1 + k2
=

[E][S]

Km
. (3.18)

The ratio Km = (k−1 + k2)/k1 of the rate of loss of the substrate-bound enzyme to its production is called the
Michaelis constant. We have now met our goal part way, V is a function of [S], but it is also stated as a function of
[E].

Thus, we have shown in 3.16 that [E] as a function of [ES] . Now, we combine this with (3.18) and solve for [ES]
to obtain

[ES] ≈ ([E0]− [ES])[S]

Km
, [ES] ≈ [E0]

[S]

Km + [S]

Under this approximation, known as the Michaelis-Metens kinetic equation the production rate of the product
is:

V =
d[P ]

dt
= k2[ES] = k2[E0]

[S]

Km + [S]
= Vmax

[S]

Km + [S]
(3.19)

Here, Vmax = k2[E0] is the maximum production rate. (To see this, let the substrate concentration [S]→∞.) To
perform linear regression, we need to have a function of V be linearly related to a function of [S]. This is achieved via
taking the reciprocal of both sides of this equation.

1

V
=
Km + [S]

Vmax[S]
=

1

Vmax
+

Km

Vmax

1

[S]
(3.20)
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Figure 3.7: Lineweaver-Burke double reciprocal plot for the data presented above. The y-intercept gives the reciprocal of the maximum production.
The dotted line indicates that negative concentrations are not physical. Nevertheless, the x-intercept give the negative reciprocal of the Michaelis
constant.

Thus, we have a linear relationship between

1

V
, the response variable, and

1

[S]
, the explanatory variable

subject to experimental error. The Lineweaver-Burke double reciprocal plot provides a useful method for analysis
of the Michaelis-Menten equation. See Figure 3.6.

For the data,

[S] (mM) 1 2 5 10 20
V (nmol/sec) 1.0 1.5 2.2 2.5 2.9

The regression line is
1

V
= 0.3211 +

1

[S]
0.6813.

Here are the R commands. (Both 1 and the slash / have a specific meaning for the lm command and so we set
variables Vinv and Sinv for the inverses.)

> S<-c(1,2,5,10,20)
> V<-c(1.0,1.5,2.2,2.5,2.9)
> Sinv<-1/S
> Vinv<-1/V
> lm(Vinv˜Sinv)

Call:
lm(formula = Vinv ˜ Sinv)

Coefficients:
(Intercept) Sinv

0.3211 0.6813
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Using (3.20), we find that Vmax = 3.1141 and Km = 2.122. With more access to computational software, this method
is not used as much as before. The measurements for small values of the concentration (and thus large value of 1/[S])
are more variable and consequently the residuals are likely to be heteroscedastic. We look in the next section for an
alternative approach, namely nonlinear regression.

Example 3.24 (Frank Amscombe). Consider the three data sets:

x 10 8 13 9 11 14 6 4 12 7 5
y 8.04 6.95 7.58 8.81 8.33 9.96 7.24 4.26 10.84 4.82 5.68
x 10 8 13 9 11 14 6 4 12 7 5
y 9.14 8.14 8.47 8.77 9.26 8.10 6.13 3.10 9.13 7.26 4.74
x 8 8 8 8 8 8 8 8 8 8 19
y 6.58 5.76 7.71 8.84 8.47 7.04 5.25 5.56 7.91 6.89 12.50
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Each of these data sets has a regression line ŷ = 3 + 0.5x and correlations between 0.806 and 0.816. However,
only the first is a suitable data set for linear regression. This example is meant to emphasize the point that software
will happily compute a regression line and an coefficient of determination value, but further examination of the data
is required to see if this method is appropriate for any given data set.

3.3 Extensions
We will discuss briefly two extensions - the first is a least squares criterion between x and y that is nonlinear in the
parameters β = (β0, . . . , βk). Thus, the model is

yi = g(xi|β) + εi

for g, a nonlinear function of the parameters.
The second considers situations with more than one explanatory variable.

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi. (3.21)

This brief discussion does not have the detail necessary to begin to use these methods. It serves primarily as an
invitation to begin to consult resources that more fully develop these ideas.
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3.3.1 Nonlinear Regression
Here, we continue using estimation of parameters using a least squares criterion.

SS(β) =

n∑

i=1

(yi − g(xi|β))2.

For most choices of g(x|β) the solution to the nonlinear least square criterion cannot be expressed in closed form.
Thus, a numerical strategy for the solution β̂ is necessary. This generally begins with some initial guess of parameter
values and an iteration scheme to minimize SS(β). Such a scheme is likely to use local information about the first
and second partial derivatives of g with respect to the parameters βi. For example, gradient descent (also known
as steepest descent, or the method of steepest descent) is an iterative method in which produces a sequence of
parameter values. The increment of the parameter values for an iteration is proportional to the negative of the gradient
of SS(β) evaluated at the current point. The hope is that the sequence converges to give the desired minimum value
for SS(β). The R command gnls for general nonlinear least squares is used to accomplish this. As above, you
should examine the residual plot to see that it has no structure. For, example, if the Lineweaver-Burke method for
Michaelis-Mentens kinetics yields structure in the residuals, then linear regression is not considered a good method.
Under these circumstances, one can next try to use the parameter estimates derived from Lineweaver-Burke as an
initial guess in a nonlinear least squares regression using a least square criterion based on the sum of squares

SS(Vmax,Km) =

n∑

j=1

(
Vj − Vmax

[S]j
Km + [S]j

)2

for data (V1, [S]1), (V2, [S]2), . . . (Vn, [S]n).
To use the gnls command we need to install the R package nmle. The command requires a model equation,

here, the Michaelis-Metens equation (3.19), written as response variable model equation, the data, and a starting
point for the numerical method for finding the parameter values that minimize SS(Vmax,Km). Here, we begin with
the values obtained from the regression equation for the Lineweaver-Burke double reciprocal plot.

> gnls(V˜Vmax*S/(Km+S),data=data.frame(V,S),start=list(Vmax=3.1141,Km=2.1216))
Generalized nonlinear least squares fit

Model: V ˜ Vmax * S/(Km + S)
Data: data.frame(V, S)
Log-likelihood: 8.212577

Coefficients:
Vmax Km

3.154482 2.210205

Degrees of freedom: 5 total; 3 residual
Residual standard error: 0.06044381

We see a small change in the estimates V̂max and K̂m from the previous estimates.

3.3.2 Multiple Linear Regression
Before we start with multiple linear regression, we first recall a couple of concepts and results from linear algebra.

• Let Cij denote the entry in the i-th row and j-th column of a matrix C.

• A matrix A with rA rows and cA and a matrix B with rB rows and cB columns can be multiplied to form a
matrix AB provide that cA = rB , the number of columns in A equals the number of rows in B. In this case

(AB)ij =

cA∑

k=1

AikBkj .
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• The d-dimensional identity matrix I is the matrix with the value 1 for all entries on the diagonal (Ijj = 1, j =
1 . . . , d) and 0 for all other entries. Notice for and d-dimensional vector x,

Ix = x.

• A d× d matrix C is called invertible with inverse C−1 provided that

CC−1 = C−1C = I.

Only one matrix can have this property.

• Suppose we have a d-dimensional vector a of known values and a d× d matrix C and we want to determine the
vectors x that satisfy

a = Cx.

This equation could have no solutions, a single solution, or an infinite number of solutions. If the matrix C is
invertible, then we have a single solution

x = C−1a.

• The transpose of a matrix is obtained by reversing the rows and columns of a matrix. We use a superscript T to
indicate the transpose. Thus, the ij entry of a matrix C is the ji entry of its transpose, CT .

Example 3.25.
(

2 1 3
4 2 7

)T
=




2 4
1 2
3 7




• A square matrix C is invertible if and only if its determinant det(C) 6= 0. For a 2× 2 matrix

C =

(
a b
c d

)

det(C) = ad− bc and the matrix inverse

C−1 =
1

det(C)

(
d −b
−c a

)

Exercise 3.26. (Cx)T = xTCT

Exercise 3.27. For

C =

(
1 3
2 4

)
,

find CT , det(C) and C−1 by hand and using R

In multiple linear regression, we have more than one predictor or explanatory random variable. Thus can write
(3.21) in matrix form

y = Xβ + ε (3.22)

• y = (y1, y2, . . . , yn)T is a column vector of responses,

• X is a matrix of predictors,

X =




1 x11 · · · x1k

1 x21 · · · x2k

...
...

. . .
...

1 xn1 · · · xnk


 . (3.23)

The column of ones on the left give the constant term in a multilinear equation. This matrix X is an an example
of what is know as a design matrix.
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• β = (β0, β1, . . . , βk)T is a column vector of parameters, and

• ε = (ε1, ε2, . . . , εn)T is a column vector of “errors”.

Exercise 3.28. Show that the least squares criterion

SS(β) =

n∑

i=1

(yi − β0 − xi1β1 − · · · − βkxik)2. (3.24)

can be written in matrix form as
SS(β) = (y −Xβ)T (y −Xβ).

To minimize SS, we take the gradient and set it equal to 0.

Exercise 3.29. Check that the gradient is

∇βSS(β) = −2(y −Xβ)TX. (3.25)

Based on the exercise above, the value β̂ that minimizes SS is

(y −Xβ̂)TX = 0, yTX = β̂TXTX.

The transpose of this last equation is sometimes known at the normal equations

XTXβ̂ = XTy. (3.26)

If XTX is invertible, then we can multiply both sides of the equation above by (XTX)−1 to obtain an equation
for the parameter values β̂ = (β̂0, β̂1, . . . , β̂n) in the least squares regression.

β̂ = (XTX)−1XTy. (3.27)

Thus the estimates β̂ are a linear transformation of the repsonses y through the so-called hat matrix H =
(XTX)−1XT , i.e. β̂ = Hy.

Exercise 3.30. Verify that the hat matrix H is a left inverse of the design matrix X .

This gives the regression equation

y = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂kxk

Example 3.31 (ordinary least squares regression). In this case,

XTX =

(
1 1 · · · 1
x1 x2 · · · xn

)



1 x1

1 x2

...
...

1 xn


 =




n
∑n
i=1 xi

∑n
i=1 xi

∑n
i=1 x

2
i




and

XT y =

(
1 1 · · · 1
x1 x2 · · · xn

)



y1

y2

...
yn


 =



∑n
i=1 yi

∑n
i=1 xiyi


 .

The determinant of XTX is

n

n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

= n(n− 1)var(x).
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and thus

(XTX)−1 =
1

n(n− 1)var(x)



∑n
i=1 x

2
i −∑n

i=1 xi

−∑n
i=1 xi n




and

β̂ = (XTX)−1XTy =
1

n(n− 1)var(x)



∑n
i=1 x

2
i −∑n

i=1 xi

−∑n
i=1 xi n





∑n
i=1 yi

∑n
i=1 xiyi


 .

For example, for the second row, we obtain

1

n(n− 1)var(x)

((
−

n∑

i=1

xi

)(
n∑

i=1

yi

)
+ n

n∑

i=1

xiyi

)
=
n(n− 1)cov(x, y)

n(n− 1)var(x)
=

cov(x, y)

var(x)

as seen in equation (3.10).

Example 3.32. We can estimate the number of mutations from each parent by using two explanatory variables, namely
both the father’s and mother’s age at the time of the conception of the offspring to the de novo mutations in the offspring
for the 78 Icelandic trios.

> iceland.lm<-lm(mutations˜paternal+maternal)
> summary(iceland.lm)

Call:
lm(formula = mutations ˜ paternal + maternal)

Residuals:
Min 1Q Median 3Q Max

-18.6769 -6.5272 0.7632 4.8546 21.0775

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.5901 5.2829 0.490 0.625
paternal 1.8414 0.2987 6.165 3.25e-08 ***
maternal 0.2220 0.3203 0.693 0.491
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.437 on 75 degrees of freedom
Multiple R-squared: 0.6556,Adjusted R-squared: 0.6465
F-statistic: 71.4 on 2 and 75 DF, p-value: < 2.2e-16

Here, we estimate that, on average, each year of the father’s age adds 1.84 mutations. The mother adds 0.22 mutations
per year of age. Thus, it is the father’s age that dominates the number of de novo mutations in the offspring. The
coefficient of determination is now 0.6556, increased from 0.6212 with a single explanatory variable. Because the
source of mutations is unknown and the parents’ ages are highly correlated (∼ 0.8), estimation is difficult.

Example 3.33. The choice of xij = xji in (3.23) results in polynomial regression

yi = β0 + β1xi + β2x
2
i + · · ·+ βkx

k
i + εi.

in equation (3.21).

Example 3.34 (US population). Below are the census populations
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census census census census
year population year population year population year population
1790 3,929,214 1850 23,191,876 1910 92,228,496 1970 203,211,926
1800 5,236,631 1860 31,443,321 1920 106,021,537 1980 226,545,805
1810 7,239,881 1870 38,558,371 1930 123,202,624 1990 248,709,873
1820 9,638,453 1880 49,371,340 1940 132,164,569 2000 281,421,906
1830 12,866,020 1890 62,979,766 1950 151,325,798 2010 308,745,538
1840 17,069,453 1900 76,212,168 1960 179,323,175

To analyze this in R we enter the data:

> uspop<-c(3929214,5236631,7239881,9638453,12866020,17069453,23191876,31443321,
+ 38558371,49371340,62979766,76212168,92228496,106021537,123202624,132164569,
+ 151325798,179323175,203211926,226545805,248709873,281421906,308745538)
> year<-c(0:22)*10+1790
> plot(year,uspop)
> loguspop<-log(uspop,10)
> plot(year,loguspop)
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Figure 3.8: (a) United States census population from 1790 to 2010 and (b) its base 10 logarithm.

Note that the logarithm of the population still has a bend to it, so we will perform a quadratic regression on the
logarithm of the population. In order to keep the numbers smaller, we shall give the year minus 1790, the year of the
first census for our explanatory variable.

log(uspopulation) = β0 + β1(year − 1790) + β2(year − 1790)2.

> year1<-year-1790
> year2<-year1ˆ2

Thus, loguspop is the reponse variable. The + sign is used in the case of more than one explanatory variable
and here is placed between the response variables year1 and year2.
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> lm.uspop<-lm(loguspop˜year1+year2)
> summary(lm.uspop)

Call:
lm(formula = loguspop ˜ year1 + year2)

Residuals:
Min 1Q Median 3Q Max

-0.037387 -0.013453 -0.000912 0.015281 0.029782

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.582e+00 1.137e-02 578.99 <2e-16 ***
year1 1.471e-02 2.394e-04 61.46 <2e-16 ***
year2 -2.808e-05 1.051e-06 -26.72 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.01978 on 20 degrees of freedom
Multiple R-squared: 0.999,Adjusted R-squared: 0.9989
F-statistic: 9781 on 2 and 20 DF, p-value: < 2.2e-16

The R output shows us that

β̂0 = 6.587 β̂1 = 0.01471 quadβ̂2 = −0.00002808.

So, taking the the regression line to the power 10, we have that

̂uspopulation = 3863670× 100.0147(year−1790)−0.00002808(year−1790)2

In Figure 3.8, we show the residual plot for the logarithm of the US population.

> resid.uspop<-resid(lm.uspop)
> plot(year,resid.uspop)

3.4 Answers to Selected Exercises

3.1. Negative covariance means that the terms (xi− x̄)(yi− ȳ) in the sum are more likely to be negative than positive.
This occurs whenever one of the x and y variables is above the mean, then the other is likely to be below.

3.2. We expand the product inside the sum.

cov(x, y) =
1

n− 1

n∑

i=1

(xi − x̄)(yi − ȳ) =
1

n− 1

(
n∑

i=1

xiyi − ȳ
n∑

i=1

xi − x̄
n∑

i=1

yi + nx̄ȳ

)

=
1

n− 1

(
n∑

i=1

xiyi − nx̄ȳ − nx̄ȳ + nx̄ȳ

)
=

1

n− 1

(
n∑

i=1

xiyi − nx̄ȳ
)

The change in measurements from centimeters to meters would divide the covariance by 10,000.
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Figure 3.9: Residual plot for US population regression.

3.3. We rearrange the terms and simplify.

cov(ax+ b, cy + d) =
1

n− 1

n∑

i=1

((axi + b)− (ax̄+ b)((cyi + d)− (cȳ − d))

=
1

n− 1

n∑

i=1

(axi − ax̄)(cyi − cȳ) = ac · 1

n− 1

n∑

i=1

(xi − x̄)(yi − ȳ) = ac · cov(x, y)

3.5. Assume that a 6= 0 and c 6= 0. If a = 0 or c = 0, then the covariance is 0 and so is the correlation.

r(ax+ b, cy + d) =
cov(ax+ b, cy + d)

sax+bscy+d
=
ac · cov(x, y)

|a|sx · |c|sy
=

ac

|ac|
·cov(x, y)

sx · sy
= ±r(x, y)

We take the plus sign if the sign of a and c agree and the minus sign if they differ.

3.6. First we rearrange terms

s2
x+y =

1

n− 1

n∑

i=1

((xi + yi)− (x̄+ ȳ))2 =
1

n− 1

n∑

i=1

((xi − x̄) + (yi − ȳ))2

=
1

n− 1

n∑

i=1

(xi − x̄)2 + 2
1

n− 1

n∑

i=1

(xi − x̄)(yi − ȳ) +
1

n− 1

n∑

i=1

(yi − ȳ)2

= s2
x + 2cov(x, y) + s2

y = s2
x + 2rsxsy + s2

y
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For a triangle with sides a, b and c, the law of cosines states that

c2 = a2 + b2 − 2ab cos θ

where θ is the measure of the angle opposite side c. Thus the analogy is

sx corresponds to a, sy corresponds to b, sx+y corresponds to c, and r corresponds to − cos θ

Notice that both r and cos θ take values between −1 and 1.

3.7. Using the hint,

0 ≤
n∑

i=1

(vi + wiζ)2 =

n∑

i=1

v2
i + 2

(
n∑

i=1

viwi

)
ζ +

(
n∑

i=1

w2
i

)
ζ2 = A+Bζ + Cζ2

For a quadratic equation to always take on non-negaitive values, we must have a non-positive discriminant, i. e.,

0 ≥ B2 − 4AC = 4

(
n∑

i=1

viwi

)2

− 4

(
n∑

i=1

v2
i

)(
n∑

i=1

w2
i

)
.

Now, divide by 4 and rearrange terms.

(
n∑

i=1

v2
i

)(
n∑

i=1

w2
i

)
≥
(

n∑

i=1

viwi

)2

.

3.8. The value of the correlation is the same for pairs of observations and for their standardized versions. Thus, we
take x and y to be standardized observations. Then sx = sy = 1. Now, using equation (3.1), we have that

0 ≤ s2
x+y = 1 + 1 + 2r = 2 + 2r. Simplifying, we have − 2 ≤ 2r and r ≥ −1.

For the second inequality, use the similar identity to (3.1) for the difference in the observations

s2
x−y = s2

x + s2
y − 2rsxsy.

Then,
0 ≤ sx−y = 1 + 1− 2r = 2− 2r. Simplifying, we have 2r ≤ 2 and r ≤ 1.

Thus, correlation must always be between -1 and 1.
In the case that r = −1, we that that s2

x+y = 0 and thus using the standardized coordinates

xi − x̄
sx

+
yi − ȳ
sy

= 0.

Thus, ζ = sy/sx.
In the case that r = 1, we that that s2

x−y = 0 and thus using the standardized coordinates

xi − x̄
sx

− yi − ȳ
sy

= 0.

Thus, ζ = −sy/sx.

3.10.

1. First the data and the scatterplot, preparing by using mfrowto have side-by-side plots
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> x<-c(-2:3)
> y<-c(-3,-1,-2,0,4,2)
> par(mfrow=c(1,2))
> plot(x,y)

2. Then the regression line and its summary.

> regress.lm<-lm(y˜x)
> summary(regress.lm)

Call:
lm(formula = y ˜ x)

Residuals:
1 2 3 4 5 6

-2.776e-16 8.000e-01 -1.400e+00 -6.000e-01 2.200e+00 -1.000e+00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6000 0.6309 -0.951 0.3955
x 1.2000 0.3546 3.384 0.0277 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.483 on 4 degrees of freedom
Multiple R-squared: 0.7412,Adjusted R-squared: 0.6765
F-statistic: 11.45 on 1 and 4 DF, p-value: 0.02767

3. Add the regression line to the scatterplot.

> abline(regress.lm)

4. Make a data frame to show the predictions and the residuals.

> residuals<-resid(regress.lm)
> predictions<-predict(regress.lm,newdata=data.frame(x=c(-2:3)))
> data.frame(x,y,predictions,residuals)

x y predictions residuals
1 -2 -3 -3.0 -2.775558e-16
2 -1 -1 -1.8 8.000000e-01
3 0 -2 -0.6 -1.400000e+00
4 1 0 0.6 -6.000000e-01
5 2 4 1.8 2.200000e+00
6 3 2 3.0 -1.000000e+00

5. FInally, the residual plot and a horizontal line at 0.

> plot(x,residuals)
> abline(h=0)
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Figure 3.10: (left) scatterplot and regression line (right) residual plot and horizontal line at 0

3.13. Use the subscript y in α̂y and β̂y to emphasize that y is the explanatory variable. We still have x̄ = 0.5, ȳ = 0.

yi xi yi − ȳ xi − x̄ (xi − x̄)(yi − ŷ) (yi − ȳ)2

-3 -2 -3 -2.5 7.5 9
-1 -1 -1 -1.5 1.5 1
-2 0 -2 -0.5 1.0 4
0 1 0 0.5 0.0 0
4 2 4 1.5 6.0 16
2 3 2 2.5 5.0 4
total 0 0 cov(x, y) = 21/5 var(y) = 34/5

So, the slope β̂y = 21/34 and
x̄ = α̂y + β̂y ȳ, 1/2 = α̂y.

Thus, to predict x from y, the regression line is x̂i = 1/2 + 21/34yi. Because the product of the slopes

6

5
× 21

34
=

63

85
6= 1,

this line differs from the line used to predict y from x.

3.14. First we select point, plot them, and add the regression line with x as the explanatory variable.

> r<- 0.5;x<-rnorm(25);z<-rnorm(25);y<-r*x + sqrt(1-rˆ2)*z
> plot(x,y)
> abline(lm(y˜x),col="red")

Now, determine the reverse regression with y as the explanatory variable.

x = α̂y + β̂yy. (3.28)

> lm(x˜y)
Call:
lm(formula = x ˜ y)
Coefficients:
(Intercept) y

0.1505 0.4978
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Figure 3.11: Plot of two regression lines. Notice that they
cross at (x̄, ȳ).

Now, solve (3.28) for y.

y = − α̂y
β̂y

+
1

β̂y
x

Thus, in R, we fine the slope and intercept and add a point (x̄, ȳ).

> ahat<-0.1505
> bhat<-0.4978
> abline(a=-ahat/bhat,b=1/bhat,col="blue")
> points(mean(x),mean(y),pch=19)

3.15. Recall that the covariance of x and y is symmetric, i.e.,
cov(x, y) = cov(y, x). Thus,

β̂x·β̂y =
cov(x, y)

s2
x

·cov(y, x)

s2
y

=
cov(x, y)2

s2
xs

2
y

=

(
cov(x, y)

sxsy

)2

= r2.

In the example above, the coefficient of determination,

r2 =
cov(x, y)2

s2
xx

2
y

=
(21/5)2

(17.5/5) · (34/5)
=

212

17.5 · 34
=

21

35
·21

17
=

3

5
·21

17
=

63

85

3.16. To show that the correlation is zero, we show that the numera-
tor in the definition, the covariance is zero. First,

cov(ŷ, y − ŷ) = cov(ŷ, y)− cov(ŷ, ŷ).

The first term in this difference,

cov(ŷ, y) = cov
(

cov(x, y)

s2
x

x, y

)
=

cov(x, y)2

s2
x

=
r2s2

xs
2
y

s2
x

= r2s2
y.

For the second,
cov(ŷ, ŷ) = s2

ŷ = r2s2
y.

So, the difference is 0.

3.17. For the denominator

s2
DATA =

1

n− 1

n∑

i=1

(yi − ȳ)2

For the numerator, recall that (x̄, ȳ) is on the regression line. Consequently, ȳ = α̂+ β̂x̄. Thus, the mean of the fits

ŷ =
1

n

n∑

i=1

ŷi =
1

n

n∑

i=1

(α̂+ β̂xi) = α̂+ β̂x̄ = ȳ.

This could also be seen by using the fact (3.11) that the sum of the residuals is 0. For the denominator,

s2
FIT =

1

n− 1

n∑

i=1

(ŷi − ŷ)2 =
1

n− 1

n∑

i=1

(ŷi − ȳ)2.

Now, take the ratio and notice that the fractions 1/(n− 1) in the numerator and denominator cancel.
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3.18. The least squares criterion becomes

SS(β) =

n∑

i=1

(yi − βxi)2.

The derivative with respect to β is

SS′(β) = −2

n∑

i=1

xi(yi − βxi).

SS′(β) = 0 for the value

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

3.23. The i-th component of (Cx)T is
n∑

j=1

Cijxj .

Now the i-th component of xTCT is
n∑

j=1

xjC
T
ji =

n∑

j=1

xjCij .

3.26. The transpose

CT =

(
1 2
3 4

)
.

the determinant det(C) = 4− 6 = −2 and

C−1 =
1

2

(
4 −3
−2 1

)
=

(
−2 3/2
1 −1/2

)
.

Using R,

> C<-matrix(c(1,2,3,4),nrow=2)
> C

[,1] [,2]
[1,] 1 3
[2,] 2 4
> t(C)

[,1] [,2]
[1,] 1 2
[2,] 3 4
> det(C)
[1] -2
> chol2inv(C)

[,1] [,2]
[1,] 1.5625 -0.1875
[2,] -0.1875 0.0625

3.27. Using equation (3.22), the i-th component of y −Xβ,

(y −Xβ)i = yi −
n∑

j=0

βjxjk = yi − β0 − xi1β1 − · · · − βkxin.
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Now, (y −Xβ)T (y −Xβ) is the dot product of y −Xβ with itself. This gives (3.24).

3.28. Write xi0 = 1 for all i, then we can write (3.24) as

SS(β) =

n∑

i=1

(yi − xi0β0 − xi1β1 − · · · − βkxik)2.

Then,

∂

∂βj
S(β) = −2

n∑

i=1

(yi − xi0β0 − xi1β1 − · · · − βkxik)xij

= −2

n∑

i=1

(yi − (Xβ)i)xij = −2((y −Xβ)TX))j .

This is the j-th coordinate of (3.25).

3.29. HX = (XTX)−1XTX = (XTX)−1(XTX) = I , the identity matrix.
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Topic 4

Producing Data

Statistics has been the handmaid of science, and has poured a flood of light upon the dark questions of
famine and pestilence, ignorance and crime, disease and death. - James A. Garfield, December 16, 1867

Our health care is too costly; our schools fail too many; and each day brings further evidence that the
ways we use energy strengthen our adversaries and threaten our planet.

These are the indicators of crisis, subject to data and statistics. Less measurable but no less profound
is a sapping of confidence across our land a nagging fear that America’s decline is inevitable, and that
the next generation must lower its sights. - Barack Obama, January 20, 2009

4.1 Preliminary Steps
Many questions begin with an anecdote or an unexplained occurrence in the lab or in the field. This can lead to fact-
finding interviews or easy to perform experimental assays. The next step will be to review the literature and begin
an exploratory data analysis often using publically available data. At this stage, we are looking, on the one hand,
for patterns and associations, and, on the other hand, apparent inconsistencies occurring in the scientific literature.
Next we will examine the data using quantitative methods - summary statistics for quantitative variables, tables for
categorical variables - and graphical methods - boxplots, histograms, scatterplots, time plots for quantitative data - bar
charts for categorical data.

The strategy of these investigations is frequently the same - look at a sample in order to learn something about a
population or to take a census or the total population.

Designs for producing data begin with some basic questions:

• What can I measure?

• What shall I measure?

• How shall I measure it?

• How frequently shall I measure it?

• What obstacles do I face in obtaining a reliable measure?

The frequent goal of a statistical study is to investigate the nature of causality. In this way we try to explain the
values of some response variables based on knowing the values of one or more explanatory variables. The major
issue is that the associated phenomena could be caused by a third, previously unconsidered factor, called a lurking
variable or confounding variable.

Two approaches are generally used to mitigate the impact of confounding. The first, primarily statistical, involves
subdividing the population under study into smaller groups that are more similar. This subdivision is called cross
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tabulation or stratification. For human studies, this could mean subdivision by gender, by age, by economic class,
by geographic region, or by level of education. For laboratory, this could mean subdivision by temperature, by pH,
by length of incubation, or by concentration of certain compounds (e.g. ATP). For field studies, this could mean
subdivision by soil type, by average winter temperature or by total rainfall. Naturally, as the number of subgroups
increase, the size of these groups can decrease to the point that chance effects dominate the data.

The second is mathematical or probabilistic modeling. These models often take the form of a mechanistic model
that takes into an account the variables in the cross tabulation and builds a parametric model.

The best methodologies, of course, make a comprehensive use of both of these types of approaches.

4.2 Professional Ethics

As a citizen, we should participate in public discourse. Those with particular training have a special obligation to bring
to the public their special knowledge. Such public statements can take several forms. We can speak out as a member
of society with no particular basis in our area of expertise. We can speak out based on the wisdom that comes with this
specialized knowledge. Finally, we can speak out based on a formal procedure of gathering information and reporting
carefully the results of our analysis. In each case, it is our obligation to be clear about the nature of that communication
and that the our statements follow the highest ethical standards. In the same vein, as consumers of information, we
should have a clear understanding of the perspective in any document that presents statistical information.

Professional statistical societies have provided documents that provide guidance on what can be sometimes be
difficult judgements and decisions. Two sources of guidance are the Ethical Guidelines for Statistical Practice from
the American Statistical Society.

http://www.amstat.org/about/ethicalguidelines.cfm

and the International Statistical Institute Declaration on Professional Ethics

http://www.isi-web.org/about-isi/professional-ethics

4.3 Formal Statistical Procedures

The formal procedures that will be described in this section presume that we will have a sufficiently well understood
mathematical model to support the analysis of data obtained under a given procedure. Thus, this section anticipates
some of the concepts in probability theory like independence, conditional probability, distributions under different
sampling protocols and expected values. It also will rely fundamentally on some of the consequences of this theory
as seen, for example, in the law of large numbers and the central limit theorem. These are topics that we shall soon
explore in greater detail.

4.3.1 Observational Studies

The goal is to learn about a population by observing a sample with as little disturbance as possible to the sample.
Sometimes the selection of treatments is not under the control of the researcher. For example, if we suspect that a

certain mutation would render a virus more or less virulent, we cannot ethically perform the genetic engineering and
infect humans with the viral strains.

For an observational study, effects are often confounded and thus causation is difficult to assert. The link between
smoking and a variety of diseases is one very well known example. We have seen the data set relating student smoking
habits in Tucson to their parents. We can see that children of smokers are more likely to smoke. This is more easily
described if we look at conditional distributions.
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0 parents smoke
student smokes student does not smoke

0.1386 0.8614

1 parent smoke
student smokes student does not smoke

0.1858 0.8142

2 parents smoke
student smokes student does not smoke

0.2247 0.7753

To display these conditional distributions in R:

> smoking<-matrix(c(400,1380,416,1823,188,1168),ncol=3)
> smoking

[,1] [,2] [,3]
[1,] 400 416 188
[2,] 1380 1823 1168
> condsmoke<-matrix(rep(0,6),ncol=3)
> for (i in 1:3)

{condsmoke[,i]=smoking[,i]/sum(smoking[,i])}
> colnames(condsmoke)

<-c("2 parents","1 parent", "0 parents")
> rownames(condsmoke)

<-c("smokes","does not smoke")
> condsmoke

2 parents 1 parent 0 parents
smokes 0.2247191 0.1857972 0.1386431
does not smoke 0.7752809 0.8142028 0.8613569
> barplot(condsmoke,legend=rownames(condsmoke))

2 parents 1 parent 0 parents

does not smoke
smokes

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Even though we see a trend - children are more likely to smoke in households with parents who smoke, we cannot
assert causation, i.e., children smoke because their parents smoke. An alternative explanation might be, for example,
people may have a genetic predisposition to smoking.

4.3.2 Randomized Controlled Experiments

In a controlled experiment, the researcher imposes a treatment on the experimental units or subjects in order to
observe a response. Great care and knowledge must be given to the design of an effective experiment. A University
of Arizona study on the impact of diet on cancers in women had as its goal specific recommendations on diet. Such
recommendations were set to encourage lifestyle changes for millions of American women. Thus, enormous effort
was taken in the design of the experiment so that the research team was confident in its results.

A good experimental design is one that is based on a solid understanding of both the science behind the study and
the probabilistic tools that will lead to the inferential techniques used for the study. This study is often set to assess
some hypothesis - Do parents smoking habits influence their children? or estimate some value - What is the mean
length of a given strain of bacteria?

Principles of Experimental Design

1. Control for the effects of lurking variables by comparing several treatments.
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2. Randomize the assignment of subjects to treatments to eliminate bias due to systematic differences among
categories.

3. Replicate the experiment on many subjects to reduce the impact of chance variation on the results.

Issues with Control

The desired control can sometimes be quite difficult to achieve. For example;

• In medical trials, some individuals may display a placebo effect, the favorable response to any treatment.

• Overlooking or introducing a lurking variable can introduce a hidden bias.

• The time and money invested can lead to a subconscious effect by the experimenter. Use an appropriate blind
or double blind procedure. In this case, neither the experimenter nor the subject are aware of which treatment
is being used.

• Changes in the wording of questions can lead to different outcomes.

• Transferring discoveries from the laboratory to a genuine living situation can be difficult to make.

• The data may suffer from undercoverage of difficult to find groups. For example, mobile phone users are less
accessible to pollsters.

• Some individuals leave the experimental group, especially in longitudinal studies.

• In some instances, a control is not possible. The outcomes of the absence of the enactment of an economic
policy, for example, a tax cut or economic stimulus plan, cannot be directly measured. Thus, economists are
likely to use a mathematical model of different policies and examine the outcomes of computer simulations as a
proxy for control.

• Social desirability bias describes the tendency of survey respondents to answer questions in a manner that will
be viewed favorably by others. Thus surveys on medical issues, religious practices, sexual practices, political
preferences, personal achievement typically use specialized techniques to obtain more truthful responses. The
Bradley effect is a theory proposed to explain observed discrepancies between voter opinion polls and election
outcomes in some US government elections where a white candidate and a non-white candidate run against each
other. The theory proposes that some voters tend to tell pollsters that they are undecided or likely to vote for
a black candidate, and yet, on election day, vote for his white opponent. It was named after Tom Bradley, an
African-American who lost the 1982 California governor’s race despite being ahead in voter polls going into the
elections.

Setting a Design

Before data are collected, we must consider some basic questions:

• Decide on the number of explanatory variables or factors.

• Decide on the values or levels that will be used in the treatment.

Example 4.1. For over a century, beekeepers have attempted to breed honey bees belonging to different races to take
advantage of the effects of hybrid vigor to create a better honey producer. No less a figure than Gregor Mendel failed
in this endeavor because he could not control the matings of queens and drones.

A more recent failure, a breeding experiment using African and European bees, occurred in 1956 in an apiary
in the southeast of Brazil. The hybrid Africanized honey bees escaped, and today, in the western hemisphere, all
Africanized honey bees are descended from the 26 Tanzanian queen bees that resided in this apiary. By the mid-1990s,
Africanized bees have spread to Texas, Arizona, New Mexico, Florida and southern California.
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When the time arrives for replacing the mother queen in a colony (a process known as supercedure), the queen
will lay about ten queen eggs. The first queen that completes her development and emerges from her cell is likely to
become the next queen. Suppose we have chosen to investigate the question of whether a shorter time for development
for Africanized bee queens than for the resident European bee queens is the mechanism behind the replacement by
Africanized subspecies in South and Central American and in the southwestern United States. The development time
will depend upon hive temperature, so we will determine a range of hive temperatures by looking through the literature
and making a few of our own measurements. From this, we will set a cool, medium, and warm hive temperature. We
will use European honey bee (EHB) queens as a control. Thus, we have two factors.

• Queen type - European or Africanized

• Hive temperature - cool, medium, or warm.

Thus, this experiment has 6 treatment groups.

Factor B: hive temperature

cool medium warm

Factor A:
genotype

AHB

EHB

The response variable is the queen development time - the length of time from the depositing of the egg from the
mother queen to the time that the daughter queen emerges from the hive. The immature queen is kept in the hive to be
fed during the egg and larval stages. At that point the cell containing the larval queen is capped by the worker bees.
The experimenter then transfers the cell to an incubator for the pupal stage. The hive where the egg is laid and the
incubator that houses the queen is checked using a remote camera so that we have an accurate measure of the queen
development time.

For our experimental design, we will rear 120 queens altogether and use 20 in each treatment group. A few queens
are chosen and their genotypes are determined to verify the genetic designations of the groups. To reduce hidden
biases, the queens in the incubator are labeled in such a way that their genotype is unknown. The determination
how the number of samples in the study is necessary to have the desired confidence in our results is called a power
analysis. We will investigate this aspect of experimental design when we study hypothesis testing.

Random Samples

A simple random sample (SRS) of size n consists of n individuals chosen in such a way that every set of n individuals
has an equal chance to be in the sample actually selected. This is easy to accomplish in R. First, give labels to the
individuals in the population and then use the command sample to make the random choice. For the experiment
above, we rear 90 Africanized queens and choose a sample of 60. (Placing the command in parenthesis calls on R to
print the output.)
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> population<-1:90
> (subjects<-sample(population,60))
[1] 61 16 65 73 13 25 10 82 24 62 28 66 55 8 26 72 67 17 58 69 6 27 41 20

[25] 87 68 22 11 5 48 33 63 50 88 35 37 84 12 4 59 90 86 2 60 19 18 74 23
[49] 78 49 45 7 64 3 42 57 81 56 46 32

If your experimental design call for grouping similar individuals, called strata, then a stratified random sample
from the full sample by choosing a separate random sample from each stratum. If one or more of the groups forms
a small fraction of the population, then a stratified random sample ensures the desired number of sample from these
groups is included in the sample.

If we mark the 180 queens 1 through 180 with 1 through 90 being Africanized bees and 91 through 180 being
European, then we can enter

> population<-1:180
> subjectsAHB<-sample(population[1:90],60)
> subjectsEHB<-sample(population[91:180],60)

to ensure that 60 come from each group.
For the example above, we divide the sampled Africanized queens into 3 treatment groups based on hive tempera-

ture. Here dim=c(3,20) signifies that the array has 3 rows and 20 columns. Let the first row be the choice of queen
bees for the cool hive, the second row for the medium temperature hive, and row three for the warm hive.

> groups<-array(subjectsAHB,dim=c(3,20))
> groups

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 61 73 10 62 55 72 58 27 87 11 33 88 84
[2,] 16 13 82 28 8 67 69 41 68 5 63 35 12
[3,] 65 25 24 66 26 17 6 20 22 48 50 37 4

[,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,] 59 2 18 78 7 42 56
[2,] 90 60 74 49 64 57 46
[3,] 86 19 23 45 3 81 32

Most of the data sets that we shall encounter in this book have a modest size with hundreds and perhaps thousands
of observations based on a small number of variables. In these situation, we can be careful in assuring that the
experimental design was followed. We can make the necessary visual and numerical summaries of the data set to
assess its quality and make appropriate corrections to ethically clean the data from issues of mislabeling and poorly
collected observations. This will prepare us for the more formal procedures that are the central issues of the second
half of this book.

We are now in a world of massive datasets, collected, for example, from genomic, astronomical observations or
social media. Data collection, management and analysis require new and more sophisticated approaches that maintain
data integrity and security. These considerations form a central issue in modern statistics.

4.3.3 Natural experiments
In this situation, a naturally occurring instance of the observable phenomena under study approximates the situation
found in a controlled experiment. For example, during the oil crisis of the mid 1970s, President Nixon imposed a 55
mile per hour speed limit as a strategy to reduce gasoline consumption. This action had a variety of consequences
from reduced car accidents to the economic impact of longer times for the transportation of goods. In this case, the
status quo ante served as the control and the imposition of new highway laws became the natural experiment.

Helena, Montana during the six-month period from June 2002 to December 2002 banned smoking ban in all public
spaces including bars and restaurants. This becomes the natural experiment with the control groups being Helena
before and after the ban or other Montana cities during the ban. More recently, neighboring states either decided for
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or against Medicaid expansion under the Affordable Care act. This natural experiment allowed for comparison of a
variety of health and quality of life measures.

4.4 Case Studies

4.4.1 Observational Studies
Governments and private consortia maintain databases to assist the public and researchers obtain data both for ex-
ploratory data analysis and for formal statistical procedures. We present several examples below.

United States Census

The official United States Census is described in Article I, Section 2 of the Constitution of the United States.

The actual enumeration shall be made within three years after the first meeting of the Congress of the
United States, and within every subsequent term of 10 years, in such manner as they shall by Law direct.

It calls for an actual enumeration to be used for apportionment of seats in the House of Representatives among the
states and is taken in years that are multiples of 10 years. See the plans for the 2020 census at

https://www.census.gov/2020census

U.S. Census figures are based on actual counts of persons dwelling in U.S. residential structures. They include
citizens, non-citizen legal residents, non-citizen long-term visitors, and undocumented immigrants. In recent censuses,
estimates of uncounted housed, homeless, and migratory persons have been added to the directly reported figures.

In addition, the Censsu Bureau provides a variety of interactive internet data tools:

https://www.census.gov/2010census/

Current Population Survey

The Current Population Survey (CPS) is a monthly survey of about 60,000 households conducted by the Bureau of the
Census for the Bureau of Labor Statistics. The survey has been conducted for more than 50 years.

https://www.census.gov/programs-surveys/cps.html

Selecting a random sample requires a current database of every household. The random sample is mutistage.

1. Take a sample from the 3000 counties (or contiguous counties inside a state) in the United States.

2. Take a sample of unit frames consisting of housing units in census blocks that contain a very high proportion of
complete addresses

3. Take a sample of households (called primary sampling units) from each unit frame.

Households are interviewed for 4 consecutive months, leave the sample for 8 months, and then returns for 4 more
consecutive months. An adult member of each household provides information for all members of the household.

World Health Organization Global Health Observatory (GHO)

The Global Health Observatory is the World Heatlh Organization’s internet gateway to health-related statistics. The
GHO compiles and verifies major sources of health data to provide easy access to scientifically sound information.
GHO covers global health priorities such as the health-related Millennium Development Goals, women and health,
mortality and burden of disease, disease outbreaks, and health equity and health systems.

http://www.who.int/gho/en/
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The Women’s Health Initiative

The Women’s Health Initiative (WHI) was a major 15-year research program to address the most common causes of
death, disability and poor quality of life in postmenopausal women.

https://www.nhlbi.nih.gov/science/womens-health-initiative-whi

The WHI observational study had several goals. These goals included:

• To give reliable estimates of the extent to which known risk factors to predict heart disease, cancers and fractures.

• To identify ”new” risk factors for these and other diseases in women.

• To compare risk factors, presence of disease at the start of the study, and new occurrences of disease during the
WHI across all study components.

• To create a future resource to identify biological indicators of disease, especially substances and factors found
in blood.

The observational study enlisted 93,676 postmenopausal women between the ages of 50 to 79. The health of
participants was tracked over an average of eight years. Women who joined this study filled out periodic health forms
and also visited the clinic three years after enrollment. Participants were not required to take any medication or change
their health habits.

GenBank

The GenBank sequence database is an open access of nucleotide sequences and their protein translations. This database
is produced at National Center for Biotechnology Information (NCBI) as part of the International Nucleotide Sequence
Database Collaboration, or INSDC. GenBank has a new release every two months. As of 15 August 2017, GenBank
release 221.0 has 203,180,606 loci, 240,343,378,258 bases, from 203,180,606 reported sequences. .

http://www.ncbi.nlm.nih.gov/genbank/

4.4.2 Experiments
The history of science has many examples of experiments whose results strongly changed our view of the nature of
things. Here we highlight two very important examples.
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Light: Its Speed and Medium of Propagation

For many centuries before the seventeenth, a debate continued as to whether light travelled instantaneously or at
a finite speed. In ancient Greece, Empedocles maintained that light was something in motion, and therefore must
take some time to travel. Aristotle argued, to the contrary, that “light is due to the presence of something, but it is
not a movement.” Euclid and Ptolemy advanced the emission theory of vision, where light is emitted from the eye.
Consequently, Heron of Alexandria argued, the speed of light must be infinite because distant objects such as stars
appear immediately upon opening the eyes.

In 1021, Islamic physicist Alhazen (Ibn al-Haytham) published the Book of Optics, in which he used experiments
related to the camera obscura to support the now accepted intromission theory of vision, in which light moves from
an object into the eye. This led Alhazen to propose that light must therefore have a finite speed. In 1574, the Ottoman
astronomer and physicist Taqi al-Din also concluded that the speed of light is finite, correctly explained refraction as
the result of light traveling more slowly in denser bodies, and suggested that it would take a long time for light from
distant stars to reach the Earth. In the early 17th century, Johannes Kepler believed that the speed of light was infinite
since empty space presents no obstacle to it.

Figure 4.1: Romer’s diagram of Jupiter (B) eclipsing its
moon Io (DC) as viewed from different points in earth’s
orbit around the sun

In 1638, Galileo Galilei finally proposed an experiment to mea-
sure the speed of light by observing the delay between uncovering
a lantern and its perception some distance away. In 1667, Galileo’s
experiment was carried out by the Accademia del Cimento of Flo-
rence with the lanterns separated by about one mile. No delay was
observed. The experiment was not well designed and led to the con-
clusion that if light travel is not instantaneous, it is very fast. A
more powerful experimental design to estimate of the speed of light
was made in 1676 by Ole Christensen Romer, one of a group of
astronomers of the French Royal Academy of Sciences. From his
observations, the periods of Jupiter’s innermost moon Io appeared
to be shorter when the earth was approaching Jupiter than when re-
ceding from it, Romer concluded that light travels at a finite speed,
and was able to estimate that would it take light 22 minutes to cross
the diameter of Earth’s orbit. Christiaan Huygens combined this es-
timate with an estimate for the diameter of the Earth’s orbit to obtain
an estimate of speed of light of 220,000 km/s, 26% lower than the
actual value.

With the finite speed of light established, nineteenth century
physicists, noting that both water and sound waves required a
medium for propagation, postulated that the vacuum possessed a “lu-
miniferous aether”, the medium for light waves. Because the Earth
is in motion, the flow of aether across the Earth should produce a
detectable “aether wind”. In addition, because the Earth is in orbit
about the Sun and the Sun is in motion relative to the center of the
Milky Way, the Earth cannot remain at rest with respect to the aether
at all times. Thus, by analysing the speed of light in different di-
rections at various times, scientists could measure the motion of the
Earth relative to the aether.

In order to detect aether flow, Albert Michelson designed a light
interferometer sending a single source of white light through a half-
silvered mirror that split the light into two beams travelling at right
angles to one another. The split beams were recombined producing
a pattern of constructive and destructive interference based on the travel time in transit. If the Earth is traveling
through aether, a beam reflecting back and forth parallel to the flow of ether would take longer than a beam reflecting
perpendicular to the aether because the time gained from traveling with the aether is less than that lost traveling against

73



Introduction to the Science of Statistics Producing Data

the ether. The result would be a delay in one of the light beams that could be detected by their interference patterns
resulting for the recombined beams. Any slight change in the travel time would then be observed as a shift in the
positions of the interference fringes. While Michaelson’s prototype apparatus showed promise, it produced far too
large experimental errors.

In 1887, Edward Morley joined the effort to create a new device with enough accuracy to detect the aether wind.
The new apparatus had a longer path length, it was built on a block of marble, floated in a pool of mercury, and located
in a closed room in the basement of a stone building to eliminate most thermal and vibrational effects. The mercury
pool allowed the device to be turned, so that it could be rotated through the entire range of possible angles to the
hypothesized aether wind. Their results were the first strong evidence against the aether theory and formed a basic
contribution to the foundation of the theory of relativity. Thus, two natural questions - how fast does light travel and
does it need a medium - awaited elegant and powerful experiments to achieve the understanding we have today and
set the stage for the theory of relatively, one of the two great theories of modern physics.

Principles of Inheritance and Genetic Material

Patterns of inheritance have been noticed for millenia. Because of the needs for food, domesticated plants and animals
have been bred according to deliberate patterns for at least 5000 years. Progress towards the discovery of the laws
for inheritance began with a good set of model organisms. For example, annual flowering plants had certainly been
used successfully in the 18th century by Josef Gottlieb Kölreuter. His experimental protocols took the advantage of
the fact that these plants are easy to grow, have short generation times, have individuals that possess both male and
female reproductive organs, and have easily controlled mating through artificial pollination. Kölreuter established a
principle of equal parental contribution. The nature of inheritance remained unknown with a law of blending becoming
a leading hypothesis. Indeed, Charles Darwin adopted this rationale, calling it pangenesis.

In the 1850s and 1860s, the Austrian monk Gregor Mendel used pea plants to work out the basic principles of
genetics as we understand them today. Through careful inbreeding, Mendel found 7 true-breeding traits - traits that
remained present through many generations and persisted from parent to offspring. By this process, Mendel was sure
that potential parent plants were from a true-breeding strain. Mendel’s explanatory variables were the traits of the
parental generation, G. His response variables were the traits of the individual plants in the first filial generation,
F1 and second filial generation, F2.

Figure 4.2: Mendel’s traits and experiments.

Mendel noted that only one trait was ever ex-
pressed in the F1 generation and called it domi-
nant. The alternative trait was called recessive.
The most striking result is that in the F2 generation
the fraction expressing the dominant trait was very
close to 3/4 for each of the seven traits. (See the
table below summarizing Mendel’s data.) These
results in showing no intermediate traits disprove
the blending hypothesis. Also, the blending theory
could not explain the appearance of a pea plant ex-
pressing the recessive trait that is the offspring of
two plants each expressing the dominant trait. This
lead to the hypothesis that each plant has two units
of inheritance and transmits one of them to each of
its offspring. Mendel could check this hypothesis by crossing, in modern terms, heterozygous plants with those that
are dominant homozygous. Mendel went on to examine the situation in which two traits are examined simultaneously
and showed that the two traits sort independently. We now use the squares devised in 1905 by Reginald Punnett to
compute the probabilities of a particular cross or breeding experiment.
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parental phenotypes F2 generation phenotypes
dominant recessive dominant recessive total fraction dominant

spherical seeds × wrinkled seeds 5474 1850 7324 0.747
yellow seeds × green seeds 6022 2001 8023 0.751

purple flowers × white flowers 705 224 929 0.758
inflated pods × constricted pods 882 299 1181 0.747

green pods × yellow pods 428 152 580 0.738
axial flowers × terminal flowers 651 207 858 0.759

tall stems × dwarf stems 787 277 1064 0.740

We now know that many traits whose expression depends on environment can vary continuously. We can also see
that some genes are linked by their position and do not sort independently. (A pea plant has 7 pairs of chromosomes.)
The effects can sometimes look like blending. But thanks to Mendel’s work, we can see how these expressions are
built from the expression of several genes.

Now we know that inheritance is given in “packets”. The next question is what material in the living cell is
the source of inheritance. Theodor Boveri using sea urchins and Walter Sutton using grasshoppers independently
developed the chromosome theory of inheritance in 1902. From their work, we know that all the chromosomes
had to be present for proper embryonic development and that chromosomes occur in matched pairs of maternal and
paternal chromosomes which separate during meiosis. Soon thereafter, Thomas Hunt Morgan, working with the fruit
fly Drosophila melanogaster as a model system, noticed that a mutation resulting in white eyes was linked to sex - only
males had white eyes. Microscopy revealed a dimorphism in the sex chromosome and with this information, Morgan
could predict the inheritance of sex linked traits. Morgan continued to learn that genes must reside on a particular
chromosomes.

We now think of chromosomes as composed of
DNA, but it is in reality an organized structure of DNA
and protein. Thus, which of the two formed the in-
heritance material was in doubt. Phoebus Levene, who
identified the components of DNA, declared that it could
not store the genetic code because it was chemically far
too simple. At that time, DNA was wrongly thought to
be made up of regularly repeated tetranucleotides and
so could not be the carrier of genetic information. In-
deed, in 1944 when Oswald Avery, Colin MacLeod, and
Maclyn McCarty found that DNA to be the substance
that causes bacterial transformation, the scientific com-
munity was reluctant to accept the result despite the care
taken in the experiments. These researchers considered
several organic molecules - proteins, nucleic acids, car-
bohydrates, and lipids. In each case, if the DNA was
destroyed, the ability to continue heritability ended.

Alfred Hershey and Martha Chase continued the
search for the genetic material with an experiment using
bacteriophage. This virus that infects bacteria is made
up of liitle more than DNA inside a protein shell. The
virus introduces material into the bacterium that co-opts
the host, producing dozens of viruses that emerge from the lysed bacterium. Their experiment begins with growing
one culture of phage in a medium containing radioactive phosphorus (that appears in DNA but not in proteins) and
another culture in a medium containing radioactive sulfur (that appears in proteins but not in DNA). Afterwards they
agitated the bacteria in a blender to strip away the parts of the virus that did not enter the cell in a way that does
minimal damage to the bacteria. They then isolated the bacteria finding that the sulfur separated from the bacteria and
that the phosphorus had not. By 1952 when Hershey and Chase confirmed that DNA was the genetic material with
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their experiment using bacteriophage, scientists were more prepared to accept the result. This, of course, set the stage
for the importance of the dramatic discovery by Watson, Crick, and Franklin of the double helix structure of DNA.

Again, for both of these fundamental discoveries, the principles of inheritance and DNA as the carrier of inheritance
information, the experimental design was key. In the second case, we learned that even though Avery, MacLeod, and
McCarty had designed their experiment well, they did not, at that time, have a scientific community prepared to
acknowledge their findings.

Salk Vaccine Field Trials

Poliomyelitis, often called polio or infantile paral-
ysis, is an acute viral infectious disease spread
from person to person, primarily via the fecal-oral
route. The overwhelming majority of polio infec-
tions have no symptoms. However, if the virus en-
ters the central nervous system, it can infect motor
neurons, leading to symptoms ranging from mus-
cle weakness and paralysis. The effects of polio
have been known since prehistory; Egyptian paint-
ings and carvings depict otherwise healthy people
with withered limbs, and children walking with
canes at a young age. The first US epidemic was
in 1916. By 1950, polio had claimed hundreds of
thousands of victims, mostly children.

In 1950, the Public Health Service (PHS) orga-
nized a field trial of a vaccine developed by Jonas
Salk.

Polio is an epidemic disease with

• 60,000 cases in 1952, and

• 30,000 cases in 1953.

So, a low incidence without control could mean

• the vaccine works, or

• no epidemic in 1954.

Some basic facts were known before the trial started:

• Higher income parents are more likely to consent to allow children to take the vaccine.

• Children of lower income parents are thought to be less susceptible to polio. The reasoning is that these children
live in less hygienic surroundings and so are more likely to contract very mild polio and consequently more
likely to have polio antibodies.

To reduce the role of chance variation dominating the results, the United States Public Health Service (PHS)
decided on a study group of two million people. At the same time, a parents advocacy group, the National Foundation
for Infantile Paralysis (NFIP) set out its own design. Here are the essential features of the NFIP design:

• Vaccinate all grade 2 children with parental consent.

• Use grades 1 and 3 as controls.

This design fails to have some of essential features of the principles of experimental design. Here is a critique:
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• Polio spreads through contact, so infection of one child in a class can spread to the classmates.

• The treatment group is biased towards higher income.

Thus, the treatment group and the control group have several differences beyond the fact that the treatment group
receives the vaccine and the control group does not. This leaves the design open to having lurking variables be the
primary cause in the differences in outcomes between the treatment and control groups. The Public Health Service
design is intended to take into account these shortcomings. Their design has the following features:

• Flip a coin for each child. (randomized control)

• Children in the control group were given an injection of salt water. (placebo)

• Diagnosticians were not told whether a child was in treatment or control group. (double blind)

The results:

PHS NFIP
Size Rate Size Rate

Treatment 200,000 28 225,000 25
Control 200,000 71 725,000 54
No consent 350,000 46 125,000 44

Rates are per 100,000

We shall learn later that the evidence is overwhelming that the vaccine reduces the risk of contracting polio. As a
consequence of the study, universal vaccination was undertaken in the United States in the early 1960s. A global effort
to eradicate polio began in 1988, led by the World Health Organization, UNICEF, and The Rotary Foundation. These
efforts have reduced the number of annual diagnosed from an estimated 350,000 cases in 1988 to 1,310 cases in 2007.
Still, polio persists. The world now has four polio endemic countries - Nigeria, Afghanistan, Pakistan, and India. One
goal of the Gates Foundation is to eliminate polio.

The National Foundation for Infantile Paralysis was founded in 1938 by Franklin D. Roosevelt. Roosevelt was
diagnosed with polio in 1921, and left him unable to walk. The Foundation is now known as the March of Dimes.
The expanded mission of the March of Dimes is to improve the health of babies by preventing birth defects, premature
birth and infant mortality. Its initiatives include rubella (German measles) and pertussis (whooping cough) vaccination,
maternal and neonatal care, folic acid and spin bifida, fetal alcohol syndrome, newborn screening, birth defects and
prematurity.

The INCAP Study

Figure 4.3: The orange
ribbon is often used as
a symbol to promote
awareness of malnutrition,

The World Health Organization cites malnutrition as the gravest single threat to the world’s
public health. Improving nutrition is widely regarded as the most effective form of aid. Ac-
cording to Jean Ziegler (the United Nations Special Rapporteur on the Right to Food from
2000 to 2008) mortality due to malnutrition accounted for 58% of the total mortality in 2006.
In that year, more than 36 million died of hunger or diseases due to deficiencies in micronu-
trients.

Malnutrition is by far the biggest contributor to child mortality, present in half of all cases.
Underweight births and inter-uterine growth restrictions cause 2.2 million child deaths a year.
Poor or non-existent breastfeeding causes another 1.4 million. Other deficiencies, such as
lack of vitamins or minerals, for example, account for 1 million deaths. According to The
Lancet, malnutrition in the first two years is irreversible. Malnourished children grow up with
worse health and lower educational achievements.

Thus, understanding the root causes of malnutrition and designing remedies is a major
global health care imperative. As the next example shows, not every design sufficiently con-
siders the necessary aspects of human behavior to allow for a solid conclusion.
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The Instituto de Nutrición de Centro Americo y Panama (INCAP) conducted a study on the effects of malnutrition.
This 1969 study took place in Guatemala and was administered by the World Health Organization, and supported by
the United States National Institute of Health.

Growth deficiency is thought to be mainly due to protein deficiency. Here are some basic facts known in advance
of the study:

• Guatemalan children eat 2/3 as much as children in the United States.

• Age 7 Guatemalan children are, on average, 5 inches shorter and 11 pounds lighter than children in the United
States.

What are the confounding factors that might explain these differences?

• Genetics

• Prevalence of disease

• Standards of hygiene.

• Standards of medical care.

The experimental design: Measure the effects in four very similar Guatemalan villages. Here are the criterion used
for the Guatemalan villages chosen for the study..

• The village size is 150 families, 700 inhabitants with 100 under 6 years of age.

• The village is culturally Latino and not Mayan

• Village life consists of raising corn and beans for food and tomatoes for cash.

• Income is approximately $200 for a family of five.

• The literacy rate is approximately 30% for individuals over age 7.

For the experiment:

• Two villages received the treatment, a drink called atole, rich in calories and protein.

• Two villages received the control, a drink called fresca, low in calories and no protein.

• Both drinks contain missing vitamins and trace elements. The drinks were served at special cafeterias. The
amount consumed by each individual was recorded, but the use of the drinks was unrestricted.

• Free medical care was provided to compensate for the burden on the villagers.

The lack of control in the amount of the special drink consumed resulted in enormous variation in consumption.
In particular, much more fresca was consumed. Consequently, the design fails in that differences beyond the specific
treatment and control existed among the four villages.

The researchers were able to salvage some useful information from the data. They found a linear relationship
between a child’s growth and the amount of protein consumed:

child’s growth rate = 0.04 inches/pound protein

North American children consume an extra 100 pounds of protein by age 7. Thus, the protein accounts for 4 of the
5 inches in the average difference in heights between Latino Guatemalans and Americans.
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Topic 5

The Basics of Probability

The theory of probability as mathematical discipline can and should be developed from axioms in exactly
the same way as Geometry and Algebra. - Andrey Kolmogorov, 1933, Foundations of the Theory of
Probability

5.1 Introduction
Mathematical structures like Euclidean geometry or algebraic fields are defined by a set of axioms. “Mathematical
reality” is then developed through the introduction of concepts and the proofs of theorems. These axioms are inspired,
in the instances introduced above, by our intuitive understanding, for example, of the nature of parallel lines or the
real numbers. Probability is a branch of mathematics based on three axioms inspired originally by calculating chances
from card and dice games.

Statistics, in its role as a facilitator of science, begins with the collection of data. From this collection, we are
asked to make inference on the state of nature, that is to determine the conditions that are likely to produce these data.
Probability, in undertaking the task of investigating differing states of nature, takes the complementary perspective. It
begins by examining random phenomena, i.e., those whose exact outcomes are uncertain. Consequently, in order to
determine the “scientific reality” behind the data, we must spend some time working with the concepts of the theory
of probability to investigate properties of the data arising from the possible states of nature to assess which are most
useful in making inference.

We will motivate the axioms of probability through the case of equally likely outcomes for some simple games of
chance and look at some of the direct consequences of the axioms. In order to extend our ability to use the axioms, we
will learn counting techniques, e.g, permutations and combinations, based on the fundamental principle of counting.

A probability model has two essential pieces of its description.

• Ω, the sample space, the set of possible outcomes.

– An event is a collection of outcomes. We can define an event by explicitly giving its outcomes,

A = {ω1, ω2, · · · , ωn}

or with a description
A = {ω;ω has property P}.

In either case, A is subset of the sample space, A ⊂ Ω.

• P , the probability assigns a number to each event.
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Thus, a probability is a function. We are familiar with functions in which both the domain and range are subsets of the
real numbers. The domain of a probability function is the collection of all events. The range is still a number. We will
see soon which numbers we will accept as probabilities of events.

You may recognize these concepts from a basic introduction to sets. In talking about sets, we use the term universal
set instead of sample space, element instead of outcome, and subset instead of event. At first, having two words for
the same concept seems unnecessarily redundant. However, we will later consider more complex situations which will
combine ideas from sets and from probability. In these cases, having two expression for a concept will facilitate our
understanding. A Set Theory - Probability Theory Dictionary is included at the end of this topic to relate to the new
probability terms with the more familiar set theory terms.

5.2 Equally Likely Outcomes and the Axioms of Probability
The essential relationship between events and the probability are described through the three axioms of probability.
These axioms can be motivated through the first uses of probability, namely the case of equal likely outcomes.

If Ω is a finite sample space, then if each outcome is equally likely, we define the probability ofA as the fraction of
outcomes that are in A. Using #(A) to indicate the number of elements in an event A, this leads to a simple formula

P (A) =
#(A)

#(Ω)
.

Thus, computing P (A) means counting the number of outcomes in the event A and the number of outcomes in the
sample space Ω and dividing.

Exercise 5.1. Find the probabilities under equal likely outcomes.

(a) Toss a coin.

P{heads} =
#(A)

#(Ω)
= .

(b) Toss a coin three times.

P{toss at least two heads in a row} =
#(A)

#(Ω)
=

(c) Roll two dice.

P{sum is 7} =
#(A)

#(Ω)
=

Because we always have 0 ≤ #(A) ≤ #(Ω), we always have

P (A) ≥ 0 (5.1)

and
P (Ω) = 1 (5.2)

This gives us 2 of the three axioms. The third will require more development.

Toss a coin 4 times. #(Ω) = 16
A = {exactly 3 heads} = {HHHT, HHTH, HTHH, THHH} #(A) = 4

P (A) =
4

16
=

1

4

B = {exactly 4 heads} = {HHHH} #(B) = 1
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P (B) =
1

16

Now let’s define the set C = {at least three heads}. If you are asked the supply the probability of C, your intuition
is likely to give you an immediate answer.

P (C) =
5

16
.

Let’s have a look at this intuition. The events A and B have no outcomes in common,. We say that the two events
are disjoint or mutually exclusive and write A ∩B = ∅. In this situation,

#(A ∪B) = #(A) + #(B).

If we take this addition principle and divide by #(Ω), then we obtain the following identity:

If A ∩B = ∅, then
#(A ∪B)

#(Ω)
=

#(A)

#(Ω)
+

#(B)

#(Ω)
.

or
P (A ∪B) = P (A) + P (B). (5.3)

Using this property, we see that

P{at least 3 heads} = P{exactly 3 heads}+ P{exactly 4 heads} =
4

16
+

1

16
=

5

16
.

We are saying that any function P that accepts events as its domain and returns numbers as its range and satisfies
Axioms 1, 2, and 3 as defined in (5.1), (5.2), and (5.3) can be called a probability.

If we iterate the procedure in Axiom 3, we can also state that if the events,A1, A2, · · · , An, are mutually exclusive,
then

P (A1 ∪A2 ∪ · · · ∪An) = P (A1) + P (A2) + · · ·+ P (An). (5.3′)

This is a sufficient definition for a probability if the sample space Ω is finite. However, we will want to examine
infinite sample spaces and to use the idea of limits. This introduction of limits is the pathway that allows to bring in
calculus with all of its powerful theory and techniques as a tool in the development of the theory of probability.

Example 5.2. For the random experiment, consider a rare event - a lightning strike at a given location, winning the
lottery, finding a planet with life - and look for this event repeatedly until it occurs, we can write

Aj = {the first occurrence appears on the j-th observation}.

Then, each of the Aj are mutually exclusive and

{event occurs eventually} = A1 ∪A2 ∪ · · · ∪An ∪ · · · =
∞⋃

j=1

Aj = {ω;ω ∈ Aj for some j}.

We would like to say that

P{event occurs ventually} = P (A1) + P (A2) + · · ·+ P (An) + · · · =
∞∑

j=1

P (Aj) = lim
n→∞

n∑

j=1

P (Aj).
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A B

A

B

Figure 5.1: (left) Difference and Monotonicity Rule. If A ⊂ B, then P (B \ A) = P (B) − P (A). (right) The Inclusion-Exclusion Rule.
P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Using area as an analogy for probability, P (B \ A) is the area between the circles and the area
P (A) + P (B) double counts the lens shaped area P (A ∩B).

This would call for an extension of Axiom 3 to an infinite number of mutually exclusive events. This is the general
version of Axiom 3 we use when we want to use calculus in the theory of probability:

For mutually exclusive events, {Aj ; j ≥ 1}, then

P



∞⋃

j=1

Aj


 =

∞∑

j=1

P (Aj) (5.3′′)

Thus, statements (5.1), (5.2), and (5.3”) give us the complete axioms of probability.

5.3 Consequences of the Axioms
Other properties that we associate with a probability can be derived from the axioms.

1. The Complement Rule. Because A and its complement Ac = {ω;ω /∈ A} are mutually exclusive

P (A) + P (Ac) = P (A ∪Ac) = P (Ω) = 1

or
P (Ac) = 1− P (A).

For example, if we toss a biased coin. We may want to say that P{heads} = p where p is not necessarily equal
to 1/2. By necessity,

P{tails} = 1− p.
Example 5.3. Toss a coin 4 times.

P{fewer than 3 heads} = 1− P{at least 3 heads} = 1− 5

16
=

11

16
.

2. The Difference Rule. Write B \A to denote the outcomes that are in B but not in A. If A ⊂ B, then

P (B \A) = P (B)− P (A).

(The symbol ⊂ denotes “contains in”. A and B \A are mutually exclusive and their union is B. Thus P (B) =
P (A) + P (B \A).) See Figure 5.1 (left).
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Exercise 5.4. Give an example for which P (B \A) 6= P (B)− P (A)

Because P (B \A) ≥ 0, we have the following:

3. Monotonicity Rule. If A ⊂ B, then P (A) ≤ P (B)

We already know that for any event A, P (A) ≥ 0. The monotonicity rule adds to this the fact that

P (A) ≤ P (Ω) = 1.

Thus, the range of a probability is a subset of the interval [0, 1].

4. The Inclusion-Exclusion Rule. For any two events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B) (5.4).

(P (A) + P (B) accounts for the outcomes in A ∩B twice, so remove P (A ∩B).) See Figure 5.1 (right).

Exercise 5.5. Show that the inclusion-exclusion rule follows from the axioms. Hint: A ∪ B = (A ∩ Bc) ∪ B
and A = (A ∩Bc) ∪ (A ∩B).

Exercise 5.6. Give a generalization of the inclusion-exclusion rule for three events.

Deal two cards.

A = {ace on the second card}, B = {ace on the first card}

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P{at least one ace} =
1

13
+

1

13
− ?

To complete this computation, we will need to compute P (A ∩B) = P{both cards are aces} = #(A∩B)
#(Ω)

We will learn a strategy for this when we learn the fundamental principles of counting. We will also learn a
simpler strategy in the next topic where we learn about conditional probabilities.

5. The Bonferroni Inequality. For any two events A and B,

P (A ∪B) ≤ P (A) + P (B).

6. Continuity Property. If events satisfy

B1 ⊂ B2 ⊂ · · · and B =

∞⋃

i=1

Bi

Then, by the monotonicity rule, P (Bi) is an increasing sequence. In addition, they satisfy

P (B) = lim
i→∞

P (Bi). (5.5)

Similarly, use the symbol ⊃ to denote “contains”. If events satisfy

C1 ⊃ C2 ⊃ · · · and C =

∞⋂

i=1

Ci

Again, by the monotonicity rule, P (Ci) is a decreasing sequence. In addition, they satisfying

P (C) = lim
i→∞

P (Ci). (5.6)
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Figure 5.2: Continuity Property. (left) Bi increasing to an event B. Here, equation (5.5) is satisfied. (right) Ci decreasing to an event C. Here,
equation (5.6) is satisfied.

Exercise 5.7. Establish the continuity property. Hint: For the first, let A1 = B1 and Ai = Bi \Bi−1, i > 1 in axiom
(5.3”). For the second, use the complement rule and de Morgan’s law

Cc =

∞⋃

i=1

Cci

Exercise 5.8 (odds). The statement of a : b odds for an event A indicates that

P (A)

P (Ac)
=
a

b

Show that
P (A) =

a

a+ b
.

So, for example, 1 : 2 odds means P (A) = 1/3 and 5 : 3 odds means P (A) = 5/8.

5.4 Counting
In the case of equally likely outcomes, finding the probability of an event A is the result of two counting problems -
namely finding #(A), the number of outcomes in the eventA and finding #(Ω), the number of outcomes in the sample
space, Ω. These counting problems can become quite challenging and many advanced mathematical techniques have
been developed to address these issues. However, having some facility in counting is necessary to have a sufficiently
rich number of examples to give meaning to the axioms of probability. Consequently, we shall develop a few counting
techniques leading to the concepts of permutations and combinations.

5.4.1 Fundamental Principle of Counting
We start with the fundamental principle of counting.

Suppose that two experiments are to be performed.

• Experiment 1 can have n1 possible outcomes and

• for each outcome of experiment 1, experiment 2 has n2 possible outcomes.
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Then together there are n1 × n2 possible outcomes.

Example 5.9. For a group of n individuals, one is chosen to become the president and a second is chosen to become
the treasurer. By the multiplication principle, if these position are held by different individuals, then this task can be
accomplished in

n× (n− 1)

possible ways

Exercise 5.10. Find the number of ways to draw two cards and the number of ways to draw two aces.

Exercise 5.11. Generalize the fundamental principle of counting to k experiments.

Assume that we have a collection of n objects and we wish to make an ordered arrangement of k of these
objects. We call this a permutation of n objects of size k. Using the generalized multiplication principle, the number
of possible outcomes is

n× (n− 1)× · · · × (n− k + 1).

We will write this as (n)k and say n falling k. Correspondingly, we hve the notion of the rising factorial, also referred
to as the Pochhammer symbol.

n(k) = n× (n+ 1)× · · · × (n+ k − 1).

5.4.2 Permutations
Example 5.12 (birthday problem). In a list the birthday of k people, there are 365k possible lists (ignoring leap year
day births) and

(365)k

possible lists with no date written twice. Thus, the probability, under equally likely outcomes, that no two people on
the list have the same birthday is

(365)k
365k

=
365 · 364 · · · (365− k + 1)

365k

and, by the complement rule,

P{at least one pair of individuals share a birthday} = 1− (365)k
365k

(5.1)

Here is a short table of these probabilities. A graph is given in Figure 5.3.

k 5 10 15 18 20 22 23 25 30 40 50 100
probability 0.027 0.117 0.253 0.347 0.411 0.476 0.507 0.569 0.706 0.891 0.970 0.994

The R code and output follows. We can create an iterative process by noting that

(365)k
365k

=
(365)k−1

365k−1

(365− k + 1)

365

Thus, we can find the probability that no pair in a group of k individuals has the same birthday by taking the probability
that no pair in a group of k − 1 individuals has the same birthday and multiplying by (365− k + 1)/365. Here is the
output for k = 1 to 45.

> prob=rep(1,45)
> for (k in 2:45){prob[k]=prob[k-1]*(365-k+1)/365}
> data.frame(c(1:15),1-prob[1:15],c(16:30),1-prob[16:30],c(31:45),1-prob[31:45])

and the output
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c.1.15. X1...prob.1.15. c.16.30. X1...prob.16.30. c.31.45. X1...prob.31.45.
1 1 0.000000000 16 0.2836040 31 0.7304546
2 2 0.002739726 17 0.3150077 32 0.7533475
3 3 0.008204166 18 0.3469114 33 0.7749719
4 4 0.016355912 19 0.3791185 34 0.7953169
5 5 0.027135574 20 0.4114384 35 0.8143832
6 6 0.040462484 21 0.4436883 36 0.8321821
7 7 0.056235703 22 0.4756953 37 0.8487340
8 8 0.074335292 23 0.5072972 38 0.8640678
9 9 0.094623834 24 0.5383443 39 0.8782197
10 10 0.116948178 25 0.5686997 40 0.8912318
11 11 0.141141378 26 0.5982408 41 0.9031516
12 12 0.167024789 27 0.6268593 42 0.9140305
13 13 0.194410275 28 0.6544615 43 0.9239229
14 14 0.223102512 29 0.6809685 44 0.9328854
15 15 0.252901320 30 0.7063162 45 0.9409759

Definition 5.13. The number of ordered arrangements of all n objects (also called permutations) is

(n)n = n× (n− 1)× · · · × 1 = n!,

n factorial. We take 0! = 1

Exercise 5.14.

(n)k =
n!

(n− k)!
.

5.4.3 Combinations
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Figure 5.3: The Birthday Problem. For a room of con-
taining k individuals. Using (5.1), a plot of k versus
Pk{at least one pair of individuals share a birthday}.

In the case that the order does not matter, a combination is
a subset from a finite set. Write

(
n

k

)

for the number of different combinations of k objects that
can be chosen from a set of size n.

We will next find a formula for this number by counting
the number of possible outcomes in two different ways. To
introduce this with a concrete example, suppose 3 cities will
be chosen out of 8 under consideration for a vacation. If we
think of the vacation as visiting three cities in a particular
order, for example,

New York then Boston then Montreal.

Then we are counting the number of ordered arrangements. This results in

(8)3 = 8 · 7 · 6

choices.
If we are just considering the 3 cities we visit, irrespective of order, then these unordered choices are combina-

tions. The number of ways of doing this is written (
8

3

)
,
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a number that we do not yet know how to determine. After we have chosen the three cities, we will also have to pick
an order to see the cities and so using the fundamental principle of counting, we have

(
8

3

)
× 3 · 2 · 1 =

(
8

3

)
3!

possible vacations if the order of the cities is included in the choice.
These two strategies are counting the same possible outcomes and so the number of them must be equal.

(8)3 = 8 · 7 · 6 =

(
8

3

)
× 3 · 2 · 1 =

(
8

3

)
3! or

(
8

3

)
=

8 · 7 · 6
3 · 2 · 1 =

(8)3

3!
.

Thus, we have a formula for
(

8
3

)
. Let’s do this more generally.

Theorem 5.15. (
n

k

)
=

(n)k
k!

=
n!

k!(n− k)!
.

The second equality follows from the previous exercise.

The number of ordered arrangements of k objects out of n is

(n)k = n× (n− 1)× · · · × (n− k + 1).

Alternatively, we can form an ordered arrangement of k objects from a collection of n by:

1. First choosing a group of k objects.
The number of possible outcomes for this experiment is

(
n
k

)
.

2. Then, arranging this k objects in order.
The number of possible outcomes for this experiment is k!.

So, by the fundamental principle of counting,

(n)k =

(
n

k

)
× k!.

Now complete the argument by dividing both sides by k!.

Exercise 5.16 (binomial theorem).

(x+ y)n =

n∑

k=0

(
n

k

)
xkyn−k.

Exercise 5.17. Verify the identities
(
n

1

)
=

(
n

n− 1

)
= n and

(
n

k

)
=

(
n

n− k

)
.

Thus, we set (
n

n

)
=

(
n

0

)
= 1.

The number of combinations is computed in R using choose. In the vacation example above,
(

8
3

)
is determined

by entering

> choose(8,3)
[1] 56
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Theorem 5.18 (Pascal’s triangle). (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

To see this using the example on vacations,
(

8

3

)
=

(
7

2

)
+

(
7

3

)
.

Assume that New York is one of 8 vacation cities. Then of the
(

8
3

)
possible vacations, Then of the

(
8
3

)
vacations, if

New York is on the list, then we must choose the remaining 2 cities from the remaining 7. If New York in not on the
list, then all 3 choices must be from the remaining 7. Because New York is either on the list or off the list, but never
both, the two types of choices have no overlap.

To establish this identity in general, distinguish one of the n objects in the collection. Say that we are looking at a
collection of n marbles, n− 1 are blue and 1 is red.

1. For outcomes in which the red marble is chosen, we must choose k − 1 marbles from the n − 1 blue marbles.
(The red marble is the remaining choice.) Thus,

(
n−1
k−1

)
different outcomes have the red marble.

2. If the red marble is not chosen, then we must choose k blue marbles. Thus,
(
n−1
k

)
outcomes do not have the red

marbles.

3. These choices of groups of k marbles have no overlap. And so
(
n
k

)
is the sum of the values in 1 and 2.

This gives us an iterative way to compute the values of
(
n
k

)
. Let’s build a table of values for n (vertically) and

k ≤ n (horizontally). Then, by the Pascal’s triangle formula, a given table entry is the sum of the number directly
above it and the number above and one column to the left. We can get started by noting that

(
n
0

)
=
(
n
n

)
= 1.

Pascal’s triangle

k − 1 k

n− 1
(
n−1
k−1

) (
n−1
k

)
← the sum of these two numbers

n
(
n
k

)
← equals this number

k
0 1 2 3 4 5 6 7 8

0 1
1 1 1
2 1 2 1
3 1 3 3 1

n 4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

Example 5.19. For the experiment on honey bee queen - if we rear 60 of the 90 queen eggs, the we have

> choose(90,60)
[1] 6.73133e+23

more than 1023 different possible simple random samples.

Example 5.20. Deal out three cards. There are (
52

3

)

possible outcomes. Let x be the number of hearts. Then we have chosen x hearts out of 13 and 3 − x cards that are
not hearts out of the remaining 39. Thus, by the multiplication principle there are

(
13

x

)
·
(

39

3− x

)
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possible outcomes.
If we assume equally likely outcomes, the probability of x hearts is the ratio of these two numbers. To compute

these numbers in R for x = 0, 1, 2, 3, the possible values for x, we enter

> x<-0:3
> prob<-choose(13,x)*choose(39,3-x)/choose(52,3)
> data.frame(x,prob)

x prob
1 0 0.41352941
2 1 0.43588235
3 2 0.13764706
4 3 0.01294118

Notice that

> sum(prob)
[1] 1

We can simulate this activity repeatedly and see how it matches the result of the computation. First, we create a
vector of length 52 - c(rep(1,13),rep(0,39)). The 13 ones for the hearts and 39 zeros for the other cards. We
can sample 3 with the sample command and use the sum command to add the ones (and hence the hearts). The first
line in R below creates a space for our simulation and the table allows for a quick display of the results.

> hearts<-numeric(10000)
> for (i in 1:10000){hearts[i]<-sum(sample(c(rep(1,13),rep(0,39)),3))}
> table(hearts)
hearts

0 1 2 3
4133 4382 1335 150

Now divide by 10,000 to see that these simulated probabilities match closely the computed values above. Because it is
a random simulation, we will have different results with a second simulation

Alternatively, we can use the replicate command.

> hearts<-replicate(10000,sum(sample(c(rep(1,13),rep(0,39)),3)))
> table(hearts)
hearts

0 1 2 3
4164 4284 1414 138

Exercise 5.21. Deal out 5 cards. Let x be the number of fours. What values can x take? Find the probability of x
fours for each possible value. Repeat this with 6 cards. Compare your answers to a simulation.

5.5 Answers to Selected Exercises
5.1. (a) 1/2, (b) 3/8, (c) 6/36 = 1/6

5.3. Toss a coin 6 times. Let A = {at least 3 heads} and Let B = {at least 3 tails}. Then

P (A) = P (B) =
42

64
=

21

32
.

Thus, P (B)− P (A) = 0. However, the event

B \A = {exactly 3 tails} = {exactly 3 heads}
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and P (B \A) = 20/64 = 5/16 6= 0.

5.5. Using the hint, we have that

P (A ∪B) = P (A ∩Bc) + P (B)

P (A) = P (A ∩Bc) + P (A ∪B)

Subtract these two equations
P (A ∪B)− P (A) = P (B)− P (A ∪B).

Now add P (A) to both sides of the equation to obtain (5.4).

5.6. Use the associativity property of unions to write A∪B ∪C = (A∪B)∪C and use (5.4), the inclusion-exclusion
property for the 2 events A ∪B and C and then to the 2 events A and B,

P ((A ∪B) ∪ C) = P (A ∪B) + P (C)− P ((A ∪B) ∩ C)

= (P (A) + P (B)− P (A ∩B)) + P (C)− P ((A ∩ C) ∪ (B ∩ C))

For the final expression, we use one of De Morgan’s Laws. Now rearrange the other terms and apply inclusion-
exlcusion to the final expression.

P (A ∪B ∪ C) = P (A) + P (B)− P (A ∩B) + P (C)− P ((A ∩ C) ∪ (B ∩ C))

= P (A) + P (B) + P (C)− P (A ∩B)− (P (A ∩ C) + P (B ∩ C)− P ((A ∩ C) ∩ (B ∩ C)))

= P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

The last expression uses the identity (A ∩ C) ∩ (B ∩ C)) = A ∩B ∩ C.

5.7. Using the hint and writing B0 = ∅, we have that P (Ai) = P (Bi)− P (Bi−1) and that

n⋃

i=1

Bi =

n⋃

i=1

Ai

Because the Ai are disjoint, we have by (5.3’)

P

(
n⋃

i=1

Bi

)
= P

(
n⋃

i=1

Ai

)

= P (An) + P (An−1) + · · ·+ P (A2) + P (A1)

= (P (Bn)− P (Bn−1)) + (P (Bn−1)− P (Bn−2)) + · · ·+ (P (B2)− P (B1)) + (P (B1)− P (B0))

= P (Bn)− (P (Bn−1)− (P (Bn−1))− P (Bn−2)) + · · ·+ P (B2)− (P (B1)− (P (B1))− P (∅)
= P (Bn)

because all of the other terms cancel. This is an example of a telescoping sum. Now use (5.3”) to obtain

P

( ∞⋃

i=1

Bi

)
= lim
n→∞

P (Bn).

For the second part. Write Bi = Cci . Then, the Bi satisfy the required conditions and that B = Cc. Thus,

1− P (C) = P (Cc) = lim
i→∞

P (Cci ) = lim
i→∞

(1− P (Ci)) = 1− lim
i→∞

P (Ci)

and
P (C) = lim

i→∞
P (Ci)
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5.8. If
a

b
=

P (A)

P (Ac)
=

P (A)

1− P (A)
.

Then,
a− aP (A) = bP (A), a = (a+ b)P (A), P (A) =

a

a+ b
.

5.10. The number of ways to obtain two cards is 52 · 51. The number of ways to obtain two aces is 4 · 3.

5.11. Suppose that k experiments are to be performed and experiment i can have ni possible outcomes irrespective of
the outcomes on the other k − 1 experiments. Then together there are n1 × n2 × · · · × nk possible outcomes.

5.14.

(n)k = n× (n− 1)× · · · × (n− k + 1)× (n− k)!

(n− k)!

=
n× (n− 1)× · · · × (n− k + 1)(n− k)!

(n− k)!

=
n!

(n− k)!
.

5.15. Expansion of (x+y)n = (x+y)× (x+y)×· · ·× (x+y) will result in 2n terms. Each of the terms is achieved
by one choice of x or y from each of the factors in the product (x+ y)n. Each one of these terms will thus be a result
in n factors - some of them x and the rest of them y. For a given k from 0, 1, . . . , n, we will see choices that will result
in k factors of x and n− k factors of y, i. e., xkyn−k. The number of such choices is the combination

(
n

k

)

Add these terms together to obtain (
n

k

)
xkyn−k.

Next adding these values over the possible choices for k results in

(x+ y)n =

n∑

k=0

(
n

k

)
xkyn−k.

5.17. The formulas are easy to work out. One way to consider
(
n

1

)
=

(
n

n− 1

)

is to note that
(
n
1

)
is the number of ways to choose 1 out of a possible n. This is the same as

(
n
n−1

)
, the number of

ways to exclude 1 out of a possible n. A similar reasoning gives
(
n

k

)
=

(
n

n− k

)
.

(Replace 1 by k in the argument above.)
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5.21. The possible values for x are 0, 1, 2, 3, and 4. When we have chosen x fours out of 4, we also have 5− x cards
that are not fours out of the remaining 48. Thus, by the multiplication principle, the probability of x fours is

(
4
x

)
·
(

48
5−x
)

(
52
5

) .

Similarly for 6 cards, the probability of x fours is
(

4
x

)
·
(

48
6−x
)

(
52
6

) .

To compute the numerical values for the probability of x fours:

> x<-c(0:4)
> prob5<-choose(4,x)*choose(48,5-x)/choose(52,5)
> sum(prob5)
[1] 1
> prob6<-choose(4,x)*choose(48,6-x)/choose(52,6)
> sum(prob6)
[1] 1
> data.frame(x,prob5,prob6)

x prob5 prob6
1 0 6.588420e-01 6.027703e-01
2 1 2.994736e-01 3.364300e-01
3 2 3.992982e-02 5.734602e-02
4 3 1.736079e-03 3.398282e-03
5 4 1.846893e-05 5.540678e-05

For the simulation of 5 cards,

> fours<-replicate(10000,sum(sample(c(rep(1,4),rep(0,48)),5)))
> table(fours)
fours

0 1 2 3 4
6596 3024 365 14 1

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of fours

pr
ob

ab
ili

ty

Figure 5.4: Empirical cumulative distribution functions for the number of fourss in a draw of 6 cards.
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The simulated values are a bit lower than computed values for 0 fours (0.6522 vs 0.6558), and a bit higher for 1, 2
and 3 fours. Notice that 4 fours appeared only once. For 6 cards,

> fours<-replicate(10000,sum(sample(c(rep(1,4),rep(0,48)),6)))
> table(fours)
fours

0 1 2 3
6035 3382 543 40

The simulated values are a bit higher than computed values for 0 fours (0.6086 vs 0.6027), a bit lower for 1, 2, and
3 fours. In this simulation, 4 fours never appeared.

We can add an empirical cumulative distribution functions for the number of fours in a draw of 6 cards.

> plot(sort(fours),1:length(fours)/length(fours),xlim=c(0,4),ylim=c(0,1),
xlab=c("number of fours"),ylab=c("probability"),type="s")
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5.6 Set Theory - Probability Theory Dictionary

Event Language Set Language Set Notation

sample space universal set Ω

event subset A,B,C, · · ·

outcome element ω

impossible event empty set ∅

not A A complement Ac

A or B A union B A ∪B

A and B A intersect B A ∩B

A and B are A and B are A ∩B = ∅
mutually exclusive disjoint

if A then B A is a subset of B A ⊂ B
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Topic 6

Conditional Probability and Independence

Under Bayes’ theorem, no theory is perfect. Rather, it is a work in progress, always subject to further
refinement and testing. - Nate Silver

One of the most important concepts in the theory of probability is based on the question: How do we modify the
probability of an event in light of the fact that something new is known? What is the chance that we will win the game
now that we have taken the first point? What is the chance that I am a carrier of a genetic disease now that my first
child does not have the genetic condition? What is the chance that a child smokes if the household has two parents
who smoke? This question leads us to the concept of conditional probability.

6.1 Restricting the Sample Space - Conditional Probability
Toss a fair coin 3 times. Let winning be “at least two heads out of three”

HHH HHT HTH HTT
THH THT TTH TTT

Figure 6.1: Outcomes on three tosses of a coin, with the winning event indicated.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A

A

B

B

Figure 6.2: Two Venn diagrams
to illustrate conditional probability.
For the top diagram P (A) is large
but P (A|B) is small. For the bot-
tom diagram P (A) is small but
P (A|B) is large.

If we now know that the first coin toss is heads, then only the top row is possible
and we would like to say that the probability of winning is

#(outcomes that result in a win and also have a heads on the first coin toss)
#(outcomes with heads on the first coin toss)

=
#{HHH, HHT, HTH}

#{HHH, HHT, HTH, HTT} =
3

4
.

We can take this idea to create a formula in the case of equally likely outcomes for
the statement the conditional probability of A given B.

P (A|B) = the proportion of outcomes in A that are also in B

=
#(A ∩B)

#(B)

We can turn this into a more general statement using only the probability, P , by
dividing both the numerator and the denominator in this fraction by #(Ω).

P (A|B) =
#(A ∩B)/#(Ω)

#(B)/#(Ω)
=
P (A ∩B)

P (B)
(6.1)
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We thus take this version (6.1) of the identity as the general definition of conditional probability for any pair of
events A and B as long as the denominator P (B) > 0.

Exercise 6.1. Pick an event B so that P (B) > 0. Define, for every event A,

Q(A) = P (A|B).

Show that Q satisfies the three axioms of a probability. In words, a conditional probability is a probability.

Exercise 6.2. Roll two dice. Find P{sum is 8|first die shows 3}, and P{sum is 8|first die shows 1}

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Figure 6.3: Outcomes on the roll of two dice. The event {first roll is 3} is indicated.

Exercise 6.3. Roll two four-sided dice. With the numbers 1 through 4 on each die, the value of the roll is the number
on the side facing downward. Assuming all 16 outcomes are equally likely, find P{sum is at least 5}, P{first die is 2}
and P{sum is at least 5|first die is 2}

6.2 The Multiplication Principle
The defining formula (6.1) for conditional probability can be rewritten to obtain the multiplication principle,

P (A ∩B) = P (A|B)P (B). (6.2)

Now, we can complete an earlier problem:

P{ace on first two cards} = P{ace on second card|ace on first card}P{ace on first card}

=
3

51
× 4

52
=

1

17
× 1

13
.

We can continue this process to obtain a chain rule:

P (A ∩B ∩ C) = P (A|B ∩ C)P (B ∩ C) = P (A|B ∩ C)P (B|C)P (C).

Thus,

P{ace on first three cards}
= P{ace on third card|ace on first and second card}P{ace on second card|ace on first card}P{ace on first card}

=
2

50
× 3

51
× 4

52
=

1

25
× 1

17
× 1

13
.

Extending this to 4 events, we consider the following question:

Example 6.4. In an urn with b blue balls and g green balls, the probability of green, blue, green, blue (in that order)
is

g

b+ g
· b

b+ g − 1
· g − 1

b+ g − 2
· b− 1

b+ g − 3
=

(g)2(b)2

(b+ g)4
.
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Notice that any choice of 2 green and 2 blue would result in the same probability. There are
(

4
2

)
= 6 such choices.

Thus, with 4 balls chosen without replacement

P{2 blue and 2 green} =

(
4

2

)
(g)2(b)2

(b+ g)4
.

Exercise 6.5. Show that (
4

2

)
(g)2(b)2

(b+ g)4
=

(
b
2

)(
g
2

)
(
b+g

4

) .

Explain in words why P{2 blue and 2 green} is the expression on the right.

We will later extend this idea when we introduce sampling without replacement in the context of the hypergeomet-
ric random variable.

6.3 The Law of Total Probability
If we know the fraction of the population in a given state of the United States that has a given attribute - is diabetic,
over 65 years of age, has an income of $100,000, owns their own home, is married - then how do we determine what
fraction of the total population of the United States has this attribute? We address this question by introducing a
concept - partitions - and an identity - the law of total probability.

Definition 6.6. A partition of the sample space Ω is a finite collection of pairwise mutually exclusive events

{C1, C2, . . . , Cn}

whose union is Ω.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C1

C2

C3

C5

C4 C6

C7

C8

C9

A

Figure 6.4: A partition {C1 . . . , C9} of the sample space Ω. The event A can be
written as the union (A ∩ C1) ∪ · · · ∪ (A ∩ C9) of mutually exclusive events.

Thus, every outcome ω ∈ Ω belongs to ex-
actly one of the Ci. In particular, distinct mem-
bers of the partition are mutually exclusive. (Ci∩
Cj = ∅, if i 6= j)

If we know the fraction of the population from
18 to 25 that has been infected by the H1N1 in-
fluenza A virus in each of the 50 states, then we
cannot just average these 50 values to obtain the
fraction of this population infected in the whole
country. This method fails because it give equal
weight to California and Wyoming. The law of
total probability shows that we should weigh
these conditional probabilities by the probability
of residence in a given state and then sum over all
of the states.

Theorem 6.7 (law of total probability). Let P be
a probability on Ω and let {C1, C2, . . . , Cn} be a
partition of Ω chosen so that P (Ci) > 0 for all i.
Then, for any event A ⊂ Ω,

P (A) =

n∑

i=1

P (A|Ci)P (Ci). (6.3)

Because {C1, C2, . . . , Cn} is a partition, {A ∩ C1, A ∩ C2, . . . , A ∩ Cn} are pairwise mutually exclusive events.
By the distributive property of sets, their union is the event A. (See Figure 6.4.)
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To refer the example above the Ci are the residents of state i, A ∩ Ci are those residents who are from 18 to 25
years old and have been been infected by the H1N1 influenza A virus. Thus, distinct A ∩ Ci are mutually exclusive -
individuals cannot reside in 2 different states. Their union is A, all individuals in the United States between the ages
of 18 and 25 years old who have been been infected by the H1N1 virus.

A

CcC

Figure 6.5: A partition into two events C and Cc.

Thus,

P (A) =

n∑

i=1

P (A ∩ Ci). (6.4)

Finish by using the multiplication identity (6.2)

P (A ∩ Ci) = P (A|Ci)P (Ci), i = 1, 2, . . . , n

and substituting into (6.4) to obtain the identity in (6.3).
The most frequent use of the law of total probability

comes in the case of a partition of the sample space into two
events, {C,Cc}. In this case, the law of total probability
becomes the identity

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc). (6.5)

Exercise 6.8. The problem of points is a classical prob-
lem in probability theory. The problem concerns a series
of games with two sides who have equal chances of winning each game. The winning side is one that first reaches a
given number n of wins. Let n = 4 for a best of seven playoff. Determine

pij = P{winning the playoff after i wins vs j opponent wins}

(Hint: pii = 1
2 for i = 0, 1, 2, 3.)

6.4 Bayes formula
Let A be the event that an individual tests positive for some disease and C be the event that the person actually has
the disease. We can perform clinical trials to estimate the probability that a randomly chosen individual tests positive
given that they have the disease,

P{tests positive|has the disease} = P (A|C),

by taking individuals with the disease and applying the test. However, we would like to use the test as a method of
diagnosis of the disease. Thus, we would like to be able to give the test and assert the chance that the person has the
disease. That is, we want to know the probability with the reverse conditioning

P{has the disease|tests positive} = P (C|A).

Example 6.9. The Public Health Department gives us the following information.

• A test for the disease yields a positive result 90% of the time when the disease is present.

• A test for the disease yields a positive result 1% of the time when the disease is not present.

• One person in 1,000 has the disease.

Let’s first think about this intuitively and then look to a more formal way using Bayes formula to find the probability
of

P (C|A).
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1,000,000 people
�
�
�
��

A
A
A
AU

1,000 have the disease

999,000 do not have the disease
�
��

A
AU

�
��

A
AU

900 test positive

100 test negative

9,990 test positive

989,010 test negative

P (C) = 0.001

P (Cc) = 0.999

P (A|C)P (C) = 0.0009

P (Ac|C)P (C) = 0.0001

P (A|Cc)P (Cc) = 0.00999

P (Ac|Cc)P (Cc) = 0.98901

Figure 6.6: Tree diagram. We can use a tree diagram to indicate the number of individuals, on average, in each group (in black) or the probablity
(in blue). Notice that in each column the number of individuals adds to give 1,000,000 and the probabilities add to give 1. In addition, each pair of
arrows divides an events into two mutually exclusive subevents. Thus, both the numbers and the probabilities at the tip of the arrows add to give the
respective values at the head of the arrow.

• In a city with a population of 1 million people, on average,

1,000 have the disease and 999,000 do not

• Of the 1,000 that have the disease, on average,

900 test positive and 100 test negative

• Of the 999,000 that do not have the disease, on average,

999,000 × 0.01 = 9990 test positive and 989,010 test negative.

We can record this information in a table. First we place the total number of those with (1,000) and without
(999,000) the disease along the bottom row. We then use the information on positive and negative results for the test
to fill in the columns to show 9:1 odds for positive test for those who have the disease and a 1:99 odds for those who
do not.

has the disease does not have the disease total
test positive 900 9,990 10,890
test negative 100 989,010 989,110

total 1,000 990,000 1,000,000

Having filled in the columns, Bayes formula has us look at odds along the rows. For example, from the top row of
the table, we see that among those that test positive, the odds of having the disease is

#(have the disease):#(does not have the disease)

900:9990
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public health
researcher worker clinician

has does not has does not
disease have disease −→ disease have disease
C Cc C Cc sum

tests positive P (A|C) P (A|Cc) P (C) = 0.001 tests positive P (C|A) P (Cc|A)
A 0.90 0.01 P (Cc) = 0.999 A 0.0826 0.9174 1

tests negative P (Ac|C) P (Ac|Cc) tests negative P (C|Ac) P (Cc|Ac)
Ac 0.10 0.99 ↖ Ac 0.0001 0.9999 1

sum 1 1

Table I: Using Bayes formula to evaluate a test for a disease. Successful analysis of the results of a clinical test requires researchers to provide
results on the quality of the test and public health workers to provide information on the prevalence of a disease. The conditional probabilities
provided by the researchers tell us about the chances of having the disease given the outcome of the test. The probability of a person having the
disease might be provided by the public health service (shown by the east arrow). Both are necessary for the clinician to be able to use Bayes
formula (6.7), to give the conditional probability of having the disease given the test result. Notice, in particular, that the order of the conditioning
needed by the clinician is the reverse of that provided by the researcher. If the clinicians provide reliable data to the public health service, then this
information can be used to update the probabilities for the prevalence of the disease (indicated by the northwest arrow). The numbers in gray can
be computed from the numbers in black by using the complement rule. In particular, the column sums for the researchers and the row sums for the
clinicians much be 1.

and converting odds to probability we see that

P{have the disease|test is positive} =
900

900 + 9990
=

900

10890
= 0.0826.

We now derive Bayes formula. First notice that we can flip the order of conditioning by using the multiplication
formula (6.2) twice

P (A ∩ C) =




P (A|C)P (C)

P (C|A)P (A)

Now we can create a formula for P (C|A) as desired in terms of P (A|C).

P (C|A)P (A) = P (A|C)P (C) or P (C|A) =
P (A|C)

P (A)
P (C) (6.6)

Generally, we call P (C) the prior probability of C. With A given, we call P (C|A) the posterior probability of
A. The Bayes factor

P (A|C)

P (A)
.

is their ratio as given by the second equality in (6.6).

Example 6.10. Both autism A and epilepsy C exists at approximately 1% in human populations. In this case, from
the first identity in (6.6),

P (A|C) ≈ P (C|A)

Clinical evidence shows that this common value is about 30%. The Bayes factor is

P (A|C)

P (A)
≈ 0.3

0.01
= 30.

Thus, the knowledge of one disease increases the chance of the other by a factor of 30.
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From this formula we see that in order to determine P (C|A) from P (A|C), we also need to know P (C), the
fraction of the population with the disease and P (A). We can find P (A) using the law of total probability in (6.5) and
write Bayes formula as

P (C|A) =
P (A|C)P (C)

P (A|C)P (C) + P (A|Cc)P (Cc)
. (6.7)

This shows us that we can determine P (A) if, in addition, we collect information from our clinical trials on P (A|Cc),
the fraction that test positive who do not have the disease.

true false
positive positive
P (A|C) P (A|Cc)

false true
negative negative
P (Ac|C) P (Ac|Cc)

Table II: Terminology for conditional
probabilities. A is the event “tests posi-
tive” andC is the event ”has the disease”.
Notice that the columns sum to one.

Let’s now compute P (C|A) for the example above using Bayes formula di-
rectly and use this opportunity to introduce some terminology. We have that
P (A|C) = 0.90. We use the expression true positive probability or the sensi-
tivity for the chance that we have a correct positive diagnosis to those who have
the disease. If one tests negative for the disease (the outcome is in Ac) given that
one has the disease, (the outcome is in C), then we call this a false negative. In
this case, the false negative probability is P (Ac|C) = 0.10

If one tests positive for the disease (the outcome is in A) given that one does
not have the disease, (the outcome is in Cc), then we call this a false positive. In
this case, the false positive probability is P (A|Cc) = 0.01. The true negative
probability P (Ac|Cc) = 0.99 is also called the specificity.

The probability of having the disease is P (C) = 0.001 and so the probability
of being disease free is P (Cc) = 0.999. Now, we apply the law of total probability
(6.5) as the first step in Bayes formula (6.7),

P (A) = P (A|C)P (C) + P (A|Cc)P (Cc)

= 0.90 · 0.001 + 0.01 · 0.999 = 0.0009 + 0.009999 = 0.01089.

Thus, the probability of having the disease given that the test was positive is

P (C|A) =
P (A|C)P (C)

P (A)
=

0.0009

0.01089
= 0.0826.

Notice that the numerator is one of the terms that was summed to compute the denominator.
We can take the terminology above a give formulas to the elements in the table above.

has the disease does not have the disease total
test positive 900 = true positive rate × #disease 9,990 = false positive rate × #disease free 10,890
test negative 100 = false negative rate × #disease 989,010 = true negative rate × #disease free 989,110

total 1,000 990,000 1,000,000

The answer in the previous example may be surprising. Only 8% of those who test positive actually have the
disease. This example underscores the fact that good predictions based on intuition are hard to make in this case. To
determine the probability, we must weigh the odds of two terms, each of them itself a product.

• P (A|C)P (C), a big number (the true positive probability) times a small number (the probability of having the
disease) versus

• P (A|Cc)P (Cc), a small number (the false positive probability) times a large number (the probability of being
disease free).

We do not need to restrict Bayes formula to the case of C, has the disease, and Cc, does not have the disease, as
seen in (6.5), but rather to any partition of the sample space. Indeed, Bayes formula can be generalized to the case of
a partition {C1, C2, . . . , Cn} of Ω chosen so that P (Ci) > 0 for all i. Then, for any event A ⊂ Ω and any j

P (Cj |A) =
P (A|Cj)P (Cj)∑n
i=1 P (A|Ci)P (Ci)

. (6.8)

103



Introduction to the Science of Statistics Conditional Probability and Independence

To understand why this is true, use the law of total probability to see that the denominator is equal to P (A). By
the multiplication identity for conditional probability, the numerator is equal to P (Cj ∩ A). Now, make these two
substitutions into (6.8) and use one more time the definition of conditional probability.

Example 6.11. We begin with a simple and seemingly silly example involving fair and two sided coins. However, we
shall soon see that this leads us to a question in the vertical transmission of a genetic disease.

A box has a two-headed coin and a fair coin. It is flipped n times, yielding heads each time. What is the probability
that the two-headed coin is chosen?

To solve this, note that

P{two-headed coin} =
1

2
, P{fair coin} =

1

2
.

and
P{n heads|two-headed coin} = 1, P{n heads|fair coin} = 2−n.

By the law of total probability,

P{n heads} = P{n heads|two-headed coin}P{two-headed coin}+ P{n heads|fair coin}P{fair coin}

= 1 · 1

2
+ 2−n · 1

2
=

2n + 1

2n+1
.

Next, we use Bayes formula.

P{two-headed coin|n heads} =
P{n heads|two-headed coin}P{two-headed coin}

P{n heads} =
1 · (1/2)

(2n + 1)/2n+1
=

2n

2n + 1
< 1.

Notice that as n increases, the probability of a two headed coin approaches 1 - with a longer and longer sequence
of heads we become increasingly suspicious (but, because the probability remains less than one, are never completely
certain) that we have chosen the two headed coin.

This is the related genetics question: Based on the pedigree of her past, a female knows that she has in her history
a allele on her X chromosome that indicates a genetic condition. The allele for the condition is recessive. Because
she does not have the condition, she knows that she cannot be homozygous for the recessive allele. Consequently, she
wants to know her chance of being a carrier (heteorzygous) or not a carrier (homozygous for the common genetic
type) of the condition. The female is a mother with n male offspring, none of which show the recessive allele on their
single X chromosome and so do not have the condition. What is the probability that the female is not a carrier?

Let’s look at the computation above again, based on her pedigree, the female estimates that

P{mother is not a carrier} = p, P{mother is a carrier} = 1− p.

Then, from the law of total probability

P{n male offspring condition free}
= P{n male offspring condition free|mother is not a carrier}P{mother is not a carrier}

+P{n male offspring condition free|mother is a carrier}P{mother is a carrier}
= 1 · p+ 2−n · (1− p).

and Bayes formula

P{mother is not a carrier|n male offspring condition free}

=
P{n male offspring condition free|mother is not a carrier}P{mother is not a carrier}

P{n male offspring condition free}

=
1 · p

1 · p+ 2−n · (1− p) =
p

p+ 2−n(1− p) =
2np

2np+ (1− p) .
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Figure 6.7: Probability of mother being carrier free, given n sons are disease free for n = 1 (black), 2 (orange), 3 (red), 4 ( magenta), and 5 (blue),
The vertical dashed line at p = 1/2 is the case for the the boxes, one with a fair coin and one with a two-headed coin.

Again, with more sons who do not have the condition, we become increasingly more certain that the mother is not
a carrier. One way to introduce Bayesian statistics is to consider the situation in which we do not know the value of
p and replace it with a probability distribution. Even though we will concentrate on classical approaches to statistics,
we will take the time in later sections to explore the Bayesian approach

6.5 Independence
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P(A)

P(Ac)

P(B) P(Bc)

P(A and B) 
= P(A)P(B)

P(Ac and B) 
= P(Ac)P(B)

P(A and Bc) 
= P(A)P(Bc)

P(A and Bc)
= P*(Ac)P(Bc)

Figure 6.8: The Venn diagram for independent events is
represented by the horizontal strip A and the vertical strip
B is shown above. The identity P (A∩B) = P (A)P (B)
is now represented as the area of the rectangle. Other as-
pects of Exercise 6.12 are indicated in this Figure.

An event A is independent of B if its Bayes factor is 1, i.e.,

1 =
P (A|B)

P (A)
, P (A) = P (A|B).

In words, the occurrence of the event B does not alter the prob-
ability of the event A. Multiply this equation by P (B) and use the
multiplication rule to obtain

P (A)P (B) = P (A|B)P (B) = P (A ∩B).

The formula
P (A)P (B) = P (A ∩B) (6.9)

is the usual definition of independence and is symmetric in the events
A and B. If A is independent of B, then B is independent of A.
Consequently, when equation (6.9) is satisfied, we say that A and B
are independent.
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Example 6.12. Roll two dice.

1

36
= P{a on the first die, b on the second die}

=
1

6
× 1

6
= P{a on the first die}P{b on the second die}

and, thus, the outcomes on two rolls of the dice are independent.

Exercise 6.13. If A and B are independent events, then show that Ac and B, A and Bc, Ac and Bc are also indepen-
dent.

We can also use this to extend the definition to n independent events:

Definition 6.14. The events A1, · · · , An are called independent if for any choice Ai1 , Ai2 , · · · , Aik taken from this
collection of n events, then

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik). (6.10)

A similar product formula holds if some of the events are replaced by their complement.

Exercise 6.15. Flip 10 biased coins. Their outcomes are independent with the i-th coin turning up heads with proba-
bility pi. Find

P{first coin heads, third coin tails, seventh & ninth coin heads}.

Example 6.16. Mendel studied inheritance by conducting experiments using a garden peas. Mendel’s First Law, the
law of segregation states that every diploid individual possesses a pair of alleles for any particular trait and that each
parent passes one randomly selected allele to its offspring.

In Mendel’s experiment, each of the 7 traits under study express themselves independently. This is an example of
Mendel’s Second Law, also known as the law of independent assortment. If the dominant allele was present in the
population with probability p, then the recessive allele is expressed in an individual when it receive this allele from
both of its parents. If we assume that the presence of the allele is independent for the two parents, then

P{recessive allele expressed} = P{recessive allele paternally inherited} × P{recessive allele maternally inherited}
= (1− p)× (1− p) = (1− p)2.

In Mendel’s experimental design, p was set to be 1/2. Consequently,

P{recessive allele expressed} = (1− 1/2)2 = 1/4.

Using the complement rule,

P{dominant allele expressed} = 1− (1− p)2 = 1− (1− 2p+ p2) = 2p− p2.

This number can also be computed by added the three alternatives shown in the Punnett square in Table 6.1.

p2 + 2p(1− p) = p2 + 2p− 2p2 = 2p− p2.

Next, we look at two traits - 1 and 2 - with the dominant alleles present in the population with probabilities p1 and
p2. If these traits are expressed independently, then, we have, for example, that

P{dominant allele expressed in trait 1, recessive trait expressed in trait 2}
= P{dominant allele expressed in trait 1} × P{recessive trait expressed in trait 2}
= (1− (1− p1)2)(1− p2)2.
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Exercise 6.17. Show that if two traits are genetically linked, then the appearance of one increases the probability of
the other. Thus,

P{individual has allele for trait 1|individual has allele for trait 2} > P{individual has allele for trait 1}.
implies

P{individual has allele for trait 2|individual has allele for trait 1} > P{individual has allele for trait 2}.
More generally, for events A and B,

P (A|B) > P (A) implies P (B|A) > P (B) (6.11)

then we say that A and B are positively associated.

S s

S SS Ss
p2 p(1− p)

s sS ss
(1− p)p (1− p)2

Table III: Punnett square for a monohybrid cross using a dominant trait
S (say spherical seeds) that occurs in the population with probability p
and a recessive trait s (wrinkled seeds) that occurs with probability 1 − p.
Maternal genotypes are listed on top, paternal genotypes on the left. See
Example 6.14. The probabilities of a given genotype are given in the lower
right hand corner of the box.

Reverse the inequalities for negatively associated
events.

Exercise 6.18. A genetic marker B for a disease A is
one in which P (A|B) ≈ 1. In this case, approximate
P (B|A).

More precisely, if P (A|B) = 1 if and only if
P (B|A) = P (A)/P (B).

Definition 6.19. Linkage disequilibrium is the non-independent association of alleles at two loci on single chromo-
some. To define linkage disequilibrium, let

• A be the event that a given allele is present at the
first locus, and

• B be the event that a given allele is present at a
second locus.

Then the linkage disequilibrium,
DA,B = P (A)P (B)− P (A ∩B).

Thus if DA,B = 0, the the two events are independent.

Exercise 6.20. Show that DA,Bc = −DA,B

6.6 Answers to Selected Exercises
6.1. Let’s check the three axioms;

1. For any event A,

Q(A) = P (A|B) =
P (A ∩B)

P (B)
≥ 0.

2. For the sample space Ω,

Q(Ω) = P (Ω|B) =
P (Ω ∩B)

P (B)
=
P (B)

P (B)
= 1.

3. For mutually exclusive events, {Aj ; j ≥ 1}, we have that {Aj ∩B; j ≥ 1} are also mutually exclusive and

Q



∞⋃

j=1

Aj


 = P



∞⋃

j=1

Aj

∣∣∣B


 =

P
((⋃∞

j=1Aj

)
∩B

)

P (B)
=
P (
⋃∞
j=1(Aj ∩B))

P (B)

=

∑∞
j=1 P (Aj ∩B)

P (B)
=

∞∑

j=1

P (Aj ∩B)

P (B)
=

∞∑

j=1

P (Aj |B) =

∞∑

j=1

Q(Aj)
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6.2. P{sum is 8|first die shows 3} = 1/6, and P{sum is 8|first die shows 1} = 0.

1 2 3 4
1 ×
2 × ×
3 × × ×
4 × × × ×

6.3. Here is a table of outcomes. The symbol× indicates an outcome in the event
{sum is at least 5}. The rectangle indicates the event {first die is 2}. Because
there are 10 ×’s,

P{sum is at least 5} = 10/16 = 5/8.

The rectangle contains 4 outcomes, so

P{first die is 2} = 4/16 = 1/4.

Inside the event {first die is 2}, 2 of the outcomes are also in the event {sum is at least 5}. Thus,

P{sum is at least 5|first die is 2} = 2/4 = 1/2

Using the definition of conditional probability, we also have

P{sum is at least 5|first die is 2} =
P{sum is at least 5 and first die is 2}

P{first die is 2} =
2/16

4/16
=

2

4
=

1

2
.

6.5. We modify both sides of the equation.
(

4

2

)
(g)2(b)2

(b+ g)4
=

4!

2!2!

(g)2(b)2

(b+ g)4

(
b
2

)(
g
2

)
(
b+g

4

) =
(b)2/2! · (g)2/2!

(b+ g)4/4!
=

4!

2!2!

(g)2(b)2

(b+ g)4
.

The sample space Ω is set of collections of 4 balls out of b+ g. This has
(
b+g

4

)
outcomes. The number of choices of 2

blue out of b is
(
b
2

)
. The number of choices of 2 green out of g is

(
g
2

)
. Thus, by the fundamental principle of counting,

the total number of ways to obtain the event 2 blue and 2 green is
(
b
2

)(
g
2

)
. For equally likely outcomes, the probability

is the ratio of
(
b
2

)(
g
2

)
, the number of outcomes in the event, and

(
b+g

4

)
, the number of outcomes in the sample space.

6.8. Let Aij be the event of winning the series that has i wins versus j wins for the opponent. Then pij = P (Aij). We
know that

p0,4 = p1,4 = p2,4 = p3,4 = 0

because the series is lost when the opponent has won 4 games. Also,

p4,0 = p4,1 = p4,2 = p4,3 = 1

because the series is won with 4 wins in games. For a tied series, the probability of winning the series is 1/2 for both
sides.

p0,0 = p1,1 = p2,2 = p3,3 =
1

2
.

These values are filled in blue in the table below. We can determine the remaining values of pij iteratively by looking
forward one game and using the law of total probability to condition of the outcome of the (i+ j + 1-st) game. Note
that P{win game i+ j + 1} = P{lose game i+ j + 1} = 1

2 .

pij = P (Aij |win game i+ j + 1}P{win game i+ j + 1}+ P (Aij |lose game i+ j − 1}P{lose game i+ j + 1}

=
1

2
(pi+1,j + pi,j+1)
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This can be used to fill in the table above the diagonal. For example,

p23 =
1

2
(p33 + p42) =

1

2

(
1

2
+ 1

)
=

3

4
.

For below the diagonal, note that
pij = 1− pji.

For example,

p23 = 1− p32 = 1− 3

4
=

1

4
.

Filling in the table, we have:

i
0 1 2 3 4

0 1/2 21/32 13/16 15/16 1
1 11/32 1/2 11/16 7/8 1

j 2 3/16 5/16 1/2 3/4 1
3 1/16 1/8 1/4 1/2 1
4 0 0 0 0 -

6.13. We take the questions one at a time. Because A and B are independent P (A ∩B) = P (A)P (B).

(a) B is the disjoint union of A ∩B and Ac ∩B. Thus,

P (B) = P (A ∩B) + P (Ac ∩B)

Subtract P (A ∩B) to obtain

P (Ac ∩B) = P (B)− P (A ∩B) = P (B)− P (A)P (B) = (1− P (A))P (B) = P (Ac)P (B)

and Ac and B are independent.

(b) Just switch the roles of A and B in part (a) to see that A and Bc are independent.

(c) Use the complement rule and inclusion-exclusion

P (Ac ∩Bc) = P ((A ∪B)c) = 1− P (A ∪B) = 1− P (A)− P (B)− P (A ∩B)

= 1− P (A)− P (B)− P (A)P (B) = (1− P (A))(1− P (B))

= P (Ac)P (Bc)

and Ac and Bc are independent.

6.15. Let Ai be the event {i-th coin turns up heads}. Then the event can be written A1 ∩Ac3 ∩A7 ∩A9. Thus,

P (A1 ∩Ac3 ∩A7 ∩A9) = P (A1)P (Ac3)P (A7)P (A9)

= p1(1− p3)p7p9.

6.17. Multiply both of the expressions in (6.11) by the appropriate probability to see that they are equivalent to

P (A ∩B) > P (A)P (B).
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A

B

Figure 6.9: If P (A|B) ≈ 1, then nearly all of
B is inside A and the probability of P (B|A) ≈
P (B)/P (A) as shown in the figure.

6.18. By using Bayes formula, if P (A|B) = 1, then

P (B|A) =
P (A|B)P (B)

P (A)
=
P (B)

P (A)
.

On the other hand, if P (B|A) = P (B)/P (A), then

P (A|B) =
P (B|A)P (A)

P (B)
= 1.

6.20 Because A is the disjoint union of A ∩ B and A ∩ Bc, we have
P (A) = P (A∩B) +P (A∩Bc) or P (A∩Bc) = P (A)−P (A∩B).
Thus,

DA,Bc = P (A)P (Bc)− P (A ∩Bc)
= P (A)(1− P (B))− (P (A)− P (A ∩B))

= −P (A)P (B) + P (A ∩B) = −DA,B .
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Topic 7

Random Variables and Distribution
Functions

While writing my book I had an argument with Feller. He asserted that everyone said “random variable”
and I asserted that everyone said “chance variable.” We obviously had to use the same name in our books,
so we decided the issue by a stochastic procedure. That is, we tossed for it and he won. – Joseph Doob,
Statistical Science

7.1 Introduction

statistics probability

universe of sample space - Ω
information and probability - P

⇓ ⇓
ask a question and define a random

collect data variable X
⇓ ⇓

organize into the organize into the
empirical cumulative cumulative
distribution function distribution function

⇓ ⇓
compute sample compute distributional

means and variances means and variances

Table I: Corresponding notions between statistics and probability. Examining
probabilities models and random variables will lead to strategies for the collection
of data and inference from these data.

From the universe of possible information, we ask
a question. To address this question, we might col-
lect quantitative data and organize it, for example,
using the empirical cumulative distribution func-
tion. With this information, we are able to com-
pute sample means, standard deviations, medians
and so on.

Similarly, even a fairly simple probability
model can have an enormous number of outcomes.
For example, flip a coin 333 times. Then the num-
ber of outcomes is more than a google (10100) –
a number at least 100 quintillion times the num-
ber of elementary particles in the known universe.
We may not be interested in an analysis that con-
siders separately every possible outcome but rather
some simpler concept like the number of heads or
the longest run of tails. To focus our attention on
the issues of interest, we take a given outcome and
compute a number. This function is called a ran-
dom variable.

Definition 7.1. A random variable is a real val-
ued function from the probability space.

X : Ω→ R.

Generally speaking, we shall use capital letters near the end of the alphabet, e.g., X,Y, Z for random variables.
The range S of a random variable is sometimes called the state space.
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Exercise 7.2. Roll a die twice and consider the sample space Ω = {(i, j); i, j = 1, 2, 3, 4, 5, 6} and give some random
variables on Ω.

Exercise 7.3. Flip a coin 10 times and consider the sample space Ω, the set of 10-tuples of heads and tails, and give
some random variables on Ω.

We often create new random variables via composition of functions:

ω 7→ X(ω) 7→ f(X(ω))

Thus, if X is a random variable, then so are

X2, expαX,
√
X2 + 1, tan2X, bXc

and so on. The last of these, rounding down X to the nearest integer, is called the floor function.

Exercise 7.4. How would we use the floor function to round down a number x to n decimal places.

7.2 Distribution Functions
Having defined a random variable of interest, X , the question typically becomes, “What are the chances that X lands
in some subset of values B?” For example,

B = {odd numbers}, B = {greater than 1}, or B = {between 2 and 7}.

We write
{ω ∈ Ω;X(ω) ∈ B} (7.1)

to indicate those outcomes ω which have X(ω), the value of the random variable, in the subset B. We shall often
abbreviate (7.1) to the shorter {X ∈ B}. Thus, for the example above, we may write the events

{X is an odd number}, {X is greater than 1} = {X > 1}, {X is between 2 and 7} = {2 < X < 7}

to correspond to the three choices above for the subset B.
Many of the properties of random variables are not concerned with the specific random variable X given above,

but rather depends on the way X distributes its values. This leads to a definition in the context of random variables
that we saw previously with quantitive data.

Definition 7.5. A (cumulative) distribution function of a random variable X is defined by

FX(x) = P{ω ∈ Ω;X(ω) ≤ x}.

Recall that with quantitative observations, we called the analogous notion the empirical cumulative distribution
function. Using the abbreviated notation above, we shall typically write the less explicit expression

FX(x) = P{X ≤ x}

for the distribution function.

Exercise 7.6. Establish the following identities that relate a random variable the complement of an event and the
union and intersection of events

1. {X ∈ B}c = {X ∈ Bc}

2. For sets B1, B2, . . .,
⋃

i

{X ∈ Bi} = {X ∈
⋃

i

B} and
⋂

i

{X ∈ Bi} = {X ∈
⋂

i

B}.
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3. If B1, . . . Bn form a partition of the sample space S, then Ci = {X ∈ Bi}, i = 1, . . . , n form a partition of the
probability space Ω.

Exercise 7.7. For a random variable X and subset B of the sample space S, define

PX(B) = P{X ∈ B}.

Show that PX is a probability.

For {X > x}, the complement of {X ≤ x}, we have the survival function

F̄X(x) = P{X > x} = 1− P{X ≤ x} = 1− FX(x).

Choose a < b, then the event {X ≤ a} ⊂ {X ≤ b}. Their set theoretic difference

{X ≤ b} \ {X ≤ a} = {a < X ≤ b}.

In words, the event that “X is less than or equal to b but not less than or equal to a” is the same event as “X is greater
than a and less than or equal to b.” Consequently, by the difference rule for probabilities,

P{a < X ≤ b} = P ({X ≤ b} \ {X ≤ a}) = P{X ≤ b} − P{X ≤ a} = FX(b)− FX(a). (7.2)

Thus, we can compute the probability that a random variable takes values in an interval by subtracting the distri-
bution function evaluated at the endpoints of the intervals. Care is needed on the issue of the inclusion or exclusion of
the endpoints of the interval.

Example 7.8. To give the cumulative distribution function for X , the sum of the values for two rolls of a die, we start
with the table

x 2 3 4 5 6 7 8 9 10 11 12
P{X = x} 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

and create the graph.

-

6

r r r r r
r r r r r r

1 2 3 4 5 6 7 8 9 10 11 12

1/4

1/2

3/4

1

Figure 7.1: Graph of FX , the cumulative distribution function for the sum of the values for two rolls of a die.
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If we look at the graph of this cumulative distribution function, we see that it is constant in between the possible
values for X and that the jump size at x is equal to P{X = x}. In this example, P{X = 5} = 4/36, the size of the
jump at x = 5. In addition,

FX(5)− FX(2) = P{2 < X ≤ 5} = P{X = 3}+ P{X = 4}+ P{X = 5} =
∑

2<x≤5

P{X = x}

=
2

36
+

3

36
+

4

36
=

9

36
.

We shall call a random variable discrete if it has a finite or countably infinite state space. Thus, we have in general
that:

P{a < X ≤ b} =
∑

a<x≤b

P{X = x}.

Exercise 7.9. Let X be the number of heads on three independent flips of a biased coin that turns ups heads with
probability p. Give the cumulative distribution function FX for X .

Exercise 7.10. Let X be the number of spades in a collection of three cards. Give the cumulative distribution function
for X . Use R to plot this function.

Exercise 7.11. Find the cumulative distribution function of Y = X3 in terms of FX , the distribution function for X .

7.3 Properties of the Distribution Function
A distribution function FX has the property that it starts at 0, ends at 1 and does not decrease with increasing values
of x. This is the content of the next exercise.

Exercise 7.12. The disribution function FX has the properties:

1. limx→−∞ FX(x) = 0.

2. limx→∞ FX(x) = 1.

3. FX is nondecreasing.

7.3.1 Discrete Random Variables
The cumulative distribution function FX of a discrete random variable X is constant except for jumps. At the jump,
FX is right continuous,

lim
x→x0+

FX(x) = FX(x0). (7.3)

The next exercise ask that this be shown more generally.

Exercise 7.13. Prove the statement (7.3) concerning the right continuity of the distribution function from the continuity
property of a probability.

Exercise 7.14. Show that for any x0,

P{X < x0} = lim
x→x−

FX(x) = FX(x0−),

the left limit of FX at x0.

Putting the previous two exercises together, we find that

P{X = x0} = P ({X ≤ x0} \ {X < x0}) = P{X ≤ x0} − P{X < x0} = FX(x0)− FX(x0−),

The size of the jump in FX(x) at the value x0.
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7.3.2 Continuous Random Variables
Definition 7.15. A continuous random variable has a cumulative distribution function FX that is differentiable.
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Figure 7.2: (top) Dartboard. (bottom) Cumulative
distribution function for the dartboard random vari-
able.

So, distribution functions for continuous random variables increase
smoothly. To show how this can occur, we will develop an example of a
continuous random variable.

Example 7.16. Consider a dartboard having unit radius. Assume that
the dart lands randomly uniformly on the dartboard.

Let X be the distance from the center. For x ∈ [0, 1],

FX(x) = P{X ≤ x} =
area inside circle of radius x

area of circle
=
πx2

π12
= x2.

Thus, we have the distribution function

FX(x) =





0 if x ≤ 0,
x2 if 0 < x ≤ 1,
1 if x > 1.

The first line states that X cannot be negative. The third states that X
is at most 1, and the middle lines describes how X distributes is values
between 0 and 1. For example,

FX

(
1

2

)
=

1

4

indicates that with probability 1/4, the dart will land within 1/2 unit of
the center of the dartboard.

Exercise 7.17. Find the probability that the dart lands between 1/3 unit
and 2/3 unit from the center. Find the median, the first quartile, and the
third quartiles.

Exercise 7.18. Let the reward Y for throwing the dart be the inverse 1/X
of the distance from the center. Find the cumulative distribution function for Y .

Exercise 7.19. An exponential random variable X has cumulative distribution function

FX(x) = P{X ≤ x} =

{
0 if x ≤ 0,
1− exp(−λx) if x > 0.

(7.4)

for some λ > 0. Show that FX has the properties of a distribution function.

We can create an expression and perform an evaluation using R.

> F<-expression(1-exp(-lambda*x))

We can then evaluate FX(3) and FX(1) with λ = 2 as follows.

> x<-c(10,30);lambda<-1/10
> (Feval<-eval(F))
[1] 0.6321206 0.9502129
> Feval[2]-Feval[1]
[1] 0.3180924
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The last expression gives the value for FX(30)− FX(10) = P{10 < X ≤ 30}.
This function is also stored in R and so its value at x can be computed in R using the command pexp(x,0.1)

for λ = 1/10. Thus, we make the computation above by

> pexp(30,0.1)-pexp(10,0.1)
[1] 0.3180924

We can draw the distribution function using the curve command.

> curve(pexp(x,0.1),0,80)
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Figure 7.3: Cumulative distribution function for an exponential random variable with λ = 1/10.

Exercise 7.20. The time until the next bus arrives is an exponential random variable with λ = 1/10 minutes. A
person waits at the bus stop until the bus arrives, giving up when the wait reaches 20 minutes. Give the cumulative
distribution function for T , the time that the person remains at the bus station and sketch a graph.

Even though the cumulative distribution function is defined for every random variable, we will often use other
characterizations, namely, the mass function for discrete random variable and the density function for continuous
random variables. Indeed, we typically will introduce a random variable via one of these two functions. In the next
two sections we introduce these two concepts and develop some of their properties.

7.4 Mass Functions
Definition 7.21. The (probability) mass function of a discrete random variable X is

fX(x) = P{X = x}.

The mass function has a value at x equal to the size of the jump in the distribution function. In symbols,

fX(x) = FX(x)− FX(x−)

where FX(x−) is the left limit of FX at x.
The mass function has two basic properties:

• fX(x) ≥ 0 for all x in the state space.

• ∑x fX(x) = 1.
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The first property is based on the fact that probabilities are non-negative. The second follows from the observation
that the collection Cx = {ω;X(ω) = x} for all x ∈ S, the state space for X , forms a partition of the probability
space Ω. In Example 7.8, we saw the mass function for the random variable X that is the sum of the values on two
independent rolls of a fair dice.

Example 7.22. Let’s make tosses of a biased coin whose outcomes are independent. We shall continue tossing until
we obtain a toss of heads. Let X denote the random variable that gives the number of tails before the first head and p
denote the probability of heads in any given toss. Then

fX(0) = P{X = 0} = P{H} = p

fX(1) = P{X = 1} = P{TH} = (1− p)p
fX(2) = P{X = 2} = P{TTH} = (1− p)2p

...
...

...

fX(x) = P{X = x} = P{T · · ·TH} = (1− p)xp

So, the probability mass function fX(x) = (1 − p)xp. Because the terms in this mass function form a geometric
sequence, X is called a geometric random variable. Recall that a geometric sequence c, cr, cr2, . . . , crn has sum

sn = c+ cr + cr2 + · · ·+ crn =
c(1− rn+1)

1− r
for r 6= 1. If |r| < 1, then limn→∞ rn = 0 and thus sn has a limit as n→∞. In this case, the infinite sum is the limit

c+ cr + cr2 + · · ·+ crn + · · · = lim
n→∞

sn =
c

1− r . (7.5)

Exercise 7.23. Establish the formula (7.5) above for sn.

The mass function above forms a geometric sequence with the ratio r = 1− p. Consequently, for positive integers
a and b,

P{a < X ≤ b} =

b∑

x=a+1

(1− p)xp = (1− p)a+1p+ · · ·+ (1− p)bp

=
(1− p)a+1p− (1− p)b+1p

1− (1− p) = (1− p)a+1 − (1− p)b+1

We can take a = −1 to find the distribution function for a geometric random variable.

FX(b) = P{X ≤ b} = 1− (1− p)b+1. (7.6)

To obtain (7.6) in another way, note that the event {X ≥ b + 1} = {X > b} is the same as having the first
b + 1 coin tosses turn up tails. This event consists of b + 1 independent events each with probability 1 − p. Thus,
P{X ≥ b + 1} = P{X > b} = (1 − p)b+1. By noting that the distribution function, FX(b) = 1 − P{X > b}, we
again obtain (7.6).

Exercise 7.24. Show that for a geometric random variable X ,

P{X ≥ a+ b|X ≥ b} = P{X ≥ a}. (7.7)

This property is called memorylessness. In words, if the first b trials results in failures, then the probability of at least
a additional failures is the same as the probability of at least a failures from the beginning. The fact that we begin with
b failures does not impact the number of trials afterwards until a success.

Conversely, if the memoryless property holds for an N-valued random variable X , then X is a geometric random
variable.
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The mass function and the cumulative distribution function for the geometric random variable with parameter
p = 1/3 can be found in R by writing

> x<-0:10
> f<-dgeom(x,1/3)
> F<-pgeom(x,1/3)

The initial d indicates density and p indicates the probability from the distribution function.

> data.frame(x,f,F)
x f F

1 0 0.333333333 0.3333333
2 1 0.222222222 0.5555556
3 2 0.148148148 0.7037037
4 3 0.098765432 0.8024691
5 4 0.065843621 0.8683128
6 5 0.043895748 0.9122085
7 6 0.029263832 0.9414723
8 7 0.019509221 0.9609816
9 8 0.013006147 0.9739877
10 9 0.008670765 0.9826585
11 10 0.005780510 0.9884390

Note that the difference in values in the distribution function FX(x) − FX(x − 1), giving the height of the jump
in FX at x, is equal to the value of the mass function. For example,

FX(3)− FX(2) = 0.8024691− 0.7037037 = 0.0987654 = fX(3).

Exercise 7.25. Check that the jumps in the cumulative distribution function for the geometric random variable above
is equal to the values of the mass function.

Exercise 7.26. For the geometric random variable above, find P{X ≤ 3}, P{2 < X ≤ 5}. P{X > 4}.
We can simulate 100 geometric random variables with parameter p = 1/3 using the R command rgeom(100,1/3).

(See Figure 7.4.)
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Figure 7.4: Histogram of 100 and 10,000 simulated geometric random variables with p = 1/3. Note that the histogram looks much more like a
geometric series for 10,000 simulations. We shall see later how this relates to the law of large numbers.
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7.5 Density Functions
Definition 7.27. ForX a random variable whose distribution function FX has a derivative. The function fX satisfying

FX(x) =

∫ x

−∞
fX(t) dt

is called the probability density function and X is called a continuous random variable.

By the fundamental theorem of calculus, the density function is the derivative of the distribution function.

fX(x) = lim
∆x→0

FX(x+ ∆x)− FX(x)

∆x
= F ′X(x).

In other words,
FX(x+ ∆x)− FX(x) ≈ fX(x)∆x.

We can compute probabilities by evaluating definite integrals

P{a < X ≤ b} = FX(b)− FX(a) =

∫ b

a

fX(t) dt.

Figure 7.5: The probability P{a < X ≤ b} is the area under the
density function, above the x axis between y = a and y = b.

The density function has two basic properties that mirror
the properties of the mass function:

• fX(x) ≥ 0 for all x in the state space.

•
∫∞
−∞ fX(x) dx = 1.

Return to the dart board example, letting X be the dis-
tance from the center of a dartboard having unit radius.
Then,

P{x < X ≤ x+ ∆x} = FX(x+ ∆x)− FX(x)

≈ fX(x)∆x = 2x∆x

and X has density

fX(x) =





0 if x < 0,
2x if 0 ≤ x ≤ 1,
0 if x > 1.

Exercise 7.28. Let fX be the density for a random variable X and pick a number x0. Explain why P{X = x0} = 0.

Exercise 7.29. Plot, on both the distribution function and the density function, the probability that the dart lands
between 1/3 unit and 2/3 unit from the center.

Example 7.30. For the exponential distribution function (7.4), we have the density function

fX(x) =

{
0 if x ≤ 0,
λe−λx if x > 0.

R performs differentiation. We must first create an expression

> F<-expression(1-exp(-lambda*x))

We then differentiate using the D command, placing x, the variable of differentiation in quotes.
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> f<-D(F,"x")
> f
exp(-lambda * x) * lambda

Example 7.31. Density functions do not need to be bounded, for example, if we take

fX(x) =





0 if x ≤ 0,
c√
x

if 0 < x < 1,

0 if 1 ≤ x.

Then, to find the value of the constant c, we compute the integral

1 =

∫ 1

0

c√
t
dt = 2c

√
t
∣∣∣
1

0
= 2c.

So c = 1/2. For 0 ≤ a < b ≤ 1,

P{a < X ≤ b} =

∫ b

a

1

2
√
t
dt =

√
t
∣∣∣
b

a
=
√
b−√a.

Exercise 7.32. Give the cumulative distribution function for the random variable in the previous example.

Exercise 7.33. Let X be a continuous random variable with density fX , then the random variable Y = aX + b has
density

fY (y) =
1

|a|fX
(
y − b
a

)

(Hint: Begin with the definition of the cumulative distribution function FY for Y . Consider the cases a > 0 and a < 0
separately.)

7.6 Mixtures
Exercise 7.34. Let F1 and F2 be two cumulative distribution functions and let π ∈ (0, 1), then

F (x) = πF1(x) + (1− π)F2(x)

is a cumulative distribution function.

We call the distribution F a mixture of F1 and F2. Mixture distributions occur routinely. To see this, first flip a
coin, heads occurring with probability π. In this case the random variable

X =

{
X1 if the coin lands heads,
X2 if the coin lands tails.

If Xi has distribution function Fi, i = 1, 2, then, by the law of total probability,

FX(x) = P{X ≤ x} = P{X ≤ x|coin lands heads}P{coin lands heads}
+P{X ≤ x|coin lands tails}P{coin lands tails}

= P{X1 ≤ x}π + P{X2 ≤ x}(1− π) = πF1(x) + (1− π)F2(x)

More generally, let X1, . . . , Xn be random variables with distribution functions F1, . . . , Fn and π1, . . . , πn be
positive numbers with

∑n
i=1 πi = 1. In this case, roll an n sided die, i showing with probability πi. If the die shows

i, then we use the random variable Xi. To be concrete, individuals arriving to take an airline flight are assigned to
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group i with probability πi. Let Xi be the (random) time until individuals in group i are seated. Then the distribution
function for the time to be seated

FX(x) = P{X ≤ x} =

n∑

i=1

P{X ≤ x|assigned group i}P{assigned group i}

=

n∑

i=1

P{Xi ≤ x}πi = π1F1(x) + · · ·+ πnFn(x).

F is call the mixture of F1, . . . , Fn with weights π1, . . . , πn.
If the Xi are discrete random variables, then so is X . The mass function for X is

fX(x) = FX(x)− FX(x−) = π1(F1(x)− F1(x−)) + · · ·+ πn(Fn(x)− Fn(x−))

= π1f1(x) + · · ·+ πnfn(x).

Exercise 7.35. Check that fX is a mass function.

Exercise 7.36. Find the mass function for the mixture of the three mass functions

x f1(x) f2(x) f3(x)
1 0.2 0.5 0.1
2 0.3 0.5 0.1
3 0.1 0 0.2
4 0.4 0 0.2
5 0 0 0.4

and weights π = (1/4, 1/4, 1/2),

If the Xi are continuous random variables, then so is X . The density function for X is

fX(x) = F ′X(x) = π1F
′
1(x) + · · ·+ πnF

′
n(x)

= π1f1(x) + · · ·+ πnfn(x)

=

n∑

i=1

fi(x)πi.

Checking that fX is a density function is similar to the exercise above. Just replace the sum on x with an integral.

7.7 Joint and Conditional Distributions
Because we will collect data on several observations, we must, as well, consider more than one random variable at a
time in order to model our experimental procedures. Consequently, we will expand on the concepts above to the case
of multiple random variables and their joint distribution. For the case of two random variables, X1 and X2, this means
looking at the probability of events,

P{X1 ∈ B1, X2 ∈ B2}.
For discrete random variables, take B1 = {x1} and B2 = {x2}. Then, we have

7.7.1 Discrete Random Variables
Definition 7.37. The joint probability mass function

fX1,X2
(x1, x2) = P{X1 = x1, X2 = x2}.
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The mass functions for X1 and X2 can be obtained from the joint mass function by summing over the values for
the other random variable. Thus, for example,

fX1
(x1) = P{X1 = x1} =

∑

x2

P{X1 = x1, X2 = x2} =
∑

x2

fX1,X2
(x1, x2). (7.8)

In this case, we use the expression marginal probability mass function to distinguish it from the joint probability
mass function.

Exercise 7.38. Let X1 and X2 have the joint mass function displayed in the table below

fX1,X2(x1, x2)
x2\x1 1 2 3 4 5

-1 0.09 0.04 0.03 0.01 0.02
0 0.07 0 0.07 0.02 0.03
1 0.10 0.06 0.05 0.08 0.06
2 0.01 0.08 0.09 0.05 0.04

Show that the sum of the entries is 1 and determine the marginal mass functions.

The conditional mass functions looks at the probabilities that one random variable takes on a given value, given
a value for the second random variable. The conditional mass function of X2 given X1 is denoted fX2|X1

(x2|x1) =
P{X2 = x2|X1 = x1}. To compute this function,

fX2|X1
(x2|x1) = P{X2 = x2|X1 = x1} =

P{X1 = x1, X2 = x2}
P{X1 = x1}

=
fX1,X2(x1, x2)

fX1
(x1)

(7.9)

provided fX1(x1) > 0.

Exercise 7.39. Show that, for each value of x1, fX2|X1
(x2|x1) is a mass function, that is, the values are non-negative

and the sum over all values for x2 equals 1.

Exercise 7.40. For each value of x1, find the conditional mass function. fX2|X1
(x2|x1) for the values in the table

above.

7.7.2 Continuous Random Variables
For continuous random variables, we consider B1 = (x1, x1 + ∆x1] and B2 = (x2, x2 + ∆x2] and ask that for some
function fX1,X2

, the joint probability density function to satisfy

P{x1 < X1 ≤ x1 + ∆x1, x2 < X2 ≤ x2 + ∆x2} ≈ fX1,X2(x1, x2)∆x1∆x2.

Similar to mass functions, the density functions for X1 and X2 can be obtained from the joint density function
by integrating over the values for the other random variable. Also, we sometimes say marginal probability density
function to distinguish it from the joint probability density function. Thus, for example, in analogy with (7.8).

fX1
(x1) =

∫ ∞

−∞
fX1,X2

(x1, x2)dx2. (7.10)

We can obtain this identity starting with (7.8) and using Riemann sums in a manner similar to the argument that led to
the formula for expectation for a continuous random variable.

For the conditional density, we start with

P{x2 < X2 ≤ x2 + ∆x2|x1 < X1 ≤ x1 + ∆x1} =
P{x1 < X1 ≤ x1 + ∆x1, x2 < X2 ≤ x2 + ∆x2}

P{x1 < X1 ≤ x1 + ∆x1}

≈ fX1,X2
(x1, x2)∆x1∆x2

fX1(x1)∆x1
=
fX1,X2

(x1, x2)

fX1(x1)
∆x2
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Next, divide by ∆x2 and let ∆x2 → 0. In keeping with the analogies between discrete and continuous densities, we
have the following definition.

Definition 7.41. The conditional density function

fX2|X1
(x2|x1) =

fX1,X2(x1, x2)

fX1
(x1)

provided fX1(x1) > 0.

Exercise 7.42. Show that, for each value of x1, fX2|X1
(x2|x1) is a density function, that is, the values are non-negative

and the integral over all values for x2 equals 1.

Exercise 7.43. Verify that

fX1,X2(x1, x2)

{
x1 + 3

2x
2
2 0 < x1 ≤ 1, 0 < x2 ≤ 1.

0 otherwise

is a joint density function. Find the marginal densities.

7.7.3 Independent Random Variables
Many of our experimental protocols will be designed so that observations are independent. More precisely, we will
say that two random variables X1 and X2 are independent if any two events associated to them are independent, i.e.,

P{X1 ∈ B1, X2 ∈ B2} = P{X1 ∈ B1}P{X2 ∈ B2}.

In words, the probability that the two events {X1 ∈ B1} and {X2 ∈ B2} happen simultaneously is equal to the
product of the probabilities that each of them happen individually.

For independent discrete random variables, we have that

fX1,X2
(x1, x2) = P{X1 = x1, X2 = x2} = P{X1 = x1}P{X2 = x2} = fX1

(x1)fX2
(x2).

In this case, we say that the joint probability mass function is the product of the marginal mass functions.
For continuous random variables,

fX1,X2
(x1, x2)∆x1∆x2 ≈ P{x1 < X1 ≤ x1 + ∆x1, x2 < X2 ≤ x2 + ∆x2}

= P{x1 < X1 ≤ x1 + ∆x1}P{x2 < X2 ≤ x2 + ∆x2} ≈ fX1
(x1)∆x1fX2

(x2)∆x2

= fX1
(x1)fX2

(x2)∆x1∆x2.

Thus, for independent continuous random variables, the joint probability density function

fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

is the product of the marginal density functions.

Exercise 7.44. Generalize the notion of independent mass and density functions to more than two random variables.

Soon, we will be looking at n independent observations x1, x2, . . . , xn arising from an unknown density or mass
function f . Thus, the joint density is

f(x1)f(x2) · · · f(xn).

Generally speaking, the density function f will depend on the choice of a parameter value θ. (For example, the
unknown parameter in the density function for an exponential random variable that describes the waiting time for a
bus.) Given the data from the n observations, the likelihood function arises by considering this joint density not as
a function of x1, . . . , xn, but rather as a function of the parameter θ. We shall learn how the study of the likelihood
plays a major role in parameter estimation and in the testing of hypotheses.
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7.8 Simulating Random Variables
One goal for these notes is to provide the tools needed to design inferential procedures based on sound principles of
statistical science. Thus, one of the very important uses of statistical software is the ability to generate pseudo-data
to simulate the actual data. This provides the opportunity to explore the properties of the data through simulation
and to test and refine methods of analysis in advance of the need to use these methods on genuine data. For many of
the frequently used families of random variables, R provides commands for their simulation. We shall examine these
families and their properties in Topic 9, Examples of Mass Functions and Densities. For other circumstances, we will
need to have methods for simulating sequence of independent random variables that possess a common distribution.
We first consider the case of discrete random variables.

7.8.1 Discrete Random Variables and the sample Command
The sample command is used to create simple and stratified random samples. Thus, if we enter a sequence x,
sample(x,40) chooses 40 entries from x in such a way that all choices of size 40 have the same probability.

This uses the default R command of sampling without replacement. We can use this command to simulate
discrete random variables. To do this, we need to give the state space in a vector x and a mass function f. The call for
replace=TRUE indicates that we are sampling with replacement. Then to give a sample of n independent random
variables having common mass function f, we use sample(x,n,replace=TRUE,prob=f).

Example 7.45. Let X be described by the mass function

x 1 2 3 4
fX(x) 0.1 0.2 0.3 0.4

Then to simulate 50 independent observations from this mass function:

> x<-c(1,2,3,4); f<-c(0.1,0.2,0.3,0.4)
> sum(f)
[1] 1
> data<-sample(x,50,replace=TRUE,prob=f)
> data

[1] 1 4 4 4 4 4 3 3 4 3 3 2 3 3 3 4 4 3 3 2 4 1 3 3 4 2 3 3 3 1 2 4 3 2 3 4 4 4 4 2 4 1
[43] 2 3 4 4 1 4 3 4

Notice that 1 is the least represented value and 4 is the most represented. If the command prob=f is omitted, then
sample will choose uniformly from the values in the vector x. Let’s check our simulation against the mass function
that generated the data. First, recount the observations that take on each possible value for x. We can make a table.

> table(data)
data
1 2 3 4
5 7 18 20

or use the counts to determine the simulated proportions.

> counts<-numeric(4)
> for (i in 1:4){counts[i]<-sum(data==i)}
> simprob<-counts/(sum(counts))
> data.frame(x,f,simprob)

x f simprob
1 1 0.1 0.10
2 2 0.2 0.14
3 3 0.3 0.36
4 4 0.4 0.40
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The expression data==i returns a sequence FALSE and TRUE. the sum command adds up the number of times
TRUE appears.

Exercise 7.46. Simulate the sums on each of 20 rolls of a pair of dice. Repeat this for 1000 rolls and compare the
simulation with the appropriate mass function.

Exercise 7.47. Simulate the mixture in Exercise 7.36 and comment on how it matches the mixture mass function.

7.8.2 Continuous Random Variables and the Probability Transform
If X a continuous random variable with a density fX that is positive everywhere in its domain, then the distribution
function FX(x) = P{X ≤ x} is strictly increasing. In this case FX has a inverse function F−1

X , known as the
quantile function.

Exercise 7.48. FX(x) ≤ u if and only if x ≤ F−1
X (u).

The probability transform follows from an analysis of the random variable

U = FX(X)

Note that FX has range from 0 to 1. It cannot take values below 0 or above 1. Thus, U takes on values between 0 and
1 and, therefore,

FU (u) = 0 for u < 0 and FU (u) = 1 for u ≥ 1.

For values of u between 0 and 1, note that

P{FX(X) ≤ u} = P{X ≤ F−1
X (u)} = FX(F−1

X (u)) = u.

Taken together, we have the distribution function for the random variable U ,

FU (u) =





0 u < 0,
u 0 ≤ u < 1,
1 1 ≤ u.
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Figure 7.6: Illustrating the Probability Transform. First simulate uniform random variables u1, u2, . . . , un on the interval [0, 1]. About 10%
of the random numbers should be in the interval [0.3, 0.4]. This corresponds to the 10% of the simulations on the interval [0.28, 0.38] for a random
variable with distribution function FX shown. Similarly, about 10% of the random numbers should be in the interval [0.7, 0.8] which corresponds
to the 10% of the simulations on the interval [0.96, 1.51] for a random variable with distribution function FX , These values on the x-axis can be
obtained from taking the inverse function of FX , i.e., xi = F−1

X (ui).
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If we can simulate U , we can simulate a random variable with distribution FX via the quantile function

X = F−1
X (U). (7.11)

Take a derivative of FU (u) to see that its density

fU (u) =





0 u < 0,
1 0 ≤ u < 1,
0 1 ≤ u.
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Figure 7.7: The distribution function (red) and the empirical cu-
mulative distribution function (black) based on 100 simulations of
the dart board distribution. R commands given below.

Because the random variable U has a constant density over
the interval of its possible values, it is called uniform on the
interval [0, 1]. It is simulated in R using the runif command.
The identity (7.11) is called the probability transform. This
transform is illustrated in Figure 7.6. We can see how the prob-
ability transform works in the following example.

Example 7.49. For the dart board, for x between 0 and 1, the
distribution function u = FX(x) = x2 and thus the quantile
function

x = F−1
X (u) =

√
u.

We can simulate independent observations of the distance from
the center X1, X2, . . . , Xn of the dart board by simulating in-
dependent uniform random variables U1, U2, . . . Un and tak-
ing the quantile function

Xi =
√
Ui.

> u<-runif(100)
> xu<-sqrt(u)
> plot(sort(xu),1:length(xu)/length(xu),
+ type="s",xlim=c(0,1),ylim=c(0,1), xlab="x",ylab="probability")
> x<-seq(0,1,0.01)
> lines(x,xˆ2,col="red") #add the distribution function to the graph

We have used the lines command to ad the distribution function FX(x) = x2. Notice how it follows the empirical
cumulative distribution function.

Exercise 7.50. If U is uniform on [0, 1], then so is V = 1− U .

Sometimes, it is easier to simulate X using F−1
X (V ).

Example 7.51. For an exponential random variable, set

u = FX(x) = 1− exp(−λx), and thus x = − 1

λ
ln(1− u)

Consequently, we can simulate independent exponential random variablesX1, X2, . . . , Xn by simulating independent
uniform random variables V1, V2, . . . Vn and taking the transform

Xi = − 1

λ
lnVi.

R accomplishes this directly through the rexp command.
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7.9 Answers to Selected Exercises
7.2. The sum, the maximum, the minimum, the difference, the value on the first die, the product.

7.3. The roll with the first H , the number of T , the longest run of H , the number of T s after the first H .

7.4. b10nxc/10n

7.6. A common way to show that two events A1 and A2 are equal is to pick an element ω ∈ A1 and show that it is in
A2. This proves A1 ⊂ A2. Then pick an element ω ∈ A2 and show that it is in A1, proving that A2 ⊂ A1. Taken
together, we have that the events are equal, A1 = A2. Sometimes the logic needed in showing A1 ⊂ A2 consists not
solely of implications, but rather of equivalent statements. (We can indicate this with the symbol⇐⇒.) In this case
we can combine the two parts of the argument. For this exercise, as the lines below show, this is a successful strategy.

We follow an arbitrary outcome ω ∈ Ω.

1. ω ∈ {X ∈ B}c ⇐⇒ ω /∈ {X ∈ B} ⇐⇒ X(ω) /∈ B ⇐⇒ X(ω) ∈ Bc ⇐⇒ ω ∈ {X ∈ Bc}. Thus,
{X ∈ B}c = {X ∈ Bc}.

2. ω ∈ ⋃i{X ∈ Bi} ⇐⇒ ω ∈ {X ∈ Bi} for some i ⇐⇒ X(ω) ∈ Bi for some i ⇐⇒ X(ω) ∈ ⋃iBi ⇐⇒
ω ∈ {X ∈ ⋃iB}. Thus,

⋃
i{X ∈ Bi} = {X ∈ ⋃iB}. The identity with intersection is similar with for all

instead of for some.

3. We must show that the union of the Ci is equal to the state space S and that each pair are mutually exclusive.
For this

(a) Because Bi are a partition of Ω,
⋃
iBi = Ω, and

⋃

i

Ci =
⋃

i

{X ∈ Bi} = {X ∈
⋃

i

Bi} = {X ∈ Ω} = S,

the state space.

(b) For i 6= j, Bi ∩Bj = ∅, and

Ci ∩ Cj = {X ∈ Bi} ∩ {X ∈ Bj} = {X ∈ Bi ∩Bj} = {X ∈ ∅} = ∅.

7.7. Let’s check the three axioms. Each verification is based on the corresponding axiom for the probability P .

1. For any subset B, PX(B) = P{X ∈ B} ≥ 0.

2. For the sample space S, PX(S) = P{X ∈ S} = P (Ω) = 1.

3. For mutually exclusive subsets Bi, i = 1, 2, · · · , we have by the exercise above the mutually exclusive events
{X ∈ Bi}, i = 1, 2, · · · . Thus,

PX

( ∞⋃

i=1

Bi

)
= P

{
X ∈

∞⋃

i=1

Bi

}
= P

( ∞⋃

i=1

{X ∈ Bi}
)

=

∞∑

i=1

P{X ∈ Bi} =

∞∑

i=1

PX(Bi).

7.9. For three tosses of a biased coin, we have

x 0 1 2 3
P{X = x} (1− p)3 3p(1− p)2 3p2(1− p) p3
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Thus, the cumulative distribution function,

FX(x) =





0 for x < 0,
(1− p)3 for 0 ≤ x < 1,
(1− p)3 + 3p(1− p)2 = (1− p)2(1 + 2p) for 1 ≤ x < 2,
(1− p)2(1 + 2p) + 3p2(1− p) = 1− p3 for 2 ≤ x < 3,
1 for 3 ≤ x

7.10. From the example in the section Basics of Probability, we know that

x 0 1 2 3
P{X = x} 0.41353 0.43588 0.13765 0.01294

To plot the distribution function, we use,

> hearts<-c(0:3)
> f<-choose(13,hearts)*choose(39,3-hearts)/choose(52,3)
> (F<-cumsum(f))
[1] 0.4135294 0.8494118 0.9870588 1.0000000
> plot(hearts,F,ylim=c(0,1),type="s")
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Thus, the cumulative distribution function,

FX(x) =





0 for x < 0,
0.41353 for 0 ≤ x < 1,
0.84941 for 1 ≤ x < 2,
0.98706 for 2 ≤ x < 3,
1 for 3 ≤ x

7.11. The cumulative distribution function for Y ,

FY (y) = P{Y ≤ y} = P{X3 ≤ y}
= P{X ≤ 3

√
y} = FX( 3

√
y).

7.12. To verify the three properties for the distri-
bution function:

1. Let xn → −∞ be a decreasing sequence. Then x1 > x2 > · · ·

{X ≤ x1} ⊃ {X ≤ x2} ⊃ · · ·

Thus,
P{X ≤ x1} ≥ P{X ≤ x2} ≥ · · ·

For each outcome ω, eventually, for some n, X(ω) > xn, and ω /∈ {X ≤ xn} and consequently no outcome ω
is in all of the events {X ≤ xn} and

∞⋂

n=1

{X ≤ xn} = ∅.

Now, use the second continuity property of probabilities.
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2. Let xn →∞ be an increasing sequence. Then x1 < x2 < · · ·

{X ≤ x1} ⊂ {X ≤ x2} ⊂ · · · .

Thus,
P{X ≤ x1} ≤ P{X ≤ x2} ≤ · · · .

For each outcome ω, eventually, for some n, X(ω) ≤ xn, and

∞⋃

n=1

{X ≤ xn} = Ω.

Now, use the first continuity property of probabilities.

3. Let x1 < x2, then {X ≤ x1} ⊂ {X ≤ x2} and by the monotonicity rule for probabilities

P{X ≤ x1} ≤ P{X ≤ x2}, or written in terms of the distribution function, FX(x1) ≤ FX(x2)

7.13. Let xn → x0 be a strictly decreasing sequence. Then x1 > x2 > · · ·

{X ≤ x1} ⊃ {X ≤ x2} ⊃ · · · ,
∞⋂

n=1

{X ≤ xn} = {X ≤ x0}.

(Check this last equality.) Then P{X ≤ x1} ≥ P{X ≤ x2} ≥ · · · . Now, use the second continuity property of
probabilities to obtain limn→∞ FX(xn) = limn→∞ P{X ≤ xn} = P{X ≤ x0} = FX(x0). Because this holds for
every strictly decreasing sequencing sequence with limit x0, we have that

lim
x→x0+

FX(x) = FX(x0).

7.14. Correspondingly from the previous exercise, let xn → x0 be a strictly increasing sequence. Then x1 < x2 < · · ·

{X ≤ x1} ⊂ {X ≤ x2} ⊂ · · · ,
∞⋃

n=1

{X ≤ xn} = {X < x0}.

(Again, check this last equality.) Then P{X ≤ x1} ≤ P{X ≤ x2} ≤ · · · . Now, use the second continuity property
of probabilities to obtain = FX(x0−) = limn→∞ FX(xn) = limn→∞ P{X ≤ xn} = P{X < x0}. Because this
holds for every strictly increasing sequencing sequence with limit x0, we have that

FX(c0) = lim
x→x0−

FX(x) = P{X < x0}.

7.17. Using the identity in (7.2), we have

P

{
1

3
< X ≤ 2

3

}
= Fx

(
2

3

)
− Fx

(
1

3

)
=

4

9
− 1

9
=

3

9
=

1

3
.

Check Exercise 7.22 to see that the answer does not depend on whether or not the endpoints of the interval are included.
For the median and the quartiles, set q = FX(xq) = x2

q , q = 1/2, 1/4 and 3/4. Then

xq =
√
q.

So the median x1/2 = 1/
√

2, the first and third quartiles are x1/4 = 1/2 and x3/4 =
√

3/4, respectively.
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7.18. Using the relation Y = 1/X , we find that the distribution function for Y , Clearly FY (y) = 0 for y ≤ 1. For
y > 1,

FY (y) = P{Y ≤ y} = P{1/X ≤ y} = P{X ≥ 1/y} = 1− P{X < 1/y} = 1− 1

y2
.

Thus uses the fact that P{X = 1/y} = 0.

7.19. We use the fact that the exponential function is increasing, and that limu→∞ exp(−u) = 0. Using the numbering
of the properties above

1. Because FX(x) = 0 for all x < 0, limx→−∞ FX(x) = 0.

2. limx→∞ exp(−λx) = 0. Thus, limx→∞ FX(x) = limx→∞ 1− exp(−λx) = 1.

3. For x < 0, FX is constant, FX(0) = 0. For x ≥ 0, note that exp(−λx) is decreasing. Thus, FX(x) =
1− exp(−λx) is increasing. Consequenlty, the distribution function FX is non-decreasing.

7.20. The distribution function has the graph shown in Figure 7.8.
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Figure 7.8: Cumulative distribution function for an exponential random variable with λ = 1/10 and a jump at x = 20.

The formula

FT (x) = P{X ≤ x} =





0 if x < 0,
1− exp(−x/10) if 0 ≤ x < 20,
1 if 20 ≤ x.

7.23. For r 6= 1, write the expressions for sn and rsn and subtract. Notice that most of the terms cancel.

sn = c+ cr +cr2+ · · ·+ crn

rsn = cr +cr2+ · · ·+ crn +crn+1

(1− r)sn = c −crn+1 = c(1− rn+1)

Now divide by 1− r to obtain the formula.

7.24. First, {X ≥ a+ b} ⊂ {X ≥ b} (If X ≥ a+ b, then automatically X ≥ b. Thus, {X ≥ b+ a,X ≥ b} = {X ≥
b+ a}. By the definition of conditional probability

P{X ≥ b+ a|X ≥ b} =
P{X ≥ b+ a,X ≥ b}

P{X ≥ b} =
P{X ≥ b+ a}
P{X ≥ b} =

pb+a

pb
= pa = P{X ≥ a}.
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Conversely, taking a = 1, then by the memorylessness property, the conditional probabilities

P{X ≥ b+ 1|X ≥ b} =
P{X ≥ b+ 1}
P{X ≥ b}

do not depend on b. Call their common value p. Then

P{X > b} = P{X ≥ b+ 1} = pP{X ≥ b} = p2P{X ≥ b− 1} = · · · = pb+1P{X ≥ 0} = pb+1,

The cumulative distribution
FX(b) = 1− P{X > b} = 1− pb+1,

and X is a geometric random variable.

7.26. P{X ≤ 3} = FX(3) = .8024691, P{2 < X ≤ 5} = FX(5)−FX(2) = 0.9122085−0.7037037 = 0.2085048,
and P{X > 4} = 1− FX(4) = 1− 0.8683128 = 0.1316872.

7.28. Let fX be the density. Then

0 ≤ P{X = x0} ≤ P{x0 −∆x < X ≤ x+ ∆x} =

∫ x0+∆x

x0−∆x

fX(x) dx.

Now the integral goes to 0 as ∆x→ 0. So, we must have P{X = x0} = 0.
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7.29. The R code is below.

> x<-seq(0,1,0.01)
> par(mfrow=c(2,1))
> plot(x,xˆ2,type="l",xlim=c(0,1),ylim=c(0,1),

ylab="distribution function")
> par(new=TRUE)
> plot(c(0,1/3),c(1/3,1/3)ˆ2,type="l",xlim=c(0,1),

ylim=c(0,1),xlab="",ylab="",col="red")
> par(new=TRUE)
> plot(c(0,2/3),c(2/3,2/3)ˆ2,type="l",xlim=c(0,1),

ylim=c(0,1),xlab="",ylab="",col="red")
> plot(x,2*x,type="l",xlim=c(0,1),ylim=c(0,2),

ylab="density function")
> xl<-seq(1/3,2/3,length=100)
> lines(xl,2*xl,type="h",col="pink")

The upper plot displays P{1/3 < X ≤ 2/3} = FX(2/3) − FX(1/3) = 4/9 − 1/9 = 1/3 by the difference
between the two horizontal lines. The lower plot show the same probability from the integral

∫ 2/3

1/3

fX(x)dx =

∫ 2/3

1/3

2x dx

as the shaded trapezoid under the density function fX(x).

7.32. Because the density is non-negative on the interval [0, 1], FX(x) = 0 if x < 0 and FX(x) = 1 if x ≥ 1. For x
between 0 and 1, ∫ x

0

1

2
√
t
dt =

√
t
∣∣∣
x

0
=
√
x.

Thus,

FX(x) =





0 if x ≤ 0,√
x if 0 < x < 1,

1 if 1 ≤ x.
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7.33. The random variable Y has distribution function

FY (y) = P{Y ≤ y} = P{aX + b ≤ y} = P{aX ≤ y − b}.

For a > 0

FY (y) = P

{
X ≤ y − b

a

}
= FX

(
y − b
a

)
.

Now take a derivative and use the chain rule to find the density

fY (y) = F ′Y (y) = fX

(
y − b
a

)
1

a
=

1

|a|fX
(
y − b
a

)
.

For a < 0

FY (y) = P

{
X ≥ y − b

a

}
= 1− FX

(
y − b
a

)
.

Now the derivative

fY (y) = F ′Y (y) = −fX
(
y − b
a

)
1

a
=

1

|a|fX
(
y − b
a

)
.

7.34. First, notice that the sum of right continuous functions is right continuous. Then, check the properties in Exercise
7.12 using the basic properties of limits and of right continuity.

7.35. Because the fi are mass functions, fi(x) ≥ 0 for all x. Using the fact that the πi ≥ 0 for all i, we have that
πifi(x) ≥ 0 and thus their sum, fX(x) ≥ 0. Also, for each i,

∑

x

fi(x) = 1 and
n∑

i=1

πi = 1.

Therefore,
∑

x

f(x) =
∑

x

(
n∑

i=1

πifi(x)

)
=

n∑

i=1

πi

(∑

x

fi(x)

)
=

n∑

i=1

πi(1) = 1.

7.36. We enter π and f1, f2, f3 into R and use matrix multiplication.

> pi<-c(1/4,1/4,1/2)
> f<-matrix(c(0.2,0.3,0.1,0.4,0,0.5,0.5,0,0,0,0.1,0.1,0.2,0.2,0.4),ncol=3)
> f

[,1] [,2] [,3]
[1,] 0.2 0.5 0.1
[2,] 0.3 0.5 0.1
[3,] 0.1 0.0 0.2
[4,] 0.4 0.0 0.2
[5,] 0.0 0.0 0.4
> f%*%pi

[,1]
[1,] 0.225
[2,] 0.250
[3,] 0.125
[4,] 0.200
[5,] 0.200
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So the mixture distribution is

x 1 2 3 4 5
fX(x) 0.225 0.250 0.125 0.200 0.200

7.38. The marginal mass function for X1 are the column sums.

x1 1 2 3 4 5
fX1(x1) 0.27 0.18 0.24 0.16 0.15

The marginal mass function for X2 are the row sums.

x2 -1 0 1 2
fX2(x2) 0.19 0.19 0.35 0.27

Notice that both fX1(x1) and fX2(x2) satisfy the properties of a mass function.

7.39. Because fX2|X1
(x2|x1) is a conditional probability, it is non-negative. For fX1

(x1) > 0,

∑

x2

fX2|X1
(x2|x1) =

∑

x2

fX1,X2(x1, x2)

fX1
(x1)

=
1

fX1
(x1)

∑

x2

fX1,X2
(x1, x2) =

1

fX1
(x1)

fX1
(x1) = 1.

7.40. We start with a table of the joint mass function fX1,X2(x1, x2) and the marginal mass function fX1(x1).

fX1,X2
(x1, x2)

x2\x1 1 2 3 4 5
-1 0.09 0.04 0.03 0.01 0.02
0 0.07 0 0.07 0.02 0.03
1 0.10 0.06 0.05 0.08 0.06
2 0.01 0.08 0.09 0.05 0.04

fX1
(x1) 0.27 0.18 0.24 0.16 0.15

The marginal mass function, fX2|X1
(x12|x1) is simply the table entry fX1,X2

(x1, x2) divided by the corresponding
row sum fX1(x1).

fX2|X1
(x2|x1)

x2\x1 1 2 3 4 5
-1 1/3 2/9 1/8 1/16 2/15
0 7/27 0 7/24 1/8 1/5
1 10/27 1/3 5/24 1/2 2/5
2 1/27 4/9 3/8 5/16 4/15

Notice each row sum is 1, as expected.

7.42. Let A = {x1 : fX1(x1) > 0}. On this set the conditional density function

fX2|X1
(x2|x1) =

fX1,X2
(x1, x2)

fX1(x1)

is ratio of density functions and this is non-negative. The integral
∫

A

fX2|X1
(x2|x1)dx2 =

∫

A

fX1,X2(x1, x2)

fX1
(x1)

dx2 = fX1
(x1)

∫

A

fX1,X2
(x1, x2)dx2 =

fX1(x1)

fX1
(x1)

= 1

using (7.10)
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Figure 7.9: Sum on two fair dice. The empirical cumulative distribution function from the simulation (in black) and the cumulative distribution
function (in red) are shown for Exercise 7.46.

7.43. fX1,X2(x1, x2) is nonnegative. Its integral over [0, 1]× [0, 1] is

∫ 1

0

∫ 1

0

fX1,X2
(x1, x2)dx2dx1 =

∫ 1

0

∫ 1

0

(
x1 +

3

2
x2

2

)
dx2dx1

=

∫ 1

0

(
x1x2 +

1

2
x3

2

) ∣∣∣
1

0
dx1 =

∫ 1

0

(
x1 +

1

2

)
dx1

=
1

2
x2

1 +
1

2
x1

∣∣∣
1

0
=

1

2
+

1

2
= 1,

as was needed. For the marginal densities,

fX1
(x1) =

∫ 1

0

fX1,X2
(x1, x2)dx2 =

∫ 1

0

(
x1 +

3

2
x2

2

)
dx2 =

(
x1x2 +

1

2
x3

2

) ∣∣∣
1

0
= x1 +

1

2

fX2(x2) =

∫ 1

0

fX1,X2(x1, x2)dx1 =

∫ 1

0

(
x1 +

3

2
x2

2

)
dx1 =

(
1

2
x2

1 +
3

2
x2

2x1

) ∣∣∣
1

0
=

1

2
+

3

2
x2

2.

It is easy to check that fX1(x1) and fX2(x2) are probability density functions.

7.44. The joint density (mass function) for X1, X2, . . . , Xn

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn)

is the product of the marginal densities (mass functions).

7.46. Here is the R code.

> x<-2:12
> f<-c(1,2,3,4,5,6,5,4,3,2,1)/36
> sum(f)
[1] 1
> (twodice<-sample(x,20,replace=TRUE,prob=f))
[1] 9 7 3 9 3 6 9 5 5 5 5 10 10 12 9 8 6 8 11 8
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> twodice<-sample(x,1000,replace=TRUE,prob=f)
> data.frame(table(twodice)/1000,f)

twodice Freq f
1 2 0.029 0.02777778
2 3 0.061 0.05555556
3 4 0.098 0.08333333
4 5 0.129 0.11111111
5 6 0.136 0.13888889
6 7 0.151 0.16666667
7 8 0.130 0.13888889
8 9 0.107 0.11111111
9 10 0.092 0.08333333
10 11 0.039 0.05555556
11 12 0.028 0.02777778

We also have a plot to compare the empirical cumulative distribution function from the simulation with the cumulative
distribution function.

> plot(sort(twodice),1:length(twodice)/length(twodice),type="s",xlim=c(2,12),
ylim=c(0,1),xlab="",ylab="")
> par(new=TRUE)
> F<-cumsum(f)
> plot(x,F,type="s",xlim=c(2,12),ylim=c(0,1),col="red")

7.47. Using the information from Exercise 7.36, we have

> data<-rep(0,10000)
> for (i in 1:10000){toss<-sample(1:3,1,prob=pi);

data[i]<-sample(1:5,1,prob=f[,toss])}
> table(data)
data

1 2 3 4 5
2260 2522 1249 2000 1969

As can be seen from the table below, all of the simulated probabilities are within 0.3% of the distributional values.
x 1 2 3 4 5

fX(x) 0.225 0.250 0.125 0.200 0.200
simulated 0.2260 0.2522 0.1249 0.2000 0.1969

7.48. FX is increasing and continuous, so the set {x;FX(x) ≤ u} is the interval (−∞, F−1
X (u)]. In addition, x is in

this invterval precisely when x ≤ F−1
X (u).

7.50 . Let’s find FV . If v < 0, then

P{V ≤ v} = P{1− U ≤ v} = P{1− v ≤ U} = P{U ≥ 1− v = 0

because U is never greater than 1− v > 1. Thus, FV (v) = 0 Similarly, if v ≥ 1,

P{V ≤ v} = P{1− U ≤ v} = P{1− v ≤ U} = 1

because U is always greater than 1− v < 0. Thus, FV (v) = 1. Finally, for 0 ≤ v < 1,

FV (v) = P{V ≤ v} = P{1− U ≤ v} = P{1− v ≤ U} = 1− P{U < 1− v} = 1− (1− v) = v.

This matches the distribution function of a uniform random variable on [0, 1].
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Topic 8

The Expected Value

Multiply each gain and loss by the probability of the event on which it depends; compare the total of
the result of the gains with that of the losses; the balance is the average required, and is known by the
name of the mathematical expectation.- August de Morgan, An Essay on Probabilities, 1838

Among the simplest summaries of quantitative data is the sample mean. Given a random variable, the correspond-
ing concept is given a variety of names, including the distributional mean, the expectation or the expected value.
We begin with the case of discrete random variables where this analogy is more apparent. The formula for contin-
uous random variables is obtained by approximating with a discrete random variable and noticing that the formula
for the expected value is a Riemann sum. Thus, expected values for continuous random variables are determined by
computing an integral.

8.1 Definition and Properties

Recall for a data set taking numerical values x1, x2, . . . , xn, one of the methods for computing the sample mean of a
real-valued function h of the data is accomplished by evaluating the sum,

h(x) =
∑

x

h(x)p(x),

where p(x) is the proportion of observations taking the value x.
For a finite sample space Ω = {ω1, ω2, . . . , ωN} and a probability P on Ω, we can define the expectation or the

expected value of a random variable X by an analogous average,

EX =

N∑

j=1

X(ωj)P{ωj}. (8.1)

More generally for a real-valued function g of the random vector X = (X1, X2, . . . , Xn), we have the formula

Eg(X) =

N∑

j=1

g(X(ωj))P{ωj}. (8.2)

Notice that even though we have this analogy, the two formulas come from very different starting points. The value
of h(x) is derived from data whereas no data are involved in computing Eg(X). The starting point for the expected
value is a probability model.
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Example 8.1. Roll one die. Then Ω = {1, 2, 3, 4, 5, 6}. Let X be the value on the die. So, X(ω) = ω. If the die is
fair, then the probability model has P{ω} = 1/6 for each outcome ω. Using the formula (8.1), the expected value

EX = 1 · P{1}+ 2 · P{2}+ 3 · P{3}+ 4 · P{4}+ 5 · P{5}+ 6 · P{6}

= 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
=

7

2
.

An example of an unfair dice would be the probability with P{1} = P{2} = P{3} = 1/4 and P{4} = P{5} =
P{6} = 1/12. In this case, the expected value

EX = 1 · 1

4
+ 2 · 1

4
+ 3 · 1

4
+ 4 · 1

12
+ 5 · 1

12
+ 6 · 1

12
=

11

4
.

Exercise 8.2. Use the formula (8.2) with g(x) = x2 to find EX2 for these two examples.

Two properties of expectation are immediate from the formula for EX in (8.1):

1. If X(ω) ≥ 0 for every outcome ω ∈ Ω, then every term in the sum in (8.1) is nonnegative and consequently
their sum EX ≥ 0.

2. Let X1 and X2 be two random variables and c1, c2 be two real numbers, then by using g(x1, x2) = c1x1 + c2x2

and the distributive property to the sum in (8.2), we find out that

E[c1X1 + c2X2] = c1EX1 + c2EX2.

The first of these properties states that nonnegative random variables have nonnegative expected value. The second
states that expectation is a linear operation. Taking these two properties together, we say that the operation of taking
an expectation

X 7→ EX

is a positive linear functional. We have studied extensively another example of a positive linear functional, namely,
the definite integral

g 7→
∫ b

a

g(x) dx

that takes a continuous positive function and gives the area between the graph of g and the x-axis between the vertical
lines x = a and x = b. For this example, these two properties become:

1. If g(x) ≥ 0 for every x ∈ [a, b], then
∫ b
a
g(x) dx ≥ 0.

2. Let g1 and g2 be two continuous functions and c1, c2 be two real numbers, then

∫ b

a

(c1g1(x) + c2g2(x)) dx = c1

∫ b

a

g1(x) dx+ c2

∫ b

a

g2(x) dx.

This analogy will be useful to keep in mind when considering the properties of expectation.

Example 8.3. If X1 and X2 are the values on two rolls of a fair die, then the expected value of the sum

E[X1 +X2] = EX1 + EX2 =
7

2
+

7

2
= 7.
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A B C D E F G
ω X(ω) x P{ω} P{X = x} X(ω)P{ω} xP{X = x}

HHH 3 3 P{HHH} P{X = 3} X(HHH)P{HHH} 3P{X = 3}
HHT 2 P{HHT} X(HHT )P{HHT}
HTH 2 2 P{HTH} P{X = 2} X(HTH)P{HTH} 2P{X = 2}
THH 2 P{THH} X(THH)P{THH}
HTT 1 P{HTT} X(HHT )P{HHT}
TTH 1 1 P{THT} P{X = 1} X(HTH)P{HTH} 1P{X = 1}
THT 1 P{TTH} X(THH)P{THH}
TTT 0 0 P{TTT} P{X = 0} X(TTT )P{TTT} 0P{X = 0}

Table I: Developing the formula for EX for the case of the coin tosses.

8.2 Discrete Random Variables
Because sample spaces can be extraordinarily large even in routine situations, we rarely use the probability space Ω
as the basis to compute the expected value. We illustrate this with the example of tossing a coin three times. Let X
denote the number of heads. To compute the expected value EX , we can proceed as described in (8.1). For the table
above, we have grouped the outcomes ω that have a common value x = 3, 2, 1 or 0 for X(ω).

From the definition of expectation in (8.1), EX , the expected value of X , is the sum of the values in column F. We
want to now show that EX is also the sum of the values in column G.

Note, for example, that, three outcomes HHT,HTH and THH each have two heads and thus give a value of 2
for X . Because these outcomes are disjoint, we can add probabilities

P{HHT}+ P{HTH}+ P{THH} = P{HHT,HTH, THH} (8.3)

But, the event
{HHT,HTH, THH} can also be written as the event {X = 2}. (8.4)

This is shown for each value of x in column C, P{X = x}, the probabilities in column E are obtained as a sum of
probabilities in column D.

Thus, by combining outcomes that result in the same value for the random variable, the sums in the boxes in
column F are equal to the value in the corresponding box in column G. and thus their total sums are the same. In other
words,

EX = 0 · P{X = 0}+ 1 · P{X = 1}+ 2 · P{X = 2}+ 3 · P{X = 3}.

As in the discussion above, we can, in general, find for any function g the expectation Eg(X). First, to build a
table, denote the outcomes in the probability space Ω as ω1, . . . , ωk, ωk+1, . . . , ωN and the state space for the random
variable X as x1, . . . , xi, . . . , xn.

Note that we have partitioned the sample space Ω into the outcomes ω that result in the same value x for the random
variable X(ω). This is shown by the horizontal lines in the table above showing that X(ωk) = X(ωk+1) = · · · = xi.
The equality of sum of the probabilities in a box in columns D and the probability in column E can be written, in
analogy with (8.3) and (8.4), ∑

{ω;X(ω)=xi}

P{ω} = P{X = xi}.

For these particular outcomes, g(X(ω)) = g(xi) and the sum of the values in a boxes in column F,

∑

ω;X(ω)=xi

g(X(ω))P{ω} =
∑

ω;X(ω)=xi

g(xi)P{ω} = g(xi)
∑

ω;X(ω)=xi

P{ω} = g(xi)P{X = xi}, (8.5)
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A B C D E F G
ω X(ω) x P{ω} P{X = x} g(X(ω))P{ω} g(x)P{X = x}
...

...
...

...
...

...
...

ωk X(ωk) P{ωk} g(X(ωk))P{ωk}
ωk+1 X(ωk+1) xi P{ωk+1} P{X = xi} g(X(ωk+1))P{ωk+1} g(xi)P{X = xi}

...
...

...
...

...
...

...
...

...
...

...

Table II: Establishing the identity (8.6) from (8.2). Arrange the rows of the table so that common values of X(ωk), X(ωk+1), . . . in the box in
column B have the value xi in column C. Thus, the probabilities in a box in column D sum to give the probability in the corresponding box in
column E. Because the values for g(X(ωk)), g(X(ωk+1)), . . . equal g(xi), the sum in a box in column F sums to the value in the corresponding
box in column G. Thus, the sums in columns F and G are equal. The sum in column F is the definition in (8.2). The sum in column G is the identity
(8.6).

the value in the corresponding box in column G. Now, sum over all possible value for X for each side of equation
(8.5).

Eg(X) =
∑

ω

g(X(ω))P{ω} =

n∑

i=1

g(xi)P{X = xi} =

n∑

i=1

g(xi)fX(xi)

where fX(xi) = P{X = xi} is the probability mass function for X .
The identity

Eg(X) =

n∑

i=1

g(xi)fX(xi) =
∑

x

g(x)fX(x) (8.6)

is the most frequently used method for computing the expectation of discrete random variables. We will soon see how
this identity can be used to find the expectation in the case of continuous random variables

Example 8.4. Flip a biased coin twice and let X be the number of heads. Then, to compute the expected value of X
and X2 we construct a table to prepare to use (8.6).

x fX(x) xfX(x) x2fX(x)
0 (1− p)2 0 0
1 2p(1− p) 2p(1− p) 2p(1− p)
2 p2 2p2 4p2

sum 1 2p 2p+ 2p2

Thus, EX = 2p and EX2 = 2p+ 2p2.

Exercise 8.5. Draw 5 cards from a standard deck. Let X be the number of hearts. Use R to find the mass function for
X and use this to find EX and EX2.

A similar formula to (8.6) holds if we have a vector of random variables X = (X1, X2, . . . , Xn), fX , the joint
probability mass function and g a real-valued function of x = (x1, x2, . . . , xn). In the two dimensional case, this takes
the form

Eg(X1, X2) =
∑

x1

∑

x2

g(x1, x2)fX1,X2
(x1, x2). (8.7)

We will return to (8.7) in computing the covariance of two random variables.
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8.3 Bernoulli Trials
Bernoulli trials are the simplest and among the most common models for an experimental procedure. Each trial has
two possible outcomes, variously called,

heads-tails, yes-no, up-down, left-right, win-lose, female-male, green-blue, dominant-recessive, or success-failure

depending on the circumstances. We will use the principles of counting and the properties of expectation to analyze
Bernoulli trials. From the point of view of statistics, the data have an unknown success parameter p. Thus, the goal of
statistical inference is to make as precise a statement as possible for the value of p behind the production of the data.
Consequently, any experimenter that uses Bernoulli trials as a model ought to mirror its properties closely.

Example 8.6 (Bernoulli trials). Random variablesX1, X2, . . . , Xn are called a sequence of Bernoulli trials provided
that:

1. Each Xi takes on two values, namely, 0 and 1. We call the value 1 a success and the value 0 a failure.

2. Each trial has the same probability for success, i.e., P{Xi = 1} = p for each i.

3. The outcomes on each of the trials is independent.

For each trial i, the expected value

EXi = 0 · P{Xi = 0}+ 1 · P{Xi = 1} = 0 · (1− p) + 1 · p = p

is the same as the success probability. Let Sn = X1 +X2 + · · ·+Xn be the total number of successes in n Bernoulli
trials. Using the linearity of expectation, we see that

ESn = E[X1 +X2 · · ·+Xn] = p+ p+ · · ·+ p = np,

the expected number of successes in n Bernoulli trials is np.

In addition, we can use our ability to count to determine the probability mass function for Sn. Beginning with a
concrete example, let n = 8, and the outcome

success, fail, fail, success, fail, fail, success, fail.

Using the independence of the trials, we can compute the probability of this outcome:

p× (1− p)× (1− p)× p× (1− p)× (1− p)× p× (1− p) = p3(1− p)5.

Moreover, any of the possible
(

8
3

)
particular sequences of 8 Bernoulli trials having 3 successes also has probability

p3(1 − p)5. Each of the outcomes are mutually exclusive, and, taken together, their union is the event {S8 = 3}.
Consequently, by the axioms of probability, we find that

P{S8 = 3} =

(
8

3

)
p3(1− p)5.

Returning to the general case, we replace 8 by n and 3 by x to see that any particular sequence of n Bernoulli
trials having x successes has probability

px(1− p)n−x.
In addition, we know that we have (

n

x

)

mutually exclusive sequences of n Bernoulli trials that have x successes. Thus, we have the mass function

fSn(x) = P{Sn = x} =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.
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The fact that the sum

n∑

x=0

fSn(x) =

n∑

x=0

(
n

x

)
px(1− p)n−x = (p+ (1− p))n = 1n = 1

follows from the binomial theorem. Consequently, Sn is called a binomial random variable.

In the exercise above where X is the number of hearts in 5 cards, let Xi = 1 if the i-th card is a heart and 0 if it
is not a heart. Then, the Xi are not Bernoulli trials because the chance of obtaining a heart on one card depends on
whether or not a heart was obtained on other cards. Still,

X = X1 +X2 +X3 +X4 +X5

is the number of hearts and

EX = EX1 + EX2 + EX3 + EX4 + EX5 = 1/4 + 1/4 + 1/4 + 1/4 + 1/4 = 5/4.

8.4 Continuous Random Variables

!0.5 !0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.5

1

1.5

2

2.5

3

density f
X

round 
down

! x

Figure 8.1: The discrete random variable X̃ is obtained by rounding down the
continuous random variableX to the nearest multiple of ∆x. The mass function
fX̃(x̃) is the integral of the density function from x̃ to x̃+ ∆x indicated at the
area under the density function between two consecutive vertical lines.

For X a continuous random variable with density
fX , consider the discrete random variable X̃ ob-
tained from X by rounding down. Say, for exam-
ple, we give lengths by rounding down to the near-
est millimeter. Thus, X̃ = 2.134 meters for any
lengths X satisfying 2.134 meters < X ≤ 2.135
meters.

The random variable X̃ is discrete. To be pre-
cise about the rounding down procedure, let ∆x be
the spacing between values for X̃ . Then, x̃, an inte-
ger multiple of ∆x, represents a possible value for
X̃ , then this rounding becomes

X̃ = x̃ if and only if x̃ < X ≤ x̃+ ∆x.

With this, we can give the mass function

fX̃(x̃) = P{X̃ = x̃} = P{x̃ < X ≤ x̃+ ∆x}.

Now, by the property of the density function,

P{x̃ ≤ X < x̃+ ∆x} ≈ fX(x)∆x. (8.8)

In this case, we need to be aware of a possible source of confusion due to the similarity in the notation that we have for
both the mass function fX̃ for the discrete random variable X̃ and a density function fX for the continuous random
variable X .

For this discrete random variable X̃ , we can use identity (8.6) and the approximation in (8.8) to approximate the
expected value.

Eg(X̃) =
∑

x̃

g(x̃)fX̃(x̃) =
∑

x̃

g(x̃)P{x̃ ≤ X < x̃+ ∆x}

≈
∑

x̃

g(x̃)fx(x̃)∆x.
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This last sum is a Riemann sum and so taking limits as ∆x → 0, we have that the distribution of X̃ converges to
that for X and the Riemann sum converges to the definite integral. Thus,

Eg(X) =

∫ ∞

−∞
g(x)fX(x) dx. (8.9)

provided this possibly improper Riemann integral converges.
As in the case of discrete random variables, a similar formula to (8.9) holds if we have a vector of random variables

X = (X1, X2, . . . , Xn), fX , the joint probability density function and g a real-valued function of the vector x =
(x1, x2, . . . , xn). The expectation in this case is an n-dimensional Riemann integral. For example, if X1 and X2 has
joint density fX1,X2

(x1, x2), then

Eg(X1, X2) =

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)fX1,X2(x1, x2) dx2dx1,

again, provided that the improper Riemann integral converges.

Example 8.7. For the dart example, the density fX(x) = 2x on the interval [0, 1] and 0 otherwise. Thus,

EX =

∫ 1

0

x · 2x dx =

∫ 1

0

2x2 dx =
2

3
x3
∣∣∣
1

0
=

2

3
.

On the other hand, if we award the dart thrower for an amount equal to the inverse of the square of the distance from
the center,

E

[
1

X2

]
=

∫ 1

0

1

x2
· 2x dx =

∫ 1

0

2

x
dx.

The antiderivative of the integrand is 2 lnx and does not converge as x → 0. In this case, because the integrand is
positive, we may say that E[1/X2] =∞.

Exercise 8.8. If X is a nonnegative random variable, then FX(0) = 0.

If we were to compute the mean of T , an exponential random variable,

ET =

∫ ∞

0

tfT (t) dt =

∫ ∞

0

tλe−λt dt,

then our first step is to integrate by parts. This situation occurs with enough regularity that we will benefit in making
the effort to see how integration by parts gives an alternative formula for computing expectation. In the end, we will
see an analogy between the mean with the survival function P{X > x} = 1 − FX(x) = F̄X(x), and the sample
mean with the empirical survival function.

Let X be a positive random variable, then the expectation is the improper integral

EX =

∫ ∞

0

xfX(x) dx

(The unusual choice for v is made to simplify some computations and to anticipate the appearance of the survival
function.)

u(x) = x v(x) = −(1− FX(x)) = −F̄X(x)
u′(x) = 1 v′(x) = fX(x) = −F̄ ′X(x).

First integrate from 0 to b and take the limit as b→∞. Then, because FX(0) = 0, F̄X(0) = 1 and
∫ b

0

xfX(x) dx = −xF̄X(x)
∣∣∣
b

0
+

∫ b

0

F̄X(x) dx

= −bF̄X(b) +

∫ b

0

F̄X(x) dx
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Figure 8.2: The cumulative distribution function FX(x) and the survival function F̄X(x) = 1 − FX(x) for the dart board example. Using the
expression (8.10), we see that the expected value EX = 2/3 is the area under the survival function.

The product term in the integration by parts formula converges to 0 as b→∞. Thus, we can take a limit to obtain
the identity,

EX =

∫ ∞

0

P{X > x} dx. (8.10)

Exercise 8.9. Show that the product term in the integration by parts formula does indeed converge to 0 as b→∞.

In words, the expected value is the area between the cumulative distribution function and the line y = 1 or the area
under the survival function. For the case of the dart board, we see that the area under the distribution function between
y = 0 and y = 1 is

∫ 1

0
x2dx = 1/3, so the area below the survival function EX = 2/3. (See Figure 8.2.)

Example 8.10. Let T be an exponential random variable, then for some λ, the survival function

F̄T (t) = P{T > t} = exp(−λt).

Thus,

ET =

∫ ∞

0

P{T > t} dt =

∫ ∞

0

exp(−λt) dt = − 1

λ
exp(−λt)

∣∣∣
∞

0
= 0− (− 1

λ
) =

1

λ
.

Exercise 8.11. Generalize the identity (8.10) above to X be a positive random variable and g a non-decreasing
function to show that the expectation

Eg(X) =

∫ ∞

0

g(x)fX(x) dx = g(0) +

∫ ∞

0

g′(x)P{X > x} dx.
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Figure 8.3: The density of a standard normal density, drawn in R using
the command curve(dnorm(x),-3,3).

The most important density function we shall en-
counter is

φ(z) =
1√
2π

exp(−z
2

2
), z ∈ R.

for Z, the standard normal random variable. Because
the function φ has no simple antiderivative, we must use
a numerical approximation to compute the cumulative
distribution function, denoted

Φ(z) = P{Z ≤ z}

for a standard normal random variable. This value can
be computed in R with the command pnorm(z).

Exercise 8.12. Show that φ is increasing for z < 0 and
decreasing for z > 0. In addition, show that φ is con-
cave down for z between −1 and 1 and concave up oth-
erwise.

Example 8.13. The expectation of a standard normal random variable,

EZ =
1√
2π

∫ ∞

−∞
z exp(−z

2

2
) dz = 0

because the integrand is an odd function. Next to evaluate

EZ2 =
1√
2π

∫ ∞

−∞
z2 exp(−z

2

2
) dz,

we integrate by parts. (Note the choices of u and v′.)

u(z) = z v(z) = − exp(− z22 )

u′(z) = 1 v′(z) = z exp(− z22 )

Thus,

EZ2 =
1√
2π

(
−z exp(−z

2

2
)
∣∣∣
∞

−∞
+

∫ ∞

−∞
exp(−z

2

2
) dz

)
= 1.

Use l’Hôpital’s rule to see that the first term is 0. The fact that the integral of a probability density function is 1 shows
that the second term equals 1.

Exercise 8.14. For Z a standard normal random variable, show that EZ3 = 0 and EZ4 = 3.
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8.5 Summary

distribution function
FX(x) = P{X ≤ x}

discrete random variable continuous

mass function density function
fX(x) = P{X = x} fX(x)∆x ≈ P{x ≤ X < x+ ∆x}

fX(x) ≥ 0 properties fX(x) ≥ 0∑
all x fX(x) = 1

∫∞
−∞ fX(x) dx = 1

P{X ∈ A} =
∑

x∈A fX(x) probability P{X ∈ A} =
∫
A
fX(x) dx

Eg(X) =
∑

all x g(x)fX(x) expectation Eg(X) =
∫∞
−∞ g(x)fX(x) dx

8.6 Names for Eg(X).
Several choice for g have special names. We shall later have need for several of these expectations. Others are included
to create a comprehensive reference list.

1. If g(x) = x, then µ = EX is called variously the (distributional) mean, and the first moment.

2. If g(x) = xk, then EXk is called the k-th moment. These names were made in analogy to a similar concept in
physics. The second moment in physics is associated to the moment of inertia.

3. For integer valued random variables, if g(x) = (x)k, where (x)k = x(x − 1) · · · (x − k + 1), then E(X)k is
called the k-th factorial moment. For random variable taking values in the natural numbers x = 0, 1, 2, . . .,
factorial moments are typically easier to compute than moments for these random variables.

4. If g(x) = (x− µ)k, then E(X − µ)k is called the k-th central moment.

5. The most frequently used central moment is the second central moment σ2 = E(X − µ)2 commonly called the
(distributional) variance. Using the linearity properties of expectation, we see that

σ2 = Var(X) = E(X − µ)2 = EX2 − 2µEX + µ2 = EX2 − 2µ2 + µ2 = EX2 − µ2.

This gives a frequently used alternative to computing the variance. In analogy with the corresponding concept
with quantitative data, we call σ the standard deviation for the square root of the variance.

Exercise 8.15. Find the variance of a single Bernoulli trial.

Exercise 8.16. Compute the variance for the two types of dice in Exercise 8.2.

Exercise 8.17. Compute the variance for the dart example.

If we subtract the mean and divide by the standard deviation, the resulting random variable

Z =
X − µ
σ

has mean 0 and variance 1. Z is called the standardized version of X .
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6. The third moment of the standardized random variable

γ1 = E

[(
X − µ
σ

)3
]

is called the skewness. Random variables with positive skewness have a more pronounced tail to the density
on the right. Random variables with negative skewness have a more pronounced tail to the density on the left.

Exercise 8.18. Show that the skewness of X a Bernoulli random variable Ber(p) is

1− 2p√
p(1− p)

Thus, X is positively skewed if p < 1/2 and is negatively skewed if p > 1/2.

7. The fourth moment of the standard normal random variable is 3. The kurtosis compares the fourth moment of
the standardized random variable to this value

E

[(
X − µ
σ

)4
]
− 3.

Random variables with a negative kurtosis are called leptokurtic. Lepto means slender. Random variables with
a positive kurtosis are called platykurtic. Platy means broad.

8. For d-dimensional vectors x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) define the standard inner product,

〈x,y〉 =

d∑

i=1

xiyi.

If X is Rd-valued and g(x) = ei〈θ,x〉, then χX(θ) = Eei〈θ,X〉 is called the Fourier transform or the charac-
teristic function. The characteristic function receives its name from the fact that the mapping

FX 7→ χX

from the distribution function to the characteristic function is one-to-one. Consequently, if we have a function
that we know to be a characteristic function, then it can only have arisen from one distribution. In this way, χX
characterizes that distribution.

9. Similarly, if X is Rd-valued and g(x) = e〈θ,x〉, then MX(θ) = Ee〈θ,X〉 is called the Laplace transform or the
moment generating function. The moment generating function also gives a one-to-one mapping. However,
not every distribution has a moment generating function. To justify the name, consider the one-dimensional case
MX(θ) = EeθX . Then, by noting that

dk

dθk
eθx = xkeθx,

we substitute the random variable X for x, take expectation and evaluate at θ = 0.

M ′X(θ) = EXeθX M ′X(0) = EX
M ′′X(θ) = EX2eθX M ′′X(0) = EX2

...
...

M
(k)
X (θ) = EXkeθX M

(k)
X (0) = EXk.

10. Let X have the natural numbers for its state space and g(x) = zx, then ρX(z) = EzX =
∑∞
x=0 P{X = x}zx

is called the (probability) generating function. For these random variables, the probability generating function
allows us to use ideas from the analysis of the complex variable power series.
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Exercise 8.19. Show that the moment generating function for an exponential random variable is

MX(t) =
λ

λ− t .

Use this to find Var(X).

Exercise 8.20. For the probability generating function, show that ρ(k)
X (1) = E(X)k. This gives an instance that

shows that falling factorial moments are easier to compute for natural number valued random variables.

Particular attention should be paid to the next exercise.

Exercise 8.21. Quadratic identity for variance Var(a+ bX) = b2Var(X).

The variance is meant to give a sense of the spread of the values of a random variable. Thus, the addition of a
constant a should not change the variance. If we write this in terms of standard deviation, we have that

σa+bX = |b|σX .
Thus, multiplication by a factor b spreads the data, as measured by the standard deviation, by a factor of |b|. In
particular,

Var(X) = Var(−X).

These identities are identical to those for a sample variance s2 and sample standard deviation s.

8.7 Independence
Expected values in the case of more than one random variable is based on the same concepts as for a single random
variable. For example, for two discrete random variables X1 and X2, the expected value is based on the joint mass
function fX1,X2(x1, x2). In this case the expected value is computed using a double sum seen in the identity (8.7).

We will not investigate this in general, but rather focus on the case in which the random variables are independent.
Here, we have the factorization identity fX1,X2

(x1, x2) = fX1
(x1)fX2

(x2) for the joint mass function. Now, apply
identity (8.7) to the product of functions g(x1, x2) = g1(x1)g2(x2) to find that

E[g1(X1)g2(X2)] =
∑

x1

∑

x2

g1(x1)g2(x2)fX1,X2
(x1, x2) =

∑

x1

∑

x2

g1(x1)g2(x2)fX1
(x1)fX2

(x2)

=

(∑

x1

g1(x1)fX1(x1)

)(∑

x2

g2(x2)fX2
(x2)

)
= E[g1(X1)] · E[g2(X2)]
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Figure 8.4: For independent random vari-
ables, the standard deviations σX1

and
σX2 satisfy the Pythagorean theorem identity
σ2
X1+X2

= σ2
X1

+ σ2
X2

.

A similar identity holds for continuous random variables - the expectation
of the product of two independent random variables equals to the product of
the expectation.

8.8 Covariance and Correlation
A very important example begins by takingX1 andX2 random variables with
respective means µ1 and µ2. Then by the definition of variance

Var(X1 +X2) = E[((X1 +X2)− (µ1 + µ2))2]

= E[((X1 − µ1) + (X2 − µ2))2]

= E[(X1 − µ1)2] + 2E[(X1 − µ1)(X2 − µ2)]

+E[(X2 − µ2)2]

= Var(X1) + 2Cov(X1, X2) + Var(X2).

where the covariance Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)].
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Exercise 8.22. Cov(X1, X2) = E[X1X2]− µ1µ2.

As you can see, the definition of covariance is analogous to that for a sample covariance. The analogy continues
to hold for the correlation ρ, defined by

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)
√

Var(X2)
.

We can also use the computation for sample covariance to see that distributional covariance is also between −1 and 1.
Correlation 1 occurs only when X and Y have a perfect positive linear association. Correlation −1 occurs only when
X and Y have a perfect negative linear association.

If X1 and X2 are independent, then Cov(X1, X2) = E[X1 − µ1] ·E[X2 − µ2] = 0 and the variance of the sum is
the sum of the variances. This identity and its analogy to the Pythagorean theorem is shown in Figure 8.4.

The following exercise is the basis in Topic 3 for the simulation of scatterplots having correlation ρ.

Exercise 8.23. Let X and Z be independent random variables mean 0, variance 1. Define Y = ρ0X +
√

1− ρ2
0Z.

Then Y has mean 0, variance 1. Moreover, X and Y have correlation ρ0.

We can extend this to a generalized Pythagorean identity for n independent random variable X1, X2, . . . , Xn each
having a finite variance. Then, for constants c1, c2, . . . , cn, we have the identity

Var(c1X1 + c2X2 + · · · cnXn) = c21Var(X1) + c22Var(X2) + · · ·+ c2nVar(Xn).

We will see several opportunities to apply this identity. For example, if we take c1 = c2 · · · = cn = 1, then we
have that for independent random variables

Var(X1 +X2 + · · ·Xn) = Var(X1) + Var(X2) + · · ·+ Var(Xn),

the variance of the sum is the sum of the variances.

Exercise 8.24. Find the variance of a binomial random variable based on n trials with success parameter p.

Exercise 8.25. For random variables X1, X2, . . . , Xn with finite variance and constants c1, c2, . . . , cn

Var(c1X1 + c2X2 + · · · cnXn) =

n∑

i=1

n∑

j=1

cicjCov(Xi, Xj).

Recall that Cov(Xi, Xi) = Var(Xi). If the random variables are independent, then Cov(Xi, Xj) = 0 and the
identity above give the generalized Pythagorean identity.

We can write this identity more compactly in matrix form. Let c be the vector c1, c2, . . . , cn,X = (X1, X2, . . . Xn,
and define the covariance matrix Cov(X) with i, j entry Cov(Xi, Xj). Then

Var(cTX) = cTCov(X)c.

8.8.1 Equivalent Conditions for Independence
We can summarize the discussions of independence to present the following 4 equivalent conditions for independent
random variables X1, X2, . . . , Xn.

1. For events A1, A2, . . . An,

P{X1 ∈ A1, X2 ∈ A2, . . . Xn ∈ An} = P{X1 ∈ A1}P{X2 ∈ A2} · · ·P{Xn ∈ An}.
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2. The joint distribution function equals to the product of marginal distribution function.

FX1,X2,...,Xn(x1, x2, . . . , xn) = FX1(x1)FX2(x2) · · ·FXn(xn).

3. The joint density (mass) function equals to the product of marginal density (mass) functions.

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1
(x1)fX2

(x2) · · · fXn(xn).

4. For bounded functions g1, g2, . . . , gn, the expectation of the product of the random variables equals to the
product of the expectations.

E[g1(X1)g2(X2) · · · gn(Xn)] = Eg1(X1) · Eg2(X2) · · ·Egn(Xn).

We will have many opportunities to use each of these conditions.

8.9 Quantile Plots and Probability Plots
We have seen the quantile-quantile or Q-Q plot provides a visual method way to compare two quantitative data sets. A
more common comparison is between quantitative data and the quantiles of the probability distribution of a continuous
random variable. We will demonstrate the properties of these plots with an example.

Example 8.26. As anticipated by Galileo, errors in independent accurate measurements of a quantity follow approx-
imately a sample from a normal distribution with mean equal to the true value of the quantity. The standard deviation
gives information on the precision of the measuring devise. We will learn more about this aspect of measurements
when we study the central limit theorem. Our example is Morley’s measurements of the speed of light, found in the
third column of the data set morley. The values are the measurements of the speed of light minus 299,000 kilometers
per second.

> length(morley[,3])
[1] 100
> mean(morley[,3])
[1] 852.4
> sd(morley[,3])
[1] 79.01055
> par(mfrow=c(1,2))
> hist(morley[,3])
> qqnorm(morley[,3])

The histogram has the characteristic bell shape of the normal density. We can obtain a clearer picture of the
closeness of the data to a normal distribution by drawing a Q-Q plot. (In the case of the normal distribution, the Q-Q
plot is often called the normal probability plot.) One method of making this plot begins by ordering the measurements
from smallest to largest:

x(1), x(2), . . . , x(n)

Now. give the standardized versions of these values. Let x̄ be the sample mean and sx be the sample standard deviation
for these data. Then the standardized versions of the ordered measurements are

z(i) =
x(i) − x̄
sx

. (8.11)

If these are independent measurements from a standard normal distribution, then these values should be close to
the quantiles of the evenly space values

1

n+ 1
,

2

n+ 1
, · · · , n

n+ 1
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Figure 8.5: Histogram and normal probability plot of Morley’s measurements of the speed of light.

(For the Morley data, n = 100). Thus, the next step is to find the values in the standard normal distribution that have
these quantiles. We can find these values by applying Φ−1, the inverse distribution function for the standard normal
(qnorm in R), applied to the n values listed in (8.11).

x(i) − x̄
sx

= z(i) ≈ Φ−1

(
i

n+ 1

)
.

or

x(i) ≈ sxΦ−1

(
i

n+ 1

)
+ x̄.

The Q-Q plot is the scatterplot of the pairs
(
x(1),Φ

−1

(
1

n+ 1

))
,

(
x(2),Φ

−1

(
2

n+ 1

))
, . . . ,

(
x(n),Φ

−1

(
n

n+ 1

))

Then a good fit of the data and a normal distribution can be seen in how well the plot follows a straight line with
slope sx and vertical intercept x̄. Such a plot can be seen in Figure 8.4.

Exercise 8.27. Describe the normal probability plot in the case in which the data X are skewed right.

8.10 Answers to Selected Exercises
8.2. For the fair die

EX2 = 12 · 1

6
+ 22 · 1

6
+ 32 · 1

6
+ 42 · 1

6
+ 52 · 1

6
+ 62 · 1

6
= (1 + 4 + 9 + 16 + 25 + 36) · 1

6
=

91

6
.

For the unfair dice

EX2 = 12 · 1

4
+ 22 · 1

4
+ 32 · 1

4
+ 42 · 1

12
+ 52 · 1

12
+ 62 · 1

12
= (1 + 4 + 9) · 1

4
+ (16 + 25 + 36) · 1

12
=

119

12
.
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8.5. The random variable X can take on the values 0, 1, 2, 3, 4, and 5. Thus,

EX =

5∑

x=0

xfX(x) and EX2 =

5∑

x=0

x2fX(x).

The R commands and output follow.

> hearts<-c(0:5)
> f<-choose(13,hearts)*choose(39,5-hearts)/choose(52,5)
> sum(f)
[1] 1
> prod<-hearts*f
> prod2<-heartsˆ2*f
> data.frame(hearts,f,prod,prod2)

hearts f prod prod2
1 0 0.2215336134 0.00000000 0.00000000
2 1 0.4114195678 0.41141957 0.41141957
3 2 0.2742797119 0.54855942 1.09711885
4 3 0.0815426170 0.24462785 0.73388355
5 4 0.0107292917 0.04291717 0.17166867
6 5 0.0004951981 0.00247599 0.01237995
> sum(prod);sum(prod2)
[1] 1.25
[1] 2.426471

Look in the text for an alternative method to find EX .

8.8. If X is a non-negative random variable, then P{X > 0} = 1. Taking complements, we find that

FX(0) = P{X ≤ 0} = 1− P{X > 0} = 1− 1 = 0.

8.9. The convergence can be seen by the following argument.

0 ≤ b(1− FX(b)) = b

∫ ∞

b

fX(x) dx =

∫ ∞

b

bfX(x) dx ≤
∫ ∞

b

xfX(x) dx

Use the fact that x ≥ b in the range of integration to obtain the inequality in the line above.. Because,
∫∞

0
xfX(x) dx <

∞ (The improper Riemann integral converges.) we have that
∫∞
b
xfX(x) dx → 0 as b → ∞. Consequently, 0 ≤

b(1− FX(b))→ 0 as b→∞ by the squeeze theorem.

8.11. The expectation is the integral

Eg(X) =

∫ ∞

0

g(x)fX(x) dx.

It will be a little easier to look at h(x) = g(x)− g(0). Then, by the linearity of expectation,

Eg(X) = g(0) + Eh(X).

For integration by parts, we have

u(x) = h(x) v(x) = −(1− FX(x)) = −F̄X(x)
u′(x) = h′(x) = g′(x) v′(x) = fX(x) = −F̄ ′X(x).
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Again, because FX(0) = 0, F̄X(0) = 1 and

Eh(X) =

∫ b

0

h(x)fX(x) dx = −h(x)F̄X(x)
∣∣∣
b

0
+

∫ b

0

h′(x)(1− FX(x)) dx

= −h(b)F̄X(b) +

∫ b

0

g′(x)F̄X(x) dx

To see that the product term in the integration by parts formula converges to 0 as b → ∞, note that, similar to
Exercise 8.9,

0 ≤ h(b)(1− FX(b)) = h(b)

∫ ∞

b

fX(x) dx =

∫ ∞

b

h(b)fX(x) dx ≤
∫ ∞

b

h(x)fX(x) dx

The first inequality uses the assumption that h(b) ≥ 0. The second uses the fact that h is non-decreaasing. Thus,
h(x) ≥ h(b) if x ≥ b. Now, because

∫∞
0
h(x)fX(x) dx < ∞, we have that

∫∞
b
h(x)fX(x) dx → 0 as b → ∞.

Consequently, h(b)(1− FX(b))→ 0 as b→∞ by the squeeze theorem.

8.12. For the density function φ, the derivative

φ′(z) =
1√
2π

(−z) exp(−z
2

2
).

Thus, the sign of φ′(z) is opposite to the sign of z, i.e.,

φ′(z) > 0 when z < 0 and φ′(z) < 0 when z > 0.

Consequently, φ is increasing when z is negative and φ is decreasing when z is positive. For the second derivative,

φ′′(z) =
1√
2π

(
(−z)2 exp(−z

2

2
)− 1 exp(−z

2

2
)

)
=

1√
2π

(z2 − 1) exp(−z
2

2
).

Thus,
φ is concave down if and only if φ′′(z) < 0 if and only if z2 − 1 < 0.

This occurs if and only if z is between −1 and 1.

8.14. As argued above,

EZ3 =
1√
2π

∫ ∞

−∞
z3 exp(−z

2

2
) dz = 0

because the integrand is an odd function. For EZ4, we again use integration by parts,

u(z) = z3 v(z) = − exp(− z22 )

u′(z) = 3z2 v′(z) = z exp(− z22 )

Thus,

EZ4 =
1√
2π

(
−z3 exp(−z

2

2
)
∣∣∣
∞

−∞
+ 3

∫ ∞

−∞
z2 exp(−z

2

2
) dz

)
= 3EZ2 = 3.

Use l’Hôpital’s rule several times to see that the first term is 0. The integral is EZ2 which we have previously found
to be equal to 1.

8.15 For a single Bernoulli trial with success probability p, EX = EX2 = p. Thus, Var(X) = p− p2 = p(1− p).

8.16. For the fair die, the mean µ = EX = 7/2 and the second moment EX2 = 91/6. Thus,

Var(X) = EX2 − µ2 =
91

6
−
(

7

2

)2

=
182− 147

12
=

35

12
.
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For the unfair die, the mean µ = EX = 11/4 and the second moment EX2 = 119/12. Thus,

Var(X) = EX2 − µ2 =
119

12
−
(

11

4

)2

=
476− 363

48
=

113

48
.

8.17. For the dart, we have that the mean µ = EX = 2/3.

EX2 =

∫ 1

0

x2 · 2x dx =

∫ 1

0

2x3 dx =
2

4
x4
∣∣∣
1

0
=

1

2
.

Thus,

Var(X) = EX2 − µ2 =
1

2
−
(

2

3

)2

=
1

18
.

8.18. The third central moment

E[(X − p)3] = (−p)3P{X = 0}+ (1− p)3P{X = 1} = −p3(1− p) + (1− p)3p

= p(1− p)(−p2 + (1− p)2) = p(1− p)(−p2 + 1− 2p+ p2) = p(1− p)(1− 2p).

Now, σ2 = Var(X) = p(1− p). Thus, the skewness,

E

[(
X − µ
σ

)3
]

= E



(

X − p√
p(1− p)

)3

 =

p(1− p)(1− 2p)

(p(1− p))3/2
=

1− 2p√
p(1− p)

.

8.19. If t < λ, we have that e(t−λ)x → 0 as x→∞ and so

MX(t) = EetX = λ

∫ ∞

0

etxe−λx dx = λ

∫ ∞

0

e(t−λ)x dx =
λ

t− λe
(t−λ)x

∣∣∣
∞

0
=

λ

λ− t

Thus,

M ′(t) =
λ

(λ− t)2
, EX = M ′(0) =

1

λ
,

and

M ′′(t) =
2λ

(λ− t)3
, EX = M ′′(0) =

2

λ2
.

Thus,

Var(X) = EX2 − (EX)2 =
2

λ2
− 1

λ2
=

1

λ2
.

8.20. ρX(z) = EzX =
∑∞
x=0 P{X = x}zx The k-th derivative of zx with respect to z is

dk

dzk
zx = (x)kz

x−k.

Evaluating at z = 1, we find that
dk

dzk
zx
∣∣∣
z=1

= (x)k.
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Thus the k-th derivative of ρ,

ρ
(k)
X (z) =

∞∑

x=0

(x)kP{X = x}zx−k and, thus,

ρ
(k)
X (1) =

∞∑

x=0

(x)kP{X = x} = E(X)k.

8.21. Let EX = µ. Then the expected value E[a+ bX] = a+ bµ and the variance

Var(a+ bX) = E[((a+ bX)− (a+ bµ))2] = E[(b(X − µ))2] = b2E[(X − µ)2] = b2Var(X).

8.22. Use the notation µ1 = EX1, µ2 = EX2 and the linearity of expectation to see that

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] = EX1X2 − µ2EX1 − µ1EX2 + µ1µ2

= EX1X2 − µ2µ1 − µ1µ2 + µ1µ2 = E[X1X2]− µ1µ2

8.23. By the linearity property of the mean

EY = ρ0EX +
√

1− ρ2
0EZ = 0.

By the Pythorean identity and then the quadratic identity for the variance,

Var(Y ) = Var(ρ0X) + Var(
√

1− ρ2
0 Z) = ρ2

0Var(X) + (1− ρ2
0)Var(Z) = ρ2

0 + (1− ρ2
0) = 1.

BecauseX and Y both have variance 1, their correlation is equal to their covariance. Now use the linearity property
of covariance

ρ(X,Y ) = Cov(X,Y ) = Cov
(
X, ρ0X +

√
1− ρ2

0 Z

)
= ρ0Cov(X,X) +

√
1− ρ2

0 Cov(X,Z)

= ρ0 · 1 +
√

1− ρ2
0 · 0 = ρ0

8.24. This binomial random variable is the sum of n independent Bernoulli random variable. Each of these random
variables has variance p(1− p). Thus, the binomial random variable has variance np(1− p).

8.27. For the larger order statistics, z(k) for the standardized version of the observations, the values are larger than
what one would expect when compared to observations of a standard normal random variable. Thus, the probability
plot will have a concave upward shape. As an example, we let X have the density shown below. Beside this is the
probability plot forX based on 100 samples. (X is a gamma Γ(2, 3) random variable. We will encounter these random
variables soon.)
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Topic 9

Examples of Mass Functions and Densities

For a given state space, S, we will describe several of the most frequently encountered parameterized families of both
discrete and continuous random variables

X : Ω→ S.

indexed by some parameter θ. We will add the subscript θ to the notation Pθ and Eθ to indicate the parameter value
used to compute, respectively, probabilities and expectations. This section is meant to serve as an introduction to
these families of random variables and not as a comprehensive development. The section should be considered as a
reference to future topics that rely on this information.

We shall use the notation
fX(x|θ)

both for a family of mass functions for discrete random variables and the density functions for continuous random
variables that depend on the parameter θ. After naming the family of random variables, we will use the expression
Family(θ) as shorthand for this family followed by the R command and state space S. A table of R commands,
parameters, means, and variances is given at the end of this section.

9.1 Examples of Discrete Random Variables
Incorporating the notation introduced above, we write

fX(x|θ) = Pθ{X = x}

for the mass function of the given family of discrete random variables.

1. (Bernoulli) Ber(p), S = {0, 1}

fX(x|p) =

{
0 with probability (1− p),
1 with probability p,

}
= px(1− p)1−x.

This is the simplest random variable, taking on only two values, namely, 0 and 1. Think of it as the outcome of
a Bernoulli trial, i.e., a single toss of an unfair coin that turns up heads with probability p.

2. (binomial) Bin(n, p) (R command binom) S = {0, 1, . . . , n}

fX(x|p) =

(
n

x

)
px(1− p)n−x.
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Figure 9.1: Binomial mass function f(x|p) for n = 12 and p = 1/4, 1/2, 3/4.

We gave a more extensive introduction to Bernoulli trials and the binomial distribution in the discussion on
The Expected Value. Here we found that the binomial distribution arises from computing the probability of x
successes in n Bernoulli trials. Considered in this way, the family Ber(p) is also Bin(1, p).

Notice that by its definition if Xi is Bin(ni, p), i = 1, 2 and are independent, then X1 +X2 is Bin(n1 +n2, p)

3. (geometric) Geo(p) (R command geom) S = N = {0, 1, 2, . . .}.

fX(x|p) = p(1− p)x.

We previously described this random variable as the number of failed Bernoulli trials before the first success.
The name geometric random variable is also applied to the number of Bernoulli trials Y until the first success.
Thus, Y = X+1. As a consequence of these two choices for a geometric random variable, care should be taken
to be certain which definition is under considertion.

Exercise 9.1. Give the mass function for Y .

4. (negative binomial) Negbin(n, p) (R command nbinom) S = N

fX(x|p) =

(
n+ x− 1

x

)
pn(1− p)x.

This random variable is the number of failed Bernoulli trials before the n-th success. Thus, the family of
geometric random variable Geo(p) can also be denoted Negbin(1, p). As we observe in our consideration

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Number of trials is n.

Distance between successes is a geometric random variable, parameter p.

Number of successes is a binomial random varible, parameters  n and p.

Figure 9.2: The relationship between the binomial and geometric random variable in Bernoulli trials.
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of Bernoulli trials, we see that the number of failures between consecutive successes is a geometric random
variable. In addition, the number of failures between any two pairs of successes (say, for example, the 2nd and
3rd success and the 6th and 7th success) are independent. In this way, we see that Negbin(n, p) is the sum of n
independent Geo(p) random variables.

To determine the mass function, note that in order for X to take on a given value x, then the n-th success must
occur on the n + x-th trial. In other words, we must have n − 1 successes and x failures in first n + x − 1
Bernoulli trials followed by success on the last trial. The first n+ x− 1 trials and the last trial are independent
and so their probabilities multiply.

Pp{X = x} = Pp{n− 1 successes in n+ x− 1 trials, success in the n− x-th trial}
= Pp{n− 1 successes in n+ x− 1 trials}Pp{success in the n− x-th trial}

=

(
n+ x− 1

n− 1

)
pn−1(1− p)x · p =

(
n+ x− 1

x

)
pn(1− p)x

The first factor is computed from the binomial distribution, the second from the Bernoulli distribution. Note the
use of the identity (

m

k

)
=

(
m

m− k

)

in giving the final formula.
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Figure 9.3: Probability mass function for negative binomial random variables for n = 1, 2, 3, 4 and p = 2/5.

Exercise 9.2. Use the fact that a negative binomial random variable Negbin(r, p) is the sum of independent
geometric random variableGeo(p) to find its mean and variance. Use the fact that a geometric random variable
has mean (1− p)/p and variance (1− p)/p2.

5. (Poisson) Pois(λ) (R command pois) S = N,

fX(x|λ) =
λx

x!
e−λ.

The Poisson distribution approximates of the binomial distribution when n is large, p is small, but the product
λ = np is moderate in size. One example for this can be seen in bacterial colonies. Here, n is the number of
bacteria and p is the probability of a mutation and λ, the mean number of mutations is moderate. A second is the
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number of recombination events occurring during meiosis. In this circumstance, n is the number of nucleotides
on a chromosome and p is the probability of a recombination event occurring at a particular nucleotide.

The approximation is based on the limit

lim
n→∞

(
1− λ

n

)n
= e−λ (9.1)

We now compute binomial probabilities, replace p by λ/n and take a limit as n→∞. In this computation, we
use the fact that for a fixed value of x,

(n)x
nx
→ 1 and

(
1− λ

n

)−x
→ 1 as n→∞

P{X = 0} =
(
n
0

)
p0(1− p)n =

(
1− λ

n

)n
≈ e−λ

P{X = 1} =
(
n
1

)
p1(1− p)n−1 = n

λ

n

(
1− λ

n

)n−1

≈ λe−λ

P{X = 2} =
(
n
2

)
p2(1− p)n−2 =

n(n− 1)

2

(
λ

n

)2(
1− λ

n

)n−2

=
n(n− 1)

n2

λ2

2

(
1− λ

n

)n−2

≈ λ2

2
e−λ

...
...

...

P{X = x} =
(
n
x

)
px(1− p)n−x =

(n)x
x!

(
λ

n

)x(
1− λ

n

)n−x
=

(n)x
nx

λx

x!

(
1− λ

n

)n−x
≈ λx

x!
e−λ.

The Taylor series for the exponential function

expλ =

∞∑

x=0

λx

x!
.

shows that
∞∑

x=0

fX(x) =

∞∑

x=0

λx

x!
e−λ = e−λe−λ = 1.

Exercise 9.3. Take logarithms and use l’Hôpital’s rule to establish the limit (9.1) above.

Exercise 9.4. We saw that the sum of independent binomial random variables with a common value for p, the
success probability, is itself a binomial random variable. Show that the sum of independent Poisson random
variables is itself a Poisson random variable. In particular, if Xi are Pois(λi), i = 1, 2, then X1 + X2 is
Pois(λ1 + λ2).

6. (uniform) U(a, b) (R command sample) S = {a, a+ 1, . . . , b},

fX(x|a, b) =
1

b− a+ 1
.

Thus each value in the designated range has the same probability.. To produce a sample of n U(a, b) random
variables, use the command sample(a:b,n,replace=TRUE).
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Figure 9.4: Probability mass function for binomial random variables for (a) n = 10, p = 0.3, (b) n = 100, p = 0.03, (c) n = 1000, p = 0.003
and for (d) the Poisson random varialble with λ = np = 3. This displays how the Poisson random variable approximates the binomial random
variable with n large, p small, and their product λ = np moderate.

7. (hypergeometric) Hyper(m,n, k) (R command hyper). The hypergeometric distribution will be used in com-
puting probabilities under circumstances that are associated with sampling without replacement. We will use
the analogy of an urn containing balls having one of two possible colors.

Begin with an urn holding m white balls and n black balls. Remove k and let the random variable X denote the
number of white balls. The value of X has several restrictions. X cannot be greater than either the number of
white balls, m, or the number chosen k. In addition, if k > n, then we must consider the possibility that all of
the black balls were chosen. If X = x, then the number of black balls, k−x, cannot be greater than the number
of black balls, n, and thus, k − x ≤ n or x ≥ k − n.

If we are considering equally likely outcomes, then we first compute the total number of possible outcomes,
#(Ω), namely, the number of ways to choose k balls out of an urn containing m + n balls. This is the number
of combinations (

m+ n

k

)
.

This will be the denominator for the probability. For the numerator of P{X = x}, we consider the outcomes
that result in x white balls from the total number m in the urn. We must also choose k − x black balls from
the total number n in the urn. By the multiplication property, the number of ways #(Ax) to accomplish this is
product of the number of outcomes for these two combinations,

(
m

x

)(
n

k − x

)
.

The mass function for X is the ratio of these two numbers.

fX(x|m,n, k) =
#(Ax)

#(Ω)
=

(
m
x

)(
n
k−x
)

(
m+n
k

) , x = max{0, k − n}, . . . ,min{m, k}.
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Exercise 9.5. Show that we can rewrite this probability as

fX(x|m,n, k) =
k!

x!(k − x)!

(m)x(n)k−x
(m+ n)k

=

(
k

x

)
(m)x(n)k−x

(m+ n)k
. (9.2)

This gives probabilities using sampling without replacement. If we were to choose the balls one-by-one re-
turning the balls to the urn after each choice, then we would be sampling with replacement. This returns us to
the case of k Bernoulli trials with success parameter p = m/(m+ n), the probability for choosing a white ball.
In the case the mass function for Y , the number of white balls, is

fY (x|m,n, k) =

(
k

x

)
px(1− p)k−x =

(
k

x

)(
m

m+ n

)x(
n

m+ n

)k−x
=

(
k

x

)
mxnk−x

(m+ n)k
. (9.3)

Note that the difference in the formulas between sampling with replacement in (9.3) and without replacement in
(9.2) is that the powers are replaced by the falling function, e.g., mx is replaced by (m)x.

Let Xi be a Bernoulli random variable indicating whether or not the color of the i-th ball is white. Thus, its
mean

EXi =
m

m+ n
.

The random variable for the total number of white balls X = X1 +X2 + · · ·+Xk and thus its mean

EX = EX1 + EX2 + · · ·+ EXk = k
m

m+ n
.

Because the selection of white for one of the marbles decreases the chance for black for another selection,
the trials are not independent. One way to see this is by noting the variance (not derived here) of the sum
X = X1 +X2 + · · ·+Xk

Var(X) = k
m

m+ n

n

m+ n
· m+ n− k
m+ n− 1

is not the sum of the variances.

If we write N = m+ n for the total number of balls in the urn and p = m/(m+ n) as above, then

Var(X) = kp(1− p)N − k
N − 1

Thus the variance of the hypergeometric random variable is reduced by a factor of (N − k)/(N − 1) from the
case of the corresponding binomial random variable. In the cases for which k is much smaller than N , then
sampling with and without replacement are nearly the same process - any given ball is unlikely to be chosen
more than once under sampling with replacement. We see this situation, for example, in a opinion poll with k at
1 or 2 thousand and N , the population of a country, typically many millions.

On the the other hand, if k is a significant fraction ofN , then the variance is significantly reduced under sampling
without replacement. We are much less uncertain about the fraction of white and black balls. In the extreme
case of k = N , we have chosen every ball and know that X = m with probability 1. In the case, the variance
formula gives Var(X) = 0, as expected.

Exercise 9.6. Draw two balls without replacement from the urn described above. LetX1, X2 be the Bernoulli random
indicating whether or not the ball is white. Find Cov(X1, X2).

Exercise 9.7. Check that
∑
x∈S fX(x|θ) = 1 in the examples above.
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9.2 Examples of Continuous Random Variables
For continuous random variables, we have for the density

fX(x|θ) ≈ Pθ{x < X ≤ x+ ∆x}
∆x

.

1. (uniform) U(a, b) (R command unif) on S = [a, b],

fX(x|a, b) =
1

b− a.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

x

Y

a b

1/(b−a)

Figure 9.5: Uniform density

Independent U(0, 1) are the most common choice for generating random numbers. Use the R command
runif(n) to simulate n independent random numbers.

Exercise 9.8. Find the mean and the variance of a U(a, b) random variable.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Number of successes is a Poisson random varible, parameter       λ t.

Number of trials is npt = λ t.

Distance between successes is an exponential random variable, parameter         λ.

Figure 9.6: The relationship between the Poission and exponential random variable in Bernoulli trials with large n, small p and moderate size
product λ = np. Notice the analogies from Figure 9.2. Imagine a bacterial colony with individual bacterium produced at a constant rate n per
unit time. Then, the times between mutations can be approximated by independent exponential random variables and the number of mutations is
approximately a Poisson random variable.

2. (exponential) Exp(λ) (R command exp) on S = [0,∞),

fX(x|λ) = λe−λx.

To see how an exponential random variable arises, consider Bernoulli trials arriving at a rate of n trials per time
unit and take the approximation seen in the Poisson random variable. Again, the probability of success p is
small, ns the number of trials up to a given time s is large, and λ = np. Let T be the time of the first success.
This random time exceeds a given time s if we begin with ns consecutive failures. Thus, the survival function

F̄T (s) = P{T > s} = (1− p)ns =

(
1− λ

n

)ns
≈ e−λs.
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Figure 9.7: Density for a gamma random variable. Here, β = 1, α = 1 (black), 2 (red), 3 (blue) and 4 (green)

The cumulative distribution function

FT (s) = P{T ≤ s} = 1− P{T > s} ≈ 1− e−λs.
The density above can be found by taking a derivative of FT (s).

Exercise 9.9. Shoe that the exponential distribution also has the memorylessness property, namely

P{T > t+ s|T > t} = P{T > s}.
In words, given that the wait for an event has taken t time units, then the probability of waiting an additional s
time units is the same as the probability of waiting s time units from the beginning.

3. (gamma) Γ(α, β) (R command gamma) on S = [0,∞),

f(x|α, β) =
βα

Γ(α)
xα−1e−βx.

Observe that Exp(λ) is Γ(1, λ). A Γ(n, λ) can be seen as an approximation to the negative binomial random
variable using the ideas that leads from the geometric random variable to the exponential. Alternatively, for
a natural number n, Γ(n, λ) is the sum of n independent Exp(λ) random variables. This special case of the
gamma distribution is sometimes called the Erlang distribution and was originally used in models for telephone
traffic.

The gamma function Γ appears in the definition of the gamma density

Γ(s) =

∫ ∞

0

xse−x
dx

x

This is computed in R using gamma(s).

For the graphs of the densities in Figure 9.7,

> curve(dgamma(x,1,1),0,8)
> curve(dgamma(x,2,1),0,8,add=TRUE,col="red")
> curve(dgamma(x,3,1),0,8,add=TRUE,col="blue")
> curve(dgamma(x,4,1),0,8,add=TRUE,col="green")
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Exercise 9.10. Use integration by parts to show that

Γ(t+ 1) = tΓ(t). (9.4)

If n is a non-negative integer, show that
Γ(n) = (n− 1)! (9.5)

.

4. (beta) Beta(α, β) (R command beta) on S = [0, 1],

fX(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1.

Beta random variables appear in a variety of circumstances. One common example is the order statistics.
Beginning with n observations, X1, X2, · · · , Xn, of independent uniform random variables on the interval
[0, 1] and rank them

X(1), X(2), . . . , X(n)

from smallest to largest. Then, the k-th order statistic X(k) is Beta(k, n− k + 1).

In the definition of the density, we can also use the beta function

B(α, β) =

∫ 1

0

xα−1(1− x)β−1 dx.

As we can see ,using the fact that the integral of a density function equals to 1, that

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

The R command for the beta function is beta.

Beta(1/2, 1/2) is also called the arcsine distribution. The distribution function is

F (x|1/2, 1/2) =
2

π
arcsin(

√
x).

Exercise 9.11. Differential F (x|1/2, 1/2) to show that it is the Beta(1/2, 1/2) density.

Exercise 9.12. Use the identity (9.4) for the gamma function to find the mean and variance of the beta distribu-
tion.

5. (normal) N(µ, σ) (R command norm) on S = R,

fX(x|µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

Thus, a standard normal random variable is N(0, 1). Other normal random variables are linear transformations
of Z, the standard normal. In particular, X = σZ + µ has a N(µ, σ) distribution. To simulate 200 normal
random variables with mean 1 and standard deviation 1/2, use the R command x<-rnorm(200,1,0.5).
Histograms of three simulations are given in the Figure 9.8.

We often move from a random variable X to a function g of the random variable. Thus, Y = g(X). The
following exercise give the density fY in terms of the density fX for X in the case that g is a monotone
function.
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Figure 9.8: Histrogram of three simulations of 200 normal random variables, mean 1, standard deviation 1/2

Exercise 9.13. Show that for g differentiable and monotone then g has a differentiable inverse g−1 and the
density

fY (y) = fX(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ . (9.6)

We can find this density geometrically by noting that for g increasing,

Y is between y and y + ∆y if and only if X is between g−1(y) and g−1(y + ∆y) ≈ g−1(y) +
d

dy
g−1(y)∆y.

Thus,

fY (y)∆y = P{y < Y ≤ y + ∆y} ≈ P{g−1(y) < X ≤ g−1(y) +
d

dy
g−1(y)∆y}

≈ fX(g−1(y))
d

dy
g−1(y)∆y.

Dropping the factors ∆y gives (9.6). (See Figure 9.9.)
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Figure 9.9: Finding the density of Y = g(X) from the density ofX . The areas of the two rectangles should be the same. Consequently, fY (y)∆y
≈ fX(g−1(y)) d

dy
g−1(y)∆y.

6. (log-normal) lnN(µ, σ) (R command lnorm) on S = (0,∞). A log-normal random variable is the exponen-
tial of a normal random variable. Thus, the logarithm of a log-normal random variable is normal. The density
of this family is

fX(x|µ, σ) =
1

xσ
√

2π
exp

(
− (lnx− µ)2

2σ2

)
.

Exercise 9.14. Use the exercise above to find the density of a log-normal random variable.

7. (Pareto) Pareto(α, β) (R command pareto) on S = (α,∞). The Pareto distribution is used as a power law
distribution used by a variety of disciplines. The density of this family is

fX(x|α, β) =
βαβ

xβ+1
.

The pareto command is not a part of the main R package, but can be used after downloading, for example,
the actuar package.

Exercise 9.15. LetX be Exp(λ). Use the exercise above to show that exp(X) has a Pareto(1, λ) distribution.

As we stated previously, the normal family of random variables will be the most important collection of distri-
butions we will use. Indeed, the final three examples of families of random variables are functions of normal
random variables. They are seen as the densities of statistics used in hypothesis testing. Even though their
densities are given explicitly, in practice, these formulas are rarely explicitly used directly. Rather, probabilities
are generally computed using statistical software.

8. (chi-square) χ2
ν (R command chisq) on S = [0,∞)

fX(x|ν) =
xν/2−1

2ν/2Γ(ν/2)
e−x/2.

The value ν is called the number of degrees of freedom. For ν a positive integer, let Z1, Z2, . . . , Zν be inde-
pendent standard normal random variables. Then,

Z2
1 + Z2

2 + · · ·+ Z2
ν

has a χ2
ν distribution.
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Exercise 9.16. Modify the solution to the exercise above to find the density of a χ2
1 random variable. (Hint: For

Y = X2, P{Y ≤ y} = P{−√y ≤ X ≤ √y}.)

Exercise 9.17. Maxwell-Boltzmann distribution models the distribution of particle speeds in an ideal gas in
thermal equilibrium. The density function is

fS(s) =

√( m

2πkT

)3

4πs2e−ms
2/(2kT ),

where m is the particle mass and k is Boltzmann’s constant and T the absolute temperature in kelvins.

(a) Let Y = S
√
m/kT , Then, Y has density

fY (y) =
1√
2π
y2e−y

2/2,

(b) Show that X = Y 2 is χ2
3, a chi-square random variable with three degrees of freedom.

Therefore, the particle speed

S =

√
kT

m
Y =

√
kTX

m

where X is χ2
3.

9. (Student’s t) tν(µ, σ) (R command t) on S = R,

fX(x|ν, µ.σ) =
Γ((ν + 1)/2)√
νπΓ(ν/2)σ

(
1 +

(x− µ)2

νσ2

)−(ν+1)/2

.

The value ν is also called the number of degrees of freedom. If Z̄ is the sample mean of n standard normal
random variables and

S2 =
1

n− 1

n∑

i=1

(Zi − Z̄)2

is the sample variance, then

T =

√
nZ̄ + a

S
.

has a tn−1(a, 1) distribution. In this case, a is called the noncentrality parameter. We shall see this distribution
when we consider alternatives to hypotheses whose tests are based on the t distribution. The case a = 0

T =

√
nZ̄

S
=

Z̄

S/
√
n
.

is the classical t distribution.

10. (Fisher’s F ) Fν1,ν2 (R command f) on S = [0,∞),

fX(x|ν1, ν2) =
Γ((ν1 + ν2)/2)ν

ν1/2
1 ν

ν2/2
2

Γ(ν1/2)Γ(ν2/2)
xν1/2−1(ν2 + ν1x)−(ν1+ν2)/2.

The F distribution will make an appearance when we see the analysis of variance test. It arises as the ratio of
independent chi-square random variables. The chi-square random variable in the numerator has ν1 degrees of
freedom; the chi-square random variable in the denominator has ν2 degrees of freedom
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9.3 More on Mixtures
Previously we introduced mixtures. The ingredient are a probability, i.e., non-negative numbers π1, . . . , πn that sum
to 1 and n probability density functions f1(x), . . . , fn(x) from either discrete or continuous random variables. The
mixture density

f(x) = π1f1(x) + · · ·+ πnfn(x) =

n∑

i=1

fi(x)πi..

One common version of mixtures is the case that where the density functions are taken from a particular family of
densities fX(x|θ). In other words, for the choice of n parameter values, θ1, . . . , θn, take densities

fi(x) = fX(x|θi)

Next, if Θ is a random variable with mass function fΘ(θi) = πi then, we can write the mixture as

f(x) =

n∑

i=1

fi(x|θi)fΘ(θi).

This last sum is an expectation,
f(x) = Ef(x|Θ).

More frequently, we see the case of a continuous mixture, Here the random variable Θ is continuous with density
function fΘ(θ) and

f(x) = Ef(x|Θ) =

∫
f(x|θ)fΘ(θ)dθ.

Remark 9.18. We have noted that several families of random variables, for example, the gamma random variables,
were motivated by having one of its parameters taking on integral values. However, the density function makes sense
for a range of real numbers. One additional case where this holds is the negative binomial family. Like the gamma
family, we use the fact that the gamma function is a generalization of the factorial function to all non-negative numbers.
(See identity (9.5).) Recall that Negbin(n, p) has mass function

fX(x|n, p) =

(
n+ x− 1

x

)
pn(1− p)x =

(n+ x− 1)!

(n− 1)!x!
pn(1− p)x =

Γ(n+ x)

Γ(n)x!
pn(1− p)x.

Now, replace n with α and write the density with two parameters, α and p. Then, Negbin(α, p) has density

fX(x|α, p) =
Γ(α+ x)

Γ(α)x!
pα(1− p)x, x = 0, 1, 2, . . . .

Exercise 9.19. A Γ(α, β) mixture of Poisson random variables is a negative binomial random variable with parame-
ters

α and
β

1 + β
.

We will see how continuous mixtures play a central role when we introduces the Bayesian approach to estimation.

9.4 R Commands
R has built in commands so that computation a variety of values for many families of distributions is straightforwrd.

• dfamily(x, parameters) is the mass function (for discrete random variables) or probability density (for
continuous random variables) of family evaluated at x.
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• qfamily(p, parameters) returns x satisfying P{X ≤ x} = p, the p-th quantile where X has the given
distribution,

• pfamily(x, parameters) returns P{X ≤ x} where X has the given distribution.

• rfamily(n, parameters) generates n random variables having the given distribution.

9.5 Summary of Properties of Random Variables
For the tables below, the parameters are presented in the order required by R.

9.5.1 Discrete Random Variables
random variable R parameters mean variance generating function
Bernoulli * p p p(1− p) (1− p) + pz
binomial binom n, p np np(1− p) ((1− p) + pz)n

geometric geom p 1−p
p

1−p
p2

p
1−(1−p)z

hypergeometric hyper m,n, k km
m+n k m

m+n · n
m+n · m+n−k

m+n−1

negative binomial nbinom α, p α 1−p
p α 1−p

p2

(
p

1−(1−p)z

)α

Poisson pois λ λ λ exp(−λ(1− z))
uniform sample a, b b−a+1

2
(b−a+1)2−1

12
za

b−a+1
1−zb−a+1

1−z

∗For a Bernoulli random variable, use the binomial commands with n=1 trial.

Example 9.20. We give several short examples that use the R commands for discrete random variables.

• To find the values of the mass function fX(x|4, 0.7) for a binomial random variable 4 trials with probability of
success p = 0.7.

> x<-0:4
> binomprob<-dbinom(x,4,0.7)
> data.frame(x,binomprob)

x binomprob
1 0 0.0081
2 1 0.0756
3 2 0.2646
4 3 0.4116
5 4 0.2401

• We can compare this to simulations of 10,000 independent Binom(4, 0.7) random variables.

> x<-rbinom(10000,4,0.7)
> table(x)/10000
x

0 1 2 3 4
0.0092 0.0809 0.2562 0.4115 0.2422
> x<-rbinom(10000,4,0.7)
> table(x)/10000
x

0 1 2 3 4
0.0072 0.0704 0.2720 0.4116 0.2388
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• To find the probability P{X ≤ 3} forX , a geometric random variable with probability of success p = 0.3 enter
pgeom(3,0.3). R returns the answer 0.7599.

• To give independent observations uniformly on a set S, use the sample command using replace=TRUE.
Here is an example using 50 repeated rolls of a die

> S<-1:6
> (x<-sample(S,50,replace=TRUE))
[1] 4 2 2 5 4 5 2 3 2 6 3 6 4 4 6 5 6 4 6 4 4 6 1 1 1 5 3 5 3 1 3 4 6 3 5 6 2 4 4 4
[41] 4 4 3 2 4 5 1 3 2 1
> table(x)
x
1 2 3 4 5 6
6 7 8 14 7 8
> (x<-sample(S,50,replace=TRUE))
[1] 2 1 5 6 2 5 1 4 1 6 3 3 2 1 5 5 3 1 2 5 4 2 5 6 4 6 6 5 6 5 1 3 5 1 1 6 3 5 3 6
[41] 3 1 1 1 5 4 5 3 6 3
> table(x)
x
1 2 3 4 5 6
11 5 9 4 12 9

9.5.2 Continuous Random Variables
random variable R parameters mean variance characteristic function

beta beta α, β α
α+β

αβ
(α+β)2(α+β+1) F1,1(a, b; iθ2π )

chi-squared chisq ν ν 2ν 1
(1−2iθ)ν/2

exponential exp λ 1
λ

1
λ2

iλ
θ+iλ

log-normal lnorm µ, σ exp(µ+ σ2/2) (eσ
2 − 1) exp(2µ+ σ2)

F f ν1, ν2
ν2
ν2−2 , ν2 > 2 2ν2

2
ν1+ν2−2

ν1(ν2−4)(ν2−2)2

gamma gamma α, β α
β

α
β2

(
iβ
θ+iβ

)α

normal norm µ, σ2 µ σ2 exp(iµθ − 1
2σ

2θ2)

Pareto pareto α, β αβ
β−1 , (β > 1) α2β

(β−1)2(β−2) , (β > 2)
t t ν, a, σ a, (ν > 1) σ2 a

a−2 , (ν > 2)

uniform unif a, b a+b
2

(b−a)2

12 −i exp(iθb)−exp(iθa)
θ(b−a)

Example 9.21. We continue with examples that use the R commands for continuous random variables.

• The standard normal random variable has mean 0 and standard deviation. The value of the distribution function
for three standard deviations below and blow the mean.

> z<- -3:3
> data.frame(z,pnorm(z))

z pnorm.z.
1 -3 0.001349898
2 -2 0.022750132
3 -1 0.158655254
4 0 0.500000000
5 1 0.841344746
6 2 0.977249868
7 3 0.998650102
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• To find the deciles of a gamma random variable with α = 4 and β = 5

> decile<-seq(0,0.9,0.1)
> value<-qgamma(decile,4,5)
> data.frame(decile,value)

decile value
1 0.0 0.0000000
2 0.1 0.3489539
3 0.2 0.4593574
4 0.3 0.5527422
5 0.4 0.6422646
6 0.5 0.7344121
7 0.6 0.8350525
8 0.7 0.9524458
9 0.8 1.1030091
10 0.9 1.3361566

• The command rnorm(200,1,0.5) was used to create the histograms in Figure 9.8.

• Use the curve command to plot density and distribution functions. Thus was accomplished in Figure 9.7 using
dgamma for the density of a gamma random variable. For cumulative distribution functions use pdist and
substitute for dist the appropriate command from the table above.

To add points for the deciles on the plot of the Γ(4, 5) density, we use the following R commands.

> curve(dgamma(x,4,5),0,2.0)
> points(value,dgamma(value,4,5),

pch=19,col="blue")

Exercise 9.22. Add point on the graph of the distribution function for
the standard normal corresponding to the standard deviations in the
example above.

9.6 Answers to Selected Exercises
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Figure 9.10: Density for a Γ(4, 5) random
variable. The plots contain the values Indi-
cated in blue) on the density plot matching the
deciles.

9.1. For y = 1, 2, . . .,

fY (y) = P{Y = y} = P{X+1 = y} = P{X = y−1} = p(1−p)y−1.

9.2. Write X a Negbin(n, p) random variable as X = Y1 + · · · + Yn
where the Yi are independent random variable. Then,

EX = EY1 + · · ·+ EYn =
1− p
p

+ · · ·+ 1− p
p

=
n(1− p)

p

and because the Yi are independent

Var(X) = Var(Y1) + · · ·+ Var(Yn) =
1− p
p2

+ · · ·+ 1− p
p2

=
n(1− p)

p2
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9.3. By taking the logarithm, the limit above is equivalent to

lim
n→∞

n ln

(
1− λ

n

)
= −λ.

Now change variables letting ε = 1/n, then the limit becomes

lim
ε→0

ln(1− ελ)

ε
= −λ.

The limit has the indeterminant form 0/0. Thus, by l’Hôpital’s rule, we can take the derivative of the numerator and
denominator to obtain the equivalent problem

lim
ε→0

−λ
1− ελ = −λ.

9.4. We have mass functions

fX1
(x1) =

λx1
1

x1!
e−λ1 fX2

(x2) =
λx2

2

x2!
e−λ2

Thus,

fX1+X2
(x) = P{X1 +X2 = x} =

x∑

x1=0

P{X1 = x1, X2 = x− x1} =

x∑

x1=0

P{X1 = x1}P{X2 = x− x1}

=

x∑

x1=0

λx1
1

x1!
e−λ1

λx−x1
2

(x− x1)!
e−λ2 =

(
x∑

x1=0

1

x1!(x− x1)!
λx1

1 λx−x1
2

)
e−(λ1+λ2)

=

(
x∑

x1=0

x!

x1!(x− x1)!
λx1

1 λx−x1
2

)
1

x!
e−(λ1+λ2) =

(λ1 + λ2)x

x!
e−(λ1+λ2).

This is the probability mass function for a Pois(λ1+λ2) random variable. The last equality uses the binomial theorem.

9.5. Using the definition of the choose function

fX(x|m,n, k) =

(
b
x

)(
n
k−x
)

(
m+n
k

) =

(m)x
x!

(n)k−x
(k−x)!

(m+n)k
k!

=
k!

x!(k − x)!

(m)x(n)k−x
(m+ n)k

=

(
k

x

)
(m)x(n)k−x

(m+ n)k
.

9.6. Cov(X1, X2) = EX1X2 − EX1EX2. Now,

EX1 = EX2 =
m

m+ n
= p

and

EX1X2 = P{X1X2 = 1} = P{X2 = 1, X1 = 1} = P{X2 = 1|X1 = 1}P{X1 = 1} =
m− 1

m+ n− 1
· m

m+ n
.

Thus,

Cov(X1, X2) =
m− 1

m+ n− 1
· m

m+ n
−
(

m

m+ n

)2

=
m

m+ n

(
m− 1

m+ n− 1
− m

m+ n

)

=
m

m+ n

(
(m+ n)(m− 1)−m(m+ n− 1)

(m+ n)(m+ n− 1)

)
=

m

m+ n

( −n
(m+ n)(m+ n− 1)

)
= − np

N(N − 1)
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where, as above, N = m+ n.

9.8. For the mean

E(a,b)X =

∫ b

a

xfX(x|a, b) dx =
1

b− a

∫ b

a

x dx =
1

2(b− a)
x2
∣∣∣
b

a
=

b2 − a2

2(b− a)
=

(b− a)(b+ a)

2(b− a)
=
b+ a

2
,

the average of endpoints a and b. For the variance, we first find the second moment

E(a,b)X
2 =

∫ b

a

x2fX(x|a, b) dx =
1

b− a

∫ b

a

x2 dx =
1

3(b− a)
x3
∣∣∣
b

a
=

b3 − a3

3(b− a)

(b− a)(a2 + ab+ b2)

3(b− a)
=
a2 + ab+ b2

3
.

Thus,

Var(a,b)(X) =
a2 + ab+ b2

3
−
(
b+ a

2

)2

=
4b2 + 4ab+ 4b2

12
− 3a2 + 6ab+ 3a2

12
=
a2 − 2ab+ b2

12
=

(a− b)2

12
.

9.9. Because {T > t+ s} ⊂ {T > t}, we have for T ∼ Exp(λ),

P{T > t+ s|T > t} =
P{T > t+ s, T > t}

P{T > t} =
P{T > t+ s}
P{T > t} =

exp(−λ(t+ s))

exp(−λt) = exp(−λs) = P{T > s}.

9.10. Using integration by parts
u(x) = xt v(x) = −e−x
u′(z) = txt−1 v′(x) = e−x

To obtain the gamma function recursion formula

Γ(t+ 1) =

∫ ∞

0

xte−x dx = −xte−x
∣∣∣
∞

0
+ t

∫ ∞

0

xt−1e−x dx = tΓ(t). (9.7)

The first term is 0 because xte−x → 0 as x→∞.
For the case n = 1, Γ(1) =

∫∞
0
e−s ds = 1 = (1 − 1)!. the verifies the identity Γ(n) = (n − 1)! for the case

n = 1. Next, using (9.7),
Γ(n+ 1) = nΓ(n) = n · (n− 1)! = n!.

Thus, by induction we have the formula for all integer values.

9.11. Recall that the derivative of arcsin(t)

d

dt
arcsin(t) =

1√
1− t2

.

Thus, by the chain rule,

F ′(x|1/2, 1/2 ) =
2

π

d

dx
arcsin(

√
x) =

2

π

1√
1− x

d

dx

√
x

=
1

π

1√
1− x

1√
x

=
1

π

1√
x(1− x)

=
1

π
x1/2−1(1− x)1/2−1.

Now, use the fact that Γ(1/2)2 = π and Γ(1) = 1.

9.12. In order to be a probability density, we have that

Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

xa−1(1− x)b−1 dx.
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We use this identity and (9.4) to compute the first two moments

E(α,β)X =

∫ 1

0

xfX(x|α, β) dx =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα(1− x)β−1 dx =
Γ(α+ β)

Γ(α)Γ(β)
· Γ(α+ 1)Γ(β)

Γ(α+ β + 1)

=
Γ(α+ β)Γ(α+ 1)

Γ(α+ β + 1)Γ(α)
=

Γ(α+ β)αΓ(α)

(α+ β)Γ(α+ β)Γ(α)
=

α

α+ β
.

and

E(α,β)X
2 =

∫ 1

0

x2fX(x|α, β) dx =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα+1(1− x)β−1 dx =
Γ(α+ β)

Γ(α)Γ(β)
· Γ(α+ 2)Γ(β)

Γ(α+ β + 2)

=
Γ(α+ β)Γ(α+ 2)

Γ(α+ β + 2)Γ(α)
=

Γ(α+ β)(α+ 1)αΓ(α)

(α+ β + 1)(α+ β)Γ(α+ β)Γ(α)
=

(α+ 1)α

(α+ β + 1)(α+ β)
.

Thus,

Var(α,β)(X) = E(α,β)X
2 − (E(α,β)X)2 =

(α+ 1)α

(α+ β + 1)(α+ β)
−
(

α

α+ β

)2

=
(α+ 1)α(α+ β)− α2(α+ β + 1)

(α+ β + 1)(α+ β)2
=

αβ

(α+ β + 1)(α+ β)2

9.13. We first consider the case of g increasing on the range of the random variable X . In this case, g−1 is also an
increasing function.

To compute the cumulative distribution of Y = g(X) in terms of the cumulative distribution of X , note that

FY (y) = P{Y ≤ y} = P{g(X) ≤ y} = P{X ≤ g−1(y)} = FX(g−1(y)).

Now use the chain rule to compute the density of Y

fY (y) = F ′Y (y) =
d

dy
FX(g−1(y)) = fX(g−1(y))

d

dy
g−1(y).

For g decreasing on the range of X ,

FY (y) = P{Y ≤ y} = P{g(X) ≤ y} = P{X ≥ g−1(y)} = 1− FX(g−1(y)),

and the density

fY (y) = F ′Y (y) = − d

dy
FX(g−1(y)) = −fX(g−1(y))

d

dy
g−1(y).

For g decreasing, we also have g−1 decreasing and consequently the density of Y is indeed positive,
We can combine these two cases to obtain

fY (y) = fX(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ .

9.14. Let X be a normal random variable, then Y = expX is log-normal. Thus y = g(x) = ex, g−1(y) = ln y, and
d
dy g
−1(y) = 1

y . Note that y must be positive. Thus,

fY (y|µ, σ) = fX(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ =
1

σ
√

2π
exp

(
− (ln y − µ)2

2σ2

)
1

y
.
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9.15. Let X be Exp(λ) and y = g(x) = ex. As in the previous exercise,

fY (y|λ) = fX(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ = exp(−λ ln(y))
1

y
= λ exp(ln(y−λ))

1

y
= λy−λ

1

y
=

λ

yλ+1

which is the density of a Pareto(1, λ) random variable.

9.16. Let X be a standard normal random variable, then Y = X2 is χ2
1. From the hint, the distribution function of Y ,

FY (y) = P{Y ≤ y} = P{−√y ≤ X ≤ √y} = FX(
√
y)− FX(−√y)

Now take a derivative with respect to y.

fY (y) = P{Y ≤ y} = fX(
√
y)

(
1

2
√
y

)
− fX(−√y)

(
− 1

2
√
y

)

= (fX(
√
y) + fX(−√y))

1

2
√
y

=

(
1√
2π

exp
(
−y

2

)
+

1√
2π

exp
(
−y

2

)) 1

2
√
y

=
1√
2π

exp
(
−y

2

) 1√
y

Finally, Γ(1/2) =
√
π.

9.17. For both parts, we use the identity in Exercise 9.11.

(a) Let y = g(s) = s
√
m/kT , then g−1(y) = y

√
kT/m and

fY (y) = fS(y
√
kT/m)

√
kT/m =

1√
(2π)3

4πy2e−y
2/2 =

√
2

π
y2e−y

2/2.

(b) Let x = g(y) = y2, then g−1(x) =
√
x and

fX(x) =

√
2

π
xe−x/2

1

2
√
x

=
1√
2π
x1/2e−x/2.

This is the χ2
3 density function. Notice that Γ(3/2) =

√
π/2.

9.19. The two families of densities are

Pois(λ) fX(x|λ) =
λx

x!
e−λ, x = 0, 1, , · · ·

Γ(α, β) fΛ(λ|α, β) =
βα

Γ(α)
λα−1e−βλ λ > 0

The mixture has mass function

f(x) =

∫ ∞

0

fX(x|λ)fΛ(λ|α, β)dλ

=
βα

x!Γ(α)

∫ ∞

0

λxe−λλα−1e−βλ dλ =
βα

x!Γ(α)

∫ ∞

0

λx+α−1e−λ(1+β) dλ

=
βα

x!Γ(α)

∫ ∞

0

(
u

1 + β

)x+α−1

e−u
du

1 + β
u = λ(1 + β)

=
βα

x!Γ(α)(1 + β)x+α

∫ ∞

0

ux+α−1e−u du

=
Γ(x+ α)

x!Γ(α)

βα

(1 + β)x+α
=

Γ(x+ α)

x!Γ(α)

(
β

1 + β

)α(
1

1 + β

)x
,
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Figure 9.11: Distiribution function to the standard normal Z. Values for P{Z ≤ z} for z = −3,−2,−1, 0, 1, 2, 3 indicated in red.

the mass function of a Negbin(α, β/(1 + β)) random variable.

9.22. First we plot the distribution function for the normal, then we add the points.

> curve(pnorm(x),-3.5,3.5,xlab=c("z"),ylab=c("probability"))
> z<- -3:3
> points(z,pnorm(z),pch=19,col="red")

.
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Topic 10

The Law of Large Numbers

Individuals vary, but percentages remain constant. So says the statistician – Sir Arthur Conan Doyle

10.1 Introduction
A public health official want to ascertain the mean weight of healthy newborn babies in a given region under study. If
we randomly choose babies and weigh them, keeping a running average, then, because individual weights vary, at the
beginning we might see some larger fluctuations in our average. However, as we continue to make measurements, we
expect to see this running average settle and converge to the true mean weight of newborn babies. This phenomena is
informally known as the law of averages. In probability theory, we call this the law of large numbers.

Example 10.1. We can simulate babies’ weights with independent normal random variables, mean 3 kg and standard
deviation 0.5 kg. The following R commands perform this simulation and computes a running average of the heights.
The results are displayed in Figure 10.1.

> n<-1:100
> x<-rnorm(100,3,0.5)
> s<-cumsum(x)
> plot(s/n,xlab="n",ylim=c(2,4),type="l")

Here, we begin with a sequence X1, X2, . . . of random variables having a common distribution. Their average, the
sample mean,

X̄ =
1

n
Sn =

1

n
(X1 +X2 + · · ·+Xn),

is itself a random variable.
If the common mean for the Xi’s is µ, then by the linearity property of expectation, the mean of the average,

E

[
1

n
Sn

]
=

1

n
ESn =

1

n
(EX1 + EX2 + · · ·+ EXn) =

1

n
(µ+ µ+ · · ·+ µ) =

1

n
nµ = µ. (10.1)

is also µ.
If, in addition, the Xi’s are independent with common variance σ2, then first by the quadratic identity and then the

Pythagorean identity for the variance of independent random variables, we find that the variance of X̄ ,

σ2
X̄ = Var(

1

n
Sn) =

1

n2
(Var(X1)+Var(X2)+ · · ·+Var(Xn)) =

1

n2
(σ2 +σ2 + · · ·+σ2) =

1

n2
nσ2 =

1

n
σ2. (10.2)

So the mean of these running averages remains at µ but the variance is decreasing to 0 at a rate inversely propor-
tional to the number of terms in the sum. For example, the mean of the average weight of 100 newborn babies is 3
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Figure 10.1: Four simulations of the running average Sn/n, n = 1, 2, . . . , 100 for independent normal random variables, mean 3 kg and standard
deviation 0.5 kg. Notice that the running averages have large fluctuations for small values of n but settle down converging to the mean value µ =
3 kilograms for newborn birth weight. This behavior could have been predicted using the law of large numbers. The size of the fluctuations, as
measured by the standard deviation of Sn/n, is σ/

√
n where σ is the standard deviation of newborn birthweight.

kilograms, the standard deviation is σX̄ = σ/
√
n = 0.5/

√
100 = 0.05 kilograms = 50 grams. For 10,000 males,

the mean remains 3 kilograms, the standard deviation is σX̄ = σ/
√
n = 0.5/

√
10000 = 0.005 kilograms = 5 grams.

Notice that

• as we increase n by a factor of 100,

• we decrease σX̄ by a factor of 10.

The mathematical result, the law of large numbers, tells us that the results of these simulation could have been
anticipated.

Theorem 10.2. For a sequence of independent random variables X1, X2, . . . having a common distribution, their

180



Introduction to the Science of Statistics The Law of Large Numbers

running average
1

n
Sn =

1

n
(X1 + · · ·+Xn)

has a limit as n→∞ if and only if this sequence of random variables has a common mean µ. In this case the limit is
µ.

The theorem also states that if the random variables do not have a mean, then as the next example shows, the limit
will fail to exist. We shall show with the following example. When we look at methods for estimation, one approach,
the method of moments, will be based on using the law of large numbers to estimate the mean µ or a function of µ.

Care needs to be taken to ensure that the simulated random variables indeed have a mean. For example, use the
runif command to simulate uniform transform variables, and choose a transformation Y = g(U) that results in an
integral

∫ 1

0

g(u) du

that does not converge. Then, if we simulate independent uniform random variables, the running average

1

n
(g(U1) + · · ·+ g(Un))

will not converge. This issue is the topic of the next exercise and example.

Exercise 10.3. Let U be a uniform random variable on the interval [0, 1]. Give the value for p for which the mean is
finite and the values for which it is infinite. Simulate the situation for a value of p for which the integral converges and
a second value of p for which the integral does not converge and cheek has in Example 10.1 a plot of Sn/n versus n.

Example 10.4. The standard Cauchy random variable X has density function

fX(x) =
1

π

1

1 + x2
x ∈ R.

Let Y = |X|. In an attempt to compute the improper integral for EY = E|X|, note that

∫ b

−b
|x|fX(x) dx = 2

∫ b

0

1

π

x

1 + x2
dx =

1

π
ln(1 + x2)

∣∣∣
b

0
=

1

π
ln(1 + b2)→∞

as b→∞. Thus, Y has infinite mean. We now simulate 1000 independent Cauchy random variables.

> n<-c(1:1000)
> y<-abs(rcauchy(1000))
> s<-cumsum(y)
> plot(s/n,xlab="n",ylim=c(-6,6),type="l")

These random variables do not have a finite mean. As you can see in Figure 10.2 that their running averages do
not seem to be converging. Thus, if we are using a simulation strategy that depends on the law of large numbers, we
need to check that the random variables have a mean.

Exercise 10.5. Using simulations, check the failure of the law of large numbers of Cauchy random variables. In the
plot of running averages, note that the shocks can jump either up or down.
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Figure 10.2: Four simulations of the running average Sn/n, n = 1, 2, . . . , 1000 for the absolute value of independent Cauchy random variables.
Note that the running average does not seem to be settling down and is subject to “shocks”. Because Cauchy random variables do not have a mean,
we know, from the law of large numbers, that the running averages do not converge.

10.2 Monte Carlo Integration

Monte Carlo methods use stochastic simulations to approximate solutions to questions that are very difficult to solve
analytically. This approach has seen widespread use in fields as diverse as statistical physics, astronomy, population
genetics, protein chemistry, and finance. Our introduction will focus on examples having relatively rapid computations.
However, many research groups routinely use Monte Carlo simulations that can take weeks of computer time to
perform.

For example, let X1, X2, . . . be independent random variables uniformly distributed on the interval [a, b] and write
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fX for their common density..
Then, by the law of large numbers, for n large we have that

g(X)n =
1

n

n∑

i=1

g(Xi) ≈ Eg(X1) =

∫ b

a

g(x)fX(x) dx =
1

b− a

∫ b

a

g(x) dx.

Thus, ∫ b

a

g(x) dx. ≈ (b− a)g(X)n.

Recall that in calculus, we defined the average of g to be

1

b− a

∫ b

a

g(x) dx.

We can also interpret this integral as the expected value of g(X1).

Thus, Monte Carlo integration leads to a procedure for estimating integrals.

• Simulate uniform random variables X1, X2, . . . , Xn on the interval [a, b].

• Evaluate g(X1), g(X2), . . . , g(Xn).

• Average this values and multiply by b− a to estimate the integral.

Example 10.6. Let g(x) =
√

1 + cos3(x) for x ∈ [0, π], to find
∫ π

0
g(x) dx. The three steps above become the

following R code.

> x<-runif(1000,0,pi)
> g<-sqrt(1+cos(x)ˆ3)
> pi*mean(g)
[1] 2.991057

Example 10.7. To find the integral of g(x) = cos2(
√
x3 + 1) on the interval [−1, 2], we simulate n random variables

uniformly using runif(n,-1,2) and then compute mean(cos(sqrt(xˆ3+1))ˆ2). The choices n = 25 and
n = 250 are shown in Figure 10.3

The variation in estimates for the integral can be described by the variance as given in equation (10.2).

Var(g(X)n) =
1

n
Var(g(X1)).

where σ2 = Var(g(X1)) = E(g(X1) − µg(X1))
2 =

∫ b
a

(g(x) − µg(X1))
2fX(x) dx. Typically this integral is more

difficult to estimate than
∫ b
a
g(x) dx, our original integral of interest. However, we can see that the variance of the

estimator is inversely proportional to n, the number of random numbers in the simulation. Thus, the standard deviation
is inversely proportional to

√
n.

Monte Carlo techniques are rarely the best strategy for estimating one or even very low dimensional integrals. R
does integration numerically using the function and the integrate commands. For example,

> g<-function(x){sqrt(1+cos(x)ˆ3)}
> integrate(g,0,pi)
2.949644 with absolute error < 3.8e-06
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Figure 10.3: Monte Carlo integration of g(x) = cos2(

√
x3 + 1) on the interval [−1, 2], with (left) n = 25 and (right) n = 250. g(X)n is the

average heights of the n lines whose x values are uniformly chosen on the interval. By the law of large numbers, this estimates the average value of
g. This estimate is multiplied by 3, the length of the interval to give

∫ 2
−1 g(x) dx. In this example, the estimate os the integral is 0.905 for n = 25

and 1.028 for n = 250. Using the integrate command, a more precise numerical estimate of the integral gives the value 1.000194.

With only a small change in the algorithm, we can also use this to evaluate high dimensional multivariate integrals.
For example, in three dimensions, the integral

I(g) =

∫ b1

a1

∫ b2

a2

∫ b3

a3

g(x, y, z) dz dy dx

can be estimated using Monte Carlo integration by generating three sequences of uniform random variables,

X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, and Z1, Z2, . . . Zn

Then,

I(g) ≈ (b1 − a1)(b2 − a2)(b3 − a3)
1

n

n∑

i=1

g(Xi, Yi, Zi). (10.3)

Example 10.8. Consider the function

g(x, y, z) =
32x3

3(y + z4 + 1)

with x, y and z all between 0 and 1.
To obtain a sense of the distribution of the approximations to the integral I(g), we perform 1000 simulations using

100 uniform random variable for each of the three coordinates to perform the Monte Carlo integration. The command
Ig<-numeric(1000) creates a space for a vector of length 1000. This is added so that R creates a place ahead
of the simulations to store the results.

> Ig<-numeric(1000)
> for(i in 1:1000){x<-runif(100);y<-runif(100);z<-runif(100);

g<-32*xˆ3/(3*(y+zˆ4+1)); Ig[i]<-mean(g)}
> hist(Ig)
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Figure 10.4: Histogram of 1000 Monte Carlo estimates for the integral
∫ 1
0

∫ 1
0

∫ 1
0 32x3/(y+ z4 + 1) dx dy dz. The sample standard deviation is

0.188.

> summary(Ig)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.045 1.507 1.644 1.650 1.788 2.284
> var(Ig)
[1] 0.03524665
> sd(Ig)
[1] 0.1877409

Thus, our Monte Carlo estimate the standard deviation of the estimated integral is 0.188.

Alternatively, this can be accomplished with the replicate command

> g<-function(x,y,z) 32*xˆ3/(3*(y+zˆ4+1))
> Ig<-replicate(1000,mean(g(runif(100),runif(100),runif(100))))

Exercise 10.9. Estimate the variance and standard deviation of the Monte Carlo estimator for the integral in the
example above based on n = 500 and 1000 random numbers.

Exercise 10.10. How many observations are needed in estimating the integral in the example above so that the
standard deviation of the average is 0.05?

To modify this technique for a region [a1, b1]× [a2, b2]× [a3, b3] use indepenent uniform random variables Xi, Yi,
and Zi on the respective intervals, then

1

n

n∑

i=1

g(Xi, Yi, Zi) ≈ Eg(X1, Y1, Z1) =
1

b1 − a1

1

b2 − a2

1

b3 − a3

∫ b1

a1

∫ b2

a2

∫ b3

a3

g(x, y, z) dz dy dx.

Thus, the estimate for the integral is

(b1 − a1)(b2 − a2)(b3 − a3)

n

n∑

i=1

g(Xi, Yi, Zi).
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Exercise 10.11. Use Monte Carlo integration to estimate
∫ 3

0

∫ 2

−2

cos(π(x+ y))
4
√

1 + xy2
dydx.

10.3 Importance Sampling
In many of the large simulations, the dimension of the integral can be in the hundreds and the function g can be
very close to zero for large regions in the domain of g. Simple Monte Carlo simulation will then frequently choose
values for g that are close to zero. These values contribute very little to the average. Due to this inefficiency, a more
sophisticated strategy is employed. In addition, in regions where g is rapidly changing, the answer can be sensitive
to the choice of points in the simulation. Importance sampling methods begin with the observation that a better
sampling strategy may be to concentrate the random points in those regions.

For example, for the integral ∫ 1

0

e−x/2√
x(1− x)

dx, (10.4)

the integrand rapidly changing for values near x = 0 or x = 1. (See Figure 10.4) Thus, we can hope to have a more
accurate estimate by concentrating our sample points in these places.

With this in mind, we perform the Monte Carlo integration beginning with Y1, Y2, . . . independent random vari-
ables with common densityfY . The goal is to find a density fY that tracks the changes in g. The density fY is called
the importance sampling function or the proposal density. With this choice of density, we define the importance
sampling weights so that

g(y) = w(y)fY (y). (10.5)

To justify this choice, note that, the sample mean

w(Y )n =
1

n

n∑

i=1

w(Yi) ≈
∫ ∞

−∞
w(y)fY (y) dy =

∫ ∞

−∞
g(y)dy = I(g).

Thus, the average of the importance sampling weights, by the strong law of large numbers, still approximates the
integral of g. This is an improvement over simple Monte Carlo integration if the variance decreases, i.e.,

Var(w(Y1)) =

∫ ∞

−∞
(w(y)− I(g))2fY (y) dy = σ2

f << σ2.

As the formula shows, this can be best achieved by having the weight w(y) be close to the integral I(g). Referring to
equation (10.5), we can now see that we should endeavor to have fY proportional to g.

Importance leads to the following procedure for estimating integrals.

• Write the integrand g(x) = w(x)fY (x). Here fY is the density function for a random variable Y that is chosen
to capture the changes in g.

• Simulate variables Y1, Y2 . . . , Yn with density fY . This will sometimes require integrating the density function
to obtain the distribution function FY (x), and then finding its inverse function F−1

Y (u), the quantile function.
This sets up the use of the probability transform to obtain Yi = F−1

Y (Ui) where U1, U2 . . . , Un, independent
random variables uniformly distributed on the interval [0, 1].

• Compute the average of w(Y1), w(Y2) . . . , w(Yn) to estimate the integral of g.

Note that the use of the probability transform removes the need to multiply b− a, the length of the interval.

Example 10.12. For the integral (10.4) we can use Monte Carlo simulation based on uniform random variables.
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> Ig<-numeric(1000)
> for(i in 1:1000){x<-runif(100);g<-exp(-x/2)*1/sqrt(x*(1-x));Ig[i]<-mean(g)}
> summary(Ig)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.970 2.277 2.425 2.484 2.583 8.586

> sd(Ig)
[1] 0.3938047

Based on a 1000 simulations, we find a sample mean value of 2.484 and a sample standard deviation of 0.394.
Because the integrand is changes rapidly near both x = 0 and x = 1, we choose look for a density fY to concentrate
the random samples near the ends of the intervals.

Our choice for the proposal density is a Beta(1/2, 1/2), then

fY (y) =
1

π
y1/2−1(1− y)1/2−1

on the interval [0, 1]. Thus the weight
w(y) = πe−y/2

is the ratio g(x)/fY (x)
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Figure 10.5: The function g to be integrated (in black) and the Beta(1/2, 1/2) proposal density fX (in blue). Note how the proposal density
follows the the integrand.

Again, we perform the simulation multiple times.

> IS<-numeric(1000)
> for(i in 1:1000){y<-rbeta(100,1/2,1/2);w<-pi*exp(-y/2);IS[i]<-mean(w)}
> summary(IS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.321 2.455 2.483 2.484 2.515 2.609

> var(IS)
[1] 0.0002105915
> sd(IS)
[1] 0.04377021
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Based on 1000 simulations, we find a sample mean value again of 2.484 and a sample standard deviation of 0.044,
about 1/9th the size of the Monte Carlo sample standard deviation. Part of the gain is illusory. Beta random variables
take longer to simulate. If they require a factor more than 81 times longer to simulate, then the extra work needed
to create a good importance sample is not helpful in producing a more accurate estimate for the integral. Numerical
integration gives

> g<-function(x){exp(-x/2)*1/sqrt(x*(1-x))}
> integrate(g,0,1)
2.485054 with absolute error < 2e-06

Exercise 10.13. Evaluate the integral ∫ 1

0

e−x

3
√
x
dx

1000 times using n = 200 sample points using directly Monte Carlo integration and using importance sampling with
random variables having density

fX(x) =
2

3 3
√
x

on the interval [0, 1]. For the second part, you will need to use the probability transform. Compare the means and
standard deviations of the 1000 estimates for the integral. The integral is approximately 1.04969.

10.4 Answers to Selected Exercises
10.3. For p 6= 1, the expected value

EU−p =

∫ 1

0

u−p dp =
1

1− pu
1−p
∣∣∣
1

0
=

1

1− p <∞

provided that 1− p > 0 or p < 1. For p > 1, we evaluate the integral in the interval [b, 1] and take a limit as b→ 0,
∫ 1

b

u−p dp =
1

1− pu
1−p
∣∣∣
1

b
=

1

1− p (1− b1−p)→∞.

For p = 1, ∫ 1

b

u−1 dp = lnu
∣∣∣
1

b
= − ln b→∞.

We use the case p = 1/2 for which the integral converges. and p = 2 in which the integral does not. Indeed,
∫ 1

)

u1/2 du = 2u3/2
∣∣1
0

= 2

> par(mfrow=c(1,2))
> u<-runif(1000)
> x<-1/uˆ(1/2)
> s<-cumsum(x)
> plot(s/n,n,type="l")
> x<-1/uˆ2
> s<-cumsum(x)
> plot(n,s/n,type="l")

10.5. Here are the R commands:
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Figure 10.6: Importance sampling using the density function fY to estimate
∫ 1
0 g(x) dx. The weight w(x) = πe−x/2.

> par(mfrow=c(2,2))
> x<-rcauchy(1000)
> s<-cumsum(x)
> plot (n,s/n,type="l")
> x<-rcauchy(1000)
> s<-cumsum(x)
> plot (n,s/n,type="l")
> x<-rcauchy(1000)
> s<-cumsum(x)
> plot (n,s/n,type="l")
> x<-rcauchy(1000)
> s<-cumsum(x)
> plot (n,s/n,type="l")

This produces in Figure 10.5. Notice the differences for the values on the x-axis

10.9. The standard deviation for the average of n observations is σ/
√
n where σ is the standard deviation for a single

observation. From the output

> sd(Ig)
[1] 0.1877409

We have that 0.1877409 ≈ σ/
√

100 = σ/10. Thus, σ ≈ 1.877409. Consequently, for 500 observations, σ/
√

500 ≈
0.08396028. For 1000 observations σ/

√
1000 ≈ 0.05936889

10.10. For σ/
√
n = 0.05, we have that n = (σ/0.05)2 ≈ 1409.866. So we need approximately 1410 observations.

10.11. To view the surface for cos(π(x+y))
4
√

1+xy2
, 0 ≤ x ≤ 3, −2 ≤ y ≤ 2, we type

> x <- seq(0,3, len=30)
> y <- seq(-2,2, len=30)
> f <- outer(x, y, function(x, y)
(cos(pi*(x+y)))/(1+x*yˆ2)ˆ(1/4))
> persp(x,y,f,col="orange",phi=45,theta=30)

x

y

f

Figure 10.8: Surface plot of function
used in Exercise 10.11.

Using 1000 random numbers uniformly distributed for both x and y, we have

> x<-runif(1000,0,3)
> y<-runif(1000,-2,2)
> g<-(cos(pi*(x+y)))/(1+x*yˆ2)ˆ(1/4)
> 3*4*mean(g)
[1] 0.2452035
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Figure 10.7: Plots of running averages of Cauchy random variables.

To finish, we need to multiply the average of g as estimated by mean(g) by the area associated to the integral
(3− 0)× (2− (−2)) = 12.

10.13. For the direct Monte Carlo simulation, we have

> Ig<-numeric(1000)
> for (i in 1:1000){x<-runif(200);g<-exp(-x)/xˆ(1/3);Ig[i]<-mean(g)}
> mean(Ig)
[1] 1.048734
> sd(Ig)
[1] 0.07062628

190



Introduction to the Science of Statistics The Law of Large Numbers

For the importance sampler, the integral is

3

2

∫ 1

0

e−xfX(x) dx.

To simulate independent random variables with density fX , we first need the cumulative distribution function for X ,

FX(x) =

∫ x

0

2

3 3
√
t
dt = t2/3

∣∣∣
x

0
= x2/3.

Then, to find the probability transform, note that

u = FX(x) = x2/3 and x = F−1
X (u) = u3/2.

Thus, to simulate X , we simulate a uniform random variable U on the interval [0, 1] and evaluate U3/2. This leads to
the following R commands for the importance sample simulation:

> ISg<-numeric(1000)
> for (i in 1:1000){u<-runif(200);x<-uˆ(3/2); w<-3*exp(-x)/2;ISg[i]<-mean(w)}
> mean(ISg)
[1] 1.048415
> sd(ISg)
[1] 0.02010032

Thus, the standard deviation using importance sampling is about 2/7-ths the standard deviation using simple Monte
Carlo simulation. Consequently, we can decrease the number of samples using importance sampling by a factor of
(2/7)2 ≈ 0.08.
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Topic 11

The Central Limit Theorem

The occurrence of the Gaussian probability density 1 = e−x
2

in repeated experiments, in errors of
measurements, which result in the combination of very many and very small elementary errors, in diffusion
processes etc., can be explained, as is well-known, by the very same limit theorem, which plays a central
role in the calculus of probability. - George Polya

11.1 Introduction
In the discussion leading to the law of large numbers, we saw visually that the sample means from a sequence of inde-
pendent random variables converge to their common distributional mean as the number of random variables increases.
In symbols,

1

n
Sn = X̄n → µ as n→∞.

Using the Pythagorean identity for independent random variables, we obtained the more precise statement that the
standard deviation of of the sample mean, X̄n, is inversely proportional to

√
n, the square root of the number of obser-

vations. For example, for simulations based on observations of independent random variables, uniformly distributed
on the interval [0, 1], we see, as anticipated, the running averages converging to

µ =

∫ 1

0

xfX(x) dx =

∫ 1

0

x dx =
x2

2

∣∣∣
1

0
=

1

2
,

the distributional mean.
Now, we zoom around the mean value of µ = 1/2. Because the standard deviation σX̄n ∝ 1/

√
n, we magnify the

difference between the running average and the mean by a factor of
√
n and investigate the graph of

√
n

(
1

n
Sn − µ

)
=
Sn − nµ√

n
(11.1)

versus n. The results of a simulation are displayed in Figure 11.1.
As we see in Figure 11.2, even if we extend this simulation for larger values of n, we continue to see fluctuations

about the center of roughly the same size and the size of the fluctuations for a single realization of a simulation cannot
be predicted in advance.

Thus, we focus on addressing a broader question: Does the distribution of the size of these fluctuations have any
regular and predictable structure? This question and the investigation that led to led to its answer, the central limit
theorem, constitute one of the most important episodes in mathematics.

Exercise 11.1. Repeat the exercise above times. looking at the centered and magnified running averages, (11.1) for
2000 steps for U(0, 1) random variables. Give 1000 simulations of the final value for the simulations in (11.1), and
describe the histogram.
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Figure 11.1: a. Running average of independent random variables, uniform on [0, 1]. b. Running average centered at the mean value of 1/2 and
magnified by

√
n.

0 500 1000 1500 2000

-0
.6

-0
.4

-0
.2

0
.0

0
.2

n

(s
 -

 n
/2

)/
s
q

rt
(n

)

Figure 11.2: Plot of (11.1, the running average centered at the mean value of 1/2, and magnified by
√
n extended to 2000 steps.

11.2 The Classical Central Limit Theorem

Let’s begin by examining the distribution for the sum ofX1, X2 . . . Xn, independent and identically distributed random
variables

Sn = X1 +X2 + · · ·+Xn,
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what distribution do we see? Let’s look first to the simplest case, Xi Bernoulli random variables. In this case, the
sum Sn is a binomial random variable. We examine two cases - in the first we keep the number of trials the same at
n = 100 and vary the success probability p. In the second case, we keep the success probability the same at p = 1/2,
but vary the number of trials.
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Figure 11.3: a. Successes in 100 Bernoulli trials with p = 0.2, 0.4, 0.6 and 0.8. b. Successes in Bernoulli trials with p = 1/2 and n = 20, 40
and 80.

The curves in Figure 11.3 look like bell curves. Their center and spread vary in ways that are predictable. The
binomial random variable Sn has

mean np and standard deviation
√
np(1− p).

Thus, if we take the standardized version of these sums of Bernoulli random variables

Zn =
Sn − np√
np(1− p)

,

then these bell curve graphs would lie on top of each other.
For our next example, we look at the density of the sum of standardized exponential random variables. The

exponential density is strongly skewed and so we have have to wait for larger values of n before we see the bell curve
emerge. In order to make comparisons, we examine standardized versions of the random variables with mean µ and
variance σ2.

To accomplish this,

• we can either standardize using the sum Sn having mean nµ and standard deviation σ
√
n, or

• we can standardize using the sample mean X̄n having mean µ and standard deviation σ/
√
n.

This yields two equivalent versions of the z-score.

Zn =
Sn − nµ
σ
√
n

=
X̄n − µ
σ/
√
n

=

√
n

σ
(X̄n − µ). (11.2)

In Figure 11.4, we see the densities approaching that of the bell curve for a standard normal random variables.
Even for the case of n = 32, we see a small amount of skewness that is a remnant of the skewness in the exponential
density.
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Figure 11.4: Displaying the central limit theorem graphically. Density of the standardized version of the sum of n independent
exponential random variables for n = 2 (dark blue), 4 (green), 8 (red), 16 (light blue), 32 (magenta), and 64 (orange). Note how
the skewness of the exponential distribution slowly gives way to the bell curve shape of the normal distribution.

Exercise 11.2. Show that the skewness for the sum of n independent Exp(λ) random variables is 2/
√
n. Thus the

skewness of the normalized sums converges to 0 as n→∞. Hint: The sum Sn is a Γ(n, λ) random variable.

Exercise 11.3. More generally, show the skewness for the sum of n independent random variables having a common
distribution is γ1/

√
n where γ1 is the skewness of any one of the random variables in the sum. Consequently, the

skewness of Sn a Bin(n, p) random variable is (1− 2p)/
√
np(1− p).

The theoretical result behind these numerical explorations is called the classical central limit theorem:

Theorem 11.4. Let {Xi; i ≥ 1} be independent random variables having a common distribution. Let µ be their mean
and σ2 be their variance. Then Zn, the standardized scores defined by equation (11.2), converges in distribution to Z
a standard normal random variable. This statement is shorthand for the more precise statement that the distribution
function FZn converges to Φ, the distribution function of the standard normal.

lim
n→∞

FZn(z) = lim
n→∞

P{Zn ≤ z} =
1√
2π

∫ z

−∞
e−x

2/2 dx = Φ(z).

In practical terms the central limit theorem states that P{a < Zn ≤ b} ≈ P{a < Z ≤ b} = Φ(b)− Φ(a).
This theorem is an enormously useful tool in providing good estimates for probabilities of events depending on

either Sn or X̄n. We shall begin to show this in the following examples.

One recent rule of thumb for n the number of observations necessary to use the central limit theorem is to recognize
that the more skewed the distribution, the more observations are need to obtain the bell curve shape. We saw this above
in the normalized sums of independent exponential distributions. Based on skewness, Sugden et al. (2000) provide
an extension of a method introduced by Cochran for n∗, the minimum sample size needed. Here is their formula for
observations from a simple random sample.

n∗ = 28 + 25γ2
1 (11.3)
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where γ1 is the skewness.

Example 11.5. For exponential random variables, the mean, µ = 1/λ and the standard deviation, σ = 1/λ and
therefore

Zn =
Sn − n/λ√

n/λ
=
λSn − n√

n
.

The skewness γ1 = 2 and so the Sugden recommendation for the minimum sample size,

n∗ = 28 + 25× 22 = 128.

Let T144 be the sum of 144 independent with parameter λ = 1. Thus, µ = 1 and σ = 1. Note that n = 144 is
sufficiently large for the use of a normal approximation.

P{T144 < 150} = P

{
T144 − 150

12
<

144− 150

12

}
= P

{
T144 − 150

12
< −1

2

}
= P{Z144 < −0.5} ≈ 0.309.

Example 11.6. Pictures on your smartphone have a mean size of 400 kilobytes (KB) and a standard deviation of 50
KB. You want to store 100 pictures on your cell phone. If we assume that the size of the pictures X1, X2, · · · , X100

are independent, then X̄ has mean µX̄ = 400 KB and standard deviation σX̄ = 50/
√

100 = 5 KB. So, the probability
that the average picture size is between 394 and 406 kilobytes is

P{394 ≤ X̄ ≤ 406} = P

{
394− 400

5
≤ X̄ − 400

5
≤ 406− 400

5

}
= P{−1.2 ≤ Z100 ≤ 1.2} ≈ 0.230.

S100 be the total storage space needed for the 100 pictures has mean 100 × 400 = 40, 000 KB and standard
deviation σS100

= 50
√

100 = 500 KB. To estimate the space required to be 99% certain that the pictures will have
storage space on the phone, note that

> qnorm(0.99)
[1] 2.326348

Thus,

Z100 =
S100 − 40000

500
≥ 2.326348, S100 − 40000 ≥ 1163.174, S100 ≥ 41163.174

kilobyres.

Exercise 11.7. If your smartphone has 42000 KB of storage space for pictures, Use the central limit theorem to
estimate the number of pictures you can have necessary to have a 1% chance of running out of space.

Exercise 11.8. Simulate 1000 times, x̄, the sample mean of 100 random variables, uniformly distributed on [0, 1].
Show a histogram for these simulations to see the approximation to a normal distribution. Find the mean and standard
deviations for the simulations and compare them to their distributional values. Use both the simulation and the central
limit theorem to estimate the 35th percentile of X̄ .

11.2.1 Bernoulli Trials and the Continuity Correction
Example 11.9. For Bernoulli random variables, µ = p and σ =

√
p(1− p). Sn is the number of successes in n

Bernoulli trials. In this situation, the sample mean is the fraction of trials that result in a success. This is generally
denoted by p̂ to indicate the fact that it is a sample proportion.

The normalized versions of Sn and p̂ are equal to

Zn =
Sn − np√
np(1− p)

=
p̂n − p√
p(1− p)/n

,
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Figure 11.5: Mass function for a Bin(100, 0.3) random variable (black) and approximating normal density N(100 · 0.3,
√

100 · 0.3 · 0.7).

For example, in 100 tosses of a fair coin, µ = 1/2 and σ =
√

1/2(1− 1/2) = 1/2. Thus,

Z100 =
S100 − 50

5
.

To find P{S100 > 65}, convert the event {S100 > 65} to an event concerning Z100.

P{S100 > 65} = P{S100 − 50 > 15} = P

{
S100 − 50

5
> 3

}
= P{Z100 > 3} ≈ P{Z > 3} = 0.0013.

> 1-pnorm(3)
[1] 0.001349898

We could also write,

Z100 =
p̂− 1/2

1/20
= 20(p̂− 1/2).

and

P{p̂ ≤ 0.40} = P{p̂−1/2 ≤ 0.40−1/2} = P{20(p̂−1/2) ≤ 20(0.4−1/2)} = P{Z100 ≤ −2} ≈ P{Z ≤ −2} = 0.023.

> pnorm(-2)
[1] 0.02275013

Remark 11.10. We can improve the normal approximation to the binomial random variable by employing the conti-
nuity correction. For a binomial random variable X , the distribution function

P{X ≤ x} = P{X < x+ 1} =

x∑

y=0

P{X = y}

can be realized as the area of x+ 1 rectangles, height P{X = y}, y = 0, 1, . . . , x and width 1. These rectangles look
like a Riemann sum for the integral up to the value x+ 1/2. For the example in Figure 11.5, P{X ≤ 32} = P{X <
33} is the area of 33 rectangles. This right side of rectangles is at the value 32.5. Thus, for the approximating normal
random variable Y , this suggests computing P{Y ≤ 32.5}. In this example the exact value
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> pbinom(32,100,0.3)
[1] 0.7107186

Comparing this to possible choices for the normal approximations

> n<-100
> p<-0.3
> mu<-n*p
> sigma<-sqrt(p*(1-p))
> prob<-pnorm((x-mu)/(sigma*sqrt(n)))
> x<-c(32,32.5,33)
> data.frame(x,prob)

x prob
1 32.0 0.6687397
2 32.5 0.7073105
3 33.0 0.7436546

This shows a difference of 0.0034 for the choice x = 32.5 and larger differences for the choices x = 32 or x = 33.

Example 11.11. Opinion polls are generally designed to be modeled as Bernoulli trials. The number of trials n is set
to give a prescribed value m of two times the standard deviation of p̂. This value of m is an example of a margin of
error. The standard deviation √

p(1− p)/n
takes on its maximum value for p = 1/2. For this case,

m = 2

√
1

2

(
1− 1

2

)
/n =

1√
n

Thus,

n =
1

m2

We display the results in R for typical values of m.

> m<-seq(0.01,0.05,0.01)
> n<-1/mˆ2
> data.frame(m,n)

m n
1 0.01 10000.000
2 0.02 2500.000
3 0.03 1111.111
4 0.04 625.000
5 0.05 400.000

So, a 5% margin of error can be achieved with a modest sample size of n = 400, whereas a 1% margin of error
requires 10,000 samples.

Exercise 11.12. We have two approximation methods for a large number n of Bernoulli trials - Poisson, which applies
then p is small and their product λ = np is moderate and normal when the mean number of successes np or the mean
number of failures n(1−p) is sufficiently large. Investigate the approximation of the distribution,X , a Poisson random
variable, by the distribution of a normal random variable, Y , for the case λ = 16. Use the continuity correction to
compare

P{X ≤ x} to P{Y ≤ x+
1

2
}.
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11.3 Propagation of Error
Propagation of error or propagation of uncertainty is a strategy to estimate the impact on the standard deviation
of the consequences of a nonlinear transformation of a measured quantity whose measurement is subject to some
uncertainty.

For any random variable Y with mean µY and standard deviation σY , we will be looking at linear functions aY +b
for Y . Using the linearity of expectation and the quadratic identity for variance, we have that

E[a+ bY ] = a+ bµY , Var(a+ bY ) = b2Var(Y ). (11.4)

Exercise 11.13. Show that

E[a+ b(Y − µY )] = a, Var(a+ b(Y − µY )) = b2Var(Y ).

We will apply this to the linear approximation of g(Y ) about the point µY .

g(Y ) ≈ g(µY ) + g′(µY )(Y − µY ). (11.5)

If we take expected values, then

Eg(Y ) ≈ E[g(µY ) + g′(µY )(Y − µY )] = g(µY ).

The variance
Var(g(Y )) ≈ Var(g(µY ) + g′(µY )(Y − µY )) = g′(µY )2σ2

Y .

Thus, the standard deviation
σg(Y ) ≈ |g′(µY )|σY (11.6)

gives what is known as the propagation of error.
If Y is meant to be some measurement of a quantity q with a measurement subject to error, then saying that

q = µY = EY

is stating that Y is an unbiased estimator of q. In other words, Y does not systematically overestimate or under-
estimate q. The standard deviation σY gives a sense of the variability in the measurement apparatus. However, if
we measure Y but want to give not an estimate for q, but an estimate for a function of q, namely g(q), its standard
deviation is approximation by formula (11.6).

Example 11.14. Let Y be the measurement of a side of a cube with length `. Then Y 3 is an estimate of the volume
of the cube. If the measurement error has standard deviation σY , then, taking g(y) = y3, we see that the standard
deviation of the error in the measurement of the volume

σY 3 ≈ 3q2σY .

If we estimate q with Y , then
σY 3 ≈ 3Y 2σY .

To estimate the coefficient volume expansion α3 of a material, we begin with a material of known length `0 at
temperature T0 and measure the length `1 at temperature T1. Then, the coefficient of linear expansion

α1 =
`1 − `0

`0(T1 − T0)
.

If the measure length of `1 is Y . We estimate this by

α̂1 =
Y − `0

`0(T1 − T0)
.
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Then, if a measurement Y of `1 has variance σ2
Y , then

Var(α̂1) =
σ2
Y

`20(T1 − T0)2
σα̂1

=
σY

`0|T1 − T0|
.

Now, we estimate

α3 =
`31 − `30

`30(T1 − T0)
by α̂3 =

Y 3 − `30
`30(T1 − T0)

and
σα̂3 ≈ 3Y 2 σY

`30|T1 − T0|
.

Exercise 11.15. In a effort to estimate the angle θ of the sun, the length ` of a shadow from a 10 meter flag pole is
measured. If σˆ̀ is the standard deviation for the length measurement, use propagation of error to estimate σθ̂, the
standard deviation in the estimate of the angle.

Often, the function g is a function of several variables. We will show the multivariate propagation of error in
the two dimensional case noting that extension to the higher dimensional case is straightforward. Now, for random
variables Y1 and Y2 with means µ1 and µ2 and variances σ2

1 and σ2
2 , the linear approximation about the point (µ1, µ2)

is
g(Y1, Y2) ≈ g(µ1, µ2) +

∂g

∂y1
(µ1, µ2)(Y1 − µ1) +

∂g

∂y2
(µ1, µ2)(Y2 − µ2).

As before,
Eg(Y1, Y2) ≈ g(µ1, µ2).

For Y1 and Y2 independent, we also have that the random variables

∂g

∂y1
(µ1, µ2)(Y1 − µ1) and

∂g

∂y2
(µ1, µ2)(Y2 − µ2)

are independent. Because the variance of the sum of independent random variables is the sum of their variances, we
have the approximation

σ2
g(Y1,Y2) = Var(g(Y1, Y2)) ≈ Var(

∂g

∂y1
(µ1, µ2)(Y1 − µ1)) + Var(

∂g

∂y2
(µ1, µ2)(Y2 − µ2))

=

(
∂g

∂y1
(µ1, µ2)

)2

σ2
1 +

(
∂g

∂y2
(µ1, µ2)

)2

σ2
2 . (11.7)

and consequently, the standard deviation,

σg(Y1,Y2) ≈
√(

∂g

∂y1
(µ1, µ2)

)2

σ2
1 +

(
∂g

∂y2
(µ1, µ2)

)2

σ2
2 .

Exercise 11.16. Repeat the exercise in the case that the height h if the flag poll is also unknown and is measured
independently of the shadow length with standard deviation σĥ. Comment on the case in which the two standard
deviations are equal.

Exercise 11.17. Generalize the formula for the variance to the case of g(Y1, Y2, . . . , Yd) for independent random
variables Y1, Y2, . . . , Yd.

Example 11.18. In the previous example, we now estimate the volume of an `0 × w0 × h0 rectangular solid with
the measurements Y1, Y2, and Y3 for, respectively, the length `0, width w0, and height h0 with respective standard
deviations σ`, σw, and σh. Here, we take g(`, w, h) = `wh, then

∂g

∂`
(`, w, h) = wh,

∂g

∂w
(`, w, h) = `h,

∂g

∂h
(`, w, h) = `w,
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and σg(Y1,Y2,Y3)

≈

√(
∂g

∂`
(`0, w0, h0)

)2

σ2
` +

(
∂g

∂w
(`0, w0, h0)

)2

σ2
w +

(
∂g

∂h
(`0, w0, h0)

)2

σ2
h

=
√

(wh)2σ2
` + (`h)2σ2

w + (`w)2σ2
h.

11.4 Delta Method

1 1.5 2
1

1.5

2

2.5

3

3.5

4

Figure 11.6: Illustrating the delta
method. Here µ = 1.5 and the blue
curve g(x) = x2. Thus, g(X̄) is approx-
imately normal with approximate mean
2.25 and σg(X̄) ≈ 3σX̄ . The bell curve
on the y-axis is the reflection of the bell
curve on the x-axis about the (black)
tangent line y = g(µ) + g′(µ)(x− µ).

Let’s use repeated independent measurements, Y1, Y2, . . . Yn to estimate a
quantity q by its sample mean Ȳ . If each measurement has mean µY and
variance σ2

Y , then Ȳ has mean q = µY and variance σ2
Y /n. By the central limit

theorem,

Zn =
Ȳ − µY
σY /
√
n

(11.8)

has a distribution that can be approximated by a standard normal. We can apply
the propagation of error analysis based on a linear approximation of g(Ȳ ) to
obtain

g(Ȳ ) ≈ g(µY ), and Var(g(Ȳ )) ≈ g′(µY )2σ
2
Y

n
.

Thus, the reduction in the variance in the estimate of q “propagates” to a reduc-
tion in variance in the estimate of g(q).

However, the central limit theorem gives us some additional information.
Returning to the linear approximation (11.5)

g(Ȳ ) ≈ g(µY ) + g′(µY )(Ȳ − µY ). (11.9)

The central limit theorem tells us that Ȳ has a nearly normal distribution. Thus,
the linear approximation to g(Ȳ ) also has nearly a normal distribution. More-
over, with repeated measurements, the variance of Ȳ is the variance of a single
measurement divided by n. As a consequence, the linear approximation under
repeated measurements yields a better approximation because the reduction in
variance implies that the difference Ȳ − µY is more likely to be small.

The delta method combines the central limit theorem and the propagation
of error. To see use (11.9) to write,

g(Ȳ )− g(µy)

σg(Ȳ )

≈ g′(µY )(Ȳ − µY )

|g′(µY )|σY /
√
n

= ±Zn.

The last equality uses (11.8). The ± sign depends on the sign of the derivative g′(µY ). Because the negative of a
standard normal is also a standard normal, we have the desired approximation to the standard normal.

Then, Zn converges in distribution to a standard normal random variable. In this way, the delta method greatly
extends the applicability of the central limit theorem.

Let’s return to our previous example on thermal expansion.

Example 11.19. Let Y1, Y2, . . . , Yn be repeated unbiased measurement of a side of a cube with length `1 and temper-
ature T1. We use the sample mean Ȳ of these measurements to estimate the length at temperature T1 for the coefficient
of linear expansion.

α̂1 =
Ȳ − `0

`0(T1 − T0)
.
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Then, if each measurement Yi has variance σ2
Y ,

Var(α̂1) =
σ2
Y

`20(T1 − T0)2n
σα̂1

=
σY

`0|T1 − T0|
√
n
.

Now, we estimate the coefficient of volume expansion by

α̂3 =
Ȳ 3 − `30

`30(T1 − T0)

and

σα̂3 ≈
3Ȳ 2σY

`30|T1 − T0|
√
n
.

By the delta method,

Zn =
α̂3 − α3

σα̂3

has a distribution that can be well approximated by a standard normal random
variable.

coefficient of
material linear expansion
alumium 23.1

bradd 19
concrete 12
diamond 1
gasoline 317

glass 8.5
water 69

Table I: Coefficient of linear expansion at
20◦C in units 10−6/◦C.

The next natural step is to take the approach used for the propagation of error in a multidimensional setting and ex-
tend the delta method. Focusing on the three dimensional case, we have three independent sequences (Y1,1, . . . , Y1,n1

),
(Y2,1, . . . , Y2,n2

) and (Y3,1, . . . , Y3,n3
) of independent random variables. The observations in the i-th sequence have

mean µi and variance σ2
i for i = 1, 2 and 3. We shall use Ȳ1, Ȳ2 and Ȳ3 to denote the sample means for the three sets

of observations. Then, Ȳi has

mean µi and variance σ2
i

ni
for i = 1, 2, 3.

From the propagation of error linear approximation, we obtain

Eg(Ȳ1, Ȳ2, Ȳ3) ≈ g(µ1, µ2, µ3).

For the variance, look to the multidimensional propagation of error variance formula (11.7) replacing the measure-
ments Yi by the sample mean Ȳi .

σ2
g(Ȳ1,Ȳ2,Ȳ3) = Var(g(Ȳ1, Ȳ2, Ȳ3)) (11.10)

≈ ∂g

∂y1
(µ1, µ2, µ3)2σ

2
1

n1
+

∂g

∂y2
(µ1, µ2, µ3)2σ

2
2

n2
+

∂g

∂y3
(µ1, µ2, µ3)2σ

2
3

n3
.

To obtain the normal approximation associated with the delta method, we need to have the additional fact that the sum
of independent normal random variables is also a normal random variable. Thus, we have that, for n large,

Zn =
g(Ȳ1, Ȳ2, Ȳ3)− g(µ1, µ2, µ3)

σg(Ȳ1,Ȳ2,Ȳ3)

is approximately a standard normal random variable.

Example 11.20. Fecundity is the reproductive rate of a community or of a population. Fecundity can change over
time due to both genetic and environmental circumstances. In avian biology, the fecundity B is defined as the number
of female fledglings per female per year. B > 1 indicates a growing population and B < 1, a declining population.
B is a product of three quantities,

B = F · p ·N,
where

• F equals the mean number of female fledglings per successful nest,
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• p equals nest survival probability, and

• N equals the mean number of nests built per female per year.

Let’s

• collect measurement F1, . . . , FnF on nF nests to count female fledglings in a successful nest, and determine the
sample mean F̄ ,

• check np nests for survival probability, and determine the sample proportion p̂, and

• follow nN females to count the number N1, . . . , NnN of successful nests per year and determine the sample
mean N̄ .

Our experimental design is structured so that measurements are independent. Then, taking the appropriate partial
derivatives in (11.10) to B = g(F, p,N) = F · p ·N , we obtain an estimate for the variance of B̂ = g(F̄ , p̂, N̄),

σ2
B̂
≈
(
∂B

∂F
(µF , p, µN )

)2
σ2
F

nF
+

(
∂B

∂p
(µF , p, µN )

)2 σ2
p

np
+

(
∂B

∂N
(µF , p, µN )

)2
σ2
N

nN
. (11.11)

= (µpµN )2 σ
2
F

nF
+ (µFµN )2

σ2
p

np
+ (µpµF )2 σ

2
N

nN
.

The checks of nest survival form a sequence of Bernoulli trials. Thus, µp = p and σ2
p = p(1 − p) for a Bernoulli

random variable, we can write the expression above upon dividing by B2 as

(σB̂
B

)2

≈ 1

nF

(
σF
µF

)2

+
1

np

(
σp
µp

)2

+
1

nN

(
σN
µN

)2

=
1

nF

(
σF
µF

)2

+
1

np

(
1− p
p

)
+

1

nN

(
σN
µN

)2

.

This gives the individual contributions to the variance ofB from each of the three data collecting activities - female
fledglings, nest survivability, nest building. The values of nF , np, and nN can be adjusted in the collection of data to
adjust the variance of B̂ under a variety of experimental designs.

Estimates for σ2
B̂

can be found from the field data. Compute sample means

F̄ , p̂, and N̄ ,

and sample variance
s2
F , p̂(1− p̂) and s2

N .

Using (11.11), we estimate the variance in fecundity

s2
B̂
≈ 1

nF
(p̂N̄sF )2 +

1

np
(F̄ N̄)2p̂(1− p̂) +

1

nN
(p̂F̄ sN )2

If we make multiple measurements on the collection of female adult birds. The three observations (female off-
spring, net survivability, and number of nests) may be correlated, but the observations made on different female adults
are independent. This leads to the following extension of the delta method.

Exercise 11.21. In the case in which the n observations Yi = (Yi,1, Yi,2, . . . Yi,n) are independent vector, but the
entries in this vector may not be independent, show that the formula for the delta method is

Var(g(Ȳ1, Ȳ2, . . . , Ȳn)) ≈ 1

n

n∑

i=1

n∑

j=1

∂

∂yi
g(µ1, µ2 . . . , µn)

∂

∂yj
g(µ1, µ2 . . . , µn)ρi,jσiσj . (11.12)

Here the distributional means µi, sample means Ȳi, and distributional standard deviations σi for the i-th set of obser-
vations are as above and where ρi,j is the correlation of i-th and j-th set of observations.
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Exercise 11.22. Use this formula for σ2
B,n in the case that measurements for F , p, and N for a given female adult are

not independent.

We will now move to a fundamental issue in statistics - estimation. The analysis of the properties an estimator,
namely, its accuracy and its precision, are based to a large extent on the tools in probability theory that we have
developed here - the law of large numbers, the central limit theorem and their extensions.

We finish the discussion on the central limit theorem with a summary of some of its applications.

11.5 Summary of Normal Approximations
The standardized score or z-score of some random quantity is

Z =
random quantity−mean

standard deviation
.
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Figure 11.7: The density function for Sn for a random sample of size n = 10 (red), 20
(green), 30 (blue), and 40 (purple). In this example, the observations are normally dis-
tributed with mean µ = 1 and standard deviation σ = 10.

The central limit theorem
and extensions like the delta
method tell us when the z-score
has an approximately standard
normal distribution. Thus, us-
ing R, we can find good ap-
proximations by computing the
probabilities of P{Z < z},
pnorm(z) and P{Z > z} us-
ing 1-pnorm(z) or P{z1 <
Z < z2} using the difference
pnorm(z2) - pnorm(z1).

11.5.1 Sample Sum
If we have a sum Sn of n
independent random variables,
X1, X2, . . . Xn whose common
distribution has mean µ and vari-
ance σ2, then

• the mean ESn = nµ,

• the variance Var(Sn) = nσ2,

• the standard deviation is σ
√
n.

Thus, Sn is approximately normal with mean nµ and variance nσ2. The z-score in this case is

Zn =
Sn − nµ
σ
√
n

.

We can approximate P{Sn < x} by noting that this is the same as computing the probability

Zn =
Sn − nµ
σ
√
n

<
x− nµ
σ
√
n

= z

and finding P{Zn < z} using the standard normal distribution.
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11.5.2 Sample Mean
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Figure 11.8: The density function for X̄ − µ for a random
sample of size n = 1 (black), 10 (red), 20 (green), 30 (blue),
and 40 (purple). In this example, the observations are nor-
mally distributed with standard deviation σ = 10.

For a sample mean

X̄ = (X1 +X2 + · · ·+Xn)/n,

• the mean EX̄ = µ,

• the variance Var(X̄) = σ2/n,

• the standard deviation is σ/
√
n.

Thus, X̄ is approximately normal with mean µ and variance
σ2/n. The z-score in this case is

Zn =
X̄ − µ
σ/
√
n
.

Thus,

X̄ < x is equivalent to Zn =
X̄ − µ
σ/
√
n
<
x− µ
σ/
√
n
. .

11.5.3 Sample Proportion
For Bernoulli trials X1, X2, . . . Xn with success probability
p, let p̂ = (X1 +X2 + · · ·+Xn)/n be the sample proportion.
Then

• the mean Ep̂ = p,

• the variance Var(p̂) = p(1− p)/n,

• the standard deviation is
√
p(1− p)/n.

Thus, p̂ is approximately normal with mean p and variance p(1− p)/n. The z-score in this case is

Zn =
p̂− p√

p(1− p)/n
.

For the special case of Bernoulli trials, normal approximations often use a continuity correction.

11.5.4 Delta Method
For the delta method in one variable using X̄ and a function g, for a sample mean X̄ = (X1 +X2 + · · ·+Xn)/n, we
have

• the mean Eg(X̄) ≈ g(µ),

• the variance Var(g(X̄)) ≈ g′(µ)2σ2/n,

• the standard deviation is |g′(µ)|σ/√n.

Thus, g(X̄) is approximately normal with mean g(µ) and variance g′(µ)2σ2/n. The z-score is

Zn =
g(X̄)− g(µ)

|g′(µ)|σ/√n .
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Figure 11.9: Two variable delta method. σg , the standard deviation of
g(X̄1, X̄2), is approximated by the length of the hypotenuse in the triangle
shown above.

For the two variable delta method, we now
have two independent sequences of independent
random variables, X1,1, X1,2, . . . X1,n1

whose
common distribution has mean µ1 and variance σ2

1

andX2,1, X2,2, . . . X2,n2 whose common distribu-
tion has mean µ2 and variance σ2

2 . For a function
g of the sample means, we have that

• the mean Eg(X̄1, X̄2) ≈ g(µ1, µ2),

• the variance

Var(g(X̄1, X̄2)) = σ2
g ≈

(
∂

∂x
g(µ1, µ2)

)2
σ2

1

n1
+

(
∂

∂y
g(µ1, µ2)

)2
σ2

2

n2
,

• the standard deviation is σg .

Thus, g(X̄1, X̄2) is approximately normal with mean g(µ1, µ2) and variance σ2
g,n. The z-score is

Zn =
g(X̄1, X̄2)− g(µ1, µ2)

σg,n
.

The generalization of the delta method to higher dimensional data will add terms to the variance formula. Fuse or
multiple observations on n individuals, (?? to determine the standard deviation in the z-score.

11.6 Answers to Selected Exercises
11.1 Here is the code for one of the plots of of (Sn − n/2)/

√
n in Figure 11.9.

> n<-1:2000
> x<-runif(2000)
> s<-cumsum(x)
> plot(n,(s-n/2)/sqrt(n),type="l",

ylim=c(-0.5,0.5),col="orange")

For the 1000 simulations of (S2000 − 1000)/
√

2000 with a summary
and a histogram, we have
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Figure 11.10: Left.Six plots of of (Sn − n/2)/
√
n for U(0, 1) random variables. Right Histogram of z-scores for one simulation.
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> score<-numeric(1000)
> for (i in 1:1000){x<-runif(2000);

s<-sum(x);score[i]<-(s-1000)/sqrt(2000)}
> mean(score)
[1] -0.001879942
> sd(score)
[1] 0.28578
> hist(score)

This histogram has a bell shape with the mean at 0 and a standard deviation of 0.2858.

11.2. The sum Sn of exponential random variables is Γ(n, λ) and thus has mean n/λ and standard deviation
√
n/λ.

The skewness is the third moment of the standardized sum,

Sn − n/λ√
nλ

=
λSn − n√

n
=
Tn − n√

n

where Tn = λSn is Γ(n, 1). (Check this!) Thus, the skewness

E

[(
Tn − n√

n

)3
]

=
1

n3/2
(ET 3

n − 3nET 2
n + 3n2ETn − n3).

Here we use the linearity properties of expectation. Now, the first moment, ETn = n. For the second moment,

ET 2
n =

∫ ∞

0

1

Γ(n)
x2xn−1e−xdx =

Γ(n+ 2)

Γ(n)

∫ ∞

0

1

Γ(n+ 2)
x(n+2)−1e−xdx = (n+ 1)n.

Notice that we are integrating the density function of a Γ(n+ 2, 1) random variable. Similarly,

ET 3
n =

∫ ∞

0

1

Γ(n)
x3xn−1e−xdx =

Γ(n+ 3)

Γ(n)

∫ ∞

0

1

Γ(n+ 3)
x(n+3)−1e−xdx = (n+ 2)(n+ 1)n.

Returning to the skewness, we substitute for each of the first three moments of Tn

E

[(
Tn − n√

n

)3
]

=
1

n3/2
((n+ 2)(n+ 1)n− 3n(n+ 1)n+ 3n2n− n3)

=
1√
n

((n+ 2)(n+ 1)− 3(n+ 1)n+ 2n3)

=
1√
n

(n2 + 3n+ 2− 3n2 − 3n+ 2n2) =
2√
n
.

11.3. Let µ and σ denote the common mean and standard deviation the standardized random variable

(
Sn − nµ
σ
√
n

)3

=
1

n3/2

(
Sn − nµ

σ

)3

=
1

n3/2

(
n∑

i=1

Xi − µ
σ

)3

=
1

n3/2

(
n∑

i=1

X∗i

)3

, (11.13)

where X∗i = (Xi − µ)/σ is the standardized version of Xi. In particular, EX∗i = 0.
We expand the cube of the sum in (11.13) and use the property of the expectation of the product of independent

random variables. In so doing, we see that the expected value of the cube of a sum involves terms γ1 = EX∗3i , the
skewness of a single random variable in the sum, terms EX∗2i X

∗
j = EX∗2i EX

∗
j with i 6= j, and terms EX∗i X

∗
jX
∗
k =
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EX∗i EX
∗
jEX

∗
k where i, j, and k all differ. Each of the last two types of terms equals 0 and consequently does not

contribute to the expected value. Thus,

E

[(
Sn − nµ
σ
√
n

)3
]

=
1

n3/2

n∑

i=1

E[X∗3i ] =
1

n3/2
nγ1 =

1√
n
γ1.

The binomial random variable Sn can be realized as the sum of n independent Bernoulli random variables with
skewness γ1 = (1− 2p)/

√
p(1− p).

11.7. For Z a standard normal random variable to determine z∗ that satisfies P{Z < z∗} = 0.01, we use the R
command

> qnorm(0.01)
[1] -2.326348

Thus, we look for the value n that gives a standardized score of z∗.

−2.326348 = z∗ =
400n− 42000

50
√
n

=
8n− 840√

n

−2.326348
√
n = 8n− 840 = 8(n− 105)

−0.2907935
√
n = n− 105

0 = n+ 0.2907935
√
n− 105

By the quadratic formula, we solve for
√
n, keeping only the positve root.

√
n =

0.2907935 +
√

(0.2907935)2 − 4 · 1 · 105

2 · 1 = 10.10259

and n = 102.0622. So, take n = 102.
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Figure 11.11: Histogram of the sample means of 100
random variables, uniformly distributed on [0, 1].

11.8. The R code for the simulations is

> xbar<-numeric(1000)
> for (i in 1:1000)

{x<-runif(100);xbar[i]<-mean(x)}
> hist(xbar)
> mean(xbar)
[1] 0.498483
> sd(xbar)
[1] 0.02901234
> quantile(xbar,0.35)

35%
0.488918
> qnorm(0.35)
[1] -0.3853205

The mean of a U [0, 1] random variable is µ = 1/2 and its variance
is σ2 = 1/12. Thus the mean of X̄ is 1/2, its standard deviation is√

1/(12 · 100) = 0.0289, close to the simulated values.
Use qnorm(0.35) to see that the 35th percentile corresponds to

a z-score of -0.3853205. Thus, the 35th percentile for X̄ is approximately

µ+ z0.35
σ√
n

= 0.5− 0.3853205
1√

1200
= 0.4888768,

agreeing to four decimal places the value given by the simulations of xbar.
Alternatively, we can use the qnorm command with the appropriate mean and standard deviation.
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> qnorm(0.35,0.5,sqrt(1/1200))
[1] 0.4888768

11.12. A Poisson random variable with parameter λ = 16 has mean 16 and standard deviation 4 =
√

16. Thus, we
first look at the maximum difference in the distribution function of a Pois(4) random variable, X , and a N(16, 4)
random variable, Y , by comparing P{X ≤ x} to P{Y ≤ x+ 1

2} in a range around the mean value of 16.

> x<-4:28
> max(abs(pnorm(x+0.5,16,4)-ppois(x,16)))
[1] 0.01648312

The maximum difference between the distribution function is approximately 1.6%. To compare the density functions,
we have the R commands. (See Figure 11.11.)

> poismass<-dpois(x,16)
> plot(x,poismass,ylim=c(0,0.1),

ylab="probability")
> par(new=TRUE)
> x<-seq(4,28,0.01)
> normd<-dnorm(x,16,4)
> plot(x,normd,ylim=c(0,0.1),

ylab="probability",type="l",col="red")
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Figure 11.12: Circles indicate the mass function for a
Pois(16) random variable. The red curve is the density func-
tion of a N(16, 4) random variable. The plots show that the
Poisson random variable is slightly more skewed to the right
that the normal.

11.13. Using (11.4)

E[a+ b(Y − µY )] = E[a− bµy + bY ] = a− bµY + bµY = b.

and

Var(a+ b(Y − µY )) = Var(a− bµy + bY ) = b2Var(Y ).

11.15. Using right triangle trigonometry, we have that

θ = g(`) = tan−1

(
`

10

)
. Thus, g′(`) =

1/10

1 + (`/10)2
=

10

100 + `2
.

So, σθ̂ ≈ 10/(100 + `2) · σ`. For example, set σ` = 0.1 meter and ` = 5. Then, σθ̂ ≈ 10/125 · 0.1 = 1/125 radians
= 0.49◦.

11.16. In this case,

θ = g(`, h) = tan1

(
`

h

)
.

For the partial derivatives, we use the chain rule

∂g

∂`
(`, h) =

1

1 + (`/h)2

(
1

h

)
=

h

h2 + `2
∂g

∂h
(`, h) =

1

1 + (`/h)2

(−`
h2

)
= − `

h2 + `2

Thus,

σθ̂ ≈
√(

h

h2 + `2

)2

σ2
` +

(
`

h2 + `2

)2

σ2
h =

1

h2 + `2

√
h2σ2

` + `2σ2
h.

If σh = σ`, let σ denote their common value. Then

σθ̂ ≈
1

h2 + `2

√
h2σ2 + `2σ2 =

σ√
h2 + `2

.
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In other words, σθ̂ is inversely proportional to the length of the hypotenuse.

11.17. Let µi be the mean of the i-th measurement. Then

σg(Y1,Y2,·,Ydt) ≈
√(

∂g

∂y1
(µ1, . . . , µd)

)2

σ2
1 +

(
∂g

∂y2
(µ1, . . . , µd)

)2

σ2
2 + · · ·+

(
∂g

∂yd
(µ1, . . . , µd)

)2

σ2
d.

11.21. Recall that for random variables X1, X2, . . . Xn and constants c1, c2, . . . cn,

Var(c0 + c1X1 + c2X2 + · · ·+ cnXn) =

n∑

i=1

n∑

j=1

cicjCov(Xi, Xj) =

n∑

i=1

n∑

j=1

cicjρi,jσXiσXj .

where ρi,j is the correlation of Xi and Xj . Note that the correlation of a random variable with itself, ρi,i = 1. For the
delta method,

ci =
∂

∂yi
g(µ1, µ2 . . . , µn), Xi = Ȳi, and σXi =

σi√
ni
.

. Then

Var(g(Ȳ1, Ȳ2, . . . , Yn)) ≈ 1

n

n∑

i=1

n∑

j=1

∂

∂yi
g(µ1, µ2 . . . , µn)

∂

∂yj
g(µ1, µ2 . . . , µn)ρi,jσiσj .

11.22. Let µF , p, µN be the means of the variables under consideration. Then we have the linear approximation,

g(F̄ , p̂, N̄) ≈ g(F, p,N) +
∂g

∂F
(F, p,N)(F̄ − F ) +

∂g

∂p
(F, p,N)(p̂− p) +

∂g

∂N
(F, p,N)(N̄ − µN ).

= g(F, p,N) + pN(F̄ − F ) + FN(p̂− p) + Fp(N̄ − µN )

Matching this to the covariance formula, we have

c0 = g(F, p,N), c1 = pN, c2 = FN, c3 = Fp,

X1 = F̄ , X2 = p̂, X3 = N̄ .

Thus,

σ2
B,n =

1

nF
(pNσF )2 +

1

np
(FNσp)

2 +
1

nN
(pFσN )2

+2FpN2ρF,p
σFσp√
nFnp

+ 2Fp2NρF,N
σFσN√
nFnN

+ 2F 2pNρp,N
σpσN√
nFnN

.

The subscripts on the correlation coefficients ρ have the obvious meaning.
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Topic 12

Overview of Estimation

Inference is the problem of turning data into knowledge, where knowledge often is expressed in terms of
entities that are not present in the data per se but are present in models that one uses to interpret the data.
Statistical rigor is necessary to justify the inferential leap from data to knowledge, and many difficulties
arise in attempting to bring statistical principles to bear on massive data. Overlooking this foundation
may yield results that are, at best, not useful, or harmful at worst. In any discussion of massive data
and inference, it is essential to be aware that it is quite possible to turn data into something resembling
knowledge when actually it is not. Moreover, it can be quite difficult to know that this has happened. -
page 2, Frontiers in Massive Data Analysis by the National Research Council, 2013.

The balance of this book is devoted to developing formal procedures of statistical inference. In this introduction
to inference, we will be basing our analysis on the premise that the data have been collected according to carefully
planned procedures informed by the appropriate probability models. We will focus our presentation on parametric
estimation and hypothesis testing based on a given family of probability models chosen in line with the science under
investigation and with the data collection procedures.

12.1 Introduction
In the simplest possible terms, the goal of estimation theory is to answer the question:

What is that number?

What is the length, the reaction rate, the fraction displaying a particular behavior, the temperature, the kinetic
energy, the Michaelis constant, the speed of light, mutation rate, the melting point, the probability that the dominant
allele is expressed, the elasticity, the force, the mass, the free energy, the mean number of offspring, the focal length,
mean lifetime, the slope and intercept of a line?

The next step is to perform an experiment that is well designed to estimate one (or more) numbers. However, before
we can embark on such a design, we must be informed by the principles of estimation in order to have an understanding
of the properties of a good estimator and to present our uncertainties concerning the estimate. Statistics has provided
two distinct approaches - typically called classical or frequentist and Bayesian. We shall give an overview of both
approaches. However, this text will emphasize the classical approach.

Let’s begin with a definition:

Definition 12.1. A statistic is a function of the data that does not depend on any unknown parameter.

Example 12.2. We have to this point, seen a variety of statistics.

• sample mean, x̄
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• sample variance, s2

• sample standard deviation, s

• sample median, sample quartiles Q1, Q3, percentiles and other quantiles

• standardized scores (xi − x̄)/s

• order statistics x(1), x(2), . . . x(n), including sample maximum and minimum

• sample moments

xm =
1

n

n∑

k=1

xmk , m = 1, 2, 3, . . . .

Here, we will look at a particular type of parameter estimation, in which we consider X = (X1, . . . , Xn), inde-
pendent random variables chosen according to one of a family of probabilities Pθ where θ is element from the param-
eter space Θ. Based on our analysis, we choose an estimator θ̂(X). If the data x takes on the values x1, x2, . . . , xn,
then

θ̂(x1, x2, . . . , xn)

is called the estimate of θ. Thus we have three closely related objects,

1. θ - the parameter, an element of the parameter space Θ. This is a number or a vector.

2. θ̂(x1, x2, . . . , xn) - the estimate. This again is a number or a vector obtained by evaluating the estimator on the
data x = (x1, x2, . . . , xn).

3. θ̂(X1, . . . , Xn) - the estimator. This is a random variable. We will analyze the distribution of this random
variable to decide how well it performs in estimating θ.

The first of these three objects is a number. The second is a statistic. The third can be analyzed and its properties
described using the theory of probability. Keeping the relationship among these three objects in mind is essential in
understanding the fundamental issues in statistical estimation.

Example 12.3. For Bernoulli trials X = (X1, . . . , Xn), each Xi, i = 1, . . . , n can take only two values 0 and 1. We
have

1. p, a single parameter, the probability of success, with parameter space [0, 1]. This is the probability that a single
Bernoulli takes on the value 1.

2. p̂(x1, . . . , xn) is the sample proportion of successes in the data set.

3. p̂(X1, . . . , Xn), the sample mean of the random variables

p̂(X1, . . . , Xn) =
1

n
(X1 + · · ·+Xn) =

1

n
Sn

is an estimator of p. In this case the Xi are Bernoulli trials. Consequently, we can give the distribution of this
estimator because Sn is a binomial random variable.

Example 12.4. Given pairs of observations (x,y) = ((x1, y1), (x2, y2), . . . , (xn, yn)) that display a general linear
pattern, we use ordinary least squares regressn for

1. parameters - the slope β and intercept α of the regression line. So, the parameter space is R2, pairs of real
numbers.
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2. They are estimated using the statistics β̂ and α̂ in the equations

β̂(x,y) =
cov(x,y)

var(x)
, ȳ = α̂(x,y) + β̂(x,y)x̄.

3. Later, when we consider statistical inference for linear regression, we will analyze the distribution of the esti-
mators.

Exercise 12.5. Let X = (X1, . . . , Xn) be independent uniform random variables on the interval [0, θ] with θ un-
known. Give some estimators of θ from the statistics above.

12.2 Classical Statistics
In classical statistics, the state of nature is assumed to be fixed, but unknown to us. Thus, one goal of estimation is to
determine which of the Pθ is the source of the data. The estimate is a statistic

θ̂ : data→ Θ.

Introduction to estimation in the classical approach to statistics is based on two fundamental questions:

• How do we determine estimators?

• How do we evaluate estimators?

We can ask if this estimator in any way systematically under or over estimate the parameter, if it has large or small
variance, and how does it compare to a notion of best possible estimator. How easy is it to determine and to compute
and how does the procedure improve with increased sample size?

The raw material for our analysis of any estimator is the distribution of the random variables that underlie the
data under any possible value θ of the parameter. To simplify language, we shall use the term density function to
refer to both continuous and discrete random variables. Thus, to each parameter value θ ∈ Θ, there exists a density
function which we denote

fX(x|θ).

We focus on experimental designs based on a simple random sample. To be more precise, the data are assumed
to be a sample from a sequence of random variables

X1(ω), . . . , Xn(ω),

drawn from a family of distributions having common density fX(x|θ) where the parameter value θ is unknown and
must be estimated. Because the random variables are independent, the joint density is the product of the marginal
densities.

fX(x|θ) =

n∏

k=i

fX(xk|θ) = fX(x1|θ)fX(x2|θ) · · · fX(xn|θ).

In this circumstance, the data x are known and the parameter θ is unknown. Thus, we write the density function as

L(θ|x) = fX(x|θ)

and call L the likelihood function.
Because the algebra and calculus of the likelihood function are a bit unfamiliar, we will look at several examples.

Example 12.6 (Parametric families of densities).
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1. For Bernoulli trials with a known number of trials n but unknown success probability parameter p has joint
density

fX(x|p) = px1(1− p)1−x1px2(1− p)1−x2 · · · pxn(1− p)1−xn = p
∑n
k=1 xk(1− p)

∑n
k=1(1−xk)

= p
∑n
k=1 xk(1− p)n−

∑n
k=1 xk = pnx̄(1− p)n(1−x̄)

2. Normal random variables with known variance σ0 but unknown mean µ has joint density

fX(x|µ) =
1

σ0

√
2π

exp

(
− (x1 − µ)2

2σ2
0

)
· 1

σ0

√
2π

exp

(
− (x2 − µ)2

2σ2
0

)
· · · 1

σ0

√
2π

exp

(
− (xn − µ)2

2σ2
0

)

=
1

(σ0

√
2π)n

exp

(
− 1

2σ2
0

n∑

k=1

(xk − µ)2

)

3. Normal random variables with unknown mean µ and variance σ has density

fX(x|µ, σ) =
1

(σ
√

2π)n
exp

(
− 1

2σ2

n∑

k=1

(xk − µ)2

)
.

4. Beta random variables with parameters α and β has joint desity

fX(x|α, β) =

(
Γ(α+ β)

Γ(α)Γ(β)

)n
(x1 · x2 · · ·xn)α−1((1− x1) · (1− x2) · · · (1− xn))β−1

=

(
Γ(α+ β)

Γ(α)Γ(β)

)n( n∏

i=1

xi

)α−1( n∏

i=1

(1− xi)
)β−1

Exercise 12.7. Give the likelihood function for n observations of independent Γ(α, β) random variables.

The choice of a point estimator θ̂ is often the first step. For the next three topics, we consider two approaches
for determining estimators - method of moments and maximum likelihood. In between the introduction of these
two estimation procedures, we will develop analyses of the quality of the estimator. With this in view, we will
provide methods for approximating the bias and the variance of the estimators. Typically, this information is, in
part, summarized though what is know as an interval estimator. This is a procedure that determines a subset of the
parameter space with high probability that it contains the real state of nature. We see this most frequently in the use of
confidence intervals.

12.3 Bayesian Statistics
For a few tosses of a coin always that always turn up tails, the estimate p̂ = 0 for the probability of heads did not
seem reasonable to Thomas Bayes. He wanted a way to place our uncertainly of the value for p into the procedure for
estimation.

Today, the Bayesian approach to statistics takes into account not only the density

fX|Θ(x|ψ)

for the data collected for any given experiment but also external information to determine a prior density π on the
parameter space Θ. Thus, in this approach, both the parameter and the data are modeled as random. Estimation is
based on Bayes formula. We now want to take Bayes theorem, previously derived for a finite partition and obtain a
formula useful for Bayesian estimation. The first step will yield a formula based on a discrete mixture. We will then
need to introduce the notion of a continuous mixture to give us the final formula, (12.4).
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Figure 12.1: Plot of density π(ψ) in black for continuous mixture and the approximating discrete mixture with weights π̃(ψ̃) proportional to the
heights of the red vertical lines.

Let Θ̃ be a random variable having the given prior density π. In the case in which both Θ̃ and the data take on only
a finite set of values, Θ̃ is a discrete random variable and π is a mass function

π{ψ} = P{Θ̃ = ψ}.

Let Cψ = {Θ̃ = ψ} be the event that Θ̃ takes on the value ψ and A = {X = x} be the values taken on by the data.
Then {Cψ, ψ ∈ Θ} form a partition of the probability space. Bayes formula is

P (Cθ|A) = P (A|Cθ)P (Cθ)∑
ψ P (A|Cψ)P (Cψ) or (12.1)

fΘ|X(θ|x) = P{Θ̃ = θ|X = x} = P{X=x|Θ̃=θ}P{Θ̃=θ}∑
ψ P{X=x|Θ̃=ψ}P{Θ̃=ψ} =

fX|Θ(x|θ)π{θ}∑
ψ fX|Θ(x|ψ)π{ψ} .

Given data x, the function of θ, fΘ|X(θ|x) = P{Θ̃ = θ|X = x} is called the posterior density.

Remark 12.8. As we learned in tte section on Random Variables and Distribution functions, the expression

∑

ψ

fX|Θ(x|ψ)π{ψ}

is the mixture of the densities fX|Θ(x|ψ) for ψ in the finite set with weights π(ψ). Typically the parameter space Θ
is continuous and so we want to use the density π of a continuous random variable. To determine an expression for a
continuous mixture, we will be guided by the ideas used deriving the formula for the expected value for a continuous
random variable based on the formula for a discrete random variable. Beginning with the property

∫

θ

π(ψ)dψ = 1 we have, for a Riemann sum,
∑

ψ̃

π(ψ̃)∆ψ ≈ 1.

Now, write
π̃{ψ̃} = π(ψ̃)∆ψ. (12.2)
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Then π̃ is (approximately) the density function for a discrete random variable. If we take a mixture of fX|Θ(x|ψ̃)

with weights π̃(ψ̃), we have the mixture density
∑

ψ̃

fX|Θ(x|ψ)π̃{ψ̃} =
∑

ψ̃

fX|Θ(x|ψ)π(ψ̃)∆ψ.

This last sum is a Riemann sum and so taking limits as ∆ψ → 0, we have that the Riemann sum converges to the
definite integral. This gives us the continuous mixture

fX(x) =

∫

Θ

fX|Θ(x|ψ)π(ψ) dψ. (12.3)

Exercise 12.9. Show that the expression (12.3) for fX(x) is a valid density function

Returning to the expression (12.1), substituting (12.2), we have in the interval from θ to θ + ∆θ,

fΘ|X(θ|x)∆θ =
fX|Θ(x|θ)π(θ)∆θ∑
ψ fX|Θ(x|ψ)π(ψ)∆ψ

.

After dividing by ∆θ and taking a limit as ∆ψ → 0, we have, for π, a density for a continuous random variable, that
the sum in Bayes formula becomes an integral for a continuous mixture,

fΘ|X(θ|x) =
fX|Θ(x|θ)π(θ)∫

fX|Θ(x|ψ)π(ψ) dψ
(12.4)

Sometimes we shall write (12.4) as

fΘ|X(θ|x) = c(x)fX|Θ(x|θ)π(θ)

where c(x), the reciprocal of continuous mixture (12.3) in the denominator of (12.4), is the value necessary so that the
integral of the posterior density fΘ|X(θ|x) with respect to θ equals 1. We might also write

fΘ|X(θ|x) ∝ fX|Θ(x|θ)π(θ) (12.5)

where c(x) is the constant of proportionality.
Estimation, e.g., point and interval estimates, in the Bayesian approach is based on the data and an analysis using

the posterior density. For example, one way to estimate θ is to use the mean of the posterior distribution, or more
briefly, the posterior mean,

θ̂(x) = E[θ|x] =

∫
θfΘ|X(θ|x) dθ.

Example 12.10. As suggested in the original question of Thomas Bayes, we will make independent flips of a biased
coin and use a Bayesian approach to make some inference for the probability of heads. We first need to set a prior
distribution for P̃ . The beta family Beta(α, β) of distributions takes values in the interval [0, 1] and provides a
convenient prior density π. Thus,

π(p) = cα,βp
(α−1)(1− p)(β−1), 0 < p < 1.

Any density on the interval [0, 1] that can be written a a power of p times a power of 1− p times a constant chosen so
that

1 =

∫ 1

0

π(p) dp

is a member of the beta family. This distribution has

mean
α

α+ β
and variance

αβ

(α+ β)2(α+ β + 1)
. (12.6)
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Thus, the mean is the ratio of α and α + β. If the two parameters are each multiplied by a factor of k, then the
mean does not change. However, the variance is reduced by a factor close to k. The prior gives a sense of our prior
knowledge of the mean through the ratio of α to α+ β and our uncertainly through the size of α and β

If we perform n Bernoulli trials, x = (x1, . . . , xn), then the joint density

fX(x|p) = p
∑n
k=1 xk(1− p)n−

∑n
k=1 xk .

Thus the posterior distribution of the parameter P̃ given the data x, using (12.5), we have.

fP̃ |X(p|x) ∝ fX|P̃ (x|p)π(p) = p
∑n
k=1 xk(1− p)n−

∑n
k=1 xk · cα,βp(α−1)(1− p)(β−1).

= cα,βp
α+

∑n
k=1 xk−1(1− p)β+n−

∑n
k=1 xk−1.

Consequently, the posterior distribution is also from the beta family with parameters

α+

n∑

k=1

xk and β + n−
n∑

k=1

xk = β +

n∑

k=1

(1− xk).

α+ # successes and β + # failures.

Notice that the posterior mean can be written as

α+
∑n
k=1 xk

α+ β + n
=

α

α+ β + n
+

∑n
k=1 xk

α+ β + n

=
α

α+ β
· α+ β

α+ β + n
+

1

n

n∑

k=1

xk ·
n

α+ β + n

=
α

α+ β
· α+ β

α+ β + n
+ x̄ · n

α+ β + n
.

This expression allow us to see that the posterior mean can be expresses as a weighted average α/(α + β) from the
prior mean and x̄, the sample mean from the data. The relative weights are

α+ β from the prior and n, the number of observations.

Thus, if the number of observations n is small compared to α + β, then most of the weight is placed on the prior
mean α/(α+ β). As the number of observations n increase, then

n

α+ β + n

increases towards 1. The weight result in a shift the posterior mean away from the prior mean and towards the sample
mean x̄.

This brings forward two central issues in the use of the Bayesian approach to estimation.

• If the number of observations is small, then the estimate relies heavily on the quality of the choice of the prior
distribution π. Thus, an unreliable choice for π leads to an unreliable estimate.

• As the number of observations increases, the estimate relies less and less on the prior distribution. In this
circumstance, the prior may simply be playing the roll of a catalyst that allows the machinery of the Bayesian
methodology to proceed.

Exercise 12.11. Show that this answer is equivalent to having α heads and β tails in the data set before actually
flipping coins.
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Example 12.12. If we flip a coin n = 14 times with 8 heads, then the classical estimate of the success probability p
is 8/14=4/7. For a Bayesian analysis with a beta prior distribution, using (12.6) we have a beta posterior distribution
with the following parameters.

prior data posterior
α β mean variance heads tails α β mean variance
6 6 1/2 1/52=0.0192 8 6 14 12 14/(12+14)=7/13 168/18542=0.0092
9 3 3/4 3/208=0.0144 8 6 17 9 17/(17+9) =17/26 153/18252=0.0083
3 9 1/4 3/208=0.0144 8 6 11 15 11/(15+11)=11/26 165/18542=0.0090
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Figure 12.2: Example of prior (black) and posterior (red) densities based on 14 coin flips, 8 heads and 6 tails. Left panel: Prior is Beta(6, 6),
Right panel: Prior is Beta(9, 3). Note how the peak is narrowed. This shows that the posterior variance is smaller than the prior variance. In
addition, the peal moves from the prior towards p̂ = 4/7, the sample proportion of the number of heads.

In his original example, Bayes chose was the uniform distribution (α = β = 1) for his prior. In this case the
posterior mean is

1

2 + n

(
1 +

n∑

k=1

xk

)
.

For the example above

prior data posterior
α β mean variance heads tails α β mean variance
1 1 1/2 1/12=0.0833 8 6 9 7 9/(9+7)=9/16 63/4352=0.0144

The Bayesian approach is amenable to sequential updating. For example, if we collect independent data in three
batches, say x = (x1,x2,x3), then the density for the entire data set x can be written

fX|Θ(θ|x) = fX3|Θ(x3|θ) · fX2|Θ(x2|θ) · fX1|Θ(x1|θ).

To set the notation, write

• X = (X1, X2, X3) for the the sequential sets of random variables associated to the observations,

• fΘ|X1
(θ|x1) for the posterior density based on the data x1, and
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• fΘ|X1,X2
(θ|x1,x2) for the posterior density based on the data (x1,x2),

Then, the posterior density

fΘ|X(θ|x) ∝ fX|Θ(x1,x2,x3|θ)π(θ) = fX3|Θ(x3|θ) · fX2|Θ(x2|θ) · fX1|Θ(x1|θ)π(θ)

= fX3|Θ(x3|θ) · fX2|Θ(x2|θ) · fΘ|X1
(θ|x1)

= fX3|Θ(x3|θ) · fΘ|X1,X2
(θ|x1,x2)

Thus,

• The posterior density fΘ|X1
(θ|x1) ∝ fX1|Θ(x1|θ)π(θ) serves are the prior density for (x2,x3).

• The posterior density fΘ|X1,X2
(θ|x1,x2) ∝ fX2|Θ(x2|θ) · fΘ|X1

(θ|x1) serves are the prior density for x3.

Of course, this strategy can be used for any number of sequential updates.

Example 12.13. Extending the example on the original use of Bayes estimation, the observations x1 consist of 8 heads
and 6 tails, .x2 consist of 8 heads and 4 tails, and x3 consist of 9 heads and 4 tails, We start with a Beta(1, 1) prior
and so all of the subsequent posteriors will have a Beta(α, β) distribution. The data and the parameter values are
shown in the table below.

prior data posterior
α β observations heads tails α β

(x1,x2,x3) 1 1 x1 8 6 x1 9 7
(x2,x3) 9 7 x2 8 4 (x1,x2) 17 11

x3 17 11 x3 9 4 (x1,x2,x3) 26 15

Notice that the posterior for one stage serves as the prior for the next.
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Figure 12.3: Bayesian updating. With a beta distributed prior and Bernoulli trials, the posterior densities are also beta distributed. Successive
updates are shown in blue, magenta, and red.

Example 12.14. Reliability engineering emphasizes dependability of a product by assessing the ability of a system
or component to function. We introduce the Bayesian perspective to reliability through a the consideration of the
reliability of simple devise. Our analysis is based on an extension the ideas of Bernoulli trials example above.

A devise consists of two independent units. LetAi, i = 1, 2 be the event that the i-th unit is operating appropriately
and define the probability pi = P (Ai). Then, the devise works with probability p1p2 = P (A1∩A2). For each unit, we
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place independent Beta(αi, βi) prior distributions. Next we test ni units of type i. Repeating the steps in a previous
exercise, we find that yi units are functioning, then the posterior distribution are also in the beta family,

Beta(α1 + y1, β1 + n1 − y1) and Beta(α2 + y2, β2 + n2 − y2),

respectively. This results in a joint posterior density

fP1,P2|Y1,Y2
(p1, p2|y1, y2) = c(α1, β1, n1)c(α2, β2, n2) pα1+x1

1 (1− p1)β1+n1−y1 · pα2+x2
2 (1− p2)β1+n2−y2 .

To find the posterior distribution of p = p1p2 that the devise functions, we integrate to find the cumulative distribution
function.

FP |Y1,Y2
(p|y1, y2) =

∫ ∫

{p1p2≤p}
fP1,P2|Y1,Y2

(p1, p2|y1, y2) dp2dp1.

We can also simulate using the rbeta command to estimate values for this distribution functions.
To provide a concrete example, assume a uniform prior (α1 = β1 = α2 = β2 = 1) and test twenty units of each

type (n1 = n2 = 20). If 15 and 17 of the devises work (y1 = 15, y2 = 17), then the posteriors distributions are

Beta(16, 6) and Beta(18, 4),

We simulate this in R to find the distribution of the posterior probability of p = p1p2.

> p1<-rbeta(10000,16,6);p2<-rbeta(10000,18,4)
> p<-p1*p2

We then give a table of deciles for the posterior distribution function and present a histogram.

> data.frame(quantile(p,d))
quantile.p..d.

0% 0.2825593
10% 0.4660896
20% 0.5094321
30% 0.5422747
40% 0.5712765
50% 0.5968341
60% 0.6209610
70% 0.6477835
80% 0.6776208
90% 0.7187307
100% 0.9234834
> hist(p)

The posterior density fP |Y1,Y2
(p|y1, y2) is non-negative throughout the interval from 0 to 1, but is very small for

values near 0 and 1. Indeed, none of the 10,000 simulations give a posterior probability below 0.282 or above 0.923.
We could take the mean of the simulated sample as a point estimate p̂ for p.

> mean(p);sd(p)
[1] 0.5935356
[1] 0.09661065

This is very close to the means from the beta distributions.

Ep̂ = Ep1p2 = Ep1Ep2 =
16

22
· 18

22
=

72

121
= 0.595.
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Figure 12.4: Histogram of simulated posterior distribution of the reliability p = p1p2 where p1 and p2 have independent beta distributions based
on the prior distributions and the data.

Exercise 12.15. The simulation variance is also indicated. Compare this answer with the answer given by the delta
method.

Example 12.16. Suppose that the prior density is a normal random variable with mean θ0 and variance 1/λ. This
way of giving the variance may seem unusual, but we will see that λ is a measure of information. Thus, low variance
means high information. Our data x are a realization of independent normal random variables with unknown mean
θ. We shall choose the variance to be 1 to set a scale for the size of the variation in the measurements that yield the
data x. We will present this example omitting some of the algebraic steps to focus on the central ideas.

The prior density is

π(θ) =

√
λ

2π
exp

(
−λ

2
(θ − θ0)2

)
.

We rewrite the density for the data to empathize the difference between the parameter θ for the mean and the x̄, the
sample mean.

fX|Θ(x|θ) =
1

(2π)n/2
exp

(
−1

2

n∑

i=1

(xi − θ)2

)

=
1

(2π)n/2
exp

(
−n

2
(θ − x̄)2 − 1

2

n∑

i=1

(xi − x̄)2

)
.

The posterior density is proportional to the product fX|Θ(x|θ)π(θ), Because the posterior is a function of θ, we
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need only keep track of the terms which involve θ. Consequently, we write the posterior density as

fΘ|X(θ|x) = c(x) exp

(
−1

2
(n(θ − x̄)2 + λ(θ − θ0)2)

)

= c̃(x) exp(−n+ λ

2
(θ − θ1(x))2).

where

θ1(x) =
λ

λ+ n
θ0 +

n

λ+ n
x̄. (12.7)

Notice that the posterior distribution is normal with mean θ1(x) that results from the weighted average with
relative weights

λ from the information from the prior and n from the data.

The variance in inversely proportional to the total information λ+ n. Thus, if n is small compared to λ, then θ1(x) is
near θ0. If n is large compared to λ, θ1(x) is near x̄.
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Figure 12.5: Example of prior (black) and posterior (red) densities for a normal prior distribution and normally distributed data. In this figure the
prior density is N(1, 1/2). Thus, θ0 = 1 and λ = 2. Here the data consist of 3 observations having sample mean x̄ = 2/3. Thus, the posterior
mean from equation (12.7) is θ1(x) = 4/5 and the variance is 1/(2+3) = 1/5.

Exercise 12.17. Fill in the steps in the derivation of the posterior density in the example above.

Exercise 12.18. Use sequential updating for the normal family of distribution in the example above. The prior and
the summary statistics are below.

prior data posterior
µ σ2 observations n x̄ s2 µ σ2

(x1,x2,x3) 0 4 x1 6 1.216 1.042 x1

(x2,x3) x2 3 1.911 0.432 (x1,x2)
x3 x3 3 0.811 0.348 (x1,x2,x3)
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Show that the answer is the same if we aggregate the data first.

For these two examples, we see that the prior distribution and the posterior distribution are members of the same
parameterized family of distributions, namely the beta family and the normal family. In these two cases, we say that
the prior density and the density of the data form a conjugate pair. In the case of coin tosses, we find that the beta and
the Bernoulli families form a conjugate pair. In Example 12.11, we learn that the normal density is conjugate to itself.

Typically, the computation of the posterior density is much more computationally intensive that what was shown
in the two examples above. The choice of conjugate pairs is enticing because the posterior density is a determined
from a simple algebraic computation.

Bayesian statistics is seeing increasing use in the sciences, including the life sciences, as we see the explosive in-
crease in the amount of data. For example, using a classical approach, mutation rates estimated from genetic sequence
data are, due to the paucity of mutation events, often not very precise. However, we now have many data sets that can
be synthesized to create a prior distribution for mutation rates and will lead to estimates for this and other parameters
of interest that will have much smaller variance than under the classical approach.

Exercise 12.19. Show that the gamma family of distributions is a conjugate prior for the Poisson family of distribu-
tions. Give the posterior mean based on n observations.

12.4 Answers to Selected Exercises
12.5. Double the average, 2X̄ . Take the maximum value of the data, max1≤i≤n xi. Double the difference of the
maximum and the minimum, 2(max1≤i≤n xi −min1≤i≤n xi).

12.7. The density of a gamma random variable

f(x|α, β) =
βα

Γ(α)
xα−1e−βx.

Thus, for n observations

L(θ|x) = f(x1|α, β)f(x2|α, β) · · · f(xn|α, β)

=
βα

Γ(α)
xα−1

1 e−βx1
βα

Γ(α)
xα−1

2 e−βx2 · · · β
α

Γ(α)
xα−1
n e−βxn

=
βnα

Γ(α)n
(x1x2 · · ·xn)α−1e−β(x1+x2+···+xn)

12.9. We need to verify that the density f is a non-negative function and that the integral over the sample space is 1.
Note that both fX|Θ(x|ψ) and π(ψ) and thus their product is positive. Consequently,

fX(x) =

∫

Θ

fX|Θ(x|ψ)π(ψ) dψ ≥ 0 for all x.

Next, we reverse the order of the double integral,
∫

Rn
fX(x)dx =

∫

Rn

(∫

Θ

fX|Θ(x|ψ)π(ψ) dψ

)
dx =

∫

Θ

(∫

Rn
fX|Θ(x|ψ) dx

)
π(ψ)dψ.

Because fX|Θ(x|ψ), is a density function, the integral inside the parentheses is 1. Now use the fact that π is a
probability density, ∫

Rn
fX(x)dx =

∫

Θ

π(ψ)dψ = 1.

227



Introduction to the Science of Statistics Overview of Estimation

12.10. In this case the total number of observations is α + β + n and the total number of successes is α +
∑n
i=1 xi.

Their ratio is the posterior mean.

12.15. Our goal is to estimate the variance of p = g(p1, p2) = p1p2 using the delta method. Let µi, σ2
i , be the posterior

mean and variance for unit i = 1, 2, respectively. For this we write

σ2
g(µ1,µ2) ≈

∂g

∂p1
(µ1, µ2)σ2

1 +
∂g

∂p2
(µ1, µ2)σ2

2 = µ2σ
2
1 + µ1σ

2
2

=
16

22
· 18 · 4

222 · 23
+

18

22
· 16 · 6

222 · 23
=

16 · 18

223 · 23
(4 + 6) =

8 · 9 · 5
113 · 23

= 0.01176.

The estimated standard deviation σ2
g(µ1,µ2) ≈ 0.1084 is about 12% higher than the estimate from the simulation.

12.17. To include some of the details in the computation, we first add and subtract x̄ in the sum for the joint density,

fX|Θ(x|θ) =
1

(2π)n/2
exp

(
−1

2

n∑

i=1

(xi − θ)2

)
=

1

(2π)n/2
exp

(
−1

2

n∑

i=1

((xi − x̄) + (x̄− θ))2

)

Then we expand the square in the sum to obtain

n∑

i=1

((xi − x̄) + (x̄− θ))2 =

n∑

i=1

(xi − x̄)2 + 2

(
n∑

i=1

(xi − x̄)

)
(x̄− θ) +

n∑

i=1

(x̄− θ)2

=

n∑

i=1

(xi − x̄)2 + 0 + n(x̄− θ)2

This gives the joint density

fX|Θ(x|θ) =
1

(2π)n/2
exp

(
−n

2
(θ − x̄)2 − 1

2

n∑

i=1

(xi − x̄)2

)
.

The posterior density is

fΘ|X(θ|x) = c(x)fX|Θ(x|θ) · fΘ(θ)

= c(x)
1

(2π)n/2
exp

(
−n

2
(θ − x̄)2 − 1

2

n∑

i=1

(xi − x̄)2

)
·
√

λ

2π
exp

(
−λ

2
(θ − θ0)2

)

=

(
c(x)

1

(2π)n/2

√
λ

2π
exp

(
−1

2

n∑

i=1

(xi − x̄)2

))
exp

(
−1

2
(n(θ − x̄)2 + λ(θ − θ0)2)

)

= c1(x) exp

(
−1

2
(n(θ − x̄)2 + λ(θ − θ0)2)

)
.

Here c1(x) is the function of x in parenthesis. We now expand the expressions in the exponent,

n(θ − x̄)2 + λ(θ − θ0)2 = (nθ2 − 2nx̄θ + nx̄2) + (λθ2 − 2λθ0θ + λθ2
0)

= (n+ λ)θ2 − 2(nx̄+ λθ0)θ + (nx̄2 + λθ2
0)

= (n+ λ)

(
θ2 − 2

nx̄+ λθ0

n+ λ
θ

)
+ (nx̄2 + λθ2

0)

= (n+ λ)
(
θ2 − 2θ1(x)θ + θ1(x)2

)
− (n+ λ)θ1(x)2 + (nx̄2 + λθ2

0)

= (n+ λ)(θ − θ1(x))2 − (n+ λ)θ1(x)2 + (nx̄2 + λθ2
0)
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using the definition of θ1(x) in (12.7) and completing the square.

fΘ|X(θ|x) = c1(x) exp

(
−1

2
((nx̄2 + λθ2

0)− (n+ λ)θ1(x)2 + (n+ λ)(θ − θ1(x))2)

)

=

(
c1(x) exp

(
−1

2
((nx̄2 + λθ2

0)− (n+ λ)θ(x)2)

))
exp(−n+ λ

2
(θ − θ1(x))2)

= c2(x) exp(−n+ λ

2
(θ − θ1(x))2)

where c2(x) is the function of x in parenthesis. This give a posterior density that is normal, mean θ1(x) and variance
n+ λ.

12.18. Using the formula in (12.7) for the mean. For the information, we have the transformation λ 7→ n + λ for n
observations. With these two idesa, we compute the sequential updates.

prior statistics posterior
λ = 1/4, σ2 = 4, µ = 0, n = 6, x̄ = 1.216, λ = 25/4, µ = 24/25 · 1.216 = 1.16736
λ = 25/4, σ2 = 4/25, µ = 1.16736 n = 3, x̄ = 1.911, λ = 37/4, µ = 25/37 · 1.16736 + 12/37 · 1.911 = 1.408541
λ = 37/4, σ2 = 4/37, µ = 1.408541, n = 3, x̄ = 0.811, λ = 49/4, µ = 37/49 · 1.408541 + 12/49 · 0.811 = 1.262204

To accomplish this in one step, note that

n = 6 + 3 = 3 = 12, x̄ =
1

12
(6 · 1.216 + 3 · 1.911 + 3 · 0.811) = 1.2885.

prior statistics posterior
λ = 1/4, σ2 = 4, µ = 0, n = 12, x̄ = 1.2885, λ = 49/4, µ = 48/49 · 1.2885 = 1.262204

Under either method, the posterior mean is 1.262204 and the posterior variance is 4/49. Notice that the sample
variance played no role in the computation. Thus, the complete table is:

prior data posterior
µ σ2 observations n x̄ s2 µ σ2

(x1,x2,x3) 0 4 x1 6 1.216 1.042 x1 1.16736 4/25
(x2,x3) 1.16736 4/25 x2 3 1.911 0.432 (x1,x2) 1.408541 4/37

x3 1.408541 4/37 x3 3 0.811 0.348 (x1,x2,x3) 1.262204 4/49

12.19. For n observations x1, x2, . . . , xn of independent Poisson random variables having parameter λ, the joint
density is the product of the n marginal densities.

fX(x|λ) =
λx1

x1!
e−λ · λ

x2

x2!
e−λ · · · λ

xn

xn!
e−λ =

1

x1!x2! · · ·xn!
λx1+x2+···+xne−nλ =

1

x1!x2! · · ·xn!
λnx̄e−nλ.

The prior density on λ has a Γ(α, β) density

π(λ) =
βα

Γ(α)
λα−1e−βλ.

Thus, the posterior density

fΛ|X(λ|x) = c(x)λα−1e−βλ · λnx̄e−nλ = c(x)λα+nx̄−1e−(β+n)λ

is the density of a Γ(α+ nx̄, β + n) random variable. Its mean can be written as the weighted average

α+ nx̄

β + n
=
α

β
· β

β + n
+ x̄ · n

β + n
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of the prior mean α/β and the sample mean x̄. The weights are, respectively, proportional to β and the number of
observations n.

The figure above demonstrate the case with a Γ(2, 1) prior density on λ and a sum x1 +x2 +x3 +x4 +x5 = 6 for 5
values for independent observations of a Poisson random random variable. Thus the posterior has a Γ(2 + 6, 1 + 5) =
Γ(8, 6) distribution.
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Topic 13

Method of Moments

13.1 Introduction

Method of moments estimation is based solely on the law of large numbers, which we repeat here:

Let M1,M2, . . . be independent random variables having a common distribution possessing a mean µM . Then the
sample means converge to the distributional mean as the number of observations increase.

M̄n =
1

n

n∑

i=1

Mi → µM as n→∞.

To show how the method of moments determines an estimator, we first consider the case of one parameter. We
start with independent random variables X1, X2, . . . chosen according to the probability density fX(x|θ) associated
to an unknown parameter value θ. The common mean of the Xi, µX , is a function k(θ) of θ. For example, if the Xi

are continuous random variables, then

µX =

∫ ∞

−∞
xfX(x|θ) dx = k(θ).

The law of large numbers states that

X̄n =
1

n

n∑

i=1

Xi → µX as n→∞.

Thus, if the number of observations n is large, the distributional mean, µ = k(θ), should be well approximated by
the sample mean, i.e.,

X̄ ≈ k(θ).

This can be turned into an estimator θ̂ by setting

X̄ = k(θ̂).

and solving for θ̂.
We shall next describe the procedure in the case of a vector of parameters and then give several examples. We

shall see that the delta method can be used to estimate the variance of method of moment estimators.
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13.2 The Procedure
More generally, for independent random variables X1, X2, . . . chosen according to the probability distribution derived
from the parameter value θ and m a real valued function, if k(θ) = Eθm(X1), then

1

n

n∑

i=1

m(Xi)→ k(θ) as n→∞.

The method of moments results from the choices m(x) = xm. Write

µm = EXm = km(θ). (13.1)

for the m-th moment.
Our estimation procedure follows from these 4 steps to link the sample moments to parameter estimates.

• Step 1. If the model has d parameters, we compute the functions km in equation (13.1) for the first d moments,

µ1 = k1(θ1, θ2 . . . , θd), µ2 = k2(θ1, θ2 . . . , θd), . . . , µd = kd(θ1, θ2 . . . , θd),

obtaining d equations in d unknowns.

• Step 2. We then solve for the d parameters as a function of the moments.

θ1 = g1(µ1, µ2, · · · , µd), θ2 = g2(µ1, µ2, · · · , µd), . . . , θd = gd(µ1, µ2, · · · , µd). (13.2)

• Step 3. Now, based on the data x = (x1, x2, . . . , xn), we compute the first d sample moments,

x =
1

n

n∑

i=1

xi, x2 =
1

n

n∑

i=1

x2
i , . . . , xd =

1

n

n∑

i=1

xdi .

Using the law of large numbers, we have, for each moment, m = 1, . . . , d, that µm ≈ xm.

NB Sometimes, the central moments are more convenient. For the case of d = 2, the entails using

m1 and σ2 = m2 −m2
1

in place of m1 and m2.

• Step 4. We replace the distributional moments µm by the sample moments xm, then the solutions in (13.2) give
us formulas for the method of moment estimators (θ̂1, θ̂2, . . . , θ̂d). For the data x, these estimates are

θ̂1(x) = g1(x̄, x2, · · · , xd), θ̂2(x) = g2(x̄, x2, · · · , xd), . . . , θ̂d(x) = gd(x̄, x2, · · · , xd).

How this abstract description works in practice can be best seen through examples.

13.3 Examples
Example 13.1. Let X1, X2, . . . , Xn be a simple random sample of Pareto random variables with density

fX(x|β) =
β

xβ+1
, x > 1.

The cumulative distribution function is
FX(x) = 1− x−β , x > 1.
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The mean and the variance are, respectively,

µ =
β

β − 1
, σ2 =

β

(β − 1)2(β − 2)
.

In this situation, we have one parameter, namely β. Thus, in step 1, we will only need to determine the first moment

µ1 = µ = k1(β) =
β

β − 1

to find the method of moments estimator β̂ for β.
For step 2, we solve for β as a function of the mean µ.

β = g1(µ) =
µ

µ− 1
.

Consequently, a method of moments estimator for β is obtained by replacing the distributional mean µ by the sample
mean X̄ .

β̂ =
X̄

X̄ − 1
.

A good estimator should have a small variance . To use the delta method to estimate the variance of β̂,

σ2
β̂
≈ g′1(µ)2σ

2

n
.

we compute

g′1(µ) = − 1

(µ− 1)2
, giving in terms of β,

g′1

(
β

β − 1

)
= − 1

( β
β−1 − 1)2

= − (β − 1)2

(β − (β − 1))2
= −(β − 1)2.

Thus, β̂ has mean approximately equal to β and variance

σ2
β̂
≈ g′1(µ)2σ

2

n
= (β − 1)4 β

n(β − 1)2(β − 2)
=
β(β − 1)2

n(β − 2)

As a example, let’s consider the case with β = 3 and n = 100. Then,

σ2
β̂
≈ 3 · 22

100 · 1 =
12

100
=

3

25
, and σβ̂ ≈

√
3

5
= 0.346.

To simulate this, we first need to simulate Pareto random variables. Recall that the probability transform states that
if the Xi are independent Pareto random variables, then Ui = FX(Xi) are independent uniform random variables on
the interval [0, 1]. Thus, we can simulate Xi with F−1

X (Ui). If

u = FX(x) = 1− x−3, then x = (1− u)−1/3 = v−1/3, where v = 1− u.
Note that ifUi are uniform random variables on the interval [0, 1] then so are Vi = 1−Ui. Consequently, 1/ β

√
V1, 1/

β
√
V2, · · ·

have the appropriate Pareto distribution. ..

> paretobar<-numeric(1000)
> for (i in 1:1000){v<-runif(100);pareto<-1/vˆ(1/3);paretobar[i]<-mean(pareto)}
> hist(paretobar)
> betahat<-paretobar/(paretobar-1)
> hist(betahat)
> mean(betahat)
[1] 3.053254
> sd(betahat)
[1] 0.3200865
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The sample mean for the estimate for β at 3.053 is close to the simulated value of 3. In this example, the estimator

β̂ is biased upward, In other words, on average the estimate is greater than the parameter, i. e., Eβ β̂ > β. The
sample standard deviation value of 0.320 is close to the value 0.346 estimated by the delta method. When we examine
unbiased estimators, we will learn that this bias could have been anticipated.

Exercise 13.2. The muon is an elementary particle with an electric charge of −1 and a spin (an intrinsic angular
momentum) of 1/2. It is an unstable subatomic particle with a mean lifetime of 2.2 µs. Muons have a mass of about
200 times the mass of an electron. Since the muon’s charge and spin are the same as the electron, a muon can be
viewed as a much heavier version of the electron. The collision of an accelerated proton (p) beam having energy
600 MeV (million electron volts) with the nuclei of a production target produces positive pions (π+) under one of two
possible reactions.

p+ p→ p+ n+ π+ or p+ n→ n+ n+ π+

From the subsequent decay of the pions (mean lifetime 26.03 ns), positive muons (µ+), are formed via the two body
decay

π+ → µ+ + νµ

where νµ is the symbol of a muon neutrino. The decay of a muon into a positron (e+), an electron neutrino (νe),
and a muon antineutrino (ν̄µ)

µ+ → e+ + νe + ν̄µ

has a distribution angle t with density given by

f(t|α) =
1

2π
(1 + α cos t), 0 ≤ t ≤ 2π,

with t the angle between the positron trajectory and the µ+-spin and anisometry parameter α ∈ [−1/3, 1/3] depends
the polarization of the muon beam and positron energy. Based on the measurement t1, . . . tn, give the method of
moments estimate α̂ for α. (Note: In this case the mean is 0 for all values of α, so we will have to compute the second
moment to obtain an estimator.)

Example 13.3 (Lincoln-Peterson method of mark and recapture). The size of an animal population in a habitat of
interest is an important question in conservation biology. However, because individuals are often too difficult to find,
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a census is not feasible. One estimation technique is to capture some of the animals, mark them and release them back
into the wild to mix randomly with the population.

Some time later, a second capture from the population is made. In this case, some of the animals were not in the
first capture and some, which are tagged, are recaptured. Let

• t be the number captured and tagged,

• k be the number in the second capture,

• r be the number in the second capture that are tagged, and let

• N be the total population size.

Thus, both t and k are under the control of the experimenter. The value of r is random and the populations size
N is the parameter to be estimated. We will use a method of moments strategy to estimate N . First, note that we can
guess the the estimate of N by considering two proportions.

the proportion of the tagged fish in the second capture ≈ the proportion of tagged fish in the population
r

k
≈ t

N

This can be solved for N to find N ≈ kt/r. The advantage of obtaining this as a method of moments estimator is
that we evaluate the precision of this estimator by determining, for example, its variance. To begin, let

Xi =

{
1 if the i-th individual in the second capture has a tag.
0 if the i-th individual in the second capture does not have a tag.

The Xi are Bernoulli random variables with success probability

P{Xi = 1} =
t

N
.

They are not Bernoulli trials because the outcomes are not independent. We are sampling without replacement.
For example,

P{the second individual is tagged|first individual is tagged} =
t− 1

N − 1
.

In words, we are saying that the probability model behind mark and recapture is one where the number recaptured is
random and follows a hypergeometric distribution. The number of tagged individuals is X = X1 +X2 + · · ·+Xk

and the expected number of tagged individuals is

µ = EX = EX1 + EX2 + · · ·+ EXk =
t

N
+

t

N
+ · · ·+ t

N
=
kt

N
.

The proportion of tagged individuals, X̄ = (X1 + · · ·+Xk)/k, has expected value

EX̄ =
µ

k
=

t

N
.

Thus,

N =
kt

µ
.

Now in this case, we are estimating µ, the mean number recaptured with r, the actual number recaptured. So, to
obtain the estimate N̂ . we replace µ with the previous equation by r.

N̂ =
kt

r

To simulate mark and capture, consider a population of 2000 fish, tag 200, and capture 400. We perform 1000
simulations of this experimental design. (The R command replicate repeats a chosen number of times (here 1000)
the stated expression and stores, in this case, in the vector r).
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> t<-200;k<-400;N<-2000
> fish<-c(rep(1,t),rep(0,N-t))
> r<-replicate(1000,sum(sample(fish,k)))
> Nhat<-k*t/r

The command sample(fish,400) creates a vector of length 400 of zeros and ones for, respectively, untagged
and tagged fish. Thus, the sum command gives the number of tagged fish in the simulation. This is repeated 1000
times and stored in the vector r. Let’s look a summaries of r and the estimates N̂ of the population.

> mean(r)
[1] 40.09
> sd(r)
[1] 5.245705
> mean(Nhat)
[1] 2031.031
> sd(Nhat)
[1] 276.6233
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To estimate the population of pink salmon in Deep Cove Creek in southeastern Alaska, 1709 fish were tagged. Of
the 6375 carcasses that were examined, 138 were tagged. The estimate for the population size

N̂ =
6375× 1709

138
≈ 78948.

Exercise 13.4. Use the delta method to estimate Var(N̂) and σN̂ . Apply this to the simulated sample and to the Deep
Cove Creek data.

Example 13.5. Fitness is a central concept in the theory of evolution. Relative fitness is quantified as the average
number of surviving progeny of a particular genotype compared with average number of surviving progeny of com-
peting genotypes after a single generation. Consequently, the distribution of fitness effects, that is, the distribution of
fitness for newly arising mutations is a basic question in evolution. A basic understanding of the distribution of fitness
effects is still in its early stages. Eyre-Walker (2006) examined one particular distribution of fitness effects, namely,
deleterious amino acid changing mutations in humans. His approach used a gamma-family of random variables and
gave the estimate of α̂ = 0.23 and β̂ = 5.35.
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A Γ(α, β) random variable has mean α/β and variance α/β2. Because we have two parameters, the method of
moments methodology requires us, in step 1, to determine the first two moments.

E(α,β)X1 =
α

β
and E(α,β)X

2
1 = Var(α,β)(X1) + E(α,β)[X1]2 =

α

β2
+

(
α

β

)2

=
α(1 + α)

β2
=

α

β2
+
α2

β2
.

Thus, for step 1, we find that

µ1 = k1(α, β) =
α

β
, µ2 = k2(α, β) =

α

β2
+
α2

β2
.

For step 2, we solve for α and β. Note that
µ2 − µ2

1 =
α

β2
,

µ1

µ2 − µ2
1

=
α/β

α/β2
= β,

and

µ1 ·
µ1

µ2 − µ2
1

=
α

β
· β = α, or α =

µ2
1

µ2 − µ2
1

.

So set

X̄ =
1

n

n∑

i=1

Xi and X2 =
1

n

n∑

i=1

X2
i

to obtain estimators

β̂ =
X̄

X2 − (X̄)2
=
X̄

S2
and α̂ = β̂X̄ =

(X̄)2

X2 − (X̄)2
=

(X̄)2

S2
.
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Figure 13.1: The density of a Γ(0.23, 5.35) random variable.
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The result shows how using the sample variance can simplify the algebra in finding the method of moments estimator.

To investigate the method of moments on simulated data using R, we consider 1000 repetitions of 100 independent
observations of a Γ(0.23, 5.35) random variable.

> xbar <- numeric(1000)
> x2bar <- numeric(1000)
> for (i in 1:1000){x<-rgamma(100,0.23,5.35);xbar[i]<-mean(x);x2bar[i]<-mean(xˆ2)}
> betahat <- xbar/(x2bar-(xbar)ˆ2)
> alphahat <- betahat*xbar
> mean(alphahat)
[1] 0.2599894
> sd(alphahat)
[1] 0.06672909
> mean(betahat)
[1] 6.315644
> sd(betahat)
[1] 2.203887

To obtain a sense of the distribution of the estimators α̂ and β̂, we give histograms.

> hist(alphahat,probability=TRUE)
> hist(betahat,probability=TRUE)
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As we see, the variance in the estimate of β is quite large. We will revisit this example using maximum likelihood
estimation in the hopes of reducing this variance. The use of the delta method is more difficult in this case because
it must take into account the correlation between X̄ and X2 for independent gamma random variables. Indeed, from
the simulation, we have an estimate..

> cor(xbar,x2bar)
[1] 0.8120864

Moreover, the two estimators α̂ and β̂ are fairly strongly positively correlated. Again, we can estimate this from the
simulation.

> cor(alphahat,betahat)
[1] 0.7606326

In particular, an estimate of α̂ and β̂ are likely to be overestimates or underestimates in tandem.
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13.4 Answers to Selected Exercises
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Figure 13.2: Densities f(t|α) for the values of α = −1
(yellow). −1/3 (red), 0 (black), 1/3 (blue), 1 (light blue).

13.2. Let T be the random variable that is the angle between
the positron trajectory and the µ+-spin. Then integrate by parts
twice to obtain

µ2 = EαT
2 =

1

2π

∫ π

−π
t2(1 + α cos t)dt =

π2

3
− 2α

Thus, α = (µ2 − π2/3)/2. This leads to the method of mo-
ments estimate

α̂ =
1

2

(
t2 − π2

3

)

where t2 is the sample second moment.

13.4. Let X be the random variable for the number of tagged fish. Then, X is a hypergeometric random variable with

mean µX =
kt

N
and variance σ2

X = k
t

N

N − t
N

N − k
N − 1

N = g(µX) =
kt

µX
. Thus, g′(µX) = − kt

µ2
X

.

The variance of N̂

Var(N̂) ≈ g′(µ)2σ2
X =

(
kt

µ2
X

)2

k
t

N

N − t
N

N − k
N − 1

=

(
kt

µ2
X

)2

k
t

kt/µX

kt/µX − t
kt/µX

kt/µX − k
kt/µX − 1

=

(
kt

µ2
X

)2

k
µXt

kt

kt− µXt
kt

kt− kµX
kt− µX

=

(
kt

µ2
X

)2

k
µX
k

k − µX
k

k(t− µX)

kt− µX

=
k2t2

µ3
X

(k − µX)(t− µX)

kt− µX
Now if we replace µX by its estimate r we obtain

σ2
N̂
≈ k2t2

r3

(k − r)(t− r)
kt− r .

For t = 200, k = 400 and r = 40, we have the estimate σN̂ = 268.4. This compares to the estimate of 276.6 from
simulation.

For t = 1709, k = 6375 and r = 138, we have the estimate σN̂ = 6373.4.
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Topic 14

Unbiased Estimation

14.1 Introduction
In creating a parameter estimator, a fundamental question is whether or not the estimator differs from the parameter
in a systematic manner. Let’s examine this by looking a the computation of the mean and the variance of 16 flips of a
fair coin.

Give this task to 10 individuals and ask them report the number of heads. We can simulate this in R as follows .

> (x<-rbinom(10,16,0.5))
[1] 8 5 9 7 7 9 7 8 8 10

Our estimate is obtained by taking these 10 answers and averaging them. Intuitively we anticipate an answer
around 8. For these 10 observations, we find, in this case, that

> sum(x)/10
[1] 7.8

The result is a bit below 8. Is this systematic? To assess this, we appeal to the ideas behind Monte Carlo to twice
perform a 1000 simulations of the example above.

> meanx<-replicate(1000,mean(rbinom(10,16,0.5)))
> mean(meanx)
[1] 7.9799
> meanx<-replicate(1000,mean(rbinom(10,16,0.5)))
> mean(meanx)
[1] 8.0049

From this, we surmise that we the estimate of the sample mean x̄ neither systematically overestimates or un-
derestimates the distributional mean. From our knowledge of the binomial distribution, we know that the mean
µ = np = 16 · 0.5 = 8. In addition, the sample mean X̄ also has mean

EX̄ =
1

10
(8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8) =

80

10
= 8

verifying that we have no systematic error.
The phrase that we use is that the sample mean X̄ is an unbiased estimator of the distributional mean µ. Here is

the precise definition.

Definition 14.1. For observations X = (X1, X2, . . . , Xn) based on a distribution having parameter value θ, and for
d(X) an estimator for k(θ), the bias is the mean of the difference d(X)− k(θ), i.e.,

bd(θ) = Eθd(X)− k(θ). (14.1)
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If bd(θ) = 0 for all values of the parameter, then d(X) is called an unbiased estimator. Any estimator that is not
unbiased is called biased.

Example 14.2. Let X1, X2, . . . , Xn be Bernoulli trials with success parameter p and set the estimator for p to be
d(X) = X̄ , the sample mean. Then,

EpX̄ =
1

n
(EX1 + EX2 + · · ·+ EXn) =

1

n
(p+ p+ · · ·+ p) = p

Thus, X̄ is an unbiased estimator for p. In this circumstance, we generally write p̂ instead of X̄ . In addition, we can
use the fact that for independent random variables, the variance of the sum is the sum of the variances to see that

Var(p̂) =
1

n2
(Var(X1) + Var(X2) + · · ·+ Var(Xn))

=
1

n2
(p(1− p) + p(1− p) + · · ·+ p(1− p)) =

1

n
p(1− p).

Example 14.3. If X1, . . . , Xn form a simple random sample with unknown finite mean µ, then X̄ is an unbiased
estimator of µ. If the Xi have variance σ2, then

Var(X̄) =
σ2

n
. (14.2)

We can assess the quality of an estimator by computing its mean square error, defined by

Eθ[(d(X)− k(θ))2]. (14.3)

Estimators with smaller mean square error are generally preferred to those with larger. Next we derive a simple
relationship between mean square error and variance. If we write Y = d(X) − k(θ) in (14.3) and recall that the
variance Varθ(Y ) = EθY

2 − (EθY )2 .
Then

EθY = Eθ(d(X)− k(θ)) = Eθd(X)− k(θ) = bd(θ) and Varθ(Y ) = Varθ(d(X))

and the mean square error

Eθ[(d(X)− k(θ))2] = EθY
2 = Var(Y ) + (EY )2 = Varθ(d(X)) + bd(θ)

2 (14.4)

Thus, the representation of the mean square error as equal to the variance of the estimator plus the square of the
bias is called the bias-variance decomposition. Mean square error can be considered as a measure of the accuracy
of an estimator. If the variance is small, then we can say that the estimator is precise. It may still not be very accurate
if the bias is large, but will be accurate only if the estimator is both precise and has low bias. In addition:

• The mean square error for an unbiased estimator is its variance.

• Bias always increases the mean square error.

14.2 Computing Bias
For the variance σ2, we have been presented with two choices:

1

n

n∑

i=1

(xi − x̄)2 and
1

n− 1

n∑

i=1

(xi − x̄)2. (14.5)

Using bias as our criterion, we can now resolve between the two choices for the estimators for the variance σ2.
Again, we use simulations to make a conjecture, we then follow up with a computation to verify our guess. For 16
tosses of a fair coin, we know that the variance is np(1− p) = 16 · 1/2 · 1/2 = 4

For the example above, we begin by simulating the coin tosses and compute the sum of squares
∑10
i=1(xi − x̄)2,
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> ssx<-numeric(1000)
> for (i in 1:1000){x<-rbinom(10,16,0.5);ssx[i]<-sum((x-mean(x))ˆ2)}
> mean(ssx)
[1] 35.8511
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Figure 14.1: Sum of squares about x̄ for 1000 simulations.

The choice is to divide either by 10, for the first
choice, or 9, for the second.

> mean(ssx)/10;mean(ssx)/9
[1] 3.58511
[1] 3.983456

Exercise 14.4. Repeat the simulation above, compute
the sum of squares

∑10
i=1(xi− 8)2. Show that these sim-

ulations support dividing by 10 rather than 9.
Nore generally, show that

∑n
i=1(Xi − µ)2/n is an

unbiased estimator for σ2 for independent random vari-
able X1, . . . , Xn whose common distribution has mean
µ and variance σ2.

In this case, because we know all the aspects of the
simulation, and thus we know that the answer ought to
be near 4. Consequently, division by 9 appears to be the
appropriate choice. Let’s check this out, beginning with
what seems to be the inappropriate choice to see what goes wrong..

Example 14.5. If a simple random sample X1, X2, . . . , has unknown finite variance σ2, then, we can consider the
sample variance

S2 =
1

n

n∑

i=1

(Xi − X̄)2.

To find the mean of S2, we divide the difference between an observation Xi and the distributional mean into two steps
- the first from Xi to the sample mean X̄ and and then from the sample mean to the distributional mean, i.e.,

Xi − µ = (Xi − X̄) + (X̄ − µ).

We shall soon see that the lack of knowledge of µ is the source of the bias. Make this substitution and expand the
square to obtain

n∑

i=1

(Xi − µ)2 =

n∑

i=1

((Xi − X̄) + (X̄ − µ))2

=

n∑

i=1

(Xi − X̄)2 + 2

n∑

i=1

(Xi − X̄)(X̄ − µ) +

n∑

i=1

(X̄ − µ)2

=

n∑

i=1

(Xi − X̄)2 + 2(X̄ − µ)

n∑

i=1

(Xi − X̄) + n(X̄ − µ)2

=

n∑

i=1

(Xi − X̄)2 + n(X̄ − µ)2

(Check for yourself that the middle term in the third line equals 0.) Subtract the term n(X̄ − µ)2 from both sides and
divide by n to obtain the identity
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1

n

n∑

i=1

(Xi − X̄)2 =
1

n

n∑

i=1

(Xi − µ)2 − (X̄ − µ)2.

Using the identity above and the linearity property of expectation we find that

ES2 = E

[
1

n

n∑

i=1

(Xi − X̄)2

]

= E

[
1

n

n∑

i=1

(Xi − µ)2 − (X̄ − µ)2

]

=
1

n

n∑

i=1

E[(Xi − µ)2]− E[(X̄ − µ)2]

=
1

n

n∑

i=1

Var(Xi)− Var(X̄)

=
1

n
nσ2 − 1

n
σ2 =

n− 1

n
σ2 6= σ2.

The last line uses (14.2). This shows that S2 is a biased estimator for σ2. Using the definition in (14.1), we can
see that it is biased downwards.

b(σ2) =
n− 1

n
σ2 − σ2 = − 1

n
σ2.

Note that the bias is equal to −Var(X̄). In addition, because

E

[
n

n− 1
S2

]
=

n

n− 1
E
[
S2
]

=
n

n− 1

(
n− 1

n
σ2

)
= σ2

and

S2
u =

n

n− 1
S2 =

1

n− 1

n∑

i=1

(Xi − X̄)2

is an unbiased estimator for σ2. As we shall learn in the next section, because the square root is concave downward,
Su =

√
S2
u as an estimator for σ is downwardly biased.

Example 14.6. We have seen, in the case of n Bernoulli trials having x successes, that p̂ = x/n is an unbiased
estimator for the parameter p. This is the case, for example, in taking a simple random sample of genetic markers at
a particular biallelic locus. (A locus with exactly two alleles.) Let one allele denote the wildtype (the typical alleles
as it occurs in nature) and the second a variant. If the circumstances in which variant is recessive, then an individual
expresses the variant phenotype only in the case that both chromosomes contain this marker. In the case of independent
alleles from each parent, the probability of the variant phenotype is p2. Naı̈vely, we could use the estimator p̂2. (Later,
we will see that this is the maximum likelihood estimator.) To determine the bias of this estimator, note that

Ep̂2 = (Ep̂)2 + Var(p̂) = p2 +
1

n
p(1− p). (14.6)

Thus, the bias b(p) = p(1− p)/n and the estimator p̂2 is biased upward.

Exercise 14.7. For Bernoulli trials X1, . . . , Xn,

1

n

n∑

i=1

(Xi − p̂)2 = p̂(1− p̂).
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Based on this exercise, and the computation above yielding an unbiased estimator, S2
u, for the variance,

E

[
1

n− 1
p̂(1− p̂)

]
=

1

n
E

[
1

n− 1

n∑

i=1

(Xi − p̂)2

]
=

1

n
E[S2

u] =
1

n
Var(X1) =

1

n
p(1− p).

In other words,
1

n− 1
p̂(1− p̂)

is an unbiased estimator of p(1− p)/n. Returning to (14.6),

E

[
p̂2 − 1

n− 1
p̂(1− p̂)

]
=

(
p2 +

1

n
p(1− p)

)
− 1

n
p(1− p) = p2.

Thus,

p̂2
u = p̂2 − 1

n− 1
p̂(1− p̂) = p̂

(n− 1)p̂− 1 + p̂

n− 1
= p̂

np̂− 1

n− 1
=
x(x− 1)

n(n− 1)
.

is an unbiased estimator of p2.
To compare the two estimators for p2, assume that we find 13 variant alleles in a sample of 30, then p̂ = 13/30 =

0.4333,

p̂2 =

(
13

30

)2

= 0.1878, and p̂2
u =

13 · 12

30 · 29
= 0.1793.

The bias for the estimate p̂2, in this case 0.0085, is subtracted to give the unbiased estimate p̂2
u.

The heterozygosity of a biallelic locus is h = 2p(1−p). From the discussion above, we see that h has the unbiased
estimator

ĥ =
2n

n− 1
p̂(1− p̂) =

2n

n− 1

(x
n

)(n− x
n

)
=

2x(n− x)

n(n− 1)
.

14.3 Compensating for Bias
In the methods of moments estimation, we have used g(X̄) as an estimator for g(µ). If g is a convex function, we
can say something about the bias of this estimator. In Figure 14.2, we see the method of moments estimator for the
estimator g(X̄) for a parameter β in the Pareto distribution. The choice of β = 3 corresponds to a mean of µ = 3/2 for
the Pareto random variables. The central limit theorem states that the sample mean X̄ is nearly normally distributed
with mean 3/2. Thus, the distribution of X̄ is nearly symmetric around 3/2. From the figure, we can see that the
interval from 1.4 to 1.5 under the function g maps into a longer interval above β = 3 than the interval from 1.5 to 1.6
maps below β = 3. Thus, the function g spreads the values of X̄ above β = 3 more than below. Consequently, we
anticipate that the estimator β̂ will be upwardly biased.

To address this phenomena in more general terms, we use the characterization of a convex function as a differen-
tiable function whose graph lies above any tangent line. If we look at the value µ for the convex function g, then this
statement becomes

g(x)− g(µ) ≥ g′(µ)(x− µ).

Now replace x with the random variable X̄ and take expectations.

Eµ[g(X̄)− g(µ)] ≥ Eµ[g′(µ)(X̄ − µ)] = g′(µ)Eµ[X̄ − µ] = 0.

Consequently,
Eµg(X̄) ≥ g(µ) (14.7)

and g(X̄) is biased upwards. The expression in (14.7) is known as Jensen’s inequality.

Exercise 14.8. Show that the estimator Su is a downwardly biased estimator for σ.
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g(x) = x/(x!1)

y=g(µ)+g’(µ)(x!µ)

Figure 14.2: Graph of a convex function. Note that the tangent line is below the graph of g. Here we show the case in which µ = 1.5 and
β = g(µ) = 3. Notice that the interval from x = 1.4 to x = 1.5 has a longer range than the interval from x = 1.5 to x = 1.6 Because g spreads
the values of X̄ above β = 3 more than below, the estimator β̂ for β is biased upward. We can use a second order Taylor series expansion to correct
most of this bias.

To estimate the size of the bias, we look at a quadratic approximation for g centered at the value µ

g(x)− g(µ) ≈ g′(µ)(x− µ) +
1

2
g′′(µ)(x− µ)2.

Again, replace x in this expression with the random variable X̄ and then take expectations. Then, the bias

bg(µ) = Eµ[g(X̄)]− g(µ) ≈ Eµ[g′(µ)(X̄ − µ)] +
1

2
E[g′′(µ)(X̄ − µ)2] =

1

2
g′′(µ)Var(X̄) =

1

2
g′′(µ)

σ2

n
. (14.8)

(Remember that Eµ[g′(µ)(X̄ − µ)] = 0.)

Thus, the bias has the intuitive properties of being

• large for strongly convex functions, i.e., ones with a large value for the second derivative evaluated at the mean
µ,

• large for observations having high variance σ2, and

• small when the number of observations n is large.

In addition, this provides an estimate of the mean square error for a method of moment estimator θ̂(X) =
g(X̄) based on the relationship θ = g(µ). Based on the variance-bias identity in (14.3), we use the delta method to
approximate Varθ(g(X̄)) and (14.8) to approximate the bias. Consequently,

Eθ[(θ̂(X)− θ)2] = Eθ[(g(X̄)− g(µ))2] = Varθ(g(X̄)) + bg(µ)2 ≈ g′(µ)2σ
2

n
+

1

4

(
g′′(µ)

σ2

n

)2

.

Finally, we make the substitution µ = k(θ) to give an expression for the approximation of the mean square error for
θ̂ as a function of θ. Notice that the contribution to mean square error from the variance of the estimator is inversely
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proportional to n, the sample size. The contribution from the bias decreases more rapidly, inversely proportional to
n2,

Exercise 14.9. If a method of moments estimator θ̂ is a linear function of the sample mean x̄, then it is unbiased,

Exercise 14.10. Use (14.8) to estimate the bias in using p̂2 as an estimate of p2 is a sequence of n Bernoulli trials and
note that it matches the value (14.6).

Example 14.11. For the method of moments estimator for the Pareto random variable, we determined that

g(µ) =
µ

µ− 1
.

and that X̄ has

mean µ = β
β−1 and variance σ2

n = β
n(β−1)2(β−2)

By taking derivatives, we see that g′(µ) = −1/(µ− 1)2 and g′′(µ) = 2(µ− 1)−3 > 0 and, because µ > 1, g is a
convex function. Next, we have

g′
(

β

β − 1

)
=

−1
(

β
β−1 − 1

)2 = −(β − 1)2 and g′′
(

β

β − 1

)
=

2
(

β
β−1 − 1

)3 = 2(β − 1)3.

Thus, the bias

bg(β) ≈ 1

2
g′′(µ)

σ2

n
=

1

2
2(β − 1)3 β

n(β − 1)2(β − 2)
=
β(β − 1)

n(β − 2)
.

So, for β = 3 and n = 100, the bias is approximately 0.06. Compare this to the estimated value of 0.053 from the
simulation in the previous section. The mean square error,

Eθ[(g(X̄)− g(µ))2] ≈ g′(µ)2σ
2

n
+ bg(β)2 =

β(β − 1)2

n(β − 2)
+
β2(β − 1)2

n2(β − 2)2
=
β(β − 1)2

n(β − 2)

(
1 +

β

n(β − 2)

)
.

Example 14.12. For estimating the population in mark and recapture, we used the estimate

N = g(µ) =
kt

µ

for the total population. Here µ is the mean number recaptured, k is the number captured in the second capture event
and t is the number tagged. The second derivative

g′′(µ) =
2kt

µ3
> 0

and hence the method of moments estimate is biased upwards. In this siutation, n = 1 and the number recaptured is a
hypergeometric random variable. Hence its variance

σ2 =
kt

N

(N − t)(N − k)

N(N − 1)
.

Thus, the bias

bg(N) =
1

2

2kt

µ3

kt

N

(N − t)(N − k)

N(N − 1)
=

(N − t)(N − k)

µ(N − 1)
=

(kt/µ− t)(kt/µ− k)

µ(kt/µ− 1)
=
kt(k − µ)(t− µ)

µ2(kt− µ)
.

In the simulation example, N = 2000, t = 200, k = 400 and µ = 40. This gives an estimate for the bias of 36.02. We
can compare this to the bias of 2031.03-2000 = 31.03 based on the simulation in Example 13.2.

This suggests a new estimator by taking the method of moments estimator and subtracting the approximation of
the bias.

N̂ =
kt

r
− kt(k − r)(t− r)

r2(kt− r) =
kt

r

(
1− (k − r)(t− r)

r(kt− r)

)
.
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The delta method gives us that the standard deviation of the estimator is |g′(µ)|σ/√n. Thus the ratio of the bias
of an estimator to its standard deviation as determined by the delta method is approximately

g′′(µ)σ2/(2n)

|g′(µ)|σ/√n =
1

2

g′′(µ)

|g′(µ)|
σ√
n
.

If this ratio is� 1, then the bias correction is not very important. In the case of the example above, this ratio is

36.02

268.40
= 0.134

and its usefulness in correcting bias is small.

Example 14.13. As noted earlier, because S2 is an unbiased estimator of σ2 and the square root function is concave
downward. Thus, S is biased downwards as an estimator of σ. To illustrate this, we first simulate both ESn and ES2

n

for values n from 2 to 25 using normal random variables with mean µ = 0 and standard deviation σ = 1.

> s<-numeric(24); s2<-numeric(24)
> for (i in 1:24){s[i]<-mean(replicate(10000,sd(rnorm(i+1))))}
> for (i in 1:24){s2[i]<-mean(replicate(10000,var(rnorm(i+1))))}

We can also find an analytical expression for ESn.

Exercise 14.14. Note that for Z1, Z2, . . . , Zn independent standard normal variables, then

Vn =

n∑

i=1

(Zi − Z̄)2

is χ2
n−1. Let

S2
n =

1

n− 1

n∑

i=1

(Zi − Z̄)2. Show that ESn =

√
2

n− 1

Γ(n/2)

Γ((n− 1)/2)
. (14.9)
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Figure 14.3: Simulated values ESn (red) and ES2

n (black) versus degrees of freedom df = n− 1. The values of ESn (solid black) from (14.9).
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Then, we add the values of ES to form a table that has ES along with the simulated values of ES and ES2.

> df<-1:24
> means<-sqrt(2/df)*gamma((df+1)/2)/gamma(df/2)
> head(data.frame(df,means,s,s2))

df means s s2
1 1 0.7978846 0.7913008 1.0008486
2 2 0.8862269 0.8920162 0.9811749
3 3 0.9213177 0.9190756 1.0145019
4 4 0.9399856 0.9419472 1.0006425
5 5 0.9515329 0.9498657 1.0055365
6 6 0.9593688 0.9563602 0.9985865

As we can see from both the analytical expression and the simulations, ES < σ = 1 and approaches 1 as the
degrees of freedom df = n− 1 increase. Notice that the simulated values for the variance is close to 1 = ES2.

Exercise 14.15. The Stirling approximation states that

Γ(t) ≈
√

2π(t− 1)

(
t− 1

e

)t−1

, t = 1.2. . . .

Use this in (14.9) to show that
lim
n→∞

ESn = 1.

14.4 Consistency
Despite the desirability of using unbiased estimation, sometimes such an estimator is hard to find and at other times
impossible. However, note that in the examples above both the size of the bias and the variance in the estimator
decrease inversely proportional to n, the number of observations. Thus, these estimators improve, under both of these
criteria, with more observations. A concept that describes properties such as these is called consistency.

Definition 14.16. Given data X1, X2, . . . and a real valued function h of the parameter space, a sequence of estima-
tors dn, based on the first n observations, is called consistent if for every choice of θ

lim
n→∞

dn(X1, X2, . . . , Xn) = k(θ)

whenever θ is the true state of nature.

Thus, the bias of the estimator disappears in the limit of a large number of observations. In addition, the distribution
of the estimators dn(X1, X2, . . . , Xn) become more and more concentrated near k(θ).

For the next example, we need to recall the sequence definition of continuity: A function g is continuous at a real
number x provided that for every sequence {xn;n ≥ 1} with

xn → x, then, we have that g(xn)→ g(x).

A function is called continuous if it is continuous at every value of x in the domain of g. Thus, we can write the
expression above more succinctly by saying that for every convergent sequence {xn;n ≥ 1},

lim
n→∞

g(xn) = g( lim
n→∞

xn).

Example 14.17. For a method of moment estimator, let’s focus on the case of a single parameter (d = 1). For
independent observations, X1, X2, . . . , having mean µ = k(θ), we have that

EX̄n = µ,

249



Introduction to the Science of Statistics Unbiased Estimation

i. e. X̄n, the sample mean for the first n observations, is an unbiased estimator for µ = k(θ). Also, by the law of large
numbers, we have that

lim
n→∞

X̄n = µ.

Assume that k has a continuous inverse g = k−1. In particular, because µ = k(θ), we have that g(µ) = θ. Next,
using the methods of moments procedure, define, for n observations, the estimators

θ̂n(X1, X2, . . . , Xn) = g

(
1

n
(X1 + · · ·+Xn)

)
= g(X̄n).

for the parameter θ. Using the continuity of g, we find that

lim
n→∞

θ̂n(X1, X2, . . . , Xn) = lim
n→∞

g(X̄n) = g( lim
n→∞

X̄n) = g(µ) = θ

and so we have that g(X̄n) is a consistent sequence of estimators for θ.

14.5 Cramér-Rao Bound
This topic is somewhat more advanced and can be skipped for the first reading. This section gives us an introduction to
the log-likelihood and its derivative, the score functions. We shall encounter these functions again when we introduce
maximum likelihood estimation. In addition, the Cramér Rao bound, which is based on the variance of the score
function, known as the Fisher information, gives a lower bound for the variance of an unbiased estimator. These
concepts will be necessary to describe the variance for maximum likelihood estimators.

Among unbiased estimators, one important goal is to find an estimator that has as small a variance as possible, A
more precise goal would be to find an unbiased estimator d that has uniform minimum variance. In other words,
d(X) has has a smaller variance than for any other unbiased estimator d̃ for every value θ of the parameter.

Varθd(X) ≤ Varθd̃(X) for all θ ∈ Θ.

The efficiency e(d̃) of unbiased estimator d̃ is the minimum value of the ratio

Varθd(X)

Varθd̃(X)

over all values of θ. Thus, the efficiency is between 0 and 1 with a goal of finding estimators with efficiency as near to
one as possible.

For unbiased estimators, the Cramér-Rao bound tells us how small a variance is ever possible. The formula is a bit
mysterious at first. However, we shall soon learn that this bound is a consequence of the bound on correlation that we
have previously learned

Recall that for two random variables Y and Z, the correlation

ρ(Y,Z) =
Cov(Y,Z)√

Var(Y )Var(Z)
. (14.10)

takes values between -1 and 1. Thus, ρ(Y, Z)2 ≤ 1 and so

Cov(Y,Z)2 ≤ Var(Y )Var(Z). (14.11)

Exercise 14.18. If EZ = 0, the Cov(Y,Z) = EY Z
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We begin with data X = (X1, . . . , Xn) drawn from an unknown probability Pθ. The parameter space Θ ⊂ R.
Denote the joint density of these random variables

f(x|θ), where x = (x1 . . . , xn).

In the case that the data come from a simple random sample then the joint density is the product of the marginal
densities.

f(x|θ) = f(x1|θ) · · · f(xn|θ) (14.12)

For continuous random variables, the two basic properties of the density are that f(x|θ) ≥ 0 for all x and that

1 =

∫

Rn
f(x|θ) dx. (14.13)

Now, let d be the unbiased estimator of k(θ), then by the basic formula for computing expectation, we have for
continuous random variables

k(θ) = Eθd(X) =

∫

Rn
d(x)f(x|θ) dx. (14.14)

If the functions in (14.13) and (14.14) are differentiable with respect to the parameter θ and we can pass the
derivative through the integral, then we first differentiate both sides of equation (14.13), and then use the logarithm
function to write this derivate as the expectation of a random variable,

0 =

∫

Rn

∂f(x|θ)
∂θ

dx =

∫

Rn

∂f(x|θ)/∂θ
f(x|θ) f(x|θ) dx =

∫

Rn

∂ ln f(x|θ)
∂θ

f(x|θ) dx = Eθ

[
∂ ln f(X|θ)

∂θ

]
. (14.15)

From a similar calculation using (14.14),

k′(θ) = Eθ

[
d(X)

∂ ln f(X|θ)
∂θ

]
. (14.16)

Now, return to the review on correlation with Y = d(X), the unbiased estimator for k(θ) and the score function
Z = ∂ ln f(X|θ)/∂θ. From equations (14.16) and then (14.11), we find that

k′(θ)2 = Eθ

[
d(X)

∂ ln f(X|θ)
∂θ

]2

= Covθ

(
d(X),

∂ ln f(X|θ)
∂θ

)
≤ Varθ(d(X))Varθ

(
∂ ln f(X|θ)

∂θ

)
,

or,

Varθ(d(X)) ≥ k′(θ)2

I(θ)
. (14.17)

where

I(θ) = Varθ

(
∂ ln f(X|θ)

∂θ

)
= Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]

is called the Fisher information. For the equality, recall that the variance Var(Z) = EZ2 − (EZ)2 and recall from
equation (14.15) that the random variable Z = ∂ ln f(X|θ)/∂θ has mean EZ = 0.

Equation (14.17), called the Cramér-Rao lower bound or the information inequality, states that the lower bound
for the variance of an unbiased estimator is the reciprocal of the Fisher information. In other words, the higher the
information, the lower is the possible value of the variance of an unbiased estimator.

Exercise 14.19. Let X be uniform on the interval [0, θ], θ > 0. Show that

∫ θ

0

∂f(x|θ)
∂θ

dx 6= 0

Thus, in the case, we cannot pass the derivative through the integral,
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If we return to the case of a simple random sample, then take the logarithm of both sides of equation (14.12)

ln f(x|θ) = ln f(x1|θ) + · · ·+ ln f(xn|θ)

and then differentiate with respect to the parameter θ,

∂ ln f(x|θ)
∂θ

=
∂ ln f(x1|θ)

∂θ
+ · · ·+ ∂ ln f(xn|θ)

∂θ
.

The random variables {∂ ln f(Xk|θ)/∂θ; 1 ≤ k ≤ n} are independent and have the same distribution. Using the fact
that the variance of the sum is the sum of the variances for independent random variables, we see that In, the Fisher
information for n observations is n times the Fisher information of a single observation.

In(θ) = Var
(
∂ ln f(X1|θ)

∂θ
+ · · ·+ ∂ ln f(Xn|θ)

∂θ

)
= nVar(

∂ ln f(X1|θ)
∂θ

) = nE[(
∂ ln f(X1|θ)

∂θ
)2].

Notice the correspondence. Information is linearly proportional to the number of observations. If our estimator
is a sample mean or a function of the sample mean, then the variance is inversely proportional to the number of
observations.

Example 14.20. For independent Bernoulli random variables with unknown success probability θ, the density is

f(x|θ) = θx(1− θ)(1−x).

The mean is θ and the variance is θ(1− θ). Taking logarithms, we find that

ln f(x|θ) = x ln θ + (1− x) ln(1− θ),

∂

∂θ
ln f(x|θ) =

x

θ
− 1− x

1− θ =
x− θ
θ(1− θ) .

The Fisher information associated to a single observation

I(θ) = E

[(
∂

∂θ
ln f(X|θ)

)2
]

=
1

θ2(1− θ)2
E[(X − θ)2] =

1

θ2(1− θ)2
Var(X)

=
1

θ2(1− θ)2
θ(1− θ) =

1

θ(1− θ) .

The information for n observations In(θ) = n/(θ(1 − θ)). Thus, by the Cramér-Rao lower bound, any unbiased
estimator of θ based on n observations must have variance al least θ(1− θ)/n. Now, notice that if we take d(x) = x̄,
then

EθX̄ = θ, and Varθd(X) = Var(X̄) =
θ(1− θ)

n
.

These two equations show that X̄ is a unbiased estimator having uniformly minimum variance.

Exercise 14.21. For independent normal random variables with known variance σ2
0 and unknown mean µ, X̄ is a

uniformly minimum variance unbiased estimator.

Exercise 14.22. If we have that the parameter θ appears in the density as a function η = η(θ), then we have two
forms for the Fisher information, Iθ and Iη for each parameterization. Show that

Iθ(θ) = Iη(η(θ))

(
dη(θ)

dθ

)2

(14.18)
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Exercise 14.23. Take two derivatives of ln f(x|θ) to show that

I(θ) = Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]

= −Eθ
[
∂2 ln f(X|θ)

∂θ2

]
. (14.19)

This identity is often a useful alternative to compute the Fisher Information.

Example 14.24. For an exponential random variable,

ln f(x|λ) = lnλ− λx, ∂2f(x|λ)

∂λ2
= − 1

λ2
.

Thus, by (14.19),

I(λ) =
1

λ2
.

Now, X̄ is an unbiased estimator for h(λ) = 1/λ with variance

1

nλ2
.

By the Cramér-Rao lower bound, we have that

g′(λ)2

nI(λ)
=

1/λ4

nλ2
=

1

nλ2
.

Because X̄ has this variance, it is a uniformly minimum variance unbiased estimator.

Example 14.25. To give an estimator that does not achieve the Cramér-Rao bound, let X1, X2, . . . , Xn be a simple
random sample of Pareto random variables with density

fX(x|β) =
β

xβ+1
, x > 1.

The mean and the variance
µ =

β

β − 1
, σ2 =

β

(β − 1)2(β − 2)
.

Thus, X̄ is an unbiased estimator of µ = β/(β − 1)

Var(X̄) =
β

n(β − 1)2(β − 2)
.

To compute the Fisher information, note that

ln f(x|β) = lnβ − (β + 1) lnx and thus
∂2 ln f(x|β)

∂β2
= − 1

β2
.

Using (14.19), we have that

I(β) =
1

β2
.

Next, for

µ = g(β) =
β

β − 1
, g′(β) = − 1

(β − 1)2
, and g′(β)2 =

1

(β − 1)4
.

Thus, the Cramér-Rao bound for the estimator is

g′(β)2

In(β)
=

β2

n(β − 1)4
.

and the efficiency compared to the Cramér-Rao bound is

g′(β)2/In(β)

Var(X̄)
=

β2

n(β − 1)4
· n(β − 1)2(β − 2)

β
=
β(β − 2)

(β − 1)2
= 1− 1

(β − 1)2
.

The Pareto distribution does not have a variance unless β > 2. For β just above 2, the efficiency compared to its
Cramér-Rao bound is low but improves with larger β.
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14.6 A Note on Exponential Families and Efficient Estimators
For an efficient estimator, we need find the cases that lead to equality in the correlation inequality (14.10). Recall that
equality occurs precisely when the correlation is ±1. This occurs when the estimator d(X) and the score function
∂ ln fX(X|θ)/∂θ are linearly related with probability 1.

∂

∂θ
ln fX(X|θ) = a(θ)d(X) + b(θ). (14.20)

After integrating, we obtain,

ln fX(X|θ) =

∫
a(θ)dθ d(X) +

∫
b(θ)dθ + j(X) = η(θ)d(X) +B(θ) + j(X)

Note that the constant of integration of integration is a function of X . Now exponentiate both sides of this equation

fX(X|θ) = c(θ)h(X) exp(η(θ)d(X)). (14.21)

Here c(θ) = expB(θ) and h(X) = exp j(X).

Definition 14.26. Density functions satisfying equation (14.21) form an exponential family with natural parameter
η(θ) and sufficient statistic d(x).

Thus, if we have independent random variables X1, X2, . . . Xn, then the joint density is the product of the densi-
ties, namely,

f(X|θ) = c(θ)nh(X1) · · ·h(Xn) exp(η(θ)(d(X1) + · · ·+ d(Xn)). (14.22)

In addition, as a consequence of this linear relation in (14.20), the mean of he sufficient statistic

d(X) =
1

n
(d(X1) + · · ·+ d(Xn))

is an efficient estimator for k(θ).

Example 14.27 (Poisson random variables).

f(x|λ) =
λx

x!
e−λ = e−λ

1

x!
exp(x lnλ).

Thus, Poisson random variables are an exponential family with c(λ) = exp(−λ), h(x) = 1/x!, and natural parameter
η(λ) = lnλ. Because

λ = EλX̄,

X̄ is an unbiased estimator of the parameter λ.
The score function

∂

∂λ
ln f(x|λ) =

∂

∂λ
(x lnλ− lnx!− λ) =

x

λ
− 1.

The Fisher information for one observation is

I(λ) = Eλ

[(
X

λ
− 1

)2
]

=
1

λ2
Eλ[(X − λ)2] =

1

λ
.

Thus, In(λ) = n/λ is the Fisher information for n observations. In addition,

Varλ(X̄) =
λ

n
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and d(x) = x̄ has efficiency
Var(X̄)

1/In(λ)
= 1.

This could have been predicted. The density of n independent observations is

f(x|λ) =
e−λ

x1!
λx1 · · · e

−λ

xn!
λxn =

e−nλλx1···+xn

x1! · · ·xn!
=

e−nλλnx̄

x1! · · ·xn!

and so the score function
∂

∂λ
ln f(x|λ) =

∂

∂λ
(−nλ+ nx̄ lnλ) = −n+

nx̄

λ
showing that the estimate x̄ and the score function are linearly related.

Exercise 14.28. Show that a Bernoulli random variable with parameter p is an exponential family with c(p) =

1− p, h(x) = 1 and the natural parameter η(p) = ln
(

p
1−p

)
, the log-odds, and sufficient statistic x.

Exercise 14.29. Show that a normal random variable with known variance σ2
0 and unknown mean µ is an exponential

family.

If we parameterize using the natural parameter η, then

fX(x|η) = c(η)h(x) exp(ηd(x))

ln fX(x|η) = ln c(η) + lnh(x) + ηd(x)

∂

∂η
ln fX(x|η) =

∂

∂η
ln c(η) + d(x)

Recall that the mean of the score function is 0. Thus,

0 = Eη

[
∂

∂η
ln fX(X|η)

]
=

∂

∂η
ln c(η) + Eηd(x)

Eηd(x) = − ∂
∂η

ln c(η) (14.23)

Exercise 14.30. For a Bernoulli random variable, show that

c(η) =
1

1 + eη

Exercise 14.31. For a Bernoulli random variable, use (14.23) to show that EpX = p.

Now differentiate the score function and take expectation

∂2

∂η2
ln fX(x|η) =

∂2

∂η2
ln c(η)

Eη

[
∂2

∂η2
ln fX(X|η)

]
=

∂2

∂η2
ln c(η)

Iη(η) = − ∂
2

∂η2
ln c(η), (14.24)

the Fisher information with respect to the natural parameter η.

Exercise 14.32. For a Bernoulli random variable, use (14.24) to show that.

Iη(η) =
eη

(1 + eη)2

and check that (14.18) holds.

255



Introduction to the Science of Statistics Unbiased Estimation

14.7 Answers to Selected Exercises
14.4. Repeat the simulation, replacing mean(x) by 8.

> ssx<-numeric(1000)
> for (i in 1:1000){x<-rbinom(10,16,0.5);ssx[i]<-sum((x-8)ˆ2)}
> mean(ssx)/10;mean(ssx)/9
[1] 3.9918
[1] 4.435333

Note that division by 10 gives an answer very close to the correct value of 4. To verify that the estimator is
unbiased, we write

E

[
1

n

n∑

i=1

(Xi − µ)2

]
=

1

n

n∑

i=1

E[(Xi − µ)2] =
1

n

n∑

i=1

Var(Xi) =
1

n

n∑

i=1

σ2 = σ2.

14.7. For a Bernoulli trial note that X2
i = Xi. Expand the square to obtain

n∑

i=1

(Xi − p̂)2 =

n∑

i=1

X2
i − p̂

n∑

i=1

Xi + np̂2 = np̂− 2np̂2 + np̂2 = n(p̂− p̂2) = np̂(1− p̂).

Divide by n to obtain the result.

14.8. Recall that ES2
u = σ2. Check the second derivative to see that g(t) =

√
t is concave down for all t. For concave

down functions, the direction of the inequality in Jensen’s inequality is reversed. Setting t = S2
u, we have that

ESu = Eg(S2
u) ≤ g(ES2

u) = g(σ2) = σ

and Su is a downwardly biased estimator of σ.

14.9. In oder to have a linear method of moments estimator

θ̂ = a+ bx̄,

we must have, for mean µ,
θ = a+ bµ.

Thus,
Eθ θ̂ = E[a+ bX̄] = a+ bEX̄ = a+ bµ = θ

and θ̂ is unbiased.

14.10. Set g(p) = p2. Then, g′′(p) = 2. Recall that the variance of a Bernoulli random variable σ2 = p(1 − p) and
the bias

bg(p) ≈
1

2
g′′(p)

σ2

n
=

1

2
2
p(1− p)

n
=
p(1− p)

n
.

14.14. Vn is χ2
n−1,

E
√
Vn =

∫ ∞

0

√
vf(v|n− 1) dv =

1

2(n−1)/2Γ((n− 1)/2)

∫ ∞

0

√
vv(n−1)/2−1e−v/2 dv

=

√
2Γ(n/2)

Γ((n− 1)/2)

1

2n/2Γ(n/2)

∫ ∞

0

vn/2−1e−v/2 dv =

√
2Γ(n/2)

Γ((n− 1)/2)

∫ ∞

0

f(v|n) dv

=

√
2Γ(n/2)

Γ((n− 1)/2)
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Now, S2
n = 1

n−1V . Thus

ESn =
1√
n− 1

E
√
Vn =

√
2

n− 1

Γ(n/2)

Γ((n− 1)/2)
.

14.15. Recalling that

lim
x→∞

(
1− α

x

)x
= e−α,

we substitute Stirling’s approximation and drop terms from the expression that have limit 1.

lim
n→∞

ESn = lim
n→∞

√
2

n− 1

Γ(n/2)

Γ((n− 1)/2)

= lim
n→∞

√
2

n− 1

√
2π(n/2− 1)

(
n/2− 1

e

)n/2−1
1√

2π((n− 1)/2− 1)

(
e

(n− 1)/2− 1

)(n−1)/2−1

= lim
n→∞

√
2

n− 1

√
n/2− 1

(n− 1)/2− 1

(
n/2− 1

e

)n/2−1(
e

(n− 1)/2− 1

)(n−1)/2−1

= lim
n→∞

√
2

e(n− 1)

(n/2− 1)n/2−1/2

((n− 1)/2− 1)(n−1)/2−1/2
= lim
n→∞

√
1

e

(n− 1)/2− 1

(n− 1)/2

(n/2− 1)n/2−1/2

((n− 1)/2− 1)n/2−1/2

= lim
n→∞

1√
e

(
n/2− 1

(n− 1)/2− 1

)n/2−1/2

= lim
n→∞

1√
e

(
n− 2

n− 3

)n/2(
n− 2

n− 3

)−1/2

= lim
n→∞

1√
e

(1− 2/n)n/2

(1− 3/n)n/2
=

1

e1/2

e−1

e−3/2
= 1,

14.18. Cov(Y, Z) = EY Z − EY · EZ = EY Z whenever EZ = 0.

14.19. The density f(x|θ) = 1/θ. Thus,
∫ θ

0

∂f(x|θ)
∂θ

dx =

∫ θ

0

∂

∂θ

(
1

θ

)
dx =

∫ θ

0

− 1

θ2
dx = − θ

θ2
= −1

θ
6= 0.

Note that by the Leibnitz integral rule,

∂

∂θ

∫ θ

0

f(x|θ) dx =

∫ θ

0

∂f(x|θ)
∂θ

dx+ f(θ|θ)dθ
dθ

= −1

θ
+

1

θ
= 0.

14.21. For independent normal random variables with known variance σ2
0 and unknown mean µ, the density

f(x|µ) =
1

σ0

√
2π

exp− (x− µ)2

2σ2
0

,

ln f(x|µ) = − ln(σ0

√
2π)− (x− µ)2

2σ2
0

.

Thus, the score function
∂

∂µ
ln f(x|µ) =

1

σ2
0

(x− µ).

and the Fisher information associated to a single observation

I(µ) = E

[(
∂

∂µ
ln f(X|µ)

)2
]

=
1

σ4
0

E[(X − µ)2] =
1

σ4
0

Var(X) =
1

σ2
0

.
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Again, the information is the reciprocal of the variance. Thus, by the Cramér-Rao lower bound, any unbiased estimator
based on n observations must have variance al least σ2

0/n. However, if we take d(x) = x̄, then

Varµd(X) =
σ2

0

n
.

and x̄ is a uniformly minimum variance unbiased estimator.

14.22. The information with respect to θ,

Iθ(θ) = Eθ

[(
∂

∂θ
ln f(X|θ)

)2
]

= Eη(θ)

[(
∂

∂θ
ln f(X|η(θ))

)2
]

= Eη(θ)

[(
∂

∂η
ln f(X|η(θ)) · dη(θ)

dθ

)2
]

= Iη(η(θ))

(
dη(θ)

dθ

)2

.

The second equality uses the chain rule.

14.23. First, we take two derivatives of ln f(x|θ).

∂ ln f(x|θ)
∂θ

=
∂f(x|θ)/∂θ

f(x|θ) (14.25)

and

∂2 ln f(x|θ)
∂θ2

=
∂2f(x|θ)/∂θ2

f(x|θ) − (∂f(x|θ)/∂θ)2

f(x|θ)2
=
∂2f(x|θ)/∂θ2

f(x|θ) −
(
∂f(x|θ)/∂θ)

f(x|θ)

)2

=
∂2f(x|θ)/∂θ2

f(x|θ) −
(
∂ ln f(x|θ)

∂θ

)2

upon substitution from identity (14.25). Thus, the expected values satisfy

Eθ

[
∂2 ln f(X|θ)

∂θ2

]
= Eθ

[
∂2f(X|θ)/∂θ2

f(X|θ)

]
− Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]
.

Consquently, the exercise is complete if we show that Eθ
[
∂2f(X|θ)/∂θ2

f(X|θ)

]
= 0. However, for a continuous random

variable,

Eθ

[
∂2f(X|θ)/∂θ2

f(X|θ)

]
=

∫

Rn

∂2f(x|θ)/∂θ2

f(x|θ) f(x|θ) dx =

∫

Rn

∂2f(x|θ)
∂θ2

dx =
∂2

∂θ2

∫

Rn
f(x|θ) dx =

∂2

∂θ2
1 = 0.

Note that the computation require that we be able to pass two derivatives with respect to θ through the integral sign.

14.28. The Bernoulli density

f(x|p) = px(1− p)1−x = (1− p)
(

p

1− p

)x
= (1− p) exp

(
x ln

(
p

1− p

))
.

Thus, c(p) = 1− p, h(x) = 1, the natural parameter π(p) = ln
(

p
1−p

)
, and the sufficient statistic d(x) = x.

14.29. The normal density

f(x|µ) =
1

σ0

√
2π

exp− (x− µ)2

2σ2
0

=
1

σ0

√
2π
e−µ

2/2σ0e−x
2/2σ0 exp

xµ

σ2
0
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Thus, c(µ) = 1
σ0

√
2π
e−µ

2/2σ0 , h(x) = e−x
2/2σ0 and the natural parameter π(µ) = µ/σ2

0 .

14.30.. For a Bernoulli density,

η = ln

(
p

1− p

)

eη =
p

1− p
eη − eηp = p

eη = (1 + eη)p

p =
eη

1 + eη

Thus,

c(η) = 1− p =
1

1 + eη
.

14.31. The sufficient statistic d(x) = x, then

EX = ln c(η) = − ln(1 + eη)

− ∂
∂η

ln c(η) =
eη

1 + eη
= p

14.32. Take a second derivative so see that the formula for Iη holds. Now, check that

Iη(η(p)) =
eη(p)

1 + eη(p)

1

1 + eη(p)
= p(1− p) and

dη

dp
=

1

p
+

1

1− p =
1

p(1− p) .

Now substitute into (14.18).
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Topic 15

Maximum Likelihood Estimation

The solution of the problems of calculating from a sample the parameters of the hypothetical popula-
tion, which we have put forward in the method of maximum likelihood, consists, then, simply of choosing
such values of these parameters as have the maximum likelihood. - R. A. Fisher, Phil. Trans. Royal Soc.
Ser. A. 222, (1922),

15.1 Introduction

The principle of maximum likelihood is relatively straightforward to state. As before, we begin with observations
X = (X1, . . . , Xn) of random variables chosen according to one of a family of probabilities Pθ. In addition, f(x|θ),
x = (x1, . . . , xn) will be used to denote the density function for the data when θ is the true state of nature.

Then, the principle of maximum likelihood yields a choice of the estimator θ̂ as the value for the parameter that
makes the observed data most probable.

Definition 15.1. The likelihood function is the density function regarded as a function of θ.

L(θ|x) = f(x|θ), θ ∈ Θ. (15.1)

The maximum likelihood estimate (MLE),

θ̂(x) = arg max
θ

L(θ|x). (15.2)

Thus, we are presuming that a unique global maximum exists.
We will learn that especially for large samples, the maximum likelihood estimators have many desirable properties.

However, especially for high dimensional data, the likelihood can have many local maxima. Thus, finding the global
maximum can be a major computational challenge.

This class of estimators has an important invariance property. If θ̂(x) is a maximum likelihood estimate for
θ, then g(θ̂(x)) is a maximum likelihood estimate for g(θ). For example, if θ is a parameter for the variance and θ̂

is the maximum likelihood estimate for the variance, then
√
θ̂ is the maximum likelihood estimate for the standard

deviation. This flexibility in estimation criterion seen here is not available in the case of unbiased estimators.
For independent observations, the likelihood is the product of density functions. Because the logarithm of a product

is the sum of the logarithms, finding zeroes of the score function, ∂ lnL(θ|x)/∂θ, the derivative of the logarithm of
the likelihood, will be easier. Having the parameter values be the variable of interest is somewhat unusual, so we will
next look at several examples of the likelihood function.
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Figure 15.1: Likelihood function (top row) and its logarithm (bottom row) for Bernoulli trials. The left column is based on 20 trials having 8 and
11 successes. The right column is based on 40 trials having 16 and 22 successes. Notice that the maximum likelihood is approximately 10−6 for 20
trials and 10−12 for 40. In addition, note that the peaks are more narrow for 40 trials rather than 20. We shall later be able to associate this property
to the variance of the maximum likelihood estimator.

262



Introduction to the Science of Statistics Maximum Likelihood Estimation

15.2 Examples
Example 15.2 (Bernoulli trials). If the experiment consists of n Bernoulli trials with success probability p, then

L(p|x) = px1(1− p)(1−x1) · · · pxn(1− p)(1−xn) = p(x1+···+xn)(1− p)n−(x1+···+xn).

lnL(p|x) = ln p(

n∑

i=1

xi) + ln(1− p)(n−
n∑

i=1

xi) = n(x̄ ln p+ (1− x̄) ln(1− p)).

∂

∂p
lnL(p|x) = n

(
x̄

p
− 1− x̄

1− p

)
= n

x̄− p
p(1− p)

This equals zero when p = x̄.

Exercise 15.3. Check that this is a maximum.

Thus,
p̂(x) = x̄.

In this case the maximum likelihood estimator is also unbiased.

Example 15.4 (Normal data). Maximum likelihood estimation can be applied to a vector valued parameter. For a
simple random sample of n normal random variables, we can use the properties of the exponential function to simplify
the likelihood function.

L(µ, σ2|x) =

(
1√

2πσ2
exp
−(x1 − µ)2

2σ2

)
· · ·
(

1√
2πσ2

exp
−(xn − µ)2

2σ2

)
=

1√
(2πσ2)n

exp− 1

2σ2

n∑

i=1

(xi − µ)2.

The log-likelihood

lnL(µ, σ2|x) = −n
2

(ln 2π + lnσ2)− 1

2σ2

n∑

i=1

(xi − µ)2.

The score function is now a vector.
(
∂
∂µ lnL(µ, σ2|x), ∂

∂σ2 lnL(µ, σ2|x)
)

. Next we find the zeros to determine the

maximum likelihood estimators µ̂ and σ̂2

∂

∂µ
lnL(µ̂, σ̂2|x) =

1

σ̂2

n∑

i=1

(xi − µ̂) =
1

σ̂2
n(x̄− µ̂) = 0

Because the second partial derivative with respect to µ is negative,

µ̂(x) = x̄

is the maximum likelihood estimator. For the derivative of the log-likelihood with respect to the parameter σ2,

∂

∂σ2
lnL(µ, σ2|x) = − n

2σ2
+

1

2(σ2)2

n∑

i=1

(xi − µ)2 = − n

2(σ2)2

(
σ2 − 1

n

n∑

i=1

(xi − µ)2

)
= 0.

Recalling that µ̂(x) = x̄, we obtain

σ̂2(x) =
1

n

n∑

i=1

(xi − x̄)2.

Note that the maximum likelihood estimator is a biased estimator.

Example 15.5 (Lincoln-Peterson method of mark and recapture). Let’s recall the variables in mark and recapture:

263



Introduction to the Science of Statistics Maximum Likelihood Estimation

• t be the number captured and tagged,

• k be the number in the second capture,

• r the the number in the second capture that are tagged, and let

• N be the total population.

Here t and k is set by the experimental design; r is an observation that may vary. The total population N is
unknown. The likelihood function for N is the hypergeometric distribution.

L(N |r) =

(
t
r

)(
N−t
k−r
)

(
N
k

)

Exercise 15.6. Show that the maximum likelihood estimator

N̂ =

[
tk

r

]
.

where [·] mean the greater integer less than.

Thus, the maximum likelihood estimator is, in this case, obtained from the method of moments estimator by round-
ing down to the next integer.

Let look at the example of mark and capture from the previous topic. There N = 2000, the number of fish in the
population, is unknown to us. We tag t = 200 fish in the first capture event, and obtain k = 400 fish in the second
capture.

> N<-2000
> t<-200
> fish<-c(rep(1,t),rep(0,N-t))

This creates a vector of length N with t ones representing tagged fish and and N − t zeroes representing the untagged
fish.

> k<-400
> r<-sum(sample(fish,k))
> r
[1] 42

This samples k for the recaptured and adds up the ones to obtained, in this simulation, the number r = 42 of recaptured
fish. For the likelihood function, we look at a range of values for N that is symmetric about 2000. Here, the maximum
likelihood estimate N̂ = [200 · 400/42] = 1904. ..

> N<-c(1800:2200)
> L<-dhyper(r,t,N-t,k)
> plot(N,L,type="l",ylab="L(N|42)",col="green")

The likelihood function for this example is shown in Figure 15.2.

Example 15.7 (Linear regression). Our data are n observations with one explanatory variable and one response
variable. The model is that the responses yi are linearly related to the explanatory variable xi with an “error” εi, i.e.,

yi = α+ βxi + εi

Here we take the εi to be independent mean 0 normal random variables. The (unknown) variance is σ2. Consequently,
our model has three parameters, the intercept α, the slope β, and the variance of the error, σ2.
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Figure 15.2: Likelihood function L(N |42) for mark and recapture with t = 200 tagged fish, k = 400 in the second capture with r = 42 having
tags and thus recapture. Note that the maximum likelihood estimator for the total fish population is N̂ = 1904.

Thus, the joint density for the εi is

1√
2πσ2

exp− ε21
2σ2
· 1√

2πσ2
exp− ε22

2σ2
· · · 1√

2πσ2
exp− ε2n

2σ2
=

1√
(2πσ2)n

exp− 1

2σ2

n∑

i=1

ε2i

Since εi = yi − (α+ βxi), the likelihood function

L(α, β, σ2|y,x) =
1√

(2πσ2)n
exp− 1

2σ2

n∑

i=1

(yi − (α+ βxi))
2.

The logarithm

lnL(α, β, σ2|y,x) = −n
2

(ln 2π + lnσ2)− 1

2σ2

n∑

i=1

(yi − (α+ βxi))
2. (15.3)

Consequently, maximizing the likelihood function for the parameters α and β is equivalent to minimizing

SS(α.β) =

n∑

i=1

(yi − (α+ βxi))
2.

Thus, the principle of maximum likelihood is equivalent to the least squares criterion for ordinary linear regression.
The maximum likelihood estimators α and β give the regression line

ŷi = α̂+ β̂xi.

with

β̂ =
cov(x, y)

var(x)
, and α̂ determined by solving ȳ = α̂+ β̂x̄.
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Exercise 15.8. Show that the maximum likelihood estimator for σ2 is

σ̂2
MLE =

1

n

n∑

k=1

(yi − ŷi)2. (15.4)

Frequently, software will report the unbiased estimator. For ordinary least square procedures, this is

σ̂2
U =

1

n− 2

n∑

k=1

(yi − ŷi)2.

For the measurements on the lengths in centimeters of the femur and humerus for the five specimens of Archeopteryx,
we have the following R output for linear regression. ..

> femur<-c(38,56,59,64,74)
> humerus<-c(41,63,70,72,84)
> summary(lm(humerus˜femur))

Call:
lm(formula = humerus ˜ femur)

Residuals:
1 2 3 4 5

-0.8226 -0.3668 3.0425 -0.9420 -0.9110

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.65959 4.45896 -0.821 0.471944
femur 1.19690 0.07509 15.941 0.000537 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.982 on 3 degrees of freedom
Multiple R-squared: 0.9883,Adjusted R-squared: 0.9844
F-statistic: 254.1 on 1 and 3 DF, p-value: 0.0005368

The residual standard error of 1.982 centimeters is obtained by squaring the 5 residuals, dividing by 3 = 5− 2 and
taking a square root.

Example 15.9 (weighted least squares). If we know the relative size of the variances of the εi, then we have the model

yi = α+ βxi + γ(xi)εi

where the εi are, again, independent mean 0 normal random variable with unknown variance σ2. In this case,

εi =
1

γ(xi)
(yi − α+ βxi)

are independent normal random variables, mean 0 and (unknown) variance σ2. the likelihood function

L(α, β, σ2|y,x) =
1√

(2πσ2)n
exp− 1

2σ2

n∑

i=1

w(xi)(yi − (α+ βxi))
2

where w(x) = 1/γ(x)2. In other words, the weights are inversely proportional to the variances. The log-likelihood is

lnL(α, β, σ2|y,x) = −n
2

ln 2πσ2 − 1

2σ2

n∑

i=1

w(xi)(yi − (α+ βxi))
2.
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Exercise 15.10. Show that the maximum likelihood estimators α̂w and β̂w have formulas

β̂w =
covw(x, y)

varw(x)
, ȳw = α̂w + β̂wx̄w

where x̄w and ȳw are the weighted means

x̄w =

∑n
i=1 w(xi)xi∑n
i=1 w(xi)

, ȳw =

∑n
i=1 w(xi)yi∑n
i=1 w(xi)

.

The weighted covariance and variance are, respectively,

covw(x, y) =

∑n
i=1 w(xi)(xi − x̄w)(yi − ȳw)∑n

i=1 w(xi)
, varw(x) =

∑n
i=1 w(xi)(xi − x̄w)2

∑n
i=1 w(xi)

,

The maximum likelihood estimator for σ2 is

σ̂2
MLE =

∑n
k=1 w(xi)(yi − ŷi)2

∑n
i=1 w(xi)

.

In the case of weighted least squares, the predicted value for the response variable is

ŷi = α̂w + β̂wxi.

Exercise 15.11. Show that α̂w and β̂w are unbiased estimators of α and β. In particular, ordinary (unweighted) least
square estimators are unbiased.

In computing the optimal values using introductory differential calculus, the maximum can occur at either critical
points or at the endpoints. The next example show that the maximum value for the likelihood can occur at the end
point of an interval.

Example 15.12 (Uniform random variables). If our dataX = (X1, . . . , Xn) are a simple random sample drawn from
uniformly distributed random variable whose maximum value θ is unknown, then each random variable has density

f(x|θ) =

{
1/θ if 0 ≤ x ≤ θ,
0 otherwise.

Therefore, the joint density or the likelihood

f(x|θ) = L(θ|x) =

{
1/θn if 0 ≤ xi ≤ θ for all i,
0 otherwise.

Consequently, the joint density is 0 whenever any of the xi > θ. Restating this in terms of likelihood, no value
of θ is possible that is less than any of the xi. Consequently, any value of θ less than any of the xi has likelihood 0.
Symbolically,

L(θ|x) =

{
0 for θ < maxi xi = x(n),
1/θn for θ ≥ maxi xi = x(n).

Recall the notation x(n) for the top order statistic based on n observations.
The likelihood is 0 on the interval (0, x(n)) and is positive and decreasing on the interval [x(n),∞). Thus, to

maximize L(θ|x), we should take the minimum value of θ on this interval. In other words,

θ̂(x) = x(n).

Because the estimator is always less than the parameter value it is meant to estimate, the estimator

θ̂(X) = X(n) < θ,
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Figure 15.3: Likelihood function for uniform random variables on the interval [0, θ]. The likelihood is 0 up to max1≤i≤n xi and 1/θn afterwards.

Thus, we suspect it is biased downwards, i. e..
EθX(n) < θ. (15.5)

In order to compute the expected value in (15.5), note that X(n) = max1≤i≤nXi ≤ x if and only if each of the
Xi ≤ x. Thus, for 0 ≤ x ≤ θ, the distribution function for X(n) is

FX(n)
(x|θ) = Pθ{ max

1≤i≤n
Xi ≤ x} = Pθ{X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x}

= Pθ{X1 ≤ x}Pθ{X2 ≤ x} · · ·Pθ{Xn < x}
each of these random variables have the same distribution function

FXi(x|θ) = Pθ{Xi ≤ x} =





0 for x ≤ 0,
x
θ for 0 < x ≤ θ,
1 for θ < x.

Thus, the distribution function for X(n) is the product FX1
(x|θ)FX2

(x|θ) · · ·FXn(x|θ), i.e.,

FX(n)
(x|θ) =





0 for x ≤ 0,(
x
θ

)n
for 0 < x ≤ θ,

1 for θ < x.

Take the derivative to find the density,

fX(n)
(x|θ) =





0 for x ≤ 0,
nxn−1

θn for 0 < x ≤ θ,
0 for θ < x.

The mean

EθX(n) =

∫ θ

0

xfX(n)
(x|θ) dx =

∫ θ

0

x
nxn−1

θn
dx

=
n

θn

∫ θ

0

xn dx =
n

(n+ 1)θn
xn+1

∣∣∣
θ

0
=

n

n+ 1
θ.
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This confirms the bias of the estimator X(n) and gives us a strategy to find an unbiased estimator. Note that the choice

d(X) =
n+ 1

n
X(n)

yields an unbiased estimator of θ.

15.3 Summary of Estimators
Look to the text above for the definition of variables.

parameter estimate
Bernoulli trials

p p̂ = 1
n

∑n
i=1 xi = x̄ unbiased

mark recapture
N N̂ =

[
kt
r

]
biased upward

normal observations
µ µ̂ = 1

n

∑n
i=1 xi = x̄ unbiased

σ2 σ̂2
mle = 1

n

∑n
i=1(xi − x̄)2 biased downward

σ̂2
u = 1

n−1

∑n
i=1(xi − x̄)2 unbiased

σ σ̂mle =
√

1
n

∑n
i=1(xi − x̄)2 biased downward

linear regression
β β̂ = cov(x,y)

var(x)
unbiased

α α̂ = ȳ − β̂x̄ unbiased
σ2 σ̂2

mle = 1
n

∑n
i=1(yi − (α̂ + β̂x))2 biased downward

σ̂2
u = 1

n−2

∑n
i=1(yi − (α̂ + β̂x))2 unbiased

σ σ̂mle =
√

1
n

∑n
i=1(yi − (α̂ + β̂x))2 biased downward

σ̂u =
√

1
n−2

∑n
i=1(yi − (α̂ + β̂x))2 biased downward

uniform [0, θ]

θ θ̂ = maxi xi biased downward
θ̂ = n+1

n
maxi xi unbiased

15.4 Asymptotic Properties
Much of the attraction of maximum likelihood estimators is based on their properties for large sample sizes. We
summarizes some the important properties below, saving a more technical discussion of these properties for later.

1. Consistency. If θ0 is the state of nature and θ̂n(X) is the maximum likelihood estimator based on n observations
from a simple random sample, then

θ̂n(X)→ θ0 as n→∞.

In words, as the number of observations increase, the distribution of the maximum likelihood estimator becomes
more and more concentrated about the true state of nature.
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2. Asymptotic normality and efficiency. Under some assumptions that allows, among several analytical proper-
ties, the use of a central limit theorem, we have that

√
n(θ̂n(X)− θ0)

converges in distribution as n→∞ to a normal random variable with mean 0 and variance 1/I(θ0), the Fisher
information for one observation. Thus,

Varθ0(θ̂n(X)) ≈ 1

nI(θ0)
,

the lowest variance possible under the Crámer-Rao lower bound. This property is called asymptotic efficiency.
We can write this in terms of the z-score. Let

Zn =
θ̂n(X)− θ0

1/
√
nI(θ0)

.

Then, as with the central limit theorem, Zn converges in distribution to a standard normal random variable.

3. Properties of the log likelihood surface. For large sample sizes, the variance of a maximum likelihood estima-
tor of a single parameter is approximately the reciprocal of the the Fisher information

I(θ) = −E
[
∂2

∂θ2
lnL(θ|X)

]
.

The Fisher information can be approximated by the observed information based on the data x,

J(θ̂) = − ∂2

∂θ2
lnL(θ̂(x)|x),

the negative of the curvature of the log-likelihood at the maximum likelihood estimate θ̂(x). If the curvature is
small near the maximum likelihood estimator, then the likelihood surface is nearty flat and the variance is large.
If the curvature is large, the likelihood decreases quickly at the maximum and the variance is small.

15.5 Comparison of Estimation Procedures

For n independent observations, x1, x2, . . . xn from a distribution having mean µ and standard deviation σ, and a
single parameter θ. Let θ0 denote the true parameter value:

method of maximum
moments likelihood

estimate If µ = k(θ), then θ̂ = g(x̄), where g = k−1. θ̂ = arg maxθ L(θ|x)

bias b(θ0) ≈ g′′(µ)σ
2

n
*

variance delta method Fisher information
Varθ0(θ̂) ≈ g′(µ)2 σ2

n
Varθ0(θ̂) ≈ 1

nI(θ0)

* If g is continuous at µ, then both estimators are consistent. For a vector of parameters, we will need to perform a
higher dimenstional delta method or invert the Fisher information matrix to estimate variance.
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method of moments

θ0 θ0 + b(θ)

|g'(θ)|σ n

maximum likelihood

θ0

1 I(θ0)n

Figure 15.4: Distribution of estimators. For sufficiently large number of observations n, the estimator θ̂ is normally distributed as indicated by
the bell curves in the figure. (left) The method of moments estimator has mean θ0 + b(θ0) that is shifted by the bias b(θ0) ≈ g′′(µ)σ2/n . The
standard deviation |g′(θ0)σ/

√
n| is determined using the delta method. (right) The maximum likelihood estimator is consistent. So the mean of

the estimator converges to θ0. The standard deviation is1/
√
I(θ0)n. Here I(θ0) is the Fisher information evaluated at the true parameter value θ0.

We now look at these properties in some detail by revisiting the example of the distribution of fitness effects.
For this example, we have two parameters - α and β for the gamma distribution and so, we will want to extend the
properties above to circumstances in which we are looking to estimate more than one parameter.

15.6 Multidimensional Estimation
For a multidimensional parameter space θ = (θ1, θ2, . . . , θn), the Fisher information I(θ) is now a matrix . As with
one-dimensional case, the ij-th entry has two alternative expressions, namely,

I(θ)ij = Eθ

[
∂

∂θi
lnL(θ|X)

∂

∂θj
lnL(θ|X)

]
= −Eθ

[
∂2

∂θi∂θj
lnL(θ|X)

]
.

Rather than taking reciprocals to obtain an estimate of the variance, we find the matrix inverse I(θ)−1. This inverse will
provide estimates of both variances and covariances. To be precise, for n observations, let θ̂i,n(X) be the maximum
likelihood estimator of the i-th parameter. Then

Varθ(θ̂i,n(X)) ≈ 1

n
I(θ)−1

ii Covθ(θ̂i,n(X), θ̂j,n(X)) ≈ 1

n
I(θ)−1

ij .

When the i-th parameter is θi, the asymptotic normality and efficiency can be expressed by noting that the z-score

Zi,n =
θ̂i(X)− θi
I(θ)−1

ii /
√
n
.

is approximately a standard normal. As we saw in one dimension, we can replace the information matrix with the
observed information matrix,

J(θ̂)ij = − ∂2

∂θi∂θj
lnL(θ̂(x)|x).
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Figure 15.5: The graph of n(ln α̂− ln x̄− d
dα

ln Γ(α̂)) +
∑n
i=1 lnxi crosses the horizontal axis at α̂ = 0.2376. The fact that the graph of the

derivative is decreasing states that the score function moves from increasing to decreasing with α and confirming that α̂ is a maximum.

Example 15.13. To obtain the maximum likelihood estimate for the gamma family of random variables, write the
likelihood

L(α, β|x) =

(
βα

Γ(α)
xα−1

1 e−βx1

)
· · ·
(
βα

Γ(α)
xα−1
n e−βxn

)
=

(
βα

Γ(α)

)n
(x1x2 · · ·xn)α−1e−β(x1+x2+···+xn) .

and its logarithm

lnL(α, β|x) = n(α lnβ − ln Γ(α)) + (α− 1)

n∑

i=1

lnxi − β
n∑

i=1

xi.

To determine the parameters that maximize the likelihood, we solve the equations

∂

∂α
lnL(α̂, β̂|x) = n(ln β̂ − d

dα
ln Γ(α̂)) +

n∑

i=1

lnxi = 0

and
∂

∂β
lnL(α̂, β̂|x) = n

α̂

β̂
−

n∑

i=1

xi = 0, or x̄ =
α̂

β̂
.

Recall that the mean µ of a gamma distribution is α/β. Thus. by the invariance property of maximum likelihood
estimators

µ̂ =
α̂

β̂
= x̄,

and the sample mean is the maximum likelihood estimate for the distributional mean.
Substituting β̂ = α̂/x̄ into the first equation results the following relationship for α̂

n(ln α̂− ln x̄− d

dα
ln Γ(α̂)) +

n∑

i=1

lnxi = 0

which can be solved numerically. The derivative of the logarithm of the gamma function

ψ(α) =
d

dα
ln Γ(α)
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is know as the digamma function and is called in R with digamma..

For the example for the distribution of fitness effects α = 0.23 and β = 5.35 with n = 100, a simulated data set
yields α̂ = 0.2376 and β̂ = 5.690 for maximum likelihood estimator. (See Figure 15.4.)

To determine the variance of these estimators, we first compute the Fisher information matrix. Taking the appro-
priate derivatives, we find that each of the second order derivatives are constant and thus the expected values used to
determine the entries for Fisher information matrix are the negative of these constants.

I(α, β)11 = − ∂2

∂α2
lnL(α, β|x) = n

d2

dα2
ln Γ(α), I(α, β)22 = − ∂2

∂β2
lnL(α, β|x) = n

α

β2
,

I(α, β)12 = − ∂2

∂α∂β
lnL(α, β|x) = −n 1

β
.

This give a Fisher information matrix

I(α, β) = n

(
d2

dα2 ln Γ(α) − 1
β

− 1
β

α
β2

)
.

The second derivative of the logarithm of the gamma function

ψ1(α) =
d2

dα2
ln Γ(α)

is known as the trigamma function and is called in R with trigamma.

The inverse

I(α, β)−1 =
1

nα( d2

dα2 ln Γ(α)− 1)

(
α β

β β2 d2

dα2 ln Γ(α)

)
.

For the example for the distribution of fitness effects α = 0.23 and β = 5.35 and n = 100, and

I(0.23, 5.35)−1 =
1

100(0.23)(19.12804)

(
0.23 5.35
5.35 5.352(20.12804)

)
=

(
0.0001202 0.01216
0.01216 1.3095

)
.

Var(0.23,5.35)(α̂) ≈ 0.0001202, Var(0.23,5.35)(β̂) ≈ 1.3095.

σ(0.23,5.35)(α̂) ≈ 0.0110, σ(0.23,5.35)(β̂) ≈ 1.1443.
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Figure 15.5: (top) The log-likelihood near the maximum likelihood estimators. The domain is 0.1  ↵  0.4 and 4  �  8. (bottom) Graphs
of vertical slices through the log-likelihood function surface. (left) ↵̂ = 0.2376 and 0.1  ↵  0.4 varies. (right) �̂ = 5.690 and 4  �  8. The
variance of the estimator is approximately the negative reciprocal of the second derivative of the log-likelihood function at the maximum likelihood
estimators (known as the observed information). Note that the log-likelihood function is nearly flat as � varies. This leads to the interpretation that
a range of values for � are nearly equally likely and that the variance for the estimator for �̂ will be high. On the other hand, the log-likelihood
function has a much greater curvature for the ↵ parameter and the estimator ↵̂ will have a much smaller variance than �̂
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Figure 15.6: (top) The log-likelihood near the maximum likelihood estimators. The domain is 0.1 ≤ α ≤ 0.4 and 4 ≤ β ≤ 8. (bottom) Graphs
of vertical slices through the log-likelihood function surface. (left) α̂ = 0.2376 and 4 ≤ β ≤ 8 varies. (right) β̂ = 5.690 and 0.1 ≤ α ≤ 0.4. The
variance of the estimator is approximately the negative reciprocal of the second derivative of the log-likelihood function at the maximum likelihood
estimators (known as the observed information). Note that the log-likelihood function is nearly flat as β varies. This leads to the interpretation that
a range of values for β are nearly equally likely and that the variance for the estimator for β̂ will be high. On the other hand, the log-likelihood
function has a much greater curvature for the α parameter and the estimator α̂ will have a much smaller variance than β̂
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Compare this to the empirical values of 0.0662 and 2.046 for the method of moments. This gives the following
table of standard deviations for n = 100 observation

method α̂ β̂
maximum likelihood 0.0110 1.1443
method of moments 0.0662 2.046

ratio 0.166 0.559

Thus, the standard deviation for the maximum likelihood estimator is respectively 17% and 56% that of method of
moments estimator. We will look at the impact as we move on to our next topic - interval estimation and the confidence
intervals.

Exercise 15.14. If the data are a simple random sample of 100 observations of a Γ(0.23, 5.35) random variable. Use
the approximate normality of maximum likelihood estimators to estimate

P{α̂ ≥ 0.2376} P{β̂ ≥ 5.690}.

15.7 The Case of Exponential Families
As with the Cramer-Rao bound for unbiased estimator, the case of exponential families forms an elegant example, in
this case, for maximum likelihood estimation. Let first write the density function for this family by

fX(x|η) = c(η)h(x) exp(ηT (x)). (15.6)

using the natural parameter η., Recall that the Fisher information

I(η) = − ∂
2

∂η2
ln c(η).

Exercise 15.15. The maximum likelihood estimate based on independent observations from a member of an exponen-
tial family is a function of T (x), the mean of the sufficient statistic.

Writing η̂(x) = g(T (x)). Recall from the discussion of the Cramér-Rao bound, that the estimator η̂ is efficient.
In other, words, if we have n independent observations from the density fX(x|η), then η̂ is an unbiased estimator of η
with

Varη(η̂(X)) =
1

nI(η)

Returning to the parameter space with θ ∈ Θ and the form of the exponential family with

fX(x|θ) = c(η(θ))h(x) exp(η(θ)T (x)),

we can use the invariance property of the the maximum likelihood estimate to say that

θ̂(x) = η−1(g(T (x)))

provided that η is a one-to-one function and thus has an inverse function η−1.

Exercise 15.16. Use the delta method to show that

Iθ(θ) ≈ Iη(η(θ))

(
dη(θ)

dθ

)2

In the discussion of exponential families and the Cramer-Rao bound, we learned that the approximation above is
an equality.

275



Introduction to the Science of Statistics Maximum Likelihood Estimation

15.8 Choice of Estimators
With all of the desirable properties of the maximum likelihood estimator, the question arises as to why would one
choose a method of moments estimator?

One answer is that the use maximum likelihood techniques relies on knowing the density function explicitly.
Moreover, the form of the density must be amenable to the analysis necessary to maximize the likelihood and find the
Fisher information.

However, much less about the experiment is need in order to compute moments. Thus far, we have computed
moments using the density

EθX
m =

∫ ∞

−∞
xmfX(x|θ) dx.

However, consider the case of determining parameters in the distribution in the number of proteins in a tissue. If
the tissue has several cell types, then we would need

• the distribution of cell types, and

• a density function for the number of proteins in each cell type.

These two pieces of information can be used to calculate the mean and variance for the number of cells with some
ease. However, giving an explicit expression for the density and hence the likelihood function is more difficult to
obtain. This leads to quite intricate computations to carry out the desired analysis of the likelihood function.

15.9 Technical Aspects
We can use concepts previously introduced to obtain the properties for the maximum likelihood estimator. For exam-
ple, θ0 is more likely that a another parameter value θ

L(θ0|X) > L(θ|X) if and only if
1

n

n∑

i=1

ln
f(Xi|θ0)

f(Xi|θ)
> 0.

By the strong law of large numbers, this sum converges to

Eθ0

[
ln
f(X1|θ0)

f(X1|θ)

]
.

which is greater than 0. thus, for a large number of observations and a given value of θ, then with a probability nearly
one, L(θ0|X) > L(θ|X) and so the maximum likelihood estimator has a high probability of being very near θ0. This
is a statement of the consistency of the estimator.

For the asymptotic normality and efficiency, we write the linear approximation of the score function

d

dθ
lnL(θ|X) ≈ d

dθ
lnL(θ0|X) + (θ − θ0)

d2

dθ2
lnL(θ0|X).

Now substitute θ = θ̂ and note that d
dθ lnL(θ̂|X) = 0. Then

√
n(θ̂n(X)− θ0) ≈ −√n

d
dθ lnL(θ0|X)
d2

dθ2 lnL(θ0|X)
=

1√
n
d
dθ lnL(θ0|X)

− 1
n
d2

dθ2 lnL(θ0|X)

Now assume that θ0 is the true state of nature. Then, the random variables d ln f(Xi|θ0)/dθ are independent with
mean 0 and variance I(θ0). Thus, the distribution of numerator

1√
n

d

dθ
lnL(θ0|X) =

1√
n

n∑

i=1

d

dθ
ln f(Xi|θ0)
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converges, by the central limit theorem, to a normal random variable with mean 0 and variance I(θ0). For the denom-
inator, −d2 ln f(Xi|θ0)/dθ2 are independent with mean I(θ0). Thus,

− 1

n

d2

dθ2
lnL(θ0|X) = − 1

n

n∑

i=1

d2

dθ2
ln f(Xi|θ0)

converges, by the law of large numbers, to I(θ0). Thus, the distribution of the ratio,
√
n(θ̂n(X)− θ0), converges to a

normal random variable with variance I(θ0)/I(θ0)2 = 1/I(θ0).

15.10 Answers to Selected Exercises
15.3. We have found that the score function

∂

∂p
lnL(p|x) = n

x̄− p
p(1− p)

Thus
∂

∂p
lnL(p|x) > 0 if p < x̄, and

∂

∂p
lnL(p|x) < 0 if p > x̄

In words, lnL(p|x) is increasing for p < x̄ and decreasing for p > x̄. Thus, p̂(x) = x̄ is a maximum.

15.6. We would like to maximize the likelihood given the number of recaptured individuals r. Because the domain for
N is the nonnegative integers, we cannot use calculus. However, we can look at the ratio of the likelihood values for
successive value of the total population.

L(N |r)
L(N − 1|r)

N is more likely that N − 1 precisely when this ratio is larger than one. The computation below will show that
this ratio is greater than 1 for small values of N and less than one for large values. Thus, there is a place in the middle
which has the maximum. We expand the binomial coefficients in the expression for L(N |r) and simplify.

L(N |r)
L(N − 1|r) =

(
t
r

)(
N−t
k−r
)
/
(
N
k

)
(
t
r

)(
N−t−1
k−r

)
/
(
N−1
k

) =

(
N−t
k−r
)(
N−1
k

)
(
N−t−1
k−r

)(
N
k

) =

(N−t)!
(k−r)!(N−t−k+r)!

(N−1)!
k!(N−k−1)!

(N−t−1)!
(k−r)!(N−t−k+r−1)!

N !
k!(N−k)!

=
(N − t)!(N − 1)!(N − t− k + r − 1)!(N − k)!

(N − t− 1)!N !(N − t− k + r)!(N − k − 1)!
=

(N − t)(N − k)

N(N − t− k + r)
.

Thus, the ratio
L(N |r)

L(N − 1|r) =
(N − t)(N − k)

N(N − t− k + r)

exceeds 1if and only if

(N − t)(N − k) > N(N − t− k + r)

N2 − tN − kN + tk > N2 − tN − kN + rN

tk > rN
tk

r
> N

Writing [x] for the integer part of x, we see that L(N |r) > L(N −1|r) forN < [tk/r] and L(N |r) ≤ L(N −1|r)
for N ≥ [tk/r]. This give the maximum likelihood estimator

N̂ =

[
tk

r

]
.
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15.7. The log-likelihood function

lnL(α, β, σ2|y,x) = −n
2

(ln(2π) + lnσ2)− 1

2σ2

n∑

i=1

(yi − (α+ βxi))
2

leads to the ordinary least squares equations for the maximum likelihood estimates α̂ and β̂. Take the partial derivative
with respect to σ2,

∂

∂σ2
L(α, β, σ2|y,x) = − n

2σ2
+

1

2(σ2)2

n∑

i=1

(yi − (α+ βxi))
2.

This partial derivative is 0 at the maximum likelihood estimates σ̂2, α̂ and β̂.

0 = − n

2σ̂2
+

1

2(σ̂2)2

n∑

i=1

(yi − (α̂+ β̂xi))
2

or

σ̂2 =
1

n

n∑

i=1

(yi − (α̂+ β̂xi))
2.

15.8. Take the derivative with respect to σ2 in (15.3)

∂

∂σ2
lnL(α, β, σ2|y,x) = − n

2σ2
+

1

2(σ2)2

n∑

i=1

(yi − (α+ βxi))
2.

Now set this equal to zero, substitute α̂ for α, β̂ for β and solve for σ2 to obtain (15.4).

15.9. The maximum likelihood principle leads to a minimization problem for

SSw(α, β) =

n∑

i=1

ε2i =

n∑

i=1

w(xi)(yi − (α+ βxi))
2.

Following the steps to derive the equations for ordinary least squares, take partial derivatives to find that

∂

∂β
SSw(α, β) = −2

n∑

i=1

w(xi)xi(yi − α− βxi)
∂

∂α
SSw(α, β) = −2

n∑

i=1

w(xi)(yi − α− βxi).

Set these two equations equal to 0 and call the solutions α̂w and β̂w.

0 =

n∑

i=1

w(xi)xi(yi − α̂w − β̂wxi) =

n∑

i=1

w(xi)xiyi − α̂w
n∑

i=1

w(xi)xi − β̂w
n∑

i=1

w(xi)x
2
i (15.7)

0 =

n∑

i=1

w(xi)(yi − α̂w − β̂wxi) =

n∑

i=1

w(xi)yi − α̂w
n∑

i=1

w(xi)− β̂w
n∑

i=1

w(xi)xi (15.8)

Multiply these equations by the appropriate factors to obtain

0 =

(
n∑

i=1

w(xi)

)(
n∑

i=1

w(xi)xiyi

)
− α̂w

(
n∑

i=1

w(xi)

)(
n∑

i=1

w(xi)xi

)
(15.9)

−β̂w
(

n∑

i=1

w(xi)

)(
n∑

i=1

w(xi)x
2
i

)
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0 =

(
n∑

i=1

w(xi)xi

)(
n∑

i=1

w(xi)yi

)
− α̂w

(
n∑

i=1

w(xi)

)(
n∑

i=1

w(xi)xi

)
− β̂w

(
n∑

i=1

w(xi)xi

)2

(15.10)

Now subtract the equation (15.10) from equation (15.9) and solve for β̂.

β̂ =
(
∑n
i=1 w(xi)) (

∑n
i=1 w(xi)xiyi)− (

∑n
i=1 w(xi)xi) (

∑n
i=1 w(xi)yi)

n
∑n
i=1 w(xi)x2

i − (
∑n
i=1 w(xi)xi)

2

=

∑n
i=1 w(xi)(xi − x̄w)(yi − ȳw)∑n

i=1 w(xi)(xi − x̄w)2
=

covw(x, y)

varw(x)
.

Next, divide equation (15.10) by
∑n
i=1 w(xi) to obtain

ȳw = α̂w + β̂wx̄w. (15.11)

15.10. Because the εi have mean zero,

E(α,β)yi = E(α,β)[α+ βxi + γ(xi)εi] = α+ βxi + γ(xi)E(α,β)[εi] = α+ βxi.

Next, use the linearity property of expectation to find the mean of ȳw.

E(α,β)ȳw =

∑n
i=1 w(xi)E(α,β)yi∑n

i=1 w(xi)
=

∑n
i=1 w(xi)(α+ βxi)∑n

i=1 w(xi)
= α+ βx̄w. (15.12)

Taken together, we have that E(α,β)[yi− ȳw] = (α+βxi.)− (α+βxi) = β(xi− x̄w). To show that β̂w is an unbiased
estimator, we see that

E(α,β)β̂w = E(α,β)

[
covw(x, y)

varw(x)

]
=
E(α,β)[covw(x, y)]

varw(x)
=

1

varw(x)
E(α,β)

[∑n
i=1 w(xi)(xi − x̄w)(yi − ȳw)∑n

i=1 w(xi)

]

=
1

varw(x)

∑n
i=1 w(xi)(xi − x̄w)E(α,β)[yi − ȳw]∑n

i=1 w(xi)
=

β

varw(x)

∑n
i=1 w(xi)(xi − x̄w)(xi − x̄w)∑n

i=1 w(xi)
= β.

To show that α̂w is an unbiased estimator, recall that ȳw = α̂w + β̂wx̄w. Thus

E(α,β)α̂w = E(α,β)[ȳw − β̂wx̄w] = E(α,β)ȳw − E(α,β)[β̂w]x̄w = α+ βx̄w − βx̄w = α,

using (15.12) and the fact that β̂w is an unbiased estimator of β

15.14. For α̂, we have the z-score

zα̂ =
α̂− 0.23√
0.0001202

≥ 0.2376− 0.23√
0.0001202

= 0.6841.

Thus, using the normal approximation,

P{α̂ ≥ 0.2367} = P{zα̂ ≥ 0.6841} = 0.2470.

For β̂, we have the z-score

zβ̂ =
β̂ − 5.35√

1.3095
≥ 5.690− 5.35√

1.3095
= 0.2971.

Here, the normal approximation gives

P{β̂ ≥ 5.690} = P{zβ̂ ≥ 0.2971} = 0.3832.

279



Introduction to the Science of Statistics Maximum Likelihood Estimation

15.15. For n independent observations, the likelihood function

L(π|x) = c(π)n
n∏

i=1

h(xi) exp

(
π

n∑

i=1

T (xi)

)

lnL(π|x) = n ln c(π) +

n∑

i=1

lnh(xi) +

(
π

n∑

i=1

T (xi)

)

∂

∂π
lnL(π|x) = n

c′(π)

c(π)
+

n∑

i=1

T (xi)

= n

(
c′(π)

c(π)
+ T (x)

)

Set this equal to 0 to give π̂ as a function of T (x).

15.16. By the delta method and the fact that θ̂(X) is a maximum likelihood estimator,

Varθ(η(θ̂(X))) ≈
(
dη(θ)

dθ

)2

Varθ(θ̂(X))

1

nIη(η)
≈
(
dη(θ)

dθ

)2
1

nIθ(θ)

Iθ(θ) ≈ Iη(η(θ))

(
dη(θ)

dθ

)2

.
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Topic 16

Interval Estimation

The form of this solution consists in determining certain intervals, which I propose to call the con-
fidence intervals..., in which we may assume are contained the values of the estimated characters of the
population, the probability of an error is a statement of this sort being equal to or less than 1− ε, where ε
is any number 0 < ε < 1, chosen in advance. The number ε I call the confidence coefficient. - Jerzy Ney-
man, 1934, On the Two Different Aspects of the Representative Method, Journal of the Royal Statistical
Society

Our strategy to estimation thus far has been to use a method to find an estimator, e.g., method of moments, or
maximum likelihood, and evaluate the quality of the estimator by evaluating its bias and the variance. Often, we
know more about the distribution of the estimator and this allows us to take a more comprehensive statement about the
estimation procedure.

Interval estimation is an exteneion to the variety of techniques we have examined. Given data x, we replace the
point estimate θ̂(x) for the parameter θ by a statistic that is subset Ĉ(x) of the parameter space. We will consider both
the classical and Bayesian approaches to choosing Ĉ(x). As we shall learn, the two approaches have very different
interpretations.

16.1 Classical Statistics
In this case, the random set Ĉ(X) is chosen to have a prescribed high probability, γ, of containing the true parameter
value θ. In symbols,

Pθ{θ ∈ Ĉ(X)} = γ.
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Figure 16.1: Upper tail critical values. α is the area under
the standard normal density and to the right of the vertical line
at critical value zα

In this case, the set Ĉ(x) is called a γ-level confidence set.
In the case of a one dimensional parameter set, the typical choice
of confidence set is a confidence interval

Ĉ(x) = (θ̂`(x), θ̂u(x)).

Often this interval takes the form

Ĉ(x) = (θ̂(x)−m(x), θ̂(x) +m(x)) = θ̂(x)±m(x)

where the two statistics,

• θ̂(x) is a point estimate, and

• m(x) is the margin of error.
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16.1.1 Means

Example 16.1 (1-sample z interval). IfX1.X2. . . . Xn are normal random variables with unknown mean µ but known
variance σ2

0 . Then,

Z =
X̄ − µ
σ0/
√
n

is a standard normal random variable. For any α between 0 and 1, choose zα so that

P{Z > zα} = α or equivalently P{Z ≤ zα} = 1− α.

The value is known as the upper tail probability with critical value zα. We can compute this in R using, for example

> qnorm(0.975)
[1] 1.959964

for α = 0.025.
If γ = 1− 2α, then α = (1− γ)/2. In this case, we have that

P{−zα < Z < zα} = γ.

Let µ0 is the state of nature. Taking in turn each the two inequalities in the line above and isolating µ0, we find that

X̄ − µ0

σ0/
√
n

= Z < zα

X̄ − µ0 < zα
σ0√
n

X̄ − zα
σ0√
n

< µ0

Similarly,
X̄ − µ0

σ0/
√
n

= Z > −zα

implies

µ0 < X̄ + zα
σ0√
n

Thus
X̄ − zα

σ0√
n
< µ0 < X̄ + zα

σ0√
n
.

has probability γ. Thus, for data x,

x̄± z(1−γ)/2
σ0√
n

is a confidence interval with confidence level γ. In this case,

µ̂(x) = x̄ is the estimate for the mean and m(x) = z(1−γ)/2σ0/
√
n is the margin of error.

We can use the z-interval above for the confidence interval for µ for data that is not necessarily normally dis-
tributed as long as the central limit theorem applies. For one population intervals for means, n > 30 and data not
strongly skewed is a good rule of thumb.
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Generally, the standard deviation is not known and must be estimated. So, let X1, X2, · · · , Xn be normal random
variables with unknown mean and unknown standard deviation. Let S2 be the unbiased sample variance. If we are
forced to replace the unknown variance σ2 with its unbiased estimate s2, then the statistic is known as t:

t =
x̄− µ
s/
√
n
.

The term s/
√
n which estimates the standard deviation of the sample mean is called the standard error. The

remarkable discovery by William Gossett is that the distribution of the t statistic can be determined exactly. Write

Tn−1 =

√
n(X̄ − µ)

S
.

Then, Gossett was able to establish the following three facts:

• The numerator is a standard normal random variable.

• The denominator is the square root of

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.

This sum has chi-square distribution with n− 1 degrees of freedom.

• The numerator and denominator are independent.

With this, Gossett was able to compute the density of the t distribution with n − 1 degrees of freedom. Gossett,
who worked for the the brewery of Arthur Guinness in Dublin, was permitted to publish his results only if it appeared
under a pseudonym. Gosset chose the name Student, thus the distribution is sometimes known as Student’s t.
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Figure 16.2: The density and distribution function for a standard normal random variable (black) and a t random variable with 4 degrees of freedom
(red). The variance of the t distribution is df/(df − 2) = 4/(4− 2) = 2 is higher than the variance of a standard normal. This can be seen in the
broader shoulders of the t density function or in the smaller increases in the t distribution function away from the mean of 0.
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Figure 16.3: Upper critical values for the t confidence interval with γ = 0.90 (black), 0.95 (red), 0.98 (magenta) and 0.99 (blue) as a function of
df , the number of degrees of freedom. Note that these critical values decrease to the critical value for the z confidence interval and increases with
γ.

Again, for any α between 0 and 1, let upper tail probability tn−1,α satisfy

P{Tn−1 > tn−1,α} = α or equivalently P{Tn−1 ≤ tn−1,α} = 1− α.

We can compute this in R using, for example

> qt(0.975,12)
[1] 2.178813

for α = 0.025 and n− 1 = 12.

Example 16.2. For the data on the lengths of 200 Bacillus subtilis, we had a mean x̄ = 2.49 and standard deviation
s = 0.674. For a 96% confidence interval α = 0.02 and we type in R,

> qt(0.98,199)
[1] 2.067298

Thus, the interval is

2.490± 2.0674
0.674√

200
= 2.490± 0.099 or (2.391, 2.589)

Example 16.3. We can obtain the data for the Michaelson-Morley experiment using R by typing

> data(morley)

The data have 100 rows - 5 experiments (column 1) of 20 runs (column 2). The Speed is in column 3. The values
for speed are the amounts over 299,000 km/sec. Thus, a t-confidence interval will have 99 degrees of freedom. We can
see a histogram by writing hist(morley$Speed). To determine a 95% confidence interval, we find
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Histogram of morley$Speed
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Figure 16.4: Measurements of the speed of light. Actual values are 299,000 kilometers per second plus the value shown.

> mean(morley$Speed)
[1] 852.4
> sd(morley$Speed)
[1] 79.01055
> qt(0.975,99)
[1] 1.984217

Thus, our confidence interval for the speed of light is

299, 852.4± 1.9842
79.0√
100

= 299, 852.4± 15.7 or the interval (299836.7, 299868.1)

This confidence interval does not include the presently determined values of 299,792.458 km/sec for the speed of light.
The confidence interval can also be found by tying t.test(morley$Speed). We will study this command in more
detail when we describe the t-test.

Exercise 16.4. Give a 90% and a 98% confidence interval for the example above.

We often wish to determine a sample size that will guarantee a desired margin of error. For a γ-level t-interval,
this is

m = tn−1,(1−γ)/2
s√
n
.

Solving this for n yields

n =

(
tn−1,(1−γ)/2 s

m

)2

.

Because the number of degrees of freedom, n − 1, for the t distribution is unknown, the quantity n appears on both
sides of the equation and the value of s is unknown. We search for a conservative value for n, i.e., a margin of error
that will be no greater that the desired length. This can be achieved by overestimating tn−1,(1−γ)/2 and s. For the
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speed of light example above, if we desire a margin of error of m = 10 km/sec for a 95% confidence interval, then we
set tn−1,(1−γ)/2 = 2 and s = 80 to obtain

n ≈
(

2 · 80

10

)2

= 256

measurements are necessary to obtain the desired margin of error..

The next set of confidence intervals are determined, in those case in which the distributional variance in known,
by finding the standardized score and using the normal approximation as given via the central limit theorem. In the
cases in which the variance is unknown, we replace the distribution variance with a variance that is estimated from the
observations. In this case, the procedure that is analogous to the standardized score is called the studentized score.

Example 16.5 (matched pair t interval). We begin with two quantitative measurements

(X1,1, . . . , X1,n) and (X2,1, . . . , X2,n),

on the same n individuals. Assume that the first set of measurements has mean µ1 and the second set has mean µ2.
If we want to determine a confidence interval for the difference µ1 − µ2, we can apply the t-procedure to the

differences
(X1,1 −X2,1, . . . , X1,n −X2,n)

to obtain the confidence interval

(X̄1 − X̄2)± tn−1,(1−γ)/2
Sd√
n

where Sd is the standard deviation of the difference.

Example 16.6 (2-sample z interval). If we have two independent samples of normal random variables

(X1,1, . . . , X1,n1
) and (X2,1, . . . , X2,n2

),

the first having mean µ1 and variance σ2
1 and the second having mean µ2 and variance σ2

2 , then the difference in their
sample means

X̄2 − X̄1

is also a normal random variable with

mean µ1 − µ2 and variance
σ2

1

n1
+
σ2

2

n2
.

Therefore,

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

is a standard normal random variable. In the case in which the variances σ2
1 and σ2

2 are known, this gives us a γ-level
confidence interval for the difference in parameters µ1 − µ2.

(X̄1 − X̄2)± z(1−γ)/2

√
σ2

1

n1
+
σ2

2

n2
.

Example 16.7 (2-sample t interval). If we know that σ2
1 = σ2

2 , then we can pool the data to compute the standard
deviation. Let S2

1 and S2
2 be the sample variances from the two samples. Then the pooled sample variance Sp is the

weighted average of the sample variances with weights equal to their respective degrees of freedom.

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.
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This gives a statistic

Tn1+n2−2 =
(X̄1 − X̄2)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

that has a t distribution with n1 + n2 − 2 degrees of freedom. Thus we have the γ level confidence interval

(X̄1 − X̄2)± tn1+n2−2,(1−γ)/2Sp

√
1

n1
+

1

n2

for µ1 − µ2.
If we do not know that σ2

1 = σ2
2 , then the corresponding studentized random variable

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

no longer has a t-distribution.
Welch and Satterthwaite have provided an approximation to the t distribution with effective degrees of freedom

given by the Welch-Satterthwaite equation

ν =

(
s21
n1

+
s22
n2

)2

s41
n2
1·(n1−1)

+
s42

n2
2·(n2−1)

. (16.1)

This give a γ-level confidence interval

x̄1 − x̄2 ± tν,(1−γ/2

√
s2

1

n1
+
s2

2

n2
.

For two sample intervals, the number of observations per group may need to be at least 40 for a good approxima-
tion to the normal distribution.

Exercise 16.8. Show that the effective degrees is between the worst case of the minimum choice from a one sample
t-interval and the best case of equal variances.

min{n1, n2} − 1 ≤ ν ≤ n1 + n2 − 2

For data on the life span in days of 88 wildtype and 99 transgenic mosquitoes, we have the summary

standard
observations mean deviation

wildtype 88 20.784 12.99
transgenic 99 16.546 10.78

Using the conservative 95% confidence interval based on min{n1, n2} − 1 = 87 degrees of freedom, we use

> qt(0.975,87)
[1] 1.987608

to obtain the interval

(20.78− 16.55)± 1.9876

√
12.992

88
+

10.782

99
= (0.744, 7.733)

Using the the Welch-Satterthwaite equation, we obtain ν = 169.665. The increase in the number of degrees of
freedom gives a slightly narrower interval (0.768, 7.710).
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16.1.2 Linear Regression
For ordinary linear regression, we have given least squares estimates for the slope β and the intercept α. For data
(x1, y1), (x2, y2) . . . , (xn, yn), our model is

yi = α+ βxi + εi

where εi are independent N(0, σ) random variables. Recall that the estimator for the slope

β̂(x, y) =
cov(x, y)

var(x)

is unbiased.

Exercise 16.9. Show that

Var(α,β)(β̂) =
σ2

(n− 1)var(x)
.

Var(α,β)(α̂) = σ2

(
1

n
+

x̄2

(n− 1)var(x)

)
= σ2

(
(n− 1)var(x) + nx̄2

n(n− 1)var(x)

)
=

σ2x2

(n− 1)var(x)
,

and
Cov(α,β)(α̂, β̂) = −x̄Var(α,β)(β̂)

The last equality for Var(α,β)(α̂) uses formula (2.2) for the sample variance.

Notice that Var(α,β)(α̂) increases with the distance that the mean of the x values is from 0. The correlation

ρ(α,β)(α̂, β̂) =
Cov(α,β)(α̂, β̂)√

Var(α,β)(α̂)Var(α,β)(β̂)
= −x̄

√
Var(α,β)(β̂)

Var(α,β)(α̂)
= − x̄√

x2
,

which does not depend on the data. If the mean of the explanatory variable x̄ > 0, then α̂ and β̂ are negatively
correlated. For example, if we underestimate β̂ for β > 0, then the line is more shallow and we will likely overestimate
α̂.

Exercise 16.10. Explore the fact that the correlation between α̂ and β̂ does not depend on the data.

If σ is known, this suggests a z-interval for a γ-level confidence interval

β̂ ± z(1−γ)/2
σ

sx
√
n− 1

.

Generally, σ is unknown. However, the variance of the residuals,

s2
u =

1

n− 2

n∑

i=1

(yi − (α̂− β̂xi))2 (16.2)

is an unbiased estimator of σ2 and su/σ has a t distribution with n− 2 degrees of freedom. This gives the t-interval

β̂ ± tn−2,(1−γ)/2
su

sx
√
n− 1

.

As the formula shows, the margin of error is proportional to the standard deviation of the residuals. It is inversely
proportional to the standard deviation of the x measurement. Thus, we can reduce the margin of error by taking a
broader set of values for the explanatory variables.

For the data on the humerus and femur of the five specimens of Archeopteryx, we have β̂ = 1.197. su = 1.982,
sx = 13.2, and t3,0.025 = 3.1824, Thus, the 95% confidence interval is 1.197± 0.239 or (0.958, 1.436).
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16.1.3 Sample Proportions
Example 16.11 (proportions). For n Bernoulli trials with success parameter p, the sample proportion p̂ has

mean p and variance
p(1− p)

n
.

The parameter p appears in both the mean and in the variance. Thus, we need to make a choice p̃ to replace p in the
confidence interval

p̂± z(1−γ)/2

√
p̃(1− p̃)

n
. (16.3)

One simple choice for p̃ is simply to take the sample proportion p̂. Based on extensive numerical experimentation, one
more recent popular choice is

p̃ =
x+ 2

n+ 4

where x is the number of successes.
For population proportions, we ask that the mean number of successes np and the mean number of failures

n(1− p) each be at least 10. We have this requirement so that a normal random variable is a good approximation to
the appropriate binomial random variable.

Example 16.12. For Mendel’s data the F2 generation consisted 428 for the dominant allele green pods and 152 for
the recessive allele yellow pods. Thus, the sample proportion of green pod alleles is

p̂ =
428

428 + 152
= 0.7379.

The confidence interval, using

p̃ =
428 + 2

428 + 152 + 4
= 0.7363

is

0.7379± z(1−γ)/2

√
0.7363 · 0.2637

580
= 0.7379± 0.0183z(1−γ)/2

For γ = 0.98, z0.01 = 2.326 and the confidence interval is 0.7379 ± 0.0426 = (0.6953, 0.7805). Note that this
interval contains the predicted value of p = 3/4.

A comparable formula gives confidence intervals based on more than two independent samples

Example 16.13. For the difference in two proportions p1 and p2 based on n1 and n2 independent trials. We have, for
the difference p1 − p2, the confidence interval

p̂1 − p̂2 ±
√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
.

Example 16.14 (transformation of a single parameter). If

(θ̂`, θ̂u)

is a level γ confidence interval for θ and g is an increasing function, then

(g(θ̂`), g(θ̂u))

is a level γ confidence interval for g(θ)

Exercise 16.15. For the example above, find the confidence interval for the yellow pod genotype.
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16.1.4 Summary of Standard Confidence Intervals
The confidence interval is an extension of the idea of a point estimation of the parameter to an interval that is likely to
contain the true parameter value. A level γ confidence interval for a population parameter θ is an interval computed
from the sample data having probability γ of producing an interval containing θ.

For an estimate of a population mean or proportion, a level γ confidence interval often has the form

estimate± t∗ × standard error

where t∗ is the upper 1−γ
2 critical value for the t distribution with the appropriate number of degrees of freedom. If

the number of degrees of freedom is infinite, we use the standard normal distribution to determine the critical value,
usually denoted by z∗.

The margin of error m = t∗ × standard error decreases if

• γ, the confidence level, decreases

• the standard deviation decreases

• n, the number of observations, increases

The procedures for finding the confidence interval are summarized in the table below.

procedure parameter estimate standard error degrees of freedom
one sample µ x̄ s√

n
n− 1

two sample µ1 − µ2 x̄1 − x̄2

√
s21
n1

+
s22
n2

See (16.1)

pooled two sample µ1 − µ2 x̄1 − x̄2 sp
√

1
n1

+ 1
n2

n1 + n2 − 2

one proportion p p̂
√

p̃(1−p̃)
n

, p̃ = x+2
n+4

∞
two proportion p1 − p2 p̂1 − p̂2

√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
∞

linear regression β β̂ = cov(x, y)/var(x) su
sx
√
n−1

n− 2

The first confidence interval for µ1 − µ2 is the two-sample t procedure. If we can assume that the two samples
have a common standard deviation, then we pool the data to compute sp, the pooled standard deviation. Matched pair
procedures use a one sample procedure on the difference in the observed values.

For these intervals, we need a sample size large enough so that the central limit theorem is a sufficiently good
approximation. For one population tests for means, n > 30 and data not strongly skewed is a good rule of thumb. For
two population tests, 40 observations for each group may be necessary. For population proportions, we ask that the
mean number of successes np and the mean number of failures n(1− p) each be at least 10.

For the standard error for β̂ in linear regression, su is defined in (16.2) and sx is the standard deviation of the
values of the explanatory variable.

16.1.5 Interpretation of the Confidence Interval

The confidence interval for a parameter θ is based on two statistics - θ̂`(x), the lower end of the confidence interval
and θ̂u(x), the upper end of the confidence interval. As with all statistics, these two statistics cannot be based on the
value of the parameter. In addition, the formulas for these two statistics are determined in advance of having the actual
data. The term confidence can be related to the production of confidence intervals. We can think of the situation in
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Figure 16.5: One hundred confidence build from repeatedly simulating 100 standard normal random variables and constructing 95% confidence
intervals for the mean value - 0. Note that the 24th interval is entirely below 0 and so does not contain the actual parameter. The 11th, 80th and 91st
intervals are entirely above 0 and again do not contain the parameter.

which we produce independent confidence intervals repeatedly. Each time, we may either succeed or fail to include
the true parameter in the confidence interval. In other words, the inclusion of the parameter value in the confidence
interval is a Bernoulli trial with success probability γ.

For example, after having seen these 100 intervals in Figure 5, we can conclude that the lowest and highest intervals
are much less likely than 95% of containing the true parameter value. This phenomena can be seen in the presidential
polls for the 2012 election. Three days before the election we see the following spread between Mr. Obama and Mr.
Romney

0% -1% 0% 1% 5% 0% -5% -1% 1% 1%

with the 95% confidence interval having a margin of error ∼ 3% based on a sample of size ∼ 1000. Because these
values are highly dependent, the values of ±5% is less likely to contain the true spread.

Exercise 16.16. Perform the computations needed to determine the margin of error in the example above.

The following example, although never likely to be used in an actual problem, may shed some insight into the
difference between confidence and probability.
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Example 16.17. Let X1 and X2 be two independent observations from a uniform distribution on the interval [θ −
1, θ+ 1] where θ is an unknown parameter. In this case, an observation is greater than θ with probability 1/2, and less
than θ with probability 1/2. Thus,

• with probability 1/4, both observations are above θ,

• with probability 1/4, both observations are below θ, and

• with probability 1/2, one observation is below θ and the other is above.

In the third case alone, the confidence interval contains the parameter value. As a consequence of these considerations,
the interval

(θ̂`(X1, X2), θ̂u(X1, X2)) = (min{X1, X2},max{X1, X2})

is a 50% confidence interval for the parameter.
Sometimes, max{X1, X2} − min{X1, X2} > 1. Because any subinterval of the interval [θ − 1, θ + 1] that has

length at least 1 must contain θ, the midpoint of the interval, this confidence interval must contain the parameter value.
In other words, sometimes the 50% confidence interval is certain to contain the parameter.

Exercise 16.18. For the example above, show that

P{confidence interval has length > 1} = 1/4.

Hint: Draw the square [θ− 1, θ+ 1]× [θ− 1, θ+ 1] and shade the region in which the confidence interval has length
greater than 1.

16.1.6 Extensions on the Use of Confidence Intervals

Example 16.19 (delta method). For estimating the distribution µ by the sample mean X̄ , the delta method provides
an alternative for the example above. In this case, the standard deviation of g(X̄) is approximately

|g′(µ)|σ√
n

. (16.4)

We replace µ with X̄ to obtain the confidence interval for g(µ)

g(X̄)± zα/2
|g′(X̄)|σ√

n
.

Using the notation for the example of estimating α3, the coefficient of volume expansion based on independent
length measurements, Y1, Y2, . . . , Yn measured at temperature T1 of an object having length `0 at temperature T0.

Ȳ 3 − `30
`30|T1 − T0|

± z(1−γ)/2
3Ȳ 2σY
n

Exercise 16.20. Recall that the odds of an event having probability p is

ψ =
p

1− p . (16.5)

Use the delta method to show that

σ2
ψ̂
≈ ψ(ψ + 1)2

n
.
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In the example above on green peas,

ψ̂ =
p̂

1− p̂ =
0.7379

1− 0.7379
= 2.8153.

Using (16.4), we obtain a 98% confidence interval

ψ̂ ± z0.01

√
σ2
ψ̂
≈ 2.8153± 2.326

√
2.8153(1 + 2.8153)2

580
= (2.1970, 3.4337)

which includes the predicted value ψ = 3.
If we transform the 98% confidence interval (0.6953, 0.7805) for p to a confidence interval for the odds ψ using

the transformation (16.5), we obtain an interval (2.2819, 3.5558) that is slightly shifted upward from the confidence
interval obtained by the delta method.

For multiple independent samples, the simple idea using the transformation in the Example 12 no longer works.
For example, to determine the confidence interval using X̄1 and X̄2 above, the confidence interval for g(µ1, µ2), the
delta method gives the confidence interval

g(X̄1, X̄2)± z(1−γ)/2

√(
∂

∂x
g(X̄1, X̄2)

)2
σ2

1

n1
+

(
∂

∂y
g(X̄1, X̄2)

)2
σ2

2

n2
.

Example 16.21. Let’s return to the example of n` and nh measurements x and y of, respectively, the length ` and the
height h of a right triangle with the goal of giving the angle

θ = g(`, h) = tan−1

(
h

`

)

between these two sides. Here are the measurements:

> x
[1] 10.224484 10.061800 9.945213 9.982061 9.961353 10.173944 9.952279 9.855147
[9] 9.737811 9.956345

> y
[1] 4.989871 5.090002 5.021615 4.864633 5.024388 5.123419 5.033074 4.750892 4.985719

[10] 4.912719 5.027048 5.055755
> mean(x);sd(x)
[1] 9.985044
[1] 0.1417969
> mean(y);sd(y)
[1] 4.989928
[1] 0.1028745

The angle θ is the arctangent, here estimated using the mean and given in radians

>(thetahat<-atan(mean(y)/mean(x)))
[1] 0.4634398

Using the delta method, we have estimated the standard deviation of these measurements.

σθ̂ ≈
1

h2 + `2

√
h2
σ2
`

n`
+ `2

σ2
h

nh
.

We estimate this with the sample means and standard deviations

sθ̂ ≈
1

ȳ2 + x̄2

√
ȳ2
s2
x

n`
+ x̄2

s2
y

nh
= 0.0030.
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This gives a γ level z- confidence interval
θ̂ ± z(1−γ)/2sθ̂.

For a 95% confidence interval, this is 0.4634± 0.0059 = (0.4575, 0.4693) radians or (26.22◦, 26.89◦).
We can extend the Welch and Satterthwaite method to include the delta method to create a t-interval with effective

degrees of freedom

ν =

(
∂g(x̄,ȳ)2

∂x
s21
n1

+ ∂g(x̄,ȳ)2

∂y
s22
n2

)2

∂g(x̄,ȳ)4

∂x
s41

n2
1·(n1−1)

+ ∂g(x̄,ȳ)4

∂y
s42

n2
2·(n2−1)

.

We compute to find that ν = 19.4 and then use the t-interval

θ̂ ± tν,(1−γ)/2sθ̂.

For a 95% confidence, this is sightly larger interval 0.4634±0.0063 = (0.4571, 0.4697) radians or (26.19◦, 26.91◦).

Example 16.22 (maximum likelihood estimation). The Fisher information is the main tool used to set an confidence
interval for a maximum likelihood estimation .Two choices are typical. Let θ̂ be the maximum likelihood estimate for
the parameter θ.

First, we can use the Fisher information I(θ) and recall that θ̂ is approximately normally distributed, mean θ,
standard deviation 1/

√
nI(θ). Replacing θ by its estimate gives a confidence interval

θ̂ ± zα/2
1√
nI(θ̂)

.

More recently, the more popular method is to use the observed information based on the observations x =
(x1, x2, . . . , xn).

J(θ) = − ∂2

∂θ2
logL(θ|x) = −

n∑

i=1

∂2

∂θ2
log fX(xi|θ).

This is the second derivative of the score function evaluated at the maximum likelihood estimator. Then, the confidence
interval is

θ̂ ± zα/2
1√
J(θ̂)

.

To compare the two approaches, first note that EθJ(θ) = nI(θ), the Fisher information for n observations. Thus,
by the law of large numbers,

1

n
J(θ)→ I(θ) as n→∞.

If the estimator is consistent and I is continuous at θ, then

1

n
J(θ̂)→ I(θ) as n→∞.

16.2 The Bootstrap
The confidence regions have been determined using aspects of the distribution of the data. In particular, these regions
have often been specified by appealing to the central limit theorem and normal approximations. The notion behind
bootstrap techniques begins with the concession that the information about the source of the data is insufficient to
perform the analysis to produce the necessary description of the distribution of the estimator. This is particularly true
for small data sets or highly skewed data.

The strategy is to take the data and treat it as if it were the distribution underlaying the data and to use a resampling
protocol to describe the estimator. For the example above, we estimated the angle in a right triangle by estimating `
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Figure 16.6: Bootstrap distribution of θ̂.

and h, the lengths two adjacent sides by taking the mean of our measurements and then computing the arctangent of
the ratio of these means. Using the delta method, our confidence interval was based on a normal approximation of the
estimator.

The bootstrap takes another approach. We take the data

x1, x2, . . . , xn1
, y1, y2, . . . , yn2

,

the empirical distribution of the measurements of ` and h and act as if it were the actual distribution. The next step
is the use the data and randomly create the results of the experiment many times over. In the example, we choose, with
replacement n1 measurements from the x data and n2 measurements from the y data. We then compute the bootstrap
means

x̄b and ȳb

and the estimate

θ̂(x̄b, ȳb) = tan−1

(
ȳb
x̄b

)
.

Repeating this many times gives an empirical distribution for the estimator θ̂. This can be accomplish in just a couple
lines of R code.

> angle<-numeric10000)
> for (i in 1:10000){xb<-sample(x,length(x),replace=TRUE);

yb<-sample(y,length(y),replace=TRUE);angle[i]<-atan(mean(yb)/mean(xb))*180/pi}
> hist(angle)

We can use this bootstrap distribution of θ̂ to construct a confidence interval.

> q<-c(0.005,0.01,0.025,0.5,0.975,0.99,0.995)
> quantile(angle,q)

0.5% 1% 2.5% 50% 97.5% 99% 99.5%
26.09837 26.14807 26.21860 26.55387 26.86203 26.91486 26.95065
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Figure 16.7: Bayesian credible interval. The 95% credible interval based on a Beta(9, 3) prior distribution and data consisting of 8 heads and 6
tails. This interval has probability 0.025 both above and below the end of the interval. Because the density is higher for the upper value, an narrow
credible interval can be obtained by shifting the values upward so that the densities are equal at the endpoints of the interval and (16.6) is satisfied.

A 95% confidence interval (26.21◦, 26.86◦) can be accomplished using the 2.5th percentile as the lower end point
and the 97.5th percentile as the upper end point. This confidence interval is very similar to the one obtained using the
delta method.

Exercise 16.23. Give the 98% bootstrap confidence interval for the angle in the example above.

Exercise 16.24. Bootstrap confidences are based on a simulation. So, the answer will vary with each simulation.
Repeat the bootstrap above and compare.

16.3 Bayesian Statistics
A Bayesian interval estimate is called a credible interval. Recall that for the Bayesian approach to statistics, both
the data and the parameter are random Thus, the interval estimate is a statement about the posterior probability of the
parameter θ.

P{Θ̃ ∈ C(X)|X = x} = γ. (16.6)

Here Θ̃ is the random variable having a distribution equal to the prior probability π. We have choices in defining
this interval. For example, we can

• choose the narrowest interval, which involves choosing those values of highest posterior density.

• choosing the interval in which the probability of being below the interval is as likely as being above it.

We can look at this by examining the two examples given in the Introduction to Estimation.

Example 16.25 (coin tosses). In this example, we began with a beta prior distribution. Consequently, the posterior
distribution will also be a member of the beta family of distributions. We then flipped a coin n = 14 times with 8
heads. Here, again, is the summary.

prior data posterior
α β mean variance heads tails α β mean
6 6 1/2 1/52 8 6 14 12 7/13
9 3 3/4 3/208 8 6 17 9 17/26
3 9 1/4 3/208 8 6 11 15 11/26
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We use the R command qbeta to find the credible interval. For the second case in the table above and with
γ = 0.95, we find values that give the lower and upper 2.5% of the posterior distribution.

> qbeta(0.025,17,9)
[1] 0.4649993
> qbeta(0.975,17,9)
[1] 0.8202832

This gives a 95% credible interval of (0.4650, 0.8203). This is indicated in the figure above by the two vertical
lines. Thus, the area under the density function from the vertical lines outward totals 5%.

The narrowest credible interval is (0.4737, 0.8276). At these values, the density equals 0.695. The density is lower
for more extreme values and higher between these values. The beta distribution has a probability 0.0306 below the
lower value for the credible interval and 0.0194 above the upper value satisfying the criterion (16.6) with γ = 0.95.

Example 16.26. For the example having both a normal prior distribution and normal data, we find that we also have
a normal posterior distribution. In particular, if the prior is normal, mean θ0, variance 1/λ and our data has sample
mean x̄ and each observation has variance 1.

The classical statistics confidence interval

x̄± zα/2
1√
n
.

For the Bayesian credible interval, note that the posterior distribution in normal with mean

θ1(x) =
λ

λ+ n
θ0 +

n

λ+ n
x̄.

and variance 1/(n+ λ). Thus the credible interval is

θ1(x)± zα/2
1√
λ+ n

.

Thus, the center of the interval is influenced by the prior mean. The prior variance results in a narrower interval.

16.4 Answers to Selected Exercises
16.4. Using R to find upper tail probabilities, we find that

> qt(0.95,99)
[1] 1.660391
> qt(0.99,99)
[1] 2.364606

For the 90% confidence interval

299, 852.4± 1.6604
79.0√
100

= 299852.4± 13.1 or the interval (299839.3, 299865.5).

For the 98% confidence interval

299, 852.4± 2.3646
79.0√
100

= 299852.4± 18.7 or the interval (299833.7, 299871.1).

16.8. Let

c =
s2

1/n1

s2
2/n2

. Then,
s2

2

n2
= c

s2
1

n1
.
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Then, substitute for s2
2/n2 and divide by s2

1/n1 to obtain

ν =

(
s21
n1

+
s22
n2

)2

s41
n2
1·(n1−1)

+
s42

n2
2·(n2−1)

=

(
s21
n1

+
cs21
n1

)2

s41
n2
1·(n1−1)

+
c2s41

n2
1·(n2−1)

=
(1 + c)

2

1
n1−1 + c2

n2−1

=
(n1 − 1)(n2 − 1)(1 + c)2

(n2 − 1) + (n1 − 1)c2
.

Take a derivative to see that

dν

dc
= (n1 − 1)(n2 − 1)

((n2 − 1) + (n1 − 1)c2) · 2(1 + c)− (1 + c)2 · 2(n1 − 1)c

((n2 − 1) + (n1 − 1)c2)2

= 2(n1 − 1)(n2 − 1)(1 + c)
((n2 − 1) + (n1 − 1)c2)− (1 + c)(n1 − 1)c

((n2 − 1) + (n1 − 1)c2)2

= 2(n1 − 1)(n2 − 1)(1 + c)
(n2 − 1)− (n1 − 1)c

((n2 − 1) + (n1 − 1)c2)2

So the maximum takes place at c = (n2 − 1)/(n1 − 1) with value of ν.

ν =
(n1 − 1)(n2 − 1)(1 + (n2 − 1)/(n1 − 1))2

(n2 − 1) + (n1 − 1)((n2 − 1)/(n1 − 1))2

=
(n1 − 1)(n2 − 1)((n1 − 1) + (n2 − 1))2

(n1 − 1)2(n2 − 1) + (n1 − 1)(n2 − 1)2

=
((n1 − 1) + (n2 − 1))2

(n1 − 1) + (n2 − 1)
= n1 + n2 − 2.

Note that for this value
s2

1

s2
2

=
n1

n2
c =

n1/(n1 − 1)

n2/(n2 − 1)

and the variances are nearly equal. Notice that this is a global maximum with

ν → n1 − 1 as c→ 0 and s1 � s2 and ν → n2 − 1 as c→∞ and s2 � s1.

The smaller of these two limits is the global minimum.

16.9. Recall that β̂ is an unbiased estimator for β, thus E(α,β)β̂ = β, and E(α,β)[(β̂ − β)2] is the variance of β̂.

β̂(x, y)− β =
1

(n− 1)var(x)

(
n∑

i=1

(xi − x̄)(yi − ȳ)− β
n∑

i=1

(xi − x̄)(xi − x̄)

)

=
1

(n− 1)var(x)

(
n∑

i=1

(xi − x̄)(yi − ȳ − β(xi − x̄))

)

=
1

(n− 1)var(x)

(
n∑

i=1

(xi − x̄)((yi − βxi)− (ȳ − βx̄))

)

=
1

(n− 1)var(x)

(
n∑

i=1

(xi − x̄)(yi − βxi)−
n∑

i=1

(xi − x̄)(ȳ − βx̄)

)

The second sum is 0. For the first, we use the fact that yi − βxi = α+ εi. Thus,

Var(α,β)(β̂) = Var(α,β)

(
1

(n− 1)var(x)

n∑

i=1

(xi − x̄)(α+ εi)

)
=

1

(n− 1)2var(x)2

n∑

i=1

(xi − x̄)2Var(α,β)(α+ εi)

=
1

(n− 1)2var(x)2

n∑

i=1

(xi − x̄)2σ2 =
σ2

(n− 1)var(x)
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Because the εi are independent, we can use the Pythagorean identity that the variance of the sum is the sum of the
variances.

Similarly, α̂ is an unbiased estimator for α. Because α̂ = ȳ − β̂x̄, we have by the law of cosines,

Var(α,β)(α̂) = Var(α,β)(ȳ) + Var(α,β)(β̂x̄)− 2Cov(α,β)(ȳ, β̂x̄)

= Var(α,β)(ȳ) + x̄2Var(α,β)(β̂)− 2x̄Cov(α,β)(ȳ, β̂)

For the first term, note that Var(yi) = Var(εn).

Var(α,β)(ȳ) = Var(α,β)

(
1

n

n∑

i=1

yi

)
=

1

n2
Var(α,β)

(
n∑

i=1

εi

)
=

1

n2
nσ2 =

σ2

n
.

For the third term, note that

Cov(α,β)(yi, yj) =

{
0 if i 6= j,
σ2 if i = j.

and thus Cov(α,β)(yi, ȳ) =
∑n
j=1 Cov(α,β)(yi, yj)/n = σ2/n. Using the binlinear properties of covariance, we find

that

Cov(α,β)(ȳ, β̂) =
1

nvar(x)

n∑

i=1

Cov(α,β)(yi, cov(x, y))

=
1

nvar(x)

n∑

i=1

n∑

j=1

Cov(α,β)(yi, (xj − x̄)(yj − ȳ))

=
1

nvar(x)

n∑

i=1

n∑

j=1

(xj − x̄)(Cov(α,β)(yi, yj)− Cov(α,β)(yi, ȳ))

=
1

nvar(x)

n∑

j=1

(xj − x̄)

n∑

i=1

σ2

(
1− 1

n

)
= 0 (16.7)

because
∑n
j=1(xj − x̄) = 0. Combining the results, we obtain

Var(α,β)(α̂) = σ2

(
1

n
+

x̄2

(n− 1)var(x)

)
.

Finally, we use α̂ = ȳ − β̂x̄ and (16.7) again.

Cov(α,β)(α̂, β̂) = Cov(α,β)(ȳ, β̂)− x̄Cov(α,β)(β̂, β̂) = 0− x̄Var(α,β)(β̂).
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2516.10. We take x = 1, 2, . . . , 10. Then, the correlation of α̂ and β̂ is

-0.8864053.

> x<-1:10
> -mean(x)/sqrt(mean(xˆ2))
[1] -0.8864053

We make 100 different choices of intercept a and slope b uniformly be-
tween −2 and 2. The noise term has standard deviation 0.2.
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> a<-runif(100,-2,2); b<-runif(100,-2,2)
> ahat<-numeric(1000); bhat<-numeric(1000)
> r<-numeric(100)
> for (i in 1:100){for (j in 1:1000){y<-a[i]+b[i]*x+rnorm(10,0,0.2);
c<-lm(y˜x)$coef;ahat[j]<-c[1];bhat[j]<-c[2]};r[i]<-cor(ahat,bhat)}

> mean(r)
[1] -0.8865578
> sd(r)
[1] 0.007148639
> hist(r)

So, the simulated correlations are all very close to the distributional values.

16.11. For

ψ = g(p) =
p

1− p we have that p =
ψ

ψ + 1
and g′(p) =

1

(1− p)2
.

By the delta method,

σ2
ψ̂
≈ g′(p)2

σ2
p

n
=

1

(1− p)4

p(1− p)
n

=
p

n(1− p)3
=
ψ(ψ + 1)2

n
.

16.16. The confidence interval for the proportion yellow pod genes 1 − p is (0.2195, 0.3047). The proportion of
yellow pod phenotype is (1 − p)2 and a 95% confidence interval has as its endpoints the square of these numbers -
(0.0482, 0.0928).

16.17. The critical value z0.025 = 1.96. For p̂ = 0.468 and n = 1500, the number of successes is x = 702. The
margin of error is

z0.025

√
p̂(1− p̂)

n
= 0.025.
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−1

−0.5

0

0.5

1

16.19. On the left is the square [θ − 1, θ + 1] × [θ − 1, θ + 1].
For the random variables X1, X2, because they are independent and
uniformly distributed over a square of area 4, their joint density is 1/4
on this square. The two diagonal line segments are the graph of |x1−
x2| = 1. In the shaded area, the region |x1−x2| > 1, is precisely the
region in which max{x1, x2} − min{x1, x2} > 1. Thus, for these
values of the random variables, the confidence interval has length
greater than 1. The area of each of the shaded triangles is 1/2 · 1 ·
1 = 1/2. Thus, the total area of the two triangles, 1, represents a
probability of 1/4.

16.23. A 98% confidence interval (26.14◦, 26.91◦) can be accom-
plished using the 1st percentile as the lower end point and the 99th
percentile as the upper end point.

16.24. Here is the output of a second simulation.

> q<-c(0.005,0.01,0.025,0.5,0.975,0.99,0.995)
> quantile(angle,q)

0.5% 1% 2.5% 50% 97.5% 99% 99.5%
26.12021 26.16463 26.22423 26.55800 26.85488 26.90665 26.94847

All of the values of within 0.04 of those from the first bootstrap.
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Topic 17

Simple Hypotheses

I can point to the particular moment when I understood how to formulate the undogmatic problem of
the most powerful test of a simple statistical hypothesis against a fixed simple alternative. At the present
time, the problem appears entirely trivial and within reach of a beginning undergraduate. But, with a
degree of embarrassment, I must confess that it took something like half a decade of combined effort of
E.S.P. and myself to put things straight. - Jerzy Neymann in the Festschrift in honor of Herman Wold,
1970, E.S.P is Egon Sharpe Pearson

17.1 Overview and Terminology
Statistical hypothesis testing is designed to address the question: Do the data provide sufficient evidence to conclude
that we must depart from our original assumption concerning the state of nature?

The logic of hypothesis testing is similar to the one a juror faces in a criminal trial: Is the evidence provided by the
prosecutor sufficient for the jury to depart from its original assumption that the defendant is not guilty of the charges
brought before the court?

Two of the jury’s possible actions are

• Find the defendant guilty.

• Find the defendant not guilty.

The weight of evidence that is necessary to find the defendant guilty depends on the type of trial. In a criminal
trial the stated standard is that the prosecution must prove that the defendant is guilty beyond any reasonable doubt.
In civil trials, the burden of proof may be the intermediate level of clear and convincing evidence or the lower level of
the preponderance of evidence.

Given the level of evidence needed, a prosecutors task is to present the evidence in the most powerful and convinc-
ing manner possible. We shall see these notions reflected in the nature of hypothesis testing.

The simplest set-up for understanding the issues of statistical hypothesis, is the case of two values θ0, and θ1 in
the parameter space. We write the test, known as a simple hypothesis as

H0 : θ = θ0 versus H1 : θ = θ1.

H0 is called the null hypothesis. H1 is called the alternative hypothesis.
We now frame the issue of hypothesis testing using the classical approach. In this approach, the possible actions

are:

• Reject the hypothesis. Rejecting the hypothesis when it is true is called a type I error or a false positive. Its
probability α is called the size of the test or the significance level. Sometimes, 1 − α, the true negatiive is
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called the specificity. In symbols, we write

α = Pθ0{reject H0}.

• Fail to reject the hypothesis. Failing to reject the hypothesis when it is false is called a type II error or a false
negative, has probability β. The power of the test, 1− β, the probability of rejecting the test when it is indeed
false, is also called the true positive fraction or the the sensitivity. In symbols, we write

β = Pθ1{fail to reject H0} and 1− β = Pθ1{reject H0}.

hypothesis tests criminal trials
the defendant is

H0 is true H1 is true innocent guilty
reject H0 type I error OK convict OK

fail to reject H0 OK type II error do not convict OK

Thus, the higher level necessary to secure conviction in a criminal trial corresponds to having lower significance
levels. This analogy should not be taken too far. The nature of the data and the decision making process is quite
dissimilar. For example, the prosecutor and the defense attorney are not always out to find the most honest manner
to present information. In statistical inference for hypothesis testing, the goal is something that all participants in this
endeavor ought to share.

In addition, care should be taken not to be overly invested in a fixed value α for the significance level. As we con-
tinue to investigate the logic and methodology behind hypothesis testing, we will broaden and make more sophisticated
our approach to evaluating hypotheses.

The decision for the test is often based on first determining a critical region C. Data x in this region is determined
to be too unlikely to have occurred when the null hypothesis is true. Thus, the decision is

reject H0 if and only if x ∈ C.

Given a choice α for the size of the test, the choice of a critical region C is called best or most powerful if for any
other choice of critical region C∗ for a size α test, i.e., both critical region lead to the same type I error probability,

α = Pθ0{X ∈ C} = Pθ0{X ∈ C∗},

but perhaps different type II error probabiities

β = Pθ1{X /∈ C}, β∗ = Pθ1{X /∈ C∗},

we have the lowest probability of a type II error, (β ≤ β∗) associated to the critical region C.
The two approaches to hypothesis testing, classical and Bayesian, begin with distinct starting points and end with

different interpretations for implications of the data. Interestingly, both approaches result in a decision that is based on
the values of a likelihood ratio. In the classical approach, we shall learn, based on the Neyman-Pearson lemma, that
the decision is based on a level for this ratio based on setting the type I error probabilities. In the Bayesian approach,
the decision on minimizing risk, a concept that we will soon define precisely.

17.2 The Neyman-Pearson Lemma
Many critical regions are either determined by the consequences of the Neyman-Pearson lemma or by using analogies
of this fundamental lemma. Rather than presenting a proof of this lemma, we will provide some intuition for the choice
of critical region through the following “game”.

We will conduct a single observation X that can take values from −11 to 11 and based on that observation, decide
whether or not to reject the null hypothesis. Basing a decision on a single observation, of course, is not the usual
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circumstance for hypothesis testing. We will first continue on this line of reasoning to articulate the logic behind the
Neyman-Pearson lemma before examining more typical and reasonable data collection protocols.

To begin the game, corresponding to values for x running from −11 to 11, write a row of the number from 0 up
to 10 and back down to 0 and add an additional 0 at each end. These numbers add to give 100. Now, scramble the
numbers and write them under the first row. This can be created and displayed quickly in R using the commands:

> x<- -11:11
> L1<-c(0,0:10,9:0,0)
> L0<-sample(L0) #This provides a random perturbation of the values in L1.
> data.frame(x,L1,L0)

The top row, giving the values of L1, represents the likelihood for one observation under the alternative hypothesis.
The bottom row, giving the values of L0, represents the likelihood under the null hypothesis. Note that the values for
L0 is a rearrangement of the values for L1. Here is the output.

x -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
L1(x) 0 0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 0 0
L0(x) 3 8 7 5 7 1 3 10 6 0 6 4 2 5 0 1 0 4 0 8 2 9 9

The goal is to pick values x so that the accumulated points (the benefit) increase as quickly as possible from the
likelihood L1 keeping points (the cost) from L0 as low as possible. The natural start is to pick values of x so that
L0(x) = 0. Then, the benefit begins to add up without any cost. We find four such values for x and record their values
along with running totals for L1 and L0.

x -2 3 5 7
L1 total 8 15 20 23
L0 total 0 0 0 0

Being ahead by a score of 23 to 0 can be translated into a best critical region C in the following way. If we take
C = {−2, 3, 5, 7}, then, because the L1-total is 23 points out of a possible 100, we find the power of the test

1− β = P1{X ∈ C} = 0.23

and the type II error β = P1{X /∈ C} = 0.77. Because the L0-total is 0 points, the size of the test,

α = P0{X ∈ C} = 0

and there is no chance of type I error with this critical region.
Understanding the next choice is crucial. Candidates are

x = 4,with L1(4) = 6 against L0(4) = 1 and x = 1,with L1(1) = 9 against L0(1) = 2.

The choice 6 against 1 is better than 9 against 2. One way to see this is to note that choosing 6 against 1 twice will
put us in a better place than the single choice of 9 against 2. Indeed, after choosing 6 against 1, a choice of 3 against
1 puts us in at least as good a position than the single choice of 9 against 2. The central point is that the best choice
comes to picking the remaining value for x that has the highest benefit-to-cost ratio of L1(x) to L0(x)

Now we can pick the next few candidates, keeping track of both the type I and type II error of the test with the
choice of critical region being the chosen values of x.

x -2 3 5 7 4 1 -6 0 -5
L1(x)/L0(x) ∞ ∞ ∞ ∞ 6 9/2 4 5/2 5/3
L1 total 8 15 20 23 29 38 42 52 57
L0 total 0 0 0 0 1 3 4 8 11
β 0.92 0.85 0.80 0.77 0.71 0.62 0.58 0.48 0.43
α 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.08 0.11
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Figure 17.1: Receiver Operating Characteristic. The graph of α = P{X ∈ C|H0 is true} (significance) versus 1−β = P{X ∈
C|H1 is true} (power) in the example. The horizontal axis α is also called the false positive fraction (FPF). The vertical axis
1− β is also called the true positive fraction (TPF).

From this exercise we see how the likelihood ratio test is the choice for a most powerful test. For example, for
these likelihoods, the last column states that for a α = 0.11 level test, the best region consists of those values of x so
that

L1(x)

L0(x)
≥ 5

3
.

The type II error probability is β = 0.43 and thus the power is 1− β = 0.57. In genuine examples, we will typically
look for type II error probability much below 0.43 and we will make many observations. We now summarize carefully
the insights from this game before examining more genuine examples. A proof of this theorem is provided in Section
17.4.

Theorem 17.1 (Neyman-Pearson Lemma). Let L(θ|x) denote the likelihood function for the random variable X
corresponding to the probability Pθ. If there exists a critical region C of size α and a nonnegative constant kα such
that

L(θ1|x)

L(θ0|x)
≥ kα for x ∈ C

and
L(θ1|x)

L(θ0|x)
< kα for x /∈ C, (17.1)

then C is the most powerful critical region of size α.

We, thus, reject the null hypothesis if and only if the likelihood ratio exceeds a value kα with

α = Pθ0

{
L(θ1|X)

L(θ0|X)
≥ kα

}
.

We shall learn that many of the standard tests use critical values for the t-statistic, the chi-square statistic, or the F -
statistic. These critical values are related to the critical value kα in extensions of the ideas of likelihood ratios. In a
few pages, we will take a glance at the Bayesian approach to hypothesis testing.

17.2.1 The Receiver Operating Characteristic
Using R, we can complete the table for L0 total and L1 total.
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> o<-order(L1/L0,decreasing=TRUE)
> sumL1<-cumsum(L1[o])
> sumL0<-cumsum(L0[o])
> significance<-sumL0/100
> power<-sumL1/100
> plot(significance,power,type="s")
> data.frame(x[o],L1[o],L0[o],sumL1,sumL0,power,significance)

Completing the curve, known as the receiver operating characteristic (ROC), is shown in the figure above.
The ROC shows the inevitable trade-offs between Type I and Type II errors. For example, by the mere fact that the
graph is increasing, we can see that by setting a more rigorous test achieved by lowering α, the level of significance,
(decreasing the value on the horizontal axis) necessarily reduces 1−β, the power (decreasing the value on the vertical
axis.). The unusual and slightly mystifying name is due to the fact that the ROC was first developed during World
War II for detecting enemy objects in battlefields, Following the surprise military attack on Pearl Harbor in 1941, the
United States saw the need to improve the prediction of the movement of aircraft from their radar signals.

Exercise 17.2. Consider the following (ignorant) example. Flip a coin that gives heads with probability α. Ignore
whatever data you have collected and reject if the coin turns up heads. This test has significance level α. Show that
the receiver operating characteristic curve is the line through the origin having slope 1.

Figure 17.2: Heliconius butterflies

This shows what a minimum acceptable ROC curve looks like - any
hypothesis test ought be better than a coin toss that ignores the data. The
ROC can be used as a test diagnostic. One commonly used is the area
under the ROC, (AUC). For the example above, the AUC is 1/2. So any
test should be improve on that value. The “nearly perfect test” would have
have the power near to 1 for even very low significance level. In this case
the AUC is very nearly equal to 1.

17.3 Examples

Example 17.3. Mimicry is the similarity of one species to another in a
manner that enhances the survivability of one or both species - the model
and mimic . This similarity can be, for example, in appearance, behavior,
sound, or scent. One method for producing a mimic species is hybridiza-
tion. This results in the transferring of adaptations from the model species
to the mimic. The genetic signature of this has recently been discovered in
Heliconius butterflies. Padro-Diaz et al sequenced chromosomal regions
both linked and unlinked to the red color locus and found a region that displays an almost perfect genotype by pheno-
type association across four species in the genus Heliconius

Let’s consider a model butterfly species with mean wingspan µ0 = 10 cm and a mimic species with mean wingspan
µ1 = 7 cm. For both species, the wingspans have standard deviation σ0 = 3 cm. Collect 16 specimen to decide if the
mimic species has migrated into a given region. If we assume, for the null hypothesis, that the habitat under study is
populated by the model species, then

• a type I error is falsely concluding that the species is the mimic when indeed the model species is resident and

• a type II error is falsely concluding that the species is the model when indeed the mimic species has invaded.

If our action is to begin an eradication program if the mimic has invaded, then a type I error would result in the
eradication of the resident model species and a type II error would result in the letting the invasion by the mimic take
its course.
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To begin, we set a significance level. The choice of an α = 0.05 test means that we are accepting a 5% chance of
having this error. If the goal is to design a test that has the lowest type II error probability, then the Neyman-Pearson
lemma tells us that the critical region is determined by a threshold level kα for the likelihood ratio.

C =

{
x;
L(µ1|x)

L(µ0|x)
≥ kα

}
.

We next move to see how this critical region is determined.

Example 17.4. LetX = (X1, . . . , Xn) be independent normal observations with unknown mean and known variance
σ2

0 . The hypothesis is
H0 : µ = µ0 versus H1 : µ = µ1. (17.2)

For the moment consider the case in which µ1 < µ0. We look to determine the critical region.

L(µ1|x)

L(µ0|x)
=

1√
2πσ2

0

exp− (x1−µ1)2

2σ2
0
· · · 1√

2πσ2
0

exp− (xn−µ1)2

2σ2
0

1√
2πσ2

0

exp− (x1−µ0)2

2σ2
0
· · · 1√

2πσ2
0

exp− (xn−µ1)2

2σ2
0

=
exp− 1

2σ2
0

∑n
i=1(xi − µ1)2

exp− 1
2σ2

0

∑n
i=1(xi − µ0)2

= exp− 1

2σ2
0

n∑

i=1

(
(xi − µ1)2 − (xi − µ0)2

)

= exp−µ0 − µ1

2σ2
0

n∑

i=1

(2xi − µ1 − µ0)

Because the exponential function is increasing, the likelihood ratio test (17.1) is equivalent to

µ1 − µ0

2σ2
0

n∑

i=1

(2xi − µ1 − µ0), (17.3)

exceeding some critical value. Continuing to simplify, this is equivalent to x̄ bounded by some critical value,

x̄ ≤ k̃α,

where k̃α is chosen to satisfy
Pµ0{X̄ ≤ k̃α} = α.

(Note that division by the negative number µ1 − µ0 reverses the direction of the inequality.) Pay particular attention
to the fact that the probability is computed under the null hypothesis specifying the mean to be µ0. In this case, X̄ is
N(µ0, σ0/

√
n) and consequently the standardized version of X̄ ,

Z =
X̄ − µ0

σ0/
√
n
, (17.4)

is a standard normal. Set zα so that P{Z ≤ −zα} = α. (This can be determined in R using the qnorm command.)
Then, by rearranging (17.4), we can determine k̃α.

X̄ ≤ µ0 − zα
σ0√
n

= k̃α.

.
Equivalently, we can use the standardized score Z as our test statistic and −zα as the critical value. Note that the

only role played by µ1, the value of the mean under the alternative, is that is less than µ0. However, it will play a role
in determining the power of the test.
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Exercise 17.5. In the example above, give the value of k̃α explicitly in terms of kα, µ0, µ1, σ
2
0 and n.

Returning to the example of the model and mimic bird species, we now see, by the Neyman-Person lemma that
the critical region can be defined as

C =
{
x; x̄ ≤ k̃α

}
=

{
x;
x̄− µ0

σ/
√
n
≤ −zα

}
.

Under the null hypothesis, X̄ has a normal distribution with mean µ0 = 10 and standard deviation σ/
√
n = 3/4.

This using the distribution function of the normal we can find either k̃α

> qnorm(0.05,10,3/4)
[1] 8.76636

or −zα,

> qnorm(0.05)
[1] -1.644854

Thus, the critical value is k̃α = 8.767 for the test statistic x̄ and −zα = −1.645 for the test statistic z. Now let’s
look at data.

> x
[1] 8.9 2.4 12.1 10.0 9.2 3.7 13.9 9.1 8.8 6.3 12.1 11.0 12.5 4.5 8.2 10.2

> mean(x)
[1] 8.93125

Then
x̄ = 8.931 z =

8.93124− 10

3/
√

16
= −1.425.

k̃α = 8.766 < 8.931 or −zα = −1.645 < −1.425 and we fail to reject the null hypothesis.

Exercise 17.6. Modify the calculations in the example above to show that for the case µ0 < µ1, using the same value
of zα as above, the we reject the null hypothesis precisely when

X̄ ≥ µ0 + zα
σ0√
n
. or Z ≥ zα

Exercise 17.7. Give an intuitive explanation why the power should

• increase as a function of |µ1 − µ0|,
• decrease as a function of σ2

0 , and

• increase as a function of n.

Next we determine the type II error probability for the situation given by the previous exercise. We will be guided
by the fact that

X̄ − µ1

σ0/
√
n

is a standard normal random variable for the case that the alternative hypothesis, H1 : µ = µ1, is true.
For µ1 > µ0, we find that the type II error probability

β = Pµ1
{X /∈ C} = Pµ1

{X̄ < µ0 + zα
σ0√
n
}

= Pµ1

{
X̄ − µ1

σ0/
√
n
< zα −

|µ1 − µ0|
σ0/
√
n

}
= Φ

(
zα −

|µ1 − µ0|
σ0/
√
n

)

and the power

1− β = 1− Φ

(
zα +

|µ1 − µ0|
σ0/
√
n

)
(17.5)
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Exercise 17.8. For sample size determination for the simple hypothesis (17.2) show that n∗, the number of observa-
tions to obtain type I error probability α and type II error probability β must satisfy

n∗ ≥ σ2
0

(µ1 − µ0)2
(zα + zβ)2.
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Figure 17.3: Sample size determination for the simple hy-
pothesis (17.2) . Minimum sample sample size versus
power for significance level α = 0.10 (black), 0.05 (red),
0.02 (purple), and 0.01 (blue).

Notice that n∗

• decreases as a function of |µ1 − µ0|,
• increases as a function of σ2

0 , and

• decreases as a function of α and β. In other words, n∗

increases as we decrease either type I or type II error.

Exercise 17.9. Modify the calculations of power in (17.5)
above to show that for the case µ1 < µ0 to show that

1− β = Φ

(
−zα −

µ1 − µ0

σ0/
√
n

)
. (17.6)

A type II error is falsely failing to conclude that the mimic
species have inhabited the study area when indeed they have.
To compute the probability of a type II error, note that for α =
0.05, we substitute into (17.6),

−zα +
µ0 − µ1

σ0/
√
n

= −1.645 +
3

3/
√

16
= 2.355
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Figure 17.4: Left: (black) Density of X̄ for normal data under the null hypothesis - µ0 = 10 and σ0/
√
n = 3/

√
16 = 3/4. With an α = 0.05

level test, the critical value k̃α = µ0 − zασ0/
√
n = 8.766. Thus, the area to the left of the vertical dashed line and below the black density

function is the significance level α = Pµ0{X̄ ≤ kα}. The alternatives shown are µ1 = 9 and 8 (in blue) and µ1 = 7 (in red). The areas below
these curves and to the left of the dashed line is the power 1 − β = Pµ1{X̄ ≤ kα}. These values are 0.3777, 0.8466, and 0.9907 for respective
alternatives µ1 = 9, 8 and 7. Right: The corresponding receiver operating characteristics curves of the power 1−β versus the significance α using
equation (17.6). The power for an α = 0.05 test are indicated by the intersection of vertical dashed line and the receiver operating characteristics
curves.
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Figure 17.5: Power as a function of the number of observations for an α = 0.01 level test. The null hypothesis - µ0 = 10. The alternatives shown
are µ1 = 9 and 8 (in blue) and µ1 = 7 (in red). Here σ0 = 3. The low level for α is chosen to reflect the desire to have a stringent criterion for
rejecting the null hypothesis that the resident species is the model species.

> pnorm(2.355)
[1] 0.9907386

and the type II error probability is β = 1− 0.9907 = 0.0093, a bit under 1%.
Let’s expand the examination of equation (17.6). As we move the alternative value µ1 downward, the density of

X̄ moves leftward. The values for µ1 = 9, 8, and 7 are displayed on the left in Figure 17.4. This shift in the values is
a way of saying that the alternative is becoming more and more distinct as µ1 decreases. The mimic species becomes
easier and easier to detect. We express this by showing that the test is more and more powerful with decreasing values
of µ1. This is displayed by the increasing area under the density curve to the left of the dashed line from 0.377 for
the alternative µ1 = 9 to 0.9907 for µ1 = 7. We can also see this relationship in the receiver operating characteristic
graphed, the graph of the power 1− β versus the significance α. This is displayed for the significance level α = 0.05
by the dashed line.

Exercise 17.10. Determine the power of the test for µ0 = 10 cm and µ1 = 9, 8, and 7 cm with the significance level
α = 0.01. Does the power increase or decrease from its value when α = 0.01? Explain your answer. How would the
graphs in Figure 17.4 be altered to show this case?

Often, we wish to know in advance the number of observations n needed to obtain a given power. In this case,
we use (17.5) with a fixed value of α, the size of the test, and determine the power of the test as a function of n. We
display this in Figure 17.5 with the value of α = 0.01. Notice how the number of observations needed to achieve a
desired power is high when the wingspan of the mimic species is close to that of the model species.

The example above is called the z-test. If n is sufficiently large, then even if the data are not normally distributed,
X̄ is well approximated by a normal distribution and, as long as the variance σ2

0 is known, the z-test is used in this
case. In addition, the z-test can be used when g(X̄1, . . . , X̄n) can be approximated by a normal distribution using the
delta method.

Example 17.11 (Bernoulli trials). Here X = (X1, . . . , Xn) is a sequence of Bernoulli trials with unknown success
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probability p, the likelihood

L(p|x) = px1(1− p)1−x1 · · · pxn(1− p)1−xn = px1+···+xn(1− p)n−(x1+···+xn)

= (1− p)n
(

p

1− p

)x1+···+xn

For the test
H0 : p = p0 versus H1 : p = p1

the likelihood ratio
L(p1|x)

L(p0|x)
=

(
1− p1

1− p0

)n((
p1

1− p1

)/( p0

1− p0

))x1+···+xn
. (17.7)

Exercise 17.12. Show that the likelihood ratio (17.7) results in a test to reject H0 whenever
n∑

i=1

xi ≥ k̃α when p0 < p1 or
n∑

i=1

xi ≤ k̃α when p0 > p1. (17.8)

In words, if the alternative is a higher proportion than the null hypothesis, we reject H0 when the data have too
many successes. If the alternative is lower than the null, we eject H0 when the data do not have enough successes .

In either situation, the number of successesN =
∑n
i=1Xi has aBin(n, p0) distribution under the null hypothesis.

Thus, in the case p0 < p1, we choose k̃α so that

Pp0

{
n∑

i=1

Xi ≥ k̃α
}
≤ α. (17.9)

In general, we cannot choose kα to obtain exactly the value α. Thus, we take the minimum value of kα to achieve the
inequality in (17.9).

To give a concrete example take p0 = 0.6 and n = 20 and look at a part of the cumulative distribution function.

x · · · 13 14 15 16 17 18 19 20
FN (x) = P{N ≤ x} · · · 0.7500 0.8744 0.9491 0.9840 0.9964 0.9994 0.99996 1

If we take α = 0.05, then

P{N ≥ 16} = 1− P{N ≤ 15} = 1− 0.9491 = 0.0509 > 0.05

P{N ≥ 17} = 1− P{N ≤ 16} = 1− 0.9840 = 0.0160 < 0.05

Consequently, we need to have at least 17 successes in order to reject H0.

Exercise 17.13. Find the critical region in the example above for α = 0.10 and α = 0.01. For what values of α is
C = {16, 17, 18, 19, 20} a critical region for the likelihood ratio test.

Example 17.14. If np0 and n(1− p0) are sufficiently large, then, by the central limit theorem,
∑n
i=1Xi has approxi-

mately a normal distribution. If we write the sample proportion

p̂ =
1

n

n∑

i=1

Xi,

then, under the null hypothesis, we can apply the central limit theorem to see that

Z =
p̂− p0√

p0(1− p0)/n

is approximately a standard normal random variable and we perform the z-test as in the previous exercise.
For example, if we take p0 = 1/2 and p1 = 3/5 and α = 0.05, then with 110 heads in 200 coin tosses

Z =
0.55− 0.50

0.05/
√

2
=
√

2.
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> qnorm(0.95)
[1] 1.644854

Thus,
√

2 < 1.645 = z0.05 and we fail to reject the null hypothesis.

Example 17.15. Honey bees store honey for the winter. This honey serves both as nourishment and insulation from
the cold. Typically for a given region, the probability of survival of a feral bee hive over the winter is p0 = 0.7. We
are checking to see if, for a particularly mild winter, this probability moved up to p1 = 0.8. This leads us to consider
the hypotheses

H0 : p = p0 versus H1 : p = p1.

for a test of the probability that a feral bee hive survives a winter. If we use the central limit theorem, then, under the
null hypothesis,

z =
p̂− p0√

p0(1− p0)/n

has a distribution approximately that of a standard normal random variable. For an α level test, the critical value is
zα where α is the probability that a standard normal is at least zα. If the significance level is α = 0.05, then we will
reject H0 for any value of z > zα = 1.645

For this study, 112 colonies have been chosen and 88 survive. Thus p̂ = 0.7875 and

z =
0.7875− 0.7√

0.7(1− 0.7)/112
= 1.979.

Consequently, reject H0.

For both of these previous examples, the usual method is to compute the z-score with the continuity correction.
We shall soon see this with the use of prop.test in R.

17.4 Summary

For a simple hypothesis
H0 : θ = θ0 versus H1 : θ = θ1.

we have two possible action, reject H0 and fail to reject H0, this leads to two possible types of errors

error probability alternative names
type I α = Pθ0{reject H0} level significance false positive
type II β = Pθ1{fail to reject H0} false negative

The probability 1 − β = Pθ1{reject H0} is called the true positive probability or power or sensitivity. The
probability 1− α = Pθ0{fail to reject H0} is called the specificity.

The procedure is to set a significance level α and find a critical region C so that the type II error probability is as
small as possible. The Neyman-Pearson lemma lets us know that in many cases the critical region is determined by
setting a level kα for the likelihood ratio.

C =

{
x;
L(θ1|x)

L(θ0|x)
≥ kα

}

We continue, showing the procedure in the examples above.
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normal observations µ1 ≥ µ0 Bernoulli trials p1 > p0

Simplify likelihood ratio to obtain a x̄
∑n

i=1 xi
test statistic T (x) z = x̄−µ0

σ0/
√
n

Use the distribution of T (x) under X̄ ∼ N(µ0, σ0/
√
n)

∑n
i=1Xi ∼ Bin(n, p0)

H0 to set a critical value k̃α so that Z ∼ N(0, 1)

Pθ0{T (X) ≥ k̃α} = α

Determine type II error probability Pµ1{X̄ ≥ k̃α} Pp1{
∑n

i=1Xi ≥ k̃α}
β = Pθ1{T (X) ≥ k̃α}

17.5 Proof of the Neyman-Pearson Lemma
For completeness in exposition, we include a proof of the Neyman-Pearson lemma.

Let C be the α critical region determined by the likelihood ratio test. In addition, let C∗ be a critical region for a
second test of size α. In symbols,

Pθ0{X ∈ C∗} = Pθ0{X ∈ C} = α (17.10)

As before, we use the symbols β and β∗ denote, respectively, the probability of type II error for the critical regions C
and C∗ respectively. The Neyman-Pearson lemma is the statement that β∗ ≥ β.

Divide both critical regionsC andC∗ into two disjoint subsets, the subset that the critical regions share S = C∩C∗
and the subsets E = C\C∗ and E∗ = C∗\C that are exclusive to one region. In symbols, we write this as the disjoint
unions

C = S ∪ E, and C∗ = S ∪ E∗.
Thus under either parameter value θi, i = 1, 2,

Pθi{X ∈ C} = Pθi{X ∈ S}+ Pθi{X ∈ E} and Pθi{X ∈ C∗} = Pθi{X ∈ S}+ Pθi{X ∈ E∗}.

(See Figure 17.5)
First, we will describe the proof in words.
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Figure 17.6: Critical region C as determined by the Neyman-Pearson lemma is indicated by the circle on the left. The circle on the right C∗ is the
critical region is for a second α level test. Thus, C = S ∪ E and C∗ = S ∪ E∗.
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• The contribution to type I errors from data in S and for type II errors from data outside E ∪E∗ are the same for
both tests. Consequently, we can focus on differences in types of error by examining the case in which the data
land in either E and E∗.

• Because both test have level α, the probability that the data land in E or in E∗ are the same under the null
hypothesis.

• Under the likelihood ratio critical region, the null hypothesis is not rejected in E∗.

• Under the second test, the null hypothesis is not rejected in E.

• E∗ is outside likelihood ratio critical region. So, under the alternative hypothesis, the probability that the data
land in E∗ is at most kα times as large as it is under the null hypothesis. This contributes to the type II error for
the likelihood ratio based test.

• E is in the likelihood ratio critical region. So, under the alternative hypothesis, the probability that the data land
in E is at least kα times as large as it is under the null hypothesis. This contributes a larger amount to the type
II error for the second test than is added from E∗ to the likelihood ratio based test.

• Thus, the type II error for the likelihood ratio based test is smaller than the type II error for the second test.

To carry out the proof, first consider the parameter value θ0 and subtract from both sides in (17.10) the probability
Pθ0{X ∈ S} that the data land in the shared critical regions and thus would be rejected by both tests to obtain

Pθ0{X ∈ E∗} ≥ Pθ0{X ∈ E}

or
Pθ0{X ∈ E∗} − Pθ0{X ∈ E} ≥ 0. (17.11)

Moving to the parameter value θ1, the difference in the corresponding type II error probabilities is

β∗ − β = Pθ1{X /∈ C∗} − Pθ1{X /∈ C}
= (1− Pθ1{X ∈ C∗})− (1− Pθ1{X ∈ C}) = Pθ1{X ∈ C} − Pθ1{X ∈ C∗}.

Now subtract from both of the integrals the quantity Pθ1{X ∈ S}, the probability that the hypothesis would be falsely
rejected by both tests to obtain

β∗ − β = Pθ1{X ∈ E} − Pθ1{X ∈ E∗} (17.12)

We can use the likelihood ratio criterion on each of the two integrals above.

• For x ∈ E, then x is in the critical region and consequently L(θ1|x) ≥ kαL(θ0|x) and

Pθ1{X ∈ E} =

∫

E

L(θ1|x) dx ≥ kα
∫

E

L(θ0|x) dx = kαPθ0{X ∈ E}.

• For x ∈ E∗, then x is not in the critical region and consequently L(θ1|x) ≤ kαL(θ0|x) and

Pθ1{X ∈ E∗} =

∫

E∗
L(θ1|x) dx ≤ kα

∫

E∗
L(θ0|x) dx = kαPθ0{X ∈ E∗}.

Apply these two inequalities to (17.12)

β∗ − β ≥ kα(Pθ0{X ∈ E∗} − Pθ0{X ∈ E}).

This difference is at least 0 by (17.11) and consequently β∗ ≥ β, i. e., the critical region C∗ has at least as large type
II error probability as that given by the likelihood ratio test.

NB. The integral will be placed by sums in the case of discrete random variables. For those who know some measure
theory, we can maintain the inequalities above if the integral is taken with respect to some reference measure µ.
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17.6 An Brief Introduction to the Bayesian Approach
As with other aspects of the Bayesian approach to statistics, hypothesis testing is closely aligned with Bayes theorem.
For a simple hypothesis, we begin with a prior probability for each of the competing hypotheses.

π{θ0} = P{H0 is true} and π{θ1} = P{H1 is true}.
Naturally, π{θ0} + π{θ1} = 1. Although this is easy to state, the choice of a prior ought to be grounded in solid
scientific reasoning.

As before, we collect data and with it compute the posterior probabilities of the two parameter values θ0 and θ1.
This gives us the posterior probabilities that H0 is true and H1 is true.

We can see, in its formulation, the wide difference in perspective between the Bayesian and classical approaches.

• In the Bayesian approach, we begin with a prior probability that H0 is true. In the classical approach, the
assumption is that H0 is true.

• In the Bayesian approach, we use the data and Bayes formula to compute the posterior probability that H1 is
true. In the classical approach, we use the data and a significance level to make a decision to reject H0. The
question: What is the probability that H1 is true? has no meaning in the classical setting.

• The decision to reject H0 in the Bayesian setting is based on minimizing risk using presumed losses for type
I and type II errors. In classical statistics, the choice of type I error probability is used to construct a critical
region. This choice is made with a view to making the type II error probability as small as possible. We reject
H0 whenever the data fall in the critical region.

Both approaches use as a basic concept, the likelihood function L(θ|x) for the data x. Let Θ̃ be a random variable
taking on one of the two values θ0, θ1 and having a distribution equal to the prior probability π. Thus,

π{θi} = P{Θ̃ = θi}, i = 0, 1.

Recall Bayes formula for events A and C,

P (C|A) =
P (A|C)P (C)

P (A|C)P (C) + P (A|Cc)P (Cc)
, (17.13)

we set C to be the event that the alternative hypothesis is true and A to be the event that the data take on the value x.
In symbols,

C = {Θ̃ = θ1} = {H1 is true} and A = {X = x}.
Focus for the moment on the case in which the data are discrete, we have the conditional probabilities for the alternative
hypothesis.

P (A|C) = Pθ1{X = x} = fX(x|θ1) = L(θ1|x).

Similarly, for the null hypothesis,

P (A|Cc) = Pθ0{X = x} = fX(x|θ0) = L(θ0|x).

The posterior probability that H1 is true can be written symbolically in several ways.

fΘ̃|X(θ1|x) = P{H1 is true|X = x} = P{Θ̃ = θ1|X = x}

Returning to Bayes formula, we make the substitutions in (17.13),

fΘ̃|X(θ1|x) =
L(θ1|x)π{θ1}

L(θ0|x)π{θ0}+ L(θ1|x)π{θ1}
.
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By making a similar argument involving limits, we can reach the same identity for the density of continuous
random variables. The formula for the posterior probability can be more easily understood if we rewrite the expression
above in terms of odds, i. e., as the ratio of probabilities.

fΘ̃|X(θ1|x)

fΘ̃|X(θ0|x)
=
P{H1 is true|X = x}
P{H0 is true|X = x} =

P{Θ̃ = θ1|X = x}
P{Θ̃ = θ0|X = x}

=
L(θ1|x)

L(θ0|x)
· π{θ1}
π{θ0}

. (17.14)

With this expression we see that the posterior odds are equal to the likelihood ratio times the prior odds. In this case
the likelihood ratio is called the Bayes factor of H1 in favor of H0.

B =
L(θ1|x)

L(θ0|x)

(This is the reciprocal of the ratio used in the Neyman Pearson lemma. In general, pay particular attention to the choice
of numerator and denominator in this ratio.)

The decision whether or not to reject H0 depends on the values assigned for the loss obtained in making an
incorrect conclusion. We begin by setting values for the loss. This can be a serious exercise in which a group of
experts weighs the evidence for either adverse outcome. We will take a loss of 0 for making a correct decision, a loss
of `I for a type I error and `II for a type II error. We summarize this in a table.

loss function table
decision H0 is true H1 is true
H0 0 `II
H1 `I 0

The Bayes procedure is to make the decision that has the smaller posterior expected loss, also known as the risk.
If the decision is H0, the loss L0(x) takes on two values

L0(x) =

{
0 with probability P{H0 is true|X = x},
`II with probability P{H1 is true|X = x}.

The expected loss

EL0(x) = `IIP{H1 is true|X = x} = `II(1− P{H0 is true|X = x}) (17.15)

is simply the product of the loss and the probability of incorrectly choosing H1.
If the decision is H1, the loss L1(x) also takes on two values

L1(x) =

{
`I with probability P{H0 is true|X = x},
0 with probability P{H1 is true|X = x}.

In this case, the expected loss
EL1(x) = `IP{H0 is true|X = x} (17.16)

is a product of the loss and the probability of incorrectly choosing H0.
We can now express the Bayesian procedure in symbols using the criterion of smaller posterior expected loss:

decide on H1 if and only if EL1(x) ≤ EL0(x).

Now substituting for EL0(x) and EL1(x) in (17.15) and (17.16), we find that we make the decision on H1 and
reject H0 if and only if

`IP{H0 is true|X = x} ≤ `II(1− P{H0 is true|X = x})
(`I + `II)P{H0 is true|X = x} ≤ `II

P{H0 is true|X = x} ≤ `II
`I + `II
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or stated in terms of odds
P{H1 is true|X = x}
P{H0 is true|X = x} ≥

`I
`II
, (17.17)

we reject H0 whenever the posterior odds exceeds the ratio of the losses for each type of error.
As we saw in (17.14), this ratio of posterior odds is dependent on the ratio of prior odds. Taking this into account,

we see that the criterion for rejecting H0 is a level test for the likelihood ratio:
Reject H0 if and only if the Bayes factor

B =
L(θ1|x)

L(θ0|x)
≥ `I/π{θ1}
`II/π{θ0}

. (17.18)

This is exactly the same type of criterion as that used in classical statistics. However, the rationale, thus the value
for the ratio necessary to reject, is quite different. For example, the higher the value of the prior odds, the higher the
likelihood ratio needed to reject H0 under the Bayesian framework.

Example 17.16. For normal observations with means µ0 for the null hypothesis and µ1 for the alternative hypothesis.
If the variance has a known value, σ0, we have from Example 17.4, the likelihood ratio

L(µ1|x)

L(µ0|x)
= exp

µ1 − µ0

2σ2
0

n∑

i=1

(2xi − µ1 − µ0) = exp

(
µ1 − µ0

2σ2
0

n(2x̄− µ1 − µ0)

)
. (17.19)

For Example 17.3 on the model and mime butterfly species, µ0 = 10, µ1 = 7, σ0 = 3, and sample mean x̄ = 8.931
based on n = 16 observations, we find the likelihood ratio 0.1004. Thus,

P{H1 is true|X = x}
P{H0 is true|X = x} =

P{M̃ = µ1|X = x}
P{M̃ = µ0|X = x}

= 0.1004
π{µ1}
π{µ0}

.

where M̃ is a random variable having a distribution equal to the prior probability π for the model and mimic butterfly
wingspan. Consequently, the posterior odds for the mimic vs. mime species is approximately ten times the prior odds.

Finally, the decision will depend on the ratio of `II/`I, i. e., the ratio of the loss due to eradication of the resident
model species versus letting the invasion by the mimic take its course.

Exercise 17.17. Substitute the likelihood ratio in 17.19 into 17.18 and solve in terms of x̄. Use this to determine
threshold values for barx to reject H0 for prior probabilities π{µ0} = 0.05, 0.10, 0.20 and lost ratios `I/`II =
1/2, 1, 2. What situations give the lowest and highest threshold values for x̄? Explain your answer.

Exercise 17.18. Returning to a previous example, give the likelihood ratios for n = 20 Bernoulli trials with p0 = 0.6
and p1 = 0.7 for values x = 0, . . . , 20 for the number of successes. Give the values for the number of successes in
which the number of successes change the prior odds by a factor of 5 or more as given by the posterior odds.

17.7 Answers to Selected Exercises
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Figure 17.7: Receiver operating Charac-
teristic based on a biased coin toss. Thus,
any viable ROC should be above the line
the the graph.

17.2 Flip a biased coin in which the probability of heads is α under both the
null and alternative hypotheses and reject whenever heads turns up. Then

α = Pθ0{heads} = Pθ1{heads} = 1− β.

Thus, the receiver operating characteristic curve is the line through the origin
having slope 1.

17.4. The likelihood ratio

L(µ1|x)

L(µ0|x)
= exp−µ0 − µ1

2σ2
0

n∑

i=1

(2xi − µ1 − µ0) ≥ kα.
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Thus,
µ1−µ0

2σ2
0

∑n
i=1(2xi − µ1 − µ0) ≥ ln kα

∑n
i=1(2xi − µ1 − µ0) ≥ 2σ2

0

µ1−µ0
ln kα

2x̄− µ1 − µ0 ≤ 2σ2
0

n(µ1−µ0) ln kα

x̄ ≤ 1
2

(
2σ2

0

n(µ1−µ0) ln kα + µ1 + µ0

)
= k̃α

Notice that since µ1 < µ0, division by µ1 − µ0 changes the direction of the inequality.

17.6. If cα is the critical value in expression in (17.3) then

µ1 − µ0

2σ2
0

n∑

i=1

(2xi − µ1 − µ0) ≥ cα

SInce µ1 > µ0, division by µ1−µ0 does not change the direction of the inequality. The rest of the argument proceeds
as before. we obtain that x̄ ≥ k̃α.

17.7. If power means easier to distinguish using the data, then this is true when the means are farther apart, the
measurements are less variable or the number of measurements increases. This can be seen explicitly is the power
equation (17.5).
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Figure 17.8: Plot of standard normal density function
The value −zβ has lower tail probabiility β. (β = 0.05
is shown.)

17.8. We shall do the case µ1 > µ0. the other case is similar.
From equation (17.5),

β = Φ

(
zα −

|µ1 − µ0|
σ0/
√
n

)

The goal is to choose n so that the argument argument zα +
|µ1−µ0|
σ0/
√
n

has probability β. However, we have that −zβ has
lower tail probability β. In other words, β = Φ(−zβ). Be-
cause Φ, the cumulative distribution function for the standard
normal, is one-to-one,

−zβ = zα −
|µ1 − µ0|
σ0/
√
n

√
n
|µ1 − µ0|

σ0
= zα + zβ

√
n =

σ0

|µ1 − µ0|
(zα + zβ)

n =
σ2

0

(µ1 − µ0)2
(zα + zβ)2

Thus, n∗, any integer al least as large as nwill have the desired
type I and type II errors.

17.9. For µ0 > µ1,

β = Pµ1
{X /∈ C} = Pµ1

{X̄ > µ0 −
σ0√
n
zα}

= Pµ1

{
X̄ − µ1

σ0/
√
n
> −zα −

µ1 − µ0

σ0/
√
n

}
= 1− Φ

(
−zα −

µ1 − µ0

σ0/
√
n

)

and the power

1− β = Φ

(
−zα −

µ1 − µ0

σ0/
√
n

)
.
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17.10. Interpreting equation (17.5) in R, we find that

> mu0<-10;sigma0<-3;n<-16
> zalpha<-qnorm(0.99)
> mu1<-c(9,8,7)
> power<-1-pnorm(zalpha-abs(mu1-mu0)/(sigma0/sqrt(n)))
> data.frame(mu1,power)

mu1 power
1 9 0.1603514
2 8 0.6331918
3 7 0.9529005

Notice that the power has decreased from the case α = 0.05. This could be anticipated. In reducing the significance
level from α = 0.05 to α = 0.01, we make the criterion for rejecting more stringent by reducing he critical region C.
The effect can be seen in FIgure 17.4. On the left side figure, the vertical dashed line is moved left to reduce the area
under the black curve to the left of the dashed line. This, in turn, reduces the area under the other curves to the left of
the dashed line. On the right figure, the vertical dashed line is moved left to the value α = 0.01 and, because the ROC
curve is increasing, the values for the power decreased.

17.12. For the likelihood ratio (17.7), take the logarithm to obtain

ln

(
L(p1|x)

L(p0|x)

)
= n ln

(
1− p1

1− p0

)
+ (x1 + · · ·+ xn) ln

((
p1

1− p1

)/( p0

1− p0

))
≥ ln kα.

If p0 < p1 then the ratio in the expression for the logarithm in the second term is greater than 1 and consequently, the
logarithm is positive. Thus, we isolate the sum

∑n
i=1 xi to give the test (17.8). For p0 > p1, the logarithm is negative

and the direction of the inequality in (17.8) is reversed.

17.13. If we take α = 0.10, then

P{N ≥ 15} = 1− P{N ≤ 14} = 1− 0.8744 = 0.1256 > 0.10

P{N ≥ 16} = 1− P{N ≤ 15} = 1− 0.9491 = 0.0509 < 0.10

Consequently, we need to have at least 16 successes in order to reject H0. If we take α = 0.01, then

P{N ≥ 17} = 1− P{N ≤ 16} = 1− 0.9840 = 0.0160 > 0.01

P{N ≥ 18} = 1− P{N ≤ 17} = 1− 0.9964 = 0.0036 < 0.01

Consequently, we need to have at least 18 successes in order to reject H0. For C = {16, 17, 18, 19, 20},
P{N ∈ C} = 1− P{N ≤ 15} = 1− 0.9491 = 0.0509.

Thus, α must be less that 0.0509 for C to be a critical region. In addition, P{N ≥ 17} = 0.0160. Consequently, if
we take any value for α < 0.0160, then the critical region will be smaller than C.

17.17. Making the substitution of 17.19 into 17.18, we have

exp

(
µ0 − µ1

2σ2
0

n(2x̄− µ1 − µ0)

)
≤ `II/π{θ0}

`I/π{θ1}
µ0 − µ1

2σ2
0

n(2x̄− µ1 − µ0) ≤ ln

(
`II/π{θ0}
`I/π{θ1}

)

2x̄− µ1 − µ0 ≤
2σ2

0

n(µ0 − µ1)
ln

(
`II/π{θ0}
`I/π{θ1}

)

x̄ ≤ 1

2

(
2σ2

0

n(µ0 − µ1)
ln

(
`II/π{θ0}
`I/π{θ1}

)
+ µ1 + µ0

)
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> mu0<-10;mu1<-7;sigma<-3;n<-16
> pi0<-c(0.05,0.10,0.20)
> lr<-1/2
> threshold<-(2*sigmaˆ2/(n*(mu1-mu0))*log(lr*pi0/(1-pi0))+mu1+mu0)/2
> data.frame(pi0,threshold)

pi0 threshold
1 0.05 9.182047
2 0.10 9.041945
3 0.20 8.889895
> threshold<-(2*sigmaˆ2/(n*(mu1-mu0))*log(lr*pi0/(1-pi0))+mu1+mu0)/2
> data.frame(pi0,threshold)

pi0 threshold
1 0.05 9.052082
2 0.10 8.911980
3 0.20 8.759930
> lr<-2
> threshold<-(2*sigmaˆ2/(n*(mu1-mu0))*log(lr*pi0/(1-pi0))+mu1+mu0)/2
> data.frame(pi0,threshold)

pi0 threshold
1 0.05 8.922117
2 0.10 8.782015
3 0.20 8.629965
> lr<-1

The lowest threshold value x̄ = 8.62 is for the case π{θ0} = 0.20 and `I/`|I = 2. This is the highest prior probability
and the highest relative loss for a type I error. These both require stronger evidence to reject H0 and thus need a more
extreme and thus lower value for x̄ to reject H0.

The highest threshold value x̄ = 9.18 is for the case π{θ0} = 0.05 and `I/`II = 1/2. This is the lowest prior
probability and the lowest relative loss for a type I error. These both require less evidence to reject H0 and thus need
a less extreme and thus higher value for x̄ to reject H0.

17.19. Using the reciprocal likelihood ratio formula in Example 17.9, we compute the Bayes factor B for

> x<-c(0:20)
> n<-20
> p0<-0.6
> p1<-0.7
> B<-((1-p1)/(1-p0))ˆn*((p1/(1-p1))/(p0/(1-p0)))ˆx
> data.frame(x[1:7],B[1:7],x[8:14],B[8:14],x[15:21],B[15:21])

x.1.7. B.1.7. x.8.14. B.8.14. x.15.21. B.15.21.
1 0 0.003171212 7 0.06989143 14 1.540361
2 1 0.004932996 8 0.10872001 15 2.396118
3 2 0.007673550 9 0.16912001 16 3.727294
4 3 0.011936633 10 0.26307558 17 5.798013
5 4 0.018568096 11 0.40922867 18 9.019132
6 5 0.028883705 12 0.63657794 19 14.029761
7 6 0.044930208 13 0.99023235 20 21.824072

Thus, values x ≤ 9 increase the posterior odds in favor of H0 by a factor greater than 5 (B < 1/5), values x ≥ 17
increase the posterior odds in favor of H1 by a factor greater than 5 (B > 5).
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Topic 18

Composite Hypotheses

Simple hypotheses limit us to a decision between one of two possible states of nature. This limitation does not allow
us, under the procedures of hypothesis testing to address the basic question:

Does the length, the reaction rate, the fraction displaying a particular behavior or having a particular
opinion, the temperature, the kinetic energy, the Michaelis constant, the speed of light, mutation rate, the
melting point, the probability that the dominant allele is expressed, the elasticity, the force, the mass, the
parameter value θ0 increase, decrease or change at all under under a different experimental condition?

18.1 Partitioning the Parameter Space
This leads us to consider composite hypotheses. In this case, the parameter space Θ is divided into two disjoint
regions, Θ0 and Θ1. The hypothesis test is now written

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Again, H0 is called the null hypothesis and H1 the alternative hypothesis.
For the three alternatives to the question posed above, let θ be one of the components in the parameter space, then

• increase would lead to the choices Θ0 = {θ; θ ≤ θ0} and Θ1 = {θ; θ > θ0},

• decrease would lead to the choices Θ0 = {θ; θ ≥ θ0} and Θ1 = {θ; θ < θ0}, and

• change would lead to the choices Θ0 = {θ0} and Θ1 = {θ; θ 6= θ0}

for some choice of parameter value θ0. The effect that we are meant to show, here the nature of the change, is contained
in Θ1. The first two options given above are called one-sided tests. The third is called a two-sided test,

Rejection and failure to reject the null hypothesis, critical regions, C, and type I and type II errors have the same
meaning for a composite hypotheses as it does with a simple hypothesis. Significance level and power will necessitate
an extension of the ideas for simple hypotheses.

18.2 The Power Function
Power is now a function of the parameter value θ. If our test is to reject H0 whenever the data fall in a critical region
C, then the power function is defined as

π(θ) = Pθ{X ∈ C}.
that gives the probability of rejecting the null hypothesis for a given value of the parameter.
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The ideal power function has

π(θ) ≈ 0 for all θ ∈ Θ0 and π(θ) ≈ 1 for all θ ∈ Θ1

With this property for the power function, we would rarely reject the null hypothesis when it is true and rarely fail to
reject the null hypothesis when it is false.

In reality, incorrect decisions are made. Thus, for θ ∈ Θ0,

π(θ) is the probability of making a type I error,

i.e., rejecting the null hypothesis when it is indeed true. For θ ∈ Θ1,

1− π(θ) is the probability of making a type II error,

i.e., failing to reject the null hypothesis when it is false.
The goal is to make the chance for error small. The traditional method is analogous to that employed in the

Neyman-Pearson lemma. Fix a (significance) level α, now defined to be the largest value of π(θ) in the region Θ0

defined by the null hypothesis. In other words, by focusing on the value of the parameter in Θ0 that is most likely to
result in an error, we insure that the probability of a type I error is no more that α irrespective of the value for θ ∈ Θ0.
Then, we look for a critical region that makes the power function as large as possible for values of the parameter
θ ∈ Θ1
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Figure 18.1: Power function for the one-sided test with alternative “greater”. The size of the test α is given by the height of the red segment.
Notice that π(µ) < α for all µ < µ0 and π(µ) > α for all µ > µ0

Example 18.1. Let X1, X2, . . . , Xn be independent N(µ, σ0) random variables with σ0 known and µ unknown. For
the composite hypothesis for the one-sided test

H0 : µ ≤ µ0 versus H1 : µ > µ0,

we use the test statistic from the likelihood ratio test and reject H0 if the statistic x̄ is too large. Thus, the critical
region

C = {x; x̄ ≥ k(µ0)}.
If µ is the true mean, then the power function

π(µ) = Pµ{X ∈ C} = Pµ{X̄ ≥ k(µ0)}.
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As we shall see soon, the value of k(µ0) depends on the level of the test.
As the actual mean µ increases, then the probability that the sample mean X̄ exceeds a particular value k(µ0) also

increases. In other words, π is an increasing function. Thus, the maximum value of π on the set Θ0 = {µ;µ ≤ µ0}
takes place for the value µ0. Consequently, to obtain level α for the hypothesis test, set

α = π(µ0) = Pµ0{X̄ ≥ k(µ0)}.

We now use this to find the value k(µ0). When µ0 is the value of the mean, we standardize to give a standard normal
random variable

Z =
X̄ − µ0

σ0/
√
n
.

Choose zα so that P{Z ≥ zα} = α. Thus

Pµ0
{Z ≥ zα} = Pµ0

{X̄ ≥ µ0 +
σ0√
n
zα}

and k(µ0) = µ0 + (σ0/
√
n)zα.

If µ is the true state of nature, then

Z =
X̄ − µ
σ0/
√
n

is a standard normal random variable. We use this fact to determine the power function for this test.

π(µ) = Pµ{X̄ ≥
σ0√
n
zα + µ0} = Pµ{X̄ − µ ≥

σ0√
n
zα − (µ− µ0)} (18.1)

= Pµ

{
X̄ − µ
σ0/
√
n
≥ zα −

µ− µ0

σ0/
√
n

}
= 1− Φ

(
zα −

µ− µ0

σ0/
√
n

)
(18.2)

where Φ is the distribution function for a standard normal random variable.
We have seen the expression above in several contexts.

• If we fix n, the number of observations and the alternative value µ = µ1 > µ0 and determine the power 1− β
as a function of the significance level α, then we have the receiver operating characteristic as in Figure 17.2.

• If we fix µ1 the alternative value and the significance level α, then we can determine the power as a function of
the number of observations as in Figure 17.3.

• If we fix n and the significance level α, then we can determine the power function π(µ), the power as a function
of the alternative value µ. An example of this function is shown in Figure 18.1.

Exercise 18.2. If the alternative is less than, show that

π(µ) = Φ

(
−zα −

µ− µ0

σ0/
√
n

)
.

Returning to the example with a model species and its mimic. For the plot of the power function for µ0 = 10,
σ0 = 3, and n = 16 observations,

> zalpha<-qnorm(0.95)
> mu0<-10
> sigma0<-3
> mu<-(600:1100)/100
> n<-16
> z<--zalpha - (mu-mu0)/(sigma0/sqrt(n))
> pi<-pnorm(z)
> plot(mu,pi,type="l")
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Figure 18.2: Power function for the one-sided test with alternative “less than”. µ0 = 10, σ0 = 3. Note, as argued in the text that π is a decreasing
function. (left) n = 16, α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lowering significance level α reduces power π(µ) for each value
of µ. (right) α = 0.05, n = 15 (black), 40 (red), and 100 (blue). Notice that increasing sample size n increases power π(µ) for each value of
µ ≤ µ0 and decreases type I error probability for each value of µ > µ0. For all 6 power curves, we have that π(µ0) = α.

In Figure 18.2, we vary the values of the significance level α and the values of n, the number of observations in
the graph of the power function π

Example 18.3 (mark and recapture). We may want to use mark and recapture as an experimental procedure to test
whether or not a population has reached a dangerously low level. The variables in mark and recapture are

• t be the number captured and tagged,

• k be the number in the second capture,

• r the the number in the second capture that are tagged, and let

• N be the total population.

If N0 is the level that a wildlife biologist say is dangerously low, then the natural hypothesis is one-sided.

H0 : N ≥ N0 versus H1 : N < N0.

The data are used to compute r, the number in the second capture that are tagged. The likelihood function for N is
the hypergeometric distribution,

L(N |r) =

(
t
r

)(
N−t
k−r
)

(
N
k

) .

The maximum likelihood estimate is N̂ = [tk/r]. Thus, higher values for r lead us to lower estimates for N . Let R be
the (random) number in the second capture that are tagged, then, for an α level test, we look for the minimum value
rα so that

π(N) = PN{R ≥ rα} ≤ α for all N ≥ N0. (18.3)

As N increases, then recaptures become less likely and the probability in (18.3) decreases. Thus, we should set the
value of rα according to the parameter value N0, the minimum value under the null hypothesis. Let’s determine rα
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for several values of α using the example from the topic, Maximum Likelihood Estimation, and consider the case in
which the critical population is N0 = 2000.

> N0<-2000; t<-200; k<-400
> alpha<-c(0.05,0.02,0.01)
> ralpha<-qhyper(1-alpha,t,N0-t,k)
> data.frame(alpha,ralpha)

alpha ralpha
1 0.05 49
2 0.02 51
3 0.01 53

For example, we must capture al least 49 that were tagged in order to reject H0 at the α = 0.05 level. In this case
the estimate for N is N̂ = [kt/rα] = 1632. As anticipated, rα increases and the critical regions shrinks as the value
of α decreases.

Using the level rα determined using the value N0 for N , we see that the power function

π(N) = PN{R ≥ rα}.
R is a hypergeometric random variable with mass function

fR(r) = PN{R = r} =

(
t
r

)(
N−t
k−r
)

(
N
k

) .

The plot for the case α = 0.05 is given using the R commands

> N<-c(1300:2100)
> pi<-1-phyper(49,t,N-t,k)
> plot(N,pi,type="l",ylim=c(0,1))

We can increase power by increasing the size of k, the number the value in the second capture. This increases the
value of rα. For α = 0.05, we have the table.

> k<-c(400,600,800)
> N0<-2000
> ralpha<-qhyper(0.95,t,N0-t,k)
> data.frame(k,ralpha)

k ralpha
1 400 49
2 600 70
3 800 91

We show the impact on power π(N) of both significance level α and the number in the recapture k in Figure 18.3.

Exercise 18.4. Determine the type II error rate for N = 1600 with

• k = 400 and α = 0.05, 0.02, and 0.01, and

• α = 0.05 and k = 400, 600, and 800.

Example 18.5. For a two-sided test

H0 : µ = µ0 versus H1 : µ 6= µ0.

In this case, the parameter values for the null hypothesis Θ0 consist of a single value, µ0. We reject H0 if |X̄ − µ0| is
too large. Under the null hypothesis,

Z =
X̄ − µ0

σ/
√
n
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Figure 18.3: Power function for Lincoln-Peterson mark and recapture test for population N0 = 2000 and t = 200 captured and tagged. (left)
k = 400 recaptured α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lower significance level α reduces power. (right) α = 0.05,
k = 400 (black), 600 (red), and 800 (blue). As expected, increased recapture size increases power.

is a standard normal random variable. For a significance level α, choose zα/2 so that

P{Z ≥ zα/2} = P{Z ≤ −zα/2} =
α

2
.

Thus, P{|Z| ≥ zα/2} = α. For data x = (x1, . . . , xn), this leads to a critical region

C =

{
x;
∣∣∣ x̄− µ0

σ/
√
n

∣∣∣ ≥ zα/2
}
.

If µ is the actual mean, then
X̄ − µ
σ0/
√
n

is a standard normal random variable. We use this fact to determine the power function for this test

π(µ) = Pµ{X ∈ C} = 1− Pµ{X /∈ C} = 1− Pµ
{∣∣∣X̄ − µ0

σ0/
√
n

∣∣∣ < zα/2

}

= 1− Pµ
{
−zα/2 <

X̄ − µ0

σ0/
√
n
< zα/2

}
= 1− Pµ

{
−zα/2 −

µ− µ0

σ0/
√
n
<
X̄ − µ
σ0/
√
n
< zα/2 −

µ− µ0

σ0/
√
n

}

= 1− Φ

(
zα/2 −

µ− µ0

σ0/
√
n

)
+ Φ

(
−zα/2 −

µ− µ0

σ0/
√
n

)

If we do not know if the mimic is larger or smaller that the model, then we use a two-sided test. Below is the R
commands for the power function with α = 0.05 and n = 16 observations.

> zalpha = qnorm(.975)
> mu0<-10
> sigma0<-3
> mu<-(600:1400)/100
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Figure 18.4: Power function for the two-sided test. µ0 = 10, σ0 = 3. (left) n = 16, α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that
lower significance level α reduces power. (right) α = 0.05, n = 15 (black), 40 (red), and 100 (blue). As before, decreased significance level
reduces power and increased sample size n increases power.

> n<-16
> pi<-1-pnorm(zalpha-(mu-mu0)/(sigma0/sqrt(n)))

+pnorm(-zalpha-(mu-mu0)/(sigma0/sqrt(n)))
> plot(mu,pi,type="l")

We shall see in the the next topic how these tests follow from extensions of the likelihood ratio test for simple
hypotheses.

The next example is unlikely to occur in any genuine scientific situation. It is included because it allows us to
compute the power function explicitly from the distribution of the test statistic. We begin with an exercise.

Exercise 18.6. For X1, X2, . . . , Xn independent U(0, θ) random variables, θ ∈ Θ = (0,∞). The density

fX(x|θ) =

{
1
θ if 0 < x ≤ θ,
0 otherwise.

Let X(n) denote the maximum of X1, X2, . . . , Xn, then X(n) has distribution function

FX(n)
(x) = Pθ{X(n) ≤ x} =

(x
θ

)n
.

Example 18.7. For X1, X2, . . . , Xn independent U(0, θ) random variables, take the null hypothesis that θ lands in
some normal range of values [θL, θR]. The alternative is that θ lies outside the normal range.

H0 : θL ≤ θ ≤ θR versus H1 : θ < θL or θ > θR.

Because θ is the highest possible value for an observation, if any of our observations Xi are greater than θR, then
we are certain θ > θR and we should reject H0. On the other hand, all of the observations could be below θL and the
maximum possible value θ might still land in the normal range.

Consequently, we will try to base a test based on the statistic X(n) = max1≤i≤nXi and reject H0 if X(n) > θR
and too much smaller than θL, say θ̃. We shall soon see that the choice of θ̃ will depend on n the number of observations
and on α, the size of the test.
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The power function
π(θ) = Pθ{X(n) ≤ θ̃}+ Pθ{X(n) ≥ θR}

We compute the power function in three cases - low, middle and high values for the parameter θ. The second case
has the values of θ under the null hypothesis. The first and the third cases have the values for θ under the alternative
hypothesis. An example of the power function is shown in Figure 18.5.
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Figure 18.5: Power function for the test above with θL = 1, θR = 3, θ̃ = 0.9, and n = 10. The size of the test is π(1) = 0.3487.

Case 1. θ ≤ θ̃.
In this case all of the observations Xi must be less than θ which is in turn less than θ̃. Thus, X(n) is certainly less

than θ̃ and

Pθ{X(n) ≤ θ̃} = 1 and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = 1.

Case 2. θ̃ < θ ≤ θR.
Here X(n) can be less that θ̃ but never greater than θR.

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = (θ̃/θ)n.

Case 3. θ > θR.
Repeat the argument in Case 2 to conclude that

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
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and that

Pθ{X(n) ≥ θR} = 1− Pθ{X(n) < θR} = 1−
(
θR
θ

)n

and therefore π(θ) = (θ̃/θ)n + 1− (θR/θ)
n.

The size of the test is the maximum value of the power function under the null hypothesis. This is case 2. Here, the
power function

π(θ) =

(
θ̃

θ

)n

decreases as a function of θ. Thus, its maximum value takes place at θL and

α = π(θL) =

(
θ̃

θL

)n

To achieve this level, we solve for θ̃, obtaining θ̃ = θL n
√
α. Note that θ̃ increases with α. Consequently, we must

expand the critical region in order to reduce the significance level. Also, θ̃ increases with n and we can reduce the
critical region while maintaining significance if we increase the sample size.

The assessment of statistical power is an important aspect of experimental design. In practical terms, we can
increase power by either increasing effort or asking a less stringent question. For example, we can increase effort

• (mathematics) by applying a more powerful test or a more rigorous design,

• (engineering) by designing a better measuring devise, reducing variance, or

• (exersion) by increasing sample size

We can ask a less stringent question

• by increasing the significance level and thus the ability to reject the null hypothesis or

• by increasing the difference between null value and the alternative value for detection of difference

These practical considerations will be useful in understanding the change in power resulting from a change in the
experimental design and hypothesis testing.

18.3 The p-value
The report of reject the null hypothesis does not describe the strength of the evidence because it fails to give us the sense
of whether or not a small change in the values in the data could have resulted in a different decision. Consequently,
one common method is not to choose, in advance, a significance level α of the test and then report “reject” or “fail to
reject”, but rather to report the value of the test statistic and to give all the values for α that would lead to the rejection
of H0. The p-value is the probability of obtaining a result at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true. In this way, we provide an assessment of the strength of evidence against
H0. Consequently, a very low p-value indicates strong evidence against the null hypothesis.

Example 18.8. For the one-sided hypothesis test to see if the mimic had invaded,

H0 : µ ≥ µ0 versus H1 : µ < µ0.

with µ0 = 10 cm, σ0 = 3 cm and n = 16 observations. The test statistics is the sample mean x̄ and the critical region
is C = {x; x̄ ≤ k}
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Figure 18.6: Under the null hypothesis, X̄ has a normal distribution mean µ0 = 10 cm, standard deviation 3/
√

16 = 3/4 cm. The p-value,
0.077, is the area under the density curve to the left of the observed value of 8.931 for x̄, The critical value, 8.767, for an α = 0.05 level test is
indicated by the red line. Because the p-vlaue is greater than the significance level, we cannot reject H0.

Our data had sample mean x̄ = 8.93125 cm. The maximum value of the power function π(µ) for µ in the subset
of the parameter space determined by the null hypothesis occurs for µ = µ0. Consequently, the p-value is

Pµ0
{X̄ ≤ 8.93125}.

With the parameter value µ0 = 10 cm, X̄ has mean 10 cm and standard deviation 3/
√

16 = 3/4. We can compute
the p-value using R.

> pnorm(8.93125,10,3/4)
[1] 0.0770786

If the p-value is below a given significance level α, then we say that the result is statistically significant at the
level α. For the previous example, we could not have rejected H0 at the α = 0.05 significance level. Indeed, we
could not have rejected H0 at any level below the p-value, 0.0770786. On the other hand, we would reject H0 for any
significance level above this value.

Many statistical software packages (including R, see the example below) do not need to have the significance level
in order to perform a test procedure. This is especially important to note when setting up a hypothesis test for the
purpose of deciding whether or not to reject H0. In these circumstances, the significance level of a test is a value that
should be decided before the data are viewed. After the test is performed, a report of the p-value adds information
beyond simply saying that the results were or were not significant.

It is tempting to associate the p-value to a statement about the probability of the null or alternative hypothesis being
true. Such a statement would have to be based on knowing which value of the parameter is the true state of nature.
Assessing whether of not this parameter value is in Θ0 is the reason for the testing procedure and the p-value was
computed in knowledge of the data and our choice of Θ0.

In the example above, the test is based on having a test statistic S(x) (namely x̄) fall below a level kα, i.e., we
have decision

reject H0 if and only if S(x) ≤ kα.
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This choice of kα is based on the choice of significance level α and the choice of θ0 ∈ Θ0 so that π(θ0) = Pθ0{S(X) ≤
kα} = α, the lowest value for the power function under the null hypothesis. If the observed data x takes the value
S(x) = s, then the p-value equals

Pθ0{S(X) ≤ s}. (18.4)

This is the lowest value for the significance level that would result in rejection of the null hypothesis if we had chosen
it in advance of seeing the data.

Example 18.9. Returning to the example on the proportion of hives that survive the winter, the appropriate composite
hypothesis test to see if more that the usual normal of hives survive is

H0 : p ≤ 0.7 versus H1 : p > 0.7.

The R output shows a p-value of 3%.

> prop.test(88,112,0.7,alternative="greater")

1-sample proportions test with continuity correction

data: 88 out of 112, null probability 0.7
X-squared = 3.5208, df = 1, p-value = 0.0303
alternative hypothesis: true p is greater than 0.7
95 percent confidence interval:
0.7107807 1.0000000

sample estimates:
p

0.7857143

Exercise 18.10. Is the hypothesis test above significant at the 5% level? the 1% level?

In 2016, the American Statistical Association set for itself a task to make a statement on p-values. They note that
it is all too easy to set a test, create a test statistic and compute a p-value. Proper statistical practice is much more than
this and includes

• appropriately chosen techniques based on a thorough understanding of the phenomena under study,

• adequate visual and numerical summaries of the data,

• properly conducted analyses whose logic and quantitative approaches are clearly explained,

• correct interpretation of statistical results in context, and

• reproducibility of results via a thorough reporting.

Expressing a p-value is one of many approaches to summarize the results of a statistical investigation. The notion
is that the smaller the p-value, the greater the statistical incompatibility of the data with the null hypothesis. This
incompatibility is meant to cast doubt on the null hypothesis.

Under the logic of classical statistics, the p-value cannot be turned into a statement about the truth of the null
hypothesis but rather is a statement about the data in relation to a specified statistical model stated as a hypothesis
test. Moreover, the p-value is not meant to serve as a “bright line” between true and false. Part of this arises from the
pedogogy of introducing of hypothesis testing in setting a significance level α as a part of the test.

These issues are compounded in most scientific considerations where multiple hypothesis testing makes interpre-
tation of p-values difficult and calls on the authors for complete transparency of all statistical procedures including
data collection and hypothesis testing. In addition, even strong statistical evidence of the incompatibility of the data
with the null hypothesis may have very little practical or scientific meaning.

Many investigators engage in statistical analysis based on limited background and so often need to collaborate to
find other appropriate statistical approached to decision making under uncertainty. Some appear in this book, e.g.,
Bayes factors, likelihood ratios, and false discovery rates, but there are many others.
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18.4 Distribution of p-values and the Receiving Operating Characteristic
Let’s return to the case of a simple hypotheses.

H0 : θ = θ0 versus H1 : θ = θ1.

As before, for data x, let S(x) be a test statistic for this hypothesis, rejecting if the value of test statistic S(x) is
too low. If S(x) = s, the p-value is FS(X)(s|θ0) = Pθ0{S(X) ≤ s}. Recalling out introductory example on model
and mimic butterflies, the hypothesis on the mean wing span in centimeters, is

H0 : µ = µ0 versus H1 : µ = µ1.

In this situation, the test statistic S(X) = X̄ is N(µ0, σ/
√
n) under the null hypothesis. If the standard devia-

tion is sigma with n observations, using xbar to denote the sample mean, we find the p-value with the command
pnorm(xbar,mu0,sigma/sqrt(n)).

For a significance test at level α, there exists a critical value kα so that

α = Pθ0{S(X) ≤ kα} = FS(X)(kα|θ0)

and we reject the null hypothesis at level α if the value of the test statistic is below the critical value, i. e., s < kα. Thus,
for significance level alpha, we determine kα with the command qnorm(alpha,mu0,sigma/sqrt(n)).

For the parameter value θ1, the power

1− β(α) = Pθ1{S(X) ≤ kα}.

In other words, 1− β(α) is the probability, under the alternative parameter θ1 that the p-value is less than α.
Define FR(α) = 1 − β(α), then FR is a non-decreasing function on the interval [0, 1] with FR(0) = 0 and

FR(1) = 1. Thus, FR is a cumulative distribution function. Recall that the receiving operator characteristic is the
plot of the power as a function of significance. In other words, it is the plot FR(α).

Exercise 18.11. Show that the receiver operating characteristic gives the distribution function for the p-values for the
alternative parameter value θ1.

The area under the receiving operator characteristic, AUC,
∫ 1

0

FR(α) dα.

is a general diagnostic for the overall power of a test. If the AUC is nearly 1, then the power has the very desirable
property of increasing quickly for low significance levels.

Exercise 18.12. Let Si, i = 0, 1 be independent random variables that have the distributions of S(X) under θi. The
the area under the curve equals ∫ ∞

−∞
F1(s0)f0(s0) ds0 = P{S1 < S0}. (18.5)

In words, for two independent samples of the test statistic, one under the null hypothesis and the other under the
alternative, the area under the curve is the probability that the value under the alternative is smaller. We will see a
similar expression in an alternative approach to t procedures. This will leads to the Wilcoxon ranked sum test and an
interpretation associated to the area under the empirical receiving operator characteristic.

Exercise 18.13. For n = 16 observations, standard deviation σ = 3 and µ0 = 10 centimeters, determine the values
for the area under the receiver operator characteristics in Figure 17.3.

µ1 AUC
9 0.8271
8 0.9703
7 0.9977

334



Introduction to the Science of Statistics Composite Hypotheses

Hint: Use the integrate command for the integral in (18.5)

Notice that, as expected, as the difference µ0 − µ1 increases, the mimic and the model butterfly are easier to
distinguish and the AUC increases.

Exercise 18.14. Simulate P{S1 < S0} in the previous exercise and see how they match the values for the AUC.

18.5 Multiple Hypothesis Testing
We now consider testing multiple hypotheses. This is common in the world of “big data” with thousands of hypothesis
on many issues in subjects including genomics, internet searches, or financial transactions. For m hypotheses, let
p1, . . . , pm be the p-values for m hypothesis tests.

18.5.1 Familywise Error Rate
The familywise error rate (FWER) is the probability of making even one type I error. If we set αB for the significance
level for a single test, then the simplest strategy is to employ the Bonferroni correction. This uses the Bonferroni
inequality,

P (A1 ∪ · · · ∪Am) ≤ P (A1) + · · ·+ P (Am)

for events A1, . . . , Am.
If Ai is the event of rejecting the null hypothesis when it is true, then A1 ∪ · · · ∪ Am is the event that at least one

of the hypotheses is rejected when it is true. For each i, P (Ai) = αB and so α = P (A1 ∪ · · · ∪ Am) ≤ mαB . Thus,
the Bonferroni correction is to reject if

pi ≤
α

m
for all i.

Exercise 18.15. For m independent, αI level hypothesis tests, show that the familywise error α = 1 − (1 − αI)m.
Thus, (1− α)1/m = 1− αI and αI = 1− (1− α)1/m is the level necessary to obtain an α familywise error rate.

This gives a cautionary take, if we take α = 0.05 and m = 20, then the probability of one or more false positive
tests, 1 − (1 − 0.05)20 ≈ 0.64, is well above 1/2. The Bonferroni correction, αB = 0.05/20 = 0.0025 and the
independence correction, αI = 1− (1− 0.05)1/20 = 0.0256 will guarantee a familywise error rate α = 0.05

Note that the second method allows for slightly higher values of α than the Bonferroni correction. However, it is
far less general. For independent test statistics, Fisher’s method for testing multiple works directly with the p-values.
We begin with the following exercise.

Exercise 18.16. Let θ0 be the true state of nature. Assume that the distribution function for the text statistic S(X) is
continuous and strictly increasing for all possible values. Show that the p-value is uniformly distributed on the interval
[0, 1].

In this circumstance, if the null hypothesis is true for all m hypotheses, then

p1, . . . , pm are independent U(0, 1) random variables.

Recall from the use of the probability transform that

−2 ln p1, . . . ,−2 ln pm are independent Exp(1/2) random variables.

So their sum
−2 ln p1 − · · · − 2 ln pm is a Γ(1/2,m) random variable.

Thus this Γ random variable can serve as a test statistic for the multiple hypothesis that all the null hypotheses are
true, rejecting if the sum above is sufficiency large. Traditionally, we use the fact that Γ(1/2,m) is also a member of
the chi-square family, namely, χ2

2m and then use this as the distribution of −2 ln p1 − · · · − 2 ln pm under the multiple
hypothesis that all m null hypotheses hold.
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Example 18.17. For 10 independent test consider the p-values

> p
[1] 0.0086 0.0164 0.6891 0.7671 0.2967 0.5465 0.0247 0.8235 0.9603 0.0041

The test statistic for Fisher’s method

> -2*sum(log(p))
[1] 41.5113

gives a p-value of 0.3% for the multiple test for all 10 hypotheses.

> 1-pchisq(-2*sum(log(p)),2*10)
[1] 0.003200711

18.5.2 False Discovery Rate
When the number of tests becomes very large, then having all hypotheses true is an extremely strict criterion. A more
relaxed and often more valuable criterion is the false discovery rate..

Thus, we can model question Is the null hypothesis hypothesis true? as a sequence of Bernoulli trials. Let π0 be the
success parameter for the trials. Thus, with probability π0, the null hypothesis is true and the p-values follow FU , the
uniform distribution on the interval [0, 1]. With probability 1− π0, the null hypothesis is false and the p-values follow
FR, the distribution of the receiver operating characteristic. Taken together, we say that the p-values are distributed
according to the mixture

F (x) = πFU (x) + (1− π)FR(x) = π0x+ (1− π0)FR(x). (18.6)

Thus, if we reject whenever the p-value is below a chosen value α, then the type I error probability is α. From this
we determine the false discovery rate, here defined as

q = P{H0 is true|reject H0}.

Using Bayes formula

q =
P{reject H0|H0 is true}P{H0 is true}

P{reject H0}
=

απ0

F (α)
.
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Figure 18.7: False discovery rate versus π. Here the significance level α =
0.01, the power, β = 0.953.

An estimate of the false discovery rate can be
determined from an estimate of π0. This is deter-
mined by looking at the p-values and estimating
the mixture in (18.6).

Example 18.18. Consider a simple hypothesis

H0 : µ = 0 versus H1 : µ = 1.

for the mean µ based on 16 observations of nor-
mal random variable, variance 1. Thus, either the
effect is not present (µ = 0), or it is (µ = 1). If we
take the significance level α = 0.01, then based
on n = 16 observations, the test statistic X̄ has
standard deviation 1/

√
16 = 1/4,

> alpha<-0.01
> (kalpha<-qnorm(1-alpha,0,1/4))
[1] 0.581587
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and, thus, we reject H0 if the sample mean x̄ >
kα = 0.581587. The power, i.e.., the probability
that we reject H0 when H1 is true,

> (p_1<-1-pnorm(xbar,1,1/4))
[1] 0.9529005

If we plot the false discovery rate versus π0, the probability H0 is true, then

> pi<-seq(0,0.25,0.01)
> fdr<-alpha*pi0/(alpha*pi0+p_1*(1-pi))
> plot(pi0,fdr,type="l")

In this case, for π = 0.10, we have a false discovery rate q = 0.00116, For 10,000 hypothesis, we have a mean of
11.6 false discoveries.

18.6 Answers to Selected Exercises
18.2. In this case the critical regions is C = {x; x̄ ≤ k(µ0)} for some value k(µ0). To find this value, note that

Pµ0{Z ≤ −zα} = Pµ0{X̄ ≤ −
σ0√
n
zα + µ0}

and k(µ0) = −(σ0/
√
n)zα + µ0. The power function

π(µ) = Pµ{X̄ ≤ −
σ0√
n
zα + µ0} = Pµ{X̄ − µ ≤ −

σ0√
n
zα − (µ− µ0)}

= Pµ

{
X̄ − µ
σ0/
√
n
≤ −zα −

µ− µ0

σ0/
√
n

}
= Φ

(
−zα −

µ− µ0

σ0/
√
n

)
.

18.4. The type II error rate β is 1− π(1600) = P1600{R < rα}. This is the distribution function of a hypergeometric
random variable and thus these probabilities can be computed using the phyper command

• For varying significance, we have the R commands:

> t<-200;N<-1600
> k<-400
> alpha<-c(0.05,0.02,0.01)
> ralpha<-c(49,51,53)
> beta<-1-phyper(ralpha-1,t,N-t,k)
> data.frame(alpha,beta)

alpha beta
1 0.05 0.5993010
2 0.02 0.4609237
3 0.01 0.3281095

Notice that the type II error probability is high for α = 0.05 and increases as α decreases.

• For varying recapture size, we continue with the R commands:

> k<-c(400,600,800)
> ralpha<-c(49,70,91)
> beta<-1-phyper(ralpha-1,t,N-t,k)
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> data.frame(k,beta)
k beta

1 400 0.5993010
2 600 0.8043988
3 800 0.9246057

Notice that increasing recapture size has a significant impact on type II error probabilities.

18.6. The i-th observation satisfies

P{Xi ≤ x} =

∫ x

0

1

θ
dx̃ =

x

θ

Now, X(n) ≤ x occurs precisely when all of the n-independent observations Xi satisfy Xi ≤ x. Because these
random variables are independent,

FX(n)
(x) = Pθ{X(n) ≤ x} = Pθ{X1 ≤ x,X1 ≤ x, . . . ,Xn ≤ x}

= Pθ{X1 ≤ x}P{X1 ≤ x}, · · ·P{Xn ≤ x} =
(x
θ

)(x
θ

)
· · ·
(x
θ

)
=
(x
θ

)n

18.10. Yes, the p-value is below 0.05. No, the p-value is above 0.01.

18.11. The p-value is FS(x)(s|θ0)). By the definition of kα, FS(x)(kα|θ0)) = α. The distribution of p-values under
θ1,

Pθ1{FS(x)(S(X)|θ0) ≤ α} = Pθ1{FS(x)(S(X)|θ0) ≤ FS(x)(kα|θ0)}
= Pθ1{S(X) ≤ kα} = 1− β(α),

the power as a function of the significance level α. This is the receiver operating characteristic.

18.12. To simplify notation denote the distributions functions FS(X)(·|θi) = Fi, i = 0, 1 and let fi denote their
corresponding density functions. Then, for example, α = F0(kα). So,

FR(α) = Pθ1{S(X) ≤ kα} = F1(kα) = F1(F−1
0 (α))

and ∫ 1

0
FR(α) dα =

∫ 1

0
F1(F−1

0 (α)) dα, α = F0(s0),

=
∫∞
−∞ F1(s0)f0(s0) ds0, s0 = F−1

0 (α), dα = f0(s0)ds0

=
∫∞
−∞

∫ s0
−∞ f1(s1)f0(s0) ds1ds0

=
∫ ∫
{s1<s0} f1(s1)f0(s0) ds1ds0

= P{S1 < S0}
18.13. We use (18.5) and the integrate command. The interval [µ0− 6mu0 + 6] goes 8 stande deviations (σ/

√
n)

above and below he mean.

> sigma<-3;n<-16;mu0<-10
> mu1<-9;

integrand<-function(s) pnorm(s,mu1,sigma/sqrt(n))*dnorm(s,mu0,sigma/sqrt(n))
> integrate(integrand,mu0-6,mu0+6)
0.8271107 with absolute error < 2.9e-06
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> mu1<-8;
integrand<-function(s) pnorm(s,mu1,sigma/sqrt(n))*dnorm(s,mu0,sigma/sqrt(n))

> integrate(integrand,mu0-6,mu0+6)
0.9703268 with absolute error < 2.9e-05
> mu1<-7;

integrand<-function(s) pnorm(s,mu1,sigma/sqrt(n))*dnorm(s,mu0,sigma/sqrt(n))
> integrate(integrand,mu0-6,mu0+6)
0.9976611 with absolute error < 1.3e-05

18.14. We use (18.5) for the area under the curve and simulate P{S0 < S1}.

> mu0<-10;s0<-rnorm(100000,mu0,sigma/sqrt(n))
> mu1<-9;s1<-rnorm(100000,mu1,sigma/sqrt(n))
> length(s1[s1<s0])/length(s1)
[1] 0.82777
> mu1<-8;s1<-rnorm(100000,mu1,sigma/sqrt(n))
> length(s1[s1<s0])/length(s1)
[1] 0.97058
> mu1<-7;s1<-rnorm(100000,mu1,sigma/sqrt(n))
> length(s1[s1<s0])/length(s1)
[1] 0.99786

To compare:

simulation
µ1 AUC P{S0 < S1}
9 0.8271 0.8278
8 0.9703 0.9706
7 0.9977 0.9979

and the simulated probabilities agree with the AUC to 3 decimal places.

18.15. By the complement rule, de Morgan’s law, and independence of the Ai, we have

α = P (A1 ∪ · · · ∪Am) = 1− P ((A1 ∪ · · · ∪Am)c) = 1− P (Ac1 ∩ · · · ∩Acm)

= 1− P (Ac1) · · ·P (Acm) = 1− (1− P (A1)) · · · (1− P (Am)) = 1− (1− αI)m.

18.16. Let FS(x)(s|θ0) be the distribution function for S(X) under θ0 and note that the conditions on function
FS(x)(s|θ0) insure that it is one to one and thus has an inverse. By 18.4, the p-value is FS(x)(S(X)|θ0). Choose
u in the interval [0, 1]. Then,

Pθ0{FS(x)(S(X)|θ0) ≤ u} = Pθ0{S(X) ≤ F−1
S(x)(u|θ0)}

= FS(x)(F
−1
S(x)(u|θ0)|θ0) = u,

showing that FS(x)(S(X)|θ0) is uniformly distributed on the interval [0, 1].
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Topic 19

Extensions on the Likelihood Ratio

We begin with a composite hypothesis test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

with Θ0 and Θ1 a partition of the parameter space Θ ( Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 = Θ). Let C be the critical region
for an α level test, i .e, we reject the null hypothesis whenever the data x fall in the critical region. Thus, the power
function

π(θ) = Pθ{X ∈ C}
has the property that

π(θ) ≤ α for all θ ∈ Θ0

and that α is the maximum value of the power function on Θ0, the parameter values associated to the null hypothesis.
We have seen several critical regions that were defined by taking a statistic T (x) and defining the critical region

by have this statistic either be more or less that a critical value. For a one-sided test, we have seen critical regions

{T (x) ≥ k̃α} or {T (x) ≤ k̃α}.

For a two-sided test, we saw
{|T (x)| ≥ k̃α}.

where k̃α is determined by the level α. We thus use the commands qnorm, qbinom, or qhyper when the test
statistic has, respectively, a normal, binomial, or hypergeometric distribution under a appropriated choice of θ ∈ Θ0.
Here we will examine extensions of the likelihood ratio test for simple hypotheses that have desirable properties for a
critical region.

19.1 One-Sided Tests
Let’s collect a simple random sample of independent normal observations with unknown mean and known variance
σ2

0 . We noticed, in the case of a simple hypothesis test

H0 : µ = µ0 versus H1 : µ = µ1

that the critical region as determined by the Neyman-Pearson lemma depended only on whether or not µ1 was greater
than µ0. For example, if µ1 > µ0, then the critical region C = {x; x̄ ≥ k̃α} shows that we reject H0 whenever the
sample mean is higher than some threshold value k̃α irrespective of the difference between µ0 and µ1. An analogous
situation occurs in the case that µ1 < µ0

We will examine the idea that if a test is most powerful against each possible alternative in a simple hypothesis
test, when we can say that this test is in some sense best overall for a composite hypothesis. Stated in terms of the
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power function, we are asking if a test has the property that its power function π is greater for every value of θ ∈ Θ1

than the power function of any other test. Such a test is called uniformly most powerful. In general, a hypothesis
will not have a uniformly most powerful test. However, we can hope for such a test for procedures involving simple
hypotheses in which the test statistic that emerged from the likelihood test did not depend on the specific value of
the alternative. This was seen in the example above using independent normal data. In this case, the power function
π(µ) = Pµ{X̄ ≥ kα} increases as µ increases and so the test has the intuitive property of becoming more powerful
with increasing µ.

In general, we look for a test statistic T (x) (like x̄ in the example above). Next, we check that the likelihood ratio,

L(θ2|x)

L(θ1|x)
, θ1 < θ2. (19.1)

depends on the data x only through the value of statistic T (x) and, in addition, this ratio is a monotone increasing
function of T (x). The Karlin-Rubin theorem states:

If these conditions hold, then for an appropriate value of k̃α, C = {x;T (x) ≥ k̃α} is the critical region for a
uniformly most powerful α level test for the one-sided alternative hypothesis

H0 : θ ≤ θ0 versus H1 : θ > θ0.

A corresponding criterion holds for the one sided test with the inequalities reversed:

H0 : θ ≥ θ0 versus H1 : θ < θ0.

Exercise 19.1 (mark and recapture). Use the hypothesis

H0 : N ≥ N0 versus H1 : N < N0

on the population sizeN and let the data be r, the number in the second capture that are tagged. Give the correspond-
ing criterion to (19.1) and verify that it holds for the likelihood function L(N |r) and the test statistic T (r) = r.

These conditions are satisfied for the case above as well as the tests for p, the probability of success in Bernoulli
trials.

Exercise 19.2 (One sample one proportion z-test). For X = (X1, . . . , Xn) is a sequence of Bernoulli trials with
unknown success probability p, we can have and the one-sided tests with the alternative is greater

H0 : p ≤ p0 versus H1 : p > p0

or less
H0 : p ≥ p0 versus H1 : p < p0.

Show that (19.1) holds with T (x) = x̄ when the alternative is greater than.

Example 19.3. We return to the example of the survivability of bee hives over a given winter. The probability of
survival is p0 = 0.7. The one-sided alternative for a mild winter is that this survival probability has increased. This
leads us to consider the hypotheses

H0 : p ≤ 0.7 versus H1 : p > 0.7.

for a test of the probability that a feral bee hive survives a winter. If the expected number of successes, np, and failures,
n(1− p), are both above 10, we can employ a test statistic

z =
p̂− p0√

p0(1− p0)/n
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derived from the central limit theorem. For an α level test, the critical value is zα where α is the probability that a
standard normal is at least zα

For this study, 112 colonies have been selected with 88 surviving. Thus p̂ = 0.7875 and z = 1.979. If the
significance level is α = 0.05, then we will reject H0 because z = 1.979 > 1.645 = zα. Previously, we performed
this test in R and found a p-value of 0.0303.

A direct appeal to the central limit theorem gives a slightly different p-value, namely

> 1-pnorm(1.979)
[1] 0.02390800

This is expressed in the R output as a continuity correction. In the topic Central Limit Theorem, we learned that
we are approximating probability for the outcome P{X ≥ x} for X the number of successes in Bernoulli trials by
P{Y ≥ x+1/2} where Y is a normal random variable. This correction can be seen by looking at the area associated
to a histogram for the mass function for X and the density function for Y . (See Figure 11.5.)

Because P{X ≥ x} = P{X > x − 1} = 1 − P{X ≤ x − 1}, the R command for P{X ≥ x} is
1-pbinom(x-1,n,p). The table below compares computing theP -value using the binomial directly binompvalue,
the normal approximation normpvalue, and the normal approximation with the continuity correction normpvaluecc.
The number for the test above are shown on line 9.

> n<-112
> p<-0.7
> x<- 80:92
> binompvalue<-round(1-pbinom(x-1,n,p),4)
> normpvalue<-round(1-pnorm(x,n*p,sqrt(n*p*(1-p))),4)
> normpvaluecc<-round(1-pnorm(x-0.5,n*p,sqrt(n*p*(1-p))),4)
> data.frame(x,binompvalue,normpvalue,normpvaluecc)

x binompvalue normpvalue normpvaluecc
1 80 0.4155 0.3707 0.4103
2 81 0.3367 0.2959 0.3325
3 82 0.2641 0.2290 0.2613
4 83 0.2001 0.1714 0.1989
5 84 0.1461 0.1241 0.1465
6 85 0.1026 0.0868 0.1042
7 86 0.0691 0.0585 0.0716
8 87 0.0446 0.0381 0.0474
9 88 0.0275 0.0239 0.0303
10 89 0.0162 0.0144 0.0186
11 90 0.0091 0.0084 0.0110
12 91 0.0048 0.0047 0.0063
13 92 0.0024 0.0025 0.0035

Exercise 19.4. Use the central limit theorem to show that the power function, π, for a one-sided level α test with a
“greater than” alternative. Using the critical region,

C =

{
x;

p̂− p0√
p0(1− p0)/n

≥ zα
}
,

show that the power is

π(p) = 1− Φ

(
zα

√
p0(1− p0)

p(1− p) +
p0 − p√
p(1− p)/n

)
(19.2)

where Φ is the distribution function for a standard normal and zα is the critical value for an upper critical probability
α for the standard normal. Give the corresponding expression for π(p) for the ”less than” alternative.
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To explore the properties of the power function in the case of overwintering of bee hives, we first keep the number
of hives at n = 112 and considering increasing values p = 0.75, 0.80, 0.85, 0.90 for the alternative to see the power
increase from about 30% to nearly 100%.

> n<-112
> p0<-0.7
> zalpha<-qnorm(0.95)
> p<-c(0.75,0.80,0.85,0.90)
> power<-1-pnorm(zalpha*sqrt(p0*(1-p0)/(p*(1-p))) + (p0-p)/sqrt(p*(1-p)/n))
> data.frame(p,power)

p power
1 0.75 0.3019748
2 0.80 0.7767714
3 0.85 0.9902226
4 0.90 0.9999972

Power increases with increasing sample size. Here we fix the alternative at p = 0.8 and choose n from 40 to 240.
The power for these values increases from 38% to more than 97%.

> n<-c(1:6)*40
> p0<-0.7
> zalpha<-qnorm(0.95)
> p<-0.8
> power<-1-pnorm(zalpha*sqrt(p0*(1-p0)/(p*(1-p))) + (p0-p)/sqrt(p*(1-p)/n))
> data.frame(n,power)

n power
1 40 0.3808391
2 80 0.6374501
3 120 0.8035019
4 160 0.8993508
5 200 0.9506427
6 240 0.9766255

Exercise 19.5. Repeat the determination of power in the example above using the binomial distribution directly.
Notice that the values are closer for larger values of n. This is due to the increasing applicability of the central limit
theorem and the decreasing importance of the continuity correction.

Example 19.6. For a test of hive survivability over a harsh winter, we have

H0 : p ≥ 0.7 versus H1 : p < 0.7.

If we have 26 observations, then we are reluctant to use the central limit theorem and appeal directly to the binomial
distribution. If 16 hives survive, then we use the binomial test as follows.

> binom.test(16,26,0.7,alternative=c("less"))

Exact binomial test

data: 16 and 26
number of successes = 16, number of trials = 26, p-value = 0.2295
alternative hypothesis: true probability of success is less than 0.7
95 percent confidence interval:
0.0000000 0.7743001
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sample estimates:
probability of success

0.6153846

and we do not reject for any significance level α below 0.2295.

Example 19.7. The p-value for the data above is 0.2295. Let’s use the pbinom command to see how the p-value
decreases as the number of surviving hive x decreases from 16 to 10. We can use the command pvalue < alpha
to give the outcome for the test. If the p-value is below α, then we reject H0 and R returns true.

> x<-16:10
> pvalue<- round(pbinom(x,26,0.7),4)
> data.frame(x,pvalue,pvalue<0.10,pvalue<0.05,pvalue<0.01)

x pvalue pvalue...0.1 pvalue...0.05 pvalue...0.01
1 16 0.2295 FALSE FALSE FALSE
2 15 0.1253 FALSE FALSE FALSE
3 14 0.0603 TRUE FALSE FALSE
4 13 0.0255 TRUE TRUE FALSE
5 12 0.0094 TRUE TRUE TRUE
6 11 0.0030 TRUE TRUE TRUE
7 10 0.0009 TRUE TRUE TRUE

Thus, we reject H0 when α = 0.10 for 14 or fewer surviving hives, α = 0.05 for 13 or fewer surviving hives, and
α = 0.01 for 12 or fewer surviving hives. Thus, as α decreases, the null hypothesis needs more evidence to reject and
the critical region becomes smaller.

Exercise 19.8. Use the R command qbinom to compute the critical value for an α = 0.10, 0.05, 0.01 test. Does it
match the results in the example above.

19.2 Likelihood Ratio Tests
The likelihood ratio test is a popular choice for composite hypothesis when Θ0 is a subspace of the whole parameter
space. The rationale for this approach is that the null hypothesis is unlikely to be true if the maximum likelihood on
Θ0 is sufficiently smaller that the likelihood maximized over Θ, the entire parameter space. In symbols, let θ̂0 be the
parameter value that maximizes the likelihood for θ ∈ Θ0 and θ̂ be the parameter value that maximizes the likelihood
for θ ∈ Θ. Then the likelihood ratio

Λ(x) =
L(θ̂0|x)

L(θ̂|x)
. (19.3)

Note that this ratio is the reciprocal from the version given by the Neyman-Pearson lemma. Thus, the critical region
consists of those values that are below a critical value.

The critical region for an α-level likelihood ratio test is

{Λ(x) ≤ λα} (19.4)

As with any α level test, λα is chosen so that

Pθ{Λ(X) ≤ λα} ≤ α for all θ ∈ Θ0.

This in the end may result in a procedure that many take several steps to develop. First, we must determine the
likelihood L(θ|x) for the parameter θ based on the data x. We have two optimization problems - maximize L(θ|x)
on the parameter space Θ and on the null hypothesis space Θ0. We evaluate the likelihood at these values and form
the ratio. This generally give us a complex test statistic which we then simplify. We show this in some detail for a
two-sided test for the mean based on normal data.

345



Introduction to the Science of Statistics Extensions on the Likelihood Ratio

Example 19.9. Let Θ = R and consider the two-sided hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0.

Here the data are n independent N(µ, σ0) random variables X1 . . . , Xn with known variance σ2
0 . The parameter

space Θ is one dimensional giving the value µ for the mean. As we have seen before µ̂ = x̄. Θ0 is the single point
{µ0} and so µ̂0 = µ0. Using the information, we find that

L(µ̂0|x) =

(
1√

2πσ2
0

)n
exp− 1

2σ2
0

n∑

i=1

(xi − µ0)2, L(µ̂|x) =

(
1√

2πσ2
0

)n
exp− 1

2σ2
0

n∑

i=1

(xi − x̄)2

and

Λ(x) = exp− 1

2σ2
0

(
n∑

i=1

((xi − µ0)2 − (xi − x̄)2)

)
= exp− n

2σ2
0

(x̄− µ0)2.

Now notice that

−2 ln Λ(x) =
n

σ2
0

(x̄− µ0)2 =

(
x̄− µ0

σ0/
√
n

)2

.

Then, critical region (19.4),

{Λ(x) ≤ λα} =

{(
x̄− µ0

σ0/
√
n

)2

≥ −2 lnλα

}

Because (X̄−µ0)/(σ0/
√
n) is a standard normal random variable,−2 ln Λ(X) is the square of a single standard

normal. This is the defining property of a χ-square random variable with 1 degree of freedom.
Naturally we can use both (

x̄− µ0

σ0/
√
n

)2

and
∣∣∣∣
x̄− µ0

σ0/
√
n

∣∣∣∣ .

as a test statistic. For the first, the critical value is just the square of the critical value for the second choice. We have
seen the second choice in the section on Composite Hypotheses using the example of a possible invasion of a model
butterfly by a mimic.

Exercise 19.10 (Bernoulli trials). Consider the two-sided hypothesis

H0 : p = p0 versus H1 : p 6= p0.

Use the linear approximation of the logarithm to show that

− ln Λ(x) ≈ (p̂− p0)2

p0(1− p0)/n
.

Again, this is approximately the square of a standard normal. Thus, we can either use

(p̂− p0)2

p0(1− p0)/n
or

∣∣∣∣∣
p̂− p0√

p0(1− p0)/n

∣∣∣∣∣

for the test statistic. Under the null hypothesis, this statistic has approximately, respectively, the square and the absolute
value of a standard normal distribution.

Returning to the example on the proportion of hives that survive the winter, for a two-sided test and a 98% confi-
dence interval, notice that the output give the χ2 statistic.
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> prop.test(88,112,0.7,alternative=c("two.sided"),conf.level = 0.98)

1-sample proportions test with continuity correction

data: 88 out of 112, null probability 0.7
X-squared = 3.5208, df = 1, p-value = 0.0606
alternative hypothesis: true p is not equal to 0.7
98 percent confidence interval:
0.6785906 0.8652397

sample estimates:
p

0.7857143

to obtain the interval (0.676, 0.8652).

Exercise 19.11. Why is 0.0606 the p-value for the two-sided test equal to twice the value of the p-value for the
corresponding one-sided test? Is the test significant at the 10& level? 5% level? Explain.

Exercise 19.12. For the two-sided two-sample α-level proportion test

H0 : p1 = p2 versus H1 : p1 6= p2,

based on n1 Bernoulli trials, x1,1, xi,2, . . . , x1,n1
from the first population and, independently, n2 Bernoulli trials,

x2,1, xi,2, . . . , x2,n2
from the second, the likelihood ratio test is equivalent to the critical region

|z| ≥ zα/2

where

z =
p̂1 − p̂2√

p̂0(1− p̂0)
(

1
n1

+ 1
n2

) (19.5)

with p̂i, the sample proportion of successes from the observations from population i and p̂0, the pooled proportion

p̂0 =
1

n1 + n2
((x1,1 + · · ·+ x1,n1

) + (x2,1 + · · ·+ x2,n2
)) =

n1p̂1 + n2p̂2

n1 + n2
. (19.6)

0 0.5 1
0

0.5

1

p1

p 2

Figure 19.1: For the two-sided two-sample α-
level likelihood ratio test for proportions p1 and
p2, we maximize the likelihood over Θ0 =
{(p1, p2); p1 = p2} (shown as the blue line) and
over Θ = [0, 1]× [0, 1], the entire parameter space,
shown as the square, and then take the ratio (19.3).

By a variant of the central limit theorem, z has, under the null hypoth-
esis, approximately a standard normal random variable.

A one-sided two-sample proportion test

H0 : p1 ≤ p2 versus H1 : p1 ≥ p2, (19.7)

also uses the z-statistic (19.5) provided that the central limit theorem is ap-
plicable. One standard rule of thumb is that the both the expected number
of success and the expected number of failures in both sets of trails each
exceeds 10 for both sets of observations.

Exercise 19.13. The next winter was consider harsher than the one with
88 out of 112 hive surviving. In this more severe winter, we find that only
64 out of 99 random selecting hives surviving. State an appropriate hy-
pothesis test and carry out the test, stating the evidence against the null
hypothesis. Note that the rule of thumb on sample sizes necessary for the
z test is satisfied.
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R handles this easily. Because R employs a continuity correction, the p-value is slightly different from the one in
the exercise.

> prop.test(c(88,64),c(112,99),alternative="greater")

2-sample test for equality of proportions with continuity correction

data: c(88, 64) out of c(112, 99)
X-squared = 4.3909, df = 1, p-value = 0.01807
alternative hypothesis: greater
95 percent confidence interval:
0.02818133 1.00000000

sample estimates:
prop 1 prop 2

0.7857143 0.6464646

Power analyses for two sample tests for proportions can be executed in R using the power.prop.test com-
mand. For example, if we want to be able to detect a difference between two proportions p1 = 0.7 and p2 = 0.6 in a
one-sided test with a significance level of α = 0.05 and power 1 − β = 0.8, then we will need a sample of n = 281
from each group.

> power.prop.test(p1=0.70,p2=0.6,sig.level=0.05,power=0.8,
alternative = c("one.sided"))

Two-sample comparison of proportions power calculation

n = 280.2581
p1 = 0.7
p2 = 0.6

sig.level = 0.05
power = 0.8

alternative = one.sided

NOTE: n is number in *each* group

Exercise 19.14. What is the power for 100 observations in a test with significance level α = 0.10.

Exercise 19.15. For the Salk vaccine trial, in the treatment group 56 out of 20000 contracted polio. From the control
group, 142 out of 20000 contracted polio. Give an appropriate hypothesis test, find a p-value for the test, and assess
the evidence against your null hypothesis.

19.3 Chi-square Tests
This exact computation for normal data for a two-sided test of the mean shows that the test statistic has a χ2 distribution
with 1 degree of freedom. For the two-sided sample proportion test, we used the central limit theorem to assert that
our test statistic is approximately the square of a standard normal random variable, and hence is a χ2 random variable
with one degree of freedom.

These ideas can be extended to the case in which Θ is a d-dimensional parameter space and k of these parameters
are, under the null hypothesis, assume to have fixed values. Thus, Θ0 is d− k-dimensional.

Theorem 19.16. Whenever the maximum likelihood estimator has an asymptotically normal distribution, let Λ(x) be
the likelihood ratio (19.3) for an d-dimensional parameter space:

H0 : θi = ci for all i = 1, . . . , k versus H1 : θ1 6= c1 for some i = 1, . . . , k
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Figure 19.2: Thomas Morgan’s 1916 drawings of a (left) single and (right) double crossing over event. The places where homologous non-
sister chromatids (newly replicated chromosomes) exchange genetic material during chromosomal crossover during meiosis are called chaismata
(singular: chiasma)

Then under H0, the distributions of
−2 ln Λn(X)

converge to a χ2
k distribution as the sample size n→∞.

More generally, if the test is based on a d-dimensional parameter space and Θ0 is defined has by k linear con-
straints, then the we can obtain the test above by a linear change of variables. Thus,

degrees of freedom = dim(Θ)− dim(Θ0).

Typically we can ascertain the degrees of freedom by counting free parameters in both Θ and Θ0 and subtracting.

Exercise 19.17. Use a second order Taylor series for lnL(θ|x) and the asymptotic normality of maximum likelihood
estimators to outline the argument for the case d = k = 1,

The basic approach taken for this case extends to the general case. If we expand lnL(c|x) in a Taylor series about
the parameters θ1 = θ̂1, θ2 = θ̂2, · · · , θk = θ̂k the maximum likelihood estimators, then the first order terms in the
expansion of lnL(c|x) vanish. The second order derivatives are the entries of the Fisher information matrix evaluated
at the maximum likelihood estimator. These terms converge by the law of large numbers. A multidimensional central
limit theorem applies to the vector of terms

√
n(θ̂1 − c1, . . . , θ̂k − ck). The result is the Fisher information matrix

and its inverse multiplying to give the identity matrix and resulting the sum of the squares of k approximately normal
random variables. This is the definition of a χ2

k distribution.

Example 19.18. During meiosis, paired chromosomes experience crossing over events in the formation of gametes.
During prophase I, the four available chromatids (two from each parent) are in tightly aligned allowing breaks and
reattachments of homologous sites (called chiasmata) on two chromatids. (See Figure 19.1.)

Recombination can occur with a small probability at any location along chromosome. As described in Topic 9 in
the discussion that moved us from Bernoulli trials to a Poisson random variable, the number of crossing over events
can be modeled as Poisson random variable. The mean number of cross overs for a given chromosomal segment is
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called its genetic length with Morgans as the unit of measurement. This name is in honor of Thomas Morgan who won
the Nobel Prize in Physiology or Medicine in 1933 for discoveries relating the role the chromosome plays in heredity.

We are now collecting whole genome sequences for trios - an individual along with both parents. Consequently, we
can determine on both the father’s and the mother’s chromosome the number of crossing over events and address the
question: Are these processes different in the production of sperm and eggs? One simple question is: Are the number
of crossing over events different in sperm and in eggs? Using the subscript m for male and f for female, this leads to
the hypothesis

H0 : λm = λf versus H1 : λm 6= λf

where λm and λf is the parameter in the Poisson random variable that gives the number of crossing over events in the
human chromosome across all 22 autosomes. (We will not look at the sex chromosomes X and Y in this circumstance.)

The data are nm, nf the number of crossing over events for each parent’s chromosome. Thus, assuming that the
recombination sites are independent on the two parents, the likelihood function is

L(λm, λf |nm, nf ) =
λnmm
nm!

e−λm ·
λ
nf
f

nf !
e−λf .

Exercise 19.19. Show that the maximum likelihood estimates for the likelihood function above is

λ̂m = nm and λ̂f = nf .

Thus,

L(λ̂m, λ̂f |nm, nf ) =
nnmm
nm!

·
n
nf
f

nf !
e−(nm+nf ).

Under the null hypothesis, λm and λf have a common value. Let’s denote this by λ0. Then the likelihood function is

L(λ0|nm, nf ) =
λnm0

nm!
e−λ0 · λ

nf
0

nf !
e−λ0 =

λ
nm+nf
0

nm!nf !
e−2λ0 .

Exercise 19.20. Show that the maximum likelihood estimate for the likelihood function above is

λ̂0 =
nm + nf

2
.

Thus,

L(λ̂0|nm, nf ) =
((nm + nf )/2)nm+nf

nm!nf !
e−(nm+nf ).

The likelihood ratio, after canceling the factorial and exponential factors, is

Λ(nm, nf ) =
L(λ̂0|nm, nf )

L(λ̂m, λ̂f |nm + nf )
=

(nm + nf )nm+nf

2nm+nfnnmm n
nf
f

.

For the parameter space, d = 2 and k = 1. Our data for two individuals sharing the same parents are nm = 56
and nf = 107. Thus,

−2 ln Λ(nm, nf ) = −2((nm + nf )(ln(nm + nf )− ln 2)− nf lnnf − nm lnnm) = 16.228.

To compute the p-value

> nm<-56; nf<-107; n<-nm+nf
> 1-pchisq(-2*(n*(log(n)-log(2))-nf*log(nf)-nm*log(nm)),1)
[1] 5.615274e-05

This very low p-value, 0.0056%, allow us to reject the null hypothesis.
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Exercise 19.21. A similar set up for gibbon, a primate species whose habitat is much of southeast Asia, has nm = 51
and nf = 120. Give the p-value for a likelihood ratio test. In addition, test if the proportion of recombination events
is the same in humans and gibbons.

Exercise 19.22. Consider the two sided hypotheses

H0 : λ = λ0 versus H1 : λ 6= λ0

based on n independent observations from an exponential random variable parameter λ. Show that

−2 ln Λ(x) = −2n(ln(λ0x̄)− (λ0x̄− 1)). (19.8)

Simulate 20 random variables with λ = 15 and perform the χ2 test with λ0 = 10 and report the p-value.
For λ = 11, 12, 13, 14, and 15, use simulations to estimate the power based on n = 20, 40 and 80 observations

and a significance level α = 0.05. Use that fact that that Sn, Γ(n, λ) is the sum of n independent Exp(λ) random
variables to compute power. Comment on what you see.

For the sample mean of n independent Exp(λ0) random variables,

Eλ0
X̄ =

1

λ0
and Varλ0

(X̄) =
1

λ2
0n
.

Thus, by the law of large numbers,

x̄ ≈ 1

λ0
or λ0x̄ ≈ 1.

A second order Taylor series expansion of the logarithm about the point y = 1 yields

ln y ≈ (y − 1)− 1

2
(y − 1)2 and ln y − (y − 1) ≈ −1

2
(y − 1)2.

Substitiuting y = λ0x̄ into this approximation and using (19.8), we find that

−2 ln Λ(x) ≈ n(λ0x̄− 1)2 =

(
x̄− 1/λ0

1/(λ0
√
n)

)2

. (19.9)

Consequently,−2 ln Λ(x) is approximately equal to the square of the standardized score. By the central limit theorem,
the standardized score is approximately normally distributed. In this way, we also see that−2 ln Λ(x) is approximately
the square of a standard normal random variable, i.e., is approximately χ2

1 as promised by Theorem 19.16.

Exercise 19.23. Use the normal approximation in (19.9) to compute the power for the values of n and λ and λ0 in the
previous exercise.

19.4 Answers to Selected Exercises
19.1. The critical region takes the form C{r; r ≤ rα} for an appropriate value rα for an α-level test.

The likelihood function for the population, N . is the hypergeometric distribution.

L(N |r) =

(
t
r

)(
N−t
k−r
)

(
N
k

)

Recall that

• t be the number captured and tagged,

• k be the number in the second capture,
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In this case, we show that, for N2 < N1, L(N2|r)/L(N1|r) increases with r.

L(N2|r)
L(N1|r)

=

(
t
r

)(
N2−t
k−r

)
/
(
N2

k

)
(
t
r

)(
N1−t
k−r

)
/
(
N1

k

) =

(
N2−t
k−r

)(
N1

k

)
(
N1−t
k−r

)(
N2

k

)

=
(N2 − t)k−r
(N1 − t)k−r

· (N1)k
(N2)k

Increase r by 1 to obtain
L(N2|r + 1)

L(N1|r + 1)
=

(N2 − t)k−r−1

(N1 − t)k−r−1
· (N1)k

(N2)k

To see if this increases with r, we look at the ratio of ratios,

L(N2|r + 1)

L(N1|r + 1)

/L(N2|r)
L(N1|r)

=
(N2 − t)k−r−1

(N2 − t)k−r

/ (N1 − t)k−r−1

(N1 − t)k−r
=
N1 − t− k + r − 1

N2 − t− k + r − 1
> 1

because the denominator is smaller than the numerator and thus, L(N2|r)/L(N1|r) increases with r showing that, by
the Karlin-Rubin theorem, the level test is uniformly most powerful.

19.2. The likelihood

L(p|x) = px1+···+xn(1− p)n−(x1+···+xn)

= pn
(

p

1− p

)x1+···+xn
= pn

(
p

1− p

)nx̄
.

Thus,
L(p2|x)

L(p1|x)
=

(
p2

p1

)n(
p2(1− p1)

p1(1− p2)

)nx̄
.

If p2 > p1, then
p2

p1
> 1 and

1− p1

1− p2
> 1.

and so the product is greater than 1. Consequently, L(p2|x)/L(p1|x) is a monotone increasing function of x̄.

19.4. To find π(p), we need to rewrite this expression so that we can create an expression

z =
p̂− p√

p(1− p)/n

that is approximately a standard normal under the parameter value p. Beginning with the expression defining the
critical region, we have that

p̂− p0√
p0(1− p0)/n

≥ zα

p̂− p0 ≥ zα
√
p0(1− p0)/n

p̂− p ≥ zα
√
p0(1− p0)/n+ p0 − p

p̂− p√
p(1− p)/n

≥ zα
√
p0(1− p0)/n√
p(1− p)/n

+
p0 − p√
p(1− p)/n

z =
p̂− p√

p(1− p)/n
≥ zα

√
p0(1− p0)

p(1− p) +
p0 − p√
p(1− p)/n
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Take the probability to see that π(p) has the expression in (19.2).
For the “less than” alternative, the critical regions is

C =

{
x;

p̂− p0√
p0(1− p0)/n

≤ −zα
}
,

Using similar calculations, we have

p̂− p0√
p0(1− p0)/n

≤ −zα

z =
p̂− p√

p(1− p)/n
≤ −zα

√
p0(1− p0)

p(1− p) +
p0 − p√
p(1− p)/n

and

π(p) = Φ

(
−zα

√
p0(1− p0)

p(1− p) +
p0 − p√
p(1− p)/n

)
.

19.6. Here is the R output for the two examples. First with a fixed number of observations n and varying probability
of success p.

> n<-112;p0<-0.7;alpha<-0.05
> p<- c(0.75,0.80,0.85,0.90)
> qbinom(1-alpha,n,p0) #This gives the critical value for rejection of the

null hypothesis.
[1] 86
> power<- 1-pbinom(qbinom(1-alpha,n,p0),n,p)
> data.frame(p,power)

p power
1 0.75 0.2972519
2 0.80 0.7713371
3 0.85 0.9859646
4 0.90 0.9999641

Now with a varying number of observations n and a fixed probability of success p for the alternative.

> n<-c(1:6)*40;p<-0.8
> power<- 1-pbinom(qbinom(1-alpha,n,p0),n,p)
> data.frame(n,power)

n power
1 40 0.2858914
2 80 0.5663745
3 120 0.7902112
4 160 0.8986082
5 200 0.9309691
6 240 0.9656983

19.7. For the three significance levels,

> alpha<-c(0.10,0.05,0.01)

we have the critical values
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> data.frame(alpha,qbinom(alpha,26,0.7))
alpha qbinom.alpha..26..0.7.

1 0.10 15
2 0.05 14
3 0.01 13

19.10. The likelihood is
L(p|x) = (1− p)n−(x1+···+xn)px1+···+xn .

Using the definition of the likelihood ratio, we find that, under the null hypothesis, p̂0 = p0 and p̂, the sample
proportion, is the maximum likelihood estimator. Thus,

Λ(x) =
(1− p0)n(1−p̂)pnp̂0

(1− p̂)n(1−p̂)p̂np̂
.

Let’s repeat the strategy that we used for normal data in the previous example:

− ln Λ(x) = n((1− p̂)(ln(1− p̂)− ln(1− p0)) + p̂(ln p̂− ln p0)).

Next, let’s replace the logarithms with their linear approximation:

ln(1− p̂)− ln(1− p0)) ≈ − p̂− p0

1− p0
ln p̂− ln p0 ≈

p̂− p0

p0
.

Then,

− ln Λ(x) = n(

(
(1− p̂)(− p̂− p0

1− p0
) + p̂(

p̂− p0

p0
)

)
= n(p̂− p0)

(
− 1− p̂

1− p0
+

p̂

p0

)

= n(p̂− p0)

(
p̂− p0

p0(1− p0)

)
=

(p̂− p0)2

p0(1− p0)/n
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Figure 19.3: The critical values and z-test statistic
value used in Exercise 19.9.

19.11. For a one-side test with alternative H1 : p > p0, the p-value
is the area under the standard normal density above the z-score of the
data. For the two-sided test, the p-value is the area under the standard
normal density farther from zero than the z-score of the data. This
is the sum of the area under the curve above this z-score and the area
under the curve below the negative of the z-score. Because the standard
normal density is symmetric about 0, these two areas are equal. FIgure
19.2 demonstrates the p-value as the area of the two regions under the
density curves outside the black vertical lines.

The test is significant at the 10% level because the p-value is be-
low 0.10. Correspondingly, the test is not significant at the 5% level
because the p-value is above 0.05. These values are indicated by the
area under the density outside the inner (for10%) or outer (for 5%) red
vertical lines.

19.12. For ni Bernoulli trials, xi = (xi,1, xi,2, . . . , xi,ni), i = 1, 2, we
have the likelihood

L(p1, p2|x1,x2) = p
x1,1

1 (1− p1)1−x1,1 · · · px1,n1
1 (1− p1)1−x1,n1 · px2,1

2 (1− p2)1−x2,1 · · · px2,n2
2 (1− p2)1−x2,n2

= p
(x1,1+···+x1,n1

)
1 (1− p1)n1−(x1,1+···x1,n1 )p

(x2,1+···+x2,n2
)

2 (1− p2)n2−(x2,1+···x2,n2 )
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To find the maximum likelihood estimator, take logarithms and derivatives with respect to p1 and p2 to obtain

p̂1 =
1

n1
(x1,1 + · · ·+ x1,n1) and p̂2 =

1

n2
(x2,1 + · · ·+ x2,n2).

Then,
L(p̂1, p̂2|x1,x2) = p̂n1p̂1

1 (1− p̂1)n1(1−p̂1)p̂n2p̂2
2 (1− p̂2)n2(1−p̂2)

Under the null hypothesis, p1 = p2. We set this equal to p0 to write the likelihood

L(p0|x1,x2) = p
(x1,1+···+x1,n1

)
0 (1− p0)n1−(x1,1+···x1,n1

)

·p(x2,1+···+x2,n2 )
0 (1− p0)n2−(x2,1+···x2,n2

)

= p
(x1,1+···+x1,n1

)+(x2,1+···+x2,n2
)

0

·(1− p0)n1−(x1,1+···x1,n1
)+n2−(x2,1+···x2,n2

)

= pn1p̂1+n2p̂2
0 (1− p0)n(1−p̂1)+n2−(1−p̂2)

Again, take logarithms and derivatives with respect to p0 to obtain p̂0 in equation (19.6), the proportion obtained
by pooling the data. Here,

L(p̂0|x1,x2) = p̂n1p̂1
0 (1− p̂0)n1(1−p̂1)p̂n2p̂2

0 (1− p̂0)n2(1−p̂2)

Thus, the likelihood ratio,

Λ(x1,x2) =
p̂n1p̂1

0 (1− p̂0)n1(1−p̂1)p̂n2p̂2
0 (1− p̂0)n2(1−p̂2)

p̂n1p̂1
1 (1− p̂1)n1(1−p̂1)p̂n2p̂2

2 (1− p̂2)n2(1−p̂2)
.

Again, replace the logarithms with their linear approximation:

ln(1− p̂i)− ln(1− p̂0)) ≈ − p̂i − p̂0

1− p̂0
ln p̂i − ln p̂0 ≈

p̂i − p̂0

p̂0
.

− ln Λ(x1,x2) = n1p̂1(ln p̂1 − ln p̂0) + n1(1− p̂1)(ln(1− p̂1)− ln(1− p̂0))

+n2p̂2(ln p̂2 − ln p̂0) + n2(1− p̂2)(ln(1− p̂2)− ln(1− p̂0))

≈ n1p̂1

(
p̂1 − p̂0

p̂0

)
− n1(1− p̂1)

(
p̂1 − p̂0

1− p̂0

)
+ n2p̂2

(
p̂2 − p̂0

p̂0

)
− n2(1− p̂2)

(
p̂2 − p̂0

1− p̂0

)

= n1(p̂1 − p̂0)

(
p̂1

p̂0
− 1− p̂1

1− p̂0

)
+ n1(p̂2 − p̂0)

(
p̂2

p̂0
− 1− p̂2

1− p̂0

)

= n1(p̂1 − p̂0)

(
p̂1 − p̂0

p̂0(1− p̂0)

)
+ n2(p̂2 − p̂0)

(
p̂2 − p̂0

p̂0(1− p̂0)

)

=
n1(p̂1 − p̂0)2 + n2(p̂2 − p̂0)2

p̂0(1− p̂0)

Now note that

n1(p̂1 − p̂0)2 = n1

(
(n1 + n2)p̂1 − (n1p̂1 + n2p̂2)

n1 + n2

)2

= n1n
2
2

(
p̂1 − p̂2

n1 + n2

)2

.
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Perform a similar computation for the second term

− ln Λ(x1,x2) ≈ (n1n
2
2 + n2n

2
1)((p̂1 − p̂2)/(n1 + n2))2

p̂0(1− p̂0)
=
n1n2(p̂1 − p̂2)2/(n1 + n2)

p̂0(1− p̂0)

=
(p̂1 − p̂2)2

p̂0(1− p̂0)
(

1
n1

+ 1
n2

) =

∣∣∣∣∣∣∣∣

p̂1 − p̂2√
p̂0(1− p̂0)

(
1
n1

+ 1
n2

)

∣∣∣∣∣∣∣∣

2

19.13. Beginning with the population parameters,

• p1 is proportion of all hives that would have survived the first, less harsh, winter, and

• p2 is proportion of all hives that would have survived the second, harsher, winter.

Then we can write the hypothesis as (19.7). The sample proportions for each group and the pooled proportion are,
respectively,

p̂1 =
88

112
= 0.7867, p̂2 =

64

99
= 0.6598, p̂0 =

88 + 64

112 + 99
= 0.7204.

Thus,

z =
p̂1 − p̂2√

p̂0(1− p̂0)
(

1
n1

+ 1
n2

) =
0.7867− 0.6598√

0.7204(1− 0.7204)
(

1
112 + 1

99

) = 2.249

The p-value

> 1-pnorm(2.249)
[1] 0.01225625

ia sufficiently law to say that we have moderate evidence against the null hypothesis and say that the harsher winter
reduced the proportion of surviving bee hives.

19.14. We see that the power 1− β = 0.580.

> power.prop.test(n=100,p1=0.70,p2=0.6,sig.level=0.10,alternative = c("one.sided"))

Two-sample comparison of proportions power calculation

n = 100
p1 = 0.7
p2 = 0.6

sig.level = 0.1
power = 0.5800652

alternative = one.sided

NOTE: n is number in *each* group

19.14. If pc is the proportion in the population that have the control and contract polio and pt is the proportion in the
population that have the treatment and contract polio. Then, we have the hypothesis test, We want to show that the
vaccine reduces the rate of polio infection. thus,

H0 : pt ≥ pc versus H1 : pt < pc.

356



Introduction to the Science of Statistics Extensions on the Likelihood Ratio

> prop.test(c(56,142),c(200000,200000),alternative=c("less"))

2-sample test for equality of proportions with continuity
correction

data: c(56, 142) out of c(2e+05, 2e+05)
X-squared = 36.508, df = 1, p-value = 7.602e-10
alternative hypothesis: less
95 percent confidence interval:
-1.0000000000 -0.0003093083

sample estimates:
prop 1 prop 2

0.00028 0.00071

With the very low p-value of 7.6× 10−10, we can reject H0 and say that the vaccine reduces the rate of polio,

19.17. For the case in which d = k = 1. Then, for n observations, and maximum likelihood estimator θ̂,
√
n(c− θ̂)

converges in distribution to a normal random variable with variance 1/I(c), the reciprocal of the Fisher information.
Thus,

c− θ̂
1/
√
nI(c))

=

√
n(c− θ̂)

1/
√
I(c))

has approximately a standard normal distribution and its square

n(c− θ̂)2

1/I(c)
(19.10)

has approximately a χ2
1 distribution.

We next apply Taylor’s theorem to obtain the quadratic approximation

−2 ln Λ1(X) = −2 lnL(c|X) + 2 lnL(θ̂|X) ≈ −2(c− θ̂) d
dθ

lnL(θ̂1|X)− (c− θ̂)2 d
2

dθ2
lnL(θ̂|X)

= −n(c− θ̂)2 d
2

dθ2
lnL(X|c)

The linear term vanishes because d lnL(θ̂|X)/dθ = 0 at θ̂, the maximum likelihood estimator. Recall that the
likelihood

L(X|θ) = fX(x1|θ) · · · fX(xn|θ)
and using the properties of the logarithm and the derivative, we see that

d2

dθ2
lnL(X|θ) =

d2

dθ2
ln fX(x1|θ) + · · ·+ d2

dθ2
ln fX(xn|θ)

We now apply the law of large numbers to see that for large n

1

n

d2

dθ2
lnL(c|X) =

1

n

n∑

i=1

d2

dθ2
fX(Xi|c) ≈ Eθ

[
d2

dθ2
fX(X1|c)

]
= −I(c).

Thus,

−2 ln Λ1(X) ≈ −n(c− θ̂)2 × (−I(c)) =
n(c− θ̂)2

1/I(c)
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which in (19.10) we have noted has approximately a χ2
1 distribution.

19.19. Taking logarithms, we find

lnL(λm, λf |nm, nf ) = nm lnλ− ln(nm!)− λm + nf lnλ− ln(nf !)− λf .
The derivative with respect to λm is

∂

∂λm
lnL(λ|nm, nf ) =

nm
λm
− 1.

Now set this equal to 0 and solve for λm. Because the second derivative with respect to λm is negative, this is a
maximum. A nearly identical computation can be used to fiind λ̂f .

19.20. Taking logarithms, we find the score function,

lnL(λ|nm, nf ) = (nm + nf ) lnλ− ln(nm!nf !)− 2λ.

The derivative with respect to λ is
∂

∂λ
lnL(λ|nm, nf ) =

nm + nf
λ

− 2.

Now set this equal to 0 and solve for λ. Because the second derivative with respect to λ is negative, this is a maximum.

19.21. For the hypothesis on the number of crossing over events we have the test statistic and p-value

> nm<-51; nf<-120; n<-nm+nf
> 1-pchisq(-2*(n*(log(n)-log(2))-nf*log(nf)-nm*log(nm)),1)
[1] 8.664093e-08

This is also a very low p-value and we can reject the hypothesis of equal rtes of crossing over events.
The second question is a two-sample two-sided proportion test. Here is the R output.

> prop.test(c(56,51),c(163,171))

2-sample test for equality of proportions with continuity correction

data: c(56, 51) out of c(163, 171)
X-squared = 0.5926, df = 1, p-value = 0.4414
alternative hypothesis: two.sided
95 percent confidence interval:
-0.06076261 0.15138795

sample estimates:
prop 1 prop 2

0.3435583 0.2982456

This gives a p-value of 44%, much too high to reject a hypothesis of equal proportion of crossing over events derived
from the females in the two species, human and gibbon.

19.22. The likelihood function for observations x = (x1. . . . , xn) is

L(λ|x) = λn exp(−λ
n∑

i=1

xi) = λn exp(−λnx̄).

We have seem that the maximum likelihood estimate λ̂ = 1/x̄. Thus the likelihood ratio,

Λ(x) =
L(λ0|x)

L(λ̂|x)
=

λn0 exp(−λ0nx̄)

(1/x̄n) exp(−(1/x̄)nx̄)

= (λ0x̄)n
exp(−λ0nx̄)

exp(−n)
= (λ0x̄)n exp(−n(λ0x̄− 1)).
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and
−2 ln Λ(x) = −2n(lnλ0x̄− (λ0x̄− 1)).

> x<-rexp(20,15)
> (xbar<-mean(x))
[1] 0.06126583
> -2*20*(log(10*xbar)-(10*xbar-1))
[1] 4.509281
> 1-pchisq(4.509281,1)
[1] 0.03371141

> x<-rexp(20,15)
> (xbar<-mean(x))
[1] 0.07144714
> -2*20*(log(20*xbar)-(20*xbar-1))
[1] 2.880317
> 1-pchisq(2.880317,1)
[1] 0.08966837

For the two simulations, the p-values are 0.0337 and 0.0897.

For the simulation, we also take advantage of the fact that Sn, Γ(n, λ) is the sum of n independentExp(λ) random
variables. So, we simulation Sn/n 10,000 times for each value of λ and n and find the proportion of times that we
reject λ0 = 10 using the χ2 statistic.

> lambda0<-10;N<-10000; lambda<-11:15
> n<-20;power20<-rep(0,5)
> for (i in 1:5){xbar<-rgamma(N,n,lambda[i])/n;

chisqstat<--2*n*(log(lambda0*xbar)-(lambda0*xbar-1));
pvalue<-1-pchisq(chisqstat,1);power20[i]<-length(pvalue[pvalue<0.05])/N}

> n<-40;power40<-rep(0,5)
> for (i in 1:5){xbar<-rgamma(N,n,lambda[i])/n;

chisqstat<--2*n*(log(lambda0*xbar)-(lambda0*xbar-1));
pvalue<-1-pchisq(chisqstat,1);power40[i]<-length(pvalue[pvalue<0.05])/N}

> n<-80;power80<-rep(0,5)
> for (i in 1:5){xbar<-rgamma(N,n,lambda[i])/n;

chisqstat<--2*n*(log(lambda0*xbar)-(lambda0*xbar-1));
pvalue<-1-pchisq(chisqstat,1);power80[i]<-length(pvalue[pvalue<0.05])/N}

> data.frame(lambda,power20,power40,power80)
lambda power20 power40 power80

1 11 0.0692 0.0932 0.1358
2 12 0.1187 0.2017 0.3646
3 13 0.2021 0.3601 0.6385
4 14 0.3100 0.5378 0.8508
5 15 0.4093 0.7187 0.9507

We can use the Γ(n, λ) distribution as a test statistic to compute power directly.

> n<-20;upper<-qgamma(0.975,n,lambda0); lower<-qgamma(0.025,n,lambda0)
> power20<-1-pgamma(upper,n,lambda)+pgamma(lower,n,lambda)
> n<-40;upper<-qgamma(0.975,n,lambda0); lower<-qgamma(0.025,n,lambda0)
> power40<-1-pgamma(upper,n,lambda)+pgamma(lower,n,lambda)
> n<-80;upper<-qgamma(0.975,n,lambda0); lower<-qgamma(0.025,n,lambda0)
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> power80<-1-pgamma(upper,n,lambda)+pgamma(lower,n,lambda)
> data.frame(lambda,power20,power40,power80)

lambda power20 power40 power80
1 11 0.06283839 0.0832438 0.1254101
2 12 0.10841061 0.1856479 0.3434286
3 13 0.17993890 0.3413916 0.6217434
4 14 0.27219452 0.5214876 0.8383838
5 15 0.37812771 0.6897081 0.9489048

Notice that the power increases with n and with distance !λ− λ0| from the value under the null hypothesis.

19.23, We first find the upper and lower rejection regions for X̄ , here approximated as a N(1/λ0, 1/
√
λ0n) and then

determine the probability of rejection when X̄ is N(1/λ, 1/
√
λn)

> n<-20
> upper<-qnorm(0.975,1/lambda0,1/(lambda0*sqrt(n)))
> lower<-qnorm(0.025,1/lambda0,1/(lambda0*sqrt(n)))
> power20<-1-pnorm(upper,1/lambda,1/(lambda*sqrt(n)))

+pnorm(lower,1/lambda,1/(lambda*sqrt(n)))
> n<-40
> upper<-qnorm(0.975,1/lambda0,1/(lambda0*sqrt(n)))
> lower<-qnorm(0.025,1/lambda0,1/(lambda0*sqrt(n)))
> power40<-1-pnorm(upper,1/lambda,1/(lambda*sqrt(n)))

+pnorm(lower,1/lambda,1/(lambda*sqrt(n)))
> n<-80
> upper<-qnorm(0.975,1/lambda0,1/(lambda0*sqrt(n)))
> lower<-qnorm(0.025,1/lambda0,1/(lambda0*sqrt(n)))
> power80<-1-pnorm(upper,1/lambda,1/(lambda*sqrt(n)))

+pnorm(lower,1/lambda,1/(lambda*sqrt(n)))
> data.frame(lambda,power20,power40,power80)

lambda power20 power40 power80
1 11 0.04836719 0.06646455 0.1047011
2 12 0.07306953 0.13865740 0.2866999
3 13 0.11389874 0.25766108 0.5538240
4 14 0.16976769 0.41522390 0.7977917
5 15 0.24075449 0.58797216 0.9372622

These values are lower than that found in the simulation. The normal approximation removes the skewness found
in the exponential distribution. This results in rejection occurring less frequently using the normal approximation and
thus lower power. Notice that as n increases, X̄ becomes less skewed and so power computations more closely agree.
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Topic 20

t Procedures

A curve has been found representing the frequency distribution of values of the means of such samples,
when these values are measured from the mean of the population in terms of the standard deviation of the
sample. . . . - William Sealy Gosset. 1908, The Probable Error of a Mean, Biometrika

The z-score is
z =

x̄− µ
σ/
√
n
.

taken under the assumption that the population standard deviation is known.
If we are forced to replace the unknown σ2 with its unbiased estimator s2, then the statistic is known as t:

t =
x̄− µ
s/
√
n
.

The term s/
√
n which estimates the standard deviation of the sample mean is called the standard error.

We have previously noted that for independent normal random variables the distribution of the t statistic can
be determined exactly. Because we approximate σ with s, the t-statistic has a higher level of uncertainty than the
corresponding z-statistic. This uncertainty decreases with n, the number of observations. Thus, when using the t
distribution to construct a confidence interval for the population mean µ, we saw that the margin of error decreased
as the number of observations increased. Typically, we do not use the number of observations n to describe this but
rather degrees of freedom n− 1 to match the division by n− 1 in the computation of the sample variance, s2.

We now turn to using the t-statistic as a test statistic for hypothesis tests of the population mean. As with several
other procedures we have seen, the two-sided t test is a likelihood ratio test. We will save showing this result into the
last section and instead focus on the applications of this widely used set of procedures.

20.1 Guidelines for Using the t Procedures
• Except in the case of small samples, the assumption that the data are a simple random sample from the population

of interest is more important that the population distribution is normal.

• For sample sizes less than 15, use t procedures if the data are close to normal.

• For sample sizes at least 15 use t procedures except in the presence of outliers or strong skewness.

• The t procedures can be used even for clearly skewed distributions when the sample size is large, typically over
40 observations.

These criteria are designed to ensure that x̄ is a sample from a nearly normal distribution. When these guidelines
fail to be satisfied, then we can turn to alternatives that are not based on the central limit theorem, but rather use the
rankings of the data. These alternatives, the Mann-Whitney or Wilcoxon rank sum test and the Wilcoxon signed-ranked
test, are discussed at the end of this topic.
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20.2 One Sample t Tests
We will later explain that the likelihood ratio test for the two sided hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0,

based on independent normal observations X1. . . . , Xn with unknown mean µ and unknown variance σ2 is a t-test.
So, compute the t statistic T (x) from the data x. Then, the critical region

C = {|T (x)| > tn−1,α/2}.

where tn−1,α/2 is the upper α/2 tail probability of the t distribution with n− 1 degrees of freedom.

Example 20.1. Radon is a radioactive, colorless, odorless, tasteless noble gas, occurring naturally as the decay
product of uranium. It is one of the densest substances that remains a gas under normal conditions.

Radon is responsible for the majority of the public exposure to ionizing radiation and is the most variable from
location to location. Radon gas from natural sources can accumulate in buildings, especially in confined areas such as
attics, and basements. Epidemiological evidence shows a clear link between breathing high concentrations of radon
and incidence of lung cancer. According to the United States Environmental Protection Agency, radon is the second
most frequent cause of lung cancer, after cigarette smoking, causing 21,000 lung cancer deaths per year in the United
States.

To check the reliability of radon detector, a university placed 12 detectors in a chamber having 105 picocuries of
radon. (1 picocurie is 3.7× 10−2 decays per second. This is roughly the activity of 1 picogram of the radium 226.)

The two-sided hypothesis
H0 : µ = 105 versus H1 : µ 6= 105,

where µ is the actual amount of radon radiation. In other words, we are checking to see if the detector is biased either
upward or downward.

The detector readings were:

91.9 97.8 111.4 122.3 105.4 95.0 103.8 99.6 96.6 119.3 104.8 101.7

Using R, we find for an α = 0.05 level significance test:

> radon<-c(91.9,97.8,111.4,122.3,105.4,95.0,103.8,99.6,96.6,119.3,104.8,101.7)
> hist(radon)
> mean(radon)
[1] 104.1333
> sd(radon)
[1] 9.39742
> length(radon)
[1] 12
> (tstar<-qt(0.975,11))
[1] 2.200985

Thus, the t-statistic is

t =
105− 104.1333

9.39742/
√

12
= −0.3195.

Thus, for a 5% significance test, |t| < 2.200985, the critical value and we fail to reject H0. R handles this procedure
easily.

> t.test(radon,alternative=c("two.sided"),mu=105)

One Sample t-test
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data: radon
t = -0.3195, df = 11, p-value = 0.7554
alternative hypothesis: true mean is not equal to 105
95 percent confidence interval:

98.1625 110.1042
sample estimates:
mean of x
104.1333

The output also gives the 95% confidence interval

x̄± s√
n
t0.025,11.

The power is the probability of rejecting when the parameter value is µ

π(µ) = Pµ

{∣∣∣∣
X̄ − µ0

s/
√
n

∣∣∣∣ ≥ tn−1,α/2

}

To determine the power curve, we begin with the following exercise.

Exercise 20.2. If the observations X1, . . . , Xn are independent normal random variables with mean µ then

T̃ =
X̄ − µ0

s/
√
n

has a t distribution with n− 1 degrees of freedom and non-centrality parameter

a =
µ− µ0

σ/
√
n
.
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Figure 20.1: I black, t density with 11 degrees of freedom. Red
vertical lines at tn−1,α/2 = 2.2010 are the critical values for a
two-sided test with α = 0.05, In blue, t density with 11 degrees of
freedom and non-centrality parameter a = 1.8431. The power is
the area outside the red lines under the blue density function. The
power.t.test command considers only the larger area on the
right side.

Thus, the power function

π(µ) = Pµ

{
|T̃ | ≥ tn−1,α/2

}

= 1− Pµ
{
|T̃ | < tn−1,α/2

}

= 1− Pµ
{
−tn−1,α/2 < T̃ < tn−1,α/2

}

Thus, we use the qt command to set the critical values
tn−1,α/2 and the pt command to find the power using the ap-
propriate non-centrality parameter. This same function can be
used to construct the receiver operating characteristic, deter-
mine sample size to achieve disired type I and type II errors,
and to look at power as a function of the number of samples.
In this regards, note that the non-centrality parameter increases
with the number of observations and consequently power in-
creases.

Returning to the example of the radon detector, by design,
π(µ0) = α, the significance level. We estimate a by replacing
σ with the sample standard deviation s and, as an example,
estimate the power against an alternative of a change in ∆ =
µ− µ0 = 5 picocuries is
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> delta<-5
> (a<-delta/(sd(radon)/sqrt(length(radon))))
[1] 1.843113
> 1-(pt(tstar,11,a)-pt(-tstar,11,a))
[1] 0.390913

Exercise 20.3. Draw the power function for this circumstance with significance level α = 0.05, µ0 = 105 and n = 12.
Use the standard deviation obtained from the data.

R makes this computation using the command power.t.test.

> power.t.test(n=12,delta=5,sd=sd(radon),type=c("one.sample"))

One-sample t test power calculation

n = 12
delta = 5

sd = 9.39742
sig.level = 0.05

power = 0.3907862
alternative = two.sided

Notice that this command give a different value for the power. This is due to the fact that this R command accounts
only for the larger area in FIgure 20.1.

> 1-(pt(qt(0.975,11),11,a))
[1] 0.3907862

The power.t.test command consider both one and two sample t procedures. It will also handle both one-
sided and two-sided tests. The command considers five issues - sample size n, the difference between the null and a
fixed value of the alternative delta, the standard deviation s, the significance level α, and the power. We can use
power.t.test to drop out any one of these five and use the remaining four to determine the remaining value. For
example, if we want to assure an 80% power against an alternative of 110, then we need to make 30 measurements.

> power.t.test(power=0.80,delta=5,sd=sd(radon),type=c("one.sample"))

One-sample t test power calculation

n = 29.70383
delta = 5

sd = 9.39742
sig.level = 0.05

power = 0.8
alternative = two.sided

In these types of application, we often use the terms specificity and sensitivity. Recall that setting the significance
level α is the same as setting the false positive rate or type I error probability. The specificity of the test is equal to
1 − α, the probability that the test is not rejected when the null hypothesis is true. The sensitivity is the same as the
power, one minus the type II error rate, 1− β.

Exercise 20.4. Plot the receiver operating characteristic for n = 6, 12 and 24 observations, using the standard
deviation obtained from the data and an alternative µ = 110.
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20.3 Correspondence between Two-Sided Tests and Confidence Intervals
For a two-sided t-test, we have the following list of equivalent conditions:

fail to reject with significance level α.

|t| < tn−1,α/2

∣∣∣∣
µ0 − x̄
s/
√
n

∣∣∣∣ < tn−1,α/2

−tn−1,α/2 <
µ0 − x̄
s/
√
n
< tn−1,α/2

−tn−1,α/2
s√
n
< µ0 − x̄ < tn−1,α/2

s√
n

x̄− tn−1,α/2
s√
n
< µ0 < x̄+ tn−1,α/2

s√
n

µ0 is in the γ = 1− α confidence interval

This is displayed in Figure 20.1 with the green x̄ and the horizontal green line indicating the γ-level confidence
interval containing µ0. In addition, reject the hypothesis with significance level α is equivalent to µ0 is not in the
confidence interval. This is displayed in Figure 1 with the red x̄ and the horizontal line indicating the γ-level confidence
interval that fails to contain µ0.

0 0

0
x−barµ0

s/\sqrt{n}

area  γ

area
α/2

area
α/2

x−bar

critical regioncritical region

confidence interval

hypothesis testing

Figure 20.2: γ-level confidence intervals and α level hypothesis tests. γ = 1−α. The blue density curve is density of the sampling distribution
under the null hypothesis. The red vertical dashes show the critical values for a two-sided test. γ is the area under the density curve between the
vertical critical value lines. α is the area under the density curve outside the vertical critical value lines. The green x̄ shows the case of fails to reject
is equivalent to the confidence interval contains µ0. The red x̄ show the case reject is equivalent to the confidence interval fails to contain µ0.
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20.4 Matched Pairs Procedures
A matched pair procedure is called for when a pair of quantitative measurements from a simple random sample

X1, X2, . . . , Xn, and Y1, Y2, . . . , Yn

are made on the same subjects. The alternative can be either one-sided or two sided. Underlying this assumption is
that the populations are the same under the null hypothesis.

Thus, when H0 holds and if in addition, if the data are normal, then X̄ − Ȳ is also normal and so

T =
X̄ − Ȳ

SX−Y /
√
n

has a t distribution with n− 1 degrees of freedom.
The γ-level confidence interval for the difference in the population means is

x̄− ȳ ± sX−Y
n

tn−1,(1−γ)/2,.

Example 20.5. Researchers are concerned about the impact of vitamin C content reduction due to storage and ship-
ment. To test this, researchers randomly chose a collection of bags of wheat soy blend bound for Haiti, marked them,
and measured vitamin C from a sample of the contents. Five months later, the bags were opened and a second sample
was measured for vitamin C content. The units are milligrams of vitamin C per 100g of wheat soy blend.

Factory Haiti Factory Haiti Factory Haiti Factory Haiti
44 40 45 38 39 43 50 37
50 37 32 40 52 38 40 34
48 39 47 35 45 38 39 38
44 35 40 38 37 38 39 34
42 35 38 34 38 41 37 40
47 41 41 35 44 40 44 36
49 37 40 34 43 35

Here is the R output with the 95% confidence interval for µF − µH where

• µF is the mean vitamin C content of the wheat soy blend at the factory and

• µH is the mean vitamin C content of the wheat soy blend in Haiti.

> factory<-c(44,50,48,44,42,47,49,45,32,47,40,38,41,40,39,52,45,37,38,44,43,
+50,40,39,39,37,44)
> haiti<-c(40,37,39,35,35,41,37,38,40,35,38,34,35,34,43,38,38,38,41,40,35,37,
+34,38,34,40,36)
> boxplot(factory,haiti)
> t.test(factory, haiti, alternative = c("two.sided"),mu = 0, paired = TRUE)

Paired t-test

data: factory and haiti
t = 4.9589, df = 26, p-value = 3.745e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
3.122616 7.544050

sample estimates:
mean of the differences

5.333333
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Figure 20.3: Vitamin C content in milligrams per 100 grams, measured at the factory and measured 5 month later in Haiti.

The input

> t.test(factory - haiti, alternative = c("two.sided"),mu = 0)

gives essentially the same output.
In addition, the output

> t.test(haiti, alternative = c("less"),mu = 40)

One Sample t-test

data: haiti
t = -5.3232, df = 26, p-value = 7.175e-06
alternative hypothesis: true mean is less than 40
95 percent confidence interval:

-Inf 38.23811
sample estimates:
mean of x
37.40741

shows that we would reject the one sided test

H0 : µ ≥ 40 versus H1 : µ < 40,

based on a goal of having 40mg/100g vitamin C in the wheat soy blend consumed by the Haitians.

We have used R primarily to compute a confidence interval. If the goal of the program is to have reduction in
vitamin C be less that a given amount c, then we have the hypothesis

H0 : µF − µH ≥ c versus H1 : µF − µH < c.

We can test this using R by replacing mu=0 with mu=c.
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20.5 Two Sample Procedures
Now we consider the situation in which the two samples

X1, X2, . . . , XnX , and Y1, Y2, . . . , YnY

are independent but are not paired. In particular, the number of observations nX and nY in the two samples could be
different. If the first sample has common mean µX and variance σ2

X and the second sample has common mean µY
and variance σ2

Y , then

E[X̄ − Ȳ ] = µX − µY and Var(X̄ − Ȳ ) =
σ2
X

nX
+
σ2
Y

nY
.

For the two sided hypothesis test

H0 : µX = µY versus H1 : µX 6= µY ,

The corresponding t-statistic is

t =
x̄− ȳ√
s2X
nX

+
s2Y
nY

(20.1)

with s2
X and s2

Y the unbiased sample variances. Unlike the match pairs procedures, the test statistic (20.1) does not
have a t distribution under the null hypothesis. Indeed, the density and the distribution of this statistic are difficult to
compute.

In this circumstance, we now make what is commonly known in statistics as a conservative approximation. We
replace the actual distribution of the t statistic in (20.1) with one which has slightly bigger tails. Thus, the computed
p-value which are just integrals of the density function will be slightly larger. In this way, a conservative procedures is
one that does not decrease the type I error probability.

This goal can be accomplished by approximating an ordinary Student’s t distribution with the effective degrees of
freedom ν calculated using the Welch-Satterthwaite equation:

ν =
(s2
X/nX + s2

Y /nY )2

(s2
X/nX)2/(nX − 1) + (s2

Y /nY )2/(nY − 1)
. (20.2)

As we saw in our discussion on Interval Estimation, this also gives a γ-level confidence interval for the difference
in the means µx and µY .

x̄− ȳ ± t(1−γ)/2,ν

√
s2
X

nX
+
s2
Y

nY
.

We also learned that the effective degrees of freedom are largest when the two sample variances are nearly equal. In
this case the number of degrees of freedom is 2 fewer than the sum of the two sets of observations.

Example 20.6. To investigate the effect on blood pressure of added calcium in the diet, a researchers conducts a
double blind randomized experiment. In the treatment group, each individual receives a calcium supplement. In
the control group, the individual takes a placebo. The response variable is the decrease in systolic blood pressure,
measured in millimeters of mercury, after 12 weeks. The test subjects are all male.

> calcium<-c(7,-4,18,17,-3,-5,1,10,11,-2)
> mean(calcium)
[1] 5
> sd(calcium)
[1] 8.743251
> placebo<-c(-1,12,-1,-3,3,-5,5,2,-11,-1,-3)
> mean(placebo)
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[1] -0.2727273
> sd(placebo)
[1] 5.900693
> boxplot(placebo,calcium)

The null hypothesis is that the treatment did not reduce µt the mean blood pressure of the treatment any more
than it did the mean µc for the control group. The alternative is that it did reduce blood pressure more. Formally the
hypothesis test is

H0 : µc ≤ µt versus H1 : µc > µt.

!

1 2

!
1

0
!

5
0

5
1

0
1

5

The t-statistic is
t =

5.000 + 0.273√
8.7432

10 + 5.9012

11

= 1.604.

> t.test(calcium,placebo,alternative = c("greater"))

Welch Two Sample t-test

data: calcium and placebo
t = 1.6037, df = 15.591, p-value = 0.06442
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-0.476678 Inf

sample estimates:
mean of x mean of y
5.0000000 -0.2727273
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Thus. the evidence against the null hypothesis is modest with a p-value of about 6%. Notice that the effective
degrees of freedom is ν = 15.591. The maximum possible is value for degrees of freedom is 19.

To see a 90% confidence interval remove the “greater than” alternative” and set the confidence level.

> t.test(calcium,placebo,conf.level = 0.9)

Welch Two Sample t-test

data: calcium and placebo
t = 1.6037, df = 15.591, p-value = 0.1288
alternative hypothesis: true difference in means is not equal to 0
90 percent confidence interval:
-0.476678 11.022133

sample estimates:
mean of x mean of y
5.0000000 -0.2727273

Example 20.7. The life span in days of 88 wildtype and 99 transgenic mosquitoes is given in the following data set.

> mosquitoes<-read.delim("http://math.arizona.edu/˜jwatkins/mosquitoes.txt")
> boxplot(mosquitoes)

!!
!
!

!!
!!
!

!

!

wildtype transgenic

0
1

0
2

0
3

0
4

0
5

0

The goal is to see if overstimulation of the insulin signaling cascade in the mosquito midgut reduces the µt, the
mean life span of these transgenic mosquitoes from that of the wild type µwt.

H0 : µwt ≤ µt versus H1 : µwt > µt.

> wildtype<-mosquitoes[1:88,1]
> transgenic<-mosquitoes[,2]
> t.test(transgenic,wildtype,alternative = c("less"))

Welch Two Sample t-test
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data: transgenic and wildtype
t = -2.4106, df = 169.665, p-value = 0.008497
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -1.330591
sample estimates:
mean of x mean of y
16.54545 20.78409

To determine a 98% confidence interval, we again remove the alternative command.

> t.test(transgenic,wildtype,conf.level=0.98)

Welch Two Sample t-test

data: transgenic and wildtype
t = -2.4106, df = 169.665, p-value = 0.01699
alternative hypothesis: true difference in means is not equal to 0
98 percent confidence interval:
-8.3680812 -0.1091915

sample estimates:
mean of x mean of y
16.54545 20.78409

Exercise 20.8. Notice that the 98% confidence interval, (−8.3680812,−0.1091915) does not contain 0. What can be
said about a two-sided test at the 2% significance level? What can be said about the p-value for a one-sided test?

The two-sample procedure assumes that the two sets of observations are independent and so it is not an appropriate
procedure when the the observations are paired. Moreover, the two sample procedure is yields less powerful test when
the two sets of observations are positively correlated.

Example 20.9. Previously we investigated the relationship of age of parents to the de novo mutations in the offspring
for the 78 Icelandic trios. Now, we address the simpler question: are fathers older than mothers at the time of the
child’s birth? State as a hypothesis, we have

H0 : µf ≤ µm versus H1 : µf > µm.

where µm is the mean age of Icelandic fathers at the time of birth and µm is the mean age of Icelandic mothers. We
anticipate that the two parents’ ages are positively correlcate - older fathers with older mothers and younger fathers
with younger mothers.

The appropriate matched-pair test has R commands.

> t.test(father,mother,alternative=c("greater"),paired=TRUE)

Paired t-test

data: father and mother
t = 6.6209, df = 77, p-value = 2.151e-09
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
1.838564 Inf

sample estimates:
mean of the differences

2.456197
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Notice that t = 6.6209. If we had performed (inappropriately) the two-sample t test, we find

> t.test(father,mother,alternative=c("greater"))

Welch Two Sample t-test

data: father and mother
t = 2.7834, df = 153.252, p-value = 0.003028
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.9958999 Inf

sample estimates:
mean of x mean of y
29.65919 27.20299

and t has the much lower value 2.7834.
To make the comparison, we rewrite the two t statistics as

t =
x̄m − x̄f√
s2
xm−xf /n

and t =
x̄m − x̄f√

(s2
xm + s2

xf
)/n

. (20.3)

Notice that the numerators are the same. Thus, the change in the values for the t statistics must arise from a
difference in the values in the denominator. Recall that the law of cosines for variance requires the variances in the
expressions above as well as their correlation r to obtain

s2
xm−xf = s2

xm + s2
xf
− 2rsxmsxf .

Thus, if r > 0,
s2
xm−xf < s2

xm + s2
xf

and the denominator for the expression (20.3) on the left is smaller than the expression on the right. Consequently, the
t statistic is larger and the test is more powerful

Exercise 20.10. Use the R output above and the values

> cor(father,mother)
[1] 0.8252784
> sd(father);sd(mother)
[1] 5.700042
[1] 5.314777

to compute the two t statistics in (20.3).

Example 20.11 (pooled two-sample t-test). Sometimes, the two-sample procedure is based on the assumption of a
common value σ2 for the variance of the two-samples. In this case, we pool the data to compute an unbiased estimate
for the variance:

s2
p =

1

n1 + n2 − 2

(
(n1 − 1)s2

X + (n2 − 1)s2
Y

)
.

Thus, we weight the variance from each of the two samples by the number of degrees of freedom. If we modify the
t-statistics above to

t =
x̄− ȳ√
s2p
nX

+
s2p
nY

=
x̄− ȳ

sp

√
1
nX

+ 1
nY

This indeed has the t-distribution with nX + nY − 2 degrees of freedom. This is accomplished in R by adding
var.equal=TRUE command.
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> t.test(calcium,placebo,alternative = c("greater"),var.equal=TRUE)

Two Sample t-test

data: calcium and placebo
t = 1.6341, df = 19, p-value = 0.05935
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-0.3066129 Inf

sample estimates:
mean of x mean of y
5.0000000 -0.2727273

Note that this increases the number of degrees of freedom and lowers the P -value from 6.4% to 5.9%. A natural
question to ask at this point is How do we compare the mean of more that two groups? As we shall soon learn, this
leads us to a test procedure, analysis of variance, that is a generalization of the pooled two-sample procedure?

20.6 Summary of Tests of Significance
The procedures we have used to perform hypothesis tests are based on some quantity θ generally expressed as a value
in a parameter space Θ. In setting the hypothesis, we partition the parameter space into two parts Θ0 for the null
hypothesis, H0, and Θ1 for the alternative, H1. Our strategy is to look for generalizations of the Neyman-Pearson
paradigm. For example, the Karlin-Rubin criterion provides a condition for one-sided tests that allows us to say the
we have a uniformly most powerful test.

For two-sided tests, we look to the likelihood ratio approach. For this approach, we first maximize the likelihood
L(θ|x) both over Θ0 and over Θ and then compute the ratio Λ(x). If the data, x, lead to a ratio that is sufficiently
small, then likelihood for all values of θ ∈ Θ0 are less likely then some values in Θ1. This leads us to reject the
null hypothesis in favor of the alternative. If the number of observations is large, then we can approximate, under the
null hypothesis, the distribution of the test-statistic −2 ln Λ(x) with a χ2 distribution. This leads to a critical region
C = {−2 ln Λ(x) ≥ k̃α} for an α-level test.

In practice, much of our inference is for population proportions and the population means. In these cases, we often
reserve the test for those cases in which the central limit theorem applies and thus the estimates, the sample proportions
and the sample means, have approximately a normal distribution. We summarize these procedures below.

20.6.1 General Guidelines
• Hypotheses are stated in terms of a population parameter.

• The null hypothesis H0 is a statement that no effect is present.

• The alternative hypothesis H1 is a statement that a parameter differs from its null value in a specific direction
(one-sided alternative) or in either direction (two-sided alternative).

• A test statistic is designed to assess the strength of evidence against H0.

• If a decision must be made, specify the significance level α.

• Assuming H0 is true, the p-value is the probability that the test statistic would take a value as extreme or more
extreme than the value observed.

• If the p-value is smaller than the significance level α, then H0 is rejected and the data are said to be statistically
significant at level α.
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20.6.2 Test for Population Proportions
The design is based on Bernoulli trials . For this we have

• A fixed number of trials n.

• The outcome of each trial is independent of the other trials.

• Each trial has one of two outcomes success and failure.

• The probability of success p is the same for each trial.

This test statistic is the z-score. and thus is based the applicability of the central limit theorem on using the
standard normal distribution. This procedure is considered valid is the sample is small (< 10%) compared to the total
population and both np0 and n(1 − p0) is at least 10. Otherwise, use the binomial distribution directly for the test
statistic.

The statistics p̂ for a one-proportion procedure and p̂1, p̂2 for a two-sample procedure, is the appropriate propor-
tions of success.

null hypothesis
sample proportions one-sided two-sided test statistic
single proportion H0 : p ≥ p0 H0 : p = p0 z = p̂−p0√

p0(1−p0)/n

H0 : p ≤ p0

two proportions H0 : p1 ≥ p2 H0 : p1 = p2 z = p̂1−p̂2√
p̂(1−p̂)( 1

n1
+ 1
n2

)

H0 : p1 ≤ p2

The pooled sample proportion p̂ = (x1 + x2)/(n1 + n2) where xi is the number of successes in the ni Bernoulli
trials from group i.

20.6.3 Test for Population Means
• Use the z-statistic when the standard deviations are known.

• Use the t-statistic when the standard deviations are computed from the data.

null hypothesis
t or z-procedure one-sided two-sided

single sample H0 : µ ≤ µ0 H0 : µ = µ0

H0 : µ ≥ µ0

two samples H0 : µ1 ≤ µ2 H0 : µ1 = µ2

H0 : µ1 ≥ µ2

The test statistic
t =

estimate− parameter
standard error

.

The p-value is determined by the distribution of a random variable having a t distribution with the appropriate number
of degrees of freedom. For one-sample and two-sample z procedures, replace the values s with σ and s1 and s2 with
σ1 and σ2, respectively. Use the normal distribution for these tests.
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t-procedure parameter estimate standard error degrees of freedom
one sample µ x̄ s√

n
n− 1

two sample µ1 − µ2 x̄1 − x̄2

√
s21
n1

+
s22
n2

ν in equation (20.2)

pooled two sample µ1 − µ2 x̄1 − x̄2 sp
√

1
n1

+ 1
n2

n1 + n2 − 2

20.7 A Note on the Delta Method
For a one sample test hypothesizing a value for g(µ), we use the t statistic

t =
g(x̄)− g(µ0)

|g′(x̄)|s/√n

and base the test on the t distribution with n− 1 degrees of freedom.
For a test that compare a function of the mean of a two samples g(µX) and g(µY ) we can use the test statistic

t =
g′(x̄)− g(ȳ)√

(g′(x̄)sX)2

nX
+ (g′(ȳ)sY )2

nY

The degrees of freedom ν can be computed from the Welch-Satterthwaite equation specialized to this circumstance.

ν =
(g(x̄)sX)2/nX + (g′(ȳ)sY )2/nY )2

((g′(x̄)sX)2/nX)2/(nX − 1) + ((g′(ȳ)sY )2/nY )2/(nY − 1)
.

20.8 The t Test as a Likelihood Ratio Test
Again, we begin with independent normal observations X1. . . . , Xn with unknown mean µ and unknown variance σ2.
We show that the critical region C = {x; |T (x)| > tn−1,α/2} is a consequence of the criterion given by a likelihood
ratio test with significance level α.

The likelihood function

L(µ, σ2|x) =
1

(2πσ2)n/2
exp− 1

2σ2

n∑

i=1

(xi − µ)2

lnL(µ, σ2|x) = −n
2

(ln 2π + lnσ2)− 1

2σ2

n∑

i=1

(xi − µ)2

∂

∂µ
lnL(µ, σ2|x) = − 1

σ2

n∑

i=1

(xi − µ)

Thus, µ̂ = x̄.

∂

∂σ2
lnL(µ, σ2|x) = − n

2σ2
+

1

2(σ2)2

n∑

i=1

(xi − µ)2.

Thus,

σ̂2 =
1

n

n∑

i=1

(xi − x̄)2.

For the hypothesis
H0 : µ = µ0 versus H1 : µ 6= µ0,
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the likelihood ratio test

Λ(x) =
L(µ0, σ̂

2
0 |x)

L(µ̂, σ̂2|x)

where the value

σ̂2
0 =

1

n

n∑

i=1

(xi − µ0)2

gives the maximum likelihood on the set µ = µ0.

L(µ0, σ̂
2
0 |x) =

1

(2πσ̂2
0)n/2

exp− 1

2σ̂2
0

n∑

i=1

(xi − µ0)2 =
1

(2πσ̂2
0)n/2

exp− 2

n
,

L(µ̂, σ̂2|x)) =
1

(2πσ̂2)n/2
exp− 1

2σ̂2

n∑

i=1

(xi − x̄)2 =
1

(2πσ̂2)n/2
, exp− 2

n
,

and the likelihood ratio is

Λ(x) =

(
σ̂2

σ̂2
0

)n/2
=

(∑n
i=1(xi − µ0)2

∑n
i=1(xi − x̄)2

)−n/2

The critical region λ(x) ≤ λ0 is equivalent to the fraction in parenthesis above being sufficiently large. In other
words for some value c,

c ≤
∑n
i=1(xi − µ0)2

∑n
i=1(xi − x̄)2

=

∑n
i=1 ((xi − x̄) + (x̄− µ0))

2

∑n
i=1(xi − x̄)2

=

∑n
i=1(xi − x̄)2 + 2

∑n
i=1(xi − x̄)(x̄− µ0) +

∑n
i=1(x̄− µ0)2

∑n
i=1(xi − x̄)2

= 1 +
n(x̄− µ0)2

∑n
i=1(xi − x̄)2

In a now familiar strategy, we have added and subtracted x̄ to decompose the variation. Continuing we find that

(c− 1)(n− 1) ≤ n(x̄− µ0)2

∑n
i=1(xi − x̄)2/(n− 1)

=
(x̄− µ0)2

s2/n

or
(c− 1)(n− 1) ≤ T (x)2 (20.4)

where

T (x) =
x̄− µ0

s/
√
n

and s is the square root of the unbiased estimator of the variance

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2.

Taking square roots in (20.4), we have the critical region

C =
{
x;
√

(c− 1)(n− 1) ≤ |T (x)|
}

Now take
√

(c− 1)(n− 1) = tn−1,α/2.
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20.9 Non-parametric alternatives
The strategy for hypothesis testing is to choose a test statistic with high power and to determine its distribution under
the null hypothesis. We then compute the value of the test statistic for our data and make an assessment. For the t test,
thus assessment is based on the t distribution. This, in turn, relies on the ability to say that the distributions of sample
means are nearly normally distributed. This is typically assured upon appeal to the central limit theorem. In some
circumstances, we then choose a significance level α and then the decision to reject the null hypotheses is based on
relating the test statistics to this critical value, rejecting if the test statistic is more extreme than this standard. In other
circumstances, we compute the p-value and use that to indicate the strength of the evidence against the null hypothesis.
We then follow up by deciding to reject the null hypothesis if the p-value is below the significance level α.

20.9.1 Permutation Test
In the example of a test for the value of added calcium in the diet to lower blood pressure, the boxplot showed an
outlier in the blood pressure of one individual in the group that received a calcium supplement. As a consequence, the
assumption that the central limit theorem holds for the distribution of the sample means is in doubt. These data have a
difference in sample means:

> (diffdata<-mean(calcium)-mean(placebo))
[1] 5.272727

When the central limit theorem applies, we can assess this difference by dividing by the standard error of the sample
means and use the value of a t statistic with the appropriate number of degrees of freedom.

Permutation tests present an alternative to finding the sampling distribution for any test statistic, here the differ-
ence in sample means. The procedures begin by asking, If the null hypothesis is true, then what shuffles of the data
are consistent with this statement?

In this case, we can think of the null hypothesis as stating that all of the observations for blood pressure are actually
derived from a single group and thus the assignment of an individual to a group, either placebo or calcium, should
have no effect on the outcome. For the two groups, sizes n1 and n2, we have

(
n1 + n2

n1

)

ways to divide the entire sample into two groups, retaining the sizes found in the observations that constitute our data.
Each of these choices provides an additional value for the difference, under the null hypothesis, of sample means.
These can be used to create an empirical sampling distribution. This methodology is feasible if n1 and n2 are not too
large. For larger sample sizes, we can also use a resampling technique, similar to the bootstrap, to randomly create
the two groups and compute the difference in the means of these randomly chosen resampled groups.

> bp<-c(placebo,calcium)
> diff<-rep(0,10000)
> groups<-c(rep(1,length(calcium)),

rep(2,length(placebo)))
> for(i in 1:10000){groupperm<-sample(groups);

diff[i]<-mean(bp[groupperm==1]
-mean(bp[groupperm==2]))}
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Figure 20.4: Histogram of mean differ-
ences for 10,000 simulated samples. The p-
value, 0.0556, is the area to the right of the
vertical red line.

Because the alternative is greater than, the p-value (which will vary a bit
from one simulation to the next) is the fraction of the simulations greater than
what is found in the data. (See Figure 20.3.)

> (pvalue<-length(diff[diff>diffdata])/length(diff))
[1] 0.0556
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This is slightly lower than the p-value 0.06442 found using the two-sample t-test.

Exercise 20.12. Create a permutation test for a matched pair procedure and apply it to the data set vitamin C in the
wheat soy blend, (Hint; Under the null hypothesis the difference in the measurements, in either order have the same
distribution that is symmetric about 0. The procedure uses independent Bernoulli random variables to choose the
order of subtraction.)

When the assumption of the normal distribution cannot be said to hold in a two-sample t-procedure, another option
is to use a test that does not depend on the numerical values of the observations but rather on the ranks of the data.
Because this test is based on the ranks of the data, we cannot base the hypothesis test on the means of the data, but
rather on a parameter that uses only the ranks of the data. For these non-parametric tests the hypotheses are often
stated in terms of medians.

20.9.2 Mann-Whitney or Wilcoxon Rank Sum Test
We will explain this procedure more carefully in the case of the data on the lifetime of wildtype and transgenic
mosquitoes. In this case our data are x1, x2, . . . , xnx are the lifetimes in days for the wildtype mosquitoes and
y1, y2, . . . , yny are the lifetimes in days for the transgenic mosquitoes.

For the Wilcoxon rank sum test, the hypothesis is based a question that can be addressed by the rankings of
the data. For this discussion, we will assume that the data are two independent samples from populations having
continuous distributions FX and FY for random variables X and Y . Because the distributions are continuous, we
know that P{X = Y } = 0. (We will discuss the case P{X = Y } 6= 0 below.) The null hypothesis

H0 : P{X > Y } = P{Y > X} =
1

2
.

In words, independent random observations, one from FX and one from FY are equally likely to be larger. The
alternative hypothesis may be two-sided,

H1 : P{X > Y } 6= P{Y > X},

or one-sided,
H1 : P{X > Y } > P{Y > X} or H1 : P{X > Y } < P{Y > X} (20.5)

The following identity will be useful in our discussion.

Exercise 20.13. The sums of the first m integers

n∑

j=1

j = 1 + 2 + · · ·+ n =
n(n+ 1)

2

0 10 20 30 40 50

days

0 10 20 30 40 50

days

Figure 20.5: Life span in days for 6 transgenic (in red) and 8
wildtype (in black) mosquitoes.

Let’s look at a small pilot data set to get a sense of the proce-
dure. The values are the lifespan in days.

> wildtype
[1] 31 36 18 11 33 9 34 47
> transgenic
[1] 3 8 21 24 25 38

From these date, we see that the ranks

• wildtype - 3 4 5 9 10 11 12 14

• transgenic - 1 2 6 7 8 13
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The strategy for the test to see if there is a significant differ-
ence in the ranks of the data. The basic statistic is the sum of the
ranks of one of the samples. For the transgenic mosquitoes, this sum is

Ry =

ny∑

i=1

Ry,i = 1 + 2 + 6 + 7 + 8 + 13 = 37

for ny = 6 observations
We can now compare this sum of ranking to all

(
14
6

)
= 3003 possible rankings of the data. This is accomplished

using the wilcox.test command in R.

> wilcox.test(transgenic,wildtype,alternative=c("less"))

Wilcoxon rank sum test

data: transgenic and wildtype
W = 16, p-value = 0.1725
alternative hypothesis: true location shift is less than 0

Thus, the 17.25% of the ranks below the given value of 37 give us the p-value. This small amount of data gives
a hint that the transgenic mosquito may have a shorter lifespan. The U statistic is related to the sum of the ranks by
subtracting the minimum possible value as shown in Exercise 20.6.

Uy =

ny∑

j=1

(Ry,j − j) = Ry −
ny(ny + 1)

2
.

R uses another variant W of the Ry statistic.

Exercise 20.14. Define Ry to be the sum of the ranks for the ny observations in the second sample and set Ux =

Rx − nx(nx+1)
2 . Then,

Ux + Uy = nxny (20.6)

We previously saw the expressions for the probabilities (20.5) in the discussion of the distribution of p-values and
the receiving operator characteristic. We will now show how this connection reappears in the ranked sum test by giving
a pictorial explanation for the identity (20.6).
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Figure 20.6: Pictoral representation of (20.6). The terms in (20.7)
for Ux are the heights of vertical rectangles in each row, left to right
below the solid line. The terms in (20.8) for Uy are the lengths of
horizontal rectangles below in each row, bottom to top right of the
solid line.Their total is the total number of boxes - nxny .

First, write the differences in the rankRx,j and the mini-
mum possible rank j for the ordered entries for the wildtype
mosquitos.

Ux =

nx∑

j=1

(Rx,j − j)

= (3− 1) + (4− 2) + (5− 3) + (9− 4)

+(10− 5) + (11− 6) + (12− 7) + (14− 8)

= 2 + 2 + 2 + 5 + 5 + 5 + 5 + 6 (20.7)

and the same differences for the transgenic mosquitos.

Uy =

ny∑

j=1

(Ry,j − j)

= (1− 1) + (2− 2) + (6− 3)

+(7− 4) + (8− 5) + (13− 6)

= 0 + 0 + 3 + 3 + 3 + 7. (20.8)
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The terms in the sums can be seen as the areas of boxes that fill a grid of nx×ny squares as described in the figure
caption to the left.

For a second method to draw the solid line in the figure, write x’s and y’s in the order from smallest to largest. In
the mosquito example, this is y y x x x y y y x x x x y x. Following the letters in order, moving up for each y and
right for each x will produce the solid line in Figure 20.6. Because the y transgenic lifespan is shorter, then we will
see more movement upwards early and the area under the solid line will be considerably above one-half. In this case,
the area is 2/3. The alternative hypotheses can now be stated as the area under the solid line differs from one-half (for
a two-sided alternative) or is above or below one-half (for a one-sided alternative).

If the entire data set is used, then we cannot carry out all of the comparisons without a long computational time.
However, we have a version of the central limit theorem that gives the mean and standard deviation of the Ry , Uy or
W -statistic. Thus, we can use the normal distribution to determine a p-value. As with the binomial distribution, R
uses a continuity correction to deal with the fact that the test statistic W is a discrete random variable.

> wilcox.test(transgenic,wildtype,alternative=c("less"))

Wilcoxon rank sum test with continuity correction

data: transgenic and wildtype
W = 3549.5, p-value = 0.0143
alternative hypothesis: true location shift is less than 0

Notice the value W = 3549.5 is not an integer. This is a result of the fact that ties are resolved by giving fractional
values to ties. For example, if the third and fourth values are equal, they are both given the rank 3 1/2. If the seventh,
eighth, and ninth values are equal. they are all given the rank (7+8+9)/3 = 8.
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Figure 20.7: Pictorial representation of (20.6). The terms in (20.7) for Ux
are number of vertical rectangles in each row, left to right below the solid line.
The terms in (20.8) for Uy are number of horizontal rectangles below in each
row, bottom to top right of the solid line.

We now re-draw the above figure using all of the
data with the goal of interpreting the graph as an em-
pirical receiving operator characteristic. The test
statistic associated to the graph would be to identify
the mosquito genotype solely on its lifespan. Thus
we will fix a number of days d0. If the mosquito life
is shorter, we will classify it as “transgenic” . If it is
longer, we will classify it as “wildtype.” Any choice
of d0 will result on a point on the curve. Looking to
the horizontal axis gives the false positive rate, the
probability that a mosquito that has a shorter lifespan
has been incorrectly identified as transgenic. Look-
ing to the vertical axis gives the true positive rate,
the probability that a mosquito that has a shorter
lifespan is correctly classified as transgenic. Ideally,
we would like to make choice for d0 so that the false
positive rate is low and the true positive rate is high.
So, the desired graph quickly increases for small val-
ues of the false positive rate. The metric associated
to this is the area under the curve or AUC for the

receiving operator characteristic. Thus, the desired graph has area under the curve nearly equal to 1. This area is equal
to Ux/(nxny) and the significance of its difference from one-half is the essence of the Mann-Whitney rank sum test.
In this example, the areas is 0.567 and so does not make for a very powerful test.

This circumstance is common in medical testing. A patient is administered a test and based on the outcome of the
test, a physician will make a diagnosis and prescribe a treatment. The quality of the test can be obtained by calculating
the AUC, or correspondingly, the Mann-Whitney U statistic. One standard for an improvement is a statistically and
medically significant increase in AUC.
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20.9.3 Wilcoxon Signed-Rank Test
For the Wilcoxon signed-rank test, the hypothesis is based on the median values mx and my for an experimental
procedure in which pairs are matched. This gives an alternative to the measurement of the amount of vitamin C in
wheat soy blend at the factory and 5 months later in Haiti. Our data are

x1, x2, . . . , xn

are the measurements of vitamin C content of the wheat soy blend at the factory and

y1, y2, . . . , yn

are the measurements of vitamin C content of the wheat soy blend in Haiti.
For the hypothesis test to see if vitamin C content decreases due to shipping and shelf time, set

• mF is the median vitamin C content of the wheat soy blend at the factory and

• mH is the median vitamin C content of the wheat soy blend in Haiti.

To perform the test

H0 : mF ≤ mH versus H1 : mF > mH , ,

we use a test statistic based on both the sign of the difference yi − xi in the paired observations and in the ranks of
|yi − xi| Here is the R command and output. Note the choice paired=TRUE for the signed-rank test.

> wilcox.test(factory, haiti, alternative = c("greater"),paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: factory and haiti
V = 341, p-value = 0.0001341
alternative hypothesis: true location shift is greater than 0

Warning message:
In wilcox.test.default(factory, haiti, alternative = c("greater"), :

cannot compute exact p-value with ties

20.10 Answers to Selected Exercises
20.2. Recall that for Z1, Z2, . . . Zn, independent standard normal random variables with standard deviation sZ ,

T̃ =

√
nZ̄ + a

sZ

has a t distribution with n− 1 degrees of freedom and non-centrality parameter a.
If we reproduce the calculation we made in determining power for a one-sample two-sided z-test, then, in the

denominator, we add and subtract the mean µ to obtain

X̄ − µ
s/
√
n

=
(X̄ − µ) + (µ− µ0)

s/
√
n

If the Xi have common standard deviation σ, we standardize the variables, writing

Zi =
Xi − µ
σ

.
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Thus, sZ = s/σ is the standard deviation of the Zi and upon dividing each term by σ,

(X̄ − µ) + (µ− µ0)

s/
√
n

=

√
n((X̄ − µ)/σ + (µ− µ0)/σ)

s/σ

=

√
nZ̄ −√n(µ0 − µ)/σ

sZ

which has t distribution with non-centrality parameter a =
√
n(µ− µ0)/σ.
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Figure 20.8: Power curve for radon detector.

20.3. To plot the power function, π, we first enter the data.

> radon<-c(91.9,97.8,111.4,122.3,105.4,95.0,
103.8,99.6,96.6,119.3,104.8,101.7)

> mu0<-105
> mu<-seq(95,115,0.01)
> a<-(mu0-mu)/(sd(radon)/sqrt(length(radon)))
> tstar<-qt(0.975,11)
> pi<-1-(pt(tstar,11,a)-pt(-tstar,11,a))
> plot(mu,pi,type="l")

20.4. Recall that the receiver operating characteristic is a plot of α the
significance level versus the power.

> alpha<-seq(0,1,0.01) delta<-5
> n<-6; talpha<-qt(1-alpha/2,n-1); a<-delta/(sd(radon)/sqrt(n-1))
> power6<-1-(pt(talpha,n-1,a)-pt(-talpha,n-1,a))
> plot(alpha,power6,type="l",xlim=c(0,1),ylim=c(0,1),

xlab=c("significance"),ylab=c("power"))
> par(new=TRUE)
> n<-12; talpha<-qt(1-alpha/2,n-1); a<-delta/(sd(radon)/sqrt(n-1))
> power12<-1-(pt(talpha,n-1,a)-pt(-talpha,n-1,a))
> par(new=TRUE)
> plot(alpha,power12,type="l",xlim=c(0,1),ylim=c(0,1),xlab=c(""),ylab=c(""),col="red")
> n<-24; talpha<-qt(1-alpha/2,n-1); a<-delta/(sd(radon)/sqrt(n-1))
> power24<-1-(pt(talpha,n-1,a)-pt(-talpha,n-1,a))
> par(new=TRUE)
> plot(alpha,power24,type="l",xlim=c(0,1),ylim=c(0,1),xlab=c(""),ylab=c(""),col="blue")

We compare the ROCs for low significance levels by using the head
command. Notice how the power increases with sample size.

> head(data.frame(alpha,power6,power12,power24))
alpha power6 power12 power24

1 0.00 0.00000000 0.0000000 0.0000000
2 0.01 0.04304033 0.1435099 0.4179953
3 0.02 0.07812389 0.2199330 0.5299071
4 0.03 0.10924263 0.2773645 0.5988122
5 0.04 0.13759358 0.3241511 0.6480282
6 0.05 0.16380961 0.3638693 0.6858441
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Figure 20.9: Receiver operating characteristic for the
radon detector with 6 (black), 12 (red) and 24 (blue)
observations and a null µ0 = 105 and an alternative
µ = 110.

20.8. This means that we can reject the null hypothesis that transgenic
and wildtype mosquitoes have the seem mean lifetime. For a one-
sided test, the p-value is 0.01699/2 = 0.008549.

20.9. By the correspondence between two-sided hypothesis tests and
confidence intervals, the fact that 0 is not in the confidence interval,
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indicates that the test is significant at the 2% level and thus the p-value < 0.02. Notice that the output shows a p-value
of 0.01699. For a one-sided test, we know that the p-value is half that of a two-sided test and thus below 0.01. Notice
that the R give a p-value of 0.008497 for a one-sided test.

20.11. The numerator in the test statistics

x̄m − x̄f = 29.65919− 27.20299 = 2.4562.

For the unpaired two-sample test.

s2
xm + s2

xf
= 5.7000422 + 5.3147772 = 60.73733

and
t =

x̄m − x̄f√
s2
xm−xf /n

=
2.4562√

60.73733/78
= 2.783448,

matching the R output. For the paired two-sample test

s2
xm−xf = s2

xm + s2
xf
− 2rsxmsxf = 5.7000422 + 5.3147772 − 2(0.3571538)(5.700042)(5.314777) = 10.73462.

and
t =

x̄m − x̄f√
s2
xm−xf /n

=
2.4562√

10.7346278/78
= 6.62091,

again matching the output.

20.12. Under the null hypothesis, the two sets of observations, X1, . . . , Xn and Y1, . . . , Yn have the same distribution.
Thus, ∆k = Yk − Xk, k = 1, . . . , n are independent and their distribution is symmetric about zero. Thus, we can
randomly take the sign ±∆k as the basis for the permutation test. Here is the R code. We use one million simulations
to be able to determine a small p-value

> delta<-factory-haiti
> deltamean<-mean(delta)
> deltasim<-numeric(1000000)
> for (i in 1:1000000){deltasim[i]<-mean(rbinom(length(delta),1,0.5)*delta)}
> length(deltasim[deltasim>deltamean])/1000000
[1] 4e-05

This yields a permutation test p-value of 4× 10−5. The t-test procedure gave a very similar p-value, 3.745× 10−5

20.13. We prove this using mathematical induction. For the case m = 1, we have 1 = 1(1+1)
2 and the identity holds

true. Now assume that the identity holds for m = k. We then check that it also holds for m = k + 1

1 + 2 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1) =

(
k

2
+ 1

)
(k + 1) =

k + 2

2
(k + 1) =

(k + 1)(k + 2)

2
.

So, by the principle of mathematical induction, we have the identity for all non-negative integers.

20.14. By Exercise 20.10, the sum of the ranks

Rx +Ry =
(nx + ny)(nx + ny + 1)

2

Thus,

Uy + Ux =

(
Ry −

ny(ny + 1)

2

)
+

(
Rx −

nx(nx + 1)

2

)

=
(ny + nx)(ny + nx + 1)

2
− ny(ny + 1)

2
− nx(nx + 1)

2

=
1

2
(ny(ny + 1) + nynx + nx(nx + 1) + nynx − ny(ny + 1)− nx(nx + 1)) = nynx.
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Topic 21

Goodness of Fit

The object of this paper is to investigate a criterion of the probability on any theory of an observed system
of errors, and to apply it to the determination of goodness of fit. - Karl Pearson. 1900, On the Criterion
that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is
such that it can be Reasonably Supposed to have Arisen from Random Sampling, Philosophical Magazine

21.1 Fit of a Distribution
Goodness of fit tests examine the case of a sequence of independent observations each of which can have 1 of k
possible categories. For example, each of us has one of 4 possible of blood types, O, A, B, and AB. The local blood
bank has good information from a national database of the fraction of individuals having each blood type,

πO, πA, πB , and πAB .

The actual fraction pO, pA, pB , and pAB of these blood types in the community for a given blood bank may be different
than what is seen in the national database. As a consequence, the local blood bank may choose to alter its distribution
of blood supply to more accurately reflect local conditions.

To place this assessment strategy in terms of formal hypothesis testing, let π = (π1, . . . , πk) be postulated values
of the probability

Pπ{individual is a member of i-th category} = πi

and let p = (p1, . . . , pk) denote the possible states of nature. Then, the parameter space is

Θ = {p = (p1, . . . , pk); pi ≥ 0 for all i = 1, . . . , k,

k∑

i=1

pi = 1}.

This parameter space has k − 1 free parameters. Once these are chosen, the remaining parameter value is determined
by the requirement that the sum of the pi equals 1. Thus, dim(Θ) = k − 1.

The hypothesis is

H0 : pi = πi, for all i = 1, . . . , k versus H1 : pi 6= πi, for some i = 1, . . . , k. (21.1)

The parameter space for the null hypothesis is a single point π = (π1, . . . , πk). Thus, dim(Θ0) = 0. Consequently,
the likelihood ratio test will have a chi-square test statistic with dim(Θ)− dim(Θ0) = k− 1 degrees of freedom. The
data x = (x1, . . . , xn) are the categories for each of the n observations.

Let’s use the likelihood ratio criterion to create a test for the distribution of human blood types in a given popula-
tion. For the data

x = {O,B,O,A,A,A,A,A,O,AB}
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for the blood types of tested individuals, then, in the case of independent observations, the likelihood is

L(p|x) = pO · pB · pO · pA · pA · pA · pA · pA · pO · pAB = p3
Op

5
ApBpAB .

Notice that the likelihood has a factor of pi whenever an observation take on the value i. In other words, if we
summarize the data using

ni = #{observations from category i}
to create n = (n1, n2, · · · , nk), a vector that records the number of observations in each category, then, the likelihood
function

L(p|n) = pn1
1 · · · pnkk . (21.2)

The likelihood ratio is the ratio of the maximum value of the likelihood under the null hypothesis and the maxi-
mum likelihood for any parameter value. In this case, the numerator is the likelihood evaluated at π.

Λ(n) =
L(π|n)

L(p̂|n)
=
πn1

1 πn2
2 · · ·πnkk

p̂n1
1 p̂n2

2 · · · p̂nkk
=

(
π1

p̂1

)n1

· · ·
(
πk
p̂k

)nk
. (21.3)

To find the maximum likelihood estimator p̂, we, as usual, begin by taking the logarithm in (21.2),

lnL(p|n) =

k∑

i=1

ni ln pi.

Because not every set of values for pi is admissible, we cannot just take derivatives, set them equal to 0 and solve.
Indeed, we must find a maximum under the constraint

s(p) =

k∑

i=1

pi = 1.

The maximization problem is now stated in terms of the method of Lagrange multipliers. This method tells us
that at the maximum likelihood estimator (p̂1, . . . , p̂k), the gradient of lnL(p|n) is proportional to the gradient of the
constraint s(p). To explain this briefly, recall that the gradient of a function is a vector that is perpendicular to a level
set of that function. In this case,

∇p̂s(p) is perpendicular to the level set {p; s(p) = 1}.
Now imagine walking along the set of parameter values of p given by the constraint s(p) = 1, keeping track of

the values of the function lnL(p|n). If the walk takes us from a value of this function below `0 to values above `0
then (See Figure 21.1.), the level surfaces

{p; s(p) = 1}
and

{lnL(p|n = `0}
intersect. Consequently, the gradients

∇p̂s(p) and ∇p̂ lnL(p|n)

point in different directions on the intersection of these two surfaces. At a local maximum or minimum of the log-
likelihood function, the level surfaces are tangent and the two gradients are parallel. In other words, the these two
gradients vectors are related by a constant of proportionality, λ, known as the Lagrange multiplier. Consequently, at
extreme values,

∇p lnL(p̂|n) = λ∇p̂s(p).(
∂

∂p1
lnL(p̂|n), . . . ,

∂

∂pk
lnL(p̂|n)

)
= λ

(
∂

∂p1
s(p), . . . ,

∂

∂pk
s(p)

)

(
n1

p̂1
, . . . ,

nk
p̂k

)
= λ(1, . . . , 1)
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s(p) = 1

     level sets for the log-
likelihood, values increasing
moving downward   

−−

Figure 21.1: Lagrange multipliers Level sets of the log-likelihood function.shown in dashed blue. The level set {s(p) = 1} shown in black. The
gradients for the log-likelihood function and the constraint are indicated by dashed blue and black arrows, respectively. At the maximum, these two
arrows are parallel. Their ratio λ is called the Lagrange multiplier. If we view the blue dashed lines as elevation contour lines and the black line as
a trail, crossing contour line indicates walking either up or down hill. When the trail reaches its highest elevation, the trail is tangent to a contour
line and the gradient for the hill is perpendicular to the trail.

Each of the components of the two vectors must be equal. In other words,

ni
p̂i

= λ, ni = λp̂i for all i = 1, . . . , k. (21.4)

Now sum this equality for all values of i and use the constraint s(p) = 1 to obtain

n =

k∑

i=1

ni = λ

k∑

i=1

p̂i = λs(p̂) = λ.

Returning to (21.4), we have that
n1

p̂i
= n and p̂i =

ni
n
. (21.5)

This is the answer we would guess - the estimate for pi is the fraction of observations in category i. Thus, for the
introductory example,

p̂O =
3

10
, p̂A =

5

10
, p̂B =

1

10
, and p̂O =

1

10
.

Next, we substitute the maximum likelihood estimates p̂i = ni/n into the likelihood ratio (21.3) to obtain

Λ(n) =
L(π|n)

L(p̂|n)
=

(
π1

n1/n

)n1

· · ·
(

πk
nk/n

)nk
=

(
nπ1

n1

)n1

· · ·
(
nπk
nk

)nk
. (21.6)

Recall that we reject the null hypothesis if this ratio is too low, i.e, the maximum likelihood under the null hypoth-
esis is sufficiently smaller than the maximum likelihood under the alternative hypothesis.

Let’s review the process. the random variables X1, X2, . . . , Xn are independent, taking values in one of k cate-
gories each having distribution π. In the example, we have 4 categories, namely the common blood types O, A, B,
and AB. Next, we organize the data into

Ni = #{j;Xj = i},
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the number of observations in category i. Next, create the vector N = (N1, . . . , Nk) to be the vector of observed
number of occurrences for each category i. In the example we have the vector (3,5,1,1) for the number of occurrences
of the 4 blood types.

When the null hypothesis holds true, −2 ln Λ(N) has approximately a χ2
k−1 distribution. Using (21.6) we obtain

the the likelihood ratio test statistic

−2 ln Λ(N) = −2

k∑

i=1

Ni ln
nπi
Ni

= 2

k∑

i=1

Ni ln
Ni
nπi

The last equality uses the identity ln(1/x) = − lnx for the logarithm of reciprocals.
The test statistic −2 ln Λn(n) is generally rewritten using the notation Oi = ni for the number of observed

occurrences of i and Ei = nπi for the number of expected occurrences of i as given by H0. Then, we can write the
test statistic as

−2 ln Λn(O) = 2

k∑

i=1

Oi ln
Oi
Ei

(21.7)

This is called the G2 test statistic. Thus, we can perform our inference on the hypothesis (21.1) by evaluating G2.
The p-value will be the probability that the a χ2

k−1 random variable takes a value greater than −2 ln Λn(O)

The traditional method for a test of goodness of fit, we use, instead of the G2 statistic, the chi-square statistic

χ2 =

k∑

i=1

(Ei −Oi)2

Ei
. (21.8)

Thus, large values for χ2 result from large differences between the observed values Oi and the expected values Ei.
Consequently. large values of χ2 is evidence against the null hypothesis.

The χ2 test statistic was introduced between 1895 and 1900 by Karl Pearson and consequently has been in use for
longer that the concept of likelihood ratio tests. Indeed, R output call the test Pearson’s Chi-squared test
in the case of contingency tables, our next topic.

We establish the relation between (21.7) and (21.8), through the following two exercises.

Exercise 21.1. Define

δi =
Oi − Ei
Ei

=
Oi
Ei
− 1.

Show that
k∑

i=1

Eiδi = 0 and Ei(1 + δi) = Oi.

Exercise 21.2. Show the relationship between the G2 and χ2 statistics in (21.7) and (21.8) by applying the quadratic
Taylor polynomial approximation for the natural logarithm,

ln(1 + δi) ≈ δi −
1

2
δ2
i

and keeping terms up to the square of δi

To compute either the G2 or χ2 statistic, we begin by creating a table.

i 1 2 · · · k
observed O1 O2 · · · Ok
expected E1 E2 · · · Ek

We show this procedure using a larger data set on blood types.
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Example 21.3. The Red Cross recommends that a blood bank maintains 44% blood type O, 42% blood type A, 10%
blood type B, 4% blood type AB. You suspect that the distribution of blood types in Tucson is not the same as the
recommendation. In this case, the hypothesis is

H0 : pO = 0.44, pA = 0.42, pB = 0.10, pAB = 0.04 versus H1 : at least one pi is unequal to the given values

Based on 400 observations, we observe 228 for type O, 124 for type A, 40 for type B and 8 for type AB by
computing 400× pi using the values in H0. This gives the table

type O A B AB
observed 228 124 40 8
expected 176 168 40 16

Using this table, we can compute the value of either (21.7) and (21.8). The chisq.test command in R uses
(21.8). The program computes the expected number of observations.

> chisq.test(c(228,124,40,8),p=c(0.44,0.42,0.10,0.04))

Chi-squared test for given probabilities

data: c(228, 124, 40, 8)
X-squared = 30.8874, df = 3, p-value = 8.977e-07

The number of degrees of freedom is 4− 1 = 3. Note that the p-value is very low and so the distribution of blood
types in Tucson is very unlikely to be the same as the national distribution. We can also perform the test using the
G2-statistic in (21.7):

> O<-c(228,124,40,8)
> E<-sum(O)*c(0.44,0.42,0.10,0.04)
> G2stat<-2*sum(O*log(O/E))
> G2stat
[1] 31.63731
> 1-pchisq(G2stat,3)
[1] 6.240417e-07

One way to visualize the discrepancies from from the null hypothesis is to display them with a hanging chi-gram.
This plots category i with a bar of height of the standardized residuals (also known as Pearson residuals).

Oi − Ei√
Ei

. (21.9)

Note that these values can be either positive or negative.

> resid<-(O-E)/sqrt(E)
> barplot(resid, names.arg=c("O","A","B","AB"),

xlab="chigram for blood donation data")

Example 21.4. Is sudden infant death syndrome seasonal (SIDS)? Here we are hypothesizing that 1/4 of each of the
occurrences of sudden infant death syndrome take place in the spring, summer, fall, and winter. Let p1, p2, p3, and p4

be the respective probabilities for these events. Then the hypothesis takes the form

H0 : p1 = p2 = p3 = p4 =
1

4
, versus H1 : at least one pi is unequal to

1

4
.

To test this hypothesis, public health officials from King County, Washington, collect data on n = 322 cases,
finding

n1 = 78, n2 = 71, n3 = 87, n4 = 86
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O A B AB

chigram for blood donation data
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-1
0

1
2

3

Figure 21.2: The heights of the bars for each category are the standardized residuals (21.9). Thus, blood type O is overrepresented and types A
and AB are underrepresented compare to the expectations under the null hypothesis.s

for deaths in the spring, summer, fall, and winter, respectively. Thus, we find more occurrences of SIDS in the fall and
winter. Is this difference statistical significant or are these difference better explained by chance fluctuations?

We carry out the chi square test. In this case, each of the 4 categories is equally probable. Because this is the
default value in R, we need not include this in the command.

> chisq.test(c(78,71,87,86))

Chi-squared test for given probabilities

data: c(78, 71, 87, 86)
X-squared = 2.0994, df = 3, p-value = 0.552

This p-value is much to high to reject the null hypothesis.

Example 21.5 (Hardy-Weinberg equilibrium). As we saw with Gregor Mendel’s pea experiments, the two-allele
Hardy-Weinberg principle states that after two generations of random mating the genotypic frequencies can be repre-
sented by a binomial distribution. So, if a population is segregating for two alleles A1 and A2 at an autosomal locus
with frequencies p1 and p2, then random mating would give a proportion

p11 = p2
1 for the A1A1 genotype, p12 = 2p1p2 for the A1A2 genotype, and p22 = p2

2 for the A2A2 genotype.
(21.10)

Then, with both genes in the homozygous genotype and half the genes in the heterozygous genotype, we find that

p1 = p11 +
1

2
p12 p2 = p22 +

1

2
p12. (21.11)

Our parameter space Θ = {(p11, p12, p22); p11 + p12 + p22 = 1} is 2 dimensional. Θ0, the parameter space
for the null hypothesis, are those values p1, p2 that satisfy (21.11). With the choice of p1, the value p2 is determined
because p1 + p2 = 1. Thus, dim(Θ0) = 1. Consequently, the chi-square test statistic will have 2-1=1 degree of
freedom. Another way to see this is the following.

McDonald et al. (1996) examined variation at the CVJ5 locus in the American oyster, Crassostrea virginica. There
were two alleles, L and S, and the genotype frequencies in Panacea, Florida were 14 LL, 21 LS, and 25 SS. So,

p̂11 =
14

60
, p̂12 =

21

60
, p̂22 =

25

60
.
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Figure 21.3: Plot of the chi-square density function with 3 degrees of freedom. The black vertical bar indicates the value of the test statistic in
Example 21.3. The area 0.552 under the curve to the right of the vertical line is the p-value for this test. This is much to high to reject the null
hypothesis. The red vertical lines show the critical values for a test with significance α = 0.05 (to the left) and α = 0.01 (to the right). Thus, the
area under the curve to the right of these vertical lines is 0.05 and 0.01, respectively. These values can be found using qchisq(1-α,3). We can
also see that the test statistic value of 30.8874 in Example 21.3 has a very low p-value.

So, the estimate of p1 and p2 are

p̂1 = p̂11 +
1

2
p̂12 =

49

120
, p̂2 = p̂22 +

1

2
p̂12 =

71

120
.

So, the expected number of observations is

E11 = 60p̂2
1 = 10.00417, E12 = 60× 2p̂1p̂2 = 28.99167, E22 = 60p̂2

2 = 21.00417.

The chi-square statistic

χ2 =
(14− 10)2

10
+

(21− 29)2

29
+

(25− 21)2

21
= 1.600 + 2.207 + 0.762 = 4.569

The p-value

> 1-pchisq(4.569,1)
[1] 0.03255556

Thus, we have moderate evidence against the null hypothesis of a Hardy-Weinberg equilibrium. Many forces may
be the cause of this - non-random mating, selection, or migration to name a few possibilities.

Exercise 21.6. Perform the chi-squared test using the G2 statistic for the example above.

21.2 Contingency tables
Contingency tables, also known as two-way tables or cross tabulations are a convenient way to display the frequency
distribution from the observations of two categorical variables. For an r×c contingency table, we consider two factors
A and B for an experiment. This gives r categories

A1, . . . Ar
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for factor A and c categories
B1, . . . Bc

for factor B.
Here, we write Oij to denote the number of occurrences for which an individual falls into both category Ai and

category Bj . The results is then organized into a two-way table.

B1 B2 · · · Bc total
A1 O11 O12 · · · O1c O1·
A2 O21 O22 · · · O2c O2·
...

...
...

. . .
...

...
Ar Or1 Or2 · · · Orc Or·

total O·1 O·2 · · · O·c n

Example 21.7. Returning to the study of the smoking habits of 5375 high school children in Tucson in 1967, here is a
two-way table summarizing some of the results.

student student
smokes does not smoke total

2 parents smoke 400 1380 1780
1 parent smokes 416 1823 2239
0 parents smoke 188 1168 1356

total 1004 4371 5375

For a contingency table, the null hypothesis we shall consider is that the factors A and B are independent. For
the experimental design, we assume that the number of observations n is fixed but the marginal distributions (row and
column totals) are not.

To set the parameters for this model, we define

pij = P{an individual is simultaneously a member of category Ai and category Bj}.

Then, we have the parameter space

Θ = {p = (pij , 1 ≤ i ≤ r, 1 ≤ j ≤ c); pij ≥ 0 for all i, j = 1,

r∑

i=1

c∑

j=1

pij = 1}.

Write the marginal distribution

pi· =

c∑

j=1

pij = P{an individual is a member of category Ai}

and

p·j =

r∑

i=1

pij = P{an individual is a member of category Bj}.

The null hypothesis of independence of the categories A and B can be written

H0 : pij = pi·p·j , for all i, j versus H1 : pij 6= pi·p·j , for some i, j.

Write
n = {nij , 1 ≤ i ≤ r, 1 ≤ j ≤ c}

where
nij = #{observations simultaneously in category Ai and category Bj}.
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As with 21.2, the likelihood function

L(p|n) =

r∏

i=1

c∏

j=1

p
nij
ij . (21.12)

Follow the procedure as before for the goodness of fit test to end with a G2 and its corresponding χ2 test statistic.
The G2 statistic follows from the likelihood ratio test criterion. The χ2 statistics is a second order Taylor series
approximation to G2.

−2

r∑

i=1

c∑

j=1

Oij ln
Eij
Oij
≈

r∑

i=1

c∑

j=1

(Oij − Eij)2

Eij
. (21.13)

The null hypothesis pij = pi·p·j can be written in terms of observed and expected observations as

Eij
n

=
Oi·
n

O·j
n
.

or

Eij =
Oi·O·j
n

.

The test statistic, under the null hypothesis, has a χ2 distribution. To determine the number of degrees of freedom,
consider the following. Start with a contingency table with no entries but with the prescribed marginal values.

B1 B2 · · · Bc total
A1 O1·
A2 O2·
...

...
Ar Or·

total O·1 O·2 · · · O·c n

The number of degrees of freedom is the number of values that we can place in the contingency table before all the
remaining values are determined. To begin, fill in the first row with values E11, E12, . . . , E1,c−1. The final value E1,c

in this determined by the other values in the row and the constraint that the row sum must be O1·. Continue filling the
rows, noting that the value in column c is determined by the constraint on the row sum. Finally, when the time comes
to fill in the bottom row r, notice that all the values are determined by the constraint on the row sums O·j . Thus, we
can fill c−1 values in each of the r−1 rows before the remaining values are determined. Thus, the number of degrees
of freedom is (r − 1)× (c− 1).

Exercise 21.8. Verify that G2 statistic in (21.13) is the likelihood ratio test statistic.

Exercise 21.9. Give dim(Θ) and dim(Θ0), the dimensions, respectively, of the parameter space and the null hypoth-
esis space. Show that the difference is (r − 1)× (c− 1),

Example 21.10. Returning to the data set on smoking habits in Tucson, we find that the expected table is

student student
smokes does not smoke total

2 parents smoke 332.49 1447.51 1780
1 parent smokes 418.22 1820.78 2239
0 parents smoke 253.29 1102.71 1356

total 1004 4371 5375

For example,

E11 =
O1·O·1
n

=
1780 · 1004

5375
= 332.49.
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To compute the chi-square statistic

(400−332.49)2

332.49 + (1380−1447.51)2

1447.51

+ (416−418.22)2

418.22 + (1823−1820.78)2

1820.78

+ (188−253.29)2

253.29 + (1168−1102.71)2

1102.71

= 13.71 + 3.15

+ 0.012 + 0.003

+ 16.83 + 3.866

= 37.57

The number of degrees of freedom is (r − 1)× (c− 1) = (3− 1)× (2− 1) = 2. This can be seen by noting that
one the first two entries in the ”student smokes” column is filled, the rest are determined. Thus, the p-value

> 1-pchisq(37.57,2)
[1] 6.946694e-09

is very small and leads us to reject the null hypothesis. Thus, we conclude that children smoking habits are not
independent of their parents smoking habits. An examination of the individual cells shows that the children of parents
who do not smoke are less likely to smoke and children who have two parents that smoke are more likely to smoke.
Under the null hypothesis, each cell has a mean approximately 1 and so values much greater than 1 show contribution
that leads to the rejection of H0.

R does the computation for us using the chisq.test command

> smoking<-matrix(c(400,416,188,1380,1823,1168),nrow=3)
> smoking

[,1] [,2]
[1,] 400 1380
[2,] 416 1823
[3,] 188 1168
> chisq.test(smoking)

Pearson’s Chi-squared test

data: smoking
X-squared = 37.5663, df = 2, p-value = 6.959e-09

We can look at the residuals (Oij − Eij)/
√
Eij for the entries in the χ2 test as follows.

> smokingtest<-chisq.test(smoking)
> residuals(smokingtest)

[,1] [,2]
[1,] 3.7025160 -1.77448934
[2,] -0.1087684 0.05212898
[3,] -4.1022973 1.96609088

Notice that if we square these values, we obtain the entries found in computing the test statistic.
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> residuals(smokingtest)ˆ2
[,1] [,2]

[1,] 13.70862455 3.14881241
[2,] 0.01183057 0.00271743
[3,] 16.82884348 3.86551335

Exercise 21.11. Make three horizontally placed chigrams that summarize the residuals for this χ2 test in the example
above.

Exercise 21.12 (two-by-two tables). Here is the contingency table can be thought of as two sets of Bernoulli trials as
shown.

group 1 group 2 total
successes x1 x2 x1 + x2

failures n1 − x1 n2 − x2 (n1 + n2)− (x1 + x2)
total n1 n2 n1 + n2

Show that the chi-square test is equivalent to the two-sided two sample proportion test.

21.3 Applicability and Alternatives to Chi-squared Tests
The chi-square test uses the central limit theorem and so is based on the ability to use a normal approximation. One
criterion, the Cochran conditions requires no cell has count zero, and more than 80% of the cells have counts at least
5. If this does not hold, then Fisher’s exact test uses the hypergeometric distribution (or its generalization) directly
rather than normal approximation.

For example, for the 2× 2 table,

B1 B2 total
A1 O11 O12 O1·
A2 O21 O22 O2·

total O·1 O·2 n

The idea behind Fisher’s exact test is to begin with an empty table:

B1 B2 total
A1 O1·
A2 O2·

total O·1 O·2 n

and a null hypothesis that uses equally likely outcomes to fill in the table. We will use as an analogy the model of
mark and recapture. Normally the goal is to find n, the total population. In this case, we assume that this population
size is known and will consider the case that the individuals in the two captures are independent. This is assumed in
the mark and recapture protocol. Here we test this independence.

In this regard,

• A1 - an individual in the first capture and thus tagged.

• A2 - an individual not in the first capture and thus not tagged.

• B1 - an individual in the second capture.

• B2 - an individual not in the second capture

Then, from the point of view of the A classification:
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• We have O1· from a population n with the A1 classification (tagged individuals). This can be accomplished in
(
n

O1·

)
=

n!

O1·!O2·!

ways. The remaining O2· = n − O1· have the A2 classification (untagged individuals). Next, we fill in the
values for the B classification

• From the O·1 belonging to category B1 (individuals in the second capture), O11 also belong to A1 (have a tag).
This outcome can be accomplished in (

O·1
O11

)
=

O·1!

O11!O21!

ways.

• From the O·2 belonging to category B2 (individuals not in the second capture), O12 also belong to A1 (have a
tag). This outcome can be accomplished in

(
O·2
O21

)
=

O·2!

O12!O22!

ways.

Under the null hypothesis that every individual can be placed in any group, provided we have the given marginal
information. In this case, the probability of the table above has the formula from the hypergeometric distribution

(
O1·
O11

)(
O2··
O21

)
(
n
O·1

) =
O·1!/(O11!O21!) ·O·2!/(O12!O22!)

n!/(O1·!O2·!)
=

O·1!O·2!O1·!O2·!

O11!O12!O21!O22!n!
. (21.14)

Notice that the formula is symmetric in the column and row variables. Thus, if we had derived the hypergeometric
formula from the point of view of the B classification we would have obtained exactly the same formula (21.14).

To complete the exact test, we rely on statistical software to do the following:

• compute the hypergeometric probabilities over all possible choices for entries in the cells that result in the given
marginal values, and

• rank these probabilities from most likely to least likely.

• Find the ranking of the actual data.

• For a one-sided test of too rare, the p-value is the sum of probabilities of the ranking lower than that of the data.

A similar procedure applies to provide the Fisher exact test for r × c tables.

Example 21.13. As a test of the assumptions for mark and recapture. We examine a small population of 120 fish. The
assumption are that each group of fish are equally likely to be capture in the first and second capture and that the two
captures are independent. This could be violated, for example, if the tagged fish are not uniformly dispersed in the
pond.

Twenty-five are tagged and returned to the pond. For the second capture of 30, seven are tagged. With this
information, given in red in the table below, we can complete the remaining entries.

in 2nd capture not in 2nd capture total
in 1st capture 7 18 25

not in 1st capture 23 72 95
total 30 90 120

Fisher’s exact test show a much too high p-value to reject the null hypothesis.
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> fish<-matrix(c(7,23,18,72),ncol=2)
> fisher.test(fish)

Fisher’s Exact Test for Count Data

data: fish
p-value = 0.7958
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.3798574 3.5489546

sample estimates:
odds ratio

1.215303

Exercise 21.14. Perform the χ2 test on the data set above and report the findings.

Example 21.15. We now return to a table on hemoglobin genotypes on two Indonesian islands. Recall that heterozy-
gotes are protected against malaria.

genotype AA AE EE
Flores 128 6 0
Sumba 119 78 4

We noted that heterozygotes are rare on Flores and that it appears that malaria is less prevalent there since the
heterozygote does not provide an adaptive advantage. Here are both the chi-square test and the Fisher exact test.

> genotype<-matrix(c(128,119,6,78,0,4),nrow=2)
> genotype

[,1] [,2] [,3]
[1,] 128 6 0
[2,] 119 78 4
> chisq.test(genotype)

Pearson’s Chi-squared test

data: genotype
X-squared = 54.8356, df = 2, p-value = 1.238e-12

Warning message:
In chisq.test(genotype) : Chi-squared approximation may be incorrect

and

> fisher.test(genotype)

Fisher’s Exact Test for Count Data

data: genotype
p-value = 3.907e-15
alternative hypothesis: two.sided

Note that R cautions against the use of the chi-square test with these data.
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21.4 Answer to Selected Exercise
21.1. For the first identity, using δi = (Oi − Ei)/Ei.

k∑

i=1

Eiδi =

k∑

i=1

Ei
Oi − Ei
Ei

=

k∑

i=1

(Oi − Ei) = n− n = 0

and for the second

Ei(1 + δi) = Ei

(
Ei
Ei

+
Oi − Ei
Ei

)
= Ei

Oi
Ei

= Oi.

21.2. We apply the quadratic Taylor polynomial approximation for the natural logarithm,

ln(1 + δi) ≈ δi −
1

2
δ2
i ,

and use the identities in the previous exercise. Keeping terms up to the square of δi, we find that

−2 ln Λn(O) = 2

k∑

i=1

Oi ln
Oi
Ei

= 2

k∑

i=1

Ei(1 + δi) ln(1 + δi)

≈ 2

k∑

i=1

Ei(1 + δi)(δi −
1

2
δ2
i ) ≈ 2

k∑

i=1

Ei(δi +
1

2
δ2
i )

= 2

k∑

i=1

Eiδi +

k∑

i=1

Eiδ
2
i

= 0 +

k∑

i=1

(Ei −Oi)2

Ei
.

21.6. Here is the R output.

> O<-c(14,21,25)
> phat<-c(O[1]+O[2]/2,O[3]+O[2]/2)/sum(O)
> phat
[1] 0.4083333 0.5916667
> E<-sum(O)*c(phat[1]ˆ2,2*phat[1]*phat[2],phat[2]ˆ2)
> E
[1] 10.00417 28.99167 21.00417
> sum(E)
[1] 60
> G2stat<-2*sum(O*log(O/E))
> G2stat
[1] 4.572896
> 1-pchisq(G2stat,1)
[1] 0.03248160

21.8. First we maximize the likelihood L(p|n) in (21.12). As with (21.5), we find that the maximum likelihood
estimate

p̂ij =
nij
n
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is simply the fraction of observations that are simultaneously in categories Ai and Bj . Here n is the total number of
observations. Thus,

logL(p̂|n) =

r∑

i=1

c∑

j=1

nij log
nij
n
.

To maximize under the null hypothesis note that p0,ij = pi· · p·j and therefore

L(p0|n) =

r∏

i=1

c∏

j=1

(pi·p·j)
nij =

r∏

i=1

c∏

j=1

p
nij
i· p

nij
·j =

r∏

i=1

pni·i· ·
c∏

j=1

p
n·j
·j .

We now have two maximization problems, for pi· and p·j . Again, we return to the strategy to determine the maximum
likelihood estimate (21.5) to see that

p̂i· =
ni·
n

and p̂·j =
n·j
n
.

Thus, the maximum likelihood estimate under the null hypothesis

p̂0,ij = p̂i· · p̂·j =
ni·
n
· n·j
n

and

logL(p̂0|n) =

r∑

i=1

c∑

j=1

nij log
(ni·
n
· n·j
n

)
.

Next we subtract to find the logarithm of the likelihood ratio.

log Λ(n) = logL(p̂0|n)− logL(p̂|n) =

r∑

i=1

c∑

j=1

nij

(
log
(ni·
n
· n·j
n

)
− log

nij
n

)
.

=

r∑

i=1

c∑

j=1

nij

(
log

ni·n·j
n
− log nij

)
=

r∑

i=1

c∑

j=1

Oij log
Eij
Oij

Multiply by −2 to obtain the desired expression for G2 as the likelihood ratio test statistic.

21.9. For the parameter space Θ, we have r × c probabilities pij with the single constraint that their sum is 1. Thus,
dim(Θ) = rc − 1. For the null hypothesis space Θ0, we have r row probabilities pi· with the constraint that the sum
is 1 and c column probabilities p·j with the constraint that the sum is 1. Thus, dim(Θ0) = (r − 1) + (c− 1). Finally,

dim(Θ)− dim(Θ0) = rc− 1− (r − 1)− (c− 1) = rc− r − c+ 1 = (r − 1)(c− 1).

21.11. Here is the R output

> resid<-residuals(smokingtest)
> colnames(resid)<-c("smokes","does not smoke")
> par(mfrow=c(1,3))
> barplot(resid[1,],main="2 parents",ylim=c(-4.5,4.5))
> barplot(resid[2,],main="1 parent",ylim=c(-4.5,4.5))
> barplot(resid[3,],main="0 parents",ylim=c(-4.5,4.5))

21.12. The table of expected observations

group 1 group 2 total
successes n1(x1+x2)

n1+n2

n2(x1+x2)
n1+n2

x1 + x2

failures n1((n1+n2)−(x1+x2))
n1+n2

n2((n1+n2)−(x1+x2))
n1+n2

(n1 + n2)− (x1 + x2)

total n1 n2 n1 + n2
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Figure 21.4: Chigram for the data on teen smoking in Tucson, 1967. R commands found in Exercise 21.9.

Now, write p̂i = xi/ni for the sample proportions from each group, and

p̂0 =
x1 + x2

n1 + n2

for the pooled sample proportion. Then we have the table of observed and expected observations

observed group 1 group 2 total
successes n1p̂1 n2p̂2 (n1 + n2)p̂0

failures n1(1− p̂1) n2(1− p̂2) (n1 + n2)(1− p̂0)
total n1 n2 n1 + n2

expected group 1 group 2 total
successes n1p̂0 n2p̂0 (n1 + n2)p̂0

failures n1(1− p̂0) n2(1− p̂0) (n1 + n2)(1− p̂0)
total n1 n2 n1 + n2

The chi-squared test statistic

(n1(p̂1−p̂0))2

n1p̂0
+ (n2(p̂2−p̂0))2

n2p̂0

+ (n1((1−p̂1)−(1−p̂0)))2

n1(1−p̂0) + (n2((1−p̂2)+(1−p̂0)))2

n2(1−p̂0)

= n1
(p̂1−p̂0)2

p̂0
+ n2

(p̂2−p̂0)2

p̂0

+ n1
(p̂1−p̂0)2

(1−p̂0) + n2
(p̂2−p̂0)2

(1−p̂0)

= n1(p̂1 − p̂0)2 1
p̂0(1−p0) + n2(p̂2 − p̂0)2 1

p̂0(1−p0)

= n1(p̂1−p̂0)2+n2(p̂2−p̂0)2

p̂0(1−p0) = − ln Λ(x1,x2)

from the likelihood ratio computation for the two-sided two sample proportion test.

21.14. The R commands follow:
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> chisq.test(fish)

Pearson’s Chi-squared test with Yates’ continuity correction

data: fish
X-squared = 0.0168, df = 1, p-value = 0.8967

The p-value is notably higher for the χ2 test.
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Topic 22

Analysis of Variance

The above property of the variance, by which each independent cause makes its own contribution to the
total, enables us to analyze the total, and to assign, with more or less of accuracy, the several portions
to their appropriate causes, or groups of causes. In Table II is shown the analysis of the total variance
for each plot, divided as it may be ascribed . . . . - Ronald Fisher. 1921, Studies in Crop Variation. I. An
examination of the yield of dressed grain from Broadbalk, Journal of Agricultural Science

22.1 Overview
Two-sample t procedures are designed to compare the means of two populations. Our next step is to compare the
means of several populations. We shall explain the methodology through an example. Consider the data set gathered
from the forests in Borneo.

Example 22.1 (Rain forest logging). The data on 30 forest plots in Borneo are the number of trees per plot.

never logged logged 1 year ago logged 8 years ago
ni 12 12 9
ȳi 23.750 14.083 15.778
si 5.065 4.981 5.761

We compute these statistics from the data y11, . . . y1n1 , y21, . . . y2n2 and y31, . . . y2n2

ȳj =
1

nj

nj∑

i=1

yij and s2
j =

1

nj − 1

nj∑

i=1

(yij − ȳi)2

One way analysis of variance (ANOVA) is a statistical procedure that allows us to test for the differences in
means for two or more independent groups. In the situation above, we have set our design so that the data in each of
the three groups is a random sample from within the groups. The basic question is: Are these means the same (the null
hypothesis) or not (the alternative hypothesis)?

As the case with the t procedures, the appropriateness of one way analysis of variance is based on the applicability
of the central limit theorem. As with t procedures, ANOVA has an alternative, the Kruskal-Wallis test, based on the
ranks of the data for circumstances in which the central limit theorem does not apply.

The basic idea of the test is to examine the ratio of s2
between, the variance between the groups 1, 2, and 3. and

s2
residual, a statistic that measures the variances within the groups. If the resulting ratio test statistic is sufficiently

large, then we say, based on the data, that the means of these groups are distinct and we are able to reject the null
hypothesis. Even though the boxplots use different measures of center (median vs. mean) and spread (quartiles vs.
standard deviation), this idea can be expressed by examining in Figure 22.1 the fluctuation in the centers of boxes
compared to the width of the boxes.
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Figure 22.1: Side-by-side boxplots of the number of trees per plot.
The groups will be considered different if the differences between the
groups (indicated by the variation in the center lines of the boxes) is
large compared to the width of the boxes in the boxplot.

As we have seen before, this decision to reject H0 will
be the consequence a sufficiently high value of a test statis-
tic - in this case the F statistic. The distribution of this
test statistic will depend on the number of groups (3 in the
example above) and the number of total observations (33
in the example above). Consequently, variances between
groups that are not statistically significant for small sample
sizes can become significant as the sample sizes and, with
it, the power increase.

22.2 One Way Analysis of Variance

For one way analysis of variance, we expand to more than
the two groups seen for t procedures and ask whether or not
the means of all the groups are the same. The hypothesis
in this case is

H0 : µj = µk for all j, k and H1 : µj 6= µk for some j, k.

The data {yij , 1 ≤ i ≤ nj , 1 ≤ j ≤ q} represents that we have ni observation for the i-th group and that we have
q groups. The total number of observations is denoted by n = n1 + · · ·+ nq . The model is

yij = µj + εij .

where εij are independent N(0, σ) random variables with σ2 unknown. This allows us to define the likelihood and
to use that to determine the analysis of variance F test as a likelihood ratio test. Notice that the model for analysis
requires a common value σ for all of the observations.

In order to develop the F statistic at the test statistic, we will need to introduce two types of sample means:

• The within group means is simply the sample mean of the observations inside each of the groups,

yj =
1

nj

nj∑

i=1

yij , j = 1. . . . , q.

These are given in the table in Example 22.1 for the Borneo rains forest. The within group mean yj is the
maximum likelihood estimate of µj under H0.

• The mean of the data taken as a whole, known as the grand mean,

y =
1

n

q∑

j=1

nj∑

i=1

yij =
1

n

q∑

j=1

nj ȳj .

This is the weighted average of the ȳi with weights ni, the sample size in each group. The Borneo rain forest
example has an overall mean

y =
1

n

3∑

j=1

nj ȳj =
1

12 + 12 + 9
(12 · 23.750 + 12 · 14.083 + 9 · 15.778) = 18.06055.

The grand mean y is the maximum likelihood estimate of the common values for the µj under H1.
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source of degrees of sums of mean
variation freedom squares square
between groups q − 1 SSbetween s2

between = SSbetween/(q − 1)

residuals n− q SSresidual s2
residual = SSresidual/(n− q)

total n− 1 SStotal

Table I: Table for one way analysis of variance

Analysis of variance uses the total sum of squares

SStotal =

q∑

j=1

nj∑

i=1

(yij − y)2, (22.1)

the total square variation of individual observations from their grand mean. SStotal appears because SStotal/n is the
the maximum likelihood estimate for σ2 under H1.

However, the test statistic is determined by decomposing SStotal. We start with a bit of algebra to rewrite the
interior sum in (22.1) as

nj∑

i=1

(yij − y)2 =

nj∑

i=1

(yij − yj)2 + nj(yj − y)2 = (nj − 1)s2
j + nj(yj − y)2. (22.2)

Here, s2
j is the unbiased estimator of the variance based on the observations in the j-th group.

Exercise 22.2. Show the first equality in (22.2). (Hint: Begin with the difference in the two sums.)

Together (22.1) and (22.2) yields the decomposition of the variation

SStotal = SSresidual + SSbetween

with

SSresidual =

q∑

j=1

nj∑

i=1

(yij − yj)2 =

q∑

j=1

(nj − 1)s2
j and SSbetween =

q∑

j=1

nj(yj − y)2.

SSresidual/n is the the maximum likelihood estimate for σ2 under H0.
For the rain forest example, we find that

SSbetween =

3∑

j=1

nj(yj − y)2 = 12 · (23.750− y)2 + 12 · (14.083− y)2 + 9 · (15.778− y)2) = 625.1793

and

SSresidual =

3∑

j=1

(nj − 1)s2
j = (12− 1) · 5.0652 + (12− 1) · 4.9812 + (9− 1) · 5.7612 = 820.6234

From this, we obtain the general form for one-way analysis of variance as shown in Table I.

• The q − 1 degrees of freedom between groups is derived from the q groups minus one degree of freedom used
to compute y.
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• The n− q degrees of freedom within the groups is derived from the nj − 1 degree of freedom used to compute
the variances s2

j . Add these q values for the degrees of freedom to obtain n− q.

The test statistic

F =
s2

between

s2
residual

=
SSbetween/(q − 1)

SSresidual/(n− q)
.

is, under the null hypothesis, a constant multiple of the ratio of two independent χ2 random variables with parameter
q−1 for the numerator and n−q for the denominator. This ratio is called an F random variable with q−1 numerator
degrees of freedom and n− q denominator degrees of freedom.

Using Table II, we find the value of the test statistic for the rain forest data is

F =
s2

between

s2
residual

=
312.6

27.4
= 11.43.

and the p-value (calculated below) is 0.0002. The critical value for an α = 0.01 level test is 5.390. So, we do reject
the null hypothesis that mean number of trees does not depend on the history of logging.

> 1-pf(11.43,2,30)
[1] 0.0002041322
> qf(0.99,2,30)
[1] 5.390346
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Figure 22.2: Upper tail critical values. The density for an F random variable
with numerator degrees of freedom, 2, and denominator degrees of freedom, 30.
The indicated values 3.316, 4.470, and 5.390 are critical values for significance
levels α = 0.05, 0.02, and 0.01, respectively.

Confidence intervals are determined using the
data from all of the groups as an unbiased estimate
for the variance, σ2. Using all of the data allows
us to increase the number of degrees of freedom in
the t distribution and thus reduce the upper critical
value for the t statistics and with it the margin of
error.

The variance s2
residuals is given by the expres-

sion SSresiduals/(n − q), shown in the table in
the “mean square” column and the “residuals” row.
The standard deviation sresidual is the square root
of this number. For example, the γ-level confi-
dence interval for µj is

ȳj ± t(1−γ)/2,n−q
sresidual√

nj
.

The confidence for the difference in µj−µk is sim-
ilar to that for a pooled two-sample t confidence
interval and is given by

ȳj − ȳk ± t(1−γ)/2,n−qsresidual

√
1

nj
+

1

nk
.

source of degrees of sums of mean
variation freedom squares square
between groups 2 625.2 312.6
residuals 30 820.6 27.4
total 32 1445.8

Table II: Analysis of variance information for the Borneo rain forest data
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Figure 22.3: Side-by-side boxplot of queen development times. The time is measured in days. the plots show cool (1) medium (2) and warm (3)
hive temperatures.

In this case, the 95% confidence interval for the mean number of trees on a lot “logged 1 year ago” has n − q =
33− 3, t0.025,30 = 2.042, sresidual =

√
27.4 = 5.234 and the confidence interval is

14.083± 2.042

√
27.4√
12

= 14.083± 4.714 = (9.369, 18.979).

Exercise 22.3. Give the 95% confidence intervals for the difference in trees between plots never logged and plots
logged 8 years ago.

Example 22.4. The development time for a European queen in a honey bee hive is suspected to depend on the tem-
perature of the hive. To examine this, queens are reared in a low temperature hive (31.1◦ C), a medium temperature
hive (32.8◦ C) and a high temperature hive (34.4◦ C). The hypothesis is that higher temperatures increase metabolism
rate and thus reduce the time needed from the time the egg is laid until an adult queen honey bee emerges from the
cell. The hypothesis is

H0 : µlow = µmed = µhigh versus H1 : µlow, µmed, µhigh differ

where µlow, µmed, and µhigh are, respectively, the mean development time in days for queen eggs reared in a low, a
medium, and a high temperature hive. Here are the data and a boxplot:

> ehblow<-c(16.2,14.6,15.8,15.8,15.8,15.8,16.2,16.7,15.8,16.7,15.3,14.6,
15.3,15.8)

> ehbmed<-c(14.5,14.7,15.9,15.5,14.7,14.7,14.7,15.5,14.7,15.2,15.2,15.9,
14.7,14.7)

> ehbhigh<-c(13.9,15.1,14.8,15.1,14.5,14.5,14.5,14.5,13.9,14.5,14.8,14.8,
13.9,14.8,14.5,14.5,14.8,14.5,14.8)

> boxplot(ehblow,ehbmed,ehbhigh)

The commands in R to perform analysis and the output are shown below. The first command puts all of the data
in a single vector, ehb. Next, we label the groups with the variable or factor name temp. Expressed in this way, this
variable is considered by R as a numerical vector. We then need to inform R to convert these numbers into factors
and list the factors in the vector ftemp. Without this, the command anova(lm(ehb∼temp)) would attempt to do
linear regression with temp as the explanatory variable.
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> ehb<-c(ehblow,ehbmed,ehbhigh)
> temp<-c(rep(1,length(ehblow)),rep(2,length(ehbmed)),rep(3,length(ehbhigh)))
> ftemp<-factor(temp,c(1:3))
> anova(lm(ehb˜ftemp))
Analysis of Variance Table

Response: ehb
Df Sum Sq Mean Sq F value Pr(>F)

ftemp 2 11.222 5.6111 23.307 1.252e-07 ***
Residuals 44 10.593 0.2407
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The anova output shows strong evidence against the null hypothesis. The p-value is 1.252 × 10−7. The values in
the table can be computed directly from the formulas above.

For the sums of square between groups, SSbetween,

> length(ehblow)*(mean(ehblow)-mean(ehb))ˆ2
+ length(ehbmed)*(mean(ehbmed)-mean(ehb))ˆ2
+ length(ehbhigh)*(mean(ehbhigh)-mean(ehb))ˆ2

[1] 11.22211

and within groups, SSresidual,

> sum((ehblow-mean(ehblow))ˆ2)+sum((ehbmed-mean(ehbmed))ˆ2)
+ sum((ehbhigh-mean(ehbhigh))ˆ2)

[1] 10.59278

For confidence intervals we use s2
resid = 0.2407, sresid = 0.4906 and the t-distribution with 44 degrees of

freedom. For the medium temperature hive, the 95% confidence interval for µmed can be computed

> mean(ehblow)
[1] 15.74286
> qt(0.975,44)
[1] 2.015368
> length(ehblow)
[1] 14

Thus, the intverval is

ȳmed ± t0.025,44
sresid√
nmed

= 15.742± 2.0154
0.4906√

14
= (15.478, 16.006).

22.3 Contrasts
After completing a one way analysis of variance, resulting in rejecting the null hypotheses, a typical follow-up proce-
dure is the use of contrasts. Contrasts use as a null hypothesis that some linear combination of the means equals to
zero.

Example 22.5. If we want to see if the rain forest has seen recovery in logged areas over the past 8 years. This can
be written as

H0 : µ2 = µ3 versus H1 : µ2 6= µ3.

or
H0 : µ2 − µ3 = 0 versus H1 : µ2 − µ3 6= 0
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Under the null hypothesis, the test statistic

t =
ȳ2 − ȳ3

sresidual

√
1
n2

+ 1
n3

,

has a t-distribution with n− q degrees of freedom. Here

t =
14.083− 15.778

5.234
√

1
12 + 1

9

= −0.7344,

with n− q = 33− 3 degrees of freedom, the p-value for this 2-sided test is

> 2*pt(-0.7344094,30)
[1] 0.4684011

is considerably too high to reject the null hypothesis.

Example 22.6. To see if the mean queen development medium hive temperature is midway between the time for the
high and low temperature hives, we have the contrast,

H0 :
1

2
(µlow + µhigh) = µmed versus H1 :

1

2
(µlow + µhigh) 6= µmed

or

H0 :
1

2
µlow − µmed +

1

2
µhigh = 0 versus H1 :

1

2
µlow − µmed +

1

2
µhigh 6= 0

Notice that, under the null hypothesis

E

[
1

2
Ȳlow − Ȳmed +

1

2
Ȳhigh

]
=

1

2
µlow − µmed +

1

2
µhigh = 0

and

Var
(

1

2
Ȳlow − Ȳmed +

1

2
Ȳhigh

)
=

1

4

σ2

nlow
+

σ2

nmed
+

1

4

σ2

nhigh
= σ2

(
1

4nlow
+

1

nmed
+

1

4nhigh

)
.

This leads to the test statistic

t =
1
2 ȳlow − ȳmed + 1

2 ȳhigh

sresidual
√

1
4nlow

+ 1
nmed

+ 1
4nhigh

=
1
215.743− 15.043 + 1

214.563

0.4906
√

1
4·14 + 1

14 + 1
4·19

= 0.7005.

The p-value,

> 2*(1-pt(0.7005,44))
[1] 0.487303

again, is considerably too high to reject the null hypothesis.

Exercise 22.7. Under the null hypothesis appropriate for one way analysis of variance, with ni observations in group
i = 1, . . . , q and Ȳi =

∑ni
j=1 Yij/ni,

E[c1Ȳ1 + · · ·+ Yqµq] = c1µ1 + · · ·+ cqµq, Var(c1Ȳ1 + · · ·+ cqYq) =
c21σ

2

n1
+ · · ·+ c2qσ

2

nq
.
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In general, a contrast begins with a linear combination of the means

ψ = c1µ1 + · · ·+ cqµq.

The hypothesis is
H0 : ψ = 0 versus H1 : ψ 6= 0

For sample means, ȳ1, . . . , ȳq , the test statistic is

t =
c1ȳ1 + · · ·+ cq ȳq

sresidual

√
c21
n1

+ · · ·+ c2q
nq

.

Under the null hypothesis the t statistic has a t distribution with n− q degrees of freedom.

22.4 Two Sample Procedures
We now show that the t-sample procedure results from a likelihood ratio test. We keep to two groups in the devel-
opment of the F test. The essential features can be found in this example without the extra notation necessary for an
arbitrary number of groups.

Our hypothesis test is based on two independent samples of normal random variables. The data are

yij = µj + εij .

where εij are independent N(0, σ) random variables with σ unknown. Thus, we have nj independent N(µj , σ)
random variables Y1j . . . , Ynjj with unknown common variance σ2, j = 1 and 2. The assumption of a common
variance is critical to the ability to compute the test statistics.

Consider the two-sided hypothesis

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

Thus, the parameter space is
Θ = {(µ1, µ2, σ

2);µ1, µ2 ∈ R, σ2 > 0}.
For the null hypothesis, the possible parameter values are

Θ0 = {(µ1, µ2, σ
2);µ1 = µ2, σ

2 > 0}

Step 1. Determine the log-likelihood. To find the test statistic derived from a likelihood ratio test, we first write
the likelihood and its logarithm based on observations y = (y11, . . . , yn11, y12, . . . , yn22).

L(µ1.µ2, σ
2|y) =

(
1√

2πσ2

)n1+n2

exp− 1

2σ2

(
n1∑

i=1

(yi1 − µ1)2 +

n2∑

i=1

(yi2 − µ2)2

)
(22.3)

lnL(µ1.µ2, σ
2|y) = − (n1 + n2)

2
(ln 2π + lnσ2)− 1

2σ2

(
n1∑

i=1

(yi1 − µ1)2 +

n2∑

i=1

(yi2 − µ2)2

)
(22.4)

Step 2. Find the maximum likelihood estimates and the maximum value of the likelihood. By taking partial
derivatives with respect to µ1 and µ2 we see that with two independent samples, the maximum likelihood estimate for
the mean µj for each of the samples is the sample mean ȳj .

µ̂1 = ȳ1 =
1

n1

n1∑

i=1

yi1, µ̂2 = ȳ2 =
1

n2

n2∑

i=1

yi2.
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Now differentiate (22.4) with respect to σ2

∂

∂σ2
lnL(µ1, µ2, σ

2|x) = −n1 + n2

2σ2
+

1

2(σ2)2

(
n1∑

i=1

(yi1 − µ1)2 +

n2∑

i=1

(yi2 − µ2)2

)
.

Thus, the maximum likelihood estimate of the variance is the weighted average, weighted according to the sample
size, of the maximum likelihood estimator of the variance for each of the respective samples.

σ̂2 =
1

n1 + n2

(
n1∑

i=1

(yi1 − ȳ1)2 +

n2∑

i=1

(yi2 − ȳ2)2

)
.

Now, substitute these values into the likelihood (22.3) to see that the maximum value for the likelihood is

L(µ̂1, µ̂2, σ̂
2|x) =

1

(2πσ̂2)(n1+n2)/2
exp− 1

2σ̂2

(
n1∑

i=1

(yi1 − ȳ1)2 +

n2∑

i=1

(yi2 − ȳ2)2

)

=
1

(2πσ̂2)(n1+n2)/2
exp−n1 + n2

2

Step 3. Find the parameters that maximize the likelihood under the null hypothesis and then find the
maximum value of the likelihood on Θ0. Next, for the likelihood ratio test, we find the maximum likelihood under
the null hypothesis. In this case the two means have a common value which we shall denote by µ.

L(µ, σ2|y) =

(
1√

2πσ2

)n1+n2

exp− 1

2σ2

(
n1∑

i=1

(yi1 − µ)2 +

n2∑

i=1

(yi2 − µ)2

)
(22.5)

lnL(µ, σ2|x) = − (n1 + n2)

2
(ln 2π + lnσ2)− 1

2σ2

(
n1∑

i=1

(yi1 − µ)2 +

n2∑

i=1

(yi2 − µ)2

)
(22.6)

The µ derivative of (22.6) is

∂

∂µ
lnL(µ, σ2|x) =

1

σ2

(
n1∑

i=1

(yi1 − µ) +

n2∑

i=1

(yi2 − µ)

)
.

Set this to 0 and solve to realize that the maximum likelihood estimator under the null hypothesis is the grand sample
mean y obtained by considering all of the data being derived from one large sample

µ̂0 = y =
1

n1 + n2

(
n1∑

i=1

yi1 +

n2∑

i=1

yi2

)
=
n1ȳ1 + n2ȳ2

n1 + n2
.

Intuitively, if the null hypothesis is true, then all of our observations are independent and have the same distribution
and thus, we should use all of the data to estimate the common mean of this distribution.

The value for σ2 that maximizes (22.5) on Θ0, is also the maximum likelihood estimator for the variance obtained
by considering all of the data being derived from one large sample:

σ̂2
0 =

1

n1 + n2

(
n1∑

i=1

(yi1 − y)2 +

n2∑

i=1

(yi2 − y)2

)
.

We can find that the maximum value on Θ0 for the likelihood is

L(µ̂0, σ̂
2
0 |x) =

1

(2πσ̂2
0)(n1+n2)/2

exp− 1

2σ̂2
0

(
n1∑

i=1

(yi1 − y)2 +

n2∑

i=1

(yi2 − y)2

)

=
1

(2πσ̂2
0)(n1+n2)/2

exp−n1 + n2

2

411



Introduction to the Science of Statistics Analysis of Variance

Step 4. Find the likelihood statistic Λ(y). From steps 2 and 3, we find a likelihood ratio of

Λ(y) =
L(µ̂0, σ̂

2
0 |x)

L(µ̂, σ̂2|x)
=

(
σ̂2

0

σ̂2

)−(n1+n2)/2

=

( ∑n1

i=1(yi1 − y)2 +
∑n2

i=1(yi2 − y)2

∑n1

i=1(yi1 − ȳ1)2 +
∑n2

i=1(yi2 − ȳ2)2

)−(n1+n2)/2

. (22.7)

This is the ratio, SStotal, of the variation of individuals observations from the grand mean and SSresiduals. the
variation of these observations from the mean of its own groups.

Step 5. Simplify the likelihood statistic to determine the test statistic F . Traditionally, the likelihood ratio is
simplified by looking at the differences of these two types of variation, the numerator in (22.7)

SStotal =

n1∑

i=1

(yi1 − y)2 +

n2∑

i=1

(yi2 − y)2

and the denominator in (22.7)

SSresiduals =

n1∑

i=1

(yi1 − ȳ1)2 +

n2∑

i=1

(yi2 − ȳ2)2

Exercise 22.8. Show that SStotal − SSresiduals = n1(ȳ1 − y)2 + n2(ȳ2 − y)2.

In words, SStotal the sums of squares of the differences of an individual observation from the overall mean y, is
the sum of two sources. The first is the sums of squares of the difference of the average of each group mean and the
overall mean,

SSbetween = n1(y − ȳ1)2 + n2(y − ȳ2)2.

The second is the sums of squares of the difference of the individual observations with its own group mean, SSresiduals.
Thus, we can write

SStotal = SSresidual + SSbetween

Now, the likelihood ratio (22.7) reads

Λ(y) =

(
SSresidual + SSbetween

SSresiduals

)
=

(
1 +

SSbetween

SSresiduals

)−(n1+n2)/2

Due to the negative power in the exponent, the critical region Λ(y) ≤ λ0 is equivalent to

SSbetween

SSresiduals
=
n1(y − ȳ1)2 + n2(y − ȳ2)2

(n1 − 1)s2
1 + (n2 − 1)s2

2

≥ c (22.8)

for an appropriate value c. The ratio in (22.8) is, under the null hypothesis, a multiple of an F -distribution. The last
step to divide both the numerator and denominator by the degrees of freedom. Thus, we see, as promised, we reject if
the F -statistics is too large, i.e., the variation between the groups is sufficiently large compared to the variation within
the groups.

Exercise 22.9 (pooled two-sample t-test). For an α level test, show that the test above is equivalent to

|T (y)| > tα/2,n1+n+2.

where
T (y) =

ȳ1 − ȳ2

sp

√
1
n1

+ 1
n2

.

and sp is the standard deviation of the data pooled into one sample.

s2
p =

1

n1 + n2 − 2

(
(n1 − 1)s2

1 + (n2 − 1)s2
2

)
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Exercise 22.10. Generalize the formulae for y, SSbetween and SSresiduals from the case q = 2 to an arbitrary number
of groups.

Thus, we can use the two-sample procedure to compare any two of the three groups. For example, to compared
the never logged forest plots to those logged 8 years ago., we find the pooled variance

s2
p =

1

n1 + n2 − 2
((n1 − 1)s2

1 + (n2 − 1)s2
2) =

1

19
(11 · 5.0652 + 8 · 5.7612) = 28.827

and sp = 5.37. Thus, the t-statistic

t =
23.750− 15.778

5.37
√

1
12 + 1

9

= 7.644.

> 1-pt(7.644,19)
[1] 1.636569e-07

Thus, the p-value at 1.64× 107 is strong evidence against the null hypothesis.

22.5 Kruskal-Wallis Rank-Sum Test
The Kruskal-Wallis test is an alternative to one-way analysis of variance in much the same way that the Wilcoxon
rank-sum test is a alternative to two-sample t procedures. Like the Wilcoxon test, we replace the actual data with their
ranks. This non-parametric alternative obviates the need to use the normal distribution arising from an application of
the central limit theorem. The H test statistic has several analogies with the F statistic. To compute this statistic:

• Replace the data {yij , 1 ≤ i ≤ nj , 1 ≤ j ≤ q} for ni observations for the i-th group from each of the q groups
with {rij , 1 ≤ i ≤ nj , 1 ≤ j ≤ q}, the ranks of the data taking all of the groups together. For ties, average the
ranks.

• The total number of observations n = n1 + · · ·+ nq .

• The average rank within the groups

r̄i =
1

ni

ni∑

j=1

rij , i = 1, . . . , q.

• The grand average of the ranks

r =
1

n
(1 + · · ·+ n) =

1

n
n(n+ 1) =

n+ 1

2
.

(See Exercise 20.6.)

• The Kruskal-Wallis test statistic looks at the sums of squares of ranks between groups and the total sum of
squares of ranks

H =
SSRbetween

SSRtotal/(n− 1)
=

∑g
i=1 ni(r̄i − r)2

∑q
i=1

∑ni
j=1(rij − r)2/(n− 1)

,

• For larger data sets (each ni ≥ 5), the p-value is approximately the probability that a χ2
q−1 random variable

exceeds the value of the H statistic.

• For smaller data sets, more sophisticated procedures are necessary.

• The test can be followed by using a procedure analogous to contrasts based on the Wilcoxon rank-sum test.
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Exercise 22.11. For the case of no ties, show that

SSRtotal =
(n− 1)n(n+ 1)

12

In this case,

H =
12

n(n+ 1)

q∑

i=1

ni

(
r̄i −

n+ 1

2

)2

=
12

n(n+ 1)

q∑

i=1

nir̄
2
i − 3(n+ 1).

The Kruskal-Wallis test also gives a very small p-value to the queen development times for Africanized honey
bees. Begin with the R commands in Example 22.4 to enter the data and create the temperature factors ftemp.

> kruskal.test(ehb˜ftemp)

Kruskal-Wallis rank sum test

data: ehb by ftemp
Kruskal-Wallis chi-squared = 20.4946, df = 2, p-value = 3.545e-05

22.6 Answer to Selected Exercises
22.2. Let’s look at this difference for each of the groups.

ni∑

j=1

(yij − y)2 −
ni∑

j=1

(yij − ȳi)2 =

ni∑

j=1

(
(yij − y)2 − (yij − ȳi)2

)

=

ni∑

j=1

(2yij − y − ȳi)(−y + ȳi) = ni(2ȳi − y − ȳi)(−y + ȳi) = ni(ȳi − y)2

Now the numerator in (22.7) can be written to show the decomposition of the variation into two sources - the within
group variation and the between group variation.

n1∑

i=1

(yi1 − y)2 +

n2∑

i=1

(yi2 − y)2 =

n1∑

i=1

(y1j − ȳ1)2 +

n2∑

i=1

(y2j − ȳ2)2 + n1(y − ȳ1)2 + n2(y − ȳ2)2.

= (n1 − 1)s2
1 + (n2 − 1)s2

2 + n1(y − ȳ1)2 + n2(y − ȳ2)2.

22.3. Here, we are looking for a confidence interval for µ1 − µ3. From the summaries, we need

n1 = 12, ȳ1 = 23.750, n3 = 9, ȳ3 = 17.778.

From the computation for the test, we have sresidual =
√

27.4 = 5.234 and using the qt(0.975,30) command we
find t0.025,30 = 2.042. Thus,

(ȳ1 − ȳ3) ±t(0.975,30)sresidual

√
1

n1
+

1

n3

= (23.750− 17.778) ±2.042 · 5.234

√
1

12
+

1

9

= 5.972 ±2.079 = (3.893, 8.051)
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22.7. This follows from the fact that expectation is a linear functional and the generalized Pythagorean identity for the
variance of a linear combination of independent random variables.

22.8. Look at the solution to Exercise 22.2.

22.9. We will multiply the numerator in (22.8) by (n1 + n2)2 and note that (n1 + n2)y = n1ȳ1 + n2ȳ2. Then,

(n1 + n2)2(n1(y − ȳ1)2 + n2(y − ȳ2)2 = n1((n1 + n2)y − (n1 + n2)ȳ1)2 + n2((n1 + n2)y − (n1 + n2)ȳ2)2

= n1(n1ȳ1 + n2ȳ2 − (n1 + n2)ȳ1)2 + n2(n1ȳ1 + n2ȳ2 − (n1 + n2)ȳ2)2

= n1(n2(ȳ2 − ȳ1))2 + n2(n1(ȳ1 − ȳ2))2

= (n1n
2
2 + n2n

2
1)(ȳ1 − ȳ2)2 = n1n2(n1 + n2)(ȳ1 − ȳ2)2

Consequently

(n1(y − ȳ1)2 + n2(y − ȳ2)2 =
n1n2

n1 + n2
(ȳ1 − ȳ2)2 = (ȳ1 − ȳ2)2/

(
1

n1
+

1

n2

)
.

The denominator
n1∑

j=1

(yi1 − ȳ1)2 +

n2∑

j=1

(yi2 − ȳ2)2 = (n1 + n2 − 2)s2
p.

The ratio
SSbetween

SSresiduals
=

(ȳ1 − ȳ2)2

(n1 + n2 − 2)s2
p

(
1
n1

+ 1
n2

) =
T (y)2

n1 + n2 − 2
.

Thus, the test is a constant multiple of the square of the t-statistic. Take the square root of both sides to create a test
using a threshold value for |T (y)| for the critical region.

22.10. For observations, yi1, . . . yini in group i = 1, . . . , q, let n = n1 + · · ·+nq be the total number of observations,
then the grand mean

y =
1

n
(n1ȳ1 + · · ·+ nq ȳq)

where ȳi is the sample mean of the observations in group i. The sums of squares are

SSbetween =

q∑

i=1

ni(ȳi − y)2 and SSresiduals =

q∑

i=1

(ni − 1)s2
i

where s2
i is the sample variance of the observations in group i.

22.11. In anticipation of its need, let’s begin by showing that

n∑

j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

Notice that the formula holds for the case n = 1 with

12 =
1(1 + 1)(2 · 1 + 1)

6
=

6

6
= 1.
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Now assume that the identity holds for n = k. We then check that it also holds for n = k + 1

12 + 22 + · · ·+ k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k + 1

6
(k(2k + 1) + 6(k + 1)) =

k + 1

6
(2k2 + 7k + 6)

=
(k + 1)(k + 2)(2k + 3)

6

This is the formula for n = k + 1 and so by the mathematical induction, we have the identity for all non-negative
integers.

With no ties, each rank appears once and

SSRtotal =

n∑

j=1

(
j − n+ 1

2

)2

=

n∑

j=1

j2 − 2

n∑

j=1

j
n+ 1

2
+

n∑

j=1

(
n+ 1

2

)2

=
n(n+ 1)(2n+ 1)

6
− 2

n(n+ 1)

2

n+ 1

2
+ n

(
n+ 1

2

)2

=
n(n+ 1)(2n+ 1)

6
− n(n+ 1)2

4

=
n(n+ 1)

12
(2(2n+ 1)− 3(n+ 1)) =

(n− 1)n(n+ 1)

12
.

416



Appendix A: A Sample R Session

The purpose of this appendix is to become accustomed to the R and the way if responds to line commands. R can be
downloaded from

http://cran.r-project.org/

Be sure to download the version of R corresponding to your operating system - linux, MacOS, or windows.
As you progress, you will learn the statistical ideas behind the commands that ask for graphs or computation. Note

that R only prints output when it is requested. On a couple of occasions, you will see a plus (+) sign at the beginning
of the line. This is supplied by R and you will not type this on your R console.

• Learn how to access help. Type

> help.start()

to access on-line manuals, references, and other material.

• Find fundamental constants

> pi
> exp(1)
> round(exp(1),4)

• The <- is used to indicate an assignment. Type

> x<-rnorm(50)
> length(x)
> hist(x)
> mean(x)
> sd(x)
> summary(x)

• To see what the sort command does type

> ?sort

Next, sort the values in x, first in increasing and then decreasing order.

> sort(x)
> sort(x,decreasing=TRUE)

The first command gives 50 independent standard normal random variables and stores them as a vector x. It
then gives the number of entries in x, creates a histogram, computes the mean and standard deviation, and gives
a summary of the data. The last two commands give the values of x sorted from bottom to top and then from
top to bottom
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• To prepare for a scatterplot, enter

> (y<-rnorm(x))

This gives 50 additional independent standard normal random variables and stores them as a vector y. When
the command is placed in parentheses, R prints out the value of the variable.

• To make a scatterplot of these data, type

> plot(x,y)

A graphics window will appear automatically.

• To find the correlation between x and y.

> cor(x,y)

• To preform a t-test, type

> t.test(x,y)
> t.test(x,y,alternative="greater")

Notice the difference in p-value.

• To check to see what is in your workspace, type

> ls()

• To remove a variable x

> rm(x)

Now type ls() again to see that x has been removed.

• To make a variety of graphs of sin(θ)

> theta<-seq(0,2*pi,length=100)
> plot(theta,sin(theta))
> par(new=TRUE)
> plot(theta,sin(theta),type="h")
> plot(theta,sin(theta),type="l")
> plot(theta,sin(theta),type="s")
> theta<-seq(0,2*pi,length=10)
> plot(theta,sin(theta),type="l")
> plot(theta,sin(theta),type="b")

To see what these commands mean, type

> help(plot)

• To make some simple arithmetic and repeating sequences, type
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> 1:25
> seq(1,25)
> seq(25,1,-1)
> seq(1,25,2)
> seq(1,25,length=6)
> seq(0,2,0.1)
> rep(0,25)
> rep(1,25)

• Make a vector of integers from 1 to 25

> n<-1:25

• Randomly shuffle these 25 numbers

> sample(n)

• Choose 10 without replacement.

> sample(n,10)

• Choose 30 with replacement.

> samp<-sample(n,30,replace=TRUE)
> samp

• Turn this into a 3× 10 matrix and view it.

>(A<-matrix(samp,ncol=10))
>(B<-matrix(samp,nrow=3))

Notice that these give the same matrix. The entries are filled by moving down the columns from left to right.

• Check the dimension.

> dim(A)

• View it as a spreadsheet.

> fix(A)

You will need to close the window before entering the next command into R.

• Find the transpose.

> t(A)

• View the first row.

> A[1,]

the second, third and fourth column,
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> A[,2:4]

all but the second, third and fourth column,

> A[,-(2:4)]

and the 1,4 entry

> A[1,4]

• Turn this into a 10× 3 matrix.

> matrix(samp,ncol=3)

• Make a segmented bar plot of these numbers.

> data<-matrix(samp,nrow=3)
> barplot(data)

• Perform a chi-squared test..

> chisq.test(data)

• Make a column of weight vectors equal to the square root of n.

> w<-sqrt(n)

• Simulate some response variables, and display them in a table.

> r<- n + rnorm(n)*w
> data.frame(n,r)

• Create a regression line, display the results, create a scatterplot, and draw the regression line on the plot in red.

> regress.rn<-lm(r˜n)
> summary(regress.rn)
> plot(n,r)
> abline(regress.rn,col="red")

Note that the order of r and n for the regression line is reversed from the order in the plot.

• Plot the residuals and put labels on the axes.

> plot(fitted(regress.rn), resid(regress.rn),xlab="Fitted values",
+ ylab="Residuals",main="Residuals vs Fitted")

• Simulate 100 tosses of a fair coin and view the results

> x<-rbinom(100,1,0.5)
> x

Next, keep a running total of the number of heads, plot the result with steps (type = "s")
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> c<-cumsum(x)
> plot(c,type="s")

• Roll a fair dice 1000 times, look at a summary, and make a table.

> fair<-sample(c(1:6),1000,replace=TRUE)
> summary(fair)
> table(fair)

• Roll a biased dice 1000 times, look at a summary, and make a table.

> biased<-sample(c(1:6),1000,replace=TRUE,prob=c(1/12,1/12,1/12,1/4,1/4,1/4))
> summary(biased)
> table(biased)

• The next data set arise from the famous Michaelson-Morley experiment. To see the data set, type

> morley

There are five experiments (column Expt) and each has 20 runs (column Run) and Speed is the recorded
speed of light minus 290,000 km/sec.

• The data in the first two columns are labels, type

> morley$Expt <- factor(morley$Expt)

so that the experiment number will be a factor

• Now make a labeled boxplot of the speed in column 3

> boxplot(morley[,3]˜morley$Expt,main="Speed of Light Data", xlab="Experiment",
+ ylab="Speed")

• Perform an analysis of variance to see if the speed are measured speeds are significantly different between
experiments. .

> anova.mm<-aov(Speed˜Expt,data=morley)
> summary(anova.mm)

• Draw a cubic.

> x<-seq(-2,2,0.01)
> plot(x,xˆ3-3*x,type="l")

• Draw a bell curve.

> curve(dnorm(x),-3,3)

• Look at the probability mass function for a binomial distribution.

> x<-c(0:100)
> prob<-dbinom(x,100,0.5)
> plot(x,prob,type="h")
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• To plot a parameterized curve, start with a sequence and give the x and y values.

> angle<-seq(-pi,pi,0.01)
> x<-sin(3*angle)
> y<-cos(4*angle)
> plot(x,y,type="l")

The type ="l" (the letter ell, not the number one) command connects the values in the sequence with lines.

• Now we will plot contour lines and a surface. First, we give a sequence of values. This time we specify the
number of terms.

> x<-seq(-pi, pi, len=150)
> y<-x

Then, we define a function for these x and y values and draw a contour map. Then, choose the number of levels.

> f<-outer(x,y,function(x,y) cos(y)/(1+xˆ2))
> contour(x,y,f)
> contour(x,y,f,nlevels=20)

• For a color coded “heat map”,

> image(x,y,f)

• To draw a surface plot,

> persp(x,y,f,col="orange")

and change the viewing angle

> persp(x,y,f,col="orange",theta=-30, phi=45)
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R command
D, 119
abline, 40, 59, 420
abs, 181, 210
anova, 407
aov, 421
array, 7, 70
atan, 295
barplot, 7, 389, 399
beta, 165, 171
binom.test, 344
binom, 157, 170
boxplot, 24, 30, 67, 368, 407
chisq.test, 389, 390
chisq, 167, 171
chol2inv, 62
choose, 89, 90, 94, 128, 152
colnames, 9, 67
colors, 6
cor, 36
cumsum, 128, 179, 181, 188, 306
curve, 116, 164, 421
data.frame, 40, 87, 94, 118, 134, 198
dbinom, 170
det, 62
dgamma, 273
dgeom, 118
dim, 419
dpois, 210
eval, 115
expression, 115
exp, 163, 171
factor, 407
fisher.test, 396
fix, 419
for, 87, 134, 184, 186, 238
function, 183, 188, 422
f, 168, 171
gamma, 164, 171
geom, 158, 170
gnls, 51
h=0, 45

head, 28
help.start, 417
help, 418
hist, 10, 150, 233, 362
hyper, 161, 170, 264, 327
integrate, 183, 188
kruskal.test, 414
legend, 6
length, 22, 135, 150
lines, 126, 131
lm, 40, 41, 46, 49, 55, 58, 266, 407, 420
lnorm, 171
log, 45, 55
matrix, 397, 419
mean, 22, 150, 183, 184, 186
mfrow, 58, 188
nbinom, 158
nmle, 51
norm, 165, 171, 179, 282
numeric, 91, 184
order, 306
outer, 189, 422
par, 126, 135, 150, 188
pbinim, 343
pbinom, 198
pchisq, 350, 389, 391
persp, 422
pexp, 116
pf, 406
pgeom, 118
phyper, 337
pie, 6
pi, 417
plot, 12, 14, 55, 126, 128, 135, 179, 181, 188, 264
pnorm, 198, 210, 310, 325, 343
points, 29
pois, 159
power.prop.test, 348, 356
power.t.test, 364
ppois, 210
predict, 40, 59
prop.test, 333, 346, 348
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qbeta, 297
qbinom, 353
qf, 406
qhyper, 327
qnorm, 209, 309, 325, 344
qqnorm, 150
qqplot, 30
qt, 284, 297, 362, 408
quantile, 28, 29, 209, 295
rbeta, 187
rbinom, 241
rcauchy, 181, 188
replicate, 91, 185, 235
rep, 87, 134, 184, 186, 209, 233
reside, 59, 420
residuals, 394
resid, 40, 46, 56
rm, 418
rnorm, 36, 165
round, 6
rownames, 9, 67
runif, 126, 163, 183, 186, 188, 189, 209, 233
sample, 69, 124, 134, 160, 171, 235, 305, 419
scale, 28
sd, 25, 150, 184, 186
seq, 199
sort, 12, 21, 30, 135
sqrt, 126, 183
summary, 24, 46, 58, 186, 266
sum, 22, 94, 124, 134, 152, 235
t.test, 362, 366, 369
table, 124, 421
t, 62, 168, 171
unif, 163, 171
v=0, 45
var, 25, 184
weighted.mean, 23
wilcox.test, 379

addition principle, 83
allele, 74

dominant, 74
recessive, 74

alternative hypothesis, 303
analysis of variance, 403
Archaeopteryx, 266
Archeopteryx, 13, 36
arcsine distribution, 165
area under the curve, 307, 334, 380
asymptotic normality, 276

maximum likelihood estimator, 270

AUC, 307, 334
axioms of probability, 82

balancing selection, 10
bar graph, 7

segmented, 9
Bayes factor, 102, 317
Bayes formula, 100, 219, 336
Bayesian sequential updating, 222
Bayesian statistics, 218

hypothesis testing, 316
interval estimation, 296

Bernoulli random variable, 157, 170, 252
Bernoulli trials, 141, 199, 206, 216, 221, 263, 311, 374
best region, 304
beta function, 165
beta random variable, 165, 171, 218, 220
bias, 234, 241
bias-variance decomposition, 242
binomial random variable, 142, 157, 170, 195
binomial test, 344
binomial theorem, 89, 142
bird fecundity, 203
birthday problem, 87
blood type, 385, 389
Bonferroni correction, 335
Bonferroni inequality, 85, 335
bootstrap, 294
Borneo forests, 403
boxplot, 24, 404
Bradley effect, 68

categorical data, 4
categorical variable, 3
Cauchy random variable, 181
Cauchy-Schwarz inequality, 34
causality, 65
census, 65
central limit theorem, 194, 205, 245
central moments, 146
chain rule, 98
characteristic function, 147
chi-square random variable, 167
chi-squared random variable, 171, 248
chi-squared test, 348

contingency table, 391
likelihood ratio, 348
two-way table, 391

chiasma, 349
choose function, 88
chromotid, 349
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Cochran conditions, 395
coefficient of determination, 43
coefficient of linear expansion, 200, 202
coefficient of variation, 26
coefficient of volume expansion, 203
combination, 88
complement, 84, 96
complement rule, 84
composite hypothesis, 323

one-sided test, 323, 324, 326
two-sided test, 323

conditional distribution, 66
conditional mass function, 122
conditional probability, 97
confidence interval, 218, 281, 365

analysis of variance, 406
delta method, 292
interpretation, 290
linear regression slope, 288
matched pair t, 286
maximum likelihood estimation, 294
sample proportion, 289
summary, 290
t, 283
two sample proportions, 289
two sample t, 286
two sample z, 286
two sided test, 365
z, 282

confidence level, 281
confounding variable, 65
conjugate pair, 227
conservative procedure, 368
consistency, 249, 276

maximum likelihood estimator, 269
contingency table, 7, 391

chi-squared test, 391
Cochran conditions, 395

continuity correction, 198
proportion test, 343

continuity property, 85
continuous random variable, 115, 119, 142, 146
contrasts, 408
controlled experiment, 67
convex function, 245
correlation, 34

distributional, 149
simulated, 36

covariance, 33
distributional, 148

covariance matrix, 149

covariate, 37
Cramér-Rao bound, 250, 251
credible interval, 296
critical region, 304

best, 304
most powerful, 304

cross tabulation, 66, 391
cross tabulation table, 7
cross tabulation table , 7
cumulative distribution function, 112
Current Population Survey, 71

de Morgan’s law, 86
de Morgan, August, 137
degrees of freedom, 283, 361

contingency table, 394
denominator for F statistic, 405
goodness of fit, 389
numerator for F statistic, 405

delta method, 202, 206, 234, 236, 292, 375
confidence interval, 292
multidimensional, 207

density
posterior, 219
prior, 218

density function, 119, 217
joint, 122, 123
marginal, 123

design matrix, 52
difference rule, 84
differentiation, 119
digamma function, 273
discrete random variable, 114, 137, 146
discrete uniform random variable, 160, 170
discriptor variable, see explanatory variable
distribution

arcsine, 165
conditional, 66
joint, 121
Maxwell-Boltzmann, 168

distribution function, 112
distribution of fitness effects, 236, 273
dominant allele, 74
Doob, Joseph, 111
double blind procedure, 68
double reciprocal plot, 49
Doyle, Arthur Conan, 179
Dravet sydome, 29

effective degrees of freedom, 287, 368
efficiency, 250, 276

425



Introduction to the Science of Statistics Index

maximum likelihood estimator, 270
element, 82, 96
empirical cumulative distribution function, 11

survival function, 12
equally likely outcomes, 82, 97, 161
estimate, 216
estimator, 216

interval, 218
maximum likelihood, 244, 261
method of moments, 231
point, 218
summary of maximum likelihood, 269
unbiased, 200, 242

ethical guidelines, 66
event, 81, 96
expected value, 137, 139

continuous random variable, 143
discrete random variable, 140

experiment, 67
controlled, 67
Heshey-Chase, 75
Michelson-Morley, 73
natural, 70

explanatory variable, 13, 37, 65
exploratory data analysis, 65
exponential family, 254, 275
exponential random variable, 115, 126, 143, 148, 163,

171, 196, 197, 253, 351
extrapolation, 41

F random variable, 168, 171, 406
F test, 405
factor, 3, 68, 391
factorial moment, 146
falling factorial, 87
falling function, 87
false discovery rate, 336
false negative, 103, 304
false positive, 103, 303
false positive fraction, 306
familywise error rate, 335
first quartile, 24, 31
Fisher information, 251

matrix, 273
Fisher’s exact test, 395
Fisher’s method, 335
Fisher, Ronald, 403
fit, 38
fitness, 236
five number summary, 24
floor function, 10, 112

Fourier transform, 147
fundamental principle of counting, 81, 86

G square test statistic, 388
Galton, Sir Francis, 33
gamma function, 164
gamma random variable, 164, 171, 218, 236, 272
Garfield, James A., 65
GenBank, 72
gene ontology, 5
generating function

probability, 147
genetic recombination, 349
geometric random variable, 117, 158, 170
geometric sequence, 117
Global Health Observatory, 71
goodness of fit, 385
google, 111
Gossett, William Sealy, 283
gradient descent, 51
grand mean, 404, 411
Gusset, William Sealy, 361

hanging chi-gram, 389, 395, 399
Hardy-Weinberg principle, 390
hat matrix, 53
Hershy-Chase experiment, 75
heteroscedasticity, 40
heterozygosity, 245
histogram, 10
homoscedasticity, 40
honey bees, 68, 69, 333, 344, 407
hybridization, 307
hypergeometric random variable, 99, 161, 170, 235, 247,

351
hypothesis, 303

alternative, 303
Bayesian approach, 316
composite, 323
null, 303
simple, 303, 334

ideal gas, 168
importance sampling, 186

function, 186
weights, 186

INCAP, 77
inclusion-exclusion rule, 85
independence, 105

random variable, 148
independent random variables, 123
individual, 3
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information, 225
observed, 270

information inequality, 251
input, 37
input variable, see also explanatory variable
Intergovernmental Panel on Climate Change, 17
interquartile range, 24, 31
intersection, 96
interval estimation, 281

Bayesian, 296
interval estimator, 218
invariance property, 261, 275

Jensen’s inequality, 245
joint density, 217
joint density function, 122, 123
joint distribution, 121
joint mass function, 122, 148
joint probability density function, 122

Kölreute, Josef Gottlieb, 74
Karlin-Rubin theorem, 342, 373
Kolmogorov, Andrey, 81
Kruskal-Wallis test, 413
kurtosis, 147

Lagrange multipliers, 386
Laplace transform, 147
law of blending, 74
law of cosines, 34
law of independent assortment, 106
law of large numbers, 179, 231, 250
law of mass action, 47
law of segregation, 106
law of total probability, 99, 120
least squares regression, see linear regression
Leibnitz integral rule, 257
leptokurtic, 147
level, 3, 68
likelihood function, 217
likelihood ratio, 386
likelihood ratio test, 306, 345, 404

chi-squared test, 348
t test, 375
two sided test, 346

Lincoln-Peterson method, 234, 247, 263
linear regression, 37, 216, 264, 265

fit, 38
heteroscedasticity, 40
homoscedasticity, 40
multiple, 51
nonlinear regression, 51

residual, 38
slope confidence interval, 288
weighted least squares, 266

Lineweaver-Burke plot, 49
link function, 45
linkage disequilibrium, 107
log likelihood surface, 270
log-normal random variable, 167
log-odds, 255
logarithm, 16, 45
lurking variable, 65

malaria, 397
margin of error, 199, 281, 285
marginal density, 217
marginal density function, 122, 123
marginal distribution, 9, 392

two-way table, 9
marginal mass function, 122, 123
mark and recapture, 234, 247, 263, 326, 396

Lincoln Peterson method, 327
power function, 327
two-sided test, 327

mass function, 116
joint, 122, 148
marginal, 122, 123

matched pair procedures
t interval, 286
t test, 366

matrix, 51
determinant, 52
inverse, 52
transpose, 52

maximum likelihood estimation
confidence interval, 294

maximum likelihood estimator, 244, 261
asymptotic properties, 269
efficiency, 270
summary, 269

Maxwell-Boltzmann distribution, 168
mean, 137

distributional, 146
grand, 404
posterior, 220
sample, 21, 31, 195, 206
trimmed, 23
truncated, 23
weighted, 22
within group, 404

mean square error, 242
median, 21, 31
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memorylessness, 117, 164
Mendel, Gregor, 74, 106, 289, 390
method of moments, 181, 231, 275
method of steepest descent, 51
Michaelis constant, 48
Michaelis-Menten kinetics, 47
Michaelis-Metens kinetic equation, 48
Michelson-Morley experiment, 73
Millennium Development Goals, 71
mimic, 307
mixture, 121, 169, 336

continuous, 219
model, 307

parametric, 66
probability, 81

moment generating function, 147
moments, 146

method of, 231
monotonicity rule, 85
Monte Carlo integration, 182
Morgan, Thomas Hunt, 75

genetic recombination, 349
mosquitoes, 370
multidimensional

Fisher information, 271
multidimensional delta method, 207
multiple regression, 51
multiplication principle, 98
muon, 234
mutually exclusive, 83

National Foundation for Infantile Paralysis, 76
natural experiment, 70
natural parameter, 254, 275
negative binomial random variable, 158, 170
neutrino, 234
Neyman, Jerzy, 281, 303
Neyman-Pearson lemma, 304, 314
non-parametric tests, 378
nonlinear regression, 51
normal equations, 53
normal probability plot, 150
normal random variable, 145, 165, 171, 195, 218, 225,

252, 263
normal score, see standardized version
null hypothesis, 303

Obama, Barack, 65
observational study, 66
observed information, 270
odds, 86, 292

posterior, 316
prior, 316

oil production, 15, 45
one-sided test, 323, 324

power function, 326
uniformly most powerful, 342

order statistic, 21, 165, 267
outcome, 81, 96
outpit, 37
oyster, 390

p-value, 331, 343
pangenesis, 74
parallel axis theorem, 26
parameter space, 216
parametric model, 66
Pareto random variable, 167, 232, 245, 247, 253
partition, 99
Pascal’s triangle, 90
Pearson residual, 389
Pearson, Egon Sharpe, 303
Pearson, Karl, 385, 388
permutation, 87
permutation test, 377
pie chart, 4
pion, 234
placebo effect, 68
platykurtic, 147
plot

residual, 40
Pochhammer symbol, 87
point estimation, 281
point estimator, 218
Poisson random variable, 159, 170, 199, 210, 254
Polya, George, 193
polynomial regression, 54
pooled two-sample t procedure, 412
pooled two-sample t procedures, 372
population, 3, 65
population means

tests, 374
population proportions

tests, 374
posterior density, 219
posterior mean, 220
posterior probability, 102, 317
power, 69, 304

t test, 364
power function, 323

lilelihood ratio, 351
Lincoln Peterson method, 327
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mark and recapture, 327
one-sided test, 326
proportion test, 344
simulated, 351
t test, 363
two-sided test, 327

power law distribution, 167
predictor variable, see also explanatory variable
prior density, 218
prior probability, 102, 316
probability, 81

axioms, 82
conditional, 97

probability density function, 119
joint , 122

probability generating function, 147
probability mass function, 116
probability model, 81
probability transform, 125, 126, 233
propagation of error, 200

multidimensional, 203
propagation of uncertainty, 200
proportion, 197

sample, 197
proportion test, 343, 374

binomial test, 344
continuity correction, 343
power function, 344

proposal density, 186
Public Health Service, 76
Punnett square, 106
Punnett, Reginald, 74
Pythagorean identity, 34, 179

distributional, 149
Pythagoreanf identity, 193

quadratic identity for variance, 148, 179
quantile, 28
quantile function, 125
quantile plot, 150
quantile-quantile plot, 28
quantitative variable, 3
quartile, 24

first, 24, 31
third, 24, 31

radon, 362
random sample, 69

simple, 69
stratified, 70

random variable, 111, 170

Bernoulli, 157, 252
beta, 165, 218, 220
binomial, 142, 157, 195
Cauchy, 181
chi-square, 167
chi-squared, 248
continuous, 115, 119, 142, 146
dartboard, 115, 126, 143
discrete, 114, 137, 146
discrete uniform, 160
exponential, 115, 126, 143, 148, 163, 196, 197, 253,

351
F, 168, 406
gamma, 164, 218, 236, 272
geometric, 117, 158
hypergeometric, 99, 161, 235, 247, 351
log-normal, 167
negative binomial, 158
normal, 145, 165, 195, 218, 225, 252, 263
Pareto, 167, 232, 245, 247, 253
Poisson, 159, 199, 210, 254
t, 168, 283
uniform, 125, 163, 217, 267

random variables
independent, 123

receiver operating characteristic, 307, 311, 334, 336
receiving operator characteristic, 380
recessive allele, 74
regression

polynomial, 54
reliability engineering, 223
residual, 38

Pearson, 389
standardized, 389

residual plot, 40, 46
residual sum of squares, 405
resistant measure, 23
response variable, 13, 37, 65
rising factorial, 87
risk, 317

Salk vaccine field trials, 76
sample, 65
sample mean, 21, 31, 195, 206
sample proportion, 197, 206, 216
sample proportion interval, 289
sample size determination, 310
sample space, 81, 96
sample standard deviation, 25, 31
sample sum, 194, 205
sample variance, 25, 31
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unbiased estimator, 242
sampling with replacement, 124, 162
sampling without replacement, 99, 124, 161, 235
scatterplot, 13
score function, 251, 261, 276
segmented bar graph, 9
sensitivity, 103, 304, 364
sequential updating

Bayesian, 222
set theory, 96
significance level, 303, 324
Silver, Nate, 97
simple hypothesis, 303, 334
simple random sample, 69, 217
simulating discrete random variables, 124
skewness, 147, 196
smoking, 392
social desirability bias, 68
specificity, 103, 304, 364
speed of light, 73
spin, 234
standard deviation, 25, 146

sample, 25, 31
standard error, 283, 361
standard score, see standardized version
standardized residual, 389
standardized score, 205, 286
standardized version, 28, 146
state of nature, 81, 217
state space, 111
statistic, 215
steepest descent, 51
Stirling approximation, 249
stratification, 66
stratified random sample, 70
studentized score, 286
Sturges’ formula, 10
subject, 67
subset, 82, 96
sudden infant death syndrome, 389
sufficient statistic, 254, 275
summary

confidence interval, 290
estimators, 269
normal approximations, 205
properties of random variables, 170
random variables and expectation, 146
significance tests, 373
simple hypothesis, 313

supercedure, 69
survival function, 12, 23, 113, 143

t interval, 283
t procedures

guidelines, 361
pooled two-sample, 372
two sample, 368

t random variable, 168, 171, 283
t test, 361

matched pair procedures, 366
one sample, 362
power, 364
power function, 363

target variable, 13
telescoping sum, 92
thermal expansion, 202
third quartile, 24, 31
time plot, 15
total sum of squares, 405
transform

probability, 126
tree diagram, 101
trigamma function, 273
true negatiive probability, 303
true positive, 103
true positive fraction, 306
truncated mean, 23
Tufte, Edward, 3
two sample proportion interval, 289
two sample t interval, 286
two sample t procedures, 368, 410
two sample z interval, 286
two sided test

confidence interval, 365
likelihood ratio test, 346

two-sided test, 323
two-way table, 7, 391

chi-squared test, 391
type I error, 303, 324
type II error, 304, 324

unbiased estimator, 200, 242
linear regression, 266

uniform random variable, 125, 163, 171, 217, 267
uniformly most powerful test, 342
union, 96
United States census, 71
universal set, 82, 96
upper tail probability, 282

variable, 3
categorical, 3
confounding, 65
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descriptor, 13
explanatory, 37, 65
input, 13
lurking, 65
predictor, 13
quantitative, 3
response, 13, 37, 65
target, 13

variance, 25, 146
distributional, 146
quadratic identity, 27
sample, 25, 31

vitamin C wheat soy blend, 366

weighted least squares, 266
weighted mean, 22
Welch-Satterthwaite equation, 287, 368
Wells, H.G., vii
Wilcoxon rank sum test, 378
Wilcoxon signed rank test, 334, 381
Wilkes, Samuel, vii
within group mean, 404
Women’s Health Initiative, 72

z interval, 282
z-score, see standardized version
z-value, see standardized version
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