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PROLOGUE  

Welcome to Statistics!

Psychology students often find statistics courses to be different from their other psychology classes. 
There are some distinct differences, especially involving study strategies for class success. The 
first difference is learning a new vocabulary—it is similar to learning a new language. Knowing 
the meaning of certain words will help as you are reading the material and working through the 
problems. Secondly, practice is critical for success; reading over the material is not enough. Statistics 
is a subject learned by doing, so make sure you work through any homework questions, chapter 
questions, and practice problems available. Lastly, we recommend that you ask questions and get 
help from your instructor when needed. Struggling with the course material can be frustrating, and 
frustration is your enemy. Often your instructor can get you back on track quickly. 

Statistical knowledge gives you a set of skills employable in graduate school and/or the workplace. 
Data science is a burgeoning field, and there is practical significance in learning this material. The 
statistics presented in this book are some of the most common ones used in research articles, and we 
hope by the end of this course you’ll feel comfortable reading (and not skipping!) the results section 
of an article. 

We love to hear from students that they have enjoyed taking statistics. Yes, it does happen! We hope 
you will work through this course with an open mind and a willingness to ask for help if needed.

Linda R. Cote 
Rupa G. Gordon 
Chrislyn E. Randell

Prologue

x



UNIT 1  

Fundamentals of Statistics

The first unit in this course will introduce you to the principles of statistics and why we study and 
use them in the behavioral sciences. It covers the basic terminology and notation used for statistics, 
as well as how people in the behavioral sciences think about, use, interpret, and communicate 
information and data. The unit will conclude with a brief introduction to concepts in probability 
that underlie how scientists perform data analysis. The material in this unit will serve as the 
building blocks for the logic and application of hypothesis testing, which is introduced in Unit 2 and 
comprises the rest of the material in the course.

Unit 1: Fundamentals 
of Statistics

1



CHAPTER 1  

Introduction
KEY TERMS
continuous variables
control
convenience sampling
data
dependent variable
descriptive statistics
discrete variables
experimental
experimental research

independent variable
inferential statistics
interval scale
nominal scale
non-experimental research
ordinal scale
population
qualitative variables
quantitative variables

quasi-experimental research
ratio scale
sample
sampling bias
sampling error
simple random sampling
statistics
stratified random sampling
variable

This chapter provides an overview of statistics as a field of study and presents terminology that will 
be used throughout the course.

WHAT ARE STATISTICS?
Statistics include numerical facts and figures. For instance:

• The largest earthquake measured 9.2 on the Richter scale.
• Men are at least 10 times more likely than women to commit murder.
• One in every eight South Africans is HIV positive.
• By the year 2050, there will be 12 people aged 65 and over for every new baby born.

The study of statistics involves math and relies upon calculations of numbers. But it also relies 
heavily on how the numbers are chosen and how the statistics are interpreted. For example, consider 
the following three scenarios and the interpretations based on the presented statistics. You will find 
that the numbers may be right, but the interpretation may be wrong. Try to identify a major flaw 
with each interpretation before we describe it.

1. A new advertisement for Ben & Jerry’s ice cream introduced in late May of last year resulted 
in a 30% increase in ice cream sales for the following three months. Thus, the advertisement 
was effective.  
Major flaw: Ice cream consumption generally increases in the months of June, July, and 
August regardless of advertisements. This effect is called a history effect and leads people 
to interpret outcomes as the result of one variable when another variable (in this case, one 
having to do with the passage of time) is actually responsible.
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2. The more churches in a city, the more crime there is. Thus, churches lead to crime.  
Major flaw: Both increased churches and increased crime rates can be explained by larger 
populations. In bigger cities, there are both more churches and more crime. This problem, 
which we will discuss in more detail in Chapter 6, refers to the third-variable problem. 
Namely, a third variable can cause both situations; however, people erroneously believe that 
there is a causal relationship between the two primary variables rather than recognize that a 
third variable can cause both.

3. Seventy-five percent more interracial marriages are occurring this year than 25 years ago. 
Thus, our society accepts interracial marriages.  
Major flaw: We don’t have the information we need. What is the rate at which marriages are 
occurring? Suppose only 1% of marriages 25 years ago were interracial and so now 1.75% 
of marriages are interracial (1.75 is 75% higher than 1). But this latter number is hardly 
evidence suggesting the acceptability of interracial marriages. In addition, the statistic 
provided does not rule out the possibility that the number of interracial marriages has seen 
dramatic fluctuations over the years and this year is not the highest. Again, there is simply 
not enough information to understand fully the impact of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they are something 
more than that. In the broadest sense, “statistics” refers to a range of techniques and procedures for 
analyzing, interpreting, displaying, and making decisions based on data.

Statistics is the language of science and data. The ability to understand and communicate using 
statistics enables researchers from different labs, different languages, and different fields to articulate 
to one another exactly what they have found in their work. It is an objective, precise, and powerful 
tool in science and in everyday life.

What a Statistics Course Is Not
Many psychology students dread the idea of taking a statistics course, and more than a few have 
changed majors upon learning that it is a requirement. That is because many students view statistics 
as a math class, which is actually not true. While many of you will not believe this or agree with it, 
statistics isn’t math.

Although math is a central component of it, statistics is a broader way of organizing, interpreting, 
and communicating information in an objective manner. Indeed, great care has been taken to 
eliminate as much math from this course as possible (students who do not believe this are welcome 
to ask the professor what matrix algebra is). Statistics is a way of viewing reality as it exists around us 
in a way that we otherwise could not.

WHY DO WE STUDY STATISTICS?
Virtually every student of the behavioral sciences takes some form of statistics class. This is because 
statistics is how we communicate in science. It serves as the link between a research idea and usable 
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conclusions. Without statistics, we would be unable to interpret the massive amounts of information 
contained in data. Even small datasets contain hundreds—if not thousands—of numbers, each 
representing a specific observation we made. Without a way to organize these numbers into a 
more interpretable form, we would be lost, having wasted the time and money of our participants, 
ourselves, and the communities we serve.

Beyond its use in science, however, there is a more personal reason to study statistics. Like most 
people, you probably feel that it is important to “take control of your life.” But what does this mean? 
Partly, it means being able to properly evaluate the data and claims that bombard you every day. If 
you cannot distinguish good from faulty reasoning, then you are vulnerable to manipulation and to 
decisions that are not in your best interest. Statistics provides tools that you need in order to react 
intelligently to information you hear or read. In this sense, statistics is one of the most important 
things that you can study.

To be more specific, here are some claims that we have heard on several occasions. (We are not 
saying that each one of these claims is true!)

• Four out of five dentists recommend Dentine.
• Almost 85% of lung cancers in men and 45% in women are tobacco-related.
• Condoms are effective 94% of the time.
• People tend to be more persuasive when they look others directly in the eye and speak loudly 

and quickly.
• Women make 75 cents to every dollar a man makes when they work the same job.
• A surprising new study shows that eating egg whites can increase one’s life span.
• People predict that it is very unlikely there will ever be another baseball player with a batting 

average over 400.
• There is an 80% chance that in a room full of 30 people at least two people will share the same 

birthday.
• 79.48% of all statistics are made up on the spot.

All of these claims are statistical in character. We suspect that some of them sound familiar; if not, 
we bet that you have heard other claims like them. Notice how diverse the examples are. They come 
from psychology, health, law, sports, business, etc. Indeed, data and data interpretation show up in 
discourse from virtually every facet of contemporary life.

Statistics are often presented in an effort to add credibility to an argument or advice. You can see 
this by paying attention to television advertisements. Many of the numbers thrown about in this 
way do not represent careful statistical analysis. They can be misleading and push you into decisions 
that you might find cause to regret. For these reasons, learning about statistics is a long step toward 
taking control of your life. (It is not, of course, the only step needed to do so.) The purpose of this 
course, beyond preparing you for a career in psychology, is to help you learn statistical essentials. It 
will make you into an intelligent consumer of statistical claims.
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You can take the first step right away. To be an intelligent consumer of statistics, your first reflex 
must be to question the statistics you encounter. The British Prime Minister Benjamin Disraeli 
is quoted by Mark Twain as having said, “There are three kinds of lies—lies, damned lies, and 
statistics.” This quote reminds us why it is so important to understand statistics. So let us invite 
you to reform your statistical habits from now on. No longer will you blindly accept numbers or 
findings. Instead, you will begin to think about the numbers, their sources, and most importantly, 
the procedures used to generate them.

The above section puts an emphasis on defending ourselves against fraudulent claims wrapped up as 
statistics, but let us look at a more positive note. Just as important as detecting the deceptive use of 
statistics is the appreciation of the proper use of statistics. You must also learn to recognize statistical 
evidence that supports a stated conclusion. Statistics are all around you, sometimes used well, 
sometimes not. We must learn how to distinguish the two cases. In doing so, statistics will likely be 
the course you use most in your day-to-day life, even if you do not ever run a formal analysis again.

TYPES OF DATA AND HOW TO COLLECT THEM
In order to use statistics, we need data to analyze. Data come in an amazingly diverse range of 
formats, and each type gives us a unique type of information. In virtually any form, data represent 
the measured value of variables. A variable is simply a characteristic or feature of the thing we are 
interested in understanding. In psychology, we are interested in people, so we might get a group 
of people together and measure their levels of stress (one variable), anxiety (a second variable), 
and their physical health (a third variable). Once we have data on these three variables, we can use 
statistics to understand if and how they are related. Before we do so, we need to understand the 
nature of our data—what they represent and where they came from.

Types of Variables
When conducting research, experimenters often manipulate variables. For example, an 
experimenter might compare the effectiveness of four types of antidepressants. In this case, the 
variable is “type of antidepressant.” When a variable is manipulated by an experimenter, it is called 
an independent variable. The experiment seeks to determine the effect of the independent variable 
on relief from depression. In this example, relief from depression is called a dependent variable. 
In general, the independent variable is manipulated by the experimenter, and its effects on the 
dependent variable are measured.

Example #1: Can blueberries slow aging? a study indicates that antioxidants found in 
blueberries may slow down the process of aging. in this study, 19-month-old rats (equivalent 
to 60-year-old humans) were fed either their standard diet or a diet supplemented by either 
blueberry, strawberry, or spinach powder. after eight weeks, the rats were given memory and 
motor skills tests. although all supplemented rats showed improvement, those supplemented 
with blueberry powder showed the most notable improvement.
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1. What is the independent variable? (dietary supplement: none, blueberry, strawberry, 
and spinach)

2. What are the dependent variables? (memory test and motor skills test)

Example #2: Does beta-carotene protect against cancer? Beta-carotene supplements 
have been thought to protect against cancer. however, a study published in the Journal of 
the national Cancer institute suggests this is false. the study was conducted with 39,000 
women aged 45 and over. these women were randomly assigned to receive a beta-carotene 
supplement or a placebo, and their health was studied over their lifetime. Cancer rates for 
women taking the beta-carotene supplement did not differ systematically from the cancer 
rates of those women taking the placebo.

1. What is the independent variable? (supplements: beta-carotene or placebo)

2. What is the dependent variable? (occurrence of cancer)

Example #3: how bright is right? an automobile manufacturer wants to know how bright 
brake lights should be in order to minimize the time required for the driver of a following car to 
realize that the car in front is stopping and to hit the brakes.

1. What is the independent variable? (brightness of brake lights)

2. What is the dependent variable? (time to hit brakes)

Levels of an Independent Variable
If an experiment compares an experimental treatment with a control treatment, then the 
independent variable (type of treatment) has two levels: experimental and control. If an experiment 
were comparing five types of diets, then the independent variable (type of diet) would have 5 levels. 
In general, the number of levels of an independent variable is the number of experimental conditions.

Qualitative and Quantitative Variables
An important distinction between variables is between qualitative variables and quantitative 
variables. Qualitative variables are those that express a qualitative attribute such as hair color, eye 
color, religion, favorite movie, gender, and so on. The values of a qualitative variable do not imply 
a numerical ordering. Values of the variable “religion” differ qualitatively; no ordering of religions 
is implied. Qualitative variables are sometimes referred to as categorical or nominal variables. 
Quantitative variables are those variables that are measured in terms of numbers. Some examples 
of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent variable was type of 
supplement: none, strawberry, blueberry, and spinach. The variable “type of supplement” is a 
qualitative variable; there is nothing quantitative about it. In contrast, the dependent variable 
“memory test” is a quantitative variable since memory performance was measured on a quantitative 
scale (number correct).
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Discrete and Continuous Variables
Variables such as number of children in a household are called discrete variables since the possible 
scores are discrete points on the scale. For example, a household could have three children or 
six children, but not 4.53 children. Other variables such as time to respond to a question are 
continuous variables since the scale is continuous and not made up of discrete steps. The response 
time could be 1.64 seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of 
measurement preclude most measured variables from being truly continuous.

Levels of Measurement
Before we can conduct a statistical analysis, we need to measure our dependent variable. Exactly 
how the measurement is carried out depends on the type of variable involved in the analysis. 
Different types are measured differently. To measure the time taken to respond to a stimulus, you 
might use a stop watch. Stop watches are of no use, of course, when it comes to measuring someone’s 
attitude toward a political candidate. A rating scale is more appropriate in this case (with labels like 
“very favorable,” “somewhat favorable,” etc.). For a dependent variable such as favorite color, you can 
simply note the color-word (like “red”) that the subject offers.

Although procedures for measurement differ in many ways, they can be classified using a few 
fundamental categories. In a given category, all of the procedures share some properties that are 
important for you to know about. The categories are called “scale types,” or just “scales,” and are 
described in this section.

Nominal Scales
When measuring using a nominal scale, one simply names or categorizes responses. Gender, 
handedness, favorite color, and religion are examples of variables measured on a nominal scale. The 
essential point about nominal scales is that they do not imply any ordering among the responses. 
For example, when classifying people according to their favorite color, there is no sense in which 
green is placed “ahead of ” blue. Responses are merely categorized. Nominal scales embody the 
lowest level of measurement.

Ordinal Scales
A researcher wishing to measure consumers’ satisfaction with their microwave ovens might ask 
them to specify their feelings as either “very dissatisfied,” “somewhat dissatisfied,” “somewhat 
satisfied,” or “very satisfied.” The items in this scale are ordered, ranging from least to most satisfied. 
This is what distinguishes ordinal from nominal scales. Unlike a nominal scale, an ordinal scale 
allows a comparison of the degree to which two subjects possess the dependent variable. For 
example, our satisfaction ordering makes it meaningful to assert that one person is more satisfied 
than another with their microwave oven. Such an assertion reflects the first person’s use of a verbal 
label that comes later in the list than the label chosen by the second person.
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On the other hand, ordinal scales fail to capture important information that will be present in the 
other scales we examine. In particular, the difference between two levels of an ordinal scale cannot 
be assumed to be the same as the difference between two other levels. In our satisfaction scale, for 
example, the difference between the responses “very dissatisfied” and “somewhat dissatisfied” is 
probably not equivalent to the difference between “somewhat dissatisfied” and “somewhat satisfied.” 
Nothing in our measurement procedure allows us to determine whether the two differences reflect 
the same difference in psychological satisfaction. Statisticians express this point by saying that 
the differences between adjacent scale values do not necessarily represent equal intervals on the 
underlying scale giving rise to the measurements. (In our case, the underlying scale is the true 
feeling of satisfaction, which we are trying to measure.)

What if the researcher had measured satisfaction by asking consumers to indicate their level of 
satisfaction by choosing a number from 1 to 4? Would the difference between the responses of 1 and 
2 necessarily reflect the same difference in satisfaction as the difference between the responses 2 and 
3? The answer is no. Changing the response format to numbers does not change the meaning of the 
scale. We still are in no position to assert that the mental step from 1 to 2 (for example) is the same 
as the mental step from 3 to 4.

Interval Scales
An interval scale is a numerical scale in which intervals have the same interpretation throughout. 
As an example, consider the Fahrenheit scale of temperature. The difference between 30 degrees 
and 40 degrees represents the same temperature difference as the difference between 80 degrees and 
90 degrees. This is because each 10-degree interval has the same physical meaning (in terms of the 
kinetic energy of molecules).

Interval scales are not perfect, however. In particular, they do not have a true zero point even if one 
of the scaled values happens to carry the name “zero.” The Fahrenheit scale illustrates the issue. Zero 
degrees Fahrenheit does not represent the complete absence of temperature (i.e., the absence of any 
molecular kinetic energy). In reality, the label “zero” is applied to its temperature for quite accidental 
reasons connected to the history of temperature measurement. Since an interval scale has no true 
zero point, it does not make sense to compute ratios of temperatures. For example, there is no sense 
in which the ratio of 40 to 20 degrees Fahrenheit is the same as the ratio of 100 to 50 degrees; no 
interesting physical property is preserved across the two ratios. After all, if the “zero” label were 
applied at the temperature that Fahrenheit happens to label as 10 degrees, the two ratios would 
instead be 30 to 10 and 90 to 40, no longer the same! For this reason, it does not make sense to say 
that 80 degrees is “twice as hot” as 40 degrees. Such a claim would depend on an arbitrary decision 
about where to “start” the temperature scale, namely, what temperature to call zero (whereas the 
claim is intended to make a more fundamental assertion about the underlying physical reality).

Ratio Scales
The ratio scale of measurement is the most informative scale. It is an interval scale with the 
additional property that its zero position indicates the absence of the quantity being measured. You 
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can think of a ratio scale as the three earlier scales rolled up in one. Like a nominal scale, it provides 
a name or category for each object (the numbers serve as labels). Like an ordinal scale, the objects 
are ordered (in terms of the ordering of the numbers). Like an interval scale, the same difference at 
two places on the scale has the same meaning. And in addition, the same ratio at two places on the 
scale also carries the same meaning.

The Fahrenheit scale for temperature has an arbitrary zero point and is therefore not a ratio scale. 
However, zero on the Kelvin scale is absolute zero. This makes the Kelvin scale a ratio scale. For 
example, if one temperature is twice as high as another as measured on the Kelvin scale, then it has 
twice the kinetic energy of the other temperature.

Another example of a ratio scale is the amount of money you have in your pocket right now 
(25 cents, 55 cents, etc.). Money is measured on a ratio scale because, in addition to having the 
properties of an interval scale, it has a true zero point: if you have zero money, this implies the 
absence of money. Since money has a true zero point, it makes sense to say that someone with 
50 cents has twice as much money as someone with 25 cents (or that Bill Gates has a million times 
more money than you do).

What Level of Measurement Is Used for Psychological Variables?
Rating scales are used frequently in psychological research. For example, experimental subjects may 
be asked to rate their level of pain, how much they like a consumer product, their attitudes about 
capital punishment, or their confidence in an answer to a test question. Typically these ratings are 
made on a 5-point or a 7-point scale. These scales are ordinal scales since there is no assurance that 
a given difference represents the same thing across the range of the scale. For example, there is no 
way to be sure that a treatment that reduces pain from a rated pain level of 3 to a rated pain level of 
2 represents the same level of relief as a treatment that reduces pain from a rated pain level of 7 to a 
rated pain level of 6.

In memory experiments, the dependent variable is often the number of items correctly recalled. 
What scale of measurement is this? You could reasonably argue that it is a ratio scale. First, there 
is a true zero point; some subjects may get no items correct at all. Moreover, a difference of one 
represents a difference of one item recalled across the entire scale. It is certainly valid to say that 
someone who recalled 12 items recalled twice as many items as someone who recalled only 6 items.

But number-of-items recalled is a more complicated case than it appears at first. Consider the 
following example in which subjects are asked to remember as many items as possible from a list of 
ten. Assume that (a) there are five easy items and five difficult items, (b) half of the subjects are able 
to recall all the easy items and different numbers of difficult items, whereas (c) the other half of the 
subjects are unable to recall any of the difficult items but they do remember different numbers of 
easy items. Some sample data are shown in the following table.
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Subject Easy Items Difficult Items Score

Subject A 0 0 1 1 0 0 0 0 0 0 2
Subject B 1 0 1 1 0 0 0 0 0 0 3
Subject C 1 1 1 1 1 1 1 0 0 0 7
Subject D 1 1 1 1 1 0 1 1 0 1 8

Let’s compare (i) the difference between Subject A’s score of 2 and Subject B’s score of 3 and (ii) the 
difference between Subject C’s score of 7 and Subject D’s score of 8. The former difference is a 
difference of one easy item; the latter difference is a difference of one difficult item. Do these two 
differences necessarily signify the same difference in memory? We are inclined to respond “No” 
to this question since only a little more memory may be needed to retain the additional easy item 
whereas a lot more memory may be needed to retain the additional hard item. The general point is 
that it is often inappropriate to consider psychological measurement scales as either interval or ratio.

Consequences of Level of Measurement
Why are we so interested in the type of scale that measures a dependent variable? The crux of the 
matter is the relationship between the variable’s level of measurement and the statistics that can be 
meaningfully computed with that variable. For example, consider a hypothetical study in which 
five children are asked to choose their favorite color from blue, red, yellow, green, and purple. The 
researcher codes the results as follows:

Color Code

Blue 1
Red 2
Yellow 3
Green 4
Purple 5

This means that if a child said her favorite color was “Red,” then the choice was coded as “2,” if the 
child said her favorite color was “Purple,” then the response was coded as 5, and so forth. Consider 
the following hypothetical data:

Subject Color Code

Subject 1 Blue 1
Subject 2 Blue 1
Subject 3 Green 4
Subject 4 Green 4
Subject 5 Purple 5
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Each code is a number, so nothing prevents us from computing the average code assigned to the 
children. The average happens to be 3, but you can see that it would be senseless to conclude that the 
average favorite color is yellow (the color with a code of 3). Such nonsense arises because favorite 
color is a nominal scale, and taking the average of its numerical labels is like counting the number of 
letters in the name of a snake to see how long the beast is.

Does it make sense to compute the mean of numbers measured on an ordinal scale? This is a 
difficult question, one that statisticians have debated for decades. The prevailing (but by no means 
unanimous) opinion of statisticians is that for almost all practical situations, the mean of an 
ordinally measured variable is a meaningful statistic. However, there are extreme situations in which 
computing the mean of an ordinally measured variable can be very misleading.

COLLECTING DATA
We are usually interested in understanding a specific group of people. This group is known as the 
population of interest, or simply the population. The population is the collection of all people who 
have some characteristic in common; it can be as broad as “all people” if we have a very general 
research question about human psychology, or it can be extremely narrow, such as “all freshmen 
psychology majors at Midwestern public universities” if we have a specific group in mind.

Populations and Samples
In statistics, we often rely on a sample—that is, a small subset of a larger set of data—to draw 
inferences about the larger set. The larger set is known as the population from which the sample is 
drawn.

Example #1: You have been hired by the national election Commission to examine how the 
american people feel about the fairness of the voting procedures in the U.S. Whom will you ask?

It is not practical to ask every single American how he or she feels about the fairness of the voting 
procedures. Instead, we query a relatively small number of Americans and draw inferences about the 
entire country from their responses. The Americans actually queried constitute our sample of the 
larger population of all Americans.

A sample is typically a small subset of the population. In the case of voting attitudes, we would 
sample a few thousand Americans drawn from the hundreds of millions that make up the country. 
In choosing a sample, it is therefore crucial that it not over-represent one kind of citizen at the 
expense of others. For example, something would be wrong with our sample if it happened to be 
made up entirely of Florida residents. If the sample held only Floridians, it could not be used to 
infer the attitudes of other Americans. The same problem would arise if the sample were comprised 
only of Republicans. Inferences from statistics are based on the assumption that sampling is 
representative of the population. If the sample is not representative, then the possibility of sampling 
bias occurs. Sampling bias means that our conclusions apply only to our sample and are not 
generalizable to the full population.
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Example #2: We are interested in examining how many math classes have been taken, on 
average, by current graduating seniors at american colleges and universities during their four 
years in school. Whereas our population in the last example included all U.S. citizens, now 
it involves just the graduating seniors throughout the country. this is still a large set since 
there are thousands of colleges and universities, each enrolling many students. (new York 
University, for example, enrolls 48,000 students.) it would be prohibitively costly to examine 
the transcript of every college senior. We therefore take a sample of college seniors and then 
make inferences to the entire population based on what we find. to make the sample, we 
might first choose some public and private colleges and universities across the United States. 
then we might sample 50 students from each of these institutions. Suppose that the average 
number of math classes taken by the people in our sample were 3.2. We might speculate that 
3.2 approximates the number we would find if we had the resources to examine every senior 
in the entire population. But we must be careful about the possibility that our sample is non-
representative of the population. perhaps we chose an overabundance of math majors, or 
chose too many technical institutions that have heavy math requirements. Such bad sampling 
makes our sample unrepresentative of the population of all seniors.

To solidify your understanding of sampling bias, consider the following examples. Try to identify the 
population and the sample, and then reflect on whether the sample is likely to yield the information 
desired.

Example #3: a substitute teacher wants to know how students in the class did on their last 
test. the teacher asks the ten students sitting in the front row to state their latest test score. 
he concludes from their report that the class did extremely well. What is the sample? What is 
the population? Can you identify any problems with choosing the sample in the way that the 
teacher did?

In Example #3, the population consists of all students in the class. The sample is made up of just the 
ten students sitting in the front row. The sample is not likely to be representative of the population. 
Those who sit in the front row tend to be more interested in the class and tend to perform higher on 
tests. Hence, the sample may perform at a higher level than the population.

Example #4: a coach is interested in how many cartwheels the average college freshmen at 
his university can do. eight volunteers from the freshman class step forward. after observing 
their performance, the coach concludes that college freshmen can do an average of 16 
cartwheels in a row without stopping.

In Example #4, the population is the class of all freshmen at the coach’s university. The sample is 
composed of the 8 volunteers. The sample is poorly chosen because volunteers are more likely to be 
able to do cartwheels than the average freshman; people who can’t do cartwheels probably did not 
volunteer! In the example, we are also not told of the gender of the volunteers. Were they all women, 
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for example? That might affect the outcome, contributing to the non-representative nature of the 
sample (if the school is co-ed).

Simple Random Sampling
Researchers adopt a variety of sampling strategies. The most straightforward is simple random 
sampling. Such sampling requires every member of the population to have an equal chance of 
being selected into the sample. In addition, the selection of one member must be independent of 
the selection of every other member. That is, picking one member from the population must not 
increase or decrease the probability of picking any other member (relative to the others). In this 
sense, we can say that simple random sampling chooses a sample by pure chance. To check your 
understanding of simple random sampling, consider the following example. What is the population? 
What is the sample? Was the sample picked by simple random sampling? Is it biased?

Example #5: a research scientist is interested in studying the experiences of twins raised 
together versus those raised apart. She obtains a list of twins from the national twin registry, 
and selects two subsets of individuals for her study. First, she chooses all those in the 
registry whose last name begins with Z. then she turns to all those whose last name begins 
with B. Because there are so many names that start with B, however, our researcher decides 
to incorporate only every other name into her sample. Finally, she mails out a survey and 
compares characteristics of twins raised apart versus together.

In Example #5, the population consists of all twins recorded in the National Twin Registry. It is 
important that the researcher only make statistical generalizations to the twins on this list, not to 
all twins in the nation or world. That is, the National Twin Registry may not be representative of 
all twins. Even if inferences are limited to the Registry, a number of problems affect the sampling 
procedure we described. For instance, choosing only twins whose last names begin with Z does not 
give every individual an equal chance of being selected into the sample. Moreover, such a procedure 
risks over-representing ethnic groups with many surnames that begin with Z. There are other 
reasons why choosing just the Zs may bias the sample.

Perhaps such people are more patient than average because they often find themselves at the end 
of the line! The same problem occurs with choosing twins whose last name begins with B. An 
additional problem for the Bs is that the every-other-one procedure disallowed adjacent names 
on the B part of the list from being both selected. Just this defect alone means the sample was not 
formed through simple random sampling.

Sample Size Matters
Recall that the definition of a random sample is a sample in which every member of the population 
has an equal chance of being selected. This means that the sampling procedure rather than the 
results of the procedure define what it means for a sample to be random. Random samples, 
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especially if the sample size is small, are not necessarily representative of the entire population. For 
example, if a random sample of 20 subjects were taken from a population with an equal number 
of males and females, there would be a nontrivial probability (.06) that 70% or more of the sample 
would be female. Such a sample would not be representative, although it would be drawn randomly. 
Only a large sample size makes it likely that our sample is close to representative of the population. 
For this reason, inferential statistics take into account the sample size when generalizing results 
from samples to populations. In later chapters, you’ll see what kinds of mathematical techniques 
ensure this sensitivity to sample size.

More Complex Sampling
Sometimes it is not feasible to build a sample using simple random sampling. To see the problem, 
consider the fact that both Dallas and Houston competed to be hosts of the 2012 Olympics. Imagine 
that you had been hired to assess whether most Texans preferred Houston to Dallas as the host, 
or the reverse. Given the impracticality of obtaining the opinion of every single Texan, you had to 
construct a sample of the Texas population. But notice how difficult it would have been to proceed 
by simple random sampling. For example, how would you have contacted those individuals who 
didn’t vote and didn’t have a phone? Even among people you found in the telephone book, how 
could you have identified those who had just relocated to another state (and had no reason to 
inform you of their move)? What would you have done about the fact that since the beginning 
of the study, an additional 4,212 people took up residence in the state of Texas? As you can see, it 
is sometimes very difficult to develop a truly random procedure. For this reason, other kinds of 
sampling techniques have been devised. We now discuss two of them.

Stratified Sampling
Since simple random sampling often does not ensure a representative sample, a sampling method 
called stratified random sampling is sometimes used to make the sample more representative 
of the population. This method can be used if the population has a number of distinct “strata” 
or groups. In stratified sampling, you first identify members of your sample who belong to each 
group. Then you randomly sample from each of those subgroups in such a way that the sizes of the 
subgroups in the sample are proportional to their sizes in the population.

Let’s take an example: Suppose you were interested in views of capital punishment at an urban 
university. You have the time and resources to interview 200 students. The student body is diverse 
with respect to age; many older people work during the day and enroll in night courses (average age is 
39), while younger students generally enroll in day classes (average age of 19). It is possible that night 
students have different views about capital punishment than day students. If 70% of the students 
were day students, it makes sense to ensure that 70% of the sample consisted of day students. Thus, 
your sample of 200 students would consist of 140 day students and 60 night students. The proportion 
of day students in the sample and in the population (the entire university) would be the same. 
Inferences to the entire population of students at the university would therefore be more secure.
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Convenience Sampling
Not all sampling methods are perfect, and sometimes that’s okay. For example, if we are beginning 
research into a completely unstudied area, we may sometimes take some shortcuts to quickly gather 
data and get a general idea of how things work before fully investing a lot of time and money into 
well-designed research projects with proper sampling. This is known as convenience sampling, 
named for its ease of use. In limited cases, such as the one just described, convenience sampling 
is okay because we intend to follow up with a representative sample. Unfortunately, sometimes 
convenience sampling is used due only to its convenience without the intent of improving on it in 
future work.

TYPES OF RESEARCH DESIGNS
Research studies come in many forms, and, just like with the different types of data we have, different 
types of studies tell us different things. The choice of research design is determined by the research 
question and the logistics involved. Though a complete understanding of different research designs 
is the subject for at least one full class, if not more, a basic understanding of the principles is useful 
here. There are three types of research designs we will discuss: experimental, quasi-experimental, 
and non-experimental.

Experimental Designs
If we want to know if a change in one variable causes a change in another variable, we must use a 
true experiment. Experimental research is defined by the use of random assignment to treatment 
conditions and manipulation of the independent variable. To understand what this means, let’s look 
at an example:

a clinical researcher wants to know if a newly developed drug is effective in treating the flu. 
Working with collaborators at several local hospitals, she randomly samples 40 flu patients 
and randomly assigns each one to one of two conditions: Group a receives the new drug, and 
Group B receives a placebo. She measures the symptoms of all participants after one week to 
see if there is a difference in symptoms between the groups.

In the example, the independent variable is the drug treatment; we manipulate it into two levels: 
new drug or placebo. Without the researcher administering the drug (i.e., manipulating the 
independent variable), there would be no difference between the groups. Each person, after 
being randomly sampled to be in the research, was then randomly assigned to one of the two 
groups. That is, random sampling and random assignment are not the same thing and cannot be 
used interchangeably. For research to be a true experiment, random assignment must be used. 
For research to be representative of the population, random sampling must be used. The use of 
both techniques helps ensure that there are no systematic differences between the groups, thus 
eliminating the potential for sampling bias.
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The dependent variable in the example is flu symptoms. Barring any other intervention, we would 
assume that people in both groups, on average, get better at roughly the same rate. Because there 
are no systematic differences between the two groups, if the researcher does find a difference in 
symptoms, she can confidently attribute it to the effectiveness of the new drug.

Quasi-Experimental Designs
Quasi-experimental research involves getting as close as possible to the conditions of a true 
experiment when we cannot meet all requirements. Specifically, a quasi-experiment involves 
manipulating the independent variable but not randomly assigning people to groups. There are 
several reasons this might be used. First, it may be unethical to deny potential treatment to someone 
if there is good reason to believe it will be effective and that the person would unduly suffer if they 
did not receive it. Alternatively, it may be impossible to randomly assign people to groups. Consider 
the following example:

a professor wants to test out a new teaching method to see if it improves student learning. 
Because he is teaching two sections of the same course, he decides to teach one section the 
traditional way and the other section using the new method. at the end of the semester, he 
compares the grades on the final for each class to see if there is a difference.

In this example, the professor has manipulated his teaching method, which is the independent 
variable, hoping to find a difference in student performance, the dependent variable. However, 
because students enroll in courses, he cannot randomly assign the students to a particular group, 
thus precluding using a true experiment to answer his research question. Because of this, we cannot 
know for sure that there are no systematic differences between the classes other than teaching style 
and therefore cannot determine causality.

Non-Experimental Designs
Finally, non-experimental research (sometimes called correlational research) involves observing 
things as they occur naturally and recording our observations as data. Consider this example:

a data scientist wants to know if there is a relationship between how conscientious a person 
is and whether that person is a good employee. She hopes to use this information to predict 
the job performance of future employees by measuring their personality when they are still 
job applicants. She randomly samples volunteer employees from several different companies, 
measuring their conscientiousness and having their bosses rate their performance on the job. 
She analyzes this data to find a relationship.

Here, it is not possible to manipulate conscientiousness, so the researcher must gather data from 
employees as they are in order to find a relationship between her variables. Although this technique 
cannot establish causality, it can still be quite useful. If the relationship between conscientiousness 
and job performance is consistent, then it doesn’t necessarily matter if conscientiousness 
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causes good performance or if they are both caused by something else—she can still measure 
conscientiousness to predict future performance. Additionally, these studies have the benefit of 
reflecting reality as it actually exists since we as researchers do not change anything.

TYPES OF STATISTICAL ANALYSES
Now that we understand the nature of our data, let’s turn to the types of statistics we can use to 
interpret them. There are two types of statistics: descriptive and inferential.

Descriptive Statistics
Descriptive statistics are numbers that are used to summarize and describe data. The word “data” 
refers to the information that has been collected from an experiment, a survey, a historical record, 
etc. (By the way, data is plural. One piece of information is called a datum.) If we are analyzing birth 
certificates, for example, a descriptive statistic might be the percentage of certificates issued in New 
York State, or the average age of the mother. Any other number we choose to compute also counts as 
a descriptive statistic for the data from which the statistic is computed. Several descriptive statistics 
are often used at one time to give a full picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing beyond the data at hand. 
Generalizing from our data to another set of cases is the business of inferential statistics, which 
you’ll be studying in another section. Here we focus on (mere) descriptive statistics.

Some descriptive statistics are shown in TABLE 1.1. The table shows the average salaries for various 
occupations in the United States in 1999. Descriptive statistics like these offer insight into American 
society. It is interesting to note, for example, that we pay the people who educate our children and 
who protect our citizens a great deal less than we pay people who take care of our feet or our teeth.

TABLE 1.1. average salaries for various U.S. occupations in 1999.

Occupation Salary

Pediatricians $112,760
Dentists $106,130
Podiatrists $100,090
Physicists $76,140
Architects $53,410
School, clinical, and counseling psychologists $49,720
Flight attendants $47,910
Elementary school teachers $39,560
Police officers $38,710
Floral designers $18,980
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For more descriptive statistics, consider TABLE 1.2. It shows the number of unmarried men per 100 
unmarried women in U.S. metro areas in 1990. From this table we see that men outnumber women 
most in Jacksonville, North Carolina, and women outnumber men most in Sarasota, Florida. You 
can see that descriptive statistics can be useful if we are looking for an opposite-sex partner! (These 
data come from the Information Please Almanac.)

These descriptive statistics may make us ponder why the numbers are so disparate in these cities. 
One potential explanation, for instance, as to why there are more women in Florida than men may 
involve the fact that elderly individuals tend to move down to the Sarasota region and that women 
tend to outlive men. Thus, more women might live in Sarasota than men. However, in the absence of 
proper data, this is only speculation.

You probably know that descriptive statistics are central to the world of sports. Every sporting event 
produces numerous statistics, such as the shooting percentage of players on a basketball team. For 
the Olympic marathon (a foot race of 26.2 miles), we possess data that cover more than a century 
of competition. (The first modern Olympics took place in 1896.) TABLE 1.3 and TABLE 1.4 show 
the winning times for women and men, respectively. (Women have only been allowed to compete 
since 1984.)

TABLE 1.3. Women’s winning Olympic marathon times, 1984–2004.

Year Winner Country Time

1984 Joan Benoit United States 2:24:52
1988 Rosa Mota Portugal 2:25:40
1992 Valentina Yegorova Unified Team 2:32:41
1996 Fatuma Roba Ethiopia 2:26:05
2000 Naoko Takahashi Japan 2:23:14
2004 Mizuki Noguchi Japan 2:26:20

TABLE 1.2. number of unmarried men per 100 unmarried women in U.S. metro areas in 1990. note: Unmarried 
includes never-married, widowed, and divorced persons, 15 years or older.

Cities with Mostly Men
Men per 

100 Women Cities with Mostly Women
Men per 

100 Women

 1. Jacksonville, North Carolina 224  1. Sarasota, Florida 66
 2. Killeen–Temple, Texas 123  2. Bradenton, Florida 68
 3. Fayetteville, North Carolina 118  3. Altoona, Pennsylvania 69
 4. Brazoria, Texas 117  4. Springfield, Illinois 70
 5. Lawton, Oklahoma 116  5. Jacksonville, Tennessee 70
 6. State College, Pennsylvania 113  6. Gadsden, Alabama 70
 7. Clarksville–Hopkinsville, 

Tennessee–Kentucky
113  7. Wheeling, 

West Virginia–Ohio
70

 8. Anchorage, Alaska 112  8. Charleston, West Virginia 71
 9. Salinas–Seaside–Monterey, California 112  9. St. Joseph, Missouri 71
 10. Bryan–College Station, Texas 111  10. Lynchburg, Virginia 71 
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TABLE 1.4. Men’s winning Olympic marathon times, 1896–2004.

Year Winner Country Time

1896 Spyridon Louis Greece 2:58:50
1900 Michel Théato France 2:59:45
1904 Thomas Hicks United States 3:28:53
1906 Billy Sherring Canada 2:51:23
1908 Johnny Hayes United States 2:55:18
1912 Kenneth McArthur South Africa 2:36:54
1920 Hannes Kolehmainen Finland 2:32:35
1924 Albin Stenroos Finland 2:41:22
1928 Boughera El Ouafi France 2:32:57
1932 Juan Carlos Zabala Argentina 2:31:36
1936 Sohn Kee-chung Japan 2:29:19
1948 Delfo Cabrera Argentina 2:34:51
1952 Emil Zátopek Czechoslovakia 2:23:03
1956 Alain Mimoun France 2:25:00
1960 Abebe Bikila Ethiopia 2:15:16
1964 Abebe Bikila Ethiopia 2:12:11
1968 Mamo Wolde Ethiopia 2:20:26
1972 Frank Shorter United States 2:12:19
1976 Waldemar Cierpinski East Germany 2:09:55
1980 Waldemar Cierpinski East Germany 2:11:03
1984 Carlos Lopes Portugal 2:09:21
1988 Gelindo Bordin Italy 2:10:32
1992 Hwang Young-cho South Korea 2:13:23
1996 Josia Thugwane South Africa 2:12:36
2000 Gezahegne Abera Ethiopia 2:10.10
2004 Stefano Baldini Italy 2:10:55 

There are many descriptive statistics that we can compute from the data in these tables. To gain 
insight into the improvement in speed over the years, let us divide the men’s times into two pieces, 
namely, the first 13 races (up to 1952) and the second 13 (starting from 1956). The mean winning 
time for the first 13 races is 2 hours, 44 minutes, and 22 seconds (written 2:44:22). The mean 
winning time for the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does 
this prove that the fastest men are running faster? Or is the difference just due to chance, no more 
than what often emerges from chance differences in performance from year to year? We can’t 
answer this question with descriptive statistics alone. All we can affirm is that the two means are 
“suggestive.”

Examining TABLE 1.3 and TABLE 1.4 leads to many other questions. We note that Takahashi (the lead 
female runner in 2000) would have beaten the male runner in 1956 and all male runners in the first 
12 marathons. This fact leads us to ask whether the gender gap will close or remain constant. When 
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we look at the times within each gender, we also wonder how far they will decrease (if at all) in 
the next century of the Olympics. Might we one day witness a sub-2 hour marathon? The study of 
statistics can help you make reasonable guesses about the answers to these questions.

It is also important to differentiate what we use to describe populations vs. what we use to describe 
samples. A population is described by a parameter; the parameter is the true value of the descriptive 
in the population, but one that we can never know for sure. For example, the Bureau of Labor 
Statistics reports that the average hourly wage of chefs is $23.87. However, even if this number were 
computed using information from every single chef in the United States (making it a parameter), 
it would quickly become slightly off as one chef retires and a new chef enters the job market. 
Additionally, as noted above, there is virtually no way to collect data from every single person in a 
population. In order to understand a variable, we estimate the population parameter using a sample 
statistic. Here, the term statistic refers to the specific number we compute from the data (e.g., the 
average), not the field of statistics. A sample statistic is an estimate of the true population parameter, 
and if our sample is representative of the population, then the statistic is considered to be a good 
estimator of the parameter.

Even the best sample will be somewhat off from the full population, earlier referred to as sampling 
bias, and as a result, there will always be a tiny discrepancy between the parameter and the statistic 
we use to estimate it. This difference is known as sampling error, and, as we will see throughout the 
course, understanding sampling error is the key to understanding statistics. Every observation we 
make about a variable, be it a full research study or observing an individual’s behavior, is incapable 
of being completely representative of all possibilities for that variable. Knowing where to draw the 
line between an unusual observation and a true difference is what statistics is all about.

Inferential Statistics
Descriptive statistics are wonderful at telling us what our data look like. However, what we often 
want to understand is how our data behave. What variables are related to other variables? Under 
what conditions will the value of a variable change? Are two groups different from each other, and if 
so, are people within each group different or similar? These are the questions answered by inferential 
statistics, and inferential statistics are how we generalize from our sample back up to our population. 
Unit 2 and Unit 3 are all about inferential statistics, the formal analyses and tests we run to make 
conclusions about our data.

For example, we will learn how to use a t statistic to determine whether people change over time 
when enrolled in an intervention. We will also use an F statistic to determine if we can predict future 
values on a variable based on current known values of a variable. There are many types of inferential 
statistics, each allowing us insight into a different behavior of the data we collect. This course will 
only touch on a small subset (or a sample) of them, but the principles we learn along the way will 
make it easier to learn new tests, as most inferential statistics follow the same structure and format.
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A NOTE ABOUT STATISTICAL SOFTWARE
Many pieces of technology support statistical analysis and quantitative data analysis done by 
psychologists. Commonly used technologies include the proprietary Statistical Package for the 
Social Sciences (SPSS), the free and open-source tool JASP, and the programming language R. 
Several of the figures used in this text were generated using JASP, but providing an overview or 
introduction to these technologies is outside the scope of this work. Instruction manuals can be 
found on the JASP website.

MATHEMATICAL NOTATION
As noted earlier, statistics is not math. It does, however, use math as a tool. Many statistical formulas 
involve summing numbers. Fortunately, there is a convenient notation for expressing summation. 
This section covers the basics of this summation notation.

Let’s say we have a variable X that represents the weights (in grams) of 4 grapes:

Grape X

Grape 1 4.6
Grape 2 5.1
Grape 3 4.9
Grape 4 4.4

We label the weight of Grape 1 as X1, of Grape 2 as X2, etc. The following formula means to sum up 
the weights of the four grapes:

Xi
i�
�

1

4

The Greek letter Σ  indicates summation. The “i = 1” at the bottom indicates that the summation is 
to start with X1, and the 4 at the top indicates that the summation will end with X4. The “Xi” 
indicates that X is the variable to be summed as i goes from 1 to 4. Therefore,

X X X X Xi
i

� � � � � � � � �
�
� 1 2 3 4

1

4
4 6 5 1 4 9 4 4 19. . . .

The symbol

Xi
i�
�

1

3

indicates that only the first 3 scores are to be summed. The index variable i goes from 1 to 3.
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When all the scores of a variable (such as X) are to be summed, it is often convenient to use the 
following abbreviated notation:

X∑
Thus, when no values of i are shown, it means to sum all the values of X.

Many formulas involve squaring numbers before they are summed. This is indicated as

X2 2 2 2 24 6 5 1 4 9 4 4 21 16 26 01 24 01 19 36 90 54� � � � � � � � �� . . . . . . . . .

Notice that:

X X� �� � �
2 2

because the expression on the left means to sum up all the values of X and then square the sum 
(19 3612 = ), whereas the expression on the right means to square the numbers and then sum the 
squares (90.54, as shown).

Some formulas involve the sum of cross products. Below are the data for variables X and Y. The 
cross products (XY) are shown in the third column. The sum of the cross products is 3 4 21 28� � � .

X Y XY

1 3 3
2 2 4
3 7 21

In summation notation, this is written as:

XY �� 28

EXERCISES
1. In your own words, describe why we study statistics.

2. For each of the following, determine if the variable is continuous or discrete:
a. Time taken to read a book chapter
b. Favorite food
c. Cognitive ability
d. Temperature
e. Letter grade received in a class
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3. For each of the following, determine the level of measurement:
a. T-shirt size
b. Time taken to run 100-meter race
c. First, second, and third place in 100-meter race
d. Birthplace
e. Temperature in Celsius

4. What is the difference between a population and a sample? Which is described by a parameter 
and which is described by a statistic?

5. What is sampling bias? What is sampling error?

6. What is the difference between a simple random sample and a stratified random sample?

7. What are the two key characteristics of a true experimental design?

8. When would we use a quasi-experimental design?

9. Use the following dataset for the computations below:

X Y

2 8
3 8
7 4
5 1
9 4

a. X∑
b. ∑Y 2

c. XY∑
d. Y�� �2

10. What are the most common measures of central tendency and spread?

ANSWERS TO ODD-NUMBERED EXERCISES
1. Your answer could take many forms but should include information about objectively 

interpreting information and/or communicating results and research conclusions.

3. a. Ordinal
b. Ratio
c. Ordinal
d. Nominal
e. Interval
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5. Sampling bias is the difference in demographic characteristics between a sample and the 
population it should represent. Sampling error is the difference between a population parameter 
and sample statistic that is caused by random chance due to sampling bias.

7. Random assignment to treatment conditions and manipulation of the independent variable

9. a. 26
b. 161
c. 109
d. 625
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Before we can understand our analyses, we must first understand our data. The first step in doing 
this is using tables, charts, graphs, plots, and other visual tools to see what our data look like.

GRAPHING QUALITATIVE VARIABLES
When Apple Computer introduced the iMac computer in August 1998, the company wanted to 
learn whether the iMac was expanding Apple’s market share. Was the iMac just attracting previous 
Macintosh owners? Or was it purchased by newcomers to the computer market and by previous 
Windows users who were switching over? To find out, 500 iMac customers were interviewed. Each 
customer was categorized as a previous Macintosh owner, a previous Windows owner, or a new 
computer purchaser.

This section examines graphical methods for displaying the results of the interviews. We’ll learn 
some general lessons about how to graph data that fall into a small number of categories. A later 
section will consider how to graph numerical data in which each observation is represented by 
a number in some range. The key point about the qualitative data that occupy us in the present 
section is that they do not come with a pre-established ordering (the way numbers are ordered). For 
example, there is no natural sense in which the category of previous Windows users comes before 
or after the category of previous Macintosh users. This situation may be contrasted with quantitative 
data, such as a person’s weight. People of one weight are naturally ordered with respect to people of a 
different weight.

Frequency Tables
All of the graphical methods shown in this section are derived from frequency tables. TABLE 2.1 
shows a frequency table for the results of the iMac study; it shows the frequencies of the various 
response categories. It also shows the relative frequencies, which are the proportion of responses in 
each category. For example, the relative frequency for “none” of .17 = 85/500.

CHAPTER 2  

Describing Data Using Distributions and Graphs
KEY TERMS
bell curve
bimodal distribution
bin widths
box plots

categorical variables
frequency polygons
histogram
lie factor

skew
stem-and-leaf display
whiskers
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Pie Charts
The pie chart in FIGURE 2.1 shows the results of the iMac study. In a pie chart, each category is 
represented by a slice of the pie. The area of the slice is proportional to the percentage of responses 
in the category. This is simply the relative frequency multiplied by 100. Although most iMac 
purchasers were Macintosh owners (71%), Apple was encouraged by the 12% of purchasers who 
were former Windows users, and by the 17% of purchasers who were buying a computer for the 
first time.

Pie charts are effective for displaying the relative frequencies of a small number of categories. They 
are not recommended, however, when you have a large number of categories. Pie charts can also be 
confusing when they are used to compare the outcomes of two different surveys or experiments. In 
an influential book on the use of graphs, Edward Tufte asserted, “The only worse design than a pie 
chart is several of them.”1

Here is another important point about pie charts. If they are based on a small number of 
observations, it can be misleading to label the pie slices with percentages. For example, if just 
5 people had been interviewed by Apple Computers, and 3 were former Windows users, it would 
be misleading to display a pie chart with the Windows slice showing 60%. With so few people 

1 Tufte, E. R. (1983). The visual display of quantitative information (p. 178). Graphics Press.

TABLE 2.1. Frequency table for the iMac data.

Previous Ownership Frequency Relative Frequency

None 85 .17
Windows 60 .12
Macintosh 355 .71
Total 500 1.00

FIGURE 2.1. pie chart of iMac purchases illustrating 
frequencies of previous computer ownership: 71% of 
purchasers owned a Macintosh before buying their iMac. 
 (“Mac Pie Chart” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)Macintosh

71%

None
17%

Windows
12%
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interviewed, such a large percentage of Windows users might easily have occurred since chance can 
cause large errors with small samples. In this case, it is better to alert the user of the pie chart to the 
actual numbers involved. The slices should therefore be labeled with the actual frequencies observed 
(e.g., 3) instead of with percentages.

Bar Charts
Bar charts can also be used to represent frequencies of different categories. A bar chart of the iMac 
purchases is shown in FIGURE 2.2. Frequencies are shown on the y-axis and the type of computer 
previously owned is shown on the x-axis. Typically, the y-axis shows the number of observations in 
each category rather than the percentage of observations in each category as is typical in pie charts.

Comparing Distributions
Often we need to compare the results of different surveys, or of different conditions within the same 
overall survey. In this case, we are comparing the “distributions” of responses between the surveys 
or conditions. Bar charts are often excellent for illustrating differences between two distributions. 
FIGURE 2.3 shows the number of people playing card games at the Yahoo web site on a Sunday and 
on a Wednesday in the spring of 2001. We see that there were more players overall on Wednesday 
compared to Sunday. The number of people playing Pinochle was nonetheless the same on these 
two days. In contrast, there were about twice as many people playing Hearts on Wednesday as on 
Sunday. Facts like these emerge clearly from a well-designed bar chart.

The bars in FIGURE 2.3 are oriented horizontally rather than vertically. The horizontal format is 
useful when you have many categories because there is more room for the category labels. We’ll have 
more to say about bar charts when we consider numerical quantities later in this chapter.

FIGURE 2.2. Bar chart of iMac purchases as 
a function of previous computer ownership. 
 (“Mac Bar Chart” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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Some Graphical Mistakes to Avoid
Don’t get fancy! People 
sometimes add features to graphs 
that don’t help to convey their 
information. For example, three-
dimensional bar charts such as 
the one shown in FIGURE 2.4 are 
usually not as effective as their 
two-dimensional counterparts.

Here is another way that 
fanciness can lead to trouble. 
Instead of plain bars, it 
is tempting to substitute 

FIGURE 2.4. a three-dimensional version 
of FIGURE 2.2. Charts like this are less 
effective.  (“Mac Bar Chart 3D” by Judy Schmitt 
is licenced under CC BY-NC-SA 4.0.)
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FIGURE 2.3. a bar chart of 
the number of people playing 
different card games on Sunday 
and Wednesday.  (“Card Game Bar 
Chart” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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meaningful images. For example, FIGURE 2.5 presents the iMac data using pictures of computers. 
The heights of the pictures accurately represent the number of buyers, yet FIGURE 2.5 is misleading 
because the viewer’s attention will be captured by areas. The areas can exaggerate the size differences 
between the groups. In terms of percentages, the ratio of previous Macintosh owners to previous 
Windows owners is about 6 to 1. But the ratio of the two areas in FIGURE 2.5 is about 35 to 1. A 
biased person wishing to hide the fact that many Windows owners purchased iMacs would be 
tempted to use FIGURE 2.5 instead of FIGURE 2.2!

Edward Tufte coined the term lie factor to refer to the ratio of the size of the effect shown in a graph 
to the size of the effect shown in the data. He suggests that lie factors greater than 1.05 or less than 
0.95 produce unacceptable distortion.

Another distortion in bar charts results from setting the baseline to a value other than zero. The 
baseline is the bottom of the y-axis, representing the least number of cases that could have occurred 
in a category. Normally, but not always, this number should be zero. FIGURE 2.6 shows the iMac data 
with a baseline of 50. Once again, the differences in areas suggests a different story than the true 
differences in percentages. The number of Windows-switchers seems minuscule compared to its 
true value of 12%.

FIGURE 2.5. a redrawing of FIGURE 2.2 with a lie factor greater than 8.  (“Mac Bar Chart Lie Factor” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0. “Apple iMac G3 (1998)” by albaco/Flickr is licensed under CC BY-NC-SA 2.0; image was 
brightened and background was removed.)
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Finally, we note that it is a serious mistake to use a line graph when the x-axis contains merely 
qualitative variables. A line graph is essentially a bar graph with the tops of the bars represented 
by points joined by lines (the rest of the bar is suppressed). FIGURE 2.7 inappropriately shows a 
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line graph of the card game data from Yahoo that was presented in FIGURE 2.3. The drawback to 
FIGURE 2.7 is that it gives the false impression that the games are naturally ordered in a numerical 
way when, in fact, they are ordered alphabetically.

Summary
Pie charts and bar charts can both be effective methods of portraying qualitative data. Bar charts are 
better when there are more than just a few categories and for comparing two or more distributions. 
Be careful to avoid creating misleading graphs.

FIGURE 2.7. a line graph used inappropriately to depict the number of people playing different card games on 
Sunday and Wednesday.  (“Line Chart Inappropriately Used” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.6. a redrawing of FIGURE 2.2 with 
a baseline of 50.  (“Mac Bar Chart Baseline 50” by 
Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

50

120

190

260

400

330

MacintoshWindows

Previous Computer

N
um

be
r o

f B
uy

er
s

None

30 • FUNDAMENTALS OF STATISTICS Unit 1

https://irl.umsl.edu/oer-img/7
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://irl.umsl.edu/oer-img/6
https://creativecommons.org/licenses/by-nc-sa/4.0/


GRAPHING QUANTITATIVE VARIABLES
As discussed in the section on variables in Chapter 1, quantitative variables are variables measured 
on a numeric scale. Height, weight, response time, subjective rating of pain, temperature, and score 
on an exam are all examples of quantitative variables. Quantitative variables are distinguished from 
qualitative variables (sometimes called categorical variables or nominal variables), such as favorite 
color, religion, city of birth, and favorite sport, in which there is no ordering or measuring involved.

There are many types of graphs that can be used to portray distributions of quantitative 
variables. The upcoming sections cover the following types of graphs: (1) stem-and-leaf displays, 
(2) histograms, (3) frequency polygons, (4) box plots, (5) bar charts, (6) line graphs, (7) dot plots, 
and (8) scatter plots (discussed in Chapter 12). Some graph types, such as stem-and-leaf displays, 
are best-suited for small to moderate amounts of data, whereas others, such as histograms, are best-
suited for large amounts of data. Graph types such as box plots are good at depicting differences 
between distributions. Scatter plots are used to show the relationship between two variables.

Stem-and-Leaf Displays
A stem-and-leaf display is a graphical method of displaying data. It is particularly useful when your 
data are not too numerous. In this section, we will explain how to construct and interpret this kind 
of graph.

As usual, we will start with an example. Consider FIGURE 2.8, which shows the number of 
touchdown passes (TD passes) thrown by each of the 31 teams in the National Football League 
during the 2000 season.

A stem-and-leaf display of the data is shown in FIGURE 2.9. The left portion of FIGURE 2.9 contains 
the stems. They are the numbers 3, 2, 1, and 0, arranged as a column to the left of the bars. Think of 
these numbers as 10s digits. A stem of 3, for example, can be used to represent the 10s digit in any of 
the numbers from 30 to 39. The numbers to the right of the bar are leaves, and they represent the 1s 
digits. Every leaf in the graph therefore stands for the result of adding the leaf to 10 times its stem.

To make this clear, let us examine FIGURE 2.9 more closely. In the top row, the four leaves to the right 
of stem 3 are 2, 3, 3, and 7. Combined with the stem, these leaves represent the numbers 32, 33, 33, 
and 37, which are the numbers of TD passes for the first four teams in FIGURE 2.8. The next row has 

FIGURE 2.8. number of touchdown passes. 
 (“Touchdown Passes Raw Data” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)

37, 33, 33, 32, 29, 28, 
28, 23, 22, 22, 22, 21, 
21, 21, 20, 20, 19, 19, 
18, 18, 18, 18, 16, 15, 
14, 14, 14, 12, 12, 9, 6

FIGURE 2.9. Stem-and-leaf display of the number of 
touchdown passes.  (“Touchdown Passes Stem and Leaf” 
by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

3 | 2337 
2 | 001112223889
1 | 2244456888899
0 | 69
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a stem of 2 and 12 leaves. Together, they represent 12 data points, namely, two occurrences of 20 TD 
passes, three occurrences of 21 TD passes, three occurrences of 22 TD passes, one occurrence of 
23 TD passes, two occurrences of 28 TD passes, and one occurrence of 29 TD passes. We leave it 
to you to figure out what the third row represents. The fourth row has a stem of 0 and two leaves. 
It stands for the last two entries in FIGURE 2.8, namely 9 TD passes and 6 TD passes. (The latter two 
numbers may be thought of as 09 and 06.)

One purpose of a stem-and-leaf display is to clarify the shape of the distribution. You can see many 
facts about TD passes more easily in FIGURE 2.9 than in FIGURE 2.8. For example, by looking at the 
stems and the shape of the plot, you can tell that most of the teams had between 10 and 29 passing 
TDs, with a few having more and a few having less. The precise numbers of TD passes can be 
determined by examining the leaves.

We can make our figure even more revealing by splitting each stem into two parts. FIGURE 2.10 
shows how to do this. The top row is reserved for numbers from 35 to 39 and holds only the 37 TD 
passes made by the first team in FIGURE 2.8. The second row is reserved for the numbers from 30 to 
34 and holds the 32, 33, and 33 TD passes made by the next three teams in the table. You can see for 
yourself what the other rows represent.

FIGURE 2.10 is more revealing than FIGURE 2.9 because the latter figure lumps too many values into 
a single row. Whether you should split stems in a display depends on the exact form of your data. If 
rows get too long with single stems, you might try splitting them into two or more parts.

There is a variation of stem-and-leaf displays that is useful for comparing distributions. The two 
distributions are placed back to back along a common column of stems. The result is a back-to-back 
stem-and-leaf display, as shown in FIGURE 2.11. It compares the numbers of TD passes in the 1998 
and 2000 seasons. The stems are in the middle, the leaves to the left are for the 1998 data, and the 
leaves to the right are for the 2000 data. For example, the second-to-last row shows that in 1998 
there were teams with 11, 12, and 13 TD passes, and in 2000 there were two teams with 12 and three 
teams with 14 TD passes.

FIGURE 2.10. Stem-and-leaf display with the 
stems split in two.  (“Touchdown Passes Split 
Stem and Leaf” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

3 | 7 
3 | 233 
2 | 889
2 | 001112223
1 | 56888899
1 | 22444
0 | 69

FIGURE 2.11. Back-to-back stem-and-leaf display. the left 
side shows the 1998 tD data and the right side shows 
the 2000 tD data.  (“Touchdown Passes Back-to-Back Stem and 
Leaf” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.
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FIGURE 2.11 helps us see that the two seasons were similar, but that only in 1998 did any teams throw 
more than 40 TD passes.

There are two things about the football data that make them easy to graph with stems and leaves. 
First, the data are limited to whole numbers that can be represented with a one-digit stem and a 
one-digit leaf. Second, all the numbers are positive. If the data include numbers with three or more 
digits, or contain decimals, they can be rounded to two-digit accuracy. Negative values are also 
easily handled. Let us look at another example.

FIGURE 2.12 shows data from the Weapons and Aggression case study developed at Rice University. 
Each value is the mean difference over a series of trials between the times it took an experimental 
subject to name aggressive words (like punch) under two conditions. In one condition, the words 
were preceded by a non-weapon word such as bug. In the second condition, the same words were 
preceded by a weapon word such as gun or knife. The issue addressed by the experiment was 
whether a preceding weapon word would speed up (or prime) pronunciation of the aggressive word 
compared to a non-weapon priming word. A positive difference implies greater priming of the 
aggressive word by the weapon word. Negative differences imply that the priming by the weapon 
word was less than for a neutral word.

You see that the numbers range from 43.2 to −27 4. . The first value indicates that one subject was 
43.2 milliseconds faster pronouncing aggressive words when they were preceded by weapon words 
than when preceded by neutral words. The value −27 4.  indicates that another subject was 
27.4 milliseconds slower pronouncing aggressive words when they were preceded by weapon words.

The data are displayed with stems and leaves in FIGURE 2.13. Since stem-and-leaf displays can only 
portray two whole digits (one for the stem and one for the leaf) the numbers are first rounded. Thus, 
the value 43.2 is rounded to 43 and represented with a stem of 4 and a leaf of 3. Similarly, 42.9 is 
rounded to 43. To represent negative numbers, we simply use negative stems. For example, the 
bottom row of the figure represents the number −27. The second-to-last row represents the numbers 
−10, −10, −15, etc. Once again, we have rounded the original values from FIGURE 2.12.

FIGURE 2.12. the effects of priming (in 
thousandths of a second).  (“Priming Effects Raw Data” 
by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

43.2, 42,9, 35.6, 25.6, 
25.4, 23.6, 20.5, 19.9, 
14.4, 12.7, 11.3, 10.2, 
10.0, 9.1, 7.5, 5.4, 4.7, 
3.8, 2.1, 1.2, −0.2, 
−6.3, −6.7, −8.8, −10.4, 
−10.5, −14.9, −14.9, 
−15.0, −18.5, −27.4

FIGURE 2.13. Stem-and-leaf display with negative 
numbers and rounding.  (“Priming Effects Stem and 
Leaf” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

−4 | 33 
−3 | 6 
−2 | 00456
−1 | 00134
−0 | 1245589
−0 | 0679
−1 | 005559
−2 | 7
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Observe that the figure contains a row headed by “0” and another headed by “−0.” The stem of 0 is 
for numbers between 0 and 9, whereas the stem of −0 is for numbers between 0 and −9. For example, 
the fifth row of the table holds the numbers 1, 2, 4, 5, 5, 8, 9 and the sixth row holds 0, −6, −7, and 
−9. Values that are exactly 0 before rounding should be split as evenly as possible between the “0” 
and “−0” rows. In FIGURE 2.12, none of the values are 0 before rounding. The “0” that appears in the 
“−0” row comes from the original value of −0 2.  in the table.

Although stem-and-leaf displays are unwieldy for large datasets, they are often useful for datasets 
with up to 200 observations. FIGURE 2.14 portrays the distribution of populations of 185 U.S. cities in 
1998. To be included, a city had to have between 100,000 and 500,000 residents.

Since a stem-and-leaf plot shows only two-place accuracy, we had to round the numbers to the 
nearest 10,000. For example the largest number (493,559) was rounded to 490,000 and then plotted 
with a stem of 4 and a leaf of 9. The fourth highest number (463,201) was rounded to 460,000 and 
plotted with a stem of 4 and a leaf of 6. Thus, the stems represent units of 100,000, and the leaves 
represent units of 10,000. Notice that each stem value is split into five parts: 0 to 1, 2 to 3, 4 to 5, 
6 to 7, and 8 to 9.

Whether your data can be suitably represented by a stem-and-leaf display depends on whether they 
can be rounded without loss of important information. Also, their extreme values must fit into two 
successive digits, as the data in FIGURE 2.14 fit into the 10,000 and 100,000 places (for leaves and 
stems, respectively). Deciding what kind of graph is best suited to displaying your data thus requires 
good judgment. Statistics is not just recipes!

FIGURE 2.14. Stem-and-leaf display 
of populations of 185 U.S. cities with 
populations between 100,000 and 
500,000 in 1988. Stems represent units 
of 100,000, and leaves represent units 
of 10,000.  (“US Populations Stem and Leaf” by 
Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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Histograms
A histogram is a graphical method for displaying the shape of a distribution. It is particularly useful 
when there are a large number of observations. We begin with an example consisting of the scores 
of 642 students on a psychology test. The test consists of 197 items, each graded as “correct” or 
“incorrect.” The students’ scores ranged from 46 to 167.

The first step is to create a frequency table. Unfortunately, a simple frequency table would be too big, 
containing over 100 rows. To simplify the table, we group scores together as shown in TABLE 2.2.

To create this table, the range of scores was broken into intervals, called class intervals. The first 
interval is from 39.5 to 49.5, the second from 49.5 to 59.5, etc. Next, the number of scores falling 
into each interval was counted to obtain the class frequencies. There are 3 scores in the first interval, 
10 in the second, etc.

Class intervals of width 10 provide enough detail about the distribution to be revealing without 
making the graph too “choppy.” More information on choosing the widths of class intervals is 
presented later in this section. Placing the limits of the class intervals midway between two numbers 
(e.g., 49.5) ensures that every score will fall in an interval rather than on the boundary between 
intervals.

In a histogram, the class frequencies are represented by bars. The height of each bar corresponds to 
its class frequency. A histogram of these data is shown in FIGURE 2.15.

TABLE 2.2. Grouped frequency distribution of psychology test scores.

Interval’s Lower Limit Interval’s Upper Limit Class Frequency

39.5 49.5 3
49.5 59.5 10
59.5 69.5 53
69.5 79.5 107
79.5 89.5 147
89.5 99.5 130
99.5 109.5 78

109.5 119.5 59
119.5 129.5 36
129.5 139.5 11
139.5 149.5 6
149.5 159.5 1
159.5 169.5 1

The histogram makes it plain that most of the scores are in the middle of the distribution, with fewer 
scores in the extremes. You can also see that the distribution is not symmetric: the scores extend 
farther to the right than they do to the left. The distribution is therefore said to be skewed. (We’ll 
have more to say about shapes of distributions in Chapter 3.)
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In our example, the observations are whole numbers. Histograms can also be used when the scores 
are measured on a more continuous scale such as the length of time (in milliseconds) required to 
perform a task. In this case, there is no need to worry about fence sitters since they are improbable. 
(It would be quite a coincidence for a task to require exactly 7 seconds, measured to the nearest 
thousandth of a second.) We are therefore free to choose whole numbers as boundaries for our 
class intervals, for example, 4000, 5000, etc. The class frequency is then the number of observations 
that are greater than or equal to the lower bound, and strictly less than the upper bound. For 
example, one interval might hold times from 4000 to 4999 milliseconds. Using whole numbers 
as boundaries avoids a cluttered appearance, and is the practice of many computer programs that 
create histograms. Note also that some computer programs label the middle of each interval rather 
than the end points.

Histograms can be based on relative frequencies instead of actual frequencies. Histograms based 
on relative frequencies show the proportion of scores in each interval rather than the number of 
scores. In this case, the y-axis runs from 0 to 1 (or somewhere in between if there are no extreme 
proportions). You can change a histogram based on frequencies to one based on relative frequencies 
by (a) dividing each class frequency by the total number of observations, and then (b) plotting the 
quotients on the y-axis (labeled as proportion).

There is more to be said about the widths of the class intervals, sometimes called bin widths. 
Your choice of bin width determines the number of class intervals. This decision, along with the 
choice of starting point for the first interval, affects the shape of the histogram. The best advice is 

FIGURE 2.15. histogram of scores on a psychology test.  (“Psychology Test Scores Histogram” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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to experiment with different choices of width, and to choose a histogram according to how well it 
communicates the shape of the distribution.

Frequency Polygons
Frequency polygons are a graphical device for understanding the shapes of distributions. They 
serve the same purpose as histograms, but are especially helpful for comparing sets of data. 
Frequency polygons are also a good choice for displaying cumulative frequency distributions.

To create a frequency polygon, start just as for histograms, by choosing a class interval. Then draw 
an x-axis representing the values of the scores in your data. Mark the middle of each class interval 
with a tick mark, and label it with the middle value represented by the class. Draw the y-axis to 
indicate the frequency of each class. Place a point in the middle of each class interval at the height 
corresponding to its frequency. Finally, connect the points. You should include one class interval 
below the lowest value in your data and one above the highest value. The graph will then touch the 
x-axis on both sides.

The frequency distribution of 642 psychology test scores, shown in TABLE 2.3, was used to create the 
frequency polygon shown in FIGURE 2.16.

The first label on the x-axis is 35. This represents an interval extending from 29.5 to 39.5. Since the 
lowest test score is 46, this interval has a frequency of 0. The point labeled 45 represents the interval 
from 39.5 to 49.5. There are three scores in this interval. There are 147 scores in the interval that 
surrounds 85.

TABLE 2.3. Frequency distribution of psychology test scores.

Lower Limit Upper Limit Count Cumulative Count

29.5 39.5 0 0
39.5 49.5 3 3
49.5 59.5 10 13
59.5 69.5 53 66
69.5 79.5 107 173
79.5 89.5 147 320
89.5 99.5 130 450
99.5 109.5 78 528

109.5 119.5 59 587
119.5 129.5 36 623
129.5 139.5 11 634
139.5 149.5 6 640
149.5 159.5 1 641
159.5 169.5 1 642
169.5 170.5 0 642
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You can easily discern the shape of the distribution from FIGURE 2.16. Most of the scores are between 
65 and 115. It is clear that the distribution is not symmetric inasmuch as good scores (to the right) 
trail off more gradually than poor scores (to the left). In the terminology of Chapter 3 (where we will 
study shapes of distributions more systematically), the distribution is skewed.

A cumulative frequency polygon for the same test scores is shown in FIGURE 2.17. The graph 
is the same as before except that the y value for each point is the number of students in the 
corresponding class interval plus all numbers in lower intervals. For example, there are no scores in 
the interval labeled “35,” three in the interval “45,” and 10 in the interval “55.” Therefore, the y value 

FIGURE 2.16. Frequency polygon for the psychology test scores.  (“Psychology Test Scores Frequency Polygon” by 
Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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corresponding to “55” is 13. Since 642 students took the test, the cumulative frequency for the last 
interval is 642.

Frequency polygons are useful for comparing distributions. This is achieved by overlaying the 
frequency polygons drawn for different datasets. FIGURE 2.18 provides an example. The data come 
from a task in which the goal is to move a computer cursor to a target on the screen as fast as 
possible. On 20 of the trials, the target was a small rectangle; on the other 20, the target was a large 
rectangle. Time to reach the target was recorded on each trial. The two distributions (one for each 
target) are plotted together in FIGURE 2.18. The figure shows that, although there is some overlap in 
times, it generally took longer to move the cursor to the small target than to the large one.

It is also possible to plot two cumulative frequency distributions in the same graph. This is 
illustrated in FIGURE 2.19 using the same data from the cursor task. The difference in distributions 
for the two targets is again evident.

FIGURE 2.17. Cumulative frequency polygon for the psychology test scores.  (“Psychology Test Scores Cumulative 
Frequency Polygon” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.18. Overlaid frequency 
polygons for the cursor task.  (“Cursor 
Task Frequency Polygons” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.19. Overlaid cumulative 
frequency polygons for the cursor 
task.  (“Cursor Task Cumulative Frequency 
Polygons” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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corresponding to “55” is 13. Since 642 students took the test, the cumulative frequency for the last 
interval is 642.

Frequency polygons are useful for comparing distributions. This is achieved by overlaying the 
frequency polygons drawn for different datasets. FIGURE 2.18 provides an example. The data come 
from a task in which the goal is to move a computer cursor to a target on the screen as fast as 
possible. On 20 of the trials, the target was a small rectangle; on the other 20, the target was a large 
rectangle. Time to reach the target was recorded on each trial. The two distributions (one for each 
target) are plotted together in FIGURE 2.18. The figure shows that, although there is some overlap in 
times, it generally took longer to move the cursor to the small target than to the large one.

It is also possible to plot two cumulative frequency distributions in the same graph. This is 
illustrated in FIGURE 2.19 using the same data from the cursor task. The difference in distributions 
for the two targets is again evident.

FIGURE 2.17. Cumulative frequency polygon for the psychology test scores.  (“Psychology Test Scores Cumulative 
Frequency Polygon” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.18. Overlaid frequency 
polygons for the cursor task.  (“Cursor 
Task Frequency Polygons” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.19. Overlaid cumulative 
frequency polygons for the cursor 
task.  (“Cursor Task Cumulative Frequency 
Polygons” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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Box Plots
We have already discussed techniques for visually representing data (see histograms and frequency 
polygons). In this section we present another important graph, called a box plot. Box plots are 
useful for identifying outliers and for comparing distributions. We will explain box plots with the 
help of data from an in-class experiment. Students in Introductory Statistics were presented with 
a page containing 30 colored rectangles. Their task was to name the colors as quickly as possible. 
Their times (in seconds) were recorded. We’ll compare the scores for the 16 men and 31 women who 
participated in the experiment by making separate box plots for each gender. Such a display is said 
to involve parallel box plots. The data for the women in our sample are shown in FIGURE 2.20.

There are several steps in constructing a box plot. The first relies on the 25th, 50th, and 75th 
percentiles in the distribution of scores. FIGURE 2.21 shows how these three statistics are used. For 
each gender we draw a box extending from the 25th percentile to the 75th percentile. The 50th 
percentile is drawn inside the box. Therefore, the bottom of each box is the 25th percentile, the top 
is the 75th percentile, and the line in the middle is the 50th percentile.

For the data reflecting the women’s times, the 25th percentile is 17, the 50th percentile is 19, and the 
75th percentile is 20. For the men (whose data are not shown), the 25th percentile is 19, the 50th 
percentile is 22.5, and the 75th percentile is 25.5.

FIGURE 2.20. Women’s times.  (“Women’s Times Raw Data” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.21. the first step in creating box 
plots.  (“Box Plot First Step” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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Before proceeding, the terminology in TABLE 2.4 is helpful.

Continuing with the box plots, we put “whiskers” above and below each box to give additional 
information about the spread of data. Whiskers are vertical lines that end in a horizontal stroke. 
Whiskers are drawn from the upper and lower hinges to the upper and lower adjacent values (24 
and 14 for the women’s data), as shown in FIGURE 2.22.

Although we don’t draw whiskers all the way to outside or far out values, we still wish to represent 
them in our box plots. This is achieved by adding additional marks beyond the whiskers. 
Specifically, outside values are indicated by small circles, and far out values are indicated by asterisks 
(*). In our data, there are no far-out values and just one outside value. This outside value of 29 is for 
the women and is shown in FIGURE 2.23.

TABLE 2.4. Box plot terms and values for women’s times.

Name Formula Value

Upper Hinge 75th percentile 20
Lower Hinge 25th percentile 17
H-Spread Upper Hinge Lower Hinge− 3
Step 1.5 × H-Spread 4.5
Upper Inner Fence Upper Hinge + 1 Step 24.5
Lower Inner Fence Lower Hinge 1 Step− 12.5
Upper Outer Fence Upper Hinge + 2 Steps 29
Lower Outer Fence Lower Hinge 2 Steps− 8
Upper Adjacent Largest value below Upper Inner Fence 24
Lower Adjacent Smallest value above Lower Inner Fence 14
Outside Value A value beyond an Inner Fence but not beyond an Outer Fence 29
Far Out Value A value beyond an Outer Fence None

FIGURE 2.22. the box plots with the 
whiskers drawn.  (“Box Plot Whiskers” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)

15

20

30

25

MF

Gender

Ti
m

e

Chapter 2 DESCRIBING DATA USING DISTRIBUTIONS AND GRAPHS • 41

https://irl.umsl.edu/oer-img/22
https://creativecommons.org/licenses/by-nc-sa/4.0/


There is one more mark to include in box plots (although sometimes it is omitted). We indicate the 
mean score for a group by inserting a plus sign. FIGURE 2.24 shows the result of adding means to our 
box plots.

FIGURE 2.24 provides a revealing summary of the data. Since half the scores in a distribution are 
between the hinges (recall that the hinges are the 25th and 75th percentiles), we see that half the 
women’s times are between 17 and 20 seconds whereas half the men’s times are between 19 and 
25.5 seconds. We also see that women generally named the colors faster than the men did, although 
one woman was slower than almost all of the men. FIGURE 2.25 shows the box plot for the women’s 
data with detailed labels.

Box plots provide basic information about a distribution. For example, a distribution with a positive 
skew would have a longer whisker in the positive direction than in the negative direction. A larger 

FIGURE 2.24. the completed box plots. 
 (“Box Plot Mean Scores” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.25. the box plots for the women’s data 
with detailed labels.  (“Women’s Data Labeled Box 
Plot” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.23. the box plots with the 
outside value shown.  (“Box Plot Outside 
Value” by Judy Schmitt is licensed under CC 
BY-NC-SA 4.0.)
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There is one more mark to include in box plots (although sometimes it is omitted). We indicate the 
mean score for a group by inserting a plus sign. FIGURE 2.24 shows the result of adding means to our 
box plots.

FIGURE 2.24 provides a revealing summary of the data. Since half the scores in a distribution are 
between the hinges (recall that the hinges are the 25th and 75th percentiles), we see that half the 
women’s times are between 17 and 20 seconds whereas half the men’s times are between 19 and 
25.5 seconds. We also see that women generally named the colors faster than the men did, although 
one woman was slower than almost all of the men. FIGURE 2.25 shows the box plot for the women’s 
data with detailed labels.

Box plots provide basic information about a distribution. For example, a distribution with a positive 
skew would have a longer whisker in the positive direction than in the negative direction. A larger 

FIGURE 2.24. the completed box plots. 
 (“Box Plot Mean Scores” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.25. the box plots for the women’s data 
with detailed labels.  (“Women’s Data Labeled Box 
Plot” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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mean than median would also indicate a positive skew. Box plots are good at portraying extreme 
values and are especially good at showing differences between distributions. However, many of the 
details of a distribution are not revealed in a box plot; to examine these details one should create a 
histogram and/or a stem-and-leaf display.

Bar Charts
In the section on qualitative variables, we saw how bar charts could be used to illustrate the 
frequencies of different categories. For example, as we saw earlier in this chapter, the bar chart 
shown in FIGURE 2.2 shows how many purchasers of iMac computers were previous Macintosh users, 
previous Windows users, and new computer purchasers.

In this section we show how bar charts can be used to present other kinds of quantitative 
information, not just frequency counts. The bar chart in FIGURE 2.26 shows the percent increases 
in the Dow Jones, Standard & Poor 500 (S&P), and Nasdaq stock indexes from May 24, 2000, to 

FIGURE 2.26. percent increase 
in three stock indexes from May 
24, 2000, to May 24, 2001. 
 (“Percent Increase in Stock Indexes” 
by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

−30.0

−15.0

0

7.5

15.0

−22.5

−7.5

NasdaqS & P

Stock Index

Pe
rc

en
t I

nc
re

as
e

Dow Jones

Chapter 2 DESCRIBING DATA USING DISTRIBUTIONS AND GRAPHS • 43

https://irl.umsl.edu/oer-img/24
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://irl.umsl.edu/oer-img/25
https://irl.umsl.edu/oer-img/25
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://irl.umsl.edu/oer-img/26
https://creativecommons.org/licenses/by-nc-sa/4.0/


May 24, 2001. Notice that both the S&P and the Nasdaq had “negative increases” which means that 
they decreased in value. In this bar chart, the y-axis is not frequency but rather the signed quantity 
percentage increase.

Bar charts are particularly effective for showing change over time. FIGURE 2.27, for example, shows 
the percent increase in the Consumer Price Index (CPI) over four three-month periods. The 
fluctuation in inflation is apparent in the graph.

Bar charts are often used to compare the means of different experimental conditions. FIGURE 2.28 
shows the mean time it took one person to move the cursor to either a small target or a large target. 
On average, more time was required for small targets than for large ones.

Although bar charts can display means, we do not recommend them for this purpose. Box plots 
should be used instead since they provide more information than bar charts without taking up more 

FIGURE 2.27. percent 
change in the Cpi over 
time. each bar represents 
percent increase for the 
three months ending 
at the date indicated. 
 (“Percent Change in CPI” by 
Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 2.28. Bar chart showing the means for the 
two conditions.  (“Means of Two Conditions” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)
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space. For example, a box plot of the cursor-movement data is shown in FIGURE 2.29. You can see 
that FIGURE 2.29 reveals more about the distribution of movement times than does FIGURE 2.28.

The section on qualitative variables presented earlier in this chapter discussed the use of bar 
charts for comparing distributions. Some common graphical mistakes were also noted. The earlier 
discussion applies equally well to the use of bar charts to display quantitative variables.

Line Graphs
A line graph is a bar graph with the tops of the bars represented by points joined by lines (the rest of 
the bar is suppressed). For example, FIGURE 2.27, which was presented in the section on bar charts, 
shows changes in the Consumer Price Index (CPI) over time. A line graph of these same data is 
shown in FIGURE 2.30. Although the figures are similar, the line graph emphasizes the change from 
period to period.

FIGURE 2.29. Box plots of times to move 
the cursor to the small and large targets. 
 (“Cursor Task Box Plot” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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FIGURE 2.30. a line graph of the 
percent change in the Cpi over 
time. each point represents 
percent increase for the three 
months ending at the date 
indicated.  (“Percent Change in 
CPI Line Graph” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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Line graphs are appropriate only when both the x- and y-axes display ordered (rather than 
qualitative) variables. Although bar charts can also be used in this situation, line graphs are 
generally better at comparing changes over time. FIGURE 2.31, for example, shows percent increases 
and decreases in five components of the CPI. The figure makes it easy to see that medical costs had a 
steadier progression than the other components. Although you could create an analogous bar chart, 
its interpretation would not be as easy.

Let us stress that it is misleading to use a line graph when the x-axis contains merely qualitative 
variables. As we saw earlier in this chapter, FIGURE 2.7 inappropriately shows a line graph of the card 
game data from Yahoo, discussed in the section on qualitative variables. The defect in FIGURE 2.7 is 
that it gives the false impression that the games are naturally ordered in a numerical way.

The Shape of Distribution
Finally, it is useful to present discussion on how we describe the shapes of distributions, which we 
will revisit in Chapter 3 to learn how different shapes affect our numerical descriptors of data and 
distributions.

The primary characteristic we are concerned about when assessing the shape of a distribution 
is whether the distribution is symmetrical or skewed. A symmetrical distribution, as the name 
suggests, can be cut down the center to form two mirror images. Although in practice we will never 
get a perfectly symmetrical distribution, we would like our data to be as close to symmetrical as 
possible for reasons we delve into in Chapter 3. Many types of distributions are symmetrical, but by 
far the most common and pertinent distribution at this point is the normal distribution, shown in 
FIGURE 2.32. Notice that although the symmetry is not perfect (for instance, the bar just to the right 
of the center is taller than the one just to the left), the two sides are roughly the same shape. The 
normal distribution has a single peak, known as the center, and two tails that extend out equally, 
forming what is known as a bell shape or bell curve.

FIGURE 2.31. a line graph of 
the percent change in five 
components of the Cpi over time. 
 (“Percent Change in CPI x5 Line Graph” 
by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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Line graphs are appropriate only when both the x- and y-axes display ordered (rather than 
qualitative) variables. Although bar charts can also be used in this situation, line graphs are 
generally better at comparing changes over time. FIGURE 2.31, for example, shows percent increases 
and decreases in five components of the CPI. The figure makes it easy to see that medical costs had a 
steadier progression than the other components. Although you could create an analogous bar chart, 
its interpretation would not be as easy.

Let us stress that it is misleading to use a line graph when the x-axis contains merely qualitative 
variables. As we saw earlier in this chapter, FIGURE 2.7 inappropriately shows a line graph of the card 
game data from Yahoo, discussed in the section on qualitative variables. The defect in FIGURE 2.7 is 
that it gives the false impression that the games are naturally ordered in a numerical way.

The Shape of Distribution
Finally, it is useful to present discussion on how we describe the shapes of distributions, which we 
will revisit in Chapter 3 to learn how different shapes affect our numerical descriptors of data and 
distributions.

The primary characteristic we are concerned about when assessing the shape of a distribution 
is whether the distribution is symmetrical or skewed. A symmetrical distribution, as the name 
suggests, can be cut down the center to form two mirror images. Although in practice we will never 
get a perfectly symmetrical distribution, we would like our data to be as close to symmetrical as 
possible for reasons we delve into in Chapter 3. Many types of distributions are symmetrical, but by 
far the most common and pertinent distribution at this point is the normal distribution, shown in 
FIGURE 2.32. Notice that although the symmetry is not perfect (for instance, the bar just to the right 
of the center is taller than the one just to the left), the two sides are roughly the same shape. The 
normal distribution has a single peak, known as the center, and two tails that extend out equally, 
forming what is known as a bell shape or bell curve.

FIGURE 2.31. a line graph of 
the percent change in five 
components of the Cpi over time. 
 (“Percent Change in CPI x5 Line Graph” 
by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 2.32. a symmetrical 
distribution.  (“Symmetrical Distribution” 
by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

Symmetrical distributions can also have multiple peaks. FIGURE 2.33 shows a bimodal distribution, 
named for the two peaks that lie roughly symmetrically on either side of the center point. As we 
will see in Chapter 3, this is not a particularly desirable characteristic of our data, and, worse, this is 
a relatively difficult characteristic to detect numerically. Thus, it is important to visualize your data 
before moving ahead with any formal analyses.

Distributions that are not symmetrical also come in many forms, more than can be described here. 
The most common asymmetry to be encountered is referred to as skew, in which one of the two tails 
of the distribution is disproportionately longer than the other. This property can affect the value of 
the averages we use in our analyses and make them an inaccurate representation of our data, which 
causes many problems.

Skew can either be positive or negative (also known as right or left, respectively), based on which 
tail is longer. It is very easy to get the two confused at first; many students want to describe the skew 
by where the bulk of the data (larger portion of the histogram, known as the body) is placed, but 
the correct determination is based on which tail is longer. You can think of the tail as an arrow; 
whichever direction the arrow is pointing is the direction of the skew. FIGURE 2.34 shows positive 
(right) and negative (left) skew, respectively.

FIGURE 2.33. a bimodal distribution. 
 (“Bimodal Distribution” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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EXERCISES
1. Name some ways to graph quantitative variables and some ways to graph qualitative variables.

2. Given the following data, construct a pie chart and a bar chart. Which do you think is the more 
appropriate or useful way to display the data?

Favorite Movie Genre Frequency

Comedy 14
Horror 9
Romance 8
Action 12

3. Pretend you are constructing a histogram for describing the distribution of salaries for 
individuals who are 40 years or older but not yet retired.

a. What is on the y-axis? Explain.
b. What is on the x-axis? Explain.
c. What would be the probable shape of the salary distribution? Explain why.

FIGURE 2.34. positively skewed (a) and 
negatively skewed (B) distributions. 
 (“Skewed Distributions” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)

A. Positive Skew

B. Negative Skew
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4. A graph appears below showing the number of adults and children who prefer each type of 
soda. There were 130 adults and kids surveyed. Discuss some ways in which the graph could be 
improved.

Kids
Adults

20

25

30

35

40

45

Cherry CokeSprite

Preferred Soda

Coke Diet Coke

 (“Improvable Bar Chart” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

5. Which of the box plots on the graph has a large positive skew? Which has a large negative skew?

A B C

 (“Skewed Box Plots” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

6. Create a histogram of the following data representing how many shows children said they watch 
each day:

Number of TV Shows Frequency

0 2
1 18
2 36
3 7
4 3
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7. Explain the differences between bar charts and histograms. When would each be used?

8. Draw a histogram of a distribution that is
a. Negatively skewed
b. Symmetrical
c. Positively skewed

9. Based on the pie chart below, which was made from a sample of 300 students, construct a 
frequency table of college majors.

Biology
40%

Psychology
48%

Chemistry
8%

Physics
4%

 (“College Majors Pie Chart” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

10. Create a histogram of the following data. Label the tails and body and determine if it is skewed 
(and direction, if so) or symmetrical.

Hours Worked per Week Proportion

 0–10 4
10–20 8
20–30 11
30–40 51
40–50 12
50–60 9
60+ 5
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ANSWERS TO ODD-NUMBERED EXERCISES
1. Qualitative variables are displayed using pie charts and bar charts. Quantitative variables are 

displayed as box plots, histograms, etc.

3. [You do not need to draw the histogram, only describe it.]
a. The y-axis would show the frequency or proportion because this is always the case in 

histograms.
b. The x-axis would show income, because this is our quantitative variable of interest.
c. Because most income data are positively skewed, this histogram would likely be skewed 

positively too.

5. Chart B has the positive skew because the outliers (dots and asterisks) are on the upper (higher) 
end; Chart C has the negative skew because the outliers are on the lower end.

7. In bar charts, the bars do not touch; in histograms, the bars do touch. Bar charts are appropriate 
for qualitative variables, whereas histograms are better for quantitative variables.

9. The frequency table appears below:

Major Frequency

Psychology 144
Biology 120
Chemistry 24
Physics 12

 (“Convincing” by Randall Munroe/xkcd.com is licensed under CC BY-NC 2.5.)
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CHAPTER 3  

Measures of Central Tendency and Spread
KEY TERMS
arithmetic mean
central tendency
degrees of freedom
dispersion
interquartile range (IQR)

median
mode
range
robustness
spread

standard deviation
sum of squares
variability
variance

Now that we have visualized our data to understand its shape, we can begin with numerical analyses. 
The descriptive statistics presented in this chapter serve to describe the distribution of our data 
objectively and mathematically—our first step into statistical analysis! The topics here will serve as 
the basis for everything we do in the rest of the course.

WHAT IS CENTRAL TENDENCY?
What is central tendency, and why do we want to know the central tendency of a group of scores? 
Let us first try to answer these questions intuitively. Then we will proceed to a more formal 
discussion.

Imagine this situation: You are in a class with just four other students, and the five of you took a 
5-point pop quiz. Today your instructor is walking around the room, handing back the quizzes. She 
stops at your desk and hands you your paper. Written in bold black ink on the front is “3/5.” How 
do you react? Are you happy with your score of 3 or disappointed? How do you decide? You might 
calculate your percentage correct, realize it is 60%, and be appalled. But it is more likely that when 
deciding how to react to your performance, you will want additional information. What additional 
information would you like?

If you are like most students, you will immediately ask your classmates, “What’d ya get?” and then 
ask the instructor, “How did the class do?” In other words, the additional information you want is 
how your quiz score compares to other students’ scores. You therefore understand the importance 
of comparing your score to the class distribution of scores. Should your score of 3 turn out to be 
among the higher scores, then you’ll be pleased after all. On the other hand, if 3 is among the lower 
scores in the class, you won’t be quite so happy.

This idea of comparing individual scores to a distribution of scores is fundamental to statistics. So 
let’s explore it further, using the same example (the pop quiz you took with your four classmates). 
Three possible outcomes are shown in TABLE 3.1. They are labeled “Dataset A,” “Dataset B,” and 
“Dataset C.” Which of the three datasets would make you happiest? In other words, in comparing 
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your score with your fellow students’ scores, in which dataset would your score of 3 be the most 
impressive?

In Dataset A, everyone’s score is 3. This puts your score at the exact center of the distribution. You 
can draw satisfaction from the fact that you did as well as everyone else. But of course it cuts both 
ways: everyone else did just as well as you.

Now consider the possibility that the scores are described as in Dataset B. This is a depressing 
outcome even though your score is no different than the one in Dataset A. The problem is that the 
other four students had higher grades, putting yours below the center of the distribution.

Finally, let’s look at Dataset C. This is more like it! All of your classmates score lower than you, so 
your score is above the center of the distribution.

Now let’s change the example in order to develop more insight into the center of a distribution. 
FIGURE 3.1 shows the results of an experiment on memory for chess positions. Subjects were shown 
a chess position and then asked to reconstruct it on an empty chess board. The number of pieces 
correctly placed was recorded. This was repeated for two more chess positions. The scores represent 
the total number of chess pieces correctly placed for the three chess positions. The maximum 
possible score was 89.

Two groups are compared. On the left are people who don’t play chess. On the right are people who 
play a great deal (tournament players). It is clear that the location of the center of the distribution for 
the non-players is much lower than the center of the distribution for the tournament players.

We’re sure you get the idea now about the center of a distribution. It is time to move beyond 
intuition. We need a formal definition of the center of a distribution. In fact, we’ll offer you three 

TABLE 3.1. three possible datasets for the 5-point make-up quiz.

Student Dataset A Dataset B Dataset C

You 3 3 3
Ahmed 3 4 2
Rosa 3 4 2
Tamika 3 4 2
Luther 3 5 1

FIGURE 3.1. Back-to-back stem-and-leaf display. the left side shows the memory 
scores of the non-players. the right side shows the scores of the tournament players. 
 (“Memory Scores Back-to-Back Stem and Leaf” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.) 330
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definitions! This is not just generosity on our part. There turn out to be (at least) three different 
ways of thinking about the center of a distribution, all of them useful in various contexts. In 
the remainder of this section we attempt to communicate the idea behind each concept. In the 
succeeding sections we will give statistical measures for these concepts of central tendency.

Definitions of Center
Now we explain the three measures of central tendency: (1) the point on which a distribution will 
balance, (2) the value whose average absolute deviation from all the other values is minimized, and 
(3) the value whose squared deviation from all the other values is minimized. 

Balance Scale
One definition of central tendency is the point at which the distribution is in balance. FIGURE 3.2 
shows the distribution of the five numbers 2, 3, 4, 9, 16 placed upon a balance scale. If each number 
weighs one pound, and is placed at its position along the number line, then it would be possible to 
balance them by placing a fulcrum at a particular point.

For another example, consider the distribution shown in FIGURE 3.3. It is balanced by placing the 
fulcrum in the geometric middle.

FIGURE 3.2. a balance scale.  (“Balance Scale” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

FIGURE 3.3. a distribution balanced on the tip of a triangle.  (“Balanced Distribution” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 3.4 illustrates that the same distribution can’t be balanced by placing the fulcrum to the left of 
center.

FIGURE 3.5 shows an asymmetric distribution. To balance it, we cannot put the fulcrum halfway 
between the lowest and highest values (as we did in FIGURE 3.3). Placing the fulcrum at the “half 
way” point would cause it to tip towards the left.

Smallest Absolute Deviation
Another way to define the center of a distribution is based on the concept of the sum of the absolute 
deviations (differences). Consider the distribution made up of the five numbers 2, 3, 4, 9, 16. Let’s 

FIGURE 3.4. the distribution is not balanced.  (“Unbalanced Distribution” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)

FIGURE 3.5. an asymmetric distribution balanced on the tip of a triangle.  (“Asymmetric 
Distribution” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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see how far the distribution is from 10 (picking a number arbitrarily). TABLE 3.2 shows the sum of 
the absolute deviations of these numbers from the number 10.

The first row of the table shows that the absolute value of the difference between 2 and 10 is 8; the 
second row shows that the absolute difference between 3 and 10 is 7, and similarly for the other 
rows. When we add up the five absolute deviations, we get 28. So, the sum of the absolute deviations 
from 10 is 28. Likewise, the sum of the absolute deviations from 5 equals 3 + 2 + 1 + 4 + 11 = 21. So, 
the sum of the absolute deviations from 5 is smaller than the sum of the absolute deviations from 10. 
In this sense, 5 is closer, overall, to the other numbers than is 10.

We are now in a position to define a second measure of central tendency, this time in terms of 
absolute deviations. Specifically, according to our second definition, the center of a distribution is 
the number for which the sum of the absolute deviations is smallest. As we just saw, the sum of the 
absolute deviations from 10 is 28 and the sum of the absolute deviations from 5 is 21. Is there a value 
for which the sum of the absolute deviations is even smaller than 21? Yes. For these data, there is a 
value for which the sum of absolute deviations is only 20. See if you can find it.

Smallest Squared Deviation
We shall discuss one more way to define the center of a distribution. It is based on the concept of the 
sum of squared deviations (differences). Again, consider the distribution of the five numbers 2, 3, 4, 
9, 16. TABLE 3.3 shows the sum of the squared deviations of these numbers from the number 10.

TABLE 3.2. an example of the sum of absolute deviations.

Values Absolute Deviations from 10

 2 8
 3 7
 4 6
 9 1
16 6

Sum 28

TABLE 3.3. an example of the sum of squared deviations.

Values Squared Deviations from 10

 2 64
 3 49
 4 36
 9 1
16 36

Sum 186
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The first row in the table shows that the squared value of the difference between 2 and 10 is 64; the 
second row shows that the squared difference between 3 and 10 is 49, and so forth. When we add up 
all these squared deviations, we get 186.

Changing the target from 10 to 5, we calculate the sum of the squared deviations from 5 as 9 + 4 + 
1 + 16 + 121 = 151. So, the sum of the squared deviations from 5 is smaller than the sum of the 
squared deviations from 10. Is there a value for which the sum of the squared deviations is even 
smaller than 151? Yes, it is possible to reach 134.8. Can you find the target number for which the 
sum of squared deviations is 134.8?

The target that minimizes the sum of squared deviations provides another useful definition of 
central tendency (the last one to be discussed in this section). It can be challenging to find the value 
that minimizes this sum.

MEASURES OF CENTRAL TENDENCY
In the previous section we saw that there are several ways to define central tendency. This section 
defines the three most common measures of central tendency: the mean, the median, and the 
mode. The relationships among these measures of central tendency and the definitions given in the 
previous section will probably not be obvious to you.

This section gives only the basic definitions of the mean, median and mode. A further discussion of 
the relative merits and proper applications of these statistics is presented in a later section.

Arithmetic Mean
The arithmetic mean—the sum of the numbers divided by the number of numbers—is the most 
common measure of central tendency. The symbol “m” (pronounced “mew”) is used for the mean of 
a population. The symbol M is used for the mean of a sample. (In advanced statistics textbooks, the 
symbol X , pronounced “x bar,” may be used to represent the mean of a sample.) The formula for m is 
shown below:

� � � X
N

where ΣX is the sum of all the numbers in the population and N is the number of numbers in the 
population.

The formula for M is essentially identical:

M
X

n
� �

where ΣX is the sum of all the numbers in the sample and n is the number of numbers in the 
sample. The only distinction between these two equations is whether we are referring to the 
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population (in which case we use m and N) or a sample of that population (in which case we use M 
and n).

As an example, the mean of the numbers 1, 2, 3, 6, 8 is 20/5 = 4 regardless of whether the numbers 
constitute the entire population or just a sample from the population.

FIGURE 3.6 shows the number of touchdown (TD) passes thrown by each of the 31 teams in the 
National Football League in the 2000 season. The mean number of touchdown passes thrown is 
20.45, as shown below. 

� � � �� X
N

634
31

20 45.

Although the arithmetic mean is not the only “mean” (there is also a geometric mean, a harmonic 
mean, and many others that are all beyond the scope of this course), it is by far the most commonly 
used. Therefore, if the term “mean” is used without specifying whether it is the arithmetic mean, the 
geometric mean, or some other mean, it is assumed to refer to the arithmetic mean.

Median
The median is also a frequently used measure of central tendency. The median is the midpoint of a 
distribution: the same number of scores is above the median as below it. For the data in FIGURE 3.6, 
there are 31 scores. The 16th highest score (which equals 20) is the median because there are 15 
scores below the 16th score and 15 scores above the 16th score. The median can also be thought of 
as the 50th percentile.

When there is an odd number of numbers, the median is simply the middle number. For example, 
the median of 2, 4, and 7 is 4. When there is an even number of numbers, the median is the mean of 
the two middle numbers. Thus, the median of the numbers 2, 4, 7, 12 is:

4 7
2

5 5�
� .

When there are numbers with the same values, each appearance of that value gets counted. For 
example, in the set of numbers 1, 3, 4, 4, 5, 8, and 9, the median is 4 because there are three numbers 
(1, 3, and 4) below it and three numbers (5, 8, and 9) above it. If we only counted 4 once, the median 
would incorrectly be calculated at 4.5 (4 + 5, divided by 2). When in doubt, writing out all of the 
numbers in order and marking them off one at a time from the top and bottom will always lead you 
to the correct answer.

FIGURE 3.6. number of touchdown passes.  (“Touchdown Passes Raw Data” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)

37, 33, 33, 32, 29, 28, 
28, 23, 22, 22, 22, 21, 
21, 21, 20, 20, 19, 19, 
18, 18, 18, 18, 16, 15, 
14, 14, 14, 12, 12, 9, 6
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Mode
The mode is the most frequently occurring value in the dataset. For the data in FIGURE 3.6, the 
mode is 18 since more teams (4) had 18 touchdown passes than any other number of touchdown 
passes. With continuous data, such as response time measured to many decimals, the frequency 
of each value is one since no two scores will be exactly the same (see discussion of continuous 
variables). Therefore the mode of continuous data is normally computed from a grouped frequency 
distribution. TABLE 3.4 shows a grouped frequency distribution for the target response time data. 
Since the interval with the highest frequency is 600 to 700, the mode is the middle of that interval 
(650). Although the mode is not frequently used for continuous data, it is nevertheless an important 
measure of central tendency as it is the only measure we can use on qualitative or categorical data.

More on the Mean and Median
In the section What Is Central Tendency?, we saw that the center of a distribution could be defined 
three ways: (1) the point on which a distribution would balance, (2) the value whose average 
absolute deviation from all the other values is minimized, and (3) the value whose squared deviation 
from all the other values is minimized. The mean is the point on which a distribution would 
balance, the median is the value that minimizes the sum of absolute deviations, and the mean is the 
value that minimizes the sum of the squared deviations.

TABLE 3.5 shows the absolute and squared deviations of the numbers 2, 3, 4, 9, and 16 from their 
median of 4 and their mean of 6.8. You can see that the sum of absolute deviations from the median 

TABLE 3.4. Grouped frequency distribution.

Range Frequency

500 to 600 3
600 to 700 5
700 to 800 5
800 to 900 5

 900 to 1000 0
1000 to 1100 1

TABLE 3.5. absolute and squared deviations from the median of 4 and the mean of 6.8.

Value
Absolute Deviation 

from Median
Absolute Deviation 

from Mean
Squared Deviation 

from Median
Squared Deviation 

from Mean

 2 2 4.8 4 23.04
 3 1 3.8 1 14.44
 4 0 2.8 0 7.84
 9 5 2.2 25 4.84
16 12 9.2 144 84.64

Total 20 22.8 174 134.80
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(20) is smaller than the sum of absolute deviations from the mean (22.8). On the other hand, the 
sum of squared deviations from the median (174) is larger than the sum of squared deviations from 
the mean (134.8).

FIGURE 3.7 shows that the distribution balances at the mean of 6.8 and not at the median of 4. 
The relative advantages and disadvantages of the mean and median are discussed in the section 
Comparing Measures of Central Tendency.

When a distribution is symmetric, then the mean and the median are the same. Consider the 
following distribution: 1, 3, 4, 5, 6, 7, 9. The mean and median are both 5. The mean, median, and 
mode are identical in the bell-shaped normal distribution.

Comparing Measures of Central Tendency
How do the various measures of central tendency compare with each other? For symmetric 
distributions, the mean and median are the same value, as is the mode except in bimodal 
distributions. However, differences among the measures occur with skewed distributions. FIGURE 3.8 

FIGURE 3.7. the distribution balances at the mean of 6.8 and not at the median of 4.0. 
 (“Balance Scale Numbered” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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shows the distribution of 642 scores on an introductory psychology test. Notice this distribution has 
a slight positive skew.

Measures of central tendency are shown in TABLE 3.6. Notice they do not differ greatly, with the 
exception that the mode is considerably lower than the other measures. When distributions have 
a positive skew, the mean is typically higher than the median, although it may not be in bimodal 
distributions. For these data, the mean of 91.58 is higher than the median of 90. This pattern holds 
true for any skew: the mode will remain at the highest point in the distribution, the median will be 
pulled slightly out into the skewed tail (the longer end of the distribution), and the mean will be 
pulled the farthest out. Thus, the mean is more sensitive to skew than the median or mode, and in 
cases of extreme skew, the mean may no longer be appropriate to use.

The distribution of baseball salaries (in 1994) shown in FIGURE 3.9 has a much more pronounced 
skew than the distribution in FIGURE 3.8.

FIGURE 3.8. a distribution with a positive skew.  (“Psychology Test Scores Histogram” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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TABLE 3.6. Measures of central tendency for the test scores.

Measure Value

Mode 84.00
Median 90.00
Mean 91.58

FIGURE 3.9. a distribution with a very large positive skew. this histogram shows the salaries of major 
league baseball players (in thousands of dollars).  (“1994 MLB Salaries Histogram” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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pulled the farthest out. Thus, the mean is more sensitive to skew than the median or mode, and in 
cases of extreme skew, the mean may no longer be appropriate to use.

The distribution of baseball salaries (in 1994) shown in FIGURE 3.9 has a much more pronounced 
skew than the distribution in FIGURE 3.8.
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TABLE 3.7 shows the measures of central tendency for these data. The large skew results in very 
different values for these measures. No single measure of central tendency is sufficient for data such 
as these. If you were asked the very general question: “So, what do baseball players make?” and 
answered with the mean of $1,183,000, you would not have told the whole story since only about 
one third of baseball players make that much. If you answered with the mode of $109,000 or the 
median of $500,000, you would not be giving any indication that some players make many millions 
of dollars. Fortunately, there is no need to summarize a distribution with a single number. When the 
various measures differ, our opinion is that you should report the mean and median. Sometimes it 
is worth reporting the mode as well. In the media, the median is usually reported to summarize the 
center of skewed distributions. You will hear about median salaries and median prices of houses sold, 
etc. This is better than reporting only the mean, but it would be informative to hear more statistics.

SPREAD AND VARIABILITY
Variability refers to how “spread out” a group of scores is. To see what we mean by spread out, 
consider the graphs in FIGURE 3.10. These graphs represent the scores on two quizzes. The mean 
score for each quiz is 7.0. Despite the equality of means, you can see that the distributions are quite 
different. Specifically, the scores on Quiz 1 are more densely packed and those on Quiz 2 are more 
spread out. The differences among students were much greater on Quiz 2 than on Quiz 1.

TABLE 3.7. Measures of central tendency for baseball salaries in 1994 (in thousands of dollars).

Measure Value

Mode 190
Median 500
Mean 1,183

FIGURE 3.10. Bar charts of Quizzes 1 and 2.  (“Quiz Score Bar Charts” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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The terms variability, spread, and dispersion are synonyms and refer to how spread out a 
distribution is. Just as in the section on central tendency where we discussed measures of the center 
of a distribution of scores, in this section we will discuss measures of the variability of a distribution. 
There are three frequently used measures of variability: range, variance, and standard deviation. In 
the next few paragraphs, we will look at each of these measures of variability in more detail.

Range
The range is the simplest measure of variability to calculate, and one you have probably encountered 
many times in your life. The range is simply the highest score minus the lowest score. Let’s take a 
few examples. What is the range of the following group of numbers: 10, 2, 5, 6, 7, 3, 4? Well, the 
highest number is 10, and the lowest number is 2, so 10 − 2 = 8. The range is 8. Let’s take another 
example. Here’s a dataset with 10 numbers: 99, 45, 23, 67, 45, 91, 82, 78, 62, 51. What is the range? 
The highest number is 99 and the lowest number is 23, so 99 − 23 = 76; the range is 76. Now 
consider the two quizzes shown in FIGURE 3.10. On Quiz 1, the lowest score is 5 and the highest 
score is 9. Therefore, the range is 4. The range on Quiz 2 was larger: the lowest score was 4 and the 
highest score was 10. Therefore the range is 6.

The problem with using range is that it is extremely sensitive to outliers, and one number far away 
from the rest of the data will greatly alter the value of the range. For example, in the set of numbers 
1, 3, 4, 4, 5, 8, and 9, the range is 8 (9 − 1). However, if we add a single person whose score is 
nowhere close to the rest of the scores, say, 20, the range more than doubles from 8 to 19.

Interquartile Range
The interquartile range (IQR) is the range of the middle 50% of the scores in a distribution and 
is sometimes used to communicate where the bulk of the data in the distribution are located. It is 
computed as follows:

IQR = 75th percentile − 25th percentile

For Quiz 1, the 75th percentile is 8 and the 25th percentile is 6. The interquartile range is therefore 
2. For Quiz 2, which has greater spread, the 75th percentile is 9, the 25th percentile is 5, and the 
interquartile range is 4. Recall that in the discussion of box plots, the 75th percentile was called 
the upper hinge and the 25th percentile was called the lower hinge. Using this terminology, the 
interquartile range is referred to as the H-spread.

Sum of Squares
Variability can also be defined in terms of how close the scores in the distribution are to the middle 
of the distribution. Using the mean as the measure of the middle of the distribution, we can see how 
far, on average, each data point is from the center. The data from Quiz 1 are shown in TABLE 3.8. 

There are a few things to note about how TABLE 3.8 is formatted. The raw data scores (X) are always 
placed in the left-most column. This column is then summed at the bottom (ΣX) to facilitate 
calculating the mean by dividing the sum of X values by the number of scores in the table (N). The 
mean score is 7.0 (ΣX/N = 140/20 = 7.0). Once you have the mean, you can easily work your way 
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down the second column calculating the deviation scores (X M− ), representing how far each score 
deviates from the mean, here calculated as the score (X value) minus 7. This column is also summed 
and has a very important property: it will always sum to 0, or close to zero if you have rounding 
error due to many decimal places (Σ(X M− ) = 0). This step is used as a check on your math to 
make sure you haven’t made a mistake. If this column sums to 0, you can move on to filling in the 
third column, which is composed of the squared deviation scores. The deviation scores are squared 
to remove negative values and appear in the third column ( )X M− 2. When these values are 
summed, you have the sum of the squared deviations, or the sum of squares (SS), calculated with 
the formula SS X M� ��( )2. 

SS � � � � � � � � � � � � � � � � � � � � �4 4 4 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 4 4 30

The preceding formula is called the definitional formula, as it shows the logic behind the sum of 
squared deviations calculation. As mentioned earlier, there can be rounding errors in calculating the 
deviation scores. Also, when the set of scores is large, calculating the deviation scores, squaring the 

TABLE 3.8. Calculation of variance for Quiz 1 scores.

X X − M (X − M)2 X2

9 2 4 81
9 2 4 81
9 2 4 81
8 1 1 64
8 1 1 64
8 1 1 64
8 1 1 64
7 0 0 49
7 0 0 49
7 0 0 49
7 0 0 49
7 0 0 49
6 −1 1 36
6 −1 1 36
6 −1 1 36
6 −1 1 36
6 −1 1 36
6 −1 1 36
5 −2 4 25
5 −2 4 25

ΣX = 140
( )ΣX 2 = 19,600

Σ(X M− ) = 0 Σ( )X M− 2 = 30 ΣX2 = 1,010
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scores, and then summing those values can be tedious. To simplify the sum of squares calculation, 
the computational formula is used instead. The computational formula is as follows: 

SS X X
N

� �� �2
2( )

The last column in TABLE 3.8 represents the X values squared and then summed—ΣX2. At the 
bottom of the first column, the ΣX value is squared —( )ΣX 2. These are the values used in the 
computational formula for the sum of squares. As you can see in the calculation below, the SS value 
is the same for both the definitional formula and the computational formula:

SS X X
N

� � � � �� �2
2

20
30( ) 1,010 19,600

As we will see, the sum of squares appears again and again in different formulas—it is a very 
important value, and using the X and X2 columns in this table makes it simple to calculate the SS 
without error.

Variance
Now that we have the sum of squares calculated, we can use it to compute our formal measure 
of average distance from the mean—the variance. The variance is defined as the average squared 
difference of the scores from the mean. We square the deviation scores because, as we saw in the 
second column of TABLE 3.8, the sum of raw deviations is always 0, and there’s nothing we can do 
mathematically without changing that.

The population parameter for variance is s2 (“sigma-squared”) and is calculated as:

�2 �
SS
N

We can use the value we previously calculated for SS in the numerator, then simply divide that value 
by N to get variance. If we assume that the values in TABLE 3.8 represent the full population, then we 
can take our value of sum of squares and divide it by N to get our population variance:

�2 30
20

1 5� � .

So, on average, scores in this population are 1.5 squared units away from the mean. This measure of 
spread exhibits much more robustness (a term used by statisticians to mean resilience or resistance 
to outliers) than the range, so it is a much more useful value to compute. Additionally, as we will see 
in future chapters, variance plays a central role in inferential statistics.

The sample statistic used to estimate the variance is s2 (“s-squared”):

s
N

SS
df

SS2

1
�

�
�
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This formula is very similar to the formula for the population variance with one change: we now 
divide by N − 1 instead of N. The value N − 1 has a special name: the degrees of freedom 
(abbreviated as df). You don’t need to understand in depth what degrees of freedom are (essentially 
they account for the fact that we have to use a sample statistic to estimate the mean [M] before we 
estimate the variance) in order to calculate variance, but knowing that the denominator is called df 
provides a nice shorthand for the variance formula: 

SS
df

Going back to the values in TABLE 3.8 and treating those scores as a sample, we can estimate the 
sample variance as:

s2 30
20 1

1 58�
�

� .

Notice that this value is slightly larger than the one we calculated when we assumed these scores were 
the full population. This is because our value in the denominator is slightly smaller, making the final 
value larger. In general, as your sample size N gets bigger, the effect of subtracting 1 becomes less and 
less. Comparing a sample size of 10 to a sample size of 1000; 10 − 1 = 9, or 90% of the original value, 
whereas 1000 − 1 = 999, or 99.9% of the original value. Thus, larger sample sizes will bring the estimate 
of the sample variance closer to that of the population variance. This is a key idea and principle in 
statistics that we will see over and over again: larger sample sizes better reflect the population.

Standard Deviation
The standard deviation is simply the square root of the variance. This is a useful and interpretable 
statistic because taking the square root of the variance (recalling that variance is the average squared 
difference) puts the standard deviation back into the original units of the measure we used. Thus, 
when reporting descriptive statistics in a study, scientists virtually always report mean and standard 
deviation. Standard deviation is therefore the most commonly used measure of spread for our 
purposes, representing the average distance of the scores from the mean.

The population parameter for standard deviation is s (“sigma”), which, intuitively, is the square root 
of the variance parameter s2 (occasionally, the symbols work out nicely that way). The formula is 
simply the formula for variance under a square root sign:

� � � � �
SS
N

30
20

1 5 1 22. .

The sample statistic follows the same conventions and is given as s in mathematical formulas. (Note 
that in American Psychological Association [APA] format for reporting results, sample standard 
deviation is reported using the abbreviation SD.)

s SS
df

� �
�

� �
30

20 1
1 58 1 26. .
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The standard deviation is an especially useful measure of variability when the distribution is normal 
or approximately normal because the proportion of the distribution within a given number of 
standard deviations from the mean can be calculated. For example, 68% of the distribution is within 
one standard deviation (above and below) of the mean and approximately 95% of the distribution is 
within two standard deviations of the mean, as shown in FIGURE 3.11. Therefore, if you had a normal 
distribution with a mean of 50 and a standard deviation of 10, then 68% of the distribution would be 
between 50 − 10 = 40 and 50 + 10 = 60. Similarly, about 95% of the distribution would be between 
50 − 2 × 10 = 30 and 50 + 2 × 10 = 70.

FIGURE 3.12 shows two normal distributions. The red (left-most) distribution has a mean of 40 
and a standard deviation of 5; the blue (right-most) distribution has a mean of 60 and a standard 

FIGURE 3.11. percentages of the 
normal distribution.  (“Normal Distribution 
Percentages” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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FIGURE 3.12. normal distributions with standard 
deviations of 5 and 10.  (“Normal Distributions with Standard 
Deviations” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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deviation of 10. For the red distribution, 68% of the distribution is between 45 and 55; for the blue 
distribution, 68% is between 50 and 70. Notice that as the standard deviation gets smaller, the 
distribution becomes much narrower, regardless of where the center of the distribution (mean) is. 
FIGURE 3.13 presents several more examples of this effect.

EXERCISES
1. If the mean time to respond to a stimulus is much higher than the median time to respond, what 

can you say about the shape of the distribution of response times?

2. Compare the mean, median, and mode in terms of their sensitivity to extreme scores.

3. Your younger brother comes home one day after taking a science test. He says someone at school 
told him that “60% of the students in the class scored above the median test grade.” What is 
wrong with this statement? What if he had said “60% of the students scored above the mean?”

4. Make up three datasets with five numbers each that have:
a. the same mean but different standard deviations.
b. the same mean but different medians.
c. the same median but different means.

FIGURE 3.13. Differences between two datasets.  (“Location and Variability Differences” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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5. Compute the population mean and population standard deviation for the following scores 
(remember to use the sum of squares table): 5, 7, 8, 3, 4, 4, 2, 7, 1, 6

6. For the following problem, use the following scores: 5, 8, 8, 8, 7, 8, 9, 12, 8, 9, 8, 10, 7, 9, 7, 6, 9, 
10, 11, 8

a. Create a histogram of these data. What is the shape of this histogram?
b. How do you think the three measures of central tendency will compare to each other in this 

dataset?
c. Compute the sample mean, the median, and the mode
d. Draw and label lines on your histogram for each of the above values. Do your results match 

your predictions?

7. Compute the range, sample variance, and sample standard deviation for the following scores: 
25, 36, 41, 28, 29, 32, 39, 37, 34, 34, 37, 35, 30, 36, 31, 31

8. Using the same values from Problem 7, calculate the range, sample variance, and sample 
standard deviation, but this time include 65 in the list of values. How did each of the three values 
change?

9. Two normal distributions have exactly the same mean, but one has a standard deviation of 20 
and the other has a standard deviation of 10. How would the shapes of the two distributions 
compare?

10. Compute the sample mean and sample standard deviation for the following scores: −8, −4, −7, 
−6, −8, −5, −7, −9, −2, 0

ANSWERS TO ODD-NUMBERED EXERCISES
1. If the mean is higher, that means it is farther out into the right-hand tail of the distribution. 

Therefore, we know this distribution is positively skewed.

3. The median is defined as the value with 50% of scores above it and 50% of scores below it; 
therefore, 60% of score cannot fall above the median. If 60% of scores fall above the mean, that 
would indicate that the mean has been pulled down below the value of the median, which means 
that the distribution is negatively skewed

5. m = 4.80, s2 = 2.36

7. Range = 16, s2 = 18.40, s = 4.29

9. If both distributions are normal, then they are both symmetrical, and having the same mean 
causes them to overlap with one another. The distribution with the standard deviation of 10 will 
be narrower than the other distribution.
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CHAPTER 4  

z Scores and the Standard Normal Distribution
KEY TERMS
area in the tails of the distribution
area under the curve
normal distribution

scale
standardization

standard normal distribution
z score

We now understand how to describe and present our data visually and numerically. These simple 
tools, and the principles behind them, will help you interpret information presented to you and 
understand the basics of a variable. Moving forward, we now turn our attention to how scores 
within a distribution are related to one another, how to precisely describe a score’s location within 
the distribution, and how to compare scores from different distributions.

NORMAL DISTRIBUTIONS
The normal distribution is the most important and most widely used distribution in statistics. It 
is sometimes called the “bell curve,” although the tonal qualities of such a bell would be less than 
pleasing. It is also called the “Gaussian curve” of Gaussian distribution after the mathematician Karl 
Friedrich Gauss.

Strictly speaking, it is not correct to talk about “the normal distribution” since there are many 
normal distributions. Normal distributions can differ in their means and in their standard 
deviations. FIGURE 4.1 shows three normal distributions. The blue (left-most) distribution has a 
mean of −3 and a standard deviation of 0.5, the distribution in red (the middle distribution) has 
a mean of 0 and a standard deviation of 1, and the black (right-most) distribution has a mean 
of 2 and a standard deviation of 3. These as well as all other normal distributions are symmetric 
with relatively more values at the center of the distribution and relatively few in the tails. What is 
consistent about all normal distribution is the shape and the proportion of scores within a given 
distance along the x-axis. We will focus on the standard normal distribution (also known as 
the unit normal distribution), which has a mean of 0 and a standard deviation of 1 (i.e., the red 
distribution in FIGURE 4.1).

Seven features of normal distributions are listed below.

1. Normal distributions are symmetric around their mean.

2. The mean, median, and mode of a normal distribution are equal.

3. The area under the normal curve is equal to 1.0.

4. Normal distributions are denser in the center and less dense in the tails.

FIGURE 4.1. normal distributions differing in mean and standard 
deviation.  (“Normal Distributions with Different Means and Standard 
Deviations” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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understand the basics of a variable. Moving forward, we now turn our attention to how scores 
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is sometimes called the “bell curve,” although the tonal qualities of such a bell would be less than 
pleasing. It is also called the “Gaussian curve” of Gaussian distribution after the mathematician Karl 
Friedrich Gauss.
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deviations. FIGURE 4.1 shows three normal distributions. The blue (left-most) distribution has a 
mean of −3 and a standard deviation of 0.5, the distribution in red (the middle distribution) has 
a mean of 0 and a standard deviation of 1, and the black (right-most) distribution has a mean 
of 2 and a standard deviation of 3. These as well as all other normal distributions are symmetric 
with relatively more values at the center of the distribution and relatively few in the tails. What is 
consistent about all normal distribution is the shape and the proportion of scores within a given 
distance along the x-axis. We will focus on the standard normal distribution (also known as 
the unit normal distribution), which has a mean of 0 and a standard deviation of 1 (i.e., the red 
distribution in FIGURE 4.1).

Seven features of normal distributions are listed below.

1. Normal distributions are symmetric around their mean.

2. The mean, median, and mode of a normal distribution are equal.

3. The area under the normal curve is equal to 1.0.

4. Normal distributions are denser in the center and less dense in the tails.

FIGURE 4.1. normal distributions differing in mean and standard 
deviation.  (“Normal Distributions with Different Means and Standard 
Deviations” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

5. Normal distributions are defined by two parameters, the mean (m) and the standard 
deviation (s).

6. 68% of the area of a normal distribution is within one standard deviation of the mean.

7. Approximately 95% of the area of a normal distribution is within two standard deviations of 
the mean.

These properties enable us to use the normal distribution to understand how scores relate to 
one another within and across a distribution. But first, we need to learn how to calculate the 
standardized score that makes up a standard normal distribution.

Z SCORES
A z score is a standardized version of a raw score (x) that gives information about the relative 
location of that score within its distribution. The formula for converting a raw score into a z score is

z x
�

� �
�

for values from a population and

z x M
s

�
�

for values from a sample.

As you can see, z scores combine information about where the distribution is located (the mean/
center) with how wide the distribution is (the standard deviation/spread) to interpret a raw 
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score (x). Specifically, z scores will tell us how far the score is away from the mean in units of 
standard deviations and in what direction.

The value of a z score has two parts: the sign (positive or negative) and the magnitude (the actual 
number). The sign of the z score tells you in which half of the distribution the z score falls: a positive 
sign (or no sign) indicates that the score is above the mean and on the right-hand side or upper end 
of the distribution, and a negative sign tells you the score is below the mean and on the left-hand 
side or lower end of the distribution. The magnitude of the number tells you, in units of standard 
deviations, how far away the score is from the center or mean. The magnitude can take on any value 
between negative and positive infinity, but for reasons we will see soon, they generally fall between 
−3 and 3.

Let’s look at some examples. A z score value of −1.0 tells us that this z score is 1 standard deviation 
(because of the magnitude 1.0) below (because of the negative sign) the mean. Similarly, a z score 
value of 1.0 tells us that this z score is 1 standard deviation above the mean. Thus, these two scores 
are the same distance away from the mean but in opposite directions. A z score of −2.5 is two-and-
a-half standard deviations below the mean and is therefore farther from the center than both of the 
previous scores, and a z score of 0.25 is closer than all of the ones before. In Unit 2, we will learn to 
formalize the distinction between what we consider “close to” the center or “far from” the center. 
For now, we will use a rough cut-off of 1.5 standard deviations in either direction as the difference 
between close scores (those within 1.5 standard deviations or between z = −1.5 and z = 1.5) and 
extreme scores (those farther than 1.5 standard deviations—below z = −1.5 or above z = 1.5).

We can also convert raw scores into z scores to get a better idea of where in the distribution those 
scores fall. Let’s say we get a score of 68 on an exam. We may be disappointed to have scored so low, 
but perhaps it was just a very hard exam. Having information about the distribution of all scores in 
the class would be helpful to put some perspective on ours. We find out that the class got an average 
score of 54 with a standard deviation of 8. To find out our relative location within this distribution, 
we simply convert our test score into a z score.

z X
�

�
�

�
�

�
�

68 54
8

1 75.

We find that we are 1.75 standard deviations above the average, above our rough cut-off for close 
and far. Suddenly our 68 is looking pretty good!

FIGURE 4.2 shows both the raw score and the z score on their respective distributions. Notice that 
the red line indicating where each score lies is in the same relative spot for both. This is because 
transforming a raw score into a z score does not change its relative location, it only makes it easier to 
know precisely where it is.

z Scores are also useful for comparing scores from different distributions. Let’s say we take the SAT 
and score 501 on both the math and critical reading sections. Does that mean we did equally well 

FIGURE 4.2. raw and standardized versions 
of a single score.  (“Raw and Standardized Versions 
of a Score” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

7846 54

Raw Test Score

Standardized Test Score

62 7030 38

3−1 0 1 2−3 −2
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score (x). Specifically, z scores will tell us how far the score is away from the mean in units of 
standard deviations and in what direction.

The value of a z score has two parts: the sign (positive or negative) and the magnitude (the actual 
number). The sign of the z score tells you in which half of the distribution the z score falls: a positive 
sign (or no sign) indicates that the score is above the mean and on the right-hand side or upper end 
of the distribution, and a negative sign tells you the score is below the mean and on the left-hand 
side or lower end of the distribution. The magnitude of the number tells you, in units of standard 
deviations, how far away the score is from the center or mean. The magnitude can take on any value 
between negative and positive infinity, but for reasons we will see soon, they generally fall between 
−3 and 3.

Let’s look at some examples. A z score value of −1.0 tells us that this z score is 1 standard deviation 
(because of the magnitude 1.0) below (because of the negative sign) the mean. Similarly, a z score 
value of 1.0 tells us that this z score is 1 standard deviation above the mean. Thus, these two scores 
are the same distance away from the mean but in opposite directions. A z score of −2.5 is two-and-
a-half standard deviations below the mean and is therefore farther from the center than both of the 
previous scores, and a z score of 0.25 is closer than all of the ones before. In Unit 2, we will learn to 
formalize the distinction between what we consider “close to” the center or “far from” the center. 
For now, we will use a rough cut-off of 1.5 standard deviations in either direction as the difference 
between close scores (those within 1.5 standard deviations or between z = −1.5 and z = 1.5) and 
extreme scores (those farther than 1.5 standard deviations—below z = −1.5 or above z = 1.5).

We can also convert raw scores into z scores to get a better idea of where in the distribution those 
scores fall. Let’s say we get a score of 68 on an exam. We may be disappointed to have scored so low, 
but perhaps it was just a very hard exam. Having information about the distribution of all scores in 
the class would be helpful to put some perspective on ours. We find out that the class got an average 
score of 54 with a standard deviation of 8. To find out our relative location within this distribution, 
we simply convert our test score into a z score.

z X
�

�
�

�
�

�
�

68 54
8

1 75.

We find that we are 1.75 standard deviations above the average, above our rough cut-off for close 
and far. Suddenly our 68 is looking pretty good!

FIGURE 4.2 shows both the raw score and the z score on their respective distributions. Notice that 
the red line indicating where each score lies is in the same relative spot for both. This is because 
transforming a raw score into a z score does not change its relative location, it only makes it easier to 
know precisely where it is.

z Scores are also useful for comparing scores from different distributions. Let’s say we take the SAT 
and score 501 on both the math and critical reading sections. Does that mean we did equally well 

FIGURE 4.2. raw and standardized versions 
of a single score.  (“Raw and Standardized Versions 
of a Score” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

7846 54

Raw Test Score

Standardized Test Score

62 7030 38

3−1 0 1 2−3 −2

on both? Scores on the math portion are distributed normally with a mean of 511 and standard 
deviation of 120, so our z score on the math section is

zmath �
�

� �
501 511

120
0 08.

which is just slightly below average (note the use of “math” as a subscript; subscripts are used when 
presenting multiple versions of the same statistic in order to know which one is which and have 
no bearing on the actual calculation). The critical reading section has a mean of 495 and standard 
deviation of 116, so

zCR �
�

�
501 495

116
0 05.

So even though we were almost exactly average on both tests, we did a little bit better on the critical 
reading portion relative to other people.
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Finally, z scores are incredibly useful if we need to combine information from different measures 
that are on different scales. Let’s say we give a set of employees a series of tests on things like job 
knowledge, personality, and leadership. We may want to combine these into a single score we can 
use to rate employees for development or promotion, but look what happens when we take the 
average of raw scores from different scales, as shown in TABLE 4.1.

Because the job knowledge scores were so big and the scores were so similar, they overpowered the 
other scores and removed almost all variability in the average. However, if we standardize these 
scores into z scores, our averages retain more variability and it is easier to assess differences between 
employees, as shown in TABLE 4.2.

Setting the Scale of a Distribution
Another convenient characteristic of z scores is that they can be converted into any “scale” that we 
would like. Here, the term scale means how far apart the scores are (their spread) and where they 
are located (their central tendency). This can be very useful if we don’t want to work with negative 
numbers or if we have a specific range we would like to present. The formulas for transforming z to 
x are:

x z� �� �

for a population and

x zs M� �

for a sample. Notice that these are just simple rearrangements of the original formulas for 
calculating z from raw scores.

TABLE 4.1. raw test scores on different scales (ranges in parentheses).

Employee
Job Knowledge  

(0–100)
Personality  

(1–5)
Leadership  

(1–5) Average

Employee 1 98 4.2 1.1 34.43
Employee 2 96 3.1 4.5 34.53
Employee 3 97 2.9 3.6 34.50

TABLE 4.2. Standardized scores.

Employee
Job Knowledge  

(0–100)
Personality  

(1–5)
Leadership  

(1–5) Average

Employee 1 1.00 1.14 −1.12 0.34
Employee 2 −1.00 −0.43 0.81 −0.20
Employee 3 0.00 −0.71 0.30 −0.14
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Let’s say we create a new measure of intelligence, and initial calibration finds that our scores have 
a mean of 40 and standard deviation of 7. Three people who have scores of 52, 43, and 34 want to 
know how well they did on the measure. We can convert their raw scores into z scores:

z � �
�

52 40
7

1 71.

z � �
�

43 40
7

0 43.

z � �
� �

34 40
7

0 80.

A problem is that these new z scores aren’t exactly intuitive for many people. We can give people 
information about their relative location in the distribution (for instance, the first person scored well 
above average), or we can translate these z scores into the more familiar metric of IQ scores, which 
have a mean of 100 and standard deviation of 16:

IQ = 1.71(16) + 100 = 127.36

IQ = 0.43(16) + 100 = 106.88

IQ = −0.80(16) + 100 = 87.20

We would also likely round these values to 127, 107, and 87, respectively, for convenience.

Z SCORES AND THE AREA UNDER THE CURVE
z Scores and the standard normal distribution go hand-in-hand. A z score will tell you exactly where 
in the standard normal distribution a value is located, and any normal distribution can be converted 
into a standard normal distribution by converting all of the scores in the distribution into z scores, a 
process known as standardization.

We saw in Chapter 3 that standard deviations can be used to divide the normal distribution: 68% 
of the distribution falls within 1 standard deviation of the mean, 95% within (roughly) 2 standard 
deviations, and 99.7% within 3 standard deviations. Because z scores are in units of standard 
deviations, this means that 68% of scores fall between z = −1.0 and z = 1.0 and so on. We call this 
68% (or any percentage we have based on our z scores) the proportion of the area under the curve. 
Any area under the curve is bounded by (defined by, delineated by, etc.) by a single z score or pair of 
z scores.

An important property to point out here is that, by virtue of the fact that the total area under the 
curve of a distribution is always equal to 1.0 (see section on Normal Distributions at the beginning 
of this chapter), these areas under the curve can be added together or subtracted from 1 to find the 
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proportion in other areas. For example, we know that the area between z = −1.0 and z = 1.0 (i.e., 
within one standard deviation of the mean) contains 68% of the area under the curve, which can 
be represented in decimal form as .6800. (To change a percentage to a decimal, simply move the 
decimal point 2 places to the left.) Because the total area under the curve is equal to 1.0, that means 
that the proportion of the area outside z = −1.0 and z = 1.0 is equal to 1.0 − .6800 = .3200 or 32% 
(see FIGURE 4.3). This area is called the area in the tails of the distribution. Because this area is split 
between two tails and because the normal distribution is symmetrical, each tail has exactly one-half, 
or 16%, of the area under the curve.

We will have much more to say about this concept in the coming chapters. As it turns out, this is a 
quite powerful idea that enables us to make statements about how likely an outcome is and what that 
means for research questions we would like to answer and hypotheses we would like to test. But first, 
we need to make a brief foray into some ideas about probability in Chapter 5.

EXERCISES
1. What are the two pieces of information contained in a z score?

2. A z score takes a raw score and standardizes it into units of      .

3. Assume the following five scores represent a sample: 2, 3, 5, 5, 6. Transform these scores into 
z scores.

4. True or false:
a. All normal distributions are symmetrical.
b. All normal distributions have a mean of 1.0.
c. All normal distributions have a standard deviation of 1.0.
d. The total area under the curve of all normal distributions is equal to 1.

FIGURE 4.3. Shaded areas 
represent the area under the 
curve in the tails.  (“Area under the 
Curve in the Tails” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

68%

16% 16%

z
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5. Interpret the location and distance (near or far) of the following z scores:
a. −2.00
b. 1.25
c. 3.50
d. −0.34

6. Transform the following z scores into a distribution with a mean of 10 and standard deviation 
of 2: −1.75, 2.20, 1.65, −0.95

7. Calculate z scores for the following raw scores taken from a population with a mean of 100 and 
standard deviation of 16: 112, 109, 56, 88, 135, 99

8. What does a z score of 0.00 represent?

9. For a distribution with a standard deviation of 20, find z scores that correspond to:
a. One-half of a standard deviation below the mean
b. 5 points above the mean
c. Three standard deviations above the mean
d. 22 points below the mean

10. Calculate the raw score for the following z scores from a distribution with a mean of 15 and 
standard deviation of 3:

a. 4.0
b. 2.2
c. −1.3
d. 0.46

ANSWERS TO ODD-NUMBERED EXERCISES
1. The location above or below the mean (from the sign of the number) and the distance in 

standard deviations away from the mean (from the magnitude of the number)

3. M = 4.2, s = 1.64; z = −1.34, −0.73, 0.49, 0.49, 1.10

5. a. 2 standard deviations below the mean, far
b. 1.25 standard deviations above the mean, near
c. 3.5 standard deviations above the mean, far
d. 0.34 standard deviations below the mean, near

7. z = 0.75, 0.56, −2.75, −0.75, 2.19, −0.06

9. a. −0.50
b. 0.25
c. 3.00
d. −1.10
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CHAPTER 5  

Probability
KEY TERMS
event probability

Probability can seem like a daunting topic for many students. In a mathematical statistics course 
this might be true, as the meaning and purpose of probability gets obscured and overwhelmed by 
equations and theory. In this chapter we will focus only on the principles and ideas necessary to lay 
the groundwork for future inferential statistics. We accomplish this by quickly tying the concepts of 
probability to what we already know about normal distributions and z scores.

WHAT IS PROBABILITY?
When we speak of the probability of something happening, we are talking how likely it is that 
“thing” will happen based on the conditions present. For instance, what is the probability that it 
will rain? That is, how likely do we think it is that it will rain today under the circumstances or 
conditions today? To define or understand the conditions that might affect how likely it is to rain, 
we might look out the window and say, “It’s sunny outside, so it’s not very likely that it will rain 
today.” Stated using probability language: given that it is sunny outside, the probability of rain is 
low. “Given” is the word we use to state what the conditions are. As the conditions change, so does 
the probability. Thus, if it were cloudy and windy outside, we might say, “Given the current weather 
conditions, there is a high probability that it is going to rain.”

In these examples, we spoke about whether or not it is going to rain. Raining is an example of an 
event, which is the catch-all term we use to talk about any specific thing happening; it is a generic 
term that we specified to mean “rain” in exactly the same way that “conditions” is a generic term that 
we specified to mean “sunny” or “cloudy and windy.”

It should also be noted that the terms “low” and “high” are relative and vague, and they will likely be 
interpreted different by different people (in other words: given how vague the terminology was, the 
probability of different interpretations is high). Most of the time we try to use more precise language 
or, even better, numbers to represent the probability of our event. Regardless, the basic structure 
and logic of our statements are consistent with how we speak about probability using numbers 
and formulas.

Let’s look at a slightly deeper example. Say we have a regular, six-sided die (note that die is singular 
and dice is plural) and want to know how likely it is that we will roll a 1. That is, what is the 
probability of rolling a 1, given that the die is not weighted (which would introduce what we call 
a bias, though that is beyond the scope of this chapter). We could roll the die and see if it is a 1 
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or not, but that won’t tell us about the probability, it will only tell us a single result. We could also 
roll the die hundreds or thousands of times, recording each outcome and seeing what the final list 
looks like, but this is time consuming, and rolling a die that many times may lead down a dark 
path to gambling or, worse, playing Dungeons & Dragons. What we need is a simple equation that 
represents what we are looking for and what is possible.

To calculate the probability of an event, which here is defined as rolling a 1 on an unbiased die, we 
need to know two things: how many outcomes satisfy the criteria of our event (stated differently, 
how many outcomes would count as what we are looking for) and the total number of outcomes 
possible. In our example, only a single outcome, rolling a 1, will satisfy our criteria, and there are a 
total of six possible outcomes (rolling a 1, rolling a 2, rolling a 3, rolling a 4, rolling a 5, and rolling 
a 6). Thus, the probability of rolling a 1 on an unbiased die is 1 in 6 or 1/6. Put into an equation 
using generic terms, we get:

Probability of an event
Number of outcomes that satisfy our criteri

=
aa

Total number of possible outcomes

We can also use P() as shorthand for probability and A as shorthand for an event:

P A
A

( ) =
Number of outcomes that count as
Total number of possible outcoomes

Using this equation, let’s now calculate the probability of rolling an even number on this die:

P( )
, ,

, , , , ,
even number

2 4 or 6
1 2 3 4 5 or 6

= = =
3
6

1
2

So we have a 50% chance of rolling an even number of this die. The principles laid out here operate 
under a certain set of conditions and can be elaborated into ideas that are complex yet powerful and 
elegant. However, such extensions are not necessary for a basic understanding of statistics, so we will 
end our discussion on the math of probability here. Now, let’s turn back to more familiar topics.

PROBABILITY IN GRAPHS AND DISTRIBUTIONS
We will see shortly that the normal distribution is the key to how probability works for our 
purposes. To understand exactly how, let’s first look at a simple, intuitive example using pie charts.

Probability in Pie Charts
Recall that a pie chart represents how frequently a category was observed and that all slices of the pie 
chart add up to 100%, or 1. This means that if we randomly select an observation from the data used 
to create the pie chart, the probability of it taking on a specific value is exactly equal to the size of 
that category’s slice in the pie chart.
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Take, for example, the pie chart in FIGURE 5.1 representing the favorite sports of 100 people. If 
you put this pie chart on a dart board and aimed blindly (assuming you are guaranteed to hit the 
board), the likelihood of hitting the slice for any given sport would be equal to the size of that slice. 
So, the probability of hitting the baseball slice is the highest at 36%. The probability is equal to the 
proportion of the chart taken up by that section.

We can also add slices together. For instance, maybe we want to know the probability to finding 
someone whose favorite sport is usually played on grass. The outcomes that satisfy this criterion 
are baseball, football, and soccer. To get the probability, we simply add their slices together to see 
what proportion of the area of the pie chart is in that region: 36% + 25% + 20% = 81%. We can also 
add sections together even if they do not touch. If we want to know the likelihood that someone’s 
favorite sport is not called football somewhere in the world (i.e., baseball and hockey), we can add 
those slices even though they aren’t adjacent or contiguous in the chart itself: 36% + 20% = 56%. We 
are able to do all of this because (1) the size of the slice corresponds to the area of the chart taken 
up by that slice, (2) the percentage for a specific category can be represented as a decimal (this step 
was skipped for ease of explanation above), and (3) the total area of the chart is equal to 100% or 1.0, 
which makes the size of the slices interpretable.

Probability in Normal Distributions
If the language at the end of the last section sounded familiar, that’s because its exactly the language 
used in Chapter 4 to describe the normal distribution. Recall that the normal distribution has an 
area under its curve that is equal to 1 and that it can be split into sections by drawing a line through 
it that corresponds to a given z score. Because of this, we can interpret areas under the normal curve 
as probabilities that correspond to z scores.

First, let’s look at the area between z = −1.00 and z = 1.00 presented in FIGURE 5.2. We were told 
earlier that this region contains 68% of the area under the curve. Thus, if we randomly chose a 

FIGURE 5.1. Favorite sports.  (“Favorite Sports Pie Chart” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)

Soccer
19%

Football
25%

Baseball
36%

Hockey
20%
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z score from all possible z scores, there is a 68% chance that it will be between z = −1.00 and z = 1.00 
because those are the z scores that satisfy our criteria.

Just like a pie chart is broken up into slices by drawing lines through it, we can also draw a line 
through the normal distribution to split it into sections. Take a look at the normal distribution 
in FIGURE 5.3, which has a line drawn through it at z = 1.25. This line creates two sections of the 
distribution: the smaller section called the tail and the larger section called the body. Differentiating 
between the body and the tail does not depend on which side of the distribution the line is drawn. 
All that matters is the relative size of the pieces: bigger is always body.

As you can see, we can break up the normal distribution into 3 pieces (lower tail, body, and 
upper tail) as in FIGURE 5.2 or into 2 pieces (body and tail) as in FIGURE 5.3. We can then find the 
proportion of the area in the body and tail based on where the line was drawn (i.e., at what z score). 

FIGURE 5.2. there is a 68% chance 
of selecting a z score from the blue-
shaded region.  (“68 Percent of the 
Area under the Curve” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

68%

z

FIGURE 5.3. Body and tail of 
the normal distribution.  (“Normal 
Distribution Body and Tail” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)
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Body

Tail

z
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Mathematically, this is done using calculus. Fortunately, the exact values are given to you in the 
Standard Normal Distribution Table, also known at the z table. A portion of this table is shown in 
FIGURE 5.1. (The entire table appears in Appendix A.) Using the z values in the table (A), we can 
find the area under the normal curve in any body (B), tail (C), or combination of tails, as well as the 
proportion between z and the mean (D).

For example, suppose we want to find the area in the body for a z score of 1.62. As shown in 
TABLE 5.1, the row for 1.62 corresponds with a value of .9474 for the proportion in the body of the 
distribution. Thus, the odds of randomly selecting someone with a z score less than (to the left 

of) z = 1.62 is 94.74% because that is the proportion of the area taken up by values that satisfy our 
criteria.

The z table only presents the area in the body for positive z scores because the normal distribution 
is symmetrical. Thus, the area in the body of z = 1.62 is equal to the area in the body for z = −1.62, 
though now—as illustrated in the middle distribution at the top of TABLE 5.1—the body will be the 
shaded area to the right of z. (When in doubt, drawing out your distribution and shading the area 
you need to find will always help.) Because the total area under the normal curve is always equal to 
1.00, the area in the tail (Column C) is simply the area in the body (Column B) subtracted from 1.00 
(1.00 − .9474 = .0526).

Let’s look at another example. This time, let’s find the area corresponding to z scores more extreme 
than z = −1.96 and z = 1.96. That is, let’s find the area in the tails of the distribution for values less 
than z = −1.96 (farther negative and therefore more extreme) and greater than z = 1.96 (farther 
positive and therefore more extreme). This region is illustrated in FIGURE 5.4.

Let’s start with the tail for z = 1.96. If we go to the z table (TABLE 5.1) we will find that the area in the 
tail to the right of z = 1.96 is equal to .0250. Because the normal distribution is symmetrical, the 
area in the tail for z = −1.96 is the exact same value, .0250. Finally, to get the total area in the shaded 
region, we simply add the areas together to get .0500. Thus, there is a 5% chance of randomly getting 
a value more extreme than z = −1.96 or z = 1.96 (this particular value and region will become 
incredibly important in Unit 2).

Finally, we can find the area between two z scores by shading and subtracting. FIGURE 5.5 shows the 
area between z = 0.50 and z = 1.50. Because this is a subsection of a body (rather than just a body or 
a tail), we must first find the larger of the two bodies, in this case the body for z = 1.50, and subtract 
the smaller of the two bodies, or the body for z = 0.50. Aligning the distributions vertically, as in 
FIGURE 5.5, makes this clearer. From the complete z table in Appendix A, wee see that the area in the 
body for z = 1.50 is .9332, and the area in the body for z = 0.50 is .6915. Subtracting these gives us 
.9332 − .6915 = .2417.

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
1.80 .9641 .0359 .4641
1.81 .9649 .0351 .4649
1.82 .9656 .0344 .4656
1.83 .9664 .0336 .4664
1.84 .9671 .0329 .4671
1.85 .9678 .0322 .4678
1.86 .9686 .0314 .4686
1.87 .9693 .0307 .4693
1.88 .9699 .0301 .4699
1.89 .9706 .0294 .4706
1.90 .9713 .0287 .4713
1.91 .9719 .0281 .4719
1.92 .9726 .0274 .4726
1.93 .9732 .0268 .4732
1.94 .9738 .0262 .4738
1.95 .9744 .0256 .4744
1.96 .9750 .0250 .4750
1.97 .9756 .0244 .4756
1.98 .9761 .0239 .4761
1.99 .9767 .0233 .4767
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TABLE 5.1. Standard normal distribution table (z table).

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
1.60 .9452 .0548 .4452
1.61 .9463 .0537 .4463
1.62 .9474 .0526 .4474
1.63 .9484 .0516 .4484
1.64 .9495 .0505 .4495
1.65 .9505 .0495 .4505
1.66 .9515 .0485 .4515
1.67 .9525 .0475 .4525
1.68 .9535 .0465 .4535
1.69 .9545 .0455 .4545
1.70 .9554 .0446 .4554
1.71 .9564 .0436 .4564
1.72 .9573 .0427 .4573
1.73 .9582 .0418 .4582
1.74 .9591 .0409 .4591
1.75 .9599 .0401 .4599
1.76 .9608 .0392 .4608
1.77 .9616 .0384 .4616
1.78 .9625 .0375 .4625
1.79 .9633 .0367 .4633

(“z Table Curves” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

FIGURE 5.4. area in the tails beyond 
z = −1.96 and z = 1.96.  (“Area in the 
Tails z+-1.96” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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of) z = 1.62 is 94.74% because that is the proportion of the area taken up by values that satisfy our 
criteria.

The z table only presents the area in the body for positive z scores because the normal distribution 
is symmetrical. Thus, the area in the body of z = 1.62 is equal to the area in the body for z = −1.62, 
though now—as illustrated in the middle distribution at the top of TABLE 5.1—the body will be the 
shaded area to the right of z. (When in doubt, drawing out your distribution and shading the area 
you need to find will always help.) Because the total area under the normal curve is always equal to 
1.00, the area in the tail (Column C) is simply the area in the body (Column B) subtracted from 1.00 
(1.00 − .9474 = .0526).

Let’s look at another example. This time, let’s find the area corresponding to z scores more extreme 
than z = −1.96 and z = 1.96. That is, let’s find the area in the tails of the distribution for values less 
than z = −1.96 (farther negative and therefore more extreme) and greater than z = 1.96 (farther 
positive and therefore more extreme). This region is illustrated in FIGURE 5.4.

Let’s start with the tail for z = 1.96. If we go to the z table (TABLE 5.1) we will find that the area in the 
tail to the right of z = 1.96 is equal to .0250. Because the normal distribution is symmetrical, the 
area in the tail for z = −1.96 is the exact same value, .0250. Finally, to get the total area in the shaded 
region, we simply add the areas together to get .0500. Thus, there is a 5% chance of randomly getting 
a value more extreme than z = −1.96 or z = 1.96 (this particular value and region will become 
incredibly important in Unit 2).

Finally, we can find the area between two z scores by shading and subtracting. FIGURE 5.5 shows the 
area between z = 0.50 and z = 1.50. Because this is a subsection of a body (rather than just a body or 
a tail), we must first find the larger of the two bodies, in this case the body for z = 1.50, and subtract 
the smaller of the two bodies, or the body for z = 0.50. Aligning the distributions vertically, as in 
FIGURE 5.5, makes this clearer. From the complete z table in Appendix A, wee see that the area in the 
body for z = 1.50 is .9332, and the area in the body for z = 0.50 is .6915. Subtracting these gives us 
.9332 − .6915 = .2417.
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FIGURE 5.5. area between z = 0.50 
and 1.50 (a), along with the 
corresponding areas in the body 
(B and C).  (“Area between z0.50 and 
z1.50” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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PROBABILITY: THE BIGGER PICTURE
The concepts and ideas presented in this chapter are likely not intuitive at first. Probability is a tough 
topic for everyone, but the tools it gives us are incredibly powerful and enable us to do amazing 
things with data analysis. They are the heart of how inferential statistics work.

To summarize, the probability that an event happens is the number of outcomes that qualify as that 
event (i.e., the number of ways the event could happen) compared to the total number of outcomes 
(i.e., how many things are possible). This extends to graphs like a pie chart, where the biggest slices 
take up more of the area and are therefore more likely to be chosen at random. This idea then brings 
us back around to our normal distribution, which can also be broken up into regions or areas, 
each of which is bounded by one or two z scores and corresponds to all z scores in that region. The 
probability of randomly getting one of those z scores in the specified region can then be found on 
the Standard Normal Distribution Table. Thus, the larger the region, the more likely an event is, and 
vice versa. Because the tails of the distribution are, by definition, smaller and we go farther out into 
the tail, the likelihood or probability of finding a result out in the extremes becomes small.

EXERCISES
1. In your own words, what is probability?

2. There is a bag with 5 red blocks, 2 yellow blocks, and 4 blue blocks. If you reach in and grab one 
block without looking, what is the probability it is red?

3. Under a normal distribution, which of the following is more likely? (Note: this question can be 
answered without any calculations if you draw out the distributions and shade properly.)

Getting a z score greater than z = 2.75 
Getting a z score less than z = −1.50

4. The heights of women in the United States are normally distributed with a mean of 63.7 inches 
and a standard deviation of 2.7 inches. If you randomly select a woman in the United States, 
what is the probability that she will be between 65 and 67 inches tall?

5. The heights of men in the United States are normally distributed with a mean of 69.1 inches and 
a standard deviation of 2.9 inches. What proportion of men are taller than 6 feet (72 inches)?

6. You know you need to score at least 82 points on the final exam to pass your class. After the 
final, you find out that the average score on the exam was 78 with a standard deviation of 7. How 
likely is it that you pass the class?

7. What proportion of the area under the normal curve is greater than z = 1.65?

8. Find the z score that bounds 25% of the lower tail of the distribution.
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9. Find the z score that bounds the top 9% of the distribution.

10. In a distribution with a mean of 70 and standard deviation of 12, what proportion of scores are 
lower than 55?

ANSWERS TO ODD-NUMBERED EXERCISES
1. Your answer should include information about an event happening under certain conditions 

given certain criteria. You could also discuss the relationship between probability and the area 
under the curve or the proportion of the area in a chart.

3. Getting a z score less than z = −1.50 is more likely. z = 2.75 is farther out into the right tail than 
z = −1.50 is into the left tail; therefore, there are fewer more extreme scores beyond 2.75 than 
−1.50, regardless of the direction.

5. 15.87% or .1587

7. 4.95% or .0495

9. z = 1.34 (The top 9% means 9% of the area is in the upper tail and 91% is in the body to the left; 
the value in the normal table closest to .9100 is .9099, which corresponds to z = 1.34.)
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CHAPTER 6 

Sampling Distributions
KEY TERMS
central limit theorem
distribution of sample means

law of large numbers
observed effect

sampling distribution
standard error

We have come to the final chapter in this unit. We will now take the logic, ideas, and techniques we 
have developed and put them together to see how we can take a sample of data and use it to make 
inferences about what’s truly happening in the broader population. This is the final piece of the 
puzzle that we need to understand in order to have the groundwork necessary for formal hypothesis 
testing. Though some of the concepts in this chapter seem strange, they are all simple extensions of 
what we have already learned in previous chapters, especially Chapter 4 and Chapter 5.

PEOPLE, SAMPLES, AND POPULATIONS
Most of what we have dealt with so far has concerned individual scores grouped into samples, with 
those samples being drawn from and, hopefully, representative of a population. We saw how we can 
understand the location of individual scores within a sample’s distribution via z scores, and how we 
can extend that to understand how likely it is to observe scores higher or lower than an individual 
score via probability.

Inherent in this work is the notion that an individual score will differ from the mean, which we 
quantify as a z score. All of the individual scores will differ from the mean in different amounts and 
different directions, which is natural and expected. We quantify these differences as variance and 
standard deviation. Measures of spread and the idea of variability in observations is a key principle 
in inferential statistics. We know that any observation, whether it is a single score, a set of scores, or 
a particular descriptive statistic will differ from the center of whatever distribution it belongs in.

This is equally true of things outside of statistics and format data collection and analysis. Some days 
you hear your alarm and wake up easily, but other days you need to hit snooze a few (dozen) times. 
Some days traffic is light, but other days it is very heavy. Some classes you are able to focus, pay 
attention, and take good notes, but other days you find yourself zoning out the entire time. Each 
individual observation is an insight but is not, by itself, the entire story, and it takes an extreme 
deviation from what we expect for us to think that something strange is going on. Being a little 
sleepy is normal, but being completely unable to get out of bed might indicate that we are sick. Light 
traffic is a good thing, but almost no cars on the road might make us think we forgot it is Saturday. 
Zoning out occasionally is fine, but if we cannot focus at all, we might be in a stats class rather than 
a fun one.
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All of these principles carry forward from scores within samples to samples within populations. Just 
like an individual score will differ from its mean, an individual sample mean will differ from the true 
population mean. We encountered this principle in earlier chapters: sampling error. As mentioned 
way back in Chapter 1, sampling error is an incredibly important principle. We know ahead of 
time that if we collect data and compute a sample, the observed value of that sample will be at least 
slightly off from what we expect it to be based on our supposed population mean; this is natural and 
expected. However, if our sample mean is extremely different from what we expect based on the 
population mean, there may be something going on.

THE SAMPLING DISTRIBUTION OF SAMPLE MEANS
To see how we use sampling error, we will learn about a new, theoretical distribution known as the 
sampling distribution. In the same way that we can gather a lot of individual scores and put them 
together to form a distribution with a center and spread, if we were to take many samples, all of 
the same size, and calculate the mean of each of those, we could put those means together to form 
a distribution. This new distribution is, intuitively, known as the distribution of sample means. 
It is one example of what we call a sampling distribution, which can be formed from a set of any 
statistic, such as a mean, a test statistic, or a correlation coefficient (more on the latter two in Unit 2 
and Unit 3). For our purposes, understanding the distribution of sample means will be enough to 
see how all other sampling distributions work to enable and inform our inferential analyses, so these 
two terms will be used interchangeably from here on out. Let’s take a deeper look at some of its 
characteristics.

The sampling distribution of sample means can be described by its shape, center, and spread, just 
like any of the other distributions we have worked with. The shape of our sampling distribution is 
normal: a bell-shaped curve with a single peak and two tails extending symmetrically in either 
direction, just like what we saw in previous chapters. The center of the sampling distribution of 
sample means—which is, itself, the mean or average of the means—is the true population mean, m. 
This will sometimes be written as mM  to denote it as the mean of the sample means. The spread of 
the sampling distribution is called the standard error, the quantification of sampling error, denoted 
sM . The formula for standard error is:

�
�

M
n

�

Notice that the sample size is in this equation. As stated above, the sampling distribution refers to 
samples of a specific size. That is, all sample means must be calculated from samples of the same size 
n, such as n = 10, n = 30, or n = 100. This sample size refers to how many people or observations are 
in each individual sample, not how many samples are used to form the sampling distribution. This is 
because the sampling distribution is a theoretical distribution, not one we will ever actually calculate 
or observe. FIGURE 6.1 displays the principles stated here in graphical form.

FIGURE 6.1. the sampling distribution 
of sample means.  (“Sampling Distribution 
of Sample Means” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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expected. However, if our sample mean is extremely different from what we expect based on the 
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sampling distribution. In the same way that we can gather a lot of individual scores and put them 
together to form a distribution with a center and spread, if we were to take many samples, all of 
the same size, and calculate the mean of each of those, we could put those means together to form 
a distribution. This new distribution is, intuitively, known as the distribution of sample means. 
It is one example of what we call a sampling distribution, which can be formed from a set of any 
statistic, such as a mean, a test statistic, or a correlation coefficient (more on the latter two in Unit 2 
and Unit 3). For our purposes, understanding the distribution of sample means will be enough to 
see how all other sampling distributions work to enable and inform our inferential analyses, so these 
two terms will be used interchangeably from here on out. Let’s take a deeper look at some of its 
characteristics.

The sampling distribution of sample means can be described by its shape, center, and spread, just 
like any of the other distributions we have worked with. The shape of our sampling distribution is 
normal: a bell-shaped curve with a single peak and two tails extending symmetrically in either 
direction, just like what we saw in previous chapters. The center of the sampling distribution of 
sample means—which is, itself, the mean or average of the means—is the true population mean, m. 
This will sometimes be written as mM  to denote it as the mean of the sample means. The spread of 
the sampling distribution is called the standard error, the quantification of sampling error, denoted 
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Notice that the sample size is in this equation. As stated above, the sampling distribution refers to 
samples of a specific size. That is, all sample means must be calculated from samples of the same size 
n, such as n = 10, n = 30, or n = 100. This sample size refers to how many people or observations are 
in each individual sample, not how many samples are used to form the sampling distribution. This is 
because the sampling distribution is a theoretical distribution, not one we will ever actually calculate 
or observe. FIGURE 6.1 displays the principles stated here in graphical form.
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of sample means.  (“Sampling Distribution 
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Two Important Axioms
We just learned that the sampling distribution is theoretical: we never actually see it. If that is true, 
then how can we know it works? How can we use something we don’t see? The answer lies in two 
very important mathematical facts: the central limit theorem and the law of large numbers. We will 
not go into the math behind how these statements were derived, but knowing what they are and 
what they mean is important to understanding why inferential statistics work and how we can draw 
conclusions about a population based on information gained from a single sample.

Central Limit Theorem
The central limit theorem states:

For samples of a single size n, drawn from a population with a given mean m and variance s2, 
the sampling distribution of sample means will have a mean � �M �  and variance � �M n2 2� / . 
This distribution will approach normality as n increases.

From this, we are able to find the standard deviation of our sampling distribution, the standard 
error. As you can see, just like any other standard deviation, the standard error is simply the square 
root of the variance of the distribution.

The last sentence of the central limit theorem states that the sampling distribution will be more 
normal as the sample size of the samples used to create it increases. What this means is that bigger 
samples will create a more normal distribution, so we are better able to use the techniques we 
developed for normal distributions and probabilities. So how large is large enough? In general, a 
sampling distribution will be normal if either of two characteristics is true: (1) the population from 
which the samples are drawn is normally distributed or (2) the sample size is equal to or greater 
than 30. This second criterion is very important because it enables us to use methods developed for 
normal distributions even if the true population distribution is skewed.
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Law of Large Numbers
The law of large numbers simply states that as our sample size increases, the probability that our 
sample mean is an accurate representation of the true population mean also increases. It is the 
formal mathematical way to state that larger samples are more accurate.

The law of large numbers is related to the central limit theorem, specifically the formulas for 
variance and standard error. Notice that the sample size appears in the denominators of those 
formulas. A larger denominator in any fraction means that the overall value of the fraction gets 
smaller (i.e., 1/2 = 0.50, 1/3 = 0.33, 1/4 = 0.25, and so on). Thus, larger sample sizes will create 
smaller standard errors. We already know that standard error is the spread of the sampling 
distribution and that a smaller spread creates a narrower distribution. Therefore, larger sample sizes 

create narrower sampling distributions, which increases the probability that a sample mean will 
be close to the center and decreases the probability that it will be in the tails. This is illustrated in 
FIGURE 6.2 and FIGURE 6.3.

USING STANDARD ERROR FOR PROBABILITY
In this chapter, we saw that we can use z scores to split up a normal distribution and calculate 
the proportion of the area under the curve in one of the new regions, giving us the probability 
of randomly selecting a z score in that range. We can follow the exact sample process for sample 
means, converting them into z scores and calculating probabilities. The only difference is that 
instead of dividing a raw score by the standard deviation, we divide the sample mean by the 
standard error.

z M M

n
M

�
�

�
��

�
�

�

Let’s say we are drawing samples from a population with a mean of 50 and a standard deviation of 10 
(the same values used in FIGURE 6.2). What is the probability that we get a random sample of size 10 
with a mean greater than or equal to 55? That is, for n = 10, what is the probability that M ≥ 55? 
First, we need to convert this sample mean score into a z score:

z � �
� �

55 50
10
10

5
3 16

1 58
.

.

Now we need to shade the area under the normal curve corresponding to scores greater than 
z = 1.58, as in FIGURE 6.4.

FIGURE 6.2. Sampling distributions 
from the same population with 
m = 50 and s = 10 but different 
sample sizes (N = 10, N = 30, N = 50, 
N = 100).  (“Sampling Distributions with 
Different Sample Sizes” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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FIGURE 6.3. relationship between sample size and standard error for a constant s = 10.  (“Relationship between 
Sample Size and Standard Error” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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FIGURE 6.4. area under the curve 
greater than z = 1.58.  (“Area under the 
Curve Greater than z1.58” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)
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Now we go to our z table and find that the area to the left of z = 1.58 is .9429. Finally, because 
we need the area to the right (per our shaded diagram), we simply subtract this from 1 to get 
1.00 − .9429 = .0571. So, the probability of randomly drawing a sample of 10 people from a 
population with a mean of 50 and standard deviation of 10 whose sample mean is 55 or more is 
p = .0571, or 5.71%. Notice that we are talking about means that are 55 or more. That is because, 
strictly speaking, it’s impossible to calculate the probability of a score taking on exactly 1 value since 
the “shaded region” would just be a line with no area to calculate.

Now let’s do the same thing, but assume that instead of only having a sample of 10 people we took a 
sample of 50 people. First, we find z:

z � �
� �

55 50
10
50

5
1 41

3 55
.

.

Then we shade the appropriate region of the normal distribution, as shown in FIGURE 6.5.

Notice that no region of FIGURE 6.5 appears to be shaded. That is because the area under the curve 
that far out into the tail is so small that it can’t even be seen (the red line has been added to show 
exactly where the region starts). Thus, we already know that the probability must be smaller for 
N = 50 than N = 10 because the size of the area (the proportion) is much smaller.

We run into a similar issue when we try to find z = 3.55 on our Standard Normal Distribution Table. 
The table only goes up to 3.09 because everything beyond that is almost 0 and changes so little that 
it’s not worth printing values. The closest we can get is subtracting the largest value, .9990, from 1 to 
get .001. We know that, technically, the actual probability is smaller than this (since 3.55 is farther 
into the tail than 3.09), so we say that the probability is p < .001, or less than 0.1%.

This example shows what an impact sample size can have. From the same population, looking for 
exactly the same thing, changing only the sample size took us from roughly a 5% chance (or about 

FIGURE 6.5. area under the curve 
greater than z = 3.55.  (“Area under the 
Curve Greater Than z3.55” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)
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1/20 odds) to a less than 0.1% chance (or less than 1 in 1000). As the sample size n increased, the 
standard error decreased, which in turn caused the value of z to increase, which finally caused 
the p value (a term for probability we will use a lot in Unit 2) to decrease. You can think of this 
relationship like gears: turning the first gear (sample size) clockwise causes the next gear (standard 
error) to turn counterclockwise, which causes the third gear (z) to turn clockwise, which finally 
causes the last gear (probability) to turn counterclockwise. All of these pieces fit together, and the 
relationships will always be the same: 

n z pM� � � ��

Let’s look at this one more way. For the same population of sample size 50 and standard deviation 
10, what proportion of sample means fall between 47 and 53 if they are of sample size 10 and sample 
size 50?

We’ll start again with n = 10. Converting 47 and 53 into z scores, we get z = −0.95 and z = 0.95, 
respectively. From our z table, we find that the proportion between these two scores is .6578 (the 
process here is left off for the student to practice converting M to z and z to proportions). So, 65.78% 
of sample means of sample size 10 will fall between 47 and 53. For n = 50, our z scores for 47 and 53 
are ±2.13, which gives us a proportion of the area as .9668, almost 97%! Shaded regions for each of 
these sampling distributions is displayed in FIGURE 6.6. The sampling distributions are shown on the 
original scale, rather than as z scores, so you can see the effect of the shading and how much of the 
body falls into the range, which is marked off with thin dotted lines.

SAMPLING DISTRIBUTION, PROBABILITY, AND INFERENCE
We’ve seen how we can use the standard error to determine probability based on our normal curve. 
We can think of the standard error as how much we would naturally expect our statistic—be it a 

FIGURE 6.6. areas between 47 and 
53 for sampling distributions of 
n = 10 and n = 50.  (“Areas between 
47 and 53” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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mean or some other statistic)—to vary. In our formula for z based on a sample mean, the numerator 
( )M � �  is what we call an observed effect. That is, it is what we observe in our sample mean versus 
what we expected based on the population from which that sample mean was calculated.

Because the sample mean will naturally move around due to sampling error, our observed effect will 
also change naturally. In the context of our formula for z, then, our standard error is how much we 
would naturally expect the observed effect to change. Changing by a little is completely normal, but 
changing by a lot might indicate something is going on. This is the basis of inferential statistics and 
the logic behind hypothesis testing, the subject of Unit 2.

EXERCISES
1. What is a sampling distribution?

2. What are the two mathematical facts that describe how sampling distributions work?

3. What is the difference between a sampling distribution and a regular distribution?

4. What effect does sample size have on the shape of a sampling distribution?

5. What is standard error?

6. For a population with a mean of 75 and a standard deviation of 12, what proportion of sample 
means of size n = 16 fall above 82?

7. For a population with a mean of 100 and standard deviation of 16, what is the probability that a 
random sample of size 4 will have a mean between 110 and 130?

8. Find the z score for the following means taken from a population with mean 10 and standard 
deviation 2:

a. M = 8, n = 12
b. M = 8, n = 30
c. M = 20, n = 4
d. M = 20, n = 16

9. As the sample size increases, what happens to the p value associated with a given sample mean?

10. For a population with a mean of 35 and standard deviation of 7, find the sample mean of size 
n = 20 that cuts off the top 5% of the sampling distribution.
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ANSWERS TO ODD-NUMBERED EXERCISES
1. The sampling distribution (or sampling distribution of the sample means) is the distribution 

formed by combining many sample means taken from the same population and of a single, 
consistent sample size.

3. A sampling distribution is made of statistics (e.g., the mean), whereas a regular distribution is 
made of individual scores.

5. Standard error is the spread of the sampling distribution and is the quantification of sampling 
error. It is how much we expect the sample mean to naturally change based on random chance.

7. .1055

9. As sample size increases, the p value will decrease.
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UNIT 2 

Hypothesis Testing

In Unit 1, we learned the basics of statistics—what they are, how they work, and the mathematical 
and conceptual principles that guide them. In Unit 2, we will learn to use everything from the 
previous unit to test hypotheses, formal statements of research questions that form the backbone of 
statistical inference and scientific progress. This unit focuses on hypothesis tests about means, and 
Unit 3 will continue to use hypothesis testing for other types of data, statistics, and relationships.
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CHAPTER 7 

Introduction to Hypothesis Testing
KEY TERMS
alternative hypothesis
critical value
effect size
hypothesis
null hypothesis

probability value
p value
rejection region
significance level
statistical power

statistical significance
test statistic
Type I error
Type II error

This chapter lays out the basic logic and process of hypothesis testing. We will perform z tests, which 
use the z score formula from Chapter 6 and data from a sample mean to make an inference about a 
population.

LOGIC AND PURPOSE OF HYPOTHESIS TESTING
A hypothesis is a prediction that is tested in a research study. The statistician R. A. Fisher explained 
the concept of hypothesis testing with a story of a lady tasting tea. Here we will present an example 
based on James Bond who insisted that martinis should be shaken rather than stirred. Let’s consider 
a hypothetical experiment to determine whether Mr. Bond can tell the difference between a shaken 
martini and a stirred martini. Suppose we gave Mr. Bond a series of 16 taste tests. In each test, 
we flipped a fair coin to determine whether to stir or shake the martini. Then we presented the 
martini to Mr. Bond and asked him to decide whether it was shaken or stirred. Let’s say Mr. Bond 
was correct on 13 of the 16 taste tests. Does this prove that Mr. Bond has at least some ability to tell 
whether the martini was shaken or stirred?

This result does not prove that he does; it could be he was just lucky and guessed right 13 out of 
16 times. But how plausible is the explanation that he was just lucky? To assess its plausibility, we 
determine the probability that someone who was just guessing would be correct 13/16 times or 
more. This probability can be computed to be .0106. This is a pretty low probability, and therefore 
someone would have to be very lucky to be correct 13 or more times out of 16 if they were just 
guessing. So either Mr. Bond was very lucky, or he can tell whether the drink was shaken or 
stirred. The hypothesis that he was guessing is not proven false, but considerable doubt is cast on it. 
Therefore, there is strong evidence that Mr. Bond can tell whether a drink was shaken or stirred.

Let’s consider another example. The case study Physicians’ Reactions sought to determine whether 
physicians spend less time with obese patients. Physicians were sampled randomly and each was 
shown a chart of a patient complaining of a migraine headache. They were then asked to estimate 
how long they would spend with the patient. The charts were identical except that for half the charts, 
the patient was obese and for the other half, the patient was of average weight. The chart a particular 
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physician viewed was determined randomly. Thirty-three physicians viewed charts of average-
weight patients and 38 physicians viewed charts of obese patients.

The mean time physicians reported that they would spend with obese patients was 24.7 minutes 
as compared to a mean of 31.4 minutes for normal-weight patients. How might this difference 
between means have occurred? One possibility is that physicians were influenced by the weight of 
the patients. On the other hand, perhaps by chance, the physicians who viewed charts of the obese 
patients tend to see patients for less time than the other physicians. Random assignment of charts 
does not ensure that the groups will be equal in all respects other than the chart they viewed. In fact, 
it is certain the groups differed in many ways by chance. The two groups could not have exactly the 
same mean age (if measured precisely enough such as in days). Perhaps a physician’s age affects how 
long the physician sees patients. There are innumerable differences between the groups that could 
affect how long they view patients. With this in mind, is it plausible that these chance differences are 
responsible for the difference in times?

To assess the plausibility of the hypothesis that the difference in mean times is due to chance, 
we compute the probability of getting a difference as large or larger than the observed difference 
(31.4 − 24.7 = 6.7 minutes) if the difference were, in fact, due solely to chance. Using methods 
presented in later chapters, this probability can be computed to be .0057. Since this is such a low 
probability, we have confidence that the difference in times is due to the patient’s weight and is not 
due to chance.

THE PROBABILITY VALUE
It is very important to understand precisely what the probability values mean. In the James Bond 
example, the computed probability of .0106 is the probability he would be correct on 13 or more 
taste tests (out of 16) if he were just guessing. It is easy to mistake this probability of .0106 as the 
probability he cannot tell the difference. This is not at all what it means.

The probability of .0106 is the probability of a certain outcome (13 or more out of 16) assuming 
a certain state of the world (James Bond was only guessing). It is not the probability that a state 
of the world is true. Although this might seem like a distinction without a difference, consider 
the following example. An animal trainer claims that a trained bird can determine whether or 
not numbers are evenly divisible by 7. In an experiment assessing this claim, the bird is given a 
series of 16 test trials. On each trial, a number is displayed on a screen and the bird pecks at one 
of two keys to indicate its choice. The numbers are chosen in such a way that the probability of 
any number being evenly divisible by 7 is .50. The bird is correct on 9/16 choices. We can compute 
that the probability of being correct nine or more times out of 16 if one is only guessing is .40. 
Since a bird who is only guessing would do this well 40% of the time, these data do not provide 
convincing evidence that the bird can tell the difference between the two types of numbers. As a 
scientist, you would be very skeptical that the bird had this ability. Would you conclude that there is 
a .40 probability that the bird can tell the difference? Certainly not! You would think the probability 
is much lower than .0001.
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To reiterate, the probability value is the probability of an outcome (9/16 or better) and not 
the probability of a particular state of the world (the bird was only guessing). In statistics, it is 
conventional to refer to possible states of the world as hypotheses since they are hypothesized states 
of the world. Using this terminology, the probability value is the probability of an outcome given 
the hypothesis. It is not the probability of the hypothesis given the outcome.

This is not to say that we ignore the probability of the hypothesis. If the probability of the outcome 
given the hypothesis is sufficiently low, we have evidence that the hypothesis is false. However, we do 
not compute the probability that the hypothesis is false. In the James Bond example, the hypothesis 
is that he cannot tell the difference between shaken and stirred martinis. The probability value is low 
(.0106), thus providing evidence that he can tell the difference. However, we have not computed the 
probability that he can tell the difference.

THE NULL HYPOTHESIS
The hypothesis that an apparent effect is due to chance is called the null hypothesis, written H0 
(“H-naught”). In the Physicians’ Reactions example, the null hypothesis is that in the population 
of physicians, the mean time expected to be spent with obese patients is equal to the mean time 
expected to be spent with average-weight patients. This null hypothesis can be written as:

H0 0: obese average� �� �

The null hypothesis in a correlational study of the relationship between high school grades and 
college grades would typically be that the population correlation is 0. This can be written as

H0 0: � �

where r (Greek letter “rho”) is the population correlation, which we will cover in Chapter 12.

Although the null hypothesis is usually that the value of a parameter is 0, there are occasions in 
which the null hypothesis is a value other than 0. For example, if we are working with mothers in the 
U.S. whose children are at risk of low birth weight, we can use 7.47 pounds, the average birth weight 
in the U.S., as our null value and test for differences against that.

For now, we will focus on testing a value of a single mean against what we expect from the 
population. Using birth weight as an example, our null hypothesis takes the form:

H0 7 47: � � .

The number on the right hand side is our null hypothesis value that is informed by our research 
question. Notice that we are testing the value for m, the population parameter, not the sample 
statistic M. This is for two reasons: (1) once we collect data, we know what the value of M is—it’s not 
a mystery or a question, it is observed and used for the second reason, which is (2) we are interested 
in understanding the population, not just our sample.

100 • HYPOTHESIS TESTING Unit 2



Keep in mind that the null hypothesis is typically the opposite of the researcher’s hypothesis. In the 
Physicians’ Reactions study, the researchers hypothesized that physicians would expect to spend less 
time with obese patients. The null hypothesis that the two types of patients are treated identically 
is put forward with the hope that it can be discredited and therefore rejected. If the null hypothesis 
were true, a difference as large as or larger than the sample difference of 6.7 minutes would be 
very unlikely to occur. Therefore, the researchers rejected the null hypothesis of no difference and 
concluded that in the population, physicians intend to spend less time with obese patients.

In general, the null hypothesis is the idea that nothing is going on: there is no effect of our 
treatment, no relationship between our variables, and no difference in our sample mean from what 
we expected about the population mean. This is always our baseline starting assumption, and it is 
what we seek to reject. If we are trying to treat depression, we want to find a difference in average 
symptoms between our treatment and control groups. If we are trying to predict job performance, 
we want to find a relationship between conscientiousness and evaluation scores. However, until we 
have evidence against it, we must use the null hypothesis as our starting point.

THE ALTERNATIVE HYPOTHESIS
If the null hypothesis is rejected, then we will need some other explanation, which we call the 
alternative hypothesis, HA or H1. The alternative hypothesis is simply the reverse of the null 
hypothesis, and there are three options, depending on where we expect the difference to lie. Thus, 
our alternative hypothesis is the mathematical way of stating our research question. If we expect our 
obtained sample mean to be above or below the null hypothesis value, which we call a directional 
hypothesis, then our alternative hypothesis takes the form

H HA A: or :� �� �7 47 7 47. .

based on the research question itself. We should only use a directional hypothesis if we have good 
reason, based on prior observations or research, to suspect a particular direction. When we do not 
know the direction, such as when we are entering a new area of research, we use a non-directional 
alternative:

HA : � � 7 47.

We will set different criteria for rejecting the null hypothesis based on the directionality of (greater 
than, less than, or not equal to) the alternative. To understand why, we need to see where our criteria 
come from and how they relate to z scores and distributions.

CRITICAL VALUES, p VALUES, AND SIGNIFICANCE LEVEL
A low probability value casts doubt on the null hypothesis. How low must the probability value be in 
order to conclude that the null hypothesis is false? Although there is clearly no right or wrong 
answer to this question, it is conventional to conclude the null hypothesis is false if the probability 
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value is less than .05. More conservative researchers conclude the null hypothesis is false only if the 
probability value is less than .01. When a researcher concludes that the null hypothesis is false, the 
researcher is said to have rejected the null hypothesis. The probability value below which the null 
hypothesis is rejected is called the a level or simply a (“alpha”). It is also called the significance 
level. If a is not explicitly specified, assume that a = .05.

The significance level is a threshold we set before collecting data in order to determine whether or 
not we should reject the null hypothesis. We set this value beforehand to avoid biasing ourselves by 
viewing our results and then determining what criteria we should use. If our data produce values 
that meet or exceed this threshold, then we have sufficient evidence to reject the null hypothesis; if 
not, we fail to reject the null (we never “accept” the null).

There are two criteria we use to assess whether our data meet the thresholds established by our 
chosen significance level, and they both have to do with our discussions of probability and 
distributions. Recall that probability refers to the likelihood of an event, given some situation or 
set of conditions. In hypothesis testing, that situation is the assumption that the null hypothesis 
value is the correct value, or that there is no effect. The value laid out in H0 is our condition under 
which we interpret our results. To reject this assumption, and thereby reject the null hypothesis, we 
need results that would be very unlikely if the null was true. Now recall that values of z which fall in 
the tails of the standard normal distribution represent unlikely values. That is, the proportion of the 
area under the curve as extreme as z—or more extreme than z—is very small as we get into the tails 
of the distribution. Our significance level corresponds to the area in the tail that is exactly equal to 
a. If we use our normal criterion of a = .05, then 5% of the area under the curve becomes what we 
call the rejection region (also called the critical region) of the distribution. This is illustrated in 
FIGURE 7.1. The shaded rejection region takes us 5% of the area under the curve. Any result that falls 
in that region is sufficient evidence to reject the null hypothesis.

The rejection region is bounded by a specific z value, as is any area under the curve. In hypothesis 
testing, the value corresponding to a specific rejection region is called the critical value, 

FIGURE 7.1. the rejection region for 
a one-tailed test.  (“Rejection Region 
for One-Tailed Test” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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zcrit (“z crit”), or z* (hence the other name “critical region”). Finding the critical value works exactly 
the same as finding the z score corresponding to any area under the curve as we did in Unit 1. If 
we go to the normal table, we will find that the z score corresponding to 5% of the area under the 
curve is equal to 1.645 (z = 1.64 corresponds to .0505 and z = 1.65 corresponds to .0495, so .05 is 
exactly in between them) if we go to the right and −1.645 if we go to the left. The direction must be 
determined by your alternative hypothesis, and drawing and shading the distribution is helpful for 
keeping directionality straight.

Suppose, however, that we want to do a non-directional test. We need to put the critical region in 
both tails, but we don’t want to increase the overall size of the rejection region (for reasons we will 
see later). To do this, we simply split it in half so that an equal proportion of the area under the 
curve falls in each tail’s rejection region. For a = .05, this means 2.5% of the area is in each tail, 
which, based on the z table, corresponds to critical values of z* = ±1.96. This is shown in FIGURE 7.2.

Thus, any z score falling outside ±1.96 (greater than 1.96 in absolute value) falls in the rejection 
region. When we use z scores in this way, the obtained value of z (sometimes called z obtained and 
abbreviated zobt) is something known as a test statistic, which is simply an inferential statistic used 
to test a null hypothesis. The formula for our z statistic has not changed:

z M

n

�
� �
�

To formally test our hypothesis, we compare our obtained z statistic to our critical z value. If 
zobt > zcrit, that means it falls in the rejection region (to see why, draw a line for z = 2.5 on FIGURE 7.1 
or FIGURE 7.2) and so we reject H0. If zobt < zcrit, we fail to reject. Remember that as z gets larger, the 
corresponding area under the curve beyond z gets smaller. Thus, the proportion, or p value, will be 
smaller than the area for a, and if the area is smaller, the probability gets smaller. Specifically, the 
probability of obtaining that result, or a more extreme result, under the condition that the null 
hypothesis is true gets smaller.

FIGURE 7.2. two-tailed rejection 
region.  (“Rejection Region for Two-Tailed 
Test” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

z

Rejection region
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The z statistic is very useful when we are doing our calculations by hand. However, when we use 
computer software, it will report to us a p value, which is simply the proportion of the area under 
the curve in the tails beyond our obtained z statistic. We can directly compare this p value to a to 
test our null hypothesis: if p < a, we reject H0, but if p > a, we fail to reject. Note also that the reverse 
is always true. If we use critical values to test our hypothesis, we will always know if p is greater than 
or less than a. If we reject, we know that p < a because the obtained z statistic falls farther out into 
the tail than the critical z value that corresponds to a, so the proportion (p value) for that z statistic 
will be smaller. Conversely, if we fail to reject, we know that the proportion will be larger than a 
because the z statistic will not be as far into the tail. This is illustrated for a one-tailed test in 
FIGURE 7.3.

When the null hypothesis is rejected, the effect is said to have statistical significance, or be 
statistically significant. For example, in the Physicians’ Reactions case study, the probability value is 
.0057. Therefore, the effect of obesity is statistically significant and the null hypothesis that obesity 
makes no difference is rejected. It is important to keep in mind that statistical significance means 
only that the null hypothesis of exactly no effect is rejected; it does not mean that the effect is 
important, which is what “significant” usually means. When an effect is significant, you can have 
confidence the effect is not exactly zero. Finding that an effect is significant does not tell you about 
how large or important the effect is.

Do not confuse statistical significance with practical significance. A small effect can be highly significant 
if the sample size is large enough.

Why does the word “significant” in the phrase “statistically significant” mean something so different 
from other uses of the word? Interestingly, this is because the meaning of “significant” in everyday 
language has changed. It turns out that when the procedures for hypothesis testing were developed, 
something was “significant” if it signified something. Thus, finding that an effect is statistically 
significant signifies that the effect is real and not due to chance. Over the years, the meaning of 
“significant” changed, leading to the potential misinterpretation.

THE HYPOTHESIS TESTING PROCESS

A Four-Step Procedure
The process of testing hypotheses follows a simple four-step procedure. This process will be what we 
use for the remainder of the textbook and course, and although the hypothesis and statistics we use 
will change, this process will not.

STEP 1: State the Hypotheses
Your hypotheses are the first thing you need to lay out. Otherwise, there is nothing to test! You have 
to state the null hypothesis (which is what we test) and the alternative hypothesis (which is what 
we expect). These should be stated mathematically as they were presented above and in words, 
explaining in normal English what each one means in terms of the research question.

FIGURE 7.3. relationship between 
a, zobt, and p.  (“Relationship between 
alpha, z-obt, and p” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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Shaded p value for zobt = 1.25; fail to reject H0
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Rejection region for α = .05, z* = 1.96
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The z statistic is very useful when we are doing our calculations by hand. However, when we use 
computer software, it will report to us a p value, which is simply the proportion of the area under 
the curve in the tails beyond our obtained z statistic. We can directly compare this p value to a to 
test our null hypothesis: if p < a, we reject H0, but if p > a, we fail to reject. Note also that the reverse 
is always true. If we use critical values to test our hypothesis, we will always know if p is greater than 
or less than a. If we reject, we know that p < a because the obtained z statistic falls farther out into 
the tail than the critical z value that corresponds to a, so the proportion (p value) for that z statistic 
will be smaller. Conversely, if we fail to reject, we know that the proportion will be larger than a 
because the z statistic will not be as far into the tail. This is illustrated for a one-tailed test in 
FIGURE 7.3.

When the null hypothesis is rejected, the effect is said to have statistical significance, or be 
statistically significant. For example, in the Physicians’ Reactions case study, the probability value is 
.0057. Therefore, the effect of obesity is statistically significant and the null hypothesis that obesity 
makes no difference is rejected. It is important to keep in mind that statistical significance means 
only that the null hypothesis of exactly no effect is rejected; it does not mean that the effect is 
important, which is what “significant” usually means. When an effect is significant, you can have 
confidence the effect is not exactly zero. Finding that an effect is significant does not tell you about 
how large or important the effect is.

Do not confuse statistical significance with practical significance. A small effect can be highly significant 
if the sample size is large enough.

Why does the word “significant” in the phrase “statistically significant” mean something so different 
from other uses of the word? Interestingly, this is because the meaning of “significant” in everyday 
language has changed. It turns out that when the procedures for hypothesis testing were developed, 
something was “significant” if it signified something. Thus, finding that an effect is statistically 
significant signifies that the effect is real and not due to chance. Over the years, the meaning of 
“significant” changed, leading to the potential misinterpretation.

THE HYPOTHESIS TESTING PROCESS

A Four-Step Procedure
The process of testing hypotheses follows a simple four-step procedure. This process will be what we 
use for the remainder of the textbook and course, and although the hypothesis and statistics we use 
will change, this process will not.

STEP 1: State the Hypotheses
Your hypotheses are the first thing you need to lay out. Otherwise, there is nothing to test! You have 
to state the null hypothesis (which is what we test) and the alternative hypothesis (which is what 
we expect). These should be stated mathematically as they were presented above and in words, 
explaining in normal English what each one means in terms of the research question.

FIGURE 7.3. relationship between 
a, zobt, and p.  (“Relationship between 
alpha, z-obt, and p” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

Shaded p value for zobt = 2.25; reject H0

0 1 2 3 4−1−3−4 −2

z

Shaded p value for zobt = 1.25; fail to reject H0

0 1 2 3 4−1−3−4 −2

Rejection region for α = .05, z* = 1.96
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STEP 2: Find the Critical Values
Next, we formally lay out the criteria we will use to test our hypotheses. There are two pieces of 
information that inform our critical values: a, which determines how much of the area under the 
curve composes our rejection region, and the directionality of the test, which determines where the 
region will be.

STEP 3: Calculate the Test Statistic and Effect Size
Once we have our hypotheses and the standards we use to test them, we can collect data and 
calculate our test statistic—in this case z. This step is where the vast majority of differences in future 
chapters will arise: different tests used for different data are calculated in different ways, but the way 
we use and interpret them remains the same. As part of this step, we will also calculate effect size 
to better quantify the magnitude of the difference between our groups. Although effect size is not 
considered part of hypothesis testing, reporting it as part of the results is approved convention.

STEP 4: Make the Decision
Finally, once we have our obtained test statistic, we can compare it to our critical value and decide 
whether we should reject or fail to reject the null hypothesis. When we do this, we must interpret 
the decision in relation to our research question, stating what we concluded, what we based our 
conclusion on, and the specific statistics we obtained.

EXAMPLE A  Movie Popcorn
Let’s see how hypothesis testing works in action by working through an example. Say that a movie 
theater owner likes to keep a very close eye on how much popcorn goes into each bag sold, so he 
knows that the average bag has 8 cups of popcorn and that this varies a little bit, about half a cup. 
That is, the known population mean is m = 8.00 and the known population standard deviation is 
s = 0.50. The owner wants to make sure that the newest employee is filling bags correctly, so over the 
course of a week he randomly assesses 25 bags filled by the employee to test for a difference (N = 25). 
He doesn’t want bags over-filled or under-filled, so he looks for differences in both directions. This 
scenario has all of the information we need to begin our hypothesis testing procedure.

STEP 1: State the Hypotheses
Our manager is looking for a difference in the mean weight of popcorn bags compared to the 
population mean of 8. We will need both a null and an alternative hypothesis written both 
mathematically and in words. We’ll always start with the null hypothesis:

H0: There is no difference in the weight of popcorn bags from this emplooyee
:H0 8 00� � .

Notice that we phrase the hypothesis in terms of the population parameter m, which in this case 
would be the true average weight of bags filled by the new employee. Our assumption of no 
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difference, the null hypothesis, is that this mean is exactly the same as the known population mean 
value we want it to match, 8.00. Now let’s do the alternative:

HA : There is a difference in the weight of popcorn bags from this employyee
:AH � � 8 00.

In this case, we don’t know if the bags will be too full or not full enough, so we do a two-tailed 
alternative hypothesis that there is a difference.

STEP 2: Find the Critical Values
Our critical values are based on two things: the directionality of the test and the level of significance. 
We decided in Step 1 that a two-tailed test is the appropriate directionality. We were given no 
information about the level of significance, so we assume that a = .05 is what we will use. As stated 
earlier in the chapter, the critical values for a two-tailed z test at a = .05 are z* = ±1.96. This will 
be the criteria we use to test our hypothesis. We can now draw out our distribution, as shown in 
FIGURE 7.4, so we can visualize the rejection region and make sure it makes sense.

STEP 3: Calculate the Test Statistic and Effect Size
Now we come to our formal calculations. Let’s say that the manager collects data and finds that the 
average weight of this employee’s popcorn bags is M = 7.75 cups. We can now plug this value, along 
with the values presented in the original problem, into our equation for z:

z � �
�
�

� �
7 75 8 00

0 50
25

0 25
0 10

2 50. .
.

.
.

.

So our test statistic is z = −2.50, which we can draw onto our rejection region distribution as shown 
in FIGURE 7.5.

FIGURE 7.4. rejection region for 
z* = ±1.96.  (“Rejection Region z+-1.96” 
by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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Effect Size
When we reject the null hypothesis, we are stating that the difference we found was statistically 
significant, but we have mentioned several times that this tells us nothing about practical 
significance. To get an idea of the actual size of what we found, we can compute a new statistic 
called an effect size. Effect size gives us an idea of how large, important, or meaningful a statistically 
significant effect is. For mean differences like we calculated here, our effect size is Cohen’s d:

d M
�

� �
�

This is very similar to our formula for z, but we no longer take into account the sample size (since 
overly large samples can make it too easy to reject the null). Cohen’s d is interpreted in units of 
standard deviations, just like z. For our example:

d �
�

�
�

�
7 75 8 00

0 50
0 25

0 50
0 50. .

.
.

.
.

Cohen’s d is interpreted as small, moderate, or large. Specifically, d = 0.20 is small, d = 0.50 is 
moderate, and d = 0.80 is large. Obviously, values can fall in between these guidelines, so we should 
use our best judgment and the context of the problem to make our final interpretation of size. Our 
effect size happens to be exactly equal to one of these, so we say that there is a moderate effect.

Effect sizes are incredibly useful and provide important information and clarification that overcomes 
some of the weakness of hypothesis testing. Any time you perform a hypothesis test, whether 
statistically significant or not, you should always calculate and report effect size.

STEP 4: Make the Decision
Looking at FIGURE 7.5, we can see that our obtained z statistic falls in the rejection region. We can 
also directly compare it to our critical value: in terms of absolute value, −2.50 > −1.96, so we reject 
the null hypothesis. We can now write our conclusion:

FIGURE 7.5. test statistic location. 
 (“Test Statistic Location z-2.50” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

z

z = −2.50

108 • HYPOTHESIS TESTING Unit 2

https://irl.umsl.edu/oer-img/69
https://creativecommons.org/licenses/by-nc-sa/4.0/


Reject H0. Based on the sample of 25 bags, we can conclude that the average popcorn bag from 
this employee is smaller (M = 7.75 cups) than the average weight of popcorn bags at this movie 
theater, and the effect size was moderate, z = −2.50, p < .05, d = 0.50.

When we write our conclusion, we write out the words to communicate what it actually means, 
but we also include the average sample size we calculated (the exact location doesn’t matter, just 
somewhere that flows naturally and makes sense), the z statistic and p value, and the effect size. 
We don’t know the exact p value, but we do know that because we rejected the null, it must be less 
than a.

EXAMPLE B  Office Temperature
Let’s do another example to solidify our understanding. Let’s say that the office building you work in 
is supposed to be kept at 74 degrees Fahrenheit during the summer months but is allowed to vary by 
1 degree in either direction. You suspect that, as a cost saving measure, the temperature was secretly 
set higher. You set up a formal way to test your hypothesis.

STEP 1: State the Hypotheses
You start by laying out the null hypothesis:

H
H

0

0

: There is no difference in the average building temperature
: � � 774

Next you state the alternative hypothesis. You have reason to suspect a specific direction of change, 
so you make a one-tailed test:

H
H

A

A

: The average building temperature is higher than claimed
: �� � 74

STEP 2: Find the Critical Values
You know that the most common level of significance is 
a = .05, so you keep that the same and know that the critical 
value for a one-tailed z test is z* = 1.645. To keep track of 
the directionality of the test and rejection region, you 
draw out your distribution as shown in FIGURE 7.6.

FIGURE 7.6. rejection region. 
 (“Rejection Region z1.645” by 
Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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STEP 3: Calculate the Test Statistic and Effect Size
Now that you have everything set up, you spend one week collecting temperature data:

Day Temp

Monday 77
Tuesday 76
Wednesday 74
Thursday 78
Friday 78

You calculate the average of these scores to be M = 76.6 degrees. You use this to calculate the test 
statistic, using m = 74 (the supposed average temperature), s = 1.00 (how much the temperature 
should vary), and n = 5 (how many data points you collected):

z � �
� �

76 60 74 00
1 00

5

2 60
0 45

5 78. .
.

.

.
.

This value falls so far into the tail that it cannot even be plotted on the distribution (FIGURE 7.7)! 
Because the result is significant, you also calculate an effect size:

d �
�

� �
76 60 74 00

1 00
2 60
1 00

2 60. .
.

.

.
.

The effect size you calculate is definitely large, meaning someone has some explaining to do!

FIGURE 7.7. Obtained z statistic. 
 (“Obtained z5.77” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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STEP 4: Make the Decision
You compare your obtained z statistic, z = 5.77, to the critical value, z* = 1.645, and find that z > z*. 
Therefore you reject the null hypothesis, concluding:

Reject H0. Based on 5 observations, the average temperature (M = 76.6 degrees) is statistically 
significantly higher than it is supposed to be, and the effect size was large, z = 5.77, p < .05, 
d = 2.60.

EXAMPLE C  Different Significance Level
Finally, let’s take a look at an example phrased in generic terms, rather than in the context of a 
specific research question, to see the individual pieces one more time. This time, however, we will 
use a stricter significance level, a = .01, to test the hypothesis.

STEP 1: State the Hypotheses
We will use 60 as an arbitrary null hypothesis value:

H
H

0

0 60
: The average score does not differ from the population

: � �

We will assume a two-tailed test:

H
H

A

A

: The average score does differ
: � � 60

STEP 2: Find the Critical Values
We have seen the critical values for z tests at a = .05 levels of significance several times. To find the 
values for a = .01, we will go to the Standard Normal Distribution Table and find the z score cutting 
off .005 (.01 divided by 2 for a two-tailed test) of the area in the tail, which is z* = ±2.575. Notice 
that this cutoff is much higher than it was for a = .05. This is because we need much less of the area 
in the tail, so we need to go very far out to find the cutoff. As a result, this will require a much larger 
effect or much larger sample size in order to reject the null hypothesis.

STEP 3: Calculate the Test Statistic and Effect Size
We can now calculate our test statistic. We will use s = 10 as our known population standard 
deviation and the following data to calculate our sample mean:

61, 65, 58, 54, 60,
62, 61, 59, 61, 63
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The average of these scores is M = 60.40. From this we calculate our z statistic as:

z � �
� �

60 40 60 00
10 00

10

0 40
3 16

0 13. .
.

.

.
.

The Cohen’s d effect size calculation is:

d M
�

�
�

�
� �

�
�

60 40 60 00
10 00

0 40
10 00

0 04. .
.

.
.

.

STEP 4: Make the Decision
Our obtained z statistic, z = 0.13, is very small. It is much less than our critical value of 2.575. Thus, 
this time, we fail to reject the null hypothesis. Our conclusion would look something like:

Fail to reject H0. Based on the sample of 10 scores, we cannot conclude that there is an effect 
causing the mean (M = 60.40) to be statistically significantly different from 60.00, z = 0.13, 
p > .01, d = 0.04, and the effect size supports this interpretation.

Notice two things about the end of the conclusion. First, we wrote that p is greater than instead of 
p is less than, like we did in the previous two examples. This is because we failed to reject the null 
hypothesis. We don’t know exactly what the p value is, but we know it must be larger than the a level 
we used to test our hypothesis. Second, we used .01 instead of the usual .05, because this time we 
tested at a different level. The number you compare to the p value should always be the significance 
level you test at.

OTHER CONSIDERATIONS IN HYPOTHESIS TESTING
There are several other considerations we need to keep in mind when performing hypothesis testing.

Errors in Hypothesis Testing
In the Physicians’ Reactions case study, the probability value associated with the significance test 
is .0057. Therefore, the null hypothesis was rejected, and it was concluded that physicians intend 
to spend less time with obese patients. Despite the low probability value, it is possible that the null 
hypothesis of no true difference between obese and average-weight patients is true and that the 
large difference between sample means occurred by chance. If this is the case, then the conclusion 
that physicians intend to spend less time with obese patients is in error. This type of error is called a 
Type I error. More generally, a Type I error occurs when a significance test results in the rejection of 
a true null hypothesis.

By one common convention, if the probability value is below .05, then the null hypothesis is 
rejected. Another convention, although slightly less common, is to reject the null hypothesis if the 
probability value is below .01. The threshold for rejecting the null hypothesis is called the a level or 
simply a. It is also called the significance level. As discussed in the introduction to hypothesis 
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testing, it is better to interpret the probability value as an indication of the weight of evidence against 
the null hypothesis than as part of a decision rule for making a reject or do-not-reject decision. 
Therefore, keep in mind that rejecting the null hypothesis is not an all-or-nothing decision.

The Type I error rate is affected by the a level: the lower the a level the lower the Type I error rate. It 
might seem that a is the probability of a Type I error. However, this is not correct. Instead, a is the 
probability of a Type I error given that the null hypothesis is true. If the null hypothesis is false, then 
it is impossible to make a Type I error.

The second type of error that can be made in significance testing is failing to reject a false null 
hypothesis. This kind of error is called a Type II error. Unlike a Type I error, a Type II error is not 
really an error. When a statistical test is not significant, it means that the data do not provide strong 
evidence that the null hypothesis is false. Lack of significance does not support the conclusion 
that the null hypothesis is true. Therefore, a researcher should not make the mistake of incorrectly 
concluding that the null hypothesis is true when a statistical test was not significant. Instead, the 
researcher should consider the test inconclusive. Contrast this with a Type I error in which the 
researcher erroneously concludes that the null hypothesis is false when, in fact, it is true.

A Type II error can only occur if the null hypothesis is false. If the null hypothesis is false, then the 
probability of a Type II error is called b (“beta”). The probability of correctly rejecting a false null 
hypothesis equals 1 − b and is called statistical power. Power is simply our ability to correctly detect 
an effect that exists. It is influenced by the size of the effect (larger effects are easier to detect), the 
significance level we set (making it easier to reject the null makes it easier to detect an effect, but 
increases the likelihood of a Type I error), and the sample size used (larger samples make it easier to 
reject the null).

Misconceptions in Hypothesis Testing
Misconceptions about significance testing are common. This section lists three important ones.

1. Misconception: The probability value (p value) is the probability that the null hypothesis is 
false. 
Proper interpretation: The probability value (p value) is the probability of a result as extreme 
or more extreme given that the null hypothesis is true. It is the probability of the data given 
the null hypothesis. It is not the probability that the null hypothesis is false.

2. Misconception: A low probability value indicates a large effect. 
Proper interpretation: A low probability value indicates that the sample outcome (or an 
outcome more extreme) would be very unlikely if the null hypothesis were true. A low 
probability value can occur with small effect sizes, particularly if the sample size is large.

3. Misconception: A non-significant outcome means that the null hypothesis is probably true. 
Proper interpretation: A non-significant outcome means that the data do not conclusively 
demonstrate that the null hypothesis is false.
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EXERCISES
1. In your own words, explain what the null hypothesis is.

2. What are Type I and Type II errors?

3. What is a?

4. Why do we phrase null and alternative hypotheses with population parameters and not sample 
means?

5. If our null hypothesis is “H0 : m = 40,” what are the three possible alternative hypotheses?

6. Why do we state our hypotheses and decision criteria before we collect our data?

7. Why do you calculate an effect size?

8. Determine whether you would reject or fail to reject the null hypothesis in the following 
situations:

a. z = 1.99, two-tailed test at a = .05
b. z = 0.34, z* = 1.645
c. p = .03, a = .05
d. p = .015, a = .01

9. You are part of a trivia team and have tracked your team’s performance since you started playing, 
so you know that your scores are normally distributed with m = 78 and s = 12. Recently, a new 
person joined the team, and you think the scores have gotten better. Use hypothesis testing to 
see if the average score has improved based on 9 weeks’ worth of score data where M is 88.75.

10. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 
on average but vary about $12 (m = 42, s = 12). You decide to track your tips to see if you make a 
different amount, but because this is your first job as a server, you don’t know if you will make 
more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 
from tips. Test for a difference between this value and the population mean at the a = .05 level of 
significance.

ANSWERS TO ODD-NUMBERED EXERCISES
1. Your answer should include mention of the baseline assumption of no difference between the 

sample and the population.

3. Alpha is the significance level. It is the criterion we use when deciding to reject or fail to 
reject the null hypothesis, corresponding to a given proportion of the area under the normal 
distribution and a probability of finding extreme scores assuming the null hypothesis is true.

5. HA: m ≠ 40, HA: m > 40, HA: m < 40
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7. We always calculate an effect size to see if our research is practically meaningful or important. 
NHST (null hypothesis significance testing) is influenced by sample size but effect size is not; 
therefore, they provide complimentary information.

9. Step 1: H0 : m = 78 “The average score is not different after the new person joined,” HA: m > 78 
“The average score has gone up since the new person joined.”  

Step 2: One-tailed test to the right, assuming a = .05, z* = 1.645  

Step 3: M = 88.75, �� = 4.00, z = 2.69  

Step 4: z > z*, reject H0. Based on 9 weeks of games, we can conclude that our average score 
(M = 88.75) is higher now that the new person is on the team, z = 2.69, p < .05, d = 0.90. 

 (“Null Hypothesis” by Randall Munroe/xkcd.com 
is licensed under CC BY-NC 2.5.)
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CHAPTER 8 

Introduction to t Tests
KEY TERMS
confidence interval margin of error point estimate

In Chapter 7, we made a big leap from basic descriptive statistics into full hypothesis testing and 
inferential statistics. For the rest of the unit, we will be learning new tests, each of which is just a 
small adjustment on the test before it. In this chapter, we will learn about the first of three t tests, and 
we will learn a new method of testing the null hypothesis: confidence intervals.

THE t STATISTIC
In Chapter 7, we were introduced to hypothesis testing using the z statistic for sample means that we 
learned in Unit 1. This was a useful way to link the material and ease us into the new way to looking 
at data, but it isn’t a very common test because it relies on knowing the population’s standard 
deviation, s, which is rarely going to be the case. Instead, we will estimate that parameter s using 
the sample statistic s in the same way that we estimate m using M (m will still appear in our formulas 
because we suspect something about its value and that is what we are testing). Our new statistic is 
called t, and for testing one population mean using a single sample (called a one-sample t test) it 
takes the form:

t M
s

M
s
n

M
�

�
�

�� �

Notice that t looks almost identical to z; this is because they test the exact same thing: the value of a 
sample mean compared to what we expect of the population. The only difference is that the standard 
error is now denoted sM  to indicate that we use the sample statistic for standard deviation, s, instead 
of the population parameter s. The process of using and interpreting the standard error and the full 
test statistic remain exactly the same.

In Chapter 3 we learned that the formulas for sample standard deviation and population standard 
deviation differ by one key factor: the denominator for the parameter is N but the denominator for 
the statistic is N − 1, also known as degrees of freedom, df. Because we are using a new measure of 
spread, we can no longer use the standard normal distribution and the z table to find our critical 
values. For t tests, we will use the t distribution and t table to find these values.

The t distribution, like the standard normal distribution, is symmetric and normally distributed with 
a mean of 0 and standard error (as the measure of standard deviation for sampling distributions) 
of 1. However, because the calculation of standard error uses degrees of freedom, there will be a 
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different t distribution for every degree of freedom. Luckily, they all work exactly the same, so in 
practice this difference is minor.

FIGURE 8.1 shows four curves: a normal distribution curve labeled z, and three t distribution 
curves for 2, 10, and 30 degrees of freedom. Two things should stand out: First, for lower degrees 
of freedom (e.g., 2), the tails of the distribution are much fatter, meaning the a larger proportion 
of the area under the curve falls in the tail. This means that we will have to go farther out into 
the tail to cut off the portion corresponding to 5% or a = .05, which will in turn lead to higher 
critical values. Second, as the degrees of freedom increase, we get closer and closer to the z curve. 
Even the distribution with df = 30, corresponding to a sample size of just 31 people, is nearly 
indistinguishable from z. In fact, a t distribution with infinite degrees of freedom (theoretically, of 
course) is exactly the standard normal distribution. Because of this, the bottom row of the t table 
also includes the critical values for z tests at the specific significance levels. Even though these 
curves are very close, it is still important to use the correct table and critical values, because small 
differences can add up quickly.

The t distribution table lists critical values for one- and two-tailed tests at several levels of 
significance, arranged into columns. The rows of the t table list degrees of freedom up to df = 100 
in order to use the appropriate distribution curve. It does not, however, list all possible degrees of 
freedom in this range, because that would take too many rows. Above df = 40, the rows jump in 
increments of 10. If a problem requires you to find critical values and the exact degrees of freedom is 
not listed, you always round down to the next smallest number. For example, if you have 48 people 
in your sample, the degrees of freedom are N − 1 = 48 − 1 = 47; however, 47 doesn’t appear on our 

FIGURE 8.1. Distributions comparing effects of degrees of freedom.  (“Distributions Comparing Effects of Degrees of 
Freedom” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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table, so we round down and use the critical values for df = 40, even though 50 is closer. We do 
this because it avoids inflating Type I error (false positives, see Chapter 7) by using criteria that are 
too lax.

HYPOTHESIS TESTING WITH t
Hypothesis testing with the t statistic works exactly the same way as z tests did, following the four-
step process of (1) stating the hypotheses, (2) finding the critical values, (3) computing the test 
statistic and effect size, and (4) making the decision. 

EXAMPLE  Oil Change Speed
We will work though an example: Let’s say that you move to a new city and find an auto shop to 
change your oil. Your old mechanic did the job in about 30 minutes (although you never paid close 
enough attention to know how much that varied), and you suspect that your new shop takes much 
longer. After four oil changes, you think you have enough evidence to demonstrate this.

STEP 1: State the Hypotheses
Our hypotheses for one-sample t tests are identical to those we used for z tests. We still state the null 
and alternative hypotheses mathematically in terms of the population parameter and written out in 
readable English. For our example:

H
H

0

0

: There is no di�erence in the average time to change a car’s oil
: � 30�

HA : This shop takes longer to change oil than your old mechanic
HHA : � � 30

STEP 2: Find the Critical Values
As noted above, our critical values still delineate the area in the tails under the curve corresponding 
to our chosen level of significance. Because we have no reason to change significance levels, we will 
use a = .05, and because we suspect a direction of effect, we have a one-tailed test. To find our critical 
values for t, we need to add one more piece of information: the degrees of freedom. For this example:

df N� � � � �1 4 1 3

Going to our t table, a portion of which is found in TABLE 8.1, we locate the column corresponding 
to our one-tailed significance level of .05 and find where it intersects with the row for 3 degrees of 
freedom. As we can see in TABLE 8.1, our critical value is t* = 2.353. (The complete t table can be 
found in Appendix B.)

We can then shade this region on our t distribution to visualize our rejection region (FIGURE 8.2).

TABLE 8.1. t distribution table (t table).

df

PROPORTION (aa) IN ONE TAIL

.25 .20 .15 .10 .05 .025 .01 .005 .0005

PROPORTION (aa) IN TWO TAILS COMBINED

.50 .40 .30 .20 .10 .05 .02 .01 .001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.578
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.600
3 0.765 1.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924
4 0.741 1.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869

Adapted from “Tabla t” by Jsmura/Wikimedia Commons, CC BY-SA 4.0. 

FIGURE 8.2. rejection region. 
 (“Rejection Region t2.353” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

t

t = 2.353

118 • HYPOTHESIS TESTING Unit 2

https://commons.wikimedia.org/wiki/File:Tabla_t.png
https://creativecommons.org/licenses/by-sa/4.0/
https://irl.umsl.edu/oer-img/73
https://creativecommons.org/licenses/by-nc-sa/4.0/


table, so we round down and use the critical values for df = 40, even though 50 is closer. We do 
this because it avoids inflating Type I error (false positives, see Chapter 7) by using criteria that are 
too lax.

HYPOTHESIS TESTING WITH t
Hypothesis testing with the t statistic works exactly the same way as z tests did, following the four-
step process of (1) stating the hypotheses, (2) finding the critical values, (3) computing the test 
statistic and effect size, and (4) making the decision. 

EXAMPLE  Oil Change Speed
We will work though an example: Let’s say that you move to a new city and find an auto shop to 
change your oil. Your old mechanic did the job in about 30 minutes (although you never paid close 
enough attention to know how much that varied), and you suspect that your new shop takes much 
longer. After four oil changes, you think you have enough evidence to demonstrate this.

STEP 1: State the Hypotheses
Our hypotheses for one-sample t tests are identical to those we used for z tests. We still state the null 
and alternative hypotheses mathematically in terms of the population parameter and written out in 
readable English. For our example:

H
H

0

0

: There is no di�erence in the average time to change a car’s oil
: � 30�

HA : This shop takes longer to change oil than your old mechanic
HHA : � � 30

STEP 2: Find the Critical Values
As noted above, our critical values still delineate the area in the tails under the curve corresponding 
to our chosen level of significance. Because we have no reason to change significance levels, we will 
use a = .05, and because we suspect a direction of effect, we have a one-tailed test. To find our critical 
values for t, we need to add one more piece of information: the degrees of freedom. For this example:

df N� � � � �1 4 1 3

Going to our t table, a portion of which is found in TABLE 8.1, we locate the column corresponding 
to our one-tailed significance level of .05 and find where it intersects with the row for 3 degrees of 
freedom. As we can see in TABLE 8.1, our critical value is t* = 2.353. (The complete t table can be 
found in Appendix B.)

We can then shade this region on our t distribution to visualize our rejection region (FIGURE 8.2).

TABLE 8.1. t distribution table (t table).

df

PROPORTION (aa) IN ONE TAIL

.25 .20 .15 .10 .05 .025 .01 .005 .0005

PROPORTION (aa) IN TWO TAILS COMBINED

.50 .40 .30 .20 .10 .05 .02 .01 .001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.578
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.600
3 0.765 1.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924
4 0.741 1.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869

Adapted from “Tabla t” by Jsmura/Wikimedia Commons, CC BY-SA 4.0. 

FIGURE 8.2. rejection region. 
 (“Rejection Region t2.353” by Judy Schmitt 
is licensed under CC BY-NC-SA 4.0.)
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t = 2.353

STEP 3: Calculate the Test Statistic and Effect Size
The four wait times you experienced for your oil changes at the new shop were 46 minutes, 
58 minutes, 40 minutes, and 71 minutes. We will use these to calculate M and s by first filling in the 
sum of squares in TABLE 8.2.

TABLE 8.2. Sum of squares.

X X − M (X − M)2

46 −7.75 60.06
58 4.25 18.06
40 −13.75 189.06
71 17.25 297.56

Σ = 215 Σ = 0 Σ = 564.74
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After filling in the first row to get ΣX = 215, we find that the mean is M = 53.75 (215 divided by 
sample size 4), which allows us to fill in the rest of the table to get our sum of squares SS = 564.74, 
which we then plug in to the formula for standard deviation from Chapter 3:

s
X M
N

SS
df

�
�
�

� � ��( ) . .
2

1
564 74

3
13 72

Next, we take this value and plug it in to the formula for standard error:

s s
n

M = = =
13 72

2
6 86. .

And, finally, we put the standard error, sample mean, and null hypothesis value into the formula for 
our test statistic t:

t M
sM

�
�

�
�

� �
� 53 75 30

6 86
23 75
6 68

3 46.
.

.
.

.

This may seem like a lot of steps, but it is really just taking our raw data to calculate one value at a 
time and carrying that value forward into the next equation: data → sample size/degrees of freedom 
→ mean → sum of squares → standard deviation → standard error → test statistic. At each step, 
we simply match the symbols of what we just calculated to where they appear in the next formula to 
make sure we are plugging everything in correctly.

Next we need to calculate an effect size, which is still Cohen’s d, but now we use s in place of s:

d M
s

�
�

�
�

�
� 53 75 30 00

13 72
1 73. .

.
.

This is a large effect. It should also be noted that for some things, like the minutes in our current 
example, we can also interpret the magnitude of the difference we observed (23 minutes and 
45 seconds) as an indicator of importance since time is a familiar metric.

STEP 4: Make the Decision
Now that we have our critical value and test statistic, we can make our decision using the same 
criteria we used for a z test. Our obtained t statistic was t = 3.46 and our critical value was t* = 2.353: 
t > t*, so we reject the null hypothesis and conclude:

Based on our four oil changes, the new mechanic takes longer on average (M = 53.75, 
SD = 13.72) to change oil than our old mechanic, and the effect size was large, t(3) = 3.46, 
p < .05, d = 1.74.

Notice that we also include the degrees of freedom in parentheses next to t. FIGURE 8.3 shows the 
output from JASP. 

FIGURE 8.3. Output from JaSp for the one-
sample t test described in this example. the 
output provides the t value (3.462), degrees 
of freedom (3), and the exact p value (.020, 
which is less than .05).  note that the mean 
(53.750) and standard deviation for the sample 
are also provided (13.720). Based on our four 
oil changes, the new mechanic takes longer 
on average (M = 53.75, SD = 13.72) to change 
oil than our old mechanic, t(3) = 3.46, p = .02. 
note: Cohen’s d is not shown as JaSp does 
not provide that value for a one-sample t test. 
 (“JASP 1-sample t test” by Rupa G. Gordon/Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)
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make sure we are plugging everything in correctly.

Next we need to calculate an effect size, which is still Cohen’s d, but now we use s in place of s:
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This is a large effect. It should also be noted that for some things, like the minutes in our current 
example, we can also interpret the magnitude of the difference we observed (23 minutes and 
45 seconds) as an indicator of importance since time is a familiar metric.

STEP 4: Make the Decision
Now that we have our critical value and test statistic, we can make our decision using the same 
criteria we used for a z test. Our obtained t statistic was t = 3.46 and our critical value was t* = 2.353: 
t > t*, so we reject the null hypothesis and conclude:

Based on our four oil changes, the new mechanic takes longer on average (M = 53.75, 
SD = 13.72) to change oil than our old mechanic, and the effect size was large, t(3) = 3.46, 
p < .05, d = 1.74.

Notice that we also include the degrees of freedom in parentheses next to t. FIGURE 8.3 shows the 
output from JASP. 

FIGURE 8.3. Output from JaSp for the one-
sample t test described in this example. the 
output provides the t value (3.462), degrees 
of freedom (3), and the exact p value (.020, 
which is less than .05).  note that the mean 
(53.750) and standard deviation for the sample 
are also provided (13.720). Based on our four 
oil changes, the new mechanic takes longer 
on average (M = 53.75, SD = 13.72) to change 
oil than our old mechanic, t(3) = 3.46, p = .02. 
note: Cohen’s d is not shown as JaSp does 
not provide that value for a one-sample t test. 
 (“JASP 1-sample t test” by Rupa G. Gordon/Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)

CONFIDENCE INTERVALS
Up to this point, we have learned how to estimate the population parameter for the mean using 
sample data and a sample statistic. From one point of view, this makes sense: we have one value for 
our parameter so we use a single value (called a point estimate) to estimate it. However, we have 
seen that all statistics have sampling error and that the value we find for the sample mean will bounce 
around based on the people in our sample, simply due to random chance. Thinking about estimation 
from this perspective, it would make more sense to take that error into account rather than relying 
just on our point estimate. To do this, we calculate what is known as a confidence interval.

A confidence interval starts with our point estimate and then creates a range of scores considered 
plausible based on our standard deviation, our sample size, and the level of confidence with which 
we would like to estimate the parameter. This range, which extends equally in both directions 
away from the point estimate, is called the margin of error. We calculate the margin of error by 
multiplying our two-tailed critical value by our standard error:

Margin of error *�
�

�
�

�

�
�t s

n

One important consideration when calculating the margin of error is that it can only be calculated 
using the critical value for a two-tailed test. This is because the margin of error moves away from the 
point estimate in both directions, so a one-tailed value does not make sense.

The critical value we use will be based on a chosen level of confidence, which is equal to 1 − a. Thus, 
a 95% level of confidence corresponds to a = .05. Thus, at the .05 level of significance, we create a 
95% confidence interval. How to interpret that is discussed further on.
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Once we have our margin of error calculated, we add it to our point estimate for the mean to get an 
upper bound to the confidence interval and subtract it from the point estimate for the mean to get a 
lower bound for the confidence interval:

Upper bound Margin of error
Lower bound Margin of error

� �
� �

M
M

or simply:

Confidence interval *� �
�

�
�

�

�
�M t s

n

To write out a confidence interval, we always use round brackets (i.e., parentheses) and put the lower 
bound, a comma, and the upper bound:

Confidence interval (Lower bound, Upper bound)=

Let’s see what this looks like with some actual numbers by taking our oil change data and using it to 
create a 95% confidence interval estimating the average length of time it takes at the new mechanic. 
We already found that our average was M = 53.75 and our standard error was sM  = 6.86. We also 
found a critical value to test our hypothesis, but remember that we were testing a one-tailed 
hypothesis, so that critical value won’t work. To see why that is, look at the column headers on the 
t table. The column for one-tailed a = .05 is the same as a two-tailed a = .10. If we used the old 
critical value, we’d actually be creating a 90% confidence interval (1.00 − 0.10 = 0.90, or 90%). To 
find the correct value, we use the column for two-tailed a = .05 and, again, the row for 3 degrees of 
freedom, to find t* = 3.182.

Now we have all the pieces we need to construct our confidence interval:

95 53 75 3 182 6 86% . . ( . )CI � �

Upper bound � �
� �
�

53 75 3 182 6 86
53 75 21 83
75 58

. . ( . )

. .

.

Lower bound � �
� �
�

53 75 3 182 6 86
53 75 21 83
31 92

. . ( . )

. .

.

95 31 92 75 58% ( . , . )CI =
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So we find that our 95% confidence interval runs from 31.92 minutes to 75.58 minutes, but what 
does that actually mean? The range (31.92, 75.58) represents values of the mean that we consider 
reasonable or plausible based on our observed data. It includes our point estimate of the mean, 
M = 53.75, in the center, but it also has a range of values that could also have been the case based on 
what we know about how much these scores vary (i.e., our standard error).

It is very tempting to also interpret this interval by saying that we are 95% confident that the true 
population mean falls within the range (31.92, 75.58), but this is not true. The reason it is not true 
is that phrasing our interpretation this way suggests that we have firmly established an interval 
and the population mean does or does not fall into it, suggesting that our interval is firm and the 
population mean will move around. However, the population mean is an absolute that does not 
change; it is our interval that will vary from data collection to data collection, even taking into 
account our standard error. The correct interpretation, then, is that we are 95% confident that the 
range (31.92, 75.58) brackets the true population mean. This is a very subtle difference, but it is an 
important one.

Hypothesis Testing with Confidence Intervals
As a function of how they are constructed, we can also use confidence intervals to test hypotheses. 
However, we are limited to testing two-tailed hypotheses only, because of how the intervals work, as 
discussed above.

Once a confidence interval has been constructed, using it to test a hypothesis is simple. If the range 
of the confidence interval brackets (or contains, or is around) the null hypothesis value, we fail to 
reject the null hypothesis. If it does not bracket the null hypothesis value (i.e., if the entire range is 
above the null hypothesis value or below it), we reject the null hypothesis. The reason for this is clear 
if we think about what a confidence interval represents. Remember: a confidence interval is a range 
of values that we consider reasonable or plausible based on our data. Thus, if the null hypothesis 
value is in that range, then it is a value that is plausible based on our observations. If the null 
hypothesis is plausible, then we have no reason to reject it. Thus, if our confidence interval brackets 
the null hypothesis value, thereby making it a reasonable or plausible value based on our observed 
data, then we have no evidence against the null hypothesis and fail to reject it. However, if we build 
a confidence interval of reasonable values based on our observations and it does not contain the null 
hypothesis value, then we have no empirical (observed) reason to believe the null hypothesis value 
and therefore reject the null hypothesis.

EXAMPLE  Friendliness
You hear that the national average on a measure of friendliness is 38 points. You want to know if 
people in your community are more or less friendly than people nationwide, so you collect data 
from 30 random people in town to look for a difference. We’ll follow the same four-step hypothesis-
testing procedure as before.

Chapter 8 INTRODUCTION TO t TESTS • 123



STEP 1: State the Hypotheses
We will start by laying out our null and alternative hypotheses:

H0: There is no difference in how friendly the local community is comppared to the national average
:H0 38� �

HA : There is a difference in how friendly the local community is compaared to the national average
:AH � � 38

STEP 2: Find the Critical Values
We need our critical values in order to determine the width of our margin of error. We will assume 
a significance level of a = .05 (which will give us a 95% CI). From the t table, a two-tailed critical 
value at a = .05 with 29 degrees of freedom (N − 1 = 30 − 1 = 29) is t* = 2.045.

STEP 3: Calculate the Confidence Interval
Now we can construct our confidence interval. After we collect our data, we find that the average 
person in our community scored 39.85, or M = 39.85, and our standard deviation was s = 5.61. First, 
we need to use this standard deviation, plus our sample size of N = 30, to calculate our standard error:

s s
n

M = = =
5 61
5 48

1 02.
.

.

Now we can put that value, our point estimate for the sample mean, and our critical value from 
Step 2 into the formula for a confidence interval:

95 39 85 2 045 1 02% . . ( . )CI � �

Upper bound � �
� �
�

39 85 2 045 1 02
39 85 2 09
41 94

. . ( . )

. .

.

Lower bound � �
� �
�

39 85 2 045 1 02
39 85 2 09
37 76

. . ( . )

. .

.

95 37 76 41 94% ( . , . )CI =

STEP 4: Make the Decision
Finally, we can compare our confidence interval to our null hypothesis value. The null value of 
38 is higher than our lower bound of 37.76 and lower than our upper bound of 41.94. Thus, the 
confidence interval brackets our null hypothesis value, and we fail to reject the null hypothesis:
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Fail to reject H0. Based on our sample of 30 people, our community is not different in average 
friendliness (M = 39.85, SD = 5.61) than the nation as a whole, 95% CI = (37.76, 41.94).

Note that we don’t report a test statistic or p value because that is not how we tested the hypothesis, 
but we do report the value we found for our confidence interval.

An important characteristic of hypothesis testing is that both methods will always give you the same 
result. That is because both are based on the standard error and critical values in their calculations. 
To check this, we can calculate a t statistic for the example above and find it to be t = 1.81, which is 
smaller than our critical value of 2.045 and fails to reject the null hypothesis.

Confidence Intervals Using z
Confidence intervals can also be constructed using z score criteria, if one knows the population 
standard deviation. The format, calculations, and interpretation are all exactly the same, only 
replacing t* with z* and sM  with sM .

EXERCISES
1. What is the difference between a z test and a one-sample t test?

2. What does a confidence interval represent?

3. What is the relationship between a chosen level of confidence for a confidence interval and how 
wide that interval is? For instance, if you move from a 95% CI to a 90% CI, what happens? Hint: 
look at the t table to see how critical values change when you change levels of significance.

4. Construct a confidence interval around the sample mean M = 25 for the following conditions:
a. N = 25, s = 15, 95% confidence level
b. N = 25, s = 15, 90% confidence level
c. sM  = 4.5, a = .05, df = 20
d. s = 12, df = 16 (yes, that is all the information you need)

5. True or false: A confidence interval represents the most likely location of the true population 
mean.

6. You hear that college campuses may differ from the general population in terms of political 
affiliation, and you want to use hypothesis testing to see if this is true and, if so, how big the 
difference is. You know that the average political affiliation in the nation is m = 4.00 on a scale of 
1.00 to 7.00, so you gather data from 150 college students across the nation to see if there is a 
difference. You find that the average score is 3.76 with a standard deviation of 1.52. Use a one-
sample t test to see if there is a difference at the a = .05 level.
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8. Determine whether you would reject or fail to reject the null hypothesis in the following 
situations:

a. t = 2.58, N = 21, two-tailed test at a = .05
b. t = 1.99, N = 49, one-tailed test at a = .01
c. m = 47.82, 99% CI = (48.71, 49.28)
d. m = 0, 95% CI = (−0.15, 0.20)

9. You are curious about how people feel about craft beer, so you gather data from 55 people in 
the city on whether or not they like it. You code your data so that 0 is neutral, positive scores 
indicate liking craft beer, and negative scores indicate disliking craft beer. You find that the 
average opinion was M = 1.10 and the spread was s = 0.40, and you test for a difference from 0 at 
the a = .05 level.

10. You want to know if college students have more stress in their daily lives than the general 
population (m = 12), so you gather data from 25 people to test your hypothesis. Your sample has 
an average stress score of M = 13.11 and a standard deviation of s = 3.89. Use a one-sample t test 
to see if there is a difference.

7. You hear a lot of talk about increasing global temperature, so you decide to see for yourself if 
there has been an actual change in recent years. You know that the average land temperature 
from 1951-1980 was 8.79 degrees Celsius. You find annual average temperature data from 
1981–2017 and decide to construct a 99% confidence interval (because you want to be as sure 
as possible and look for differences in both directions, not just one) using this data to test for a 
difference from the previous average.

Year Temp

1981 9.301
1982 8.788
1983 9.173
1984 8.824
1985 8.799
1986 8.985
1987 9.141
1988 9.345
1989 9.076
1990 9.378

Year Temp

1991 9.336
1992 8.974
1993 9.008
1994 9.175
1995 9.484
1996 9.168
1997 9.326
1998 9.660
1999 9.406
2000 9.332

Year Temp

2001 9.542
2002 9.695
2003 9.649
2004 9.451
2005 9.829
2006 9.662
2007 9.876
2008 9.581
2009 9.657
2010 9.828

Year Temp

2011 9.650
2012 9.635
2013 9.753
2014 9.714
2015 9.962
2016 10.160
2017 10.049

126 • HYPOTHESIS TESTING Unit 2



ANSWERS TO ODD-NUMBERED EXERCISES
1. A z test uses population standard deviation for calculating standard error and gets critical 

values based on the standard normal distribution. A t test uses sample standard deviation as an 
estimate when calculating standard error and gets critical values from the t distribution based on 
degrees of freedom.

3. As the level of confidence gets higher, the interval gets wider. In order to speak with more 
confidence about having found the population mean, you need to cast a wider net. This happens 
because critical values for higher confidence levels are larger, which creates a wider margin of 
error.

5. False. A confidence interval is a range of plausible scores that may or may not bracket the true 
population mean.

7. M = 9.44, s = 0.35, sM  = 0.06, df = 36, t* = 2.719, 99% CI = (9.28, 9.60); CI does not bracket m, 
reject null hypothesis; d = 1.83

9. Step 1: H0: m = 0 “The average person has a neutral opinion toward craft beer,” HA: m ≠ 0 
“Overall, people will have an opinion about craft beer, either good or bad.”  

Step 2: Two-tailed test, df = 54, t* = 2.009  

Step 3: M = 1.10, sM  = 0.05, t = 22.00  

Step 4: t > t*, reject H0. Based on opinions from 55 people, we can conclude that the average 
opinion of craft beer (M = 1.10) is positive, t(54) = 22.00, p < .05, d = 2.75. 

 (“P-Values” by Randall Munroe/xkcd.com 
is licensed under CC BY-NC 2.5.)
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CHAPTER 9 

Related Samples
KEY TERMS
difference score matched pairs related samples

So far, we have dealt with data measured on a single variable at a single point in time, allowing us 
to gain an understanding of the logic and process behind statistics and hypothesis testing. Now, 
we will look at a slightly different type of data that has new information we couldn’t get at before: 
change. Specifically, we will look at how the value of a variable, within people, changes across two 
time points. This is a very powerful thing to do, and, as we will see shortly, it involves only a very 
slight addition to our existing process and does not change the mechanics of hypothesis testing or 
formulas at all!

CHANGE AND DIFFERENCES
Researchers are often interested in change over time. Sometimes we want to see if change occurs 
naturally, and other times we are hoping for change in response to some manipulation. In each of 
these cases, we measure a single variable at different times, and what we are looking for is whether 
or not we get the same score at Time 2 as we did at Time 1. The absolute value of our measurements 
does not matter—all that matters is the change, or the difference score. Let’s look at an example.

TABLE 9.1 shows scores on a quiz that five employees received before they took a training course and 
after they took the course. The difference between these scores (i.e., the score after minus the score 
before) represents improvement in the employees’ ability. The third column is what we look at when 
assessing whether our training was effective. We want to see positive scores, which indicate that 
the employees’ performance went up. What we are not interested in is how good they were before 
the training or after the training. Notice that the lowest-scoring employee before the training (with 
a score of 1) improved just as much as the highest scoring employee before the training (with a 
score of 8), regardless of how far apart they were to begin with. There’s also one improvement score 
of 0, meaning that the training did not help this employee. An important factor in this is that the 

participants received the same assessment at both time points. To calculate improvement or any 
other difference score, we must measure only a single variable.

When looking at change scores like the ones in TABLE 9.1, we calculate our difference scores by 
taking the Time 2 score and subtracting the Time 1 score. That is:

X X XD T T� �2 1

Where XD is the difference score, XT1 is the score on the variable at Time 1, and XT2 is the score 
on the variable at Time 2. The difference score, XD, will be the data we use to test for improvement 
or change. We subtract Time 2 minus Time 1 for ease of interpretation; if scores get better, then 
the difference score will be positive. Similarly, if we’re measuring something like reaction time or 
depression symptoms that we are trying to reduce, then better outcomes (lower scores) will yield 
negative difference scores.

While we frequently use difference scores for data that are collected from the same participants 
twice, we can also test to see if people who are matched or paired in some way agree on a specific 
topic. These are called matched pairs data. For example, we can see if a parent and a child agree on 
the quality of home life, or we can see if two romantic partners agree on how serious and committed 
their relationship is. In these situations, we also subtract one score from the other to get a difference 
score. This time, however, it doesn’t matter which score we subtract from the other because what we 
are concerned with is the agreement.

In both of these types of data, what we have are multiple scores on a single variable. That is, a 
single observation or data point is comprised of two measurements that are put together into 
one difference score. This is what makes the analysis of change unique—our ability to link these 
measurements in a meaningful way. This type of analysis would not work if we had two separate 
samples of people that weren’t related at the individual level, such as samples of people from different 
states that we gathered independently. Such datasets and analyses are the subject of Chapter 10.

A Rose by Any Other Name . . .
It is important to point out that the related samples t test has been called many different things by 
many different people over the years: related samples, paired samples, matched pairs, repeated measures, 
dependent measures, dependent samples, and many others. What all of these names have in common 
is that they describe the analysis of two scores that are related in a systematic way within people or 
within pairs, which is what each of the datasets usable in this analysis have in common. As such, all of 
these names are equally appropriate, and the choice of which one to use comes down to preference. In 
this text, we will refer to related samples, though the appearance of any of the other names throughout 
this chapter should not be taken to refer to a different analysis; they are all the same thing.

Now that we have an understanding of what difference scores are and know how to calculate them, 
we can use them to test hypotheses. As we will see, this works exactly the same way as testing 
hypotheses about one sample mean with a t statistic. The only difference is in the format of the null 
and alternative hypotheses.

TABLE 9.1. raw and difference scores before and after training.

Before After Improvement

6 9 3
7 7 0
4 10 6
1 3 2
8 10 2
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Where XD is the difference score, XT1 is the score on the variable at Time 1, and XT2 is the score 
on the variable at Time 2. The difference score, XD, will be the data we use to test for improvement 
or change. We subtract Time 2 minus Time 1 for ease of interpretation; if scores get better, then 
the difference score will be positive. Similarly, if we’re measuring something like reaction time or 
depression symptoms that we are trying to reduce, then better outcomes (lower scores) will yield 
negative difference scores.

While we frequently use difference scores for data that are collected from the same participants 
twice, we can also test to see if people who are matched or paired in some way agree on a specific 
topic. These are called matched pairs data. For example, we can see if a parent and a child agree on 
the quality of home life, or we can see if two romantic partners agree on how serious and committed 
their relationship is. In these situations, we also subtract one score from the other to get a difference 
score. This time, however, it doesn’t matter which score we subtract from the other because what we 
are concerned with is the agreement.

In both of these types of data, what we have are multiple scores on a single variable. That is, a 
single observation or data point is comprised of two measurements that are put together into 
one difference score. This is what makes the analysis of change unique—our ability to link these 
measurements in a meaningful way. This type of analysis would not work if we had two separate 
samples of people that weren’t related at the individual level, such as samples of people from different 
states that we gathered independently. Such datasets and analyses are the subject of Chapter 10.

A Rose by Any Other Name . . .
It is important to point out that the related samples t test has been called many different things by 
many different people over the years: related samples, paired samples, matched pairs, repeated measures, 
dependent measures, dependent samples, and many others. What all of these names have in common 
is that they describe the analysis of two scores that are related in a systematic way within people or 
within pairs, which is what each of the datasets usable in this analysis have in common. As such, all of 
these names are equally appropriate, and the choice of which one to use comes down to preference. In 
this text, we will refer to related samples, though the appearance of any of the other names throughout 
this chapter should not be taken to refer to a different analysis; they are all the same thing.

Now that we have an understanding of what difference scores are and know how to calculate them, 
we can use them to test hypotheses. As we will see, this works exactly the same way as testing 
hypotheses about one sample mean with a t statistic. The only difference is in the format of the null 
and alternative hypotheses.

TABLE 9.1. raw and difference scores before and after training.

Before After Improvement

6 9 3
7 7 0
4 10 6
1 3 2
8 10 2
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HYPOTHESES OF CHANGE AND DIFFERENCES
When we work with difference scores, our research questions have to do with change. Did scores 
improve? Did symptoms get better? Did prevalence go up or down? Our hypotheses will reflect this. 
Remember that the null hypothesis is the idea that there is nothing interesting, notable, or impactful 
represented in our dataset. In a related samples t test, that takes the form of “no change.” There is no 
improvement in scores or decrease in symptoms. Thus, our null hypothesis is:

H
H

0

0 0
: There is no change or difference

: D� �

As with our other null hypotheses, we express the null hypothesis for related samples t tests in both 
words and mathematical notation. The exact wording of the written-out version should be changed 
to match whatever research question we are addressing (e.g., “There is no change in ability scores 
after training”). However, the mathematical version of the null hypothesis is always exactly the same: 
the average change score is equal to zero. Our population parameter for the average is still m, but it 
now has a subscript D to denote the fact that it is the average change score and not the average raw 
observation before or after our manipulation. Obviously, individual difference scores can go up or 
down, but the null hypothesis states that these positive or negative change values are just random 
chance and that the true average change score across all people is 0.

Our alternative hypotheses will also follow the same format that they did before: they can be 
directional if we suspect a change or difference in a specific direction, or we can use an inequality 
sign to test for any change:

H
H

A

A D

: There is a change or difference
: � � 0

H
H

A

A D

: The average score increases
: � � 0

H
H

A

A D

: The average score decreases
: � � 0

As before, your choice of which alternative hypothesis to use should be specified before you collect 
data based on your research question and any evidence you might have that would indicate a 
specific directional (or non-directional) change.

Critical Values and Decision Criteria
As with before, once we have our hypotheses laid out, we need to find the critical values that will 
serve as our decision criteria. This step has not changed at all from Chapter 8. Our critical values 
are based on our level of significance (still usually a = .05), the directionality of our test (one-tailed 
or two-tailed), and the degrees of freedom, which are still calculated as df = n − 1. Because this is a 
t test like the last chapter, we will find our critical values on the same t table using the same process 
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of identifying the correct column based on our significance level and directionality and the correct 
row based on our degrees of freedom or the next lowest value if our exact degrees of freedom are 
not presented. After we calculate our test statistic, our decision criteria are the same as well: p < a 
or tobt > t*.

Test Statistic
Our test statistic for our change scores follows exactly the same format as it did for our one-sample 
t test. In fact, the only difference is in the data that we use. For our change test, we first calculate 
a difference score as shown above. Then, we use those scores as the raw data in the same mean 
calculation, standard error formula, and t statistic. Let’s look at each of these.

The mean difference score is calculated in the same way as any other mean: sum each of the 
individual difference scores and divide by the sample size.

M
X

nD
D� �

Here we are using the subscript D to keep track of that fact that these are difference scores instead of 
raw scores; it has no actual effect on our calculation. Using this, we calculate the standard deviation 
of the difference scores the same way as well:

s
X M

n
SS
dfD

D D�
�� �
�

�� 2

1

We will find the numerator, the sum of squares, using the same table format that we learned in 
Chapter 3. Once we have our standard deviation, we can find the standard error:

s s
n

MD
D=

Finally, our test statistic t has the same structure as well:

t M
sM

�
�D D

D

�

As we can see, once we calculate our difference scores from our raw measurements, everything else 
is exactly the same. Let’s see an example.

EXAMPLE A  Increasing Satisfaction at Work
Workers at a local company have been complaining that working conditions have gotten very 
poor, hours are too long, and they don’t feel supported by the management. The company hires a 
consultant to come in and help fix the situation before it gets so bad that the employees start to quit. 
The consultant first assesses 40 of the employees’ level of job satisfaction as part of focus groups 
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used to identify specific changes that might help. The company institutes some of these changes, 
and six months later the consultant returns to measure job satisfaction again. Knowing that some 
interventions miss the mark and can actually make things worse, the consultant tests for a difference 
in either direction (i.e., and increase or a decrease in average job satisfaction) at the a = .05 level of 
significance.

STEP 1: State the Hypotheses
First, we state our null and alternative hypotheses:

H
H

0

0 0
: There is no change in average job satisfaction

: D� �

H
H

A

A D

: There is an increase in average job satisfaction
: � � 0

In this case, we are hoping that the changes we made will improve employee satisfaction, and, 
because we based the changes on employee recommendations, we have good reason to believe that 
they will. Thus, we will use a one-directional alternative hypothesis.

STEP 2: Find the Critical Values
Our critical values will once again be based on our level of significance, which we know is a = .05, 
the directionality of our test, which is one-tailed to the right, and our degrees of freedom. For our 
related-samples t test, the degrees of freedom are still given as df = n − 1. For this problem, we have 
40 people, so our degrees of freedom are 39. Going to our t table, we find that the critical value is 
t* = 1.685 as shown in FIGURE 9.1.

STEP 3: Calculate the Test Statistic and Effect Size
Now that the criteria are set, it is time to calculate the test statistic. The data obtained by the 
consultant found that the difference scores from Time 1 to Time 2 had a mean of MD = 2.96 and a 

FIGURE 9.1. Critical region for one-
tailed t test at a = .05.  (“Critical Region 
t1.685” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

0 1 2 3 4−1−3−4 −2

t

t* = 1.685
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standard deviation of sD = 2.85. Using this information, plus the size of the sample (n = 40), we first 
calculate the standard error:

s s
n

MD
D= = = =

2 85
40

2 85
6 32

0 46. .
.

.

Now, we can put that value, along with our sample mean and null hypothesis value, into the formula 
for t and calculate the test statistic:

t M
sM

�
�

�
�

�D D

D

� 2 96 0
0 46

6 43.
.

.

Notice that, because the null hypothesis value of a related samples t test is always 0, we can simply 
divide our obtained sample mean by the standard error.

Next, we will calculate Cohen’s d as an effect size using the same format as we did for the last t test:

d M
s

�
�

� �D D

D

� 2 96
2 85

1 04.
.

.

This is a large effect size. Notice again that we can omit the null hypothesis value here because it is 
always equal to 0.

STEP 4: Make the Decision
We have obtained a test statistic of t = 6.43 that we can compare to our previously established critical 
value of t* = 1.685. The number 6.43 is larger than 1.685, so t > t* and we reject the null hypothesis:

Reject H0. Based on the sample data from 40 workers, we can say that the intervention 
statistically significantly improved job satisfaction (MD = 2.96, SDD = 2.85) among the workers, 
t(39) = 6.43, p < .05, d = 1.04.

Hopefully, the above example made it clear that running a related samples t test to look for 
differences before and after some treatment works exactly the same way as a regular one-sample 
t test does, which was just a small change in how z tests were performed in Chapter 7. At this point, 
this process should feel familiar, and we will continue to make small adjustments to this familiar 
process as we encounter new types of data to test new types of research questions.

EXAMPLE B  Bad Press
Let’s say that a bank wants to make sure that their new commercial will make them look good 
to the public, so they recruit 7 people to view the commercial as a focus group. The focus group 
members fill out a short questionnaire about how they view the company, then watch the 
commercial and fill out the same questionnaire a second time. The bank really wants to find 
significant results, so they test for a change at a = .10. However, they use a two-tailed test since they 
know that past commercials have not gone over well with the public, and they want to make sure 
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the new one does not backfire. They decide to test their hypothesis using a confidence interval to see 
just how spread-out the opinions are. As we will see, confidence intervals work the same way as they 
did before, just like with the test statistic.

STEP 1: State the Hypotheses
As always, we start with hypotheses:

H
H

0

0 0
: There is no change in how people view the bank

: D� �

H
H

A

A D

: There is a change in how people view the bank
: � � 0

STEP 2: Find the Critical Values
Just like with our regular hypothesis testing procedure, we will need critical values from the 
appropriate level of significance and degrees of freedom in order to form our confidence interval. 
Because we have 7 participants, our degrees of freedom are df = 6. From our t table, we find that the 
critical value corresponding to this df at this level of significance is t* = 1.943.

STEP 3: Calculate the Confidence Interval
The data collected before (Time 1) and after (Time 2) the participants viewed the commercial is 
presented in TABLE 9.2. In order to build our confidence interval, we will first have to calculate the 
mean and standard deviation of the difference scores, which are also in TABLE 9.2. As a reminder, the 
difference scores are calculated as Time 2 − Time 1.

The mean of the difference scores is:

M
X

nD
D� � �� 4

7
0 57.

TABLE 9.2. Opinions about the bank.

Time 1 Time 2 XD

3 2 −1
3 6 3
5 3 −2
8 4 −4
3 9 6
1 2 1
4 5 1
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The standard deviation will be solved by first using the sum of squares table:

XD XD − MD (XD − MD)2

−1 −1.57 2.46
3 2.43 5.90

−2 −2.57 6.60
−4 −4.57 20.88

6 5.43 29.48
1 0.43 0.18
1 0.43 0.18

Σ = 4 Σ = 0 Σ = 65.68

s SS
dfD = = = =

65 68
6

10 95 3 31. . .

Finally, we find the standard error:

s s
n

MD
D= = =

3 31
7

1 25. .

We now have all the pieces needed to compute our confidence interval:

90
0 57 1 943 1 25

% ( )
. . ( . )

*CI D D� �
� �

M t sM

Upper bound � �
� �
�

0 57 1 943 1 25
0 57 2 43
3 00

. . ( . )

. .

.

Lower bound � �
� �
� �

0 57 1 943 1 25
0 57 2 43

1 86

. . ( . )

. .
.

90 1 86 3 00% ( . , . )CI � �

STEP 4: Make the Decision
Remember that the confidence interval represents a range of values that seem plausible or reasonable 
based on our observed data. The interval spans −1.86 to 3.00, which includes 0, our null hypothesis 
value. Because the null hypothesis value is in the interval, it is considered a reasonable value, and 
because it is a reasonable value, we have no evidence against it. We fail to reject the null hypothesis.

Fail to reject H0. Based on our focus group of 7 people, we cannot say that the average change 
in opinion (MD = 0.57, SDD = 3.31) was any better or worse after viewing the commercial, 
90% CI: (−1.86, 3.00).

As with before, we only report the confidence interval to indicate how we performed the test.
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EXERCISES
1. What is the difference between a one-sample t test and a related-samples t test? How are 

they alike?

2. Name three research questions that could be addressed using a related-samples t test.

3. What are difference scores and why do we calculate them?

4. Why is the null hypothesis for a related-samples t test always mD = 0?

5. A researcher is interested in testing whether explaining the processes of statistics helps increase 
trust in computer algorithms. He wants to test for a difference at the a = .05 level and knows that 
some people may trust the algorithms less after the training, so he uses a two-tailed test. He 
gathers pre-post data from 35 people and finds that the average difference score is MD = 12.10 
with a standard deviation of sD = 17.39. Conduct a hypothesis test to answer the research 
question.

6. Decide whether you would reject or fail to reject the null hypothesis in the following situations:
a. MD = 3.50, sD = 1.10, n = 12, a = .05, two-tailed test
b. 95% CI = (0.20, 1.85)
c. t = 2.98, t* = −2.36, one-tailed test to the left
d. 90% CI = (−1.12, 4.36)

7. Calculate difference scores for the following data:

Time 1 Time 2 XD

61 83
75 89
91 98
83 92
74 80
82 88
98 98
82 77
69 88
76 79
91 91
70 80

8. Researchers investigated the extent to which Japanese immigrant mothers encouraged their 
infants to interact with them or with objects in their environment (such as toys). The researchers 
observed 8 mothers with their infants. Data are the number of times that mothers encouraged 
their infants to engage with them or with objects during the observation period. Test the 
hypothesis at the a = .05 level using the four-step hypothesis testing procedure.
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With Mom With Objects

15 40
12 47
14 32
10 50
20 35
28 45
12 42
15 32

9. Construct confidence intervals from a mean of MD = 1.25, standard error of sMD  = 0.45, and 
df = 10 at the 90%, 95%, and 99% confidence levels. Describe what happens as confidence 
changes and whether to reject H0.

10. A professor wants to see how much students learn over the course of a semester. A pre-test is 
given before the class begins to see what students know ahead of time, and the same test is given 
at the end of the semester to see what students know at the end. The data are below. Test for an 
improvement at the a = .05 level. Did scores increase? How much did scores increase?

Pre-test Post-test XD

90 89
60 66
95 99
93 91
95 100
67 64
89 91
90 95
94 95
83 89
75 82
87 92
82 83
82 85
88 93
66 69
90 90
93 100
86 95
91 96
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ANSWERS TO ODD-NUMBERED EXERCISES
1. A one-sample t test uses raw scores to compare an average to a specific value. A related-samples 

t test uses two raw scores from each person to calculate difference scores and test for an average 
difference score that is equal to zero. The calculations, steps, and interpretation are exactly the 
same for each.

3. Difference scores indicate change or discrepancy relative to a single person or pair of people. We 
calculate them to eliminate individual differences in our study of change or agreement.

5. Step 1: H0: m = 0 “The average change in trust of algorithms is 0,” HA: m ≠ 0 “People’s opinions of 
how much they trust algorithms changes.”  

Step 2: Two-tailed test, df = 34, t* = 2.032 

Step 3: MD = 12.10, sMD
 = 2.94, t = 4.12 

Step 4: t > t*, Reject H0. Based on opinions from 35 people, we can conclude that people trust 
algorithms more (MD = 12.10) after learning statistics, t(34) = 4.12, p < .05, d = 0.70, and the 
effect was moderate to large.

7. 
Time 1 Time 2 XD

61 83 22
75 89 14
91 98 7
83 92 9
74 80 6
82 88 6
98 98 0
82 77 −5
69 88 19
76 79 3
91 91 0
70 80 10

9. At the 90% confidence level, t* = 1.812 and CI = (0.43, 2.07) so we reject H0. At the 95% 
confidence level, t* = 2.228 and CI = (0.25, 2.25) so we reject H0. At the 99% confidence level, 
t* = 3.169 and CI = (−0.18, 2.68) so we fail to reject H0. As the confidence level goes up, our 
interval gets wider (which is why we have higher confidence), and eventually we do not reject 
the null hypothesis because the interval is so wide that it contains 0.
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CHAPTER 10 

Independent Samples
KEY TERMS
group mean differences
homogeneity of variance

independent samples pooled variance

We have seen how to compare a single mean against a given value and how to utilize difference 
scores to look for meaningful, consistent change via a single mean difference. Now, we will learn 
how to compare two separate means from groups that do not overlap to see if there is a difference 
between them. The process of testing hypotheses about two means is exactly the same as it is for 
testing hypotheses about a single mean, and the logical structure of the formulas is the same as 
well. However, we will be adding a few extra steps this time to account for the fact that our data are 
coming from different sources.

DIFFERENCE OF MEANS
In Chapter 9, we learned about mean differences, that is, the average value of difference scores. 
Those difference scores came from one group and two time points (or two perspectives). Now, we 
will deal with the difference of the means, that is, the average values of separate groups that are 
represented by separate descriptive statistics. This analysis involves two groups and one time point. 
As with all of our other tests as well, both of these analyses are concerned with a single variable.

It is very important to keep these two tests separate and understand the distinctions between them 
because they assess very different questions and require different approaches to the data. When in 
doubt, think about how the data were collected and where they came from. If they came from two 
time points with the same people (sometimes referred to as “longitudinal” data), you know you are 
working with two data points from the same participant (the measurement was repeated) and will 
use a related samples t test (see Chapter 9). If it came from a single time point that used separate 
groups, you need to look at the nature of those groups and decide whether they are related. Can 
individuals in one group being meaningfully matched up with one and only one individual from the 
other group? For example, are they a romantic couple? If so, we call those data matched pairs and 
we use a related samples t test (Chapter 9). However, if there’s no logical or meaningful way to link 
individuals across groups, or if there is no overlap between the groups, then we say the groups are 
independent and use the independent samples t test, the subject of this chapter.

Research Questions about Independent Means
Many research ideas in the behavioral sciences and other areas of research are concerned with 
whether or not two means are the same or different. Logically, we therefore say that these research 
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questions are concerned with group mean differences. That is, on average, do we expect a person 
from Group A to be higher or lower on some variable than a person from Group B. In any research 
design looking at group mean differences, there are some key criteria we must consider: the groups 
must be mutually exclusive (i.e., you can only be part of one group at any given time), and the 
groups have to be measured on the same variable (i.e., you can’t compare personality in one group to 
reaction time in another group since those values would not be the same anyway).

Let’s look at one of the most common and logical examples: testing a new medication. When a 
new medication is developed, the researchers who created it need to demonstrate that it effectively 
treats the symptoms they are trying to alleviate. The simplest design that will answer this question 
involves two groups: one group that receives the new medication (the “treatment” group) and one 
group that receives a placebo (the “control” group). Participants are randomly assigned to one of 
the two groups (remember that random assignment is the hallmark of a true experiment), and the 
researchers test the symptoms in each person in each group after they received either the medication 
or the placebo. They then calculate the average symptoms in each group and compare them to see if 
the treatment group did better (i.e., had fewer or less severe symptoms) than the control group.

In this example, we had two groups: treatment and control. Membership in these two groups was 
mutually exclusive—each individual participant received either the experimental medication or the 
placebo. No one in the experiment received both, so there was no overlap between the two groups. 
Additionally, each group could be measured on the same variable: symptoms related to the disease 
or ailment being treated. Because each group was measured on the same variable, the average 
scores in each group could be meaningfully compared. If the treatment was ineffective, we would 
expect that the average symptoms of someone receiving the treatment would be the same as the 
average symptoms of someone receiving the placebo (i.e., there is no difference between the groups). 
However, if the treatment was effective, we would expect fewer symptoms from the treatment group, 
leading to a lower group average.

Now let’s look at an example using groups that already exist. A common, and perhaps salient, 
question is how students feel about their job prospects after graduation. Suppose that we have 
narrowed our potential choice of college down to two universities and, in the course of trying 
to decide between the two, we come across a survey that has data from each university on how 
students at those universities feel about their future job prospects. As with our last example, we have 
two groups: University A and University B, and each participant is in only one of the two groups 
(assuming there are no transfer students who were somehow able to rate both universities). Because 
students at each university completed the same survey, they are measuring the same thing, so we can 
use a t test to compare the average perceptions of students at each university to see if they are the 
same. If they are the same, then we should continue looking for other things about each university 
to help us decide on where to go. But, if they are different, we can use that information in favor of 
the university with higher job prospects.

As we can see, the grouping variable we use for an independent samples t test can be a set of groups 
we create (as in the experimental medication example) or groups that already exist naturally (as in 
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the university example). There are countless other examples of research questions relating to two 
group means, making the independent samples t test one of the most widely used analyses around.

HYPOTHESES AND DECISION CRITERIA
The process of testing hypotheses using an independent samples t test is the same as it was in the 
last three chapters, and it starts with stating our hypotheses and laying out the criteria we will use to 
test them.

Our null hypothesis for an independent samples t test is the same as all others: there is no difference. 
The means of the two groups are the same under the null hypothesis, no matter how those groups 
were formed. Mathematically, this takes on two equivalent forms:

H

H

0 1 2

0 1 2 0

:
or

:

� �

� �

�

� �

Both of these formulations of the null hypothesis tell us exactly the same thing: that the numerical 
value of the means is the same in both groups. This is more clear in the first formulation, but the 
second formulation also makes sense (any number minus itself is always zero) and helps us out 
a little when we get to the math of the test statistic. Either one is acceptable and you only need to 
report one. The English interpretation of both of them is also the same:

H0 : There is no difference between the means of the two groups

Our alternative hypotheses are also unchanged: we simply replace the equal sign (=) with one of the 
three inequalities (>, <, ≠):

H
H
H

A

A

A

:
:
:

� �
� �
� �

1 2

1 2

1 2

�
�
�

or

H
H
H

A

A

A

:
:
:

� �
� �
� �

1 2

1 2

1 2

0
0
0

�
�
�

�
�
�

Whichever formulation you chose for the null hypothesis should be the one you use for the 
alternative hypothesis (be consistent), and the interpretation of them is always the same:

HA: There is a difference between the means of the two groups

Notice that we are now dealing with two means instead of just one, so it will be very important to 
keep track of which mean goes with which population and, by extension, which dataset and sample 
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data. We use subscripts to differentiate between the populations, so make sure to keep track of 
which is which. If it is helpful, you can also use more descriptive subscripts. To use the experimental 
medication example:

H0: There is no difference between the means of the treatment and contrrol groups
: treatment controlH0 � ��

HA : There is a difference between the means of the treatment and controol groups
:A treatment controlH � ��

Once we have our hypotheses laid out, we can set our criteria to test them using the same three 
pieces of information as before: significance level (a), directionality (left, right, or two-tailed), and 
degrees of freedom, which for an independent samples t test are:

df n n� � �1 2 2

This looks different than before, but it is just adding the individual degrees of freedom from each 
group (n − 1) together. Notice that the sample sizes, n, also get subscripts so we can tell them apart.

For an independent samples t test, it is often the case that our two groups will have slightly different 
sample sizes, either due to chance or some characteristic of the groups themselves. Generally, this 
is not an issue, so long as one group is not massively larger than the other group. What is of greater 
concern is keeping track of which is which using the subscripts.

INDEPENDENT SAMPLES t STATISTIC
The test statistic for our independent samples t test takes on the same logical structure and 
format as our other t tests: our observed effect minus our null hypothesis value, all divided by the 
standard error:

t
M M

sM M
�

�� � � �

�

1 2 1 2

1 2

( )� �

This looks like more work to calculate, but remember that our null hypothesis states that the 
quantity m1 − m2 = 0, so we can drop that out of the equation and are left with:

t
M M

sM M
�

�� �
�

1 2

1 2

Our standard error in the denomination is still standard deviation (s) with a subscript denoting 
what it is the standard error of. Because we are dealing with the difference between two separate 
means, rather than a single mean or single mean of difference scores, we put both means in the 
subscript. Calculating our standard error, as we will see next, is where the biggest differences 
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between this t test and other t tests appears. However, once we do calculate it and use it in our test 
statistic, everything else goes back to normal. Our decision criteria are still comparing our obtained 
test statistic to our critical value, and our interpretation based on whether or not we reject the null 
hypothesis is unchanged as well.

STANDARD ERROR AND POOLED VARIANCE
Recall that the standard error is the average distance between any given sample mean and the 
center of its corresponding sampling distribution, and it is a function of the standard deviation of 
the population (either given or estimated) and the sample size. This definition and interpretation 
hold true for our independent samples t test as well, but because we are working with two samples 
drawn from two populations, we have to first combine their estimates of standard deviation—or, 
more accurately, their estimates of variance—into a single value that we can then use to calculate our 
standard error.

The combined estimate of variance using the information from each sample is called the pooled 
variance and is denoted sp

2; the subscript p serves as a reminder indicating that it is the pooled 
variance. The term “pooled variance” is a literal name because we are simply pooling or combining 
the information on variance—the sum of squares and degrees of freedom—from both of our 
samples into a single number. The result is a weighted average of the observed sample variances, the 
weight for each being determined by the sample size, and will always fall between the two observed 
variances. The computational formula for the pooled variance is:

s
n s n s

n np
2 1 1

2
2 2

2

1 2

1 1
2

�
� � �

� �

( ) ( )

This formula can look daunting at first, but it is in fact just a weighted average. Even more 
conveniently, some simple algebra can be employed to greatly reduce the complexity of the 
calculation. The simpler and more appropriate formula to use when calculating pooled variance is:

s SS SS
df dfp

2 1 2

1 2
�

�
�

Using this formula, it’s very simple to see that we are just adding together the same pieces of 
information we have been calculating since Chapter 3. Thus, when we use this formula, the pooled 
variance is not nearly as intimidating as it might have originally seemed.

Once we have our pooled variance calculated, we can drop it into the equation for our standard 
error:

s
s
n

s
nM M

p p
1 2

2

1

2

2
� � �
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Once again, although this formula may seem different than it was before, in reality it is just a 
different way of writing the same thing. An alternative but mathematically equivalent way of writing 
our old standard error is:

s s
n

s
nM = =
2

Looking at that, we can now see that, once again, we are simply adding together two pieces of 
information—no new logic or interpretation required. Once the standard error is calculated, it goes 
in the denominator of our test statistic, as shown above and as was the case in all previous chapters. 
Thus, the only additional step to calculating an independent samples t statistic is computing the 
pooled variance. Let’s see an example in action.

EXAMPLE  Movies and Mood
We are interested in whether the type of movie someone sees at the theater affects their mood when 
they leave. We decide to ask people about their mood as they leave one of two movies: a comedy 
(Group 1, n = 35) or a horror film (Group 2, n = 29). Our data are coded so that higher scores 
indicate a more positive mood. We have good reason to believe that people leaving the comedy will 
be in a better mood, so we use a one-tailed test at a = .05 to test our hypothesis.

STEP 1: State the Hypotheses
As always, we start with hypotheses:

H0: There is no difference in average mood between the two movie types
HH

H

0 1 2

0 1 2

0:
or

:

� �

� �

� �

�

HA : The comedy film will produce a better average mood than thee horror film
:

or
:

A

A

H

H

� �

� �

1 2

1 2

0� �

�

Notice that in the first formulation of the alternative hypothesis we say that the first mean minus the 
second mean will be greater than zero. This is based on how we code the data (higher is better), so 
we suspect that the mean of the first group will be higher. Thus, we will have a larger number minus 
a smaller number, which will be greater than zero. Be sure to pay attention to which group is which 
and how your data are coded (higher is almost always used as better outcomes) to make sure your 
hypothesis makes sense!

STEP 2: Find the Critical Values
Just like before, we will need critical values, which come from our t table. In this example, we have a 
one-tailed test at a = .05 and expect a positive answer (because we expect the difference between the 
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means to be greater than zero). Our degrees of freedom for our independent samples t test is just the 
degrees of freedom from each group added together: 35 + 29 − 2 = 62. From our t table, we find that 
our critical value is t* = 1.671. Note that because 62 does not appear on the table, we use the next 
lowest value, which in this case is 60.

STEP 3: Compute the Test Statistic and Effect Size
The data from our two groups are presented in the tables below. TABLE 10.1 shows the values for the 
Comedy group, and TABLE 10.2 shows the values for the Horror group. Values for both have already 
been placed in the sum of squares tables since we will need to use them for our further calculations. 
As always, the column on the left is our raw data.

Using the sum of the first column for each table, we can calculate the mean for each group:

M1
840
35

24 00= = .

and

M2
478 60

29
16 50= =

. .

These values were used to calculate the middle rows of each table, which sum to zero as they 
should (the middle column for Group 2 sums to a very small value instead of zero due to rounding 
error—the exact mean is 16.50344827586207, but that’s far more than we need for our purposes). 
Squaring each of the deviation scores in the middle columns gives us the values in the third 
columns, which sum to our next important value: the sum of squares for each group: SS1 = 5061.60 
and SS2 = 3896.45. These values have all been calculated and take on the same interpretation as 
they have since Chapter 3—no new computations yet. Before we move on to the pooled variance 
that will allow us to calculate standard error, let’s compute our standard deviation for each group; 
even though we will not use them in our calculation of the test statistic, they are still important 
descriptors of our data:

s1
5061 60

34
12 20= =

. .

and

s2
3896 45

28
11 80= =

. .

Now we can move on to our new calculation, the pooled variance, which is just the sums of squares 
that we calculated from our table and the degrees of freedom, which is just n − 1 for each group:

s SS SS
df dfp

2 1 2

1 2

5061 60 3896 45
34 28

8958 05
62

144 48�
�
�

�
�
�

� �
. . . .
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TABLE 10.1. raw scores and sum of squares for 
Group 1 (comedy).

X X − M (X − M)2

39.10 15.10 228.01
38.00 14.00 196.00
14.90 −9.10 82.81
20.70 −3.30 10.89
19.50 −4.50 20.25
32.20 8.20 67.24
11.00 −13.00 169.00
20.70 −3.30 10.89
26.40 2.40 5.76
35.70 11.70 136.89
26.40 2.40 5.76
28.80 4.80 23.04
33.40 9.40 88.36
13.70 −10.30 106.09
46.10 22.10 488.41
13.70 −10.30 106.09
23.00 −1.00 1.00
20.70 −3.30 10.89
19.50 −4.50 20.25
11.40 −12.60 158.76
24.10 0.10 0.01
17.20 −6.80 46.24
38.00 14.00 196.00
10.30 −13.70 187.69
35.70 11.70 136.89
41.50 17.50 306.25
18.40 −5.60 31.36
36.80 12.80 163.84
54.10 30.10 906.01
11.40 −12.60 158.76

8.70 −15.30 234.09
23.00 −1.00 1.00
14.30 −9.70 94.09

5.30 −18.70 349.69
6.30 −17.70 313.29

Σ = 840 Σ = 0 Σ = 5061.60

TABLE 10.2. raw scores and sum of squares for 
Group 2 (horror).

X X − M (X − M)2

24.00 7.50 56.25
17.00 0.50 0.25
35.80 19.30 372.49
18.00 1.50 2.25
−1.70 −18.20 331.24
11.10 −5.40 29.16
10.10 −6.40 40.96
16.10 −0.40 0.16
−0.70 −17.20 295.84
14.10 −2.40 5.76
25.90 9.40 88.36
23.00 6.50 42.25
20.00 3.50 12.25
14.10 −2.40 5.76
−1.70 −18.20 331.24
19.00 2.50 6.25
20.00 3.50 12.25
30.90 14.40 207.36
30.90 14.40 207.36
22.00 5.50 30.25

6.20 −10.30 106.09
27.90 11.40 129.96
14.10 −2.40 5.76
33.80 17.30 299.29
26.90 10.40 108.16

5.20 −11.30 127.69
13.10 −3.40 11.56
19.00 2.50 6.25

−15.50 −32.00 1024.00

Σ = 478.6 Σ = 0.10 Σ = 3896.45
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As you can see, if you follow the regular process of calculating standard deviation using the sum of 
squares table, finding the pooled variance is very easy. Now we can use that value to calculate our 
standard error, the last step before we can find our test statistic:

s
s
n

s
nM M

p p
1 2

2

1

2

2

144 48
35

144 48
29

4 13 4 98 9 11 3 02� � � � � � � � �
. . . . . .

Finally, we can use our standard error and the means we calculated earlier to compute our test 
statistic. Because the null hypothesis value of m1 − m2 is 0.00, we will leave that portion out of the 
equation for simplicity:

t
M M

sM M
�

�� �
�

�
�

�

1 2

1 2

24 00 16 50
3 02

2 48. .
.

.

The process of calculating our obtained test statistic t = 2.48 followed the same sequence of steps 
as before: use raw data to compute the mean and sum of squares (this time for two groups instead 
of one), use the sum of squares and degrees of freedom to calculate standard error (this time using 
pooled variance instead of standard deviation), and use that standard error and the observed means 
to get t. 

Effect Sizes and Confidence Intervals
We have seen in previous chapters that even a statistically significant effect needs to be interpreted 
along with an effect size to see if it is practically meaningful. We have also seen that our sample 
means, as a point estimate, are not perfect and would be better represented by a range of values that 
we call a confidence interval. As with all other topics, this is also true of our independent samples 
t tests.

Our effect size for the independent samples t test is still Cohen’s d, and it is still just our observed 
effect divided by the standard deviation. Remember that standard deviation is just the square root of 
the variance, and because we work with pooled variance in our test statistic, we will use the square 
root of the pooled variance as our denominator in the formula for Cohen’s d. This gives us:

d M M
sp

�
�1 2

2

For our example above, we can calculate the effect size to be:

d �
�

� �
24 00 16 50

144 48
7 50

12 02
0 62. .

.
.
.

.

We interpret this using the same guidelines as before, so we would consider this a moderate or 
moderately large effect.
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Our confidence intervals also take on the same form and interpretation as they have in the past. The 
value we are interested in is the difference between the two means, so our point estimate is the value 
of one mean minus the other, or M M1 2− . Just like before, this is our observed effect and is the same 
value as the one we place in the numerator of our test statistic. We calculate this value then place the 
margin of error—still our critical value multiplied by our standard error—above and below it. 
That is:

Confidence interval *� �� � � �M M t sM M1 2 1 2( )

Because our hypothesis testing example used a one-tailed test, it would be inappropriate to calculate 
a confidence interval on those data (remember that we can only calculate a confidence interval for a 
two-tailed test because the interval extends in both directions). Let’s say we find summary statistics 
on the average life satisfaction of people from two different towns and want to create a confidence 
interval to see if the difference between the two might actually be zero.

Our sample data are M1 = 28.65, s1 = 12.40, n1 = 40 and M2 = 25.40, s2 = 15.68, n2 = 42. At face value, 
it looks like the people from the first town have higher life satisfaction (28.65 vs. 25.40), but it will 
take a confidence interval (or complete hypothesis testing process) to see if that is true or just due to 
random chance. First, we want to calculate the difference between our sample means, which is 
28.65 − 25.40 = 3.25. Next, we need a critical value from our t table. If we want to test at the 
normal 95% level of confidence, then our sample sizes will yield degrees of freedom equal to 
40 + 42 − 2 = 80. From our table, that gives us a critical value of t* = 1.990. Finally, we need our 
standard error. Recall that our standard error for an independent samples t test uses pooled 
variance, which requires the sum of squares and degrees of freedom. Up to this point, we have 
calculated the sum of squares using raw data, but in this situation, we do not have access to it. So, 
what are we to do?

If we have summary data like standard deviation and sample size, it is very easy to calculate the 
pooled variance, and the key lies in rearranging the formulas to work backward through them. 
We need the sum of squares and degrees of freedom to calculate our pooled variance. Degrees of 
freedom is very simple: we just take the sample size minus 1.00 for each group. Getting the sum of 
squares is also easy: remember that variance is standard deviation squared and is the sum of squares 
divided by the degrees of freedom. That is:

s s SS
df

2 2= =( )

To get the sum of squares, we just multiply both sides of the above equation to get:

( ) ( )s SSdf2 =
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which is the squared standard deviation multiplied by the degrees of freedom (n − 1) equals the sum 
of squares.

Using our example data:

( )
( . ) ( ) .

( )s df SS1
2

1 1
212 40 40 1 5996 64

�

� �

( )
( . ) ( ) .

( )s df SS2
2

2 2
215 68 42 1 10080 36

�

� �

And thus our pooled variance equals:

s SS SS
df dfp

2 1 2

1 2

5996 64 10080 36
39 41

16077
80

200 96�
�
�

�
�
�

� �
. . .

And our standard error equals:
 

s
s
n

s
nM M

p p
1 2

2

1

2

2

200 96
40

200 96
42

5 02 4 78 9 89 3 14� � � � � � � � �
. . . . . .

All of these steps are just slightly different ways of using the same formulas, numbers, and ideas we 
have worked with up to this point. Once we get out standard error, it’s time to build our confidence 
interval.

95 3 25 1 990 3 14% . . ( . )CI � �

Upper bound � �
� �
�

3 25 1 990 3 14
3 25 6 25
9 50

. . ( . )

. .

.

Lower bound � �
� �
� �

3 25 1 990 3 14
3 25 6 25

3 00

. . ( . )

. .
.

95 3 00 9 50% ( . , . )CI � �

Our confidence interval, as always, represents a range of values that would be considered reasonable 
or plausible based on our observed data. In this instance, our interval (−3.00, 9.50) does contain 
zero. Thus, even though the means look a little bit different, it may very well be the case that the life 
satisfaction in both of these towns is the same. Proving otherwise would require more data.

Now we can move on to the final step of the hypothesis-testing procedure.
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STEP 4: Make the Decision
Our test statistic has a value of t = 2.48, and in Step 2 we found that the critical value is t* = 1.671. 
Because 2.48 > 1.671, we reject the null hypothesis:

Reject H0. Based on our sample data from people who watched different kinds of movies, we 
can say that the average mood after a comedy movie (M1 = 24.00, SD1 = 12.20) is better than 
the average mood after a horror movie (M2 = 16.50, SD2 = 11.80), t(62) = 2.48, p < .05, d = 0.62.

FIGURE 10.1 shows the output from JASP for this example.

HOMOGENEITY OF VARIANCE
Before wrapping up the coverage of independent samples t tests, there is one other important topic 
to cover. Using the pooled variance to calculate the test statistic relies on an assumption known as 
homogeneity of variance. In statistics, an assumption is some characteristic that we assume is true 
about our data, and our ability to use our inferential statistics accurately and correctly relies on these 
assumptions being true. If these assumptions are not true, then our analyses are at best ineffective 

FIGURE 10.1. Output from JaSp for the independent-samples t test described in the Movies and Mood 
example. the output provides the t value (2.478), degrees of freedom (62), the exact p value (.008, which is 
less than .05), and Cohen’s d for effect size (0.622). note that the means and standard deviations for both 
samples are also provided. Based on our sample data from people who watched different kinds of movies, we 
can say that the average mood after a comedy movie (M = 24.0, SD = 12.2) is better than the average mood 
after a horror movie (M = 16.5; SD = 11.8), t(62) = 2.48, p = .008, d = 0.62.  (“JASP independent-samples t test” by 
Rupa G. Gordon/Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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(e.g., low power to detect effects) and at worst inappropriate (e.g., too many Type I errors). A 
detailed coverage of assumptions is beyond the scope of this course, but it is important to know that 
they exist for all analyses.

For the current analysis, one important assumption is homogeneity of variance. This is fancy 
statistical talk for the idea that the true population variance for each group is the same and any 
difference in the observed sample variances is due to random chance. (If this sounds eerily similar 
to the idea of testing the null hypothesis that the true population means are equal, that’s because it 
is exactly the same!) This notion allows us to compute a single pooled variance that uses our easily 
calculated degrees of freedom. If the assumption is shown to not be true, then we have to use a very 
complicated formula to estimate the proper degrees of freedom. There are formal tests to assess 
whether or not this assumption is met, but we will not discuss them here.

Many statistical programs incorporate the test of homogeneity of variance automatically and can 
report the results of the analysis assuming it is true or assuming it has been violated. You can easily 
tell which is which by the degrees of freedom: the corrected degrees of freedom (which is used when 
the assumption of homogeneity of variance is violated) will have decimal places. Fortunately, the 
independent samples t test is very robust to violations of this assumption (an analysis is “robust” if 
it works well even when its assumptions are not met), which is why we do not bother going through 
the tedious work of testing and estimating new degrees of freedom by hand.

EXERCISES
1. What is meant by “the difference of the means” when talking about an independent samples 

t test? How does it differ from the “mean of the differences” in a related samples t test?

2. Describe three research questions that could be tested using an independent samples t test.

3. Calculate pooled variance from the following raw data:

Group 1 Group 2

16 4
11 10

9 15
7 13
5 12
4 9

12 8

4. Calculate the standard error from the following descriptive statistics.
a. s1 = 24, s2 = 21, n1 = 36, n2 = 49
b. s1 = 15.40, s2 = 14.80, n1 = 20, n2 = 23
c. s1 = 12, s2 = 10, n1 = 25, n2 = 25
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5. Determine whether to reject or fail to reject the null hypothesis in the following situations:
a. t(40) = 2.49, a = .01, one-tailed test to the right
b. M1 = 64, M2 = 54, n1 = 14, n2 = 12, sM M1 2−  = 9.75, a = .05, two-tailed test
c. 95% CI: (0.50, 2.10)

6. A professor is interested in whether the type of software program used in a statistics lab affects 
how well students learn the material. The professor teaches the same lecture material to two 
classes but has one class use a point-and-click software program in lab and has the other class 
use a basic programming language. The professor collects final exam scores for students in each 
class. Conduct a hypothesis test to answer the research question.

Point-and-Click Programming

83 86
83 79
63 100
77 74
86 70
84 67
78 83
61 85
65 74
75 86

100 87
60 61
90 76
66 100
54

7. A researcher wants to know if there is a difference in how busy someone is based on whether 
that person identifies as an early bird or a night owl. The researcher gathers data from people 
in each group, coding the data so that higher scores represent higher levels of being busy, and 
tests for a difference between the two at the .05 level of significance. Conduct a hypothesis test to 
answer the research question.

Early Bird Night Owl

23 26
28 10
27 20
33 19
26 26
30 18
22 12
25 25
26
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8. Lots of people claim that having a pet helps lower their stress level. Use the following summary 
data to test the claim that there is a lower average stress level among pet owners (Group 1) than 
among non-owners (Group 2) at the .05 level of significance.

 M1 = 16.25, M2 = 20.95, s1 = 4.00, s2 = 5.10, n1 = 29, n2 = 25

9. Administrators at a university want to know if students in different majors are more or less 
extroverted than others. They provide you with descriptive statistics they have for English majors 
(coded as 1) and History majors (coded as 2) and ask you to create a confidence interval of 
the difference between them. Does this confidence interval suggest that the students from the 
majors differ?

 M1 = 3.78, M2 = 2.23, s1 = 2.60, s2 = 1.15, n1 = 45, n2 = 40

10. Researchers want to know if people’s awareness of environmental issues varies as a function of 
where they live. Use the following summary data from two states, Alaska and Hawaii, to test for 
a difference.

 MH = 47.50, MA = 45.70, sH = 14.65, sA = 13.20, nH = 139, nA = 150

ANSWERS TO ODD-NUMBERED EXERCISES
1. The difference of the means is one mean calculated from a set of scores compared to another 

mean calculated from a different set of scores; the independent samples t test looks for whether 
the two separate values are different from one another. This is different than the “mean of the 
differences” because the latter is a single mean computed on a single set of difference scores that 
come from one data collection of matched pairs. So, the difference of the means deals with two 
numbers but the mean of the differences is only one number.

3. SS1 = 106.86, SS2 = 78.86, sp
2 = 15.48

5. a. Reject
b. Fail to reject
c. Reject

7. Step 1: H0: m1 − m2 = 0 “There is no difference in the average busyness of early birds versus 
night owls,” HA: m1 − m2 ≠ 0 “There is a difference in the average busyness of early birds versus 
night owls.”  

Step 2: Two-tailed test, df = 15, t* = 2.131  

Step 3: M1 = 26.67, M2 = 19.50, sp
2 = 27.73, sM M1 2−  = 2.37, t = 3.03  

Step 4: t > t*, Reject H0. Based on our data of early birds and night owls, we can conclude that 
early birds are busier (M1 = 26.67) than night owls (M2 = 19.50), t(15) = 3.03, p < .05, d = 1.47.
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9. M M1 2−  = 1.55, t* = 1.990, sM M1 2−  = 0.45, CI = (0.66, 2.44). This confidence interval does not 
contain zero, so it does suggest that there is a difference between the extroversion of English 
majors and History majors.

 (“Boyfriend” by Randall Munroe/xkcd.com is licensed under CC BY-NC 2.5.)
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UNIT 3 

Additional Hypothesis Tests

In Unit 1, we learned the basics of statistics—what they are, how they work, and the mathematical 
and conceptual principles that guide them. In Unit 2, we applied these principles to the process and 
ideas of hypothesis testing—how we take observed sample data and use it to make inferences about 
our populations of interest—using one continuous variable and one categorical variable. In this final 
unit, we will continue to use this same hypothesis testing logic and procedure on new types of data. 
We will start with group mean differences on more than two groups, and then see how we can test 
hypotheses using only continuous data. We will wrap up this unit with a look at a different kind of 
test statistic: a nonparametric statistic for only categorical data.

155



CHAPTER 11 

Analysis of Variance
KEY TERMS
analysis of variance (ANOVA)
between-groups variability
Bonferroni test
factorial ANOVA
grand mean
grouping variable

individual group means
mean square
outcome variable
post hoc test
random error
repeated measures ANOVA

Scheffé test
sources of variability
systematic variability
Tukey’s honestly significant 

difference (HSD)
within-groups variability

Analysis of variance (ANOVA) serves the same purpose as the t tests we learned in Unit 2: it tests 
for differences in group means. ANOVA is more flexible in that it can handle any number of groups, 
unlike t tests, which are limited to two groups (independent samples) or two time points (dependent 
samples). Thus, the purpose and interpretation of ANOVA will be the same as it was for t tests, as will 
the hypothesis-testing procedure. However, ANOVA will, at first glance, look much different from a 
mathematical perspective, although as we will see, the basic logic behind the test statistic for ANOVA is 
actually the same. This chapter will describe the general design of ANOVA, with a focus on calculating 
the independent samples one-way ANOVA, which is an extension of the independent samples t test, 
where three or more different groups are compared on a single independent (or grouping) variable.

OBSERVING AND INTERPRETING VARIABILITY
We have seen time and again that scores, be they individual data or group means, will differ 
naturally. Sometimes this is due to random chance, and other times it is due to actual differences. 
Our job as scientists, researchers, and data analysts is to determine if the observed differences 
are systematic and meaningful (via a hypothesis test) and, if so, what is causing those differences. 
Through this, it becomes clear that, although we are usually interested in the mean or average score, 
it is the variability in the scores that is key.

Take a look at FIGURE 11.1, which shows scores for many people on a test of skill used as part of a job 
application. The x-axis has each individual person, in no particular order, and the y-axis contains 
the score each person received on the test. As we can see, the job applicants differed quite a bit in 
their performance, and understanding why that is the case would be extremely useful information. 
However, there’s no interpretable pattern in the data, especially because we only have information 
on the test, not on any other variable (remember that the x-axis here only shows individual people 
and is not ordered or interpretable).

Our goal is to explain this variability that we are seeing in the dataset. Let’s assume that as part of the 
job application procedure we also collected data on the highest degree each applicant earned. With 

FIGURE 11.1. Scores on a job test.  (“Job Test Scores” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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Analysis of variance (ANOVA) serves the same purpose as the t tests we learned in Unit 2: it tests 
for differences in group means. ANOVA is more flexible in that it can handle any number of groups, 
unlike t tests, which are limited to two groups (independent samples) or two time points (dependent 
samples). Thus, the purpose and interpretation of ANOVA will be the same as it was for t tests, as will 
the hypothesis-testing procedure. However, ANOVA will, at first glance, look much different from a 
mathematical perspective, although as we will see, the basic logic behind the test statistic for ANOVA is 
actually the same. This chapter will describe the general design of ANOVA, with a focus on calculating 
the independent samples one-way ANOVA, which is an extension of the independent samples t test, 
where three or more different groups are compared on a single independent (or grouping) variable.

OBSERVING AND INTERPRETING VARIABILITY
We have seen time and again that scores, be they individual data or group means, will differ 
naturally. Sometimes this is due to random chance, and other times it is due to actual differences. 
Our job as scientists, researchers, and data analysts is to determine if the observed differences 
are systematic and meaningful (via a hypothesis test) and, if so, what is causing those differences. 
Through this, it becomes clear that, although we are usually interested in the mean or average score, 
it is the variability in the scores that is key.

Take a look at FIGURE 11.1, which shows scores for many people on a test of skill used as part of a job 
application. The x-axis has each individual person, in no particular order, and the y-axis contains 
the score each person received on the test. As we can see, the job applicants differed quite a bit in 
their performance, and understanding why that is the case would be extremely useful information. 
However, there’s no interpretable pattern in the data, especially because we only have information 
on the test, not on any other variable (remember that the x-axis here only shows individual people 
and is not ordered or interpretable).

Our goal is to explain this variability that we are seeing in the dataset. Let’s assume that as part of the 
job application procedure we also collected data on the highest degree each applicant earned. With 

FIGURE 11.1. Scores on a job test.  (“Job Test Scores” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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knowledge of what the job requires, we could sort our applicants into three groups: applicants who 
have a college degree related to the job, applicants who have a college degree that is not related to 
the job, and applicants who did not earn a college degree. This is a common way that job applicants 
are sorted, and we can use ANOVA to test if these groups are actually different. FIGURE 11.2 presents 
the same job applicant scores, but now they are color coded by group membership (i.e., which 

FIGURE 11.2. applicant scores coded by degree earned.  (“Job Test Scores by Degree” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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group they belong in). Now that we can differentiate between applicants this way, a pattern starts 
to emerge: applicants with a relevant degree (coded red) tend to be near the top, applicants with no 
college degree (coded black) tend to be near the bottom, and applicants with an unrelated degree 
(coded green) tend to fall into the middle. However, even within these groups, there is still some 
variability, as shown in FIGURE 11.2.

This pattern is even easier to see when the applicants are sorted and organized into their respective 
groups, as shown in FIGURE 11.3.

Now that we have our data visualized into an easily interpretable format, we can clearly see that our 
applicants’ scores differ largely along group lines. Those applicants who do not have a college degree 
received the lowest scores, those who had a degree relevant to the job received the highest scores, 
and those who did have a degree but one that is not related to the job tended to fall somewhere in 
the middle. Thus, we have systematic variability between our groups.

We can also clearly see that within each group, our applicants’ scores differed from one another. 
Those applicants without a degree tended to score very similarly, since the scores are clustered close 
together. Our group of applicants with relevant degrees varied a little bit more than that, and our 
group of applicants with unrelated degrees varied quite a bit. It may be that there are other factors that 
cause the observed score differences within each group, or they could just be due to random chance. 
Because we do not have any other explanatory data in our dataset, the variability we observe within 
our groups is considered random error, with any deviations between a person and that person’s group 
mean caused only by chance. Thus, we have unsystematic (random) variability within our groups.

The process and analyses used in ANOVA will take these two sources of variability (systematic 
variability between groups and random error within groups, or how much groups differ from 

FIGURE 11.3. applicant scores by group.  (“Job Test Scores by Group” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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each other and how much people differ within each group) and compare them to one another to 
determine if the groups have any explanatory value in our outcome variable. By doing this, we will 
test for statistically significant differences between the group means, just like we did for t tests. We 
will go step by step to break down the math to see how ANOVA actually works.

SOURCES OF VARIABILITY
ANOVA is all about looking at the different sources of variability (i.e., the reasons that scores differ 
from one another) in a dataset. Fortunately, the way we calculate these sources of variability takes a 
very familiar form: the sum of squares. Before we get into the calculations themselves, we must first 
lay out some important terminology and notation.

In ANOVA, we are working with two variables, a grouping or explanatory variable and a continuous 
outcome variable. The grouping variable is our predictor (it predicts or explains the values in the 
outcome variable) or, in experimental terms, our independent variable, and is made up of k groups, 
with k being any whole number 2 or greater. That is, ANOVA requires two or more groups to work, 
and it is usually conducted with three or more. In ANOVA, we refer to groups as levels, so the 
number of levels is just the number of groups, which again is k. In the above example, our grouping 
variable was education, which had 3 levels, so k = 3. When we report any descriptive value (e.g., 
mean, sample size, standard deviation) for a specific group, we will use a subscript 1…k to denote 
which group it refers to. For example, if we have three groups and want to report the standard 
deviation s for each group, we would report them as s1, s2, and s3.

Our second variable is our outcome variable. This is the variable on which people differ, and we are 
trying to explain or account for those differences based on group membership. In the example 
above, our outcome was the score each person earned on the test. Our outcome variable will still use 
X for scores as before. When describing the outcome variable using means, we will use subscripts to 
refer to specific, individual group means. So if we have k = 3 groups, our means will be M1, M2, and 
M3. We will also have a single mean representing the average of all participants across all groups. 
This is known as the grand mean, and we use the symbol MG. These different means—the 
individual group means and the overall grand mean—will be how we calculate our sums of squares.

Finally, we now have to differentiate between several different sample sizes. Our data will now have 
sample sizes for each group, and we will denote these with a lower case n and a subscript, just like with 
our other descriptive statistics: n1, n2, and n3. We also have the overall sample size in our dataset, and 
we will denote this with a capital N. The total sample size is just the group sample sizes added together.

Between-Groups Sum of Squares
One source of variability we identified in FIGURE 11.3 of the above example was differences or 
variability between the groups. That is, the groups clearly had different average levels. The variability 
arising from these differences is known as between-groups variability, and between-groups sum of 
squares is used to calculate between-groups variability.
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Our calculations for sums of squares in ANOVA will take on the same form as it did for regular 
calculations of variance. Each observation, in this case the group means, is compared to the overall 
mean, in this case the grand mean, to calculate a deviation score. These deviation scores are squared 
so that they do not cancel each other out and sum to zero. The squared deviations are then added 
up, or summed. There is, however, one small difference. Because each group mean represents 
a group composed of multiple people, before we sum the deviation scores we must multiply 
them by the number of people within that group. Incorporating this, we find our equation for 
between-groups sum of squares to be:

SS n M Mj jB G� �� �� 2

The subscript j refers to the “jth” group where j = 1…k to keep track of which group mean and 
sample size we are working with. As you can see, the only difference between this equation and 
the familiar sum of squares for variance is that we are adding in the sample size. Everything else 
logically fits together in the same way.

Within-Groups Sum of Squares
The other source of variability in the figures—within-groups variability—comes from differences 
that occur within each group. That is, each individual deviates a little bit from their respective group 
mean, just like the group means differed from the grand mean. We therefore label this source the 
within-groups variance. Because we are trying to account for variance based on group-level means, 
any deviation from the group means indicates an inaccuracy or error. Thus, our within-groups 
variability represents our error in ANOVA.

The formula for this sum of squares is again going to take on the same form and logic. What we are 
looking for is the distance between each individual person and the mean of the group to which they 
belong. We calculate this deviation score, square it so that they can be added together, then sum all 
of them into one overall value:

SS X Mij jW � �� �� 2

In this instance, because we are calculating this deviation score for each individual person, there is 
no need to multiple by how many people we have. The subscript j again represents a group and the 
subscript i refers to a specific person. So, Xij is read as “the ith person of the jth group.” It is important 
to remember that the deviation score for each person is only calculated relative to their group mean; 
do not calculate these scores relative to the other group means.

Total Sum of Squares
Total sum of squares can also be computed as a check for our calculations of between-groups and 
within-groups sums of squares. The calculation for this score is exactly the same as it would be 
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if we were calculating the overall variance in the dataset (because that’s what we are interested in 
explaining) without worrying about or even knowing about the groups into which our scores fall:

SS X MiT G� �� �� 2

We can see that our total sum of squares is just each individual score minus the grand mean. As with 
our within-groups sum of squares, we are calculating a deviation score for each individual person, 
so we do not need to multiply anything by the sample size; that is only done for a between-groups 
sum of squares.

An important feature of the sums of squares in ANOVA is that they all fit together. We could work 
through the algebra to demonstrate that if we added together the formulas for SSB and SSW, we 
would end up with the formula for SST. That is:

SS SS SST B W� �

This will prove to be very convenient, because if we know the values of any two of our sums of 
squares, it is very quick and easy to find the value of the third. It is also a good way to check 
calculations: if you calculate each SS by hand, you can make sure that they all fit together as shown 
above, and if not, you know that you made a math mistake somewhere.

We can see from the above formulas that calculating an ANOVA by hand from raw data can take a 
very, very long time. For this reason, you will not be required to calculate the SS values by hand, but 
you should still take the time to understand how they fit together and what each one represents to 
ensure you understand the analysis itself.

ANOVA TABLE
All of our sources of variability fit together in meaningful, interpretable ways as we saw above, 
and the easiest way to show these relationships is to organize them in a table. The ANOVA table 
(TABLE 11.1) shows how we calculate the df, MS, and F values. The first column of the ANOVA table, 
labeled “Source,” indicates which of our sources of variability we are using: between groups (B), 

TABLE 11.1. anOVa table.

Source SS df MS F

Between SSB k − 1
SS
df

B

B

MS
MS

B

W

Within SSW N − k
SS
df

W

W

Total SST N − 1
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within groups (W), or total (T). The second column, labeled “SS,” contains our values for the sum of 
squared deviations, also known as the sum of squares, that we learned to calculate above. 

As noted previously, calculating these by hand takes too long, so the formulas are not presented in 
TABLE 11.1. However, remember that SST is the sum of SSB and SSW, in case you are only given two 
SS values and need to calculate the third.

The next column, labeled “df ,” is our degrees of freedom. As with the sums of squares, there is a 
different df for each group, and the formulas are presented in the table. Total degrees of freedom 
is calculated by subtracting 1 from the overall sample size (N). (Remember, the capital N in the df 
calculations refers to the overall sample size, not a specific group sample size.) Notice that dfT, just 
like for total sums of squares, is the Between (dfB) and Within (dfW) rows added together. If you take 
N − k + k − 1, then the “− k” and “+ k” portions will cancel out, and you are left with N − 1. This is a 
convenient way to quickly check your calculations.

The third column, labeled “MS,” shows our mean squared deviation for each source of variance. A 
mean square is just another way to say variability and is calculated by dividing the sum of squares 
by its corresponding degrees of freedom. Notice that we show this in the ANOVA table for the 
Between row and the Within row, but not for the Total row. There are two reasons for this. First, our 
Total mean square would just be the variance in the full dataset (put together the formulas to see 
this for yourself), so it would not be new information. Second, the mean square values for Between 
and Within would not add up to equal the Total mean square because they are divided by different 
denominators. This is in contrast to the first two columns, where the Total row was both the 
conceptual total (i.e., the overall variance and degrees of freedom) and the literal total of the other 
two rows.

The final column in the ANOVA table, labeled “F,” is our test statistic for ANOVA. The F statistic, 
just like a t or z statistic, is compared to a critical value to see whether we can reject for fail to 
reject a null hypothesis. Thus, although the calculations look different for ANOVA, we are still 
doing the same thing that we did in all of Unit 2. We are simply using a new type of data to test our 
hypotheses. We will see what these hypotheses look like shortly, but first, we must take a moment to 
address why we are doing our calculations this way.

ANOVA AND TYPE I ERROR
You may be wondering why we do not just use another t test to test our hypotheses about three or 
more groups the way we did in Unit 2. After all, we are still just looking at group mean differences. 
The reason is that our t statistic formula can only handle up to two groups, one minus the other. 
With only two groups, we can move our population parameters for the group means around in 
our null hypothesis and still get the same interpretation: the means are equal, which can also be 
concluded if one mean minus the other mean is equal to zero. However, if we tried adding a third 
mean, we would no longer be able to do this. So, in order to use t tests to compare three or more 
means, we would have to run a series of individual group comparisons.
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For only three groups, we would have three t tests: Group 1 vs. Group 2, Group 1 vs. Group 3, and 
Group 2 vs. Group 3. This may not sound like a lot, especially with the advances in technology that 
have made running an analysis very fast, but it quickly scales up. With just one additional group, 
bringing our total to four, we would have six comparisons: Group 1 vs. Group 2, Group 1 vs. Group 
3, Group 1 vs. Group 4, Group 2 vs. Group 3, Group 2 vs. Group 4, and Group 3 vs. Group 4. This 
makes for a logistical and computation nightmare for five or more groups.

A bigger issue, however, is our probability of committing a Type I error. Remember that a Type I 
error is a false positive, and the chance of committing a Type I error is equal to our significance 
level, a. This is true if we are only running a single analysis (such as a t test with only two groups) on 
a single dataset. However, when we start running multiple analyses on the same dataset, our Type I 
error rate increases, raising the probability that we are capitalizing on random chance and rejecting 
a null hypothesis when we should not. ANOVA, by comparing all groups simultaneously with a 
single analysis, averts this issue and keeps our error rate at the a we set.

HYPOTHESES IN ANOVA
So far we have seen what ANOVA is used for, why we use it, and how we use it. Now we can turn 
to the formal hypotheses we will be testing. As with before, we have a null and an alternative 
hypothesis to lay out. Our null hypothesis is still the idea of “no difference” in our data. Because we 
have multiple group means, we simply list them out as equal to each other:

H
H

0

0 1 2 3

: There is no difference in the group means
: � � �� �

We list as many m parameters as groups we have. In the example above, we have three groups to test, 
so we have three parameters in our null hypothesis. If we had more groups, say, four, we would 
simply add another m to the list and give it the appropriate subscript, giving us:

H
H

0

0 1 2 3 4

: There is no difference in the group means
: � � � �� � �

Notice that we do not say that the means are all equal to zero, we only say that they are equal to one 
another; it does not matter what the actual value is, so long as it holds for all groups equally.

Our alternative hypothesis for ANOVA is a little bit different. Let’s take a look at it and then dive 
deeper into what it means:

HA : At least one mean is different

The first difference is obvious: there is no mathematical statement of the alternative hypothesis in 
ANOVA. This is due to the second difference: we are not saying which group is going to be different, 
only that at least one will be. Because we do not hypothesize about which mean will be different, 
there is no way to write it mathematically. Similarly, we do not have directional hypotheses (greater 
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than or less than) like we did in Unit 2. Due to this, our alternative hypothesis is always exactly the 
same: at least one mean is different.

In Unit 2, we saw that, if we reject the null hypothesis, we can adopt the alternative, and this made 
it easy to understand what the differences looked like. In ANOVA, we will still adopt the alternative 
hypothesis as the best explanation of our data if we reject the null hypothesis. However, when we 
look at the alternative hypothesis, we can see that it does not give us much information. We will 
know that a difference exists somewhere, but we will not know where that difference is. Is only 
Group 1 different, but Groups 2 and 3 are the same? Is only Group 2 different? Are all three of them 
different? Based on just our alternative hypothesis, there is no way to be sure. We will come back 
to this issue later and see how to find out specific differences. For now, just remember that we are 
testing for any difference in group means, and it does not matter where that difference occurs.

Now that we have our hypotheses for ANOVA, let’s work through an example. We will continue to 
use the data from FIGURE 11.1, FIGURE 11.2, and FIGURE 11.3 for continuity.

EXAMPLE  Scores on Job-Application Tests
Our data come from three groups of 10 people each, all of whom applied for a single job opening: 
those with no college degree, those with a college degree that is not related to the job opening, 
and those with a college degree from a relevant field. We want to know if we can use this group 
membership to account for our observed variability and, by doing so, test if there is a difference 
between our three group means. We will start, as always, with our hypotheses.

STEP 1: State the Hypotheses
Our hypotheses are concerned with the means of groups based on education level, so:

H0: There is no difference between the means of the education grouups
:H0 1 2 3� � �� �

HA : At least one mean is different

Again, we phrase our null hypothesis in terms of what we are actually testing, and we use a number 
of population parameters equal to our number of groups. Our alternative hypothesis is always 
exactly the same.

STEP 2: Find the Critical Values
Our test statistic for ANOVA, as we saw above, is F. Because we are using a new test statistic, we will 
get a new table: the F distribution table, a portion of which is shown in TABLE 11.2. (The complete 
F table can be found in Appendix C.)

The F table only displays critical values for a = .05. This is because other significance levels are 
uncommon and so it is not worth it to use up the space to present them. There are now two 
degrees of freedom we must use to find our critical value: numerator and denominator. These 

TABLE 11.2. Critical values for F (F table).

df: 
Denom-
inator 

(Within)

df: Numerator (Between)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28
17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19
19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15
20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09
22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07
23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04
24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02
25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.15 2.11 2.06 2.00
26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97
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than or less than) like we did in Unit 2. Due to this, our alternative hypothesis is always exactly the 
same: at least one mean is different.

In Unit 2, we saw that, if we reject the null hypothesis, we can adopt the alternative, and this made 
it easy to understand what the differences looked like. In ANOVA, we will still adopt the alternative 
hypothesis as the best explanation of our data if we reject the null hypothesis. However, when we 
look at the alternative hypothesis, we can see that it does not give us much information. We will 
know that a difference exists somewhere, but we will not know where that difference is. Is only 
Group 1 different, but Groups 2 and 3 are the same? Is only Group 2 different? Are all three of them 
different? Based on just our alternative hypothesis, there is no way to be sure. We will come back 
to this issue later and see how to find out specific differences. For now, just remember that we are 
testing for any difference in group means, and it does not matter where that difference occurs.

Now that we have our hypotheses for ANOVA, let’s work through an example. We will continue to 
use the data from FIGURE 11.1, FIGURE 11.2, and FIGURE 11.3 for continuity.

EXAMPLE  Scores on Job-Application Tests
Our data come from three groups of 10 people each, all of whom applied for a single job opening: 
those with no college degree, those with a college degree that is not related to the job opening, 
and those with a college degree from a relevant field. We want to know if we can use this group 
membership to account for our observed variability and, by doing so, test if there is a difference 
between our three group means. We will start, as always, with our hypotheses.

STEP 1: State the Hypotheses
Our hypotheses are concerned with the means of groups based on education level, so:

H0: There is no difference between the means of the education grouups
:H0 1 2 3� � �� �

HA : At least one mean is different

Again, we phrase our null hypothesis in terms of what we are actually testing, and we use a number 
of population parameters equal to our number of groups. Our alternative hypothesis is always 
exactly the same.

STEP 2: Find the Critical Values
Our test statistic for ANOVA, as we saw above, is F. Because we are using a new test statistic, we will 
get a new table: the F distribution table, a portion of which is shown in TABLE 11.2. (The complete 
F table can be found in Appendix C.)

The F table only displays critical values for a = .05. This is because other significance levels are 
uncommon and so it is not worth it to use up the space to present them. There are now two 
degrees of freedom we must use to find our critical value: numerator and denominator. These 

TABLE 11.2. Critical values for F (F table).

df: 
Denom-
inator 

(Within)

df: Numerator (Between)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28
17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19
19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15
20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09
22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07
23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04
24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02
25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.15 2.11 2.06 2.00
26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97

correspond to the numerator and denominator of our test statistic, which, if you look at the 
ANOVA table presented earlier (TABLE 11.1), are our Between and Within rows, respectively. The 
dfB is the “df: Numerator (Between)” because it is the degrees of freedom value used to calculate 
the Mean Square Between, which in turn is the numerator of our F statistic. Likewise, the dfW is the 
“df: Denominator (Within)” because it is the degrees of freedom value used to calculate the Mean 
Square Within, which is our denominator for F.

The formula for dfB is k − 1; remember that k is the number of groups we are assessing. In this 
example, k = 3 so our dfB = 2. This tells us that we will use the second column, the one labeled 2, 
to find our critical value. To find the proper row, we simply calculate the dfW, which was N − k. 
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The original prompt told us that we have “three groups of 10 people each,” so our total sample size 
is 30. This makes our value for dfW = 27. If we follow the second column down to the row for 27, 
we find that our critical value is 3.35. We use this critical value the same way as we did before: it 
is our criterion against which we will compare our obtained test statistic to determine statistical 
significance.

STEP 3: Calculate the Test Statistic and Effect Size
Now that we have our hypotheses and the criteria we will use to test them, we can calculate our test 
statistic. To do this, we will fill in the ANOVA table, working our way from left to right and filling in 
each cell to get our final answer. We will assume that we are given the SS values as shown below:

Source SS df MS F

Between 8246
Within 3020
Total

These may seem like random numbers, but remember that they are based on the distances between 
the groups themselves and within each group. FIGURE 11.4 shows the plot of the data with the group 
means and grand mean included. If we wanted to, we could use this information, combined with 
our earlier information that each group has 10 people, to calculate the between-groups sum of 
squares by hand. However, doing so would take some time, and without the specific values of the 
data points, we would not be able to calculate our within-groups sum of squares, so we will trust 
that these values are the correct ones.

FIGURE 11.4. Means.  (“Job Test Scores Group Means” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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We were given the sums of squares values for our first two rows, so we can use those to calculate the 
total sum of squares.

Source SS df MS F

Between 8246
Within 3020
Total 11266

We also calculated our degrees of freedom earlier, so we can fill in those values. Additionally, we 
know that the total degrees of freedom is N − 1, which is 29. This value of 29 is also the sum of the 
other two degrees of freedom, so everything checks out.

Source SS df MS F

Between 8246 2
Within 3020 27
Total 11266 29

Now we have everything we need to calculate our mean squares. Our MS values for each row are 
just the SS divided by the df for that row, giving us:

Source SS df MS F

Between 8246 2 4123
Within 3020 27 111.85
Total 11266 29

Remember that we do not calculate a Total Mean Square, so we leave that cell blank. Finally, we have 
the information we need to calculate our test statistic. F is our MSB divided by MSW.

Source SS df MS F

Between 8246 2 4123 36.86
Within 3020 27 111.85
Total 11266 29

So, working our way through the table, given only two SS values and the sample size and group size 
from before, we calculate our test statistic to be Fobt = 36.86, which we will compare to the critical 
value in Step 4.

Effect Size: Variance Explained
Recall that the purpose of ANOVA is to take observed variability and see if we can explain those 
differences based on group membership. To that end, our effect size will be just that: the variance 
explained. You can think of variance explained as the proportion or percent of the differences we 
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are able to account for based on our groups. We know that the overall observed differences are 
quantified as the total sum of squares, and that our observed effect of group membership is the 
between-groups sum of squares. Our effect size, therefore, is the ratio of these two sums of squares. 
Specifically:

�2 �
SS
SS

B

T

The effect size h2 is called “eta-squared” and represents variance explained. For our example, our 
values give an effect size of:

�2 8246
11266

73� � .

So, we are able to explain 73% of the variance in job-test scores based on education. This is, in fact, a 
huge effect size, and most of the time we will not explain nearly that much variance. Our guidelines 
for the size of our effects are:

hh2 Size

.01 Small

.09 Medium

.25 Large

So, we found that not only do we have a statistically significant result, but that our observed effect 
was very large! However, we still do not know specifically which groups are different from each 
other. It could be that they are all different, or that only those job seekers who have a relevant degree 
are different from the others, or that only those who have no degree are different from the others. To 
find out which is true, we need to do a special analysis called a post hoc test.

STEP 4: Make the Decision
Our obtained test statistic was calculated to be Fobt = 36.86 and our critical value was found to be 
F* = 3.35. Our obtained statistic is larger than our critical value, so we can reject the null hypothesis.

Reject H0. The results of the ANOVA indicated that there were significant differences in job 
skills test scores for applicants in each of the three education groups, and the effect size was 
large, F(2, 27) = 36.86, p < .05, h2 = .73.  Post hoc tests (see the next section) were performed to 
determine where the differences were.

Notice that when we report F, we include both degrees of freedom. We always report the numerator 
and then the denominator, separated by a comma. We must also note that, because we were only 
testing for any difference, we cannot yet conclude which groups are different from the others. To do 
so, we need to perform a post hoc test.
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POST HOC TESTS
A post hoc test is used only after we find a statistically significant result and need to determine 
where our differences truly came from. The term post hoc comes from the Latin for “after the event.” 
Many different post hoc tests have been developed, and most of them will give us similar answers. 
We will only focus here on the most commonly used ones. We will also only discuss the concepts 
behind each and will not worry about calculations.

Bonferroni Test
A Bonferroni test is perhaps the simplest post hoc analysis. A Bonferroni test is a series of t tests 
performed on each pair of groups. As we discussed earlier, the number of groups quickly increases 
the number of comparisons, which inflates Type I error rates. To avoid this, a Bonferroni test divides 
our significance level a by the number of comparisons we are making so that when they are all run, 
they sum back up to our original Type I error rate. Once we have our new significance level, we 
simply run independent samples t tests to look for differences between our pairs of groups. This 
adjustment is sometimes called a Bonferroni Correction, and it is easy to do by hand if we want to 
compare obtained p values to our new corrected a level, but it is more difficult to do when using 
critical values like we do for our analyses, so we will leave our discussion of it to that.

Tukey’s Honestly Significant Difference
Tukey’s honestly significant difference (HSD) is a popular post hoc analysis that, like Bonferroni’s, 
makes adjustments based on the number of comparisons; however, it makes adjustments to the test 
statistic when running the comparisons of two groups. These comparisons give us an estimate of 
the difference between the groups and a confidence interval for the estimate. We use this confidence 
interval in the same way we use a confidence interval for a regular independent samples t test: if it 
contains 0.00, the groups are not different, but if it does not contain 0.00 then the groups are different.

Below are the differences between the group means and the Tukey’s HSD confidence intervals for 
the differences:

Comparison Difference Tukey’s HSD CI

None vs. relevant 40.60 (28.87, 52.33)
None vs. unrelated 19.50 (7.77, 31.23)
Relevant vs. unrelated 21.10 (9.37, 32.83)

As we can see, none of these intervals contain 0.00, so we can conclude that all three groups are 
different from one another.

Scheffé Test
Another common post hoc test is the Scheffé test. Like Tukey’s HSD, the Scheffé test adjusts the test 
statistic for how many comparisons are made, but it does so in a slightly different way. The result is a 
test that is “conservative,” which means that it is less likely to commit a Type I error, but this comes 

Chapter 11 ANALYSIS OF VARIANCE • 169



at the cost of less power to detect effects. We can see this by looking at the confidence intervals that 
the Scheffé test gives us:

Comparison Difference Scheffé CI

None vs. relevant 40.60 (28.35, 52.85)
None vs. unrelated 19.50 (7.25, 31.75)
Relevant vs. unrelated 21.10 (8.85, 33.35)

As we can see, these are slightly wider than the intervals we got from Tukey’s HSD. This means that, 
all other things being equal, they are more likely to contain zero. In our case, however, the results are 
the same, and we again conclude that all three groups differ from one another.

There are many more post hoc tests than just these three, and they all approach the task in different 
ways, with some being more conservative and others being more powerful. In general, though, they 
will give highly similar answers. What is important here is to be able to interpret a post hoc analysis. 
If you are given post hoc analysis confidence intervals, like the ones seen above, read them the same 
way we read confidence intervals in Chapter 10. If they contain zero, there is no difference; if they 
do not contain zero, there is a difference.

OTHER ANOVA DESIGNS
We have only just scratched the surface on ANOVA in this chapter. There are many other variations 
available for the one-way ANOVA presented here. There are also other types of ANOVAs that you 
are likely to encounter. The first is called a factorial ANOVA. A factorial ANOVA uses multiple 
grouping variables, not just one, to look for group mean differences. Just as there is no limit to the 
number of groups in a one-way ANOVA, there is no limit to the number of grouping variables in 
a factorial ANOVA, but it becomes very difficult to find and interpret significant results with many 
factors, so usually they are limited to two or three grouping variables with only a small number of 
groups in each. 

Another ANOVA is called a repeated measures ANOVA. This is an extension of a related samples 
t test, but in this case we are measuring each person three or more times to look for a change. We 
can even combine both of these advanced ANOVAs into mixed designs to test very specific and 
valuable questions. These topics are far beyond the scope of this text, but you should know about 
their existence. Our treatment of ANOVA here is a small first step into a much larger world!

EXERCISES
1. What sources of variability are analyzed in an ANOVA?

2. What does rejecting the null hypothesis in ANOVA tell us? What does it not tell us?
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3. What is the purpose of post hoc tests?

4. Based on the ANOVA table below, do you reject or fail to reject the null hypothesis? What is the 
effect size?

Source SS df MS F

Between 60.72 3 20.24 3.88
Within 213.61 41 5.21
Total 274.33 44

5. Finish filling out the following ANOVA tables:
a. k = 4

Source SS df MS F

Between 87.40
Within
Total 199.22 33

b. N = 14

Source SS df MS F

Between 2 14.10
Within
Total 64.65

c. 

Source SS df MS F

Between 2 42.36
Within 54 2.48
Total

6. You know that stores tend to charge different prices for similar or identical products, and you 
want to test whether or not these differences are, on average, statistically significantly different. 
You go online and collect data from three different stores, gathering information on 15 products 
at each store. You find that the average prices at each store are: Store 1 M = $27.82, Store 2 
M = $38.96, and Store 3 M = $24.53. Based on the overall variability in the products and the 
variability within each store, you find the following values for the sums of squares: SST = 683.22, 
SSW = 441.19. Complete the ANOVA table and use the four-step hypothesis testing procedure to 
see if there are systematic price differences between the stores.
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7. You and your friend are debating which type of candy is the best. You find data on the average 
rating for hard candy (e.g., Jolly Ranchers, M = 3.60), chewable candy (e.g., Starburst, M = 4.20), 
and chocolate (e.g., Snickers, M = 4.40); each type of candy was rated by 30 people. Test for 
differences in average candy rating using SSB = 16.18 and SSW = 28.74.

8. Administrators at a university want to know if students in different majors are more or less 
extroverted than others. They provide you with data they have for English majors (M = 3.78, 
n = 45), History majors (M = 2.23, n = 40), Psychology majors (M = 4.41, n = 51), and Math 
majors (M = 1.15, n = 28). You find the SSB = 75.80 and SSW = 47.40 and test at a = .05.

9. You are assigned to run a study comparing a new medication (M = 17.47, n = 19), an existing 
medication (M = 17.94, n = 18), and a placebo (M = 13.70, n = 20), with higher scores reflecting 
better outcomes. Use SSB = 210.10 and SSW = 133.90 to test for differences.

10. Attributions (explanations) for human behavior are known to vary across cultures. Researchers 
investigated whether South Korean, Korean immigrant, and Korean American school children’s 
attributions for their academic outcomes differed. Each student was presented with 5 negative 
academic outcomes (such as failing a test) and asked to choose whether they believed the 
outcome was due to lack of effort or lack of ability. Data are the number of outcomes for which 
students chose “lack of effort.” Test the hypothesis at the a = .05 level using the four-step 
hypothesis testing procedure.

South 
Korean

Korean 
Immigrant

Korean 
American

5 4 3
4 3 2
3 4 1
2 4 1
5 3 5
4 2 4
5 5 3
4 1 3

ANSWERS TO ODD-NUMBERED EXERCISES
1. Between-groups and within-groups variability are analyzed in an ANOVA.

3. Post hoc tests are run if we reject the null hypothesis in ANOVA; they tell us which specific 
group differences are significant.
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5. Finish filling out the following ANOVA tables:
a. k = 4

Source SS df MS F

Between 87.40 3 29.13 7.81
Within 111.82 30 3.73
Total 199.22 33

b. N = 14

Source SS df MS F

Between 28.20 2 14.10 4.26
Within 36.45 11 3.31
Total 64.65 13

c. 

Source SS df MS F

Between 210.10 2 105.05 42.36
Within 133.92 54 2.48
Total 344.02

7. Step 1: H0: m1 = m2 = m3 “There is no difference in average rating of candy quality,” HA: “At least 
one mean is different.”  

Step 2: 3 groups and 90 total observations yields dfnum = 2 and dfden = 87, a = .05, F* = 3.11  

Step 3: Based on the given SSB and SSW and the computed df from Step 2:

Source SS df MS F

Between 16.18 2 8.09 24.52
Within 28.74 87 0.33
Total 44.92 89

 h2 = 16.18/44.92 = .36

 Step 4: F > F*, Reject H0. Based on the data in our 3 groups, we can say that there is a statistically 
significant difference in the quality of different types of candy, and the effect size is large, 
F(2,87) = 24.52, p < .05, h2 = .36.
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9. Step 1: H0: m1 = m2 = m3 “There is no difference in average outcome based on treatment,” HA: “At 
least one mean is different.”  

Step 2: 3 groups and 57 total participants yields dfnum = 2 and dfden = 54, a = .05, F* = 3.18.  

Step 3: Based on the given SSB and SSW and the computed df from Step 2:

Source SS df MS F

Between 210.10 2 105.02 42.36
Within 133.90 54 2.48
Total 344.00 56

 h2 = 210.10/344.00 = .61

 Step 4: F > F*, Reject H0. Based on the data in our 3 groups, we can say that there is a 
statistically significant difference in the effectiveness of the treatments, and this effect is large, 
F(2, 54) = 42.36, p < .05, h2 = .61.
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CHAPTER 12 

Correlations
KEY TERMS
confound variables
correlation matrices
covariance
curvilinear relationship
inverse relationship

linear relationship
magnitude
negative relationship
no relationship
outlier

positive relationship
range restriction
Spearman’s rho
sum of products

Thus far, all of our analyses have focused on comparing the value of a continuous variable across 
different groups via mean differences. We will now turn away from means and look instead at how 
to assess the relationship between two continuous variables in the form of correlations. As we will 
see, the logic behind correlations is the same as it was behind group means, but we will now have the 
ability to assess an entirely new data structure.

VARIABILITY AND COVARIANCE
A common theme throughout statistics is the notion that individuals will differ on different 
characteristics and traits, which we call variance. In inferential statistics and hypothesis 
testing, our goal is to find systematic reasons for differences and rule out random chance as the 
cause. By doing this, we are using information on a different variable—which so far has been 
group membership like in ANOVA—to explain this variance. In correlations, we will instead use a 
continuous variable to account for the variance.

Because we have two continuous variables, we will have two characteristics or scores on which 
people will vary. What we want to know is whether people vary on the scores together. That is, as 
one score changes, does the other score also change in a predictable or consistent way? This notion 
of variables differing together is called covariance (the prefix co- meaning “together”).

Let’s look at our formula for variance on a single variable:

s
X M
N

2
2

1
�

�
�

�( )

We use X to represent a person’s score on the variable at hand, and M to represent the mean of that 
variable. The numerator of this formula is the sum of squares, which we have seen several times for 
various uses. Recall that squaring a value is just multiplying that value by itself. Thus, we can write 
the same equation as:

s
X M X M

N
2

1
�
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�
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175



This is the same formula and works the same way as before, where we multiply the deviation score 
by itself (we square it) and then sum across squared deviations.

Now, let’s look at the formula for covariance. In this formula, we will still use X to represent the 
score on one variable, and we will now use Y to represent the score on the second variable. We 
will still use bars to represent averages of the scores. The formula for covariance (covXY with the 
subscript XY to indicate covariance across the X and Y variables) is:

cov
( )( )

XY
X YX M Y M

N
�

� �� �
�

�
1

As we can see, this is the exact same structure as the previous formula. Now, instead of multiplying 
the deviation score by itself on one variable, we take the deviation scores from a single person on 
each variable and multiply them together. We do this for each person (exactly the same as we did 
for variance) and then sum them to get our numerator. The numerator in this is called the sum of 
products.

SP X M Y MX Y� � �� �� ( )( )

We will calculate the sum of products using the same table we used to calculate the sum of squares. 
In fact, the table for sum of products is simply a sum of squares table for X, plus a sum of squares 
table for Y, with a final column of products, as shown below.

X (X − MX) (X − MX)2 Y (Y − MY) (Y − MY)2 (X − MX)(Y − MY)

This table works the same way it did before (remember that the column headers tell you exactly 
what to do in that column). We list our raw data for the X and Y variables in the X and Y columns, 
respectively, then add them up so we can calculate the mean of each variable. We then take those 
means and subtract them from the appropriate raw score to get our deviation scores for each person 
on each variable, and the columns of deviation scores will both add up to zero. We will square our 
deviation scores for each variable to get the sums of squares for X and Y so that we can compute 
the variance and standard deviation of each. (We will use the standard deviation in our equation 
below.) Finally, we take the deviation score from each variable and multiply them together to get our 
product score. Summing this column will give us our sum of products. It is very important that you 
multiply the raw deviation scores from each variable, not the squared deviation scores.

Our sum of products will go into the numerator of our formula for covariance, and then we only have 
to divide by N − 1 to get our covariance. Unlike the sum of squares, both our sum of products and our 
covariance can be positive, negative, or zero, and they will always match (e.g., if our sum of products 
is positive, our covariance will always be positive). A positive sum of products and covariance 
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indicates that the two variables are related and move in the same direction. That is, as one variable 
goes up, the other will also go up, and vice versa. A negative sum of products and covariance means 
that the variables are related but move in opposite directions when they change, which is called an 
inverse relationship. In an inverse relationship, as one variable goes up, the other variable goes down. 
If the sum of products and covariance are zero, then that means the variables are not related. As one 
variable goes up or down, the other variable does not change in a consistent or predictable way.

The previous paragraph brings us to an important definition about relationships between variables. 
What we are looking for in a relationship is a consistent or predictable pattern. That is, the variables 
change together, either in the same direction or opposite directions, in the same way each time. 
It doesn’t matter if this relationship is positive or negative, only that it is not zero. If there is no 
consistency in how the variables change within a person, then the relationship is zero and does not 
exist. We will revisit this notion of direction vs. zero relationship later on.

VISUALIZING RELATIONSHIPS
Chapter 2 covered many different forms of data visualization, and visualizing data remains an 
important first step in understanding and describing our data before we move into inferential 
statistics. Nowhere is this more important than in correlation. Correlations are visualized by a 
scatter plot, where our X variable values are plotted on the x-axis, the Y variable values are plotted 
on the y-axis, and each point or marker in the plot represents a single person’s score on X and Y. 
FIGURE 12.1 shows a scatter plot for hypothetical scores on job satisfaction (X) and worker well-
being (Y). We can see from the axes that each of these variables is measured on a 10-point scale, 
with 10 being the highest on both variables (high satisfaction and good well-being) and 1 being the 
lowest (dissatisfaction and poor well-being). When we look at this plot, we can see that the variables 

FIGURE 12.1. plotting job 
satisfaction and well-being 
scores.  (“Scatter Plot Job Satisfaction 
and Well-Being” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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do seem to be related. The higher scores on job satisfaction tend to also be the higher scores on 
well-being, and the same is true of the lower scores.

FIGURE 12.1 demonstrates a positive relationship. As scores on X increase, scores on Y also tend 
to increase. Although this is not a perfect relationship (if it were, the points would form a single 
straight line), it is nonetheless very clearly positive. This is one of the key benefits to scatter plots: 
they make it very easy to see the direction of the relationship. As another example, FIGURE 12.2 shows 
a negative relationship between job satisfaction (X) and burnout (Y). As we can see from this plot, 
higher scores on job satisfaction tend to correspond with lower scores on burnout, which is how 
stressed, unenergetic, and unhappy someone is at their job. As with FIGURE 12.1, this is not a perfect 
relationship, but it is still a clear one. As these figures show, points in a positive relationship move 
from the bottom left of the plot to the top right, and points in a negative relationship move from the 
top left to the bottom right.

Scatter plots can also indicate that there is no relationship between the two variables. In these 
scatter plots (for example, FIGURE 12.3, which plots job satisfaction and job performance) there is 
no interpretable shape or line in the scatter plot. The points appear randomly throughout the plot. 
If we tried to draw a straight line through these points, it would basically be flat. The low scores 
on job satisfaction have roughly the same scores on job performance as do the high scores on 
job satisfaction. Scores in the middle or average range of job satisfaction have some scores on job 
performance that are about equal to the high and low levels and some scores on job performance 
that are a little higher, but the overall picture is one of inconsistency.

As we can see, scatter plots are very useful for giving us an approximate idea of whether there is a 
relationship between the two variables and, if there is, if that relationship is positive or negative. 
They are also the only way to determine one of the characteristics of correlations that are discussed 
next: form.

FIGURE 12.2. plotting job 
satisfaction and burnout scores. 
 (“Scatter Plot Job Satisfaction and 
Burnout” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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FIGURE 12.3. plotting no 
relationship between job 
satisfaction and job performance. 
 (“Scatter Plot Job Satisfaction and 
Job Performance” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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do seem to be related. The higher scores on job satisfaction tend to also be the higher scores on 
well-being, and the same is true of the lower scores.

FIGURE 12.1 demonstrates a positive relationship. As scores on X increase, scores on Y also tend 
to increase. Although this is not a perfect relationship (if it were, the points would form a single 
straight line), it is nonetheless very clearly positive. This is one of the key benefits to scatter plots: 
they make it very easy to see the direction of the relationship. As another example, FIGURE 12.2 shows 
a negative relationship between job satisfaction (X) and burnout (Y). As we can see from this plot, 
higher scores on job satisfaction tend to correspond with lower scores on burnout, which is how 
stressed, unenergetic, and unhappy someone is at their job. As with FIGURE 12.1, this is not a perfect 
relationship, but it is still a clear one. As these figures show, points in a positive relationship move 
from the bottom left of the plot to the top right, and points in a negative relationship move from the 
top left to the bottom right.

Scatter plots can also indicate that there is no relationship between the two variables. In these 
scatter plots (for example, FIGURE 12.3, which plots job satisfaction and job performance) there is 
no interpretable shape or line in the scatter plot. The points appear randomly throughout the plot. 
If we tried to draw a straight line through these points, it would basically be flat. The low scores 
on job satisfaction have roughly the same scores on job performance as do the high scores on 
job satisfaction. Scores in the middle or average range of job satisfaction have some scores on job 
performance that are about equal to the high and low levels and some scores on job performance 
that are a little higher, but the overall picture is one of inconsistency.

As we can see, scatter plots are very useful for giving us an approximate idea of whether there is a 
relationship between the two variables and, if there is, if that relationship is positive or negative. 
They are also the only way to determine one of the characteristics of correlations that are discussed 
next: form.

FIGURE 12.2. plotting job 
satisfaction and burnout scores. 
 (“Scatter Plot Job Satisfaction and 
Burnout” by Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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FIGURE 12.3. plotting no 
relationship between job 
satisfaction and job performance. 
 (“Scatter Plot Job Satisfaction and 
Job Performance” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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THREE CHARACTERISTICS
When we talk about correlations, there are three traits that we need to know in order to truly 
understand the relationship (or lack of relationship) between X and Y: form, direction, and 
magnitude. We will discuss each of them in turn.

Form
The first characteristic of relationships between variables is their form. The form of a relationship is 
the shape it takes in a scatter plot, and a scatter plot is the only way it is possible to assess the form 
of a relationship. There are three forms we look for: linear, curvilinear, or no relationship. A linear 
relationship is what we saw in FIGURE 12.1, FIGURE 12.2, and FIGURE 12.3. If we drew a line through 
the middle points in any of the scatter plots, we would be best suited with a straight line. The term 
linear comes from the word line. A linear relationship is what we will always assume when we 
calculate correlations. All of the correlations presented here are only valid for linear relationships. 
Thus, it is important to plot our data to make sure we meet this assumption.

The relationship between two variables can also be curvilinear. As the name suggests, a curvilinear 
relationship is one in which a line through the middle of the points in a scatter plot will be curved 
rather than straight. Two examples are presented in FIGURE 12.4 and FIGURE 12.5.

Curvilinear relationships can take many shapes, and the two examples above are only a small sample 
of the possibilities. What they have in common is that they both have a very clear pattern but that 
pattern is not a straight line. If we try to draw a straight line through them, we would get a result 
similar to what is shown in FIGURE 12.6.
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FIGURE 12.4. exponentially increasing 
curvilinear relationship.  (“Curvilinear 
Relation Increasing” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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FIGURE 12.5. inverted-U curvilinear 
relationship.  (“Curvilinear Relation Inverted 
U” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 12.6. Overlaying a straight line 
on a curvilinear relationship.  (“Curvilinear 
Relation Inverted U with Straight Line” by Judy 
Schmitt is licensed under CC BY-NC-SA 4.0.)
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Although that line is the closest it can be to all points at the same time, it clearly does a very poor 
job of representing the relationship we see. Additionally, the line itself is flat, suggesting there is no 
relationship between the two variables even though the data show that there is one. This is important 
to keep in mind, because the math behind our calculations of correlation coefficients will only ever 
produce a straight line—we cannot create a curved line with the techniques discussed here.

Finally, sometimes when we create a scatter plot, we end up with no interpretable relationship 
at all. An example of this is shown in FIGURE 12.7. The points in this plot show no consistency in 
relationship, and a line through the middle would once again be a straight, flat line.

Sometimes when we look at scatter plots, it is tempting to get biased by a few points that fall far 
away from the rest of the points and seem to imply that there may be some sort of relationship. 
These points are called outliers, and we will discuss them in more detail later in the chapter. 
These can be common, so it is important to formally test for a relationship between our variables, 
not just rely on visualization. This is the point of hypothesis testing with correlations, and we 
will go in-depth on it soon. First, however, we need to describe the other two characteristics of 
relationships: direction and magnitude.

Direction
The direction of the relationship between two variables tells us whether the variables change in the 
same way at the same time or in opposite ways at the same time. We saw this concept earlier when 
first discussing scatter plots, and we used the terms positive and negative. A positive relationship 
is one in which X and Y change in the same direction: as X goes up, Y goes up, and as X goes down, 
Y also goes down. A negative relationship is just the opposite: X and Y change together in opposite 
directions: as X goes up, Y goes down, and vice versa.

FIGURE 12.7. no relationship.  (“Scatter Plot 
No Relation” by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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As we will see soon, when we calculate a correlation coefficient, we are quantifying the relationship 
demonstrated in a scatter plot. That is, we are putting a number to it. That number will be either 
positive, negative, or zero, and we interpret the sign of the number as our direction. If the number 
is positive, it is a positive relationship, and if it is negative, it is a negative relationship. If it is zero, 
then there is no relationship. The direction of the relationship corresponds directly to the slope of 
the hypothetical line we draw through scatter plots when assessing the form of the relationship. If 
the line has a positive slope that moves from bottom left to top right, it is positive, and vice versa for 
negative. If the line it flat, that means it has no slope, and there is no relationship, which will in turn 
yield a zero for our correlation coefficient.

Magnitude
The number we calculate for our correlation coefficient, which we will describe in detail below, 
corresponds to the magnitude of the relationship between the two variables. The magnitude is how 
strong or how consistent the relationship between the variables is. Higher numbers mean greater 
magnitude, which means a stronger relationship.

Our correlation coefficients will take on any value between −1.00 and 1.00, with 0.00 in the middle, 
which again represents no relationship. A correlation of −1.00 is a perfect negative relationship; as 
X goes up by some amount, Y goes down by the same amount, consistently. Likewise, a correlation 
of 1.00 indicates a perfect positive relationship; as X goes up by some amount, Y also goes up by the 
same amount. Finally, a correlation of 0.00, which indicates no relationship, means that as X goes up 
by some amount, Y may or may not change by any amount, and it does so inconsistently.

The vast majority of correlations do not reach −1.00 or 1.00. Instead, they fall in between, and we 
use rough cut offs for how strong the relationship is based on this number. Importantly, the sign 
of the number (the direction of the relationship) has no bearing on how strong the relationship is. 

The only thing that matters is the magnitude, or the absolute value of the correlation coefficient. A 
correlation of −1 is just as strong as a correlation of 1. We generally use values of .10, .30, and .50 as 
indicating weak, moderate, and strong relationships, respectively.

The strength of a relationship, just like the form and direction, can also be inferred from a scatter 
plot, though this is much more difficult to do. Some examples of weak and strong relationships are 
shown in FIGURE 12.8 and FIGURE 12.9, respectively. Weak correlations still have an interpretable 
form and direction, but it is much harder to see. Strong correlations have a very clear pattern, and 
the points tend to form a line. The examples show two different directions, but remember that the 
direction does not matter for the strength, only the consistency of the relationship and the size of 
the number, which we will see next.

PEARSON’S r
There are several different types of correlation coefficients, but we will only focus on Pearson’s r, the 
most popular correlation coefficient for assessing linear relationships, which serves as both a 
descriptive statistic (like M) and a test statistic (like t). It is descriptive because it describes what is 
happening in the scatter plot; r will have both a sign (+/−) for the direction and a number (0 to 1 in 
absolute value) for the magnitude. As noted above, because it assumes a linear relationship, nothing 
about r will suggest what the form is—it will only tell what the direction and magnitude will be if the 
form is linear. (Remember: always make a scatter plot first!) The coefficient r also works as a test 
statistic because the magnitude of r will correspond directly to a t value as the specific degrees of 
freedom, which can then be compared to a critical value. Luckily, we do not need to do this 
conversion by hand. Instead, we will have a table of r critical values that looks very similar to our 
t table, and we can compare our r directly to those.

FIGURE 12.8. Weak 
positive correlation. 
 (“Scatter Plot Weak Positive 
Correlation” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 12.9. Strong 
negative correlation. 
 (“Scatter Plot Strong 
Negative Correlation” by 
Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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The only thing that matters is the magnitude, or the absolute value of the correlation coefficient. A 
correlation of −1 is just as strong as a correlation of 1. We generally use values of .10, .30, and .50 as 
indicating weak, moderate, and strong relationships, respectively.

The strength of a relationship, just like the form and direction, can also be inferred from a scatter 
plot, though this is much more difficult to do. Some examples of weak and strong relationships are 
shown in FIGURE 12.8 and FIGURE 12.9, respectively. Weak correlations still have an interpretable 
form and direction, but it is much harder to see. Strong correlations have a very clear pattern, and 
the points tend to form a line. The examples show two different directions, but remember that the 
direction does not matter for the strength, only the consistency of the relationship and the size of 
the number, which we will see next.

PEARSON’S r
There are several different types of correlation coefficients, but we will only focus on Pearson’s r, the 
most popular correlation coefficient for assessing linear relationships, which serves as both a 
descriptive statistic (like M) and a test statistic (like t). It is descriptive because it describes what is 
happening in the scatter plot; r will have both a sign (+/−) for the direction and a number (0 to 1 in 
absolute value) for the magnitude. As noted above, because it assumes a linear relationship, nothing 
about r will suggest what the form is—it will only tell what the direction and magnitude will be if the 
form is linear. (Remember: always make a scatter plot first!) The coefficient r also works as a test 
statistic because the magnitude of r will correspond directly to a t value as the specific degrees of 
freedom, which can then be compared to a critical value. Luckily, we do not need to do this 
conversion by hand. Instead, we will have a table of r critical values that looks very similar to our 
t table, and we can compare our r directly to those.

FIGURE 12.8. Weak 
positive correlation. 
 (“Scatter Plot Weak Positive 
Correlation” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 12.9. Strong 
negative correlation. 
 (“Scatter Plot Strong 
Negative Correlation” by 
Judy Schmitt is licensed 
under CC BY-NC-SA 4.0.)
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The formula for r is very simple: it is just the covariance (defined above) divided by the standard 
deviations of X and Y:

r
s s

SP
SS SS

XY

X Y X Y

= =
cov

( )( )

The first formula gives a direct sense of what a correlation is: a covariance standardized onto the 
scale of X and Y; the second formula is computationally simpler and faster. Both of these equations 
will give the same value, and as we saw at the beginning of the chapter, all of these values are 
easily computed by using the sum of products table. When we do this calculation, we will find that 
our answer is always between −1.00 and 1.00 (if it’s not, check the math again), which gives us a 
standard, interpretable metric, similar to what z scores did.

It was stated earlier that r is a descriptive statistic like M, and just like M, it corresponds to a 
population parameter. For correlations, the population parameter is the lowercase Greek letter r 
(“rho”); be careful not to confuse r with a p value—they look quite similar. The statistic r is an 
estimate of r, just as M is an estimate of m. Thus, we will test our observed value of r that we 
calculate from the data and compare it to a value of r specified by our null hypothesis to see if the 
relationship between our variables is significant, as we will see in the following example.

EXAMPLE  Anxiety and Depression
Anxiety and depression are often reported to be highly linked (or “comorbid”). Our hypothesis 
testing procedure follows the same four-step process as before, starting with our null and alternative 
hypotheses. We will look for a positive relationship between our variables among a group of 10 
people because that is what we would expect based on them being comorbid.

STEP 1: State the Hypotheses
Our hypotheses for correlations start with a baseline assumption of no relationship, and our 
alternative will be directional if we expect to find a specific type of relationship. For this example, we 
expect a positive relationship:

H
H

0

0 0
: There is no relationship between anxiety and depression

: � �

HA : There is a positive relationship between anxiety and depressionn
:AH � � 0

Remember that r (“rho”) is our population parameter for the correlation that we estimate with r, 
just like M and m for means. Remember also that if there is no relationship between variables, the 
magnitude will be 0, which is where we get the null and alternative hypothesis values.
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STEP 2: Find the Critical Values
The critical values for correlations come from the correlation table (a portion of which appears in 
TABLE 12.1), which looks very similar to the t table. (The complete correlation table can be found in 
Appendix D.) Just like our t table, the column of critical values is based on our significance level (a) 
and the directionality of our test. The row is determined by our degrees of freedom. For correlations, 
we have N − 2 degrees of freedom, rather than N − 1 (why this is the case is not important). For our 
example, we have 10 people, so our degrees of freedom = 10 − 2 = 8.

We were not given any information about the level of significance at which we should test our 
hypothesis, so we will assume a = .05 as always. From our table, we can see that a one-tailed test 
(because we expect only a positive relationship) at the a = .05 level has a critical value of r* = .549. 
Thus, if our observed correlation is greater than .549, it will be statistically significant. This is a 
rather high bar (remember, the guideline for a strong relationship is r = .50); this is because we have 
so few people. Larger samples make it easier to find significant relationships.

STEP 3: Calculate the Test Statistic and Effect Size
We have laid out our hypotheses and the criteria we will use to assess them, so now we can move on 
to our test statistic. Before we do that, we must first create a scatter plot of the data to make sure that 

TABLE 12.1. Critical Values for pearson’s r (Correlation table)

df n 2

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST

.05 .025 .01 .005

LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST

.10 .05 .02 .01

1 .988 .997 .9995 .9999
2 .900 .950 .980 .990
3 .805 .878 .934 .959
4 .729 .811 .882 .917
5 .669 .754 .833 .875
6 .621 .707 .789 .834
7 .582 .666 .750 .798
8 .549 .632 .715 .765
9 .521 .602 .685 .735

10 .497 .576 .658 .708
11 .476 .553 .634 .684
12 .458 .532 .612 .661
13 .441 .514 .592 .641
14 .426 .497 .574 .623
15 .412 .482 .558 .606
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the most likely form of our relationship is in fact linear. FIGURE 12.10 shows our data plotted out, and 
it looks like they are, in fact, linearly related, so Pearson’s r is appropriate.

The data we gather from our participants is as follows:

Dep. 2.81 1.96 3.43 3.40 4.71 1.80 4.27 3.68 2.44 3.13
Anx. 3.54 3.05 3.81 3.43 4.03 3.59 4.17 3.46 3.19 4.12

We will need to put these values into our sum of products table to calculate the standard deviation 
and covariance of our variables. We will use X for depression and Y for anxiety to keep track of our 
data, but be aware that this choice is arbitrary and the math will work out the same if we decided to 
do the opposite. Our table is thus:

X (X − MX) (X − MX)2 Y (Y − MY) (Y − MY)2 (X − MX)(Y − MY)

2.81 −0.35 0.12 3.54 −0.10 0.01 0.04
1.96 −1.20 1.44 3.05 −0.59 0.35 0.71
3.43 0.27 0.07 3.81 0.17 0.03 0.05
3.40 0.24 0.06 3.43 −0.21 0.04 −0.05
4.71 1.55 2.40 4.03 0.39 0.15 0.60
1.80 −1.36 1.85 3.59 −0.05 0.00 0.07
4.27 1.11 1.23 4.17 0.53 0.28 0.59
3.68 0.52 0.27 3.46 −0.18 0.03 −0.09
2.44 −0.72 0.52 3.19 −0.45 0.20 0.32
3.13 −0.03 0.00 4.12 0.48 0.23 −0.01

31.63 0.03 7.97 36.39 −0.01 1.33 2.22

FIGURE 12.10. Scatter plot of depression and 
anxiety.  (“Scatter Plot Depression and Anxiety” by 
Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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The bottom row is the sum of each column. We can see from this that the sum of the X observations 
is 31.63, which makes the mean of the X variable M = 3.16. The deviation scores for X sum to 0.03, 
which is very close to 0, given rounding error, so everything looks right so far. The next column is 
the squared deviations for X, so we can see that the sum of squares for X is SSX = 7.97. The same is 
true of the Y columns, with an average of MY = 3.64, deviations that sum to zero within rounding 
error, and a sum of squares as SSY = 1.33. The final column is the product of our deviation scores 
(not of our squared deviations), which gives us a sum of products of SP = 2.22.

There are now three pieces of information we need to calculate before we compute our correlation 
coefficient: the covariance of X and Y and the standard deviation of each.

The covariance of two variables, remember, is the sum of products divided by N − 1. For our data:

cov XY
SP

N
�

�
� �

1
2 22

9
0 25. .

The formulas for standard deviation are the same as before. Using subscripts X and Y to denote 
depression and anxiety:

s
X M
NX

X�
�
�

� ��( ) . .
2

1
7 97

9
0 94

s
Y M
NY

Y�
�
�

� ��( ) . .
2

1
1 33

9
0 38

Now we have all of the information we need to calculate r:

r
s s

XY

X Y
= = =

cov 0 25
0 94 0 38

70.
( . )( . )

.
 

We can verify this using our other formula, which is computationally shorter:

r SP
SS SSX Y

= = =
( )( )

.
( . )( . )

.2 22
7 97 1 33

70
 

So our observed correlation between anxiety and depression is r = .70, which, based on sign and 
magnitude, is a strong, positive correlation. Now we need to compare it to our critical value to see if 
it is also statistically significant.

Effect Size and Pearson’s r
Pearson’s r is an incredibly flexible and useful statistic. Not only is it both descriptive and inferential, 
as we saw above, but because it is on a standardized metric (always between −1.00 and 1.00), it can 
also serve as its own effect size. In general, we use r = .10, r = .30, and r = .50 as our guidelines for 
small, medium, and large effects. Just like with Cohen’s d, these guidelines are not absolutes, but they 
do serve as useful indicators in most situations. Notice as well that these are the same guidelines we 
used earlier to interpret the magnitude of the relationship based on the correlation coefficient.
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In addition to r being its own effect size, there is an additional effect size we can calculate for 
our results. This effect size is r2, and it is exactly what it looks like—it is the squared value of our 
correlation coefficient. Just like h2 in ANOVA, r2 is interpreted as the amount of variance explained 
in the outcome variance, and the cut scores are the same as well: .01, .09, and .25 for small, medium, 
and large, respectively. Notice here that these are the same cutoffs we used for regular r effect sizes, 
but squared (.102 = .01, .302 = .09, .502 = .25) because, again, the r2 effect size is just the squared 
correlation, so its interpretation should be, and is, the same. The reason we use r2 as an effect size is 
because our ability to explain variance is often important to us.

The similarities between h2 and r2 in interpretation and magnitude should clue you in to the fact 
that they are similar analyses, even if they look nothing alike. That is because, behind the scenes, 
they actually are! In Chapter 13, we will learn a technique called linear regression, which will 
formally link the two analyses together.

STEP 4: Make a Decision
Our critical value was r* = .549 and our obtained value was r = .70. Our obtained value was larger 
than our critical value, so we can reject the null hypothesis.

Reject H0. Based on our sample of 10 people, there is a statistically significant, strong, positive 
relationship between anxiety and depression, r(8) = .70, p < .05.

Notice in our interpretation that, because we already know the magnitude and direction of our 
correlation, we can interpret that. We also report the degrees of freedom, just like with t, and we 
know that p < a because we rejected the null hypothesis. As we can see, even though we are dealing 
with a very different type of data, our process of hypothesis testing has remained unchanged. Unlike 
for our other statistics, we do not report an effect size for the correlation coefficient because the 
reader can easily do that for themselves, by squaring r. The r2 statistic is called the coefficient of 
determination and is essentially effect size for a correlation coefficient; it tells us what percentage of 
the variance in the X variable is explained by the Y variable (and vice versa).

FIGURE 12.11 shows the output from JASP for this example.

FIGURE 12.11. Output from JaSp for 
the correlation described in the anxiety 
and Depression example. the output 
provides the pearson’s r (.68; note 
the value provided in text using hand 
calculations is .70 due to rounding), and 
the exact p value (.015, which is less than 
.05). Based on our sample of 10 people, 
there is a statistically significant, strong, 
positive relationship between anxiety 
and depression, r(8) = .68, p = .015.  (“JASP 
correlation” by Rupa G. Gordon/Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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CORRELATION VERSUS CAUSATION
We cover a great deal of material in introductory statistics and, as mentioned Chapter 1, many of 
the principles underlying what we do in statistics can be used in your day-to-day life to help you 
interpret information objectively and make better decisions. We now come to what may be the most 
important lesson in introductory statistics: the difference between correlation and causation.

It is very, very tempting to look at variables that are correlated and assume that this means they are 
causally related; that is, it gives the impression that X is causing Y. However, in reality, correlations 
do not—and cannot—do this. Correlations do not prove causation. No matter how logical or how 
obvious or how convenient it may seem, no correlational analysis can demonstrate causality. The 
only way to demonstrate a causal relationship is with a properly designed and controlled experiment.

Many times, we have good reason for assessing the correlation between two variables, and often 
that reason will be that we suspect one causes the other. Thus, when we run our analyses and find 
strong, statistically significant results, it is tempting to say that we found the causal relationship 
that we are looking for. The reason we cannot do this is that, without an experimental design that 
includes random assignment and control variables, the relationship we observe between the two 
variables may be caused by something else that we failed to measure—something we can only detect 
and control for with an experiment. These confound variables, which we will represent with Z, can 
cause two variables X and Y to appear related when in fact they are not. They do this by being the 
hidden—or lurking—cause of each variable independently. That is, if Z causes X and Z causes Y, the 
X and Y will appear to be related. However, if we control for the effect of Z (the method for doing 
this is beyond the scope of this text), then the relationship between X and Y will disappear.

A popular example of this effect is the correlation between ice cream sales and deaths by drowning. 
These variables are known to correlate very strongly over time. However, this does not prove that one 
causes the other. The lurking variable in this case is the weather—people enjoy swimming and enjoy 
eating ice cream more during hot weather as a way to cool off. As another example, consider shoe 
size and spelling ability in elementary school children. Although there should clearly be no causal 
relationship here, the variables are nonetheless consistently correlated. The confound in this case? 
Age. Older children spell better than younger children and are also bigger, so they have larger shoes.

When there is the possibility of confounding variables being the hidden cause of our observed 
correlation, we will often collect data on Z as well and control for it in our analysis. This is good 
practice and a wise thing for researchers to do. Thus, it would seem that it is easy to demonstrate 
causation with a correlation that controls for Z. However, the number of variables that could 
potentially cause a correlation between X and Y is functionally limitless, so it would be impossible 
to control for everything. That is why we use experimental designs; by randomly assigning people to 
groups and manipulating variables in those groups, we can balance out individual differences in any 
variable that may be our cause.

It is not always possible to do an experiment, however, so there are certain situations in which we 
will have to be satisfied with our observed relationship and do the best we can to control for known 
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confounds. However, in these situations, even if we do an excellent job of controlling for many 
extraneous (a statistical and research term for “outside”) variables, we must be careful not to use 
causal language. That is because, even after controls, sometimes variables are related just by chance.

Sometimes, variables will end up being related simply due to random chance, and we call these 
correlations spurious. Spurious just means random, so what we are seeing is random correlations 
because, given enough time, enough variables, and enough data, sampling error will eventually 
cause some variables to appear related when they are not. Sometimes, this even results in incredibly 
strong, but completely nonsensical, correlations. This becomes more and more of a problem as our 
ability to collect massive datasets and dig through them improves, so it is very important to think 
critically about any relationship you encounter.

FINAL CONSIDERATIONS
Correlations, although simple to calculate, can be very complex, and there are many additional 
issues we should consider. We will look at two of the most common issues that affect our 
correlations and discuss some other correlations and reporting methods you may encounter.

Range Restriction
The strength of a correlation depends on how much variability is in each of the variables X and Y. 
This is evident in the formula for Pearson’s r, which uses both covariance (based on the sum of 
products, which comes from deviation scores) and the standard deviation of both variables (based 
on the sums of squares, which also come from deviation scores). Thus, if we reduce the amount of 
variability in one or both variables, our correlation will go down. Failure to capture the full range of 
a variability is called range restriction.

Take a look at FIGURE 12.12 and FIGURE 12.13. FIGURE 12.12 shows a strong relationship (r = .67) 
between two variables. An orange oval is overlaid on it to make the relationship even more distinct. 
FIGURE 12.13 shows the same data, but the bottom half of the X variable (all scores below 5) have 
been removed, which causes our relationship (again represented by an orange oval) to become much 
weaker (r = .38). Thus range restriction has truncated (made smaller) our observed correlation.

Sometimes range restriction happens by design. For example, we rarely hire people who do poorly 
on job applications, so we would not have the lower range of those predictor variables. Other times, 
we inadvertently cause range restriction by not properly sampling our population. Although there 
are ways to correct for range restriction, they are complicated and require much information that 
may not be known, so it is best to be very careful during the data collection process to avoid it.

Outliers
Another issue that can cause the observed size of our correlation to be inappropriately large or 
small is the presence of outliers. An outlier is a data point that falls far away from the rest of 
the observations in the dataset. Sometimes outliers are the result of incorrect data entry, poor 

FIGURE 12.12. Strong 
positive correlation. 
 (“Scatter Plot Strong Positive 
Correlation” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 12.13. effect 
of range restriction. 
 (“Scatter Plot Effect of 
Range Restriction” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.)

2

4

8

6

842 6

190 • ADDITIONAL HYPOTHESIS TESTS Unit 3

https://irl.umsl.edu/oer-img/92
https://irl.umsl.edu/oer-img/92
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://irl.umsl.edu/oer-img/93
https://irl.umsl.edu/oer-img/93
https://creativecommons.org/licenses/by-nc-sa/4.0/


confounds. However, in these situations, even if we do an excellent job of controlling for many 
extraneous (a statistical and research term for “outside”) variables, we must be careful not to use 
causal language. That is because, even after controls, sometimes variables are related just by chance.

Sometimes, variables will end up being related simply due to random chance, and we call these 
correlations spurious. Spurious just means random, so what we are seeing is random correlations 
because, given enough time, enough variables, and enough data, sampling error will eventually 
cause some variables to appear related when they are not. Sometimes, this even results in incredibly 
strong, but completely nonsensical, correlations. This becomes more and more of a problem as our 
ability to collect massive datasets and dig through them improves, so it is very important to think 
critically about any relationship you encounter.

FINAL CONSIDERATIONS
Correlations, although simple to calculate, can be very complex, and there are many additional 
issues we should consider. We will look at two of the most common issues that affect our 
correlations and discuss some other correlations and reporting methods you may encounter.

Range Restriction
The strength of a correlation depends on how much variability is in each of the variables X and Y. 
This is evident in the formula for Pearson’s r, which uses both covariance (based on the sum of 
products, which comes from deviation scores) and the standard deviation of both variables (based 
on the sums of squares, which also come from deviation scores). Thus, if we reduce the amount of 
variability in one or both variables, our correlation will go down. Failure to capture the full range of 
a variability is called range restriction.

Take a look at FIGURE 12.12 and FIGURE 12.13. FIGURE 12.12 shows a strong relationship (r = .67) 
between two variables. An orange oval is overlaid on it to make the relationship even more distinct. 
FIGURE 12.13 shows the same data, but the bottom half of the X variable (all scores below 5) have 
been removed, which causes our relationship (again represented by an orange oval) to become much 
weaker (r = .38). Thus range restriction has truncated (made smaller) our observed correlation.

Sometimes range restriction happens by design. For example, we rarely hire people who do poorly 
on job applications, so we would not have the lower range of those predictor variables. Other times, 
we inadvertently cause range restriction by not properly sampling our population. Although there 
are ways to correct for range restriction, they are complicated and require much information that 
may not be known, so it is best to be very careful during the data collection process to avoid it.

Outliers
Another issue that can cause the observed size of our correlation to be inappropriately large or 
small is the presence of outliers. An outlier is a data point that falls far away from the rest of 
the observations in the dataset. Sometimes outliers are the result of incorrect data entry, poor 

FIGURE 12.12. Strong 
positive correlation. 
 (“Scatter Plot Strong Positive 
Correlation” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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FIGURE 12.13. effect 
of range restriction. 
 (“Scatter Plot Effect of 
Range Restriction” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.)
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or intentionally misleading responses, or simple random chance. Other times, however, they 
represent real people with meaningful values on our variables. The distinction between meaningful 
and accidental outliers is a difficult one that is based on the expert judgment of the researcher. 
Sometimes, we will remove the outlier (if we think it is an accident) or we may decide to keep it (if 
we find the scores to still be meaningful even though they are different).

The scatter plots in FIGURE 12.14 show the effects that an outlier can have on data. In the first plot, we 
have our raw dataset. You can see in the upper right corner that there is an outlier observation that 
is very far from the rest of our observations on both the X and Y variables. In the middle plot, we 
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see the correlation computed when we include the outlier, along with a straight line representing the 
relationship; here, it is a positive relationship. In the third plot, we see the correlation after removing 
the outlier, along with a line showing the direction once again. Not only did the correlation get 
stronger, it completely changed direction!

FIGURE 12.14. three 
scatter plots showing 
correlations with 
and without outliers. 
 (“Scatter Plot Correlations 
and Outliers” by Judy 
Schmitt is licensed under 
CC BY-NC-SA 4.0.) 60
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In general, there are three effects that an outlier can have on a correlation: it can change the 
magnitude (make it stronger or weaker), it can change the significance (make a non-significant 
correlation significant or vice versa), and/or it can change the direction (make a positive relationship 
negative or vice versa). Outliers are a big issue in small datasets where a single observation can 
have a strong weight compared with the rest. However, as our sample sizes get very large (into the 
hundreds), the effects of outliers diminish because they are outweighed by the rest of the data. 
Nevertheless, no matter how large a dataset you have, it is always a good idea to screen for outliers, 
both statistically (using analyses that we do not cover here) and visually (using scatter plots).

Other Correlation Coefficients
In this chapter we have focused on Pearson’s r as our correlation coefficient because it is very 
common and useful. There are, however, many other correlations out there, each of which is 
designed for a different type of data. The most common of these is Spearman’s rho (r), which is 
designed to be used on ordinal data rather than continuous data. This is a useful analysis if we have 
ranked data or our data do not conform to the normal distribution. There are even more correlations 
for ordered categories, but they are much less common and beyond the scope of this chapter.

Additionally, the principles of correlations underlie many other advanced analyses. In Chapter 13, 
we will learn about regression, which is a formal way of running and analyzing a correlation that can 
be extended to more than two variables. Regression is a powerful technique that serves as the basis 
for even our most advanced statistical models, so what we have learned in this chapter will open the 
door to an entire world of possibilities in data analysis.

Correlation Matrices
Many research studies look at the relationship between more than two continuous variables. In such 
situations, we could simply list all of our correlations, but that would take up a lot of space and make 
it difficult to quickly find the relationship we are looking for. Instead, we create correlation matrices 
so that we can quickly and simply display our results. A matrix is like a grid that contains our values. 
There is one row and one column for each of our variables, and the intersections of the rows and 
columns for different variables contain the correlation for those two variables.

At the beginning of the chapter, we saw scatter plots presenting data for correlations between job 
satisfaction, well-being, burnout, and job performance. We can create a correlation matrix to quickly 
display the numerical values of each. Such a matrix is shown below.

Satisfaction Well-being Burnout Performance

Satisfaction 1.00
Well-being 0.41 1.00
Burnout −0.54 −0.87 1.00
Performance 0.08 0.21 −0.33 1.00

Notice that there are values of 1.00 where each row and column of the same variable intersect. This 
is because a variable correlates perfectly with itself, so the value is always exactly 1.00. Also notice 
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that the upper cells are left blank and only the cells below the diagonal of 1.00s are filled in. This 
is because correlation matrices are symmetrical: they have the same values above the diagonal as 
below it. Filling in both sides would provide redundant information and make it a bit harder to read 
the matrix, so we leave the upper triangle blank.

Correlation matrices are a very condensed way of presenting many results quickly, so they appear in 
almost all research studies that use continuous variables. Many matrices also include columns that 
show the variable means and standard deviations, as well as asterisks showing whether or not each 
correlation is statistically significant.

EXERCISES
1. What does a correlation assess?

2. What are the three characteristics of a correlation coefficient?

3. What is the difference between covariance and correlation?

4. Why is it important to visualize correlational data in a scatter plot before performing analyses?

5. What sort of relationship is displayed in the scatter plot below?

20.0

22.5

27.5

25.0

30.0

20.015.0 17.5 22.5 25.0

X

Y

 (“Scatter Plot in Exercises” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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6. What is the direction and magnitude of the following correlation coefficients?
a. −.81
b. .40
c. .15
d. −.08
e. .29

7. Create a scatter plot from the following data:

Hours Studying Overall Class Performance

0.62 2.02
1.50 4.62
0.34 2.60
0.97 1.59
3.54 4.67
0.69 2.52
1.53 2.28
0.32 1.68
1.94 2.50
1.25 4.04
1.42 2.63
3.07 3.53
3.99 3.90
1.73 2.75
1.29 2.95

8. In the following correlation matrix, what is the relationship (number, direction, and magnitude) 
between

a. Pay and Satisfaction
b. Stress and Health

WORKPLACE Pay Satisfaction Stress Health

Pay 1.00
Satisfaction .68 1.00
Stress .02 −.23 1.00
Health .05 .15 −.48 1.00

9. Using the data from Problem 7, test for a statistically significant relationship between the variables.

10. Researchers investigated mother-infant vocalizations in several cultures to determine the extent 
to which such vocal interactions are true for all humans or culture-specific. They thought that 
mothers who talked more would have babies who vocalized (babbled) more. They observed 
mothers and infants for 50 minutes and recorded the number of times the mother spoke and 
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the baby vocalized during the observation session. Data below are for 10 mother-infant pairs in 
Cameroon. Test the hypothesis at the a = .05 level using the four-step hypothesis testing procedure.

Mother Spoke Baby Vocalized

80 110
60 110

120 100
100 130
100 140

90 115
80 150
40 130
80 95
50 50

ANSWERS TO ODD-NUMBERED EXERCISES
1. Correlations assess the linear relationship between two continuous variables.

3. Covariance is an unstandardized measure of how related two continuous variables are. 
Correlations are standardized versions of covariance that fall between −1.00 and 1.00.

5. Strong, positive, linear relationship

7. Your scatter plot should look similar to this:
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 (“Scatter Plot Studying and Performance” 
by Judy Schmitt is licensed under 
CC BY-NC-SA 4.0.)

196 • ADDITIONAL HYPOTHESIS TESTS Unit 3

https://irl.umsl.edu/oer-img/96
https://creativecommons.org/licenses/by-nc-sa/4.0/


9. Step 1: H0: r = 0 “There is no relationship between time spent studying and overall performance 
in class,” HA: r > 0 “There is a positive relationship between time spent studying and overall 
performance in class.”  

Step 2: df = 15 − 2 = 13, a = .05, one-tailed test, r* = .441  

Step 3: Using the sum of products table, you should find: MX = 1.61, SSX = 17.44, MY = 2.95, 
SSY = 13.60, SP = 10.06, r = .65  

Step 4: Obtained statistic is greater than critical value, reject H0. There is a statistically significant, 
strong, positive relationship between time spent studying and performance in class, r(13) = .65, 
p < .05.

Chapter 12 CORRELATIONS • 197



CHAPTER 13 

Linear Regression
KEY TERMS
curvilinear models
error
least squares error solution

line of best fit
mean squared error
moderation models

multiple regression
residual
standard error of the estimate

In Chapter 11, we learned about ANOVA, which involves a new way of looking at how our data are 
structured and the inferences we can draw from that. In Chapter 12, we learned about correlations, 
which analyze two continuous variables at the same time to see if they systematically relate in a 
linear fashion. In this chapter, we will combine these two techniques in an analysis called simple 
linear regression, or regression for short. Regression uses the technique of variance partitioning from 
ANOVA to more formally assess the types of relationships looked at in correlations. Regression is the 
most general and most flexible analysis covered in this book, and we will only scratch the surface.

LINE OF BEST FIT
In correlations, we referred to a linear trend in the data. That is, we assumed that there was a straight 
line we could draw through the middle of our scatter plot that would represent the relationship 
between our two variables, X and Y. Regression involves solving for the equation of that line, which 
is called the line of best fit.

The line of best fit can be thought of as the central tendency of our scatter plot. The term best fit 
means that the line is as close to all points (with each point representing both variables for a single 
person) in the scatter plot as possible, with a balance of scores above and below the line. This is the 
same idea as the mean, which has an equal weighting of scores above and below it and is the best 
singular descriptor of all our data points for a single variable.

We have already seen many scatter plots in Chapter 2 and Chapter 12, so we know by now that no 
scatter plot has points that form a perfectly straight line. Because of this, when we put a straight line 
through a scatter plot, it will not touch all of the points, and it may not even touch any! This will 
result in some distance between the line and each of the points it is supposed to represent, just like a 
mean has some distance between it and all of the individual scores in the dataset.

The distances between the line of best fit and each individual data point go by two different names 
that mean the same thing: errors and residuals. The term error in regression is closely aligned with 
the meaning of error in statistics (think standard error or sampling error); it does not mean that 
we did anything wrong, it simply means that there was some discrepancy or difference between 
what our analysis produced and the true value we are trying to get at. The term residual is new 
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to our study of statistics, and it takes on a very similar meaning in regression to what it means in 
everyday parlance: there is something left over. In regression, what is “left over”—that is, what 
makes up the residual—is an imperfection in our ability to predict values of the Y variable using our 
line. This definition brings us to one of the primary purposes of regression and the line of best fit: 
predicting scores.

PREDICTION
The goal of regression is the same as the goal of ANOVA: to take what we know about one variable 
(X) and use it to explain our observed differences in another variable (Y). In ANOVA, we talked 
about—and tested for—group mean differences, but in regression we do not have groups for 
our explanatory variable; we have a continuous variable, like in correlation. Because of this, our 
vocabulary will be a little bit different, but the process, logic, and end result are all the same.

In regression, we most frequently talk about prediction, specifically predicting our outcome variable 
Y from our explanatory variable X, and we use the line of best fit to make our predictions. Let’s take 
a look at the equation for the line, which is quite simple:

Ŷ = a + bX

The terms in the equation are defined as:

 Ŷ: the predicted value of Y for an individual person 
 a: the intercept of the line
 b: the slope of the line
 X: the observed value of X for an individual person

What this shows us is that we will use our known value of X for each person to predict the value of 
Y for that person. The predicted value, Ŷ (“Y-hat”), is our best guess for what a person’s score on the 
outcome is. Notice also that the form of the equation is very similar to very simple linear equations 
that you have likely encountered before and has only two parameter estimates: an intercept (where 
the line crosses the y-axis) and a slope (how steep—and the direction, positive or negative—the 
line is). These are parameter estimates because, like everything else in statistics, we are interested in 
approximating the true value of the relationship in the population but can only ever estimate it using 
sample data. We will soon see that one of these parameters, the slope, is the focus of our hypothesis 
tests (the intercept is only there to make the math work out properly and is rarely interpretable). The 
formulas for these parameter estimates use very familiar values:

a M bMY X� �

b
s
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r s
s

XY

X X

Y

X
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2
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We have seen each of these before. MY and MX are the means of Y and X, respectively; cov XY  is the 
covariance of X and Y we learned about with correlations; and sX

2  is the variance of X. The formula 
for the slope is very similar to the formula for a Pearson correlation coefficient; the only difference is 
that we are dividing by the variance of X instead of the product of the standard deviations of X and 
Y. Because of this, our slope is scaled to the same scale as our X variable and is no longer 
constrained to be between 0 and 1 in absolute value. This formula provides a clear definition of the 
slope of the line of best fit, and just like with correlation, this definitional formula can be simplified 
into a short computational formula for easier calculations. In this case, we are simply taking the sum 
of products and dividing by the sum of squares for X.

Notice that there is a third formula for the slope of the line that involves the correlation between 
X and Y. This is because regression and correlation look for the same thing: a straight line 
through the middle of the data. The only difference between a regression coefficient in simple 
linear regression and a Pearson correlation coefficient is the scale. So, if you lack raw data but 
have summary information on the correlation and standard deviations for variables, you can still 
compute a slope, and therefore an intercept, for a line of best fit.

It is important to point out that the Y values in the equations for a and b are our observed Y values 
in the dataset, not the predicted Y values (Ŷ) from our equation for the line of best fit. Thus, we will 
have three values for each person: the observed value of X (X), the observed value of Y (Y), and the 
predicted value of Y (Ŷ). You may be asking why we would try to predict Y if we have an observed 
value of Y, and that is a reasonable question. The answer has two explanations. First, we need to use 
known values of Y to calculate the parameter estimates in our equation, and we use the difference 
between our observed values and predicted values (Y − Ŷ) to see how accurate our equation is. And 
second, we often use regression to create a predictive model that we can then use to predict values of 
Y for other people for whom we only have information on X.

Let’s look at this from an applied example. Businesses often have more applicants for a job than 
they have openings available, so they want to know who among the applicants is most likely to 
be the best employee. There are many criteria that can be used, but one is a personality test for 
conscientiousness, with the belief being that more conscientious (more responsible) employees 
are better than less conscientious employees. A business might give their employees a personality 
inventory to assess conscientiousness and study existing performance data to look for a 
relationship. In this example, we have known values of the predictor (X, conscientiousness) and 
outcome (Y, job performance), so we can estimate an equation for a line of best fit and see how 
accurately conscientiousness predicts job performance, then use this equation to predict future job 
performance of applicants based only on their known values of conscientiousness from personality 
inventories given during the application process.

The key in assessing whether a linear regression works well is the difference between our observed 
and known Y values and our predicted Ŷ values. As mentioned in passing above, we use subtraction 
to find the difference between them (Y − Ŷ) in  the same way we use subtraction for deviation scores 
and sums of squares. The value (Y − Ŷ) is our residual, which, as defined above, is how close our line 
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of best fit is to our actual values. We can visualize residuals to get a better sense of what they are by 
creating a scatter plot and overlaying a line of best fit on it, as shown in FIGURE 13.1.

In FIGURE 13.1, the triangular dots represent observations from each person on both X and Y and 
the dotted line is the line of best fit estimated by the equation Ŷ = a + bX. For every person in the 
dataset, the line represents their predicted score. The brackets between the triangular dots and the 
predicted scores on the line of best fit are our residuals. (For ease of viewing, they are only drawn 
for four observations, but in reality there is one for every observation.) You can see that some 
residuals are positive and some are negative, and that some are very large and some are very small. 
This means that some predictions are very accurate and some are very inaccurate, and that some 
predictions overestimate values and some underestimate values. Across the entire dataset, the line of 
best fit is the one that minimizes the total (sum) value of all residuals. That is, although predictions 
at an individual level might be somewhat inaccurate, across our full sample and (theoretically) in 
future samples our total amount of error is as small as possible. We call this property of the line of 
best fit the least squares error solution. This term means that the solution—or equation—of the 
line is the one that provides the smallest possible value of the squared errors (squared so that they 
can be summed, just like in standard deviation) relative to any other straight line we could draw 
through the data.

Predicting Scores and Explaining Variance
We have now seen that the purpose of regression is twofold: we want to predict scores based on our 
line and, as stated earlier, explain variance in our observed Y variable just like in ANOVA. These two 
purposes go hand in hand, and our ability to predict scores is literally our ability to explain variance. 
That is, if we cannot account for the variance in Y based on X, then we have no reason to use X to 
predict future values of Y.

FIGURE 13.1. Scatter plot with residuals.  (“Scatter Plot with Residuals” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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We know that the overall variance in Y is a function of each score deviating from the mean of Y (as 
in our calculation of variance and standard deviation). So, just like the brackets in FIGURE 13.1 
representing residuals, given as (Y − Ŷ), we can visualize the overall variance as each score’s distance 
from the overall mean of Y, given as (Y MY− ), our normal deviation score. This is shown in 
FIGURE 13.2.

In FIGURE 13.2, the solid line is the mean of Y, and the blue brackets are the deviation scores between 
our observed values of Y and the mean of Y. This represents the overall variance that we are trying 
to explain. Thus, the residuals and the deviation scores are the same type of idea: the distance 
between an observed score and a given line, either the line of best fit that gives predictions or the 
line representing the mean that serves as a baseline. The difference between these two values, which 
is the distance between the lines themselves, is our model’s ability to predict scores above and 
beyond the baseline mean; that is, it is our model’s ability to explain the variance we observe in Y 
based on values of X. If we have no ability to explain variance, then our line will be flat (the slope 
will be 0.00) and will be the same as the line representing the mean, and the distance between the 
lines will be 0.00 as well.

We now have three pieces of information: the distance from the observed score to the mean, the 
distance from the observed score to the prediction line, and the distance from the prediction line to 
the mean. These are our three pieces of information needed to test our hypotheses about regression 
and to calculate effect sizes. They are our three sums of squares, just like in ANOVA. Our distance 
from the observed score to the mean is the sum of squares total, which we are trying to explain. 
Our distance from the observed score to the prediction line is our sum of squares error, or residual, 
which we are trying to minimize. Our distance from the prediction line to the mean is our sum of 
squares model, which is our observed effect and our ability to explain variance. Each of these will go 
into the ANOVA table to calculate our test statistic.

FIGURE 13.2. Scatter plot with residuals and deviation scores.  (“Scatter Plot with Residuals and Deviation Scores” by 
Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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ANOVA TABLE
Our ANOVA table in regression follows the exact same format as it did for ANOVA (hence the 
name). The top row (Model) is our observed effect, the middle row is our error, and the bottom row 
is our total. The columns take on the same interpretations as well: from left to right, we have our 
sums of squares, our degrees of freedom, our mean squares, and our F statistic.

Source SS df MS F

Model ∑(Ŷ − MY)2 1
SS
df

M

M

MS
MS

M

E

Error ∑(Y − Ŷ)2 N − 2
SS
df

E

E

Total ∑(Y MY− )2 N − 1

As with ANOVA, getting the values for the SS column is a straightforward but somewhat arduous 
process. First, you take the raw scores of X and Y and calculate the means, variances, and covariance 
using the sum of products table introduced in our chapter on correlations. Next, you use the 
variance of X and the covariance of X and Y to calculate the slope of the line, b. (The formula for 
calculating b was provided earlier.) After that, you use the means and the slope to find the intercept, 
a, which is given alongside b. After that, you use the full prediction equation for the line of best fit to 
get predicted Y scores (Ŷ) for each person. Finally, you use the observed Y scores, predicted 
Y scores, and mean of Y (MY) to find the appropriate deviation scores for each person for each sum 
of squares source in the table and sum them to get the sum of squares model, sum of squares error, 
and sum of squares total. As with ANOVA, you won’t be required to compute the SS values by hand, 
but you will need to know what they represent and how they fit together.

The other columns in the ANOVA table are all familiar. The degrees of freedom column still has 
N − 1 for our total, but now we have N − 2 for our error degrees of freedom and 1 for our model 
degrees of freedom; this is because simple linear regression only has one predictor, so our degrees 
of freedom for the model is always 1 and does not change. The total degrees of freedom must still 
be the sum of the other two, so our degrees of freedom error will always be N − 2 for simple linear 
regression. The mean square columns are still the SS column divided by the df column, and the test 
statistic F is still the ratio of the mean squares. Based on this, it is now explicitly clear that not only 
do regression and ANOVA have the same goal but they are, in fact, the same analysis entirely. The 
only difference is the type of data we feed into the predictor side of the equations: continuous for 
regression and categorical for ANOVA.

HYPOTHESIS TESTING IN REGRESSION
Regression, like all other analyses, will test a null hypothesis in our data. In regression, we are 
interested in predicting Y scores and explaining variance using a line, the slope of which is what 
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allows us to get closer to our observed scores than the mean of Y can. Thus, our hypotheses concern 
the slope of the line, which is estimated in the prediction equation by b (the slope of a population, as 
opposed to b, which is the slope of a sample). Specifically, we want to test that the slope is not zero:

H
H

0

0

: There is no explanatory relationship between our variables
:� �� 0

H
H

A

A

: There is an explanatory relationship between our variables
:� ��

�
�

0
0
0

H
H

A

A

:
:
�
�

A non-zero slope indicates that we can explain values in Y based on X and therefore predict future 
values of Y based on X. Our alternative hypotheses are analogous to those in correlation: positive 
relationships have values above zero, negative relationships have values below zero, and two-tailed 
tests are possible. Just like ANOVA, we will test the significance of this relationship using the 
F statistic calculated in our ANOVA table compared to a critical value from the F distribution table. 
Let’s take a look at an example and regression in action.

EXAMPLE  Happiness and Well-being
Researchers are interested in explaining differences in how happy people are based on how healthy 
people are. They gather data on each of these variables from 18 people and fit a linear regression 
model to explain the variance. We will follow the four-step hypothesis-testing procedure to see if 
there is a relationship between these variables that is statistically significant.

STEP 1: State the Hypotheses
The null hypothesis in regression states that there is no relationship between our variables. The 
alternative states that there is a relationship, but because our research description did not explicitly 
state a direction of the relationship, we will use a non-directional hypothesis.

H0: There is no explanatory relationship between health and happinness
:H0 0� �

HA : There is an explanatory relationship between health and happinness
:AH � � 0

STEP 2: Find the Critical Value
Because regression and ANOVA are the same analysis, our critical value for regression will come 
from the same place: the F distribution table, which uses two types of degrees of freedom. We saw 
in the ANOVA table that the degrees of freedom for our numerator—the Model line—is always 1 
in simple linear regression, and that the denominator degrees of freedom—from the Error line—is 
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N − 2. In this instance, we have 18 people so our degrees of freedom for the denominator is 16. 
Going to our F table (a portion of which is shown in TABLE 13.1), we find that the appropriate 
critical value for 1 and 16 degrees of freedom is F* = 4.49. (The complete F table can be found in 
Appendix C.)

STEP 3: Calculate the Test Statistic and Effect Size
The process of calculating the test statistic for regression first involves computing the parameter 
estimates for the line of best fit. To do this, we first calculate the means, standard deviations, and 
sum of products for our X and Y variables, as shown below.

X (X − MX) (X − MX)2 Y (Y − MY) (Y − MY)2 (X − MX)(Y − MY)

17.65 −2.13 4.53 10.36 −7.10 50.37 15.10
16.99 −2.79 7.80 16.38 −1.08 1.16 3.01
18.30 −1.48 2.18 15.23 −2.23 4.97 3.29
18.28 −1.50 2.25 14.26 −3.19 10.18 4.79
21.89 2.11 4.47 17.71 0.26 0.07 0.55
22.61 2.83 8.01 16.47 −0.98 0.97 −2.79
17.42 −2.36 5.57 16.89 −0.56 0.32 1.33
20.35 0.57 0.32 18.74 1.29 1.66 0.73

TABLE 13.1. Critical Values for F (F table)

df: 
Denom-
inator 

(Within)

df: Numerator (Between)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28

Table continues on the following page.
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X (X − MX) (X − MX)2 Y (Y − MY) (Y − MY)2 (X − MX)(Y − MY)

18.89 −0.89 0.79 21.96 4.50 20.26 −4.00
18.63 −1.15 1.32 17.57 0.11 0.01 −0.13
19.67 −0.11 0.01 18.12 0.66 0.44 −0.08
18.39 −1.39 1.94 12.08 −5.37 28.87 7.48
22.48 2.71 7.32 17.11 −0.34 0.12 −0.93
23.25 3.47 12.07 21.66 4.21 17.73 14.63
19.91 0.13 0.02 17.86 0.40 0.16 0.05
18.21 −1.57 2.45 18.49 1.03 1.07 −1.62
23.65 3.87 14.99 22.13 4.67 21.82 18.08
19.45 −0.33 0.11 21.17 3.72 13.82 −1.22

356.02 0.00 76.14 314.18 0.00 173.99 58.29

From the raw data in our X and Y columns, we find that the means are MX = 19.78 and MY = 17.45. 
The deviation scores for each variable sum to zero, so all is well there. The sums of squares for X and 
Y ultimately lead us to standard deviations of sX = 2.12 and sY = 3.20. Finally, our sum of products is 
58.29, which gives us a covariance of covXY = 3.43, so we know our relationship will be positive. This 
is all the information we need for our equations for the line of best fit.

First, we must calculate the slope of the line:

b SP
SSX

= = =
58 29
76 14

0 77.
.

.

This means that as X changes by 1 unit, Y will change by 0.77. In terms of our problem, as health 
increases by 1, happiness goes up by 0.77, which is a positive relationship. Next, we use the slope, 
along with the means of each variable, to compute the intercept:

a M bMY X� �
� �
� �
�

17 45 0 77 19 78
17 45 15 03
2 42

. ( . )( . )

. .
.

For this particular problem (and most regressions), the intercept is not an important or interpretable 
value, so we will not read into it further. Now that we have all of our parameters estimated, we can 
give the full equation for our line of best fit:

Ŷ = 2.42 + 0.77X

We can plot this relationship in a scatter plot and overlay our line onto it, as shown in FIGURE 13.3.

FIGURE 13.3. health and 
happiness data and line of 
best fit.  (“Scatter Plot Health and 
Happiness” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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X (X − MX) (X − MX)2 Y (Y − MY) (Y − MY)2 (X − MX)(Y − MY)

18.89 −0.89 0.79 21.96 4.50 20.26 −4.00
18.63 −1.15 1.32 17.57 0.11 0.01 −0.13
19.67 −0.11 0.01 18.12 0.66 0.44 −0.08
18.39 −1.39 1.94 12.08 −5.37 28.87 7.48
22.48 2.71 7.32 17.11 −0.34 0.12 −0.93
23.25 3.47 12.07 21.66 4.21 17.73 14.63
19.91 0.13 0.02 17.86 0.40 0.16 0.05
18.21 −1.57 2.45 18.49 1.03 1.07 −1.62
23.65 3.87 14.99 22.13 4.67 21.82 18.08
19.45 −0.33 0.11 21.17 3.72 13.82 −1.22

356.02 0.00 76.14 314.18 0.00 173.99 58.29

From the raw data in our X and Y columns, we find that the means are MX = 19.78 and MY = 17.45. 
The deviation scores for each variable sum to zero, so all is well there. The sums of squares for X and 
Y ultimately lead us to standard deviations of sX = 2.12 and sY = 3.20. Finally, our sum of products is 
58.29, which gives us a covariance of covXY = 3.43, so we know our relationship will be positive. This 
is all the information we need for our equations for the line of best fit.

First, we must calculate the slope of the line:

b SP
SSX

= = =
58 29
76 14

0 77.
.

.

This means that as X changes by 1 unit, Y will change by 0.77. In terms of our problem, as health 
increases by 1, happiness goes up by 0.77, which is a positive relationship. Next, we use the slope, 
along with the means of each variable, to compute the intercept:

a M bMY X� �
� �
� �
�

17 45 0 77 19 78
17 45 15 03
2 42

. ( . )( . )

. .
.

For this particular problem (and most regressions), the intercept is not an important or interpretable 
value, so we will not read into it further. Now that we have all of our parameters estimated, we can 
give the full equation for our line of best fit:

Ŷ = 2.42 + 0.77X

We can plot this relationship in a scatter plot and overlay our line onto it, as shown in FIGURE 13.3.

FIGURE 13.3. health and 
happiness data and line of 
best fit.  (“Scatter Plot Health and 
Happiness” by Judy Schmitt is 
licensed under CC BY-NC-SA 4.0.)
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We can use the line equation to find predicted values for each observation and use them to calculate 
our sums of squares model and error, but this is tedious to do by hand, so we will let the computer 
software do the heavy lifting in that column of our ANOVA table:

Source SS df MS F

Model 44.62
Error 129.37
Total

Now that we have these, we can fill in the rest of the ANOVA table. We already found our degrees of 
freedom in Step 2:

Source SS df MS F

Model 44.62 1
Error 129.37 16
Total

Our total line is always the sum of the other two lines, giving us:

Source SS df MS F

Model 44.62 1
Error 129.37 16
Total 173.99 17
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Our mean squares column is only calculated for the model and error lines and is always our SS 
divided by our df, which is:

Source SS df MS F

Model 44.62 1 44.62
Error 129.37 16 8.09
Total 173.99 17

Finally, our F statistic is the ratio of the mean squares:

Source SS df MS F

Model 44.62 1 44.62 5.52
Error 129.37 16 8.09
Total 173.99 17

This gives us an obtained F statistic of 5.52, which we will use to test our hypothesis.

Effect Size in Regression
We know that, because our statistic is significant, we should calculate an effect size. In regression, our 
effect size is variance explained, just like it was in ANOVA. Instead of using h2 to represent this, we 
instead use R2, as we saw in correlation—yet more evidence that all of these are the same analysis. (Note 
that in regression analysis, R2 is typically capitalized, although for simple linear regression it represents 
the same value as r2 we used in correlation.) Variance explained is still the ratio of SSM to SST:

R SS
SS

2 44 62
173 99

26= = =M

T

.
.

.

We are explaining 26% of the variance in happiness based on health, which is a large effect size. 
(R2 uses the same effect size cutoffs as h2.)

STEP 4: Make the Decision
We now have everything we need to make our final decision. Our obtained test statistic was F = 5.52 
and our critical value was F* = 4.49. Since our obtained test statistic is greater than our critical value, 
we can reject the null hypothesis.

Reject H0. Based on our sample of 18 people, we can predict levels of happiness based on how 
healthy someone is, and the effect size was large, F(1, 16) = 5.52, p < .05, R2 < .26.

FIGURE 13.4 shows the output from JASP for this example.

ACCURACY IN PREDICTION
We found a large, statistically significant relationship between our variables, which is what we hoped 
for. However, if we want to use our estimated line of best fit for future prediction, we will also want 

FIGURE 13.4. Output from JaSp for the linear regression described in the happiness and Well-Being example. 
the output provides the slope (b) of the line in the Coefficients table under health Unstandardized (0.765), 
the y-intercept (a) of the line in the Coefficients table under (intercept) Unstandardized (2.317, note slightly 
different from hand calculations due to rounding). the Model Summary – happiness table provides R2 (.256). 
the anOVa table provides the result of the F test statistic. Based on our sample of 18 people, we can predict 
levels of happiness based on how healthy someone is, F(1, 16) = 5.5, p = .032.  (“JASP linear regression” by Rupa G. 
Gordon/Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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Our mean squares column is only calculated for the model and error lines and is always our SS 
divided by our df, which is:

Source SS df MS F

Model 44.62 1 44.62
Error 129.37 16 8.09
Total 173.99 17

Finally, our F statistic is the ratio of the mean squares:

Source SS df MS F

Model 44.62 1 44.62 5.52
Error 129.37 16 8.09
Total 173.99 17

This gives us an obtained F statistic of 5.52, which we will use to test our hypothesis.

Effect Size in Regression
We know that, because our statistic is significant, we should calculate an effect size. In regression, our 
effect size is variance explained, just like it was in ANOVA. Instead of using h2 to represent this, we 
instead use R2, as we saw in correlation—yet more evidence that all of these are the same analysis. (Note 
that in regression analysis, R2 is typically capitalized, although for simple linear regression it represents 
the same value as r2 we used in correlation.) Variance explained is still the ratio of SSM to SST:

R SS
SS

2 44 62
173 99

26= = =M

T

.
.

.

We are explaining 26% of the variance in happiness based on health, which is a large effect size. 
(R2 uses the same effect size cutoffs as h2.)

STEP 4: Make the Decision
We now have everything we need to make our final decision. Our obtained test statistic was F = 5.52 
and our critical value was F* = 4.49. Since our obtained test statistic is greater than our critical value, 
we can reject the null hypothesis.

Reject H0. Based on our sample of 18 people, we can predict levels of happiness based on how 
healthy someone is, and the effect size was large, F(1, 16) = 5.52, p < .05, R2 < .26.

FIGURE 13.4 shows the output from JASP for this example.

ACCURACY IN PREDICTION
We found a large, statistically significant relationship between our variables, which is what we hoped 
for. However, if we want to use our estimated line of best fit for future prediction, we will also want 

FIGURE 13.4. Output from JaSp for the linear regression described in the happiness and Well-Being example. 
the output provides the slope (b) of the line in the Coefficients table under health Unstandardized (0.765), 
the y-intercept (a) of the line in the Coefficients table under (intercept) Unstandardized (2.317, note slightly 
different from hand calculations due to rounding). the Model Summary – happiness table provides R2 (.256). 
the anOVa table provides the result of the F test statistic. Based on our sample of 18 people, we can predict 
levels of happiness based on how healthy someone is, F(1, 16) = 5.5, p = .032.  (“JASP linear regression” by Rupa G. 
Gordon/Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

to know how precise or accurate our predicted values are. What we want to know is the average 
distance from our predictions to our actual observed values, or the average size of the residual 
(Y − Ŷ). The average size of the residual is known by a specific name: the standard error of the 
estimate (s Y Y( ˆ )− ), which is given by the formula

Y Y
N
( ˆ )

=
−
−

∑ 2

2
s Y Y( ˆ )−

This formula is almost identical to our standard deviation formula, and it follows the same logic. We 
square our residuals, add them up, then divide by the degrees of freedom. Although this sounds like 
a long process, we already have the sum of the squared residuals in our ANOVA table! In fact, the 
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value under the square root sign is just the SSE divided by the dfE, which is called the mean squared 
error, or MSE:

MSE=
Y Y
N
( ˆ )

=
−
−

∑ 2

2
s Y Y( ˆ )−

For our example:

. . .= = =
129 37

16
8 09 2 84s Y Y( ˆ )−

So on average, our predictions are just under 3 points away from our actual values. There are no 
specific cutoffs or guidelines for how big our standard error of the estimate can or should be; it 
is highly dependent on both our sample size and the scale of our original Y variable, so expert 
judgment should be used. In this case, the estimate is not that far off and can be considered 
reasonably precise.

MULTIPLE REGRESSION AND OTHER EXTENSIONS
Simple linear regression as presented here is only a stepping stone toward an entire field of research 
and application. Regression is an incredibly flexible and powerful tool, and the extensions and 
variations on it are far beyond the scope of this chapter. (Indeed, even entire books struggle to 
accommodate all possible applications of the simple principles laid out here.) The next step in 
regression is to study multiple regression, which uses multiple X variables as predictors for a 
single Y variable at the same time. The math of multiple regression is very complex but the logic 
is the same: we are trying to use variables that are statistically significantly related to our outcome 
to explain the variance we observe in that outcome. Other forms of regression include curvilinear 
models that can explain curves in the data rather than the straight lines used here, as well as 
moderation models that change the relationship between two variables based on levels of a third. 
The possibilities are truly endless and offer a lifetime of discovery.

EXERCISES
1. How are ANOVA and linear regression similar? How are they different?

2. What is a residual?

3. How are correlation and regression similar? How are they different?

4. What are the two parameters of the line of best fit, and what do they represent?

5. What is our criterion for finding the line of best fit?
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6. Fill out the rest of the ANOVA tables below for simple linear regressions: 
a. 

Source SS df MS F

Model 34.21
Error
Total 66.12 54

b. 

Source SS df MS F

Model 6.03
Error 16
Total 19.98

7. In Chapter 12, we found a statistically significant correlation between overall performance in 
class and how much time someone studied. Use the summary statistics calculated in that 
problem (MX = 1.61, sX = 1.12, MY = 2.95, sY = 0.99, r = .65) to compute a line of best fit 
predicting success from study times.

8. Using the line of best fit equation created in Problem 7, predict the scores for how successful 
people will be based on how much they study:

a. X = 1.20
b. X = 3.33
c. X = 0.71
d. X = 4.00

9. You have become suspicious that the draft rankings of your fantasy football league have no 
predictive value for how teams place at the end of the season. You go back to historical league 
data and find rankings of teams after the draft and at the end of the season (shown in the 
following table) to test for a statistically significant predictive relationship. Assume SSM = 2.65 
and SSE = 337.35.

Draft Projection Final Rankings

1 14
2 6
3 8
4 13
5 2
6 15
7 4
8 10

Draft Projection Final Rankings

9 11
10 16
11 9
12 7
13 14
14 12
15 1
16 5
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10. You have summary data for two variables: how extroverted someone is (X) and how often 
someone volunteers (Y). Using these values, calculate the line of best fit predicting volunteering 
from extroversion, then test for a statistically significant relationship using the hypothesis-testing 
procedure: MX = 12.58, sX = 4.65, MY = 7.44, sY = 2.12, r = .34, N = 67, SSM = 19.79, SSE = 215.77.

ANSWERS TO ODD-NUMBERED EXERCISES
1. ANOVA and simple linear regression both take the total observed variance and partition it 

into pieces that we can explain and cannot explain and use the ratio of those pieces to test for 
significant relationships. They are different in that ANOVA uses a categorical variable as a 
predictor, whereas linear regression uses a continuous variable.

3. Correlation and regression both involve taking two continuous variables and finding a linear 
relationship between them. Correlations find a standardized value describing the direction and 
magnitude of the relationship, whereas regression finds the line of best fit and uses it to partition 
and explain variance.

5. Least squares error solution; the line that minimizes the total amount of residual error in the 
dataset

7. b = r*(sY/sX) = .65*(0.99/1.12) = .57; a = MX − bMY  = 2.95 − (0.57)(1.61) = 3.87; 
Y = 3.87 + 0.57X

9. Step 1: H0: b = 0 “There is no predictive relationship between draft rankings and final rankings 
in fantasy football,” HA: b ≠ 0 “There is a predictive relationship between draft rankings and final 
rankings in fantasy football.”  

Step 2: Our model will have 1 (based on the number of predictors) and 14 (based on how many 
observations we have) degrees of freedom, giving us a critical value of F* = 4.60.  

Step 3: Using the sum of products table, we find MX = 8.50, MY = 8.50, SSX = 339.86, SP = 29.99, 
giving us a line of best fit of: b = 29.99/339.86 = 0.09; a = 8.50 − (0.09)(8.50) = 7.74; 
Y = 7.74 + 0.09X. Our given SS values and our df from Step 2 allow us to fill in the ANOVA 
table:

Source SS df MS F

Model 2.65 1 2.65 0.11
Error 337.35 14 24.10
Total 339.86 15

 Step 4: Our obtained value was smaller than our critical value, so we fail to reject the null 
hypothesis. There is no evidence to suggest that draft rankings have any predictive value for final 
fantasy football rankings, F(1, 14) = 0.11, p > .05
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CHAPTER 14 

Chi-Square
KEY TERMS
chi-square
contingency table
expected values

marginal values
nonparametric tests

test for goodness of fit
test for independence

We come at last to our final topic: chi-square (χ2). This test is a special form of analysis called a 
nonparametric test, so the structure of it will look a little bit different from what we have done so far. 
However, the logic of hypothesis testing remains unchanged. The purpose of chi-square is to 
understand the frequency distribution of a single categorical variable or find a relationship between 
two categorical variables, which is a frequently very useful way to look at our data.

CATEGORIES AND FREQUENCY TABLES
Our data for the χ2 test are categorical—specifically nominal—variables. Recall from Unit 1 that 
nominal variables have no specified order and can only be described by their names and the 
frequencies with which they occur in the dataset. Thus, unlike the other variables we have tested, we 
cannot describe our data for the χ2 test using means and standard deviations. Instead, we will use 
frequencies tables.

TABLE 14.1 gives an example of a frequency table used for a χ2 test. The columns represent the 
different categories within our single variable, which in this example is pet preference. The χ2 test 
can assess as few as two categories, and there is no technical upper limit on how many categories can 
be included in our variable, although, as with ANOVA, having too many categories makes our 
computations long and our interpretation difficult. The final column in the table is the total number 
of observations, or N. The χ2 test assumes that each observation comes from only one person and 
that each person will provide only one observation, so our total observations will always equal our 
sample size.

There are two rows in this table. The first row gives the observed frequencies of each category 
from our dataset; in this example, 14 people reported preferring cats as pets, 17 people reported 
preferring dogs, and 5 people reported a different animal. The second row gives expected values; 

TABLE 14.1. pet preferences

Cat Dog Other Total

Observed 14 17 5 36
Expected 12 12 12 36
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expected values are what would be found if each category had equal representation. The calculation 
for an expected value is:

E N
C

=

where N is the total number of people in our sample and C is the number of categories in our 
variable (also the number of columns in our table). The expected values correspond to the null 
hypothesis for χ2 tests: equal representation of categories. Our first of two χ2 tests, the test for 
goodness of fit, will assess how well our data lines up with, or deviates from, this assumption.

TEST FOR GOODNESS OF FIT
The test for goodness of fit assesses one categorical variable against a null hypothesis of equally 
sized frequencies. Equal frequency distributions are what we would expect to get if categorization 
was completely random. We could, in theory, also test against a specific distribution of category sizes 
if we have a good reason to. If we have information about how a population is distributed, we could 
compare our observed sample distribution to the expected values if the sample followed the same 
distribution as the population. For example, if we know that in the population of a small liberal arts 
college, 15% of students are international students, while 85% are domestic students, we would then 
calculate expected values for our sample using these percentages. In that case, we would be testing 
against the null hypothesis of 15% international students. This is less common, so we will not deal 
with more examples of this sort in this text.

Hypotheses
All χ2 tests, including the test for goodness of fit, are nonparametric tests. This means that there is 
no population parameter we are estimating or testing against; we are working only with our sample 
data. Because of this, there are no mathematical statements for χ2 hypotheses. This should make sense 
because the mathematical hypothesis statements were always about population parameters (e.g., m), 
so if we are nonparametric, we have no parameters and therefore no mathematical statements.

We do, however, still state our hypotheses verbally. For χ2 tests for goodness of fit, our null 
hypothesis is that there is an equal number of observations in each category. That is, there is no 
difference between the categories in how prevalent they are. Our alternative hypothesis says that the 
categories do differ in their frequency. We do not have specific directions or one-tailed tests for χ2, 
matching our lack of mathematical statements.

Degrees of Freedom and the χχ2 Table
Our degrees of freedom for the χ2 test are based on the number of categories we have in our 
variable, not on the number of people or observations like it was for our other tests. Luckily, they are 
still as simple to calculate:

df C� �1
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So for our pet preference example, we have 3 categories, thus we have 2 degrees of freedom. Our 
degrees of freedom, along with our significance level (still defaulted to a = .05) are used to find our 
critical values in the χ2 table, a portion of which is shown in TABLE 14.2. (The complete χ2 table can 
be found in Appendix E.) Because we do not have directional hypotheses for χ2 tests, we do not need 
to differentiate between critical values for one- or two-tailed tests. In fact, just like our F tests for 
regression and ANOVA, all χ2 tests are one-tailed tests.

χχ2 STATISTIC
The calculations for our test statistic in χ2 tests combine our information from our observed 
frequencies (O) and our expected frequencies (E) for each level of our categorical variable. For each 
cell (category) we find the difference between the observed and expected values, square them, and 
divide by the expected values. We then sum this value across cells for our test statistic. This is shown 
in the formula:

�2
2

�
�� ( )O E
E

For our pet preference data, we would have:

�2
2 2 214 12

12
17 12

12
5 12

12
0 33 2 08 4 08 6 49�

�
�

�
�

�
� � � �

( ) ( ) ( ) . . . .

Notice that, for each cell’s calculation, the expected value in the numerator and the expected value in 
the denominator are the same value. Let’s now take a look at an example from start to finish.

TABLE 14.2. Critical Values for Chi-Square (�2 table)

df

PROPORTION IN CRITICAL REGION

.1 .05 .02 .01 .005

1 2.706 3.841 5.024 6.635 7.879
2 4.605 5.991 7.378 9.210 10.597
3 6.251 7.815 9.348 11.345 12.838
4 7.779 9.488 11.143 13.277 14.860
5 9.236 11.070 12.833 15.086 16.750
6 10.645 12.592 14.449 16.812 18.548
7 12.017 14.067 16.013 18.475 20.278
8 13.362 15.507 17.535 20.090 21.955
9 14.684 16.919 19.023 21.666 23.589

10 15.987 18.307 20.483 23.209 25.188
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EXAMPLE  Pineapple on Pizza
There is a very passionate and ongoing debate about whether pineapple should go on pizza. Being 
the objective, rational data analysts that we are, we will collect empirical data to see if we can settle 
this debate once and for all. We gather data from a group of adults, asking for a simple yes-or-no 
answer.

STEP 1: State the Hypotheses
We start, as always, with our hypotheses. Our null hypothesis of no difference states that an equal 
number of people will say they do and do not like pineapple on pizza, and our alternative hypothesis 
will be that one side wins out over the other:

H0: An equal number of people do and do not like pineapple on pizza

HA : A significant majority of people agree one way or the otherr

STEP 2: Find the Critical Value
To avoid any potential bias in this crucial analysis, we will leave a at its typical level. We have two 
options in our data (Yes or No), which will give us two categories. Based on this, we will have 
1 degree of freedom. From our χ2 table, we find a critical value of 3.84.

STEP 3: Calculate the Test Statistic and Effect Size
The results of the data collection are presented in TABLE 14.3. We had data from 45 people in all and 
2 categories, so our expected values are E = 45/2 = 22.50.

We can use these to calculate our χ2 statistic:

�2
2 226 22 50

22 50
19 22 50

22 50
0 54 0 54 1 08�

�
�

�
� � �

( . )
.

( . )
.

. . .

Effect Size for ��2

Like all other significance tests, χ2 tests—both for goodness of fit and for independence—have effect 
sizes that can and should be calculated. There are many options for which effect size to use, and the 
ultimate decision is based on the type of data, the structure of your frequency or contingency table, 
and the types of conclusions you would like to draw. For the purpose of our introductory course, we 
will focus only on a single effect size that is simple and flexible: Cramer’s V.

TABLE 14.3. pineapple-on-pizza preferences

Yes No Total

Observed 26 19 45
Expected 22.50 22.50 45
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Cramer’s V is a type of correlation coefficient that can be computed on categorical data. Like any 
other correlation coefficient (e.g., Pearson’s r), the cutoffs for small, medium, and large effect sizes of 
Cramer’s V are .10, .30, and .50, respectively. The calculation of Cramer’s V is very simple:

V
N k

�
�

�2

1( )

For this calculation, k is the smaller value of either R (the number of rows) or C (the number of 
columns). The numerator is simply the test statistic we calculate during Step 3 of the hypothesis-
testing procedure. For our example, we had 2 rows and 3 columns, so k = 2:

 

V
N k

�
�

�
�

� � �
�2

1
1 08

45 2 1
1 08
45

024 15
( )

.
( )

. . .

So the statistically significant relationship between our variables was moderately strong.

STEP 4: Make the Decision
Our observed test statistic had a value of 1.08 and our critical value was 3.84. Our test statistic was 
smaller than our critical value, so we fail to reject the null hypothesis, and the debate rages on. 
FIGURE 14.1 shows the output from JASP for this example.

CONTINGENCY TABLES FOR TWO VARIABLES
The test for goodness of fit is a useful tool for assessing a single categorical variable. However, what 
is more common is wanting to know if two categorical variables are related to one another. This type 
of analysis is similar to a correlation, the only difference being that we are working with nominal 

FIGURE 14.1. Output from JaSp for the �2 test for 
goodness of fit described in the pineapple on pizza 
example. the output provides the �2 statistic 
(1.089), degrees of freedom (1) and the exact 
p value (.297, which is greater than .05). the output 
also provides the observed values and expected 
values (note that both expected values are 22.5, but 
decimals are not shown). Based on our sample of 
45 people, there is no significant difference 
between the observed and expected values for 
preferring pineapple on pizza, �2 (1, N = 45) = 1.089, 
p = .297.  (“JASP chi-square goodness of fit” by Rupa G. 
Gordon/Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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data, which violates the assumptions of traditional correlation coefficients. This is where the χ2 test 
for independence comes in handy.

As noted above, our only description for nominal data is frequency, so we will again present our 
observations in a frequency table. When we have two categorical variables, our frequency table is 
crossed. That is, each combination of levels from each categorical variable is presented. This type of 
frequency table is called a contingency table because it shows the frequency of each category in one 
variable, contingent upon the specific level of the other variable.

An example contingency table is shown in TABLE 14.4, which displays whether or not 168 college 
students watched college sports growing up (Yes/No) and whether the students’ final choice of which 
college to attend was influenced by the college’s sports teams (Yes, primary; Yes, somewhat; No).

In contrast to the frequency table for our test for goodness of fit, our contingency table does not 
contain expected values, only observed data. Within our table, wherever our rows and columns 
cross, we have a cell. A cell contains the frequency of observing its corresponding specific levels of 
each variable at the same time. The top left cell in TABLE 14.4 shows us that 47 people in our study 
watched college sports as a child and had college sports as their primary deciding factor in which 
college to attend.

Cells are numbered based on which row they are in (rows are numbered top to bottom) and which 
column they are in (columns are numbered left to right). We always name the cell using (R,C), with 
the row first and the column second. A quick and easy way to remember the order is that the brand 
RC Cola exists but CR Cola does not. Based on this convention, the top left cell containing our 
47 participants who watched college sports as a child and had sports as a primary criteria is cell (1,1). 
Next to it, which has 26 people who watched college sports as a child but had sports only somewhat 
affect their decision, is cell (1,2), and so on. We only number the cells where our categories cross. We 
do not number our total cells, which have their own special name: marginal values.

Marginal values are the total values for a single category of one variable, added up across levels of 
the other variable. In TABLE 14.4, these marginal values have been made bold for ease of explanation, 
though this is not normally the case. We can see that, in total, 87 of our participants (47 + 26 + 14) 
watched college sports growing up and 81 (21 + 23 + 37) did not. The total of these two marginal 
values is 168, the total number of people in our study. Likewise, 68 people used sports as a primary 
criterion for deciding which college to attend, 50 considered it somewhat, and 50 did not consider it 

TABLE 14.4. Contingency table of college sports and decision making

AFFECTED DECISION

Primary Somewhat No Total

WATCHED 
AS A CHILD

Yes 47 26 14  87
No 21 23 37  81
Total 68 49 51 168
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at all. The total of these marginal values is also 168, our total number of people. The marginal values 
for rows and columns will always both add up to the total number of participants, N, in the study. If 
they do not, then a calculation error was made and you must go back and check your work.

Expected Values of Contingency Tables
Our expected values for contingency tables are based on the same logic as they were for frequency 
tables, but now we must incorporate information about how frequently each row and column was 
observed (the marginal values) and how many people were in the sample overall (N) to find what 
random chance would have made the frequencies out to be. Specifically:

E
R C

Nij
i j=

The subscripts i and j indicate which row and column, respectively, correspond to the cell we are 
calculating the expected frequency for, and the Ri and Cj are the row and column marginal values, 
respectively. N is still the total sample size. Using the data from TABLE 14.4, we can calculate the 
expected frequency for cell (1,1), the college sport watchers who used sports at their primary 
criteria, to be:

E1 1
87 68

168
35 21,

( )( ) .= =

We can follow the same math to find all the expected values for this table:

AFFECTED DECISION

Primary Somewhat No Total

WATCHED 
AS A CHILD

Yes 35.21 25.38 26.41  87
No 32.79 23.62 24.59  81
Total 68 49 51 168

Notice that the marginal values still add up to the same totals as before. This is because the expected 
frequencies are just row and column averages simultaneously. Our total N will also add up to the 
same value.

The observed and expected frequencies can be used to calculate the same χ2 statistic as we calculated 
for the test for goodness of fit. Before we get there, though, we should look at the hypotheses and 
degrees of freedom used for contingency tables.

TEST FOR INDEPENDENCE
The χ2 test performed on contingency tables is known as the test for independence. In this analysis, 
we are looking to see if the values of each categorical variable (that is, the frequency of their levels) is 
related to or independent of the values of the other categorical variable. Because we are still doing a 
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χ2 test, which is nonparametric, we still do not have mathematical versions of our hypotheses. The 
actual interpretations of the hypotheses are quite simple: the null hypothesis says that the variables are 
independent or not related, and the alternative hypothesis says that they are not independent or that 
they are related. Using this setup and the data provided in TABLE 14.4, let’s formally test for whether 
watching college sports as a child is related to using sports as a criteria for selecting a college to attend.

EXAMPLE  College Sports
We will follow the same four-step procedure as we have since Chapter 7.

STEP 1: State the Hypotheses
Our null hypothesis of no difference will state that there is no relationship between our variables, 
and our alternative will state that our variables are related.

H0: College choice criteria is independent of college sports viewersship as a child

HA : College choice criteria is related to college sports viewershipp as a child

STEP 2: Find the Critical Value
Our critical value will come from the same table that we used for the test for goodness of fit, but our 
degrees of freedom will change. Because we now have rows and columns (instead of just columns) 
our new degrees of freedom use information from both:

df R C� � �( )( )1 1

In our example:

df � � � � �( )( ) ( )( )2 1 3 1 1 2 2

Based on our 2 degrees of freedom, our critical value from our table is 5.991.

STEP 3: Calculate the Test Statistic and Effect Size
The same formula for χ2 is used once again:

�2
2

�
�� ( )O E
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2 2 247 35 21
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STEP 4: Make the Decision
The final decision for our test of independence is still based on our observed value (20.31) and our 
critical value (5.991). Because our observed value is greater than our critical value, we can reject the 
null hypothesis.

Reject H0. Based on our data from 168 people, we can say that there is a statistically 
significant relationship between whether someone watches college sports growing up and the 
influence a college’s sports teams have on that person’s decision on which college to attend, and 
the effect size was moderate, χ2(2, N = 168) = 20.31, p < .05, V < .348.

FIGURE 14.2 shows the output from JASP for this example.

FIGURE 14.2. Output from JaSp for the �2 test for independence described in the College Sports example. 
the output provides the �2 statistic (20.309), degrees of freedom (2), and the p value of less than .001. the 
output also provides the observed count and expected count in the contingency table and Cramer’s V (.348) 
in the nominal table. Based on our data from 168 people, we can say that there is a statistically significant 
relationship between whether someone watches college sports growing up and the influence a college’s 
sports teams have on that person’s decision on which college to attend, �2 (2, N = 168) = 20.31, p < .001, 
V = .348.  (“JASP chi-square independence” by Rupa G. Gordon/Judy Schmitt is licensed under CC BY-NC-SA 4.0.)
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EXERCISES
1. What does a frequency table display? What does a contingency table display?

2. What does a test for goodness of fit assess?

3. How do expected frequencies relate to the null hypothesis?

4. What does a test for independence assess?

5. Compute the expected frequencies for the following contingency table:

Category A Category B

Category C 22 38
Category D 16 14

6. Test significance and find effect sizes for the following tests: 
a. N = 19, R = 3, C = 2, χ2(2) = 7.89, a = .05
b. N = 12, R = 2, C = 2, χ2(1) = 3.12, a = .05
c. N = 74, R = 3, C = 3, χ2(4) = 28.41, a = .01

7. You hear a lot of people claim that The Empire Strikes Back is the best movie in the original 
Star Wars trilogy, and you decide to collect some data to demonstrate this empirically (pun 
intended). You ask 48 people which of the original movies they liked best; 8 said A New Hope 
was their favorite, 23 said The Empire Strikes Back was their favorite, and 17 said Return of the 
Jedi was their favorite. Perform a χ2 test on these data at the .05 level of significance.

8. A pizza company wants to know if people order the same number of different toppings. They 
look at how many pepperoni, sausage, and cheese pizzas were ordered in the last week. Fill out 
the rest of the frequency table and test for a difference.

Pepperoni Sausage Cheese Total

Observed 320 275 251
Expected

9. A university administrator wants to know if there is a difference in proportions of students 
who go on to grad school across different majors. Use the data below to test whether there is a 
relationship between college major and going to grad school.

MAJOR

Psychology Business Math

GRADUATE 
SCHOOL

Yes 32  8 36
No 15 41 12
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10. A company you work for wants to make sure they are not discriminating against anyone in their 
promotion process. You have been asked to look across gender to see if there are differences in 
promotion rate (i.e., if gender and promotion rate are independent or not). The following data 
should be assessed at the normal level of significance:

PROMOTED IN LAST 
TWO YEARS?

Yes No

GENDER
Women 8 5
Men 9 7

ANSWERS TO ODD-NUMBERED EXERCISES
1. Frequency tables display observed category frequencies and (sometimes) expected category 

frequencies for a single categorical variable. Contingency tables display the frequency of 
observing people in crossed category levels for two categorical variables, and (sometimes) the 
marginal totals of each variable level.

3. Expected values are what we would observe if the proportion of categories was completely 
random (i.e., no consistent difference other than chance), which is the same was what the null 
hypothesis predicts to be true.

5. Observed:

Category A Category B Total

Category C 22 38 60
Category D 16 14 30
Total 38 52 90

 Expected:

Category A Category B Total

Category C
( )( ) .60 38

90
25 33=

( )( ) .60 52
90

34 67= 60

Category D
( )( ) .30 38

90
12 67=

( )( ) .30 52
90

17 33= 30

Total 38 52 90
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7. Step 1: H0: “There is no difference in preference for one movie,” HA: “There is a difference in how 
many people prefer one movie over the others.”  

Step 2: Three categories (columns) gives df = 2, χcrit
2  = 5.991  

Step 3: Based on the given frequencies:

New Hope Empire Jedi Total

Observed  8 23 17 48
Expected 16 16 16

 χ2 = 7.13. Since this is a statistically significant result, we should calculate an effect size:

 Cramer’s V �
�

�
7 13

48 3 1
27.

( )
. , which is a moderate effect size

 Step 4: Our obtained statistic is greater than our critical value, reject H0. Based on our sample of 
48 people, there is a statistically significant difference in the proportion of people who prefer one 
Star Wars movie over the others, χ2(2, N = 48) = 7.13, p < .05. 

9. Step 1: H0: “There is no relationship between college major and going to grad school,” HA: 
“Going to grad school is related to college major.”  

Step 2: df = 2, χcrit
2  = 5.991  

Step 3: Based on the expected frequencies:

MAJOR

Psychology Business Math

GRADUATE 
SCHOOL

Yes 24.81 25.86 25.33
No 22.19 23.14 22.67

 χ2 = 2.09 + 12.34 + 4.49 + 2.33 + 13.79 + 5.02 = 40.05 

 Step 4: Obtained statistic is greater than the critical value, reject H0. Based on our data, 
there is a statistically significant relationship between college major and going to grad school, 
χ2(2, N = 144) = 40.05, p < .05, V = .53, which is a large effect.
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EPILOGUE 

A Brave New World

This book has only scratched the surface of the field of statistics. The skills you learned in this book 
are the foundation of data science, and now is an exciting time to be working with statistics and 
doing data analysis. Data science promises to be one of the most important fields of the 21st century. 
It includes techniques from many fields—including statistics, math, engineering, and the physical, 
computer, and behavioral sciences—and presents new possibilities for data interpretation, 
visualization, and collection. 

What this book has introduced you to is vital for understanding and engaging with data science. 
Regardless of your career path, we hope the skills you have learned here will help you in your 
everyday life to think critically and make decisions based on data, rather than on opinions or 
anecdotes. 

Wishing you all the best,

Linda R. Cote  
Rupa G. Gordon  
Chrislyn E. Randell 

 (“Correlation” by Randall Munroe/xkcd.com is licensed 
under CC BY-NC 2.5.)
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Appendices

Included in this section are the unabridged versions of tables mentioned throughout the text—the 
standard normal distribution table (or z table), the t table, the F table, the correlation table, and the 
chi-square table.
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APPENDIX A 

Standard Normal Distribution Table (z Table)

(“z Table Curves” by Judy Schmitt is licensed under CC BY-NC-SA 4.0.)

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z

0.00 .5000 .5000 .0000
0.01 .5040 .4960 .0040
0.02 .5080 .4920 .0080
0.03 .5120 .4880 .0120
0.04 .5160 .4840 .0160
0.05 .5199 .4801 .0199
0.06 .5239 .4761 .0239
0.07 .5279 .4721 .0279
0.08 .5319 .4681 .0319
0.09 .5359 .4641 .0359
0.10 .5398 .4602 .0398
0.11 .5438 .4562 .0438
0.12 .5478 .4522 .0478
0.13 .5517 .4483 .0517
0.14 .5557 .4443 .0557
0.15 .5596 .4404 .0596
0.16 .5636 .4364 .0636
0.17 .5675 .4325 .0675
0.18 .5714 .4286 .0714
0.19 .5753 .4247 .0753
0.20 .5793 .4207 .0793
0.21 .5832 .4168 .0832
0.22 .5871 .4129 .0871
0.23 .5910 .4090 .0910
0.24 .5948 .4052 .0948
0.25 .5987 .4013 .0987

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z

0.26 .6026 .3974 .1026
0.27 .6064 .3936 .1064
0.28 .6103 .3897 .1103
0.29 .6141 .3859 .1141
0.30 .6179 .3821 .1179
0.31 .6217 .3783 .1217
0.32 .6255 .3745 .1255
0.33 .6293 .3707 .1293
0.34 .6331 .3669 .1331
0.35 .6368 .3632 .1368
0.36 .6406 .3594 .1406
0.37 .6443 .3557 .1443
0.38 .6480 .3520 .1480
0.39 .6517 .3483 .1517
0.40 .6554 .3446 .1554
0.41 .6591 .3409 .1591
0.42 .6628 .3372 .1628
0.43 .6664 .3336 .1664
0.44 .6700 .3300 .1700
0.45 .6736 .3264 .1736
0.46 .6772 .3228 .1772
0.47 .6808 .3192 .1808
0.48 .6844 .3156 .1844
0.49 .6879 .3121 .1879
0.50 .6915 .3085 .1915
0.51 .6950 .3050 .1950

Table continues on the following page.

0 +z

Body

Tail

0−z

Body

BB

A A A

CC Tail

0 +z

D
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(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
0.52 .6985 .3015 .1985
0.53 .7019 .2981 .2019
0.54 .7054 .2946 .2054
0.55 .7088 .2912 .2088
0.56 .7123 .2877 .2123
0.57 .7157 .2843 .2157
0.58 .7190 .2810 .2190
0.59 .7224 .2776 .2224
0.60 .7257 .2743 .2257
0.61 .7291 .2709 .2291
0.62 .7324 .2676 .2324
0.63 .7357 .2643 .2357
0.64 .7389 .2611 .2389
0.65 .7422 .2578 .2422
0.66 .7454 .2546 .2454
0.67 .7486 .2514 .2486
0.68 .7517 .2483 .2517
0.69 .7549 .2451 .2549
0.70 .7580 .2420 .2580
0.71 .7611 .2389 .2611
0.72 .7642 .2358 .2642
0.73 .7673 .2327 .2673
0.74 .7704 .2296 .2704
0.75 .7734 .2266 .2734
0.76 .7764 .2236 .2764
0.77 .7794 .2206 .2794
0.78 .7823 .2177 .2823
0.79 .7852 .2148 .2852
0.80 .7881 .2119 .2881
0.81 .7910 .2090 .2910
0.82 .7939 .2061 .2939
0.83 .7967 .2033 .2967
0.84 .7995 .2005 .2995
0.85 .8023 .1977 .3023
0.86 .8051 .1949 .3051
0.87 .8078 .1922 .3078
0.88 .8106 .1894 .3106
0.89 .8133 .1867 .3133

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
0.90 .8159 .1841 .3159
0.91 .8186 .1814 .3186
0.92 .8212 .1788 .3212
0.93 .8238 .1762 .3238
0.94 .8264 .1736 .3264
0.95 .8289 .1711 .3289
0.96 .8315 .1685 .3315
0.97 .8340 .1660 .3340
0.98 .8365 .1635 .3365
0.99 .8389 .1611 .3389
1.00 .8413 .1587 .3413
1.01 .8438 .1562 .3438
1.02 .8461 .1539 .3461
1.03 .8485 .1515 .3485
1.04 .8508 .1492 .3508
1.05 .8531 .1469 .3531
1.06 .8554 .1446 .3554
1.07 .8577 .1423 .3577
1.08 .8599 .1401 .3599
1.09 .8621 .1379 .3621
1.10 .8643 .1357 .3643
1.11 .8665 .1335 .3665
1.12 .8686 .1314 .3686
1.13 .8708 .1292 .3708
1.14 .8729 .1271 .3729
1.15 .8749 .1251 .3749
1.16 .8770 .1230 .3770
1.17 .8790 .1210 .3790
1.18 .8810 .1190 .3810
1.19 .8830 .1170 .3830
1.20 .8849 .1151 .3849
1.21 .8869 .1131 .3869
1.22 .8888 .1112 .3888
1.23 .8907 .1093 .3907
1.24 .8925 .1075 .3925
1.25 .8944 .1056 .3944
1.26 .8962 .1038 .3962
1.27 .8980 .1020 .3980

Table continues on the following page.
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(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
1.28 .8997 .1003 .3997
1.29 .9015 .0985 .4015
1.30 .9032 .0968 .4032
1.31 .9049 .0951 .4049
1.32 .9066 .0934 .4066
1.33 .9082 .0918 .4082
1.34 .9099 .0901 .4099
1.35 .9115 .0885 .4115
1.36 .9131 .0869 .4131
1.37 .9147 .0853 .4147
1.38 .9162 .0838 .4162
1.39 .9177 .0823 .4177
1.40 .9192 .0808 .4192
1.41 .9207 .0793 .4207
1.42 .9222 .0778 .4222
1.43 .9236 .0764 .4236
1.44 .9251 .0749 .4251
1.45 .9265 .0735 .4265
1.46 .9279 .0721 .4279
1.47 .9292 .0708 .4292
1.48 .9306 .0694 .4306
1.49 .9319 .0681 .4319
1.50 .9332 .0668 .4332
1.51 .9345 .0655 .4345
1.52 .9357 .0643 .4357
1.53 .9370 .0630 .4370
1.54 .9382 .0618 .4382
1.55 .9394 .0606 .4394
1.56 .9406 .0594 .4406
1.57 .9418 .0582 .4418
1.58 .9429 .0571 .4429
1.59 .9441 .0559 .4441
1.60 .9452 .0548 .4452
1.61 .9463 .0537 .4463
1.62 .9474 .0526 .4474
1.63 .9484 .0516 .4484

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
1.64 .9495 .0505 .4495
1.65 .9505 .0495 .4505
1.66 .9515 .0485 .4515
1.67 .9525 .0475 .4525
1.68 .9535 .0465 .4535
1.69 .9545 .0455 .4545
1.70 .9554 .0446 .4554
1.71 .9564 .0436 .4564
1.72 .9573 .0427 .4573
1.73 .9582 .0418 .4582
1.74 .9591 .0409 .4591
1.75 .9599 .0401 .4599
1.76 .9608 .0392 .4608
1.77 .9616 .0384 .4616
1.78 .9625 .0375 .4625
1.79 .9633 .0367 .4633
1.80 .9641 .0359 .4641
1.81 .9649 .0351 .4649
1.82 .9656 .0344 .4656
1.83 .9664 .0336 .4664
1.84 .9671 .0329 .4671
1.85 .9678 .0322 .4678
1.86 .9686 .0314 .4686
1.87 .9693 .0307 .4693
1.88 .9699 .0301 .4699
1.89 .9706 .0294 .4706
1.90 .9713 .0287 .4713
1.91 .9719 .0281 .4719
1.92 .9726 .0274 .4726
1.93 .9732 .0268 .4732
1.94 .9738 .0262 .4738
1.95 .9744 .0256 .4744
1.96 .9750 .0250 .4750
1.97 .9756 .0244 .4756
1.98 .9761 .0239 .4761
1.99 .9767 .0233 .4767

Table continues on the following page.
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(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
2.00 .9772 .0228 .4772
2.01 .9778 .0222 .4778
2.02 .9783 .0217 .4783
2.03 .9788 .0212 .4788
2.04 .9793 .0207 .4793
2.05 .9798 .0202 .4798
2.06 .9803 .0197 .4803
2.07 .9808 .0192 .4808
2.08 .9812 .0188 .4812
2.09 .9817 .0183 .4817
2.10 .9821 .0179 .4821
2.11 .9826 .0174 .4826
2.12 .9830 .0170 .4830
2.13 .9834 .0166 .4834
2.14 .9838 .0162 .4838
2.15 .9842 .0158 .4842
2.16 .9846 .0154 .4846
2.17 .9850 .0150 .4850
2.18 .9854 .0146 .4854
2.19 .9857 .0143 .4857
2.20 .9861 .0139 .4861
2.21 .9864 .0136 .4864
2.22 .9868 .0132 .4868
2.23 .9871 .0129 .4871
2.24 .9875 .0125 .4875
2.25 .9878 .0122 .4878
2.26 .9881 .0119 .4881
2.27 .9884 .0116 .4884
2.28 .9887 .0113 .4887
2.29 .9890 .0110 .4890
2.30 .9893 .0107 .4893
2.31 .9896 .0104 .4896
2.32 .9898 .0102 .4898
2.33 .9901 .0099 .4901
2.34 .9904 .0096 .4904
2.35 .9906 .0094 .4906

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
2.36 .9909 .0091 .4909
2.37 .9911 .0089 .4911
2.38 .9913 .0087 .4913
2.39 .9916 .0084 .4916
2.40 .9918 .0082 .4918
2.41 .9920 .0080 .4920
2.42 .9922 .0078 .4922
2.43 .9925 .0075 .4925
2.44 .9927 .0073 .4927
2.45 .9929 .0071 .4929
2.46 .9931 .0069 .4931
2.47 .9932 .0068 .4932
2.48 .9934 .0066 .4934
2.49 .9936 .0064 .4936
2.50 .9938 .0062 .4938
2.51 .9940 .0060 .4940
2.52 .9941 .0059 .4941
2.53 .9943 .0057 .4943
2.54 .9945 .0055 .4945
2.55 .9946 .0054 .4946
2.56 .9948 .0052 .4948
2.57 .9949 .0051 .4949
2.58 .9951 .0049 .4951
2.59 .9952 .0048 .4952
2.60 .9953 .0047 .4953
2.61 .9955 .0045 .4955
2.62 .9956 .0044 .4956
2.63 .9957 .0043 .4957
2.64 .9959 .0041 .4959
2.65 .9960 .0040 .4960
2.66 .9961 .0039 .4961
2.67 .9962 .0038 .4962
2.68 .9963 .0037 .4963
2.69 .9964 .0036 .4964
2.70 .9965 .0035 .4965
2.71 .9966 .0034 .4966

Table continues on the following page.
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(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
2.72 .9967 .0033 .4967
2.73 .9968 .0032 .4968
2.74 .9969 .0031 .4969
2.75 .9970 .0030 .4970
2.76 .9971 .0029 .4971
2.77 .9972 .0028 .4972
2.78 .9973 .0027 .4973
2.79 .9974 .0026 .4974
2.80 .9974 .0026 .4974
2.81 .9975 .0025 .4975
2.82 .9976 .0024 .4976
2.83 .9977 .0023 .4977
2.84 .9977 .0023 .4977
2.85 .9978 .0022 .4978
2.86 .9979 .0021 .4979
2.87 .9979 .0021 .4979
2.88 .9980 .0020 .4980
2.89 .9981 .0019 .4981
2.90 .9981 .0019 .4981
2.91 .9982 .0018 .4982
2.92 .9982 .0018 .4982
2.93 .9983 .0017 .4983
2.94 .9984 .0016 .4984
2.95 .9984 .0016 .4984
2.96 .9985 .0015 .4985
2.97 .9985 .0015 .4985
2.98 .9986 .0014 .4986
2.99 .9986 .0014 .4986
3.00 .9987 .0013 .4987
3.01 .9987 .0013 .4987
3.02 .9987 .0013 .4987
3.03 .9988 .0012 .4988

(A)  
 
 
z

(B)  
 

Proportion 
in Body

(C)  
 

Proportion 
in Tail

(D)  
Proportion 
between 

Mean and z
3.04 .9988 .0012 .4988
3.05 .9989 .0011 .4989
3.06 .9989 .0011 .4989
3.07 .9989 .0011 .4989
3.08 .9990 .0010 .4990
3.09 .9990 .0010 .4990
3.10 .9990 .0010 .4990
3.11 .9991 .0009 .4991
3.12 .9991 .0009 .4991
3.13 .9991 .0009 .4991
3.14 .9992 .0008 .4992
3.15 .9992 .0008 .4992
3.16 .9992 .0008 .4992
3.17 .9992 .0008 .4992
3.18 .9993 .0007 .4993
3.19 .9993 .0007 .4993
3.20 .9993 .0007 .4993
3.21 .9993 .0007 .4993
3.22 .9994 .0006 .4994
3.23 .9994 .0006 .4994
3.24 .9994 .0006 .4994
3.30 .9995 .0005 .4995
3.40 .9997 .0003 .4997
3.50 .9998 .0002 .4998
3.60 .9998 .0002 .4998
3.70 .9999 .0001 .4999
3.80 .99993 .00007 .49993
3.90 .99995 .00005 .49995
4.00 .99997 .00003 .49997
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APPENDIX B 

t Distribution Table (t Table)

df

PROPORTION (aa) IN ONE TAIL

.25 .20 .15 .10 .05 .025 .01 .005 .0005

PROPORTION (aa) IN TWO TAILS COMBINED

.50 .40 .30 .20 .10 .05 .02 .01 .001

1 1.000 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.578
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.600
3 0.765 1.978 1.250 1.638 2.353 3.182 4.541 5.841 12.924
4 0.741 1.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.768
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.689
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.660
30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

Table continues on the following page.
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df

PROPORTION (aa) IN ONE TAIL

.25 .20 .15 .10 .05 .025 .01 .005 .0005

PROPORTION (aa) IN TWO TAILS COMBINED

.50 .40 .30 .20 .10 .05 .02 .01 .001
40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.460

120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3.373
∞ 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.290

Adapted from “Tabla t” by Jsmura/Wikimedia Commons, CC BY-SA 4.0. 
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APPENDIX C 

Critical Values for F (F Table)

df: 
Denom-
inator 

(Within)

df: Numerator (Between)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28
17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19
19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15
20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09
22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07
23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04
24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02
25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.15 2.11 2.06 2.00
26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97
28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96
29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94
30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93

Table continues on the following page.

Note: The critical values in this table are for p = .05.
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df: 
Denom-
inator 

(Within)

df: Numerator (Between)

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91
34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89
36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87
38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84
42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82
44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81
46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80
48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78
55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 1.88 1.83 1.76
60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75
65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72
80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68
125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83 1.77 1.72 1.65
150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64
200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62
400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 1.72 1.67 1.60

1,000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58
∞ 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57
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APPENDIX D 

Critical Values for Pearson’s r (Correlation Table)

df n 2

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST

.05 .025 .01 .005

LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST

.10 .05 .02 .01

1 .988 .997 .9995 .9999
2 .900 .950 .980 .990
3 .805 .878 .934 .959
4 .729 .811 .882 .917
5 .669 .754 .833 .875
6 .621 .707 .789 .834
7 .582 .666 .750 .798
8 .549 .632 .715 .765
9 .521 .602 .685 .735

10 .497 .576 .658 .708
11 .476 .553 .634 .684
12 .458 .532 .612 .661
13 .441 .514 .592 .641
14 .426 .497 .574 .623
15 .412 .482 .558 .606
16 .400 .468 .543 .590
17 .389 .456 .529 .575
18 .378 .444 .516 .561
19 .369 .433 .503 .549
20 .360 .423 .492 .537
21 .352 .413 .482 .526
22 .344 .404 .472 .515
23 .337 .396 .462 .505
24 .330 .388 .453 .496
25 .323 .381 .445 .487
26 .317 .374 .437 .479
27 .311 .367 .430 .471
28 .306 .361 .423 .463
29 .301 .355 .416 .456
30 .296 .349 .409 .449

Table continues on the following page.
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df n 2

LEVEL OF SIGNIFICANCE FOR ONE-TAILED TEST

.05 .025 .01 .005

LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST

.10 .05 .02 .01
35 .275 .325 .381 .418
40 .257 .304 .358 .393
45 .243 .288 .338 .372
50 .231 .273 .322 .354
60 .211 .250 .295 .325
70 .195 .232 .274 .302
80 .183 .217 .257 .283
90 .173 .205 .242 .267

100 .164 .195 .230 .254
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APPENDIX E 

Critical Values for Chi-Square (��2 Table)

df

PROPORTION IN CRITICAL REGION

.1 .05 .02 .01 .005

1 2.706 3.841 5.024 6.635 7.879
2 4.605 5.991 7.378 9.210 10.597
3 6.251 7.815 9.348 11.345 12.838
4 7.779 9.488 11.143 13.277 14.860
5 9.236 11.070 12.833 15.086 16.750
6 10.645 12.592 14.449 16.812 18.548
7 12.017 14.067 16.013 18.475 20.278
8 13.362 15.507 17.535 20.090 21.955
9 14.684 16.919 19.023 21.666 23.589

10 15.987 18.307 20.483 23.209 25.188
11 17.275 19.675 21.920 24.725 26.757
12 18.549 21.026 23.337 26.217 28.300
13 19.812 22.362 24.736 27.688 29.819
14 21.064 23.685 26.119 29.141 31.319
15 22.307 24.996 27.488 30.578 32.801
16 23.542 26.296 28.845 32.000 34.267
17 24.769 27.587 30.191 33.409 35.718
18 25.989 28.869 31.526 34.805 37.156
19 27.204 30.144 32.852 36.191 38.582
20 28.412 31.410 34.170 37.566 39.997
21 29.615 32.671 35.479 38.932 41.401
22 30.813 33.924 36.781 40.289 42.796
23 32.007 35.172 38.076 41.638 44.181
24 33.196 36.415 39.364 42.980 45.559
25 34.382 37.652 40.646 44.314 46.928
26 35.563 38.885 41.923 45.642 48.290
27 36.741 40.113 43.195 46.963 49.645
28 37.916 41.337 44.461 48.278 50.993
29 39.087 42.557 45.722 49.588 52.336
30 40.256 43.773 46.979 50.892 53.672
40 51.805 55.758 59.342 63.691 66.766
50 63.167 67.505 71.420 76.154 79.490

Table continues on the following page.
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df

PROPORTION IN CRITICAL REGION

.1 .05 .02 .01 .005
60 74.397 79.082 83.298 88.379 91.952
70 85.527 90.531 95.023 100.425 104.215
80 96.578 101.879 106.629 112.329 116.321
90 107.565 113.145 118.136 124.116 128.299

100 118.498 124.342 129.561 135.807 140.169

Adapted from Appendix A, Statistical Tables in Introductory Business Statistics/OpenStax. CC BY 4.0.
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Index

A
Absolute zero point, 9
Adjacent, as feature of box plot, 41, 43
Alpha (a), 102–105, 112, 117, 121, 130–131
Alternative hypothesis, 101, 103, 105–107, 109, 114, 

118, 124, 129–130, 132, 141, 144, 163–164, 184, 
204, 214, 216, 220

definition of, 101
American Psychological Association (APA), 66
Analysis of variance (ANOVA), 156–175, 188, 

198–199, 201–204, 207–213, 215
between-groups variability, 159–160
definition of, 156
effect size and, 167–168
example of, 164–168
factorial, 170
F statistic and, 162, 164, 167–168
F table and, 164–165
grand mean and, 159
grouping variable and, 159
hypothesis testing with, 163–164
individual group means and, 159
mean square and, 162
outcome variable and, 159
post hoc tests and, 169–170
random error and, 158
repeated measures, 170
sources of variance and, 158–161
systematic variance and, 158
tables, 161–162, 165–166, 171, 173, 202–204, 207, 

209, 211–212
Type I error and, 162–163
within-groups variability, 158, 160

ANOVA. See Analysis of variance (ANOVA)
APA. See American Psychological Association
Area in the tails of the distribution, 76, 83, 111, 118

definition of, 76
Area under the curve, 70, 75–76, 80–83, 91–92, 

102–103, 105–106, 117
definition of, 75
z scores and, 75–76

Arithmetic mean, 57–58. See also Mean
definition of, 57

B
Balance, as method of defining central tendency, 

54–55, 59–60
Bar charts, 27–31, 43–46, 62
Bell curve, 46, 70, 88. See also Normal distribution

definition of, 46
Beta (b), 113, 204
Between-groups degrees of freedom (dfB), 161, 165, 

205, 235–236
Between-groups sum of squares, 159–160
Between-groups variability, definition of, 159
Bimodal distributions, 47, 60–61

definition of, 47
Bin width, definition of, 36
Bonferroni test, definition of, 169
Box plots, 31, 40–45, 63

definition of, 40

C
Categorical variables, 6, 31, 213–215, 217–219. See 

also Qualitative variables
definition of, 31

Causality, 16, 189–190
Cells, in contingency tables, 218–219
Central limit theorem, 89–90

definition of, 89
Central tendency, 52–62, 74, 198. See also Mean (M); 

Median; Mode
comparing measures of, 60–62
definition of, 52–54
measures of, 57–60
methods of defining, 54–57

Change scores, 129–131
Charts. See Graphs
Chi-square statistic (χ2), 215–217, 221
Chi-square tables, 214–215, 239–240

degrees of freedom and, 214
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matrices, 193–194
negative, 181
no relationship, 181–182
outliers and, 190–193
population, 100, 184
positive, 181
range restriction and, 190
scatter plots and, 177–183, 185–186, 191–193
strength of, 182–183
table, 185, 237–238
visualizing, 177–183

Correlational research design, 16
Correlation coefficients (r), 181–184, 187–188, 193, 

200, 217–218
Cramer’s V, 217
effect size and, 187–188
Pearson’s r, 183–188, 190, 193, 217, 237–238
Spearman’s rho and, 193

Correlation matrices, 193–194
definition of, 193

Covariance, 175–177, 184, 187, 190, 200, 203, 206
definition of, 175

Cramer’s V, 216–217, 221
Critical values (zcrit, z*), 101–103, 105–109, 111–112, 

116–118, 120–122, 124–125, 130, 132–134, 
143–145, 148, 162, 164–169, 183, 185, 204–205, 
215–216, 220, 235–240

definition of, 102
Cumulative frequencies, 37–39
Curvilinear model (of regression), definition of, 210
Curvilinear relationship (correlation), 179–180

definition of, 179

D
d (effect size), 108, 110, 112, 120, 133, 147–148, 150, 

187. See also Cohen’s d
Data

central tendency and, 52–62
collecting, 11–15
definition of, 5
sources of, 139-
spread and, 62–68
statistical analysis of, 17–21
types of, 5–11
visualizing, 25–51, 156–159

Data transformations, 72, 74

Chi-square tests, 213–224
chi-square statistic and, 215
chi-square table and, 215, 239–240
contingency tables and, 217–219
definition of, 213
degrees of freedom and, 214–215
effect size and, 216–217, 220
examples of, 216–217, 220–221
expected values in, 213–214, 219
frequency tables and, 213–214
for goodness of fit, 214–215, 217
hypotheses and, 214
for independence, 219–221
purpose of, 213

Computational formulas, 65, 143, 184, 187, 200
Coefficient of determination (r2), 188
Cohen’s d, 108, 110, 112, 120, 133, 147–148, 150, 187
Confidence intervals (CI), 121–125, 134–135, 

147–149, 169–170
definition of, 121
effect sizes and, 147
examples of, 123–125, 133–135, 144–150
hypothesis testing and, 123–125
margin of error and, 121
using z to determine, 125

Confound variables, 189–190
definition of, 189

Contingency tables, 217–221
definition of, 218
expected values of, 219

Continuous variables, 7, 175, 194, 199
definition of, 7

Control (group), as level of independent variable, 6, 
101, 140, 142

definition of, 6
Convenience sampling, definition of, 15
Correlation, 100, 175–197, 198–200, 204, 208, 217

causation vs., 189–190
characteristics of, 179–183
coefficient. See Correlation coefficients (r)
covariance and, 175–177, 184, 186–187, 190
curvilinear, 179
effect size and, 187–188
example of, 184–188
graphing, 177–183
inverse, 177
linear, 179

Correlation (continued)
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definition of, 88
law of large numbers and, 90–91

E
Effect size

calculating, 106–108, 110–112, 119–120, 132–135, 
145–149, 166–168, 185–188, 202, 205–208, 
216–217, 220

chi-square tests and, 216–217
confidence intervals and, 147–149
definition of, 108
in linear regression, 208
Pearson’s r and, 187–188
reporting, 106, 109, 188
variance and, 167–168, 208

Error
in analysis of variance, 160, 162–163
definition of, 198
degrees of freedom, 203
in hypothesis testing, 112–113
least squares, 201
margin of, 121–122, 148
mean squared error, 210
in linear regression, 198
random, 158
rounding, 64, 187
sampling, 20, 88, 94, 121, 190
standard error (sM, sM), 88–91, 93, 116–117, 120, 

122–123, 124–125, 131, 133, 135, 142–145, 
147–149

standard error of the estimate, 209–210
sum of squares, 202–203, 207
Type I, 112–113, 118, 151, 163, 169
Type II, 113

Eta-squared (h2), 168, 188
Event (in probability), 78–79, 85, 102

definition of, 78
Examples (of hypothesis testing)

analysis of variance (ANOVA), 164–168
chi-square test for goodness of fit, 216–217
chi-square test for independence, 220–221
confidence intervals, 123–125, 133–135, 144–150
independent samples t test, 144–150
linear regression, 204–208
one-sample t test, 118–121
Pearson’s r, 184–188

Definitional formulas, 64–65, 200
Degrees of freedom (df), 66, 116–118, 120–122, 

130–132, 142, 148–151, 162, 164–168, 203, 
214–215, 220

between groups (dfB), 162, 165
chi-square test for goodness of fit and, 214–215
chi-square test for independence and, 220
definition of, 66
total (dfT), 162
in two-way analysis of variance, 203
within groups (dfW), 162, 165–166

Denominator degrees of freedom. See Within-
groups degrees of freedom

Dependent measures. See Related samples (t test)
Dependent samples. See Related samples (t test)
Dependent variable, 5–7, 9–10, 16

definition of, 5
Descriptive statistics, 17–20, 52, 66, 87, 139, 159, 

183–184
definition of, 17

Deviation scores, 64–65, 145, 160–161, 176, 187, 
190, 200, 202–203, 206

df. See Degrees of freedom (df)
Difference scores, 128–132, 134, 139, 142

definition of, 128
Directional hypotheses, 101, 109, 118, 130, 132, 163, 

184, 204
Direction, as characteristic of correlation, 177–178, 

181–183, 192–193
Discrete variables, definition of, 7
Dispersion, definition of, 63
Distributions

bimodal, 47, 60–61
measures of central tendency and, 52–62
comparing, 27, 31–32, 43
F, 164, 204
frequency, 35–39, 59, 213–214
normal, 46, 60, 67, 70–71, 75–76, 79–85, 89, 

91–92, 102, 111, 116–117, 193, 228–232
probability in, 80–85
sampling, 87–95, 116, 143
setting scale of, 74–75
t, 116–119, 233–234
variability and spread and, 62–68
visualizing, 25–51

Distribution of sample means, 88–91
central limit theorem and, 89

Distribution of sample means (continued)
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line, 29–30, 45–46
misleading, 28–30
pie, 26–27, 30, 79–80, 85
probability in, 79–84
scatter plot, 31, 177–183, 185–186, 191–193, 198, 

201–202, 206–207
stem-and-leaf display, 31–34, 43, 53

Grouped frequency tables, 35, 59
Grouping variable, 140–141, 156, 159, 170

definition of, 159
Group mean difference, 140, 162, 164, 169–170, 199

definition of, 140
Groups, comparing, 15–16, 20, 53, 99, 139–142, 

156–160, 169–170

H
H-spread, 41
Hinge, as feature of box plot, 41–43, 63
Histograms, 31, 35–37, 43, 47, 60–61

definition of, 35
Homogeneity of variance, 150–151

definition of, 151
Hypotheses

alternative, 101, 103, 105–107, 109, 118, 124, 
129–130, 132, 141, 144, 163–164, 184, 204, 214, 
216, 220

of change and differences, 130–135
critical values and, 102–103, 130–131
decision criteria and, 130–131, 141–142
definition of, 98
null, 100–103, 105–109, 111–113, 120, 123–125, 

130, 133, 135, 141–143, 147, 150–151, 162–164, 
168, 184, 188, 203–204, 208, 214, 216–217, 
220–221

test statistic and, 103, 106–108, 110–111, 118–
120, 125, 131–133, 141–145, 147–148, 150, 156, 
161–162, 164–169, 185, 205, 208, 215–217, 220

Hypothesis testing
alternative hypotheses in, 101
analysis of variance in, 156–170
assumptions in, 101–102
chi-square tests in, 213–221
confidence intervals and, 123
correlations and, 175–194
critical values and, 102–103
errors in, 112–113

pooled variance, 144–150
related samples t test, 131–135
stricter significance levels, 111–112
z test, 106–112

Expected frequencies, 215, 219
Expected values, 213–219

definition of, 214
Experimental (group), as level of independent 

variable, 6, 9, 33, 44, 140, 142
definition of, 6

Experimental research design, 15, 189
definition of, 15

F
F distributions, 164, 204
F statistics, 203
F tables, 164–165, 205, 235–236
Factorial ANOVA, definition of, 170
Far out value, as feature of box plot, 41
Fence, as feature of box plot, 41, 43
Form, as characteristic of correlation, 179–183
Formulas

computational, 65, 143, 200
definitional, 64–65, 200

Frequency distributions, 35–39, 59, 213–214
Frequency graphs, 25–51

frequency polygons, 37–39
histograms, 31, 35–37, 43, 47–48, 60–61
misleading, 28–30

Frequency polygons, 37–39
definition of, 37

Frequency tables, 25–26, 35, 213, 218–219
chi-square and, 213–214, 218–219
graphing, 25–51

G
Gaussian distribution. See Normal distribution
Goodness of fit, chi-square test for, 214–219
Grand mean (MG), 159–161, 166

definition of, 159
Graphs

bar, 27–31, 43–46, 62
box plot, 31, 40–45, 63
comparing distributions, 27, 31–32, 43
frequency polygon, 37–39
histogram, 31, 35–37, 43, 47–48, 60–61

Examples (of hypothesis testing) (continued) Graphs (continued)
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L
Law of large numbers, 90–91

definition of, 90
Least squares error solution, definition of, 201
Levels of measurement

consequences of, 10–11
of data, 7–9
for psychological variables, 9–10

Level of significance, 107, 109, 118, 121, 130, 132, 
134, 185, 237–238

Lie factor, definition of, 29
Linear regression, 198–212

analysis of variance and, 203
examples of, 204–208
hypothesis testing in, 203–210
line of best fit, 198–199
multiple regression, 210
prediction and, 199–202, 208–210

Linear relationship (correlation), 179, 183
definition of, 179

Line of best fit, 198–203, 205–208
definition of, 198

M
Magnitude (as characteristic of correlation), 182–

183, 193
definition of, 182

Marginal value, 218–219
definition of, 218

Margin of error, 121–122, 124, 148
definition of, 121

Matched pairs (data), 129, 139. See also Related 
samples (t test)

definition of, 129
Mathematical notation. See Notation
Mean (m, M). See also Arithmetic mean

definition of, 57
differences, 139–141, 148–149
distribution of sample means, 88–89
formula for, 57
grand mean (MG), 159–161
hypothesis tests with, 141–142, 163
individual group mean, 159
median and mode vs., 58–62
normal distributions and, 70–71, 82
spread (variability), 62–63
standard deviations from, 66–68

examples of, 106–112, 118–121, 123–125, 131–
135, 144–150, 164–168, 184–188, 204–210, 
216–217, 220–221. See also Examples (of 
hypothesis testing)

logic and purpose of, 98–99
misconceptions in, 113
null hypotheses in, 100–101
one-tailed and two-tailed tests in, 102–103, 

121–123, 130, 142, 204, 215
probability values and, 99–100
p values and, 105
in linear regression, 203–204
rejection regions and, 102
significance levels and, 101–102
statistical significance and, 105
steps in, 105–106
test statistics and, 103, 116–120

I
Independence, chi-square test for, 219–221
Independent samples (t test), 139–154, 156, 169

definition of, 139
difference of means and, 139–141
examples of, 144–150
homogeneity of variance and, 150–151
hypothesis testing using, 141–142
pooled variance and, 143–144
standard error and, 143–144
t statistic and, 142–143

Independent samples one-way ANOVA, 156
Independent variable, 5–6, 15–16, 156, 159

definition of, 5
levels of, 6

Individual group means, definition of, 159
Inferential statistics, 14, 17, 20, 65, 78, 85, 87–89, 94, 

103, 150, 175, 187
definition of, 20

Intercepts, 199–200, 203, 206, 209
Interquartile range (IQR), definition of, 63
Intervals, 8–10, 35–39, 59. See also Confidence 

intervals
Interval scale, definition of, 8
Inverse relationship, definition of, 177

J
JASP, 21, 121, 150, 188, 209, 217, 221

Hypothesis testing (continued)
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Non-experimental research design, definition of, 16
Nonparametric tests, 213–214, 220

definition of, 214
Normal distribution, 46, 60, 67–68, 70–76, 80–85, 

89, 117, 193. See also Standard normal 
distribution

body of, 81–84
central limit theorem and, 89
definition of, 70
features of, 70–71
means and, 67–68, 71
percentage of, 67
probability in, 80–85
standard deviations in, 67–68, 70–71, 75
tails of, 76, 81–83
z scores and, 71–76, 80–84

Notation
for hypotheses, 100, 130
for summation, 21–22
for variance, 159

Null hypothesis
confidence intervals and, 123–125
criteria for rejecting or failing to reject, 101–105, 

123–125, 130–131, 141–142, 162, 184, 203–204, 
214–215

definition of, 100
implications of rejecting or failing to reject, 101, 

105, 163–164, 204
misconceptions regarding, 113
population vs. sample and, 100
researcher’s hypothesis and, 101
t tests and, 130–131, 142–143
Type I errors and, 112–113
Type II errors and, 113

Numerator degrees of freedom. See Between-groups 
degrees of freedom

O
Observed effect, 94, 142, 147–148, 168, 202–203

definition of, 94
Observed frequency, 213, 215
One-sample t tests, 116, 118, 121, 131, 133

example of, 118–121
One-tailed tests, 102, 104–105, 109, 118, 121–122, 

130, 148, 185, 214–215, 237–238
One-way analysis of variance, 170
Ordinal scale, 7–9, 11

definition of, 7

sum of squares and, 63–65
variance and, 65, 201–203
of z scores, 71–74, 82, 228–232

Mean of a population (m), formula for, 57
Mean of a sample (M), formula for, 57
Mean square (MS), 162, 165, 167, 203, 208

between (MSB), 162, 165, 167
definition of, 162
within (MSW), 162, 165, 167

Mean squared deviation. See Mean square
Mean squared error, definition of, 210
Measurement, levels of, 7–11
Median

definition of, 58
mean and mode vs., 57–62
normal distributions and, 70

Misleading graphs, 28–30
Mode

definition of, 59
mean and median vs., 57–62
normal distributions and, 70

Models
curvilinear, 210
moderation, 210

Moderation model (of regression), definition of, 210
MSB, 167
MSW, 167
m (mean of a population), 57–58, 71, 74, 88–91, 94, 

100–101, 103, 116, 130–131, 141–142, 163, 184, 
214

mM (mean of the sample means), 88–90
Multiple regression, definition of, 210

N
n (number of numbers in a sample), 57–58
N (number of numbers in a population), 57–58
Negative relationship (correlation), 178, 181–183, 

204
definition of, 181

Negative skew, 47–48
No relationship (correlation), 101, 178–179, 181–

182, 184, 204, 220
definition of, 182

Nominal scale, 7, 9, 11
definition of, 7

Nominal variables (data), 6–8, 31, 213, 218
chi-square tests and, 213

Mean (continued)
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variance of (s2), 65–66, 151
z scores in, 71, 74

Positive relationship (correlation), 177–178, 181–
182, 188, 191–193, 204

definition of, 181
Positive skew, 47–48
Post hoc test, 168–170

definition of, 169
Power. See Statistical power
Predicted values (Ŷ) of outcome variables, in linear 

regression, 199–203
Prediction

accuracy in, 208–210
ANOVA table and, 203
hypothesis as, 98
hypothesis testing and, 204
in linear regression, 199–202, 204, 208–210

Predictor variables (X), 190
Probability (r), 100, 184, 193

calculating, 79
definition of, 78
language of, 78
law of large numbers and, 90–91
in normal distributions, 80–84
in pie charts, 79–80
standard error and, 91–93
z scores and, 80–85, 91–93

Probability value, 99–102, 112–113
definition of, 100

Q
Qualitative variables. See also Categorical variables

definition of, 6
graphing, 25, 29, 31, 43, 45–46
mode and, 59

Quantitative variables
definition of, 6
graphing, 31, 43–46

Quasi-experimental research design, definition  
of, 16

R
r. See Pearson’s r
r2 (coefficient of determination), 188
R2, 208
Random assignment, in research, 15–16, 140, 189
Random error, definition of, 158

Outcomes, in probability, 79–80, 85, 99–100, 113, 
200, 210

Outcome variables (Y), 159, 199
definition of, 159

Outliers, 40, 63, 65, 181, 190–193
definition of, 190

Outside value, as feature of box plot, 41–42

P
p value, 93, 103–105, 109, 112–113, 121, 125, 150, 

169, 184, 188, 217, 221
definition of, 105

Paired samples. See Related samples (t test)
Pearson’s r, 183–188, 190, 193, 217, 237–238

examples of, 184–188
Percentiles, 40–42, 58, 63
Planned comparisons. See Planned contrasts
Point estimate, 121–124, 147–148

definition of, 121
Pooled variance, (sp

2), 143–145, 147–151
definition of, 143
example of, 144–150

Population parameters, 20, 65–66, 100, 106, 116, 
121, 130, 162, 184, 214

Populations
assumptions about, 89–90
central limit theorem and, 89
chi-square test for goodness of fit and, 214
in confidence intervals, 123, 125
in correlations, 184
definition of, 11
in descriptive statistics, 20
in independent samples, 141–142
law of large numbers and, 90
mean of (m), 57, 88, 130, 151
nonparametric tests and, 214
null hypotheses and, 100
pooled variance (sp

2), 143–144
probability and, 91–94
range restriction and, 190
in linear regression, 204
samples vs., 11–13
sampling distribution of sample means and, 88
in simple random sampling, 13–14
slopes of (b), 204
standard deviation of (s), 66, 116, 125, 143
in stratified random sampling, 14
t statistics and, 116

Populations (continued)
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S
s2 (variance of a sample), 65–66
Samples

bias and, 11
central limit theorem and, 89
chi-square test and, 214, 219
definition of, 11
independent, 139–154, 169
law of large numbers and, 90–91
mean of (M), 57, 88–94, 101, 112, 120
strategies for sampling, 13–15
populations vs., 11, 20, 100
probability and, 91–93
related, 129. See also Related samples (t test)
slopes of (b), 204
standard deviation of (s), 66, 116, 142
variance of (s2), 65–66
t statistic and, 116, 131, 142
z scores in, 71, 74, 91–94

Sample size
central limit theorem and, 89–90
in confidence intervals, 121–122
in chi-square tests, 213, 219
impact of, 13–14, 92–93, 105, 113, 117, 193, 210
in independent samples t tests, 142
law of large numbers and, 90
margin of error and, 121
mean difference score and, 131
in pooled variance, 143
in sampling distributions, 88–90
standard error and, 88, 90, 143
subscripts in, 159
in variance, 66, 159–162

Sample statistics, 20, 65–66, 100, 116, 121
Sampling bias, 11–12, 15, 20

definition of, 11
Sampling distributions, 87–95, 116, 143

definition of, 88
Sampling error, 20, 88, 94, 121, 190, 198

definition of, 20
Sampling strategies

convenience sampling, 15
simple random sampling, 13
stratified random sampling, 14

Scale (of a distribution), 74–75
definition of, 74

Random sample. See Simple random sampling
Random selection, 79, 82–83, 85, 91
Random variability. See Random error
Range (as measure of variability)

definition of, 63
interquartile range (IQR), 63

Range restriction, 190–191
definition of, 190

Ratio scales, 8–9
definition of, 8

Raw scores
changing to z scores, 71–72, 74–75
t tests and, 138

Regression. See Linear regression
Regression coefficient, 200
Rejection region, 102–104, 107, 109, 119

definition of, 102
Related samples (t test), 128–139, 170

definition of, 129
examples of, 131–135

Relationship. See also Correlation
curvilinear, 179–180
form of, 179–181
direction of, 181–182
inverse, 177
linear, 179, 183
magnitude of, 182–183, 187
negative, 178, 181–183, 192–193, 204
no relationship, 178–179, 181–182
positive, 178, 181–182, 191–193, 204

Relative frequency, 25–26, 36, 68
Repeated measures. See Related samples (t test)
Repeated measures ANOVA, definition of, 170
Representative values, 11–15, 20
Research design, 15–17

correlational, 16
experimental, 15–16
non-experimental, 16–17
quasi-experimental, 16

Researcher’s hypothesis, 101
Residual (as type of error), 198–202, 209

definition of, 198
Restriction in range. See Range restriction
Robustness, 65, 151

definition of, 65
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Slope
in direction of correlation, 182
in linear regression, 199–200, 203–204, 209

Smallest absolute deviation, 55–56
Smallest squared deviation, 56–57
Sources of variability, 159–161

definition of, 159
Spearman’s rho (r), definition of, 193
Spread, 41, 62–63, 65–66, 71, 74, 87–88, 90, 116. See 

also Variability
definition of, 63

SPSS (Statistical Package for the Social Sciences), 21
Spurious (random) correlations, 190
Squared deviation score, 64, 176
SS. See Sum of squares
Standard deviation (SD)

central limit theorem and, 89
Cohen’s d and, 108
confidence intervals and, 121, 125
in covariance, 184
definition of, 66
of difference scores (sD), 131
of the distribution of means (sM), 88, 90–91, 93
formula for, 66
normal distributions and, 67–68, 70–71
of a population (s), 66, 71–72, 74, 88, 90–91, 103, 

116, 143
in linear regression, 200
of a sample (s), 66, 116, 120, 142–143, 159
t statistics and, 116–117
z scores and, 71–73, 75–76, 91

Standard error (SE)
central limit theorem and, 89
confidence intervals and, 121–123, 125
definition of, 88
formula for, 88
law of large numbers and, 90
pooled variance and, 143–144
probability and, 91–94
t statistics and, 142–143

Standard error of the estimate (s Y Y( ˆ )− ), 209–210
definition of, 209

Standard normal distribution, 70–77, 82, 85, 92, 102, 
116–117, 228–232

definition of, 70

Scales
balance, 54–55, 60
interval, 8
nominal, 7, 11
ordinal, 7–8, 11
rating, 7, 9
ratio, 8–9

Scatter plots, 31, 177–183, 190–193, 198, 201–202
outliers in, 190–193
range restriction in, 190–191
in linear regression, 198, 201–202

Scheffé test, 169–170
definition of, 169

Scores
change, 129–131
deviation, 64–65, 160–161, 176, 190, 200, 202–203
difference, 128–131, 139, 142
outliers, 40, 63, 65, 181, 190–193
raw, 71–72, 74–75, 91, 131, 138, 146, 176, 203
z, 70–77, 80–85, 87, 91, 93, 101–104, 125, 184

SD. See Standard deviation
Sigma
Σ (sum of), 21–22, 57–58, 63–65, 131, 160–161, 

175–176, 203, 209–210, 215
s (standard deviation of a population), 66, 71–72, 

74, 88, 90–91, 103, 116
sM (standard deviation of the distribution of 

means), 88, 90–91, 93
s2 (variance of a population), 65–66, 89

Significance levels
alpha (a), 102–105, 112, 117, 121, 130–131
beta (b), 113
definition of, 102
errors and, 112–113, 163
examples of, 111–112
Pearson’s r and, 185, 237–238
statistical power and, 113

Significance tests
errors and, 112–113
misconceptions about, 113

Simple random sampling, 13–14
definition of, 13

Skew, definition of, 47. See also Skewed distributions
Skewed distributions, 35, 38, 42–43, 46–48, 60–62, 

89

INDEX • 249



Symbols, statistical, 21, 57, 66, 120, 159. See also 
individual symbols

Symmetrical distributions, 46–47, 76, 83, 88
Systematic variability, definition of, 158

T
t distributions, 116–117, 119, 233–234
t statistics, 20, 116, 118–120, 129, 131, 142–144, 162, 

183
hypothesis testing with, 118–120
in independent samples, 142–144
in repeated measures, 129, 131

t tables, 116–117, 119, 122, 130, 183, 233–234
t tests

analysis of variance vs., 156, 162–163
basic principles of, 116–127
Bonferroni tests, 169
examples using, 118–120
independent samples, 139–143, 150–151, 153, 169
one-sample, 116, 121
problem of too many, 163
related samples, 128–139, 170

Tables
analysis of variance (ANOVA), 161–162, 203, 209
contingency, 217–219, 223
correlation (r), 185, 237–238
chi-square (χ2), 214–215, 239–240
F distribution, 165, 205, 235–236
frequency, 25–26, 35, 213, 218–219, 223
standard normal distribution (z), 82–83, 92–93, 

228–232
sum of products, 176, 184, 203
sum of squares, 63–65, 176
t distribution, 116–117, 119, 122, 130, 183, 

233–234
Test for goodness of fit. See also Chi-square tests, for 

goodness of fit
definition of, 214
example of, 216–217

Test for independence. See also Chi-square tests, for 
independence

definition of, 219
example of, 220–221

Tests
Bonferroni, 169
for goodness of fit, 214–219

Standardization, definition of, 75
Standardized scores, 71, 73–74. See also z scores
Statistical analysis, 4, 7, 17–21, 52

types of, 17–20
Statistical power, definition of, 113
Statistical significance

causal relationship vs., 189
correlation matrices and, 194
definition of, 105
outliers and, 193
post hoc tests and, 169–170
practical significance vs., 105
testing for, 112–113

Statistical software
JASP, 21, 121, 150, 188, 209, 217, 221
Statistical Package for the Social Sciences (SPSS), 

21
Statistics

definition of, 3
descriptive, 17–20, 52, 66, 87, 139, 159, 183–184
inferential, 14, 17, 20, 65, 78, 85, 87–89, 94, 103, 

150, 175, 187
mathematical notation in, 21–22
overview and terminology, 2–3
reasons for studying, 3–5

Stem-and-leaf display, 31–34, 43, 53
definition of, 31

Stratified random sampling, definition of, 14
Sum of (Σ), 21–22, 57–58, 63–65, 131, 160–161, 

175–176, 203, 209–210, 215
Sum of products (SP), 176–177, 190, 200, 203

definition of, 176
table, 176, 184, 203

Sum of squared deviations, 56–57, 60, 162. See also 
Sum of squares (SS)

Sum of squares (SS), 63–65, 131, 143, 159–162, 
175–176, 200, 202–203

between groups (SSB), 159–162
definition of, 64
error, 202–203, 210
mean, 208
model, 202–203, 208
table, 63–65, 176
total (SST), 160–162
within groups (SSW), 160–162

Surveys, 17, 26–27
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measures of, 63–68
observing and interpreting, 156–159
range restriction and, 190
total, 160–161
sources of, 159–161
standard deviation, 66–68
synonyms for, 62–63
systematic, 158
unsystematic (random error), 158
within groups, 160
z scores and, 74

Variables
categorical, 6, 31, 213–215, 217–219
confound, 189–190
continuous, 7, 175, 193–194, 196, 199, 212
definition of, 5
dependent, 5–7, 9–10, 16
discrete, 7
grouping, 140, 159, 170
independent, 5–6, 15–16, 159
nominal, 213
outcome, 159, 199–200
predictor, 159, 190, 200, 203, 212
qualitative, 6, 25–30, 46, 51, 59
quantitative, 6, 31–48, 51
types of, 5–6
X and Y, 176–178, 190–191, 199–203, 210

Variance (s2, s2). See also Analysis of variance 
(ANOVA); Variability

central limit theorem and, 89
covariance, 175–177, 196
definition of, 65
formulas for, 65
homogeneity of, 150–151
partitioning, 198, 212
pooled (sp

2), 143–144
prediction and, 201–202

W
Weighted averages, 143
Whiskers (in box plots), definition of, 41
Within-groups degrees of freedom (dfW), 161, 

165–166, 205, 235–236
Within-groups sum of squares, 160
Within-groups variability, definition of, 160

for independence, 219–221
nonparametric, 213–224
one-tailed vs. two-tailed, 102–105, 130, 185, 215, 

237–238
post hoc, 169–170
Scheffé, 169–170
Tukey’s honestly significant difference (HSD), 169

Test statistics, definition of, 103. See also Chi-square 
statistics; F statistics; Pearson’s r; t statistics; 
z scores 

Total sum of squares (SST), 160–162, 208
Tukey’s honestly significant difference (HSD), 

definition of, 169
Tukey test. See Tukey’s honestly significant 

difference (HSD) 
Two-tailed tests, 103, 117, 121–123, 130, 142, 148, 

185, 204, 215, 237–238
Type I error, 112–113, 118, 151, 162–163, 169

analysis of variance and, 162–163
definition of, 112

Type II error, definition of, 113

U
Unit normal distribution. See Standard normal 

distribution
Unsystematic variability, 158. See Random error

V
V. See Cramer’s V
Values

critical, 102–103, 105–106, 116–118, 121–122, 
127, 130–131, 143, 148, 162, 165, 169, 183, 185, 
205, 215, 235–240

expected, 213–215, 217–219, 223
marginal, 218–219
p, 93, 103–105, 109, 112–113, 121, 125, 150, 169, 

184, 188, 217, 221
probability, 99–102, 105, 112–113

Variability. See also Analysis of variance (ANOVA); 
Variance (s2, s2)

ANOVA table and, 161–162
between groups, 159–161
covariance and, 175–177
definition of, 62–63
formulas for, 64–65, 143, 184, 199
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confidence intervals using, 125
definition of, 71
normal distribution and, 70–77, 80–84
probability and, 80–85, 91–93
rejection regions and, 102–104

z tests
compared with t tests, 118, 127
examples of, 106–112

Y
Ŷ, 199–203

Z
z scores

area in the body of the distribution, 81–84
area in the tails of the distribution and, 76, 83
area under the curve and, 75–76, 80, 92
changing raw scores to, 71
changing to raw scores, 74

z scores (continued)

252 • INDEX






	Introduction to Statistics in the Psychological Sciences
	Recommended Citation

	Cover: Introduction to Statistics in the Psychological Sciences
	Acknowledgments
	Contents
	Prologue
	Unit 1  Fundamentals of Statistics
	Chapter 1  Introduction
	What Are Statistics?
	What a Statistics Course Is Not

	Why Do We Study Statistics?
	Types of Data and How to Collect Them
	Types of Variables
	Levels of an Independent Variable
	Qualitative and Quantitative Variables
	Discrete and Continuous Variables
	Levels of Measurement
	Nominal Scales
	Ordinal Scales
	Interval Scales
	Ratio Scales

	What Level of Measurement Is Used for Psychological Variables?
	Consequences of Level of Measurement

	Collecting Data
	Populations and Samples
	Simple Random Sampling
	Sample Size Matters
	More Complex Sampling
	Stratified Sampling
	Convenience Sampling


	Types of Research Designs
	Experimental Designs
	Quasi-Experimental Designs
	Non-Experimental Designs

	Types of Statistical Analyses
	Descriptive Statistics
	Inferential Statistics

	A Note about Statistical Software
	Mathematical Notation
	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 2  Describing Data Using Distributions and Graphs
	Graphing Qualitative Variables
	Frequency Tables
	Pie Charts
	Bar Charts
	Comparing Distributions
	Some Graphical Mistakes to Avoid
	Summary

	Graphing Quantitative Variables
	Stem-and-Leaf Displays
	Histograms
	Frequency Polygons
	Box Plots
	Bar Charts
	Line Graphs
	The Shape of Distribution

	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 3  Measures of Central Tendency and Spread
	What Is Central Tendency?
	Definitions of Center
	Balance Scale
	Smallest Absolute Deviation
	Smallest Squared Deviation


	Measures of Central Tendency
	Arithmetic Mean
	Median
	Mode
	More on the Mean and Median
	Comparing Measures of Central Tendency

	Spread and Variability
	Range
	Interquartile Range

	Sum of Squares
	Variance
	Standard Deviation

	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 4  z Scores and the Standard Normal Distribution
	Normal Distributions
	Z Scores
	Setting the Scale of a Distribution

	Z Scores and the Area under the Curve
	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 5  Probability
	What Is Probability?
	Probability in Graphs and Distributions
	Probability in Pie Charts
	Probability in Normal Distributions

	Probability: The Bigger Picture
	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 6 Sampling Distributions
	People, Samples, and Populations
	The Sampling Distribution of Sample Means
	Two Important Axioms
	Central Limit Theorem
	Law of Large Numbers


	Using Standard Error for Probability
	Sampling Distribution, Probability, and Inference
	Exercises
	Answers to Odd-Numbered Exercises


	Unit 2 Hypothesis Testing
	Chapter 7 Introduction to Hypothesis Testing
	Logic and Purpose of Hypothesis Testing
	The Probability Value
	The Null Hypothesis
	The Alternative Hypothesis
	Critical Values, p Values, and Significance Level
	The Hypothesis Testing Process
	A Four-Step Procedure
	Example A  Movie Popcorn
	Example B  Office Temperature
	Example C  Different Significance Level

	Other Considerations in Hypothesis Testing
	Errors in Hypothesis Testing
	Misconceptions in Hypothesis Testing

	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 8 Introduction to t Tests
	The t Statistic
	Hypothesis Testing with t
	Example  Oil Change Speed

	Confidence Intervals
	Hypothesis Testing with Confidence Intervals
	Example  Friendliness

	Confidence Intervals Using z

	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 9 Related Samples
	Change and Differences
	A Rose by Any Other Name . . .

	Hypotheses of Change and Differences
	Critical Values and Decision Criteria
	Test Statistic
	Example A  Increasing Satisfaction at Work
	Example B  Bad Press

	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 10 Independent Samples
	Difference of Means
	Research Questions about Independent Means

	Hypotheses and Decision Criteria
	Independent Samples t Statistic
	Standard Error and Pooled Variance
	Example  Movies and Mood

	Homogeneity of Variance
	Exercises
	Answers to Odd-Numbered Exercises


	Unit 3 Additional Hypothesis Tests
	Chapter 11 Analysis of Variance
	Observing and Interpreting Variability
	Sources of Variability
	Between-Groups Sum of Squares
	Within-Groups Sum of Squares
	Total Sum of Squares

	ANOVA Table
	ANOVA and Type I Error
	Hypotheses in ANOVA
	Example  Scores on Job-Application Tests

	Post Hoc Tests
	Bonferroni Test
	Tukey’s Honestly Significant Difference
	Scheffé Test

	Other ANOVA Designs
	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 12 Correlations
	Variability and Covariance
	Visualizing Relationships
	Three Characteristics
	Form
	Direction
	Magnitude

	Pearson’s r
	Example  Anxiety and Depression

	Correlation versus Causation
	Final Considerations
	Range Restriction
	Outliers
	Other Correlation Coefficients
	Correlation Matrices

	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 13 Linear Regression
	Line of Best Fit
	Prediction
	Predicting Scores and Explaining Variance

	ANOVA Table
	Hypothesis Testing in Regression
	Example  Happiness and Well-being

	Accuracy in Prediction
	Multiple Regression and Other Extensions
	Exercises
	Answers to Odd-Numbered Exercises

	Chapter 14 Chi-Square
	Categories and Frequency Tables
	Test for Goodness of Fit
	Hypotheses
	Degrees of Freedom and the Chi-Square Table

	Chi-Square Statistic
	Example  Pineapple on Pizza

	Contingency Tables for Two Variables
	Expected Values of Contingency Tables

	Test for Independence
	Example  College Sports

	Exercises
	Answers to Odd-Numbered Exercises


	Epilogue
	Appendices
	Appendix A Standard Normal Distribution Table (z Table)
	Appendix B t Distribution Table (t Table)
	Appendix C Critical Values for F (F Table)
	Appendix D Critical Values for Pearson’s r (Correlation Table)
	Appendix E Critical Values for Chi-Square (Chi-Square Table)

	Index

