

Table of Contents

TOPIC 031: SOFTWARE DEVELOPMENT AND WEB TECHNOLOGIES . 1
031.1 Software Development Basic. 2

031.1 Lesson 1 . 3
Introduction. 3

Source Code. 3
Programming Languages . 5

Guided Exercises. 11
Explorational Exercises . 12
Summary . 13
Answers to Guided Exercises . 14
Answers to Explorational Exercises . 15

031.2 Web Application Architecture . 16
031.2 Lesson 1 . 18

Introduction. 18
Clients and Servers . 18
The Client Side. 19

Varieties of Web Clients . 20
Languages of a Web Client . 21

The Server Side . 23
Handling Paths from Requests. 23
Database Management Systems . 24

Content Maintenance. 24
Guided Exercises . 26
Explorational Exercises . 27
Summary . 28
Answers to Guided Exercises . 29
Answers to Explorational Exercises . 30

031.3 HTTP Basics . 31
031.3 Lesson 1 . 33

Introduction. 33
The Client’s Request . 34
The Response Header . 37
Static and Dynamic Content . 39
Caching. 39
HTTP Sessions . 40

Guided Exercises. 42
Explorational Exercises . 43
Summary . 44

Answers to Guided Exercises . 45
Answers to Explorational Exercises . 46

TOPIC 032: HTML DOCUMENT MARKUP . 47
032.1 HTML Document Anatomy . 48

032.1 Lesson 1 . 49
Introduction. 49

Anatomy of an HTML Document . 49
Document Header . 53

Guided Exercises. 57
Explorational Exercises . 58
Summary . 59
Answers to Guided Exercises . 60
Answers to Explorational Exercises . 61

032.2 HTML Semantics and Document Hierarchy . 63
032.2 Lesson 1 . 65

Introduction. 65
Text . 66
Headings . 66
Line Breaks . 68
Horizontal Lines . 69
HTML Lists . 70
Inline Text Formatting . 75
Preformatted Text . 80
Grouping Elements. 81
HTML Page Structure . 83

Guided Exercises. 91
Explorational Exercises . 92
Summary . 93
Answers to Guided Exercises . 95
Answers to Explorational Exercises . 97

032.3 HTML References and Embedded Resources . 104
032.3 Lesson 1. 105

Introduction. 105
Embedded Content . 105
Links . 109

Guided Exercises. 112
Explorational Excercises . 113
Summary . 114
Answers to Guided Exercises . 115
Answers to Explorational Exercises . 116

032.4 HTML Forms . 117
032.4 Lesson 1. 118

Introduction. 118
Simple HTML Forms . 118
Input for large texts: textarea . 125
Lists of Options . 126
The hidden Element Type . 130
The File Input Type . 131
Action Buttons. 131
Form Action and Methods. 132

Guided Exercises. 134
Explorational Exercises . 135
Summary . 136
Answers to Guided Exercises . 137
Answers to Explorational Exercises . 138

TOPIC 033: CSS CONTENT STYLING . 140
033.1 CSS Basics . 141

033.1 Lesson 1. 142
Introduction. 142

Applying Styles . 143
Guided Exercises. 150
Explorational Exercises . 151
Summary . 152
Answers to Guided Exercises . 153
Answers to Explorational Exercises . 154

033.2 CSS Selectors and Style Application. 155
033.2 Lesson 1. 156

Introduction. 156
Page-Wide Styles . 156
Restrictive Selectors . 158
Special Selectors . 163

Guided Exercises. 165
Explorational Exercises . 166
Summary . 167
Answers to Guided Exercises . 168
Answers to Explorational Exercises . 169

033.3 CSS Styling . 170
033.3 Lesson 1. 171

Introduction. 171
CSS Common Properties and Values. 171

Colors . 171
Background . 174
Borders. 176
Unit Values. 176
Relative Units . 177
Fonts and Text Properties . 178

Guided Exercises. 181
Explorational Exercises . 182
Summary . 183
Answers to Guided Exercises . 184
Answers to Explorational Exercises . 185

033.4 CSS Box Model and Layout . 186
033.4 Lesson 1. 187

Introduction. 187
Normal Flow . 187
Customizing Normal Flow . 194
Responsive Design . 198

Guided Exercises. 200
Explorational Exercises . 201
Summary . 202
Answers to Guided Exercises . 203
Answers to Explorational Exercises . 204

TOPIC 034: JAVASCRIPT PROGRAMMING . 205
034.1 JavaScript Execution and Syntax . 206

034.1 Lesson 1. 207
Introduction. 207

Running JavaScript in the Browser . 207
Browser Console. 210
JavaScript Statements . 211
JavaScript Commenting . 212

Guided Exercises. 214
Explorational Exercises . 215
Summary . 216
Answers to Guided Exercises . 217
Answers to Explorational Exercises . 218

034.2 JavaScript Data Structures. 219
034.2 Lesson 1. 220

Introduction. 220
High-Level Languages . 220
Declaration of Constants and Variables . 221

Types of Values . 223
Operators. 227

Guided Excercises. 230
Explorational Excercises . 231
Summary . 232
Answers to Guided Exercises . 233
Answers to Explorational Exercises . 234

034.3 JavaScript Control Structures and Functions . 235
034.3 Lesson 1. 236

Introduction. 236
If Statements. 236
Switch Structures . 241
Loops . 243

Guided Exercises. 247
Explorational Exercises . 248
Summary . 249
Answers to Guided Exercises . 250
Answers to Explorational Exercises . 251

034.3 Lesson 2. 253
Introduction. 253

Defining a Function . 253
Function Recursion. 258

Guided Exercises. 262
Explorational Exercises . 263
Summary . 264
Answers to Guided Exercises . 265
Answers to Explorational Exercises . 266

034.4 JavaScript Manipulation of Website Content and Styling . 267
034.4 Lesson 1. 268

Introduction. 268
Interacting with the DOM . 268
HTML Content . 269
Selecting Specific Elements. 271
Working with Attributes . 272
Working with Classes . 275
Event Handlers . 276

Guided Exercises. 279
Explorational Exercises . 280
Summary . 281
Answers to Guided Exercises . 282

Answers to Explorational Exercises . 283
TOPIC 035: NODEJS SERVER PROGRAMMING . 284

035.1 NodeJS Basics . 285
035.1 Lesson 1. 286

Introduction. 286
Getting Started . 287

Guided Exercises. 294
Explorational Exercises . 295
Summary . 296
Answers to Guided Exercises . 297
Answers to Explorational Exercises . 298

035.2 NodeJS Express Basics . 299
035.2 Lesson 1. 301

Introduction. 301
Initial Server Script . 301
Routes . 304
Adjustments to the Response. 308
Cookie Security . 311

Guided Exercises. 312
Explorational Exercises . 313
Summary . 314
Answers to Guided Exercises . 315
Answers to Explorational Exercises . 316

035.2 Lesson 2. 317
Introduction. 317
Static Files . 318
Formatted Output . 318
Templates . 323

HTML Templates. 325
Guided Exercises. 329
Explorational Exercises . 330
Summary . 331
Answers to Guided Exercises . 332
Answers to Explorational Exercises . 333

035.3 SQL Basics . 334
035.3 Lesson 1. 335

Introduction. 335
SQL . 335
SQLite . 336
Opening the Database. 337

Structure of a Table . 337
Data Entry . 338
Queries. 339
Changing the Contents of the Database. 340
Closing the Database . 342

Guided Exercises. 344
Explorational Exercises . 345
Summary . 346
Answers to Guided Exercises . 347
Answers to Explorational Exercises . 348

Imprint. 349

Topic 031: Software Development and Web Technologies

Web Development Essentials (030) (Version 1.0) |

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 1

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

031.1 Software Development Basic

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 031.1

Weight

1

Key knowledge areas

• Understand what source code is

• Understand the principles of compilers and interpreters

• Understand the concept of libraries

• Understand the concepts of functional, procedural and object-oriented programming

• Awareness of common features of source code editors and integrated development
environments (IDE)

• Awareness of version control systems

• Awareness of software testing

• Awareness of important programming languages (C, C++, C#, Java, JavaScript, Python, PHP)

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

2 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#031.1_Software_Development_Basics_.28weight:_1.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

031.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 031 Software Development and Web
Technologies

Objective: 031.1 Software Development Basics

Lesson: 1 of 1

Introduction
The very first computers were programmed through the grueling process of plugging cables into
sockets. Computer scientists soon started a never-ending search for easy ways to tell the computer
what to do. This chapter introduces the tools of programming. It discusses the key ways that text
instructions—programming languages—represent the tasks a programmer wants to accomplish,
and the tools that change the program into a form called machine language that a computer can
run.

NOTE In this text, the terms program and application are used interchangeably.

Source Code
A programmer normally develops an application by writing a textual description, called source
code, of the desired task. The source code is in a carefully defined programming language that
represents what the computer can do in a high-level abstraction humans can understand. Tools
have also been developed to let programmers as well as non-programmers express their thoughts
visually, but writing source code is still the predominant way to program.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 3

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

In the same way that a natural language has nouns, verbs, and constructions to express ideas in a
structured way, the words and punctuation in a programming language are symbolic
representations of operations that will be performed on the machine.

In this sense, source code is not very different from any other text in which the author employs
the well-established rules of a natural language to communicate with the reader. In the case of
source code, the “reader” is the machine, so the text cannot contain ambiguities or
inconsistencies—even subtle ones.

And like any text that discusses some topic in depth, the source code also needs to be well
structured and logically organized when developing complex applications. Very simple programs
and didactic examples can be stored in the few lines of a single text file, which contains all the
program’s source code. More complex programs can be subdivided into thousands of files, each
with thousands of lines.

The source code of professional applications should be organized into different folders, usually
associated with a particular purpose. A chat program, for example, can be organized into two
folders: one that contains the code files that handle the transmission and reception of messages
over the network, and another folder that contains the files that build the interface and react to
user actions. Indeed, it is common to have many folders and subfolders with source code files
dedicated to very specific tasks within the application.

Moreover, the source code is not always isolated in its own files, with everything written in a
single language. In web applications, for example, an HTML document can embed JavaScript code
to supplement the document with extra functionality.

Code Editors and IDE

The variety of ways in which source code can be written can be intimidating. Therefore, many
developers take advantage of tools that help with writing and testing the program.

The source code file is just a plain text file. As such, it can be edited by any text editor, no matter
how simple. To make it easier to distinguish between source code and plain text, each language
adopts a self-explanatory filename extension: .c for the C language, .py for Python, .js for
JavaScript, etc. General-purpose editors often understand the source code of popular languages
well enough to add italics, colors, and indentation to make the code understandable.

Not every developer chooses to edit source code in a general-purpose editor. An integrated
development environment (IDE) provides a text editor along with tools to help the programmer
avoid syntactic errors and obvious inconsistencies. These editors are particularly recommended
for less experienced programmers, but experienced programmers use them as well.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

4 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Popular IDEs such Visual Studio, Eclipse, and Xcode intelligently watch what the programmer
types, frequently suggesting words to use (autocompletion) and verifying code in real-time. The
IDEs can even offer automated debugging and testing to identify issues whenever the source code
changes.

Some more experienced programmers opt for less intuitive editors such as Vim, which offer
greater flexibility and do not require installation of additional packages. These programmers use
external, standalone tools to add the features that are built-in when you use an IDE.

Code Maintenance

Whether in an IDE or using standalone tools, it’s important to employ some kind of version control
system (VCS). Source code is constantly evolving because unforeseen flaws need to be fixed and
enhancements need to be incorporated. An inevitable consequence of this evolution is that fixes
and enhancements can interfere with other parts of applications in a large code base. Version
control tools such as Git, Subversion, and Mercurial record all changes made to the code and who
made the change, allowing you to trace and eventually recover from an unsuccessful
modification.

Furthermore, version control tools allow each developer on the team to work on a copy of the
source code files without interfering with the work of other programmers. Once the new versions
of source code are ready and tested, corrections or improvements made to one copy can be
incorporated by other team members.

Git, the most popular version control system nowadays, allows many independent copies of a
repository to be maintained by different people, who share their changes as they desire. However,
whether using a decentralized or centralized version control system, most teams maintain one
trusted repository whose source code and resources can be relied on. Several online services offer
storage for repositories of source code. The most popular of these services are GitHub and GitLab,
but the GNU project’s Savannah is also worth mentioning.

Programming Languages
A wide variety of programming languages exist; each decade sees the invention of new ones. Each
programming language has its own rules and is recommended for particular purposes. Although
the languages show superficial differences in syntax and keywords, what really distinguishes the
languages are the deep conceptual approaches they represent, known as paradigms.

Paradigms

Paradigms define the premises on which a programming language is based, especially concerning

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 5

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

how the source code should be structured.

The developer starts from the language paradigm to formulate the tasks to be performed by the
machine. These tasks, in turn, are symbolically expressed with the words and syntactic
constructions offered by the language.

The programming language is procedural when the instructions presented in the source code are
executed in sequential order, like a movie script. If the source code is segmented into functions or
subroutines, a main routine takes care of calling the functions in sequence.

The following code is an example of a procedural language. Written in C, it defines variables to
represent the side, area and volume of geographical shapes. The value of the side variable is
assigned in main(), which is the function invoked when the program is executed. The area and
volume variables are calculated in the square() and cube() subroutines that precede the main
function:

#include <stdio.h>

float side;
float area;
float volume;

void square(){ area = side * side; }

void cube(){ volume = area * side; }

int main(){
 side = 2;
 square();
 cube();
 printf("Volume: %f\n", volume);
 return 0;
}

The order of actions defined in main() determines the sequence of program states, characterized
by the value of the side, area, and volume variables. The example ends after displaying the value
of volume with the printf statement.

On the other hand, the paradigm of object-oriented programming (OOP) has as its main
characteristic the separation of the program state into independent sub-states. These sub-states
and associated operations are the objects, so called because they have a more or less independent
existence within the program and because they have specific purposes.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

6 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Distinct paradigms do not necessarily restrict the type of task that can be performed by a
program. The code from the previous example can be rewritten according to the OOP paradigm
using the C++ language:

#include <iostream>

class Cube {
 float side;
 public:
 Cube(float s){ side = s; }
 float volume() { return side * side * side; }
};

int main(){
 float side = 2;
 Cube cube(side);
 std::cout << "Volume: " << cube.volume() << std::endl;
 return 0;
}

The main() function is still present. But now there is a new word, class, that introduces the
definition of an object. The defined class, named Cube, contains its own variables and
subroutines. In OOP, a variable is also called an attribute and a subroutine is called a method.

It’s beyond the scope of this chapter to explain all the C++ code in the example. What’s important
to us here is that Cube contains the side attribute and two methods. The volume() method
calculates the cube’s volume.

It is possible to create several independent objects from the same class, and classes can be
composed of other classes.

Keep in mind that these same features can be written differently and that the examples in this
chapter are oversimplified. C and C++ have much more sophisticated features that allow much
more complex and practical constructions.

Most programming languages do not rigorously impose one paradigm, but allow programmers to
choose various aspects of one paradigm or another. JavaScript, for example, incorporates aspects
of different paradigms. The programmer can decompose the entire program into functions that do
not share a common state with each other:

function cube(side){
 return side*side*side;

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 7

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

}

console.log("Volume: " + cube(2));

Although this example is similar to procedural programming, note that the function receives a
copy of all the information necessary for its execution and always produces the same result for
the same parameter, regardless of changes that happen outside the function’s scope. This
paradigm, called functional, is strongly influenced by mathematical formalism, where every
operation is self-sufficient.

Another paradigm covers declarative languages, which describe the states you want the system to
be in. A declarative language can figure out how to achieve the specified states. SQL, the universal
language for querying databases, is sometimes called a declarative language, although it really
occupies a unique niche in the programming pantheon.

There is no universal paradigm that can be adopted to any context. The choice of language may
also be restricted by which languages are supported on the platform or execution environment
where the program will be used.

A web application that will be used by the browser, for example, will need to be written in
JavaScript, which is a language universally supported by browsers. (A few other languages can be
used because they provide converters to create JavaScript.) So for the web browser—sometimes
called the client side or front end of the web application—the developer will have to use the
paradigms allowed in JavaScript. The server side or back end of the application, which handles
requests from the browser, is normally programmed in a different language; PHP is most popular
for this purpose.

Regardless of paradigm, every language has pre-built libraries of functions that can be
incorporated into code. Mathematical functions—like the ones illustrated in the example code—
don’t need to be implemented from scratch, as the language already has the function ready to use.
JavaScript, for example, provides the Math object with the most common math operations.

Even more specialized functions are usually available from the language vendor or third-party
developers. These extra resource libraries can be in source code form; i.e., in extra files that are
incorporated into the file where they will be used. In JavaScript, embedding is done with import
from:

import { OrbitControls } from 'modules/OrbitControls.js';

This type of import, where the embedded resource is also a source code file, is most often used in
so-called interpreted languages. Compiled languages allow, among other things, the incorporation

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

8 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

of pre-compiled features in machine language, that is, compiled libraries. The next section
explains the differences between these types of languages.

Compilers and Interpreters

As we already know, source code is a symbolic representation of a program that needs to be
translated into machine language in order to run.

Roughly speaking, there are two possible ways to do the translation: converting the source code
beforehand for future execution, or converting the code at the moment of its execution.
Languages of the first modality are called compiled languages and languages of the second
modality are called interpreted languages. Some interpreted languages provide compilation as an
option, so that the program can start faster.

In compiled languages, there is a clear distinction between the source code of the program and the
program itself, which will be executed by the computer. Once compiled, the program will usually
work only on the operating system and platform for which it was compiled.

In an interpreted language, the source code itself is treated as the program, and the process of
converting to machine language is transparent to the programmer. For an interpreted language, it
is common to call the source code a script. The interpreter translates the script into the machine
language for the system it’s running on.

Compilation and Compilers

The C programming language is one of the best-known examples of a compiled language. The C
language’s greatest strengths are its flexibility and performance. Both high-performance
supercomputers and microcontrollers in home appliances can be programmed in the C language.
Other examples of popular compiled languages are C++ and C# (C sharp). As their names suggest,
these languages are inspired by C, but include features that support the object-oriented paradigm.

The same program written in C or C++ can be compiled for different platforms, requiring little or
no change to the source code. It is the compiler that defines the target platform of the program.
There are platform-specific compilers as well as cross-platform compilers such as GCC (which
stands for GNU Compiler Collection) that can produce binary programs for many distinct
architectures.

NOTE

There are also tools that automate the compilation process. Instead of invoking the
compiler directly, the programmer creates a file indicating the different
compilation steps to be performed automatically. The traditional tool used for this
purpose is make, but a number of newer tools such as Maven and Gradle are also in
widespread use. The entire build process is automated when you use an IDE.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 9

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

The compilation process does not always generate a binary program in machine language. There
are compiled languages that produce a program in a format generically called bytecode. Like a
script, bytecode is not in a platform-specific language, so it requires an interpreter program that
translates it into machine language. In this case, the interpreter program is simply called a
runtime.

The Java language takes this approach, so compiled programs written in Java can be used on
different operating systems. Despite its name, Java is unrelated to JavaScript.

Bytecode is closer to machine language than source code, so its execution tends to be
comparatively faster. Because there is still a conversion process during the execution of the
bytecode, it is difficult to obtain the same performance as an equivalent program compiled into
machine language.

Interpretation and Interpreters

In interpreted languages such as JavaScript, Python, and PHP, the program does not need to be
precompiled, making it easier to develop and modify it. Instead of compiling it, the script is
executed by another program called an interpreter. Usually, the interpreter of a language is
named after the language itself. The interpreter of a Python script, for example, is a program
called python. The JavaScript interpreter is most often the web browser, but scripts can also be
executed by the node program outside a browser. Because it is converted to binary instructions
every time it is executed, an interpreted language program tends to be slower than a compiled
language equivalent.

Nothing prevents the same application from having components written in different languages. If
necessary, these components can communicate through a mutually understandable application
programming interface (API).

The Python language, for example, has very sophisticated data mining and data tabulation
capabilities. The developer can choose Python to write the parts of the program that deal with
these aspects and another language, such as C++, to perform the heavier numeric processing. It is
possible to adopt this strategy even when there is no API that allows direct communication
between the two components. Code written in Python can generate a file in the proper format to
be used by a program written in C++, for example.

Although it is possible to write almost any program in any language, the developer should adopt
the one that is most in line with the application’s purpose. In doing so, you benefit from the reuse
of already tested and well-documented components.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

10 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. What kind of program can be used to edit source code?

2. What kind of tool helps to integrate the work of different developers into the same code base?

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 11

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. Suppose you want to write a 3D game to be played in the browser. Web apps and games are

programmed in JavaScript. Although it is possible to write all the graphic functions from
scratch, it is more productive to use a ready-made library for this purpose. Which third-party
libraries provide capabilities for 3D animation in JavaScript?

2. Besides PHP, what other languages can be used on the server side of a web application?

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

12 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
This lesson covers the most essential concepts of software development. The developer must be
aware of important programming languages and the proper usage scenario for each. This lesson
goes through the following concepts and procedures:

• What source code is.

• Source code editors and related tools.

• Procedural, object-oriented, functional, and declarative programming paradigms.

• Characteristics of compiled and interpreted languages.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 13

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. What kind of program can be used to edit source code?

In principle, any program capable of editing plain text.

2. What kind of tool helps to integrate the work of different developers into the same code base?

A source or version control system, such as Git.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

14 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. Suppose you want to write a 3D game to be played in the browser. Web apps and games are

programmed in JavaScript. Although it is possible to write all the graphic functions from
scratch, it is more productive to use a ready-made library for this purpose. Which third-party
libraries provide capabilities for 3D animation in JavaScript?

There are many options for 3D graphics libraries for JavaScript, such as threejs and BabylonJS.

2. Besides PHP, what other languages can be used on the server side of a web application?

Any language supported by the HTTP server application used on the server host. Some
examples are Python, Ruby, Perl, and JavaScript itself.

Web Development Essentials (030) (Version 1.0) | 031.1 Software Development Basic

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 15

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

031.2 Web Application Architecture

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 031.2

Weight

2

Key knowledge areas

• Understand the principle of client and server computing

• Understand the role of web browsers and be aware of commonly used web browsers

• Understand the role of web servers and application servers

• Understand common web development technologies and standards

• Understand the principles of APIs

• Understand the principle of relational and non-relational (NoSQL) databases

• Awareness of commonly used open source database management systems

• Awareness of REST and GraphQL

• Awareness of single-page applications

• Awareness of web application packaging

• Awareness of WebAssembly

• Awareness of content management systems

Partial list of the used files, terms and utilities

• Chrome, Edge, Firefox, Safari, Internet Explorer

• HTML, CSS, JavaScript

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

16 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#031.2_Web_Application_Architecture_.28weight:_2.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

• SQLite, MySQL, MariaDB, PostgreSQL

• MongoDB, CouchDB, Redis

Web Development Essentials (030) (Version 1.0) | 031.2 Web Application Architecture

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 17

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

031.2 Lesson 1

Certificate: Web Development Essentials

Version: 1.0

Topic: 031 Software Development and Web
Technologies

Objective: 031.2 Web Application Architecture

Lesson: 1 of 1

Introduction
The word application has a broad meaning in technological jargon. When the application is a
traditional program, executed locally and self-sufficient in its purpose, both the application’s
operating interface and the data processing components are integrated in a single “package”. A
web application is different because it adopts the client/server model and its client portion is based
on HTML, which is obtained from the server and, in general, rendered by a browser.

Clients and Servers
In the client/server model, part of the work is done locally on the client side and part of the work is
done remotely, on the server side. Which tasks are performed by each party varies according to
the purpose of the application, but in general it’s up to the client to provide an interface to the
user and to layout the content in an attractive manner. It’s up to the server to run the business

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

18 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

end of the application, processing and responding to requests made by the client. In a shopping
application, for example, the client application displays an interface for the user to choose and
pay for the products, but the data source and the transaction records are kept on the remote
server, accessed via the network. Web applications perform this communication over the
Internet, usually via the Hypertext Transfer Protocol (HTTP).

Once loaded by the browser, the client side of the application initiates interaction with the server
whenever necessary or convenient. Web application servers offer an application programming
interface (API) that defines the available requests and how those requests should be made. Thus,
the client constructs a request in the format defined by the API and sends it to the server, which
checks for any prerequisites for the request and sends back the appropriate response.

While the client, in the form of a mobile application or desktop browser, is a self-contained
program with regard to the user interface and instructions for communicating with the server,
the browser must obtain the HTML page and associated components—such as images, CSS, and
JavaScript—that define the interface and instructions for communicating with the server.

The programming languages and platforms used by client and server are independent, but use a
mutually understandable communication protocol. The server portion is almost always
performed by a program without a graphical interface, running in highly available computing
environments so that it is always ready to respond to requests. In contrast, the client portion runs
on any device that is capable of rendering an HTML interface, such as smartphones.

In addition to being essential for certain purposes, the adoption of the client/server model allows
an application to optimize several aspects of development and maintenance, since each part can
be designed for its specific purpose. An application that displays maps and routes, for example,
does not need to have all maps stored locally. Only maps relating to the location of the users’s
interest are required, so only those maps are requested from the central server.

The developers have direct control over the server, so they can also modify the client that is
provided by it. This allows developers to improve the application, to a greater or lesser extent,
without the need the user to explicitly install new versions.

The Client Side
A web application should run the same way on any of the most popular browsers, as long as the
browser is up to date. Some browsers may be incompatible with recent innovations, but only
experimental applications use features not yet widely adopted.

Incompatibility issues were more common in the past, when different browsers had their own
rendering engine and there was less cooperation in formulating and adopting standards. The

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 19

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

rendering engine is the main component of the browser, as it is responsible for transforming
HTML and other associated components into the visual and interactive elements of the interface.
Some browsers, notably Internet Explorer, needed special treatment in the code so as not to break
the pages expected functioning.

Today, there are minimal differences between the main browsers, and incompatibilities are rare.
In fact, the Chrome and Edge browsers use the same rendering engine (called Blink). The Safari
browser, and other browsers offered on the iOS App Store, use the WebKit engine. Firefox uses an
engine called Gecko. These three engines account for virtually all browsers used today. Although
developed separately, the three engines are open source projects and there is cooperation
between their developers, which facilitates compatibility, upkeep, and the adoption of standards.

Because browser developers have taken so much effort to stay compatible, the server is not
normally linked to a single type of client. In principle, an HTTP server can communicate with any
client that is also capable of communicating via HTTP. In a map application, for example, the
client can be a mobile application or a browser that loads the HTML interface from the server.

Varieties of Web Clients
There are mobile and desktop applications whose interface is rendered from HTML and, like
browsers, can use JavaScript as a programming language. However, unlike the client loaded in the
browser, the HTML and the necessary components for the native client to function are locally
present since the installation of the application. In fact, an application that works this way is
virtually identical to an HTML page (both are even likely to be rendered by the same engine).
There are also progressive web apps (PWA), a mechanism that allows you to package web
application clients for offline use—limited to functions that do not require immediate
communication with the server. Regarding what the application can do, there is no difference
between running the browser or packaged in a PWA, except that in the latter the developer has
more control over what is stored locally.

Rendering interfaces from HTML is such a recurring activity that the engine is usually a separate
software component, present in the operating system. Its presence as a separate component
allows different applications to incorporate it without having to embed it in the application
package. This model also delegates the maintenance of the rendering engine to the operating
system, facilitating updates. It is very important to keep such a crucial component up to date in
order to avoid possible failures.

Regardless of their delivery method, applications written in HTML run on an abstraction layer
created by the engine, which functions as an isolated execution environment. In particular, in the
case of a client that runs on the browser, the application has at its disposal only those resources
offered by the browser. Basic features, such as interacting with page elements and requesting files

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

20 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

over HTTP, are always available. Resources that may contain sensitive information, such as access
to local files, geographic location, camera, and microphone, require explicit user authorization
before the application is able to use them.

Languages of a Web Client
The central element of a web application client that runs on the server is the HTML document. In
addition to presenting the interface elements that the browser displays in a structured way, the
HTML document contains the addresses for all files required for the correct presentation and
operation of the client.

HTML alone does not have much versatility to build more elaborate interfaces and does not have
general-purpose programming features. For this reason, an HTML document that should function
as a client application is always accompanied by one or more sets of CSS and JavaScript.

The CSS can be provided as a separate file or directly in the HTML file itself. The main purpose of
CSS is to adjust the appearance and layout of the elements of the HTML interface. Although not
strictly necessary, more sophisticated interfaces usually require modifications to the CSS
properties of the elements to suit their needs.

JavaScript is a practically indispensable component. Procedures written in JavaScript respond to
events in the browser. These events can be caused by the user or non-interactive. Without
JavaScript, an HTML document is practically limited to text and images. Using JavaScript in HTML
documents allows you to extend interactivity beyond hyperlinks and forms, making the page
displayed by the browser like a conventional application interface.

JavaScript is a general-purpose programming language, but its main use is in web applications.
The features of the browser execution environment are accessible through JavaScript keywords,
used in a script to perform the desired operation. The term document, for example, is used in
JavaScript code to refer to the HTML document associated with the JavaScript code. In the context
of the JavaScript language, document is a global object with properties and methods that can be
used to obtain information from any element on the HTML document. More importantly, you can
use the document object to modify its elements and to associate them with custom actions written
in JavaScript.

A client application based on web technologies is multiplatform, because it can run on any device
that has a compatible web browser.

Being confined to the browser, however, imposes limitations on web applications compared to
native applications. The intermediation performed by the browser allows higher level
programming and increases security, but also increases the processing and memory consumption.

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 21

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Developers are continually working on browsers to provide more features and improve the
performance of JavaScript applications, but there are intrinsic aspects to the execution of scripts
such as JavaScript that impose a disadvantage on them compared to native programs for the same
hardware.

A feature that significantly improves the performance of JavaScript applications running on the
browser is WebAssembly. WebAssembly is a kind of compiled JavaScript that produces source
code written in a more efficient, lower-level language, such as the C language. WebAssembly can
accelerate mainly processor-intensive activities, because it avoids much of the translation
performed by the browser when running a program written in conventional JavaScript.

Regardless of the implementation details of the application, all HTML code, CSS, JavaScript, and
multimedia files must first be obtained from the server. The browser obtains these files just like
an Internet page, that is, with an address accessed by the browser.

A web page that acts as an interface to a web application is like a plain HTML document, but adds
additional behaviors. On conventional pages, the user is directed to another page after clicking on
a link. Web applications can present their interface and respond to user events without loading
new pages in the browser’s window. The modification of this standard behavior in HTML pages is
done via JavaScript programming.

A webmail client, for example, displays messages and switches between message folders without
leaving the page. This is possible because the client uses JavaScript to react to user actions and
make appropriate requests to the server. If the user clicks on the subject of a message in the inbox,
a JavaScript code associated with this event requests the content of that message from the server
(using the corresponding API call). As soon as the client receives the response, the browser
displays the message in the appropriate portion of the same page. Different webmail clients may
adopt different strategies, but they all use this same principle.

Therefore, in addition to providing the files that make up the client to the browser, the server
must also be able to handle requests such as that of the webmail client, when it asks for the
content of a specific message. Every request that the client can make has a predefined procedure
to respond on the server, whose API can define different methods to identify which procedure the
request refers to. The most common methods are:

• Addresses, through a Uniform Resource Locator (URL)

• Fields in the HTTP header

• GET/POST methods

• WebSockets

One method may be more suitable than another, depending on the purpose of the request and

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

22 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

other criteria taken into account by the developer. In general, web applications use a combination
of methods, each in a specific circumstance.

The Representational State Transfer (REST) paradigm is widely used for communication in web
applications, because it is based on the basic methods available in HTTP. The header of an HTTP
request starts with a keyword that defines the basic operation to be performed: GET,POST, PUT
,DELETE, etc., accompanied by a corresponding URL where the action will be applied. If the
application requires more specific operations, with a more detailed description of the requested
operation, the GraphQL protocol may be a more appropriate choice.

Applications developed using the client/server model are subject to instabilities in
communication. For this reason, the client application must always adopt efficient data transfer
strategies to favor its consistency and not harm the user experience.

The Server Side
Despite being the main actor in a web application, the server is the passive side of the
communication, just responding to requests made by the client. In web jargon, server can refer to
the machine that receives the requests, the program that specifically handles HTTP requests, or
the recipient script that produces a response to the request. This latter definition is the most
relevant in the context of web application architecture, but they are all closely related. Although
they are only partially in the scope of the application server developer, the machine, operating
system, and HTTP server cannot be ignored, because they are fundamental to running the
application server and often intersect.

Handling Paths from Requests
HTTP servers, such as Apache and NGINX, usually require specific configuration changes to meet
the needs of the application. By default, traditional HTTP servers directly associate the path
indicated in the request to a file on the local file system. If a website’s HTTP server keeps its HTML
files in the /srv/www directory, for example, a request with the path /en/about.html will
receive the content of the file /srv/www/en/about.html as a response, if the file exists. More
sophisticated websites, and especially web applications, demand customized treatments for
different types of requests. In this scenario, part of the application implementation is modifying
HTTP server settings to meet application requirements.

Alternatively, there are frameworks that allow you to integrate the management of HTTP requests
and the implementation of the application code in one place, allowing the developer to focus more
on the application’s purpose than on platform details. In Node.js Express, for example, all request
mapping and corresponding programming are implemented using JavaScript. As the

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 23

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

programming of clients is usually done in JavaScript, many developers consider it a good idea
from the perspective of code maintenance to use the same language for client and server. Other
languages commonly used to implement the server side, either in frameworks or in traditional
HTTP servers, are PHP, Python, Ruby, Java, and C#.

Database Management Systems
It is up to the discretion of the development team how the data received or requested by the client
is stored on the server, but there are general guidelines that apply to most cases. It is convenient
to keep static content—images, JavaScript and CSS code that do not change in the short term—as
conventional files, either on the server’s own file system or distributed across a content delivery
network (CDN). Other kinds of content, such as email messages in a webmail application, product
details in a shopping application, and transaction logs, are more conveniently stored in a database
management system (DBMS).

The most traditional type of database management system is the relational database. In it, the
application designer defines data tables and the input format accepted by each table. The set of
tables in the database contains all the dynamic data consumed and produced by the application. A
shopping app, for example, may have a table that contains an entry with the details of each
product in the store and a table that records items purchased by a user. The table of purchased
items contains references to entries in the product table, creating relationships between the
tables. This approach can optimize storage and access to the data, as well as allow queries in
combined tables using the language adopted by the database management system. The most
popular relational database language is the Structured Query Language (SQL, pronounced
“sequel”), adopted by the open source databases SQLite, MySQL, MariaDB, and PostgreSQL.

An alternative to relational databases is a form of database that does not require a rigid structure
for the data. These databases are called non-relational databases or simply NoSQL. Although they
may incorporate some features similar to those found in relational databases, the focus is on
allowing greater flexibility in storage and access to stored data, passing the task of processing that
data to the application itself. MongoDB, CouchDB, and Redis are common non-relational database
management systems.

Content Maintenance
Regardless of the database model adopted, applications have to add data and probably update it
over the life span of the applications. In some applications, such as webmail, users themselves
provide data to the database when using the client to send and receive messages. In other cases,
such as in the shopping application, it’s important to allow the application’s maintainers to modify
the database without having to resort to programming. Many organizations therefore adopt some

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

24 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

kind of content management system (CMS), which allows non-technical users to administer the
application. Therefore, for most web applications, it’s necessary to implement at least two types of
clients: a non-privileged client, used by ordinary users, and privileged clients, used by special
users to maintain and update the information presented by the application.

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 25

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What programming language is used together with HTML to create web applications clients?

2. How does the retrieval of a web application differ from that of a native application?

3. How does a web application differ from a native application in access to the local hardware?

4. Cite one characteristic of a web application client that makes it distinct from an ordinary web
page.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

26 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. What feature do modern browsers offer to overcome the poor performance of CPU-intensive

web application clients?

2. If a web application uses the REST paradigm for client/server communication, which HTTP
method should be used when the client requests the server to erase a specific resource?

3. Cite five server scripting languages supported by the Apache HTTP server.

4. Why are non-relational databases considered easier to maintain and upgrade than relational
databases?

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 27

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers the concepts and standards in web development technology and architecture.
The principle is simple: the web browser runs the client application, which communicates with
the core application running in the server. Albeit simple in principle, web applications must
combine many technologies to adopt the principle of client and server computing over the web.
The lesson goes through the following concepts:

• The role of web browsers and web servers.

• Common web development technologies and standards.

• How web clients can communicate with the server.

• Types of web servers and server databases.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

28 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What programming language is used together with HTML to create web applications clients?

JavaScript

2. How does the retrieval of a web application differ from that of a native application?

A web application is not installed. Instead, parts of it run on the server and the client interface
runs in an ordinary web browser.

3. How does a web application differ from a native application in access to the local hardware?

All access to the local resources, such as storage, cameras, or microphones, are mediated by the
browser and require explicit user authorization to work.

4. Cite one characteristic of a web application client that makes it distinct from an ordinary web
page.

The interaction with traditional web pages is basically restricted to hyperlinks and sending
forms, while web application clients are closer to a conventional application interface.

Web Development Essentials (030) (Version 1.0) | 031.2 Lesson 1

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 29

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. What feature do modern browsers offer to overcome the poor performance of CPU-intensive

web application clients?

The developers can use WebAssembly to implement the CPU-intensive parts of the client
application. WebAssembly code generally has better performance than traditional JavaScript,
because it requires less translation of instructions.

2. If a web application uses the REST paradigm for client/server communication, which HTTP
method should be used when the client requests the server to erase a specific resource?

REST relies on standard HTTP methods, so it should use the standard DELETE method in this
case.

3. Cite five server scripting languages supported by the Apache HTTP server.

PHP, Go, Perl, Python, and Ruby.

4. Why are non-relational databases considered easier to maintain and upgrade than relational
databases?

Unlike relational databases, non-relational databases do not require data to fit rigid predefined
structures, making it easier to implement changes in the data structures without affecting
existing data.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

30 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

031.3 HTTP Basics

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 031.3

Weight

3

Key knowledge areas

• Understand HTTP GET and POST methods, status codes, headers and content types

• Understand the difference between static and dynamic content

• Understand HTTP URLs

• Understand how HTTP URLs are mapped to file system paths

• Upload files to a web server’s document root

• Understand caching

• Understand cookies

• Awareness of sessions and session hijacking

• Awareness of commonly used HTTP servers

• Awareness of HTTPS and TLS

• Awareness of web sockets

• Awareness of virtual hosts

• Awareness of common HTTP servers

• Awareness of network bandwidth and latency requirements and limitations

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 31

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#031.3_HTTP_Basics_.28weight:_3.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Partial list of the used files, terms and utilities

• GET, POST

• 200, 301, 302, 401, 403, 404, 500

• Apache HTTP Server (httpd), NGINX

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

32 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

031.3 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 031 Software Development and Web
Technologies

Objective: 031.3 HTTP Basics

Lesson: 1 of 1

Introduction
The HyperText Transfer Protocol (HTTP) defines how a client asks the server for a specific
resource. Its working principle is quite simple: the client creates a request message identifying the
resource it needs and forwards that message to the server via the network. In turn, the HTTP
server evaluates where to extract the requested resource and sends a response message back to
the client. The reply message contains details about the requested resource, followed by the
resource itself.

More specifically, HTTP is the set of rules that define how the client application should format
request messages that will be sent to the server. The server then follows HTTP rules to interpret
the request and format reply messages. In addition to requesting or transferring requested
content, HTTP messages contain extra information about the client and server involved, about the
content itself, and even about its unavailability. If a resource cannot be sent, a code in the
response explains the reason for the unavailability and, if possible, indicates where the resource
was moved.

The part of the message that defines the resource details and other context information is called

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 33

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

the header of the message. The part following the header, which contains the content of the
corresponding resource, is called the payload of the message. Both request messages and response
messages can have a payload, but in most cases, only the response message has one.

The Client’s Request
The first stage of an HTTP data exchange between the client and the server is initiated by the
client, when it writes a request message to the server. Take, for example, a common browser task:
to load an HTML page from a server hosting a website, such as
https://learning.lpi.org/en/. The address, or URL, provides several pieces of relevant
information. Three pieces of information appear in this particular example:

• The protocol: HyperText Transfer Protocol Secure (https), an encrypted version of HTTP.

• The web host’s network name (learning.lpi.org)

• The location of the requested resource on the server (the /en/ directory—in this case, the
English version of the home page).

NOTE
A Uniform Resource Locator (URL) is an address that points to a resource on the
Internet. This resource is usually a file that can be copied from a remote server, but
URLs can also indicate dynamically generated content and data streams.

How the Client Handles the URL

Before contacting the server, the client needs to convert learning.lpi.org to its corresponding
IP address. The client uses another Internet service, the Domain Name System (DNS), to request the
IP address of a host name from one or more predefined DNS servers (DNS servers are usually
automatically defined by the Internet Service Provider, ISP).

With the server’s IP address, the client tries to connect to the HTTP or HTTPS port. Network ports
are identification numbers defined by the Transmission Control Protocol (TCP) to intertwine and
identify distinct communication channels within a client/server connection. By default, HTTP
servers receive requests on TCP ports 80 (HTTP) and 443 (HTTPS).

NOTE

There are other protocols used by web applications to implement client/server
communication. For audio and video calls, for example, it is more appropriate to
use WebSockets, a lower level protocol that is more efficient than HTTP for
transferring data streams in both directions.

The format of the request message that the client sends to the server is the same in HTTP and
HTTPS. HTTPS is already more widely used than HTTP, because all data exchanges between client

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

34 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

and server are encrypted, which is an indispensable feature to promote privacy and security on
public networks. The encrypted connection is established between client and server even before
any HTTP message is exchanged, using the Transport Layer Security (TLS) cryptographic protocol.
By doing this, all HTTPS communication is encapsulated by TLS. Once decrypted, the request or
response transmitted over HTTPS is no different from a request or response made exclusively
over HTTP.

The third element of our URL, /en/, will be interpreted by the server as the location or path for
the resource being requested. If the path is not provided in the URL, the default location / will be
used. The simplest implementation of an HTTP server associates paths in URLs with files on the
file system where the server is running, but this is just one of the many options available on more
sophisticated HTTP servers.

The Request Message

HTTP operates through a connection already established between client and server, usually
implemented in TCP and encrypted with TLS. In fact, once a connection meeting the requirements
imposed by the server is ready, an HTTP request typed by hand in plain text could generate the
response from the server. In practice, however, programmers rarely need to implement routines
to compose HTTP messages, as most programming languages provide mechanisms that automate
the making of the HTTP message. In the case of the example URL,
https://learning.lpi.org/en/, the simplest possible request message would have the
following content:

GET /en/ HTTP/1.1
Host: learning.lpi.org
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: text/html

The first word of the first line identifies the HTTP method. It defines which operation the client
wants to perform on the server. The GET method informs the server that the client requests the
resource that follows it: /en/. Both client and server may support more than one version of the
HTTP protocol, so the version to be adopted in the data exchange is also provided in the first line:
HTTP/1.1.

NOTE

The most recent version of the HTTP protocol is HTTP/2. Among other differences,
messages written in HTTP/2 are encoded in a binary structure, whereas messages
written in HTTP/1.1 are sent in plain text. This change optimizes data transmission
rates, but the content of the messages is basically the same.

The header can contain more lines after the first one to contextualize and help identify the

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 35

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

request to the server. The Host header field, for example, may appear redundant, because the
server’s host has obviously been identified by the client in order to establish the connection and
it’s reasonable to assume that the server knows its own identity. Nonetheless, it’s important to
inform the host of the expected host name in the request header, because it is common practice to
use the same HTTP server to host more than one website. (In this scenario, each specific host is
called virtual host.) Therefore, the Host field is used by the HTTP server to identify which one the
request refers to.

The User-Agent header field contains details about the client program making the request. This
field can be used by the server to adapt the response to the needs of a specific client, but it is more
often used to produce statistics about the clients using the server.

The Accept field is of more immediate value, because it informs the server about the format for
the requested resource. If the client is indifferent about the resource format, the Accept field can
specify */* as the format in.

There are many other header fields that can be used in an HTTP message, but the fields shown in
the example are enough to request a resource from the server.

In addition to the fields in the request header, the client can include other complementary data in
the HTTP request that will be sent to the server. If this data consists only of simple text
parameters, in the format name=value, they can be added to the path of the GET method. The
parameters are embedded in the path after a question mark and are separated by ampersand (&)
characters:

GET /cgi-bin/receive.cgi?name=LPI&email=info@lpi.org HTTP/1.1

In this example, /cgi-bin/receive.cgi is the path to the script on the server that will process
and possibly use the parameters name and email, obtained from the request path. The string that
corresponds to the fields, in the format name=LPI&email=info@lpi.org, is called query string
and is supplied to the receive.cgi script by the HTTP server that receives the request.

When the data is made up of more than short text fields, it’s more appropriate to send it in the
payload of the message. In this case, the HTTP POST method must be used so that the server
receives and processes the message’s payload, according to the specifications indicated in the
request header. When the POST method is used, the request header must provide the size of the
payload that will be sent next and how the body is formatted:

POST /cgi-bin/receive.cgi HTTP/1.1
Host: learning.lpi.org
Content-Length: 1503

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

36 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

mailto:info@lpi.org
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Content-Type: multipart/form-data; boundary=------------------------405f7edfd646a37d

The Content-Length field indicates the size in bytes of the payload and the Content-Type field
indicates its format. The multipart/form-data format is the one most commonly used in
traditional HTML forms that use the POST method. In this format, each field inserted in the
request’s payload is separated by the code indicated by the boundary keyword. The POST method
should be used only when appropriate, as it uses a slightly larger amount of data than an
equivalent request made with the GET method. Because the GET method sends the parameters
directly in the request’s message header, the total data exchange has a lower latency, because an
additional connection stage to transmit the message body will not be necessary.

The Response Header
After the HTTP server receives the request message header, the server returns a response message
back to the client. An HTML file request typically has a response header like this:

HTTP/1.1 200 OK
Accept-Ranges: bytes
Content-Length: 18170
Content-Type: text/html
Date: Mon, 05 Apr 2021 13:44:25 GMT
Etag: "606adcd4-46fa"
Last-Modified: Mon, 05 Apr 2021 09:48:04 GMT
Server: nginx/1.17.10

The first line provides the version of the HTTP protocol used in the response message, which must
correspond to the version used in the request header. Then, still in the first line, the status code of
the response appears, indicating how the server interpreted and generated the response for the
request.

The status code is a three-digit number, where the left-most digit defines the response class. There
are five classes of status codes, numbered from 1 to 5, each indicating a type of action taken by the
server:

1xx (Informational)

The request was received, continuing the process.

2xx (Successful)

The request was successfully received, understood, and accepted.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 37

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

3xx (Redirection)

Further action needs to be taken in order to complete the request.

4xx (Client Error)

The request contains bad syntax or cannot be fulfilled.

5xx (Server Error)

The server failed to fulfill an apparently valid request.

The second and third digits are used to indicate additional details. Code 200, for example,
indicates that the request could be answered without any problems. As shown in the example, a
brief text description following the response code (OK) can also be provided. Some specific codes
are of particular interest to ensure that the HTTP client can access the resource in adverse
situations or to help to identify the reason for failure in the event of an unsuccessful request:

301 Moved Permanently
The target resource has been assigned a new permanent URL, provided by the Location
header field in the response.

302 Found
The target resource resides temporarily under a different URL.

401 Unauthorized
The request has not been applied because it lacks valid authentication credentials for the target
resource.

403 Forbidden
The Forbidden reponse indicates that, although the request is valid, the server is configured to
not provide it.

404 Not Found
The origin server did not find a current representation for the target resource or is not willing
to disclose that one exists.

500 Internal Server Error
The server encountered an unexpected condition that prevented it from fulfilling the request.

502 Bad Gateway
The server, while acting as a gateway or proxy, received an invalid response from an inbound
server it accessed while attempting to fulfill the request.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

38 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Although they indicate that it was not possible to fulfill the request, status codes 4xx and 5xx at
least indicate that the HTTP server is running and is capable of receiving requests. The 4xx codes
require an action to be taken on the client, because its URL or credentials are wrong. In contrast,
5xx codes indicate something wrong on the server side. Therefore, in the context of web
applications, these two classes of status codes indicate that the source of the error lies in the
application itself, either client or server, not in the underlying infrastructure.

Static and Dynamic Content
HTTP servers use two basic mechanisms to fulfill the content requested by the client. The first
mechanism provides static content: that is, the path indicated in the request message corresponds
to a file on the server’s local file system. The second mechanism provides dynamic content: that is,
the HTTP server forwards the request to another program—probably a script‒to build the
response from different sources, such as databases and other files.

Although there are different HTTP servers, they all use the same HTTP communication protocol
and adopt more or less the same conventions. An application that does not have a specific need
can be implemented with any traditional server, such as Apache or NGINX. Both are capable of
generating dynamic content and providing static content, but there are subtle differences in the
configuration of each.

The location of static files to be served up, for example, is defined in different ways in Apache and
NGINX. The convention is to keep these files in a specific directory for this purpose, having a
name associated with the host, for example /var/www/learning.lpi.org/. In Apache, this path
is defined by the configuration directive DocumentRoot /var/www/learning.lpi.org, in a
section that defines a virtual host. In NGINX, the directive used is root
/var/www/learning.lpi.org in a server section of the configuration file.

Whichever server you choose, the files at /var/www/learning.lpi.org/ will be served via
HTTP in almost the same way. Some fields in the response header and their contents may vary
between the two servers, but fields like Content-Type must be present in the response header
and must be consistent across any server.

Caching
HTTP was designed to work on any type of Internet connection, fast or slow. Furthermore, most
HTTP exchanges have to traverse many network nodes due to the distributed architecture of the
Internet. As a result, it is important to adopt some content caching strategy to avoid the redundant
transfer of previously downloaded content. HTTP transfers can work with two basic types of
cache: shared and private.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 39

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

A shared cache is used by more than a single client. For example, a large content provider might
use caches on geographically distributed servers, so that clients get the data from their nearest
server. Once a client has made a request and its response was stored in a shared cache, other
clients making that same request in that same area will received the cached response.

A private cache is created by the client itself for its exclusive use. It is the type of caching the web
browser does for images, CSS files, JavaScript, or the HTML document itself, so they don’t need to
be downloaded again if requested in the near future.

NOTE

Not all HTTP requests must be cached. A request using the POST method, for
example, implies a response associated exclusively with that particular request, so
its response content should not be reused. By default, only responses to requests
made using the GET method are cached. Furthermore, only responses with
conclusive status codes such as 200 (OK), 206 (Partial Content), 301 (Moved
Permanently), and 404 (Not Found) are suitable for caching.

Both the shared and private cache strategy use HTTP headers to control how the downloaded
content should be cached. For the private cache, the client consults the response header and
verifies whether the content in the local cache still corresponds to the current remote content. If it
does, the client waives the transfer of the response payload and uses the local version.

The validity of the cached resource can be assessed in several ways. The server can provide an
expiration date in the response header for the first request, so that the client discards the cached
resource at the end of the term and requests it again to obtain the updated version. However, the
server is not always able to determine the expiration date of a resource, so it is common to use the
ETag response header field to identify the version of the resource, for example Etag:
"606adcd4-46fa".

To verify that a cached resource needs updating, the client requests only its response header from
the server. If the ETag field matches the one in the locally stored version, the client reuses the
cached content. Otherwise, the updated content of the resource is downloaded from the server.

HTTP Sessions
In a conventional website or web application, the features that handle session control are based
on HTTP headers. The server cannot assume, for example, that all requests coming from the same
IP address are from the same client. The most traditional method that allows the server to
associate different requests to a single client is the use of cookies, an identification tag that is given
to the client by the server and that is provided in the HTTP header.

Cookies allow the server to preserve information about a specific client, even if the person

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

40 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

running the client does not identify himself or herself explicitly. With cookies, it is possible to
implement sessions where logins, shopping carts, preferences, etc., are preserved in between
different requests made to the same server that provided them. Cookies are also used to track user
browsing, so it is important to ask for consent before sending them.

The server sets the cookie in the response header using the Set-Cookie field. The field value is a
name=value pair chosen to represent some attribute associated with a specific client. The server
can, for example, create an identification number for a client that requests a resource for the first
time and pass it on to the client in the response header:

HTTP/1.1 200 OK
Accept-Ranges: bytes
Set-Cookie: client_id=62b5b719-fcbf

If the client allows the use of cookies, new requests to this same server have the cookie field in the
header:

GET /en/ HTTP/1.1
Host: learning.lpi.org
Cookie: client_id=62b5b719-fcbf

With this identification number, the server can retrieve specific definitions for the client and
generate a customized response. It is also possible to use more than one Set-Cookie field to
deliver different cookies to the same customer. In this way, more than one definition can be
preserved on the client side.

Cookies raise both privacy issues and potential security holes, because there is a possibility that
they can be transferred to another client, who will be identified by the server as the original
client. Cookies used to preserve sessions can give access to sensitive information from the original
client. Therefore, it’s very important for clients to adopt local protection mechanisms to prevent
their cookies from being extracted and reused without authorization.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 41

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What HTTP method does the following request message use?

POST /cgi-bin/receive.cgi HTTP/1.1
Host: learning.lpi.org
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: */*
Content-Length: 27
Content-Type: application/x-www-form-urlencoded

2. When an HTTP server hosts many websites, how is it able to identify which one a request is
for?

3. What parameter is provided by the query string of the URL
https://www.google.com/search?q=LPI?

4. Why is the following HTTP request not suitable for caching?

POST /cgi-bin/receive.cgi HTTP/1.1
Host: learning.lpi.org
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: */*
Content-Length: 27
Content-Type: application/x-www-form-urlencoded

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

42 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. How could you use the web browser to monitor the requests and responses made by an HTML

page?

2. HTTP servers that provide static content usually map the requested path to a file in the server’s
filesystem. What happens when the path in the request points to a directory?

3. The contents of files sent over HTTPS are protected by encryption, so they cannot be read by
computers between the client and the server. Despite this, can these computers in the middle
identify which resource the client has requested from the server?

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 43

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers the basics of HTTP, the main protocol used by client applications to request
resources from web servers. The lesson goes through the following concepts:

• Request messages, header fields, and methods.

• Response status codes.

• How HTTP servers generate responses.

• HTTP features useful for caching and session management.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

44 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What HTTP method does the following request message use?

POST /cgi-bin/receive.cgi HTTP/1.1
Host: learning.lpi.org
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: */*
Content-Length: 27
Content-Type: application/x-www-form-urlencoded

The POST method.

2. When an HTTP server hosts many websites, how is it able to identify which one a request is
for?

The Host field in the request header provides the targeted website.

3. What parameter is provided by the query string of the URL https://www.google.com/
search?q=LPI?

The parameter named q with a value of LPI.

4. Why is the following HTTP request not suitable for caching?

POST /cgi-bin/receive.cgi HTTP/1.1
Host: learning.lpi.org
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0
Accept: */*
Content-Length: 27
Content-Type: application/x-www-form-urlencoded

Because requests made with the POST method imply a write operation on the server, they
should not be cached.

Web Development Essentials (030) (Version 1.0) | 031.3 HTTP Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 45

https://www.google.com/search?q=LPI
https://www.google.com/search?q=LPI
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. How could you use the web browser to monitor the requests and responses made by an HTML

page?

All popular browsers offer development tools that, among other things, can show all network
transactions that have been carried out by the current page.

2. HTTP servers that provide static content usually map the requested path to a file in the server’s
filesystem. What happens when the path in the request points to a directory?

It depends on how the server is configured. By default, most HTTP servers look for a file named
index.html (or another predefined name) in that same directory and send it as the response.
If the file isn’t there, the server issues a 404 Not Found response.

3. The contents of files sent over HTTPS are protected by encryption, so they cannot be read by
computers between the client and the server. Despite this, can these computers in the middle
identify which resource the client has requested from the server?

No, because the request and response HTTP headers themselves are also encrypted by TLS.

Web Development Essentials (030) (Version 1.0) | Topic 031: Software Development and Web Technologies

46 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Topic 032: HTML Document Markup

Web Development Essentials (030) (Version 1.0) |

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 47

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

032.1 HTML Document Anatomy

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 032.1

Weight

2

Key knowledge areas

• Create a simple HTML document

• Understand the role of HTML

• Understand the HTML skeleton

• Understand the HTML syntax (tags, attributes, comments)

• Understand the HTML head

• Understand meta tags

• Understand character encoding

Partial list of the used files, terms and utilities

• <!DOCTYPE html>

• <html>

• <head>

• <body>

• <meta>, including the charset (UTF-8), name and content attributes

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

48 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#032.1_HTML_Document_Anatomy_.28weight:_2.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

032.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 032 HTML Document Markup

Objective: 032.1 HTML Document Anatomy

Lesson: 1 of 1

Introduction
HTML (HyperText Markup Language) is a markup language that tells web browsers how to
structure and display web pages. The current version is 5.0, which was released in 2012. The
HTML syntax is defined by the World Wide Web Consortium (W3C).

HTML is a fundamental skill in web development, as it defines the structure and a good deal of the
appearance of a website. If you want a career in web development, HTML is definitely a good
starting point.

Anatomy of an HTML Document
A basic HTML page has the following structure:

<!DOCTYPE html>
<html>
 <head>
 <title>My HTML Page</title>
 <!-- This is the Document Header -->

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 49

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 </head>

 <body>
 <!-- This is the Document Body -->
 </body>
</html>

Now, let’s analyze it in detail.

HTML Tags

HTML uses elements and tags to describe and format content. Tags consist of angle brackets
around a tag name, for example <title>. The tag name is not case-sensitive, although the World
Wide Web Consortium (W3C) recommends using lowercase letters in current versions of HTML.
These HTML tags are used to build HTML elements. The tag <title> is an example for an opening
tag of an HTML element that defines the title of an HTML document. However, an element has
two further components. A full <title> element looking like this:

<title>My HTML Page</title>

Here, My HTML Page serves as the element content, while </title> serves as the closing tag that
declares that this element is complete.

NOTE
Not all HTML elements need to be closed; in such cases, we speak of empty
elements, self-closing elements, or void elements.

Here are the other HTML elements from the previous example:

<html>
Encloses the entire HTML document. This contains all the tags that make up the page. It also
indicates that the content of this file is in HTML language. Its corresponding closing tag is
</html>.

<head>
A container for all meta information regarding the page. The corresponding closing tag of this
element is </head>.

<body>
A container for the page content and its structural representation. Its corresponding closing tag
is </body>.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

50 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

The <html>, <head>, <body> and <title> tags are so-called skeleton tags, which provide the
basic structure of an HTML document. In particular, they tell the web browser that it is reading an
HTML page.

NOTE
Of these HTML elements, the only one that is required for an HTML document to be
validated is the <title> tag.

As you can see, each HTML page is a well-structured document and could even be referred to as a
tree, where the <html> element represents the document root and the <head> and <body>
elements are the first branches. The example shows that it is possible to nest elements: For
example, the <title> element is nested inside the <head> element, which is in turn nested inside
the <html> element.

To ensure that your HTML code is readable and maintainable, make sure that all HTML elements
are closed properly and in order. Web browsers may still render your web site as expected, but
incorrect nesting of elements and their tags is an error-prone practice.

Finally, a special mention goes to the doctype declaration at the very top of the example document
structure. <!DOCTYPE> is not an HTML tag, but an instruction for the web browser that specifies
the HTML version used in the document. In the basic HTML document structure shown earlier,
<!DOCTYPE html> was used, specifying that HTML5 is used in this document.

HTML Comments

When creating an HTML page, it is good practice to insert comments into the code to improve its
readability and describe the purpose of larger code blocks. A comment is inserted between the
<!-- and --> tags, as shown in the following example:

<!-- This is a comment. -->

<!--
 This is a
 multiline
 comment.
-->

The example demonstrates that HTML comments can be placed in a single line, but may also span
over multiple lines. In any case, the result is that the text between <!-- and --> is ignored by the
web browser and therefore not displayed in the HTML page. Based on these considerations, you
can deduce that the basic HTML page shown in the previous section does not display any text,
because the lines <!-- This is the Document Header --> and <!-- This is the

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 51

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Document Body --> are just two comments.

WARNING Comments cannot be nested.

HTML Attributes

HTML tags may include one or more attributes to specify details of the HTML element. A simple
tag with two attributes has the following form:

<tag attribute-a="value-a" attribute-b="value-b">

Attributes must always be set on the opening tag.

An attribute consists of a name, which indicates the property that should be set, an equal sign, and
the desired value within quotes. Both single quotes and double quotes are acceptable, but it is
recommended to use of single quotes or double quotes consistently throughout a project. It is
important not to mix single and double quotes for a single attribute value, as the web browser will
not recognize mixed quotes as one unit.

NOTE

You can include one type of quotation marks within the other type without any
problems. For example, if you need to use ' in an attribute value, you can wrap
that value within ". However, if you want to use the same type of quotation mark
inside the value as you are using to wrap the value, you need to use " for "
and ' for '.

The attributes can be categorized into core attributes and specific attributes as explained in the
following sections.

Core Attributes

Core attributes are attributes that can be used on any HTML element. They include:

title
Describes the content of the element. Its value is often displayed as a tooltip that is shown when
the user moves their cursor over the element.

id
Associates a unique identifier with an element. This identifier must be unique within the
document, and the document will not validate when multiple elements share the same id.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

52 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

style
Assigns graphic properties (CSS styles) to the element.

class
Specifies one or multiple classes for the element in a space-separated list of class names. These
classes can be referenced in CSS stylesheets.

lang
Specifies the language of the element content using ISO-639 standard two-character language
codes.

NOTE

The developer can store custom information about an element by defining a so-
called data- attribute, which is indicated by prefixing the desired name with
data- as in data-additionalinfo. You can assign this attribute a value just like
any other attribute.

Specific Attributes

Other attributes are specific to each HTML element. For example, the src attribute of an HTML
 element specifies the URL of an image. There are many more specific attributes, which will
be covered in the following lessons.

Document Header
The document header defines meta information regarding the page and is described by the
<head> element. By default, the information within the document header is not rendered by the
web browser. While it is possible to use the <head> element to contain HTML elements that could
be displayed on the page, doing so is not recommended.

Title

The document title is specified using the <title> element. The title defined between the tags
appears in the web bowser title bar and is the suggested name for the bookmark when you try to
bookmark the page. It is also displayed in search engine results as the title of the page.

An example of this element is the following:

<title>My test page</title>

The <title> tag is required in all HTML documents and should appear only once in each

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 53

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

document.

NOTE
Do not confuse the title of the document with the heading of the page, which is set
in the body.

Metadata

The <meta> element is used to specify meta information to further describe the content of an
HTML document. It is a so-called self-closing element, which means that it does not have a closing
tag. Aside from the core attributes that are valid for every HTML element, the <meta> element
also uses the following attributes:

name
Defines what metadata will be described in this element. It can be set to any custom defined
value, but commonly used values are author, description, and keywords.

http-equiv
Provides an HTTP header for the value of the content attribute. A common value is refresh,
which will be explained later. If this attribute is set, the name attribute should not be set.

content
Provides the value associated with the name or http-equiv attribute.

charset
Specifies the character encoding for the HTML document, for example utf-8 to set it to
Unicode Transformation Format — 8-bit.

Add an Author, Description, and Keywords

Using the <meta> tag, you can specify additional information about the author of the HTML page
and describe the page content like this:

<meta name="author" content="Name Surname">
<meta name="description" content="A short summary of the page content.">

Try to include a series of keywords related to the content of the page in the description. This
description is often the first thing a user sees when navigating with a search engine.

If you also want to provide additional keywords related to the web page to search engines, you
can add this element:

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

54 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<meta name="keywords" content="keyword1, keyword2, keyword3, keyword4, keyword5">

NOTE

In the past, spammers entered hundreds of keywords and descriptions unrelated to
the actual content of the page so that it also appeared in searches unrelated to the
terms people searched for. Nowadays, <meta> tags are relegated to a position of
secondary importance and are used only to consolidate the topics covered in the
web page, so that it is no longer possible to mislead the new and more
sophisticated search engine algorithms.

Redirect an HTML Page and Define a Time Interval for the Document to Refresh Itself

Using the <meta> tag, you can automatically refresh an HTML page after a certain period (for
example after 30 seconds) in this way:

<meta http-equiv="refresh" content="30">

Alternatively, you can redirect a web page to another web page after the same amount of time
with the following code:

<meta http-equiv="refresh" content="30; url=http://www.lpi.org">

In this example, the user is redirected from the current page to http://www.lpi.org after 30
seconds. The values can be anything you like. For example, if you specify content="0;
url=http://www.lpi.org", the page is redirected immediately.

Specify the Character Encoding

The charset attribute specifies the character encoding for the HTML document. A common
example is:

<meta charset="utf-8">

This element specifies that the document’s character encoding is utf-8, which is a universal
character set that includes practically any character of any human language. Therefore, by using
it, you will avoid problems in displaying some characters that you may have using other character
sets such as ISO-8859-1 (the Latin alphabet).

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 55

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Other Useful Examples

Two other useful applications of the <meta> tag are:

• Set cookies to keep track of a site visitor.

• Take control over the viewport (the visible area of a web page inside a web browser window),
which depends on the screen size of the user device (for example, a mobile phone or a
computer).

However, these two examples are beyond the scope of the exam and their study is left to the
curious reader to explore elsewhere.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

56 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. For each of the following tags, indicate the corresponding closing tag:

<body>

<head>

<html>

<meta>

<title>

2. What is the difference between a tag and an element? Use this entry as a reference:

<title>HTML Page Title</title>

3. What are the tags between which a comment should be placed?

4. Explain what an attribute is and provide some examples for the <meta> tag.

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 57

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. Create a simple HTML version 5 document with the title My first HTML document and only

one paragraph in the body, containing the text Hello World. Use the paragraph tag <p> in the
body.

2. Add the author (Kevin Author) and description (This is my first HTML page.) of the
HTML document.

3. Add the following keywords related to the HTML document: HTML, Example, Test, and
Metadata.

4. Add the <meta charset="ISO-8859-1"> element to the document header and change the
Hello World text to Japanese (こんにちは世界). What happens? How can you solve the problem?

5. After changing the paragraph text back to Hello World, redirect the HTML page to
https://www.google.com after 30 seconds and add a comment explaining this in the
document header.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

58 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
In this lesson you learned:

• The role of HTML

• The HTML skeleton

• The HTML syntax (tags, attributes, comments)

• The HTML head

• The meta tags

• How to create a simple HTML document

The following terms were discussed in this lesson:

<!DOCTYPE html>
The declaration tag.

<html>
The container for all the tags that make up the HTML page.

<head>
The container for all head elements.

<body>
The container for all body elements.

<meta>
The tag for metadata, used to specify additional information for the HTML page (such as
author, description, and character encoding).

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 59

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. For each of the following tags, indicate the corresponding closing tag:

<body> </body>

<head> </head>

<html> </html>

<meta> None

<title> </title>

2. What is the difference between a tag and an element? Use this entry as a reference:

<title>HTML Page Title</title>

An HTML element consists of a start tag, a closing tag, and everything between them. An HTML
tag is used to mark the beginning or end of an element. Therefore, <title>HTML Page
Title</title> is an HTML element, while <title> and </title> are the start and closing
tag respectively.

3. What are the tags between which a comment should be placed?

A comment is inserted between the <!-- and --> tags and can be put on a single line or can
span multiple lines.

4. Explain what an attribute is and provide some examples for the <meta> tag.

An attribute is used to more precisely specify an HTML element. For example, the <meta> tag
uses the name and content attribute pair to add the author and description of an HTML page.
Instead, using the charset attribute you can specify the character encoding for the HTML
document.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

60 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. Create a simple HTML version 5 document with the title My first HTML document and only

one paragraph in the body containing the text Hello World. Use the paragraph tag <p> in the
body.

<!DOCTYPE html>
<html>
 <head>
 <title>My first HTML document</title>
 </head>

 <body>
 <p>Hello World</p>
 </body>
</html>

2. Add the author (Kevin Author) and description (This is my first HTML page.) of the
HTML document.

<!DOCTYPE html>
<html>
 <head>
 <title>My first HTML document</title>
 <meta name="author" content="Kevin Author">
 <meta name="description" content="This is my first HTML page.">
 </head>

 <body>
 <p>Hello World</p>
 </body>
</html>

3. Add the following keywords related to the HTML document: HTML, Example, Test and
Metadata.

<!DOCTYPE html>
<html>
 <head>
 <title>My first HTML document</title>
 <meta name="author" content="Kevin Author">

Web Development Essentials (030) (Version 1.0) | 032.1 HTML Document Anatomy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 61

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <meta name="description" content="This is my first HTML page.">
 <meta name="keywords" content="HTML, Example, Test, Metadata">
 </head>

 <body>
 <p>Hello World</p>
 </body>
</html>

4. Add the <meta charset="ISO-8859-1"> element to the document header and change the
Hello World text to Japanese (こんにちは世界). What happens? How can you solve this situation?

If the example is carried out as described, the Japanese text is not displayed correctly. This is
because ISO-8859-1 represents character encoding for the Latin alphabet. To view the text, you
need to change the character encoding, using for example UTF-8 (<meta charset="utf-8">).

5. After changing the paragraph text back to Hello World, redirect the HTML page to
https://www.google.com after 30 seconds and add a comment explaining this in the
document header.

<!DOCTYPE html>
<html>
 <head>
 <title>My first HTML document</title>
 <meta name="author" content="Kevin Author">
 <meta name="description" content="This is my first HTML page.">
 <meta name="keywords" content="HTML, Example, Test, Metadata">
 <meta charset="utf-8">
 <!-- The page is redirected to Google after 30 seconds -->
 <meta http-equiv="refresh" content="30; url=https://www.google.com">
 </head>

 <body>
 <p>Hello World</p>
 </body>
</html>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

62 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

032.2 HTML Semantics and Document Hierarchy

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 032.2

Weight

2

Key knowledge areas

• Create markup for contents in an HTML document

• Understand the hierarchical HTML text structure

• Differentiate between block and inline HTML elements

• Understand important semantic structural HTML elements

Partial list of the used files, terms and utilities

• <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

• <p>

• , ,

• <dl>, <dt>, <dd>

• <pre>

• <blockquote>

• , , <code>

• , <i>, <u>

•

• <div>

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 63

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#032.2_HTML_Semantics_and_Document_Hierarchy_.28weight:_2.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

• <main>, <header>, <nav>, <section>, <footer>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

64 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

032.2 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 032 HTML Document Markup

Objective: 032.2 HTML Semantics and Document
Hierarchy

Lesson: 1 of 1

Introduction
In the previous lesson, we learned that HTML is a markup language that can semantically
describe the content of a website. An HTML document contains a so-called skeleton that consists
of the HTML elements <html>, <head>, and <body>. While the <head> element describes a block
of meta information for the HTML document that will be invisible to the visitor to the website, the
<body> element may contain many other elements to define the structure and content of the
HTML document.

In this lesson, we will walk through text formatting, fundamental semantic HTML elements and
their purpose, and how to structure an HTML document. We’ll use a shopping list as our example.

NOTE
All subsequent code examples lie within the <body> element of an HTML
document containing the complete skeleton. For readability, we will not show the
HTML skeleton in every example in this lesson.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 65

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Text
In HTML, no block of text should be bare, standing outside an element. Even a short paragraph
should be wrapped in the <p> HTML tags, which is short name for paragraph.

<p>Short text element spanning only one line.</p>
<p>A text element containing much longer text that may span across multiple lines, depending
on the size of the web browser window.</p>

Opened in a web browser, this HTML code produces the result shown in Figure 1.

Figure 1. Web browser representation of HTML code showing two paragraphs of text. The first paragraph
is very short. The second paragraph is a bit longer and wraps into a second line.

By default, web browsers add spacing before and after <p> elements for improved readability. For
this reason, <p> is called a block element.

Headings
HTML defines six levels of headings to describe and structure the content of an HTML document.
These headings are marked by the HTML tags <h1>, <h2>, <h3>, <h4>, <h5> and <h6>.

<h1>Heading level 1 to uniquely identify the page</h1>
<h2>Heading level 2</h2>
<h3>Heading level 3</h3>
<h4>Heading level 4</h4>
<h5>Heading level 5</h5>
<h6>Heading level 6</h6>

A web browser renders this HTML code as shown in Figure 2.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

66 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. Web browser representation of HTML code showing different levels of headings in an HTML
document. The hierarchy of headings is indicated through the size of the text.

If you are familiar with word processors such as LibreOffice or Microsoft Word, you may notice
some similarities in how an HTML document uses different levels of headings and how they are
rendered in the web browser. By default, HTML uses size to indicate the hierarchy and
importance of headings and adds space before and after every heading to visually separate it from
content.

A heading using the element <h1> is at the top of the hierarchy and thus is considered the most
important heading that identifies the content of the page. It’s comparable to the <title> element
discussed in the previous lesson, but within the content of the HTML document. Subsequent
heading elements can be used to further structure the content. Make sure not to skip heading
levels in between. The document hierarchy should begin with <h1>, continue with <h2>, then
<h3> and so on. You don’t need to use every heading element down to <h6> if your content does
not demand it.

NOTE

Headings are important tools to structure an HTML document, both semantically
and visually. However, headings should never be used to increase the size of
otherwise structurally unimportant text. By the same principle, one should not
make a short paragraph bold or italic to make it look like a heading; use heading
tags to mark headings.

Let’s begin creating the shopping list HTML document by defining its outline. We will create an
<h1> element to contain the page title, in this case Garden Party, followed by short information
wrapped in a <p> element. Additionally, we use two <h2> elements to introduce the two content

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 67

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

sections Agenda and Please bring.

<h1>Garden Party</h1>
<p>Invitation to John's garden party on Saturday next week.</p>
<h2>Agenda</h2>
<h2>Please bring</h2>

Opened in a web browser, this HTML code produces the result shown in Figure 3.

Figure 3. Web browser representation of HTML code showing a simple example document describing an
invitation to a garden party, with two headings for agenda and list of things to bring.

Line Breaks
Sometimes it may be necessary to cause a line break without inserting another <p> element or any
similar block element. In such cases, you can use the self-closing
 element. Note that it should
be used only to insert line breaks that belong to the content, as is the case for poems, song lyrics,
or addresses. If the content is separated by meaning, it is better to use a <p> element instead.

For example, we could split up the text in the information paragraph from our previous example
as follows:

<p>
 Invitation to John's garden party.

 Saturday, next week.
</p>

In a web browser, this HTML code produces the result shown in Figure 4.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

68 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4. Web browser representation of HTML code showing a simple example document with a forced
line break.

Horizontal Lines
The <hr> element defines a horizontal line, also called a horizontal rule. By default, it spans the
whole width of its parent element. The <hr> element can help you define a thematic change in the
content or separate the sections of the document. The element is self-closing and therefore has no
closing tag.

For our example, we could separate the two headings:

<h1>Garden Party</h1>
<p>Invitation to John's garden party on Saturday next week.</p>
<h2>Agenda</h2>
<hr>
<h2>Please bring</h2>

Figure 5 shows the result of this code.

Figure 5. Web browser representation a simple example document describing a shopping list with two
sections separated by a horizontal line.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 69

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

HTML Lists
In HTML, you can define three types of lists:

Ordered lists

where the order of the list elements matters

Unordered lists

where the order of the list elements is not particularly important

Description lists

to more closely describe some terms

Each contains any number of list items. We’ll describe each type of list.

Ordered Lists

An ordered list in HTML, denoted using the HTML element , is a collection of any number of
list items. What makes this element special is that the order of its list elements is relevant. To
emphasize this, web browsers display numerals before the child list items by default.

NOTE elements are the only valid child elements within an element.

For our example, we can fill in the agenda for the garden party using an element with the
following code:

<h2>Agenda</h2>

 Welcome
 Barbecue
 Dessert
 Fireworks

In a web browser, this HTML code produces the result shown in Figure 6.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

70 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6. Web browser representation of a simple example document containing a second-level heading
followed by an ordered list with four items describing the agenda for a garden party.

Options

As you can see in this example, the list items are numbered with decimal numerals beginning at 1
by default. However, you can change this behavior by specifying the type attribute of the
tag. Valid values for this attribute are 1 for decimal numerals, A for uppercase letters, a for
lowercase letters, I for Roman uppercase numerals, and i for Roman lowercase numerals.

If you want, you can also define the starting value by using the start attribute of the tag.
The start attribute always takes a decimal numerical value, even if the type attribute sets a
different type of numbering.

For example, we could adjust the ordered list from the previous example so that the list items will
be prefixed with capital letters, beginning with the letter C, as shown in the following example:

<h2>Agenda</h2>
<ol type="A" start="3">
 Welcome
 Barbecue
 Dessert
 Fireworks

Within a web browser, this HTML code is rendered like Figure 7.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 71

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 7. Web browser representation a simple example document containing a second-level heading
followed by an ordered list with list items that are prefixed by capital letters beginning with the letter C.

The order of the list items can also be reversed using the reversed attribute without a value.

NOTE
In an ordered list, you can also set the initial value of a specific list item using the
value attribute of the tag. List items that follow will increment from that
number. The value attribute always takes a decimal numerical value.

Unordered Lists

An unordered list contains a series of list items that, unlike those in an ordered list, do not have a
special order or sequence. The HTML element for this list is . Once again, is the HTML
element to mark its list items.

NOTE elements are the only valid child elements within a element.

For our example web site, we can use the unordered list to list items for guests to bring to the
party. We can achieve this with the following HTML code:

<h2>Please bring</h2>

 Salad
 Drinks
 Bread
 Snacks
 Desserts

Within a web browser, this HTML code produces the display shown in Figure 8.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

72 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8. Web browser representation of a simple document containing a second-level heading followed by
an unordered list with list items regarding foodstuffs that guests are asked to bring to the garden party.

By default, each list item is represented using a disc bullet. You may change its appearance using
CSS, which will be discussed in later lessons.

Nesting Lists

Lists can be nested within other lists, such as ordered lists within unordered lists and vice versa.
To achieve this, the nested list must be part of a list element , because is the only valid
child element of unordered and ordered lists. When nesting, be careful not to overlap the HTML
tags.

For our example, we could add some information of the agenda we created before, as shown in
the following example:

<h2>Agenda</h2>
<ol type="A" start="3">
 Welcome

 Barbecue

 Vegetables
 Meat
 Burgers, including vegetarian options

 Dessert
 Fireworks

A web browser renders the code as shown in Figure 9.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 73

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 9. Web browser representation of HTML code showing an unordered lists nested within an ordered
list, to represent the agenda for a garden party.

You could go even further and nest multiple levels deep. Theoretically, there is no limit to how
many lists you can nest. When doing this however, consider readability for your vistors.

Description Lists

A description list is defined using the <dl> element and represents a dictionary of keys and values.
The key is a term or name that you want to describe, and the value is the description. Description
lists can range from simple key-value pairs to extensive definitions.

A key (or term) is defined using the <dt> element, while its description is defined using the <dd>
element.

An example for such a description list could be a list of exotic fruits that explains what they look
like.

<h3>Exotic Fruits</h3>
<dl>
 <dt>Banana</dt>
 <dd>
 A long, curved fruit that is yellow-skinned when ripe. The fruit's skin
 may also have a soft green color when underripe and get brown spots when
 overripe.
 </dd>

 <dt>Kiwi</dt>
 <dd>
 A small, oval fruit with green flesh, black seeds, and a brown, hairy
 skin.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

74 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 </dd>

 <dt>Mango</dt>
 <dd>
 A fruit larger than a fist, with a green skin, orange flesh, and one big
 seed. The skin may have spots ranging from green to yellow or red.
 </dd>
</dl>

In a web browser, this produces the result shown in Figure 10.

Figure 10. An example of an HTML description list using exotic fruits. The list describes the appearance of
three different exotic fruits.

NOTE
As opposed to ordered lists and unordered lists, in a description list, any HTML
element is valid as a direct child. This allows you to group elements and style them
elsewhere using CSS.

Inline Text Formatting
In HTML, you can use formatting elements to change the appearance of the text. These elements
can be categorized as presentation elements or phrase elements.

Presentation Elements

Basic presentation elements change the font or look of text; these are , <i>, <u> and <tt>.
These elements were originally defined before CSS let make text bold, italic, etc. There are now
usually better ways to alter the look of text, but you still see these elements sometimes.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 75

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Bold Text

To make text bold, you can wrap it within the element as illustrated in the following example.
The result appears in Figure 11.

This word is bold.

Figure 11. The tag is used to make text bold.

According to the HTML5 specification, the element should be used only when there are no
more appropriate tags. The element that produces the same visual output, but additionally adds
semantic importance to the marked text, is .

Italic Text

To italicize text, you can wrap it within the <i> element as illustrated in the following example.
The result appears in Figure 12.

This <i>word</i> is in italics.

Figure 12. The <i> tag is used to italicize text.

According to the HTML 5 specification, the <i> element should be used only when there are no
more appropriate tags.

Underlined Text

To underline text, you can wrap it within the <u> element as illustrated in the following example.
The result appears in Figure 13.

This <u>word</u> is underlined.

Figure 13. The <u> tag is used to underline text.

According to the HTML 5 specification, the <u> element should be used only when there are no

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

76 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

better ways to underline text. CSS provides a modern alternative.

Fixed-Width or Monospaced Font

To display text in a monospaced (fixed-width) font, often used to display computer code, you can
use the <tt> element as illustrated in the following example. The result appears in Figure 14.

This <tt>word</tt> is in fixed-width font.

Figure 14. The <tt> tag is used to display text in a fixed-width font.

The <tt> tag is not supported in HTML5. Web browsers still render it as expected. However, you
should use more appropriate tags, which include <code>, <kbd>, <var>, and <samp>.

Phrase Elements

Phrase elements not only change the appearance of text, but also add semantic importance to a
word or phrase. Using them, you can emphasize a word or mark it as important. These elements,
as opposed to presentation elements, are recognized by screen readers, which makes the text
more accessible to visually impaired visitors and allows search engines to better read and
evaluate the page content. The phrase elements we use throughout this lesson are ,
, and <code>.

Emphasized Text

To emphasize text, you can wrap it within the element as illustrated in the following
example:

This word is emphasized.

Figure 15. The tag is used to emphasize text.

As you can see, web browsers display in the same way as <i>, but adds semantic
importance as a phrase element, which improves accessibility for visually impaired visitors.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 77

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Strong Text

To mark text as important, you can wrap it within the element as illustrated in the
following example. The result appears in Figure 16.

This word is important.

Figure 16. The tag is used to mark text as important.

As you can see, web browsers display in the same way as , but adds
semantic importance as a phrase element, which improves accessibility for visually impaired
visitors.

Computer Code

To insert a piece of computer code, you can wrap it within the <code> element as illustrated in
the following example. The result appears in Figure 17.

The Markdown code <code># Heading</code> creates a heading at the highest level in the
hierarchy.

Figure 17. The <code> tag is used to insert a piece of computer code.

Marked Text

To highlight text with a yellow background, similar to the style of a highlighter, you can use the
<mark> element as illustrated in the following example. The result appears in Figure 18.

This <mark>word</mark> is highlighted.

Figure 18. The <mark> tag is used to highlight text with a yellow background.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

78 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Formatting the Text of our HTML Shopping List

Drawing on our previous examples, let’s insert some phrase elements to change the appearance of
the text while also adding semantic importance. The result appears in Figure 19.

<h1>Garden Party</h1>
<p>
 Invitation to John's garden party.

 Saturday, next week.
</p>

<h2>Agenda</h2>

 Welcome

 Barbecue

 Vegetables
 Meat
 Burgers, including vegetarian options

 Dessert
 <mark>Fireworks</mark>

<hr>

<h2>Please bring</h2>

 Salad
 Drinks
 Bread
 Snacks
 Desserts

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 79

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 19. The HTML page with some formatting elements.

In this sample HTML document, the most important information regarding the garden party itself
is marked as important using the element. Foods that are available for the barbecue are
emphasized using the element. The fireworks are simply highlighted using the <mark>
element.

As an exercise, you can try formatting other pieces of text using the other formatting elements as
well.

Preformatted Text
In most HTML elements, white space is usually reduced to a single space or even ignored entirely.
However, there is an HTML element named <pre> that lets you define so-called preformatted text.
White space in the content of this element, including spaces and line breaks, is preserved and

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

80 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

rendered in the web browser. Additionally, the text is displayed in a fixed-width font, similar to
the <code> element.

<pre>
field() {
 shift $1 ; echo $1
}
</pre>

Figure 20. Web browser representation of HTML code illustrating how the <pre> HTML element
preserves white space.

Grouping Elements
By convention, HTML elements are divided into two categories:

Block-Level Elements

These appear on a new line and take up the entire available width. Examples of block-level
elements that we already discussed are <p>, , and <h2>.

Inline-Level Elements

These appear in the same line as other elements and text, taking up only as much space as their
content requires. Examples of inline-level elements are , , and <i>.

NOTE
HTML5 has introduced more accurate and precise element categories, trying to
avoid confusion with CSS block and inline boxes. For simplicity, we will stick here
to the conventional subdivision into block and inline elements.

The fundamental elements for grouping multiple elements together are the <div> and
elements.

The <div> element is a block-level container for other HTML elements and does not add semantic
value by itself. You can use this element to divide an HTML document into sections and structure
your content, both for code readability and to apply CSS styles to a group of elements, as you will
learn in a later lesson.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 81

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

By default, web browsers always insert a line break before and after each <div> element so that
each is displayed on its own line.

In contrast, the element is used as a container for HTML text and is generally used to
group other inline elements in order to apply styles using CSS to a smaller portion of text.

The element behaves just like regular text and does not start on a new line. It is therefore
an inline element.

The following example compares the visual representation of the semantic <p> element and the
grouping elements <div> and :

<p>Text within a paragraph</p>
<p>Another paragraph of text</p>
<hr>
<div>Text wrapped within a <code>div</code> element</div>
<div>Another <code>div</code> element with more text</div>
<hr>
Span content
and more span content

A web browser renders this code as shown in Figure 21.

Figure 21. Web browser representation of a test document illustrating the differences between paragraph,
div and span elements in HTML.

We already saw that by default, the web browser adds spacing before and after <p> elements.
This spacing is not applied to either of the grouping elements <div> and . However, <div>
elements are formatted as their own blocks, while the text in elements is shown in the
same line.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

82 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

HTML Page Structure
We have discussed how to use HTML elements to describe the content of a web page
semantically–in other words, to convey meaning and context to the text. Another group of
elements are designed for the purpose of describing the semantic structure of a web page, an
expression or its structure. These elements are block elements, i.e., they visually behave similarly
to a <div> element. Their purpose is to define the semantic structure of a web page by specifying
well-defined areas such as headers, footers and the page’s main content. These elements allow the
semantic grouping of content so that it may be understood by a computer as well, including
search engines and screen readers.

The <header> Element

The <header> element contains introductory information to the surrounding semantic element
within an HTML document. A header is different from a heading, but a header often includes a
heading element (<h1>, … , <h6>).

In practice, this element is most often used to represent the page header, such as a banner with a
logo. It can also be used to introduce the content for any of the following elements: <body>,
<section>, <article>, <nav>, or <aside>.

A document may have multiple <header> elements, but a <header> element cannot be nested
within another <header> element. Neither can a <footer> element be used within a <header>.

For example, to add a page header to our example document, we can do the following:

<header>
 <h1>Garden Party</h1>
</header>

There will be no visible changes to the HTML document, as <h1> (like all other heading elements)
is a block-level element with no further visual properties.

The <main> Content Element

The <main> element is a container for the central content of a web page. There must be no more
than one <main> element in an HTML document.

In our example document, all the HTML code we have written so far would be placed inside the
<main> element.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 83

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

<main>
 <header>
 <h1>Garden Party</h1>
 </header>
 <p>
 Invitation to John's garden party.

 Saturday, next week.
 </p>

 <h2>Agenda</h2>

 Welcome

 Barbecue

 Vegetables
 Meat
 Burgers, including vegetarian options

 Dessert
 <mark>Fireworks</mark>

 <hr>

 <h2>Please bring</h2>

 Salad
 Drinks
 Bread
 Snacks
 Desserts

</main>

Like the <header> element, the <main> element does not cause any visual changes in our
example.

The <footer> Element

The <footer> element contains footnotes, for example authorship information, contact
information, or related documents, for its surrounding semantic element, e.g. <section>, <nav>,

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

84 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

or <aside>. A document can have multiple <footer> elements that allow you to better describe
semantic elements. However, a <footer> element cannot be nested within another <footer>
element, nor can a <header> element be used within a <footer>.

For our example, we can add contact information for the host (John) as shown in the following
example:

<footer>
 <p>John Doe</p>
 <p>john.doe@example.com</p>
</footer>

The <nav> Element

The <nav> element describes a major navigational unit, such as a menu, that contains a series of
hyperlinks.

NOTE
Not all hyperlinks must be wrapped within a <nav> element. It’s useful when
listing a group of links.

Because hyperlinks have not yet been covered, the navigation element will not be included in this
lesson’s example.

The <aside> Element

The <aside> element is a container for content that is not necessary within the ordering of the
main page content, but is usually indirectly related or supplementary. This element is often used
for sidebars that display secondary information, such as a glossary.

For our example, we can add address and journey information, which are only indirectly related
to the remaining content, using the <aside> element.

<aside>
 <p>
 10, Main Street

 Newville
 </p>
 <p>Parking spaces available.</p>
</aside>

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 85

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

The <section> Element

The <section> element defines a logical section in a document that is part of the surrounding
semantic element, but would not work as stand-alone content, such as a chapter.

In our example document, we can wrap the content sections for the agenda and bring in list
sections as shown in the following example:

<section>
 <header>
 <h2>Agenda</h2>
 </header>

 Welcome

 Barbecue

 Vegetables
 Meat
 Burgers, including vegetarian options

 Dessert
 <mark>Fireworks</mark>

</section>

<hr>

<section>
 <header>
 <h2>Please bring</h2>
 </header>

 Salad
 Drinks
 Bread
 Snacks
 Desserts

</section>

This example also adds further <header> elements within the sections, so that each section is

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

86 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

within its own <header> element.

The <article> Element

The <article> element defines independent and standalone content that makes sense on its own
without the rest of the page. Its content is potentially redistributable or reusable in another
context. Typical examples or material appropriate for an <article> element are a blog posting, a
product listing for a shop, and an advertisement for a product. The advertisement could then exist
both on its own and within a larger page.

In our example, we can replace the first <section> that wraps the agenda with an <article>
element.

<article>
 <header>
 <h2>Agenda</h2>
 </header>

 Welcome

 Barbecue

 Vegetables
 Meat
 Burgers, including vegetarian options

 Dessert
 <mark>Fireworks</mark>

</article>

The <header> element we added in the previous example may persist here as well, because
<article> elements may have their own <header> elements.

The Final Example

Combining all previous examples, the final HTML document for our invitation looks as follows:

<!DOCTYPE html>
<html lang="en">
 <head>

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 87

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <title>Garden Party</title>
 </head>

 <body>
 <main>
 <h1>Garden Party</h1>
 <p>
 Invitation to John's garden party.

 Saturday, next week.
 </p>

 <article>
 <h2>Agenda</h2>

 Welcome

 Barbecue

 Vegetables
 Meat
 Burgers, including vegetarian options

 Dessert
 <mark>Fireworks</mark>

 </article>

 <hr>

 <section>
 <h2>Please bring</h2>

 Salad
 Drinks
 Bread
 Snacks
 Desserts

 </section>
 </main>

 <aside>
 <p>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

88 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 10, Main Street

 Newville
 </p>
 <p>Parking spaces available.</p>
 </aside>

 <footer>
 <p>John Doe</p>
 <p>john.doe@example.com</p>
 </footer>
 </body>
</html>

In a web browser, the whole page is rendered as shown in Figure 22.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 89

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 22. Web browser representation of the resulting HTML document combining the previous
examples. The page represents an invitation to a garden party and describes the agenda for the evening
and a list of food for the guests to bring.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

90 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. For each of the following tags, indicate the corresponding closing tag:

<h5>

<dd>

<hr>

<tt>

<main>

2. For each of the following tags, indicate whether it marks the beginning of a block or inline
element:

<h3>

<div>

<dl>

<nav>

<code>

<pre>

3. What kind of lists can you create in HTML? Which tags should you use for each of them?

4. What tags enclose the block elements that you can use to structure an HTML page?

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 91

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. Create a basic HTML page with the title “Form Rules”. You will use this HTML page for all

explorational exercises, each of which is based on the previous ones. Then add a level 1
heading with the text “How to fill in the request form”, a paragraph with the text “To receive
the PDF document with the complete HTML course, it is necessary to fill in the following
fields:” and an unordered list with the following list items: “Name”, “Surname”, “Email
Address”, “Nation”, “Country”, and “Zip/Postal Code”.

2. Put the first three fields (“Name”, “Surname”, and “Email Address”) in bold, while also adding
semantic importance. Then add a level 2 heading with the text “Required fields” and a
paragraph with the text “Bold fields are mandatory.”

3. Add another level 2 heading with the text “Steps to follow”, a paragraph with the text “There
are four steps to follow:”, and an ordered list with the following list items: “Fill in the fields”,
“Click the Submit button”, “Check your e-mail and confirm your request by clicking on the link
you receive”, and “Check your e-mail - You will receive the full HTML course in minutes”.

4. Using <div>, create a block for each section that starts with a level 2 heading.

5. Using <div>, create another block for the section starting with the level 1 heading. Then divide
this section from the other two with an horizontal line.

6. Add the header element with the text “Form Rules - 2021” and the footer element with the text
“Copyright Note - 2021”. Finally, add the main element that must contain the three <div>
blocks.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

92 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
In this lesson you learned:

• How to create markup for contents in an HTML document

• The hierarchical HTML text structure

• The difference between block and inline HTML elements

• How to create HTML documents with a semantic structure

The following terms were discussed in this lesson:

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>
The heading tags.

<p>
The paragraph tag.

The ordered list tag.

The unordered list tag.

The list item tag.

<dl>
The description list tag.

<dt>, <dd>
The tags of each term and description for a description list.

<pre>
The preserve formatting tag.

, <i>, <u>, <tt>, , , <code>, <mark>
The formatting tags.

<div>,
The grouping tags.

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 93

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

<header>, <main>, <nav>, <aside>, <footer>
The tags used to provide a simple structure and layout to an HTML page.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

94 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. For each of the following tags, indicate the corresponding closing tag:

<h5> </h5>

 Does not exist

<dd> </dd>

<hr> Does not exist

<tt> </tt>

<main> </main>

2. For each of the following tags, indicate whether it marks the beginning of a block or inline
element:

<h3> Block Element

 Inline Element

 Inline Element

<div> Block Element

 Inline Element

<dl> Block Element

 Block Element

<nav> Block Element

<code> Inline Element

<pre> Block Element

3. What kind of lists can you create in HTML? Which tags should you use for each of them?

In HTML, you can create three types of lists: ordered lists consisting of a series of numbered list
items, unordered lists consisting of a series of list items that have no special order or sequence,
and description lists representing entries as in a dictionary or encyclopedia. An ordered list is
enclosed between the and tags, an unordered list is enclosed between the and
 tags, and a description list is enclosed between the <dl> and </dl> tags. Each item in an

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 95

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

ordered or unordered list is enclosed between the and tags, while each term in a
description list is enclosed between the <dt> and </dt> tags and its description is enclosed
between the <dd> and </dd> tags.

4. What tags enclose the block elements that you can use to structure an HTML page?

The <header> and </header> tags enclose the page header, the <main> and </main> tags
enclose the main content of the HTML page, the <nav> and </nav> tags enclose the so-called
navigation bar, the <aside> and </aside> tags enclose the sidebar, and the <footer> and
</footer> tags enclose the page footer.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

96 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. Create a basic HTML page with the title “Form Rules”. You will use this HTML page for all

explorational exercises, each of which is based on the previous ones. Then add a level 1
heading with the text “How to fill in the request form”, a paragraph with the text “To receive
the PDF document with the complete HTML course, it is necessary to fill in the following
fields:” and an unordered list with the following list items: “Name”, “Surname”, “Email
Address”, “Nation”, “Country”, and “Zip/Postal Code”.

<!DOCTYPE html>
<html>
 <head>
 <title>Form Rules</title>
 </head>

 <body>
 <h1>How to fill in the request form</h1>
 <p>
 To receive the PDF document with the complete HTML course, it is necessary
 to fill in the following fields:
 </p>

 Name
 Surname
 Email Address
 Nation
 Country
 Zip/Postal Code

 </body>
</html>

2. Put the first three fields (“Name”, “Surname”, and “Email Address”) in bold, while also adding
semantic importance. Then add a level 2 heading with the text “Required fields” and a
paragraph with the text “Bold fields are mandatory.”

<!DOCTYPE html>
<html>
 <head>
 <title>Form Rules</title>
 </head>

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 97

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <body>
 <h1>How to fill in the request form</h1>
 <p>
 To receive the PDF document with the complete HTML course, it is necessary
 to fill in the following fields:
 </p>

 Name
 Surname
 Email Address
 Nation
 Country
 Zip/Postal Code

 <h2>Required fields</h2>
 <p>Bold fields are mandatory.</p>
 </body>
</html>

3. Add another level 2 heading with the text “Steps to follow”, a paragraph with the text “There
are four steps to follow:”, and an ordered list with the following list items: “Fill in the fields”,
“Click the Submit button”, “Check your e-mail and confirm your request by clicking on the link
you receive”, and “Check your e-mail - You will receive the full HTML course in minutes”.

<!DOCTYPE html>
<html>
 <head>
 <title>Form Rules</title>
 </head>

 <body>
 <h1>How to fill in the request form</h1>
 <p>
 To receive the PDF document with the complete HTML course, it is necessary
 to fill in the following fields:
 </p>

 Name
 Surname
 Email Address
 Nation

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

98 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 Country
 Zip/Postal Code

 <h2>Required fields</h2>
 <p>Bold fields are mandatory.</p>

 <h2>Steps to follow</h2>
 <p>There are four steps to follow:</p>

 Fill in the fields
 Click the Submit button

 Check your e-mail and confirm your request by clicking on the link you
 receive

 Check your e-mail - You will receive the full HTML course in minutes

 </body>
</html>

4. Using <div>, create a block for each section that starts with a level 2 heading.

<!DOCTYPE html>
<html>
 <head>
 <title>Form Rules</title>
 </head>

 <body>
 <h1>How to fill in the request form</h1>
 <p>
 To receive the PDF document with the complete HTML course, it is necessary
 to fill in the following fields:
 </p>

 Name
 Surname
 Email Address
 Nation
 Country

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 99

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 Zip/Postal Code

 <div>
 <h2>Required fields</h2>
 <p>Bold fields are mandatory.</p>
 </div>

 <div>
 <h2>Steps to follow</h2>
 <p>There are four steps to follow:</p>

 Fill in the fields
 Click the Submit button

 Check your e-mail and confirm your request by clicking on the link you
 receive

 Check your e-mail - You will receive the full HTML course in minutes

 </div>
 </body>
</html>

5. Using <div>, create another block for the section starting with the level 1 heading. Then divide
this section from the other two with an horizontal line.

<!DOCTYPE html>
<html>
 <head>
 <title>Form Rules</title>
 </head>

 <body>
 <div>
 <h1>How to fill in the request form</h1>
 <p>
 To receive the PDF document with the complete HTML course, it is
 necessary to fill in the following fields:
 </p>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

100 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 Name
 Surname
 Email Address
 Nation
 Country
 Zip/Postal Code

 </div>

 <hr>

 <div>
 <h2>Required fields</h2>
 <p>Bold fields are mandatory.</p>
 </div>

 <div>
 <h2>Steps to follow</h2>
 <p>There are four steps to follow:</p>

 Fill in the fields
 Click the Submit button

 Check your e-mail and confirm your request by clicking on the link you
 receive

 Check your e-mail - You will receive the full HTML course in minutes

 </div>
 </body>
</html>

6. Add the header element with the text “Form Rules - 2021” and the footer element with the text
“Copyright Note - 2021”. Finally, add the main element that must contain the three <div>
blocks.

<!DOCTYPE html>
<html>
 <head>
 <title>Form Rules</title>
 </head>

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 101

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <body>
 <header>
 <h1>Form Rules - 2021</h1>
 </header>

 <main>
 <div>
 <h1>How to fill in the request form</h1>
 <p>
 To receive the PDF document with the complete HTML course, it is
 necessary to fill in the following fields:
 </p>

 Name
 Surname
 Email Address
 Nation
 Country
 Zip/Postal Code

 </div>

 <hr>

 <div>
 <h2>Required fields</h2>
 <p>Bold fields are mandatory.</p>
 </div>

 <div>
 <h2>Steps to follow</h2>
 <p>There are four steps to follow:</p>

 Fill in the fields
 Click the Submit button

 Check your e-mail and confirm your request by clicking on the link
 you receive

 Check your e-mail - You will receive the full HTML course in minutes

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

102 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 </div>
 </main>

 <footer>
 <p>Copyright Note - 2021</p>
 </footer>
 </body>
</html>

Web Development Essentials (030) (Version 1.0) | 032.2 HTML Semantics and Document Hierarchy

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 103

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

032.3 HTML References and Embedded Resources

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 032.3

Weight

2

Key knowledge areas

• Create links to external resources and page anchors

• Add images to HTML documents

• Understand key properties of common media file formats, inlcuding PNG, JPG and SVG

• Awareness of iframes

Partial list of the used files, terms and utilities

• id attribute

• <a>, including the href and target (_blank, _self, _parent, _top) attributes

• , including the src and alt attributes

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

104 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#032.3_HTML_References_and_Embedded_Resources_.28weight:_2.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

032.3 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 032 HTML Document Markup

Objective: 032.3 HTML References and Embedded
Resources

Lesson: 1 of 1

Introduction
Any modern web page is rarely made of just text. It comprises many other types of contents, such
as images, audio, video and even other HTML documents. Along with external content, HTML
documents can contain links to other documents, which makes the experience of browsing the
Internet much simpler.

Embedded Content
File exchange is possible over the Internet without web pages written in HTML, so why is HTML
the chosen format for web documents and not PDF or any other word processing format? One
important reason is that HTML keeps its multimedia resources in separate files. In an
environment such as the Internet, where information is often redundant and distributed at
different locations, it is important to avoid unnecessary data transfers. Most of the time, new
versions of a web page pull in the same images and other support files as previous versions, so the
web browser can use the previously fetched files instead of copying everything over again.
Furthermore, keeping the files separate facilitates the customization of multimedia content
according to the client’s characteristics, such as their location, screen size, and connection speed.

Web Development Essentials (030) (Version 1.0) | 032.3 HTML References and Embedded Resources

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 105

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Images

The most common type of embedded content are images that accompany the text. Images are kept
separately and are referenced inside the HTML file with the tag:

The tag does not require a closing tag. The src property indicates the source location for
the image file. In this example, the image file logo.png must be located in the same directory as
the HTML file, otherwise the browser will not be able to display it. The source location property
accepts relative paths, so the dot notation can be used to indicate the path to the image:

The two dots indicate that the image is located inside the parent directory relative to the directory
where the HTML file is. If the filename ../logo.png is used inside an HTML file whose URL is
http://example.com/library/periodicals/index.html, the browser will request the image
file at the address http://example.com/library/logo.png.

The dot notation also applies if the HTML file isn’t an actual file in the filesystem; the HTML
browser interprets the URL as if it is a path to a file, but it is the HTTP server’s job to decide
whether that path refers to a file or to dynamically generated content. The domain and the proper
path are automatically added to all requests to the server, in case the HTML file came from a HTTP
request. Likewise, the browser will open the proper image if the HTML file was opened directly
from the local filesystem.

Source locations beginning with a forward slash / are treated as absolute paths. Absolute paths
have complete information for the image’s locations, so they work regardless of the HTML
document’s location. If the image file is located at another server, which will be the case when a
Content Delivery Network (CDN) is used, the domain name must also be included.

NOTE
Content Delivery Networks are composed of geographically distributed servers that
store static content for other websites. They help to improve performance and
availability for heavy accessed sites.

If the image can’t be loaded, the HTML browser will show the text provided by the alt attribute
instead of the image. For example:

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

106 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

The alt attribute is also important for accessibility. Text-only browsers and screen readers use it
as a description for the corresponding image.

Image Types

Web browsers can display all the popular image types, such as JPEG, PNG, GIF, and SVG. The
dimensions of the images are detected as soon as the images are loaded, but they can be
predefined with the width and height attributes:

The only reason for including dimension attributes to the tag is to avoid breaking the
layout when the image takes too long to load or when it can not be loaded at all. Using the width
and height attributes to change the image’s original dimensions may result in undesirable
results:

• Images will be distorted when the original size is smaller than the new dimensions or when the
new proportion ratio differs from the original.

• Downsizing large images uses extra bandwidth that will result in longer loading timings.

SVG is the only format that doesn’t suffer from these effects, because all of its graphical
information is stored in numerical coordinates well suited for scaling and its dimensions don’t
affect the file size (hence the name Scalable Vector Graphics). For example, only the position, side
dimensions, and color information are necessary to draw a rectangle in SVG. The particular value
for every single pixel will be dynamically rendered afterwards. In fact, SVG images are similar to
HTML files, in the sense that their graphic elements are also defined by tags in a text file. SVG files
are intended for representing sharp-edged drawings, such as charts or diagrams.

Images that don’t fit these criteria should be stored as bitmaps. Unlike vector based image formats,
bitmaps store color information for every pixel in the image beforehand. Storing the color value
for each pixel in the image generates a very large amount of data, so bitmaps are usually stored in
compressed formats, such as JPEG, PNG, or GIF.

The JPEG format is recommended for photographs, because its compression algorithm produces
good results for shades and blurry backgrounds. For images where solid colors prevail, the PNG
format is more appropriate. Therefore, the PNG format should be chosen when it is necessary to
convert a vector image to a bitmap.

The GIF format offers the lowest image quality of all the popular bitmap formats. Nevertheless, it
is still widely used because of its support for animations. Indeed, many websites employ GIF files
to display short videos, but there are better ways to display video content.

Web Development Essentials (030) (Version 1.0) | 032.3 HTML References and Embedded Resources

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 107

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Audio and Video

Audio and video contents may be added to an HTML document in more of less the same way as
images. Unsurprisingly, the tag to add audio is <audio> and the tag to add video is <video>.
Obviously, text-only browsers aren’t able to play multimedia content, so the <audio> and
<video> tags employ the closing tag to hold the text used as a fallback for the element that could
not be shown. For example:

<audio controls src="/media/recording.mp3">
<p>Unable to play recording.mp3</p>
</audio>

If the browser doesn’t support the <audio> tag, the line “Unable to play recording.mp3” will be
shown instead. The use of closing </audio> or </video> tags allows a web page to include more
elaborate alternative content than the simple line of text permitted by the alt attribute of the
 tag.

The src attribute for <audio> and <video> tags works in the same way as for the tag, but
also accepts URLs pointing to a live stream. The browser takes care of buffering, decoding, and
displaying the content as it is received. The controls attribute displays playback controls.
Without it, the visitor will not be able to pause, rewind, or otherwise control the playback.

Generic Content

An HTML document can be nested into another HTML document, similarly to the insertion of an
image into an HTML document, but using the tag <iframe>:

<iframe name="viewer" src="gallery.html">
<p>Unsupported browser</p>
</iframe>

Simpler text-only browsers don’t support the <iframe> tag and will display the enclosed text
instead. As with the multimedia tags, the src attribute sets the source location of the nested
document. The width and height attributes can be added to change the default dimensions of the
iframe element.

The name attribute allows developers to refer to the iframe and change the nested document.
Without this attribute, the nested document cannot be changed. An anchor element can be used
to load a document from another location inside an iframe instead of the current browser
window.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

108 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Links
The page element commonly referred to as a web link is also known by the technical term anchor,
hence the use of tag <a>. The anchor leads to another location, which can be any address
supported by the browser. The location is indicated by the href (hyperlink reference) attribute:

Contact Information

The location can be written as a relative or absolute path, as with the embedded contents
discussed earlier. Only the enclosed text content (e.g., Contact Information) is visible to the
visitor, usually as clickable underlined blue text by default, but the item displayed over the link
can also be any other visible content, such as images:

Special prefixes can be added to the location to tell the browser how to open it. If the anchor
points to an email address, for example, its href attribute should include the mailto: prefix:

Contact by email

The tel: prefix indicates a phone number. It’s particularly useful for visitors viewing the page on
mobile devices:

Contact by phone

When the link is clicked, the browser opens the location’s contents with the associated
application.

The most common use of anchors is to load other web documents. By default, the browser will
replace the current HTML document with content at the new location. This behavior can be
modified by using the target attribute. The _blank target, for example, tells the browser to open
the given location in a new window or new browser tab, depending on the visitor’s preferences:

Contact Information

The _self target is the default when the target attribute is not provided. It causes the
referenced document to replace the current document.

Web Development Essentials (030) (Version 1.0) | 032.3 HTML References and Embedded Resources

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 109

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Other types of targets are related to the <iframe> element. To load a referenced document inside
an <iframe> element, the target attribute should point to the name of the iframe element:

<p>Photo Gallery</p>

<iframe name="viewer" width="800" height="600">
<p>Unsupported browser</p>
</iframe>

The iframe element works as a distinct browser window, so any links loaded from the document
inside the iframe will replace only the contents of the iframe. To change that behaviour, the
anchor elements inside the framed document can also use the target attribute. The _parent
target, when used inside a framed document, will cause the referenced location to replace the
parent document containing the <iframe> tag. For example, the embedded gallery.html
document could contain an anchor that loads itself while replacing the parent document:

<p>Open as parent document</p>

HTML documents support multiple levels of nesting with the <iframe> tag. The _top target, when
used in an anchor inside a framed document, will cause the referenced location to replace the
main document in the browser window, regardless if it is the immediate parent of the
corresponding <iframe> or an ancestor further back in the chain.

Locations Inside Documents

The address of an HTML document may optionally contain a fragment that can be used to identify
a resource inside the document. This fragment, also known as the URL anchor, is a string
following a hash sign # at the end of the URL. For example, the word History is the anchor in the
URL https://en.wikipedia.org/wiki/Internet#History.

When the URL has an anchor, the browser will scroll to the corresponding element in the
document: that is, the element whose id attribute is equal to the anchor in the URL. In the case of
the given URL, https://en.wikipedia.org/wiki/Internet#History, the browser will jump
straight to the “History” section. Examining the HTML code of the page, we find out that the title of
the section has the corresponding id attribute:

History

URL anchors can be used in the href attribute of the <a> tag, either when they are pointing to

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

110 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

external pages or when they are pointing to locations inside the current page. In the latter case, it
is enough to put start with just the hash sign with the URL fragment, as in History.

WARNING
The id attribute must not contain whitespace (spaces, tabs, etc.) and must be
unique within the document.

There are ways to customize how the browser will react to URL anchors. It is possible, for
example, to write a JavaScript function that listens to the hashchange window event and triggers a
customized action, such as an animation or an HTTP request. It is worth noting, however, that the
URL fragment is never sent to the server with the URL, so it cannot be used as an identifier by the
HTTP server.

Web Development Essentials (030) (Version 1.0) | 032.3 HTML References and Embedded Resources

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 111

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. The HTML document located at http://www.lpi.org/articles/linux/index.html has an

 tag whose src attribute points to ../logo.png. What is the complete absolute path to
this image?

2. Name two reasons why the alt attribute is important in tags.

3. What image format gives good image quality and keeps the file size small when it is used for
photographs with blurry points and with many colors and shades?

4. Instead of using a third-party provider such as Youtube, what HTML tag lets you embed a video
file in an HTML document using only standard HTML features?

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

112 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Excercises
1. Assume that an HTML document has the hyperlink First

picture and the iframe element <iframe name="gallery"></iframe>. How could you
modify the hyperlink tag so the image it points to will load inside the given iframe element
after the user clicks on the link?

2. What will happen when the visitor clicks a hyperlink in a document inside an iframe and the
hyperlink has the target attribute set to _self?

3. You notice that the URL anchor for the second section of your HTML page is not working. What
is the probable cause of this error?

Web Development Essentials (030) (Version 1.0) | 032.3 HTML References and Embedded Resources

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 113

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers how to add images and other multimedia content using the proper HTML tags.
Moreover, the reader learns the different ways hyperlinks can be used to load other documents
and point to specific locations inside a page. The lesson goes through the following concepts and
procedures:

• The tag and its main attributes: src and alt.

• Relative and absolute URL paths.

• Popular image formats for the Web and their characteristics.

• The <audio> and <video> multimedia tags.

• How to insert nested documents with the <iframe> tag.

• The hyperlink tag <a>, its href attribute, and special targets.

• How to use URL fragments, also known as hash anchors.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

114 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. The HTML document located at http://www.lpi.org/articles/linux/index.html has an

 tag whose src attribute points to ../logo.png. What is the complete absolute path to
this image?

http://www.lpi.org/articles/logo.png

2. Name two reasons why the alt attribute is important in tags.

Text-only browsers will be able to show a description of the missing image. Screen readers use
the alt attribute to describe the image.

3. What image format gives good image quality and keeps the file size small when it is used for
photographs with blurry points and with many colors and shades?

The JPEG format.

4. Instead of using a third-party provider such as Youtube, what HTML tag lets you embed a video
file in an HTML document using only standard HTML features?

The <video> tag.

Web Development Essentials (030) (Version 1.0) | 032.3 HTML References and Embedded Resources

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 115

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. Assume that an HTML document has the hyperlink First

picture and the iframe element <iframe name="gallery"></iframe>. How could you
modify the hyperlink tag so the image it points to will load inside the given iframe element
after the user clicks on the link?

Using the target attribute of the a tag: First
picture.

2. What will happen when the visitor clicks a hyperlink in a document inside an iframe and the
hyperlink has the target attribute set to _self?

The document will be loaded inside the same iframe, which is the default behaviour.

3. You notice that the URL anchor for the second section of your HTML page is not working. What
is the probable cause of this error?

The URL fragment after the hash sign doesn’t match the id attribute in the element
corresponding to the second section, or the id attribute of the element is not present.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

116 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

032.4 HTML Forms

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 032.4

Weight

2

Key knowledge areas

• Create simple HTML forms

• Understand HTML form methods

• Understand HTML input elements and types

Partial list of the used files, terms and utilities

• <form>, including the method (get, post), action, and enctype attributes

• <input>, including the `type (text, email, password, number, date, file, range,
radio, checkbox, hidden) attribute

• <button>, including the type (submit, reset, hidden, button) attribute

• <textarea>

• Common form element attributes (name, value, id)

• <label>, including the `for attribute

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 117

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#032.4_HTML_Forms_.28weight:_2.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

032.4 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 032 HTML Document Markup

Objective: 032.4 HTML Forms

Lesson: 1 of 1

Introduction
Web forms provide a simple and efficient way to request visitor information from an HTML page.
The front end developer can use various components such as text fields, checkboxes, buttons, and
many others to build interfaces that will send data to the server in a structured way.

Simple HTML Forms
Before jumping into markup code specific to forms, let us first start with a simple blank HTML
document, without any body content:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Working with HTML Forms</title>
</head>
<body>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

118 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<!-- The body content goes here -->

</body>
</html>

Save the code sample as a raw text file with a .html extension (as in form.html) and use your
favorite browser to open it. After changing it, press the reload button in the browser to show the
modifications.

The basic form structure is given by the <form> tag itself and its internal elements:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Working with HTML Forms</title>
</head>
<body>

<!-- Form to collect personal information -->

<form>

<h2>Personal Information</h2>

<p>Full name:</p>
<p><input type="text" name="fullname" id="fullname"></p>

<p><input type="reset" value="Clear form"></p>
<p><input type="submit" value="Submit form"></p>

</form>

</body>
</html>

The double quotes are not required for single word attributes like type, so type=text works as
well as type="text". The developer can choose which convention to use.

Save the new content and reload the page in the browser. You should see the result shown in
Figure 23.

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 119

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 23. A very basic form.

The <form> tag by itself does not produce any noticeable result on the page. The elements inside
the <form>…</form> tags will define the fields and other visual aids shown to the visitor.

The example code contains both general HTML tags (<h2> and <p>) and the <input> tag, which is
a form-specific tag. Whereas general tags can appear anywhere in the document, form-specific
tags should be used only within the <form> element; that is, between the opening <form> and
closing </form> tags.

NOTE

HTML provides only basic tags and properties to modify the standard appearance
of forms. CSS provides elaborate mechanisms to modify the look and feel of the
form, so the recommendation is to write HTML code that deals only with the
functional aspects of the form and modify its appearance with CSS.

As shown in the example, the paragraph tag <p> can be used to describe the field to the visitor.
However, there is no obvious way the browser could relate the description in the <p> tag with the
corresponding input element. The <label> tag is more appropriate in these cases (from now on,
consider all the code samples as being inside the body of the HTML document):

<form>

<h2>Personal Information</h2>

<label for="fullname">Full name:</label>
<p><input type="text" name="fullname" id="fullname"></p>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

120 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<p><input type="reset" value="Clear form"></p>
<p><input type="submit" value="Submit form"></p>

</form>

The for attribute in the <label> tag contains the id of the corresponding input element. It makes
the page more accessible, as screenreaders will be able to speak the contents of the label element
when the input element is in focus. Moreover, visitors can click the label to place the focus in its
corresponding input field.

The id attribute works for form elements like it does for any other element in the document. It
provides an identifier for the element that is unique within the entire document. The name
attribute has a similar purpose, but it is used to identify the input element in the form’s context.
The browser uses the name attribute to identify the input field when sending the form data to the
server, so it is important to use meaningful and unique name attributes inside the form.

The type attribute is the main attribute of the input element, because it controls the data type the
element accepts and its visual presentation to the visitor. If the type attribute is not provided, by
default the input shows a text box. The following input types are supported by modern browsers:

Table 1. Form input types

Type attribute Data type How it is displayed

hidden An arbitrary string N/A

text Text with no line breaks A text control

search Text with no line breaks A search control

tel Text with no line breaks A text control

url An absolute URL A text control

email An email address or list of
email addresses

A text control

password Text with no line breaks
(sensitive information)

A text control that obscures
data entry

date A date (year, month, day) with
no time zone

A date control

month A date consisting of a year and
a month with no time zone

A month control

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 121

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Type attribute Data type How it is displayed

week A date consisting of a week-
year number and a week
number with no time zone

A week control

time A time (hour, minute, seconds,
fractional seconds) with no
time zone

A time control

datetime-local A date and time (year, month,
day, hour, minute, second,
fraction of a second) with no
time zone

A date and time control

number A numerical value A text control or spinner
control

range A numerical value, with the
extra semantic that the exact
value is not important

A slider control or similar

color An sRGB color with 8-bit red,
green and blue components

A color picker

checkbox A set of zero or more values
from a predefined list

A checkbox (offers choices and
allows multiple choices to be
selected)

radio An enumerated value A radio button (offers choices
and allows only one choice to
be selected)

file Zero or more files each with a
MIME type and optional file
name

A label and a button

submit An enumerated value, which
ends the input process and
causes the form to be
submitted

A button

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

122 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Type attribute Data type How it is displayed

image A coordinate, relative to a
particular image’s size, which
ends the input process and
causes the form to be
submitted

Either a clickable image or a
button

button N/A A generic button

reset N/A A button whose function is to
reset all other fields to their
initial values

The appearance of the password, search, tel, url, and email input types do not differ from the
standard text type. Their purpose is to offer hints to the browser about the intended content for
that input field, so the browser or the script running on the client side can take custom actions for
a specific input type. The only difference between the text input type and the password field type,
for example, is that the contents of the password field are not displayed as the visitor types them
in. In touch screen devices, where the text is typed with a on-screen keyboard, the browser can
pop up only the numerical keyboard when an input of type tel gain focus. Another possible
action is to suggest a list of known email addresses when an input of type email gain focus.

The number type also appears as a simple text input, but with increment/decrement arrows at its
side. Its use will cause the numerical keyboard to show up in touchscreen devices when it has the
focus.

The other input elements have their own appearance and behavior. The date type, for example, is
rendered according to the local date format settings and a calendar is displayed when the field
gains focus:

<form>

<p>
 <label for="date">Date:</label>
 <input type="date" name="date" id="date">
</p>

</form>

Figure 24 shows how the desktop version of Firefox currently renders this field.

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 123

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 24. The date input type.

NOTE
For elements may appears slightly different in different browsers or operating
systems, but their functioning and usage are always the same.

This is a standard feature in all modern browsers and does not require extra options or
programming.

Regardless of the input type, the content of an input field is called its value. All field values are
empty by default, but the value attribute can be used to set a default value for the field. The value
for the date type must use the YYYY-MM-DD format. The default value in the following date field
in 6 August 2020:

<form>

<p>
 <label for="date">Date:</label>
 <input type="date" name="date" id="date" value="2020-08-06">
</p>

</form>

The specific input types assist the visitor in filling in the fields, but do not prevent the visitor from
bypassing the restrictions and entering arbitrary values in any field. That is why it is important
that the field values are validated when they arrive at the server.

Form elements whose values must be typed by the visitor may have special attributes that assist

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

124 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

in filling them out. The placeholder attribute inserts an example value in the input element:

<p>Address: <input type="text" name="address" id="address" placeholder="e.g. 41 John St.,
Upper Suite 1"></p>

The placeholder appears inside the input element, as shown in Figure 25.

Figure 25. Placeholder attribute example.

Once the visitor starts typing in the field, the placeholder text disappears. The placeholder text is
not sent as the field value if the visitor leaves the field empty.

The required attribute requires the visitor to fill in a value for the corresponding field before
submitting the form:

<p>Address: <input type="text" name="address" id="address" required placeholder="e.g. 41
John St., Upper Suite 1"></p>

The required attribute is a Boolean attribute, so it can be placed alone (without the equal sign). It
is important to mark the fields that are required, otherwise the visitor will not be able to tell
which fields are missing and preventing the form submission.

The autocomplete attribute indicates whether the value of the input element can be
automatically completed by the browser. If set to autocomplete="off", then the browser does
not suggest past values to fill the entry. Input elements for sensitive information, such as credit
card numbers, should have the autocomplete attribute set to off.

Input for large texts: textarea
Unlike the text field, where only one line of text can be inserted, the textarea element allows the
visitor to enter more than one line of text. The textarea is a separate element, but it is not based
on the input element:

<p> <label for="comment">Type your comment here:</label>

<textarea id="comment" name="comment" rows="10" cols="50">
My multi-line, plain-text comment.

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 125

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

</textarea>

</p>

The typical appearance of a textarea is Figure 26.

Figure 26. The textarea element.

Another difference from the input element is that the textarea element has a closing tag
(</textarea>), so its content (i.e. its value) goes in between them. The rows and cols attribute do
not limit the amount of text; they are used only to define the layout. The textarea also has a handle
in the bottom-right corner, which allows the visitor to resize it.

Lists of Options
Several types of form controls can be used to present a list of options to the visitor: the <select>
element and the radio and checkbox input types.

The <select> element is a dropdown control with a list of predefined entries:

<p><label for="browser">Favorite Browser:</label>
<select name="browser" id="browser">
<option value="firefox">Mozilla Firefox</option>
<option value="chrome">Google Chrome</option>
<option value="opera">Opera</option>
<option value="edge">Microsoft Edge</option>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

126 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

</select>
</p>

The <option> tag represents a single entry in the corresponding <select> control. The entire list
appears when the visitor taps or clicks over the control, as shown in Figure 27.

Figure 27. The select form element.

The first entry in the list is selected by default. To change this behavior, you can add the selected
attribute to another entry so it will be selected when the page loads.

The radio input type is similar to the <select> control, but instead of a dropdown list, it shows
all the entries so the visitor can mark one of them. Results of the following code are shown in
Figure 28.

<p>Favorite Browser:</p>

<p>
 <input type="radio" id="browser-firefox" name="browser" value="firefox" checked>
 <label for="browser-firefox">Mozilla Firefox</label>
</p>

<p>
 <input type="radio" id="browser-chrome" name="browser" value="chrome">
 <label for="browser-chrome">Google Chrome</label>
</p>

<p>
 <input type="radio" id="browser-opera" name="browser" value="opera">
 <label for="browser-opera">Opera</label>
</p>

<p>

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 127

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <input type="radio" id="browser-edge" name="browser" value="edge">
 <label for="browser-edge">Microsoft Edge</label>
</p>

Figure 28. Input elements of type radio.

Note that all the radio input types in the same group have the same name attribute. Each of them
is exclusive, so the corresponding value attribute for the chosen entry will be the one associated
with the shared name attribute. The checked attribute works like the selected attribute of the
<select> control. It marks the corresponding entry when the page loads for the first time. The
<label> tag is especially useful for radio entries, because it allows the visitor to check an entry by
clicking or tapping on the corresponding text in addition to the control itself.

Whereas radio controls are intended for selecting only a single entry of a list, the checkbox input
type lets the visitor check multiple entries:

<p>Favorite Browser:</p>

<p>
 <input type="checkbox" id="browser-firefox" name="browser" value="firefox" checked>
 <label for="browser-firefox">Mozilla Firefox</label>
</p>

<p>
 <input type="checkbox" id="browser-chrome" name="browser" value="chrome" checked>
 <label for="browser-chrome">Google Chrome</label>
</p>

<p>
 <input type="checkbox" id="browser-opera" name="browser" value="opera">
 <label for="browser-opera">Opera</label>
</p>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

128 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<p>
 <input type="checkbox" id="browser-edge" name="browser" value="edge">
 <label for="browser-edge">Microsoft Edge</label>
</p>

Checkboxes also can use the checked attribute to make entries selected by default. Instead of the
round controls of the radio input, checkbox are rendered as square controls, as shown in Figure
29.

Figure 29. The checkbox input type.

If more than one entry is selected, the browser will submit them with the same name, requiring
the backend developer to write specific code to properly read form data containing checkboxes.

To improve usability, input fields can be grouped together inside a <fieldset> tag:

<fieldset>
<legend>Favorite Browser</legend>

<p>
 <input type="checkbox" id="browser-firefox" name="browser" value="firefox" checked>
 <label for="browser-firefox">Mozilla Firefox</label>
</p>

<p>
 <input type="checkbox" id="browser-chrome" name="browser" value="chrome" checked>
 <label for="browser-chrome">Google Chrome</label>
</p>

<p>
 <input type="checkbox" id="browser-opera" name="browser" value="opera">

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 129

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <label for="browser-opera">Opera</label>
</p>

<p>
 <input type="checkbox" id="browser-edge" name="browser" value="edge">
 <label for="browser-edge">Microsoft Edge</label>
</p>
</fieldset>

The <legend> tag contains the text that is placed at the top of the frame the <fieldset> tag
draws around the controls (Figure 30).

Figure 30. Grouping elements with the fieldset tag.

The <fieldset> tag does not change how the field values are submitted to the server, but it lets
the frontend developer control the nested controls more easily. For example, setting the disabled
attribute in a <fieldset> attribute will make all its inner elements unavailable to the visitor.

The hidden Element Type
There are situations where the developer wants to include information in the form that cannot be
manipulated by the visitor, that is, to submit a value chosen by the developer without presenting a
form field where the visitor can type or change the value. The developer may want, for example,
to include an identification token for that particular form that does not need to be seen by the
visitor. A hidden form element is coded as in the following example:

<input type="hidden" id="form-token" name="form-token" value="e730a375-b953-4393-847d-
2dab065bbc92">

The value of a hidden input field is usually added to the document at the server side, when

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

130 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

rendering the document. Hidden inputs are treated like ordinary fields when the browser sends
them to the server, which also reads them as ordinary input fields.

The File Input Type
In addition to textual data, either typed or selected from a list, HTML forms can also submit
arbitrary files to the server. The file input type lets the visitor pick a file from the local file
system and send it directly from the web page:

<p>
<label for="attachment">Attachment:</label>

<input type="file" id="attachment" name="attachment">
</p>

Instead of a form field to write in or select a value from, the file input type shows a browse
button that will open a file dialog. Any file type is accepted by the file input type, but the
backend developer will probably restrict the allowed file types and their maximum size. The file
type verification can also be performed in the frontend by adding the accept attribute. To accept
only JPEG and PNG images, for example, the accept attribute should be accept="image/jpeg,
image/png".

Action Buttons
By default, the form is submitted when the visitor presses the Enter key at any input field. To
make things more intuitive, a submit button should be added with the submit input type:

<input type="submit" value="Submit form">

The text in the value attribute is displayed on the button, as shown in Figure 31.

Figure 31. A standard submit button.

Another useful button to include in complex forms is the reset button, which clears the form and
returns it to its original state:

<input type="reset" value="Clear form">

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 131

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Like the submit button, the text in the value attribute is used to label the button. Alternatively,
the <button> tag can be used to add buttons to forms or anywhere else in the page. Unlike
buttons made with the <input> tag, the button element has a closing tag and the button label is
their inner content:

<button>Submit form</button>

When inside a form, the default action for the button element is to submit the form. Like the
input buttons, the button’s type attribute can be switched to reset.

Form Action and Methods
The last step in writing an HTML form is to define how and to where the data should be sent.
These aspects depend on details in both the client and the server.

On the server side, the most common approach is to have a script file that will parse, validate, and
process the form data according to the application’s purpose. For example, the backend developer
could write a script called receive_form.php to receive the data sent from the form. On the
client side, the script is indicated in the action attribute of the form tag:

<form action="receive_form.php">

The action attribute follows the same conventions as all HTTP addresses. If the script is in the
same hierarchy level of the page containing the form, it can be written without its path.
Otherwise, the absolute or the relative path must be supplied. The script should also generate the
response to serve as a landing page, loaded by the browser after the visitor submits the form.

HTTP provides distinct methods for sending form data through a connection with the server. The
most common methods are get and post, which should be indicated in the method attribute of
the form tag:

<form action="receive_form.php" method="get">

Or:

<form action="receive_form.php" method="post">

In the get method, the form data is encoded directly in the request URL. When the visitor submits

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

132 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

the form, the browser will load the URL defined in the action attribute with the form fields
appended to it.

The get method is preferred for small amounts of data, such as simple contact forms. However,
the URL cannot exceed a few thousands characters, so the post method should be used when
forms contain large or non-textual fields, like images.

The post method makes the browser send the form data in the body section of the HTTP request.
While necessary for binary data that exceeds the size limit of a URL, the post method adds
unnecessary overhead to the connection when used in simpler textual forms, so the get method is
preferred in such cases.

The chosen method does not affect how the visitor interacts with the form. The get and post
methods are processed differently by the server-side script that receives the form.

When using the post method, it is also possible to change the MIME type of the form contents
with enctype form attribute. This affects how the form fields and values will be stacked together
in the HTTP communication with the server. The default value for enctype is application/x-
www-form-urlencoded, which is similar to the format used in the get method. If the form
contains input fields of type file, the enctype multipart/form-data should be used instead.

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 133

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What is the correct way to associate a <label> tag to an <input> tag?

2. What input element type provides a slider control to pick a numerical value?

3. What is the purpose of the placeholder form attribute?

4. How could you make the second option in a select control selected by default?

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

134 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. How could you change a file input to make it accept only PDF files?

2. How could you inform the visitor about which fields in a form are required?

3. Put together three code snippets in this lesson in a single form. Make sure not to use the same
name or id attribute in multiple form controls.

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 135

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers how to create simple HTML forms to send data back to the server. At the client
side, HTML forms consist of standard HTML elements that are combined to build custom
interfaces. Moreover, forms must be configured to properly communicate with the server. The
lesson goes through the following concepts and procedures:

• The <form> tag and basic form structure.

• Basic and special input elements.

• The role of special tags like <label>, <fieldset> and <legend>.

• Form buttons and actions.

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

136 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What is the correct way to associate a <label> tag to an <input> tag?

The for attribute of the <label> tag should contain the id of the corresponding <input> tag.

2. What input element type provides a slider control to pick a numerical value?

The range input type.

3. What is the purpose of the placeholder form attribute?

The placeholder attribute contains an example of visitor input that is visible when the
corresponding input field is empty.

4. How could you make the second option in a select control selected by default?

The second option element should have the selected attribute.

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 137

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. How could you change a file input to make it accept only PDF files?

The accept attribute of the input element should set to application/pdf.

2. How could you inform the visitor about which fields in a form are required?

Usually, the required fields are marked with an asterisk (*), and a brief note like “Fields
marked with * are required” is placed close to the form.

3. Put together three code snippets in this lesson in a single form. Make sure not to use the same
name or id attribute in multiple form controls.

 <form action="receive_form.php" method="get">

 <h2>Personal Information</h2>

 <label for="fullname">Full name:</label>
 <p><input type="text" name="fullname" id="fullname"></p>

 <p>
 <label for="date">Date:</label>
 <input type="date" name="date" id="date">
 </p>

 <p>Favorite Browser:</p>

 <p>
 <input type="checkbox" id="browser-firefox" name="browser" value="firefox" checked>
 <label for="browser-firefox">Mozilla Firefox</label>
 </p>

 <p>
 <input type="checkbox" id="browser-chrome" name="browser" value="chrome" checked>
 <label for="browser-chrome">Google Chrome</label>
 </p>

 <p>
 <input type="checkbox" id="browser-opera" name="browser" value="opera">
 <label for="browser-opera">Opera</label>
 </p>

Web Development Essentials (030) (Version 1.0) | Topic 032: HTML Document Markup

138 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 <p>
 <input type="checkbox" id="browser-edge" name="browser" value="edge">
 <label for="browser-edge">Microsoft Edge</label>
 </p>

 <p><input type="reset" value="Clear form"></p>
 <p><input type="submit" value="Submit form"></p>

 </form>

Web Development Essentials (030) (Version 1.0) | 032.4 HTML Forms

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 139

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Topic 033: CSS Content Styling

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

140 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

033.1 CSS Basics

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 033.1

Weight

1

Key knowledge areas

• Embedding CSS within an HTML document

• Understand the CSS syntax

• Add comments to CSS

• Awareness of accessibility features and requirements

Partial list of the used files, terms and utilities

• HTML style and type (text/css) attributes

• <style>

• <link>, including the rel (stylesheet), type (text/css) and src attributes

• ;

• /,/

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 141

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#033.1_CSS_Basics_.28weight:_1.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

033.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 033 CSS Content Styling

Objective: 033.1 CSS Basics

Lesson: 1 of 1

Introduction
All web browsers render HTML pages using default presentation rules that are practical and
straightforward, but not visually appealing. HTML by itself offers few features to write elaborate
pages based on modern user experience concepts. After writing simple HTML pages, you have
probably realized they are unsightly when compared to well-designed pages found on the
Internet. This is because, in modern HTML, the markup code intended for the structure and
function of the elements in the document (i.e., the semantic content) is separate from the rules that
define how the elements should look (the presentation). The rules for presentation are written in a
different language called Cascading Style Sheets (CSS). It lets you change almost all the document’s
visual aspects, such as fonts, colors, and the placement of the elements along the page.

HTML documents are not, in most cases, intended to be displayed in a fixed layout like a PDF file.
Rather, HTML-based web pages will probably be rendered on a wide variety of screen sizes or
even be printed. CSS provides tunable options to ensure that the web page will be rendered as
intended, adjusted to the device or application that opens it.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

142 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Applying Styles
There are several ways to including CSS in an HTML document: write it directly in the element’s
tag, in a separate section of the page’s source code, or in an external file to be referenced by the
HTML page.

The style Attribute

The simplest way to modify the style of a specific element is to write it directly in the element tag
using the style attribute. All visible HTML elements allow a style attribute, whose value may be
one or more CSS rules, also known as properties. Let’s start with a simple example, a paragraph
element:

<p>My stylized paragraph</p>

The basic syntax of a customized CSS property is property: value, where property is the
particular aspect you want to change in the element and value defines the replacement for the
default option made by the browser. Some properties apply to all elements and some properties
apply only to specific elements. Likewise, there are appropriate values to be used in each
property.

To change the color of our plain paragraph, for example, we use the color property. The color
property refers to the foreground color, that is, the color of the letters in the paragraph. The color
itself goes in the value part of the rule and it can be specified in many different formats, including
simple names like red, green, blue, yellow, etc. Thus, to make the letter of the paragraph
purple, add the customized property color: purple to the style attribute of the element:

<p style="color: purple">My first stylized paragraph</p>

Other customized properties can go in the same style property, but they must be separated by
semicolons. If you want to make the font size larger, for example, add font-size: larger to the
style property:

<p style="color: purple; font-size: larger">My first stylized paragraph</p>

NOTE
It’s not necessary to add spaces around the colons and semicolons, but they can
make it easier to read the CSS code.

To see the result of these changes, save the following HTML in a file and then open it in a web

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 143

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

browser (results are shown in Figure 32):

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>CSS Basics</title>
</head>
<body>

<p style="color: purple; font-size: larger">My first stylized paragraph</p>

<p style="color: green; font-size: larger">My second stylized paragraph</p>

</body>
</html>

Figure 32. A very simple visual change using CSS.

You can imagine every element in the page as a rectangle or a box whose geometric properties
and decorations you can manipulate with CSS. The rendering mechanism uses two basic standard
concepts for element placement: block placement and inline placement. Block elements occupy all
the horizontal space of their parent element and are placed sequentially, from top to bottom.
Their height (their vertical dimension, not to be confused with their top position in the page)
generally depends on the amount of content they have. Inline elements follow the left-to-right
method similar to Western written languages: elements are placed horizontally, from left to right,
until there is no more space in the right side, whereupon the element continues on a new line just
under the current one. Elements such as p, div, and section are placed as blocks by default,
whereas elements such as span, em, a, and single letters are placed inline. These basic placement
methods can be fundamentally modified by CSS rules.

The rectangle corresponding to the p element in the body of the sample HTML document will be
visible if you add the background-color property to the rule (Figure 33):

<p style="color: purple; font-size: larger; background-color: silver">My first stylized
paragraph</p>

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

144 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<p style="color: green; font-size: larger; background-color: silver">My second stylized
paragraph</p>

Figure 33. Rectangles corresponding to the paragraphs.

As you add new CSS customized properties to the style attribute, you’ll note that the overall code
starts to get cluttered. Writing too many CSS rules in the style attribute undermines the
separation of structure (HTML) and presentation (CSS). Moreover, you’ll soon realize that many
styles are shared among different elements and it is not wise to repeat them in every element.

CSS Rules

Rather than styling the elements directly in their style attributes, it is much more practical to tell
the browser about the entire collection of elements to which the custom style applies. We do it by
adding a selector to the customized properties, matching elements by type, class, unique ID,
relative position, etc. The combination of a selector and corresponding customized
properties — also known as declarations — is called a CSS rule. The basic syntax of a CSS rule is
selector { property: value }. As in the style attribute, properties separated by semicolons
can be grouped together, as in p { color: purple; font-size: larger }. This rule matches
every p element in the page and applies the customized color and font-size properties.

A CSS rule for a parent element will automatically match all its children elements. This means that
we could apply the customized properties to all text in the page, regardless of whether it is inside
or outside a <p> tag, by using the body selector instead: body { color: purple; font-size:
larger }. This strategy frees us from writing the same rule again for all its children, but it may
be necessary to write additional rules to “undo” or to modify the inherited rules.

The style Tag

The <style> tag lets us write CSS rules inside the HTML page we want to style. It allows the
browser to differentiate the CSS code from the HTML code. The <style> tag goes in the head
section of the document:

<!DOCTYPE html>
<html>

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 145

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

<head>
 <meta charset="utf-8" />
 <title>CSS Basics</title>

 <style type="text/css">

 p { color: purple; font-size: larger }

 </style>

</head>
<body>

<p>My first stylized paragraph</p>

<p>My second stylized paragraph</p>

</body>
</html>

The type attribute tells the browser what kind of content is inside the <style> tag, i.e. its MIME
type. Because every browser that supports CSS assumes that the type of the <style> tag is
text/css by default, including the type attribute is optional. There is also a media attribute that
indicates the media — computer screens or printing, for example — to which the CSS rules in the
<style> tag apply. By default, the CSS rules apply to any medium where the document is
rendered.

As in HTML code, line breaks and code indentation do not change how the CSS rules are
interpreted by the browser. Writing:

<style type="text/css">

p { color: purple; font-size: larger }

</style>

has the exact same result as writing:

<style type="text/css">

p {
 color: purple;

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

146 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 font-size: larger;
}

</style>

The extra bytes used by the spaces and line-breaks make little difference in the final size of the
document and do not have a significant impact on page’s loading time, so the choice of layout is a
matter of taste. Note the semicolon after the last declaration (font-size: larger;) of the CSS
rule. That semicolon is not mandatory, but having it there makes it easier to add another
declaration in the next line without worrying about missing semicolons.

Having the declarations in separate lines also helps when you need to comment out a declaration.
Whenever you want to temporarily disable a declaration for troubleshooting reasons, for
example, you can enclose the corresponding line with /* and */:

p {
 color: purple;
 /*
 font-size: larger;
 */
}

or:

p {
 color: purple;
 /* font-size: larger; */
}

Written like this, the font-size: larger declaration will be ignored by the browser. Be careful
to open and close the comments properly, otherwise the browser may be not able to interpret the
rules.

Comments are also useful to write reminders about the rules:

/* Texts inside <p> are purple and larger */
p {
 color: purple;
 font-size: larger;
}

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 147

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Reminders like the one in the example are expendable in stylesheets containing a small number
of rules, but they are essential to help navigate stylesheets with hundreds (or more) rules.

Even though the style attribute and the <style> tag are adequate for testing custom styles and
useful for specific situations, they are not commonly used. Instead, CSS rules are usually kept in a
separate file that can be referenced from the HTML document.

CSS in External Files

The preferred method to associate CSS definitions with an HTML document is to store the CSS in a
separate file. This method offers two main advantages over the previous ones:

• The same styling rules can be shared among distinct documents.

• The CSS file is usually cached by the browser, improving future loading times.

CSS files have the .css extension and, like HTML files, they can be edited by any plain text editor.
Unlike HTML files, CSS files have no top level structure built with hierarchical tags such as <head>
or <body>. Rather, the CSS file is just a list of rules processed in sequential order by the browser.
The same rules written inside a <style> tag could instead go in a CSS file.

The association between the HTML document and the CSS rules stored in a file is defined in the
HTML document only. To the CSS file, it does not matter whether elements matching its rules
exist, so there is no need to enumerate in the CSS file the HTML documents it is linked to. On the
HTML side, every linked stylesheet will be applied to the document, just as if the rules were
written in a <style> tag.

The <link> HTML tag defines an external stylesheet to be used in the current document and
should go in the head section of the HTML document:

<head>
 <meta charset="utf-8" />
 <title>CSS Basics</title>

 <link href="style.css" rel="stylesheet">

</head>

Now you can place the rule for the p element we used before into the style.css file, and the
results seen by the visitor to the web page will be the same. If the CSS file is not in the same
directory as the HTML document, specify its relative or full path in the href attribute. The <link>
tag can refer to different types of external resources, so it is important to establish what

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

148 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

relationship the external resource has with the current document. For external CSS files, the
relationship is defined in rel="stylesheet".

The media attribute can be used in the same way as for the <style> tag: it indicates the media,
such as computer screens or printing, to which the rules in the external file should apply.

CSS can completely change an element, but it is still important to use the appropriate element for
the components of the page. Otherwise, assistive technologies such as screen-readers may not be
able to identify the correct sections of the page.

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 149

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What methods can be used to change the appearance of HTML elements using CSS?

2. Why is it not recommended to use the style attribute of the <p> tag if there are sibling
paragraphs that should look the same?

3. What is the default placement policy for placing a div element?

4. What attribute of the <link> tag indicates the location of an external CSS file?

5. What is the correct section to insert the link element inside an HTML document?

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

150 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. Why is it not recommended to use a <div> tag to identify a word in an ordinary sentence?

2. What happens if you start a comment with /* in the middle of a CSS file, but forget to close it
with */?

3. Write a CSS rule to draw an underline in all em elements of the document.

4. How can you indicate that a stylesheet from a <style> or <link> tag should be used only by
speech synthesizers?

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 151

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers the basic concepts of CSS and how to integrate it with HTML. Rules written in
CSS stylesheets are the standard method to change the appearance of HTML documents. CSS
allows us to keep the semantic content separate from the presentation policies. This lesson goes
through the following concepts and procedures:

• How to change CSS properties using the style attribute.

• The basic CSS rule syntax.

• Using the <style> tag to embed CSS rules in the document.

• Using the <link> tag to incorporate external stylesheets to the document.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

152 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What methods can be used to change the appearance of HTML elements using CSS?

Three basic methods: Write it directly in the element’s tag, in a separate section of the page’s
source code, or in an external file to be referenced by the HTML page.

2. Why is it not recommended to use the style attribute of the <p> tag if there are sibling
paragraphs that should look the same?

The CSS declaration will need to be replicated in the other <p> tags, which is time consuming,
increases the file size, and it is prone to errors.

3. What is the default placement policy for placing a div element?

The div element is treated as a block element by default, so it will occupy all the horizontal
space of its parent element and its height will depend on its contents.

4. What attribute of the <link> tag indicates the location of an external CSS file?

The href attribute.

5. What is the correct section to insert the link element inside an HTML document?

The link element should be in the head section of the HTML document.

Web Development Essentials (030) (Version 1.0) | 033.1 CSS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 153

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. Why it is not recommended to use a <div> tag to identify a word in an ordinary sentence?

The <div> tag provides a semantic separation between two distinct sections of the document
and interferes with accessibility tools when it is used for inline text elements.

2. What happens if you start a comment with /* in the middle of a CSS file, but forget to close it
with */?

All the rules after the comment will be ignored by the browser.

3. Write a CSS rule to draw an underline in all em elements of the document.

em { text-decoration: underline }

or

em { text-decoration-line: underline }

4. How can you indicate that a stylesheet from a <style> or <link> tag should be used only by
speech synthesizers?

The value of its media attribute must be speech.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

154 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

033.2 CSS Selectors and Style Application

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 033.2

Weight

3

Key knowledge areas

• Use selectors to apply CSS rules to elements

• Understand CSS pseudo-classes

• Understand rule order and precedence in CSS

• Understand inheritance in CSS

Partial list of the used files, terms and utilities

• element; .class; #id

• a, b; a.class; a b;

• :hover, :focus

• !important

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 155

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#033.2_CSS_Selectors_and_Style_Application_.28weight:_3.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

033.2 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 033 CSS Content Styling

Objective: 033.2 CSS Selectors and Style Application

Lesson: 1 of 1

Introduction
When writing a CSS rule, we must tell the browser to which elements the rule applies. We do so by
specifying a selector: a pattern that can match an element or group of elements. Selectors come in
many different forms, which can be based on the element’s name, its attributes, its relative
placement in the document structure, or a combination of these characteristics.

Page-Wide Styles
One of the advantages of using CSS is that you do not need to write individual rules to elements
sharing the same style. An asterisk applies the rule to all elements in the web page, as shown in
the following example:

* {
 color: purple;
 font-size: large;
}

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

156 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

The * selector is not the only method to apply a style rule to all elements in the page. A selector
that simply matches an element by its tag name is called a type selector, so any HTML tag name
such as body, p, table, em, etc., can be used as selectors. In CSS, the parent’s style is inherited by its
children elements. So, in practice, using the * selector has the same effect as applying a rule to the
body element:

body {
 color: purple;
 font-size: large;
}

Furthermore, the cascading feature of CSS allows you to fine tune the inherited properties of an
element. You can write a general CSS rule that applies to all elements in the page, and then write
rules for specific elements or sets of elements.

If the same element matches two or more conflicting rules, the browser applies the rule from the
most specific selector. Take the following CSS rules as an example:

body {
 color: purple;
 font-size: large;
}

li {
 font-size: small;
}

The browser will apply the color: purple and font-size: large styles to all elements inside
the body element. However, if there are li elements in the page, the browser will replace the
font-size: large style by the font-size: small style, because the li selector has a stronger
relationship with the li element than the body selector does.

CSS does not limit the number of equivalent selectors in the same stylesheet, so you can have two
or more rules using the same selector:

li {
 font-size: small;
}

li {
 font-size: x-small;

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 157

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

}

In this case, both rules are equally specific to the li element. The browser cannot apply
conflicting rules, so it will choose the rule that comes later in the CSS file. To avoid confusion, the
recommendation is to group together all properties that use the same selector.

The order in which the rules appear in the stylesheet affect how they are applied in the document,
but you can override this behavior by using an important rule. If, for any reason, you want to
keep the two separate li rules, but force the application of the first one instead of the second one,
mark the first rule as important:

li {
 font-size: small !important;
}

li {
 font-size: x-small;
}

Rules marked with !important should be used with caution, because they break the natural
stylesheet cascading and make it harder to find and correct problems within the CSS file.

Restrictive Selectors
We saw that we can change certain inherited properties by using selectors matching specific tags.
However, we usually need to use distinct styles for elements of the same type.

Attributes of HTML tags can be incorporated into selectors to restrict the set of elements they refer
to. Suppose the HTML page you are working on has two types of unordered lists (): one is
used at the top of the page as a menu to the sections of the website and the other type is used for
conventional lists in the text body:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>CSS Basics</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

158 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 Home
 Articles
 About

<div id="content">

<p>The three rocky planets of the solar system are:</p>

 Mercury
 Venus
 Earth
 Mars

<p>The outer giant planets made most of gas are:</p>

 Jupiter
 Saturn
 Uranus
 Neptune

</div><!-- #content -->

<div id="footer">

 Home
 Articles
 About

</div><!-- #footer -->

</body>
</html>

By default, each list item has a black circle to its left. You may want to remove the circles from the
top menu list while leaving the circles in the other list. However, you cannot simply use the li

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 159

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

selector because doing so will also remove the circles in the list inside the text body section. You
will need a way to tell the browser to modify only the list items used in one list, but not the other.

There are several ways to write selectors matching specific elements in the page. As mentioned
earlier, we will first see how to use the elements' attributes to do so. For this example in
particular, we can use the id attribute to specify the top list only.

The id attribute assigns a unique identifier to the corresponding element, which we can use as the
selector part of the CSS rule. Before writing the CSS rule, edit the sample HTML file and add
id="topmenu" to the ul element used for the top menu:

<ul id="topmenu">
 Home
 Articles
 About

There is already a link element in the head section of the HTML document pointing to the
style.css stylesheet file in the same folder, so we can add the following CSS rules to it:

ul#topmenu {
 list-style-type: none
}

The hash character is used in a selector, following an element, to designate an ID (without spaces
separating them). The tag name to the left of the hash is optional, as there will be no other element
with the same ID. Therefore, the selector could be written just as #topmenu.

Even though the list-style-type property is not a direct property of the ul element, CSS
properties of the parent element are inherited by its children, so the style assigned to the ul
element will be inherited by its child li elements.

Not all elements have an ID by which they can be selected. Indeed, only a few key layout elements
in a page are expected to have IDs. Take the lists of planets used in the sample code, for instance.
Although it is possible to assign unique IDs for each individual repeated element like these, this
method is not practical for longer pages with lots of contents. Rather, we can use the parent div
element’s ID as the selector to change the properties of its inner elements.

However, the div element is not directly related to HTML lists, so adding the list-style-type
property to it will have no effect on its children. Thus, to change the black circle in the lists inside
the content div to a hollow circle, we should use a descendant selector:

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

160 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

#topmenu {
 list-style-type: none
}

#content ul {
 list-style-type: circle
}

The #content ul selector is called a descendant selector because it matches only the ul elements
that are children of the element whose ID is content. We can use as many levels of descendance
as necessary. For instance, using #content ul li would match only the li elements that are
descendants of ul elements that are descendants of the element whose ID is content. But in this
example, the longer selector will have the same effect as using #content ul, because the li
elements inherit the CSS properties set to their parent ul. Descendant selectors are an essential
technique as the page layout grows in complexity.

Let’s say that now you want to change the font-style property of the list items in the topmenu
list and in the list in the footer div to make them look oblique. You can’t simply write a CSS rule
using ul as the selector, because it will also change the list items in the content div. So far, we have
changed CSS properties using one selector at a time, and this method can also be used for this
task:

#topmenu {
 font-style: oblique
}

#footer ul {
 font-style: oblique
}

Separate selectors are not the only way to do it, though. CSS allow us to group together selectors
that share one or more styles, using a list of selectors separated by commas:

#topmenu, #footer ul {
 font-style: oblique
}

Grouping selectors eliminates the extra work of writing duplicate styles. Furthermore, you may
want to change the property again in the future and may not remember to change it in all the
different places.

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 161

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Classes

If you do not want to worry too much about the element hierarchy, you can simply add a class to
the set of elements you want to customize. Classes are similar to IDs, but instead of identifying
only a single element in the page, they can identify a group of elements sharing the same
characteristics.

Take the sample HTML page we are working on, for instance. It’s unlikely that in real-world pages
we will find structures simple as that, so it would be more practical to select an element using
classes only, or a combination of classes and descendancy. To apply the font-style: oblique
property to the menu lists using classes, first we need to add the class property to the elements
in the HTML file. We’ll do it first in the top menu:

<ul id="topmenu" class="menu">
 Home
 Articles
 About

And then in the footer’s menu:

<div id="footer">

<ul class="menu">
 Home
 Articles
 About

</div><!-- #footer -->

With that, we can replace the selector group #topmenu, #footer ul by the class-based selector
.menu:

.menu {
 font-style: oblique
}

As with the ID-based selectors, adding the tag name to the left of the dot in class-based selectors is
optional. However, unlike IDs, the same class is supposed to be used in more than one element

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

162 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

and they do not even need to be of the same type. Therefore, if the menu class is shared among
different element types, using the ul.menu selector would match only the ul elements having the
menu class. Instead, using .menu as the selector will match any element having the menu class,
regardless of its type.

Furthermore, elements can be associated to more than one class. We could differentiate between
the top and the bottom menu by adding an extra class to each one of them:

<ul id="topmenu" class="menu top">

And in the footer’s menu:

<ul class="menu footer">

When the class attribute has more than one class, they must be separated by spaces. Now, in
addition to the CSS rule shared between elements of the menu class, we can address the top and
footer menu using their corresponding classes:

.menu {
 font-style: oblique
}

.menu.top {
 font-size: large
}

.menu.footer {
 font-size: small
}

Be aware that writing .menu.top differs from .menu .top (with a space between the words). The
first selector will match elements that have both menu and top classes, whereas the second will
match elements that have the top class and a parent element with the menu class.

Special Selectors
CSS selectors can also match dynamic states of elements. These selectors are particularly useful
for interactive elements, such as hyperlinks. You may want the appearance of hyperlinks when
the mouse pointer moves over them, to draw the visitor’s attention.

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 163

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Back to our sample page, we could remove the underlines from the links in the top menu and
show a line only when the mouse pointer moves over the corresponding link. To do this, we first
write a rule to remove the underline from the links in the top menu:

.menu.top a {
 text-decoration: none
}

Then we use the :hover pseudo-class on those same elements to create a CSS rule that will apply
only when the mouse pointer is over the corresponding element:

.menu.top a:hover {
 text-decoration: underline
}

The :hover pseudo-class selector accepts all the CSS properties of conventional CSS rules. Other
pseudo-classes include :visited, which matches hyperlinks that have already been visited, and
:focus, which matches form elements that have received focus.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

164 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. Suppose an HTML page has a stylesheet associated to it, containing the two following rules:

p {
 color: green;
}

p {
 color: red;
}

What color will the browser apply to the text inside the p elements?

2. What is the difference between using the ID selector div#main and #main?

3. Which selector matches all p elements used inside a div with ID attribute #main?

4. What is the difference between using the class selector p.highlight and .highlight?

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 165

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. Write a single CSS rule that changes the font-style property to oblique. The rule must

match only a elements that are inside <div id="sidebar"></div> or <ul
class="links">.

2. Suppose you want to change the style of the elements whose class attribute is set to article
reference, as in <p class="article reference">. However, the .article .reference
selector does not appear to alter their appearance. Why is the selector not matching the
elements as expected?

3. Write a CSS rule to change the color property of all visited links in the page to red.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

166 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
This lesson covers how to use CSS selectors and how the browser decides what styles to apply to
each element. Being separate from the HTML markup, CSS provides many selectors to match
individual elements or groups of elements in the page. The lesson goes through the following
concepts and procedures:

• Page wide styles and style inheritance.

• Styling elements by type.

• Using the element ID and class as the selector.

• Compound selectors.

• Using pseudo-classes to style elements dynamically.

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 167

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. Suppose an HTML page has a stylesheet associated to it, containing the two following rules:

p {
 color: green;
}

p {
 color: red;
}

What color will the browser apply to the text inside the p elements?

The color red. When two or more equivalent selectors have conflicting properties, the browser
will choose the last one.

2. What is the difference between using the ID selector div#main and #main?

The selector div#main matches a div element having the ID main, whereas the #main selector
matches the element having the ID main, regardless of its type.

3. Which selector matches all p elements used inside a div with ID attribute #main?

The selector #main p or div#main p.

4. What is the difference between using the class selector p.highlight and .highlight?

The selector p.highlight matches only the elements of type p having the class highlight,
whereas the .highlight selector matches all elements having the class highlight, regardless
of their type.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

168 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. Write a single CSS rule that changes the font-style property to oblique. The rule must

match only a elements that are inside <div id="sidebar"></div> or <ul
class="links">.

#sidebar a, ul.links a {
 font-style: oblique
}

2. Suppose you want to change the style of the elements whose class attribute is set to article
reference, as in <p class="article reference">. However, the .article .reference
selector does not appear to alter their appearance. Why is the selector not matching the
elements as expected?

The .article .reference selector will match the elements having the class reference that
are descendants of elements having the class article. To match elements having both
article and reference classes, the selector should be .article.reference (without the
space between them).

3. Write a CSS rule to change the color property of all visited links in the page to red.

a:visited {
 color: red;
}

Web Development Essentials (030) (Version 1.0) | 033.2 CSS Selectors and Style Application

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 169

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

033.3 CSS Styling

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 033.3

Weight

2

Key knowledge areas

• Understand fundamental CSS properties

• Understand units commonly used in CSS

Partial list of the used files, terms and utilities

• px, %, em, rem, vw, vh

• color, background, background-*, font, font-*, text-*, list-style, line-height

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

170 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#033.3_CSS_Styling_.28weight:_2.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

033.3 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 033 CSS Content Styling

Objective: 033.3 CSS Styling

Lesson: 1 of 1

Introduction
CSS provides hundreds of properties that can be used to modify the appearance of HTML
elements. Only experienced designers manage to remember most of them. Nevertheless, it is
practical to know the basic properties that are applicable to any element, as well as some element-
specific properties. This chapter covers some popular properties you are likely to use.

CSS Common Properties and Values
Many CSS properties have the same value type. Colors, for example, have the same numerical
format whether you are changing the font color or the background color. Similarly, the units
available to change the size of the font are also used to change the thickness of a border. However,
the format of the value is not always unique. Colors, for example, can be entered in various
different formats, as we will see next.

Colors
Changing the color of an element is probably one of the first things designers learn to do with CSS.

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 171

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

You can change the color of the text, the background color, the color of the border of elements,
and more.

The value of a color in CSS can be written as a color keyword (i.e. a color name) or as a numerical
value listing each color component. All common color names, such as black, white, red, purple,
green, yellow, and blue are accepted as color keywords. The entire list of color keywords
accepted by CSS is available at a W3C web page. But to have finer control over the color, you can
use the numerical value.

Color Keywords

We’ll use the color keyword first, because it’s simpler. The color property changes the color of
the text in the corresponding element. So to put all the text on the page in purple, you could write
the following CSS rule:

* {
 color: purple;
}

Numerical Color Values

Although intuitive, color keywords do not offer the complete range of possible colors in modern
displays. Web designers usually develop a color palette that employs custom colors, by assigning
specific values to the red, green, and blue components.

Each color component is an eight-bit binary number, ranging from 0 to 255. All three components
must be specified in the color mixture, and their order is always red, green, blue. Therefore, to
change the color for all the text in the page to red using RGB notation, use rgb(255,0,0):

* {
 color: rgb(255,0,0);
}

A component set to 0 means that the corresponding basic color is not used in the color mixture.
Percentages can also be used instead of numbers:

* {
 color: rgb(100%,0%,0%);
}

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

172 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://www.w3.org/wiki/CSS/Properties/color/keywords
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

The RGB notation is rarely seen if you use a drawing application to create layouts or just to pick its
colors. Rather, it is more common to see colors in CSS expressed as hexadecimal values. The color
components in hexadecimal also range from 0 to 255, but in a more succinct way, starting with a
hash symbol # and using a fixed two-digit length for all components. The minimal value 0 is 00
and the maximum value 255 is FF, so the color red is #FF0000.

TIP
If the digits in each component of a hexadecimal color repeat, the second digit can be
omitted. The color red, for example, can be written with a single digit for each
component: #F00.

The following list shows the RGB and hexadecimal notation for some basic colors:

Color Keyword RGB Notation Hexadecimal Value

black rgb(0,0,0) #000000

white rgb(255,255,255) #FFFFFF

red rgb(255,0,0) #FF0000

purple rgb(128,0,128) #800080

green rgb(0,128,0) #008000

yellow rgb(255,255,0) #FFFF00

blue rgb(0,0,255) #0000FF

Color keywords and the letters in hexadecimal color values are case-insensitive.

Color Opacity

In addition to opaque colors, it is possible to fill page elements with semi-transparent colors. The
opacity of a color can be set using a fourth component in the color value. Unlike the other color
components, where the values are integer numbers ranging from 0 to 255, the opacity is a fraction
ranging from 0 to 1.

The lowest value, 0, results in a completely transparent color, making it undistinguishable from
any other fully transparent color. The highest value, 1, results in a fully opaque color, which is the
same as the original color with no transparency at all.

When you use the RGB notation, specify colors with an opacity component through the rgba
prefix instead of rgb. Thus, to make the color red half-transparent, use rgba(255,0,0,0.5). The
a character stands for alpha channel, a term commonly used to specify the opacity component in
digital graphics jargon.

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 173

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

The opacity can also be set in the hexadecimal notation. Here, like the other color components, the
opacity ranges from 00 to FF. Therefore, to make the color red half-transparent using
hexadecimal notation, use #FF000080.

Background
The background color of single elements or of the entire page is set with the background-color
property. It takes the same values as the color property, either as keywords or using the
RGB/hexadecimal notation.

The background of HTML elements is not restricted to colors, though. With the background-
image property it is possible to use an image as the background. The accepted image formats are
all the conventional ones accepted by the browser, such as JPEG and PNG.

The path to the image should be specified using an url() designator. If the image you want to use
is in the same folder as the HTML file, it is enough to use only its filename:

body {
 background-image: url("background.jpg");
}

In this example, the background.jpg image file will be used as the background image for the
entire body of the page. By default, the background image is repeated if its size does not cover the
entire page, starting from the top-left corner of the area corresponding to the rule’s selector. This
behavior can be modified with the background-repeat property. If you want the background
image to be placed in the element’s area without repeating it, use the no-repeat value:

body {
 background-image: url("background.jpg");
 background-repeat: no-repeat;
}

You can also make the image repeat only in the horizontal direction (background-repeat:
repeat-x) or only in the vertical direction (background-repeat: repeat-y).

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

174 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 34. Background placement using the background-repeat property.

TIP

Two or more CSS properties can be combined in a single property, called the
background shorthand property. The background-image and background-repeat
properties, for example, can be combined in a single background property with
background: no-repeat url("background.jpg").

A background image can also be placed in a specific position in the element’s area using the
background-position property. The five basic positions are top, bottom, left, right and
center, but the top-left position of the image can also be adjusted with percents:

body {
 background-image: url("background.jpg");
 background-repeat: no-repeat;
 background-position: 30% 10%;
}

The percent for each position is relative to the corresponding size of the element. In the example,
the background image left side will be at 30% of the body’s width (usually the body is the entire
visible document) and the top side of the image will be at 10% of the body’s height.

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 175

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Borders
Changing an element’s border is also a common layout customization made with CSS. The border
refers to the line forming a rectangle around the element and has three basic properties: color,
style and width.

The color of the border, defined with border-color, follows the same format we saw for the
other color properties.

Borders can be traced in a style other than a solid line. You could, for example, use dashes for the
border with the property border-style: dashed. The other possible style values are:

dotted
A sequence of rounded dots

double
Two straight lines

groove
A line with a carved appearance

ridge
A line with an extruded appearance

inset
An element that appears embedded

outset
An element that appears embossed

The border-width property set the thickness of the border. Its value can be a keyword (thin,
medium or thick) or a specific numerical value. If you prefer to use a numerical value, you will
also need to specify its corresponding unit. This is described next.

Unit Values
Sizes and distances in CSS can be defined in various ways. Absolute units are based on a fixed
number of screen pixels, so they are not so different from the fixed sizes and dimensions used in
printed media. There are also relative units, which are dynamically calculated from some
measurement given by the media where the page is being rendered, like the available space or
another size written in absolute units.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

176 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Absolute Units

Absolute units are equivalent to their physical counterparts, like centimeters or inches. On
conventional computer screens, one inch will be 96 pixels wide. The following absolute units are
commonly used:

in (inch)

1 in is equivalent to 2.54 cm or 96 px.

cm (centimeter)

1 cm is equivalent to 96 px / 2.54.

mm (millimeter)

1 mm is equivalent to 1 cm / 10.

px (pixel)

1 px is equivalent to 1 / 96th of an inch.

pt (point)

1pt is equivalent to 1 / 72th of an inch.

Keep in mind that the ratio of pixels to inch may vary. In high resolution screens, where pixels are
more densely packed, an inch will correspond to more than 96 pixels.

Relative Units
Relative units vary according to other measurements or to the viewport dimensions. The viewport
is the area of the document currently visible in its window. In full screen mode, the viewport
corresponds to the device screen. The following relative units are commonly used:

%
Percentage — it is relative to the parent element.

em
The size of the font used in the element.

rem
The size of the font used in the root element.

vw
1% of the viewport’s width.

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 177

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

vh
1% of the viewport’s height.

The advantage of using relative units is that you can create layouts that are adjustable by
changing only a few key sizes. For example, you can use the pt unit to set the font size in the body
element and the rem unit for the fonts in other elements. Once you change the size of font for the
body, all the other font sizes will adjust accordingly. Furthermore, using vw and vh to set the
dimensions of page sections makes them adjustable to screens with different sizes.

Fonts and Text Properties
Typography, or the study of font types, is a very broad design subject, and CSS typography does
not lag behind. However, there are a few basic font properties that will meet the needs of most
users learning CSS.

The font-family property sets the name of the font to be used. There is no guarantee that the
chosen font will be available in the system where the page will be viewed, so this property may
have no effect in the document. Although it is possible to make the browser download and use the
specified font file, most web designers are happy using a generic font family in their documents.

The three most common generic font families are serif, sans-serif and monospace. Serif is the
default font family in most browsers. If you prefer to use sans-serif for the entire page, add the
following rule to your stylesheet:

* {
 font-family: sans-serif;
}

Optionally, you can first set a specific font family name, followed by the generic family name:

* {
 font-family: "DejaVu Sans", sans-serif;
}

If the device rendering the page has that specific font family, the browser will use it. If not, it will
use its default font matching the generic family name. Browsers search for fonts in the order they
are specified in the property.

Anyone who has used a word processing application will also be familiar with three other font
adjustments: size, weight, and style. These three adjustments have CSS properties counterparts:

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

178 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

font-size, font-weight, and font-style.

The font-size property accepts keyword sizes such as xx-small, x-small, small, medium,
large, x-large, xx-large, xxx-large. These keywords are relative to the default font size used
by the browser. The keywords larger and smaller change the font size relative to the parent’s
element font size. You can also express the font size with numerical values, including the unit
after the value, or with percentages.

If you do not want to change the font size, but the distance between lines, use the line-height
property. A line-height of 1 will make the line height the same size of the font of the element,
which can make the text lines too close together. Therefore, a value greater than 1 is more
appropriate for texts. Like the font-size property, other units can be used together with the
numerical value.

The font-weight sets the thickness of the font with the familiar keywords normal or bold. The
keywords lighter and bolder change the font weight of the element relative to the font weight
of its parent element.

The font-style property can be set to italic to select the italic version of the current font
family. The oblique value selects the oblique version of the font. These two options are almost
identical, but the italic version of a font is usually a little more narrow than the oblique version. If
neither italic nor oblique versions of the font exist, the font will be artificially tilted by the
browser.

There are other properties that change the way text is rendered in the document. You can, for
example, add an underline to some parts of the text you want to emphasize. First, use a
tag to delimit the text:

<p>CSS is the proper mechanism to style HTML documents.</p>

Then you can use the .under selector to change the text-decoration property:

.under {
 text-decoration: underline;
}

By default, all a (link) elements are underlined. If you want to remove it, use the none value for
the text-decoration of all a elements:

a {

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 179

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 text-decoration: none;
}

When reviewing content, some authors like to cross out incorrect or outdated parts of the text, so
that the reader will know the text has been updated and what has been removed. To do so, use the
line-through value of the text-decoration property:

.disregard {
 text-decoration: line-through;
}

Again, a tag can be used to apply the style:

<p>Netscape Navigator is was one of the most popular Web
browsers.</p>

Other decorations may be specific to an element. The circles in bullet point lists can be customized
using the list-style-type property. To change them to squares, for example, use list-style-
type: square. To simply remove them, set the value of list-style-type to none.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

180 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. How could you add half-transparency to the color blue (RGB notation rgb(0,0,255)) in order

to use it in the CSS color property?

2. What color corresponds to the #000 hexadecimal value?

3. Given that Times New Roman is a serif font and that it will not be available in all devices,
how could you write a CSS rule to request Times New Roman while setting the serif generic
font family as a fallback?

4. How could you use a relative size keyword to set the font size of the element <p
class="disclaimer"> smaller in relation to its parent element?

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 181

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. The background property is a shorthand to set more than one background-* property at once.

Rewrite the following CSS rule as a single background shorthand property.

body {
 background-image: url("background.jpg");
 background-repeat: repeat-x;
}

2. Write a CSS rule for the element <div id="header"></div> that changes only its bottom
border width to 4px.

3. Write a font-size property that doubles the font size used in the page’s root element.

4. Double-spacing is a common text formatting feature in word processors. How could you set a
similar format using CSS?

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

182 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
This lesson covers the application of simple styles to elements of an HTML document. CSS
provides hundreds of properties, and most web designers will need to resort to reference manuals
to remember them all. Nonetheless, a relatively small set of properties and values are used most
of the time, and it is important to know them by heart. The lesson goes through the following
concepts and procedures:

• Fundamental CSS properties dealing with colors, backgrounds, and fonts.

• The absolute and relative units CSS can use to set sizes and distances, such as px, em, rem, vw,
vh, etc.

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 183

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. How could you add half-transparency to the color blue (RGB notation rgb(0,0,255)) in order

to use it in the CSS color property?

Use the rgba prefix and add 0.5 as the fourth value: rgba(0,0,0,0.5).

2. What color corresponds to the #000 hexadecimal value?

The color black. The #000 hexadecimal value is a shorthand for #000000.

3. Given that Times New Roman is a serif font and that it will not be available in all devices,
how could you write a CSS rule to request Times New Roman while setting the serif generic
font family as a fallback?

* {
 font-family: "Times New Roman", serif;
}

4. How could you use a relative size keyword to set the font size of the element <p
class="disclaimer"> smaller in relation to its parent element?

Using the smaller keyword:

p.disclaimer {
 font-size: smaller;
}

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

184 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. The background property is a shorthand to set more than one background-* property at once.

Rewrite the following CSS rule as a single background shorthand property.

body {
 background-image: url("background.jpg");
 background-repeat: repeat-x;
}

body {
 background: repeat-x url("background.jpg");
}

2. Write a CSS rule for the element <div id="header"></div> that changes only its bottom
border width to 4px.

#header {
 border-bottom-width: 4px;
}

3. Write a font-size property that doubles the font size used in the page’s root element.

The rem unit corresponds to the font size used in the root element, so the property should be
font-size: 2rem.

4. Double-spacing is a common text formatting feature in word processors. How could you set a
similar format using CSS?

Set the line-height property to the value 2em, because the em unit corresponds to the font
size of the current element.

Web Development Essentials (030) (Version 1.0) | 033.3 CSS Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 185

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

033.4 CSS Box Model and Layout

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 033.4

Weight

2

Key knowledge areas

• Define the dimension, position and alignment of elements in a CSS layout

• Specify how text flows around other elements

• Understand the document flow

• Awareness of the CSS grid

• Awareness of responsive web design

• Awareness of CSS media queries

Partial list of the used files, terms and utilities

• width, height, padding, padding-*, margin, margin-*, border, border-*

• top, left, right, bottom

• display: block | inline | flex | inline-flex | none

• position: static | relative | absolute | fixed | sticky

• float: left | right | none

• clear: left | right | both | none

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

186 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#033.4_CSS_Box_Model_and_Layout_.28weight:_2.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

033.4 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 033 CSS Content Styling

Objective: 033.4 CSS Box Model and Layout

Lesson: 1 of 1

Introduction
Each visible element in an HTML document is rendered as a rectangular box. Thus, the term box
model descibes the approach CSS takes to modifying the visual properties of the elements. Like
boxes of different sizes, HTML elements can be nested inside container elements — usually the
div element — so they can be segregated in sections.

We can use CSS to modify the position of the boxes, from minor adjustments to drastic changes in
the disposition of the elements on the page. Besides the normal flow, the position for each box can
be based on the elements around it, either its relationship to its parent container or its
relationship to the viewport, which is the area of the page visible to the user. No single mechanism
meets all possible layout requirements, so you may require a combination of them.

Normal Flow
The default way the browser renders the document tree is called normal flow. The rectangles
corresponding to the elements are placed more or less in the same order they appear in the
document tree, relative to their parent elements. Nevertheless, depending on the element type, the
corresponding box may follow distinct positioning rules.

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 187

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

A good way to understand the logic of the normal flow is to make the boxes visible. We can start
with a very basic page, having only three separate div elements, each one having a paragraph
with random text:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>CSS Box Model and Layout</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>

<div id="first">
 <h2>First div</h2>
 <p>Sed eget velit
 id ante tempus
 porta pulvinar et
 ex.</p>
</div><!-- #first -->

<div id="second">
 <h2>Second div</h2>
 <p>Fusce vitae vehicula
 neque. Etiam maximus
 vulputate neque eu
 lobortis. Phasellus condimentum,
 felis eget eleifend
 aliquam, dui dolor
 bibendum leo.</p>
</div><!-- #second -->

<div id="third">
 <h2>Third div</h2>
 <p>Pellentesque ornare ultricies
 elementum. Morbi vulputate
 pretium arcu, sed
 faucibus.</p>
</div><!-- #third -->

</body>
</html>

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

188 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Every word is in a span element so we can style the words and see how they are treated as boxes
as well. To make the boxes visible, we must edit the stylesheet file style.css referenced by the
HTML document. The following rules will do what we need:

* {
 font-family: sans;
 font-size: 14pt;
}

div {
 border: 2px solid #00000044;
}

#first {
 background-color: #c4a000ff;
}

#second {
 background-color: #4e9a06ff;
}

#third {
 background-color: #5c3566da;
}

h2 {
 background-color: #ffffff66;
}

p {
 background-color: #ffffff66;
}

span {
 background-color: #ffffffaa;
}

The result appears in Figure 35.

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 189

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Figure 35. The basic element flow is from top to bottom and left to right.

Figure 35 shows that each HTML tag has a corresponding box in the layout. The div, h2, and p
elements extend to the width of their parent element. For instance, the parent element of the div
elements is the body element, so they extend to the width of the body, while the parent of each h2
and p element is its corresponding div. The boxes that extend to the width of their parent element
are called block elements. Some of the most common HTML tags rendered as blocks are h1, h2, h3,
p, ul, ol, table, li, div, section, form, and aside. Sibling block elements — block elements
sharing the same immediate parent element — are stacked inside their parent from top to bottom.

NOTE

Some block elements are not intended to be used as containers for other block
elements. It is possible, for example, to insert a block element inside a h1 or p
element, but it is not considered best practice. Rather, the designer should use an
appropriate tag as a container. Common container tags are div, section, and
aside.

Besides text itself, elements such as h1, p, and li expect only inline elements as children. Like
most Western scripts, inline elements follow the left-to-right flow of text. When there is no
remaining room in the right side, the flow of inline elements continues in the next line, just like
text. Some common HTML tags treated as inline boxes are span, a, em, strong, img, input, and
label.

In our sample HTML page, every word inside the paragraphs was surrounded by a span tag, so
they could be highlighted with a corresponding CSS rule. As shown in the image, each span
element is placed horizontally, from left to right, until there is no more room in the parent
element.

The height of the element depends on its contents, so the browser adjusts the height of a container
element to accommodate its nested block elements or lines of inline elements. However, some CSS

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

190 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

properties affect a box’s shape, its position, and the placement of its inner elements.

The margin and padding properties affect all box types. If you do not set these properties
explicitly, the browser sets some of them using standard values. As seen in Figure 35, the h2 and p
elements were rendered with a gap between them. These gaps are the top and bottom margins the
browser adds to these elements by default. We can remove them by modifying the CSS rules for
the h2 and p selectors:

h2 {
 background-color: #ffffff66;
 margin: 0;
}

p {
 background-color: #ffffff66;
 margin: 0;
}

The result appears in Figure 36.

Figure 36. The margin property can change or remove margins from elements.

The body element also, by default, has a small margin that creates a gap surrounding. This gap
can also be removed using the margin property.

While the margin property defines the gap between the element and its surroundings, the
padding property of the element defines the internal gap between the container’s limits and its
child elements. Consider the h2 and p elements inside each div in the sample code, for example.
We could use their margin property to create a gap to the borders of the corresponding div, but it
is simpler to change the padding property of the container:

#second {
 background-color: #4e9a06ff;
 padding: 1em;

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 191

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

}

Only the rule for the second div was modified, so the results (Figure 37) show the difference
between the second div and the other div containers.

Figure 37. Different div containers can have different paddings.

The margin property is a shorthand for four properties controlling the four sides of the box:
margin-top, margin-right, margin-bottom, and margin-left. When margin is assigned a
single value, as in the examples so far, all four margins of the box use it. When two values are
written, the first defines the top and bottom margins, while the second defines the right and left
margins. Using margin: 1em 2em, for example, defines a gap of 1 em for the top and bottom
margins and a gap of 2 em for the right and left margins. Writing four values sets the margins for
the four sides in a clockwise direction, beginning at the top. The different values in the shorthand
property are not required to use the same units.

The padding property is a shorthand as well, following the same principles as the margin
property.

In their default behaviour, block elements stretch to fit the available width. But this is not
mandatory. The width property can set a fixed horizontal size to the box:

#first {
 background-color: #c4a000ff;
 width: 6em;
}

The addition of width: 6em to the CSS rule shrinks the first div horizontally, leaving a blank
space to its right side (Figure 38).

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

192 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 38. The width property changes the horizontal width of the first div.

Instead of leaving the first div aligned to the left, we may want to center it. Centering a box is
equivalent to setting margins of the same size on both sides, so we can use the margin property to
center it. The size of the available space may vary, so we use the auto value to the left and right
margins:

#first {
 background-color: #c4a000ff;
 width: 6em;
 margin: 0 auto;
}

The left and right margins are automatically computed by the browser and the box will be
centered (Figure 39).

Figure 39. The margin property is used to center the first div.

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 193

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

As shown, making a block element narrower does not make the remaining space available to the
next element. The natural flow is still preserved, as if the narrower element still occupies all the
available width.

Customizing Normal Flow
Normal flow is simple and sequential. CSS also lets you break normal flow and position elements
in very specific ways, even overriding the scrolling of the page if you want. We’ll look at several
ways to control the positioning of elements in this section.

Floating Elements

It is possible to make sibling block elements share the same horizontal space. One way to do so is
through the float property, which removes the element from the normal flow. As its name
suggests, the float property makes the box float over the block elements coming after, so they
will be rendered as if they were under the floated box. To make the first div float to the right, add
float: right to the corresponding CSS rule:

#first {
 background-color: #c4a000ff;
 width: 6em;
 float: right;
}

The automatic margins are ignored in a floated box, so the margin property can be removed.
Figure 40 shows the result of the floating the first div to the right.

Figure 40. The first div is floating and is not part of the normal flow.

By default, all block elements coming after the floated element will go under it. Therefore, given
enough height, the floated box will cover all remaining block elements.

Although a floating element goes above other block elements, the inline contents inside the
floating element’s container wrap around the floating element. The inspiration for this comes

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

194 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

from magazine and newspaper layouts, which often wrap text around an image, for example.

The previous image shows how the first div covers the second div and part of the third div.
Assume we want the first div to float over the second div, but not the third. The solution is to
include the clear property in the CSS rule corresponding to the third div:

#third {
 background-color: #5c3566da;
 clear: right;
}

Setting the clear property to right makes the corresponding element skip any previous
elements floated to the right, resuming normal flow (Figure 41).

Figure 41. The clear property returns to normal flow.

Likewise, if a previous element floated to the left, you can use clear: left to resume normal
flow. When you have to skip floated elements on both the left and the right, use clear: both.

Positioning Boxes

In normal flow, each box goes after the boxes coming before it in the document tree. The previous
sibling elements “push” the elements coming after them, moving them to the right and
downwards inside their parent element. The parent element may have its own siblings doing the
same thing to it. It is like placing tiles side by side in a wall, beginning at the top.

This method of positioning the boxes is called static, and is the default value for the CSS position
property. Other than defining margins and padding, there is no way to reposition a static box in
the page.

Like the tiles in the wall analogy, static placement is not mandatory. As with tiles, you can place
the boxes anywhere you want, even covering other boxes. To do so, assign the position property
to one of the following values:

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 195

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

relative
The element follows the normal flow of the document, but it can use the top, right, bottom,
and left properties to set offsets relative to its original static position. The offsets can also be
negative. The other elements remain in their original places, as if the relative element is still
static.

absolute
The element ignores the normal flow of the other elements and positions itself on the page by
the top, right, bottom, and left properties. Their values are relative to the document’s body
or to a non-static parent container.

fixed
The element ignores the normal flow of the other elements and positions itself by the top,
right, bottom, and left properties. Their values are relative to the viewport (i.e., the screen
area where the document is shown). Fixed elements do not move as the visitor scrolls through
the document, but resemble a sticker fixed on the screen.

sticky
The element follows the normal flow of the document. However, instead of going off the
viewport when the document scrolls, it will stop at the position set by the top, right, bottom,
and left properties. If the top value is 10px, for example, the element will stop scrolling
under the top part of the viewport when it reaches 10 pixels from the top limit of the viewport.
When that happens, the rest of the page continues to scroll, but the sticky element behaves like
a fixed element in that position. It will go back to its original position when the document scroll
back to its position in the viewport. Sticky elements are commonly used nowadays to create top
menus that always be visible.

Positions that can use the top, right, bottom, and left properties are not required to use them
all. If you set both the top and height properties of an absolute element, for example, the
browser implicitly calculates its bottom property (top + height = bottom).

The display Property

If the order given by the normal flow is not an issue in your design, but you want to change how
the boxes align themselves in the page, modify the display property of the element. The display
property can even make the element completely disappear from the rendered document, by
setting display: none. This is useful when you want to show the element later using JavaScript.

The display property can also, for example, make a block element behave like an inline element
(display: inline). Doing so is not considered good practice, though. Better methods exist to
place container elements side by side, such as the flexbox model.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

196 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

The flexbox model was invented to overcome the limitations of floats and to eliminate the
inappropriate use of tables to structure the page layout. When you set the display property of a
container element to flex to turn it into a flexbox container, its immediate children will behave
more or less like cells in a table row.

TIP
If you want even more control over the placement of the elements on the page, take a
look at the CSS grid feature. The grid is a powerful system based on rows and columns
to create elaborate layouts.

To test the flex display, add a new div element to the example page and make it the container for
the three existing div elements:

<div id="container">

<div id="first">
 <h2>First div</h2>
 <p>Sed eget velit
 id ante tempus
 porta pulvinar et
 ex.</p>
</div><!-- #first -->

<div id="second">
 <h2>Second div</h2>
 <p>Fusce vitae vehicula
 neque. Etiam maximus
 vulputate neque eu
 lobortis. Phasellus condimentum,
 felis eget eleifend
 aliquam, dui dolor
 bibendum leo.</p>
</div><!-- #second -->

<div id="third">
 <h2>Third div</h2>
 <p>Pellentesque ornare ultricies
 elementum. Morbi vulputate
 pretium arcu, sed
 faucibus.</p>
</div><!-- #third -->

</div><!-- #container -->

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 197

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Add the following CSS rule to the stylesheet to turn the container div into a flexbox container:

#container {
 display: flex;
}

The result is the three inner div elements rendered side by side (Figure 42).

Figure 42. The flexbox model creates a grid.

Using the value inline-flex instead of flex has basically the same result, but makes the
children behave more like inline elements.

Responsive Design
We know that CSS provides properties that adjust the sizes of elements and fonts relative to the
available screen area. However, you may want to go further and use a different design for
different devices: for example, desktop systems versus devices with screens dimensions under a
certain size. This approach is called responsive web design, and CSS provides methods called media
queries to make it possible.

In the previous example, we modified the page layout to place the div elements side by side in
columns. That layout is suitable for larger screens, but it will be too cluttered in smaller screens.
To solve this problem, we can add a media query to the stylesheet matching only screens with at
least 600px in width:

@media (min-width: 600px){
 #container {
 display: flex;
 }
}

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

198 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

The CSS rules inside the @media directive will be used only if the criteria in parenthesis is
satisfied. In this example, if the viewport width is less than 600px, the rule will not be applied to
the container div and its children will be rendered as conventional div elements. The browser re-
evaluates the media queries every time the viewport dimension changes, so the layout can be
changed in real time while resizing the browser window or rotating the smartphone.

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 199

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. If the position property is not modified, what positioning method will be used by the

browser?

2. How can you make sure an element’s box will be rendered after any previously floated
elements?

3. How can you use the margin shorthand property to set the top/bottom margins to 4px and the
right/left margins to 6em?

4. How can you horizontally center a static container element with fixed width on the page?

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

200 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. Write a CSS rule matching the element <div class="picture"> so the text inside its

following block elements settles toward its right side.

2. How does the top property affect a static element relative to its parent element?

3. How does changing the display property of an element to flex affect its placement in the
normal flow?

4. What CSS feature allows you to use a separate set of rules depending on the dimensions of the
screen?

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 201

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers the CSS box model and how we can customize it. In addition to the normal flow
of the document, the designer can make use of different positioning mechanisms to implement a
custom layout. The lesson goes through the following concepts and procedures:

• The normal flow of the document.

• Adjustments to the margin and padding of an element’s box.

• Using the float and clear properties.

• Positioning mechanisms: static, relative, absolute, fixed and sticky.

• Alternative values for the display property.

• Responsive design basics.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

202 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. If the position property is not modified, what positioning method will be used by the

browser?

The static method.

2. How can you make sure an element’s box will be rendered after any previously floated
elements?

The clear property of the element should be set to both.

3. How can you use the margin shorthand property to set the top/bottom margins to 4px and the
right/left margins to 6em?

It can be either margin: 4px 6em or margin: 4px 6em 4px 6em.

4. How can you horizontally center a static container element with fixed width on the page?

Using the auto value in its margin-left and margin-right properties.

Web Development Essentials (030) (Version 1.0) | 033.4 CSS Box Model and Layout

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 203

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. Write a CSS rule matching the element <div class="picture"> so the text inside its

following block elements settles toward its right side.

.picture { float: left; }

2. How does the top property affect a static element relative to its parent element?

The top property does not apply to static elements.

3. How does changing the display property of an element to flex affect its placement in the
normal flow?

The placement of the element itself does not change, but its immediate child elements will be
rendered side by side horizontally.

4. What CSS feature allows you to use a separate set of rules depending on the dimensions of the
screen?

Media queries allow the browser to verify the viewport dimensions before applying a CSS rule.

Web Development Essentials (030) (Version 1.0) | Topic 033: CSS Content Styling

204 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Topic 034: JavaScript Programming

Web Development Essentials (030) (Version 1.0) |

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 205

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

034.1 JavaScript Execution and Syntax

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 034.1

Weight

1

Key knowledge areas

• Run JavaScript within an HTML document

• Understand the JavaScript syntax

• Add comments to JavaScript code

• Access the JavaScript console

• Write to the JavaScript console

Partial list of the used files, terms and utilities

• <script>, including the type (`text/javascript) and src attributes

• ;

• //, /* */

• console.log

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

206 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#034.1_JavaScript_Execution_and_Syntax_.28weight:_1.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

034.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 034 JavaScript Programming

Objective: 034.1 JavaScript Execution and Syntax

Lesson: 1 of 1

Introduction
Web pages are developed using three standard technologies: HTML, CSS, and JavaScript.
JavaScript is a programming language that lets the browser dynamically update website content.
The JavaScript is usually executed by the same browser used to view a webpage. This means that,
similar to CSS and HTML, the exact behavior of any code you write might differ between
browsers. But most common browsers adhere to the ECMAScript specification. This is a standard
that unifies JavaScript usage in the web, and will be the basis for the lesson, together with the
HTML5 specification, which specifies how JavaScript needs to be put into a webpage for a browser
to execute it.

Running JavaScript in the Browser
To execute JavaScript, the browser needs to obtain the code either directly, as part of the HTML
that makes up the web page, or as a URL that indicates a location for a script to be executed.

The following example shows how to include code directly in the HTML file:

<html>

Web Development Essentials (030) (Version 1.0) | 034.1 JavaScript Execution and Syntax

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 207

https://en.wikipedia.org/wiki/ECMAScript
https://dev.w3.org/html5/spec-LC/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 <head>
 </head>
 <body>
 <h1>Website Headline</h1>
 <p>Content</p>

 <script>
 console.log('test');
 </script>

 </body>
</html>

The code is wrapped between <script> and </script> tags. Everything included in these tags
will be executed by the browser directly when loading the page.

The position of the <script> element within the page dictates when it will be executed. An HTML
document is parsed from top to bottom, with the browser deciding when to display elements on
the screen. In the example just shown, the <h1> and <p> tags of the website are parsed, and likely
displayed, before the script runs. If the JavaScript code within the <script> tag would take very
long to execute, the page would still display without any problem. If, however, the script had been
placed above the other tags, the web page visitor would have to wait until the script finishes
executing before seeing the page. For this reason, <script> tags are usually placed in one of two
places:

• At the very end of the HTML body, so that the script is the last thing that gets executed. Do this
when the code adds something to the page that would not be useful without the content. An
example would be adding functionality to a button, as the button has to exist for the
functionality to make sense.

• Inside the <head> element of the HTML. This ensures that the script is executed before the
HTML body is parsed. If you want to change the loading behavior of the page, or have
something that needs to be executed while the page is still not fully loaded, you can put the
script here. Also, if you have multiple scripts that depend on a particular script, you can put
that shared script in the head to make sure it’s executed before other scripts.

For a variety of reasons, including manageability, it is useful to put your JavaScript code into
separate files that exist outside of your HTML code. External JavaScript files are included using a
<script> tag with a src attribute, as follows:

<html>
 <head>

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

208 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 <script src="/button-interaction.js"></script>
 </head>
 <body>
 </body>
</html>

The src tag tells the browser the location of the source, meaning the file containing the JavaScript
code. The location can be a file on the same server, as in the example above, or any web-accessible
URL such as https://www.lpi.org/example.js. The value of the src attribute follows the
same convention as the import of CSS or image files, in that it can be relative or absolute. Upon
encountering a script tag with the src attribute, the browser will then attempt to obtain the
source file by using an HTTP GET request, so external files need to be accessible.

When you use the src attribute, any code or text that is placed between the <script>…
</script> tags is ignored, according to the HTML specification.

<html>
 <head>
 <script src="/button-interaction.js">
 console.log("test"); // <-- This is ignored
 </script>
 </head>
 <body>
 </body>
</html>

There are other attributes you can add to the script tag to further specify how the browser
should get the files, and how it should handle them afterwards. The following list goes into detail
about the more important attributes:

async
Can be used on script tags and instructs the browser to fetching the script in the background,
so as not to block the page load process. The page load will still be interrupted while after the
browser obtains the script, because the browser has to parse it, which is done immediately
once the script has been fetched completely. This attribute is Boolean, so writing the tag like
<script async src="/script.js"></script> is sufficient and no value has to be
provided.

defer
Similar to async, this instructs the browser not to block the page load process while fetching
the script. Rather than that, the browser will defer parsing the script. The browser will wait

Web Development Essentials (030) (Version 1.0) | 034.1 JavaScript Execution and Syntax

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 209

https://www.lpi.org/example.js
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

until the entire HTML document has been parsed and only then it will parse the script, before
announcing that the document has been to be completely loaded. Like async, defer is a
Boolean attribute and is used in the same way. Since defer implies async, it is not useful to
specify both tags together.

NOTE

When a page is completely parsed, the browser indicates that it is ready to
display by triggering a DOMContentLoaded event, when the visitor will be able
to see the document. Thus, the JavaScript included in a <head> event always has
a chance to act on the page before it is displayed, even if you include the defer
attribute.

type
Denotes what type of script the browser should expect within the tag. The default is JavaScript
(type="application/javascript"), so this attribute isn’t necessary when including
JavaScript code or pointing to a JavaScript resource with the src tag. Generally, all MIME types
can be specified, but only scripts that are denoted as JavaScript will be executed by the
browser. There are two realistic use cases for this attribute: telling the browser not to execute
the script by setting type to an arbitrary value like template or other, or telling the browser
that the script is an ES6 module. We don’t cover ES6 modules in this lesson.

WARNING

When multiple scripts have the async attribute, they will be executed in the
order they finish downloading, not in the order of the script tags in the
document. The defer attribute, on the other hand, maintains the order of the
script tags.

Browser Console
While usually executed as part of a website, there is another way of executing JavaScript: through
the browser console. All modern desktop browsers provide a menu through which you can
execute JavaScript code in the browser’s JavaScript engine. This is usually done for testing new
code or to debug existing websites.

There are multiple ways to access the browser console, depending on the browser. The easiest
way is through keyboard shortcuts. The following are the keyboard shorcuts for some of the
browsers currently in use:

Chrome

Ctrl  +  Shift  +  J (Cmd  +  Option  +  J on Mac)

Firefox

Ctrl  +  Shift  +  K (Cmd  +  Option  +  K on Mac)

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

210 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Safari

Ctrl  +  Shift  +  ? (Cmd  +  Option  +  ? on Mac)

You can also right-click on a webpage and select the “Inspect” or “Inspect Element” option to open
the inspector, which is another browser tool. When the inspector opens, a new panel will appear.
In this panel, you can select the “Console” tab, which will bring up the browser console.

Once you pull up the console, you can execute JavaScript on the page by typing the JavaScript
directly into the input field. The result of any executed code will be shown in a separate line.

JavaScript Statements
Now that we know how to start executing a script, we will cover the basics of how a script is
actually executed. A JavaScript script is a collection of statements and blocks. An example
statement is console.log('test'). This instruction tells the browser to output the word test to
the browser console.

Every statement in JavaScript is terminated by a semicolon (;). This tells the browser that the
statement is done and a new one can be started. Consider the following script:

var message = "test"; console.log(message);

We have written two statements. Every statement is terminated either by a semicolon or by the
end of the script. For readability purposes, we can put the statements on separate lines. This way,
the script could also be written as:

var message = "test";
console.log(message);

This is possible because all whitespace between statements, such as a space, a newline, or a tab, is
ignored. Whitespace can also often be put between individual keywords within statements, but
this will be further explained in an upcoming lesson. Statements can also be empty, or comprised
only of whitespace.

If a statement is invalid because it has not been terminated by a semicolon, ECMAScript makes an
attempt to automatically insert the proper semicolons, based on a complex set of rules. The most
important rule is: If an invalid statement is composed of two valid statements separated by a
newline, insert a semicolon at the newline. For instance, the following code does not form a valid
statement:

Web Development Essentials (030) (Version 1.0) | 034.1 JavaScript Execution and Syntax

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 211

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

console.log("hello")
console.log("world")

But a modern browser will automatically execute it as if it were written with the proper
semicolons:

console.log("hello");
console.log("world");

Thus, it is possible to omit semicolons in certain cases. However, as the rules for automatic
semicolon insertion are complex, we advise you always to properly terminate your statements to
avoid unwanted errors.

JavaScript Commenting
Big scripts can get quite complicated. You might want to comment on what you are writing, to
make the script easier to read for other people, or for yourself in the future. Alternatively, you
might want to include meta information in the script, such as copyright information, or
information about when the script was written and why.

To make it possible to include such meta information, JavaScript supports comments. A developer
can include special characters in a script that denote certain parts of it as a comment, which will
be skipped on execution. The following is a heavily commented version of the script we saw
earlier.

/*
 This script was written by the author of this lesson in May, 2020.
 It has exactly the same effect as the previous script, but includes comments.
*/

// First, we define a message.
var message = "test";

console.log(message); // Then, we output the message to the console.

Comments are not statements and do not need to be terminated by a semicolon. Instead, they
follow their own rules for termination, depending on the way the comment is written. There are
two ways to write comments in JavaScript:

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

212 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Multi-line comment

Use /* and */ to signal the start and end of a multi-line comment. Everything after /*, until the
first occurrence of */ is ignored. This kind of comment is generally used to span multiple lines,
but it can also be used for single lines, or even within a line, like so:

console.log(/* what we want to log: */ "hello world")

Because the goal of comments is generally to increase the readability of a script, you should
avoid using this comment style within a line.

Single-line comment

Use // (two forward slashes) to comment out a line. Everything after the double-slash on the
same line is ignored. In the example shown earlier, this pattern is first used to comment an
entire line. After the console.log(message); statement, it is used to write a comment on the
rest of the line.

In general, single-line comments should be used for single lines, and multi-line comments for
multiple lines, even if it possible to use them in other ways. Comments within a statement should
be avoided.

Comments can also be used to temporarily remove lines of actual code, as follows:

// We temporarily want to use a different message
// var message = "test";
var message = "something else";

Web Development Essentials (030) (Version 1.0) | 034.1 JavaScript Execution and Syntax

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 213

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. Create a variable called ColorName and assign the value RED to it.

2. Which of the following scripts are valid?

console.log("hello")
console.log("world");

console.log("hello");
console.log("world");

// console.log("hello")
console.log("world");

console.log("hello");
console.log("world") //;

console.log("hello"); /*
console.log("world") */

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

214 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. How many JavaScript statements can be written on a single line without using a semicolon?

2. Create two variables named x and y, then print their sum to the console.

Web Development Essentials (030) (Version 1.0) | 034.1 JavaScript Execution and Syntax

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 215

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
In this lesson we learned different ways of executing JavaScript, and how to modify the script
loading behavior. We also learned the basic concepts of script composition and commenting, and
have learned to use the console.log() command.

HTML used in this lesson:

<script>

The script tag can be used to include JavaScript directly or by specifying a file with the src
attribute. Modify how the script is loaded with the async and defer attributes.

JavaScript concepts introduced in this lesson:

;
A semicolon is used to separate statements. Semicolons can sometimes — but should not
be — ommitted.

//, /*…*/
Commenting can be used to add comments or meta information to a script file, or to prevent
statements from being executed.

console.log("text")
The console.log() command can be used to output text to the browser console.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

216 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. Create a variable called ColorName and assign the value RED to it.

var ColorName = "RED";

2. Which of the following scripts are valid?

console.log("hello")
console.log("world");

Invalid: The first console.log() command
isn’t properly terminated, and the line as a
whole doesn’t form a valid statement.

console.log("hello");
console.log("world");

Valid: Each statement is properly terminated.

// console.log("hello")
console.log("world");

Valid: The entire code is ignored because it is a
comment.

console.log("hello");
console.log("world") //;

Invalid: The last statement is missing a
semicolon. The semicolon at the very end is
ignored because it is commented.

console.log("hello"); /*
console.log("world") */

Valid: A valid statement is followed by
commented code, which gets ignored.

Web Development Essentials (030) (Version 1.0) | 034.1 JavaScript Execution and Syntax

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 217

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. How many JavaScript statements can be written on a single line without using a semicolon?

If we are at the end of a script, we can write one statement and it will be terminated by the end
of the file. Otherwise, you cannot write a statement without a semicolon with the syntax that
you learned so far.

2. Create two variables named x and y, then print their sum to the console.

var x = 5;
var y = 10;
console.log(x+y);

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

218 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

034.2 JavaScript Data Structures

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 034.2

Weight

3

Key knowledge areas

• Define and use variables and constants

• Understand data types

• Understand type conversion/coercion

• Understand arrays and objects

• Awareness of the variable scope

Partial list of the used files, terms and utilities

• =, +, -, *, /, %, --, ++, +=, -=, *=, /=

• var, let, const

• boolean, number, string, symbol

• array, object

• undefined, null, NaN

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 219

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#034.2_JavaScript_Data_Structures_.28weight:_3.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

034.2 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 034 JavaScript Programming

Objective: 034.2 JavaScript Data Structures

Lesson: 1 of 1

Introduction
Programming languages, like natural languages, represent reality through symbols that are
combined into meaningful statements. The reality represented by a programming language is the
machine’s resources, such as processor operations, devices, and memory.

Each of the myriad programming languages adopts a paradigm for representing information.
JavaScript adopts conventions typical of high-level languages, where most of details such as
memory allocation are implicit, allowing the programmer to focus on the script’s purpose in the
context of the application.

High-Level Languages
High-level languages provide abstract rules so that the programmer needs to write less code to
express an idea. JavaScript offers convenient ways to make use of computer memory, using
programming concepts that simplify the writing of recurring practices and that are generally
sufficient for the web developer’s purpose.

NOTE Although it’s possible to use specialized mechanisms for meticulous memory

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

220 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

access, the simpler types of data we’ll look at are more general in use.

Typical operations in a web application consist of requesting data through some JavaScript
instruction and storing it to be processed and eventually presented to the user. This storage is
quite flexible in JavaScript, with suitable storage formats for each purpose.

Declaration of Constants and Variables
The declaration of constants and variables to hold data is the cornerstone of any programming
language. JavaScript adopts the convention of most programming languages, assigning values to
constants or variables with the name = value syntax. The constant or variable on the left takes
the value on the right. The constant or variable name must start with a letter or underscore.

The type of data stored in the variable does not need to be indicated, because JavaScript is a
dynamic typing language. The type of the variable is inferred from the value assigned to it.
However, it is convenient to designate certain attributes in the declaration to guarantee the
expected result.

NOTE
TypeScript is a JavaScript-inspired language that, like lower-level languages, allows
you to declare variables for specific types of data.

Constants

A constant is a symbol that is assigned once when the program starts and never changes.
Constants are useful to specify fixed values such as defining the constant PI to be 3.14159265, or
COMPANY_NAME to hold the name of your company.

In a web application, for example, take a client that receives weather information from a remote
server. The programmer may decide that the address to the server must be constant, because it
will not change during the application’s execution. The temperature information, however, can
change with every new data arrival from the server.

The interval between queries made to the server can also be defined as a constant, which can be
queried from any part of the program:

const update_interval = 10;

function setup_app(){
 console.log("Update every " + update_interval + "minutes");
}

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 221

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

When invoked, the setup_app() function displays the message Update every 10 minutes
message on the console. The term const placed before the name update_interval makes sure
that its value will remain the same throughout the entire execution of the script. If an attempt is
made to reset the value of a constant, a TypeError: Assignment to constant variable error
is issued.

Variables

Without the term const, JavaScript automatically assumes that update_interval is a variable
and that its value can be modified. This is equivalent to declaring the variable explicitly with var:

var update_interval;
update_interval = 10;

function setup_app(){
 console.log("Update every " + update_interval + "minutes");
}

Note that although the update_interval variable was defined outside the function, it was
accessed from within the function. Any constant or variable declared outside of functions or code
blocks defined by braces ({}) has global scope; that is, it can be accessed from any part of the code.
The opposite is not true: a constant or variable declared inside a function has local scope, so it is
accessible only from inside the function itself. Bracket-delimited code blocks, such as those placed
in if decision structures or for loops, delimit the scope of constants, but not variables declared as
var. The following code, for example, is valid:

var success = true;
if (success == true)
{
 var message = "Transaction succeeded";
 var retry = 0;
}
else
{
 var message = "Transaction failed";
 var retry = 1;
}

console.log(message);

The console.log(message) statement is able to access the message variable, even though it has

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

222 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

been declared within the code block of the if structure. The same would not happen if message
were constant, as exemplified in the following example:

var success = true;
if (success == true)
{
 const message = "Transaction succeeded";
 var retry = 0;
}
else
{
 const message = "Transaction failed";
 var retry = 1;
}

console.log(message);

In this case, an error message of type ReferenceError: message is not defined would be
issued and the script would be stopped. While it may seem like a limitation, restricting the scope
of variables and constants helps to avoid confusion between the information processed in the
script body and in its different code blocks. For this reason, variables declared with let instead of
var are also restricted in scope by the blocks delimited by braces. There are other subtle
differences between declaring a variable with var or with let, but the most significant of these
concerns the scope of the variable, as discussed here.

Types of Values
Most of the time, the programmer doesn’t need to worry about the type of data stored in a
variable, because JavaScript automatically identifies it with one of its primitive types during the
first assignment of a value to the variable. Some operations, however, can be specific to one data
type or another and can result in errors when used without discretion. In addition, JavaScript
offers structured types that allow you to combine more than one primitive type into a single
object.

Primitive Types

Primitive type instances correspond to traditional variables, which store only one value. Types are
defined implicitly, so the typeof operator can be used to identify what type of value is stored in a
variable:

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 223

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

console.log("Undefined variables are of type", typeof variable);

{
 let variable = true;
 console.log("Value `true` is of type " + typeof variable);
}

{
 let variable = 3.14159265;
 console.log("Value `3.14159265` is of type " + typeof variable);
}

{
 let variable = "Text content";
 console.log("Value `Text content` is of type " + typeof variable);
}

{
 let variable = Symbol();
 console.log("A symbol is of type " + typeof variable);
}

This script will display on the console what type of variable was used in each case:

undefined variables are of type undefined
Value `true` is of type boolean
Value `3.114159265` is of type number
Value `Text content` is of type string
A symbol is of type symbol

Notice that the first line tries to find the type of an undeclared variable. This causes the given
variable to be identified as undefined. The symbol type is the least intuitive primitive. Its
purpose is to provide a unique attribute name within an object when there is no need to define a
specific attribute name. An object is one of the data structures we’ll look at next.

Structured Types

While primitive types are sufficient for writing simple routines, there are drawbacks to using
them exclusively in more complex applications. An e-commerce application, for example, would
be much more difficult to write, because the programmer would need to find ways to store lists of
items and corresponding values using only variables with primitive types.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

224 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Structured types simplify the task of grouping information of the same nature into a single
variable. A list of items in a shopping cart, for instance, can be stored in a single variable of type
array:

let cart = ['Milk', 'Bread', 'Eggs'];

As demonstrated in the example, an array of items is designated with square brackets. The
example has populated the array with three literal string values, hence the use of single quotes.
Variables can also be used as items in an array, but in that case they must be designated without
quotes. The number of items in an array can be queried with the length property:

let cart = ['Milk', 'Bread', 'Eggs'];
console.log(cart.length);

The number 3 will be displayed in the console output. New items can be added to the array with
the push() method:

cart.push('Candy');
console.log(cart.length);

This time, the amount displayed will be 4. Each item in the list can be accessed by its numeric
index, starting with 0:

console.log(cart[0]);
console.log(cart[3]);

The output displayed on the console will be:

Milk
Candy

Just as you can use push() to add an element, you can use pop() to remove the last element from
an array.

Values stored in an array do not need be of the same type. It is possible, for example, to store the
quantity of each item beside it. A shopping list like the one in the previous example could be
constructed as follows:

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 225

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

let cart = ['Milk', 1, 'Bread', 4, 'Eggs', 12, 'Candy', 2];

// Item indexes are even
let item = 2;

// Quantities indexes are odd
let quantity = 3;

console.log("Item: " + cart[item]);
console.log("Quantity: " + cart[quantity]);

The output displayed on the console after running this code is:

Item: Bread
Quantity: 4

As you may have already noticed, combining the names of items with their respective quantities
in a single array may not be a good idea, because the relationship between them is not explicit in
the data structure and is very susceptible to (human) errors. Even if an array were used for names
and another array for quantities, maintaining the integrity of the list would require the same care
and would not be very productive. In these situations, the best alternative is to use a more
appropriate data structure: an object.

In JavaScript, an object-type data structure lets you bind properties to a variable. Also, unlike an
array, the elements that make up an object do not have a fixed order. A shopping list item, for
example, can be an object with the properties name and quantity:

let item = { name: 'Milk', quantity: 1 };
console.log("Item: " + item.name);
console.log("Quantity: " + item.quantity);

This example shows that an object can be defined using braces ({}), where each property/value
pair is separated by a colon and the properties are separated by commas. The property is
accessible in the format variable.property, as in item.name, both for reading and for assigning
new values. The output displayed on the console after running this code is:

Item: Milk
Quantity: 1

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

226 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Finally, each object representing an item can be included in the shopping list array. This can be
done directly when creating the list:

let cart = [{ name: 'Milk', quantity: 1 }, { name: 'Bread', quantity: 4 }];

As before, a new object representing an item can be added later to the array:

cart.push({ name: 'Eggs', quantity: 12 });

Items in the list are now accessed by their index and their property name:

console.log("Third item: " + cart[2].name);
console.log(cart[2].name + " quantity: " + cart[2].quantity);

The output displayed on the console after running this code is:

third item: eggs
Eggs quantity: 12

Data structures allow the programmer to keep their code much more organized and easier to
maintain, whether by the original author or by other programmers on the team. Also, many
outputs from JavaScript functions are in structured types, which need to be handled properly by
the programmer.

Operators
So far, we’ve pretty much seen only how to assign values to newly created variables. As simple as
it is, any program will perform several other manipulations on the values of variables. JavaScript
offers several types of operators that can act directly on the value of a variable or store the result
of the operation in a new variable.

Most operators are geared toward arithmetic operations. To increase the quantity of an item in
the shopping list, for example, just use the + addition operator:

item.quantity = item.quantity + 1;

The following snippet prints the value of item.quantity before and after the addition. Do not
mix up the roles of the plus sign in the snippet. The console.log statements use a plus sign to

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 227

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

combine two strings.

let item = { name: 'Milk', quantity: 1 };
console.log("Item: " + item.name);
console.log("Quantity: " + item.quantity);

item.quantity = item.quantity + 1;
console.log("New quantity: " + item.quantity);

The output displayed on the console after running this code is:

Item: Milk
Quantity: 1
New quantity: 2

Note that the value previously stored in item.quantity is used as the operand of the addition
operation: item.quantity = item.quantity + 1. Only after the operation is complete the
value in item.quantity is updated with the result of the operation. This kind of arithmetic
operation involving the current value of the target variable is quite common, so there are
shorthand operators that allow you to write the same operation in a reduced format:

item.quantity += 1;

The other basic operations also have equivalent shorthand operators:

• a = a - b is equivalent to a -= b.

• a = a * b is equivalent to a *= b.

• a = a / b is equivalent to a /= b.

For addition and subtraction, there is a third format available when the second operand is only
one unit:

• a = a + 1 is equivalent to a++.

• a = a - 1 is equivalent to a--.

More than one operator can be combined in the same operation and the result can be stored in a
new variable. For example, the following statement calculates the total price of an item plus a
shipping cost:

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

228 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

let total = item.quantity * 9.99 + 3.15;

The order in which the operations are carried out follows the traditional order of precedence: first
the multiplication and division operations are carried out, and only then are the addition and
subtraction operations carried out. Operators with the same precedence are executed in the order
they appear in the expression, from left to right. To override the default precedence order, you
can use parentheses, as in a * (b + c).

In some situations, the result of an operation doesn’t even need to be stored in a variable. This is
the case when you want to evaluate the result of an expression within an if statement:

if (item.quantiy % 2 == 0)
{
 console.log("Quantity for the item is even");
}
else
{
 console.log("Quantity for the item is odd");
}

The % (modulo) operator returns the remainder of the division of the first operand by the second
operand. In the example, the if statement checks whether the remainder of the division of
item.quantity by 2 is equal to zero, that is, whether item.quantity is a multiple of 2.

When one of the operands of the + operator is a string, the other operators are coerced into strings
and the result is a concatenation of strings. In the previous examples, this type of operation was
used to concatenate strings and variables into the argument of the console.log statement.

This automatic conversion might not be the desired behavior. A user-supplied value in a form
field, for example, might be identified as a string, but it is actually a numeric value. In cases like
this, the variable must first be converted to a number with the Number() function:

sum = Number(value1) + value2;

Moreover, it is important to verify that the user has provided a valid value before proceeding with
the operation. In JavaScript, a variable without an assigned value contains the value null. This
allows the programmer to use a decision statement such as if (value1 == null) to check
whether a variable was assigned a value, regardless of the type of the value assigned to the
variable.

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 229

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Excercises
1. An array is a data structure present in several programming languages, some of which allow

only arrays with items of the same type. In the case of JavaScript, is it possible to define an
array with items of different types?

2. Based on the example let item = { name: 'Milk', quantity: 1 } for an object in a
shopping list, how could this object be declared to include the price of the item?

3. In a single line of code, what are the ways to update a variable’s value to half its current value?

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

230 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Excercises
1. In the following code, what value will be displayed in the console output?

var value = "Global";

{
 value = "Location";
}

console.log(value);

2. What will happen when one or more of the operands involved in a multiplication operation is a
string?

3. How is it possible to remove the Eggs item from the cart array declared with let cart =
['Milk', 'Bread', 'Eggs'] ?

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 231

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers the basic use of constants and variables in JavaScript. JavaScript is a dynamic
typing language, so the programmer doesn’t need to specify the variable type before setting it.
However, it is important to know the language’s primitive types to ensure the correct outcome of
basic operations. Furthermore, data structures such as arrays and objects combine primitive types
and allow the programmer to build more complex, composite variables. This lesson goes through
the following concepts and procedures:

• Understanding constants and variables

• Variable scope

• Declaring variables with var and let

• Primitive types

• Arithmetic operators

• Arrays and objects

• Type coercion and conversion

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

232 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. An array is a data structure present in several programming languages, some of which allow

only arrays with items of the same type. In the case of JavaScript, is it possible to define an
array with items of different types?

Yes, in JavaScript it is possible to define arrays with items of different primitive types, such as
strings and numbers.

2. Based on the example let item = { name: 'Milk', quantity: 1 } for an object in a
shopping list, how could this object be declared to include the price of the item?

let item = { name: 'Milk', quantity: 1, price: 4.99 };

3. In a single line of code, what are the ways to update a variable’s value to half its current value?

One can use the variable itself as an operand, value = value / 2, or the shorthand operator
/=: value /= 2.

Web Development Essentials (030) (Version 1.0) | 034.2 JavaScript Data Structures

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 233

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. In the following code, what value will be displayed in the console output?

var value = "Global";

{
 value = "Location";
}

console.log(value);

Location

2. What will happen when one or more of the operands involved in a multiplication operation is a
string?

JavaScript will assign the value NaN (Not a Number) to the result, indicating that the operation
is invalid.

3. How is it possible to remove the Eggs item from the cart array declared with let cart =
['Milk', 'Bread', 'Eggs'] ?

Arrays in javascript have the pop() method, which removes the last item in the list:
cart.pop().

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

234 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

034.3 JavaScript Control Structures and Functions

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 034.3

Weight

4

Key knowledge areas

• Understand truthy and falsy values

• Understand comparison operators

• Understand the difference between loose and strict comparison

• Use conditionals

• Use loops

• Define custom functions

Partial list of the used files, terms and utilities

• if, else if, else

• switch, case, break

• for, while, break, continue

• function, return

• ==, !=, <, ⇐, >, >=

• ===, !==

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 235

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#034.3_JavaScript_Control_Structures_and_Functions_.28weight:_4.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

034.3 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 034 JavaScript Programming

Objective: 034.3 JavaScript Control Structures and
Functions

Lesson: 1 of 2

Introduction
Like any other programming language, JavaScript code is a collection of statements that tells an
instruction interpreter what to do in sequential order. However, this does not mean that every
statement should be executed only once or that they should execute at all. Most statements should
execute only when specific conditions are met. Even when a script is triggered asynchronously by
independent events, it often has to check a number of control variables to find out the right
portion of code to run.

If Statements
The simplest control structure is given by the if instruction, which will execute the statement
immediately after it if the specified condition is true. JavaScript considers conditions to be true if
the evaluated value is non-zero. Anything inside the parenthesis after the if word (spaces are
ignored) will be interpreted as a condition. In the following example, the literal number 1 is the
condition:

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

236 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

if (1) console.log("1 is always true");

The number 1 is explicitly written in this example condition, so it is treated as a constant value (it
remains the same throughout the execution of the script) and it will always yield true when used
as a conditional expression. The word true (without the double quotes) could also be used instead
of 1, as it is also treated as a literal true value by the language. The console.log instruction
prints its arguments in the browser’s console window.

TIP

The browser console shows errors, warnings, and informational messages sent with
the console.log JavaScript instruction. On Chrome, the Ctrl  +  Shift  +  J (Cmd  +  Option  +  J on
Mac) key combination opens the console. On Firefox, the Ctrl  +  Shift  +  K (Cmd  +  Option  +  K on
Mac) key combination opens the console tab in the developer’s tools.

Although syntactically correct, using constant expressions in conditions is not very useful. In an
actual application, you’ll probably want to test the trueness of a variable:

let my_number = 3;
if (my_number) console.log("The value of my_number is", my_number, "and it yields true");

The value assigned to the variable my_number (3) is non-zero, so it yields true. But this example is
not common usage, because you rarely need to test whether a number equals zero. It is much
more common to compare one value to another and test whether the result is true:

let my_number = 3;
if (my_number == 3) console.log("The value of my_number is", my_number, "indeed");

The double equal comparison operator is used because the single equal operator is already
defined as the assignment operator. The value on each side of the operator is called an operand.
The ordering of the operands does not matter and any expression that returns a value can be an
operand. Here a list of other available comparison operators:

value1 == value2
True if value1 is equal to value2.

value1 != value2
True if value1 is not equal to value2.

value1 < value2
True if value1 is less than value2.

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 237

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

value1 > value2
True if value1 is greater than value2.

value1 <= value2
True if value1 is less than or equal to value2.

value1 >= value2
True if value1 is grater than or equal to value2.

Usually, it does not matter whether the operand to the left of the operator is a string and the
operand to the right is a number, as long as JavaScript is able to convert the expression to a
meaningful comparison. So the string containing the character 1 will be treated as the number 1
when compared to a number variable. To make sure the expression yields true only if both
operands are of the exact same type and value, the strict identity operator === should be used
instead of ==. Likewise, the strict non-identity operator !== evaluates as true if the first operand is
not of the exact same type and value as the second operator.

Optionally, the if control structure can execute an alternate statement when the expression
evaluates as false:

let my_number = 4;
if (my_number == 3) console.log("The value of my_number is 3");
else console.log("The value of my_number is not 3");

The else instruction should immediately follow the if instruction. So far, we are executing only
one statement when the condition is met. To execute more than one statement, you must enclose
them in curly braces:

let my_number = 4;
if (my_number == 3)
{
 console.log("The value of my_number is 3");
 console.log("and this is the second statement in the block");
}
else
{
 console.log("The value of my_number is not 3");
 console.log("and this is the second statement in the block");
}

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

238 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

A group of one or more statements delimited by a pair of curly braces is known as a block
statement. It is common to use block statements even when there is only one instruction to
execute, in order to make the coding style consistent throughout the script. Moreover, JavaScript
does not require the curly braces or any statements to be on separate lines, but to do so improves
readability and makes code maintenance easier.

Control structures can be nested inside each other, but it is important not to mix up the opening
and closing braces of each block statement:

let my_number = 4;

if (my_number > 0)
{
 console.log("The value of my_number is positive");

 if (my_number % 2 == 0)
 {
 console.log("and it is an even number");
 }
 else
 {
 console.log("and it is an odd number");
 }
} // end of if (my_number > 0)
else
{
 console.log("The value of my_number is less than or equal to 0");
 console.log("and I decided to ignore it");
}

The expressions evaluated by the if instruction can be more elaborate than simple comparisons.
This is the case in the previous example, where the arithmetical expression my_number % 2 was
employed inside the parentheses in the nested if. The % operator returns the remainder after
dividing the number on its left by the number on its right. Arithmetical operators like % take
precedence over comparison operators like ==, so the comparison will use the result of the
arithmetical expression as its left operand.

In many situations, nested conditional structures can be combined into a single structure using
logical operators. If we were interested only in positive even numbers, for example, a single if
structure could be used:

let my_number = 4;

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 239

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

if (my_number > 0 && my_number % 2 == 0)
{
 console.log("The value of my_number is positive");
 console.log("and it is an even number");
}
else
{
 console.log("The value of my_number either 0, negative");
 console.log("or it is a negative number");
}

The double ampersand operator && in the evaluated expression is the logical AND operator. It
evaluates as true only if the expression to its left and the expression to its right evaluate as true. If
you want to match numbers that are either positive or even, the || operator should be used
instead, which stands for the OR logical operator:

let my_number = -4;

if (my_number > 0 || my_number % 2 == 0)
{
 console.log("The value of my_number is positive");
 console.log("or it is a even negative number");
}

In this example, only negative odd numbers will fail to match the criteria imposed by the
composite expression. If you have the opposite intent, that is, to match only the negative odd
numbers, add the logical NOT operator ! to the beginning of the expression:

let my_number = -5;

if (! (my_number > 0 || my_number % 2 == 0))
{
 console.log("The value of my_number is an odd negative number");
}

Adding the parenthesis in the composite expression forces the expression enclosed by them to be
evaluated first. Without these parentheses, the NOT operator would apply only to my_number > 0
and then the OR expression would be evaluated. The && and || operators are known as binary
logical operators, because they require two operands. ! is known as a unary logical operator,
because it requires only one operand.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

240 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Switch Structures
Although the if structure is quite versatile and sufficient to control the flow of the program, the
switch control structure may be more appropriate when results other than true or false need to
be evaluated. For example, if we want to take a distinct action for each item chosen from a list, it
will be necessary to write an if structure for each assessment:

// Available languages: en (English), es (Spanish), pt (Portuguese)
let language = "pt";

// Variable to register whether the language was found in the list
let found = 0;

if (language == "en")
{
 found = 1;
 console.log("English");
}

if (found == 0 && language == "es")
{
 found = 1;
 console.log("Spanish");
}

if (found == 0 && language == "pt")
{
 found = 1;
 console.log("Portuguese");
}

if (found == 0)
{
 console.log(language, " is unknown to me");
}

In this example, an auxiliary variable found is used by all if structures to find out whether a
match has occurred. In a case such as this one, the switch structure will perform the same task,
but in a more succinct manner:

switch (language)
{

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 241

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 case "en":
 console.log("English");
 break;
 case "es":
 console.log("Spanish");
 break;
 case "pt":
 console.log("Portuguese");
 break;
 default:
 console.log(language, " not found");
}

Each nested case is called a clause. When a clause matches the evaluated expression, it executes
the statements following the colon until the break statement. The last clause does not need a
break statement and is often used to set the default action when no other matches occur. As seen
in the example, the auxiliary variable is not needed in the switch structure.

WARNING switch uses strict comparison to match expressions against its case clauses.

If more than one clause triggers the same action, you can combine two or more case conditions:

switch (language)
{
 case "en":
 case "en_US":
 case "en_GB":
 console.log("English");
 break;
 case "es":
 console.log("Spanish");
 break;
 case "pt":
 case "pt_BR":
 console.log("Portuguese");
 break;
 default:
 console.log(language, " not found");
}

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

242 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Loops
In previous examples, the if and switch structures were well suited for tasks that need to run
only once after passing one or more conditional tests. However, there are situations when a task
must execute repeatedly — in a so-called loop — as long as its conditional expression keeps testing
as true. If you need to know whether a number is prime, for example, you will need to check
whether dividing this number by any integer greater than 1 and lower than itself has a remainder
equal to 0. If so, the number has an integer factor and it is not prime. (This is not a rigorous or
efficient method to find prime numbers, but it works as a simple example.) Loop controls
structures are more suitable for such cases, in particular the while statement:

// A naive prime number tester

// The number we want to evaluate
let candidate = 231;

// Auxiliary variable
let is_prime = true;

// The first factor to try
let factor = 2;

// Execute the block statement if factor is
// less than candidate and keep doing it
// while factor is less than candidate
while (factor < candidate)
{

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }

 // The next factor to try. Simply
 // increment the current factor by one
 factor++;
}

// Display the result in the console window.
// If candidate has no integer factor, then
// the auxiliary variable is_prime still true

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 243

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

if (is_prime)
{
 console.log(candidate, "is prime");
}
else
{
 console.log(candidate, "is not prime");
}

The block statement following the while instruction will execute repeatedly as long as the
condition factor < candidate is true. It will execute at least once, as long as we initialize the
factor variable with a value lower than candidate. The if structure nested in the while
structure will evaluate whether the remainder of candidate divided by factor is zero. If so, the
candidate number is not prime and the loop can finish. The break statement will finish the loop
and the execution will jump to the first instruction after the while block.

Note that the outcome of the condition used by the while statement must change at every loop,
otherwise the block statement will loop “forever”. In the example, we increment the factor
variable‒the next divisor we want to try‒and it guarantees the loop will end at some point.

This simple implementation of a prime number tester works as expected. However, we know that
a number that is not divisible by two will not be divisible by any other even number. Therefore,
we could just skip the even numbers by adding another if instruction:

while (factor < candidate)
{

 // Skip even factors bigger than two
 if (factor > 2 && factor % 2 == 0)
 {
 factor++;
 continue;
 }

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }

 // The next number that will divide the candidate

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

244 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 factor++;
}

The continue statement is similar to the break statement, but instead of finishing this iteration of
the loop, it will ignore the rest of the loop’s block and start a new iteration. Note that the factor
variable was modified before the continue statement, otherwise the loop would have the same
outcome again in the next iteration. This example is too simple and skipping part of the loop will
not really improve its performance, but skipping redundant instructions is very important when
writing efficient applications.

Loops are so commonly used that they exist in many different variants. The for loop is specially
suited to iterate through sequential values, because it lets us define the loop rules in a single line:

for (let factor = 2; factor < candidate; factor++)
{
 // Skip even factors bigger than two
 if (factor > 2 && factor % 2 == 0)
 {
 continue;
 }

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }
}

This example produces the exact same result as the previous while example, but its parenthetic
expression includes three parts, separated by semicolons: the initialization (let factor = 2),
the loop condition (factor < candidate), and the final expression to be evaluated at the end of
each loop iteration (factor++). The continue and break statements also apply to for loops. The
final expression in the parentheses (factor++) will be evaluated after the continue statement, so
it should not be inside the block statement, otherwise it will be incremented two times before the
next iteration.

JavaScript has special types of for loops to work with array-like objects. We could, for example,
check an array of candidate variables instead of just one:

// A naive prime number tester

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 245

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

// The array of numbers we want to evaluate
let candidates = [111, 139, 293, 327];

// Evaluates every candidate in the array
for (candidate of candidates)
{
 // Auxiliary variable
 let is_prime = true;

 for (let factor = 2; factor < candidate; factor++)
 {
 // Skip even factors bigger than two
 if (factor > 2 && factor % 2 == 0)
 {
 continue;
 }

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }
 }

 // Display the result in the console window
 if (is_prime)
 {
 console.log(candidate, "is prime");
 }
 else
 {
 console.log(candidate, "is not prime");
 }
}

The for (candidate of candidates) statement assigns one element of the candidates array
to the candidate variable and uses it in the block statement, repeating the process for every
element in the array. You don’t need to declare candidate separately, because the for loop
defines it. Finally, the same code from the previous example was nested in this new block
statement, but this time testing each candidate in the array.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

246 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. What values of the my_var variable match the condition my_var > 0 && my_var < 9?

2. What values of the my_var variable match the condition my_var > 0 || my_var < 9?

3. How many times does the following while loop execute its block statement?

let i = 0;
while (1)
{
 if (i == 10)
 {
 continue;
 }
 i++;
}

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 247

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. What happens if the equal assignment operator = is used instead of the equal comparison

operator ==?

2. Write a code fragment using the if control structure where an ordinary equality comparison
will return true, but a strict equality comparison will not.

3. Rewrite the following for statement using the unary NOT logical operator in the loop
condition. The outcome of the condition should be the same.

for (let factor = 2; factor < candidate; factor++)

4. Based on the examples from this lesson, write a loop control structure that prints all the integer
factors of a given number.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

248 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
This lesson covers how to use control structures in JavaScript code. Conditional and loop
structures are essential elements of any programming paradigm, and JavaScript web development
is no exception. The lesson goes through the following concepts and procedures:

• The if statement and comparison operators.

• How to use the switch structure with case, default, and break.

• The difference between ordinary and strict comparison.

• Loop control structures: while and for.

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 249

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. What values of the my_var variable match the condition my_var > 0 && my_var < 9?

Only numbers that are both greater than 0 and less than 9. The && (AND) logical operator
requires both comparisons to match.

2. What values of the my_var variable match the condition my_var > 0 || my_var < 9?

Using the || (OR) logical operator will cause any number to match, as any number will either
be greater than 0 or less than 9.

3. How many times does the following while loop execute its block statement?

let i = 0;
while (1)
{
 if (i == 10)
 {
 continue;
 }
 i++;
}

The block statement will repeat indefinitely, as no stop condition was supplied.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

250 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. What happens if the equal assignment operator = is used instead of the equal comparison

operator ==?

The value on the right side of the operator is assigned to the variable on the left and the result
is passed to the comparison, which may not be the desired behavior.

2. Write a code fragment using the if control structure where an ordinary equality comparison
will return true, but a strict equality comparison will not.

 let a = "1";
 let b = 1;

 if (a == b)
 {
 console.log("An ordinary comparison will match.");
 }

 if (a === b)
 {
 console.log("A strict comparison will not match.");
 }

3. Rewrite the following for statement using the unary NOT logical operator in the loop
condition. The outcome of the condition should be the same.

for (let factor = 2; factor < candidate; factor++)

Answer:

for (let factor = 2; ! (factor >= candidate); factor++)

4. Based on the examples from this lesson, write a loop control structure that prints all the integer
factors of a given number.

for (let factor = 2; factor <= my_number; factor++)
{
 if (my_number % factor == 0)
 {

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 251

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 console.log(factor, " is an integer factor of ", my_number);
 }
}

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

252 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

034.3 Lesson 2
Certificate: Web Development Essentials

Version: 1.0

Topic: 034 JavaScript Programming

Objective: 034.3 JavaScript Control Structures and
Functions

Lesson: 2 of 2

Introduction
In addition to the standard set of builtin functions provided by the JavaScript language,
developers can write their own custom functions to map an input to an output suitable to the
application’s needs. Custom functions are basically a set of statements encapsulated to be used
elsewhere as part of an expression.

Using functions is a good way to avoid writing duplicate code, because they can be called from
different locations throughout the program. Moreover, grouping statements in functions
facilitates the binding of custom actions to events, which is a central aspect of JavaScript
programming.

Defining a Function
As a program grows, it becomes harder to organize what it does without using functions. Each
function has its own private variable scope, so the variables defined inside a function will be
available only inside that same function. Thus, they won’t get mixed up with variables from other
functions. Global variables are still accessible from within functions, but the preferable way to

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 253

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

send input values to a function is through function parameters. As an example, we are going to
build on the prime number validator from the previous lesson:

// A naive prime number tester

// The number we want to evaluate
let candidate = 231;

// Auxiliary variable
let is_prime = true;

// Start with the lowest prime number after 1
let factor = 2;

// Keeps evaluating while factor is less than the candidate
while (factor < candidate)
{

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }

 // The next number that will divide the candidate
 factor++;
}

// Display the result in the console window
if (is_prime)
{
 console.log(candidate, "is prime");
}
else
{
 console.log(candidate, "is not prime");
}

If later in the code you need to check if a number is prime, it would be necessary to repeat the
code that has already been written. This practice is not recommended, because any corrections or
improvements to the original code would need to be replicated manually everywhere the code
was copied to. Moreover, repeating code places a burden on the browser and network, possibly

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

254 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

slowing down the display of the web page. Instead of doing this, move the appropriate statements
to a function:

// A naive prime number tester function
function test_prime(candidate)
{
 // Auxiliary variable
 let is_prime = true;

 // Start with the lowest prime number after 1
 let factor = 2;

 // Keeps evaluating while factor is less than the candidate
 while (factor < candidate)
 {

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }

 // The next number that will divide the candidate
 factor++;
 }

 // Send the answer back
 return is_prime;
}

The function declaration starts with a function statement, followed by the name of the function
and its parameters. The name of the function must follow the same rules as the names for
variables. The parameters of the function, also known as the function arguments, are separated by
commas and enclosed by parenthesis.

TIP

Listing the arguments in the function declaration is not mandatory. The arguments
passed to a function can be retrieved from an array-like arguments object inside that
function. The index of the arguments starts at 0, so the first argument is
arguments[0], the second argument is arguments[1], and so on.

In the example, the test_prime function has only one argument: the candidate argument,

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 255

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

which is the prime number candidate to be tested. Function arguments work like variables, but
their values are assigned by the statement calling the function. For example, the statement
test_prime(231) will call the test_prime function and assign the value 231 to the candidate
argument, which will then be available inside the function’s body like an ordinary variable.

If the calling statement uses simple variables for the function’s parameters, their values will be
copied to the function arguments. This procedure — copying the values of the parameters used in
the calling statement to the parameters used inside the function —- is called passing arguments by
value. Any modifications made to the argument by the function does not affect the original
variable used in the calling statement. However, if the calling statement uses complex objects as
arguments (that is, an object with properties and methods attached to it) for the function’s
parameters, they will be passed as reference and the function will be able to modify the original
object used in the calling statement.

The arguments that are passed by value, as well as the variables declared within the function, are
not visible outside it. That is, their scope is restricted to the body of the function where they were
declared. Nonetheless, functions are usually employed to create some output visible outside the
function. To share a value with its calling function, a function defines a return statement.

For instance, the test_prime function in the previous example returns the value of the is_prime
variable. Therefore, the function can replace the variable anywhere it would be used in the
original example:

// The number we want to evaluate
let candidate = 231;

// Display the result in the console window
if (test_prime(candidate))
{
 console.log(candidate, "is prime");
}
else
{
 console.log(candidate, "is not prime");
}

The return statement, as its name indicates, returns control to the calling function. Therefore,
wherever the return statement is placed in the function, nothing following it is executed. A
function can contain multiple return statements. This practice can be useful if some are within
conditional blocks of statements, so that the function might or might not execute a particular
return statement on each run.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

256 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Some functions may not return a value, so the return statement is not mandatory. The function’s
internal statements are executed regardless of its presence, so functions can also be used to
change the values of global variables or the contents of objects passed by reference, for example.
Notwithstanding, if the function does not have a return statement, its default return value is set
to undefined: a reserved variable that does not have a value and cannot be written.

Function Expressions

In JavaScript, functions are just another type of object. Thus, functions can be employed in the
script like variables. This characteristic becomes explicit when the function is declared using an
alternative syntax, called function expressions:

let test_prime = function(candidate)
{
 // Auxiliary variable
 let is_prime = true;

 // Start with the lowest prime number after 1
 let factor = 2;

 // Keeps evaluating while factor is less than the candidate
 while (factor < candidate)
 {

 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime
 is_prime = false;
 break;
 }

 // The next number that will divide the candidate
 factor++;
 }

 // Send the answer back
 return is_prime;
}

The only difference between this example and the function declaration in the previous example is
in the first line: let test_prime = function(candidate) instead of function
test_prime(candidate). In a function expression, the test_prime name is used for the object

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 257

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

containing the function and not to name the function itself. Functions defined in function
expressions are called in the same way as functions defined using the declaration syntax.
However, whereas declared functions can be called before or after their declaration, function
expressions can be called only after their initialization. Like with variables, calling a function
defined in an expression before its initialization will cause a reference error.

Function Recursion
In addition to executing statements and calling builtin functions, custom functions can also call
other custom functions, including themselves. To call a function from itself is called function
recursion. Depending on the type of problem you are trying to solve, using recursive functions can
be more straightforward than using nested loops to perform repetitive tasks.

So far, we know how to use a function to test whether a given number is prime. Now suppose you
want to find the next prime following a given number. You could employ a while loop to
increment the candidate number and write a nested loop which will look for integer factors for
that candidate:

// This function returns the next prime number
// after the number given as its only argument
function next_prime(from)
{
 // We are only interested in the positive primes,
 // so we will consider the number 2 as the next
 // prime after any number less than two.
 if (from < 2)
 {
 return 2;
 }

 // The number 2 is the only even positive prime,
 // so it will be easier to treat it separately.
 if (from == 2)
 {
 return 3;
 }

 // Decrement "from" if it is an even number
 if (from % 2 == 0)
 {
 from--;
 }

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

258 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 // Start searching for primes greater then 3.

 // The prime candidate is the next odd number
 let candidate = from + 2;

 // "true" keeps the loop going until a prime is found
 while (true)
 {
 // Auxiliary control variable
 let is_prime = true;

 // "candidate" is an odd number, so the loop will
 // try only the odd factors, starting with 3
 for (let factor = 3; factor < candidate; factor = factor + 2)
 {
 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime.
 // Test the next candidate
 is_prime = false;
 break;
 }
 }
 // End loop and return candidate if it is prime
 if (is_prime)
 {
 return candidate;
 }
 // If prime not found yet, try the next odd number
 candidate = candidate + 2;
 }
}

let from = 1024;
console.log("The next prime after", from, "is", next_prime(from));

Note that we need to use a constant condition for the while loop (the true expression inside the
parenthesis) and the auxiliary variable is_prime to know when to stop the loop. Athough this
solution is correct, using nested loops is not as elegant as using recursion to perform the same
task:

// This function returns the next prime number

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 259

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

// after the number given as its only argument
function next_prime(from)
{
 // We are only interested in the positive primes,
 // so we will consider the number 2 as the next
 // prime after any number less than two.
 if (from < 2)
 {
 return 2;
 }

 // The number 2 is the only even positive prime,
 // so it will be easier to treat it separately.
 if (from == 2)
 {
 return 3;
 }

 // Decrement "from" if it is an even number
 if (from % 2 == 0)
 {
 from--;
 }

 // Start searching for primes greater then 3.

 // The prime candidate is the next odd number
 let candidate = from + 2;

 // "candidate" is an odd number, so the loop will
 // try only the odd factors, starting with 3
 for (let factor = 3; factor < candidate; factor = factor + 2)
 {
 if (candidate % factor == 0)
 {
 // The remainder is zero, so the candidate is not prime.
 // Call the next_prime function recursively, this time
 // using the failed candidate as the argument.
 return next_prime(candidate);
 }
 }

 // "candidate" is not divisible by any integer factor other
 // than 1 and itself, therefore it is a prime number.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

260 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 return candidate;
}

let from = 1024;
console.log("The next prime after", from, "is", next_prime(from));

Both versions of next_prime return the next prime number after the number given as its only
argument (from). The recursive version, like the previous version, starts by checking the special
cases (i.e. numbers less or equal to two). Then it increments the candidate and starts looking for
any integer factors with the for loop (notice that the while loop is not there anymore). At that
point, the only even prime number has already been tested, so the candidate and its possible
factors are incremented by two. (An odd number plus two is the next odd number.)

There are only two ways out of the for loop in the example. If all the possible factors are tested
and none of them has a remainder equal to zero when dividing the candidate, the for loop
completes and the function returns the candidate as the next prime number after from.
Otherwise, if factor is an integer factor of candidate (candidate % factor == 0), the
returned value comes from the next_prime function called recursively, this time with the
incremented candidate as its from parameter. The calls for next_prime will be stacked on top of
one another, until one candidate finally turns up no integer factors. Then the last next_prime
instance containing the prime number will return it to the previous next_prime instance, and
thus successively down to the first next_prime instance. Even though each invocation of the
function uses the same names for variables, the invocations are isolated from each other, so their
variables are kept separated in memory.

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 261

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What kind of overhead can developers mitigate by using functions?

2. What is the difference between function arguments passed by value and function arguments
passed by reference?

3. Which value will be used as the output of a custom function if it does not have a return
statement?

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

262 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. What is the probable cause of an Uncaught Reference Error issued when calling a function

declared with the expression syntax?

2. Write a function called multiples_of that receives three arguments: factor, from, and to.
Inside the function, use the console.log() instruction to print all multiples of factor lying
between from and to.

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 263

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers how to write custom functions in JavaScript code. Custom functions let the
developer divide the application in “chunks” of reusable code, making it easier to write and
maintain larger programs. The lesson goes through the following concepts and procedures:

• How to define a custom function: function declarations and function expressions.

• Using parameters as the function input.

• Using the return statement to set the function output.

• Function recursion.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

264 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What kind of overhead can developers mitigate by using functions?

Functions allow us to reuse code, which facilitates code maintenance. A smaller script file also
saves memory and download time.

2. What is the difference between function arguments passed by value and function arguments
passed by reference?

When passed by value, the argument is copied to the function and the function is not able to
modify the original variable in the calling statement. When passed by reference, the function is
able to manipulate the original variable used in the calling statement.

3. Which value will be used as the output of a custom function if it does not have a return
statement?

The returned value will be set to undefined.

Web Development Essentials (030) (Version 1.0) | 034.3 JavaScript Control Structures and Functions

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 265

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. What is the probable cause of an Uncaught Reference Error issued when calling a function

declared with the expression syntax?

The function was called before its declaration in the script file.

2. Write a function called multiples_of that receives three arguments: factor, from, and to.
Inside the function, use the console.log() instruction to print all multiples of factor lying
between from and to.

 function multiples_of(factor, from, to)
 {
 for (let number = from; number <= to; number++)
 {
 if (number % factor == 0)
 {
 console.log(factor, "*", number / factor, "=", number);
 }
 }
 }

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

266 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

034.4 JavaScript Manipulation of Website Content and Styling

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 034.4

Weight

4

Key knowledge areas

• Understand the concept and structure of the DOM

• Change the contents and properties of HTML elements through the DOM

• Change the CSS styling of HTML elements through the DOM

• Trigger JavaScript functions from HTML elements

Partial list of the used files, terms and utilities

• document.getElementById(), document.getElementsByClassName(),
document.getElementsByTagName(), document.querySelector(),
document.querySelectorAll()

• innerHTML, setAttribute(), removeAttribute() properties and methods of DOM
elements

• classList, classList.add(), classList.remove(), classList.toggle() properties
and methods of DOM elements

• onClick, onMouseOver, onMouseOut attributes of HTML elements

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 267

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#034.4_JavaScript_Manipulation_of_Website_Content_and_Styling_.28weight:_2.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

034.4 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 034 JavaScript Programming

Objective: 034.4 JavaScript Manipulation of Website
Content and Styling

Lesson: 1 of 1

Introduction
HTML, CSS, and JavaScript are three distinct technologies that come together on the Web. In order
to make truly dynamic and interactive pages, the JavaScript programmer must combine
components from HTML and CSS at run time, a task that is greatly facilitated by using the
Document Object Model (DOM).

Interacting with the DOM
The DOM is a data structure that works as a programming interface to the document, where every
aspect of the document is represented as a node in the DOM and every change made to the DOM
will immediately reverberate in the document. To show how to use the DOM in JavaScript, save
the following HTML code in a file called example.html:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

268 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 <title>HTML Manipulation with JavaScript</title>
</head>
<body>

<div class="content" id="content_first">
<p>The dynamic content goes here</p>
</div><!-- #content_first -->

<div class="content" id="content_second" hidden>
<p>Second section</p>
</div><!-- #content_second -->

</body>
</html>

The DOM will be available only after the HTML is loaded, so write the following JavaScript at the
end of the page body (before the ending </body> tag):

<script>
let body = document.getElementsByTagName("body")[0];
console.log(body.innerHTML);
</script>

The document object is the top DOM element, all other elements branch off from it. The
getElementsByTagName() method lists all the elements descending from document that have
the given tag name. Even though the body tag is used only once in the document, the
getElementsByTagName() method always return an array-like collection of found elements,
hence the use of the [0] index to return the first (and only) element found.

HTML Content
As shown in the previous example, the DOM element returned by the
document.getElementsByTagName("body")[0] was assigned to the body variable. The body
variable can then be used to manipulate the page’s body element, because it inherits all the DOM
methods and attributes from that element. For instance, the innerHTML property contains the
entire HTML markup code written inside the corresponding element, so it can be used to read the
inner markup. Our console.log(body.innerHTML) call prints the content inside
<body></body> to the web console. The variable can also be used to replace that content, as in
body.innerHTML = "<p>Content erased</p>".

Rather than changing entire portions of HTML markup, it is more practical to keep the document

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 269

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

structure unaltered and just interact with its elements. Once the document is rendered by the
browser, all the elements are accessible by DOM methods. It is possible, for example, to list and
access all the HTML elements using the special string * in the getElementsByTagName() method
of the document object:

let elements = document.getElementsByTagName("*");
for (element of elements)
{
 if (element.id == "content_first")
 {
 element.innerHTML = "<p>New content</p>";
 }
}

This code will place all the elements found in document in the elements variable. The elements
variable is an array-like object, so we can iterate through each of its items with a for loop. If the
HTML page where this code runs has an element with an id attribute set to content_first (see
the sample HTML page shown at the start of the lesson), the if statement matches that element
and its markup contents will be changed to <p>New content</p>. Note that the attributes of an
HTML element in the DOM are accessible using the dot notation of JavaScript object properties:
therefore, element.id refers to the id attribute of the current element of the for loop. The
getAttribute() method could also be used, as in element.getAttribute("id").

It is not necessary to iterate through all the elements if you want to inspect only a subset of them.
For example, the document.getElementsByClassName() method limits the matched elements to
those having a specific class:

let elements = document.getElementsByClassName("content");
for (element of elements)
{
 if (element.id == "content_first")
 {
 element.innerHTML = "<p>New content</p>";
 }
}

However, iterating through many document elements using a loop is not the best strategy when
you have to change a specific element in the page.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

270 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Selecting Specific Elements
JavaScript provides optimized methods to select the exact element you want to work on. The
previous loop could be entirely replaced by the document.getElementById() method:

let element = document.getElementById("content_first");
element.innerHTML = "<p>New content</p>";

Every id attribute in the document must be unique, so the document.getElementById()
method returns only a single DOM object. Even the declaration of the element variable can be
omitted, because JavaScript lets us chain methods directly:

document.getElementById("content_first").innerHTML = "<p>New content</p>";

The getElementById() method is the preferable method to locate elements in the DOM, because
its performance is much better than iterative methods when working with complex documents.
However, not all elements have an explicit ID, and the method returns a null value if no element
matches with the provided ID (this also prevents the use of chained attributes or functions, like
the innerHTML used in the example above). Moreover, it is more practical to assign ID attributes
only to the main components of the page and then use CSS selectors to locate their child elements.

Selectors, introduced in an earlier lesson on CSS, are patterns that match elements in the DOM.
The querySelector() method returns the first matching element in the DOM’s tree, while
querySelectorAll() returns all elements that match the specified selector.

In the previous example, the getElementById() method retrieves the element bearing the
content_first ID. The querySelector() method can perform the same task:

document.querySelector("#content_first").innerHTML = "<p>New content</p>";

Because the querySelector() method uses selector syntax, the provided ID must begin with a
hash character. If no matching element is found, the querySelector() method returns null.

In the previous example, the entire content of the content_first div is replaced by the text
string provided. The string has HTML code in it, which is not considered a best practice. You must
be careful when adding hard-coded HTML markup to JavaScript code, because tracking elements
can become difficult when changes to the overall document structure are required.

Selectors are not restricted to the ID of the element. The internal p element can be addressed

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 271

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

directly:

document.querySelector("#content_first p").innerHTML = "New content";

The #content_first p selector will match only the first p element inside the #content_first
div. It works fine if we want to manipulate the first element. However, we may want to change the
second paragraph:

<div class="content" id="content_first">
<p>Don't change this paragraph.</p>
<p>The dynamic content goes here.</p>
</div><!-- #content_first -->

In this case, we can use the :nth-child(2) pseudo-class to match the second p element:

document.querySelector("#content_first p:nth-child(2)").innerHTML = "New content";

The number 2 in p:nth-child(2) indicates the second paragraph that matches the selector. See
the CSS selectors lesson to know more about selectors and how to use them.

Working with Attributes
JavaScript’s ability to interact with the DOM is not restricted to content manipulation. Indeed, the
most pervasive use of JavaScript in the browser is to modify the attributes of the existing HTML
elements.

Let’s say our original HTML example page has now three sections of content:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>HTML Manipulation with JavaScript</title>
</head>
<body>

<div class="content" id="content_first" hidden>
<p>First section.</p>
</div><!-- #content_first -->

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

272 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<div class="content" id="content_second" hidden>
<p>Second section.</p>
</div><!-- #content_second -->

<div class="content" id="content_third" hidden>
<p>Third section.</p>
</div><!-- #content_third -->

</body>
</html>

You may want to make only one of them visible at a time, hence the hidden attribute in all div
tags. This is useful, for example, to show only one image from a gallery of images. To make one of
them visible when the page loads, add the following JavaScript code to the page:

// Which content to show
let content_visible;

switch (Math.floor(Math.random() * 3))
{
 case 0:
 content_visible = "#content_first";
 break;
 case 1:
 content_visible = "#content_second";
 break;
 case 2:
 content_visible = "#content_third";
 break;
}

document.querySelector(content_visible).removeAttribute("hidden");

The expression evaluated by the switch statement randomly returns the number 0, 1, or 2. The
corresponding ID selector is then be assigned to the content_visible variable, which is used by
the querySelector(content_visible) method. The chained removeAttribute("hidden")
call removes the hidden attribute from the element.

The opposite approach is also possible: All sections could be initially visible (without the hidden
attribute) and the JavaScript program can then assign the hidden attribute to every section except
the one in content_visible. To do so, you must iterate through all the content div elements that
are different from the chosen one, which can be done by using the querySelectorAll() method:

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 273

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

// Which content to show
let content_visible;

switch (Math.floor(Math.random() * 3))
{
 case 0:
 content_visible = "#content_first";
 break;
 case 1:
 content_visible = "#content_second";
 break;
 case 2:
 content_visible = "#content_third";
 break;
}

// Hide all content divs, except content_visible
for (element of document.querySelectorAll(".content:not("+content_visible+")"))
{
 // Hidden is a boolean attribute, so any value will enable it
 element.setAttribute("hidden", "");
}

If the content_visible variable was set to #content_first, the selector will be
.content:not(#content_first), which reads as all elements having the content class except
those having the content_first ID. The setAttribute() method adds or changes attributes of
HTML elements. Its first parameter is the name of the attribute and the second is the value of the
attribute.

However, the proper way to change the appearance of elements is with CSS. In this case, we can
set the display CSS property to hidden and then change it to block using JavaScript:

<style>
div.content { display: none }
</style>

<div class="content" id="content_first">
<p>First section.</p>
</div><!-- #content_first -->

<div class="content" id="content_second">
<p>Second section.</p>

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

274 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

</div><!-- #content_second -->

<div class="content" id="content_third">
<p>Third section.</p>
</div><!-- #content_third -->

<script>
// Which content to show
let content_visible;

switch (Math.floor(Math.random() * 3))
{
 case 0:
 content_visible = "#content_first";
 break;
 case 1:
 content_visible = "#content_second";
 break;
 case 2:
 content_visible = "#content_third";
 break;
}
document.querySelector(content_visible).style.display = "block";
</script>

The same good practices that apply to mixing HTML tags with JavaScript apply also to CSS. Thus,
writing CSS properties directly in JavaScript code is not recommended. Instead, CSS rules should
be written apart from JavaScript code. The proper way to alternate visual styling is to select a pre-
defined CSS class for the element.

Working with Classes
Elements may have more than one associated class, making it easier to write styles that can be
added or removed when necessary. It would be exhausting to change many CSS attributes directly
in JavaScript, so you can create a new CSS class with those attributes and then add the class to the
element. DOM elements have the classList property, which can be used to view and manipulate
the classes assigned to the corresponding element.

For example, instead of changing the visibility of the element, we can create an additional CSS
class to highlight our content div:

div.content {

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 275

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 border: 1px solid black;
 opacity: 0.25;
}
div.content.highlight {
 border: 1px solid red;
 opacity: 1;
}

This stylesheet will add a thin black border and semi-transparency to all elements having the
content class. Only the elements that also have the highlight class will be fully opaque and
have the thin red border. Then, instead of changing the CSS properties directly as we did before,
we can use the classList.add("highlight") method in the selected element:

// Which content to highlight
let content_highlight;

switch (Math.floor(Math.random() * 3))
{
 case 0:
 content_highlight = "#content_first";
 break;
 case 1:
 content_highlight = "#content_second";
 break;
 case 2:
 content_highlight = "#content_third";
 break;
}

// Highlight the selected div
document.querySelector(content_highlight).classList.add("highlight");

All the techniques and examples we have seen so far were performed at the end of the page
loading process, but they are not restricted to this stage. In fact, what makes JavaScript so useful to
Web developers is its ability to react to events on the page, which we will see next.

Event Handlers
All visible page elements are susceptible to interactive events, such as the click or the movement
of the mouse itself. We can associate custom actions to these events, which greatly expands what
an HTML document can do.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

276 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Probably the most obvious HTML element that benefits from an associated action is the button
element. To show how it works, add three buttons above the first div element of the example
page:

<p>
<button>First</button>
<button>Second</button>
<button>Third</button>
</p>

<div class="content" id="content_first">
<p>First section.</p>
</div><!-- #content_first -->

<div class="content" id="content_second">
<p>Second section.</p>
</div><!-- #content_second -->

<div class="content" id="content_third">
<p>Third section.</p>
</div><!-- #content_third -->

The buttons do nothing on their own, but suppose you want to highlight the div corresponding to
the pressed button. We can use the onClick attribute to associate an action to each button:

<p>
<button onClick="document.getElementById('content_first').classList.toggle('highlight')"
>First</button>
<button onClick="document.getElementById('content_second').classList.toggle('highlight')"
>Second</button>
<button onClick="document.getElementById('content_third').classList.toggle('highlight')"
>Third</button>
</p>

The classList.toggle() method adds the specified class to the element if it is not present, and
removes that class if it is already present. If you run the example, you will note that more than
one div can be highlighted at the same time. To highlight only the div corresponding to the
pressed button, it is necessary to remove the highlight class from the other div elements.
Nonetheless, if the custom action is too long or involves more than one line of code, it’s more
practical to write a function apart from the element tag:

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 277

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

function highlight(id)
{
 // Remove the "highlight" class from all content elements
 for (element of document.querySelectorAll(".content"))
 {
 element.classList.remove('highlight');
 }

 // Add the "highlight" class to the corresponding element
 document.getElementById(id).classList.add('highlight');
}

Like the previous examples, this function can be placed inside a <script> tag or in an external
JavaScript file associated with the document. The highlight function first removes the
highlight class from all the div elements associated with the content class, then adds the
highlight class to the chosen element. Each button should then call this function from its
onClick attribute, using the corresponding ID as the function’s argument:

<p>
<button onClick="highlight('content_first')">First</button>
<button onClick="highlight('content_second')">Second</button>
<button onClick="highlight('content_third')">Third</button>
</p>

In addition to the onClick attribute, we could use the onMouseOver attribute (triggered when the
pointing device is used to move the cursor onto the element), the onMouseOut attribute (triggered
when the pointing device is no longer contained within the element), etc. Moreover, event
handlers are not restricted to buttons, so you can assign custom actions to these event handlers
for all visible HTML elements.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

278 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. Using the document.getElementById() method, how could you insert the phrase “Dynamic

content” to the inner content of the element whose ID is message?

2. What is the difference between referencing an element by its ID using the
document.querySelector() method and doing so via the document.getElementById()
method?

3. What is the purpose of the classList.remove() method?

4. What is the result of using the method myelement.classList.toggle("active") if
myelement does not have the active class assigned to it?

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 279

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. What argument to the document.querySelectorAll() method will make it mimic the

document.getElementsByTagName("input") method?

2. How can you use the classList property to list all the classes associated with a given
element?

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

280 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
This lesson covers how to use JavaScript to change HTML contents and their CSS properties using
the DOM (Document Object Model). These changes can be triggered by user events, which is useful
to create dynamic interfaces. The lesson goes through the following concepts and procedures:

• How to inspect the structure of the document using methods like
document.getElementById(), document.getElementsByClassName(),
document.getElementsByTagName(), document.querySelector() and
document.querySelectorAll().

• How to change the document’s content with the innerHTML property.

• How to add and modify the attributes of page elements with methods setAttribute() and
removeAttribute().

• The proper way to manipulate elements classes using the classList property and its relation
to CSS styles.

• How to bind functions to mouse events in specific elements.

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 281

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. Using the document.getElementById() method, how could you insert the phrase “Dynamic

content” to the inner content of the element whose ID is message?

It can be done with the innerHTML property:

document.getElementById("message").innerHTML = "Dynamic content"

2. What is the difference between referencing an element by its ID using the
document.querySelector() method and doing so via the document.getElementById()
method?

The ID must be accompanied by the hash character in functions that use selectors, such as
document.querySelector().

3. What is the purpose of the classList.remove() method?

It removes the class (whose name is given as the argument of the function) from the class
attribute of the corresponding element.

4. What is the result of using the method myelement.classList.toggle("active") if
myelement does not have the active class assigned to it?

The method will assign the active class to myelement.

Web Development Essentials (030) (Version 1.0) | Topic 034: JavaScript Programming

282 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. What argument to the document.querySelectorAll() method will make it mimic the

document.getElementsByTagName("input") method?

Using document.querySelectorAll("input") will match all the input elements in the page,
just like document.getElementsByTagName("input").

2. How can you use the classList property to list all the classes associated with a given
element?

The classList property is an array-like object, so a for loop can be used to iterate through all
the classes it contains.

Web Development Essentials (030) (Version 1.0) | 034.4 JavaScript Manipulation of Website Content and Styling

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 283

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Topic 035: NodeJS Server Programming

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

284 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

035.1 NodeJS Basics

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 035.1

Weight

1

Key knowledge areas

• Understand the concepts of Node.js

• Run a NodeJS application

• Install NPM packages

Partial list of the used files, terms and utilities

• node [file.js]

• npm init

• npm install [module_name]

• package.json

• node_modules

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 285

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#035.1_NodeJS_Basics_.28weight:_1.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

035.1 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 035 Node.js Server Programming

Objective: 035.1 Node.js Basics

Lesson: 1 of 1

Introduction
Node.js is a JavaScript runtime environment that runs JavaScript code in web servers–the so-
called web backend (server side)–instead of using a second language like Python or Ruby for
server-side programs. The JavaScript language is already used in the modern frontend side of web
applications, interacting with the HTML and CSS of the interface that the user interacts with a web
browser. Using Node.js in tandem with JavaScript in the browser offers the possibility of just one
programming language for the whole application.

The main reason for the existence of Node.js is the way it handles multiple concurrent
connections in the backend. One of the most common ways that a web application server handles
connections is through the execution of multiple processes. When you open a desktop application
in your computer, a process starts and uses a lot of resources. Now think about when thousands of
users are doing the same thing in a large web application.

Node.js avoids this problem using a design called the event loop, which is an internal loop that
continously checks for incoming tasks to be computed. Thanks to the widespread use of JavaScript
and the ubiquity of web technologies, Node.js has seen a huge adoption in both small and large
applications. There are other characteristics that also helped Node.js to be widely adopted, such as

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

286 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

asynchronous and non-blocking input/output (I/O) processing, which is explained later in this
lesson.

The Node.js environment uses a JavaScript engine to interpret and execute JavaScript code on the
server side or on the desktop. In these conditions, the JavaScript code that the programmer writes
is parsed and compiled just-in-time to execute the machine instructions generated by the original
JavaScript code.

NOTE
As you progress through these lessons about Node.js, you may notice that the
Node.js JavaScript is not exactly the same as the one that runs on the browser
(which follows the ECMAScript specification), but is quite similar.

Getting Started
This section and the following examples assume that Node.js is already installed on your Linux
operating system, and that the user already has basic skills such as how to execute commands in
the terminal.

To run the following examples, create a working directory called node_examples. Open a
terminal prompt and type node. If you have correctly installed Node.js, it will present a > prompt
where you can test JavaScript commands interactively. This kind of environment is called REPL,
for “read, evaluate, print, and loop”. Type the following input (or some other JavaScript
statements) at the > prompts. Press the Enter key after each line, and the REPL environment will
return the results of its actions:

> let array = ['a', 'b', 'c', 'd'];
undefined
> array.map((element, index) => (`Element: ${element} at index: ${index}`));
[
 'Element: a at index: 0',
 'Element: b at index: 1',
 'Element: c at index: 2',
 'Element: d at index: 3'
]
>

The snippet was written using ES6 syntax, which offers a map function to iterate over the array
and print the results using string templates. You can write pretty much any command that is
valid. To exit the Node.js terminal, type .exit, remembering to include the initial period.

For longer scripts and modules, it is more convenient to use a text editor such as VS Code, Emacs,

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 287

https://www.ecma-international.org/publications-and-standards/standards/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

or Vim. You can save the two lines of code just shown (with a little modification) in a file called
start.js:

let array = ['a', 'b', 'c', 'd'];
array.map((element, index) => (console.log(`Element: ${element} at index: ${index}`)));

Then you can run the script from the shell to produce the same results as before:

$ node ./start.js
Element: a at index: 0
Element: b at index: 1
Element: c at index: 2
Element: d at index: 3

Before diving into some more code, we are going to get an overview of how Node.js works, using
its single thread execution environment and the event loop.

Event Loop and Single Thread

It is hard to tell how much time your Node.js program will take to handle a request. Some requests
may be short—perhaps just looping through variables in memory and returning them—whereas
others may require time-consuming activities such as opening a file on the system or issuing a
query to a database and waiting for the results. How does Node.js handle this uncertainty? The
event loop is the answer.

Imagine a chef doing multiple tasks. Baking a cake is one task that requires a lot of time for the
oven to cook it. The chef does not stay there waiting for the cake to be ready and then set out to
make some coffee. Instead, while the oven bakes the cake, the chef makes coffee and other tasks
in parallel. But the cook is always checking whether it is the right time to switch focus to a specific
task (making coffee), or to get the cake out of oven.

The event loop is like the chef who is constantly aware of the surrounding activities. In Node.js, an
“event-checker” is always checking for operations that have completed or are waiting to be
processed by the JavaScript engine.

Using this approach, an asynchronous and long operation does not block other quick operations
that come after. This is because the event loop mechanism is always checking whether that long
task, such as an I/O operation, is already done. If not, Node.js can continue to process other tasks.
Once the background task is complete, the results are returned and the application on top of
Node.js can use a trigger function (callback) to further process the output.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

288 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Because Node.js avoids the use of multiple threads, as other environments do, it is called a single-
threaded environment, and therefore a non-blocking approach is of the utmost importance. This is
why Node.js uses an event loop. For compute-intensive tasks, Node.js is not among the best tools,
however: there are other programming languages and environments that address these problems
more efficiently.

In the following sections, we will take a closer look at callback functions. For now, understand
that callback functions are triggers that are executed upon the completion of a predefined
operation.

Modules

It is a best practice to break down complex functionality and extensive pieces of code into smaller
parts. Doing this modularization helps to better organize the codebase, abstract away the
implementations, and avoid complicated engineering problems. To meet those necessities,
programmers package blocks of source code to be consumed by other internal or external parts of
code.

Consider the example of a program that calculates the volume of a sphere. Open up your text
editor and create a file named volumeCalculator.js containing the following JavaScript:

const sphereVol = (radius) => {
 return 4 / 3 * Math.PI * radius
}

console.log(`A sphere with radius 3 has a ${sphereVol(3)} volume.`);
console.log(`A sphere with radius 6 has a ${sphereVol(6)} volume.`);

Now, execute the file using Node:

$ node volumeCalculator.js
A sphere with radius 3 has a 113.09733552923254 volume.
A sphere with radius 6 has a 904.7786842338603 volume.

Here, a simple function was used to compute the volume of a sphere, based on its radius. Imagine
that we also need to calculate the volume of a cylinder, cone, and so on: we quickly notice that
those specific functions must be added to the volumeCalculator.js file, which can become a
huge collection of functions. To better organize the structure, we can use the idea behind modules
as packages of separated code.

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 289

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

In order to do that, create a separated file called polyhedrons.js:

const coneVol = (radius, height) => {
 return 1 / 3 * Math.PI * Math.pow(radius, 2) * height;
}

const cylinderVol = (radius, height) => {
 return Math.PI * Math.pow(radius, 2) * height;
}

const sphereVol = (radius) => {
 return 4 / 3 * Math.PI * Math.pow(radius, 3);
}

module.exports = {
 coneVol,
 cylinderVol,
 sphereVol
}

Now, in the volumeCalculator.js file, delete the old code and replace it with this snippet:

const polyhedrons = require('./polyhedrons.js');

console.log(`A sphere with radius 3 has a ${polyhedrons.sphereVol(3)} volume.`);
console.log(`A cylinder with radius 3 and height 5 has a ${polyhedrons.cylinderVol(3, 5)}
volume.`);
console.log(`A cone with radius 3 and height 5 has a ${polyhedrons.coneVol(3, 5)} volume.`);

And then run the filename against the Node.js environment:

$ node volumeCalculator.js
A sphere with radius 3 has a 113.09733552923254 volume.
A cylinder with radius 3 and height 5 has a 141.3716694115407 volume.
A cone with radius 3 and height 5 has a 47.12388980384689 volume.

In the Node.js environment, every source code file is considered a module, but the word “module”
in Node.js indicates a package of code wrapped up as in the previous example. By using modules,
we abstracted the volume functions away from the main file, volumeCalculator.js, thus
reducing its size and making it easier to apply unit tests, which are a good practice when
developing real world applications.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

290 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Now that we know how modules are used in Node.js, we can use one of the most important tools:
the Node Package Manager (NPM).

One of the main jobs of NPM is to manage, download, and install external modules into the project
or in the operating system. You can initialize a node repository with the command npm init.

NPM will ask the default questions about the name of your repository, version, description, and so
on. You can bypass these steps using npm init --yes, and the command will automatically
generate a package.json file that describes the properties of your project/module.

Open the package.json file in your favorite text editor and you will see a JSON file containing
properties such as keywords, script commands to use with NPM, a name, etc.

One of those properties is the dependencies that are installed in your local repository. NPM will
add the name and version of these dependencies into package.json, along with package-
lock.json, another file used as fallback by NPM in case package.json fails.

Type the following in your terminal:

$ npm i dayjs

The i flag is a shortcut for the argument install. If you are connected to the internet, NPM will
search for a module named dayjs in the remote repository of Node.js, download the module, and
install it locally. NPM will also add this dependency to your package.json and package-
lock.json files. Now you can see that there is a folder called node_modules, which contains the
installed module along with other modules if they are needed. The node_modules directory
contains the actual code that is going to be used when the library is imported and called.
However, this folder is not saved in versioning systems using Git, since the package.json file
provides all the dependencies used. Another user can take the package.json file and simply run
npm install in their own machine, where NPM will create a node_modules folder with all the
dependencies in the package.json, thus avoiding version control for the thousands of files
available on the NPM repository.

Now that the dayjs module is installed in the local directory, open the Node.js console and type
the following lines:

const dayjs = require('dayjs');
dayjs().format('YYYY MM-DDTHH:mm:ss')

The dayjs module is loaded with the require keyword. When a method from the module is

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 291

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

called, the library takes the current system datetime and outputs it in the specified format:

2020 11-22T11:04:36

This is the same mechanism used in the previous example, where the Node.js runtime loads the
third party function into the code.

Server Functionality

Because Node.js controls the back end of web applications, one of its core tasks is to handle HTTP
requests.

Here is a summary of how web servers handled incoming HTTP requests. The functionality of the
server is to listen for requests, determine as quickly as possible what response each needs, and
return that response to the sender of the request. This application must receive an incoming HTTP
request triggered by the user, parse the request, perform the calculation, generate the response,
and send it back. An HTTP module such as Node.js is used because it simplifies those steps,
alowing a web programmer to focus on the application itself.

Consider the following example that implements this very basic functionality:

const http = require('http');
const url = require('url');

const hostname = '127.0.0.1';
const port = 3000;

const server = http.createServer((req, res) => {
 const queryObject = url.parse(req.url,true).query;
 let result = parseInt(queryObject.a) + parseInt(queryObject.b);

 res.statusCode = 200;
 res.setHeader('Content-Type', 'text/plain');
 res.end(`Result: ${result}\n`);
});

server.listen(port, hostname, () => {
 console.log(`Server running at http://${hostname}:${port}/`);
});

Save these contents in a file called basic_server.js and run it through a node command. The

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

292 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

terminal running Node.js will display the following message:

Server running at http://127.0.0.1:3000/

Then visit the following URL in your web browser:
http://127.0.0.1:3000/numbers?a=2&b=17

Node.js is running a web server in your computer, and using two modules: http and url. The
http module sets up a basic HTTP server, processes the incoming web requests, and hands them
to our simple application code. The URL module parses the arguments passed in the URL, converts
them into an integer format, and performs the addition operation. The http module then sends
the response as text to the web browser.

In a real web application, Node.js is commonly used to process and retrieve data, usually from a
database, and return the processed information to the front end to display. But the basic
application in this lesson concisely shows how Node.js makes use of modules to handle web
requests as a web server.

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 293

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What are the reasons to use modules instead of writing simple functions?

2. Why did the Node.js environment become so popular? Cite one characteristic.

3. What is the purpose of the package.json file?

4. Why is it not recommended to save and share the node_modules folder?

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

294 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. How can you execute Node.js applications on your computer?

2. How can you delimit parameters in the URL to parse inside the server?

3. Specify a scenario where a specific task could be a bottleneck for a Node.js application.

4. How would you implement a parameter to multiply or sum the two numbers in the server
example?

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 295

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson provided an overview of the Node.js environment, its characteristics, and how it can
be used to implement simple programs. This lesson includes the following concepts:

• What Node.js is, and why it is used.

• How to run Node.js programs using the command line.

• The event loops and the single thread.

• Modules.

• Node Package Manager (NPM).

• Server functionality.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

296 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What are the reasons to use modules instead of writing simple functions?

By opting for modules instead of conventional functions, the programmer creates a simpler
codebase to read and maintain and for which to write automated tests.

2. Why did the Node.js environment become so popular? Cite two characteristics.

One reason is the flexibility of the JavaScript language, which was already widely used in the
front end of web applications. Node.js allows the use of just one programming language in the
whole system.

3. What is the purpose of the package.json file?

This file contains metadata for the project, such as the name, version, dependencies (libraries),
and so on. Given a package.json file, other people can download and install the same
libraries and run tests in the same way that the original creator did.

4. Why is it not recommended to save and share the node_modules folder?

The node_modules folder contains the implementations of libraries available in remote
repositories. So the better way to share these libraries is to indicate them in the package.json
file and then use NPM to download those libraries. This method is simpler and more error-free,
because you do not have to track and maintain the libraries locally.

Web Development Essentials (030) (Version 1.0) | 035.1 NodeJS Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 297

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. How can you execute Node.js applications on your computer?

You can run them by typing node PATH/FILE_NAME.js at the command line in your terminal,
changing PATH to the path of your Node.js file and changing FILE_NAME.js to your chosen
filename.

2. How can you delimit parameters in the URL to parse inside the server?

The ampersand character & is used to delimit those parameters, so that they can be extracted
and parsed in the JavaScript code.

3. Specify a scenario where a specific task could be a bottleneck for a Node.js application.

Node.js is not a good environment in which to run CPU intensive processes because it uses a
single thread. A numerical computation scenario could slow down and lock the entire
application. If a numerical simulation is needed, it is better to use other tools.

4. How would you implement a parameter to multiply or sum the two numbers in the server
example?

Use a ternary operator or an if-else condition to check for an additional parameter. If the
parameter is the string mult return the product of the numbers, else return the sum. Replace
the old code with the snippet below. Restart the server in the command line by pressing Ctrl  +  C
and rerunning the command to restart the server. Now test the new application by visitiing the
URL http://127.0.0.1:3000/numbers?a=2&b=17&operation=mult in your browser. If you
omit or change the last parameter, the results should be the sum of the numbers.

let result = queryObject.operation == 'mult' ? parseInt(queryObject.a) * parseInt
(queryObject.b) : parseInt(queryObject.a) + parseInt(queryObject.b);

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

298 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

035.2 NodeJS Express Basics

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 035.2

Weight

4

Key knowledge areas

• Define routes to static files and EJS templates

• Serve static files through Express

• Serve EJS templates through Express

• Create simple, non-nested EJS templates

• Use the request object to access HTTP GET and POST parameters and process data submitted
through HTML forms

• Awareness of user input validation

• Awareness of cross-site Scripting (XSS)

• Awareness of cross-site request forgery (CSRF)

Partial list of the used files, terms and utilities

• express and body-parser modules

• Express app object

• app.get(), app.post()

• res.query(), res.body()

• ejs node module

• res.render()

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 299

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#035.2_NodeJS_Express_Basics_.28weight:_4.29
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

• <% … %>, <%= … %>, <%# … %>, <%- … %>

• views/

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

300 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

035.2 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 035 NodeJS Server Programming

Objective: 035.2 NodeJS Express Basics

Lesson: 1 of 2

Introduction
Express.js, or simply Express, is a popular framework that runs on Node.js and is used to write
HTTP servers that handle requests from web application clients. Express supports many ways to
read parameters sent over HTTP.

Initial Server Script
To demonstrate Express’s basic features for receiving and handling requests, let’s simulate an
application that requests some information from the server. In particular, the example server:

• Provides an echo function, which simply returns the message sent by the client.

• Tells the client its IP address upon request.

• Uses cookies to identify known clients.

The first step is to create the JavaScript file that will operate as the server. Using npm, create a
directory called myserver with the JavaScript file:

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 301

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

$ mkdir myserver
$ cd myserver/
$ npm init

For the entry point, any filename can be used. Here we will use the default filename: index.js.
The following listing shows a basic index.js file that will be used as the entry point for our
server:

const express = require('express')
const app = express()
const host = "myserver"
const port = 8080

app.get('/', (req, res) => {
 res.send('Request received')
})

app.listen(port, host, () => {
 console.log(`Server ready at http://${host}:${port}`)
})

Some important constants for the server configuration are defined in the first lines of the script.
The first two, express and app, correspond to the inclused express module and an instance of
this module that runs our application. We will add the actions to be performed by the server to
the app object.

The other two constants, host and port, define the host and communication port associated to
the server.

If you have a publicly accessible host, use its name instead of myserver as the value of host. If
you don’t provide the host name, Express will default to localhost, the computer where the
application runs. In that case, no outside clients will be able to reach the program, which may be
fine for testing but offers little value in production.

The port needs to be provided, or the server will not start.

This script attaches only two procedures to the app object: the app.get() action that answers
requests made by clients through HTTP GET, and the app.listen() call, which is required to
activate the server and assigns it a host and port.

To start the server, just run the node command, providing the script name as an argument:

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

302 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

$ node index.js

As soon as the message Server ready at http://myserver:8080 appears, the server is ready
to receive requests from an HTTP client. Requests can be made from a browser on the same
computer where the server is running, or from another machine that can access the server.

All transaction details we’ll see here are shown in the browser if you open a window for the
developer console. Alternatively, the curl command can be used for HTTP communication and
allows you to inspect connection details more easily. If you are not familiar with the shell
command line, you can create an HTML form to submit requests to a server.

The following example shows how to use the curl command on the command line to make an
HTTP request to the newly deployed server:

$ curl http://myserver:8080 -v
* Trying 192.168.1.225:8080...
* TCP_NODELAY set
* Connected to myserver (192.168.1.225) port 8080 (#0)
> GET / HTTP/1.1
> Host: myserver:8080
> User-Agent: curl/7.68.0
>Accept: /
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Content-Type: text/html; charset=utf-8
< Content-Length: 16
< ETag: W/"10-1WVvDtVyAF0vX9evlsFlfiJTT5c"
< Date: Fri, 02 Jul 2021 14:35:11 GMT
< Connection: keep-alive
<
* Connection #0 to host myserver left intact
Request received

The -v option of the curl command displays all the request and response headers, as well as
other debugging information. The lines starting with > indicate the request headers sent by the
client and the lines starting with < indicate the response headers sent by the server. Lines starting
with * are information generated by curl itself. The content of the response is displayed only at
the end, which in this case is the line Request received.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 303

http://myserver:8080
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

The service’s URL, which in this case contains the server’s hostname and port
(http://myserver:8080), were given as arguments to the curl command. Because no directory
or filename is given, these default to the root directory /. The slash turns up as the request file in
the > GET / HTTP/1.1 line, which is followed in the output by the hostname and port.

In addition to displaying HTTP connection headers, the curl command assists application
development by allowing you to send data to the server using different HTTP methods and in
different formats. This flexibility makes it easier to debug any problems and implement new
features on the server.

Routes
The requests the client can make to the server depend on what routes have been defined in the
index.js file. A route specifies an HTTP method and defines a path (more precisely, a URI) that
can be requested by the client.

So far, the server has only one route configured:

app.get('/', (req, res) => {
 res.send('Request received')
})

Even though it is a very simple route, simply returning a plain text message to the client, it is
enough to identify the most important components that are used to structure most routes:

• The HTTP method served by the route. In the example, the HTTP GET method is indicated by
the get property of the app object.

• The path served by the route. When the client does not specify a path for the request, the server
uses the root directory, which is the base directory set aside for use by the web server. A later
example in this chapter uses the path /echo, which corresponds to a request made to
myserver:8080/echo.

• The function executed when the server receives a request on this route, usually written in
abbreviated form as an arrow function because the syntax => points to the definition of the
nameless function. The req parameter (short for “request”) and res parameter (short for
“response”) give details about the connection, passed to the function by the app instance itself.

POST Method

To extend the functionality of our test server, let’s see how to define a route for the HTTP POST
method. It’s used by clients when they need to send extra data to the server beyond those included

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

304 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

in the request header. The --data option of the curl command automatically invokes the POST
method, and includes content that will be sent to the server via POST. The POST / HTTP/1.1 line
in the following output shows that the POST method was used. However, our server defined only a
GET method, so an error occurs when we use curl to send a request via POST:

$ curl http://myserver:8080/echo --data message="This is the POST request body"
* Trying 192.168.1.225:8080...
* TCP_NODELAY set
* Connected to myserver (192.168.1.225) port 8080 (#0)
> POST / HTTP/1.1
> Host: myserver:8080
> User-Agent: curl/7.68.0
>Accept: /
> Content-Length: 37
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 37 out of 37 bytes
* Mark bundle as not supporting multiuse
< HTTP/1.1 404 Not Found
< X-Powered-By: Express
< Content-Security-Policy: default-src 'none'
< X-Content-Type-Options: nosniff
< Content-Type: text/html; charset=utf-8
< Content-Length: 140
< Date: Sat, 03 Jul 2021 02:22:45 GMT
< Connection: keep-alive
<
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Error</title>
</head>
<body>
<pre>Cannot POST /</pre>
</body>
</html>
* Connection #0 to host myserver left intact

In the previous example, running curl with the parameter --data message="This is the
POST request body" is equivalent to submitting a form containing the text field named
message, filled with This is the POST request body.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 305

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Because the server is configured with only one route for the / path, and that route only responds
to the HTTP GET method, so the response header has the line HTTP/1.1 404 Not Found. In
addition, Express automatically generated a short HTML response with the warning Cannot
POST.

Having seen how to generate a POST request through curl, let’s write an Express program that
can successfully handle the request.

First, note that the Content-Type field in the request header says that the data sent by the client
is in the application/x-www-form-urlencoded format. Express does not recognize that format
by default, so we need to use the express.urlencoded module. When we include this module,
the req object—passed as a parameter to the handler function—has the req.body.message
property set, which corresponds to the message field sent by the client. The module is loaded with
app.use, which should be placed before the declaration of routes:

const express = require('express')
const app = express()
const host = "myserver"
const port = 8080

app.use(express.urlencoded({ extended: true }))

Once this is done, it would be enough to change app.get to app.post in the existing route to
fulfill requests made via POST and to recover the request body:

app.post('/', (req, res) => {
 res.send(req.body.message)
})

Instead of replacing the route, another possibility would be to simply add this new route, because
Express identifies the HTTP method in the request header and uses the appropriate route. Because
we are interested in adding more than one functionality to this server, it is convenient to separate
each one with its own path, such as /echo and /ip.

Path and Function Handler

Having defined which HTTP method will respond to the request, we now need to define a specific
path for the resource and a function that processes and generates a response to the client.

To expand the echo functionality of the server, we can define a route using the POST method with

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

306 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

the path /echo:

app.post('/echo', (req, res) => {
 res.send(req.body.message)
})

The req parameter of the handler function contains all the request details stored as properties.
The content of the message field in the request body is available in the req.body.message
property. The example simply sends this field is sent back to the client through the
res.send(req.body.message) call.

Remember that the changes you make take effect only after the server is restarted. Because you
are running the server from a terminal window during the examples in this chapter, you can shut
down the server by pressing Ctrl  +  C on that terminal. Then rerun the server through the node
index.js command. The response obtained by the client to the curl request we showed before is
now successful:

$ curl http://myserver:8080/echo --data message="This is the POST request body"
This is the POST request body

Other Ways to Pass and Return Information in a GET Request

It might be excessive to use the HTTP POST method if only short text messages like the one used in
the example will be sent. In such cases, data can be sent in a query string that starts with a
question mark. Thus, the string ?message=This+is+the+message could be included within the
request path of the HTTP GET method. The fields used in the query string are available to the
server in the req.query property. Therefore, a field named message is available in the
req.query.message property.

Another way to send data via the HTTP GET method is to use Express’s route parameters:

app.get('/echo/:message', (req, res) => {
 res.send(req.params.message)
})

The route in this example matches requests made with the GET method using the path
/echo/:message, where :message is a placeholder for any term sent with that label by the client.
These parameters are accessible in the req.params property. With this new route, the server’s
echo function can be requested more succinctly by the client:

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 307

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

$ curl http://myserver:8080/echo/hello
hello

In other situations, the information the server needs to process the request do not need to be
explicitly provided by the client. For instance, the server has another way to retrieve the client’s
public IP address. That information is present in the req object by default, in the req.ip
property:

app.get('/ip', (req, res) => {
 res.send(req.ip)
})

Now the client can request the /ip path with the GET method to find its own public IP address:

$ curl http://myserver:8080/ip
187.34.178.12

Other properties of the req object can be modified by the client, especially the request headers
available in req.headers. The req.headers.user-agent property, for example, identifies
which program is making the request. Although it is not common practice, the client can change
the contents of this field, so the server should not use it to reliably identify a particular client. It is
even more important to validate the data explicitly provided by the client, to avoid inconsistencies
in boundaries and formats that could adversely affect the application.

Adjustments to the Response
As we’ve seen in previous examples, the res parameter is responsible for returning a response to
the client. Furthermore, the res object can change other aspects of the response. You may have
noticed that, although the responses we’ve implemented so far are just brief plain text messages,
the Content-Type header of the responses is using text/html; charset=utf-8. Although this
does not prevent the plain text response from being accepted, it will be more correct if we
redefine this field in the response header to text/plain with the setting
res.type('text/plain').

Other types of response adjustments involve using cookies, which allow the server to identify a
client that has previously made a request. Cookies are important for advanced features, such as
creating private sessions that associate requests to a specific user, but here we’ll just look at a
simple example of how to use a cookie to identify a client that has previously accessed the server.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

308 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Given the modularized design of Express, cookie management must be installed with the npm
command before being used in the script:

$ npm install cookie-parser

After installation, cookie management must be included in the server script. The following
definition should be included near the beginning of the file:

const cookieParser = require('cookie-parser')
app.use(cookieParser())

To illustrate the use of cookies, let’s modify the route’s handler function with the / root path that
already exists in the script. The req object has a req.cookies property, where cookies sent in the
request header are kept. The res object, on the other hand, has a res.cookie() method that
creates a new cookie to be sent to the client. The handler function in the following example checks
whether a cookie with the name known exists in the request. If such a cookie does not exist, the
server assumes that this is a first-time visitor and sends it a cookie with that name through the
res.cookie('known', '1') call. We arbitrarily assign the value 1 to the cookie because it is
supposed to have some content, but the server doesn’t consult that value. This application just
assumes that the simple presence of the cookie indicates that the client has already requested this
route before:

app.get('/', (req, res) => {
 res.type('text/plain')
 if (req.cookies.known === undefined){
 res.cookie('known', '1')
 res.send('Welcome, new visitor!')
 }
 else
 res.send('Welcome back, visitor');
})

By default, curl does not use cookies in transactions. But it has options to store (-c
cookies.txt) and send stored cookies (-b cookies.txt):

$ curl http://myserver:8080/ -c cookies.txt -b cookies.txt -v
* Trying 192.168.1.225:8080...
* TCP_NODELAY set
* Connected to myserver (192.168.1.225) port 8080 (#0)

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 309

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

> GET / HTTP/1.1
> Host: myserver:8080
> User-Agent: curl/7.68.0
>Accept: /
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Content-Type: text/plain; charset=utf-8
* Added cookie known="1" for domain myserver, path /, expire 0
< Set-Cookie: known=1; Path=/
< Content-Length: 21
< ETag: W/"15-l7qrxcqicl4xv6EfA5fZFWCFrgY"
< Date: Sat, 03 Jul 2021 23:45:03 GMT
< Connection: keep-alive
<
* Connection #0 to host myserver left intact
Welcome, new visitor!

Because this command was the first access since cookies were implemented on the server, the
client did not have any cookies to include in the request. As expected, the server did not identify
the cookie in the request and therefore included the cookie in the response headers, as indicated
in the Set-Cookie: known=1; Path=/ line of the output. Since we have enabled cookies in
curl, a new request will include the cookie known=1 in the request headers, allowing the server
to identify the cookie’s presence:

$ curl http://myserver:8080/ -c cookies.txt -b cookies.txt -v
* Trying 192.168.1.225:8080...
* TCP_NODELAY set
* Connected to myserver (192.168.1.225) port 8080 (#0)
> GET / HTTP/1.1
> Host: myserver:8080
> User-Agent: curl/7.68.0
>Accept: /
> Cookie: known=1
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Content-Type: text/plain; charset=utf-8
< Content-Length: 21
< ETag: W/"15-ATq2flQYtLMYIUpJwwpb5SjV9Ww"
< Date: Sat, 03 Jul 2021 23:45:47 GMT

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

310 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

< Connection: keep-alive
<
* Connection #0 to host myserver left intact
Welcome back, visitor

Cookie Security
The developer should be aware of potential vulnerabilities when using cookies to identify clients
making requests. Attackers can use techniques such as cross-site scripting (XSS) and cross-site
request forgery (CSRF) to steal cookies from a client and thereby impersonate them when making
a request to the server. Generally speaking, these types of attacks use non-validated comment
fields or meticulously constructed URLs to insert malicious JavaScript code into the page. When
executed by an authentic client, this code can copy valid cookies and store them or forward them
to another destination.

Therefore, especially in professional applications, it is important to install and use more
specialized Express features, known as middleware. The express-session or cookie-session
module provide more complete and secure control over session and cookie management. These
components enable extra controls to prevent cookies from being diverted from their original
issuer.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 311

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. How can the content of the comment field, sent within a query string of the HTTP GET method,

be read in a handler function?

2. Write a route that uses the HTTP GET method and the /agent path to send back to the client the
contents of the user-agent header.

3. Express.js has a feature called route parameters, where a path such as /user/:name can be
used to receive the name parameter sent by the client. How can the name parameter be accessed
within the handler function of the route?

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

312 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. If a server’s host name is myserver, which Express route would receive the submission in the

form below?

<form action="/contact/feedback" method="post"> ... </form>

2. During server development, the programmer is not able to read the req.body property, even
after verifying that the client is correctly sending the content via the HTTP POST method. What
is a likely cause for this problem?

3. What happens when the server has a route set to the path /user/:name and the client makes a
request to /user/?

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 313

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson explains how to write Express scripts to receive and handle HTTP requests. Express
uses the concept of routes to define the resources available to clients, which gives you great
flexibility to build servers for any kind of web application. This lesson goes through the following
concepts and procedures:

• Routes that use the HTTP GET and HTTP POST methods.

• How form data is stored in the request object.

• How to use route parameters.

• Customizing response headers.

• Basic cookie management.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

314 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. How can the content of the comment field, sent within a query string of the HTTP GET method,

be read in a handler function?

The comment field is available in the req.query.comment property.

2. Write a route that uses the HTTP GET method and the /agent path to send back to the client the
contents of the user-agent header.

app.get('/agent', (req, res) => {
 res.send(req.headers.user-agent)
})

3. Express.js has a feature called route parameters, where a path such as /user/:name can be
used to receive the name parameter sent by the client. How can the name parameter be accessed
within the handler function of the route?

The name parameter is accessible in the req.params.name property.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 315

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. If a server’s host name is myserver, which Express route would receive the submission in the

form below?

<form action="/contact/feedback" method="post"> ... </form>

app.post('/contact/feedback', (req, res) => {
 ...
})

2. During server development, the programmer is not able to read the req.body property, even
after verifying that the client is correctly sending the content via the HTTP POST method. What
is a likely cause for this problem?

The programmer did not include the express.urlencoded module, which lets Express extract
the body of a request.

3. What happens when the server has a route set to the path /user/:name and the client makes a
request to /user/?

The server will issue a 404 Not Found response, because the route requires the :name
parameter to be provided by the client.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

316 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

035.2 Lesson 2
Certificate: Web Development Essentials

Version: 1.0

Topic: 035 NodeJS Server Programming

Objective: 035.2 NodeJS Express Basics

Lesson: 2 of 2

Introduction
Web servers have very versatile mechanisms to produce responses to client requests. For some
requests, it’s enough for the web server to provide a static, unprocessed reponse, because the
requested resource is the same for any client. For instance, when a client requests an image that is
accessible to everyone, it is enough for the server to send the file containing the image.

But when responses are dynamically generated, they may need to be better structured than
simple lines written in the server script. In such cases, it is convenient for the web server to be
able to generate a complete document, which can be interpreted and rendered by the client. In the
context of web application development, HTML documents are commonly created as templates
and kept separate from the server script, which inserts dynamic data in predetermined places in
the appropriate template and then sends the formatted response to the client.

Web applications often consume both static and dynamic resources. An HTML document, even if
it was dynamically generated, may have references to static resources such as CSS files and
images. To demonstrate how Express helps handle this kind of demand, we’ll first set up an
example server that delivers static files and then implement routes that generate structured,
template-based responses.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 317

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Static Files
The first step is to create the JavaScript file that will run as a server. Let’s follow the same pattern
covered in previous lessons to create a simple Express application: first create a directory called
server and then install the base components with the npm command:

$ mkdir server
$ cd server/
$ npm init
$ npm install express

For the entry point, any filename can be used, but here we will use the default filename:
index.js. The following listing shows a basic index.js file that will be used as a starting point
for our server:

const express = require('express')
const app = express()
const host = "myserver"
const port = 8080

app.listen(port, host, () => {
 console.log(`Server ready at http://${host}:${port}`)
})

You don’t have to write explicit code to send a static file. Express has middleware for this purpose,
called express.static. If your server needs to send static files to the client, just load the
express.static middleware at the beginning of the script:

app.use(express.static('public'))

The public parameter indicates the directory that stores files the client can request. Paths
requested by clients must not include the public directory, but only the filename, or the path to
the file relative to the public directory. To request the public/layout.css file, for example, the
client makes a request to /layout.css.

Formatted Output
While sending static content is straightforward, dynamically generated content can vary widely.
Creating dynamic responses with short messages makes it easy to test applications in their initial

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

318 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

stages of development. For example, the following is a test route that just send back to the client a
message that it sent by the HTTP POST method. The response can just replicate the message
content in plain text, without any formatting:

app.post('/echo', (req, res) => {
 res.send(req.body.message)
})

A route like this is a good example to use when learning Express and for diagnostics purposes,
where a raw response sent with res.send() is enough. But a useful server must be able to
produce more complex responses. We’ll move on now to develop that more sophisticated type of
route.

Our new application, instead of just sending back the contents of the current request, maintains a
complete list of the messages sent in previous requests by each client and sends back each client’s
list when requested. A response merging all messages is an option, but other formatted output
modes are more appropriate, especially as responses become more elaborate.

To receive and store client messages sent during the current session, first we need to include extra
modules for handling cookies and data sent via the HTTP POST method. The only purpose of the
following example server is to log messages sent via POST and display previously sent messages
when the client issues a GET request. So there are two routes for the / path. The first route fulfills
requests made with the HTTP POST method and the second fulfills requests made with the HTTP
GET method:

const express = require('express')
const app = express()
const host = "myserver"
const port = 8080

app.use(express.static('public'))

const cookieParser = require('cookie-parser')
app.use(cookieParser())

const { v4: uuidv4 } = require('uuid')

app.use(express.urlencoded({ extended: true }))

// Array to store messages
let messages = []

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 319

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

app.post('/', (req, res) => {

 // Only JSON enabled requests
 if (req.headers.accept != "application/json")
 {
 res.sendStatus(404)
 return
 }

 // Locate cookie in the request
 let uuid = req.cookies.uuid

 // If there is no uuid cookie, create a new one
 if (uuid === undefined)
 uuid = uuidv4()

 // Add message first in the messages array
 messages.unshift({uuid: uuid, message: req.body.message})

 // Collect all previous messages for uuid
 let user_entries = []
 messages.forEach((entry) => {
 if (entry.uuid == req.cookies.uuid)
 user_entries.push(entry.message)
 })

 // Update cookie expiration date
 let expires = new Date(Date.now());
 expires.setDate(expires.getDate() + 30);
 res.cookie('uuid', uuid, { expires: expires })

 // Send back JSON response
 res.json(user_entries)

})

app.get('/', (req, res) => {

 // Only JSON enabled requests
 if (req.headers.accept != "application/json")
 {
 res.sendStatus(404)
 return

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

320 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 }

 // Locate cookie in the request
 let uuid = req.cookies.uuid

 // Client's own messages
 let user_entries = []

 // If there is no uuid cookie, create a new one
 if (uuid === undefined){
 uuid = uuidv4()
 }
 else {
 // Collect messages for uuid
 messages.forEach((entry) => {
 if (entry.uuid == req.cookies.uuid)
 user_entries.push(entry.message)
 })
 }

 // Update cookie expiration date
 let expires = new Date(Date.now());
 expires.setDate(expires.getDate() + 30);
 res.cookie('uuid', uuid, { expires: expires })

 // Send back JSON response
 res.json(user_entries)

})

app.listen(port, host, () => {
 console.log(`Server ready at http://${host}:${port}`)
})

We kept the static files configuration at the top, because it will soon be useful to provide static files
such as layout.css. In addition to the cookie-parser middleware introduced in the previous
chapter, the example also includes the uuid middleware to generate a unique identification
number passed as a cookie to each client that sends a message. If not already installed in the
example server directory, these modules can be installed with the command npm install
cookie-parser uuid.

The global array called messages stores the messages sent by all clients. Each item in this array
consists of an object with the properties uuid and message.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 321

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

What’s really new in this script is the res.json() method, used at the end of the two routes to
generate a response in JSON format with the array containing the messages already sent by the
client:

// Send back JSON response
res.json(user_entries)

JSON is a plain text format that allows you to group a set of data into a single structure that is
associative: that is, content is expressed as keys and values. JSON is particularly useful when
responses are going to be processed by the client. Using this format, a JavaScript object or array
can be easily reconstructed on the client side with all the properties and indexes of the original
object on the server.

Because we are structuring each message in JSON, we refuse requests that do not contain
application/json in their accept header:

// Only JSON enabled requests
if (req.headers.accept != "application/json")
{
 res.sendStatus(404)
 return
}

A request made with a plain curl command to insert a new message will not be accepted, because
curl by default does not specify application/json in the accept header:

$ curl http://myserver:8080/ --data message="My first message" -c cookies.txt -b cookies.txt
Not Found

The -H "accept: application/json" option changes the request header to specify the
response’s format, which this time will be accepted and answered in the specified format:

$ curl http://myserver:8080/ --data message="My first message" -c cookies.txt -b cookies.txt
-H "accept: application/json"
["My first message"]

Getting messages using the other route is done in a similar way, but this time using the HTTP GET
method:

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

322 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

$ curl http://myserver:8080/ -c cookies.txt -b cookies.txt -H "accept: application/json"
["Another message","My first message"]

Templates
Responses in formats such as JSON are convenient for communicating between programs, but the
main purpose of most web application servers is to produce HTML content for human
consumption. Embedding HTML code within JavaScript code is not a good idea, because mixing
languages in the same file makes the program more susceptible to errors and harms the
maintenance of the code.

Express can work with different template engines that separate out the HTML for dynamic
content; the full list can be found at the Express template engines site. One of the most popular
template engines is Embedded JavaScript (EJS), which allows you to create HTML files with specific
tags for dynamic content insertion.

Like other Express components, EJS needs to be installed in the directory where the server is
running:

$ npm install ejs

Next, the EJS engine must be set as the default renderer in the server script (near the beginning of
the index.js file, before the route definitions):

app.set('view engine', 'ejs')

The response generated with the template is sent to the client with the res.render() function,
which receives as parameters the template file name and an object containing values that will be
accessible from within the template. The routes used in the previous example can be rewritten to
generate HTML responses as well as JSON:

app.post('/', (req, res) => {

 let uuid = req.cookies.uuid

 if (uuid === undefined)
 uuid = uuidv4()

 messages.unshift({uuid: uuid, message: req.body.message})

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 323

https://expressjs.com/en/resources/template-engines.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

 let user_entries = []
 messages.forEach((entry) => {
 if (entry.uuid == req.cookies.uuid)
 user_entries.push(entry.message)
 })

 let expires = new Date(Date.now());
 expires.setDate(expires.getDate() + 30);
 res.cookie('uuid', uuid, { expires: expires })

 if (req.headers.accept == "application/json")
 res.json(user_entries)
 else
 res.render('index', {title: "My messages", messages: user_entries})

})

app.get('/', (req, res) => {

 let uuid = req.cookies.uuid

 let user_entries = []

 if (uuid === undefined){
 uuid = uuidv4()
 }
 else {
 messages.forEach((entry) => {
 if (entry.uuid == req.cookies.uuid)
 user_entries.push(entry.message)
 })
 }

 let expires = new Date(Date.now());
 expires.setDate(expires.getDate() + 30);
 res.cookie('uuid', uuid, { expires: expires })

 if (req.headers.accept == "application/json")
 res.json(user_entries)
 else
 res.render('index', {title: "My messages", messages: user_entries})

})

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

324 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Note that the format of the response depends on the accept header found in the request:

if (req.headers.accept == "application/json")
 res.json(user_entries)
else
 res.render('index', {title: "My messages", messages: user_entries})

A response in JSON format is sent only if the client explicitly requests it. Otherwise, the response is
generated from the index template. The same user_entries array feeds both the JSON output
and the template, but the object used as a parameter for the latter also has the title: "My
messages" property, which will be used as a title inside the template.

HTML Templates
Like static files, the files containing HTML templates reside in their own directory. By default, EJS
assumes the template files are in the views/ directory. In the example, a template named index
was used, so EJS looks for the views/index.ejs file. The following listing is the content of a
simple views/index.ejs template that can be used with the example code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title><%= title %></title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="/layout.css">
</head>
<body>

<div id="interface">

<form action="/" method="post">
<p>
 <input type="text" name="message">
 <input type="submit" value="Submit">
</p>
</form>

<% messages.forEach((message) => { %>
<%= message %>
<% }) %>

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 325

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

</div>

</body>
</html>

The first special EJS tag is the <title> element in the <head> section:

<%= title %>

During the rendering process, this special tag will be replaced by the value of the title property
of the object passed as a parameter to the res.render() function.

Most of the template is made up of conventional HTML code, so the template contains the HTML
form for sending new messages. The test server responds to the HTTP GET and POST methods for
the same path /, hence the action="/" and method="post" attributes in the form tag.

Other parts of the template are a mixture of HTML code and EJS tags. EJS has tags for specific
purposes within the template:

<% … %>
Inserts flow control. No content is directly inserted by this tag, but it can be used with
JavaScript structures to choose, repeat, or suppress sections of HTML. Example starting a loop:
<% messages.forEach((message) => { %>

<%# … %>
Defines a comment, whose content is ignored by the parser. Unlike comments written in HTML,
these comments are not visible to the client.

<%= … %>
Inserts the escaped content of the variable. It is important to escape unknown content to avoid
JavaScript code execution, which can open loopholes for cross-site Scripting (XSS) attacks.
Example: <%= title %>

<%- … %>
Inserts the content of the variable without escaping.

The mix of HTML code and EJS tags is evident in the snippet where client messages are rendered
as an HTML list:

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

326 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

<% messages.forEach((message) => { %>
<%= message %>
<% }) %>

In this snippet, the first <% … %> tag starts a forEach statement that loops through all the
elements of the message array. The <% and %> delimiters let you control the snippets of HTML. A
new HTML list item, <%= message %>, will be produced for each element of
messages. With these changes, the server will send the response in HTML when a request like the
following is received:

$ curl http://myserver:8080/ --data message="This time" -c cookies.txt -b cookies.txt
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My messages</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="/layout.css">
</head>
<body>

<div id="interface">

<form action="/" method="post">
<p>
 <input type="text" name="message">
 <input type="submit" value="Submit">
</p>
</form>

This time

in HTML

</div>

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 327

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

</body>
</html>

The separation between the code for processing the requests and the code for presenting the
response makes the code cleaner and allows a team to divide application development between
people with distinct specialties. A web designer, for example, can focus on the template files in
views/ and related stylesheets, which are provided as static files stored in the public/ directory
on the example server.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

328 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Guided Exercises
1. How should express.static be configured so that clients can request files in the assets

directory?

2. How can the response’s type, which is specified in the request’s header, be identified within an
Express route?

3. Which method of the res (response) route parameter generates a response in JSON format
from a JavaScript array called content?

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 329

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Explorational Exercises
1. By default, Express template files are in the views directory. How can this setting be modified

so that template files are stored in templates?

2. Suppose a client receives an HTML response with no title (i.e. <title></title>). After
verifying the EJS template, the developer finds the <title><% title %></title> tag in the
head section of the file. What is the likely cause of the problem?

3. Use EJS template tags to write a <h2></h2> HTML tag with the contents of the JavaScript
variable h2. This tag should be rendered only if the h2 variable is not empty.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

330 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Summary
This lesson covers the basic methods Express.js provides to generate static and formated yet
dynamic responses. Little effort is required to set up an HTTP server for static files and the EJS
templating system provides an easy way for generating dynamic content from HTML files. This
lesson goes through the following concepts and procedures:

• Using express.static for static file responses.

• How to create a response to match the content type field in the request header.

• JSON-structured responses.

• Using EJS tags in HTML based templates.

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 331

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Guided Exercises
1. How should express.static be configured so that clients can request files in the assets

directory?

A call to app.use(express.static('assets')) should be added to the server script.

2. How can the response’s type, which is specified in the request’s header, be identified within an
Express route?

The client sets acceptable types in the accept header field, which is mapped to the
req.headers.accept property.

3. Which method of the res (response) route parameter generates a response in JSON format
from a JavaScript array called content?

The res.json() method: res.json(content).

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

332 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Explorational Exercises
1. By default, Express template files are in the views directory. How can this setting be modified

so that template files are stored in templates?

The directory can be defined in the initial script settings with app.set('views',
'./templates').

2. Suppose a client receives an HTML response with no title (i.e. <title></title>). After
verifying the EJS template, the developer finds the <title><% title %></title> tag in the
head section of the file. What is the likely cause of the problem?

The <%= %> tag should be used to enclose the contents of a variable, as in <%= title %>.

3. Use EJS template tags to write a <h2></h2> HTML tag with the contents of the JavaScript
variable h2. This tag should be rendered only if the h2 variable is not empty.

<% if (h2 != "") { %>
<h2><%= h2 %></h2>
<% } %>

Web Development Essentials (030) (Version 1.0) | 035.2 NodeJS Express Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 333

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

035.3 SQL Basics

Reference to LPI objectives

Web Development Essentials version 1.0, Exam 030, Objective 035.3

Weight

3

Key knowledge areas

• Establish a database connection from NodeJS

• Retrieve data from the database in NodeJS

• Execute SQL queries from NodeJS

• Create simple SQL queries excluding joins

• Understand primary keys

• Escape variables used in SQL queries

• Awareness of SQL injections

Partial list of the used files, terms and utilities

• sqlite3 NPM module

• Database.run(), Database.close(), Database.all(), Database.get(),
Database.each()

• CREATE TABLE

• INSERT, SELECT, DELETE, UPDATE

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

334 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://wiki.lpi.org/wiki/Web_Development_Essentials_Objectives_V1.0#035.3_SQL_Basics_.28weight:_3.29
https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

035.3 Lesson 1
Certificate: Web Development Essentials

Version: 1.0

Topic: 035 NodeJS Server Programming

Objective: 035.3 SQL Basics

Lesson: 1 of 1

Introduction
Although you can write your own functions to implement persistent storage, it may be more
convenient to use a database management system to speed up development and ensure better
security and stability for table-formatted data. The most popular strategy for storing data
organized in interrelated tables, especially when those tables are heavily queried and updated, is
to install a relational database that supports Structured Query Language (SQL), a language geared
towards relational databases. Node.js supports various SQL database management systems.
Following the principles of portability and user space execution adopted by Node.js Express,
SQLite is an appropriate choice for persistent storage of data used by this type of HTTP server.

SQL
The Structured Query Language is specific to databases. Write and read operations are expressed
in sentences called statements and queries. Both statements and queries are made up of clauses,
which define the conditions for executing the operation.

Names and email addresses, for example, can be stored in a database table that contains name and
email fields. A database can contain several tables, so each table must have a unique name. If we

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 335

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

use the name contacts for the names and emails table, a new record can be inserted with the
following statement:

INSERT INTO contacts (name, email) VALUES ("Carol", "carol@example.com");

This insertion statement is composed of the INSERT INTO clause, which defines the table and
fields where the data will be inserted. The second clause, VALUES, sets the values that will be
inserted. It is not necessary to capitalize clauses, but it is common practice, so as to better
recognize SQL keywords within a statement or query.

A query on the contacts table is done in a similar way, but using the SELECT clause:

SELECT email FROM contacts;
dave@example.com
carol@example.com

In this case, the SELECT email clause selects one field from entries in the contacts table. The
WHERE clause restricts the query to specific rows:

SELECT email FROM contacts WHERE name = "Dave";
dave@example.com

SQL has many other clauses, and we’ll look at some of them in later sections. But first it is
necessary to see how to integrate the SQL database with Node.js.

SQLite
SQLite is probably the simplest solution for incorporating SQL database features into an
application. Unlike other popular database management systems, SQLite is not a database server
to which a client connects. Instead, SQLite provides a set of functions that allow the developer to
create a database like a conventional file. In the case of an HTTP server implemented with Node.js
Express, this file is usually located in the same directory as the server script.

Before using SQLite in Node.js, you need to install the sqlite3 module. Run the following
command in the server’s installation directory; i.e., the directory containing the Node.js script you
will run.

$ npm install sqlite3

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

336 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Be aware that there are several modules that support SQLite, such as better-sqlite3, whose
usage is subtly different from sqlite3. The examples in this lesson are for the sqlite3 module,
so they might not work as expected if you choose another module.

Opening the Database
To demonstrate how a Node.js Express server can work with an SQL database, let’s write a script
that stores and displays messages sent by a client identified by a cookie. Messages are sent by the
client via the HTTP POST method and the server response can be formatted as JSON or HTML
(from a template), depending on the format requested by the client. This lesson won’t go into
detail about using HTTP methods, cookies, and templates. The code snippets shown here assume
that you already have a Node.js Express server where these features are configured and available.

The simplest way to store the messages sent by the client is to store them in a global array, where
each message previously sent is associated with a unique identification key for each client. This
key can be sent to the client as a cookie, which is presented to the server on future requests to
retrieve its previous messages.

However, this approach has a weakness: because messages are stored only in a global array, all
messages will be lost when the current server session is terminated. This is one of the advantages
of working with databases, because the data is persistently stored and is not lost if the server is
restarted.

Using the index.js file as the main server script, we can incorporate the sqlite3 module and
indicate the file that serves as the database, as follows:

const sqlite3 = require('sqlite3')
const db = new sqlite3.Database('messages.sqlite3');

If it doesn’t already exist, the messages.sqlite3 file will be created in the same directory as the
index.js file. Inside this single file, all structures and respective data will be stored. All database
operations performed in the script will be intermediated by the db constant, which is the name
given to the new sqlite3 object that opens the messages.sqlite3 file.

Structure of a Table
No data can be inserted into the database until at least one table is created. Tables are created
with the statement CREATE TABLE:

db.run('CREATE TABLE IF NOT EXISTS messages (id INTEGER PRIMARY KEY AUTOINCREMENT, uuid

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 337

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

CHAR(36), message TEXT)')

The db.run() method is used to execute SQL statements in the database. The statement itself is
written as a parameter for the method. Although SQL statements must end with a semicolon when
entered in a command-line processor, the semicolon is optional in statements passed as
parameters in a program.

Because the run method will be performed every time the script is executed with node index.js,
the SQL statement includes the conditional clause IF NOT EXISTS to avoid errors in future
executions when the messages table already exists.

The fields that make up the messages table are id, uuid, and message. The id field is a unique
integer used to identify each entry in the table, so it is created as PRIMARY KEY. Primary keys
cannot be null and there cannot be two identical primary keys in the same table. Therefore,
almost every SQL table has a primary key in order to track the table’s contents. Although it is
possible to explicitly choose the value for the primary key of a new record (provided it does not
yet exist in the table), it is convenient for the key to be generated automatically. The
AUTOINCREMENT flag in the id field is used for this purpose.

NOTE

Explicit setting of primary keys in SQLite is optional, because SQLite itself creates a
primary key automatically. As stated in the SQLite documentation: “In SQLite, table
rows normally have a 64-bit signed integer ROWID which is unique among all rows
in the same table. If a table contains a column of type INTEGER PRIMARY KEY, then
that column becomes an alias for the ROWID. You can then access the ROWID using
any of four different names, the original three names described above, or the name
given to the INTEGER PRIMARY KEY column. All these names are aliases for one
another and work equally well in any context.”

The uuid and message fields store the client identification and message content, respectively. A
field of type CHAR(36) stores a fixed amount of 36 characters, and a field of type TEXT stores texts
of arbitrary length.

Data Entry
The main function of our example server is to store messages that are linked to the client that sent
them. The client sends the message in the message field in the body of the request sent with the
HTTP POST method. The client’s identification is in a cookie called uuid. With this information, we
can write the Express route to insert new messages in the database:

app.post('/', (req, res) => {

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

338 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 let uuid = req.cookies.uuid

 if (uuid === undefined)
 uuid = uuidv4()

 // Insert new message into the database
 db.run('INSERT INTO messages (uuid, message) VALUES (?, ?)', uuid, req.body.message)

 // If an error occurrs, err object contains the error message.
 db.all('SELECT id, message FROM messages WHERE uuid = ?', uuid, (err, rows) => {

 let expires = new Date(Date.now());
 expires.setDate(expires.getDate() + 30);
 res.cookie('uuid', uuid, { expires: expires })

 if (req.headers.accept == "application/json")
 res.json(rows)
 else
 res.render('index', {title: "My messages", rows: rows})

 })

})

This time, the db.run() method executes an insert statement, but note that the uuid and
req.body.message are not written directly into the statement line. Instead, question marks were
substituted for the values. Each question mark corresponds to a parameter that follows the SQL
statement in the db.run() method.

Using question marks as placeholders in the statement that is executed in the database makes it
easier for SQLite to distinguish between the static elements of the statement and its variable data.
This strategy allows SQLite to escape or sanitize the variable contents that are part of the
statement, preventing a common security breach called SQL injection. In that attack, malicious
users insert SQL statements into the variable data in the hope that the statements will be executed
inadvertently; sanitizing foils the attack by disabling dangerous characters in the data.

Queries
As shown in the sample code, our intent is to use the same route to insert new messages into the
database and to generate the list of previously sent messages. The db.all() method returns the
collection of all entries in the table that match the criteria defined in the query.

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 339

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Unlike the statements performed by db.run(), db.all() generates a list of records that are
handled by the arrow function designated in the last parameter:

(err, rows) => {}

This function, in turn, takes two parameters: err and rows. The err parameter will be used if an
error occurs that prevents the execution of the query. Upon success, all records are available in
the rows array, where each element is an object corresponding to a single record from the table.
The properties of this object correspond to the field names indicated in the query: uuid and
message.

The rows array is a JavaScript data structure. As such, it can be used to generate responses with
methods provided by Express, such as res.json() and res.render(). When rendered inside an
EJS template, a conventional loop can list all records:

<% rows.forEach((row) => { %>
<%= row.id %>: <%= row.message %>
<% }) %>

Instead of filling the rows array with all the records returned by the query, in some cases it might
be more convenient to treat each record individually with the db.each() method. The
db.each() method syntax is similar to the db.all() method, but the row parameter in (err,
row) ⇒ {} matches a single record at a time.

Changing the Contents of the Database
So far, our client can only add and query messages on the server. Since the client now knows the
id of the previously sent messages, we can implement a function to modify a specific record. The
modified message can also be sent to an HTTP POST method route, but this time with a route
parameter to catch the id given by the client in the request path:

app.post('/:id', (req, res) => {
 let uuid = req.cookies.uuid

 if (uuid === undefined){
 uuid = uuidv4()
 // 401 Unauthorized
 res.sendStatus(401)

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

340 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

 }
 else {

 // Update the stored message
 // using named parameters
 let param = {
 $message: req.body.message,
 $id: req.params.id,
 $uuid: uuid
 }

 db.run('UPDATE messages SET message = $message WHERE id = $id AND uuid = $uuid', param,
function(err){

 if (this.changes > 0)
 {
 // A 204 (No Content) status code means the action has
 // been enacted and no further information is to be supplied.
 res.sendStatus(204)
 }
 else
 res.sendStatus(404)

 })
 }
})

This route demonstrates how to use the UPDATE and WHERE clauses to modify an existing record.
An important difference from the previous examples is the use of named parameters, where
values are bundled into a single object (param) and passed to the db.run() method instead of
specifying each value by itself. In this case, the field names (preceded by $) are the object’s
properties. Named parameters allow the use of field names (preceded by $) as placeholders
instead of question marks.

A statement like the one in the example will not cause any modification to the database if the
condition imposed by the WHERE clause fails to match some record in the table. To evaluate
whether any records were modified by the statement, a callback function can be used as the last
parameter of the db.run() method. Inside the function, the number of changed records can be
queried from this.changes. Note that arrow functions cannot be used in this case, because only
regular functions of the form function(){} define the this object.

Removing a record is very similar to modifying it. We can, for example, continue using the :id
route parameter to identify the message to be deleted, but this time in a route invoked by the

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 341

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

client’s HTTP DELETE method:

app.delete('/:id', (req, res) => {
 let uuid = req.cookies.uuid

 if (uuid === undefined){
 uuid = uuidv4()
 res.sendStatus(401)
 }
 else {
 // Named parameters
 let param = {
 $id: req.params.id,
 $uuid: uuid
 }

 db.run('DELETE FROM messages WHERE id = $id AND uuid = $uuid', param, function(err){
 if (this.changes > 0)
 res.sendStatus(204)
 else
 res.sendStatus(404)
 })
 }
})

Records are deleted from a table with the DELETE FROM clause. We again used the callback
function to evaluate how many entries have been removed from the table.

Closing the Database
Once defined, the db object can be referenced at any time during script execution, because the
database file remains open throughout the current session. It is not common to close the database
while the script is running.

A function to close the database is useful, however, to avoid abruptly closing the database when
the server process finishes. Although unlikely, abruptly shutting down the database can result in
inconsistencies if in-memory data is not yet committed to the file. For instance, an abrupt
database shutdown with data loss can occur if the script is terminated by the user by pressing the
Ctrl  +  C keyboard shortcut.

In the Ctrl  +  C scenario just described, the process.on() method can intercept signals sent by the
operating system and execute an orderly shutdown of both the database and the server:

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

342 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

process.on('SIGINT', () => {
 db.close()
 server.close()
 console.log('HTTP server closed')
})

The Ctrl  +  C shortcut invokes the SIGINT operating system signal, which terminates a foreground
program in the terminal. Before ending the process when receiving the SIGINT signal, the system
invokes the callback function (the last parameter in the process.on() method). Inside the
callback function, you can put any cleanup code, in particular the db.close() method to close
the database and server.close(), which gracefully closes the Express instance itself.

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 343

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Guided Exercises
1. What is the purpose of a primary key in a SQL database table?

2. What is the difference between querying using db.all() and db.each()?

3. Why is it important to use placeholders and not include data sent by the client directly in an
SQL statement or query?

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

344 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Explorational Exercises
1. Which method in the sqlite3 module can be used to return only one table entry, even if the

query matches multiple entries?

2. Suppose the rows array was passed as a parameter to a callback function and contains the
result of a query made with db.all(). How can a field called price, which is present in the
first position of rows, be referenced inside the callback function?

3. The db.run() method executes database modification statements, such as INSERT INTO. After
inserting a new record into a table, how could you retrieve the primary key of the newly
inserted record?

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 345

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Summary
This lesson covers the basic use of SQL databases within Node.js Express applications. The
sqlite3 module offers a simple way of storing persistent data in a SQLite database, where a
single file contains the entire database and does not require a specialized database server. This
lesson goes through the following concepts and procedures:

• How to establish a database connection from Node.js.

• How to create a simple table and the role of primary keys.

• Using the INSERT INTO SQL statement to add new data from within the script.

• SQL queries using standard SQLite methods and callback functions.

• Changing data in the database using UPDATE and DELETE SQL statements.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

346 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Answers to Guided Exercises
1. What is the purpose of a primary key in a SQL database table?

The primary key is the unique identification field for each record within a database table.

2. What is the difference between querying using db.all() and db.each()?

The db.all() method invokes the callback function with a single array containing all entries
corresponding to the query. The db.each() method invokes the callback function for each
result row.

3. Why is it important to use placeholders and not include data sent by the client directly in an
SQL statement or query?

With placeholders, user-submitted data is escaped before being included in the query or
statement. This hampers SQL injection attacks, where SQL statements are placed inside
variable data in an attempt to perform arbitrary operations on the database.

Web Development Essentials (030) (Version 1.0) | 035.3 SQL Basics

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 347

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

Answers to Explorational Exercises
1. Which method in the sqlite3 module can be used to return only one table entry, even if the

query matches multiple entries?

The db.get() method has the same syntax as db.all(), but returns only the first entry
corresponding to the query.

2. Suppose the rows array was passed as a parameter to a callback function and contains the
result of a query made with db.all(). How can a field called price, which is present in the
first position of rows, be referenced inside the callback function?

Each item in rows is an object whose properties correspond to database field names. So the
value of the price field in the first result is in rows[0].price.

3. The db.run() method executes database modification statements, such as INSERT INTO. After
inserting a new record into a table, how could you retrieve the primary key of the newly
inserted record?

A regular function of the form function(){} can be used as the callback function of the
db.run() method. Inside it, the this.lastID property contains the primary key value of the
last inserted record.

Web Development Essentials (030) (Version 1.0) | Topic 035: NodeJS Server Programming

348 | learning.lpi.org | Licensed under CC BY-NC-ND 4.0. | Version: 2022-10-14

https://learning.lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/

Imprint

© 2022 by Linux Professional Institute: Learning Materials, “Web Development Essentials (030)
(Version 1.0)”.

PDF generated: 2022-10-14

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License (CC BY-NC-ND 4.0). To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-nd/4.0/

While Linux Professional Institute has used good faith efforts to ensure that the information and
instructions contained in this work are accurate, Linux Professional Institute disclaims all
responsibility for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such licenses and/or
rights.

The LPI Learning Materials are an initiative of Linux Professional Institute (https://lpi.org).
Learning Materials and their translations can be found at https://learning.lpi.org.

For questions and comments on this edition as well as on the entire project write an email to:
learning@lpi.org.

Web Development Essentials (030) (Version 1.0) | Imprint

Version: 2022-10-14 | Licensed under CC BY-NC-ND 4.0. | learning.lpi.org | 349

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://lpi.org
https://learning.lpi.org
mailto:learning@lpi.org
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://learning.lpi.org

	Learning Materials: Web Development Essentials (030)
	Table of Contents
	Topic 031: Software Development and Web Technologies
	031.1 Software Development Basic
	031.1 Lesson 1
	Introduction
	Source Code
	Programming Languages

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	031.2 Web Application Architecture
	031.2 Lesson 1
	Introduction
	Clients and Servers
	The Client Side
	Varieties of Web Clients
	Languages of a Web Client

	The Server Side
	Handling Paths from Requests
	Database Management Systems

	Content Maintenance

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	031.3 HTTP Basics
	031.3 Lesson 1
	Introduction
	The Client’s Request
	The Response Header
	Static and Dynamic Content
	Caching
	HTTP Sessions

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	Topic 032: HTML Document Markup
	032.1 HTML Document Anatomy
	032.1 Lesson 1
	Introduction
	Anatomy of an HTML Document
	Document Header

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	032.2 HTML Semantics and Document Hierarchy
	032.2 Lesson 1
	Introduction
	Text
	Headings
	Line Breaks
	Horizontal Lines
	HTML Lists
	Inline Text Formatting
	Preformatted Text
	Grouping Elements
	HTML Page Structure

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	032.3 HTML References and Embedded Resources
	032.3 Lesson 1
	Introduction
	Embedded Content
	Links

	Guided Exercises
	Explorational Excercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	032.4 HTML Forms
	032.4 Lesson 1
	Introduction
	Simple HTML Forms
	Input for large texts: textarea
	Lists of Options
	The hidden Element Type
	The File Input Type
	Action Buttons
	Form Action and Methods

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	Topic 033: CSS Content Styling
	033.1 CSS Basics
	033.1 Lesson 1
	Introduction
	Applying Styles

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	033.2 CSS Selectors and Style Application
	033.2 Lesson 1
	Introduction
	Page-Wide Styles
	Restrictive Selectors
	Special Selectors

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	033.3 CSS Styling
	033.3 Lesson 1
	Introduction
	CSS Common Properties and Values
	Colors
	Background
	Borders
	Unit Values
	Relative Units
	Fonts and Text Properties

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	033.4 CSS Box Model and Layout
	033.4 Lesson 1
	Introduction
	Normal Flow
	Customizing Normal Flow
	Responsive Design

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	Topic 034: JavaScript Programming
	034.1 JavaScript Execution and Syntax
	034.1 Lesson 1
	Introduction
	Running JavaScript in the Browser
	Browser Console
	JavaScript Statements
	JavaScript Commenting

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	034.2 JavaScript Data Structures
	034.2 Lesson 1
	Introduction
	High-Level Languages
	Declaration of Constants and Variables
	Types of Values
	Operators

	Guided Excercises
	Explorational Excercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	034.3 JavaScript Control Structures and Functions
	034.3 Lesson 1
	Introduction
	If Statements
	Switch Structures
	Loops

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	034.3 Lesson 2
	Introduction
	Defining a Function
	Function Recursion

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	034.4 JavaScript Manipulation of Website Content and Styling
	034.4 Lesson 1
	Introduction
	Interacting with the DOM
	HTML Content
	Selecting Specific Elements
	Working with Attributes
	Working with Classes
	Event Handlers

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	Topic 035: NodeJS Server Programming
	035.1 NodeJS Basics
	035.1 Lesson 1
	Introduction
	Getting Started

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	035.2 NodeJS Express Basics
	035.2 Lesson 1
	Introduction
	Initial Server Script
	Routes
	Adjustments to the Response
	Cookie Security

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	035.2 Lesson 2
	Introduction
	Static Files
	Formatted Output
	Templates
	HTML Templates

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	035.3 SQL Basics
	035.3 Lesson 1
	Introduction
	SQL
	SQLite
	Opening the Database
	Structure of a Table
	Data Entry
	Queries
	Changing the Contents of the Database
	Closing the Database

	Guided Exercises
	Explorational Exercises
	Summary
	Answers to Guided Exercises
	Answers to Explorational Exercises

	Imprint

