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Preface 

Masonry structures represent a large part of the constructions in the World. 

Old masonry buildings, historical towns and monumental constructions 

characterize the heritage of the Countries. This important heritage deserves 

to be saved, maintained, preserved, protected and restored. Thus, the 

formulation of reliable and efficient procedures for evaluating the structural 

response of masonry constructions is a challenging research in civil 

engineering field. Indeed, the development of accurate stress analyses is 

fundamental not only to verify the stability of existing masonry 

constructions, but also to properly design effective strengthening and 

repairing interventions.  

The analysis of masonry structural response is a quite complex task. In fact, 

masonry material is characterized by strong nonlinear mechanical behavior, 

even for low deformation levels, with anisotropy both in the linear and 

nonlinear range. Furthermore, masonry structures often require 2D or 3D 

modeling approaches, i.e. more complex structural schemes compared with 

those usually used for concrete or steel framed structures. For these reasons, 

the research on the Mechanics of Masonry Constructions is still a very 

active research field. This is demonstrated by the large amount of scientific 

papers published on specialized journals. It should be remarked the great 

contribution of the Italian scientific community in the research activities in 

the Mechanics of Masonry field. Many conferences, workshops, 

minisymposia concerning the thematic of safety and strengthening of 

masonry constructions are indeed organized in Italy, or by Italian 

researchers. 

In this context, the Workshop “MCM2016: Mechanics of Masonry 

Constructions” was held at the University of Cassino and Southern Lazio 

(Italy) on July 4, 2016. The workshop was dedicated to the memory of 

Antonio Ercolano, who spent large part of his scientific life at the University 

of Cassino performing researches on the Mechanics of Masonry as well. His 

studies in this field started at the beginning of ’90, developing 

computational models and numerical techniques for the analysis of masonry 

structures. 



This book collects the papers presented during the MCM2016, where 

scientists interested in the study of masonry structures discussed the results 

of their recent work. Several papers cite the works developed and published 

by Antonio Ercolano. 

During the workshop a commemoration of the colleague and friend Antonio 

was held. Antonio was a researcher and a teacher outside the box; he was 

not interested in publishing great numbers of papers, but more in studying 

and in understanding interesting scientific questions. He always had very 

good personal relationships with all the colleagues because of his smart 

ability to find something beautiful, intriguing and fun in everything. He had 

also a special relation with all the students, sharing the “panettone” with 

them in Christmas. 

This book is dedicated to his memory and to his beautiful family. 



 
 
 
 
 
 
 
 
 
 
 

to Mariella, Valeria, Arianna and Chiara 
 



 



Table of contents 

Thrust evaluations of masonry domes. An application to the St. Peter’s 
Dome (Mario Como) 1 

An enriched 2D finite element for the nonlinear analysis of masonry walls 
(Daniela Addessi, Elio Sacco) 27 

Some laser-scanner applications in structural analysis (Claudio Alessandri, 

Vincenzo Mallardo) 51 

The model of Heyman and the statical and kinematical problems for 
masonry structures (Maurizio Angelillo) 63 

On the analysis of masonry arches (Nicola M. Auciello) 89 

The spandrel of masonry buildings: experimental tests and numerical 
analysis (Bruno Calderoni, Emilia Angela Cordasco, Gaetana Pacella, 

Paolo Simoniello) 109 

Seismic vulnerability assessment of churches at regional scale after the 2009 
L’Aquila earthquake (Gianfranco De Matteis, Giuseppe Brando, Valentina 

Corlito, Emanuela Criber, Mariateresa Guadagnuolo) 143 

Palazzo Ducale in Parete: remarks on code provisions (Giorgio Frunzio, 

Luciana Di Gennaro, Mariateresa Guadagnuolo) 169 



Thrust network analysis of masonry vaults (Francesco Marmo, Daniele 

Masi, Daniele Mase, Luciano Rosati) 189 

Lateral torsional buckling of compressed open thin walled beams: 
experimental confirmations (Ida Mascolo, Marcello Fulgione, Mario 

Pasquino) 211 

Wall structure finite-element by BEM coupling (Vincenzo Minutolo, 

Eugenio Ruocco) 221 

On the shape optimization of the force networks of masonry structures 
(Giuseppe Rocchetta, Mariella De Piano, Valentino P. Berardi, Fernando 

Fraternali) 231 



1 

Thrust evaluations of masonry domes. An application 

to the St. Peter’s Dome 

Mario Como
1 
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Abstract. The research of the thrust of the St. Peter’s dome has a long history 

that goes up to Poleni (1748) and to the so-called Three Mathematicians 

(1742) which, in the first half of the eighteenth century, were engaged to 

study the damaged dome and to provide its strengthening and restoration. The 

paper recalls this history and in the framework of some developments of 

Limit Analysis applied to masonry bodies, gives an evaluation of the thrust of 

the St. Peter’s dome in Rome by using the Kinematical approach.  

Keywords: Masonry constructions, dome, thrust force. 

1   Introduction 

A masonry dome, loaded by its own weight, cracks as soon as the hoop 

stresses near the springing reach the masonry’s weak tensile strength. The 

initial membrane equilibrium of the rotational shell (Flugge, 1962; Heyman, 

1977) is thereby lost and meridian cracks take place and spread along the 

dome (Figure 1). 
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Fig. 1 – Typical meridian cracks in a masonry dome (Heyman, 1995) 

 

 
Fig. 2 – The pressure line in the slices and the insurgence of the thrust (Como, 2010; Como, 

2016) 

 

Consequently, the dome breaks up into slices that behave as independent 

pairs of semi-arches leaning on each other.  

Cracking brings a significant change in the Statics of the dome. The hoop 

forces Nθ in the cracked zone vanish and the meridian forces Nφ, acting 

along the slices centrelines, are no longer able to ensure equilibrium. The 

pressure curve thus tilts towards the horizontal and deviates away from the 

central surface of the dome. A small cap at the top of each slice will be 

subjected to the thrusting action transmitted by the other slices, which will 

be transmitted all the way to the springings. Figure 2 shows a rough sketch 

of the pressure curve of a cracked hemispherical dome. The dotted line 

shows the position of this curve, which inclines towards the horizontal at the 
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springings. The horizontal component of the reaction of the supports 

represents the thrust S per unit length of the base circumference of the 

dome.  

The emergence of the thrust in the dome represents the most 

consequential outcome of meridian cracking in typical masonry round 

domes. 

The assumed rigid in compression masonry model can give a plain 

description of the stress state of the cracked dome. Loaded by the dome’s 

thrust, the sustaining structures (e.g., the drum and the underlying piers), 

settle and splay. The dome slices, no longer restrained from deforming by 

rings, bends under the loads and can form a mechanism. Consequently, the 

dome thrust takes the minimum value (Heyman, 1966; Heyman, 1995; 

Como, 1996; Como, 1998; Coccia, 2016). The weight of a particularly 

heavy lantern, for example, could even cause the dome to fail on cracking.  

In the settled state, the pressure curve passes through the extrados at the 

key section of the slices and then runs within their interior, skimming over 

the intrados of the dome. In the arch composed by two opposite slices, 

hinges of the settlement mechanism occur at the key and at the haunches. 

Domes with lanterns have a top ring to sustain it. Thus, instead of a single 

hinge, two symmetric hinges will form at the extrados of the section 

connecting the slice with the top ring. 

The minimum thrust Smin can be obtained via the static, as well as via the 

kinematic approach, (Como, 1996; Como, 1998). 

The static approach calls for tracing the statically admissible funicular 

curves of the loads. In this case, we can neglect the small hooped cap 

situated at the top, near the zenith of the dome. The thrust S of the settled 

dome is transmitted along the pressure curve passing through these hinges 

and corresponds to the minimum value Smin of all thrusts Sstat of the statically 

admissible pressure lines s, i.e. wholly contained within the slice. Thus, 

following the static approach, we must identify, from among all the 

statically admissible pressure lines (Gesualdo et al., 2017), the one that 

releases the minimum thrust at the dome springing: 
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[ ])(min)( sSSsS stat =≥  , ∀  s statically admissible  (1) 

 

The kinematic approach is dual with respect to the static one. Let us 

consider any kinematically admissible settlement mechanism v, describing 

the adjustment of the dome to the side deformation of its sustaining 

structures, and define the kinematic thrust Skin(v) as: 

 

)(

,
)(

v

vg
vSkin ∆

><=   (2) 

 

In Eq. (2) the term <g,v> represents the work, undoubtedly positive, of 

the dead loads g for the vertical displacements of the mechanism v, and ∆(v) 

is the radial widening of the dome at its base, produced by the mechanism v. 

The settlement mechanisms are obtained releasing the slices positioning 

hinges to allow the horizontal sliding of the dome at its springings. Thus the 

hinges must be positioned: 

- at the extrados, in the section linking the central closing ring with the 

slice; 

- at the intrados, at the haunches, as shown in Figure 3. The position K 

of this hinge is unknown and is indicated by the angle σ. 

 

 
Fig. 3 – The settlement mechanism of the slice following the widening of the drum top 
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According to this approach the minimum thrust can be evaluated as the 

maximum of all kinematic thrusts Skin(v), (Como, 1996; Como, 1998): 

[ ])(max)( vSSvSkin =≤ , ∀  v kin. adm. settlement mechanism  (3) 

Consequently, the minimum value of the thrust force can be evaluated as: 

[ ] 








∆
><==

)(

,
max)(maxmin

v

vg
vSS kin   (4) 

where v varies in the set of all kinematically admissible settlement 

mechanisms. 

Figure 3 shows a typical mechanism produced by the dome springing 

widening. In this mechanism, the position of the internal hinge K is 

unknown. The set of all these kinematically admissible mechanisms is 

described by varying the position of the hinge K between the springing and 

the key section of the slice. Identifying the maximum of the function, by 

varying the position of hinge K, enables us to obtain the sought-for thrust. 

The minimum thrust is thus included between the kinematically and 

statically admissible ones, (Como, 1996; Como, 1998): 

[ ] [ ] )()(min)(max)( sSsSSvSvS ≤==≤   (5) 

This approach will be further extensively applied to the thrust evaluation 

of the St. Peter’s Dome in Rome. 

2   St. Peter’s Dome by Michelangelo. The static restoration by 

Poleni and Vanvitelli 

2.1 Dome geometry 

The history of the dome planned by Michelangelo for St. Peter’s Basilica 

in Rome is well known, (Mainstone, 1999; Mainstone, 2003, Benvenuto, 

1990; Di Stefano, 1980).  
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Fig. 4 – Dome longitudinal section (L. Vanvitelli, in Di Stefano, 1980) 

 

The large structure of the dome is similar to the Brunelleschi’s one in 

Florence. It is in fact made up of two interconnected shells, stiffened by 16 

ribs. The section of the dome, as sketched by Vanvitelli and reported in 

Poleni (1748), is shown in Figure 4. 

The main measures defining the geometry of the dome and of the 

supporting drum have been obtained directly from Vanvitelli’s drawings 

(Figure 4 and Figure 5). The thicknesses of the internal and external shells 

are respectively 2.00 m and 1.00 m, while the total thickness of the 

composite dome varies between 3.00 m at the springing and about 5.00 m at 

the crown. The overall arrangement of the entire dome is that of an ogival 

spherical vault. The internal diameter of the dome at its base measures 42.70 

m. A 3.00 m thick cylindrical wall, with an internal radius of 21.35 m, 

composes the drum. The dome is stiffened by sixteen 3.00 m thick radial 
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buttresses, arising from the drum for a length of about 4.50 m and a height 

of 14.50 m.  

The masonry used for the dome is made up of bricks, travertine blocks 

and mortar beds, and it was laid with the support of wood scaffolds and 

centrings. The two shells were built up between the ribs. Two iron ties 

encircling the dome were placed by Della Porta, (Di Stefano, 1980). 

It is interesting to point out that the so-called Rules of C. Fontana (1694), 

followed in late 17
th

 century Roman constructions, would have called for the 

drum to be thicker than the actual 3.00 m. However, the rules refer to domes 

without buttresses. 

2.2 The damage 

Many years after the dome’s completion cracks began to develop and 

grow gradually over time. The first signs of damage were detected as far 

back as 1631 and more and more cracks appeared over the following years. 

In the mid-18
th

 century, about 150 years after its completion, the dome 

exhibited widespread, serious damage and debates spread throughout the 

scientific community. Various descriptions and experts judgments were 

forthcoming, amongst which the dire account of Saverio Brunetti (Book II 

of Poleni, 1748):  «… the entire wall of the drum and the attic, together with 

the columns and buttresses, have rotated outwards, dilating the dome and 

lowering the lantern ... ». 

This description corresponds to the cracking pattern detected by L. 

Vanvitelli between 1742 and 1743 in an exquisite set of drawings published 

by Poleni in his “Stato dei difetti” (e.g., Plate XV shown in Figure 5). In 

this figure, long meridian cracks are clearly visible running along the dome 

intrados. They arise from the drum nearly up to the height of the ring 

connecting the crown to the lantern. The sixteen buttresses were hard-

pressed to contrast the thrusting action of the attic and drum: their effort is 

evidenced by large, diffuse sloping cracks across them. At the time, sheets 
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stiffened by hoop stresses, towards that of a pushing dome, partitioned by 

long meridian cracks. 

Alarm grew in Europe and in 1742 Pope Benedict XIV appointed a 

committee of scientists, known as “The Three Mathematicians”, composed 

by T. Le Seur, F. Jacquier and R.G. Boscovich, to report on the condition of 

the dome.  

The Three Mathematicians’ initial assessment, published as the “Parere” 

(1742) - i.e. opinion - was that the dome was seriously damaged and that its 

reparation would require extensive reinforcement operations. A later report 

by the same authors, the so-called “Riflessioni”, confirmed their initial 

estimation.  

However, other scholars collaborating in the analysis dissented from their 

opinion. To settle this dispute, Benedict XIV decided to seek the advice of a 

brilliant Italian scholar, Giovanni Poleni. 

In the Poleni manuscript, published as the “Memoirs” (1748), the author 

reported the results of a static analysis of the dome performed in his 

laboratory in Padua. This analysis was conducted in the wake of some 

recent results on the Statics of masonry arches obtained by R. Hooke, 

(1675). Poleni presented his proposal for the restoration. The Memoirs were 

received favorably by the Pope, who then entrusted Poleni with carrying out 

the dome restoration in collaboration with L. Vanvitelli, the architect of the 

“Opera di San Pietro”. 

2.3  Analysis 

According to historical accounts, the two discordant opinions regarding 

the dome’s state and safety were heatedly debated (Mainstone, 2003; 

Benvenuto, 1990; Como, 1997; Como, 2008). The Three Mathematicians 

(1742), backed by many other scholars, believed that the dome’s failure was 

imminent and its restoration, involving significant architectonic changes to 

the entire monument, was required with the utmost urgency. Poleni, instead, 

sustained that the dome’s state of safety was much less threatening. 
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Moreover, Poleni was convinced that the so-called defects of the great dome 

could be repaired without any modifications to its architecture. 

The Three Mathematicians’ Parere, assessed that the dome was in danger 

of failure. They, using a simple mechanical model, viewed the cracking 

pattern as the starting point of the collapse mechanism. This model, drawn 

from a plate of their Parere, is sketched out in Figure 6 and considers the 

combination of the dome with the attic and the drum, together with the 

adjacent buttress. They reduced the complex system composed by the dome, 

the attic/drum and the buttress to the simple mechanism illustrated in the 

scheme of Figure 6. The system was modelled as an inclined beam HT, 

whose top point T was free to move along the vertical direction and whose 

base point H could move along the horizontal direction. The horizontal 

segment AD of the section shown in Figure 6 represents the drum base and 

the adjacent buttress, while the segment AF refers to the external edge of the 

vertical buttress. The buttress and the drum/attic were very weakly bound 

together, so that the Three Mathematicians reasonably considered the 

buttress to have been detached from the drum wall. Their mechanism 

describes the deformation of the damaged dome, with the drum and the attic 

rotating externally, and the dome slices counter-rotating inward, with the 

lowering of the lantern and the dilatation of the dome. According to this 

mechanism, the whole dome slice HMNI rotates inward around the hinge H 

and produces counter-rotation of the drum/attic/ buttress around A and C. 
 

  
Fig. 6 – The Three Mathematicians’ model and the corresponding failure mechanism 
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By applying the kinematic approach to this scheme, the Three 

Mathematicians evaluated the thrust of the dome. The restoration operations 

proposed by the Three Mathematicians were quite extensive: in addition to 

encircling the dome with new iron ties, they also wanted to thicken the 

buttresses and place new heavy statues on the top of them.  

Poleni (1748), on the contrary, did not accept the conclusions of the Three 

Mathematicians: in his opinion, there was no correlation between the 

cracking of the dome and the one of the attic and drum. He instead 

attributed the damage solely to defects in construction and to the use of poor 

masonry. Poleni’s firm conviction stemmed from the results of a static 

analysis that he himself developed and performed. This analysis, though 

incomplete, proved to him that the dome was still safe, despite its defects. 

Poleni’s analytical procedure was inspired by Hooke’s (1745) theorem of 

the inverted chain. Accordingly, Poleni divided the dome into fifty slices, 

each subdivided into thirty-two “wedges”, whose position and weight he 

evaluated. He then constructed a detailed scale model of a dome slice in his 

Padua laboratory. He knew, in fact, the proportionality rule that holds for 

the no tension masonry-like constructions, (Como, 2014).  

Poleni considered two thin chains: one of equal small-sized rings (an ideal 

catenary), and another composed of thirty-two small lead balls, whose 

weights modeled the weights of the thirty-two wedges constituting a single 

dome slice, including the top wedge’s share of the weight of the lantern atop 

the dome. The length of the chains was fixed so that their end sections could 

pass through the centers of the sections at the springing and the crown of the 

slice. 
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loads. Figure 7 shows the famous Poleni model with a sketch of his 

determination of the funicular curves with the vectors R tangent to the 

funicular at the springing. The horizontal component of R gives the pull of 

the chain and, consequently, according to the inverted chain model, the 

thrust in the dome. It is clear that Poleni’s attention was focused exclusively 

on the equilibrium of the dome. In this way, Poleni was able to verify that 

the geometry of the meridian curve of the dome was actually admissible. 

Notwithstanding, Poleni believed that the dome of St. Peter was not at risk 

of failure and that the model proposed by the Three Mathematicians had to 

be flawed. 

The dome was thus repaired and reinforced according to Poleni’s 

recommendations and under the technical supervision of L. Vanvitelli. The 

cracks in the dome were patched through the procedure known as “scuci e 

cuci” (literally,“unstitch and stitch”), which is still commonly used today. 

However, the most important intervention was encircling the dome with six 

iron ties, which were able to counterbalance the static deficiency of both 

drum and buttresses. 

3 The actual minimum thrust  

In order to verify the real state of safety of the dome/buttresses system, it 

is necessary to evaluate the actual thrust of the dome. With this aim, it is 

convenient to follow Poleni’s partitioning and the corresponding weight 

evaluations of the thirty-two wedges of the slice. In doing so, we shall refer 

to Figure 8 from Poleni’s Memoirs (1748), where the various wedges are 

denoted as A, B, C, etc. 
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Summing up all the weights of the wedges, the weight Gsl of the slice is 

equal to 1004·10
3
 lb. The weight GslL of the slice, including the weight of 

the lantern slice, is 1085.6 lb. 

The horizontal axis shown in Figure 8 and passing through the point V, 

indicates the head of the drum/attic, i.e. the level of the dome base. The 

vertical alignment passing through the point T of Figure 8 is the vertical line 

passing through the centre of the section joining the dome with the lantern, 

along which the load GslL conveys. 

The following distances are considered: 

- DL = 17.85 m is the distance between the vertical line passing 

through the drum’s internal edge (V in Figure 8) and the alignment 

T; 

- Dsl is the distance between the slice’s centre and the alignment T; 

- DslL is the distance between the slice centre, including the share of 

the lantern weight, and the alignment T; 

- DDslL is the distance between the drum internal edge and the slice 

centre, through which the weight GslL passes; 

- H = 28.20 m is the height of the extrados of the section joining the 

dome with the lantern with respect to the dome base. 

The moments of the wedges weights around the point T (placed at the 

intrados of the dome-to-lantern connection section) are shown in Table 2: 

Table 2.  Moments of the wedges weights around the point T  

Wedge 
Moment 

[lb·m·10
3
] 

 
Wedge 

Moment 

[lb·m·10
3
] 

A 89·4.15=369.35  K 66·2.95=194.70 

B 88·4.14=364.32  L 60·2.65=159.00 

C 87·4.05=374.10  M 54·2.30=124.20 

D 85·3.95=335.75  N 48·1.95=93.60 

E 82·3.85=315.70  P 41·1.60=65.60 

F 79·3.65=288.35  Q 34·1.15=39.10 

G 75·3.45=262.50  R 27·0.75=20.25 

H 71·3.20=227.20  S 18·0.15=2.70 
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The moment of the weight of the lantern slice is equal to 81.6·10
3
 lb·0.0 

m = 0.00 lb·m. The total moment M is thus equal to 3210.92·10
3
 lb·4.75 m = 

15251.87 lb·m. 

The distance of the slice centre from the alignment T is Dsl=M/Gsl=15.19 

m. The distance of the slice centre (including the share of the lantern 

weight) from the alignment T is DslL=M/GslL=14.05 m. The distance of the 

slice centre (including the share of the lantern weight) from the internal 

edge of the drum DDslL=17.85 – 14.05 = 3.80 m. 

Figure 9a sketches the outline of a typical mechanism v of a dome slice, 

whose base undergoes a slight broadening. The point O indicates the 

position of the internal hinge. When the point O falls on the intrados of the 

dome springing section, this mechanism corresponds to the one envisioned 

by the Three Mathematicians. Figure 9b shows all involved quantities. The 

work done by the loads g is given by: 

 

∑ −⋅>=<
i

ii xDGvg )(, *θ   (6) 

 

where D* indicates the horizontal distance of the hinge O from the 

alignment T and xi the distance of each single force Gi from the same 

alignment, as shown in Figure 9.  

Finally, we have: 

 
*

)( Hv ⋅=∆ θ   (7) 

 

where H* is the vertical distance between the internal hinge O and the 

extrados of the section where the dome joins the lantern. 

The vertical displacements vi of the application points of the loads Gi, 

representing the weights of the various wedges, are then given by: 

 

θ⋅−= )(
*

ii xDv   (8) 
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Thus, we have: 
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(a)       (b) 

Fig. 9 – The minimum thrust evaluated via the kinematic procedure 

 

The maximum kinematic thrust Skin(v) is found by varying the position of 

the internal hinge O along the intrados curve of the slice. In the following, 

five different mechanisms, numbered from (0) to (4), are considered and the 

corresponding kinematic thrust Skin(v) is evaluated for each one of them. The 

highest value among all values of Skin(v) turns out to be the one obtained 

considering the mechanism (4).  

 

Mechanism (0) – The mechanism of the Three Mathematicians 

- Position of the internal hinge O: point V shown in Figure 8, located 

at the intrados of the dome springing, at the height of the top of the 

attic/drum; 
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- The work of the loads includes the weights Gi running from the 

wedge A to the wedge S, in addition to the corresponding share of 

the lantern weight; 

- Horizontal distance D* of the hinge O from the alignment T: 

D*=DL=17.85 m; 

- Vertical distance H* of the hinge O from the extrados of the section 

where the dome joins the lantern: H* = H = 28.20 m. 

- Total work Ltot of the loads Gi, including the work of the lantern 

slice, on the assumed mechanism: Ltot=1615.67 tm·θ ; 
- Work performed by the thrust: Skin·H·θ = Skin·28.20·m·θ ; 
- Skin = 57.29 t = 126.3·10

3
 lb. 

 

Mechanism (1) 

- Position of the internal hinge O: point X shown in Figure 8. 

According to this mechanism, the weights of the wedges A, B and C 

do no work; 

- Horizontal distance D* of the hinge (1) from the alignment T: 

D*=17.56 m; 

- Vertical distance H* of the hinge (1) from the extrados of the joining 

section of the dome to the lantern: H* = 22.325 m; 

- Total work of the loads Gi, including the work of the lantern slice, 

along the assumed mechanism: Ltot = 1579.556·θ tm; 

- Work performed by the thrust: Skin·H·θ = Skin·22.325 m ·θ ; 

- Skin =70.75 t = 155.98·10
3
 lb. 

 

Mechanism (2)  

- Position of the internal hinge O: point located between the wedges H 

and K in Figure 8. According to this mechanism, the weights of the 

wedges from H to A do no work; 

- Distance D* of the hinge (2) from the alignment T: D* =13.53 m; 

- Distance H* of the hinge (2) from the extrados of the joining section 

of the dome to the lantern: H* =13.3 m; 

- Skin = 78.51 t = 173.08·10
3
 lb. 
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Mechanism (3) 

- Position of the internal hinge O: point located between the wedges E 

and F in Figure 8. According to this mechanism, the weights of the 

wedges from E to A do no work; 

- Distance D* of the hinge (3) from the alignment T: D* = 16.62 m; 

- Distance H* of the hinge (3) from the extrados of the joining section 

of the dome to the lantern: H* = 18.52 m; 

- Skin·18,52 m·θ = 1444.78·θ ;  

- Skin = 78 t = 171.96·10
3
 lb. 

 

Mechanism (4) 

- Position of the internal hinge O: point located between the wedges D 

and E in Figure 8. According to this mechanism, the weights of the 

wedges from D to A do no work; 

- Distance D* of the hinge (4) from the alignment T: D* = 17.81 m; 

- Distance H* of the hinge (4) from the extrados of the joining section 

of the dome to the lantern: H* = 20.42 m; 

- Total work of the weights of the wedges and of the lantern slice: Ltot 

= 1715.40·θ ; 

- Work performed by the thrust: Skin·H*·θ = Skin·20.42 m·θ ; 

- Skin 20.425 m·θ = 1715.40·θ ; 

- Skin = 84 t = 185.19·10
3
 lb. 

 

Other mechanisms, with internal hinges located elsewhere on the intrados 

of the slice, do not furnish larger thrust values than the one corresponding to 

mechanism (4). Thus, the maximum kinematic thrust value corresponds to 

mechanism (4) and the minimum thrust of all statically admissible states 

therefore corresponds to the kinematic thrust that results by positioning the 

hinge O between the wedges D and E, namely 225.77·10
3
 lb. A slice having 

a width equal to 1/50 of the dome’s round angle transmits this thrust. Given 

an average drum diameter of 45.70 m, and an average circumference of 

45.70·π=143.57 m, the length of the arc corresponding to the assumed slice 
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is 143.57/50 = 2.87 m. The thrust of 84 t is thus transmitted along a length 

of 2.87 m, and the thrust per unit length of the drum equals 84 t/2.87 m 

=29.26 t/m. Comparing the various thrust values and making reference to 

Eq. (5) we have: 

 

[ ] [ ] tSsStvStS PoleniThreeMat 4.87)(min84)(max29.57 =<==<=   (10) 

 
 

 
Fig. 10 – Equilibrium of the slice 

 

With reference to Figure 10, the vertical load transmitted by the slice 

equals the total weight of the slice, V=108.6·10
3
 lb. The position of the 

vertical force V at the base of the slice can be obtained by considering the 

equilibrium of the slice. Let x be the distance of the force V from the 

alignment T (Figure 10). The condition of null moment of all forces around 

the point of intersection of the dome extrados with the section of the dome 

connection with the lantern gives: 

 

0=−− SHDGVx slsl   (11) 

 

whence we obtain x = 19.9 m. 

Thus, the distance of the force V from the inner edge of the drum is: 
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mmc 0.2)85.1785.19( =−=   (12) 

 

The mechanism assumed by the Three Mathematicians was very far from 

the mechanism corresponding to the settlement state that requires a 

circumferential hinge at the intrados in the haunches of the dome.  

The thrust evaluated by Poleni, by means of an extraordinary application 

of the Hooke Theorem, is, on the contrary, only a bit larger than the 

minimum thrust. 

4 Safety Assessment of the Dome/Buttresses System 

Poleni, on the other hand, neglected to consider the effects of the thrust on 

the supporting structures as the drum and the sixteen buttresses. An accurate 

analysis of the statics of the buttresses, on the contrary, has shown that they 

were very near to fail, (Como, 1997; Como, 2008). By way of definition, the 

quantities shown in Figure 11 are: 

- SdomT, the thrust transmitted directly by the dome slice, acting at a 

height of about 18.00 m from the drum base; 

- V, the vertical load due to the weight of the dome slice; 

- C3, the weight of the slice of the attic/drum, having thickness equal 

to the dome base; 

- c = 2.0 m, the distance of the vertical force V, taken from the internal 

edge of the drum, as  previously evaluated; 

- h1, the height of the strip of the attic/drum, equal to 18.00 m. 

The dotted arrow shown in Figure 11 represents the counter-thrust of the 

buttress, which was not considered in the foregoing analysis. Previous 

calculations gave us SdomT=84 t and V=403.84 t. The total weight of the 

drum and the attic, according to Poleni, is equal to 17.861 t and the 

corresponding weight of the slice is C3=17.861·1/50 = 357.22 t, as 

illustrated in Figure 11. Let us consider the base section of this slice of the 

drum/attic, which is 1/50 of the round angle: this base is found at the height 
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of the passageway floor through the buttress, as shown in Figure 5. The total 

moment of all vertical forces acting on the centre of this base section, 

having thickness equal to 3.00 m, is: 

 

tmM tot 1.173455.084.4031884 =⋅+⋅=   (13) 
 

 
Fig. 11 – Check of the vertical strip of the drum 

 

 
Fig. 12 – Check of the drum strip including the buttress 
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It should be recalled that, in the first analysis, the possible counter-thrust 

of the buttress was not taken into account. The section, having a width of 

2.87 m, equal to the arc length of the slice, bears the axial load N: 

 

tN 04.7612.35784.403 =+=   (14) 

 

with an eccentricity e equal to: 

 

mBme 50.12/28.2761/1.1734 =>==   (15) 

 

The resultant of the axial force N and of the bending moment M thus turns 

out to be outside the base section of the slice. The effects of the buttress 

counter-thrust must therefore be taken into account. Indeed, it is the 

composite system drum/attic, coupled with the buttresses, of height h2, that 

represents the structure resisting the dome thrust (Figure 12). Failure of this 

system could occur via the mechanism foreseen by the Three 

Mathematicians, through equal rotations of the sliced drum/attic and 

buttresses, as in Figure 6. Instead, we now consider the thrust λSdomT as 

shown in Figure 12. 

Given that the buttresses around the drum are sixteen in number, we must 

take 1/16 of the round angle as the width of the drum/attic slice associated 

to a single buttress. The values of the corresponding weight and thrust 

considered above must now be multiplied by the factor 50/16 =3.125. These 

values of the weight and thrust will be respectively indicated as Ĉ3 and 

ŜdomT, to distinguish them from the other values corresponding to 1/50 of the 

round angle. The weight of the buttress, indicated as C4 in Figure 12, is very 

difficult to evaluate because of its complex geometry. As a rough 

estimation, averaging its transverse section, we have 

C4=2.3·14.50·3.60·5.60=672 t, to account for the greater weight from the 

marble elements, the presence of large cornices, and so forth. The thrust 

load multiplier λ is, thus, obtained by equating the resistant and pushing 

works done by the various forces along the mechanism: 
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Another simplified analysis, performed by Como (1997), yielded a safety 

factor λ of 1.06, only slightly higher than the determined value of 1.02. 

Note that we have assumed the drum to be cracked along its entire height. 

Such an assumption leads to a picture of the static condition of the dome 

that is considerably more pessimistic than its actual condition. In any event, 

the cracking pattern detected by Vanvitelli included severe diagonal cracks 

in the buttresses (Figure 5). 

The resisting buttresses were seriously stressed by the dome and the 

equilibrium was extremely precarious. The particular geometry of the 

buttresses, with their external columns practically detached from the 

masonry wall, indicates that they were not originally designed as resistant 

elements to the dome’s thrust. Despite the imprecision of the performed 

rough estimation, it can nonetheless be concluded that the static conditions 

of the dome were actually quite critical, even close to failure.  

5 Conclusions 

To sum up, the attic/drum and buttresses were too weak to support the 

dome, given the nearly semicircular profile of its meridian section and the 

presence of the heavy lantern above. In particular, the rather frail geometry 

of the buttresses contributed little to its static stability, something probably 

overlooked by Michelangelo.  
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The Three Mathematicians realized the static inadequacy of the drum, 

albeit through a too simplified kinematic model. However, their proposed 

repairing and restoration intervention was too invasive and it would have 

modified the monument’s architecture. Poleni, on the other hand, never 

understood the actual static precariousness of the dome’s state. However, 

although his static analysis was flawed, he, with the invaluable help of L. 

Vanvitelli, had installed six iron hoops to encircle the dome, which, in the 

end, were able to counterbalance the static deficiency of both drum and 

buttresses. 

In brief, Poleni and Vanvitelli’s restoration, carried out in full respect of 

the monument’s architecture, turned out to be a great success indeed. To this 

day, not only the wondrous Vatican dome is still standing, but it has retained 

its original architecture. 
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Summary. This paper presents a kinematic enriched finite element model for the 

nonlinear analysis of brick masonry walls loaded in their plane. The finite element 

accounts for the transversal deformation of the wall and permits to reproduce the 

mortar-brick interaction in the direction of wall thickness. Nonlocal constitutive 

relationships are considered both for mortar and bricks, adopting a damage-friction 

law for the mortar and an isotropic damage model for the bricks, both accounting for 

tensile failure mechanisms. A numerical procedure is developed for the evaluation of 

the damage and friction evolution in the mortar and brick materials. Numerical 

applications are presented, comparing the results obtained by the proposed finite 

element with the experimental outcomes.  

Keywords: finite element, enriched kinematics, damage, friction, masonry. 

1 Introduction 

The formulation of accurate and efficient numerical models for the 

nonlinear analysis of masonry structures is a relevant topic in civil 

engineering. A wide variety of approaches has been proposed, which differ 

in the modeling scale and in the adopted constitutive laws (Addessi et al., 

2015). Among these, micromechanical models are the most accurate, as 

these describe in detail geometry, arrangement and constitutive behavior of 

the masonry constituents, bricks, mortar and interfaces. This approach has 

been adopted by Ercolano in a series of papers (Ercolano, 1994 and 1995; 
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Auciello and Ercolano, 1997) describing the masonry as a texture of 

superimposed rigid blocks in unilateral contact each other in static and 

dynamic framework. 

The micromechanical models can be developed including also the 

cohesive response of the mortar joints and the friction plasticity mechanisms 

for both bricks and mortar and/or interfaces (Guinea et al., 2000; Zucchini 

and Lourenço, 2009; Aref and Dolatshahi, 2013). A number of two-

dimensional (2D) models has been developed, instead of full three-

dimensional approaches, usually based on the plane stress or plane strain 

assumptions. Nevertheless, these approaches can lead to strong 

approximations and fail in correctly describing the actual transversal tensile 

failure of the masonry wall, when this is subjected to in-plane compression 

(Hilsdorf, 1969). Some attempts to improve the 2D models can be found, 

introducing generalized plane state assumptions (Anthoine, 1997; Massart et 

al., 2005), which can be a suitable method to evaluate the effect of the 

mortar-brick interaction in the thickness direction. Following a different 

approach, in recent works (Addessi and Sacco, 2014, 2016a and 2016b) the 

authors presented a 2D linear elastic model, standing on an enriched 

kinematic formulation, which considers also the out-of-plane strain and 

stress components. 

In this paper, the new finite element EKQFE (Enriched Kinematics 

Quadrilateral Finite Element) is developed, accounting for the nonlinear 

constitutive laws of the masonry constituents, bricks and mortar. 

A coupled damage-friction model is considered for the mortar, while an 

isotropic damage law is proposed for the bricks, based on the assumption 

that damage mechanisms are governed only by the tensile strains.  

To overcome the localization problems and the mesh-dependency of the FE 

solution, due to the considered constitutive laws with strain-softening, the 

damage evolution is assumed to be driven by nonlocal equivalent strains. 

These are defined on the basis of the nonlocal integral technique.  

A numerical procedure is developed to solve the evolution problems of the 

damage and plastic variables at each Gauss integration point, by means of a 

predictor-corrector technique. The algorithm is implemented in the FE code 
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FEAP (Taylor, 2011), used to perform the analyses on the masonry 

elements. 

An experimental masonry wall under a diagonal concentrated vertical 

load is analyzed to validate the proposed nonlinear model and the 

implemented FE numerical procedure. Moreover, the numerical study of a 

masonry unit cell response under simple loading conditions is shown. 

2 2D finite element with enriched kinematics 

Let Ω  denote the three-dimensional region occupied by a masonry wall. In 

Fig. 1, a wall characterized by a classical regular texture (running bond) is 

shown. The Cartesian coordinate system ( 1 2 3, ,x x x ) is introduced, with 

1 2x x−  located in the wall mid-plane denoted by S  and 3x  in the thickness 

direction. The wall thickness is indicated by t , so that ( / 2, / 2)S t tΩ = × − . 

Next, Voigt notation is adopted for the stress and strain measures. 

The objective of this work is to investigate the response of the masonry 

wall subjected to in-plane loadings. Thus, it is assumed that the surface S  is 

loaded by body forces { }1 2 0
T

b b=b  (force per unit surface), acting on the 

mid-plane of the wall and by contact forces { }1 2 0
T

p p=p  (force per unit 

length), applied to the mid-plane boundary.  

A new displacement-based finite element is presented. This is  a 4-node 

quadrilateral element based on an enriched kinematics, called EKQFE 

(enriched kinematics quadrilateral finite element). Denoting with 

{ }1 2 3

T
u u u=u  the displacement vector, it is assumed that the displacement 

components are approximated in the wall thickness direction as:  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2

1 11 1 2 3 12 1 2

2

2 21 1 2 3 22 1 2
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3 3 1 1 2 3 2 1 2
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, ,

u U x x x U x x

u U x x x U x x

u x e x x x e x x

= +
= +
= +

x

x

x

 (1) 

where { }1 2 3

T
x x x=x , 11U  and 21U  are the in-plane displacement 

components, evaluated at the mid-plane of the wall, while 12U  and 22U  are 
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the FE and following a standard procedure, the displacement vector 

( ) { }1 2 3

T
u u u=u x , whose components are defined in Equation (1), is 

approximated as:  

 ( ) ( )2 3

0 3 1 3 2 3 3 ,ex x x= + + +u x N N N N s   (2) 

where ( )0 1 2,x xN , ( )1 1 2,x xN , ( )2 1 2,x xN , ( )3 1 2,x xN  are 3 24×  matrices, 

containing the bilinear interpolation functions. 

On the basis of expression (2), the strain vector results as: 

 ( ) ( )2 3

0 3 1 3 2 3 3 ,ex x x= + + +ε x B B B B s   (3) 

where ( ) ( ) ( ) ( )0 1 2 1 1 2 2 1 2 3 1 2, , , , , , ,x x x x x x x xB B B B  are the compatibility 

operators, with evident meaning of the symbols. 

Once the strain vector is known at each Gauss integration point of the 

FE, the equilibrium equations are derived for the single FE using the virtual 

displacement work theorem: 

 ( ) ( )

/2

1 2 3 1 2

/2

0 1 2 3 1 2

0 1 2 0

0

e e e

e

e e

t

T T T

t S S S

T
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S
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dx dx dx dx dx ds

dx dx

dx dx ds

δ δ δ

δ

− ∂

∂
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− − 



∫ ∫ ∫ ∫

∫

∫ ∫

ε σ u b u p

s B N B M B P B Q

N b N p

  (4) 

where eS  is the area of the FE and the stress resultants are defined as: 

 

/2 /2 /2 /2

2 3

3 3 3 3 3 3 3

/2 /2 /2 /2

t t t t

t t t t

dx x dx x dx x dx
− − − −

= = = =∫ ∫ ∫ ∫N σ M σ P σ Q σ   (5) 

The constitutive equations are introduced in the next section. 
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3 Masonry constitutive model 

Masonry is a heterogeneous medium composed by the assemblage of bricks 

joined by mortar. Both brick and mortar are cohesive materials, 

characterized by softening mechanical response, due to the onset and growth 

of micro-cracks that evolve and coalesce leading to the formation of macro-

cracks. During the masonry failure process, mortar joints are subjected to 

progressive damage caused by the presence of tensile (opening mechanism) 

and shear (friction-sliding mechanism) stresses. The unilateral response of 

the mortar joints, due to the opening and re-closure of the micro-cracks, and 

the friction-sliding, occurring when the compressed joint is damaged 

because of the presence of shear stresses, play a relevant role in masonry 

element response.  

The damaging process of the brick is mainly due to the tensile failure 

mechanism, due to the mortar-brick interaction in a masonry wall subjected 

to compressive stresses, which induce compression in mortar and tension in 

the brick along the thickness direction [14]. Because of the damaging 

effects, the response of both mortar and bricks are characterized by the 

presence of softening branches, so that nonlocal constitutive laws are 

required to avoid strain and damage localization and strong mesh 

dependency of the FE results. 

A constitutive model which accounts for damage, friction and unilateral 

contact is considered for the mortar. The model proposed in (Sacco, 2009; 

Addessi et al., 2010) is able to describe the overall response of the system 

made of mortar joint and interfaces, connecting the mortar to the adjacent 

bricks. A local coordinate system ( , )T Nx x  is introduced in the typical 

mortar joint, with T  and N  denoting the directions parallel and orthogonal 

to the joint, respectively. The stress at the typical point of the joint is 

expressed by the relation: 

 ( ),m= −σ C ε π   (6) 

where ( )mD= +π c p  is the inelastic strain vector, collecting all the inelastic 

effects, i.e. damage, unilateral contact and friction sliding. Indeed, in 
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Equation (6) 
m

C  is the isotropic elasticity matrix of the mortar, 
mD  is the 

scalar damage parameter defined in the mortar joints, while c  and p  are the 

strain vectors accounting for the unilateral opening effect and for the friction 

sliding, respectively. The components of the inelastic strain vectors c  and 

p  are: 

 
( ){ }

{ }
33 3 3 ,

0 0 0 ,

0

0 0

T

N T N N T

T
p

NT

h ε ε ε ε γ γ

γ

=

=

c

p
 (7) 

where ( )Nh ε  is the Heaviside function, being ( ) 0Nh ε =  if 0Nε ≤  and 

( ) 1Nh ε =  if 0Nε > .  

The friction effect is modeled as a classical plasticity problem. The 

evolution law of the inelastic slip strain component p

NTγ  is governed by the 

Coulomb yield function:  

 ( ) ( ), ,d d d

N NTϕ ζ µ ζ σ τ= +σ   (8) 

where ( )( )d m= − +σ C ε c p  is the so-called contact stress, µ  is the friction 

parameter, evolving according to the following exponential law:  

 ( ) ( ) ( )1 ,f i ie ωζµ ζ µ µ µ−= − − +   (9) 

being iµ  and 
fµ  the initial and final friction values, respectively, ω  the 

exponential rate parameter and ζ  the accumulated plastic slip strain, 

defined as:  

 
0

| | .
p

NT d
θ

ζ γ τ= ∫ ɺ   (10) 

A non-associative flow rule is considered for the slip:  

 ,
d

p NT
NT d

NT

τγ λ
τ

= ɺɺ   (11) 

with the following loading-unloading Kuhn-Tucker conditions:  
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 ( ) ( )0 0, 0,d dλ ϕ λϕ≥ ≤ =σ σɺ ɺ   (12) 

where λ  is the inelastic multiplier. 

A model accounting for the coupling of the fracture mode I and II is 

considered to evaluate the damage parameter 
mD . The two quantities Nη  

and NTη , which depend on the first cracking strains 
,0Nε  and

,0NTγ , on the 

peak values of the stresses 
,0Nσ  and 

,0NTτ  and on the fracture energies cIG  

and ,cIIG  respectively, are introduced in the form:  

 
,0 ,0 ,0 ,0

, .
2 2

N N NT NT

N NT

cI cIIG G

ε σ γ τ
η η= =   (13) 

The equivalent strain measures NY  and NTY  are defined as:  

 ( ) ( )2 2
, ,N N NT NTY Yε γ

+
= =   (14) 

where the operator •
+

 evaluates the positive part of the number.  

To overcome the localization problems related to the strain-softening 

constitutive behavior, the nonlocal definition 
/N NTY  of the equivalent strain 

measures /N NTY , defined in Equations (14), is introduced as: 

 ( )
( )

( ) ( )/ /

1
,

m

m

N NT N NTY Y d
d

ψ
ψ Ω

Ω

= − Ω
Ω ∫∫

x x y y
y

  (15) 

where 
mΩ  and ψ  denote the mortar volume and the weighting function, 

respectively. The weighting function measures the influence on the analyzed 

point x  of the point y , lying in its neighborhood 
mΩ , and is set as: 

 ( )
2

,
m

e
ρψ

 −
−  
 − =

x y

x y

‖ ‖

  (16) 

mρ  being the material characteristic length of the mortar, also called 

nonlocal radius. 

Then, the following quantities are determined on the basis of the nonlocal 

equivalent strain measures:  
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 ( )2 2 2

,0 ,0

1
, , .N NT

N N NT NT N NT

N NT

Y Y
Y Y Y N Y Y

N
η η η

ε γ
= + = + = +   (17) 

Finally, the damage is evaluated according to the following law:  

 { }{ } ( )
1

max 0, min ,1 wi h
1

,tm m m

history history

Y
D D D

Yη
−= =

−
ɶ ɶ   (18) 

inducing a linear softening stress-strain response for monotonic loading 

histories of pure mode I or mode II, or for monotonic mixed loading 

histories. 

An isotropic elastic-damage model is considered for the bricks. The adopted 

stress-strain relationship is written in the form:  

 ( )1 ,b bD= −σ C ε   (19) 

where 
b

C  is the 6 6×  isotropic elastic constitutive matrix of the brick and 
bD  is the damage variable, with 0 1

b
D≤ ≤ . 

A failure criterion, which is a slightly modified form of that presented in 

[2], is adopted. The following equivalent strain measure is introduced: 

 
( )3 3 3

2

1 1 1

1
,

2

ij

eq i o i j o

i i j

δ
ε ε ε κ ε ε ε

+ − −
= = =

+

−
= + − −∑ ∑∑   (20) 

where 
/

•
+ −

 denotes the positive/negative part of the variable and 
ijδ  is the 

Kronecker's symbol. In formula (20), the compressive principal strains play 

the beneficial effect of confinement of the cohesive material, reducing the 

equivalent strain measure. The material parameter κ  governs the reduction 

of the equivalent tensile strain due to the presence of compressive strains, 

while oε  is a small regularization-like parameter, which ensures the 

convexity of the elastic domain. Once the equivalent strain 
eqε  is defined, 

the nonlocal associated measure 
eqε  is evaluated as: 
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 ( )eqε =x

where 
bΩ  denotes the 

defined as in (16), by 

material characteristic le

The yield limit functio

 

where tε  is the tensile st

where typical uniaxial 

material are illustrated. 

Fig. 2 – Tensile and comp

( )
( ) ( )1

,
b

b

eq d
d

ψ ε
ψ Ω

Ω

= − Ω
Ω ∫∫

x y y
y
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,eq tF ε ε= −   
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al tensile and compressive responses of the

 

pressive response for the brick material. 

(21) 

on ψ  is 
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(22) 
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In Fig. 3 the limit function F  is plotted in the principal strain plane 

1 2ε ε−  (a) and in the principal stress plane 1 2σ σ−  (b), in both cases under 

the plane stress assumption 3 0σ = . The material parameters contained in  

Table 1 are adopted. 

 

Table 1. Model parameters adopted for the brick material. 

1850 MPabE =  0.15bν =  
49.0 10tε −= ×  

21.8 10uε −= ×  0.03κ =  51.0 10oε −= ×  

 

It can be remarked that the equi-biaxial compressive limit stress does not 

depend, for the considered cases, on the compressive limit strain, as the 

material failure is due to the reached tensile limit strain in the transversal 

direction, i.e. in the direction of the stress 33 0σ = . 

The damage evolution is governed by an exponential law, expressed as:  

 { }{ }max 0,min ,1 , b b

history historyD D= ɶ   (23) 

with 

 
( )

( ) ( ) ( )2
2

3

1
1 2 .eq tb

eq u eq u eq t t

eq u t

D e
β ε ε ε ε ε ε ε ε ε

ε ε ε
− −

−
= − − + −ɶ   (24) 

where 
eqε  is the nonlocal strain measure evaluated on the basis of formula 

(21).  
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(a) (b)  

Fig. 3 - Damage limit function F  in the principal strain plane 1 2ε ε−  (a) and stress plane 

1 2σ σ−  (b) under the assumption of plane stress state. 

In formula (24), the quantity uε  is the ultimate value of the equivalent 

strain corresponding to the full damage, i.e. 1bD = , as reported in Fig. 2. 

The parameter β  governs the softening branch of the stress-strain 

relationship, which is assumed to be related to the value of the first strain 

invariant 1I  as: 

 ( )( ) ( )
1 1

1
,

1 exp
t c t

mI I
β β β β

α
= + −

+ −
  (25) 

with cβ  and tβ  denoting the values of β  for a mostly contracted or 

elongated strain state, respectively. The parameter α  governs the rate of the 

variation of β  from cβ  to tβ  and vice-versa, while 1mI  is the value of the 

strain first invariant, corresponding to ( ) / 2c tβ β β= + . Thanks to the 

choice of the damage law governed by Equations (23)-(25), a failure 

mechanism more brittle in tension than in compression is considered. 

The value of tβ  is determined enforcing that the damage energy is equal 

to tG . Concerning the compressive response, once the value of tε  is fixed, 

the compressive elastic stress cσ , represented in Fig. 2, is also given; 
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moreover, the value of cβ  is determined as function of the compressive 

damage energy cG . Finally, the parameter α  rules the rate of the variation 

of β  from tβ  to cβ  and vice-versa and has to be numerically determined by 

means of biaxial tests. 

4 Numerical procedure 

The time integration of the nonlinear constitutive relationships for the 

mortar and brick materials is performed in the framework of a quasi-static 

incremental/iterative solution procedure, adopting a backward-Euler implicit 

algorithm. 

A step-by-step solution technique is used and the evolution problem is 

solved in a typical step [ ]1
,n nθ θ + , being 1n nθ θ+ > . To ease notation, the 

subscript n  denotes the quantities evaluated at the time nθ , while subscript 

is omitted for all quantities evaluated at the time 1nθ + . 

The time-discrete constitutive equations of the mortar and brick are 

solved at the Gauss quadrature points of the FE discretization, adopting a 

predictor-corrector algorithm and a strain-driven formulation. To simplify 

the model, the damage is evaluated in the mid-plane of the wall and it is 

assumed constant in the thickness direction. 

Concerning the evolution of the mortar inelastic mechanisms, once the 

strain field is determined, the nonlocal equivalent strain measures 
NY  and 

NTY  are evaluated at the typical point 1 2{ , , 0}x x=x  of the mid-plane, by 

using the classical Gauss quadrature formula, as: 

 ( ) ( ) ( )/ /

1
,m

N NT q q N NT qm
q

Y w Yψ= −
Ψ ∑x x y y   (26) 

where 
mΨ  is the integral over the mortar domain of the function mψ , 

qy  is 

a Gauss integration point located on the wall mid-plane and 
qw  is the Gauss 

weight at the point 
qy . Note that the sum in Equation (26) is extended to the 

whole mortar domain. Then, applying formulas (13)-(18), the quantity 
m

Dɶ  
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is determined at x . The damage is computed by Equation (18), which 

assumes the specific form: 

 { }{ }max ,min ,1 .m m m

history n historyD D D= ɶ   (27) 

If 
m

D  is greater than zero at the typical point of the mortar joint, the 

contact and friction effects have to be evaluated. To this end, the normal 

strain Nε  is computed and the value of the Heaviside function ( )Nh ε  is 

determined, so that the vector c  can be evaluated by the first of the 

expressions (7). 

Note that, because of the first of (7) and expression (3), the components 

of the unilateral contact vector c  are expressed as polynomial functions of 

the 3x  coordinate, when 0Nε < . In this case, the mortar joint is compressed 

in the normal direction and its components are equal to the components of 

the strain vector ε , except for NTc , which is always equal to zero. This 

implies that the unilateral strain vector c  can be written as: 

 ( ) ( ) ( ) ( ) ( )2 3

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2
, , , , .x x x x x x x x x x x= + + +c x c c c c   (28) 

To evaluate the shear sliding strain p

NTγ  contained in the vector p  given 

by the second of Equations (7), a plasticity problem is solved. This inelastic 

strain is computed in the wall mid-plane and, for the sake of simplicity, it is 

assumed constant along the 3x  coordinate. 

Initially, the value of the trial solution is introduced setting n=p p  and 

nζ ζ= . The trial stress d

elσ  is determined as: 

 [ ]( ) ,d m

el n= − +σ C ε c p   (29) 

and the value of the Coulomb limit function ( ),d

el nϕ ζσ  is computed using 

formula (8). If 0ϕ < , then n=p p , nζ ζ=  and d d

el=σ σ ; otherwise, the 

inelastic strain p  and, as a consequence, the total plastic slip strain ζ  have 

to be updated, computing a new value for p

NTγ . This is evaluated by solving 

the time-discretized expressions of Equations (8), (9) and (10), written in the 

following residual form: 
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 ( )( )( )

441 0.n d d b

f i i N el NT elR e C
ω ζ λ

ϕ µ µ µ σ τ λ− +∆ = − − + + − ∆ =    (30) 

The value of λ∆  is determined by solving Equation (30), by means of a 

Newton-Raphson algorithm. Then, the updated value of the sliding strain 
p

NTγ  is computed from Equation (11) as: 

 .

d

NT elp p

NT NT n d

NT el

τ
γ γ λ

τ
= + ∆   (31) 

Finally, the strain vector ( )mD= +π c p  is determined, assuming  the 

following representation form in the finite element formulation: 

 ( ) ( ) ( ) ( ) ( )2 3

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2
, , , , ,x x x x x x x x x x x= + + +π x π π π π   (32) 

with ( )0 0 1 1 2 2 3 3
, , ,m m m mD D D D= + = = =π c p π c π c π c . 

The damage is also determined in the wall mid-plane for the brick and it 

is assumed constant in the thickness direction. The nonlocal equivalent 

strain 
eqε  is computed at the point 1 2{ ;0}x x=x , as: 

 ( ) ( ) ( )1
,b

eq q q eq qb
q

wε ψ ε= −
Ψ ∑x x y y   (33) 

where 
bΨ  is the integral over the brick domain of the function bψ .  

Applying formulas (23) and (24), the brick damage 
b

D  is determined at 

the point x . As a consequence, by the constitutive equations (6) and (19) 

the stress vectors in the mortar and the brick are evaluated. In both cases, 

the stress vector admits the following polynomial representation: 

 ( ) ( ) ( ) ( ) ( )2 3

0 1 2 3 1 1 2 3 2 1 2 3 3 1 2
, , , , .x x x x x x x x x x x= + + +σ x σ σ σ σ   (34) 

Taking into account the variational equilibrium equation (4) with the 

definitions (5), the element equilibrium equation in residual form becomes:  
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  (35) 

The presented FE formulation has been implemented in the FE program 

FEAP (Taylor, 2011). 

5 Numerical applications 

Aiming at validating the proposed EKQFE, two numerical applications are 

performed, concerning: 

1. the diagonal compression test of a masonry panel; 

2. the overall response of a unit cell of a periodic masonry wall. 

The diagonal compression test is widely used to evaluate the shear 

strength of masonry panels (Gabor et al., 2006; Calderini et al., 2010). 

Herein, the square panel in Fig. 4, experimentally analyzed in (Kalali and 

Kabir, 2010), is studied. This is made up of 14 courses of bricks and mortar, 

arranged in Flemish bond. The side of the panel is 560 mm and its thickness 

is 105 mm. The size of the bricks, specially produced for the experimental 

test to be one-half scale of the original ones, is 3105 50 28 mm× ×  and the 

thickness of the mortar is approximately 10 mm for the bed joints and 6 mm 

for the head joints. In the experimental setup two loading shoes were located 

to the upper and lower corners to apply the hydraulic jack load on a corner, 

performing a displacement-controlled procedure and to restraint the other 

corner. The applied load and the compressive strain of the diagonal were 

measured. 
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The diamond symbols indicate the numerical results derived by the FE 

analysis. 

Table 3 - Diagonal compression test: material parameters adopted for mortar. 

700 MPamE =   0.2
mν =   

4

,0 5.0 10
N

ε −= ×   

3

,0 1.9 10
NT

γ −= ×   44.37 10 MPacIG −= ×   32.63 10 MPacIIG −= ×   

0.58iµ =   0.58fµ =   3.0ω =   

 

The results in Fig. 5 show that the EKQFE model is able to satisfactorily 

reproduce the experimental response of the panel. It can be remarked that, 

for this kind of application, failure is mainly due to shear collapse of the 

mortar, while no compressive collapse occurs in the brick. The proposed 

damage-friction constitutive model is able to reproduce the occurring failure 

mechanism. On the other hand, as the compressive failure mechanism is not 

activated, unless in limited zones around the boundary constraints, the out-

of-plane effect is not significantly involved in the collapse of the masonry 

wall. The proposed EKQFE finite element is also adopted to derive the 

overall response of the masonry material, performing a micromechanical 

and homogenization analysis. In particular, a running bond regular masonry 

texture is considered for the unit cell (UC), as illustrated in Fig. 6. 

The UC is firstly subjected to a vertical macroscopic strain 22E c= , then to a macroscopic 

shear strain 12Γ  cyclic history, as reported in  

 

Table 4. To study the effect of the vertical compression load on the UC 

shear response, three different values are selected for the parameter 
4 40, 2.0 10 , 4.0 10c − −= − × − × . 
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l compression test: global response curves. 

 for the running bond regular masonry texture. 
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Table 4 - Loading history for the UC. 

time 0 1 2 3 4 

22E   0 c  c  c  c  

12Γ  0 0 3
1.5 10

−×  
3

1.0 10
−− ×  0 

 

In Fig. 7 the homogenized macroscopic shear stress 12Σ  versus the 

applied macroscopic shear strain 12Γ  is plotted, for the three different values 

of the vertical macroscopic strain 22E . 
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Fig. 7 - Shear response of the pre-stressed UC for 22 0E =  (solid line), 

4

22 2.0 10E −= − ×  (dashed line), 
4

22 4.0 10E −= − ×  (dashed-dot line). 

Higher values of the limit shear strength are obtained in presence of the 

vertical pre-stress. Also, the post-peak behavior is modified, as the 

damaging mechanisms exhibited by bricks and mortar change with the value 

of the pre-stress. The solid line in Fig. 7 shows the pure shear response of 
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the UC, characterized by the onset and evolution of damage only in the bed 

joint. When this is completely damaged, the shear strength vanishes. The 

dashed line, corresponding to the lowest value of 
4

2.0 10c
−= − × , is also 

characterized by damage mainly in the bed mortar joints. In this case, the 

presence of the vertical stress causes the activation of the friction-plastic 

flow, too. Indeed, when the bed joints reach the maximum value of the 

damage, differently from the previous case, a residual shear strength 

remains. As the value of 22E  grows (dashed-dot line), the damage also starts 

and evolves in the bricks, since the higher compression state induces tensile 

strains in the thickness direction, causing a degrading post-peak behavior 

until the residual strength is reached.  

6 Conclusions 

A new finite element EKQFE, characterized by an enriched kinematics, for 

the nonlinear analysis of masonry walls subjected to in-plane loading 

conditions has been developed. A damage-friction failure criterion has been 

adopted for the mortar joints, which can be regarded as an extension of the 

damaging Mohr-Coulomb law. As for the bricks, an isotropic damage model 

has been introduced, assuming that the degrading process of the material is 

governed only by the tensile strains. The developed FE has been 

implemented in the FEAP code and a numerical procedure has been 

developed. 

The proposed model allows to correctly account for the mortar-brick 

interaction. Indeed, adopting the proposed formulation it is possible to 

describe the classical failure modes of the masonry composite material, as 

the sliding of the mortar joints and the tensile failure of the brick, when 

masonry experiences a compressive stress state.  

A masonry panel, experimentally analyzed, has been studied to validate 

the proposed numerical procedure, obtaining a very good agreement with 

the experimental results in terms of global response curves. Moreover, the 

overall response of a UC subjected to prescribed 2D macro-strain histories, 

shows the effectiveness of the proposed approach. 



48 

References 

1. Addessi, D., Marfia, S., Sacco, E., Toti, J. (2015). Modeling approaches for masonry 

structures. The Open Civil Engineering Journal, vol. 8 (1), pp. 288-300. 

2. Addessi, D., Sacco, E. (2014). A kinematic enriched plane state formulation for the 

analysis of masonry panels. European Journal of Mechanics - A/Solids, vol. 44, pp. 

188-200. 

3. Addessi, D., Sacco, E. (2016a). Nonlinear analysis of masonry panels using a 

kinematic enriched plane state formulation. International Journal of Solids and 

Structures, vol. 90, 194–214. 

4. Addessi, D., Sacco, E. (2016b). Enriched plane state formulation for nonlinear 

homogenization of in-plane masonry wall. Meccanica, vol. 51 (11), pp. 2891-2907. 

5. Addessi, D., Sacco, E., Paolone, A. (2010). Cosserat model for periodic masonry 

deduced by nonlinear homogenization. European Journal of Mechanics - A/Solids, vol. 

29, pp. 724-737. 

6. Anthoine, A. (1997). Homogenization of periodic masonry: plane stress, generalized 

plane strain or 3d modelling? Communications in Numerical Methods in Engineering, 

vol. 13 (5), pp. 319-326. 

7. Aref, A.J., Dolatshahi, K.M. (2013). A three-dimensional cyclic meso-scale numerical 

procedure for simulation of unreinforced masonry structures. Computers & Structures, 

vol. 120, pp. 9-23. 

8. Auciello, N.M., Ercolano, A. (1997). Numerical simulation of masonry panels. 

Engineering Transactions, vol. 45(3-4), pp. 375-394. 

9. Calderini, C., Cattari, S., Lagomarsino, S. (2010). The use of the diagonal compression 

test to identify the shear mechanical parameters of masonry. Construction and Building 

Materials, vol. 24 (5), pp. 677-685. 

10. Ercolano, A. (1994). On a rigid-elastic model for monumental block structures, Proc. 

XI Congreso Nacional De Ingenieria De Mecanica, November 1994, Valencia, 

Espana. 

11. Ercolano, A. (1995). Simulazioni di strutture murarie. Proceedings of XII Congresso 

Nazionale dell'Associazione Italiana di Meccanica Teorica ed Applicata, (AIMETA), 

vol. 1, pp. 377-382, Naples, October 3-5, 1995. 

12. Gabor, A., Bennani, A., Jacquelin, E., Lebon, F. (2006). Modelling approaches of the 

in-plane shear behaviour of unreinforced and FRP strengthened masonry panels. 

Composite Structures, vol. 74 (3), pp. 277-288. 

13. Guinea, G.V., Hussein, G. Elices, M. Planas, J. (2000). Micromechanical modeling of 

brick-masonry fracture. Cement and Concrete Research, vol. 30 (5), pp. 731-737. 

14. Hilsdorf, H.K. (1969). Investigation into the failure of brick masonry loaded in axial 

compression. Houston, Texas: F.B. Johnson ed., Gulf Publishing, pp. 34-41. 

15. Kalali, A., Kabir, M.Z. (2010). Modeling of unreinforced brick walls under in-plane 

shear and compression loading. Structural Engineering and Mechanics, vol. 36 (3), pp. 

247-278. 



49 

16. Kalali, A., Kabir, M.Z. (2012). Experimental response of double-wythe masonry 

panels strengthened with glass fiber reinforced polymers subjected to diagonal 

compression tests. Engineering Structures, vol. 39, pp. 24-37. 

17. Massart, T.J., Peerlings, R.H.J., Geers, M.G.D., Gottcheiner ,S. (2005). Mesoscopic 

modeling of failure in brick masonry accounting for three-dimensional effects. 

Engineering Fracture Mechanics, vol. 72 (8), pp.1238-1253. 

18. Sacco, E. (2009). A nonlinear homogenization procedure for periodic masonry. 

European Journal of Mechanics - A/Solids, vol. 28, pp. 209-222. 

19. Taylor, R.L. (2011). FEAP-A finite element analysis program, Version 8.3. Department 

of Civil and Environmental Engineering, University of California at Berkeley, 

California. 

20. Zucchini, A., Lourenço P.B. (2009). A micro-mechanical homogenisation model for 

masonry: Application to shear walls. International Journal of Solids and Structures, 

vol. 46 (3-4), pp. 871-886. 

  



50 

 



51 
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Summary. In the present work the authors intend to describe some recent 

experiences in the application of the laser scanner technique to the structural 

analysis. Three main examples are provided, the former involves a typical 

Renaissance Palace in Ferrara, the second one is developed in the framework 

of the damage analysis carried out for the Nativity Church in Bethlehem, and 

the latter deals with the nondestructive testing of a common historical 

masonry building in Ferrara. In such examples the laser scanner data 

acquisition is mainly aimed at investigating the structural behavior and not at 

the geometrical representation. The contribution ends with some comments 

on the current open issues.  

Keywords: Laser scanner, data acquisition, structural analysis, structural 

monitoring. 

1   Introduction 

Most of the applications of the laser scanner technique to the civil 

engineering field is mainly focused on the acquisition of the geometry of the 

structure. Such an acquisition requires plenty of post-processing “extra” 

work before being suitably adopted in a readable format. Surface 

reconstruction, three-dimensional modelling, horizontal and vertical 

sections plotting are some of the steps that are to be carried out in order to 

provide clear drawings. Even more difficult, currently very hard, is the extra 

work that is necessary to import the data into any structural analysis 

software or simulation (Auciello and Ercolano, 1997). The issue is 

complicated by the assumption that, at present, the laser scanner allows the 

acquisition of the external skin of the structure, and, thus, the cloud of 
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points is spoiled by non-structural elements (such as walls in reinforced 

concrete buildings, plaster, cornices, tiles, etc.). This is the reason why most 

of the applications in the literature refers to masonry structures, where at 

least the vertical bearing elements may be given by visible masonry walls, 

the horizontal slabs are, often, supported by visible wood beams and the 

vaults may be free of lining and characterized by complex curvatures. 

In (Lubowiecka et al., 2009) the terrestrial laser scanner was used to 

document and analyse some historical masonry bridges in Galicia, a region 

in Northwest Spain. One bridge was analysed in the paper. It has five 

pointed arches with the longest span of 11.5 m and the laser scanning was 

first set to 2 cm of resolution in order to provide its complex geometry. In 

(Wittich et al., 2015) a broad field survey of 24 human-form statues was 

carried out. Geometric data was acquired with image-based processes and 

laser-scanning processes and the 3D digital reconstructions compared; a 

resolution of around 6mm was set and six-seven scans per statue were 

performed. In (Manfredi et al., 2013) the geometric survey of a vaulted 

structures was carried out using a help-assisted total station with cylindrical 

targets. The data was referred to a highly damaged XVIII century building 

complex in the city of Nola (near Naples) in the South of Italy. The cloud of 

points was deeply post-processed in order to extract horizontal and vertical 

sections from which a 3D structural model might be built independently. In 

(Barbieri et al., 2013) the exact geometry of a historic masonry building in 

Mantua (Italy) was detected by some laser scanner measurement campaigns 

carried out in two years with a high resolution ranging between 2.0 and 4.0 

millimeters. The scanning was mostly concentrated to the main façades of 

the building. In (Bednarz et al., 2014) the whole interior of an historical 

presbytery church in Poland was detected by a High-Definition Surveying 

3D laser scan. In (Chellini et al., 2014) a 3D outer and inner model of a 

Church in Barcelona (Spain) was obtained by performing a 4-mm accuracy 

laser scanning. 

All the above contributions use the geometrical survey obtained by laser 

scanner to perform some structural numerical analyses, and all the authors 

underline the difficulties to carry out such a task. Alignment, cleaning and 
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segmentation, triangulation and so on, are first performed to obtain clear 

drawings, usually in CAD format. The construction of the 2D or 3D 

structural (FEM) model is usually carried out manually. Even if recent 

developments allow the automatic conversion of the cloud-of-point model 

into a NURBS-based structural mesh model (see Beer, 2015 for instance) 

both in FEM (see Cotrell et al., 2009) and in BEM (see Beer et al., 2017), 

the issue has not been automatised so far and it is still open. 

Last but not least, the work by Gordon and Derek ( 2007) is worthy of 

being mentioned as the laser scanner was involved to measure the vertical 

displacement of beams undergoing controlled loading. Therefore, this work 

can be considered an application aimed at non-destructive structural 

monitoring and not at geometry acquisition. A similar goal was pursued in 

(Barbieri et al., 2013) where the laser scanner data was used to monitor the 

magnitude of the inclination of the longitudinal walls. 

On the basis of some recent experiences carried out by the authors (see 

Mallardo et al., 2008, Alessandri and Mallardo, 2012, Alessandri et al., 

2012, 2015), the present work intends to present some applications of the 

laser scanner technique both to the structural analysis and to the non-

destructive structural monitoring. 

2   Laser scanner as first step of structural analysis 

A 3D laser scanner survey was carried out by the authors on a typical 

Renaissance historical Palace in Ferrara (see Mallardo et al., 2008). A 

digital survey was carried out by using a 3D laser scanner equipment, that is 

Leica HDS Cyrax 3000, based on a time-of-flight technology supplying 

1000-1800 points per second with the precision of 5-6 millimeters and 

viewing ranges of up to 360°x270°. 

The data acquisition was mainly focused on the main façade of the Palace 

in order to obtain the geometry representation as well as any important 

structural information (lack of verticality, presence of holes, etc.). Some of 

the results from the 3D survey campaign are shown in Figure 1. The scan of 
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the façade was carried out by means of three stations (located at the centers 

of each third of the façade length) and with a two-fold accuracy (5 x5 cm 

and 2.5 x 2.5 cm grids). The façade is 70 m long and 12 m high. 

 

     

Fig. 1 – Dot clusters  of the courtyard (right) and of the main façade (left) 

 

The 3D-laser-scanner output needed to be processed iteratively in order to 

provide a 3D CAD geometrical model to be used in the F.E. context. The 

issue was more simple when the main façade was investigated. In fact, it 

was easier to build a plane model from the laser scanner output.  
 

 

 

 

 

 

 

 

 
 

Fig. 2 – (Left from the top): Equivalent frame model (F), Adina 2D mesh (C), 

Homogenized limit analysis discretization (L). (Right ): Global structural response. 

 

A seismic analysis was then carried out on the wall to measure its 

vulnerability. Three approaches were used: equivalent frame model (F), 

inelastic plane stress model (C) and a homogenized limit analysis (L). Mesh 

adopted and global numerical results are depicted in Figure 2. 
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It must be pointed out that both steps, from laser scanner data to CAD 

format and from CAD format to the structural analysis, required many men-

hours to be carried out as classical discretisation strategies were adopted. 

A similar approach was carried out in the analysis of the Nativity Church 

in Bethlehem in the years 2009-2012 (see Alessandri and Mallardo, 2012 

and Alessandri et al., 2012). Such a study was mainly aimed at investigating 

the structural safety level of the Church with special attention to its seismic 

vulnerability and to the roof wooden trusses, the latter deeply damaged by 

copious rainwater infiltrations. 

 

     

Fig. 3 – (Left): Snapshot of the laser scanner survey. (Right): Three-dimensional view of 

the Church obtained by the laser scanner survey. 

 

The laser scanning survey (see Figure 3) was useful to obtain a detailed 

measurement of the geometry of the main wall, that is the wall bearing the 

roof and transferring its weight to the columns below, the precise 

acquisition of the dimensions of the roof wooden elements (see Figure 4-

left), and the accurate survey of the complex system of underground 

grottoes. The whole data were obtained by selecting 110 different scanner 

positions and by using a 3D High Definition Laser Scanner Leica, model 

HDS3000 (grid varying from 5x5 to 10x10 cm, with some focus of 2.5x2.5 

on special areas). 

The above data allowed to get the correct value of the structural safety 

level of the wooden beams as it was enriched by any area variation along 

the main axis and by the presence of defects and knots. Such an analysis 
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allowed to design a less invasive intervention solution as the geometry 

definition had no uncertainties, thus minimising the wood parts to be 

replaced. 

The laser scanner data acquired from the main wall (with a grid of 2.5 x 

2.5 cm and two different stations on each side of the wall) produced the 

description of the out-of-plane effects on the internal surfaces depicted in 

Figure 4-right. It was thus possible to measure the amplitude of the out-of-

plane difference between the top and the bottom, that is 26 cm, and to keep 

such a difference into account in the structural safety analysis of the seismic 

out-of-plane mechanisms. The out-of-plane leaning was around 3.3% of the 

height of the wall ( 8 m), but more than a half was concentrated in the first 

top 4 meters thus providing a slope of around 5%. It is worthy to observe 

that a similar approach was carried out in Barbieri et al., 2013 to investigate 

the magnitude of the inclination of the longitudinal walls of a historic 

masonry building in Italy. 

 

     

Fig. 4 – (Left): Snapshot of the laser scanner survey of the roof beams. (Right): Contour 

plot of the y-position. South wall as seen from the nave. 

 

The laser scanning survey found its best application in the survey of the 

underneath grottoes (see Figure 5). The absence of finings and the well-

known high complexity in the alternative manual mapping, make the laser 

scanning an excellent alternative. The output data were obtained with 25 

different stations and a grid of 10x10 cm as the required detail was rather 

coarse. 
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Fig. 5 –Plan of the grottoes under the Church. 

 

The data were useful to perform the structural analysis of some 

meaningful 2-D sections of the grottoes and to provide a more realistic 

measure of the safety level in the areas of the Church subjected to the 

highest crowding of pilgrims. 

3  Laser scanner as nondestructive monitoring tool 

Most of the work dealing with the intersection between laser scanning and 

structural analysis is focused on the geometry acquisition and on the 

procedures to carry out to import the data in any structural software. As a 

matter of fact, structural monitoring would benefit from a long-term laser 

scanner acquisition, but the applications of laser scanning to structural 

monitoring are very few. 

In (Bednarz et al., 2014), for instance, three scans of the interior of a 

presbytery church were generated in three different years (2009, 2011 and 

2013) but at the same day and at similar temperature/humidity conditions. 

The merging of the three scans provided a basis for analysis of the direction 

of displacement of vault and walls. In (Barbieri et al., 2013) some (laser-

scanner) measurement campaigns were carried out between 2005 and 2007 

to monitor the inclination of some longitudinal walls. 

 



58 

 

Fig. 6 –A vertical section provided by the laser scanner acquisiton system. 

 

A very recent application of the authors had a similar objective. The issue 

was to provide shape and amplitude of the vertical displacement of some 

horizontal plates in a typical two-floor masonry building in Ferrara. These 

horizontal plates were designed to bear their weight (tiles, mortar, etc.) and 

the live load. They were formed by a system of one-direction wooden beams 

(70 cm spacing) supporting a reinforced (6 mm steel net) concrete slab (6 

cm thickness) connected to the beams by bolted triangle trusses. 

Some visible crack lines had occurred in the tiles of the horizontal slab 

and the goal of the investigation was to focus on the causes of such cracks, 

i.e. if related to the structural deflection or to the incorrect laying of tiles 

and/or underneath substrate. 

A laser scanner survey was performed in all the rooms of the building and 

the acquired data were merged in order to provide meaningful vertical 

sections (see an example in Figure 6). The cloud of points was first 

amplified (see Figure 7-top) and then averaged in order to replace them with 

lines (see Figure 7-bottom). The final drawing represented the actual 

position of the bottom external surface of the beams bearing the slab. As the 

wooden beams were supported at their extremes by thick masonry walls (in 

Figure 7 located at the intersection with the vertical line), such lines 

provided a visual representation of the typical vertical deflection of simply-

supported beams. 
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Fig. 7 – Amplification and lining of the vertical section. 

 

The same procedure was also applied to the upper surface of the slabs. 

The final lines were able to give the exact vertical position of the tiles along 

more sections and, thus, to provide some suggestions on the influence of the 

tile laying phase on the crack occurrence. 

 

4  Conclusions 

Nowadays the laser scanner is a geometry acquisition tool that has been 

experienced many times in conjunction with the structural analysis. Some 

applications of the authors were described and commented. Still much work 

is necessary to improve the filtering steps between the cloud of points and 

the final structural model. A recent step forward has been carried out thanks 

to the isogeometric approach that would optimize the CAD-CAE step, but 

no recent breakthrough can be recalled to sort the cloud-olf-point-CAD step 

out. On the contrary, the technique may have interesting developments in 

structural monitoring and nondestructive testing. Some experiences of the 

authors in this field were also presented. 
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Abstract. The study of masonry mechanics and the modelling of masonry 

structures requires a methodological approach radically different from the 

ones used for metallic and concrete structures. The main criteria adopted for 

the design of the latter, such as strength, stiffness and elastic stability, have a 

minor role when dealing with masonry structures. Even if this peculiar 

behaviour, confirmed though a careful historical critique by several authors, 

such as Heyman with his seminal work of 1966, followed in the 80’s and 90’ 

by Di Pasquale, Como, Benvenuto, Huerta, is rather evident, this point of 

view is far from manifesting itself among structural architects and engineers. 

Indeed the theory of Heyman, giving a modern turn to the old approach to 

masonry design by means of clear cut simplifications, is in sharp contrast 

with the sophisticated constitutive theories made possible by Finite Element 

methods and the use of super-computers. In these notes, the basic ingredients 

of a new method based on unilateral equilibrium and rigid block kinematics, 

which may allow the implementation of Heyman’s model for masonry on a 

computer, is introduced. In particular we describe a simple method based on 

energy minimization allowing the evaluation of the combined effect of loads 

and settlements on real masonry structures.  

Key words: masonry structures, unilateral constraints, unilateral materials, 

multi-body structures, contact and friction. 

1   Introduction  

The work of Antonio Ercolano. The scientific work of Antonio 

Ercolano, dedicated mainly to structures subjected to unilateral constraints 
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[1], or composed of unilateral materials [2], structures composed of rigid 

blocks in mutual unilateral contact among each other, in static conditions 

[3], and to the modelling of unilateral block dynamics [4], belongs to the 

research branch on masonry structures put forward, in the 80’ and 90’ by a 

group of  researchers of the Neapolitan school of structural mechanics, 

among which it had a stimulating and inspiring role. The present work, in 

which a simple energy approach to the study of the statical and kinematical 

problem for masonry structures is introduced, touches three out of the four 

above mentioned topics, namely: unilateral constraints and structures, 

unilateral materials, rigid blocks in mutual unilateral contact. 

Peculiarities of masonry behaviour. In the last decades, the study of the 

old technical literature and an attentive reconsideration of the old 

construction techniques and design rules, allowed to rediscover an almost 

lost code of conduct for masonry constructions. In this respect, the 

individuals which gave the more important contribution to this 

rediscovering were Jaques Heyman, with a series of works originating from 

the seminal paper [5] of 1966, whose title is “The stone skeleton” (and later, 

with the monography [6] by the same title), and Santiago Huerta, with a 

number of works originating from his doctoral thesis of 1992, and among 

which the cutting paper [7] by the provoking title “Galileo was wrong”, 

stands out. The main message of Heyman’s theory is that masonry 

structures are essentially unilateral and that the theorems of limit analysis 

can be used to assess their stability. 

Although in the more historical and theoretical restoration literature a 

constant growth of sensibility toward less invasive and more attentive 

technics and procedures for masonry retrofitting can be acknowledged, in 

most of practical applications, still an inertia in recognizing and accepting 

the diversity of masonry behaviour still persists. Also building codes (such 

as the Eurocodes) often appear imprisoned by the schematism of the elastic 

approach, proposing models which appear as simply translated from framed 

structures of concrete and steel to masonry. 

The original structural approach here proposed, following in the steps of 

Heyman and Huerta, has been the object of study of a group of researchers 
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of the University of Salerno and Napoli, among which I played a leading 

part (see for example [8], [9], [10] and the references therein). The main 

object of the research of this group is the implementation of numerical 

methods based on the unilateral model for masonry, through computer codes 

allowing to predict the effect of forces and settlements, and assess the safety 

of real structures. 

Quality of masonry. It is worth pointing out that Heyman’s model 

applies to structures composed of masonry elements having the quality of 

masonry, that is built with the rules of art and whose building blocks have a 

sufficient integrity. Indeed masonry is not a bunch of blocks arranged 

randomly, but rather a collection of well-organized elements (bricks, stones, 

voussoirs) disposed in such a way to avoid sliding. There are essentially two 

tricks to obtain this goal: friction and interlocking.  

Friction precludes sliding on planar joints where large compressive 

forces are present (horizontal planes in solid walls).  

Interlocking prevents sliding on interfaces where there are feeble or no 

compressive forces (vertical planes in solid walls). 

Such tricks are those allowing for the construction of vertical walls and 

pillars and guarantee the applicability of the theorems of limit analysis. 

 If we make stupid masonry structures (say a wall with vertical joints or 

with scarce interlocking) they may collapse even if a compressive 

equilibrium state exists, that is, for them, the theorems of limit analysis do 

not apply. 

Heyman’s model. Once the quality of the structure, namely the correct 

execution of the masonry apparatus, is granted, it is possible to proceed to 

the analysis of such masonry structure as composed of macro-elements, on 

adopting a simplified model based on Heyman’s assumptions: masonry has 

no tensile strength, it is infinitely resistant in compression and does not slide 

along fracture lines. This model can catch the essential aspects of masonry 

behaviour and, overcoming the difficulties connected with the mechanical 

description of brittleness and friction (on introducing the no-tension/no-

sliding assumptions), allows for the application of the theorems of limit 
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analysis, bringing back the study of masonry structures within a 

consolidated framework. 

2   Statics of rigid No-Tension bodies 

2.1   Constitutive restrictions  

The model of Heyman can be generalized to 2d continua, on introducing 

unilateral material restrictions on the stress and convenient assumptions on 

the latent strain, that is on the anelastic deformation necessary to sustain the 

unilateral constraint on stress. 

A 2d masonry structure S, is modelled as a continuum occupying the region 

Ω of the Euclidean space ℰ�. The stress inside Ω is denoted � and the 

displacements of material points � belonging to Ω is denoted �. Restricting 

to the case of small displacements and strains, the infinitesimal strain � is 

adopted as the strain measure. 

The so-called Normal Rigid No-Tension (NRNT) material is defined by the 

following restrictions:  

 

 � ∈ 	
��  , � ∈ 	
��  ,   � ∙ � = 0  ,  (1) 

 

	
�� , 	
��  being the mutually polar cones of negative semidefinite and 

positive semidefinite symmetric tensors. 

Restrictions (1) are equivalent to the following conditions (called normality 

conditions):  

 

 � ∈ 	
��  ,   �� − �∗� ∙ � ≥ 0  ,   ∀ �∗ ∈ 	
��  ,  (2) 

 

and, dually, to the conditions, called dual normality conditions, listed below  
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 � ∈ 	
��  ,   �� − �∗� ∙ � ≥ 0  ,   ∀ �∗  ∈ 	
��  . (3) 

 

The restrictions defining the NRNT material in the particular form (2), are 

the essential ingredients for the application of the theorems of Limit 

Analysis (see [11], [12]). 

2.2   The boundary value problem 

The equilibrium of a 2d masonry structure, modelled as a continuum 

composed of NRNT material subject to given loads and settlements, can be 

formulated as a Boundary Value Problem (BVP), in the following form. 

 

“Find a displacement field �, the associated deformation �, and a stress 

field � such that 

 

 � = �
� ��� + ���� , � ∈ 	
�� , � = � �  �  !"#  , (4) 

 

 $%& � + ' = 0  ,   � ∈ 	
��  ,   �( = ) �  �  !"*  , (5) 

 

 � ∙ � = 0   , (6) 

 

where ( is the unit outward normal to the boundary and !", and !"# , !"* 

is a fixed partition of the boundary into the constrained and loaded parts. 

On introducing the set + of kinematically admissible displacements, and the 

set ℋof the statically admissible stresses, defined as follows: 

 

 + = -� ∈ 	  /  � = �
� �∇� + ∇��� ∈ 	
�� &   � = � �  �  !Ω# 1  , (7) 

 

 ℋ = 2� ∈ 	3 / $%&� + ' = 0   ,   � ∈ 	
��   , �( = ) � �  !Ω* 4  , (8) 
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in which 	, 	′ are two suitable function spaces, a solution of the BVP for 

NRNT materials, is the triplet ��°, ���°�, �°� such that �° ∈ +, �° ∈ ℋ, 

and �° ∙ ���°� = 0. 

2.3   Regularity of stress and strain: singular fields 

Concentrated strain and stress. For NRNT materials, it is possible to 

admit that strain and stress are bounded measures. Bounded measures can 

be decomposed into the sum of two parts 

 

 � = �7 + �8  ,  � = �7 + �8  , (9) 

 

where �. �7 is the part that is absolutely continuous with respect to the area 

measure (that is �. �7 is a density per unit area) and �. �8 is the singular part. 

On admitting singular strains and stresses, it is possible to admit that both 

the displacement � and the stress vector ) be discontinuous. The stress 

vector is the contact force transmitted across a surface of unit normal (, 

and, in Cauchy’s sense, is related to the regular part of the stress through the 

relation ) = �7(.  

Displacement jumps. If the displacement vector exhibits a jump 

discontinuity across a regular curve Γ, on such a curve the strain is 

concentrated, namely is a line Dirac delta whose amplitude coincides with 

the value of the jump of � across Γ. Denoting :, ( the unit tangent and the 

unit normal to Γ, and calling Ω�, Ω�  the two parts on the two sides of Γ, Ω� 

being the part toward which ( points, the jump of � on Γ can be denoted as 

follows 

 

 ;�< = �� − ��  , (10) 

 

and decomposed into tangential and normal components: 

 

 ;�< = = : + & (  , = = ;�< ∙ :  , & = ;�< ∙ (  . (11) 
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Denoting >�Γ� the unit line Dirac delta with support on Γ, the concentrated 

strain on Γ, taking into account the relation defining the infinitesimal strain 

in terms of the displacement: � = �
� ��� + ����, and the material 

restrictions on strains for NRNT materials, takes the form  

 

 � = & >�Γ� ( ⊗ (  ,   & ≥ 0  , (12) 

 

since, taking into account the restriction � ∈ 	
��, it must be 

 

 = = 0  , (13) 

 

That is, the two parts Ω�, Ω� may separate but cannot penetrate each other, 

and the sliding = along Γ must be zero.  

Stress vector jumps. If the stress vector exhibits a jump discontinuity 

across a regular curve Γ, on such a curve the stress is concentrated, namely 

is a line Dirac delta whose amplitude P is related to the jump of ) across Γ. 

Recalling the definition introduced above for :, (, on adopting the previous 

notation the jump of ) across Γ can be denoted as follows 

 

 ;)< = )� − )�  , (14)   

 

and decomposed into normal and tangential components 

 

 ;)< = @ : + A (  , @ = ;)< ∙ :  , A = ;)< ∙ (  . (15) 

 

Denoting >�Γ� the unit line Dirac delta with support on Γ, the stress 

concentrated on Γ, taking into account the balance equations $%&� + ' = 0, 

and the material restrictions for NRNT materials, takes the form  

 

 � = B >�Γ� : ⊗ :  , B3 + @ = 0  , BC + A = 0  ,   B ≤ 0  ,   (16) 
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where C is the curvature of the line Γ and B3 is the derivative of B with 

respect to its argument, namely the arc length along Γ. The amplitude P of 

the concentrated stress represents a concentrated axial contact force acting 

along the 1d substructure Γ. The last relation in (16) says that such a force 

must be compressive. 

3   Energetical formulations of the BVP for NRNT materials 

3.1   The kinematical problem and the equilibrium problem.  

The BVP for  NRNT materials can be decomposed into two parts: the search 

of a displacement field belonging to +, and the search of a stress field 

belonging to ℋ. The first problem is named Kinematical Problem (KP) and 

the second problem is called Equilibrium Problem (EP). The two problems 

are coupled only through condition (6), and can be taken up independently. 

If the solution of the BVP is attacked considering first the KP and taking as 

primal variable the displacement, then we say that a displacement approach 

is adopted. If, instead, the EP is considered first, by taking the stress as the 

primal variable, then we say that a force type approach is followed.  

Compatibility of force and displacement data. First of all, it is to be 

pointed out that both the KP and the EP can be incompatible, in the sense 

that the displacement or the load data could be given in such a way that the 

set +, or the set ℋ, are empty. In particular, the compatibility of the EP is 

an issue involved in the theorems of Limit Analysis. Such theorems, dealing 

with the possibility or the impossibility of collapse, can be viewed as 

follows: the safe theorem as a definition of compatible loads, and the 

kinematical theorem as an indirect way to assess the incompatibility of the 

loads. 
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3.2   Displacement approach: minimum of the potential energy. 

 Dealing with the solution of a BVP for the unilateral material that we 

consider with a displacement approach, under the preliminary assumption 

that both the KP and the EP are compatible and non-homogeneous, the 

problem arises of selecting, among the infinitely many admissible 

displacement fields, that (or those) to which a statically admissible stress 

field, such to satisfy the zero-dissipation condition (6), can be associated. 

The idea is to seek, among all the kinematically admissible displacement 

fields, a possible solution of the BVP, by minimizing the total potential 

energy of the system. For NRNT materials the total potential energy reduces 

solely to the potential energy ℘ of the given contact and body loads. 

Then the minimum problem can be formulated as follows: 

“Find the displacement field �° ∈ + such that  

 

 ℘��°� = min�∈+ ℘���  , (17) 

 

where 

 

 ℘�I� = − J K̅MNO
 ∙ I $P − J Q ∙ I daN   , (18) 

 

is the potential energy of the given external loads. 

 

Minimum of ℘ and equilibrium. The proof of existence of the minimizer 

�° of ℘��� for � ∈ +, is a complex mathematical question. Due to the poor 

regularity of the admissible functions, this proof requires sophisticated tools 

of mathematical analysis, and is well beyond the scopes of the present 

paper, devoted to more mechanical aspects of masonry equilibrium. 

What it is possible to show, by using only elementary tools of calculus, by 

making the preliminary assumption that the settlements are compatible 

(+ ≠ ∅�, is that: 

1. If the load is compatible (that is if ℋ ≠ ∅), the functional ℘��� is 

bounded from below. 
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2. If the triplet ��°, ���°�, �°� is a solution of the BVP, it corresponds 

to a weak minimum of the functional ℘���. 

Proofs. 

1.  If the load is compatible, then there exists a stress field � ∈ ℋ, 

through which the functional ℘���, defined on +, for each � ∈ +, 

can be rewritten as follows 

 

 ℘��� = − J )VWNX
 ∙ � $P − J ' ∙ � $Y = N  

 

 J )���WNZ
 ∙ �� $P − J � ∙ ����$YN  , (19) 

 

in which )��� denotes the trace of � at the boundary. On assuming 

that the displacement assigned on the constrained part of the 

boundary are sufficiently regular (say continuous), since )��� is a 

bounded measure, the integral J )���WNZ
 �� $σ is finite; and since 

� ∈ 	
�� & � ∈ 	
��, then the volume integral term in the right 

hand side of (19) is non negative and ℘��� is bounded from below. 

2. If ��°, ���°�, �°� is a solution of the BVP, then, for any � ∈ +, one 

can write: 

 

 ℘��� − ℘��°� = − J )VWNX
 ∙ �� − �°�$P − J ' ∙ �� − �°�$Y = N  

 

 J �° ∙ \���� − ���°�] $YN  . (20) 

 

The result: ℘��� − ℘��°� ≥ 0  , ∀� ∈ +, follows from the dual 

normality condition (3). ∎ 

The physical interpretation of the previous result is the following. Since the 

displacement solving the BVP corresponds to a state of weak minimum for 

the potential energy, then it is, at least, a state of neutral equilibrium (that is 
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not unstable), in the sense that the transition to a different state requires a 

non-negative supply of energy.  

Remark 1. On the basis of the minimum principle, if the EP is compatible 

and the KP is homogeneous, then the constant displacement field: � = _ is 

a possible minimizer. Indeed, in this case, one can write:  

 

 ℘��� = − J )VWNX
 ∙ � $P − J ' ∙ � $Y = N − J � ∙ ����$YN  , (21) 

 

� being a generic element of ℋ, certainly existing since, by assumption, ℋ 

is not empty. Since the last member of (21) is always non-negative, then 

℘�_� = 0 is the infimum of ℘, and the displacement field � = _ is a 

minimizer of the potential energy. In this case, any � ∈ ℋ is a legitimate 

solution in terms of stress, since � ∙ ��_� for any �. 

3.3   Force approach: minimum of the complementary energy.  

Dealing with the solution of a BVP for the unilateral material that we 

consider, with a force approach, again under the preliminary assumption 

that both the KP and the EP are compatible and non-homogeneous, the 

problem arises of selecting, among the infinitely many admissible stress 

fields, that (or those) to which a kinematically admissible displacement 

field, such to satisfy the zero-dissipation condition (6), can be associated. 

The idea is to seek, among all the statically admissible stress fields, a 

possible solution of the BVP, by minimizing the complementary energy of 

the system. For NRNT materials the form of complementary energy to be 

minimized is the sole complementary energy ℘c associated to the given 

settlements. 

Then the minimum problem can be formulated as follows: 

“Find the stress field �° ∈ ℋ such that  

 

 ℘c��°� = min�∈ℋ ℘c���   ,” (22) 

in which 
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 ℘c�I� = − J K�a� ∙ �� $PMNb
  , (23) 

 

is the complementary energy associated to the given settlements. 

 

Minimum of ℘c and compatibility. Leaving to more mathematical works 

the proof of existence of the minimum �° of ℘c��� for � ∈ ℋ, what can be 

easily shown, on assuming preliminarly that the EP is compatible (i.e. 

ℋ ≠ ∅�, is that: 

3. If the settlements are compatible (that is if + ≠ ∅), the functional 

℘c��� is bounded from below. 

4. If the triplet ��°, ���°�, �°� is a solution of the BVP, then it 

corresponds to a weak minimum of the functional ℘c���. 

Proofs. 

3.  If the given settlements are compatible, then there exists a 

displacement � ∈ +, through which the functional ℘c���, defined 

on ℋ, for any � ∈ ℋ, can be rewritten as follows 

 

 ℘c��� = − J K�a� ∙ �� $PMNb
= 

 

 = J )VWNX
 ∙ � $P + J ' ∙ � $Y N − J � ∙ ����$YN  , (24) 

 

In which )��� denotes the trace of � along the boundary. Taking 

into account that � is a function of Bounded Variation, on assuming 

that the given surface and body loads have enough regularity (say 

continuity) for the first two products in the last member of (24) to be 

summable, the integral J )VWNX
 ∙ � $P + J ' ∙ � $Y N  is finite; 

therefore, since � ∈ 	
�� & � ∈ 	
��, the volume term in the last 

member of (24) is non-negative, then ℘c��� is bounded from below. 

4. If ��°, ���°�, �°� is a solution of the BVP, then, for any � ∈ ℋ, one 

can write: 

 



 ℘c���
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represented by uniaxial deformations of pure detachment, linearly variable 

along such lines. The stress field represented in Figure 2b consists of 

singular and regular parts. The regular part of stress, that is a uniaxial 

compressive stress directed vertically, produces a jump discontinuity of the 

stress vector across the curve represented with a solid black line in Figure 2 

b. Such a discontinuity is balanced by the singular part of the stress, a 

concentrated uniaxial stress having the form (16)
1
, tangent to such a curve, 

and satisfying the balance equations (16)
2
, (16)

3
: a concentrated axial stress 

of intensity B, acts along the curve, forming a so-called line of thrust. Such 

a line of thrust transmits concentrated forces to the hinges, producing a 

thrust force at the boundary and a horizontal force at the key hinge. The 

internal work of the statically admissible stress field depicted in Figure 2b, 

for the strain associated to the displacement field represented in Figure 2a, is 

zero, therefore these two fields represent a possible solution of the BVP. 

Solution derived through the energy formulations. The solution of the 

trivial problem shown in Figure  1, is here reconsidered through the energy 

approach, as a way to show, on a simple example, how the energy criteria 

introduced in Section 3 can be used to generate approximate strategies to 

solve equilibrium problems for masonry-like structures. The analysis of this 

simple problems allows also to enlighten, within an easy context, some 

peculiar characteristics of the two approaches.  

By attacking the problem with a displacement approach, an elementary 

approximation of the KP is obtained by considering a piecewise rigid 

displacement with support on two rectangular blocks. Restricting to the case 

in which the two blocks are fixed and coincide with the two rectangles 

obtained by dividing the domain along the vertical symmetry axis, the 

unknowns of the problem reduce to the six rigid displacement parameters of 

the two blocks. Choosing as poles of the rigid displacement the lower 

external vertices (A, C) of the two blocks, and restricting to symmetrical 

displacements, the kinematical conditions at the internal and boundary 

interfaces, accounting for the material kinematical restrictions, can be 

written, in terms of the components of horizontal translation u, vertical 
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translation v and rotation φ about the pole A (say C for the assumed 

symmetry), as follows: 

 

 & = 0 , c ≥ 0  , c ≤ η , c − φ d ≥ 0 , c − φ d ≤ η   . (26) 

 

The potential energy (18), taking into account  equation (26)
1
, reads 

 

  ℘�c, φ� = − efg

�  φ  . (27) 

 

The minimization problem (17) reduces, in this approximated context, to 

a trivial minimization problem for the linear function (22) under the side 

linear constraints (26). Such a problem can be represented graphically as 

shown in Figure 3 a. From Figure 3a, it is deduced that the values u=η and 

φ=η/L correspond to the minimum of the potential energy. Such values 

correspond to the mechanism depicted in Figure 2a. 

For what concerns the force approach, restricting to stress fields of the 

type represented in Figure 2b, namely fields composed of a regular uniaxial 

part and of a singular part with support on a curve passing through three 

points A, B, A’, the complementary energy can be written in terms of the 

position of these three points. Restricting to symmetric curves, denoting yA, 

yB the variable y-coordinates of the points A (A’) and B having fixed 

abscissae L (-L) and 0 respectively, taking into account equations (16)
2
, 

(16)
3
, one obtains: 

 

 ℘c�
k, 
l� = @ d� / 2 �
l − 
k�   . (28) 

 

Such a function has to be minimized under the condition that the y-

coordinates belong to the interval [0, L] and with the constraint 
l > 
k, 

ensuring that the axial force is finite and compressive. From the graph of 

Figure 3b it is deduced that the minimizer is yA = 0 , yB = L, corresponding 

to a value of the complementary energy of  
efη

�   . 
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a b 

Fig.3 - In (a): contour plot of the potential energy ℘�c, φ� = − pqg

�  φ  normalized with 

respect to  
pqη

�   as a function of the normalized variables  c° = r
η

  (horizontal axis) , φ° = φ f
η

  

(vertical axis). From the graph it is deduced that the minimizer is u=η and φ=η/L, 

corresponding to the value of energy − pqη

�   .  In (b): plot of the complementary energy as a 

function of yB (for yB >yA) for various values of yA (from left to right: yA={0, 0.1, … , 0.9}).  

The positions yA, yB are normalized with respect to L and the value of energy is normalized 

with respect to pLη . From the graph it is deduced that the minimizer is yA = 0 , yB = L, 

corresponding to a value of complementary energy of  
pqη

�  . 
 

In conclusion, both the displacement and force approaches indicate as the 

minimal solution the same state, that is the one depicted in Figure  2a and b. 

5   Numerical approximation of the displacement approach: rigid 

blocks 

The approximate solution of the minimum problem (17) generated by 

restricting the search for the minimum to the restricted class +e7 of 

piecewise rigid displacements, is considered. This infinite dimensional 

space is discretized on considering the partition  
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 �Ωt�t∈2�,�,..,u4  , (29) 

 

of the domain Ω into a finite number v of rigid pieces, such that 

 

 ∑ B�Ωt� <u
ty�  ∞  , (30) 

 

B�Ωt� denoting the perimeter of the piece Ωt. In particular, on restricting to 

polygonal elements, the boundary !Ωt of Ωt, is composed by segments Γ, of 

length ℓ, whose extremities are denoted 0,1.  

The segments Γ, which are either the common boundary between elements 

or between elements and the constrained part of the boundary, are called 

“interfaces”. 

On denoting +e7u  the finite dimensional approximation of +e7 generated by 

the partition (29), the following minimum problem is considered 

 

 ℘��|� = min�∈+}~� ℘���  . (31) 

 

To represent a generic displacement � ∈ +e7u  , one can consider the vector 

��  of 3v components represented by the 3v parameters of rigid 

displacement of translation and rotation of the v elements. These 

parameters are restricted by the assumption that the strain must be positive 

semidefinite. For piecewise rigid displacements the deformation is 

concentrated on the intefaces (that is on the segments Γ), and, recalling (12), 

assumes the form: 

 

 � = & >�Γ� ( ⊗ (  , (32) 

 

where 

 

 & = ;�< ∙ ( ≥ 0  . (33) 

 

Therefore, on the segment Γ, besides the unilateral restriction (33), also the 

following condition 
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 = = ;�< ∙ : = 0  , (34) 

 

must be enforced. 

Notice that conditions (33), (34), descending from the normality assumption 

(2), represent unilateral conditions of contact without sliding on the 

interfaces Γ. 

The static counterpart of (33), (34) concerns the stress vector ) acting on the 

interfaces (both the internal and the external).  

Such a stress vector represents the reaction associated to the constraints (33) 

and (34), transmitted among the blocks and among the blocks and the soil. 

The stress vector coincides with the given tractions )V, where the boundary 

of the blocks represents the loaded boundary. On denoting 

 

 � = ;)< ∙ (  , � = ;)< ∙ :  , (35) 

 

The normal and tangential components of the stress vector along Γ, the 

condition to be imposed on ) is 

 

 � ≤ 0  . (36) 

 

Notice that the tangential component � of ) is not restricted and can be non-

zero also if on Γ one has: � = 0. 

Denoting � the total number of interfaces Γ, and &�0�, &�1�, =�0�, =�1� the 

normal and tangential components of the relative displacement across Γ , of 

the ends 0, 1 of the segment itself, the restrictions (33), (34) are equivalent 

to the 2� inequalities  

 

 &�0� ≥ 0 , &�1� ≥ 0  , (37) 

 

And to the 2� equalities 

 

 =�0� = 0 , =�1� = 0  . (38) 
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The restrictions (37), (38) can be expressed in terms of the components of 

�� , and rewritten in the matrix forms 

 

 � ��  ≥ 0  , (39) 

 

 � �� = 0  . (40) 

 

Finally, the minimum problem (26), approximating the minimum problem 

(17), takes the form 

 

 ℘\�� _] = min��∈�� ℘\��]  , (41) 

 

in which �u is the set 

 

 �u = 2�� ∈ ℛ�u / � ��  ≥ 0  , � �� = 04  . (42) 

 

Remark 2. The minimization problem (41) here proposed to approximate 

the minimum problem (17), transforms the minimum problem (17), 

formulated for a continuum, into a minimization problem for a structure 

composed by a finite number of rigid elements in mutual unilateral contact 

among each other.  

Problem (41) is a standard problem of Linear Programming, since the 

function ℘\��] depends linearly on the 3M-vector ��  and the side constraints 

are linear. The existence of the solution of the approximate problem is 

trivially assured, if the exact functional is bounded from below (see (19)). 

For a limited number of variables (say less than 10
3
) the problem can be 

solved effectively with the simplex method (see [13]), for larger size 

problems (up to 10
6
/10

7
 unknowns and sparse matrices � and �) there exist 

a number of efficient approximation alternatives (see [14], [15]). 
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6   Application of the displacement approach to a real case 

The numerical method based on the displacement approach proposed to 

approximate the BVP for NRNT masonry materials, implemented with the 

program of symbolic calculus Mathematica, is here applied to a simple 

example in order to simulate the fracture pattern in a real old building. This 

masonry construction, due to an evident foundation settlement, exhibits a 

widespread cracking on its main façade (Figure 4a).  

In the simulation, the main façade, loaded by its self-weight, is discretized 

into 7364 triangular elements (Figure 4b).  
 

 
a 

 

       
 

 
b 

Fig.4 - Façade of a XVII century building in Bergamo, presenting an extensive cracking 

due to an evident differential settlement of the foundation. In (a) front view and crack 

pattern; in (b) discretization of the wall into triangular elements. (Redrawn from the site of 

the Fireworkers of Bergamo. Courtesy of Paolo Faccio) 
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The effect of a differential settlement of the right part of the foundation is 

considered. The analysis is restricted to the right part of the structure, on the 

right side of the vertical line depicted in Figure 4b, and represented in 

Figure  5a.  

 

         

Fig.5 - Real crack pattern and result of the analysis. 
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The piecewise rigid displacement field, with support on the triangular 

elements, produced by the settlement is obtained by minimizing the 

potential energy ℘\��] with respect to the generalized displacement �� , as 

described in Section 5. 

Due to the high number of elements and conditions, to solve numerically 

problem (41), the approximate Linear Programming method known as 

“Interior-Point” method, has been adopted 

 

 
 

Fig.6 - Mechanism produced by a foundation settlement in the discretized structure of 

Figure 4b. The deformed and the original configurations are shown superimposed one on 

top of the other. 

 

The optimal profile of the given settlement, controlled by three parameters, 

was obtained by executing a parametric analysis for various runs of the 

program on the grid of possible values of the parameters. In Figure 5, the 

solution corresponding to such optimal profile is shown for comparison, 

side by side, with the drawing of the real crack pattern. In Figure 6, the 

original and the deformed configuration, obtained by amplifying three times 

the magnitude of the displacements, are reported superimposed one on top 

of the other. 
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7   Conclusions 

In the present work, a computer code for the prediction of fracture patterns 

produced by a given set of kinematical data (settlements/distortions) is 

proposed and developed. 

In practical applications to real structures, the main critical issue of a 

fracture survey is identifying the particular form of foundation settlements 

producing the detected crack pattern. 

The computer program here proposed, represents a deterministic tool 

enabling to find the mechanism and the fracture pattern due to known 

kinematical data, in a structure composed of rigid pieces in mutual unilateral 

contact. 

In this work, we apply the method to two real examples. Based on the 

results we obtain for these two examples of different complexity, we can say 

that the method is able to reproduce satisfactorily the size, the number and 

the location of the rigid macro-blocks in which the structure decomposes 

when a mechanism forms due to known settlements. A lesser degree of 

correlation is detected concerning the crack path, in particular when the 

orientations of the real cracks are sensibly different from those of the 

element interfaces. 

In the second example, since the exact settlements producing the 

mechanism are not known, we try to identify manually a specific 

combination of simplified settlements over a given set. A number of 

different runs of the program were performed, by varying the relative value 

of the settlements over a specified grid of individual values, choosing the 

combination which gave the “best fit”.  

It goes without saying that a rational identification scheme, based on the 

code that we introduce in the present paper, should be implemented to make 

the method effective in practical applications. The development of such a 

task is outside the scopes of the present paper.  
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Abstract. The behavior of masonry arches structures is studied through the 

homogenizing theory, applying the newest results of symbolic calculation. 

This procedure, based on the solution suggested in 1982 as an extension of 

Castigliano’s theorem, takes advantage of considering the stony ashlar and 

mortar structure as an homogenous, non-tensile resistant body: as a 

consequence, a different reacting configuration will be needed for each load 

multiplier. Thus, it is urged to fix a modified structure, able to contain the 

arch funicular in determining the statically compatible solution to support 

traditional tensile stress methods. This work ends with an analysis on the 

behavior f a well-known existing monumental structure, Saint-Martin Bridge 

upon Lys. 

Keywords: Wall arch, elastic approach, non-linear analysis. 

1 Introduction 

The study of stone arches may be pursued in two different ways. First 

method follows the tensile stress techniques, where simultaneous formation 

of numerous disjoints is assumed to be capable of originating a compatible 

mechanism, according to the second method, the behavior of the structure is 

considered in non-linear regime, through elastic approach. The latter, first 

suggested by Castigliano (1879) more than a century ago, has been 

considered little useful for many years, because of evident difficulty in 

numerical valuation, however, since automatic calculation tools are 

available, this technique was reconsidered, so that, by the end of last 

century, it led to significant numerical results, especially in terms of 

calculation velocity. Recently, thanks to wider employment of symbolic 
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calculation programs, among which Wolfram Mathematica
©

 (2014) is worth 

particular credit, calculation accuracy has been progressively increasing, so 

that non-linear-based problem resolution may be easily pursued. Basically, 

employing resolution procedures based on the method of stresses allows to 

combine the easiness of the mechanism method with non-linear elastic 

analyses, conducted on a modified and deformed structure. Hence, the arch 

is assumed as a set of stony ashlars, pulled together with no embodiment 

mortar intersection. In practice, the arc is assumed with regards to the usual 

hypotheses on a wall material, such as suggested by Heyman, long ago. 

 

Thus, the following hypotheses are accepted: 

1) Infinite stiffness; 

2) sliding failure cannot occur 

3) Stone has no tensile strength 

4) Infinite compressive strength. 

 

Under these hypotheses, failure may only arise due to instantaneous 

formation of such a number of hinges, so that the system becomes 

mechanism. In above mentioned works, Heyman proposed an assessment 

method based on progressive reduction of ashlar thickness. Basically, 

collapse load lowering may be achieved through kinematical admissible 

multipliers: this method suggested by Heyman employs hand-made 

calculations and tables, whereas many authors have introduced automatic 

calculation programs, which allow to draw the line of thrust, starting from 

the arch and following opening hinges positions.  

Obviously, mechanism procedures, suggested by Heyman, were extended to 

cases where some hypotheses had been removed. In the following years, 

many researchers had been introducing new solutions to the arch problem, 

removing some of the previous hypotheses. One of the first results was 

pursued by Franciosi (1980) and Franciosi et al. (1981), where arches are 

studied by taking into account ashlar viscosity effects, or, were in Franciosi 

(1986) displacements of abutments. Recently, Smars (2008) proposed a 

method based on mechanism formation stability domains, under the 
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hypothesis of finite displacements, whereas numerical solutions where 

suggested by employing finite brick-type elements methods, such as in 

Auciello and Ercolano (1997), Ochsendorf et al. (2001,2006), Cavicchi et 

al. (2004, 2005). In other words, many recent researches are able to cope 

with numerous and different practical situations. Anyway, changes provided 

in the elastic method suggested by Heyman are incapable of considering 

instability crises, and, more than that, do not provide information about the 

history of resisting section sharing, neither about position and wideness of 

fissured zones. To overcome these limits, Castigliano (1897) approach may 

be employed. In this work, by following the way led by Castigliano, his 

procedures were adapted and integrated with a well-known homogenization 

technique on the material, whose arch ashlars, together with their mortar 

embodiments, are assimilated to a non-elastic, non-pull-reacting body. The 

structure is so assumed to be made up of an homogenous material, where 

usual structural solution methods can be applied. One issue is to be 

mentioned: according to this procedure, a stiffness largerer than the real one 

is taken into account conceived. As a consequence, compression crisis stress 

so determined is bigger than the actual one, so that, as considering 

negligible pull stress under braking conditions, a safety advantage is 

originated. This method needs the step-by-step knowledge all of the 

geometrical and mechanical characteristics of the structure, so its behavior 

evolution may be monitored till the crisis, as first highlighted by Franciosi et 

al. (1982), Romano et al. (1984), Bridle et al (1990), Hughes et al. (1997). 

2   Homogenization technique  

Let us now consider an ideal stone arch structure, such as in the 

geometrical and loading scheme in Figure 1. The arch is made of a finite 

number of ashlars, linked to each other by mortar joints. Such a scheme is 

very close to reality, especially for monumental arches. 

First operation consists in calculation under the hypotheses of linear-

elastic and no-tension material. In this case, the behavior of the structure 
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depends on the hyperstatic solution of the structure itself. If its material is 

assumed to be isoresistant to any set of three values of hyperstatic 

unknowns, then a statically compatible solution is yielded, as long as it 

respects the three congruence equations. However, in the case examined 

here, material is assumed to be no-tension , so that loads funicular polygon 

is subdued to set in the thickness of the structure, thus resulting into a 

statically compatible solution. No Xi triad may happen to be consistent with 

static compatibility, that’s to say that the shape of the funicular allows no Xi 

triad to enclose it in the arch thickness. 

 

 
Fig. 1 - The masonry arch bridge. 

 

Under this condition, problem solution may be achieved through 

numerics only, so that theoretical considerations linked to solution 

uniqueness and existence shall be left apart, whereas breaking multipliers, 

such as statically admissible coefficients, shall be determined.  
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2.1 Stonework material 

A no-tension material may not exist. As a result, despite its intrinsic 

curves idealization, such a curve should be assumed to be tangent to axis τ, 

so that any Mohr circle, at τ≠0, would disrespect the intrinsic curve in 0. 

Thus, to a by saying “no-tension material”, an ideal behavior is imposed, 

according to which the relation defined in Figure 2 is respected. 

 

 
Fig. 2 - Intrinsic curves idealization, Mohr 

 

Basically, such a material, just like mortar, requires cohesivity, although 

its pullout resistance is poor, and its breaking stretch is almost null. 

2.2   Applied Loads 

Applied actions on the structure are due to weights of the stony elements 

and possible abutments, beside accidental loads, such as load loads, wind, 

thermal variations and seismic actions. 

Limit stresses due to seismic actions are fixed by regulations and 

determined through common procedures in structural dynamics (to which 

readers should refer) , depending on the acceleration imposed by the soil. 

Speaking of which, in order to produce a general as well as simple 
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discussion, acting loads are here idealized and settled in two groups of 

forces, vertical ones and horizontal ones, whose specific calculations should 

be dealt by referring to codes. 

As for the following analysis, in simple terms, the loading distribution is 

given by equation, Fig. 1: 

 

 
1 1 1( ) ( ), ( ).

2
vi p p oi p

k
F Q Q Q Q F k Q Q= + − + = +  (1) 

 

Particular attention should be paid to thermal variations, because of 

monumental structures remarkable stiffness, combined with actions due to 

quakes, as shown by Auciello and De Rosa (1985)  

2.3   Structure resolution 

To start with, valid solution for isorestistant material through congruence 

equations is assumed, and then supported by equivalent isostatic structure 

for hyperstatic unknown quantities calculations. The standard algorithm for 

virtual work is used, given it provides, since the beginning, the problem 

solution, by writing down the usual congruence conditions. In brief, 

unknown quantities are obtained through a linear system to be solved in Xi, 

such as in Figure 3. 

Limit conditions are defined by taking into account the resulting 

equivalent isostatic structure in a formulation such as  

 
A X = b  (2) 

Where A is the deformation matrix, and b the constant term, due to loads. 

A more detailed analysis is discussed in numerous structure mechanics 

textbooks, to which readers should refer. 
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Fig. 3 – Structure resolution. 

2.4   Iterative procedures in modified structure calculation 

In the first phase, the system (Fig. 3) provides hyperstatic unknown 

quantities, and their stresses and tensions, by assuming an isoresistant, 

linear-elastic behavior. Thus, tensile areas are suppressed and a new 

reacting zone is obtained, modified from the former. Hence, congruence 

equations on the new structure are written and procedures are repeated to 

smooth structure variation the one from the other. After the first step, 

procedures require stresses to be known on each section and tensile areas 

suppression changes at each step, until a structure such as in Appendix A is 

obtained. 

Obviously, non-linear procedures come to an end when ith cycle varies 

from the previous according to a tiny control parameter, as common sense; 

in practice, calculations stop when tensile stress reduce beneath a fixed 

value. 

One of the most important issues in the process concerns integration 

methods when deformation matrix is calculated. Franciosi et al. (1982) and 
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Auciello and De Rosa (1985) employ a simple Euler-type integration 

method in their works. Such a choice imposed heavy numerical limitations, 

especially when discretization copes with high values. In this work, function 

integration, which is a cornerstone in congruence equations formulation, is 

easily overcome by employing Gauss integration, best fitting current 

program operative power, in particular employing symbolic calculation 

programs such as Mathematica (Wolfram, 2014). 

 
Fig. 4 - Flow-chart for the calculation of the reagent structure. 

 

When iterations end, actual shape of the reacting arch is determined, by 

knowing all of the compressed arch sections. As a consequence, the 

following phase, consisting in reducing and restoring structure parts, is 

merely computational. Actual loads and geometrical dimensions are not 

modified, as well as acting loads are not changed. Each modified structure 

matches with a load k multiplier, and each value k is associated to a set of 
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three hyperstatic unknown, to fit the actual reacting configuration of the 

arch, so that the funicular polygon may fit into the arch thickness. Such a 

study is then an useful and interesting way to develop new theories based on 

both load funicular shapes and changed thicknesses deriving from Heyman 

approach. In brief, Figure 4 reports the iterative procedures for a modified 

structure calculation, where tensile zones narrow at each step.  

As suggested at the end of the procedures, the Xi triad results to be 

compatible, which means that Xi values may be used as a starting point for 

further stone arches, such as the one suggested by Franciosi et al. (1986), 

where tensions sharing process is not reproduced, whereas wedge 

distorsions are applied. 

Employing the process shown in Figure 4, a computational approach may 

lead to obtain the crisis multiplier, by simple adapting the procedures to 

directly provide the non-linear trend of function mink −σ . In fact, it is easy 

to extend the process depicted in Figure 4 to higher values of multiplier k, as 

long as the crisis multiplier is determined and trend shown in Figure 5 is 

obtained. Numerical examples later discussed will demonstrate that 

increasing values of k produce increasing reduction of arch thicknesses, to 

which an increase in compression stress may be associated. At most, by 

following Heyman’s hypotheses, a stress limit ''
0 →− ∞σ  may be admitted, 

which happens to be an impossible situation to be likely to happen, leading 

to a vertical asymptote coinciding with structure failure k value, as 

computed by Heyman (1966,1969). 

These procedures allow to operate even when multiplers factor reach out to 

crisis values, and guarantee moderate time consumption in calculations. 

3   Numerical results 

3.1   A well-known example: Saint-Martin Bridge arch 

The well known arch of Saint-Martin Bridge upon Lys arch is now 

examined. Its span is L=31.4 m, whereas its rise is f=11.4 m, already studied 
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in the past by the author with other researchers in a work to which readers 

shall refer for geometrical and loading configurations (1982). Unlike the 

study here quoted, in this work, deformation matrix is taken into account, by 

calculating integrals through variable-sampling-point Gaussian method. 

This allows to decrease the discretization interval, resulting into a reduction 

of operative time. Unlike Franciosi et al. (1982) results, here the numerical 

solution will prove to converge even with a poor number of structural 

partitions. By following the flow chart in Figure 4, compatible triads Xi were 

determined, and their corresponding growing parameters k. 

 

 

Fig. 5 - Graph mink −σ . 

 

In Figure 6 reduced thicknesses for a 80-segment structure discretization 

are plotted. Automatic calculations produce collapse multiplier value 

kr=0,1405 , to which a vertical asymptote corresponds to  mink →σ . 
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Fig. 6 - Reduced arc reagent thicknesses t=80; k=0,1405. 

 

On the other hand, Table I reports top compressive stress values, 

compatible hyperstatic unknown quantities triads and minimum-thickness 

reacting section, as a function of loads multipliers. When k is poor, that’s to 

say loads being due to weight only, it may be sensibly assumed that the arch 

had been specifically shaped in order to include the loading funicular, as 

well as the structure showing a poor sharing concentrated in several 

sections. 

A particular issue shall be pointed out: such a circumstance does not 

avoid the reacting structure sharing, which, at the end of the cycle, results to 

be modified. In fact, being k=0, minimum thickness drops down from 0.9 to 

0.6039 m, in several arch sections. Figure 7 plots the trend of mink →σ  

chart. 
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Table 1. Maximum Compression, minimum thicknesses for k increasing. 

 

Readers may easily notice that progressive reduction of the reacting cross 

section thickness may lead, at last, to completely determine the plastic hinge 

positions, due to which failure mechanics arise, once opening hinges 

position is known, limit design method produces the value of collapse 

multiplier, as a result of Heyman geometrical solution; k=0.141. This slight 

difference is mainly due to approximations adopted in these two methods. 

Credit shall then be given to the homogenous technique here introduced, for 

its remarkable computational stability, so that it should be preferred to 

Heyman geometrical-based procedures. 
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Fig. 7 – Graph mink →σ ; Saint Martin bridge. 

3.2   Reinforcement technique 

Franciosi et al. (1982) also analyze stone arch behavior in case of chains 

employment in a structural intervention, where structure sharing needs to be 

reduced. As exhaustively exposed, in seismic conditions, potential 
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introduction of chains produces numerous benefits to the structure, and its 

elements. Obviously, such interventions are appreciated towards action 

which affect the arch-spirnger set, capable of interfering with failure 

mechanics, which tend to modify tie rods application points reciprocal 

displacements. In brief, due to the seism, chains do not modify the arch 

structural problem, but their presence affects springers behavior, on which 

their horizontal actions are applied. 

 

 
Fig. 8 - The reinforced structure; calculation scheme. 

 

On the other hand, issued shall be considered about wheel ropes, placed 

in several spots of the arch and suitably fixed. In this case, springers effect 

is beneficial, as it increases failure multipliers for seismic cases only. 

Despite neglecting merely technical issues, exhaustively discussed by 

Molise Region (2002), the behavior of an arch structure may anyway be 

analyzed, such as in Figure 8. Therein, the structural behavior of arch the 



 

103 

rods is conceived as a result of springers actions concentrated in two 

different section, at height yt =a f , being f the arch rise. 

 

 

Fig. 9 – Graph mink →σ . 

By studying the same roman Saint-Martin Bridge, compatible hyperstatic 

unknown quantities were determined, wheel ropes being assumed to be 

placed on the arch haunches, Xi (i=1..4) being a=1/3. A remarkable increase 

may be noticed in failure multiplier, from kr=0,1405 in an unchained 

structure, to kr=0.185 that corresponds to the tie rod placing; Figure 9.  
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Fig. 10 - Reduced arch reagent thicknesses, t=80; k=0,185. 

 

Except two opening hinges, the other two opening displace towards 

springers position, close to sections 23-25 and 50-55, Figure 10. Knowing 

opening hinges position allows to calculate kinetically admissible multiplier, 

according to Heyman’s method.  

4   Conclusions 

Procedures here suggested seem to be preferable to different methods, 

especially since they employ valid processes and results in elastic regime. In 

fact, through successive iterations, arch structure is monitored until hinge 

formation, on which failure mechanics are based. Computationally 

speaking, stone arch homogenization technique enjoys numerous 

advantages if compared to usual failure calculation methods, since trial-and-

error plastic hinges positioning is here avoided. At the same time, unlike 

“cunei” method suggested by Franciosi et al. (1986), according to the 
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method here proposed, compatible hyperstatic unknown quantities do not 

represent a starting point in calculations. Moreover, as for deformation 

matrix calculation, on which the iterative method is based, the author 

esteems an original innovations lies in making up with a symbolic 

calculation program, which fully capitalizes Gaussian integration potential, 

in order to utterly reduce the structure discretization. 

References 

1. Albenga,G. (1953) I ponti, la pratica, pp. 99-173, UTET. 

2. Auciello N.M., Ercolano A. (1997). Numerical simulation of masonry panels. 

Engineering Transactions, vol. 45 (3-4), pp. 375-394. 

3. Auciello, N.M., De Rosa, M.A. (1985). Le variazioni termiche negli archi in muratura, 

Atti Accademia Pontaniana, Napoli, vol. 33, pp. 175-188. 

4. Briccoli Bati, S. Paradiso M., and Tempesta, G. (1997). Archi in muratura soggetti a 

carichi e cedimenti delle imposte. Costruire in Laterizio, vol. 60, pp. 436-443. 

5. Bridle, R.J., Hughes, T.G. (1990). An energy method for arch bridge analysis. 

Proceedings of the Institution of Civil Engineers, 89 (3), 375-385. 

6. Castigliano, C.A. (1879). Theorie de l’equilibre des systems elastiques et ses 

applications. Torino, Italy: A.F. Negri, ed. 

7. Cavicchi, A. (2004). Analisi limite agli elementi finiti di archi murari interagenti con il 

riempimento per la valutazione della capacità portante di ponti in muratura. Ph.D. 

thesis. Department of Structural and Geotechnical Engineering, University of Genova, 

Italy. 

8. Cavicchi, A., Gambarotta, L. (2005). Collapse analysis of masonry bridges taking into 

account arch–fill interaction. Engineering Structures, vol. 27 (4), pp. 605–615. 

9. Dejong, M., Ochsendorf, J.A. (2006). Analysis of vaulted masonry structures subjected 

to horizontal ground motion. In: Structural Analysis of Historical Constructions, P.B. 

Lourenço, P. Roca, C. Modena, S. Agrawal (eds.), vol. 2, New-Dehli. 

10. Franciosi, V. (1980). Calcolo a rottura di strutture con materiale alla Coulomb. Corso 

di istruzione permanente, Calcolo a rottura delle Strutture, Politecnico di Milano.  

11. Franciosi, V. (1980). L’attrito nel calcolo a rottura delle murature. Giornale del Genio 

Civile, vol. 8, pp. 215-234. 

12. Franciosi, V. (1986). Su alcune questioni riguardanti la stabilità delle strutture lapidee 

monodimensionali. Atti Accademia Pontaniana, vol. XXXIV, pp. 205-253. 

13. Franciosi, V., Auciello, N.M., De Rosa, M.A. (1982). Il procedimento delle tensioni 

ammissibili nella verifica degli archi e delle volte in muratura in zona sismica. 

Autostrade, vol. 9, pp. 35-47. 



 

106 

14. Franciosi, V., Auciello, N.M., De Rosa, M.A. (1986). L’uso sistematico delle 

distorsioni a cuneo; calcolo di stabilità e restauro conservativo. Autostrade, vol. 9, pp. 

28-36. 

15. Franciosi, V., Belli, P. (1981). La verifica, sotto sisma, delle strutture in muratura in 

presenza di attrito. Convegno di Ingegneria Sismica in Italia, Udine, May 29-31, CISM 

Courses and Lectures n. 271, Springer Verlag. 

16. Heyman, J. (1966). The stone skeleton. International Journal of Solids and Structures, 

vol. 2 (2), pp. 249-279. 

17. Baker J, Heyman J. (1969) Plastic Design of Frames. Applications. vol. 2. Cambridge 

University Press: Cambridge. 

18. Heyman, J. (1969). The safety of masonry arches. International Journal of Mechanical 

Sciences, vol. 11 (4), pp. 363-385. 

19. Hughes, T.G., Blackler, M.J. (1997). A review of the UK masonry arch assessment 

methods. Proceedings of the Institution of Civil Engineers. Structures and buildings, 

122 (3), 305-315. 

20. Ochsendorf, J.A. (2002). Collapse of masonry structures. Ph.D. dissertation, 

Department of Engineering, Cambridge University.  

21. Ochsendorf, J.A. (2006). The Masonry Arch on Spreading Supports. The Structural 

Engineer, vol. 84 (2), pp. 29-36. 

22. REGIONE MOLISE, L.R. Legge del 27 Dicembre 2002 n.286, Protocollo di 

Progettazione per la Realizzazione degli Interventi di Ricostruzione - EDIFICI IN 

MURATURA - Post-Sisma sugli Edifici Privati - Aggiornamento Marzo 2012. 

23. Romano, G., Sacco, E. (1984). Materiali non resistenti a trazione equazioni costitutive 

e metodi di calcolo. Istituto di Scienza delle Costruzioni, Università di Napoli, 

Pubblicazione N. 350, Liguori Editore.   

24. Smars, P. (2008). Influence of friction and tensile resistance on the stability of masonry 

arches, Proceedings of the 6th International Conference on Structural Analysis of 

Historic Construction, D. D’Ayala and E. Fodde, eds., Bath (UK), pp. 1199-1206. 

25. Wolfram, S. (2014). Mathematica 10 version, Wolfram Research.  



 

107 

Appendix A 

 
 

 

 



 

108 

 



109 

The spandrel of masonry buildings: experimental 

tests and numerical analysis 

Bruno Calderoni1
, Emilia Angela Cordasco1

, Gaetana Pacella1, Paolo Simoniello1 

 
1 Università degli Studi di Napoli “Federico II”, 

80125 Napoli (NA), Italy 

calderon@unina.it; emilia.cordasco@gmail.com;  

pacellagaetana@gmail.com; ing.paolosimoniello@gmail.com;  

Abstract: The interest of the scientific community for the seismic behavior of 

existing masonry buildings is continuously increasing in recent years. Initially it was 

directed mainly to the performance of masonry piers. The analysis of seismic damage, 

together with the development of nonlinear techniques, has led researchers to 

investigate the behavior of spandrels too. In recent years the authors have analyzed 

the structural behavior of spandrels in URM buildings by means of several 

experimental tests performed on specimens in reduced scale, made of different 

typologies of masonry or homogenous material. The results of this experimental 

campaign, carried out on both rectangular-shaped and H-shaped specimens, are 

reported in this paper. The different failure mechanisms and the different deformation 

capacities of the spandrels, strongly dependent on the slenderness ratio of the panel 

are highlighted too and compared with the results of several experimental tests on full 

scale masonry spandrels available in literature. The key-data and the set-up of the 

tests, the criteria adopted for testing and the results obtained are discussed, in order to 

underline their effectiveness in defining a theoretical interpretation of the actual 

mechanical behavior of spandrels in masonry buildings subjected to seismic actions. 

Then, some of the tests have been simulated by means of very refined FE models. The 

comparison between experimental and numerical results shows sensible variation 

depending on the material modeling and the geometrical properties of the panels.  

Keywords: masonry building; spandrel; seismic behaviour; masonry shear strength; 

masonry tensile strength; non-linear FE analysis  

1   Introduction 

The seismic capacity of unreinforced masonry buildings is closely related to 

strength and deformability of the walls in their own plane whether they are 

effectively connected to the floor at each storey. Therefore, the structural 
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characteristics of masonry spandrels and piers significantly influence the 

wall behavior. More specifically the spandrels play an important role in both 

resistance and deformability of the wall. Furthermore they may present 

different typological configurations with very different mechanical 

behavior. Indeed at least three classes of structural typologies can be defined 

for masonry spandrels: "weak spandrel"; "truss spandrel” and “beam 

spandrel" (Calderoni et al. 2007a). It has been already demonstrated that 

seismic vulnerability of existing masonry buildings is strongly influenced by 

the typology of spandrels (Calderoni et al. 2007a). Nevertheless, neither 

Italian nor International seismic codes (NTC08, EC8, FEMA 356, etc.) are 

sufficiently detailed with reference to both resistance and deformation of the 

spandrels. Furthermore, few experimental studies have been developed on 

this topic until now (Calderoni et al. 2008, Calderoni et al. 2010, Dazio and 

Beyer 2010, Gattesco et al. 2008, Graziotti et al. 2011, Parisi et al. 2010) 

and they refer to just a few of the possible structural typologies. In the 

recent past the authors have carried out an extensive experimental campaign 

on scaled-down spandrel specimens, simulating the “truss spandrel” 

typology and characterized by different slenderness and wall textures. The 

test results have shown different collapse mechanisms, shear strength and 

deformation capacities, depending on both slenderness ratio and material 

typology. Rectangular-shaped specimens, confined by the two rigid steel 

arms of the testing equipment, which simulate the very large stiffness of the 

masonry panel zone, have been tested. To investigate the influence of the 

deformability of the masonry panel zone on spandrel behaviour, H-shaped 

specimens, formed by a spandrel and part of the two adjacent piers, have 

been also tested. It is worth noting that the reduced scale can limit research 

field to some degree, as it is impossible to apply rigorous geometrical and 

mechanical similitude, particularly with regard to the thickness of the mortar 

joints. However, qualitative appraisal of the phenomenon is surely correct, 

while quantitative evaluation is possible to some extent making comparisons 

among the tested specimens. At present full-scale tests on masonry 

spandrels available in literature are very few in number, confirming the 

difficulties correlated to this kind of experimental activity. From the 

theoretical point of view, the behaviour of masonry piers and walls under 

seismic action has been extensively analyzed in the past, starting from the 
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Experimental tests have been carried out on scaled-down masonry spandrels 

(1:10), made up adopting different tuff masonry arrangements, typical of the 

Naples area (in Italy). Although the set of the tests performed by the authors 

is larger, for the scope of the paper the attention is focused only on the tests 

performed on specimens (named OM) made by ordinary masonry and the 

ones (named HM) made by mortar only, a homogeneous material 

characterized by low tensile strength (Figure 1). 

All the specimens tested had the same length (L = 14 cm) and thickness (4.5 

cm) but a different height (H), in order to obtain three different slenderness 

ratios (H/L): 0.5 (slender spandrels), 0.7 (intermediate spandrels), 1.07 

(stocky spandrels). 

The mechanical properties of the used material (reported in Table 1) have 

been experimentally obtained. In particular the compressive strength (fh), for 

both OM and HM, and the tensile strength (ft) for mortar only have been 

determined. The tensile strength of masonry material (OM) was not 

obtained by testing, but it has been assigned on the basis of literature data 

and considerations on the results obtained by the tests.  

The samples were tested using a purposely-designed equipment, arranged to 

reproduce the behaviour of the “truss-spandrel” typology in a displacement 

controlled test (Calderoni et al. 2010, 2011). 

Table 1. Mechanical properties of rectangular specimens [N/mm
2
] 

Ordinary Masonry  Homogeneous Materials 

fh ft fh ft 

2.50 0.092 4.30 0.43 

 

The collapse mechanisms exhibited by the specimens, monotonically 

loaded, were quite different, depending on both slenderness ratio and 

masonry typology, as shown in Figure 2a. In the same picture the 

corresponding V-γ curves, being V the shear force acting at the end section 

of the spandrel and γ the chord rotation (shear deformation), are represented. 

More in details, OM specimens showed horizontal sliding at the interface 

between mortar joints and tuff stones for the slender spandrels, diagonal 

tensile cracking for the stocky spandrels and a sort of mixed failure for the 

intermediate spandrels. Mortar samples (HM) showed diagonal tensile 
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Finally the tested specimens showed a far from negligible deformation 

capacity in the post-elastic field, even if strongly connected with the 

collapse mechanism. Toe-crushing mechanism were characterized by a very 

ductile behavior. Horizontal sliding showed a reasonable deformation 

capacity, even if accompanied by some resistance reduction. On the 

contrary, diagonal cracking was related to a significant resistance reduction 

with a significant deformation capacity for masonry spandrels (OM) and to 

a sudden loss of resistance with a very brittle failure for HM spandrels (see 

V-γ curves in Figure 2a). 

The different behaviors observed demonstrate that deformation and 

dissipative capacities of masonry are certainly related to the arrangement of 

stone blocks and also to the phenomena associated with their relative 

displacements at failure (interlocking, friction, etc.). 

The significant differences in the collapse mechanism, deformation capacity 

and resistance level, highlighted the strong influence of both geometrical 

slenderness and masonry texture on spandrel structural behavior. 

2.2   Experimental tests on H-shaped specimens 

The experimental activity on rectangular specimens has evidenced some 

aspects: 

a) the panel node was not a masonry element; 

b) the surface between specimen and node was perfectly smooth; 

c) the length of the effective (compressed) zone at the edges of the panel 

was not evident on the sample (Calderoni et al. 2011). 

For these reasons enlarged H-shaped specimens, which include also part of 

the panel zone, have been tested (Calderoni et al. 2012, 2014). In this kind 

of specimens the cracking at the edges of the spandrel can also interest the 

masonry, so to evidence better the compressed zone.  

Again the specimens (1:10 scaled down) were made of both homogeneous 

materials (HMH) and ordinary masonry (OMHA)) with three different 

slenderness of the spandrel (H/L=0.47, H/L=0.63, H/L=0.97). The 

mechanical properties of material are shown in Table 2, while pictures of 

the specimens are reported in Figure 2b. 
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H/L=0.47                             H/L=0.63                                 H/L=0.97 

 

Fig. 2b -  H-shaped specimens in homogeneous materials and ordinary masonry 

When the first load was applied to the HMH specimen a partial separation 

(with an almost vertical crack) occurred at the interface between the 

spandrel and the node panel, so evidencing the effective compressed zone at 

the edges of the panel, which can be considered the end section of an active 

diagonal strut. This zone remains practically unchanged with increasing 

load (Figure 3). The failure mechanisms shown by the spandrels and the 

corresponding V-γ curves are reported in Figures 4 and 5 (respectively for 

OMHA and HMH samples).  

When the first load was applied to the HMH specimen a partial separation 

(with an almost vertical crack) occurred at the interface between spandrel  

Table 2. Mechanical properties of H-shaped specimens[N/mm
2
] 

Ordinary Masonry (OMH) Homogeneous Materials  (HMH) 

fh ft fh ft 

2.70 0.10 7.70 0.77 
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when a sudden (but limited) reduction of  resistance  occurs; the third one 

represents the totally plastic behaviour of the cracked panel, which is able to 

hold the shear force without appreciable reduction of resistance up to high 

deformation level (γ =10% for slender and intermediate spandrels; γ = 5% 

for stocky panels). The decreasing branch shows a not negligible (but 

uniform) slope, which leads to the loss of resistance capacity when γ = 20% 

is reached, only for the stocky specimens. 

3.   Experimental tests available in literature 

Due to the difficulties related to the identification of the actual behavior of 

masonry spandrels of URM buildings, the availability of a large database of 

experimental results can be a useful starting point for the development of 

theoretical models and formulations to evaluate the strength and the 

deformability of this structural element. 

For this reason, in this section, the experimental tests performed on masonry 

spandrels reported in papers published in the period 2006-2015, are 

analyzed and classified. 

In the following the key-data of the considered experimental campaigns are 

summarized, while in Table 3 the geometrical properties of the tested 

spandrels are reported. The corresponding test set-ups are shown in Figures 

6 and 7. 

Full scale tests:  

Beyer et al. - H-shaped specimens: 

full brick spandrels (with timber lintel or masonry arch) and hollow brick 

spandrel (with r.c. lintel). In every test horizontal tie rods were placed, even 

if applied in different way in each specimen. 

Gattesco et al.: H-shaped specimens:  

brick masonry spandrels with timber lintel and masonry arch (with or 

without horizontal tie rod); brick masonry spandrels reinforced with CFRP 

stripes (with shallow masonry arch); stone masonry spandrels with timber 

lintel (with or without reinforcing steel angle bars). 

 



120 

Magenes et al.: H-shaped specimens: 

stone masonry spandrels with timber lintel, with or without horizontal tie 

rod; one spandrel without timber lintel and with tie rod. The presence of the 

tie rod is simulated by applying a horizontal axial stress to the spandrel  

Parisi et al.: portal specimens: 

tuff masonry specimens with timber lintel and with or without CFRP 

reinforcements; other specimens with masonry arch with or without r.c. 

curb. The set set-up reproduce for all specimens the scheme of spandrel with 

tie rod. 

Scaled down 1:2 tests 

Vignoli: H-shaped specimens: 

single wythe brick masonry spandrels. Four types of specimens with three 

different aspect ratios were tested: simple masonry, masonry with timber 

lintel, r.c. lintel and steel chain. 

Scaled down 1:10 tests 

Calderoni et al.: Rectangular and H-shaped specimens: 

rectangular specimens: tuff masonry spandrels in three different textures: 

ordinary masonry, XVIII cent. masonry, XIX cent. masonry, and 

homogeneous material (with or without reinforcement in FRP); 

H specimens: ordinary tuff masonry panels and homogeneous material 

panels with or without reinforcement by means of FRP stripes o steel plates. 

Every test reproduces the scheme of spandrel with tie rod and weak lintel. 

Three different aspect ratios tested for every spandrel type. 

 

It is worth noting that each research group has performed various tests on 

dissimilar specimens (often made of distinct material), using different 

testing-equipment and set-up and adopting different systems for loading the 

spandrel (in order to attempt to better simulate the actual behaviour of the 

panel within a masonry wall when subjected to horizontal actions). This 

depends on the fact that this topic is still not completely understood and 

there are many different typologies of masonry spandrels, which show 

different  structural  behavior.  This has been  observed  in  particular in the 

collapse mechanisms and consequently in shear and flexural resistance and 
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in the deformation capacity. For these reasons the comparisons among 

different tests performed by distinct researcher groups is not simple and 

perhaps not at all useful. 

 
Table 3. Geometrical properties of the tested spandrels 

 

Authors 

Dimensions 
Specimen 

typology 
Scale Typology of test L 

[cm] 

H 

[cm] 
H/L 

Beyer et al. 
118 126 1.07 

H-shaped 1:1 Ciclic/Monotonic 
150 105 0.70 

Magenes et al. 120 120 1.00 H-shaped 1:1 Ciclic 

Gattesco et al. 
100 

105 

120 

124 

1.20 

1.18 
H-shaped 1:1 Ciclic 

Augenti et al. 170 100 0.59 Portal 1:1 Ciclic/Monotonic 

Vignoli et al. 

60 

60 

60 

31.5 

57.5 

44.5 

0.52 

0.96 

0.74 

H-shaped 1:2 Ciclic 

Calderoni et al. 

14 

14 

14 

7 

10 

15 

0.5 

0.7 

1.07 

H-shaped/ 

Rectangular 
1:10 Ciclic/Monotonic 

 

On the other hand the results of each experimental test, if correctly 

interpreted and analyzed, can be usefully adopted for verifying theoretical 

hypotheses or findings defined for the specific typology of spandrel 

corresponding to the tested one. 

It is very important to take in mind that it is not possible, at the state of the 

knowledge in this field, to extrapolate from very few tests, performed 

necessarily on a specific spandrel typology, general results to be adopted for 

all the different situations. Many times the results are in fact strongly 

influenced by the testing conditions and the particularities of the performed 

tests, so leading easily to wrong interpretations. 

It is worth to notice that the large part of the tested spandrels are stocky 

panels, while in existing buildings slender spandrels are frequent. This is not 
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It can be observed that a cyclic test, considered its intrinsic complexity, can 

be carried out in many different ways and is less controllable and more 

difficult to understand, so that its usefulness is strongly reduced if it is not 

related to monotonic tests. 

Among the here classified experimental campaigns, besides the tests of the 

authors, the tests carried out by Beyer et al. on full bricks masonry 

specimens are described and analyzed more in details in the following 

section. 

3.1   Experimental tests carried out by Beyer et al. 

Beyer et al. (2012) performed, among the others, four tests on H-shaped 

specimens made of brick masonry, adopting the set-up represented in Figure 

7. The four specimens had the same geometrical dimensions, but differed 

for the typology of the lintel and the dimension of the tie-rod: i) TUA had 

timber lintel and a φ13 mm steel-tie; ii) TUB had timber lintel and a 

φ10 mm steel-tie; iii) TUC had a masonry arch lintel and a φ13 mm steel-tie; 

iv) TUD had a masonry arch lintel and a φ32 steel-tie.  

In addition, in TUA and TUC tests, tie-rods have been linked to the 

specimens in such a way to give a constant axial force to the spandrel, 

independently of the displacement applied to the specimen; instead, in TUB 

and TUD tests the axial force applied to the spandrel by tie-rod was not 

fixed a priori, depending on the deformation of the specimen during the test. 

Cyclic controlled displacement loading histories were performed. Note that 

the compressive strength of masonry, evaluated by means of specific test, 

was 18 N/mm
2
, while tensile strength has not been reported.  

In  Table  4  the main features of the tests have been summarized. 

The failure mechanisms of spandrel in each test are shown in Figure 8, 

together with the corresponding shear-force vs. rotation curve.  

It must be noted that, despite the significant differences among the four 

specimens, during the test all of them showed almost the same shear 

strength. 

Moreover, contrary to expectation, the maximum shear strength has been 

reached by the specimen TUA, which is “reinforced” with a small- diameter 

and low-resistant tie-rod. 
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Table 4. Full bricks masonry spandrels tested by Beyer et al. 

Test Lintel type 
Axial load in 

the piers 

Axial load in the 

tie rod 

Tie-rod 

diameter 

TUA Timber 0.33 MPa Constant 80 / 40 kN D13 mm 

TUB Timber 0.33 MPa Variable D10 mm 

TUC Masonry arch 0.43 MPa Constant 80 kN D13 mm 

TUD Masonry arch 0.43 MPa Variable D32 mm 

 

Globally, the four tests presented by Beyer et al. led to the misleading (in 

the opinion of authors) sensation that the dimension (and the effectiveness) 

of the tie-rod does not influence the behaviour and the resistance of the 

spandrel and that the formation of a diagonal strut within the panel is not a 

key aspect for the masonry panel. 

So, it is not astonishing that the researchers concluded that the shear 

resistance of a masonry spandrel is directly related to the tensile strength of 

the material (i.e. ruled by the first cracking bending moment), while it is 

well known that the tensile strength of masonry is not a reliable mechanical 

property and its value is very low and often already overpassed (and then 

nullified) when the URM building is loaded by seismic actions. 

On the contrary, a deep analysis of the performed tests without any 

prejudice can lead to the observation that the failure mechanism occurred in 

all tests, except TUB, denotes clearly the activation of a strut in the 

spandrel, which suffered diagonal cracking widespread in the central part of 

the panel.  

This behaviour is directly related to the geometrical slenderness of the 

spandrel, which corresponds to a stocky panel: for such panel the shear 

failure commonly is attained before the compressive strength of masonry is 

reached at the panel edges (toe-crushing failure) (Calderoni et al. 2011). 

Only TUB specimen showed a different failure pattern: total separation 

(with almost vertical crack) between the spandrel and the nodal panel at 

both edges occurred, so highlighting that the inclined truss did not activate 

in the panel. 

 



Fig. 8 – Failure mecha
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This fact was due to the very limited tensile resistance of the steel tie-rods, 

made of very small diameter bars (φ10), which resulted lower than the 

tensile strength of the masonry. Consequently the tie-rods yielded and 

collapsed soon and the spandrel behaved in flexure, facing the active 

bending moment by its low tensile resistance, which easily has been 

overpassed causing the vertical separations. In this case the shear diagonal 

failure could not be reached. 

Finally, the above considerations confirm that few tests, even if carried out 

on similar (from the geometrical point of view) specimens, cannot give 

information easily usable for developing general rules on the structural 

behaviour of masonry spandrels. 

On the contrary they are very useful and effective if used for confirming 

theoretical assumptions and/or for further deepening the problem.  

4      Numerical analysis 

In this section the results of FEM analyses, carried out for numerically 

simulating some of the tests reported before, are presented. The tests on 

rectangular specimens in homogenous material by Calderoni et al. and the 

tests (TU A-B-D) in brick masonry by Beyer et al. have been considered.  

The aims of these analyses were: (i) to verify the effectiveness of different 

material models and yield criteria commonly adopted for 2D shell elements 

in order to simulate the masonry behaviour; (ii) to recover useful 

information, difficult to get by theory, as the extension of the effective 

(compressed) zone at the edges of the panel, the corresponding stress 

distribution consistent with the low (or null) tensile strength of masonry and 

the axial force acting in the spandrel; (iii) to better understand and interpret 

the failure mechanisms exhibited by the specimens. 

Furthermore, once the validity of one material model and numerical 

schematization could be demonstrated by comparison with the experimental 

results, it should be possible to analyze (only numerically by adopting them) 

the behavior of further (non-tested) specimens, f.i. characterized by other 

slenderness ratios, made of different materials or restrained in other ways.  
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The well-known SAP2000 code has been used to carry out the numerical 

analyses. Particular attention has been paid in accurately reproducing the 

boundary conditions of the specimens in the test. 

4.1   Analyses of the tests by Calderoni et al. 

The rectangular panels in homogenous material have been modeled by 

means of 2D shell finite elements adopting a very refined squared mesh of 

5mm x 5mm. The test equipment has been partially modeled too in order to 

correctly apply the load as in testing. Push-over (V-γ) curves have been 

obtained to compare with the experimental ones. 

With reference to mechanical properties of masonry, compressive strength 

equal to 5.0 N/mm
2
 and Young modulus equal to 340 N/mm

2
 have been 

adopted. 

The analyses have been carried out many times, by varying the yielding 

constitutive model of the non-linear material. The six different adopted 

material models differ each other in the way the null tensile strength has 

been accounted for and in the used yielding criterion for limiting (or not 

limiting) the shear stress. 

In particular in the model 1A the horizontal stress (σ11 in SAP2000) acting 

on vertical plane has been considered elastic – perfectly plastic in 

compression (being 5 MPa the yield stress) and not limited in tension. The 

null tensile strength has been accounted for by iteratively “cutting” the 

model at the edges when σ11 got in tension. The shear stress (σ12) has not 

been limited, while in the model 1C it has been considered limited by a full 

plastic criterion. 

In the model 2A, only with reference to σ11, a no-tension material behaving 

again elasto-plastically in compression (with 5 MPa limit) has been 

considered. Consequently, the extension of the non-compressed (partialized) 

zone is automatically defined. The shear stress (σ12) has not been limited, 

while in the model 2C it has been considered limited by a full plastic 

criterion.  

The models 3A and 3C are directly derived from 2A and 2C. The material 

behaviour is the same, but the spandrel model has been cut at the edges 

along the whole length of the no-tension zone, so avoiding the transferring 
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Considered that the experimental tests on intermediate spandrels showed a 

mixed failure mode (both toe-crushing and diagonal cracking) and the ones 

on stocky spandrels showed diagonal cracking, i.e. governed also by shear 

stresses or only by shear stresses respectively, it is evident that all the 

constitutive model of material adopted in numerical analysis are not at all 

able to correctly simulate the shear behaviour. This is due to the fact that 

shear resistance is directly related to tensile strength, and consequently this 

last cannot be considered null, while it is sufficiently correct do not consider 

any tensile strength for normal stresses but for principal tensile stresses. 

Unfortunately, at now a sufficiently adequate constitutive model for 

masonry material suitable for FE numerical model does not yet exist, so 

making not at all affordable the numerical analyses performed on masonry 

structural elements, particularly for spandrels, whose behaviour is strongly 

related to shear. 

4.2    Analyses of the tests by Beyer et al. 

Three tests performed by Beyer et al. (TU A-B-D) have been modeled by 

means of 2D shell finite elements adopting a squared mesh of 100 mm 

x 100 mm for the TUA test and 25mm x 25mm for the other tests. Particular 

attention has been paid for correctly simulating restrains and loads used in 

each test. Only the material model 1A has been adopted: the horizontal 

stress (σ11) acting on vertical plane has been considered elastic–perfectly 

plastic in compression (being 18.0 MPa the yield stress) and not limited in 

tension. The reduced tensile strength (set to 0.65 N/mm
2
) has been 

accounted for as described after. The shear stress (σ12) has not been limited 

too. 

An iterative pushover analysis has been performed increasing at every step 

the rotation of the piers and progressively eliminating, along the boundary 

spandrel-pier, the shell elements showing horizontal tensile stress (σ11) 

greater than 0.65 N/mm
2
. So making the push-over curves (acting shear V 

vs. edge rotation ϕ) showed in Figure 13 has been obtained to compare with 

the experimental ones. 
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The specimen TUB, at the rotation ϕ=0,0069%, reaches the maximum value 

of shear (about 85 kN), which is the resistance of the un-cracked spandrel, 

being the tensile strength of masonry just attained. As rotation is increased, 

the shear resistance practically falls to zero at ϕ=0,0078%, when tie-rod 

starts to be effective (the tie-rod is very small and has a high deformability). 

Consequently the spandrel can behave like a reinforced panel (the tie-rod 

provides tensile resistance to masonry): shear linearly increases as the 

rotation is increased, until the yield stress of the tie rod (75 kN) is reached 

for a shear force of only 65 kN. Note that this value is lower than that 

already reached by the un-cracked spandrel, so justifying the complete and 

sudden failure of the tie-rod (and then of the spandrel) at the attainment of 

the un-cracked resistance, as showed in the experimental test. 

It is confirmed that very small ties are not able to allow the spandrel 

behaving as a more effective compressed diagonal strut and then to increase 

the spandrel shear resistance. 

In the specimen TUA the tie-rod is pre-stressed at a very low tensile force 

(40 kN) in such a way this force cannot change as the rotation is increased. 

The maximum shear reached by the spandrel is slightly greater (95 kN at 

ϕ=0,0091%) than the one of TUB, because pre-stressing has increased the 

tensile strength of masonry in the lower part of the panel, so increasing the 

un-cracked resistance of the spandrel. As rotation increases the tensile 

strength of the masonry is overpassed and the shear in the spandrel goes 

down up to the value corresponding to the tensile stress given by the pre-

stress of the tie-rod, which cannot be eliminated being given to the spandrel 

by means of external axial forces. In the experimental test, further 

increasing of rotation led the spandrel to suffer a diagonal cracking, but the 

model adopted for the material in this analysis cannot simulate this kind of 

failure. 

The TUD specimen is similar to the TUB, but larger diameter steel bars (32 

mm) have been used as tie-rods. 

As for the TUB specimen, the maximum shear force of about 85 kN (at the 

rotation ϕ=0,0077%) has been reached, which again corresponds to the 

resistance of the spandrel at onset of cracking. Immediately after, being 

overpassed the tensile strength, the shear value falls down without 

significant increment of rotation, like in the TUB test. Then, as the rotation 
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is increased, the tie-rod can acts as reinforcement of the spandrel, giving it 

again the tensile strength and allowing the increasing of the shear resistance. 

In this case the large cross-section of the tie-rod could allow the spandrel to 

reach a very high shear force (related to the diagonal strut behaviour, i.e. to 

the compressive strength of masonry), as denoted by the numerical 

simulation. On the contrary, the actual tested specimen was not able to 

overpass the 85 kN shear force, because it experienced the diagonal 

cracking. This circumstance had to be expected, considered that the spandrel 

is a stocky panel, which is prone to diagonal cracking and cannot attain the 

higher resistance related to toe-crushing (Calderoni et al., 2010). 

In summary, numerical simulations are very useful for interpreting and well 

understanding the spandrel behaviour. But one has to keep in mind that the 

constitutive models for masonry, available at now for using in FEM 

analyses, are not able to catch all the possible failure mechanisms. 

Anyway the performed analyses were very useful for highlighting the 

differences among the tested specimen, which experienced different failure 

mechanism even if they reached almost the same value of shear resistance. 

Without this deepening, misleading conclusions could be attained, f.i. the 

one that the flexural (and shear) resistance of the spandrel is ruled directly 

(and only) by the first cracking bending moment, i.e. by the tensile strength 

of the material, and that it is not significantly affected by the presence of tie-

rods. 

5     Conclusions 

This paper presents a discussion on the structural behaviour of masonry 

spandrels. This topic is very up to date and interesting, but from the 

theoretical point of view it is not completely understood, so that the 

phenomenological derivation of a structural model as well as the calibration 

of laboratory tests is somewhat difficult. 

Nevertheless the experimental tests are an essential tool to improve 

knowledge, if they are calibrated according to the scope of the research. A 

correct experimental campaign should involve simple and clear tests with 

firstly monotonic loadings. Cyclic tests cannot be correctly designed and 
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calibrated if the basic information are not derived from monotonic tests; 

further they are difficult to be interpreted.  

It should be noted that the tensile strength plays an important role in the 

experimental tests, while in the real structures an unforeseen change in 

loading or use during their lifetime can influence or nullify the tensile 

strength, so that it cannot be taken into account in evaluating existing 

buildings.  

The numerical analyses cannot easily be performed, since the procedures 

actually available, even the most accurate and sophisticated, are not 

completely reliable and give dissimilar results, depending also on the 

adopted constitutive model of the material and on the structural scheme to 

be modeled.  

At this time every calibration should be based on a large set of experimental 

data and should be “guided” according to the structural scheme to be 

analyzed. 
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Abstract. The extension of damage on churches observed after strong 

earthquakes evidences the necessity to plan, at regional scale, effective 

restoration, consolidation and preventive protection strategies. In this 

framing, the availability of suitable speedy methodologies for the assessment 

of the main structural fragilities and therefore of the seismic vulnerability of 

each church is the first fundamental step to be undertaken. 

This paper presents a methodology for the seismic vulnerability assessment 

of churches based on a damage reconnaissance activity carried out after the 

2009 L’Aquila earthquake on a population of 64 churches. 

Firstly, the post-earthquake evaluation of damage is described with the aim of 

identifying both the recurrent damage mechanisms and the main local 

structural fragilities. As an important outcome, it has been observed that the 

occurred damage scenario, shown in terms of frequency of pre-established 

damage levels, can be represented by a binomial distribution, which depends 

on one parameter only, namely mean damage level.  

Then, a literature predictive model able to give back the above parameter for 

several earthquake intensities is applied for outlining fragility curves related 

to the seismic risk of churches. These curves represent a powerful tool for the 

prediction of likely future damage scenarios. 

Finally, some ongoing applications of the proposed analysis methodology to 

churches of different territorial areas are described. 

Keywords: Seismic vulnerability, Cultural heritage, Old churches, Structural 

Damage, Fragility curves. 
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1   Introduction 

Old masonry churches represent one of the most important assets of the 

Italian cultural heritage. The connection between seismic risk and 

conservation of such a type of structures is a topic of great importance in 

terms of both protection and losses prevention.  

Earthquakes occurred in the last twenty years in the Apennines (i.e. 

Umbria e Marche earthquake,1997; L’Aquila earthquake, 2009; Emilia 

Romagna earthquake, 2012; Central Italy earthquake, 2016) evidenced the 

fragilities of old masonry churches and testified, once again, the importance 

of defining useful protection strategies to preserve their structural integrity, 

which often means historical identity of wide territories (Brandonisio et al., 

2013; Criber et al., 2015). Indeed, the seismic protection of churches is not 

only a matter of cultural identity, but also a social and political issue, 

because, in an urban context, churches often represent the most important 

site of aggregation of people.   

A meaningful example of how important is to protect churches from 

earthquake attacks is given by the partial collapses of the St. Francesco 

d’Assisi (PG) central vault (Umbria e Marche earthquake, 1997), shown in  

Figure 1, which caused not only human fatalities, but also losses of 

important and valuable frescoes. 

             

Fig. 1 – St. Francesco d’Assisi basilica. Damages on the vault after the 1997 earthquake. 
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The importance of protecting churches in order to preserve inestimable 

assets was also underlined by more recent earthquakes. The collapse of the 

transept of the basilica of Collemaggio (Figure 2a) in L’Aquila, which is a 

meaningful example of Romanesque architecture, represented the loss of an 

important part of the Abruzzi cultural heritage. Likewise, the recent seismic 

event of Centre of Italy (2016) irremediably struck one of the most 

significant medieval basilica of Umbria, the St. Benedetto church in Norcia: 

today, the façade and the apse are the only parts of the church that survived 

to the earthquake (Figure 2b).  
 

 a) b) 

Fig. 2 – a) St. Maria di Collemaggio basilica (AQ) after L’Aquila earthquake (2009) and 

b) St. Benedetto basilica in Norcia (PG) after the Centre of Italy earthquake (2016). 

On the other hand it has to be recognized that the correct and precise 

evaluation of the structural behaviour of churches, and more in general of 

monumental buildings, is very complex, due to specific issues related to the 

adopted constructional criteria. Due to the difficulty related to material 

modelling but also the geometrical complexity of the manufactures, the 

detailed specific analysis should be very elaborated and time consuming 

(Brando et al., 2015) or should be based on specific approximated 

methodologies, for instance the one proposed in (Ercolano, 1994; De Luca 



146 

et al., 2004; Huerta, 2008), which are applicable is many but not all the 

situations.     

All the above remarks emphasise the necessity to define suitable speditive 

vulnerability assessment methodologies at large scale, which are able to 

predict potential likely damages scenarios. These methodologies have to 

account for the recurrent damage mechanisms observed on churches after 

earthquakes of the past, as well as for possible protection devices (i.e. iron 

ties, buttresses, connecting elements across the walls, etc.) that have been 

already installed for removing or mitigating some structural fragility 

sources. For instance, the possibility to use simplified methods is shown in 

(Lourenço and Roque, 2006) where a geometric approach is used to retrieve 

back simplified safety indexes, with the aim to define an immediate 

screening of a certain number of historical buildings and to priorities more 

detailed numerical analysis. 

In this paper, the vulnerability assessment at large scale of churches is 

dealt with. To this purpose, a methodology taken from existing literature 

and corroborated by post-earthquake observation carried out on a population 

of 64 three-naves churches after the 2009 L’Aquila earthquake in two of the 

most stricken dioceses of Abruzzi region is applied. In Section 2 the 

churches considered for the reconnaissance and the observed damage 

revealed after L’Aquila earthquake are described. Moreover, damage is 

classified in terms of severity and extension, in order to provide Damage 

Probability Matrices. These matrices provide a synthetic description of the 

occurred earthquake scenario corresponding to the occurred earthquake. In 

Section 3, the methodology for the vulnerability assessment is dealt with 

and used in order to provide fragility curves, which are able to predict 

damage scenarios for different earthquake intensity. In the following, the 

proposed methodology is referred to the population of 64 three nave 

churches identified in L'Aquila district. Finally, in Section 4, the ongoing 

research activity on churches belonging to a different territory is outlined, 

giving a first typological and structural description of identified buildings. It 

is worth noticing that issues provided in this paper has been presented by the 

authors also in previous studies, were the approach was mainly of 
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observational type, i.e. aimed at evaluating by analytical procedure the 

damage scenario observed after the L’Aquila earthquake. Now the intention 

of the author is to check the possibility to apply the proposed methodology 

also for preventive purposes, by defining a specific vulnerability index (iv) 

to assess structural capacity of a large population of churches for predicting 

possible damage scenarios due to future earthquakes in different regions (De 

Matteis et al., 2016). 

2   The churches of L'Aquila and Sulmona-Valva dioceses 

2.1  General 

L'Aquila is the capital city of Abruzzi and is located in the inner part of the 

region. The district extends on almost half of the regional territory and 

covers three ecclesiastical areas. In particular, the dioceses of L'Aquila and 

Sulmona-Valva, which are shown in Figure 3, together with the acronyms 

used in the following parts of the paper, were the most affected by the 2009 

seismic event and for this reason they have been studied more in detail 

(Criber et al., 2015; Brando et al., 2015). In the investigated area, almost 

640 churches, located in seventy-seven municipalities, were identified. 

Among these, the 10% (64) are three nave churches: they were identified as 

belonging to the most representative typology and therefore have been 

specifically considered for the reconnaissance activity; in fact their 

structural complexity provides more interesting information in terms of 

vulnerability sources and collapse mechanisms. 
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Fig. 3 – The three naves chu

on the 2009 earthquake mac
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2.2  Typological classification of churches under investigation 

The observed group of churches was classified according to the 

foundation period, as well as to the structural construction techniques. 

However, this classification was not always clear because churches of inner 

Abruzzi are strongly marked by significant stratifications, due to the several 

reconstructions and restorations carried out in the past (Rovida et al., 2011), 

in particular after the earthquakes occurred in 1461 in L'Aquila (10 MCS), 

1703 in the north of L'Aquila (10 MCS), 1706 near to Sulmona and 1915 in 

Avezzano (11 MCS). 

In particular, for the sake of simplicity, three main different types of 

churches were identified: medieval, post medieval and hybrid churches.  

The first group, including almost 20% of the whole population considered 

in the study, is composed by churches built from XI to XIV century, 

generally characterized by poorness of decorations (a typical feature of the 

churches built in this period in the central part of Italy (De Matteis and 

Mazzolani, 2010)) and by a low seismic vulnerability. This is mainly due to 

the plan simplicity, the absence of transept and dome, the presence of a light 

wooden roof and a masonry of good quality. For instance, the church of San 

Pietro ad Oratorium (SPO) in Capestrano in the Diocese of L’Aquila (Figure 

4.a) is an important example of mediaeval church. Generally, the churches 

belonging to this group suffered low damage during the last L'Aquila 

earthquake.  

The second group is composed by post-medieval churches (almost the 

20% of the analysed stock), built between XV and XVII centuries 

(Renaissance and Baroque period), which is characterized by a medium 

seismic vulnerability. These churches are generally characterized by a 

rectangular plan with three naves crossed by a transept and surmounted by a 

dome at the intersection, as observed in Madonna della Libera (MDL) 

church in Pratola Peligna (Diocese of L’Aquila), which is shown in Figure 

4.b. In these cases heavy vaults or mixed roofs are always present. The 

masonry is commonly made of rubble stones characterized by a chaotic 

texture.
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2.4   Damage classification 

Consistently with the Italian Code “Guidelines for Cultural Heritage” 

(MiBACT, 2010), the classification of the observed damage has been 

carried out accounting for twenty-eight mechanisms referred to the main 

macro-elements (i.e. the façade, the colonnade, the vaults, the apse, the 

transept, the dome and the bell tower). For each mechanism, a specific level 

of damage dk (0 ≤ dk ≤5),  has been defined according to the criteria 

introduced by Grunthal for the European Macroseismic Scale EMS-1998 

(Grunthal, 1988). In Figure 10 the Grunthal definition of damage levels, 

proposed for residential buildings, is related to churches, according to the 

criteria described in (De Matteis et al., 2016). 

Then, according to equation (1) proposed in Guidelines, a global damage 

index (id), ranging from 0 (no damage) to 1 (full damage), has been 

calculated for each church belonging to the analysed stock. The results are 

given in Figure 11.  
 

28

k,i k,i

k=1

d 28

k,i

k=1

  ρ d
1

i =
5

  ρ

⋅
⋅
∑

∑

 
(1) 

In the above formula, ρk is an importance factor that weight the damage 

of the mechanism k (ranging from 1 to 28) according to the importance that 

the mechanism itself has for the global stability of the church. The 

considered values are given in (MiBACT, 2010). Each damage index id has 

been therefore related to a damage score Dk (ranging from 0 to 5), 

accounting for the criteria provided by Lagomarsino and Podestà (2004). 

For each church, the obtained score Dk is shown in Figure 12. The statistical 

elaboration of the damage scores Dk for churches as a whole and for the 

single macro-elements (in this case dk coincides with Dk), allowed to 

determine the related Damage Probability Matrices (DPMs), shown in 

Figure 13, which provide the frequency of occurrence of the different levels 

of damage Dk.  
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Fig. 11 – Damage index id for all the observed churches 

 
Fig. 12– Damage level Dk for all the 64 observed churches
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Fig. 13 – Damage Probability Matrix of the 64 observed churches vs binomial distribution  
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In the above equations, n is the number of churches and m the number of 

potential relevant mechanisms. 

It can be observed that the binomial distribution is particularly able to 

retrieve back the probability of having a certain level of damage for a given 

earthquake. This is a significant outcome, as the above distribution depends 

on one parameter only, namely the mean damage µd. The latter could be 

preventively assessed based on the structural fragility of the analyzed 
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churches, allowing the application of the above procedure as a predictive 

tool rather than as an observational analysis. 

3   Seismic vulnerability assessment: definition and application 

In order to define predictive models for predicting possible damage 

scenarios the expected mean damage µd should be preventively related to 

structural characteristics affecting the vulnerability of the churches of the 

analyzed population. To this purpose, a procedure based on the definition of 

vulnerability index of the church iv given by the Italian Guidelines on 

Cultural Heritage (MiBACT, 2010) has been applied after a suitable 

modification. Therefore, each church has been partitioned into macro-

elements, accounting the 28 likely mechanisms defined in the previous 

Section. Then, for each potential mechanism, fragility indicators and 

possible protection devices have been suitable defined and associated to a 

score ranging from 0 to 3. A score vki=0 applied to structural fragilities 

means that the mechanism itself does not represent a source of vulnerability 

for the building, whereas a score of 3 means that it is characterized by the 

maximum fragility and therefore it is prone to experience damage also for 

slight earthquakes. Similarly, a score vk,pi=0 applied to a protection device 

related to the mechanism i means that it is absent or completely un-effective 

for the elimination of that collapse mechanism. On the contrary, a score of 3 

indicates the maximum effectiveness of the protection device for the 

collapse mechanism under consideration. 

In this study the evaluation of each score has been implemented by the 

definition of specific coefficients (i.e. z, w, f and η), which, for the sake of 

brevity are not fully provided in this paper, but are detailed in (De Matteis et 

al., 2014) and are applied according to equations (5) and (6) for fragility 

indicators and anti-seismic devices scores, respectively:  

,

1=
= ⋅ ⋅∑

n

k i

i

v w z f  
(5) 

,

1

η
=

= ⋅ ⋅∑
n

k p

i

v w z (6) 
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In the above equations z is a Boolean coefficient, which can be equal to 1 

or 0, depending on the presence/absence of the fragility indicator and 

protection devices, for eq. (5) and (6), respectively. The w coefficient is an 

importance factor ranging from 0 to 2. In eq. (5) it represents the potentiality 

of the fragility indicator in determining the vulnerability of the mechanism, 

as well as, in eq. (6), it is a measure of the capability of the applied 

protection device typology for inhibiting or limiting the mechanism 

development. For example, the vulnerability induced by irregularities has to 

be considered more important and influencing in those cases where there are 

irregularities both in elevation and in plan rather than in cases where only 

one irregularity is present. Similarly, constraining devices, as the buttresses 

or the ties, may have a different importance for out-of-plane mechanisms of 

a wall. The fragility coefficient f measures the effectiveness of the indicator 

and it ranges from 0 (in those cases for which the indicator does not 

influence the activation of the failure activation) to 1.5 (in case of fully 

vulnerability with respect to the onset of the failure). At the same manner, 

the efficiency coefficient η measures the effectiveness of the anti-seismic 

system that mitigated the possible failure. It also ranges from 0 to 1.5.  

As an example, in the out of plane mechanism of the façade, the w 

coefficient for ties is set to 1, considering their effectiveness in overturning 

mechanism. If ties are actually present, the Boolean coefficient z is fixed 

equal to 1, whereas the efficiency coefficient η is set to 1.5 in case of totally 

effectiveness of devices. Similarly, the presence of opening at the corner has 

an important effect in the development of out of plane mechanism of façade. 

In this case, w is set to 1.5, z is fixed to 1 in case of presence, while the 

fragility coefficient f is set to 1.5 in case of large opening presence.  

The scores described above have been used in order to obtain, for each 

building, the vulnerability index iV given in eq. (7), according to the 

definition proposed in (MiBACT, 2010), which is calibrated in order to 

retrieve back values ranging from 0 to 1. 
28

, , ,
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28
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( )
1 1

6 2
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In the above equation ρk is the importance factor already provided in eq. 

(1). 

As a matter of example, in Figure 14, the vulnerability indices of the 

churches of the two Dioceses described in Section 2 are given. 

Values ranging between iV=0.376 (Madonna della Libera church, in the 

Sulmona Valva Diocese) and iV=0.705 (St. Benedetto Abate church, in the 

L’Aquila Diocese) have been founded, with a mean value vi  of the obtained 

vulnerability indices equal to 0.53. 

 
Fig. 14 - Vulnerability indexes for the 64 churches observed in the Sulmona-Valva and 

L’Aquila Dioceses. 

The above mean value can be used for determining the expected mean 

damage for several earthquakes of macro-seismic intensity I, according to 

the eq. (8) already used in other studies, such as the ones described in 

(Lagomarsino and Podestà, 2004) and (Lagomarsino and Giovinazzi, 2006). 

3.4375 8.9125
2.5 1 tanh

3

v
D

I iµ
  + ⋅ −= +  
   

 (8) 

It is worth of being noticed that most of the 64 churches considered in 

this paper experienced a macro-seismic intensity I of about 6 (the average is 

6.3, indeed). The mean damage that can be obtained for this earthquake 

intensity is equal to 1.75, which is almost equal to the mean value obtained 

downstream the damage reconnaissance activity (1.73), this meaning that 

the proposed methodology is quite reliable in reproducing the damage 

observed after L’Aquila Earthquake. 
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Obviously, this is a rough conclusion because a more precise evaluation 

of the reliability of eq. (8) should consider separate stocks of buildings for 

different earthquake intensity levels.  

The methodology described above has been used in order to outline 

damage scenarios for several earthquake intensities, by getting out, for each 

damage level Dk, the related fragility curves. through the use of BPBDF, 

previously introduced and given in eq. (2). The outcome results allow to 

give back the probability of exceeding of a certain level of damage [P 

(D≥Dk)=∑pj; with 1≤Dk≤5 ], as a function of the macro-seismic intensity, 

considering the value of expected mean damage given by eq. (8). 

 The obtained fragility curves are shown in Figure 15. It is clear that the 

proposed fragility curves may represent a powerful tool to be used for 

outlining possible mitigation policies based on costs-benefits analyses and 

on the definition of acceptable risk for different levels of expected hazard. 

In addition, the proposed methodology allows to appreciate the reduction of 

seismic risk that can be pursued by applied strategically some retrofitting 

interventions on a stock of churches that can lead to a reduction of the 

vulnerability indices and, therefore, of the damage that they could undergo 

for a given earthquake intensity.     

 
Fig. 15 – Fragility curves for three nave churches in the Sulmona-Valva and L'Aquila 
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Fig. 16 – The three naves churches in Chieti-Vasto and Lanciano-Ortona dioceses 

In such dioceses 59 three nave churches have been identified as shown in 

Figure 16. They represent the 18% of the whole religious heritage of the 

investigated area. These churches are quite different by the ones belonging 

to the inner Abruzzi discussed in the paper. In fact, the coastal part of 

Abruzzi is characterized by a low seismicity and, therefore, by churches 

with less significant stratifications, but also with more significant intrinsic 

vulnerability sources and less important anti-seismic systems. On the other 

hand, also the type of masonry is different with respect to the churches 

studied in this paper. In fact, fired clay bricks are widely used due to the 

presence of furnaces in the territory. 

Also, the Campania region is characterized by very high seismic hazard 

and, above all, a considerable exposition factor. In fact, due to the 

geographical configuration and the cultural evolution of the Region, the 

population density is about four times larger than in Abruzzi. Moreover both 

the high presence and the different concentration of churches, due to the 

ancient history of the Campania region, reveals a potential very high seismic 

fragility of such area. For such a reason this territory represents an area of 

interest for the application of the above presented methodology.  

In the whole, the Campania region is formed by 550 municipalities, 5 

political districts and 24 ecclesiastical administrative boundaries, (i.e. the 

dioceses). In the Caserta district there are seven dioceses and about 300 

parish churches have been identified (Figure 17). In such area churches are 

065 SLM San Liberatore a Majella 087 MDC Madonna di Carpineto 109 SEU Sant'Eustachio

066 SMA Santa Maria Arabona 088 SCZ San Cristinziano 110 MDM Madonna dei Miracoli

067 SMM Santa Maria Maggiore 089 SDM San Domenico 111 SSL San Salvatore

068 SNB San Nicola di Bari 090 MDC Madonna della Cintura 112 SSM Santa Maria Maggiore

069 SNB San Nicola di Bari 091 SCR Santa Croce 113 SPN San Panfilo

070 STM Chiesa di San Tommaso 092 SMM Santa Maria Maddalena 114 SGB San Giovanni Battista

071 SGT Chiesa di San Giustino 093 SSV San Sabino Vescovo 115 MDG Madonna delle Grazie

072 CIM Chiesa dell'Immacolata C. 094 SMA Santa Maria assunta 116 SMM Santa Maria Maggiore

073 MAC Santa Maria Assunta in Cielo 095 SMM Santa Maria Maggiore 117 SMS Santa Maria della Serra

074 MDL Chiesa Madonna di Loreto 096 SNC San Nicola 118 SML Santa Maria della Libera

075 SLV Chiesa di San Salvatore 097 SMA San Michele Arcangelo 119 SMG Santa maria delle Grazie

076 SGV San Giovanni in Venere 098 MDR Santa Maria dei Raccomandati 120 SGS Santa Giusta

077 SMT San Matteo 099 SMM Santa Maria Maggiore 121 SNB San Nicola di Bari

078 SPT San Pietro 100 SNC Santi Nicola e Clemente 122 SMM Santa Maria in Monteplanizio

079 CED SS Cosma e Damiano 101 MDC Madonna del Carmine 123 SBT San Bartolomeo

080 SSV San Silvestro 102 SVT Santa Vittoria

081 RMG San Remigio 103 SGM San Giacomo

082 SMP Santa Maria del Popolo 104 SNC San Nicola

083 MEL Madonna dell'Elcina 105 MIB Madonna in Basilica

084 SLV San Salvatore 106 SMM Santa Maria Maggiore

085 MDP Madonna del Ponte 107 SSA Santissimia Addolorata

086 SGV San Giovanni 108 SMI Maria Santissima Incoronata
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the binomial probability function, which depends on one parameter only, 

namely the mean damage. On the other hand, it has been found that the 

binomial distribution is also able to well fit the frequencies of damage levels 

occurred for the single macro-elements.  

Based on this outcomes, a methodology given by literature and suitably 

modified has been applied allowing the prediction of the aforementioned 

mean damage level and therefore for a preventive definition of fragility 

curves. In the whole, the proposed methodology appears to be effective for 

churches vulnerability assessment at regional scale; hence, it is worthy of 

being deepened more in details in future researches.  

Provided the reliability of considered methodology, an underway research 

activity is now addressed to outline potential damage scenarios of churches 

of different Italian territories, focusing the attention on three additional 

diocese: 1) the Chieti-Vasto Diocese, 2) the Lanciano-Ortona Diocese and 

3) the Alife-Caiazzo Diocese, in Campania. The results coming out from 

such studies could be used for defining appropriate strategies for seismic 

damage prevention at territorial scale.  
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Sommario. The masonry have always been studied making reference to 

idealistic simplifications, that is to say basic and regular panels, made with 

homogenous techniques. To be realistic, getting to be confronted with a 

historical masonry of a centuries-old building, it is really difficult to apply 

the above said simplifications, the intriguing rules deduced from laboratory 

studies and also the numerical patterns more and more sophisticated. 

Below are some considerations made in reference to a specific case study: 

Palazzo Ducale in Parete, of Caserta province. In this palace, it was quite 

impossible to imagine a model which could faithfully reflect the masonry 

history of over a thousand years. Some extremely simplified approaches are 

able to provide information about the capacity of the structure. Furthermore 

results from nonlinear static analyses are presented. Indications on the 

congruence between codes rules and results from numerical analyses 

performed according to the Italian seismic code are supplied. The results 

show that generally imposing the best approach for the generic case could not 

be satisfying for the particular one. 

Keywords: Seismic Safety, Cultural Heritage, Masonry, Code provisions. 

1   Introduction 

Italian seismic codes issued until the Eighties did not explicitly require 

seismic-oriented calculations for masonry structures, but only to comply 

with some code requirements. Therefore several seismic codes devote a 

section to simplified dimensioning method for masonry buildings, for which 

the safety against collapse is deemed to be verified without explicit safety 

verification if buildings comply with some code provisions and rules. In 
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fact, it is assumed that the respect of these requirements assures a suitable 

seismic behaviour, and thus an adequate safety. Such an exemption is 

usually applicable both to the new buildings and to the existing ones, if after 

possible retrofit they respect the code provisions. 

Some requirements introduced in the new codes come from European 

legislation. 

It needs a substantial certainty that the respect of code provisions and 

rules ensures a suitable building safety against earthquakes, without yielding 

confusion in the designers that employ the code. 

Moreover, several code provisions drafted in Italy in past advised 

numerous limitations to the unreinforced masonry buildings to be retrofitted 

or built in seismic zones. A historical narration is presented below. 

In recent years, several models characterized by different levels of 

complexity were developed and proposed for masonry structures, based on 

elements with different dimensionality (beam, shell or brick type) and aimed 

at different analysis types (Lourenço, 2002; Penna et al., 2004; Chen et al., 

2008; Kappos et al., 2002). 

Among the simplified models advised in literature, frame type models 

based on the assemblage of beam elements are increasingly diffusing also 

for unreinforced masonry buildings (Magenes, 2006; Salonikios et al., 2003; 

Sabatino et al., 2011; Knox et al., 2012). The models derive from other 

materials beam systems and then their extension to masonry structures is 

unavoidably affected by approximations, whose reach is somehow tricky to 

assess. 

This paper focuses the attention on the seismic response of Palazzo 

Ducale in Parete, Caserta province, unreinforced masonry structure. The 

analyses are mainly aimed at evaluating the congruence between simplified 

dimensioning methods, as well as at comparing the Italian code provisions 

(NTC/08) with the ones provided by Eurocode 8 (EC8), and numerical 

results of analyses performed according to the procedure advised by Italian 

seismic code NTC/08. 
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2   Code provisions 

It is possible to neglect the seismic valuation if some provisions are 

respected when masonry buildings are made up of regular stone blocks. The 

requirements to be complied to differ in each national code and with respect 

to European codes also. 

First, it is necessary to point out that the Parete municipality was not 

considered seismic according to the classification made after the code 2-2-

1974, n. 64 (L/74). Therefore, static analysis could be carried out with 

D.M.LL.PP. 20/11/1987 - Technical standards for the design, execution and 

testing of masonry buildings and for their consolidation (DM/87). 

At the same time, D.M.LL.PP. 24/01/1986 - Technical standards related 

to buildings earthquake-proof (DM/86) was issued for seismic zones. 

Afterwards, the code tool to be used in the seismic zones is D.M.LL.PP. 

16/01/96 - Technical standards for construction in seismic areas (DM/96) 

and then NTC/08. 

A concise comparison among rules of DM/96, EC8 and NTC/08 for 

simple masonry buildings is contained in (Guadagnuolo et al., 2009). The 

NTC/08 provisions are similar to the ones of Eurocodice 8, but less 

restrictive, and are more severe than the DM/96 ones, above all for what 

concerns building and wall geometry. 

Particularly EC8 limits the exemption of the explicit safety verification to 

the only ordinary buildings belonging to lower importance categories, 

located in zones of low and medium seismicity and satisfying the provisions 

and the rules specified in detail in the Section 9.7. Therefore, the code 

subordinates the exception to the building use, excluding both the buildings 

whose integrity during earthquakes is of vital importance (e.g. hospitals and 

fire stations) and the buildings whose seismic resistance is important in 

consideration of the consequences associated with collapses (e.g. schools 

and assembly halls). 

Furthermore, the acceleration at site must be lower than 0.15⋅k⋅g, where k 

is a corrective factor depending on the shear walls length. 

The NTC/08 requires instead the general criteria for regularity in plan 

and in elevation and with some specific provisions in terms of building 



 

172 

geometry, masonry stress and constructive rules, detailed in the Section 

7.8.1.9 for the new buildings, and integrated in the Section C8.7.1.7 of the 

related Instructions for the existing ones (Circolare/09, n. 617 - Instructions 

for the Application of the "New Technical Standards for Buildings"). No 

limitation dependent on the building importance category is introduced, 

whereas the building must not be located in zone 1, even though the 

acceleration at site is not limited. 

Although NTC/08 have rules analogous to EC8, it is remarkable to note a 

smaller limitation on the length of resisting walls and on the allowable 

number of storeys in relation to the acceleration at site S⋅ag. 

The specific provisions provided by the two above seismic codes are 

rather similar, but EC8 is more demanding for what concerns the shear walls 

length. In fact, a minimum of two walls in two orthogonal directions, each 

having length greater than 30% of the building length in the direction under 

consideration, is required in EC8 (except in cases of low seismicity), 

whereas in NTC/08 the required wall length (greater than 50% of the 

building dimension) may be provided by the cumulative length of the piers 

separated by openings.With regard to the exemption of the seismic 

verification it can be noticed that the code requirements that define the 

simple buildings must be absolutely suitable for structures of smaller 

importance and complexity also. Specifically, it needs a substantial certainty 

that the respect of code provisions and rules ensures a suitable building 

safety against earthquakes, without yielding confusion in the designers that 

employ the code. This means, for instance, that a large percentage of the 

buildings held simple from the seismic code, if subjected to numerical 

seismic verification, must provide a result congruent with the assumption. 

The above considerations assume special importance by considering that a 

great share of the Italian one-story and two-story masonry buildings are 

“simple” (more than 50% according to recent ratings). 

3   Palazzo Ducale 

The Palazzo Ducale in Parete, of Caserta province, is located in the 

historical centre, next to the ancient San Pietro Apostolo Church (Figure 1). 
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Palazzo Ducale is composed of a central rectangular nucleus (defensive 

tower), built probably between XI and XII century, and other blocks added 

in the following centuries. In particular, the palace, in its actual appearance, 

has a star-shaped structure with four angular and four connecting units, 

which represent the four principal fronts, shorter than the central tower. The 

building is made up by three stories and is in reinforced masonry (Figures 2 

and 3). It is similar to many historic buildings frequently found in seismic 

areas of Southern Italy. 

When the complex was built, it is quite probable that the roof was planar 

and the last level was the Noble floor. As a consequence, the existing 

configuration of the trussed roof should be dated back to the XVIII century.  

This hypothesis firstly derives from the discovering of a rocky gargoyle in 

the South-West tower on the attic floor. Its pavement is characterized by 

remarkable grades towards the gargoyle, confirming the ancient hip of the 

rainwater. Furthermore in the historical map of the Feud of Parete, dated 

back to the XVII century and shown at the offices of the District, the palace 

is clearly of a level shorter than the one now existing (Figure 4). 

 

Fig. 1 – Palazzo Ducale: Aerial photography 
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 a) 

 b) 
 

Fig. 2 – Palazzo Ducale: Ground (a) and Noble (b) floor map 
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 a) 
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Fig. 3 – Palazzo Ducale: Section A-A' (a) and B-B' (b) 
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The whole structure is composed of grey tuff masonry of great quality 

made of squared blocks of average dimensions. The vertical load bearing 

masonries are of variable dimensions between 2 and 0.7 m for the central 

defensive tower, and 1 and 0.6 m for the structures of the palace (Figure 2). 

Masonry with compression strength fm= 2.93 MPa, shear strength ft= 0.2 

MPa, Young's modulus E = 3677 MPa, shear modulus G = 1202 MPa and 

weight w = 16 kN/m
3
 were taken into account. The properties of the 

materials were obtained by laboratory tests on masonry samples taken in 

situ and non-destructive tests carried out in situ (Faella et al., 2012). 

The actual damage to the Ducal Palace, before the restoration intervention 

(Figure 5), after almost a thousand years since its construction, actually does 

not detect signs of seismic damage, despite the structural discontinuities, the 

negligence to which it was subjected, the presence of pushing elements and 

superfluous architecture still present until a few years ago. 

 

 

Fig. 4 – Parete Feud: cartographic excerpt (XVII sec) 
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Over the years, the building was undergoing operations such as bed joint 

reinforcement and repair cracks. Therefore, in general, every reinstatement 

operation carried out on the masonry has allowed to make masonry 

mechanical properties uniform within the structural analysis. The horizontal 

structures on the first level have been built with masonry cross vaults and 

barrel vaults, whereas the ones on the other levels have been made with 

 a) 

 

 b) 

Fig. 5 – Palazzo Ducale: a) Principal front (Est); b) Internal view 
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wooden deckings of recent restoration, with a primary frame of chestnut 

wood beams, most of them originals, and secondary frame made of a double 

crossed planking of chestnuts and connectors of stainless steel. 

The box-behaviour is entrusted to the use of steel tie rods partly ancient 

(recognizable because of bolted end-sticks) and partly of recent installation. 

The roof is built with trusses of chestnut, a secondary structure made of 

chestnut binding rafters, a chestnut planking and functional package whose 

aim is to guarantee the water proofing, the thermal insulation and 

microcirculation of air under the mantle of bent tile (Figure 6). 

4   Simplified dimensioning methods 

In the DM/87, a simplified method to verify the masonry structures in 

precise hypothesis was proposed since there were not complex instruments 

 

 

Fig. 6 – Palazzo Ducale: Principal front after restoration 
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available. 
For buildings made by masonry composed of resistant elements, it is 

possible to neglect the static valuation if some provisions are 

respected: 

a. the building is made of three or less levels in or outside the 

ground; 

b. the plan of the building can be inscribed in a rectangle with a 

ratio between shortest and largest side not lower than 1/3; 

c. the slenderness of the masonry, in any case major than 12; 

d. the area of the section of the masonry resisting to the horizontal 

actions, mentioned in percentage compared to the total surface of 

the plan of the building, is not less than 4% in both the main 

directions except for the overhanging parts. The walls, shorter 

than 50 cm (length measured net of the opening), are not to be 

taken in consideration with reference to the percentage of the 

resistant masonry. These provisions must also show that: 

σ = N / (0,65 A) ≤ σm 

in which 

N: vertical total load at the base of the lower floor of the building 

A: total area of the load bearing walls of the masonry; 

σm: mean value of masonry normal stress. 

In the specific case of Palazzo Ducale: 

a) the building is composed of three levels on the ground; 

b) the rectangle in which the building is inscribed has the following 

dimensions: L1=33.6 m and L2=32.15 m, then the ratio between 

shortest and largest side is about 0.96 (>1/3); 

c) the major measure observed of the ratio h/t is 10.17<12; 

d) the resistant masonry in the parallel direction of x is, in percentage, 

17.4%, while it is 23.82% in the parallel direction of y. Moreover, 

N=90429560 N, A=347300000 mm
2
, fk=2.05 N/mm

2
, σ=0.40 

N/mm
2
 < σm=0.41 N/mm

2
. 

Therefore Palazzo Ducale satisfies all the required requirements, 

according to DM/87 it is possible to neglect the static valuation. 

According to DM/86 for the masonry buildings in seismic zone some 

provisions must be respected; not pushing horizontal structures, effective 
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toothing, insertion of reinforced concrete beams; size of the openings; 

resistant walls distance (d ≤ 7 m); masonry characteristics and walls width. 

These requirements were confirmed in the DM/96, some further 

requirements to neglect verification were introduced: Provisions about 

structural symmetry, about resistant walls distance (d ≤ 7 m), about walls 

width, foundations, floor height (h ≤ 5 m) and also about floor overcharge. 

Attention was paid on mural portions above doors and windows openings, 

are therefore needed concrete or steel beams effectively linked in masonry 

and the openings have to be vertically aligned. 

The resistant masonry area, expressed as percentage of the total building 

area is put in relation to seismic zoning and the tension validation is 

replaced by the: 

σ = N/(0.50 A) <σ m 

Therefore Palazzo Ducale don't satisfies all the requirements, according to 

DM/96 is not possible to neglect the seismic evaluation. 

In NTC/08 the regulation requirements are referred to building geometry, 

masonry, floors and joints characteristics and also to loads and strain states 

(Guadagnuolo et al., 2008). 

Referring to masonry characteristics, Palazzo Ducale is made of block 

masonry with effective toothing according to NTC/08. 

Concerning geometric characteristics, the building is made of three floors 

in a seismic zone is where S ag < 0.35g (Figure 4). Floor height is above 3.5 

m. This requirement was not present in EC8 and was 5 m in DM/96. 

Palazzo Ducale shows a symmetric plan in both x and y directions, with not 

relevant projections, complying the regulation requirements (projection 

length Ls < 25% overall length in that direction Li). 

In each direction there are at least two walls of neat length above the 50% 

of the overall length in the same direction. The requirements are met also by 

the perimeter alignments whose relative distance is more than 75% of the 

overall length in the perpendicular direction. The requirements in EC8 are 

not satisfied because only in the y direction the building shows the presence 

of two piers (the central tower walls) having length of 30% of the Li 
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dimension. Another not satisfied requirement is the NTC/08 maximum 

walls distance (7m). 

The openings are regular and aligned on all floors complying the vertical 

requirements. Floors can be considered as rigid because consolidation 

interventions on wooden ones are planned. Vaults can be considered not 

pushing due to presence of tie rods in both directions and on every floors. 

The 75% of vertical loads is supported by the same system resisting the 

lateral loads. The ratio between the walls resisting section area and the total 

plan area is above the 5,5% in both directions referring to 

0,15g<S∙ag<0,20g. 

Finally the mean strength value on the ground floor piers is greater than 

the limit value of 0.25⋅(fm/FC)/γm. 

Palazzo Ducale don't satisfy all the required requirements, according to 

NTC/08, is then necessary to carry out the seismic verification as presented 

below. 

5   Modelling and analyses performed 

Nonlinear static analyses have been performed using a masonry-type frame 

model in 3MURI software. This modelling considers each masonry wall as 

an assemblage of beam/column-type elements, with rigid end offsets to 

reproduce the high stiffness and strength of the joint regions. Figure 7 shows 

the masonry-type frame model of the building. 

In the pushover analysis, piers are assumed to have elastic-perfectly 

plastic behaviour. Hinges are located at both ends of each element and have 

strength threshold values deriving from both flexural and shear failure 

mechanisms. The failure criteria taken into account in the new Italian 

seismic code are considered. Likewise to the pier elements, an elastic-

perfectly plastic behaviour is assumed for the spandrel beams, but lower 

strengths and limited ultimate displacements are assumed. The model is 

updated each time an element achieves a limit condition (resisting bending 

moment at one end, shear strength, axial strength). 
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stressed during the analysis of the non-linear phase of the structure, which is 

also necessary to obtain believable results. The main resulting 

approximations are examined in (Guadagnuolo et al., 2017). 

5.1   Results 

The non-linear static analysis procedure adopted in the EC8 and in the 

Italian seismic code, both for design and assessment, is based on a 

maximum displacement prediction, which depends on the definition of an 

equivalent elastic perfectly plastic s.d.o.f. structure, derived from a capacity 

curve obtained by a pushover analysis. 

The maximum displacement capacity of masonry elements is a crucial 

parameter as significantly constrains the ULS safety verification in non-

linear static analyses (Magenes et al., 2009); it mainly depends on type of 

masonry, failure mode (shear failure mechanisms generally provide minor 

deformation capacity) and level of axial load (in general, the greater the 

axial load, the lower is the capacity in displacement of walls). 

Nowadays, the check is always performed using the capacity spectrum 

method comparing the capacity of a structure with the demands of 

earthquake ground motion on it. In this context, the computed failure 

mechanism is definitely a discriminating factor in the displacement capacity 

of structures. 

 

Fig. 8 – Code verification in X-direction by the capacity spectrum method 
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In the pushover analysis the height-wise lateral load distribution 

proportional to the product of the displacements of the first vibration mode 

times the floor tributary masses (distribution d1) and the invariant height-

wise lateral load distribution (d2) were assumed. No accidental eccentricity 

was considered in performing the pushover analysis, that is the lateral forces 

were applied at the mass center of the floors. The mass center at the roof 

was assumed as control point. The safety verification was performed 

according to the capacity spectrum method, applying the response spectrum 

shaped for Parete at the life safety limit state, (soil type B, topographic 

category T1, nominal life Vn = 100 years, class of use Cu = 3, peak ground 

acceleration ag = 0.189g, Fo = 2.52, soil coefficient S = 1.2, TB = 0.17 sec, 

TC = 0.52 sec, TD = 2.36 sec). 

Each analysis was performed until the building lateral capacity is reduced 

of 20% with respect to the maximum strength, due to the loss of 

contribution of the piers that achieve the limit failure displacement, or until 

any further increment in lateral load is impossible. 

The safety verification has been performed in terms of displacement in 

the case of pushover analysis, according to the NTC/08 provisions. 

The Figures 8 and 9 show the code verification (distribution d1) in X-

direction and Y-direction respectively by the capacity spectrum method. 

The Ducal Palace was verified according to the spectrum capacity model, 

while it did not meet the requirements for the simplified verification of 

 
Fig. 9 – Code verification in Y-direction by the capacity spectrum method 
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DM/96, NTC/08 and EC8. So these more stringent requirements might 

exclude many historical masonry buildings in our area. 

6   Conclusions 

The seismic response of Palazzo Ducale in Parete, Caserta province, 

unreinforced tuff masonry building is presented in the paper. The Parete 

municipality was not considered seismic according to the classification 

made after the code L/74. Therefore, static analysis could be carried out 

with DM/87. Afterwards, the code tool to be used in the seismic zones is 

DM/96 and then NTC/08. A historical narration has been presented. 

Furthermore some extremely simplified approaches and results from 

nonlinear static analyses has been presented. 

This paper focuses on how it is difficult to find a scientific approach 

which provides a complete response to the questions that a specialist asks 

about on homogeneous, incoherent and different from case to case material, 

such as masonry. 

The studies of the scientific community, and their developments, make us 

able to get more and more in-depth information but it is necessary no to 

ignore the simplicity. The possibility of using simple methods based on the 

previous experience (when technicians did not disposed of modern 

instruments of calculus) allows to compare results with different approaches 

in order to be sure of the accuracy of the methodology chosen. 
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Summary. We illustrate the assumptions underlying a recent reformulation of

the Thrust Network Analysis (TNA), a methodology that allows one to model

internal forces within masonry arches and vaults by means of a network of

thrusts. The proposed version of the TNA allows for analysis of structures

of complex geometry, with openings or free edges, subjected to the combined

action of vertical and horizontal loadings. Several numerical examples are

reported to show how the method can be applied to evaluate the limit geometric

proportions, e.g., minimum thickness, or the horizontal load bearing capacity

of masonry arches and vaults.

Keywords: Masonry, Arch, Vault, Limit thickness, Load bearing capacity

1 Introduction

Stresses in masonry arches or vaults at failure are usually considerably lower

than those required to cause material failure; hence stability of such kind of

structures is basically due to their shape and self-weight magnitude and dis-

tribution (Heyman, 1995). This peculiarity has been an advantage prior to the

development of structural analysis since stability of a full scale structure could

be assessed on a scale model: the real structure was erected by scaling up the

dimensions of a prototype or an existing structure while keeping constant the

relative proportions (Huerta, 2008).

One of the first rational approaches to the stability of masonry arches was

found in the analogy between the shape of masonry arches in equilibrium and

that of hanging cables in tension. Such an analogy (or catenary principle)
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is known since the 17th century and was first presented by Robert Hooke

(Hooke, 1676) in a famous anagram; the analogy was ultimately motivated by

Heyman thanks to the limit analysis principles (Heyman, 1982).

The Thrust Network Analysis (TNA) is a methodology based on Hey-

man’s principles and is used for modeling stresses in masonry vaults as a dis-

crete network of forces in equilibrium with gravitational loads. It was recently

contributed by O’Dwyer (O’Dwyer, 1999) and fully developed by Block and

coworkers in recent times (Block, 2009; 2014). Alternative approaches can

be found in (Ercolano, 1994; 1995; Angelillo et al., 2010; Fraternali, 2010;

Tralli et al., 2014).

Reducing the bias by the quoted authors in favor of a graphical interpre-

tation of the method, Block’s version of the TNA has been recently refor-

mulated by discarding the dual grid and focusing only on the primal grid,

thus significantly enhancing the computational performances of the method

(Marmo and Rosati, 2017). Such a reformulation of the TNA also includes

horizontal forces in the analysis as well as holes or free edges in the vault.

The coefficient matrices entering the solution scheme have been obtained by

assembling the separate contribution of each branch, thus avoiding the ad-hoc

node numbering and branch orientation required by Block’s approach.

Numerical examples, regarding the application of the method to the eval-

uation of limit thickness or horizontal bearing capacity of some vaulted struc-

tures are illustrated to show the effectiveness and robustness of the TNA in

assessing the safety conditions of existing masonry vaults.

2 Thrust network analysis

Equilibrium of vaulted structures can be studied by considering a network of

thrusts, i.e. compressive forces acting within the structure in equilibrium with

the applied loads. Such a network, from now on denominated thrust network,

is described by means of Nn nodes and Nb branches connecting pairs of nodes.

The thrust network is not used to geometrically model the volume occu-

pied by the vaulted structure, as it happens, e.g., in finite element modelling;

rather it is representative of the thrust forces that equilibrate the external load-
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Fig. 1 – Restrained and free edges of a vault and their representation by external and

edge branches and nodes

ings. Accordingly, branches of the network represent the direction of the

thrust forces, similarly to the branches of a funicular polygon.

The n-th node of the network is characterized by its position (xn, yn, zn), in

a three-dimensional Cartesian reference frame in which z is the vertical direc-

tion. The generic branch b of the network is identified by two end nodes and

the corresponding value of the thrust force, denoted as t(b) = (t
(b)
x , t

(b)
y , t

(b)
z ).

Nodes are loaded both by an external force f(n) = ( f
(n)
x , f

(n)
y , f

(n)
z ), whose

value depends on the region of influence of the node, and by the thrust forces

pertaining to branches connected to the node; being compressive by assump-

tion, these thrust forces are oriented towards node n. Branches can be labelled

as internal, if they represent a thrust force that is interior to the network, edge

if they represent forces that are on a free edge or external if they represent

the support reactions, see, e.g., Figure 1. Following the same logic, the set

of nodes is split into Ni internal nodes, Ne edge nodes and Nr external (re-

strained) nodes, where only one external branch converges. Hence one has

Nn = Ni +Ne +Nr.

While the horizontal position of internal and external nodes is assigned,

the coordinates of the edge nodes are unknown. This is due to the fact that

relevant edge branches, i.e. branches connected by edge nodes, will be funic-

ular, in both the horizontal and vertical directions, of the internal thrusts and
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of the applied loads converging to edge nodes.

Equilibrium conditions are employed in order to evaluate branch thrusts,

heights of internal and external nodes and the coordinates of boundary (edge)

nodes. Such equations are written only for internal and edge nodes, while

external nodes are used uniquely as endpoints of external branches that, in

turn, represent support reactions. Accordingly, external nodes and branches

are used to model the constraints of the vaulted structure.

2.1 Equilibrium of nodes

Following the approach illustrated in (Marmo and Rosati, 2017), the horizon-

tal equilibrium of internal nodes is enforced by the 2Ni equations

{

Cit̂h + fx,i r = 0i

Sit̂h + fy,i r = 0i
(1)

where Ci and Si are coefficient matrices containing the cosine directors of the

horizontal projections of the network branches; the subscript i indicates that

only equilibrium of internal nodes is considered. The vector t̂h appearing in

(1) collects branch reference thrusts t̂
(b)
h = r t

(b)
h = r

√

t
(b)
x

2 + t
(b)
y

2, while r is

an unknown parameter and 0i is a vector of Ni zeros.

The coefficients Ci and Si in (1) are obtained by selecting the rows rele-

vant to the internal nodes from two coefficient matrices C and S that, in turn,

contain the cosine directors of all branches of the network and are constructed

by assembling branches’ contributions for all Ni nodes of the network. In par-

ticular, the generic branch b, which connects nodes n and m(b), contributes to

the b-th column of the matrices C and S by the terms

C(b) =
1

ℓ
(b)
h

[

xn − x
(b)
m

x
(b)
m − xn

]

S(b) =
1

ℓ
(b)
h

[

yn − y
(b)
m

y
(b)
m − yn

]

(2)

that are assembled into rows n and m(b), being

ℓ
(b)
h =

√

(

xn − x
(b)
m

)2

+
(

yn − y
(b)
m

)2

(3)
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Also the vertical equilibrium is enforced for all internal nodes of the net-

work, so as to obtain a system of Ni linear equations that can be expressed in

matrix form as

Diz+ fz,i r = 0i (4)

The entries of Di are a combination of the reference thrust densities of the net-

work branches and the subscript i is used to indicate that only the equilibrium

of internal nodes is considered. The entries of Di are computed by assem-

bling the thrust densities of all branches. Specifically, for a generic branch b

connecting nodes n and m(b) of the network, the coefficients

D(b) =
t̂
(b)
h

ℓ
(b)
h

[

1 −1

−1 1

]

(5)

are evaluated and assembled in rows n and m(b) of columns n and m(b) of a

coefficient matrix D. Thus, the entries of the matrix Di, appearing in equations

(4), are obtained by selecting the rows of D corresponding to internal nodes.

The vector z collects unknown heights of all nodes, while fz,i is the vector

of the vertical loads applied to the internal nodes.

The parameter r in formula (4) is used to obtain several solutions to the

same vertical equilibrium equation. In particular, it is clear from this equation

that, keeping fz,i constant, lower values of r are associated with lower values

of z and vice versa. Additionally, r is used to transform the reference hori-

zontal thrusts to actual horizontal thrusts, according to the above mentioned

relation t̂
(b)
h = r t

(b)
h . Hence, such a parameter can be used to obtain an equili-

brated configuration of the network characterized by higher values of thrust,

i.e. maximum thrust solution, corresponding to a shallower thrust network,

i.e. lower values of z, and vice versa.

2.2 Solution procedure for networks subjected to horizontal and verti-

cal loads

In presence of horizontal nodal forces equations (1) and (4) expressing in

turn horizontal and vertical equilibrium of nodes are coupled by means of the
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unknown r so that their solution is more cumbersome to achieve. However if

one sets a tentative value for r, say it r( j), the corresponding reference thrusts

t̂
( j)
h are evaluated by solving the linear optimization problem

min
t̂h

(

ib · t̂( j)
h

)

such that











[

Ci

Si

]

t̂
( j)
h =−

[

fx,i r( j)

fy,i r( j)

]

t̂
( j)
h ≥ t̂h,min

(6)

obtained from the horizontal equilibrium equations (1). In formula (6) ib =

(1, 1, ...,1) has Nb entries so that the product ib · t̂( j)
h represents the sum of all

components of t̂
( j)
h . This particular choice for the objective function is useful

to obtain a solution t̂
( j)
h that is as close as possible to the assigned minimum

values t̂h,min.

The reference thrusts t̂
( j)
h obtained from the solution of (6) can be used to

evaluate the x and y coordinates of the edge nodes by means of the equations

x
( j)
i+e =−

[

D
( j)
i+e i+e

]−1 [

D
( j)
i+erxr + fx,i+e r( j)

]

y
( j)
i+e =−

[

D
( j)
i+e i+e

]−1 [

D
( j)
i+eryr + fy,i+e r( j)

]

(7)

Depending on the geometry and connectivity of the network, the procedure

above described modifies the positions of internal and edge nodes. In general

this effect is negligible for internal nodes but, should their position be signif-

icantly modified by the application of formula (7), external loads need to be

recomputed.

Once the j-th estimate of the horizontal position of all nodes is assigned,

nodal heights and a new ( j+1) estimate of r are evaluated from (4) by solving

the linear optimization problem

min
z,r

±r( j+1) such that



















[

D
( j)
i fz,i

]

[

z( j)

r( j+1)

]

= 0i

[

zmin

0

]

≤
[

z( j)

r( j+1)

]

≤
[

zmax

+∞

]

(8)
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where zmin and zmax are the lower- and upper-bounds imposed by the designer

to the nodal heights of the network. Usually, for internal nodes they can be

set equal to the heights of the intrados and extrados of the vault; alternatively,

to reach a full compression of the vault section, they can be set equal to the

heights corresponding to the lower and upper third of the vault thickness.

The objective function ±r is set equal to +r if one looks for a solution

that minimizes r, thus obtaining the shallowest configuration of the network.

Conversely, one sets −r to obtain a solution that maximizes r, which is rele-

vant to the deepest network. In both cases, positive values of r are estimated

since the constraint 0 ≤ r ≤+∞ is imposed in (8).

If the difference between two successive estimates of r is lower than a

given tolerance, i.e.
∣

∣

∣

∣

∣

r( j+1)− r( j)

r( j)

∣

∣

∣

∣

∣

< tol (9)

the procedure is terminated. If the previous condition is not fulfilled, the

procedure is reiterated by solving (6), (7) and (8), and verifying again the

fulfilment of (9).

Once solution is reached, actual branch’s thrusts are evaluated by com-

posing the horizontal and vertical reference thrusts of each branch, according

to

t(b) =

√

[

t
(b)
h

]2

+
[

t
(b)
z

]2

=
t̂
(b)
h

r

ℓ(b)

ℓ
(b)
h

(10)

where ℓ(b) is the length of the b-th branch.

2.3 An optimized iterative solution procedure in absence of edge nodes

In case the network is lacking of edge nodes, an optimized procedure can be

employed. Actually, since the conditions in (6) are linear, the generic solution

t̂
( j)
h , corresponding to a given value of r( j), can be expressed as

t̂
( j)
h = t̂

(0)
h +

r( j)

r(1)

[

t̂
(1)
h − t̂

(0)
h

]

if r( j) ≥ r(1) (11)
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where t̂
(0)
h and t̂

(1)
h are the reference thrusts returned by the linear optimization

(6) in which it has been set r = r(0) = 0 and r = r(1) = r1, r1 being an arbitrary

positive scalar.

It is straightforward to verify that (11) fulfils both the equality and the

inequality conditions on the right-hand side of (6), provided that r( j) > r1;

hence thrusts associated with r( j) can be assumed as a solution that fulfils

horizontal equilibrium of nodes and the linear optimization problem (6) can

be solved only twice.

Once t̂
(0)
h and t̂

(1)
h have been evaluated, the reference thrusts t̂

(1)
h are used in

(8) to obtain the nodal heights and the tentative value r( j+1). This estimate of

r is used in (11) to obtain a new value of reference thrusts that, in turn, is used

again in (8) to obtain a new estimate of r. The procedure is iterated until the

convergence condition (9) is fulfilled. Finally, at convergence, formula (10) is

applied to evaluate actual values of thrust in each branch of the network.

3 Numerical examples

Four numerical examples are reported below. The first two of them concern

the analysis of a three centred arch while the last two address the full three-

dimensional analysis of two spherical domes that only differ for the presence

of a circular opening at the top. For all examples two solutions are shown,

corresponding to the deepest and shallowest configurations of the network,

respectively. Indicating by rd the value of r associated with the deepest con-

figuration of the network and by rs the one associated with the shallowest

configuration, it is shown that the ratio rs/rd is related to the safety factor of

the arch or vault and it can be used to characterize a limit condition for the

structure.

3.1 Minimum thickness of a three-centred arch

Let be considered the three-centred arch of Figure 2 having centres C1 ≡
(−2m, 0m), C2 = (0m,−4m), C3 = (2m, 0m), radii R2 = 6m, R1 = R3 =
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R2 −
√

22 +42 ≈ 1.53m and springing angles α = β = π/10. The arch has

thickness t = 0.4m and is subjected only to self-weight, this is evaluated by

considering a weight per unit area equal to ρ = 8kN/m2. The corresponding

deepest and shallowest configurations of the thrust network are reported in

Figure 3.

Thus is clear how the two network configurations are visibly different.

This is confirmed by the value of the ratio rs/rd = 1.6585 that, being different

from unity, emphasizes that forces within the arch have the possibility to adapt

to changes in the loading condition or to settlements of the structure.

A second analysis has been carried out by progressively reducing the

thickness of the arch to the value t = 0.234m, which corresponds to a unit

value of the ratio rs/rd . Indeed, as shown in Figure 4, the deepest and shallow-

est configurations of the network are indistinguishable, so that the minimum

C1

C2

C3

R
1

R
2

R3

x

z

t

α β

Fig. 2 – Three-centred arch

197



limit value of the arch thickness has been reached.

3.2 Maximum horizontal load of a three-centred arch

The same approach used for determining the minimum arch thickness can be

exploited to evaluate the horizontal load bearing capacity of the arch. The

arch under consideration is the same described earlier and has thickness t =
0.4m. Horizontal forces are kept proportional to the vertical ones so that the

analysis has been carried out by progressively increasing the value of the ratio

fh/ fz until the deepest and shallowest configuration of the network become

coincident as in Figure 5. Such a condition is characterized by rs/rd = 1 and,
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Fig. 3 – Three-centred arch: deepest and shallowest network configurations for the

arch of thickness t = 0.4m subjected to self weight
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in this case, it is attained when the ratio between the horizontal and vertical

loads reaches the limit value fh/ fz = 0.821.

3.3 Maximum horizontal load of a hemispherical dome

In order to show how this approach can also be applied to three-dimensional

networks, we consider a hemispherical dome of diameter D = 4m and thick-

ness t = 0.2m. Branches of the network are directed along the meridians and

parallels of the dome, converging to a node placed at the top.

Both vertical and horizontal forces are applied at the nodes of the network
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Fig. 4 – Three-centred arch: coincidence of the deepest and shallowest network con-

figurations for the arch subjected to self weight emphasizes that the minimum thick-

ness (t = 0.234m) has been attained
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proportionally to the self-weight of the dome. In particular, vertical forces

applied at the top node is fz = 6kN, nodes of the first parallel, i.e. the one

closer to the top node, is fz = 4kN, while the forces fz = 6kN, fz = 8kN and

fz = 12kN are applied at the nodes of the second, third and fourth parallel,

respectively. Horizontal forces act along the x axis and are kept proportional

to the vertical ones.

The ratio rs/rd attains the value 1.4029 if horizontal forces are ignored,

confirming the visible difference between the deepest and shallowest configu-

ration of the thrust network, see, e.g. Figure 6.

The analysis of the dome subjected to the combined action of vertical and
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Fig. 5 – Three-centred arch: deepest and shallowest network configurations for the

arch having thickness t = 0.4m subjected to vertical and horizontal loads applied

according to the ratio fh/ fz = 0.821
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horizontal loads has been carried out by progressively increasing the value

of the ratio fh/ fz till the attainment of the limit condition rs/rd = 1. As

shown in Figure 7, an intermediate solution, corresponding to fh/ fz = 0.08,

still exhibits a visible difference between the deepest and shallowest config-

urations of the thrust network, confirmed by the value attained by the ratio

rs/rd = 1.3215.

Finally, the limit value of the horizontal forces, corresponding to rs/rd =
1, is attained when fh/ fz = 0.159; in this case the deepest and the shallowest

configurations of the network, reported in Figure 8, become indistinguishable.

3.4 Maximum horizontal load of a hemispherical dome with oculus

As a final example, the dome analysed in the previous subsection in which a

circular opening (oculus) of diameter d = 0.8m is present at the top is con-

sidered. The corresponding network is obtained from the one used for the

previous example by deleting the top node and all branches converging to

it. Loadings are also equal to the ones considered in the previous example,

except for the force applied to the top node.

Thrust network configurations corresponding to the network subjected to

self-weight is reported in Figure 9, in which the difference between the deep-

est and shallowest configurations of the thrust network is quantified by the

ratio rs/rd = 1.5195. Such a ratio reduces as the horizontal forces are ap-

plied. In particular, for a value of horizontal forces corresponding to the ratio

fh/ fz = 0.08, the deepest and shallowest configurations of the network, plot-

ted in Figure 10, are still sensibly different; this is witnessed by the value of

the ratio rs/rd = 1.4355. Conversely, when the limit value of horizontal loads

is attained, i.e. when fh/ fz = 0.171, the deepest and shallowest configuration

of the network are coincident, see, e.g., Figure 11, and the ratio rs/rd attains

a unit value.

By comparing Figure 8 and Figure 11, and the corresponding limit values

of the ratio fh/ fz, associated with a ratio rs/rd = 1, that amount respectively

to 0.171 and 0.159, one infers that the seismic safety of the dome with oculus

is greater than the one pertaining to the hemispherical dome.
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Fig. 6 – Hemispherical dome: deepest and shallowest network configurations for

dome subjected to self-weight
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Fig. 7 – Hemispherical dome: deepest and shallowest network configurations for

dome subjected to self-weight and horizontal loads applied according to the ratio

fh/ fz = 0.08
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Fig. 8 – Hemispherical dome: deepest and shallowest network configurations for

dome subjected to self-weight and horizontal loads applied according to the ratio

fh/ fz = 0.159
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Fig. 9 – Dome with oculus: deepest and shallowest network configurations for dome

subjected to self-weight
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Fig. 10 – Dome with oculus: deepest and shallowest network configurations for dome

subjected to self-weight and horizontal loads applied according to the ratio fh/ fz =
0.08
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Fig. 11 – Dome with oculus: deepest and shallowest network configurations for dome

subjected to self-weight and horizontal loads applied according to the ratio fh/ fz =
0.171
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4 Conclusions

The version of the Thrust Network Analysis proposed by Marmo and Rosati

(2017) has been described and applied to the equilibrium analysis of arches

and vaults subjected to vertical and horizontal loads. The approach con-

tributed by Block in his PhD Thesis (Block, 2009) has been reformulated

and extended in order to obtain a computationally efficient method capable of

analysing thrust networks, possibly characterized by the presence of holes or

free edges, subjected to the combined action of vertical and horizontal loads.

To be more specific, the computational efficiency of the method by Block

(2009) has been enhanced by avoiding unnecessary complications. In partic-

ular, the optimization problem summarized in formula (6) involves much less

equality conditions with respect to the original formulation by Block, yet pro-

viding the same final solution. This is due to the fact that the first two sets of

equations reported in formula (4.32) of (Block, 2009) can be easily inverted

and substituted in the subsequent two sets of equations. This significantly

reduces the total size of the resulting optimization problem (6) and enhances

the computational performances of the proposed TNA reformulation.

Furthermore, in the original formulation of the method the entries of the

matrices C and S used to express horizontal equilibrium of nodes, see, e.g.,

formula (1), are assigned by assuming a specific node numbering and branch

orientation; in particular, internal nodes are numbered first, while the exter-

nal ones are numbered at last so that all branches are oriented towards nodes

with lower index. Conversely, since the entries of C and S are obtained by

assembling the branch contributions, which are given by formulas (2), no as-

sumption about the node numbering is required in the proposed reformulation

of the method.

Computational efficiency of the method is also enhanced by ruling out

the determination and employment of the so called dual grid. Actually, we

recall that the reference thrusts t̂
(b)
h , are used by Block (2009) to define the

branches’ lengths of a dual grid that is reciprocal to the one referred to as

primal grid, composed by the horizontal projection of the thrust network.

Such a dual grid represents the graphic visualization of nodes’ equilibrium in

the horizontal plane. In particular, increase or decrease of the branches’ thrust
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can be visualized by increasing or decreasing the corresponding length of the

dual grid’s branches.

In the presented version of the method we allow for a different value of the

thrust lower bound to be assigned to each branch of the network so that the

duality relationship between reciprocal grids can be avoided; moreover this

graphical representation becomes of difficult interpretation when horizontal

forces are applied to nodes.
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Summary: This paper provides an approximate solution for the differential 

equations that govern the buckling of beams with a gradually changing of the 

thin-walled C cross section. This is a coupled problem of flexural and tor-

sional buckling, whose exact solution is hard to get. We have therefore cho-

sen to use an energy approach through the Dirichlet’s principle. It allows, us-

ing the Ritz- Rayleigh algorithm, the quick implementation of a solution 

close to the real value of the critical load. Because of the complexity of the 

problem, it was considered appropriate to provide an experimental validation 

of the theoretical results with proper laboratory tests. 

Keywords: Buckling analysis; theorem of minimum total potential energy; 

Dirichlet’s principle; Ritz-Rayleigh method; variable cross section beam; 

coupled flexural-torsional buckling; shear centre position; imperfection sensi-

tivity. 

1   Introduction 

In the design of compressed members, it generally takes into account the 

failures due to simple flexural buckling (Eulerian). In the case in which the 

moment of inertia of the cross section varies according to the power of the 

distance along the bar we have to take in account the possibility of further 

equilibrium modes. Owing the dependence of the shear centre position from 

the applied loads and because of the low torsional stiffness of the open thin 

walled sections the bar may twist, or even worse it may twist and bend si-

multaneously. 
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The differential equations that govern the problem of bending and torsion 

were derived by Euler. They are coupled and so it’s very difficult to achieve 

a closed solution of the problem.  

The stability problem in bars with varying cross section has a consider-

able practical importance in many fields of the engineering applications: 

mechanical, structural an aeronautical. In fact, by removing a portion of the 

material in a proper chunk of the bar we can increase the stability or the 

economic performances. On the other hand, recent history is full of dramatic 

examples of failures due to lateral torsional buckling. For this reason, to 

date, many authors continue to address this subject, researching the most 

appropriate approach: Method of initial parameters (Vlasov, 1959); Energy 

Method (Timoshenko and Gere, 1961; Franciosi, 1967); Finite Difference 

Method (Bazant, 1965); Exact Element Method (Eisenberger and Cohen, 

1995); Variational Iteration Method (Coşkun and Atay, 2009); FEM Ap-

proach (Trahair, 2014; Kováč, 2015). 

In this work the solution is obtained through an energy approach using the 

Dirichlet’s theorem. The accuracy of the energy method is related to the 

buckled shape assumed. If the guessed shape is close to the true shape, the 

buckling load calculated is quite close to the true value; however, it should 

be pointed out that in this case the method provides an upper bound to the 

true critical load. The buckling shape guessed is obtained by using limited 

trigonometric series and the solution is given by Ritz-Rayleigh algorithm. 

The theoretical results thus obtained were then validated by proper ex-

perimental investigations. 

2   Problem definition 

The position of the shear centre in a constant cross section beam is univo-

cally determined by cross section geometry. As already shown in a previous 

work (Mascolo and Pasquino, 2016), this is no longer true when the cross 

section varies according to a power of the distance along the beam. In this 

case, the shear centre position also depends on the applied stress. Take a C 

cross section as an example, symmetric with respect to the centroidal axis x, 

the laws that govern the shear centre position along the beam are: 



213 

0)(

26

6

24
)(

'

3'2''

'''

2

'2'2'

=




















+
−+−=

zy

B

HHB

HB

dz

dM

dz

dB

A

N

I

H

I

HB
zx

c

x

xx

c

δ
δ

δδ
 

where Mx e Ix are, respectively, the bending moment and the moment of 

inertia with respect to the x axis, A is the cross section area. The meaning of 

the other terms can be obtained from Fig. 1. 

  
Fig. 1 – Cross-section geometry 

Euler derived the differential system of equations that governs the deflec-

tion curve of the beam: 
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where EIξ and EIh are the flexural rigidity of the beam with respect to the 

principal centroidal axes; N(z) is the axial compressive force to the generic 

abscissa z; u and v are the deflection of the centroid in x and y directions; �′ 

is the rate of change of the cross section twist angle about the shear centre; 

E and G are the Young’s and shear modules; Ic is the polar moment of iner-

tia of the cross section about the shear centre;  

C1 is the warping rigidity: 

3

3

1

∫=
ds

GC
δ

 

C2 is the warping constant that depends from the sectorial area ωs: 

∫= dsEC s δω2

2  

In this system, the equations of bending and twist are coupled so it is 

quite difficult to get an exact value of the true critical load. Thus we do not 

look for a closed solution of the problem, choosing an approximate way by 

the Dirichlet variational method. It states that a position of stationary total 

potential is an equilibrium position.  

Making use of this theorem, moving from one configuration assigned to 

another one, infinitely close and kinematically admissible, we can establish 

that it is also balanced depending on the first variation of total potential en-

ergy, in terms of displacement functions u, v, w. In this way, the Dirichlet’s 

theorem gives n necessary and sufficient conditions of equilibrium: 

ni
c

Ept
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where Ept is the total potential energy and ci are n Lagrange multipliers. 

Then, the total potential energy is a functional of the deflection components 

u(x), v(y), w(z). Choosing as suitable buckling shape a limited trigonometric 

series, the deflection shape can be reviewed as the sum of n natural defor-

mation modes: 

nijcs
n

i

ijijj ,..,13,2,1
1

,, ==Ψ=∑
=

 

where Ψ�,� represents the partial sum of the first n terms of the Taylor series 

expansion. In this way, the total potential energy become a quadratic func-

tion of the 3n parameters cj,i: 

),( , crij FcfEpt =  

This strategy has therefore allowed a transition from continuous to dis-

crete, assimilating the continuous system to a holonomic one. 

By imposing stationarity with respect to the n-th parameters cj,i, it leads to a 

linear eigenvalue problem: 

[ ] 0,,,
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=∂−=
∂
∂

ijijcrij

ij

cGFK
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Ept
 

The solution of this linear problem gives the value of the studied critical 

load. The solution as will be closer to the real value as the number of chosen 

Lagrangian parameters will be greater. 

3   Case study 

It is analyzed an open thin wall C cross section S420 steel beam; the width 

of the flanges and the height of the web is linearly variable along the z axis.  

The beam was obtained from a single sheet of steel formed onto a press 

brake.  

As can be seen in Fig. 2, the static scheme is a pinned-pinned beam, sub-

jected to an axial compression force centered in the centroid of the section. 
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Fig. 2 – Beam geometry 

 

The supports allow only the rotations around y axis and preventing the 

translations in the x, y directions; in B are, moreover, prevented the transla-

tions in the z direction.  

The kinematically admissible class of displacements that we have chosen 

for the theoretical resolution of the problem is the partial sum to the first n 

terms of the Taylor series expansion: 
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We tested two beams with the same geometrical and mechanical charac-

teristics, using MTS 810 universal testing machine of the 550 kN load 

range. As can be seen in Fig. 3, the constraints have been designed and 

manufactured specifically to ensure the required kinematic conditions. The 
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tests were conducted in standard conditions of pressure and temperature; 

during the tests we registered time, compressive force, displacements of the 

web and the flanges in some representative points of the beams and strains 

in other representative points. The sampling frequency of all parameters was 

5 Hz.  

 
Fig. 3 – Tested beam: pre and post buckling 

 

Furthermore, for the purpose to ensure the invariability of the section 

shape, we have introduced appropriate transverse stiffening plates along the 

beams. 

For the purpose of gauging stress and strain of the beams, we have used, 

in the most representative points, displacement transducers of the WA type 

series and strain gauges sticked along 0° and 90° directions on both sides of 

the beams.  

In order to check the subcritical, critical and post critical behaviour of the 
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Fig. 5 – Subcritical, critical and post critical behaviour 

However, the conviction of the authors is that the buckling has occurred 

in the elastic field. Once the stress draws the critical value, the beam sud-

denly bends and this causes the variation of the shear centre position and 

then additional torsional stresses. Because of the bending and the twist of 

the beam, any small load increments cause high stresses in the material and 

quickly the strain reaches the yield strength values. Indeed, the Koiter’s 

post-buckling theory (Hutchinson and Koiter, 1970) has shown that whether 

the post-buckling path of the loaded structure has a limit point, the buckling 

load is sensitive to initial imperfections. In this case, the results of repeated 

buckling tests can exhibit noticeable scatter.  

F

theoretical elastic  behaviour

real behaviour

Fm

Fc

e
la

s
ti

c
 b

e
h

a
v

io
u

r

O ci



220 

References 

1. Bazant, Z. (1965). Non-uniform torsion of thin-walled bars of variable section, IABSE 

publications, vol. 25, pp. 17-39. 

2. Coşkun, S. B., Atay, M. T. (2009). Determination of critical buckling load for elastic 

columns of constant and variable cross sections using variational interation method. 

Computers and Mathematics with Applications, vol. 58 (11), pp. 2261-2266. 

3. Eisenberger, M., Cohen, R. (1995). Flexural-torsional buckling of variable and open 

cross section members. Journal of Engineering Mechanics, vol.121 (2), pp. 244-254. 

4. Franciosi, V. (1967). Scienza delle costruzioni, vol. V, Stabilità dell’equilibrio, Napoli, 

Italy: Liguori. 

5. Hutchinson, J. W., Koiter, W. T. (1970). Postbuckling Theory. Applied Mechanics 

Reviews, vol. 23 (12), pp. 1353-1366 

6. Kováč, M. (2015). Elastic Critical Force for torsional-flexural buckling of metal mem-

bers with mono-symmetric cross sections. Applied Mechanics and Materials, vol. 769, 

pp. 36-42. 

7. Mascolo, I., Pasquino, M. (2016). Lateral-torsional buckling of compressed and highly 

variable cross section beams. Curved and Layered Structures, vol. 3 (1), pp. 146-153. 

8. Timoshenko, S. P., Gere, J. M. (1961). Theory of elastic stability, New York: McGraw 

Hill, Book Company. 

9. Trahair, N.S. (2014). Bending and buckling of tapered steel beam structures. Engineer-

ing Structures, vol. 59, pp. 229-237. 

10. Vlasov, V. Z. (1961). Thin-walled elastic beams, Washington, D.C., U.S.A.: National 

Science Foundation.  

 



 

221 

Wall structure finite-element by BEM coupling 

Vincenzo Minutolo, Eugenio Ruocco 
 

Dipartimento di Ingegneria Civile Design Edilizia Ambiente 
Università degli Studi della Campania "Luigi Vanvitelli", 

81031 Aversa (CE), Italy 
{vincenzo.minutolo, eugenio.ruocco}@unicampania.it 

 

Abstract. The calculation of structures made of the assembly of several walls 
requires finite element modeling, henceforth it gives raise to a large number 
of degrees of freedom. The actual work shows that the number of parameters 
is reduced by using Boundary Elements to derive the stiffness matrix of the 
element. The proposed technique gives origin to positive definite and 
symmetrical matrix due to the use of constant boundary elements. Moreover, 
the resulting matrix can be assembled together with Finite Element ones in 
order to obtain the description of complex three dimensional structures. 
Substructuring and multi region modeling are possible and continuity 
relaxation between elements as well as interface and non linear constitutive 
laws can be comprised. Some examples are reported in order to verify the 
accuracy and the feasibility of the procedure for the elastic case. 

Keywords: Boundary Element, Finite Element, mixed coupling, masonry 
wall. 

1 Introduction 

Worldwide, the main part of cultural heritage buildings are made by 
masonry structures.  
The mechanical characterization of those structures is done by means of 
plane walls assembled within a three-dimensional framework. The plane 
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walls present both in plane and out of plane behavior. The main criteria for 
calculating such wall bearing structures is to assume that vertical and 
horizontal loads are transferred to the foundation through the walls by 
means of the in plane mechanism. On the other hand, the collapse and the 
failure of the structure seem to involve out of plane mechanism for the 
majority of the cases. However, it is of great importance to evaluate the in 
plane response at first (Auciello and Ercolano 1997, Caliò et. al. 2002, 
Galasco et al. 2004, Solonikios 2003). 
Starting from the above considerations, simplified methods are often used 
for the structural analysis of masonry assembly. For instance, the structure, 
actually made of interconnected plates and shells, can be analyzed with 
reference to equivalent frame, i.e. it is analyzed as one dimensional beam 
element assembly, sometimes considering shear strain effects and rigid 
links. 
The finite element method, conversely, is a powerful tool to calculate the 
response of plane walls, but it requires great amount of computer space. 
Consequently, in practical engineering simplified methods are preferred and 
the FEM is restricted to the analysis of complex structural systems or to 
check the accuracy of simplified methods (Ercolano 1995, Ercolano 1997). 
In the paper, a suitable and effective method for calculating element 
stiffness matrix by coupling of Boundary Element Method (BEM) and FEM 
is proposed. The method allows performing the two-dimensional elastic 
analysis of masonry wall. Moreover, it allows considering voids and 
inclusions of different materials by means of substructures. 
The structural response is calculated by a displacement-based FEM that uses 
a set of finite macro-elements (Macro Boundary Finite Elements MBFE) 
connected each other.  
The stiffness matrix of the elements is obtained by means of variational 
Boundary Element Method (Polizzotto 2000). In a sense the BEM kernels 
are used as a shape function for the element. The duality in term of energy 
of the nodal tractions and displacements is enforced by using constant 
Boundary Elements. It ensures that the Boundary Integral Equation 
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governing the element equilibrium can be discretized into a positive definite 
matrix.  
Henceforth, the resulting wall element is treated like any finite element and 
assembled into classical routine (Vodička et al. 2011). 
The Boundary Integral Equations are formulated considering that the wall is 
homogeneous and undergoing to plane stress. Even if heterogeneity could 
be considered with a little effort (Minutolo et al. 2009), the analysis is 
limited to the homogeneous case. The wall is modeled as a plane surface 
whose boundary lines are discrerized into straight segments with only one 
node at the middle, so that the shape function of the BEM is constant. 

2 Formulation 

Let us consider a plate element that occupies the plane domain  , the plate 
is made of linearly elastic material and exhibits plane stress. Forces 

k
b  are 

applied in internal points of the structure body and tractions 
k

t  on its 
boundary    . On the elastic plane the vectors *

lkt  and *
lku  represents the 

Green’s functions for the displacement and the traction at the boundary 
point x  in the k  direction due to a unit load applied at y , where y  is an 
internal point in the l  direction. By these definitions, the following 
Somigliana's identity can be written (Aliabadi Wrobel 2002, Brebbia 
Dominguez 1992): 
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The identity (1) gives the displacements at internal points, 
l

u , as a function 
of the boundary values 

k
u  and 

k
t . 

Boundary Integral Equation (BIE) involving only boundary values of the 
unknowns is obtained by collocating equation (1) on boundary points of the 
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plate, provided that discontinuity of the kernels of the equation (1) is 
accounted. The resulting BIE is: 
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 (2) 

where the integral concerning *
lkt  has to be considered in the sense of Cauchy 

principal value and 
lk

c  are numerical coefficients depending on the 
boundary regularity at the point  . 
In order to numerically evaluate eq. (2), the plate boundary is divided into 
linear boundary elements, where the traction and the displacement are 
represented only by the value assumed at the node at the center of the 
element. The body forces have to be accounted by performing volume 
integration, although no unknown quantity is defined on the internal points. 
However, plate interior has to be described by plane elements too. Hence, 
let us assume that N is the number of boundary elements and M the number 
of internal cells: the equation (2) is discretized performing both the 
collocation of the equation on each boundary point i , and integrating the 
kernels on each boundary element k   and on internal cell: 

* * *

1 1 1
.

j j k

N N M
i i j j

j j k

d d d
  

  

                       c u t u u t u b  (3) 

After reordering of the equation with respect to the nodal values of 
displacement and traction,  the following linear algebraic equation system is 
obtained, 

Gt = Hu b  (4) 

where H  and G  are 2Nx2N matrices. Moreover, u , t  and b  are vectors 
collecting nodal values of displacement, traction and equivalent nodal force 
corresponding to body loads. 
The nodal force is defined by the resultant of the traction on the left hand 
side of equation (4): 
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1 1 Lt = LG Hu LG b   (5) 

where 

1

1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

N

N

L

L

L

L

 
 
 
 
 
 
 
 

L   (6) 

is a diagonal matrix containing the lengths of the boundary elements. 
It is well known (Polizzotto 2000) that the collocation method leads to a 
fully populated, unsymmetrical and not positive definite matrix: 

1 .A LG H  (7) 

The matrix (7) is unsuitable for the characterization of the macro element’s 
stiffness matrix. 
To obtain such a result, let us take into account the discretized form of Total 
Potential Energy of the plate (Reissner 1950, Washizu 1982, Panzeca et al. 
2009),  

1
2

T T e  u Au u f  (8) 

where  

 1
e

 f L t G b   (9) 

and calculate its variation 

     

   

1 0
2

1 0, .
2

T T T e

T T e

  

 

       

        

u Au u A u u f

u A A u f u
 (10) 

Then,  it is possible to set up a fully populated and symmetric system of 
linear equations for the computation of unknown boundary displacements 
and generalized forces, where the coefficient matrix K  is a symmetric and 
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positive definite stiffness matrix. Notice that K  is coincident with the 
symmetric part of matrix A . 
It follows that the characteristic relationship between the forces acting on 
the macro element nodes and the corresponding displacements assumes the 
form: 

f = K u  (11) 

where the symbols have to be considered as in Finite Element Method, 
namely f  is the equivalent nodal force vector, u  the nodal displacement and 
K  the stiffness matrix of the element. 

3 Results 

In this section the validity and the accuracy of the proposed element is 
presented, and some results calculated by means of the proposed element 
are compared with numerical and analytical ones available in literature. 
In the first example, the overall response of the in-plane walls (Figure 1a) is 
investigated by utilizing macro-element subdivision reported in Figure 1b. 
Constant BEM elements, with size h = 100 mm, are used for boundary 
discretization of the single macro element. The horizontal and vertical loads 
are distributed along the horizontal slabs (Figure 1a). 
The wall element has plane stress with thickness 500t mm , Young Modulus 

1260E MPa  and Poisson’s ratio 0.2  . The global assembly is obtained 
considering the presence of the reinforced concrete riddles and architraves. 
These parts are treated like macro-elements with different stiffness 
depending on the homogenized material. 
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(a) (b) 

Fig. 1 – Masonry wall example: a) geometry and loads; b) macro-element subdivision 

 

The results are compared with numerical ones, obtained by the commercial 
FEM software package Ansys ©, which uses a displacement based FEM 
formulations. 
The normal and tangential stresses along the Path 1 and displacement 
components along Path 2 and 3 are plotted in Figure 2. 
The stress at the foundation of the wall on the left is characterized by 
bending and axial stress combination since the horizontal forces, the 
displacement in vertical direction is almost constant due to the prevalence of 
vertical load. In Figure 2, the results from commercial FEM program are 
reported and the good agreement between proposed model and FEM 
calculation can be appreciated. FEM calculation has been performed using 
quadrilateral elements that on the boundary coincide with the boundary 
element. However, FEM requires the discretization of the whole surface of 
the wall, whereas Macro Boundary Element requires only line element 
along the interfaces. 
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(a) (b) 

(c) (d) 

Fig. 2 –  Results: a) horizontal paths for the plot results; b) stress along path 1; c) 
displacements along path 3; d) displacements along path 2 

4 Conclusions 

An accurate and efficient derivation of element stiffness by means of 
Boundary Integral Equation has been discussed. The obtained stiffness 
matrix can be used in conjunction with Finite Elements in two-dimensional 
elastic analysis of masonry wall with voids and inclusions of different 
materials. The element is described in term of nodal displacement. The 
number of nodes can be arranged in accordance with the desired accuracy 
and the connectivity of the walls constituting the structure. 



 

229 

The use of constant BEM elements gives a greater rigidity to the structure 
with respect to a conventional FEM model and tends to FEM with 
decreasing size. The results show that the proposed approach is capable of 
simulating with good approximation the in-plane response of unreinforced 
masonry. 
The work can be extended to the case of discontinuous interfaces and 
heterogeneous wall panels. The Boundary Integral derivation is, indeed, 
suitable of modification by introducing heterogeneous 2D elastic kernels. 
The assembly of the stiffness matrix of the MBFE can be performed by 
using unilateral coupling or interface constitutive law. 
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Abstract. A novel lumped stresses network approach for the analysis of the 

mechanical behavior of masonry structures is presented. It is formulated 

through a network of lumped stresses, making use of polyhedral stress 

functions and a variational approximation of the continuous equilibrium 

problem. The proposed method allows for modelling masonry structures as 

no-tension elements and gives, in the case of curved masonry members, the 

optimized surface through a predictor-corrector procedure and the stress 

function describing the membrane stress. The given approach offers a useful 

tool for predicting the crack pattern of unreinforced masonry structures and 

the associated stress fields. It is validated against some benchmark case 

studies dealing with a hemispherical dome, a groin vault, a cloister vault and 

a masonry beam. 

Keywords: Lumped stress approach, Masonry structures, No-tension model, 

Polyhedral stress function, Crack pattern, Mesh adaption 

1   Introduction 

Masonry buildings realized in the last centuries are a significant part of the 

international architectural heritage. The evaluation of structural 

vulnerability of these constructions is the first step to evaluate their safe and 

to preserve them over time. 

From historical point of view, the first models for the stability analysis of 

curved masonry structures were formulated with reference to arches, by 

introducing the funicular curves (Hooke, 1675; Poleni, 1748; Heyman, 

1966); the slicing technique (Wittman, 1879; Ungewitter, 1890; Heyman, 
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1966, 1977; Boothby, 2001; Foraboschi, 2004; Como, 2009); physical or 

virtual hanging chain models (Tomlov et al., 1989; Kilian and Ochsendorf, 

2005; Andreu, 2007; Kilian 2007); and the limit analysis of no-tension 

structures (Heyman, 1966, 1995; Del Piero, 1998: Huerta, 2001). 

In the last few years, the Heyman limit analysis approach has been 

extended by several authors for the evaluation of the mechanical behavior of 

vaulted and plane masonry structures, by developing analytical, 

computational and graphical methods capable to search for at least one 

purely compressive state of thrust in equilibrium with the applied loads. 

Most of them approximate the thrust surface as a force network (O’Dwyer, 

1999; Fraternali, 2001; Fraternali et al., 2002 (1,2); Block and Ochsendorf, 

2005, 2007; and Ochsendorf and Block, 2009). In this way discrete loads 

and structural discontinuities can be incorporated easily in the modelling.  

Recent contributions to the ongoing research have optimized the search 

the thrust surface by using polyhedral stress potentials to generate 

equilibrated lumped stress networks (Fraternali et al., 2002 (1,2); 

Adriaenssens et al. 2009).  

The present work deals with a novel lumped stresses network approach 

for the analysis of the equilibrium problem of unreinforced masonry 

structures. Such an approach is developed through a network of lumped 

stresses, making use of polyhedral stress functions and a variational 

approximation of the continuous equilibrium problem. A constrained 

lumped stress method LSM is proposed for the analysis of curved members, 

by enforcing that a compressive membrane state of stress “condensed” 

across a material surface S (thrust surface), contained in a bounded region of 

the 3D space, is in equilibrium with the external loads.   The membrane 

behavior is modelled by means of a discrete network of compressive forces, 

which allows us to approximate the no-tension model of masonry 

(Giaquinta and Giusti, 1985; Del Piero, 1989; Heyman, 1995). The 

membrane equilibrium problem is solved via an iterative procedure based 

on a variational formulation, under the assumptions of polyhedral test 

functions for the thrust surface and membrane stress potential.  
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The proposed LSM has been generalized for the elastic problem of a wall 

that incorporates ENT elements by means of a mixed LSM-displacement 

method (LSDM). 

Case studies of curved structures (hemispherical dome, groin vault and 

cloister vault) and plane members (masonry beams) are analyzed in depth. 

The numerical results highlight the efficacy of the proposed approach in 

predicting equilibrated lumped stress networks and associated crack 

patterns. 

2   Equilibrium problem of masonry structures 

The elastic problem is analyzed with reference to masonry curved structures 

and walls. 

2.1   Vaulted structures 

We introduce the thrust surface S of a masonry vault, as a no tension 

membrane contained in a design domain, and its shape function 

),( 21 xxff = (Figure 1).  

Let Ω  denote the horizontal projection of the thrust surface and let 

},,{ 321 xxx  be Cartesian coordinates with unit base vectors  { 321 ,, eee }, such 

that 3x  is perpendicular to Ω .  
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Fig. 1 – Thrust surfac
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The Pαβ  stresses can be derived from the Airy potential (or stress 

function) ϕ , assuming pure vertical loading ( 0)2()1( == qq ): 

 

,/ 2

2

211 xP ∂∂= ϕ
 

,/ 2

1

222 xP ∂∂= ϕ
 

,/ 21

212 xxP ∂∂−∂= ϕ
 

(4) 

 

The equation (3) can be rewritten by substituting equ. (4), as follows: 

 

Ω,=−∂∂∂ in   0/2 qxxa βααβ ϕ
 (5) 

 

where: 

 

a11 =∂2 f /∂x2

2

,  
a22 = ∂2 f /∂x1

2

,   
a12 =−∂2 f /∂x1∂x2,    

.)3(qq −=    

 

 

Once the surface tractions along the boundary of S are prescribed, the 

equation (5) can be solved by considering the boundary condition: 

 

, on  )( Ω∂= sµϕ
 

(6) 

 

where s is a curvilinear coordinate measured along the arc-length of Ω∂ , 

and )(sµ  (Dirichlet problem) is the moment of all support forces about a 

vertical axis through the point s.  

The stress function ϕ  is obtained via the following variational 

formulation of (5)-(6):  

0.a d q d
x x

αβ
α β

ϕ δϕ δϕ
Ω Ω

∂ ∂ Ω + Ω =
∂ ∂   (7) 

 

The equation (7) has to be satisfied for each δϕ  vanishing on ∂Ω .  

It is well-known that the no-tension constraint for the masonry implies that 

ϕ  in addition must be concave (Giaquinta and Giusti, 1985).  
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The Airy stress function ϕ  is evaluated by using the Constrained LSM 

approach below presented. 

 

2.1   Walls 

The mechanical behavior of masonry walls can be analyzed within the field 

of stress plane problem. The members is modelled as a plane body Ω , 

subject to kinematical boundary conditions uu =  on a given portion 
uΓ  of 

its boundary Ω∂≡Γ , and surface tractions p  over 
up ΓΓ=Γ \ . Within the 

proposed procedure no body forces are considered.  The plane body Ω  is 

assumed to be polygonal and simply-connected and then is discretized by a 

triangulation { }Mh ΩΩ=Π ,...,1  (primary mesh), characterized by a fixed 

mesh size, )}({sup },...,1{ mMm diamh Ω= ∈ , and a dual tessellation 

{ }Nh ΩΩ=Π ˆ,...,ˆˆ
1  (dual mesh). The primary mesh is extended outside the 

portion pΓ  of Γ , considering an “extended mesh” h'Π  (Figure 1).  

 

1x

2x

O

uΓ

pΓ

p

 
 

Fig. 2 – Primary and secondary meshes of a plane body. 
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The stress field of the body is derived from a single-valued scalar 

potential or Airy stress function ϕ , by using the mixed LSM-displacement 

approach below presented. 

3   Lumped stress method 

The Lumped Stress Method presented in Fraternali (2001) and Fraternali et 

al. (2002) approximates the Airy stress function ϕ  through piece-wise 

linear functions ϕ̂  defined over either the shape function, in the case of 

curved structures, or the plain body, in the case of walls. 

The method has been originally developed for curved surfaces, starting 

from a partially non-conforming scheme (cf. Ciarlet, 1978) formulated 

under the assumption of 
0

C  approximations to both f  and ϕ , (i.e. 

polyhedral test functions f̂  and ϕ̂  defined on a triangulation hΩ  of Ω ) 

(Figure 3).  
 

 

  

Fig. 3 – Polyhedral approximations to f  (left) and ϕ  (right).  

 

Such an approximation scheme leads to the following discrete version of 

(7): 
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0)( =+−
−


nodes

ii

edges

ijj

i

ijj

i Q
h

A ϕδϕδϕδ
ϕϕ ⌢⌢⌢
⌢⌢

⌢
 , (8) 

 

where: 

 
j

ih  is the length of the edge of  hΩ connecting nodes i and j;  

Nϕϕ ˆ,...,ˆ
1  are the nodal values of ϕ̂ ; 

j

iÂ  is the jump of the derivative nf ∂∂ /ˆ  along the normal to the edge i-j; 

iQ  is the resultant vertical force in correspondence with node i.  

Starting from (8), the following system of linear algebraic equations can 

be obtained: 

 

,,...,1    ,0ˆˆ
ˆˆ

ˆ

,

NiQfUQ
h

ff
PR i

kj

kjijki

j
j

i

jij

ii ==−=−
−

=  ϕ
 

(9) 

 

In (9), 
j

iP
⌢

 represents the jump of the normal derivative n∂∂ /ϕ̂  across the 

edge i-j of hΩ ; ijkU  are coefficients depending only on the geometry of the 

mesh; the summations are extended to all the nodes connected to the node i; 

and N  is the total number of nodes forming  hΩ . Quantities 
j

iP
⌢

 are the 

axial forces carried by the bars of a planar truss structure having the same 

geometry of the skeleton of hΩ .  

One can regard the quantities 
j

iij

j

i hffP /)(
⌢⌢⌢

−  as the axial forces carried 

by the spatial truss hS , which is obtained from hΩ  through the mapping 

),(ˆ
213 xxfx = . Eqns. (9) represent the nodal equilibrium equations of hS  in 

the vertical direction, associating a unique polyhedral stress function ϕ̂  to a 

given polyhedral shape function f̂ , and vice-versa. A concave polyhedral 

stress function ϕ̂  gives rise to all compressive forces in the bars of hS  and 

hΩ . It is worth noting that the modeling of a continuous membrane through 

a pin-jointed bar network actually corresponds to a non-conforming (or 

external) variational approximation of the membrane equilibrium problem. 
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N
 
is the total number of nodes of hΠ ; nS  

st neighbors of the generic node n; 
s

nℓ  is the 

and s

nĥ
 
are the tangent and normal unit vecto

ly;  is the jump of s

nĥˆ ⋅ϕ∇  

derivative of ϕ̂  through this edge). 

 to show that:  
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n hP ]]/ˆ[[ ∂∂= ϕ
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lls (Figure2). 

 

ent lumped stress 

y energy of the 
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(11) 
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 (12) 

 

The quantities 
s

nP
 
represents the axial forces carried by the bars of an 

ideal truss hB , which has the same geometry of the skeleton of h'Π
 
(Figure 

4). Similarly, the quantity nR
 
can be regarded as the total force acting at 

node n of such a truss. Due to the assumption of zero body forces, nR
 
will 

be nonzero only at the boundary (support reaction). The discrete functional 

(10) defines a non-conventional complementary energy of the truss hB , 

which is defined per dual elements nΩ̂ , and not per elements (as in an 

ordinary truss). 

Let oϕ
 
denote the minimizer of the “exact” complementary energy of the 

body, and hϕ̂
 
the minimizer of (10). It is not difficult to show that hϕ̂  

strongly converges to oϕ
 

as h tends to 0, under suitable smoothness 

assumptions on 0ϕ  and the primal and dual meshes.  

The smoothness of meshes can be satisfied by modelling hΠ  as a 

structured core and by assuming that hΠ̂
 
is made up of polygons connecting 

the middle points of the edges of hΠ
 
with the barycenters of the primal 

triangles (“barycentric” dual mesh, cf. Figure 2).  

A Γ –convergence proof of the LSM for the biharmonic problem of 

isotropic elasticity is given in Davini (2002), considering families of 

triangulations that are regular in the sense of Ciarlet (1978).  

 

3.1 Constrained LSM approach to the analysis of curved structures  

Lumped stress approach is used to predict the mechanical behavior of 

vaulted structures by means of a shape optimization procedure, which 

assumes that the vertical load q and the boundary values of f̂  and ϕ̂  are 

prescribed on hΩ∂ . The search for the corresponding thrust surface consists 

of seeking a couple ( f̂ ,ϕ̂ ) such that the discrete equilibrium equations (9) 

are satisfied, under geometry constraints of the form  

. ˆ)ˆ(      )ˆ(
1


=

−=ϕ
n

s

s

n

s

nn P
S

kR ϕ
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),...,1(  ˆˆˆ Nifff ub

ii

lb

i =≤≤ , (13) 

 

and the concavity constraint on ϕ̂ . Limitations (13) require that the thrust 

surface is contained in a given 3D domain D, coinciding either with the 

region comprised between the extrados and the intrados of an existing vault, 

or with a suitable design space. A constrained lumped stress approach 

(CTNA) can be formulated as follows, assuming that an in initial guess 0f̂  

of f̂  is available:  

1) compute 
0ϕ̂  from the linear system ( ) ijkijk QfU =00 ˆˆ ϕ ; 

2) compute the “concave hull” 
'ϕ̂  of 

0ϕ̂  ; 

3) raise the vertices of  0ϕ̂ to the upper portion of C∂   (concave surface), 

obtaining a new estimate  'ϕ̂  and a new mesh topology ; 

4) compute a new shape function 'f̂  from the linear system ( )
ikjijk QfU ='ˆϕ̂

; 

5) if 'f̂  satisfies the geometry constraints (13) stop with 'ˆˆ ff =  and 
'ˆˆ ϕϕ = ; otherwise correct 'f̂  so as to verify (13), set 

'0 ˆˆ ff =  and go 

back to 1. 

Overall, the CTNA admits the quantities ),...,1(  ˆ,ˆ, NiffQ
ub

i

lb

ii = , and the 

nodal values of  f̂  and ϕ̂  on hΩ∂  as input. It produces the quantities iif ϕ̂ ,ˆ  

at the inner nodes of  hΩ  as output, according to the elastic no-tension 

model of masonry (cf. Giaquinta and Giusti, 1985; Del Piero, 1989). It is 

worth noting that the concave-hull construction of step 2) provides 

topological adaption of the current force network, while steps 3), 4) and 5) 

perform geometrical adaption (see the results of the next section). The 

CNTA allows one to obtain a statically admissible, purely compressive 

lumped stress network, and ensures the satisfaction of the master ‘safe’ 

theorem of no-tension materials (Heyman, 1966, 1995; Del Piero, 1998), if 

the geometrical constraints (13) are verified. Once the solution ( f̂ ,ϕ̂ ) of 

the CNTA is known, one can predict the portions of hS  and hΩ  exposed to 

fracture, localized in regions where the material is subject either to zero 

stress, or uniaxial compressive stress, as it will be shown in the next section. 

The continuum limit ϕ  of the polyhedral stress function ϕ̂  will exhibit 
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either a flat (zero stress) or single-curvature (uniaxial stress) profile in 

correspondence with such regions. Cracks will run at the extrados if the 

thrust surface lies towards the intrados, and vice-versa. 

3.2 Mixed LSM-displacement approach to the analysis of masonry walls 

A Mixed LSM-displacement approach based on the Lumped stress approach 

above described is applied to masonry walls. 

Let introduce the interelement and boundary nodes that are not subject to 

kinematical constraints, named pivot, and let utilize the LSM above 

presented by assuming that arbitrary nodal forces are applied to the pivot 

nodes. Under such hypotheses, the equilibrium problem of the wall can be 

expressed into the following variational form: 

 

( ) ( ) ( ) ( )
ˆ

1
ˆ ˆ ˆ ˆmin

2
hnR

E ϕ ϕ ϕ ϕ
∈

= ⋅ − ⋅P A P R u
j

 

such that:  ( )



≤ϕ
=−ϕ

elements ENT in 0P

0qS

ˆ

ˆ
 

 

(14) 

 

where: 

 

ϕ̂  is the vector collecting the nodal values of the Airy stress 

functions of  each element; 

( )ϕ̂P  is the vector collecting the lumped stresses 
s

n

s

n hP ]]/ˆ[[ ∂ϕ∂= ; 

Α  is the compliance matrix defined through (8); 

( )ϕ̂R  is the vector collecting the support reactions; 

u  is the vector of the imposed nodal displacements; 

q  is the vector collecting the nodal forces applied to the 

pivot nodes; 

S is the coefficient matrix of the equilibrium equations of the 

pivot nodes. 
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In order to solve (14), we introduce the augmented Lagrangian given by 

 

( ) ( ) ( ) ( )2
ˆ ˆ ˆ ˆ, ,

2
A hEϕ ϕ ϕ ϕρρ = − ⋅ − + −u u S q S qL  (15) 

 

where u denotes the vector collecting the displacements of the pivot nodes 

(Lagrange multipliers), and ρ is a penalty parameter (Nocedal and Wright, 

2006).  

The proposed LSDM admits nonzero nodal forces only in 

correspondence with pivot nodes (active nodal forces), and kinematically 

restrained nodes (support reactions). 

An iterative solution method for the minimum problem of (15) is as follows: 

a) given a tentative solution (
kϕ̂ ,u

k
, ρk

), compute 
1ˆ +kϕ  through the quadratic 

programming problem: 

( )kk

Aˆ
,,ˆmin ρ

∈
u j

j
L

nR  
such that ( ) elements ENT in 0P ≤ϕ̂ ; (16) 

b) update the Lagrange multipliers through: 

)-ˆ(     1kk1k
qSuu

++ ρ−= kϕ ; (17) 

c) update the penalty parameter, by 
kk ρ>ρ +1

, if the norm of the residual vector 

qSR -ˆ  11 ++ = kk ϕ
 
increases with respect to the previous step; 

d) return to point a) with 
111 ;;ˆˆ +++ ρ←ρ←← kkkkkk

uuϕϕ , until the norm of 

the residual vector gets lower than a given tolerance. 

The solution of problem (16) is not affected by lack of feasible solutions, due to the 

appropriate triangulations of the ENT members (Fraternali, 2007).   

The numerical procedure starts by considering an initial triangulation of the wall and 

elastic solutions 
0ϕ̂ in each element, ignoring no-tension constraints, and  then the convex-

hull ( )0ϕ̂conv  of 
0ϕ̂  is evaluated in the ENT members (Avis and Fukuda, 1992) and 

( )+= 01 ˆˆ ϕϕ conv is set in such elements, where ( )+0ϕ̂conv is the concave face of 

( )0ϕ̂conv . In the next step ( )+0ϕ̂conv is assumed
 

as the concave hull of 
0ϕ̂ . The 

projection of ( )+0ϕ̂conv
 
onto the platform defines a new triangulation of the current ENT 

element, which is associated with a suitable, statically admissible, stress function (cf. 
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Angelillo and Rosso, 1995). The concave-hull driven remeshing of the elastic no-tension 

members may remove nodes from such elements and, eventually, create gaps between them 

and the neighbor elements, as we shall see in the next section (example 2). In the elastic 

elements we simply assume 
01 ˆˆ ϕϕ = , without remeshing. 

Such a method could be easily coupled with standard finite element and boundary 

element models.  

The LSDM update (17) of the pivot displacements can be rewritten as:  

 

( ) kkkkk
qKuuu ∆∆ 11 −+ =−= , (18) 

 

where: 

 

{ }kkk diag ρρ= /1,...,/1K ;    
kk ϕ̂Sqq −=∆ . (19) 

 

The association of LSDM elements with finite elements and/or boundary elements 

simply requires the assembly of the diagonal matrix 
k

K  into the global stiffness matrix of 

the overall discrete model, and the insertion of the load vector 
k

q∆
 
into the incremental 

load vector, at each update of the nodal displacements. The update of the stress function 

vector will be performed locally in the LSDM elements, via step a).  

5   Numerical examples 

The proposed constrained LSM method has been applied to some 

benchmark examples, examining the equilibrium problems of a 

hemispherical dome, a groin vault, a cloister vault and a masonry beam. 

More specifically, Figure 3-left shows the examined hemispherical dome 

(co-latitude opening equal to 0.9 π), while Figure 3-right illustrates the 

stress function ϕ̂  obtained by letting f̂  coincide with the middle surface, 

and applying a uniform vertical load per unit area of the platform. The 

above stress function assumes a convex shape towards the basis of the 

structure, which is associated with not-admissible circumferential tensile 

stresses. The concave-hull construction is able to transform the initial guess 
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of Figure 3-left into the concave profile shown in Figure 5-left, which 

corresponds to the no-tension lumped stress network depicted in Figure 5-

right. The latter predicts biaxial compression towards the crown of the 

dome, and uniaxial meridian compression towards the basis, and then allows 

us to predict a meridional crack pattern near the basis of the structure 

(“orange-slice” cracking mode), accordingly to what is observed in many 

real masonry domes of similar shape (cf. e.g. Heyman, 1995). 

 

 

Fig. 5 – Stress function (left), lumped stress network and potential crack pattern (right) of a 

hemispherical dome under uniform vertical loading. 

 

The second example deals with a groin vault with base dimensions 7.5 m 

× 7.5 m, parabolic web panels of thickness 20 cm, diagonal ribs of thickness 

40 cm, and maximum rise equal to 3.2 m. The vault has self-weight of 20 

kN/m
3
, and bears a material with weight of 6 kN/m

3
 filling the space in 

between the extrados and the horizontal plane through the vertex (Figure 6).  
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Fig. 6 – Geometry and
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The analyzed case studies have illustrated the reliability of the proposed 

approach in predicting the equilibrium configuration and the crack pattern 

of real masonry structures.   

The generalization of the masonry model proposed in the present work to 

substructures, mixed structures, and strengthened masonry is addressed to 

future work. Stress approaches to ENT (or “masonry-like”) structures 

exhibit some peculiar advantages, since one can prove the uniqueness of the 

solution of the ENT boundary value problem in terms of the stress field.  

Such a generalization may usefully employ a tensegrity approach to the 

lumped stress network describing the state of stress of a masonry vault 

(Fraternali et al., 2015; Carpentieri et al., 2016).  
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