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Abstract. This paper introduces an end-to-end workflow that automatically 
assigns room-identifiers to every frame of 360-degree video collected on 
construction sites. Manual tagging of imagery is a major bottleneck for progress-
tracking and safety analytics, where inspectors may capture thousands of 
panoramas per walk and then spend hours linking them to rooms on the floor 
plan. To eliminate that overhead, we couple visual-inertia SLAM with a 
simplified, BIM-derived floor plan. Once the SLAM trajectory is rigidly aligned, 
each trajectory point inherits the label of the room it falls inside, yielding a fully-
georeferenced image set ready for analysis. The approach was validated on a real 
interior renovation project, where an operator completed three site walks per 
week with a 360-degree camera. The resulting high-granularity, spatially 
coherent imagery accelerates inspection, progress quantification and safety audits 
without extra sensors, pre-training or constrained capture routes, making the 
workflow deployable from early construction stages onward. Future work will 
explore drift-correction and real-time labeling of construction elements to widen 
adoption across diverse building typologies.  
 
Keywords: Automated labelling, 360-degree video, visual-inertia SLAM, 
progress monitoring 

1 Introduction 

Monitoring progress and ensuring safety on construction sites are critical for 
maintaining schedules, controlling costs, and upholding compliance with safety 
standards. However, the current practices for collecting and labeling spatial data during 
inspections are often labor-intensive and prone to human error. Inspectors typically rely 
on manual methods to record and organize visual data, requiring them to annotate which 
images correspond to specific rooms or locations. This process is not only time-
consuming but also introduces inefficiencies that can hinder timely decision-making. 

To address these challenges, this study introduces an automated method to 
georeference 360-degree video footage and assign spatial labels to video frames within 
a building’s floorplan. By leveraging Simultaneous Localization and Mapping (SLAM) 
techniques, the trajectory of an operator's path through the construction site is 
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reconstructed and aligned with a provided 2D floor map. This alignment enables the 
automatic assignment of room-level labels to each video frame, eliminating the need 
for manual annotation and significantly streamlining the data collection workflow. 

The proposed approach is particularly valuable for construction progress and safety 
monitoring, where timely and accurate spatial data are essential. By automating the 
room-level labeling process, the system enhances both the efficiency and accuracy of 
data collection. Moreover, this method reduces the cognitive load on inspectors, 
allowing them to focus on critical evaluation tasks rather than administrative duties. 

This paper details the development and validation of the proposed method, 
highlighting its potential to improve spatial data organization and progress tracking in 
construction. The remainder of the paper is organized as follows: Section 2 reviews the 
state of the art in spatial data collection and SLAM-based techniques. Section 3 
describes the methodology, including the integration of 360-degree video footage, 
SLAM trajectories, and floor map alignment. Section 4 presents the experimental setup 
and results, demonstrating the accuracy and efficiency of the system. Finally, Section 
5 discusses the conclusions, and future directions for this research. 

2 State of the art 

The advancements in spatial data organization and indoor mapping technologies have 
significantly enhanced the efficiency of capturing, processing, and interpreting data for 
various applications, particularly in construction and building management. State-of-
the-art methods leverage techniques such as visual simultaneous localization and 
mapping (VSLAM) [1], 360-degree imagery [2], sensor fusion [3], and semantic 
segmentation [4] to automate spatial referencing and floor plan generation [5], [6], [7]. 
These approaches range from floor plan estimation using 360-degree images and stereo 
matching for acoustic modeling to the integration of BIM data for automated labeling 
and semantic understanding. Table 1 presents the summary of the key contributions and 
constraints of methods proposed in recent literature specifically for applications in the 
construction and building environments. 

Table 1. Summary of recent approaches proposed for construction and built environments. 

Ref. Method  Contribution Limitation 

[8] 360-DFPE 
Floor plan estimation using VSLAM and 360 
images for space reconstruction; identifies 
rooms, tracks transitions, and outputs 2D maps 

Applicable only to already built 
spaces; limited in early 
construction stages 

[9] SegNet and Stereo 
Matching 

Models room acoustics using 360-degree 
stereo images; predicts acoustic properties with 
no need for traditional setups 

Focused on acoustic modeling; 
does not support spatial 
segmentation or construction site 
applications 

[10] Sensor Fusion 
Algorithms 

Combines video and sensor data (gyroscope, 
accelerometer) to create indoor floor plans; 
supports segmentation by spaces 

Requires user input and 
crowdsourced data, which may 
lead to inconsistencies 

[11] Seg2Reg 
Combines segmentation and regression to 
create accurate room layouts, handling 
occlusions effectively 

Limited to visible regions in 
panoramic images; relies on 
differentiable rendering 

[12] Object SLAM 
Creates 3D semantic maps with spatial layout 
and semantic consistency; robust loop closure 
detection 

Requires pre-trained models for 
object detection; focuses on static 
environments 
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[13] 
BIM Projection 
and Inverse 
Photogrammetry 

Automates labeling of construction site images 
using BIM data; integrates semantic and 
temporal information 

Relies on accurate 4D BIM 
models; less effective in areas 
without detailed BIM data 

[14] SfM (Structure-
from-Motion) 

Provides 3D reconstructions and semantic 
labeling for indoor spaces; integrates object-to-
object constraints in mapping 

Requires RGB-D data and 
extensive manual labeling for 
dataset creation 

[15] Mask RCNN and 
ORB 

Enhances VSLAM with semantic 
understanding for high-precision indoor 3D 
mapping 

Computationally intensive; 
struggles in environments with 
sparse features 

[16] ORB-SLAM, 
DynaSLAM 

Surveys vSLAM advancements; highlights 
their applications in mapping, AR, and 
wayfinding 

A survey paper; does not propose 
new algorithms or 
implementations 

[17] Panoptic NeRF 

Introduces a method for transferring labels 
from 3D to 2D by combining coarse 3D 
bounding primitives with noisy 2D semantic 
predictions  

Requires significant computational 
effort, Its focus on static, outdoor 
scenes limits its applicability in 
dynamic or indoor environments. 
High reliance on 3D annotations 
and pre-trained models 

[18] 
Cross-Modal 360° 
Depth Completion 
and reconstruction 

Introduces a novel framework for 360-degree 
depth completion and reconstruction, 
leveraging cross-modal inputs of sparse depth 
maps and RGB panoramic images addressing 
challenges of distortion and unequal sparsity in 
panoramic data. 

This method is mainly for static 
already built cases, which makes it 
challenging to implement in 
dynamic construction scenarios  

[19] ORB-SLAM3 

Presents a novel adaptation of the ORB-
SLAM3 system to support 360-degree 
panoramic video, enabling autonomous 
positioning and orientation using a fisheye 
image calibration method. 

Although their method provided 
accurate relative positioning 
within the environment, it is still 
not used to link and label the 
localized position with floorplans  

 
While the methods presented on Table 1 address critical challenges in spatial data 

processing and accurate referencing, limitations such as dependency on pre-trained 
models, extensive manual labeling, computational intensity, and restricted applicability 
in dynamic or early construction environments highlight the need for further 
improvements. 

Researchers such as [20] and [21]  proposed datasets that can be used to address data 
limitations in 3D scene labeling.[20] specifically compiled the datasets to enable 
accurate SLAM performance in dynamic and real world construction scenarios. 
Although their dataset is valuable in advancing construction monitoring and 
automation, the dataset is mainly collected from a single construction site, pausing a 
limitation in generalizability. Similarly, [22] developed a large datasets containing 
more than 71 thousand panoramic 360 images from more than 1500 unfurnished homes. 
These datasets are linked with floor plans, localized with windows and doors 
annotations. The process of creating this dataset includes manual annotations and 
ground truth inputs. Hence, there is a potential of error. Moreover, implementation of 
this dataset involves training processes. Moreover, this dataset represents a finished 
home that are not subjected to dynamic change or active construction processes.  

This paper addresses key limitations identified in these methods, specifically the 
reliance on manual data labeling, static environments, and limited support for early 
construction stages. By introducing a novel method that automates room-level labeling 
and spatial referencing of 360-degree video frames within buildings, this work bridges 
these gaps. Using SLAM-generated trajectories to align operator paths with 2D floor 
maps, the proposed approach eliminates the need for manual labeling and enhances 
georeferencing accuracy, streamlining data collection and labeling processes. These 
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advancements significantly contribute to progress monitoring and spatial data 
organization in dynamic construction site environments, with the goal of improving 
efficiency and automation in construction and building management applications. 

3 Methodology 

The methodology employed in this study aims to streamline and automate the process 
of room-level labeling for 360-degree video frames within construction sites. By 
leveraging advanced SLAM techniques and integrating them with floor plan data, the 
approach systematically combines spatial and visual information to enhance data 
organization and reduce manual effort. The methodology is represented in a Business 
Process Model and Notation (BPMN) diagram, as shown in Fig. 1, which outlines the 
sequential steps of the process. The different steps used in the methodology are 
described in more detail in the following subsections. 

 
Fig. 1. BPMN diagram of the overall methodology 

3.1 Processing 360 video and generating SLAM outputs 

The initial step in our methodology focuses on processing the 360-degree video footage 
and associated Inertial Measurement Unit (IMU) data to reconstruct a three-
dimensional (3D) point cloud and generate a detailed trajectory of the camera’s 
movement throughout the environment. The process begins by splitting the 360-degree 
footage into discrete frames for each recorded position. Each position includes six 
frames corresponding to the different perspectives of the 360-degree imagery. The 
frame extraction rate, an adjustable input parameter, determines the number of frames 
processed per second. This parameter directly affects the density of the resulting point 
cloud and the granularity of the trajectory. 

The SLAM algorithm integrates the extracted frames and IMU data to construct the 
3D point cloud, which represents the spatial structure of the environment, and a camera 
trajectory that traces the operator’s path. The trajectory comprises a sequence of 
positional data points, where each point corresponds to a camera position and contains 
the six associated 360-degree frames. These outputs form the foundation for subsequent 
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processing stages, as the point cloud will later be aligned with the floor plan to establish 
spatial references. Simultaneously, the trajectory will serve as the basis for automatic 
labeling of video frames. 

This step necessitates balancing computational efficiency and accuracy. Higher 
frame extraction rates yield denser point clouds and more detailed trajectories but 
increase computational demands. Conversely, lower frame rates reduce processing 
requirements at the expense of spatial resolution. By carefully selecting this parameter, 
the methodology ensures that the outputs are both accurate and computationally 
feasible, enabling efficient downstream processing. 

3.2 Extracting simplified floor plan and performing room segmentation 

The next step involves generating a simplified floor plan derived from the Building 
Information Model (BIM). This floor plan retains only the structural outlines of the 
building, focusing on the boundaries of enclosed spaces, such as rooms. This simplified 
representation is crucial for minimizing computational complexity while ensuring 
sufficient detail for subsequent alignment processes. 

Once the floor plan is extracted, an automated segmentation process identifies each 
enclosed space and assigns it a unique identifier (i.e., a label). These labels can be 
further aligned with predefined room identifiers provided by the construction firm or 
project developer, ensuring consistency with existing documentation and 
nomenclature. While this labeling process is automated, the methodology allows for 
manual refinement if necessary, providing flexibility to address any ambiguities or 
inconsistencies in the initial segmentation. 

Importantly, this segmentation and labeling process is performed only once during 
the project’s setup phase. Once completed, the labeled floor plan becomes a stable 
reference for subsequent tasks, including the alignment of SLAM-generated trajectories 
and the classification of video frames. 

3.3 Aligning SLAM data with the floor plan and assigning room labels 

In this step, the reconstructed 3D point cloud and the operator’s trajectory are aligned 
with the simplified floor plan to establish a consistent spatial reference system. Initially, 
the SLAM-generated point cloud, which represents the site's layout, is superimposed 
onto the simplified floor plan. This alignment ensures that the spatial coordinates of the 
point cloud correspond to the reference system of the floor plan. A sufficiently dense 
point cloud is essential for accurately representing the site’s structure and achieving a 
reliable alignment. 

Once the point cloud is aligned, the same transformation is applied to the SLAM-
generated trajectory. This process maps the operator’s path (composed of discrete 
positions, each containing six 360-degree frames) onto the labeled floor plan. With the 
trajectory superimposed on the labeled floor plan, each position’s coordinates are 
matched to the corresponding room label from the segmentation process. Consequently, 
the room label is associated with all six frames at each position. 
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This approach eliminates the need for manual labeling or predefined trajectories 
during data collection, significantly streamlining the workflow. By automating the 
assignment of spatial labels to video frames, the system ensures accurate and efficient 
room-level data organization, enabling users to focus on analysis and evaluation rather 
than administrative tasks. 

4 Experimentation 

The experimentation was conducted at an ongoing construction site located within a 
university campus. The site is currently undergoing repurpose work, which involves 
creating new partitions to transform the existing space for updated functionality. The 
construction area spans approximately 966 m2, providing a varied environment suitable 
for testing the proposed methodology by performing progress monitoring walks with 
the 360 camera three times per week. The site’s dynamic nature, with ongoing 
modifications and structural changes, presents an ideal scenario for evaluating the 
system’s robustness and adaptability to real-world conditions. 

 
4.1 Processing 360 video and generating SLAM outputs 

To reconstruct the 3D point cloud and generate the camera trajectory, we processed 
360-degree video footage and associated IMU data collected from the experimentation 
site. The video was collected using an Insta360 X4 camera, recorded at 4K resolution 
and 100fps. The video was split into discrete frames based on a configurable frame rate 
of 25 frames per second, a parameter which was selected to balance computational 
efficiency and spatial resolution. Using the SLAM algorithm Stella Vslam Dense [23], 
the visual data and IMU readings were integrated to produce two key outputs: a dense 
3D point cloud representing the spatial layout of the site, and a trajectory mapping the 
camera's movement throughout the space. 

As shown in Fig. 2, the reconstructed point cloud provides a detailed enough 
representation of the site’s structural elements, enabling accurate alignment with the 
simplified floor plan in subsequent steps.  

Similarly, the trajectory, illustrated in Fig. 3, demonstrates the operator’s path 
through the construction site. Each position along the trajectory corresponds to a set of 
coordinates and contains the six 360-degree frames previously extracted. The density 
of the point cloud and the granularity of the trajectory were directly influenced by the 
frame extraction rate, allowing the level of detail to be adjusted according to the needs 
of the application. 
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(a) 

 
(b) 

 

Fig. 2. (a) Top view and (b) perspective view of the SLAM reconstructed point cloud 

 

 
Fig. 3. Reconstructed operator’s trajectory (in red) superimposed to the point cloud (ceiling has 
been removed for visualization purposes). 
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4.2 Extracting simplified floor plan and performing room segmentation 

For this stage, the simplified floor plan was derived directly from the Building 
Information Model (BIM) of the experimentation site. The extraction process involved 
simplifying the original BIM-derived floor plan by removing non-structural elements 
such as furniture, fixtures, and other details, retaining only the layout of walls and 
partitions. The resulting floor plan, shown in Fig. 4, provides a clean and efficient 
representation of the site’s structural boundaries, essential for the subsequent labeling 
and alignment processes. 

 

Fig. 4. Simplified floorplan extracted from the BIM. 

The simplified floor plan was then processed using a segmentation algorithm 
implemented in MATLAB to perform automatic room segmentation and labeling. This 
algorithm identifies enclosed shapes within the floor plan, corresponding to individual 
rooms or spaces, and assigns a unique identifier to each. The labeling process relied on 
geometric analysis of the floor plan, detecting closed polygons to ensure comprehensive 
segmentation of all enclosed spaces. The output of this process is shown in Fig. 5, where 
each identified room is distinctly labeled. 

  

Fig. 5. Segmented rooms out of the simplified floor plan. Each room is assigned a different 
number and color for visualization purposes. 

4.3 Aligning SLAM data with the floor plan and assigning room labels 

The final stage involves processing the generated point cloud and trajectory to align 
them with the labeled floor plan, enabling automatic labeling of the trajectory points. 
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The point cloud, which is not aligned with any axis, undergoes principal component 
analysis (PCA) in MATLAB to determine its primary directions. The principal 
components are identified using the eigenvectors of the point cloud, with the largest 
one used to align the point cloud with the XY plane. This step ensures that the point 
cloud is properly oriented with the horizontal plane, facilitating further processing. 

The same transformation is applied to the trajectory points, aligning them 
consistently with the adjusted point cloud. Next, a slice of the point cloud is extracted 
to remove extraneous elements such as the ceiling, floor, and clutter, leaving only the 
structural layout of the walls. Both the trajectory and the processed point cloud are then 
projected onto a 2D plane (Fig. 6), making them ready for alignment with the simplified 
floor plan generated earlier. 

 

Fig. 6. Projected trajectory (in red) and sliced point cloud (in blue) onto the XY plane. 

The projection is aligned with the labeled floor plan by matching the structural 
elements visible in both datasets (Fig. 7). This alignment ensures that the trajectory is 
accurately superimposed on the floor plan, with each trajectory point corresponding to 
a specific room or space. Based on the 2D coordinates of the trajectory points, room 
labels are assigned automatically by referencing the labeled floor plan.  

 
Fig. 7. Projected point cloud (in blue) and trajectory (in red) aligned with the simplified floor 
plan (in black).  

The final result, shown in Fig. 8, demonstrates the labeled trajectory points, 
completing the process of automatic room-level labeling for the 360-degree video 
frames. 
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Fig. 8. Final labeled trajectory points. 

4.4 Discussion and limitations 

One of the primary challenges encountered in this methodology is the inaccuracy 
introduced by the SLAM algorithm. Visual SLAM techniques are inherently prone to 
cumulative drift, particularly in environments with repetitive or sparse visual features, 
where the algorithm struggles to maintain precise localization. This drift can result in 
misalignment between the trajectory and the reference floor plan, as evidenced in Table 
2, which shows the number of trajectory points associated with each room. Each 
trajectory point corresponds to six 360-degree frames (top, bottom, front, back, left, 
right), providing a measure of how well-defined each visited room is. While room 21 
lacks data because it was not visited by the operator, rooms like 19 and 14 exhibit gaps 
due to trajectory drift, where SLAM inaccuracies caused some points to be incorrectly 
mapped outside the room boundaries. Drift inaccuracies are introduced at the end of the 
path most likely due to the fact that room 2 is a long corridor with similar features, 
resulting in the SLAM algorithm not being as precise as in the rest of the trajectory 
where the operator visited multiple rooms with distinctive features. Although 
addressing these inaccuracies is beyond the scope of this paper, it highlights an 
important limitation that future work could address, potentially through drift correction 
techniques or more robust SLAM algorithms. 

Table 2. Summary of the amount of trajectory points per room. 

Room 2 3 4 5 6 7 8 9 10 11 12 
Trajectory points 88 6 0 0 29 129 5 11 8 5 14 

Room 13 14 15 16 17 18 19 20 21 22 23 
Trajectory points 19 0 10 5 4 24 0 29 0 34 8 

Room 24 25 26 27 28 29 30 31 32 33 34 
Trajectory points 16 12 15 12 21 13 30 10 17 16 13 
 
Another limitation lies in the reliance on the structural features within the point cloud 

for accurate alignment with the simplified floor plan. Early stages of the construction 
could present environments with minimal features, incomplete structures, or significant 
clutter, that may reduce alignment reliability. Moreover, the methodology depends on 
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the initial quality and accuracy of the simplified floor plan extracted from the BIM 
model. Errors or ambiguities in the floor plan, such as missing or mislabeled spaces, 
can propagate through the system and affect the reliability of room labeling. 

Despite these challenges, the methodology demonstrates practical advantages. By 
automating the association of 360-degree video frames with their respective rooms, it 
eliminates the need for labor-intensive manual labeling. In traditional workflows, 
operators either follow predefined routes to systematically capture images in every 
room or manually assign collected data to rooms afterward. Both approaches are time-
consuming and prone to disruption if site conditions change or rooms are inaccessible. 
In contrast, our approach allows operators to freely walk through the site while 
recording a continuous video, with frames automatically associated with their 
corresponding rooms. This significantly reduces time and effort while ensuring 
immediate access to labeled data. 

A further benefit is the system's ability to map data to as-planned spaces, even if 
construction is incomplete. For instance, rooms 10 and 11, which lack a separating wall 
at the time of data collection, are still distinctly labeled based on the as-planned floor 
plan. This capability is particularly valuable for tracking progress in dynamic 
construction environments, where spaces may evolve over time but still need to be 
monitored. 

4.5 Conclusion and future work 

This paper introduced a methodology for automating room-level labeling of 360-degree 
video frames using SLAM-generated trajectories and alignment with a simplified floor 
plan. By eliminating the need for manual data labeling, this approach significantly 
enhances the efficiency and accuracy of spatial data organization in construction site 
monitoring. The results demonstrated the potential of the proposed system to streamline 
progress monitoring and building management workflows while addressing common 
challenges such as misalignment and labeling inefficiencies. The methodology's ability 
to function effectively in dynamic construction environments without a need for pre-
training and extra data requirements further highlights its applicability in real-world 
scenarios, particularly for progress tracking and data management. 

Despite its advantages, the approach is not without limitations. Issues such as SLAM 
drift and reliance on distinct features for alignment underscore areas where the system 
could benefit from further refinement.  

Future work will focus on addressing the identified limitations, particularly through 
the integration of advanced SLAM drift correction techniques and sensor fusion to 
improve alignment accuracy. Additionally, efforts will be made to adapt the 
methodology for early construction stages and environments with sparse or incomplete 
structural features. Expanding the system's capabilities to incorporate real-time labeling 
and integration with augmented reality tools will also be explored. Finally, validating 
the methodology across a broader range of construction sites and scenarios will ensure 
its generalizability and robustness, paving the way for widespread adoption in the 
construction industry. 
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