
MATHEMATICAL FOUNDATIONS
FOR

DATA ANALYSIS

JEFF M. PHILLIPS

2018

Math for Data copyright: Jeff M. Phillips

Preface

This book is meant for use with a self-contained course that introduces many basic principles and techniques
needed for modern data analysis. In particular, it was constructed from material taught mainly in two
courses. The first is an early undergraduate course which was designed to prepare students to succeed in
rigorous Machine Learning and Data Mining courses. The second course is that advanced Data Mining
course. It should be useful for any combination of such courses. The book introduces key conceptual tools
which are often absent or brief in undergraduate curriculum, and for most students, helpful to see multiple
times. On top of these, it introduces the generic versions of the most basic techniques that comprise the
backbone of modern data analysis. And then it delves deeper in a few more advanced topics and techniques
– still focusing on clear, intuitive, and lasting ideas, instead of specific details in the ever-evolving state-of-
the-art.

Notation. Consistent, clear, and crisp mathematical notation is essential for intuitive learning. The do-
mains which comprise modern data analysis (e.g., statistics, machine learning, algorithms) have matured
somewhat separately with their own conventions for ways to write the same or similar concepts. Moreover,
it is commonplace for researchers to adapt notation to best highlight ideas within specific papers. As such,
much of the existing literature on the topics covered in this book is all over the place, inconsistent, and as a
whole confusing. This text attempts to establish a common, simple, and consistent notation for these ideas,
yet not veer too far from how concepts are consistently represented in research literature, and as they will
be in more advanced courses. Indeed the most prevalent sources of confusion in earlier uses of this text in
class have arisen around overloaded notation.

Interaction with other courses. It is recommended that students taking this class have calculus and a
familiarity with programming and algorithms. They should have also taken some probability and/or linear
algebra; but we also review key concepts in these areas, so as to keep the book more self-contained. Thus, it
may be appropriate for students to take these classes before or concurrently. If appropriately planned for, it
is the hope that this course could be taken at the undergraduate sophomore level so that more rigorous and
advanced data analysis classes can already be taken during the junior year.

Although we touch on Bayesian Inference, we do not cover most of classical statistics; neither frequentist
hypothesis testing or the similar Bayesian perspectives. Most universities have well-developed courses
on these topics which while also very useful, provide a complimentary view of data analysis. Classical
statistical modeling approaches are often essential when a practitioner needs to provide some modeling
assumptions to harness maximum power from limited data. But in the era of big data this is not always
necessary. Rather, the topics in this course provide tools for using some of the data to help choose the
model.

Scope and topics. Vital concepts introduced include concentration of measure and PAC bounds, cross-
validation, gradient descent, a variety of distances, principal component analysis, and graphs. These ideas
are essential for modern data analysis, but not often taught in other introductory mathematics classes in a
computer science or math department. Or if these concepts are taught, they are presented in a very different
context.

Math for Data copyright: Jeff M. Phillips

regression classification

dimensionality
reduction clustering

set
outcome

scalar
outcome

labeled
data

unlabeled
data

prediction

structure

(X, y)

X

We also survey basic techniques in supervised (regression and classification) and unsupervised (principal
component analysis and clustering) learning. We make an effort to keep the presentation and concepts on
these topics simple. We mainly stick to those which attempt to minimize sum of squared errors. We lead
with classic but magical algorithms like Lloyd’s algorithm for k-means, the power method for eigenvectors,
and perceptron for linear classification. For many students (especially those in a computer science program),
these are the first iterative, non-discrete algorithms they will have encountered. And sometimes the book
ventures beyond these basics into concepts like regularization and lasso, locality sensitive hashing, multi-
dimensional scaling, spectral clustering, and neural net basics. These can be sprinkled in, to allow courses
to go deeper and more advanced as is suitable for the level of students.

On data. While this text is mainly focused on a mathematical preparation, what would data analysis be
without data? As such we provide discussion on how to use these tools and techniques on actual data, with
examples given in python. We choose python since it has increasingly many powerful libraries often with
efficient backends in low level languages like C or Fortran. So for most data sets, this provides the proper
interface for working with these tools.

But arguably more important than writing the code itself is a discussion on when and when-not to use
techniques from the immense toolbox available. This is one of the main ongoing questions a data scientist
must ask. And so, the text attempts to introduce the readers to this ongoing discussion.

Examples, Geometry, and Ethics. Three themes that this text highlights to try to aid in the understanding
and broader comprehension of these fundamentals are examples, geometry, and ethical connotations. These
are each offset in colored boxes.

Example: with focus on Simplicity

We try to provide numerous simple examples to demonstrate key concepts. We aim to be as simple
as possible, and make data examples small, so they can be fully digested.

Geometry of Data and Proofs

Many of the ideas in this text are inherently geometric, and hence we attempt to provide many
geometric illustrations which can illustrate what is going on. These boxes often go more in depth
into what is going on, and include the most technical proofs.

Math for Data copyright: Jeff M. Phillips

Ethical Questions with Data Analysis

As data analysis nestles towards an abstract, automatic, but nebulous place within decision making
everywhere, the surrounding ethical questions are becoming more important. We highlight various
ethical questions which may arise in the course of using the analysis described in this text. We inten-
tionally do not offer solutions, since there may be no single good answer to some of the dilemmas
presented. Moreover, we believe the most important part of instilling positive ethics is to make sure
analysts at least think about the consequences, which we hope these highlighting boxes achieves.

Thanks. I would like to thank gracious support from NSF in the form of grants CCF-1350888, IIS-
1251019, ACI-1443046, CNS-1514520, CNS-1564287, and IIS-1816149, which have funded my cumu-
lative research efforts during the writing of this text. I would also like to thank the University of Utah, as
well as the Simons Institute for Theory of Computing, for providing excellent work environments while this
text was written. And thanks to Natalie Cottrill for a careful reading and feedback.

This version. ... released online in December 2018, includes about 75 additional pages, and two new
chapters (on Distances and on Graphs). Its goal was to expand the breadth and depth of the book. However,
at this check point, these newly added topics may not be as polished as previous sections – this refinement
will be the focus of the next update. Its not a final version, so please have patience and send thoughts, typos,
suggestions!

Jeff M. Phillips
Salt Lake City, December 2018

Math for Data copyright: Jeff M. Phillips

Contents

1 Probability Review 9
1.1 Sample Spaces . 9
1.2 Conditional Probability and Independence . 10
1.3 Density Functions . 11
1.4 Expected Value . 12
1.5 Variance . 13
1.6 Joint, Marginal, and Conditional Distributions . 14
1.7 Bayes’ Rule . 15

1.7.1 Model Given Data . 17
1.8 Bayesian Inference . 18

2 Convergence and Sampling 23
2.1 Sampling and Estimation . 23
2.2 Probably Approximately Correct (PAC) . 25
2.3 Concentration of Measure . 26

2.3.1 Union Bound and Examples . 30
2.4 Importance Sampling . 33

2.4.1 Sampling Without Replacement with Priority Sampling 36

3 Linear Algebra Review 41
3.1 Vectors and Matrices . 41
3.2 Addition and Multiplication . 43
3.3 Norms . 45
3.4 Linear Independence . 46
3.5 Rank . 47
3.6 Inverse . 47
3.7 Orthogonality . 48

4 Distances and Nearest Neighbors 51
4.1 Metrics . 51
4.2 Lp Distances and their Relatives . 51

4.2.1 Lp Distances . 51
4.2.2 Mahalanobis Distance . 55
4.2.3 Cosine and Angular Distance . 55
4.2.4 KL Divergence . 56

4.3 Distances for Sets and Strings . 57
4.3.1 Jaccard Distance . 57
4.3.2 Edit Distance . 59

4.4 Modeling Text with Distances . 60
4.4.1 Bag-of-Words Vectors . 61
4.4.2 k-Grams . 63

4.5 Similarities . 65
4.5.1 Normed Similarities . 65

5

4.5.2 Set Similarities . 66
4.6 Locality Sensitive Hashing . 67

4.6.1 Properties of Locality Sensitive Hashing . 70
4.6.2 Prototypical Tasks for LSH . 71
4.6.3 Banding to Amplify LSH . 71
4.6.4 LSH for Angular Distance . 74
4.6.5 LSH for Euclidean Distance . 75
4.6.6 Minhashing as LSH for Jaccard Distance . 76

5 Linear Regression 79
5.1 Simple Linear Regression . 79
5.2 Linear Regression with Multiple Explanatory Variables . 81
5.3 Polynomial Regression . 85
5.4 Cross Validation . 86
5.5 Regularized Regression . 90

5.5.1 Tikhonov Regularization for Ridge Regression . 90
5.5.2 Lasso . 91
5.5.3 Dual Constrained Formulation . 92
5.5.4 Orthogonal Matching Pursuit . 94

6 Gradient Descent 101
6.1 Functions . 101
6.2 Gradients . 102
6.3 Gradient Descent . 103

6.3.1 Learning Rate . 104
6.4 Fitting a Model to Data . 107

6.4.1 Least Mean Squares Updates for Regression . 108
6.4.2 Decomposable Functions . 109

7 Principal Component Analysis 113
7.1 Data Matrices . 113

7.1.1 Projections . 114
7.1.2 SSE Goal . 115

7.2 Singular Value Decomposition . 115
7.2.1 Best Rank-k Approximation . 118

7.3 Eigenvalues and Eigenvectors . 119
7.4 The Power Method . 121
7.5 Principal Component Analysis . 123
7.6 Multidimensional Scaling . 123

8 Clustering 127
8.1 Voronoi Diagrams . 127

8.1.1 Delaunay Triangulation . 129
8.1.2 Connection to Assignment-based Clustering . 130

8.2 Gonzalez Algorithm for k-Center Clustering . 130
8.3 Lloyd’s Algorithm for k-Means Clustering . 132

8.3.1 Lloyd’s Algorithm . 132
8.3.2 k-Means++ . 135

Math for Data copyright: Jeff M. Phillips

8.3.3 k-Mediod Clustering . 135
8.3.4 Soft Clustering . 136

8.4 Mixture of Gaussians . 137
8.4.1 Expectation-Maximization . 138

8.5 Hierarchical Clustering . 138
8.6 Mean Shift Clustering . 140

9 Classification 143
9.1 Linear Classifiers . 143

9.1.1 Loss Functions . 145
9.1.2 Cross Validation and Regularization . 146

9.2 Perceptron Algorithm . 147
9.3 Kernels . 150

9.3.1 The Dual: Mistake Counter . 151
9.3.2 Feature Expansion . 151
9.3.3 Support Vector Machines . 152

9.4 kNN Classifiers . 153
9.5 Neural Networks . 153

10 Graphs 157
10.1 Markov Chains . 159

10.1.1 Ergodic Markov Chains . 161
10.1.2 Metropolis Algorithm . 163

10.2 PageRank . 164
10.3 Spectral Clustering on Graphs . 166

10.3.1 Laplacians and their Eigen-Structure . 167
10.4 Communities in Graphs . 171

10.4.1 Preferential Attachment . 172
10.4.2 Betweenness . 173
10.4.3 Modularity . 173

Math for Data copyright: Jeff M. Phillips

Math for Data copyright: Jeff M. Phillips

1 Probability Review

Probability is a critical tool for modern data analysis. It arises in dealing with uncertainty, in randomized
algorithms, and in Bayesian analysis. To understand any of these concepts correctly, it is paramount to have
a solid and rigorous statistical foundation. Here we review some key definitions.

1.1 Sample Spaces
We define probability through set theory, starting with a sample space Ω. This represents the set of all things
that might happen in the setting we consider. One such potential outcome ω ∈ Ω is a sample outcome, it is
an element of the set Ω. We are usually interested in an event that is a subset A ⊆ Ω of the sample space.

Example: Discrete Sample Space for a 6-Ssided Die

Consider rolling a single fair, 6-sided die. Then Ω = {1, 2, 3, 4, 5, 6}. One roll may produce an
outcome ω = 3, rolling a 3. An event might be A = {1, 3, 5}, any odd number.
The probability of rolling an odd number is then Pr(A) = |{1, 3, 5}|/|{1, 2, 3, 4, 5, 6}| = 1/2.

A random variable X : Ω → S is a function which maps from the sample space Ω to a domain S. In
many cases S ⊆ R, where R is the space of real numbers.

Example: Random Variables for a Fair Coin

Consider flipping a fair coin with Ω = {H,T}. If I get a head H , then I get 1 point, and if I get a T ,
then I get 4 points. This describes the random variable X , defined X(H) = 1 and X(T) = 4.

The probability of an event Pr(A) satisfies the following properties:

• 0 ≤ Pr(A) ≤ 1 for any A,
• Pr(Ω) = 1, and
• The probability of the union of disjoint events is equivalent to the sum of their individual probabilities.

Formally, for any sequence A1, A2, . . . where for all i 6= j that Ai ∩Aj = ∅, then

Pr

(∞⋃

i=1

Ai

)
=

∞∑

i=1

Pr(Ai).

Example: Probability for a Biased Coin

Now consider flipping a biased coin with two possible events Ω = {H,T} (i.e., heads H = A1 and
tails T = A2). The coin is biased so the probabilities Pr(H) = 0.6 and Pr(T) = 0.4 of these events
are not equal. However we notice still 0 ≤ Pr(T),Pr(H) ≤ 1, and that Pr(Ω) = Pr(H ∪ T) =
Pr(H) + Pr(T) = 0.6 + 0.4 = 1. That is the sample space Ω is union of these two events, which
cannot both occur (i.e., H ∩ T = ∅) so they are disjoint. Thus Ω’s probability can be written as the
sum of the probability of those two events.

Sample spaces Ω can also be continuous, representing some quantity like water, time, or land mass which
does not have discrete quantities. All of the above definitions hold for this setting.

9

Example: Continuous Sample Space

Assume you are riding a Swiss train that is always on time, but its departure is only specified to the
minute (specifically, 1:37 pm). The true departure is then in the state space Ω = [1:37:00, 1:38:00).
A continuous event may be A = [1:37:00− 1:37:40), the first 40 seconds of that minute.
Perhaps the train operators are risk averse, so Pr(A) = 0.80. That indicates that 0.8 fraction of trains
depart in the first 2/3 of that minute (less than the 0.666 expected from a uniform distribution).

Geometry of Sample Spaces

It may be useful to generically imagine a sample space Ω as a square. Then, as shown in (a), an event
A may be an arbitrary subset of this space.
When the sample space describes the joint sample space over two random variables X and Y , then it
may be convenient to parameterize Ω so that the X value is represented along one side of the square,
and the Y value along the other, as in (b). Then for an event A ⊂ X which only pertains to the
random variable X is represented as a rectangular strip defined by A’s intersection with the domain
of X .
If there is also an event B ⊂ Y that only pertains to random variable Y , then another rectangular
strip in the other direction defined by B’s intersection with the domain of Y can be drawn as in (c).
When these events are independent, then these strips intersect only in a another rectangle A ∩ B.
When X and Y are independent, then all such strips, defined by events A ⊂ X and B ⊂ Y intersect
in a rectangle. If the events are not independent, then the associated picture will not look as clear,
like in (a).
Given such independent events A ⊂ X and B ⊂ Y , it is easy to see that A | B can be realized, as
in (d), with the rectangle A∩B restricted to the strip defined by B. Furthermore, imagining the area
as being proportional to probability, it is also easy to see that Pr(A | B) = Pr(A ∩B)/Pr(B) since
the strip B induces a new restricted sample space ΩB , and an event only occurs in the strip-induced
rectangle defined and further-restricted by A which is precisely A ∩B.

A
X

Y

⌦ ⌦

X

Y

A

⌦

B

X

Y

A

⌦

B

A

⌦B

A \B A | B

(a) (b) (c) (d)

1.2 Conditional Probability and Independence
Now consider two events A and B. The conditional probability of A given B is written Pr(A | B), and
can be interpreted as the probability of A, restricted to the setting where we know B is true. It is defined in
simpler terms as Pr(A | B) = Pr(A∩B)

Pr(B) , that is the probabilityA andB are both true, divided by (normalized
by) the probability B is true.

Two events A and B are independent of each other if and only if

Pr(A | B) = Pr(A).

Math for Data copyright: Jeff M. Phillips

Equivalently they are independent if and only if Pr(B | A) = Pr(B) or Pr(A ∩ B) = Pr(A)Pr(B). By
algebraic manipulation, it is not hard to see these are all equivalent properties. This implies that knowledge
about B has no effect on the probability of A (and vice versa from A to B).

Example: Conditional Probability

Consider the two random variables. T is 1 if a test for cancer is positive, and 0 otherwise. Variable
C is 1 if a patient has cancer, and 0 otherwise. The joint probability of the events is captured in the
following table:

tests positive for cancer
tests negative for cancer

cancer no cancer
C = 1 C = 0

T = 1 0.1 0.02
T = 0 0.05 0.83

Note that the sum of all cells (the joint sample space Ω) is 1. The conditional probability of having
cancer, given a positive test is Pr(C = 1 | T = 1) = 0.1

0.1+0.02 = 0.8333. The probability of cancer
(ignoring the test) is Pr(C = 1) = 0.1 + 0.05 = 0.15. Since Pr(C = 1 | T = 1) 6= Pr(C = 1),
then events T = 1 and C = 1 are not independent.

Two random variables X and Y are independent if and only if, for all possible events A ⊆ ΩX and
B ⊆ ΩY that A and B are independent: Pr(A ∩B) = Pr(A)Pr(B).

1.3 Density Functions

Discrete random variables can often be defined through tables (as in the above cancer example). Or we can
define a function fX(k) as the probability that random variableX is equal to k. For continuous random vari-
ables we need to be more careful: we will use calculus. We will next develop probability density functions
(pdfs) and cumulative density functions (cdfs) for continuous random variables; the same constructions are
sometimes useful for discrete random variables as well, which basically just replace a integral with a sum.

We consider a continuous sample space Ω, and a random variable X defined on that sample space. The
probability density function of a random variable X is written fX . It is defined with respect to any event A
so that Pr(X ∈ A) =

∫
ω∈A fX(ω)dω. The value fX(ω) is not equal to Pr(X = ω) in general, since for

continuous functions Pr(X = ω) = 0 for any single value ω ∈ Ω. Yet, we can interpret fX as a likelihood
function; its value has no units, but they can be compared and larger ones are more likely.

Next we will define the cumulative density function FX(t); it is the probability thatX takes on a value of t
or smaller. Here it is typical to have Ω = R, the set of real numbers. Now define FX(t) =

∫ t
ω=−∞ fX(ω)dω.

We can also define a pdf in terms of a cdf as fX(ω) = dFX(ω)
dω .

Math for Data copyright: Jeff M. Phillips

Example: Normal Random Variable

A normal random variable X is a very common distribution to model noise. It has domain Ω = R.
Its pdf is defined fX(ω) = 1√

2π
exp(−ω2/2) = 1√

2π
e−ω

2/2, and its cdf has no closed form solution.
We have plotted the cdf and pdf in the range [−3, 3] where most of the mass lies:

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

normal PDF
normal CDF

import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt
from scipy.stats import norm
import numpy as np
import math

mu = 0
variance = 1
sigma = math.sqrt(variance)
x = np.linspace(-3, 3, 201)

plt.plot(x, norm.pdf((x-mu)/sigma),linewidth=2.0, label=’normal PDF’)
plt.plot(x, norm.cdf((x-mu)/sigma),linewidth=2.0, label=’normal CDF’)
plt.legend(bbox_to_anchor=(.35,1))

plt.savefig(’Gaussian.pdf’, bbox_inches=’tight’)

1.4 Expected Value
The expected value of a random variableX in a domain Ω is a very important constant, basically a weighted
average of Ω, weighted by the range of X . For a discrete random variable X it is defined as the sum over all
outcomes ω in the sample space, or their value times their probability

E[X] =
∑

ω∈Ω

(ω · Pr[X = ω]).

For a continuous random variable X it is defined

E[X] =

∫

ω∈Ω
ω · fX(ω)dω.

Linearity of Expectation: An important property of expectation is that it is a linear operation. That
means for two random variables X and Y we have E[X +Y] = E[X] + E[Y]. For a scalar value α, we also
E[αX] = αE[X].

Math for Data copyright: Jeff M. Phillips

Example: Expectation

A fair die has a sample space of Ω = {ω1 = 1, ω2 = 2, ω3 = 3, ω4 = 4, ω5 = 5, ω6 = 6}, and the
probability of each outcome wi is Pr[wi] = 1/6. The expected value able of a random variable D of
the result of a roll of such a die is

E[D] =
∑

ωi∈Ω

ωi · Pr[D = ωi] = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
= 3.5

Example: Linearity of Expectation

Let H be the random variable of the height of a man in meters without shoes. Let the pdf fH of H
be a normal distribution with expected value µ = 1.755m and with standard deviation 0.1m. Let S
be the random variable of the height added by wearing a pair of shoes in centimeters (1 meter is 100
centimeters), its pdf is given by the following table:

S = 1 S = 2 S = 3 S = 4

0.1 0.1 0.5 0.3

Then the expected height of someone wearing shoes in centimeters is

E[100·H+S] = 100·E[H]+E[S] = 100·1.755+(0.1·1+0.1·2+0.5·3+0.3·4) = 175.5+3 = 178.5

Note how the linearity of expectation allowed us to decompose the expression 100 ·H + S into its
components, and take the expectation of each one individually. This trick is immensely powerful
when analyzing complex scenarios with many factors.

1.5 Variance
The variance of a random variable X describes how spread out it is, with respect to its mean E[X]. It is
defined

Var[X] = E[(X − E[X])2]

= E[X2]− E[X]2.

The equivalence of those two above common forms above uses that E[X] is a fixed scalar:

E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2] = E[X2]− 2E[X]E[X] + E[X]2 = E[X2]− E[X]2.

For any scalar α ∈ R, then Var[αX] = α2Var[X].
Note that the variance does not have the same units as the random variable or the expectation, it is that unit

squared. As such, we also often discuss the standard deviation σX =
√

Var[X]. A low value of Var[X] or
σX indicates that most values are close to the mean, while a large value indicates that the data has a higher
probability of being further from the mean.

Math for Data copyright: Jeff M. Phillips

Example: Variance

Consider again the random variable S for height added by a shoe:

S = 1 S = 2 S = 3 S = 4

0.1 0.1 0.5 0.3

Its expected value is E[S] = 3 (a fixed scalar), and its variance is

Var[S] = 0.1 · (1− 3)2 + 0.1 · (2− 3)2 + 0.5 · (3− 3)2 + 0.3 · (4− 3)2

= 0.1 · (−2)2 + 0.1 · (−1)2 + 0 + 0.3(1)2 = 0.4 + 0.1 + 0.3 = 0.8.

Then the standard deviation is σS =
√

0.8 ≈ 0.894.

The covariance of two random variables X and Y is defined Cov[X,Y] = E[(X − E[X])(Y − E[Y])].
It measures how much these random variables vary in accordance with each other; that is, if both are con-
sistently away from the mean at the same time (in the same direction), then the covariance is high.

1.6 Joint, Marginal, and Conditional Distributions

We now extend some of these concepts to more than one random variable. Consider two random variables
X and Y . Their joint pdf is defined fX,Y : ΩX × ΩY → [0,∞] where for discrete random variables this
is defined by the probability fX,Y (x, y) = Pr(X = x, Y = y). In this discrete case, the domain of fX,Y
is restricted so fX,Y ∈ [0, 1] and so

∑
x,y∈X×Y fX,Y (x, y) = 1, e.g., the sum of probabilities over the joint

sample space is 1.

Similarly, when ΩX = ΩY = R, the joint cdf is defined FX,Y (x, y) = Pr(X ≤ x, Y ≤ y). The
marginal cumulative distribution functions of FX,Y are defined as FX(x) = limy→∞ FX,Y (x, y)dy and
FY (y) = limx→∞ FX,Y (x, y)dx.

Similarly, when Y is discrete, the marginal pdf is defined fX(x) =
∑

y∈ΩY
fX,Y (x, y) =

∑
y∈ΩY

Pr(X =

x, Y = y). When the random variables are continuous, we define fX,Y (x, y) =
d2FX,Y (x,y)

dxdy . And then the
marginal pdf of X (when ΩY = R) is defined fX(x) =

∫∞
y=−∞ fX,Y (x, y)dy. Marginalizing removes the

effect of a random variable (Y in the above definitions).

Now we can say random variables X and Y are independent if and only if fX,Y (x, y) = fX(x) · fY (y)
for all x and y.

Then a conditional distribution of X given Y = y is defined fX|Y (x | y) = fX,Y (x, y)/fY (y) (given
that fY (y) 6= 0).

Math for Data copyright: Jeff M. Phillips

Example: Marginal and Conditional Distributions

Consider someone who randomly chooses his pants and shirt every day (a to-remain-anonymous
friend of the author’s actually did this in college – all clothes were in a pile, clean or dirty; when
the average article of clothing was too smelly, all were washed). Let P be a random variable for the
color of pants, and S a random variable for the color of the shirt. Their joint probability is described
by this table:

S=green S=red S=blue
P=blue 0.3 0.1 0.2
P=white 0.05 0.2 0.15

Adding up along columns, the marginal distribution fS for the color of the shirt is described by the
following table:

S=green S=red S=blue
0.35 0.3 0.35

Isolating and renormalizing the middle “S=red” column, the conditional distribution fP |S(· | S= red)
is described by the following table:

P=blue P=white
0.1
0.3 = 0.3333 0.2

0.3 = 0.6666

Example: Gaussian Distribution

The Gaussian distribution is a d-variate distribution Gd : Rd → R that generalizes the one-
dimensional normal distribution. The definition of the symmetric version (we will generalize to
non-trivial covariance later on) depends on a mean µ ∈ Rd and a variance σ2. For any vector
v ∈ Rd, it is defined

Gd(v) =
1

σd
√

2πd
exp

(
−‖v − µ‖2/(2σ2)

)
.

For the 2-dimensional case where v = (vx, vy) and µ = (µx, µy), then this is defined

G2(v) =
1

σ2π
√

2
exp

(
−((vx − µx)2 − (vy − µy)2)/(2σ2)

)
.

A magical property about the Gaussian distribution is that all conditional versions of it are also
Gaussian, of a lower dimension. For instance, in the two dimensional case G2(vx | vy = 1) is a
1-dimensional Gaussian, or a normal distribution. There are many other essential properties of the
Gaussian that we will see throughout this text, including that it is invariant under all basis transfor-
mations and that it is the limiting distribution for central limit theorem bounds.

1.7 Bayes’ Rule
Bayes’ Rule is the key component in how to build likelihood functions, which when optimized are key to
evaluating “models” based on data. Bayesian Reasoning is a much broader area that can go well beyond just
finding the single “most optimal” model. This line of work, which this chapter will only introduce, reasons
about the many possible models and can make predictions with this uncertainty taken into account.

Math for Data copyright: Jeff M. Phillips

Given two events M and D Bayes’ Rule states

Pr(M | D) =
Pr(D |M) · Pr(M)

Pr(D)
.

Mechanically, this provides an algebraic way to invert the direction of the conditioning of random variables,
from (D given M) to (M given D). It assumes nothing about the independence of M and D (otherwise its
pretty uninteresting). To derive this we use

Pr(M ∩D) = Pr(M | D)Pr(D)

and also

Pr(M ∩D) = Pr(D ∩M) = Pr(D |M)Pr(M).

Combining these we obtain Pr(M | D)Pr(D) = Pr(D | M)Pr(M), from which we can divide by Pr(D)
to solve for Pr(M | D). So Bayes’ Rule is uncontroversially true; any “frequentist vs. Bayesian” debate is
about how to model data and perform analysis, not the specifics or correctness of this rule.

Example: Checking Bayes’ Rule

Consider two events M and D with the following joint probability table:

M = 1 M = 0

D = 1 0.25 0.5
D = 0 0.2 0.05

We can observe that indeed Pr(M | D) = Pr(M ∩D)/Pr(D) = 0.25
0.75 = 1

3 , which is equal to

Pr(D |M)Pr(M)

Pr(D)
=

.25
.2+.25(.2 + .25)

.25 + .5
=
.25

.75
=

1

3
.

But Bayes’ rule is not very interesting in the above example. In that example, it is actually more compli-
cated to calculate the right side of Bayes’ rule than it is the left side.

Math for Data copyright: Jeff M. Phillips

Example: Cracked Windshield

Consider you bought a new car and its windshield was cracked, the eventW . If the car was assembled
at one of three factories A, B or C, you would like to know which factory was the most likely point
of origin.
Assume that in Utah 50% of cars are from factory A (that is Pr(A) = 0.5) and 30% are from factory
B (Pr(B) = 0.3), and 20% are from factory C (Pr(C) = 0.2).
Then you look up statistics online, and find the following rates of cracked windshields for each
factory – apparently this is a problem! In factory A, only 1% are cracked, in factory B 10% are
cracked, and in factory C 2% are cracked. That is Pr(W | A) = 0.01, Pr(W | B) = 0.1 and
Pr(W | C) = 0.02.
We can now calculate the probability the car came from each factory:

• Pr(A |W) = Pr(W | A) · Pr(A)/Pr(W) = 0.01 · 0.5/Pr(W) = 0.005/Pr(W).

• Pr(B |W) = Pr(W | B) · Pr(B)/Pr(W) = 0.1 · 0.3/Pr(W) = 0.03/Pr(W).

• Pr(C |W) = Pr(W | C) · Pr(C)/Pr(W) = 0.02 · 0.2/Pr(W) = 0.004/Pr(W).

We did not calculate Pr(W), but it must be the same for all factory events, so to find the highest
probability factory we can ignore it. The probability Pr(B | W) = 0.03/Pr(W) is the largest, and
B is the most likely factory.

1.7.1 Model Given Data
In data analysis, M represents a ‘model’ and D as ’data.’ Then Pr(M | D) is interpreted as the probability
of model M given that we have observed D. A maximum a posteriori (or MAP) estimate is the model
M ∈ ΩM that maximizes Pr(M | D). That is1

M∗ = argmax
M∈ΩM

Pr(M | D) = argmax
M∈ΩM

Pr(D |M)Pr(M)

Pr(D)
= argmax

M∈ΩM

Pr(D |M)Pr(M).

Thus, by using Bayes’ Rule, we can maximize Pr(M | D) using Pr(M) and Pr(M | D). We do not need
Pr(D) since our data is given to us and fixed for all models.

In some settings we may also ignore Pr(M), as we may assume all possible models are equally likely.
This is not always the case, and we will come back to this. In this setting we just need to calculate Pr(D |
M). This function L(M) = Pr(D |M) is called the likelihood of model M .

So what is a ‘model’ and what is ’data?’ A model is usually a simple pattern from which we think data
is generated, but then observed with some noise. Examples:

• The model M is a single point in Rd; the data is a set of points in Rd near M .
• linear regression: The model M is a line in R2; the data is a set of points such that for each x-

coordinate, the y-coordinate is the value of the line at that x-coordinate with some added noise in the
y-value.
• clustering: The model M is a small set of points in Rd; the data is a large set of points in Rd, where

each point is near one of the points in M .
1Consider a set S, and a function f : S → R. The maxs∈S f(s) returns the value f(s∗) for some element s∗ ∈ S which results

in the largest valued f(s). The argmaxs∈S f(s) returns the element s∗ ∈ S which results in the largest valued f(s); if this is not
unique, it may return any such s∗ ∈ S.

Math for Data copyright: Jeff M. Phillips

• PCA: The model M is a k-dimensional subspace in Rd (for k � d); the data is a set of points in Rd,
where each point is near M .
• linear classification: The modelM is a halfspace in Rd; the data is a set of labeled points (with labels

+ or −), so the + points are mostly in M , and the − points are mainly not in M .

Log-likelihoods. An important trick used in understanding the likelihood, and in finding the MAP model
M∗, is to take the logarithm of the posterior. Since the logarithm operator log(·) is monotonically increasing
on positive values, and all probabilities (and more generally pdf values) are non-negative (treat log(0) as
−∞), then argmaxM∈ΩM Pr(M | D) = argmaxM∈ΩM log(Pr(M | D)). It is commonly applied on only
the likelihood functionL(M), and log(L(M)) is called the log-likelihood. Since log(a·b) = log(a)+log(b),
this is useful in transforming definitions of probabilities, which are often written as products Πk

i=1Pi into
sums log(Πk

i=1Pi) =
∑k

i=1 log(Pi), which are easier to manipulated algebraically.
Moreover, the base of the log is unimportant in model selection using the MAP estimate because logb1(x) =

logb2(x)/ logb2(b1), and so 1/ logb2(b1) is a coefficient that does not affect the choice of M∗. The same is
true for the maximum likelihood estimate (MLE): M∗ = argmaxM∈ΩM L(M).

Example: Gaussian MLE

Let the data D be a set of points in R1 : {1, 3, 12, 5, 9}. Let ΩM be R so that the model is
parametrized by a point M ∈ R. If we assume that each data point is observed with independent
Gaussian noise (with σ = 2, so its pdf is described as g(x) = 1√

8π
exp(−1

8(M − x)2). Then

Pr(D |M) =
∏

x∈D
g(x) =

∏

x∈D

(
1√
8π

exp(−1

8
(M − x)2)

)
.

Recall that we can take the product Πx∈Dg(x) since we assume independence of x ∈ D! To find
M∗ = argmaxM Pr(D |M) is equivalent to argmaxM ln(Pr(D |M)), the log-likelihood which is

ln(Pr(D |M)) = ln

(∏

x∈D

(
1√
8π

exp(−1

8
(M − x)2)

))
=
∑

x∈D

(
−1

8
(M − x)2

)
+|D| ln(

1√
8π

).

We can ignore the last term in the sum since it does not depend on M . The first term is maximized
when

∑
x∈D(M − x)2 is minimized, which occurs precisely as E[D] = 1

|D|
∑

x∈D x, the mean of
the data setD. That is, the maximum likelihood model is exactly the mean of the dataD, and is quite
easy to calculate.

1.8 Bayesian Inference
Bayesian inference focuses on a simplified version of Bayes’s Rule:

Pr(M | D) ∝ Pr(D |M) · Pr(M).

The symbol ∝ means proportional to; that is there is a fixed (but possibly unknown) constant factor c
multiplied on the right (in this case c = 1/Pr(D)) to make them equal: Pr(M | D) = c·Pr(D |M)·Pr(M).

However, we may want to use continuous random variables, so then strictly using probability Pr at a
single point is not always correct. So we can replace each of these with pdfs

p(M | D) ∝ f(D |M) · π(M).
posterior likelihood prior

Math for Data copyright: Jeff M. Phillips

Each of these terms have common names. As above, the conditional probability or pdf Pr(D | M) ∝
f(D | M) is called the likelihood; it evaluates the effectiveness of the model M using the observed data
D. The probability or pdf of the model Pr(M) ∝ π(M) is called the prior; it is the assumption about
the relative propensity of a model M , before or independent of the observed data. And the left hand side
Pr(M | D) ∝ p(M | D) is called the posterior; it is the combined evaluation of the model that incorporates
how well the observed data fits the model and the independent assumptions about the model.

Again it is common to be in a situation where, given a fixed model M , it is possible to calculate the
likelihood f(D | M). And again, the goal is to be able to compute p(M | D), as this allows us to evaluate
potential models M , given the data we have seen D.

The main difference is a careful analysis of π(M), the prior – which is not necessarily assumed uniform
or “flat”. The prior allows us to encode our assumptions.

Example: Average Height

Lets estimate the height H of a typical Data University student. We can construct a data set D =
{x1, . . . , xn} by measuring the height of everyone in this class in inches. There may be error in the
measurement, and we are an incomplete set, so we don’t entirely trust the data.
So we introduce a prior π(M). Consider we read that the average height of a full grown person is
µM = 66 inches, with a standard deviation of σ = 6 inches. So we assume

π(M) = N(66, 6) =
1√
π72

exp(−(µM − 66)2/(2 · 62)),

is normally distributed around 66 inches.
Now, given this knowledge we adjust the MLE example from last subsection using this prior.

• What if our MLE estimate without the prior (e.g. 1
|D|
∑

x∈D x) provides a value of 5.5?
The data is very far from the prior! Usually this means something is wrong. We could find
argmaxM p(M | D) using this information, but that may give us an estimate of say 20 (that
does not seem correct). A more likely explanation is a mistake somewhere: probably we
measured in feet instead of inches!

Another vestige of Bayesian inference is that we not only can calculate the maximum likelihood model
M∗, but we can also provide a posterior value for any model! This value is not an absolute probability (its
not normalized, and regardless it may be of measure 0), but it is powerful in other ways:

• We can say (under our model assumptions, which are now clearly stated) that one model M1 is twice
as likely as another M2, if p(M1 | D)/p(M2 | D) = 2.

• We can define a range of parameter values (with more work and under our model assumptions) that
likely contains the true model.

• We can now use more than one model for prediction of a value. Given a new data point x′ we may
want to map it onto our model as M(x′), or assign it a score of fit. Instead of doing this for just one
“best” model M∗, we can take a weighted average of all models, weighted by their posterior; this is
“marginalization.”

Weight for Prior. So how important is the prior? In the average height example, it will turn out to be worth
only (1/9)th of one student’s measurement. But we can give it more weight.

Math for Data copyright: Jeff M. Phillips

Example: Weighted Prior for Height

Lets continue the example about the height of an average Data University student, and assume (as in
the MLE example) the data is generated independently from a model M with Gaussian noise with
σ = 2. Thus the likelihood of the model, given the data is

f(D |M) =
∏

x∈D
g(x) =

∏

x∈D

(
1√
8π

exp(−1

8
(µM − x)2)

)
.

Now using that the prior of the model is π(M) = 1√
π72

exp(−(µM−66)2/72), the posterior is given
by

p(M | D) ∝ f(D |M) · 1√
π72

exp(−(µM − 66)2/72).

It is again easier to work with the log-posterior which is monotonic with the posterior, using some
unspecified constant C (which can be effectively ignored):

ln(p(M | D)) ∝ ln(f(D |M)) + ln(π(M)) + C

∝
∑

x∈D

(
−1

8
(µM − x)2)

)
− 1

72
(µM − 66)2 + C

∝ −
∑

x∈D
9(µM − x)2 + (µM − 66)2 + C

So the maximum likelihood estimator occurs at the average of 66 along with 9 copies of the student
data.

Why is student measurement data worth so much more?
We assume the standard deviation of the measurement error is 2, where as we assumed that the standard

deviation of the full population was 6. In other words, our measurements had variance 22 = 4, and the
population had variance 62 = 36 (technically, this is best to interpret as the variance when adapted to
various subpopulations, e.g., Data University students): that is 9 times as much.

If instead we assumed that the standard deviation of our prior is 0.1, with variance 0.01, then this is 400
times smaller than our class measurement error variance. If we were to redo the above calculations with this
smaller variance, we would find that this assumption weights the prior 400 times the effect of each student
measurement in the MLE.

In fact, a much smaller variance on the prior is probably more realistic since national estimates on height
are probably drawn from a very large sample. And its important to keep in mind that we are estimating the
average height of a population, not the height of a single person randomly drawn from the population. In
the next topic (T3) we will see how averages of random variables have much smaller variance – are much
more concentrated – than individual random variables.

So what happens with more data?
Lets say, this class gets really popular, and next year 1,000 or 10,000 students sign up! Then again the

student data is overall worth more than the prior data. So with any prior, if we get enough data, it no longer
becomes important. But with a small amount of data, it can have a large influence on our model.

Math for Data copyright: Jeff M. Phillips

Exercises

Q1.1: Consider the probability table below for the random variablesX and Y . One entry is missing, but you
should be able to derive it. Then calculate the following values.

1. Pr(X = 3 ∩ Y = 2)

2. Pr(Y = 1)

3. Pr(X = 2 ∩ Y = 1)

4. Pr(X = 2 | Y = 1) X = 1 X = 2 X = 3

Y = 1 0.25 0.1 0.15
Y = 2 0.1 0.2 ??

Q1.2: An “adventurous” athlete has the following running routine every morning: He takes a bus to a random
stop, then hitches a ride, and then runs all the way home. The bus, described by a random variable B,
has four stops where the stops are at a distance of 1, 3, 4, and 7 miles from his house – he chooses
each with probability 1/4. Then the random hitchhiking takes him further from his house with a
uniform distribution between−1 and 4 miles; that is it is represented as a random variableH with pdf
described

f(H = x) =

{
1/5 if x ∈ [−1, 4]

0 if x /∈ [−1, 4].

What is the expected distance he runs each morning (all the way home)?

Q1.3: Consider rolling two fair die D1 and D2; each has a probability space of Ω = {1, 2, 3, 4, 5, 6} which
each value equally likely. What is the probability that D1 has a larger value than D2? What is the
expected value of the sum of the two die?

Q1.4: Let X be a random variable with a uniform distribution over [0, 2]; its pdf is described

f(X = x) =

{
1/2 if x ∈ [0, 2]

0 if x /∈ [0, 2].

What is the probability that f(X = 1)?

Q1.5: Use python to plot the pdf and cdf of the Laplace distribution (f(x) = 1
2 exp(−|x|)) for values of x

in the range [−3, 3]. The function scipy.stats.laplace may be useful.

Q1.6: Consider the random variables X and Y described by the joint probability table.

X = 1 X = 2 X = 3

Y = 1 0.10 0.05 0.10
Y = 2 0.30 0.25 0.20

Derive the following values

1. Pr(X = 1)

2. Pr(X = 2 ∩ Y = 1)

3. Pr(X = 3 | Y = 2)

Math for Data copyright: Jeff M. Phillips

Compute the following probability distributions.

4. What is the marginal distribution for X?

5. What is the conditional probability for Y , given that X = 2?

Answer the following question about the joint distribution.

6. Are random variables X and Y independent?

7. Is Pr(X = 1) independent of Pr(Y = 1)?

Q1.7: Consider two models M1 and M2, where from prior knowledge we believe that Pr(M1) = 0.25 and
Pr(M2) = 0.75. We then observe a data set D. Given each model we assess the likelihood of seeing
that data given the model as Pr(D |M1) = 0.5 and Pr(D |M2) = 0.01. Now that we have the data,
which model is has a higher probability of being correct?

Q1.8: Assume I observe 3 data points x1, x2, and x3 drawn independently from an unknown distribution.
Given a model M , I can calculate the likelihood for each data point as Pr(x1 | M) = 0.5, Pr(x2 |
M) = 0.1, and Pr(x3 |M) = 0.2. What is the likelihood of seeing all of these data points, given the
model M : Pr(x1, x2, x3 |M)?

Q1.9: Consider a data set D with 10 data points {−1, 6, 0, 2,−1, 7, 7, 8, 4,−2}. We want to find a model
for M from a restricted sample space Ω = {0, 2, 4}. Assume the data has Laplace noise defined, so
from a modelM a data point’s probability distribution is described f(x) = 1

4 exp(−|M−x|/2). Also
assume we have a prior assumption on the models so that Pr(M = 0) = 0.25, Pr(M = 2) = 0.35,
and Pr(M = 4) = 0.4. Assuming all data points in D are independent, which model is most likely.

Math for Data copyright: Jeff M. Phillips

2 Convergence and Sampling

This topic will overview a variety of extremely powerful analysis results that span statistics, estimation
theorem, and big data. It provides a framework to think about how to aggregate more and more data to
get better and better estimates. It will cover the Central Limit Theorem (CLT), Chernoff-Hoeffding bounds,
Probably Approximately Correct (PAC) algorithms, as well as analysis of importance sampling techniques
which improve the concentration of random samples.

2.1 Sampling and Estimation
Most data analysis starts with some data set; we will call this data set P . It will be composed of a set of n
data points P = {p1, p2, . . . , pn}.

But underlying this data is almost always a very powerful assumption, that this data comes iid from
a fixed, but usually unknown pdf, call this f . Lets unpack this: What does “iid” mean: Identically and
Independently Distributed. The “identically” means each data point was drawn from the same f . The
“independently” means that the first points have no bearing on the value of the next point.

Example: Polling

Consider a poll of n = 1000 likely voters in an upcoming election. If we assume each polled person
is chosen iid, then we can use this to understand something about the underlying distribution f , for
instance the distribution of all likely voters.
More generally, f could represent the outcome of a process, whether that is a randomized algorithm,
a noisy sensing methodology, or the common behavior of a species of animals. In each of these cases,
we essentially “poll” the process (algorithm, measurement, thorough observation) having it provide
a sample, and repeat many times over.

Here we will talk about estimating the mean of f . To discuss this, we will now introduce a random
variable X ∼ f ; a hypothetical new data point. The mean of f is the expected value of X: E[X].

We will estimate the mean of f using the sample mean, defined P̄ = 1
n

∑n
i=1 pi. The following diagram

represents this common process: from a unknown process f , we consider n iid random variables {Xi}
corresponding to a set of n independent observations {pi}, and take their average P̄ = 1

n

∑n
i=1 pi to estimate

the mean of f .

P̄ =
1
n

∑ {pi} ←
realize

{Xi} ∼
iid

f

Central Limit Theorem. The central limit theorem is about how well the sample mean approximates the
true mean. But to discuss the sample mean P̄ (which is a fixed value) we need to discuss random variables
{X1, X2, . . . , Xn}, and their mean X̄ = 1

n

∑n
i=1Xi. Note that again X̄ is a random variable. If we are to

draw a new iid data set P ′ and calculate a new sample mean P̄ ′ it will likely not be exactly the same as P̄ ;
however, the distribution of where this P̄ ′ is likely to be, is precisely X̄ . Arguably, this distribution is more
important than P̄ itself.

There are many formal variants of the central limit theorem, but the basic form is as follows:

23

Central Limit Theorem: Consider n iid random variables X1, X2, . . . , Xn, where each Xi ∼ f
for any fixed distribution f with mean µ and bounded variance σ2. Then X̄ = 1

n

∑n
i=1Xi converges

to the normal distribution with mean µ = E[Xi] and variance σ2/n.

Lets highlight some important consequences:

• For any f (that is not too crazy, since σ2 is not infinite), then X̄ looks like a normal distribution.

• The mean of the normal distribution, which is the expected value of X̄ satisfies E[X̄] = µ, the mean
of f . This implies that we can use X̄ (and then also P̄) as a guess for µ.

• As n gets larger (we have more data points) then the variance of X̄ (our estimator) decreases. So
keeping in mind that although X̄ has the right expected value it also has some error, this error is
decreasing as n increases.

adapted from: https://github.com/mattnedrich/CentralLimitTheoremDemo
import random
import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt

def plot_distribution(distribution, file, title, bin_min, bin_max, num_bins):
bin_size = (bin_max - bin_min) / num_bins
manual_bins = range(bin_min, bin_max + bin_size, bin_size)
[n, bins, patches] = plt.hist(distribution, bins = manual_bins)
plt.title(title)
plt.xlim(bin_min, bin_max)
plt.ylim(0, max(n) + 2)
plt.ylabel("Frequency")
plt.xlabel("Observation")
plt.savefig(file, bbox_inches=’tight’)
plt.clf()
plt.cla()

minbin = 0
maxbin = 100
numbins = 50
nTrials = 1000

def create_uniform_sample_distribution():
return range(maxbin)

sampleDistribution = create_uniform_sample_distribution()

Plot the original population distribution
plot_distribution(sampleDistribution, ’output/SampleDistribution.pdf’,

"Population Distribution", minbin, maxbin, numbins)

Plot a sampling distribution for values of N = 2, 3, 10, and 30
n_vals = [2, 3, 10, 30]
for N in n_vals:

means = []
for j in range(nTrials):
sampleSum = 0;
for i in range(N):
sampleSum += random.choice(sampleDistribution)

Math for Data copyright: Jeff M. Phillips

means.append(float(sampleSum)/ float(N))

title = "Sample Mean Distribution with N = %s" % N
file = "output/CLT-demo-%s.pdf" % N
plot_distribution(means, file, title, minbin, maxbin, numbins)

Example: Central Limit Theorem

Consider f as a uniform distribution over [0, 100]. If we create n samples {p1, . . . , pn} and their
mean P̄ , then repeat this 1000 times, we can plot the output in histograms:

0 20 40 60 80 100
Observation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
e
q
u
e
n
cy

Population Distribution

0 20 40 60 80 100
Observation

0

10

20

30

40

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 2

0 20 40 60 80 100
Observation

0

10

20

30

40

50

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 3

0 20 40 60 80 100
Observation

0

20

40

60

80

100

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 10

0 20 40 60 80 100
Observation

0

20

40

60

80

100

120

140

160

Fr
e
q
u
e
n
cy

Sample Mean Distribution with N = 30

We see that starting at n = 2, the distributions look vaguely looks normal (in the technical sense
of a normal distribution), and that their standard deviations narrow as n increases.

Remaining Mysteries. There should still be at least a few aspects of this not clear yet: (1) What does
“convergence” mean? (2) How do we formalize or talk about this notion of error? (3) What does this say
about our data P̄ ?

First, convergence refers to what happens as some parameter increases, in this case n. As the number of
data points increase, as n “goes to infinity” then the above statement (X̄ looks like a normal distribution)
becomes more and more true. For small n, the distribution may not quite look like a normal, it may be more
bumpy, maybe even multi-modal. The statistical definitions of convergence are varied, and we will not go
into them here, we will instead replace it with more useful phrasing in explaining aspects (2) and (3).

Second, the error now has two components. We cannot simply say that P̄ is at most some distance ε from
µ. Something crazy might have happened (the sample is random after all). And it is not useful to try to write
the probability that P̄ = µ; for equality in continuous distributions, this probability is indeed 0. But we can
combine these notions. We can say the distance between P̄ and µ is more than ε, with probability at most δ.
This is called “probably approximately correct” or PAC.

Third, we want to generate some sort of PAC bound (which is far more useful than “X̄ looks kind of like
a normal distribution”). Whereas a frequentist may be happy with a confidence interval and a Bayesian a
normal posterior, these two options are not directly available since again, X̄ is not exactly a normal. So we
will discuss some very common concentration of measure tools. These don’t exactly capture the shape of
the normal distribution, but provide upper bounds for its tails, and will allow us to state PAC bounds.

2.2 Probably Approximately Correct (PAC)
We will introduce shortly the three most common concentration of measure bounds, which provide increas-
ingly strong bounds on the tails of distributions, but require more and more information about the underlying
distribution f . Each provides a PAC bound of the following form:

Pr[|X̄ − E[X̄]| ≥ ε] ≤ δ.

That is, the probability that X̄ (which is some random variable, often a sum of iid random variables) is
further than ε to its expected value (which is µ, the expected value of f where Xi ∼ f), is at most δ. Note
we do not try to say this probability is exactly δ, this is often too hard. In practice there are a variety of tools,
and a user may try each one, and see which ones gives the best bound.

Math for Data copyright: Jeff M. Phillips

It is useful to think of ε as the error tolerance and δ as the probability of failure, i.e., failure meaning that
we exceed the error tolerance. However, often these bounds will allow us to write the required sample size
n in terms of ε and δ. This allows us to trade these two terms off for any fixed known n; we can gaurantee a
smaller error tolerance if we are willing to allow more probability of failure, and vice-versa.

2.3 Concentration of Measure
We will formally describe these bounds, and give some intuition of why they are true (but not full proofs).
But what will be the most important is what they imply. If you just know the distance of the expectation
from the minimal value, you can get a very weak bound. If you know the variance of the data, you can get a
stronger bound. If you know that the distribution f has a small and bounded range, then you can make the
probability of failure (the δ in PAC bounds) very very small.

Markov Inequality. Let X be a random variable such that X ≥ 0, that is it cannot take on negative values.
Then for any parameter α > 0

Pr[X > α] ≤ E[X]

α
.

Note this is a PAC bound with ε = α − E[X] and δ = E[X]/α, or we can rephrase this bound as follows:
Pr[X − E[X] > ε] ≤ δ = E[X]/(ε+ E[X]).

Geometry of the Markov Inequality

Consider balancing the pdf of some random variable X on your finger at E[X], like a waitress
balances a tray. If your finger is not under a value µ so E[X] = µ, then the pdf (and the waitress’s
tray) will tip, and fall in the direction of µ – the “center of mass.”
Now for some amount of probability α, how large can we increase its location so we retain E[X] =
µ. For each part of the pdf we increase, we must decrease some in proportion. However, by the
assumption X ≥ 0, the pdf must not be positive below 0. In the limit of this, we can set Pr[X =
0] = 1 − α, and then move the remaining α probability as large as possible, to a location δ so
E[X] = µ. That is

E[X] = 0 · Pr[X = 0] + δ · Pr[X = δ] = 0 · (1− α) + δ · α = δ · α.

Solving for δ we find δ = E[X]/α.

0 1 2 3 4 5 6 7 8

How large can
I get without it

tipping?

E[X] = 2

0 1 2 3 4 5 6 7 8 9 10 11 12

E[X] = 2

13 14 15 16 17 18 19 20

Imagine having 10 α-balls each representing α = 1/10th of the probability mass. As in the figure, if
these represent a distribution with E[X] = 2 and this must stay fixed, how far can one ball increase
if all others balls must take a value at least 0? One ball can move to 20.

If we instead know that X ≥ b for some constant b (instead of X ≥ 0), then we state more generally
Pr[X > α] ≤ (E[X]− b)/(α− b).

Math for Data copyright: Jeff M. Phillips

Example: Markov Inequality

Consider the pdf f drawn in blue in the following figures, with E[X] for X ∼ f marked as a red dot.
The probability that X is greater than 5 (e.g. Pr[X ≥ 5]) is the shaded area.

0 1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Notice that in both cases that Pr[X ≥ 5] is about 0.1. This is the quantity we want to bound by
above by δ. But since E[X] is much larger in the first case (about 2.25), then the bound δ = E[X]/α
is much larger, about 0.45. In the second case, E[X] is much smaller (about 0.6) so we get a much
better bound of δ = 0.12.

Example: Markov Inequality and Coffee

Let C be a random variable describing the number of liters of coffee the faculty at Data University
will drink in a week. Say we know E[C] = 20.
We use the Markov Inequality to bound the probability that the coffee consumed will be more than
50 liters as

Pr[C ≥ 50] ≤ E[C]

50
=

20

50
= 0.4

Hence, based on the expected value alone, we can bound the with probability less than 0.4, the faculty
at DU will drink less than 50 liters of coffee.

Chebyshev Inequality. Now let X be a random variable where we know Var[X], and E[X]. Then for
any parameter ε > 0

Pr[|X − E[X]| ≥ ε] ≤ Var[X]

ε2
.

Again, this clearly is a PAC bound with δ = Var[X]/ε2. This bound is typically stronger than the Markov
one since δ decreases quadratically in ε instead of linearly.

Math for Data copyright: Jeff M. Phillips

Example: Chebyshev Inequality and Coffee

Again let C be a random variable for the liters of coffee that faculty at Data University will drink in
a week with E[C] = 20. If we also know that the variance is not too large, specifically Var[C] = 9
(liters squared), then we can apply the Chebyshev inequality to get an improved bound.

Pr[C ≥ 50] ≤ Pr[|C − E[C]| ≥ 30] ≤ Var[C]

302
=

9

900
= 0.01

That is, by using the expectation (E[C] = 20) and variance (Var[C] = 9) we can reduce the proba-
bility of exceeding 50 liters to at most probability 0.01.
Note that in the first inequality we convert from a one-sided expression C ≥ 50 to a two-sided
expression |C−E[C]| ≥ 30 (that is either C−E[C] ≥ 30 or E[C]−C ≥ 30). This is a bit wasteful,
and stricter one-sided variants of Chebyshev inequality exist; we will not discuss these here in an
effort for simplicity.

Recall that for an average of random variables X̄ = (X1 +X2 + . . .+Xn)/n, where the Xis are iid, and
have variance σ2, then Var[X̄] = σ2/n. Hence

Pr[|X̄ − E[Xi]| ≥ ε] ≤
σ2

nε2
.

Consider now that we have input parameters ε and δ, our desired error tolerance and probability of failure.
If we can draw Xi ∼ f (iid) for an unknown f (with known expected value and variance σ), then we can
solve for how large n needs to be: n = σ2/(ε2δ).

Since E[X̄] = E[Xi] for iid random variables X1, X2, . . . , Xn, there is not a similar meaningfully-
different extension for the Markov inequality.

Chernoff-Hoeffding Inequality. Following the above extension of the Chebyshev inequality, we can con-
sider a set of n iid random variables X1, X2, . . . , Xn where X̄ = 1

n

∑n
i=1Xi. Now assume we know that

each Xi lies in a bounded domain [b, t], and let ∆ = t− b. Then for any parameter ε > 0

Pr[|X̄ − E[X̄]| > ε] ≤ 2 exp

(−2ε2n

∆2

)
.

Again this is a PAC bound, now with δ = 2 exp(−2ε2n/∆2). For a desired error tolerance ε and failure
probability δ, we can set n = (∆2/(2ε2)) ln(2/δ). Note that this has a similar relationship with ε as the
Chebyshev bound, but the dependence of n on δ is exponentially less for this bound.

Math for Data copyright: Jeff M. Phillips

Example: Chernoff-Hoeffding and Dice

Consider rolling a fair die 120 times, and recording how many times a 3 is returned. Let T be the
random variable for the total number of 3s rolled. Each roll is a 3 with probability 1/6, so the expect
number of 3s is E[T] = 20. We would like to answer what is the probability that more than 40 rolls
return a 3.
To do so, we analyze n = 120 iid random variables T1, T2, . . . , Tn associated with each roll. In
particular Ti = 1 if the ith roll is a 3 and is 0 otherwise. Thus E[Ti] = 1/6 for each roll. Using
T̄ = T/n = 1

n

∑n
i=1 Ti and noting that Pr[T ≥ 40] = Pr[T̄ ≥ 1/3], we can now apply our

Chernoff-Hoeffding bound as

Pr[T ≥ 40] ≤ Pr
[∣∣∣T̄ − E[Ti]

∣∣∣ ≥ 1

6

]
≤ 2 exp

(−2(1/6)2 · 120

12

)
= 2 exp(−20/3) ≤ 0.0026

So we can say that less than 3 out of 1000 times of running these 120 rolls should we see more than
40 returned 3s.

In comparison, we could have also applied a Chebyshev inequality. The variance of a single random
variable Ti is Var[Ti] ≤ 5/36, and hence Var[T] = n · Var[Ti] = 50/3. Hence we can bound

Pr[T ≥ 40] ≤ Pr[|T − 20| ≥ 20] ≤ (50/3)/202 ≤ 0.042

That is, using the Chebyshev Inequality we were only able to claim that this event should occur at
most 42 times out of 1000 trials.

Finally, we note that in both of these analysis we only seek to bound the probability that the number
of rolls of 3 exceeds some threshold (≥ 40), whereas the inequality we used bounded the absolute
value of the deviation from the mean. That is, our goal was one-way, and the inequality was a
stronger two-way bound. Indeed these results can be improved by roughly a factor of 2 by using
similar one-way inequalities that we do not formally state here.

Relating this all back to the Gaussian distribution in the CLT, the Chebyshev bound only uses the variance
information about the Gaussian, but the Chernoff-Hoeffding bound uses all of the “moments”: this allows
the probability of failure to decay exponentially.

These are the most basic and common PAC concentration of measure bounds, but are by no means ex-
haustive.

Math for Data copyright: Jeff M. Phillips

Example: Concentration on Samples from the Uniform Distribution

Consider a random variableX ∼ f where f(x) = {1
2 if x ∈ [0, 2] and 0 otherwise.}, i.e, the uniform

distribution on [0, 2]. We know E[X] = 1 and Var[X] = 1
3 .

• Using the Markov Inequality, we can say Pr[X > 1.5] ≤ 1/(1.5) ≈ 0.6666 and Pr[X > 3] ≤
1/3 ≈ 0.33333.
or Pr[X − µ > 0.5] ≤ 2

3 and Pr[X − µ > 2] ≤ 1
3 .

• Using the Chebyshev Inequality, we can say that Pr[|X−µ| > 0.5] ≤ (1/3)/0.52 = 4
3 (which

is meaningless). But Pr[|X − µ| > 2] ≤ (1/3)/(22) = 1
12 ≈ 0.08333.

Now consider a set of n = 100 random variables X1, X2, . . . , Xn all drawn iid from the same pdf f
as above. Now we can examine the random variable X̄ = 1

n

∑n
i=1Xi. We know that µn = E[X̄] = µ

and that σ2
n = Var[X̄] = σ2/n = 1/(3n) = 1/300.

• Using the Chebyshev Inequality, we can say that Pr[|X̄ − µ| > 0.5] ≤ σ2
n/(0.5)2 = 1

75 ≈
0.01333, and Pr[|X̄ − µ| > 2] ≤ σ2

n/2
2 = 1

1200 ≈ 0.0008333.

• Using the Chernoff-Hoeffding bound, we can say that Pr[|X̄ − µ| > 0.5] ≤
2 exp(−2(0.5)2n/∆2) = 2 exp(−100/8) ≈ 0.0000074533, and Pr[|X̄ − µ| > 2] ≤
2 exp(−2(2)2n/∆2) = 2 exp(−200) ≈ 2.76 · 10−87.

2.3.1 Union Bound and Examples

The union bound is the “Robin” to Chernoff-Hoeffding’s “Batman.” It is a simple helper bound that allows
Chernoff-Hoeffding to be applied to much larger and more complex situations1. It may appear that is a crude
and overly simplistic bound, but it can usually only be significantly improved if fairly special structure is
available for the specific class of problems considered.

Union bound. Consider s possibly dependent random events Z1, . . . , Zs. The probability that all events
occur is at least

1−
s∑

j=1

(1− Pr[Zj]).

That is, all events are true if no event is not true.

1I suppose these situations are the villains in this analogy, like “Riddler,” “Joker,” and “Poison Ivy.” The union bound can also
aid other concentration inequalities like Chebyshev, which I suppose is like “Catwoman.”

Math for Data copyright: Jeff M. Phillips

Example: Union Bound and Dice

Returning to the example of rolling a fair die n = 120 times, and bounding the probability that a
3 was returned more than 40 times. Lets now consider the probability that no number was returned
more than 40 times. Each number corresponds with a random event Z1, Z2, Z3, Z4, Z5, Z6, of that
number occurring at most 40 times. These events are not independent, but nonetheless we can apply
the union bound.
Using our Chebyshev Inequality result that Pr[Z3] ≥ 1− 0.042 = 0.958 we can apply this symmet-
rically to all Zj . Then by the union bound, we have that the probability all numbers occur less than
40 times on n = 120 independent rolls is least

1−
6∑

j=1

(1− 0.958) = 0.748

Alternatively, we can use the result from the Chernoff-Hoeffding bound that Pr[Zj] ≥ 1− 0.0026 =
0.9974 inside the union bound to obtain that all numbers occur no more than 40 times with probability
at least

1−
6∑

j=1

(1− 0.9974) = 0.9844

So this joint event (of all numbers occurring at most 40 times) occurs more than 98% of the time, but
using Chebyshev, we were unable to claim it happened more than 75% of the time.

Quantile Estimation. An important use case of concentration inequalities and the union bound is to es-
timate distributions. For random variable X , let fX describe its pdf and FX its cdf. Suppose now we can
draw iid samples P = {p1, p2, . . . , pn} from fX , then we can use these n data points to estimate the cdf
FX . To understand this approximation, recall that FX(t) is the probability that random variable X takes a
value at most t. For any choice of t we can estimate this from P as nrankP (t) = |{pi ∈ P | pi ≤ t}|/n;
i.e., as the fraction of samples with value at most t. The quantity nrankP (t) is the normalized rank of P
at value t, and the value of t for which nrankP (t) ≤ φ < nrankP (t + η), for any η > 0, is known as the
φ-quantile of P . For instance, when nrankP (t) = 0.5, it is the 0.5-quantile and thus the median of the
dataset. And the interval [t1, t2] such that t1 is the 0.25-quantile and t2 is the 0.75-quantile is known as the
interquartile range. We can similarly define the φ-quantile (and hence the median and interquartile range)
for a distribution fX as the value t such that FX(t) = φ.

Math for Data copyright: Jeff M. Phillips

Example: CDF and Normalized Rank

The following illustration shows a cdf FX (in blue) and its approximation via normalized rank
nrankP on a sampled point set P (in green). The median of the P and its interquartile range are
marked (in red).

nrankP

FX

P0

1

0.5

median

interquartile range

0.25

0.75

For a given, value twe can quantify how well nrankP (t) approximates FX(t) using a Chernoff-Hoeffding
bound. For a given t, for each sample pi, describe a random variable Yi which is 1 if pi ≤ t and 0 otherwise.
Observe that E[Yi] = FX(t), since it is precisely the probability that a random variableXi ∼ fX (represent-
ing data point pi, not yet realized) is less than t. Moreover, the random variable for nrankP (t) on a future
iid sample P is precisely Ȳ = 1

n

∑n
i=1 Yi. Hence we can provide a PAC bound, on the probability (δ) of

achieving more than ε error for any given t, as

Pr[|Ȳ − FX(t)| ≥ ε] ≤ 2 exp

(−2ε2n

12

)
= δ.

If we have a desired error ε (e.g., ε = 0.05) and probability of failure δ (e.g, δ = 0.01), we can solve for
how many sample are required: these values are satisfied with

n ≥ 1

2ε2
ln

2

δ
.

Approximating all quantiles. However, the above analysis only works for a single value of t. What if we
wanted to show a similar analysis simultaneously for all values of t; that is, with how many samples n, can
we then ensure that with probability at least 1− δ, for all values of t we will have |nrankP (t)−FX(t)| ≤ ε?

We will apply the union bound, but, there is another challenge we face: there are an infinite number of
possible values t for which we want this bound to hold! We address this by splitting the error component
into two pieces ε1 and ε2 so ε = ε1 + ε2; we can set ε1 = ε2 = ε/2. Now we consider 1/ε1 different
quantiles {φ1, φ2, . . . , φ1/ε1} where φj = j · ε1 + ε1/2. This divides up the probability space (i.e., the
interval [0, 1]) into 1/ε1 + 1 parts, so the gap between the boundaries of the parts is ε1.

We will guarantee that each of these φj-quantiles are ε2-approximated. Each φj corresponds with a tj so
tj is the φj-quantile of fX . We do not need to know what the precise values of the tj are; however we do
know that tj ≤ tj+1, so they grow monotonically. In particular, this implies that for any t so tj ≤ t ≤ tj+1,
then it must be that FX(tj) ≤ FX(t) ≤ FX(tj+1); hence if both FX(tj) and FX(tj+1) are within ε2 of their
estimated value, then FX(t) must be within ε2 + ε1 = ε of its estimated value.

Math for Data copyright: Jeff M. Phillips

Example: Set of φj-quantiles to approximate

The illustration shows the set {φ1, φ2, . . . , φ8} of quantile points overlayed on the cdf FX . With
ε2 = 1/8, these occur at values φ1 = 1/16, φ2 = 3/16, φ3 = 5/16, . . ., and evenly divide the
y-axis. The corresponding values {t1, t2, . . . , t8} non-uniformly divide the x-axis. But as long as
any consecutive pair tj and tj+1 is approximated, because the cdf FX and nrank are monotonic, then
all intermediate values t ∈ [tj , tj+1] are also approximated.

FX

0

1

t1 t2 t3 t4 t5 t6 t7 t8

�8

�1

�2

�3

�4

�5

�6

�7

So what remains is to show that for all t ∈ T = {t1, . . . , t1/ε1} that a random variable Ȳ (tj) for
nrankP (tj) satisfies Pr[|Ȳ (tj) − FX(tj)| ≤ ε2] ≤ δ. By the above Chernoff-Hoeffding bound, this holds
with probability 1− δ′ = 1− 2 exp(−2(ε2)2n) for each tj . Applying the union bound over these s = 1/ε1

events we find that they all hold with probability

1−
s∑

j=1

2 exp(−2(ε2)2n) = 1− 1

ε1
2 exp(−2(ε2)2n).

Setting, ε1 = ε2 = ε/2 we have that the probability that a sample of size n will provide a nrankP function
so for any t we have |nrankP (t) − FX(t)| ≤ ε, is at least 1 − 4

ε exp(−1
2ε

2n). Setting the probability of
failure 4

ε exp(−ε2n/2) = δ, we can solve for n to see that we get at most ε error with probability at least
1− δ using n = 2

ε2
ln(4

εδ) samples.

2.4 Importance Sampling
Many important convergence bounds deal with approximating the mean of a distribution. When the samples
are all uniform from an unknown distribution, then the above bounds (and their generalizations) are the best
way to understand convergence, up to small factors. In particular, this is true when the only access to the
data is a new iid sample.

However, when more control can be made over how the sample is generated, than in some cases simple
changes can dramatically improve the accuracy of the estimates. The key idea is called importance sampling,
and has the following principle: sample larger variance data points more frequently, but in the estimate
weight them inverse to the sampling probability.

Sample average of weights. Consider a discrete and very large set A = {a1, a2, . . . , an} where each
element ai has an associated weight w(ai). Our goal will be to estimate the expected (or average) weight

w̄ = E[w(ai)] =
1

n

∑

ai∈A
w(ai).

Math for Data copyright: Jeff M. Phillips

This set may be so large that we do not want to explicitly compute the sum, or perhaps soliciting the weight
is expensive (e.g., like conducting a customer survey). So we want to avoid doing this calculation over all
items. Rather, we sample k items iid {a′1, a′2, . . . , a′k} (each a′j uniformly and independently chosen from A
so some may be taken more than once), solicit the weight w′j of each a′j , and estimate the average weight as

ŵ =
1

k

k∑

j=1

w(a′j).

How accurately does ŵ approximate w̄? If all of the weights are roughly uniform or well-distributed in
[0, 1], then we can apply a Chernoff-Hoeffding bound so

Pr[|w̄ − ŵ| ≥ ε] ≤ 2 exp(−2ε2k).

So with probability at least 1− δ, we have no more than ε error using k = 1
2ε2

ln 2
δ samples.

However, if we do not have a bound on the weights relative to the estimate, then this provides a poor
approximation. For instance, if w̄ = 0.0001 since most of the weights are very small, then an (ε = 0.01)-
approximation may not be very useful. Or similarly, if most weights are near 1, and so w̄ = 2, but there are
a few outlier weights with value ∆ = 1,000, then the Chernoff-Hoeffding bound only states

Pr[|w̄ − ŵ| ≥ ε] ≤ 2 exp

(−2ε2k

∆2

)
= δ.

So this implies that instead we require k = ∆2

2ε2
ln(2/δ), which is a factor ∆2 = 1,000,000 more samples

than before!

Importance sampling. We slightly recast the problem assuming a bit more information. There is large
set of items A = {a1, a2, . . . , an}, and on sampling an item a′j , its weight w(a′j) is revealed. Our goal
is to estimate w̄ = 1

n

∑
ai∈Aw(ai). We can treat Wi as a random variable for each the w(ai), then w̄ =

1
n

∑n
i=1Wi is also a random variable. In this setting, we also know for each ai (before sampling) some

information about the range of its weight. That is, we have a bounded range [0, ψi] so 0 ≤ w(ai) ≤ ψi
2.

This upper bound serves as an importance ψi for each ai. Let Ψ =
∑n

i=1 ψi be the sum of all importances.
As alluded to, the solution is the following two-step procedure called importance sampling.

Importance Sampling:

1. Sample k items {a′1, a′2, . . . , a′k} independently from A, proportional to their importance ψi.

2. Estimate wI = 1
k

∑k
j=1

(
Ψ
nψj
· w(a′j)

)
; where Ψ =

∑n
i=1 ψi.

We will first show that importance sampling provides an unbiased estimate; that is E[wI] = w̄. Define
a random variable Zj to be the value Ψ

nψj
w(a′j). By linearity of expectation and the independence of the

samples, E[wI] = 1
k

∑k
j=1 E[Zj] = E[Zj]. Sampling proportional to ψi, means object ai is chosen with

probability ψi/Ψ. Summing over all elements,

E[wI] = E[Zj] =

n∑

i=1

Pr[a′j = ai] ·
Ψ

nψi
w(ai) =

n∑

i=1

ψi
Ψ
· Ψ

nψi
w(ai) =

1

n

n∑

i=1

w(ai) = w̄.

2We can more generally allow w(ai) to have any bounded range [Li, Ui]. In this case we set ψi = Ui − Li, add 1
n

∑n
i=1 Li to

the final estimate, and if ai is the jth sample let w(a′j) = w(ai)− Li.

Math for Data copyright: Jeff M. Phillips

Note that this worked for any choice of ψi. Indeed, uniform sampling (which implicitly has ψi = 1
for each ai) also is an unbiased estimator. The real power of importance sampling is that it improves the
concentration of the estimates.

Improved concentration. To improve the concentration, the critical step is to analyze the range of each
estimator Ψ

nψj
· w(a′j). Since we have that w(a′j) ∈ [0, ψj], then as a result

Ψ

nψj
· w(a′j) ∈

Ψ

nψj
· [0, ψj] = [0,

Ψ

n
].

Now applying a Chernoff-Hoeffding bound, we can upper bound the probability that wI has more than ε
error with respect to w̄.

Pr[|w̄ − ŵ| ≥ ε] ≤ 2 exp

(−2ε2k

(Ψ/n)2

)
= δ

Fixing the allowed error ε and probability of failure δ we can solve for the number of samples required as

k =
(Ψ/n)2

2ε2
ln(2/δ).

Now instead of depending quadratically on the largest possible value ∆ as in the uniform sampling, this
now depends quadratically on the average upper bound on all values Ψ/n. In other words, with importance
sampling, we reduce the sample complexity from depending on the maximum importance maxi ψi to on the
average importance Ψ/n.

Example: Company Salary Estimation

Consider a company with 10,000 employees and we want to estimate the average salary. However
the salaries are very imbalanced, the CEO makes way more than the typical employee. Say we know
the CEO makes at most 2 million a year, but the other 99 employees make at most 50 thousand a
year.

Using just uniform sampling of k = 100 employees we can apply a Chenoff-Hoeffding bound to
estimate the average salary ŵ from the true average salary w̄ with error more than 10,000 with
probability

Pr[|ŵ − w̄| ≥ 10,000] ≤ 2 exp

(−2(10,000)2 · 100

(2 million)2

)
= 2 exp

(−1

200

)
≈ 1.99

This is a useless bound, since the probability is greater than 1. If we increase the error tolerance to
half a million, we still only get a good estimate with probability 0.42. The problem hinges on if we
sample the CEO, our estimate is too high. If we do not, then the estimate is too low.

Now using importance sampling, the CEO gets an importance of 2 million, and the other employees
all get an importance of 50 thousand. The average importance is now Ψ/n = 51,950, and we can
bound the probability the new estimate wI is more than 10,000 from w̄ is at most

Pr[|wI − w̄| ≥ 10,000] ≤ 2 exp

(−2(10,000)2 · 100

(51,950)2

)
≤ 0.0013.

So now 99.87% of the time we get an estimate within 10,000. In fact, we get an estimate within 4,000
at least 38% of the time. Basically, this works because we expect to sample the CEO about twice,
but then weight that contribution slightly higher. On the other hand, when we sample a different
employee, we increase the effect of their salary by about 4%.

Math for Data copyright: Jeff M. Phillips

Implementation. It is standard for most programming languages to have built in functions to generate
random numbers in a uniform distribution u ∼ unif(0, 1]. This can easily be transformed to select an
element from a large discrete set. If there are k elements in the set, then i = duke (multiply by k and take
the ceiling3) is a uniform selection of an integer from 1 to k, and represents selecting the ith element from
the set.

This idea can easily be generalized to selecting an element proportional to its weight. Let W = nw̄ =∑n
i=1w(ai). Our goal is to sample element ai with probability w(ai)/W . We can also define a probability

tj =
∑j

i=1w(ai)/W , the probability that an object of index j or less should be selected. Once we calculate
tj for each aj , and set t0 = 0, a uniform random value u ∼ unif(0, 1) is all that is needed to select a object
proportional to its weight. We just return the item aj such that tj−1 ≤ u ≤ tj (the correct index j can be
found in time proportional to log n if these tj are stored in a balanced binary tree).

Geometry of Partition of Unity

In this illustration 6 elements with normalized weights w(ai)/W are depicted in a bar chart on the
left. These bars are then stacked end-to-end in a unit interval on the right; the precisely stretch from
0.00 to 1.00. The ti values mark the accumulation of probability that one of the first i values is
chosen. Now when a random value u ∼ unif(0, 1] is chosen at random, it maps into this “partition of
unity” and selects an item. In this case it selects item a4 since u = 0.68 and t3 = 0.58 and t4 = 0.74
for t3 < u ≤ t4.

no
rm

al
ize

d
w

ei
gh

ts 0.
28

0.
12

0.
18

0.
16

0.
06

0.
20

0.
28

0.
40

0.
58

0.
74

0.
84

1.
00

0.
00

a1 a2 a3 a4 a5 a6 t6t5t4t3t2t1t0

u ⇠ unif(0, 1]
0.68

2.4.1 Sampling Without Replacement with Priority Sampling

Many examples discussed in this book analyze data assumed to be k elements drawn iid from a distribution.
However, when algorithmically generating samples it can be advantageous to sample k elements without re-
placement from a known distribution. While this can make the analysis slightly more complicated, variants
of Chernoff-Hoeffding bound exists for without-replacement random samples instead of independent ran-
dom variables. Moreover, in practice the concentration and approximation quality is often improved using
without-replacement samples and is especially true when drawing weighted samples.

When sampling data proportional to weights, if elements exist with sufficiently large weights, then it
is best to always sample these high-weight elements. The low-weight ones need to be selected with some
probability, and this should be proportional to their weights, and then re-weighted as in importance sampling.
A technique called priority sampling elegantly combines these properties.

3The ceiling operation dxe returns the smallest integer larger than x. For instance d7.342e = 8.

Math for Data copyright: Jeff M. Phillips

Priority Sampling:

1. For item ai ∈ A with weight w(ai) generate ui ∼ unif(0, 1]. Set priority ρi = w(ai)/ui.

2. Let τ = ρ′k+1, the (k + 1)th largest priority.

3. Assign new weights w′(ai) =

{
max(w(ai), τ) if ρi > τ

0 if ρi ≤ τ
.

The new weight function w′ : A → [0,∞) has only k items with non-zero values, only those need to be
retained in the sampleA′. This has many nice properties. Most importantly E[w′(ai)] = w(ai). Thus for any
subset S ⊂ A, we can estimate the sum of weights in that subset

∑
ai∈S w(ai) using only

∑
ai∈S∩A′ w

′(ai)

and this has the correct expected value. Thus for wP = 1
n

∑n
i=1w

′(ai) as an analog to importance sampling
we also have E[wP] = w̄.

Additionally, the elements with very large weights (those with weight above τ) are always retained. This
is because ρi ≥ w(ai) for all i (since 1/ui ≥ 1), so if w(ai) > τ then ρi > τ and it is always chosen, and
its new weight is w′(ai) = max(w(ai), τ) = w(ai) is the same as before. Hence, for a fixed τ this item
has no variance in its effect on the estimate. The remaining items have weights assigned as if in importance
sampling, and so the overall estimate has small (and indeed near-optimal) variance.

Example: Priority Sampling

In this example, 10 items are shown with weights fromw(a10) = 0.08 tow(a1) = 1.80. For a clearer
picture, they are sorted in decreasing order. Each is then given a priority by dividing the weight by
a different ui ∼ unif(0, 1] for each element. To sample k = 4 items, the 5th-largest priority value
ρ4 = τ = 1.10 (belonging to a4) is marked by a horizontal dashed line. Then all elements with
priorities above τ are given non-zero weights. The largest weight element a1 retains its original
weight w(a1) = w′(a1) = 1.80 because it is above τ . The other retained elements have weight
below τ so are given new weights w′(a2) = w′(a4) = w′(a5) = τ = 1.10. The other elements are
implicitly given new weights of 0.

Notice that W ′ =
∑10

i=1w
′(ai) = 5.10 is very close to W =

∑10
i=1w(ai) = 5.09.

w
ei

gh
ts

1.
80

0.
80

0.
55

0.
50

0.
41

0.
32

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

pr
io

rit
ie

s

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

⌧

ne
w

 w
ei

gh
ts

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

⌧

0.
30

0.
22

0.
11

0.
08

2.
68

1.
89

1.
21

1.
10

1.
53

0.
41

0.
69

0.
29

0.
19

0.
49

1.
80

1.
10

1.
10

1.
10

Its useful to understand why the new estimate W ′ does not necessarily increase if more elements
are retained. In this case if k = 5 elements are retained instead of k = 4, then τ would be become
ρ7 = 0.69, the 6th largest priority. So then the new weights for several of the elements would
decrease from 1.10 to 0.69.

Math for Data copyright: Jeff M. Phillips

Exercises

Q2.1: Consider a pdf f so that a random variable X ∼ f has expected value E[X] = 3 and variance
Var[X] = 10. Now consider n = 10 iid random variables X1, X2, . . . , X10 drawn from f . Let
X̄ = 1

10

∑10
i=1Xi.

1. What is E[X̄]?

2. What is Var[X̄]?

3. What is the standard deviation of X̄?

4. Which is larger Pr[X > 4] or Pr[X̄ > 4]?

5. Which is larger Pr[X > 2] or Pr[X̄ > 2]?

Q2.2: Let X be a random variable that you know is in the range [−1, 2] and you know has expected value of
E[X] = 0. Use the Markov Inequality to upper bound Pr[X > 1.5]?
(Hint: you will need to use a change of variables.)

Q2.3: Consider a pdf f so that a random variable X ∼ f has expected value E[X] = 5 and variance
Var[X] = 100. Now consider n = 16 iid random variables X1, X2, . . . , X16 drawn from f . Let
X̄ = 1

16

∑16
i=1Xi.

1. What is E[X̄]?

2. What is Var[X̄]?
Assume we know that X is never smaller than 0 and never larger than 20.

3. Use the Markov inequality to upper bound Pr[X̄ > 8].

4. Use the Chebyshev inequality to upper bound Pr[X̄ > 8].

5. Use the Chernoff-Hoeffding inequality to upper bound Pr[X̄ > 8].

6. If we increase n to 100, how will the above three bounds be affected.

Q2.4: Consider a (parked) self-driving car that returns n iid estimates to the distance of a tree. We will model
these n estimates as a set of n scalar random variables X1, X2, . . . , Xn taken iid from an unknown
pdf f , which we assume models the true distance plus unbiased noise. (The sensor can take many iid
estimates in rapid fire fashion.) The sensor is programmed to only return values between 0 and 20
feet, and that the variance of the sensing noise is 64 feet squared. Let X̄ = 1

n

∑n
i=1Xi. We want to

understand as a function of n how close X̄ is to µ, which is the true distance to the tree.

1. Use Chebyshev’s Inequality to determine a value n so that Pr[|X̄ − µ| ≥ 1] ≤ 0.5.

2. Use Chebyshev’s Inequality to determine a value n so that Pr[|X̄ − µ| ≥ 0.1] ≤ 0.1.

3. Use the Chernoff-Hoeffding bound to determine a value n so that Pr[|X̄ − µ| ≥ 1] ≤ 0.5.

4. Use the Chernoff-Hoeffding bound to determine a value n so that Pr[|X̄ − µ| ≥ 0.1] ≤ 0.1.

Q2.5: Consider two random variables C and T describing how many coffees and teas I will buy in the com-
ing week; clearly neither can be smaller than 0. Based on personal experience, I know the following
summary statistics about my coffee and tea buying habits: E[C] = 3 and Var[C] = 1 also E[T] = 2
and Var[T] = 5.

1. Use Markov’s Inequality to upper bound the probability I buy 4 or more coffees, and the same
for teas: Pr[C ≥ 4] and Pr[T ≥ 4].

Math for Data copyright: Jeff M. Phillips

2. Use Chebyshev’s Inequality to upper bound the probability I buy 4 or more coffees, and the
same for teas: Pr[C ≥ 4] and Pr[T ≥ 4].

Q2.6: The average score on a test is 82 with a standard deviation of 4 percentage points. All tests have scores
between 0 and 100.

1. Using Chebyshev’s inequality, at least what percentage of the tests have a grade of at least 70
and at most 94?

2. Using Markov’s inequality, what is the highest percentage of tests which could have score less
than 60?

Math for Data copyright: Jeff M. Phillips

Math for Data copyright: Jeff M. Phillips

3 Linear Algebra Review

For this topic we quickly review many key aspects of linear algebra that will be necessary for the remainder
of the text.

3.1 Vectors and Matrices

For the context of data analysis, the critical part of linear algebra deals with vectors and matrices of real
numbers.

In this context, a vector v = (v1, v2, . . . , vd) is equivalent to a point in Rd. By default a vector will be a
column of d numbers (where d is context specific)

v =

v1

v2
...
vn

but in some cases we will assume the vector is a row

vT = [v1 v2 . . . vn].

An n× d matrix A is then an ordered set of n row vectors a1, a2, . . . an

A = [a1; a2; . . . an] =

− a1 −
− a2 −

...
− an −

 =

A1,1 A1,2 . . . A1,d

A2,1 A2,2 . . . A2,d
...

...
. . .

...
An,1 An,2 . . . An,d

 ,

where vector ai = [Ai,1, Ai,2, . . . , Ai,d], and Ai,j is the element of the matrix in the ith row and jth column.
We can write A ∈ Rn×d when it is defined on the reals.

41

Geometry of Vectors and Matrices

It will be convenient to image length d vectors v as points in Rd. And subsequently it will be
convenient to think of a n × d matrix A by each of its rows a1, . . . , an as each a point in Rd. The
“vector” is then the “arrow” from the origin 0 = (0, 0, . . . , 0) to that point.

a1 = (�0.5, 1.5)

a2 = (2.5, 0.75)

a3 = (1, 1)

This picture with n = 3 points in d = 2 dimensions is equivalent to the 3× 2 matrix representation

A =

a1

a2

a3

 =

−0.5 1.5
2.5 0.75
1 1

 .

A transpose operation (·)T reverses the roles of the rows and columns, as seen above with vector v. For
a matrix, we can write:

AT =

| | |
a1 a2 . . . an
| | |

 =

A1,1 A2,1 . . . An,1
A1,2 A2,2 . . . An,2

...
...

. . .
...

A1,d A2,d . . . An,d

 .

Example: Linear Equations

A simple place these objects arise is in linear equations. For instance

3x1 −7x2 +2x3 = −2
−1x1 +2x2 −5x3 = 6

is a system of n = 2 linear equations, each with d = 3 variables. We can represent this system in
matrix-vector notation as

Ax = b

where

b =

[
−2
6

]
x =

x1

x2

x3

 and A =

[
3 −7 2
−1 2 −5

]
.

Math for Data copyright: Jeff M. Phillips

3.2 Addition and Multiplication
We can add together two vectors or two matrices only if they have the same dimensions. For vectors
x = (x1, x2, . . . , xd) ∈ Rd and y = (y1, y2, . . . , yd) ∈ Rd, then vector

z = x+ y = (x1 + y1, x2 + y2, . . . , xd + yd) ∈ Rd.

Geometry of Vector Addition

Vector addition can be geometrically realized as just chaining two vectors together. It is easy to see
that this operation is commutative. That is x + y = y + x, since it does not matter which order we
chain the vectors, both result in the same summed-to point.

x+ y

+x

+y
y

x

Similarly for two matrices A,B ∈ Rn×d, then C = A+B is defined where Ci,j = Ai,j +Bi,j for all i, j.
Multiplication only requires alignment along one dimension. For two matricesA ∈ Rn×d andB ∈ Rd×m

we can obtain a new matrix C = AB ∈ Rn×m where Ci,j , the element in the ith row and jth column of C
is defined

Ci,j =
d∑

k=1

Ai,kBk,j .

To multiply A times B (where A is to the left of B, the order matters!) then we require the row dimension
d of A to match the column dimension d of B. If n 6= m, then we cannot multiply BA. Keep in mind:

• Matrix multiplication is associative (AB)C = A(BC).
• Matrix multiplication is distributive A(B + C) = AB +AC.
• Matrix multiplication is not commutative AB 6= BA.

We can also multiply a matrix A by a scalar α. In this setting αA = Aα and is defined by a new matrix
B where Bi,j = αAi,j .

vector-vector products. There are two types of vector-vector products, and their definitions follow di-
rectly from that of matrix-matrix multiplication (since a vector is a matrix where one of the dimensions is
1). But it is worth highlighting these.

Given two column vectors x, y ∈ Rd, the inner product or dot product is written

xT y = x · y = 〈x, y〉 = [x1 x2 . . . xd]

y1

y2
...
yd

 =

d∑

i=1

xiyi,

Math for Data copyright: Jeff M. Phillips

where xi is the ith element of x and similar for yi. This text will prefer the last notation 〈x, y〉 since the same
can be used for row vectors, and there is no confusion with scalar multiplication in using x · y. Whether
a vector is a row or a column is often arbitrary, in a computer they are typically stored the same way in
memory.

Note that this dot product operation produces a single scalar value. And it is a linear operator. So this
means for any scalar value α and three vectors x, y, z ∈ Rd we have

〈αx, y + z〉 = α〈x, y + z〉 = α (〈x, y〉+ 〈x, z〉) .

This operation is associative, distributive, and commutative.

Geometry of the Dot Product

A dot product is one of my favorite mathematical operations! It encodes a lot of geometry. Consider
two vectors u = (3

5 ,
4
5) and v = (2, 1), with an angle θ between them. Then it holds

〈u, v〉 = length(u) · length(v) · cos(θ).

Here length(·) measures the distance from the origin. We’ll see how to measure length with a “norm”
‖ · ‖ soon.

u = (
3

5
,
4

5
)

v = (2, 1)

⇡u(v)

✓

Moreover, since ‖u‖ = length(u) = 1, then we can also interpret 〈u, v〉 as the length of v projected
onto the line through u. That is, let πu(v) be the closest point to v on the line through u (the line
through u and the line segment from v to πu(v) make a right angle). Then

〈u, v〉 = length(πu(v)) = ‖πu(v)‖.

For two column vectors x ∈ Rn and y ∈ Rd, the outer product is written

yTx =

x1

x2
...
xn

 [y1 y2 . . . yd] =

x1y1 x1y2 . . . x1yd
x2y1 x2y2 . . . x2yd

...
...

. . .
...

xny1 xny2 . . . xnyd

 ∈ Rn×d.

Note that the result here is a matrix, not a scalar. The dimensions are not required to match.

Math for Data copyright: Jeff M. Phillips

matrix-vector products. Another important and common operation is a matrix-vector product. Given a
matrix A ∈ Rn×d and a vector x ∈ Rd, their product y = Ax ∈ Rn.

When A is composed of row vectors [a1; a2; . . . ; an], then it is useful to imagine this as transposing x
(which should be a column vector here, so a row vector after transposing), and taking the dot product with
each row of A. I like to think of this as xT sliding down the rows of A, and for each row ai outputting a
scalar value 〈ai, x〉 into the corresponding output vector.

y = Ax =

− a1 −
− a2 −

...
− an −

x =

〈a1, x〉
〈a2, x〉

...
〈an, x〉

 .

3.3 Norms
The standard Euclidean norm (think “length”) of a vector v = (v1, v2, . . . , vd) ∈ Rd is defined

‖v‖ =

√√√√
d∑

i=1

v2
i =
√
v1v1 + v2v2 + . . .+ vdvd =

√
〈v, v〉.

This measures the “straight-line” distance from the origin to the point at v. A vector v with norm ‖v‖ = 1
is said to be a unit vector; sometimes a vector x with ‖x‖ = 1 is said to be normalized.

However, a “norm” is a more generally concept. A class called Lp norms are well-defined for any param-
eter p ∈ [1,∞) as

‖v‖p =

(
d∑

i=1

|vi|p
)1/p

.

Thus, when no p is specified, it is assumed to be p = 2. It is also common to denote ‖v‖∞ = maxdi=1 |vi|,
which is also a norm. Indeed this is the result of taking the limit of p to∞.

We can also define norms for matrices A. These take on slightly different notational conventions. The
two most common are the spectral norm ‖A‖ = ‖A‖2 and the Frobenius norm ‖A‖F . The Frobenius norm
is the most natural extension of the p = 2 norm for vectors, but uses a subscript F instead. It is defined for
matrix A ∈ Rn×d as

‖A‖F =

√√√√
n∑

i=1

d∑

j=1

A2
i,j =

√√√√
n∑

i=1

‖ai‖2,

where Ai,j is the element in the ith row and jth column of A, and where ai is the ith row vector of A. The
spectral norm is defined for a matrix A ∈ Rn×d as

‖A‖ = ‖A‖2 = max
x∈Rd
‖x‖6=0

‖Ax‖/‖x‖ = max
y∈Rn
‖y‖6=0

‖yA‖/‖y‖.

Its useful to think of these x and y vectors as being unit vectors, then the denominator can be ignored (as
they are 1). Then we see that x and y only contain “directional” information, and the arg max vector (e.g.,
the x which maximizes ‖Ax‖/‖x‖) point in the directions that maximize the norm.

Math for Data copyright: Jeff M. Phillips

3.4 Linear Independence
Consider a set of k vectors x1, x2, . . . , xk ∈ Rd, and a set of k scalars α1, α2, . . . , αk ∈ R. Then because of
linearity of vectors, we can write a new vector in Rd as

z =
k∑

i=1

αixi.

For a set of vectors X = {x1, x2, . . . , xk}, for any vector z such that there exists a set of scalars α so z
can be written as the above summation, then we say z is linearly dependent on X . If z cannot be written
with any choice of αis, the we say z is linearly independent of X . All vectors z ∈ Rd which are linearly
dependent on X are said to be in its span.

span(X) =

{
z
∣∣∣ z =

k∑

i=1

αixi, αi ∈ R

}
.

If span(X) = Rd (that is for vectors X = x1, x2, . . . , xk ∈ Rd all vectors are in the span), then we say X
forms a basis.

Example: Linear Independence

Consider input vectors in a set X as

x1 =

1
3
4

 x2 =

2
4
1

And two other vectors

z1 =

−3
−5
2

 z2 =

3
7
1

Note that z1 is linearly dependent on X since it can be written as z1 = x1 − 2x2 (here α1 = 1 and
α2 = −2). However z2 is linearly independent from X since there are no scalars α1 and α2 so that
z2 = α1x1 + α2x2 (we need α1 = α2 = 1 so the first two coordinates align, but then the third
coordinate cannot).
Also the set X is linearly independent, since there is no way to write x2 = α1x1.

A set of vectors X = {x1, x2, . . . , xn} is linearly independent if there is no way to write any vector
xi ∈ X in the set with scalars {α1, . . . , αi−1, αi+1, . . . , αn} as the sum

xi =

n∑

j=1
j 6=i

αjxj

of the other vectors in the set.

Math for Data copyright: Jeff M. Phillips

Geometry of Linear Dependence

A geometric way to understand linear dependence is if there is a lower-dimensional subspace that
passes through all of the points. Consider the example of the 3× 2 matrix A which corresponds with
3 points in 2 dimensions.

A =

a1

a2

a3

 =

1.5 0
2 0.5
1 1

 .

Then there points are linearly dependent because there exists a line ` : y = −0.5x+1.5 which passes
through all points.

a3 = (1, 1)

a1 = (1.5, 0)

a2 = (2, 0.5)

3.5 Rank
The rank of a set of vectors X = {x1, . . . , xn} is the size of the largest subset X ′ ⊂ X which are linearly
independent. Usually we report rank(A) as the rank of a matrix A. It is defined as the rank of the rows of
the matrix, or the rank of its columns; it turns out these quantities are always the same.

If A ∈ Rn×d, then rank(A) ≤ min{n, d}. If rank(A) = min{n, d}, then A is said to be full rank. For
instance, if d < n, then using the rows of A = [a1; a2; . . . ; an], we can describe any vector z ∈ Rd as the
linear combination of these rows: z =

∑n
i=1 αiai for some set {α1, . . . , αn}. In fact, if A is full rank we

can do so and set all but d of these scalars to 0.

3.6 Inverse
A matrix A is said to be square if it has the same number of column as it has rows. A square matrix
A ∈ Rn×n may have an inverse denoted A−1. If it exists, it is a unique matrix which satisfies:

A−1A = I = AA−1

where I is the n× n identity matrix

I =

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1

= diag(1, 1, . . . , 1).

Note that I serves the purpose of 1 in scalar algebra, so for any (non-zero) scalar α then using α−1 = 1
α we

have αα−1 = 1 = α−1α.

Math for Data copyright: Jeff M. Phillips

A matrix is said to be invertable if it has an inverse. Only square, full-rank matrices are invertable; and a
matrix is always invertable if it is square and full rank. If a matrix is not square, the inverse is not defined.
If a matrix is not full rank, then it does not have an inverse.

3.7 Orthogonality
Two vectors x, y ∈ Rd are orthogonal if 〈x, y〉 = 0. This means those vectors are at a right angle to each
other.

Example: Orthongonality

Consider two vectors x = (2,−3, 4,−1, 6) and y = (4, 5, 3,−7,−2). They are orthogonal since

〈x, y〉 = (2 · 4) + (−3 · 5) + (4 · 3) + (−1 · −7) + (6 · −2) = 8− 15 + 12 + 7− 12 = 0.

A square matrix U ∈ Rn×n is orthogonal if all of its columns [u1, u2, . . . , un] are normalized and are all
orthogonal with each other. It follows that

UTU = I = UUT

since for any normalized vector u that 〈u, u〉 = ‖u‖ = 1, and any two distinct columns ui 6= uj then
〈ui, uj〉 = 0.

A set of columns (for instance those of an orthogonal U) which are normalized and all orthogonal to each
other are said to be orthonormal. If U ∈ Rn×d and has orthonormal columns, then UTU = I (here I is
d× d) but UUT 6= I .

Orthogonal matrices are norm preserving under multiplication. That means for an orthogonal matrix
U ∈ Rn×n and any vector x ∈ Rn, then ‖Ux‖ = ‖x‖.

Moreover, the columns [u1, u2, . . . , un] of an orthogonal matrix U ∈ Rn×n form an basis for Rn. This
means that for any vector x ∈ Rn, there exists a set of scalars α1, . . . , αn such that x =

∑n
i=1 αiui. More

interestingly, we also have ‖x‖2 =
∑n

i=1 α
2
i .

This can be interpreted as U describing a rotation (with possible mirror flips) to a new set of coordi-
nates. That is the old coordinates of x are (x1, x2, . . . , xn) and the coordinates in the new orthogonal basis
[u1, u2, . . . , un] are (α1, α2, . . . , αn).

import numpy as np
from numpy import linalg as LA

#create an array, a row vector
v = np.array([1,2,7,5])
print v
#[1 2 7 5]
print v[2]
#7

#create a n=2 x d=3 matrix
A = np.array([[3,4,3],[1,6,7]])
print A
#[[3 4 3]
[1 6 7]]
print A[1,2]
#7
print A[:, 1:3]
#[[4 3]
[6 7]]

Math for Data copyright: Jeff M. Phillips

#adding and multiplying vectors
u = np.array([3,4,2,2])
#elementwise add
print v+u
#[4 6 9 7]
#elementwise multiply
print v*u
#[3 8 14 10]
dot product
print v.dot(u)
35
print np.dot(u,v)
35

#matrix multiplication
B = np.array([[1,2],[6,5],[3,4]])
print A.dot(B)
#[[36 38]
[58 60]]
x = np.array([3,4])
print B.dot(x)
#[11 38 25]

#norms
print LA.norm(v)
#8.88819441732
print LA.norm(v,1)
#15.0
print LA.norm(v,np.inf)
#7.0
print LA.norm(A, ’fro’)
#10.9544511501
print LA.norm(A,2)
#10.704642743

#transpose
print A.T
#[[3 1]
[4 6]
[3 7]]
print x.T
#[3 4] (always prints in row format)

print LA.matrix_rank(A)
#2
C = np.array([[1,2],[3,5]])
print LA.inv(C)
#[[-5. 2.]
[3. -1.]]
print C.dot(LA.inv(C))
#[[1.00000000e+00 2.22044605e-16] (nearly [[1 0]
[0.00000000e+00 1.00000000e+00]] [0 1]])

Math for Data copyright: Jeff M. Phillips

Exercises

Q3.1: Consider a matrix

A =

2 2 3
−2 7 4
−3 −3 −4
−8 2 3

 .

1. Add a column to A so that it is invertable.

2. Remove a row from A so that it is invertable.

3. Is AAT invertable?

4. Is ATA invertable?

Q3.2: Consider two vectors u = (0.5, 0.4, 0.4, 0.5, 0.1, 0.4, 0.1) and v = (−1,−2, 1,−2, 3, 1,−5).

1. Check if u or v is a unit vector.

2. Calculate the dot product 〈u, v〉.
3. Are u and v orthogonal?

Q3.3: Consider the following 3 vectors in R9:

v = (1, 2, 5, 2,−3, 1, 2, 6, 2)

u = (−4, 3,−2, 2, 1,−3, 4, 1,−2)

w = (3, 3,−3,−1, 6,−1, 2,−5,−7)

Report the following:

1. 〈v, w〉
2. Are any pair of vectors orthogonal, and if so which ones?

3. ‖u‖2
4. ‖w‖∞

Q3.4: Consider the following 3 matrices:

A =

2 −2
−3 1
5 −3

 B =

4 4 4
−2 3 −7
2 5 −7

 C =

4 −1 2
−8 2 −4
2 1 −4

Report the following:

1. ATB

2. C +B

3. Which matrices are full rank?

4. ‖C‖F
5. ‖A‖2
6. B−1

Math for Data copyright: Jeff M. Phillips

4 Distances and Nearest Neighbors

At the core of most data analysis tasks and their formulations is a distance. This choice anchors the meaning
and the modeling inherent in the patterns found and the algorithms used. However, there are an enormous
number of distances to choose from. In this chapter provide an overview of the typically most important
properties of distances (e.g., is it a metric?) and how it related to the dual notion of a similarities. We provide
some common modeling dynamics which motivate some of the distances, and overview their direct uses in
nearest neighbor approaches, and how to algorithmically deal with the challenges that arise.

4.1 Metrics
So what makes a good distance? There are two aspects to the answer to this question. The first is that it
captures the “right” properties of the data, but this is a sometimes ambiguous modeling problem. The second
is more well-defined; it is the properties which makes a distance a metric.

A distance d : X×X→ R+ is a bivariate operator (it takes in two arguments, say a ∈ X and b ∈ X) that
maps to R+ = [0,∞). It is a metric if

(M1) d(a, b) ≥ 0 (non-negativity)

(M2) d(a, b) = 0 if and only if a = b (identity)

(M3) d(a, b) = d(b, a) (symmetry)

(M4) d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality)

A distance that satisfies (M1), (M3), and (M4) (but not necessarily (M2)) is called a pseudometric.
A distance that satisfies (M1), (M2), and (M4) (but not necessarily (M3)) is called a quasimetric.
In the next few sections we outline a variety of common distances used in data analysis, and provide

examples of their uses cases.

4.2 Lp Distances and their Relatives
We next introduce a specific family of distances between vectors a, b ∈ Rd. As they are defined between
vectors, the most common ones are defined purely from notions of norms in linear algebra. But other variants
will restrict vectors to model specific sorts of data like probability distribution, and then draw from more
probabilistic elements.

4.2.1 Lp Distances
Consider two vectors a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) in Rd. Now an Lp distances is defined
as

dp(a, b) = ‖a− b‖p =

(
d∑

i=1

(|ai − bi|)p
)1/p

.

1. The most common is the L2 distance

d2(a, b) = ‖a− b‖ = ‖a− b‖2 =

√√√√
d∑

i=1

(ai − bi)2.

51

It easy interpreted as the Euclidean or “straight-line” distance between two points or vectors, since if
you draw a line between two points, its length measures the Euclidean distance.
It is also the only Lp distance that is invariant to the rotation of the coordinate system (which will
often be useful, but sometimes restrictive).

2. Another common distance is the L1 distance

d1(a, b) = ‖a− b‖1 =
∑

i=1

|ai − bi|.

This is also known as the “Manhattan” distance since it is the sum of lengths on each coordinate axis;
the distance you would need to walk in a city like Manhattan since you must stay on the streets and
can’t cut through buildings.

3. A common modeling goal is the L0 distance

d0(a, b) = ‖a− b‖0 = d−
d∑

i=1

1(a = b),

where 1(a = b) =

{
1 if a = b

0 if a 6= b.
Unfortunately, d0 is not convex.

When each coordinate ai is either 0 or 1, then this is known as the Hamming distance.

4. Finally, another useful variation is the L∞ distance

d∞(a, b) = ‖a− b‖∞ = max
i=1...d

|ai − bi|.

It is the maximum deviation along any one coordinate. Geometrically in R2, it is a rotation of the
L1 distance, so many algorithms designed for L1 can be adapted to L∞ in R2. However, in high
dimensions they can act in surprisingly different ways. d∞ is not technically an Lp distance, but is
the limit of such distances as p goes to∞.

Math for Data copyright: Jeff M. Phillips

Geometry of Lp Unit Balls

A useful way to imagine the geometry of these various Lp distances is by considering their unit balls.
Much of the relevant information is conveyed even in R2. A unit ball is the set of points a ∈ R2 so
that d(0, a) = 1 for our choice of distance d.
The unit balls for L1, L2, and L∞ distance are shown in R2. The most important points to notice are
that L1 is never larger than L2 which is never larger than L∞. Moreover, they are always equal along
the coordinate axis, and these are the only places they are the same. Indeed these principles hold for
any Lp distance where the Lp ball is never greater than the Lp′ ball for p < p′, and they are only and
always equal along the coordinate axis.

L2

L1

L1

The L2 ball is the only distance invariant to the choice of axis. This means, for instance, that if it is
rotated it stays the same shape. This is not true for any other Lp balls.
It is also possible to draw Lp balls for p < 1. However, these balls are not convex (see T7), and they
“curve in” between the coordinate axis. Algorithmically, this makes them difficult to work with. It
also, in effect, is the reason the associated Lp distances are not a metric, it is not hard to construct
example where they violate the triangle inequality due to this non-convexity.

Metric properties. All of these distances are metrics, and in general for Lp for p ∈ [1,∞). (M1) and (M2)
hold since the distances are at the core a sum of non-negative terms, and are only all 0 if all coordinates are
identical. (M3) holds since |ai − bi| = |bi − ai|, vector subtraction is symmetric. (M4 - triangle inequality)
is a bit trickier to show, but follows by drawing a picture ¨̂ .

Math for Data copyright: Jeff M. Phillips

Warning about Lp Distance: These should not be used to model data when the units and meaning
on each coordinate are not the same. For instance, consider representing two people p1 and p2 as
points in R3 where the x-coordinate represents height in inches, the y-coordinate represents weight
in pounds, and the z-coordinate represents income in dollars per year. Then most likely this distance
is dominated by the z-coordinate income which might vary on the order of 10,000 while the others
vary on the order of 10.

Also, for the same data we could change the units, so the x-coordinate represents height in meters,
the y-coordinate represents weight in centigrams, and the z-coordinate represents income in dollars
per hour. The information may be exactly the same, only the unit changed. It is now likely dominated
by the y-coordinate representing weight.

These sorts of issues can hold for distance other than Lp as well. A safe way is to avoid these issues is
to use the L0 metric – however this one can be crude and insensitive to small variations in data. Some
heuristics to overcome this is: set hand-tuned scaling of each coordinate, ”normalize” the distance so
they all have the same min and max value (e.g., all in the range [0, 1]), or ”normalize” the distance
so they all have the same mean and variance. All of these are hacks and may have unintended
consequences. For instance the [0, 1] normalization is at the mercy of outliers, and mean-variance
normalization can have strange effects in multi-modal distributions. These are not solutions, they are
hacks!

With some additional information about which points are “close” or “far” one may be able to use the
field of distance metric learning to address some of these problems. A simple solution can the be
derived over all Mahalanobis distances (see below), using some linear algebra and gradient descent.
But without this information, there is no one right answer. If you axes are the numbers of apples
(x-axis) and number of oranges (y-axis), then its literally comparing apples to oranges!

Math for Data copyright: Jeff M. Phillips

4.2.2 Mahalanobis Distance
An extension to the L2 distance is the Mahalanobis distance defined for two vectors a, b ∈ Rd and a d × d
matrix M as

dM (a, b) =
√

(a− b)TM(a− b).

When M = I (the identity matrix, so Ij,j = 1 and Ij,j′ = 0 for j 6= j′), then dM = d2. When M is
a diagonal matrix (so Mj,j′ = 0 for j 6= j′) then dM can be interpreted as skewing the Euclidean space
(shrink some coordinates, and expanding others) based on the matrix M . When M is not diagonal, the
skewing of Euclidean space still holds, but the skew is not aligned with the coordinate axis; instead it is
defined through the eigenvectors and by the eigenvalues of M (see T8). As long as all eigenvalues are
positive and real (implying M is positive definite) then dM is a metric; since then the skew is well-defined
and full-dimensional.

4.2.3 Cosine and Angular Distance
The cosine distance measures the 1 minus the cosine of the “angle” between vectors a = (a1, a2, . . . , ad)
and b = (b1, b2, . . . , bd) in Rd

dcos(a, b) = 1− 〈a, b〉‖a‖‖b‖ = 1−
∑d

i=1 aibi
‖a‖‖b‖ .

Recall that if θa,b is the angle between vectors a and b then cos(θa,b) = 〈a,b〉
‖a‖‖b‖ Hence dcos(a, b) = 1 −

cos(θa,b).
Note that d(A,B) ∈ [0, π] and it does not depend on the magnitude ‖a‖ of the vectors since this is

normalized out. It only cares about their directions. This is useful when a vector of objects represent data
sets of different sizes and we want to compare how similar are those distributions, but not their size. This
makes dcos a psuedo-distance since for two vectors a and a′ = (2a1, 2a2, . . . , 2ad) where ‖a′‖ = 2‖a‖ have
dcos(a, a

′) = 0, but they are not equal.
Sometimes dcos is defined only with respect to normalized vectors a, b ∈ Sd−1, where

Sd−1 =
{
x ∈ Rd | ‖x‖ = 1

}
.

In this case, then more simply

dcos(a, b) = 1− 〈a, b〉.

Restricted to vectors in Sd−1, then dcos does not have the issue of two vectors a 6= b such that dcos(a, b) = 0.
However, it is not yet a metric since it can be negative (e.g., b = −a, then dcos(a, b) = −1).

A simple isometric transformation of the cosine distance (this means the ordering between any pairs of
points are the same) is called the angular distance dang; that is for a, b, c, d ∈ Sd−1 if dcos(a, b) < dcos(c, d)
then dang(a, b) < dang(c, d). Specifically we define for any a, b ∈ Sd−1

dang(a, b) = cos−1(〈a, b〉) = arccos(〈a, b〉).

That is, this undoes the cosine-interpretation of the cosine distance, and only measures the angle. Since, the
inner product for any a, b ∈ S−1 is in the range [−1, 1], then the value of dcos is in the range [−1, 1], but the
value of dang(a, b) ∈ [0, π]. Moreover, dang is a metric over Sd−1.

Math for Data copyright: Jeff M. Phillips

Geometry of Angular Distance

The angular interpretation of the cosine distance dcos(a, b) = 1 − cos(a, b) and angular distance
dang(a, b) = θa,b is convenient to think of for points on the sphere. To understand the geometry of
the angular distance between two points, it is sufficient to consider them as lying on the unit sphere
S1 ⊂ R2. Now dang(a, b) is the radians of the angle θa,b, or equivalently the arclength traveled
between a and b if walking on the sphere.

S1

a

b

dang(a, b)✓a,b

Now we can see why dang is a metric if restricted to vectors on Sd−1. (M1) and (M3) hold by
definition, and (M2) on Sd−1 holds because no two distinct unit vectors have and angle of 0 radians
between them. To show the triangle inequality (M4) (here we need to think in S2 ⊂ R3), observe that
since dang measures the shortest distance restricted to the sphere, there is no way that dang(a, b) can
be longer than dang(a, c) + dang(c, b) since that would imply going through point c ∈ Sd−1 makes
the path from a to b shorter – which is not possible.

4.2.4 KL Divergence
The Kullback-Liebler Divergence (or KL Divergence) is a distance that is not a metric. Somewhat similar
to the cosine distance, it considers as input discrete distributions Xa and Xb; they are d-variate random
variables which can be instantiated at one of d possible values. Equivalently, it is useful to think of these
objects as vectors a, b ∈ ∆d−1

◦ . Like the (d− 1)-dimensional sphere, the (d− 1)-dimensional open simplex
∆d−1
◦ is a bounded subset of Rd. Specifically

∆d−1
◦ =

{
x = (x1, x2, . . . xd) ∈ Rd | ‖x‖1 = 1 and xi > 0 for all i

}
.

That is ∆d−1
◦ defines the set of d-dimensional discrete probability distributions where for a ∈ ∆d−1, the

coordinate ai is the probability that Xa takes the ith value. The (d− 1)-dimensional (closed) simplex ∆d−1

differs in that it also allows values ai to be 0, i.e., to have 0 probability to take the ith value. But the KL
Divergence is only defined over vectors on ∆d−1

◦ .
Then we can define (often written dKL(Xa‖Xb))

dKL(Xa, Xb) = dKL(a, b) =

d∑

i=1

ai ln(ai/bi).

Math for Data copyright: Jeff M. Phillips

It is reminiscent of entropy, and can be written as H(Xa, Xb) −H(Xa) where H(X) is the entropy of X ,
and H(Xa, Xb) is the cross entropy. It roughly describes the extra bits needed to express a distribution Xa,
given the knowledge of distribution Xb.

Note that dKL is not a metric, violating (M3) since it is not symmetric. It also violates the triangle
inequality (M4).

4.3 Distances for Sets and Strings
We now introduce some more general notions of distance, in particular ones that are heavily used to under-
stand the relationship between text data: strings of words or characters. There are other techniques which
draw more heavily on the semantic and fine-grained structural properties of text. We focus here on the ones
which have simple mathematical connections and as a result are often more scalable and flexible.

Quick review of sets. A set A is a collection of elements {a1, a2, . . . , ak}. It is standard to use curly
brackets {. . .} to denote a set. The ordering of elements does not matter, e.g., {a1, a2} = {a2, a1}. Mul-
tiplicity is not allowed or is ignored, e.g., {a1, a1, a2} = {a1, a2}; if it is considered, then it is called a
multiset (these more naturally models counts, or after normalization probability distributions (see cosine
distance and KL divergence).

Given a set A, the cardinality of A denoted |A| counts how many elements are in A. The intersection
between two sets A and B is denoted A∩B and reveals all items which are in both sets. The union between
two sets A and B is denoted A ∪ B and reveals all items which are in either set. The set difference of two
sets A and B is denoted A\B and is all elements in A which are not in B. The symmetric distance between
two sets A and B is denoted A4B and is the union of A \B and B \A. Given a domain Ω (which contains
all sets of interest, i.e., A ⊂ Ω), the complement of a set A is defined as Ā = Ω \A.

Example: Set operations

Observe the example with A = {1, 3, 5} and B = {2, 3, 4}. These are represented as a the Venn
diagram with a blue region forA and a red one forB. Element 6 is in neither set. Then the cardinality
of A is |A| = 3, and it is the same for B. The intersection A ∩B = {3} since it is the only object in
both sets, and is visually represented as the purple region. The union A∪B = {1, 2, 3, 4, 5}. The set
difference A \B = {1, 5} and B \A = {2, 4}. The complement Ā = {2, 4, 6} and the complement
A ∪B = {6}. Finally, the symmetric difference is A4B = {1, 2, 4, 5}.

1

2
3

4

5

6

A BA \B

4.3.1 Jaccard Distance
The Jaccard distance between two sets A and B is defined

dJ(A,B) = 1− |A ∩B||A ∪B| .

Math for Data copyright: Jeff M. Phillips

Since the union is always larger than the intersection, the fractional term is always between 0 and 1, and
this the distance always takes value in [0, 1]. It is only 1 if the sets have nothing in common, and is only 0 if
the intersection equals the union and the sets are exactly the same.

Example: Jaccard Distance

Consider two sets A = {0, 1, 2, 5, 6} and B = {0, 2, 3, 5, 7, 9}. The Jaccard distance between A
and B is

dJ(A,B) = 1− |A ∩B||A ∪B|

= 1− |{0, 2, 5}|
|{0, 1, 2, 3, 5, 6, 7, 9}| = 1− 3

8
= 0.625

Notice that if we add an element 7 to A (call this set A′) that is already in B, then the numerator
increases, but the denominator stays the same. So then dJ(A′, B) = 1− 4

8 = 0.5 and the distance is
smaller – they are closer to each other.
On the other hand, if we add an element 4 to A (call this set A′′) which is in neither A or B, then the
numerator stays the same, but the denominator increases. So then dJ(A′′, B) = 1− 3

9 ≈ 0.666 and
then distance is larger – the sets are further from each other.

The Jaccard distance is a popular distance between sets since it is a metric, and it is invariant to size of
the sets. It only depends on the fraction of the items among both sets which are the same. It also does not
require knowledge of some larger universe of elements that the sets may be from. For instance, as in the
example, we can implicitly require that the sets contain only positive integers, but do not need to know an
upper bound on the largest positive integer allowed.

Math for Data copyright: Jeff M. Phillips

Geometry of Metric Property of Jaccard Distance

To show that dJ is a metric, we need to show that the 4 properties each hold. The first three are direct.
In particular (M1) and (M2) follow from dJ(A,B) ∈ [0, 1] and only being 0 if A = B. Property
(M3) holds by the symmetry of set operations ∩ and ∪.

The triangle inequality (M4) requires a bit more effort to show, namely for any sets A,B,C that
dJ(A,C) + dJ(C,B) ≥ dJ(A,B). We will use the notation that

dJ(A,B) = 1− |A ∩B||A ∪B| =
|A4B|
|A ∪B| .

We first rule out that there are elements c ∈ C which are not in A or not in B. Removing these
elements from C will only decrease the left-hand-side of the triangle inequality while not affecting
the right-hand-side. So if C violates this inequality, we can assume there are no such c ∈ C and it
will still violate it. So now we assume C ⊆ A and C ⊆ B.

A

B

C

Now we have

dJ(A,C) + dJ(C,B) =
|A \ C|
|A| +

|B \ C|
|B|

≥ |A \ C|+ |B \ C||A ∪B|

≥ |A4B||A ∪B| = dJ(A,B).

The first inequality follows since |A|, |B| ≤ |A ∪ B|. The second inequality holds since anything
taken out from A or B would be in A ∪ B and thus would not affect A4B; it is only equal if
C = A ∪B, and A4B = ∅.

4.3.2 Edit Distance
Let Σ be a set, in this case an alphabet of possible characters (e.g., all ASCII characters, or all lowercase
letters so Σ = {a, b, . . . , z}). Then we can say a string a of length d is an element in Σd; that is an ordered
sequence of characters from the alphabet Σ. The edit distance considers two strings a, b ∈ Σd, and

ded(a, b) = # operations to make a = b,

where an operation can delete a letter or insert a letter. In fact, the strings are not required to have the same
length, since we can insert items in the shorter one to make up the difference.

Math for Data copyright: Jeff M. Phillips

Example: Edit Distance

Consider two strings a = mines and b = smiles. Here ded(a, b) = 3.

mines

1 : minles insert l
2 : miles delete n

3 : smiles insert s

There are many alternative variations of operations. The insert operation may cost more than the delete
operation. Or we could allow a replace operation at the same unit cost as either insert or delete; in this
case the edit distance of mines and smiles is only 2.

Edit distance is a metric. (M1) holds since the number of edits is always non-negative. (M2) There are
no edits only if they are the same. (M3) the operations can be reversed. (M4) If c is an intermediate “word”
then the ded(a, c) + ded(c, b) = ded(a, b), otherwise it requires more edits.

Is this good for large text documents? Not really. It is slow to compute – basically requiring quadratic
time dynamic programing in th worst case to find the smallest set of edits. And removing one sentence can
cause a large edit distance without changing meaning. But this is good for small strings. Some version is
used in most spelling recommendation systems (e.g., a search engine’s auto-correct). Its a good guide that
usually ded(a, b) > 3 is pretty large since, e.g., with replace ded(cart,score) = 4.

4.4 Modeling Text with Distances
There are many many choices of distances. Which one to choose (it is definitely a choice) is based on
(a) computational efficiency and (b) modeling effectiveness. The Euclidean distance d2 and sometimes the
Jaccard distance dJ are often chosen because various algorithmic and computational benefits area available
for these – as we will see, this efficiency comes not just from time to compute the distance once, but how it
can be used within more complex operations. However, each have other benefits due to modeling factors.
Sometimes this modeling is just based on mathematical properties (is it a metric, are my vectors normal-
ized), sometimes it is intuitive, and sometimes it can be empirically validated by measuring performance on
downstream applications. In this section we show how to arrive at various of the distances as the logical
choice in an example case in modeling text.

As mentioned, edit distance ded is useful for shorter strings. The other variants will all be more useful
when dealing with much larger texts.

Example: Running text example

In this section we will use as a running example, the text from the following 4 short documents. In
practice, these approaches are typically applied to much longer documents (e.g., text on a webpage,
a newspaper article, a persons bio).

D1 : I am Sam.

D2 : Sam I am.

D3 : I do not like jelly and ham.

D4 : I do not, do not, like them, Sam I am.

How can we measure the distance among these 4 documents?

Math for Data copyright: Jeff M. Phillips

4.4.1 Bag-of-Words Vectors
The simplest model for converting text into an abstract representation to applying a distance is the bag-of-
words approach. Intuitively, each document creates a “bag” and throws each word in that “bag” (a multi-set
data structure), and maintains only the count of each word. This transforms each document into a multi-set.
However it is convenient to think of it as a (very sparse, meaning mostly 0s) vector.

That is, consider a vector v ∈ RD for a very large D, where D is the number of all possible words. Each
coordinate of such a vector corresponds to one word, and records the count of that word.

These vector representation naturally suggests that one could use an Lp distance, most commonly d2, to
measure their distance. However, it is more common to use the cosine distance dcos. This has the advantage
of not penalizing certain documents for their length, in principle focusing more on its content. For instance, a
document with a simple phrase would be identical under dcos to another document that repeated that phrase
multiple times. Or two documents about, say, baseball would typically draw from a similar set of words
(e.g., {bat, ball, hit, run, batter, inning}) and likely be close even if their lengths differs.

Example: Bag-of-Words

For the running example, consider D-dimensional space with D = 11; it could be much higher. For
each coordinate, we list the corresponding word as

(am, and, do, ham, I, jelly, like, not, Sam, them, zebra).

Now each of the documents have the following representative vectors

v1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)

v2 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)

v3 = (0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)

v4 = (1, 0, 2, 0, 2, 0, 1, 2, 1, 1, 0).

We can now use the Euclidean distance d2 between these vectors (or any other L2 distance). We
notice that d2(v1, v2) = 0, even though the text is different. However, since the bag-of-words only
measures which words are present, not how they are used, it can not distinguish between these cases.

Also notice that the 11th coordinate for the work zebra is never used, and is 0 in all coordinates
of the vectors. If this coordinate was omitted and only a 10-dimensional representation was used
it would not change any of the distances. On the other hand, these vectors can be much larger and
represent many other words, and this will not affect the distance.

(v1, v2) (v1, v3) (v1, v4) (v2, v3) (v2, v4) (v3, v4)

d2 0 2.83 3.32 2.83 3.32 3
dcos 0 0.781 0.423 0.781 0.423 0.339

Alternatively, we can use the cosine distance dcos. This models the text differently, the main differ-
ence is that it normalizes the vectors. So for instance D3 and D4 are not likely to be further apart
simply because they contain more words, as is the case with d2. This metric still treats D1 and D2

as identical.

Another potential use of the bag-of-words representation is as a probability distribution over the words
in a document. That is, again consider a D-dimensional space where D is the number of possible words.
But now for each word wi, its representative coordinate (the ith coordinate) denotes the probability that a

Math for Data copyright: Jeff M. Phillips

randomly drawn word from the document is that word. This is equivalent to normalizing a vector v by its
L1 norm so v̄ = v/‖v‖1, and this ensures that v ∈ ∆D−1. This representation inclines a modeler to use a
distance designed for probability distributions, such as the KL Divergence dKL.

Example: KL Divergence on Probability Measures

Using the same 11-dimensional representation of our running example documents, we can normalize
by L1 the vectors v1, v2, v3, and v4 so they lie on ∆10

◦ . However, this does not quite work, since
the vectors have 0 values, which are not allowed in ∆10

◦ . The right way to address this (if we insist
on using KL Divergence) is to add a so-called regularization term α to each vector value before L1

normalization. Using α = 0.01 we obtain

v̄1 = (0.325, 0.003, 0.003, 0.003, 0.325, 0.003, 0.003, 0.003, 0.325, 0.003, 0.003)

v̄2 = (0.325, 0.003, 0.003, 0.003, 0.325, 0.003, 0.003, 0.003, 0.325, 0.003, 0.003)

v̄3 = (0.001, 0.142, 0.142, 0.142, 0.142, 0.142, 0.142, 0.142, 0.001, 0.001, 0.001)

v̄4 = (0.100, 0.001, 0.199, 0.001, 0.199, 0.001, 0.100, 0.199, 0.100, 0.100, 0.001) .

The KL divergence is not symmetric, so we report the distance in both directions for all pairs
of vectors, where the row label is the first term and the column label is the second term (e.g.,
dKL(v̄2||v̄4) = 0.89).

dKL v̄1 v̄2 v̄3 v̄4

v̄1 0 0 3.74 0.89
v̄2 0 0 3.74 0.89
v̄3 3.09 3.09 0 2.01
v̄4 1.99 1.99 1.43 0

import numpy as np
from numpy import linalg as LA
import scipy as sp
from scipy import stats

#create representative vectors
v1 = np.array([1,0,0,0,1,0,0,0,1,0,0])
v2 = np.array([1,0,0,0,1,0,0,0,1,0,0])
v3 = np.array([0,1,1,1,1,1,1,1,0,0,0])
v4 = np.array([1,0,2,0,2,0,1,2,1,1,0])

#Euclidean distance
print [LA.norm(v1-v2), LA.norm(v1-v3), LA.norm(v1-v4), LA.norm(v2-v3),

LA.norm(v2-v4), LA.norm(v3-v4)]
[0.0, 2.8284271247461903, 3.3166247903553998, 2.8284271247461903,
3.3166247903553998, 3.0]

#normalized vectors
v1n = v1/LA.norm(v1)
v2n = v2/LA.norm(v2)
v3n = v3/LA.norm(v3)
v4n = v4/LA.norm(v4)

#Cosine distance
print [1 - v1n.dot(v2n), 1-v1n.dot(v3n), 1-v1n.dot(v4n), 1-v2n.dot(v3n),

1-v2n.dot(v4n), 1-v3n.dot(v4n)]

Math for Data copyright: Jeff M. Phillips

[-2.2204460492503131e-16, 0.78178210976400764, 0.42264973081037416,
0.78178210976400764, 0.42264973081037416, 0.33856217223385243]

#regularizer requied for KL (it cannot handle 0 terms)
reg = 0.01
v1r = v1+reg
v2r = v2+reg
v3r = v3+reg
v4r = v4+reg

KL-divergence (the entropy function L1-normalizes vectors internally)
print [stats.entropy(v1r,v1r), stats.entropy(v1r,v2r), stats.entropy(v1r,v3r),

stats.entropy(v1r,v4r)]
print [stats.entropy(v2r,v1r), stats.entropy(v2r,v2r), stats.entropy(v2r,v3r),

stats.entropy(v2r,v4r)]
print [stats.entropy(v3r,v1r), stats.entropy(v3r,v2r), stats.entropy(v3r,v3r),

stats.entropy(v3r,v4r)]
print [stats.entropy(v4r,v1r), stats.entropy(v4r,v2r), stats.entropy(v4r,v3r),

stats.entropy(v4r,v4r)]
[0.0, 0.0, 3.735444216340686, 0.89162425422773228]
[0.0, 0.0, 3.735444216340686, 0.89162425422773228]
[3.0937010620836185, 3.0937010620836185, 0.0, 2.0060541317114353]
[1.9887613727596174, 1.9887613727596174, 1.4279093007498529, 0.0]

4.4.2 k-Grams

As an alternative to bag-of-word vectors, k-grams can provide a richer context for text. These convert a
document into a set (not a multi-set), but does not use just the words.

There are a few variants of how to apply k-grams, and we will focus on two common and simple versions
over words and characters. The word k-grams over a document is the set of all witnessed consecutive sets
of k words.

Ethical Questions with Modeling Text

After a mechanism to transform a text document or a webpage into an abstract data type (e.g., a vector
or a set) os implemented and a choice of distance is made, then many downstream algorithms and
analysis can be applied. And these applications can be fairly automatically invoked and with little or
no modification based on the modeling decisions. Then these can be used to make recommendations
about jobs, loans, and education opportunities.

Consider now you are processing essays to aid in college admission decisions, and you change a
modeling choice from bag-of-words and cosine distance to k-grams and Jaccard distance. Then you
realize that this change will sort admission applications differently, and a class of applicants will
likely have their admission decisions changed because of this modeling. Do you have an obligation
to those applicants to keep the decision the same? How could you alert decision makers to this effect,
and what resolutions could you make knowing that this happens?

Math for Data copyright: Jeff M. Phillips

Example: Word 2-Grams

Using the running example, we show the 2-word-grams of each of the documents. Each gram is
shown as a set of two words in square brackets.

D1 : G1 = {[I am], [am Sam]}
D2 : G2 = {[Sam I], [I am]}
D3 : G3 = {[I do], [do not], [not like], [like jelly], [jelly and]

[and ham]}
D4 : G4 = {[I do], [do not], [not do], [not like], [like them],

[them Sam], [Sam I], [I am]}

In particular, note that in D4 that [do not] 6= [not do] so both appear in G4; however, that
even though the two-word sequence [do not] appears twice in D4, it only appears once in the set
G4.

We can then compute the Jaccard distance between these sets as representations of the distances
between documents.

(D1, D2) (D1, D3) (D1, D4) (D2, D3) (D2, D4) (D3, D4)

1− 1
3 1− 0

8 1− 1
9 1− 0

8 1− 2
8 1− 3

11
dJ ≈ 0.667 = 1 ≈ 0.889 = 1 = 0.75 ≈ 0.727

Variants and modeling choices. There are many variants of how to constrict k-grams for words. The
most prominent of which is to use k consecutive characters instead of k consecutive words; we call these
character k-grams.

Many other modeling decisions go into constructing a k-gram. Should punctuation be included? Should
whitespace be used as a character, or should sentence breaks be used as a word in word grams? Should
differently capitalization characters or words represent distinct objects? And most notoriously, how large
should k be?

Example: Character k-Grams

Characters k grams for sample document D4, ignoring whitespace, punctuation, and capitalization.
Characters k = 3:
{[ido], [don], [ono], [not], [otd], [tdo], [otl], [tli], [lik],
[ike], [ket], [eth], [the], [hem], [ems], [msa], [sam], [ami],
[mia], [iam]}

Characters k = 4:
{[idon], [dono], [onot], [notd], [otdo], [tdon], [notl], [otli],
[tlik], [like], [iket], [keth], [ethe], [them], [hems], [emsa],
[msam], [sami], [amia], [miam]}

Through all of these variants, a few common rules apply. First, the more expressive the k-grams (e.g.,
keeping track of punctuation, capitalization, and whitespace), the large the quantity of data that is required to
get meaningful results – otherwise most documents will have a Jaccard distance 1 or very close to it unless
large blocks of text are verbatim repeated (for instance, plagiarism). But for long and structured articles

Math for Data copyright: Jeff M. Phillips

(e.g., newspaper articles with rigid style guide), some of these more expressive choices can be effective.
Second, for longer articles it is better to use words and larger values of k, while for shorter articles (like

tweets) it is better to use smaller k and possibly character k-grams. The values used for k are often perhaps-
surprisingly short, such as k = 3 or k = 4 for both characters and words.

Finally, there are a few structured tricks which come up. It can be useful to particularly keep track of or
emphasize starts of sentences, capitalized words, or word k-grams which start with “stop words” (that is,
very common words like {a, for, the, to, and, that, it, . . .} that often signal starts of expressions).

Continuous Bag-of-Words. As an aside, we mention a more recent trend. Instead of creating abstract
representations of entire documents, we may use many such documents to create similar representations
for each word, based on how it appears in the union of the documents. These methods typically aim for a
Euclidian representation for words. For a set of words, these are called word vector embeddings. Then the
distance between the abstract representations of these words can be shown to carry a variety of information.

There are numerous of these techniques, but at a high-level, they start by creating a bag-of-word rep-
resentation for each instance of a word. That is within some sequential radius of r words in a text, for
each instance of a word, it creates an D-dimensional vector (where we maintain counts over a size D vo-
cabulary). This is like the D = 11 words in the running example, but typically D is tens or hundreds
of thousands. This vector representation of each word is sparse, and counts the multiplicity of each other
word in its neighbor. Then these vectors are averaged over all instances of each word. This is called the
continuous bag-of-words or CBOW model. Usually these representations are non-linearly compressed to a
lower-dimensional representation, often using 200 or 300 dimensions.

Ethical Questions with using Abstract Language Models

These word vectors embedding have led to dramatic improvements for various natural language
processing tasks such as translation between languages and comparing meaning at sentence level
structures. As a result, they are now commonly incorporated into state-of-the-art text models. How-
ever, they have also been shown to implicitly encode bias into the embeddings, coming from the text
corpuses on which they were built. For instance, the work man is significantly closer to the word
engineer than is the word woman. Such biases, even if unintentional, may affect automated hiring
decisions based on gender. As a data analyst, should you use these models to help make predictions
if they are known to include biases, even if they actual lead to better prediction and generalization?

4.5 Similarities
A notion that is dual to a distance d, is a similarity s. It is still a bivariate function, but when the arguments
are close, then the value should be large. Often, but not always, the definitions are normalized so the
similarity of an object with itself is s(A,A) = 1, and so the range of the function is in [0, 1], indicating that
pairs of values A,B which are totally different have value s(A,B) = 0.

There are two standard ways to convert from a similarity to a distance. For set-based similarities, it is
common to obtain a distance as d(A,B) = 1 − s(A,B). In vectorized and norm-based similarities, it is
common to obtain a distance as d(A,B) =

√
s(A,A) + s(B,B)− 2s(A,B).

4.5.1 Normed Similarities
The most basic normed similarity is the Euclidian dot product. For two vectors p, q ∈ Rd, then we can
define the dot product similarity as

sdot(p, q) = 〈p, q〉;

Math for Data copyright: Jeff M. Phillips

that is, just the dot product. Any indeed this converts to the Euclidian distance as

d2(p, q) = ‖p− q‖2 =
√
sdot(p, p) + sdot(q, q)− 2sdot(p, q)

=
√
〈p, p〉+ 〈q, q〉 − 2〈p, q〉

=
√
‖p‖22 + ‖q‖22 − 2〈p, q〉.

However, in this case the similarity could be arbitrarily large, and indeed the similarity of a vector p with
itself sdot(p, p) = 〈p, p〉 = ‖p‖2 is the squared Euclidean norm. To enforce that the similarity is at most 1,
we can normalize the vectors first, and we obtain the cosine similarity

scos(p, q) = 〈 p‖p‖ ,
q

‖q‖〉 =
〈p, q〉
‖p‖‖q‖ .

Converting to a distance via the normed transformation:

√
scos(p, p) + scos(q, q)− 2scos(p, q) = d2

(p

‖p‖ ,
q

‖q‖
)

is still the Euclidian distance, but now between the normalized vectors p
‖p‖ and q

‖q‖ . However, for this
similarity, it is more common to instead use the set transformation to obtain cosine distance:

dcos(p, q) = 1− 〈p, q〉‖p‖‖q‖ = 1− scos(p, q).

Another family of similarities in this class are from kernels. The most common of which is the Gaussian
kernel K(p, q) = exp(−‖p− q‖2). Then the kernel distance is defined

dK(p, q) =
√
K(p, p) +K(q, q)− 2K(p, q).

For Gaussian kernels, and a larger class called characteristic kernels (a subset of positive definite kernels),
this distance is a metric.

4.5.2 Set Similarities
Given two sets A and B, the Jaccard similarity is defined

sJ(A,B) =
|A ∩B|
|A ∪B| .

Indeed the Jaccard distance is defined dJ(A,B) = 1− sJ(A,B).
To generalize set similarities (at least those that are amenable to large-scale techniques) we consider a

class of similarities which can be written in the following form based on parameters x, y, z, z′:

sx,y,z,z′(A,B) =
x|A ∩B|+ y|A ∪B|+ z|A4B|
x|A ∩B|+ y|A ∪B|+ z′|A4B| .

For instance sJ = s1,0,0,1. Note that this family includes a complement operation of A ∪B and thus seems
to requires to know the size of the entire domain Ω from which A and B are subsets. However, in the case
of Jaccard similarity and others when y = 0, this term is not required, and thus the domain Ω is not required
to be defined.

Other common set similarities in this family include the following.

Math for Data copyright: Jeff M. Phillips

Hamming: sHam(A,B) = s1,1,0,1(A,B) =
|A ∩B|+ |A ∪B|

|A ∩B|+ |A ∪B|+ |A4B| = 1− |A4B||Ω|

Andberg: sAndb(A,B) = s1,0,0,2(A,B) =
|A ∩B|

|A ∩B|+ 2|A4B| =
|A ∩B|

|A ∪B|+ |A4B|

Rogers-Tanimoto: sRT(A,B) = s1,1,0,2(A,B) =
|A ∩B|+ |A ∪B|

|A ∩B|+ |A ∪B|+ 2|A4B| =
|Ω| − |A4B|
|Ω|+ |A4B|

Søensen-Dice: sDice(A,B) = s2,0,0,1(A,B) =
2|A ∩B|

2|A ∩B|+ |A4B| =
2|A ∩B|
|A|+ |B|

For sJ, sHam, sAndb, and sRT, then d(A,B) = 1 − s(A,B) is a metric. In particular, dHam(A,B) =
|Ω|(1− sHam(A,B)) is known as the Hamming distance; it is typically applied between bit vectors. In the
bit vector setting it counts the number of bits the vectors differ on. Indeed, if we represent each object i ∈ Ω
by a coordinate bi in |Ω|-dimension vector b = (b1, b2, . . . , b|Ω|) then these notions are equivalent.

Example: Set Similarities

Consider two sets A = {0, 1, 2, 5, 6} and B = {0, 2, 3, 5, 7, 9} in a domain Ω =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. We can compute each of our defined set similarities between these sets:

Jaccard: sJ(A,B) = 3
8 = 0.375

Hamming: sHam(A,B) = 1− 5
10 = 0.5

Andberg: sAndb(A,B) = 3
13 ≈ 0.231

Rogers-Tanimoto: sRT(A,B) = 10−5
10+5 ≈ 0.333

Sørensen-Dice: sDice(A,B) = 2(3)
5+6 ≈ 0.545

4.6 Locality Sensitive Hashing
This chapter has surveyed numerous different distances and similarities, which are themselves a small subset
of all distances and similarities one may consider when modeling data and an analysis task. While metric
properties and other nice mathematical properties are useful, another key concern is the computational cost
associated with using the distances and similarities. This is also not just the case of a single evaluation, but
when comparing a very large set of objects (say of n = 100 million objects). Then how can one quickly
determine which ones are close, or given a query object q, which ones in the large set are close to this query?

In 1-dimensional Euclidean data, these problems are relatively simple to address. Start by sorting all
objects, and storing them in sorted order. Then the nearby objects are the adjacent ones in the sorted
order. And if this ordering induces a balanced binary tree, then on a query, nearby objects can be found in
logarithmic running time (i.e., time proportional to log n).

Next we introduce “locality sensitive hashing” to address these question for higher-dimensional vector-
ized objects and for metrics on set-based representations. The main idea is for a family of objects B, and a
similarity s : B × B → [0, 1], it defines a family of random hash functions H with roughly the following
property, defined more precisely soonafter.

Math for Data copyright: Jeff M. Phillips

Locality Sensitive Hash Family: For a similarity function s, a locality sensitive hash family H is
a set of hash functions so for any two objects p, q ∈ B that

Prh∈H[h(p) = h(q)] ≈ s(p, q).

That is for any p, q ∈ B, a randomly chosen hash function h ∈ H will cause those two objects to
collide with probability roughly the same as their similarity.

Once a family is defined, it will be useful to randomly select a specific hash function from that family
(e.g., the h ∈ H this choice is the random variable for the probability). However, once some function h is
chosen, then it is a deterministic function.

Math for Data copyright: Jeff M. Phillips

Example: Simple Gridding LSH for Triangle Similarity

Consider a 1-dimensional dataset X ⊂ R1, and the triangle similarity

s4(p, q) = max{0, 1− |p− q|}.

-1 0 1 2 3 4pq

s4(q, ·)
s4(q, p) = 0.32

A simple hash family for this is a set of randomly shifted grids, where items in the same grid cell
hash together. Define H4 = {hη | η ∈ [0, 1)} where hη(x) = dx + ηe. That is each hη maps the
input to an integer (representing the index of a hash bucket) where a grid defines consecutive sets
(intervals) of numbers of length 1 which are all mapped to the same hash bucket. The parameter α
randomly shifts these grid boundaries. So whether or not a pair of points are in the same grid cell
depends on the random choice of η, and more similar points are more likely to be in the same grid
cell, and hence the same hash bucket.

-1 0 1 2 3 4pq

-1 0 1 2 3 4pq

-1 0 1 2 3 4pq

-1 0 1 2 3 4pq

-1 0 1 2 3 4pq

↵1

↵2

↵3

↵4

↵5

The example above shows 5 hash functions hη1 , hη2 , hη3 , hη4 , hη5 ∈ H4. In this example p and q
are in the same hash bucket for 2 of the 5 hash functions (for hη1 and hη4), so we would estimate the
similarity between p and q as 2/5 = 0.4.

Indeed, we can verify that for any p, q ∈ R that

Prhη∈H4 [hη(p) = hη(q)] = s4(p, q).

For any p, q with |p− q| > 1, both the probability and the similarity is 0; and if p = q, then both the
probability and similarity is 1. The probability that p and q are not hashed together is the probability
a randomly shifted grid boundary falls between them, which is precisely |p−q| given that |p−q| ≤ 1.
Hence the probability and similarity in this case are both 1− |p− q|, as desired.

A common and important data structure is a hash table that relies on a different type of hash func-

Math for Data copyright: Jeff M. Phillips

tion, which to distinguish it from an LSH, we call a separating hash function. These hash functions
h : B → U maps an object b ∈ B into a fixed universe U; typically U can be represented as a set of
integers {0, 1, 2, . . . , u − 1}, representing indices of an array of size u. Hash tables are again defined with
respect to a family H, and we consider a random choice h ∈ H. Given this random choice, then a perfect
separating hash function guarantees that for any two b, b′ ∈ B that Prh∈H[h(b) = h(b′)] = 1/u.

It is important to distinguish these two data structures and types of hash functions. Separating hash
functions are powerful and useful, but are not locality sensitive hash functions.

4.6.1 Properties of Locality Sensitive Hashing
More generally, locality sensitive hash families are defined with respect to distance d. A hash family H is
(γ, φ, α, β)-sensitive with respect to d when it has the following properties:

• Prh∈H[h(p) = h(q)] > α if d(p, q) < γ

• Prh∈H[h(p) = h(q)] < β if d(p, q) > φ

For this to make sense we need α > 0 and β < 1 for γ ≤ φ. Ideally we want α to be large, β to be small,
and φ− γ to be small. Then we can repeat this with more random hash functions to amplify the effect using
concentration of measure bounds; this can be used to make α larger and β smaller while fixing γ and φ.
Ultimately, if α becomes close to 1, then we almost always hash items closer than γ in the same bucket, and
as β becomes close to 0, then we almost never has items further than φ in the same bucket. Thus to define
similar items (within a φ− γ tolerance) we simply need to look at which ones are hashed together.

Example: Sensitivity for Triangle Similarity

Revisit the triangle similarity s4 and its associated grid-based hash family H4. Recall for any
objects p, q we have Prh∈H4 [h(p) = h(q)] = s4(p, q). Then for some similarity threshold τ =
d4(p, q) = 1− s4(p, q) we can set τ = γ = φ and have α = 1− τ and β = τ .

0 1s4(q, p)

P
r h

2H
4
[h
(p
)
=

h
(q
)]

0

1

0 1

P
r h

2H
4
[h
(p
)
=

h
(q
)]

0

1

⌧

d4(p, q)

1� ⌧

1� ⌧

1� ⌧

� = �

↵

�

This same setting (and picture) can be used for any threshold τ ∈ (0, 1) where the similarity, hash
family pair (s,H) satisfies Prh∈H[h(p) = h(q)] = s(p, q).

This (γ, φ, α, β)-sensitivity condition is indeed more complicated than the Pr[h(a) = h(b)] = s(a, b)
condition. But it is more general, and any such separation will be all that is required to allow the LSH data
structure to work, as elaborated on next. Moreover, this flexibility is required for certain important distances
like Euclidean distance d2.

Math for Data copyright: Jeff M. Phillips

4.6.2 Prototypical Tasks for LSH
We want to do this to answer three types of tasks given a large dataset P (which could have size |P | in the
hundreds of millions):

• For a threshold τ , determine all pairs p, p′ ∈ P so that d(p, p′) ≤ τ
(or symmetrically, so that s(p, p′) ≥ τ ′, e.g., with τ ′ = 1− τ).
• For a threshold τ and a query q, return all p ∈ P so that d(p, q) ≤ τ .
• For a query q, return point p̃ ∈ P so that it is approximately argminp∈P d(p, q).

The first two tasks are important in deduplication and plagiarism detection. For instance, this task occurs
when a search engine wants avoid returning two webpages which are very similar in content, or an instructor
wants to quickly check if two students have turned in very similar assignments to each other, or very similar
to one from an online solution repository.

In each case, we desire these tasks to take time roughly proportional to the number of items within
the distance threshold τ . In very high-dimensional Euclidean space, or in the space of sets, a brute force
checking of all distances would require time proportional to |P |2 for the first task, and proportional to |P |
time for the second task. This can be untenable when for instance the size of |P | is hundreds of millions.

The third task, as we will see in the classification section, is an essential tool for data analysis. If we
know how the objects p ∈ P in the database P behave, then we can guess that q will behave similarly to the
closest known example p∗ = argminp∈P d(p, q). We can solve for p∗ by invoking the second task multiple
times while doing a binary-like search on τ ; if the threshold is too large, we short cut the operation of the
second task as soon as we find more than a constant number of τ -close items.

The first task can also essentially be reduced to the second one, but just running the second task with each
p ∈ P as a query. So our description below will focus on the second task.

In all of these tasks, we will be able to solve, assuming we allow some approximation. We may not
return the closest item, but one that is not too much further than the closest item. We may return some items
slightly beyond our distance threshold, and many miss some which are barely closer than it. Given that the
choice of distance or similarity used is a modeling choice (why not use a different one?), we should not take
its exact value too seriously.

4.6.3 Banding to Amplify LSH
If we only use a single hash function h ∈ H where h : B → U , then we can design a hash table over the
universe U = {0, 1, 2, . . . , u − 1}. That is, if item h(p) = j, then we store it in a linked list Lj stored in
location j in a length u array.

But to increase the probability that two similar items hash to the same location in the array, but non-similar
items do not, we have two options: “Mama” bear’s approach and “Papa” bear’s approach. Papa bear will
be too harsh, and Mama bear too generous, but together they can be used in an approach called banding –
which is “Baby” bear’s approach and it is just right.

Papa bear is harsh, and says items p ∈ P are not close to q unless on multiple hash functions h1, h2, . . . , hb
all report that hi(p) = hi(q). This can be handled efficiently with a hash table again by creating a banded-
hash H(p) : B → U b, that is it maps each object p to a b-dimensional vector, each element in U , where
the ith coordinate is determined by the ith hash function. We can again create a hash table over these ub

possible entries (using standard tricks from data structures to avoid ub space). The problem with Papa bear’s
approach is that it is too selective, and reduces the probability that any two items hash to the same bucket in
the banded-hash table.

Mama bear is generous, and also considers multiple hash functions h1, h2, . . . , hr, and reports two items
similar if they collide in any hash function. If we keep r separate hash tables which store the contents of
P , then we can report the union of the items which collide with q. However, now the problem with Mama

Math for Data copyright: Jeff M. Phillips

bear’s approach is that it is not selective enough, it increases the probability that any two items hash to the
same bucket.

Banding (Baby bear’s approach) puts these together (Baby bear takes after both parents after all). We
create r banded hash functionsH , with each composed of b hash functions. This requires a total of r · b hash
functions, and a query to be hashed by all of these. Then if q intersects with any p in any banded hash table
(which requires all hash functions to collide), we return it as similar.

Example: Banding

Consider r = 3 banded hash functions H1, H2, and H3, where each banded hash function Hi has
b = 2 hash functions (hi,1, hi,2); each makes to a universe U = {0, 1, 2, . . . 5}. We apply these hash
functions to 5 points in a set P and a query point q, the results are shown in the table below. We
return objects close to q if and only if they have an exact match in any banded hash function.

hash h1,1 h1,2 h2,1 h2,2 h3,1 h3,2 close?
q 3 5 1 2 3 2
p1 [3, 5] 0 2 4 3 yes
p2 3 4 1 0 4 2 no
p3 0 2 4 3 5 1 no
p4 0 1 [1, 2] 0 2 yes
p5 4 5 3 5 4 1 no

We observe that only p1 and p4 are designated as close. Object p1 collides on H1 since both p1 and
q have h1,1 = 3 and h1,2 = 5. Object p4 collides on H2 since both p4 and q have h2,1 = 1 and
h2,2 = 2. Note that although p2 collides with q on 3 individual hash functions (h1,1 = 3, h2,1 = 1,
and h3,2 = 2) it never has an entire banded hash function collide, so it is not marked as close.

Analysis of banding. We will analyze the simple case where there is a hash family H so that we have
Prh∈H[h(p) = h(q)] = s(p, q). Let s = s(p, q), and we will analyze the case where we use r bands with b
hash functions each.

s = probability of collision on any one hash function

sb = probability all hash functions collide in 1 band

(1− sb) = probability not all collide in 1 band

(1− sb)r = probability that in no band, do all hashes collide

fb,r(s) = 1− (1− sb)r = probability all hashes collide in at least 1 band

So this function fb,r(s) = 1 − (1 − sb)r describes the probability that two objects of similarity s are
marked as similar in the banding approach. A similar, but slightly messier, analysis can be applied for any
(γ, φ, α, β)-sensitive hash family.

Math for Data copyright: Jeff M. Phillips

Example: Plotting the LSH similarity function

We can plot fb,r as an S-curve where on the x-axis s = s(p, q) and the y-axis represents the proba-
bility that the pair p, q is detected as close. In this example we have t = 15 and r = 5 and b = 3.

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f3,5(s) 0.005 0.04 0.13 0.28 0.48 0.70 0.88 0.97 0.998

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

Next we change the r and b parameters and observe what happens to the plot of the S-curve fr,b(s).
We show combinations of values r ∈ {4, 8, 16, 32} and b ∈ {2, 4, 6, 8}. The value b is fixed each
row, and increases as the rows go down. The value r is fixed each column, and increases as the
columns go from left to right.

r = 4 r = 8 r = 16 r = 32

b
=

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

b
=

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

b
=

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

b
=

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

1

We see that as r ·b increases, the curve becomes steeper. As r increases (move to the right), the curve
shifts to the left, that is a smaller similarity is likely designated as close. As b increases (move down),
the curve shifts to the right, that is a larger similarity is likely designated as close.

Math for Data copyright: Jeff M. Phillips

Choice of r and b. Usually there is a budget of t hash function one is willing to use. Perhaps it is
t = (1/2ε2) ln(2/δ); e.g., the number required by a Chernoff-Hoeffding bound to estimate the similarity
within ε-error, with probability at least 1− δ. Then how does one divvy them up among r and b?

The threshold τ ′ where f has the steepest slope is about τ ′ ≈ (1/r)1/b. So given a similarity value
s = s(p, q), if we want to return objects more similar than τ ′ (e.g. τ ′ = s = α = 1 − β) we can solve for
b = t/r in τ ′ = (b/t)1/b to (very roughly) yield b ≈ − logτ ′(t). And set r = t/b = t/(− logτ ′(t)). This
is only a rule-of-thumb. It is often best to plot the f function, and play with values of b and r to find your
desired trade-off, but this gives a good place to start searching.

If there is no budget on r and b, as they increase, the S-curve produced by f(s) gets sharper and sharper,
and provides a more accurate retrieval of all and only the close data points.

4.6.4 LSH for Angular Distance
Locality sensitive hash families can be developed for more than just the simplistic 1-dimensional triangle
similarity. Here we describe such a family for the angular distance dang and similarity sang. Recall these
functions operate on vectors a, b ∈ Sd−1, which are unit vectors in Rd.

A hash hu from hash family Hang is defined

Hang =
{
hu(·) = sign(〈·, u〉) | u ∼ Unif(Sd−1)

}

Lets unpack this. First choose a uniform random unit vector u ∈ Sd−1, that is so any unit vector in Rd is
equally likely to be chosen (u ∼ Unif(Sd−1)). Then hu(p) = sign(〈a, u〉), that is if the dot product of a and
u is positive, it returns +1, and if it is negative, it returns −1.

We will show at Prhu∈Hang [hu(a) = hu(b)] = sang(a, b)/π for any a, b ∈ Sd−1. Thus, after scaling by π,
the amplification analysis for this similarity and hash family pair is exactly same as with the simple triangle
similarity example.

Geometry of Angular LSH

Here we see why Prhu∈Hang [hu(a) = hu(b)] = sang(a, b)/π.
First consider the case for unit vectors u ∈ S1, the circle. These vectors u can be generated from a
random value η ∼ Unif[0, 2π) and then walking on the the unit circle a distance u′ from the point
(1, 0). Let Fu,⊥ be the set of perpendicular vectors to u; it is 2 vectors which can be specifically
defined as walking a distance η from (0, 1) and from (0,−1), instead of starting from (1, 0). The set
Fu,⊥ partitions the points s ∈ S1 with hu(s) = 1 from those with hu(s) = −1.
To analyze whether, any two points a, b ∈ S1 hash together hu(a) = hu(b), we can always consider
a = (0, 1) without loss of generality, by rotating the starting points to define u and correspondingly
Fu,⊥. It is also sufficient to consider the case where b has a positive y-coordinate; otherwise swap
roles of a, b, and rotate b to (0, 1). The key observation is that hu(a) 6= hu(b) if and only if a vector
u′ ∈ Fu,⊥ lies between a and b (in the positive y-coordinate part of S1).
The probability of generating such a u is precisely dang(a, b)/π: it occurs if η ∈ [0,dang] or η ∈
[π, π + dang], which happens with probability of 2dang/(2π).
It turns out the general case where p, q ∈ Sd−1 follows the exact same analysis. We only need
to consider the great circle C on p, q ∈ Sd−1 which contains p, q. This great circle is equiva-
lent to S1. Moreover, for a random u ∈ Sd−1, the set Fu,⊥ now also defines a set equivalent to
Sd−2. The sets C and Fu,⊥ will intersect in precisely 2 cases, with probability 1. The probabil-
ity that Fu,⊥ intersects the short arc connecting p, q on C is again precisely dang(p, q)/π. Hence
Prhu∈Hang [hu(p) = hu(q)] = 1− dang(p, q)/π = sang(a, b)/π.

Math for Data copyright: Jeff M. Phillips

Generating random unit vectors. A missing algorithmic element of this hash family is generating a
random unit vector. While generating a random uniform scalar is assumed standard, random unit vectors
require the following observations. For instance, generating d uniform vectors u1, u2, . . . , ud ∼ Unif[−1, 1]
and then normalizing u = (u1, u2, . . . , ud) → u/‖u‖ does not give the desired result. It places too much
probability near vector (1/

√
d, 1/
√
d, . . . , 1/

√
d) and similar vectors with signs flipped.

The easiest way to generate a random unit vector is through Gaussian random variables. A d-dimensional
Gaussian distribution Gd is defined:

Gd(x) =
1

(2π)d/2
e−‖x‖

2
2/2.

If we have two uniform random numbers u1, u2 ∼ Unif[0, 1] then we can generate two independent 1-
dimensional Gaussian random variables as (using the Box-Muller transform):

y1 =
√
−2 ln(u1) cos(2πu2)

y2 =
√
−2 ln(u1) sin(2πu2).

A uniform Gaussian has the (amazing!) property that all coordinates (in any orthogonal basis) are inde-
pendent of each other. Thus to generated a point x ∈ Rd from a d-dimensional Gaussian, for each coordinate
i we assign it the value of an independent 1-dimensional Gaussian random variable.

Moreover, the amazing property of this d-dimensional Gaussian random variable x
∑

Gd, implies that
projected to any one-dimensional subspace (through its mean, the origin) that it is a 1-dimensional Gaussian
distribution. That is for any unit vector v and x ∼ Gd, then 〈x, v〉 ∼ G1. This means it does not favor
any directions (as the d-variate uniform distribution (Unif[−1, 1])d favors the “corners”), and hence if we
normalize u← x/‖x‖2 for x ∼ Gd, then u ∼ Unif(Sd−1), as desired.

4.6.5 LSH for Euclidean Distance

The LSH hash family for Euclidean distance d2 is a combination of the ideas for angular distance and for
the triangle similarity. However, the probability does not work out quite as nicely so we require the more
general notion of (γ, φ, α, β)-sensitivity.

The hash family HL2,τ requires a desired similarity parameter τ (which was implicit in the scaling of the
triangle similarity), but not present in the angular similarity. The set is defined

HE,τ =
{
hu,η(·) = d〈·, u〉+ ηe | u ∼ Unif(Sd−1), η ∼ Unif[0, τ]

}
.

That is, it relies on a random unit vector u, and a random offset η. The hash operation hu,η(x) = d〈x, u〉+ηe
first projects onto direction u, and then offsets by η in this directions, and rounds up to an integer. For a
large enough integer t (e.g., if there are at most n data points, then using t = n3), then using instead hu,η(x)
mod t so it maps to a finite domain 0, 1, 2, . . . , t− 1 is also common.

The hash family HL2,τ is (τ/2, 2τ, 1/2, 1/3)-sensitive with respect to d2.

Math for Data copyright: Jeff M. Phillips

Geometry of Euclidean LSH Sensitivity

We show here that HL2,τ is (τ/2 = γ, 2τ = φ, 1/2 = α, 1/3 = β)-sensitive with respect to d2.
To see that we do not miss too many real collisions, observe that the projection onto u is contractive.
So for a, b ∈ Rd, then |〈a, u〉− 〈b, u〉| ≤ ‖a− b‖. Thus as with the 1-dimensional triangle similarity,
if ‖a − b‖ ≤ τ/2 = γ then |〈a, u〉 − 〈b, u〉| ≤ τ/2 and a, b fall in the same bin with probability at
least 1/2 = α.
To see that we do not observe too many spurious collisions, we can use an argument similar to that
for angular distance. If ‖a − b‖ > 2τ = φ and they collide, then the vector u must be sufficiently
orthogonal to (a− b) so the norm is reduced by half; otherwise if |〈a, u〉 − 〈b, u〉| ≥ τ , they cannot
be in the same bin. Formally

|〈a, u〉 − 〈b, u〉| = |〈a− b, u〉| = ‖a− b‖‖u‖| cos θu,a−b|,

where θu,a−b is the angle (in radians) between u and a − b. We know | cos(θu,a−b)| ≤ 1/2 only if
θu,a−b ≥ π/3. Fixing the 2-dimensional subspace which includes 0, u, and a − b, then we can see
that the probability θu,a−b ≥ π/3 is at most 1/3 = β (that is (2π/3) options for u out of 2π).

p-Stable Random Variables and LSH for Lp-Norms. There exists a beautiful extension to create similar
LSH hash families HLp,τ for any Lp distance with p ∈ (0, 2]. The main difference is to replace the u ∼
Unif(Sd−1) which is really some x ∼ Gd, with another d-dimensional random variable from what is known
as a p-stable distribution.

A distribution µ over R is p-stable (for p ≥ 0) if the following holds. Consider d + 1 random variables
X0, X1, . . . , Xd ∼ µ. Then considering any d real values {v1, . . . , vd}, then the random variable

∑
i viXi

has the same distribution as (
∑

i |vi|p)1/pX0. Such p-stable distributions exist for p ∈ (0, 2]. Special cases
are

• The Gaussian distribution G(x) = 1√
2π

exp(−x2/2) is 2-stable.

• Then the Cauchy distribution C(x) = 1
π

1
1+x2

is 1-stable.

Intuitively, this allows us to replace a sum of random variables with a single random variables by adjusting
coefficients carefully. But actually, it is the composition of the coefficients that is interesting.

In particular, for p = 2 and a vector v = (v1, v2, . . . , vd) where we want to estimate ‖v‖2 = (
∑

i v
2
i)

1/2,
we can consider each coordinate vi individually as an estimate by using a p-stable random variable. That
is we can estimate ‖v‖2 by choosing d + 1 random Gaussian vectors g0, g1, . . . , gd ∼ G, and calculating
(1/g0)

∑
i givi = (1/g0)〈g, v〉, where g = (g1, . . . , gd) Note that this by dividing by g0, we are approxi-

mately correctly normalizing the d-dimensional Gaussian random variable. This turns out to be sufficient
for Euclidean LSH and other similar methods for high-dimensional we will see later.

Using the Cauchy random variables c0, c1, . . . , cd ∼ C in place of the Gaussian ones allows us to estimate
‖v‖1 =

∑
i |vi| as (1/c0)〈c, v〉 with c = (c1, . . . cd).

4.6.6 Minhashing as LSH for Jaccard Distance
The final example of LSH we will provide is for the Jaccard distance, which is defined on sets. This hash
family is HJ again has the nice property that Prhσ∈HJ [hσ(A) = hσ(B)] = sJ(A,B), so the previous
amplification analysis applies directly. Consider sets defined over a domain Ω of size n, and define Πn as
the set of all permutations from Ω to distinct integers in [n] = {1, 2, 3, . . . , n}. So for each element ω ∈ Ω

Math for Data copyright: Jeff M. Phillips

and σ ∈ Πn maps σ(ω) = i for some i ∈ [n], and for a fixed σ(ω) 6= σ(ω′) for ω 6= ω′. In practice we can
relax this 6= restriction as we discuss below. Then we define

HJ =

{
hσ(A) = min

ω∈A
σ(ω) | σ ∼ Unif(Πn)

}
.

That is, the hash function hσ applies σ to each ω in A, and then returns the smallest value out of all of them.
Due to the return of the smallest value, this type of approach is often called a min hash.

Example: Min Hashing

Consider two sets A = {a, b, e, f, h} and B = {b, c, e, g, j} over the domain Ω =
{a, b, c, d, e, f, g, h, i, j}. We can now set choose two permutations functions σ1, σ2 ∈ HJ :

a b c d e f g h i j
σ1 4 6 3 1 2 8 9 5 10 7
σ2 3 7 8 5 9 10 1 4 6 2

These permutations induce hash functions hσ1 , hσ2 ∈ HJ . These can then be applied to sets A and
B as

A B
hσ1 2 2
hσ2 3 1

For instance hσ1(A) = min{σ1(a), σ1(b), σ1(e), σ1(f), σ1(h)} = min{4, 6, 2, 8, 5} = 2.
Observe that the Jaccard similarity sJ(A,B) = 2

8 . On the hash functions there is a collision for
hσ1(A) = hσ1(B), but not for hσ2 , so they would estimate the similarity as 1

2 .

It is useful to understand why Prhσ∈HJ [hσ(A) = hσ(B)] = sJ(A,B). We think of three types of
elements from Ω: the objects ΩA∩B which are in both A and B; the objects ΩAYB which are in either A
or B, but not both; and the objects Ω/∈A,B which are in neither A or B. Note that the Jaccard similarity is
precisely sJ(A,B) = |ΩA∩B |

|ΩA∩B |+|ΩAYB | . Recall, the similarity has no dependence on the set Ω/∈A,B hence we
actually do not need to know all of Ω. But we can also see that the probability of a hash collision is precisely

|ΩA∩B |
|ΩA∩B |+|ΩAYB | . Any value returned by hσ can only be an element from ΩA∩B ∪ ΩAYB , these are equally
likely, and it is only a collision if it is one from ΩA∩B .

Fast min hash functions. So this definition of min hash functions is easy to analyze but it is suboptimal.
It needs to define and store a hash function from Ω to [|Ω|]. But we would like to use these ideas over
domains such as IP addresses or words or strings where there is an enormous implicit domain Ω that is often
too big to store. An alternative is to replace σ with another separating hash function f : Ω → [N] where
N is a sufficiently large value (such as the size of the largest set we expect to encounter to the power 3).
There will now be some chance of collisions between objects in any set A, but it will be small enough to
have insignificant effect on the analysis. Moreover, most programming languages include built in such hash
functions that can operate on strings or large integers or double precisions values (e.g., using the SHA-1
hash with a salt). Then we can define our hash family as

H′J = {hf (A) = min
ω∈A

f(ω ⊕ S) | f : Ω→ [N], S ∼ random salt}.

Math for Data copyright: Jeff M. Phillips

Exercises

Q4.1: Consider two vectors a = (1, 2,−4, 3,−6) and b = (1, 2, 5,−2, 3) ∈ R5.

1. Calculate the d1(a, b), d2(a, b), d0(a, b), d∞(a, b), and sort the answers.

2. Without calculating d3(a, b), explain where it will fall in the sorted order.

3. Does it make sense to normalize these vectors so they lie in ∆4 (e.g., by dividing by ‖a‖1 and
‖b‖2, and use the Kullback-Liebler divergence dKL on them? Why or why not?

4. Normalize the data sets to like on S4, and compute the cosine distance between them.

Q4.2: Consider sets A = {1, 2, 4, 8} and B = {1, 2, 3}.

1. Calculate the Jaccard distance dJ(A,B).

2. Compute the follow similarities if they are well-defined?

• Jaccard similarity sJ(A,B)

• Hamming similarity sHam(A,B)

• Andberg similarity sAndb(A,B)

• Rogers-Tanimoto similarity sRT(A,B)

• Soerensen-Dice similarity sDice(A,B)

Math for Data copyright: Jeff M. Phillips

5 Linear Regression

We introduce the basic model of linear regression. It builds a linear model to predict one variable from
one other variable or from a set of other variables. We will demonstrate how this simple technique can
extend to building potentially much more complex polynomial models. Then we will introduce the central
and extremely powerful idea of cross-validation. This method fundamentally changes the statistical goal of
validating a model, to characterizing the data.

5.1 Simple Linear Regression
We will begin with the simplest form of linear regression. The input is a set of n 2-dimensional data points
(X, y) = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The ultimate goal will be to predict the y values using only the
x-values. In this case x is the explanatory variable and y is the dependent variable.

The notation (X, y), with a uppercase X and lowercase y will become clear later since it will commonly
generalize to multidimensional settings for the x-part, but stay 1-dimensional (or otherwise simple) for the
y part.

In order to do this, we will “fit” a line through the data of the form

y = `(x) = ax+ b,

where a (the slope) and b (the intercept) are parameters of this line. The line ` is our “model” for this input
data.

Example: Fitting a line to height and weight

Consider the following data set that describes a set of heights and weights.

height (in) weight (lbs)
66 160
68 170
60 110
70 178
65 155
61 120
74 223
73 215
75 235
67 164

69 ?
60 62 64 66 68 70 72 74 76

100

120

140

160

180

200

220

240

Note that in the last entry, we have a height of 69, but we do not have a weight. If we were to guess
the weight in the last row, how should we do this?
We can draw a line (the red one) through the data points. Then we can guess the weight for a data
point with height 69, by the value of the line at height 69 inches: about 182 pounds.

Measuring error. The purpose of this line is not just to be close to all of the data (for this we will have to
wait for PCA and dimensionality reduction). Rather, its goal is prediction; specifically, using the explanatory
variable x to predict the dependent variable y.

79

In particular, for every value x ∈ R, we can predict a value ŷ = `(x). Then on our dataset, we can
examine for each xi how close ŷi is to yi. This difference is called a residual:

ri = |yi − ŷi| = |yi − `(xi)|.

Note that this residual is not the distance from yi to the line `, but the distance from yi to the correspond-
ing point with the same x-value. Again, this is because our only goal is prediction of y. And this will
be important as it allows techniques to be immune to the choice of units (e.g., inches or feet, pounds or
kilograms)

So the residual measures the error of a single data point, but how should we measure the overall error of
the entire data set? The common approach is the sum of squared errors:

SSE((X, y), `) =
n∑

i=1

r2
i =

n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − `(xi))2.

Why is this the most common measure? Here are 3 explanations:

• The sum of squared errors was the optimal result for a single point estimator under Gaussian noise
using Bayesian reasoning, when there was assumed Gaussian noise (See T2). In that case the answer
was simply the mean of the data.

• If you treat the residuals as a vector r = (r1, r2, . . . , rn), then the standard way to measure total length

of a vector r is through its norm ‖r‖, which is most commonly its 2-norm ‖r‖ = ‖r‖2 =
√∑n

i=1 r
2
i .

The square root part is not so important (it does not change which line ` minimizes this error), so
removing this square root, we are left with SSE.

• For this specific formulation, there is a simple closed form solution (which we will see next) for `.
And in fact, this solution will generalize to many more complex scenarios.

There are many other formulations of how best to measure error for the fit of a line (and other models),
but we will not cover all them in this text.

Solving for `. To solve for the line which minimizes SSE((X, y), `) there is a very simply solution, in
two steps. Calculate averages x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi, and create centered n-dimension vectors

X̄ = (x1 − x̄, x2 − x̄, . . . , xn − x̄) for all x-coordinates and Ȳ = (y1 − ȳ, y2 − ȳ, . . . , yn − ȳ) for all
y-coordinates.

1. Set a = 〈Ȳ , X̄〉/‖X̄‖2

2. Set b = ȳ − ax̄

This defines `(x) = ax+ b.
We will provide the proof for why this is the optimal solution for the high-dimensional case (in short, it

can be shown by expanding out the SSE expression, taking the derivative, and solving for 0). We will only
provide some intuition here.

First lets examine the intercept

b =
1

n

n∑

i=1

(yi − axi) = ȳ − ax̄

This setting of b ensures that the line y = `(x) = ax + b goes through the point (x̄, ȳ) at the center of the
data set since ȳ = `(x̄) = ax̄+ b.

Math for Data copyright: Jeff M. Phillips

Second, to understand how the slope a is chosen, it is illustrative to reexamine the dot product as

a =
〈Ȳ , X̄〉
‖X̄‖2 =

‖Ȳ ‖ · ‖X̄‖ · cos θ

‖X̄‖2 =
‖Ȳ ‖
‖X̄‖ cos θ,

where θ is the angle between the n-dimensional vectors Ȳ and X̄ . Now in this expression, the ‖Ȳ ‖/‖X̄‖
captures how much on (root-squared) average Ȳ increases as X̄ does (the rise-over-run interpretation of
slope). However, we may want this to be negative if there is a negative correlation between X̄ and Ȳ , or
really this does not matter much if there is no correlation. So the cos θ term captures the correlation after
normalizing the units of X̄ and Ȳ .

import numpy as np

x = np.array([66, 68, 65, 70, 65, 62, 74, 70, 71, 67])
y = np.array([160, 170, 159, 188, 150, 120, 233, 198, 201, 164])

ave_x = np.average(x)
ave_y = np.average(y)

#first center the data points
xc = x - ave_x
yc = y - ave_y

a = xc.dot(yc)/xc.dot(xc)
b = ave_y - a*ave_x
print a, b

#or with scipy
from scipy import polyfit
(a,b)=polyfit(x,y,1)
print a, b

#predict weight at x=69
w=a*69+b

5.2 Linear Regression with Multiple Explanatory Variables
Magically, using linear algebra, everything extends gracefully to using more than one explanatory vari-
ables. Now consider a data set (X, y) = {(x1, y1), (x2, y2), . . . , (xn, yn)} where each data point has
xi = (xi,1, xi,2, . . . , xi,d) ∈ Rd and yi ∈ R. That is there are d explanatory variables, as the coordi-
nates of xi, and one dependent variable in yi. We would now like to use all of these variables at once to
make a single (linear) prediction about the variable yi. That is, we would like to create a model

ŷi = Mα(xi) = Mα(xi,1, xi,2, . . . , xi,d) = α0 +
d∑

j=1

αjxi,j

= α0 + α1xi,1 + α2xi,2 + . . .+ αdxi,d.

= 〈α, (1, xi,1, xi,2, . . . , xi,d)〉 = 〈α, (1, xi)〉.

In the above equivalent notations α0 serves the purpose of the intercept b, and all of the αjs replace the single
coefficient a in the simple linear regression. Indeed, we can write this model as a dot product between the
(d + 1)-dimensional vectors α = (α0, α1, . . . , αd) and (1, xi,1, xi,2, . . . , xi,d) = (1, xi). As promised, the
magic of linear algebra has allowed us to describe a more complex linear model Mα. Next we will see how
to solve it.

Math for Data copyright: Jeff M. Phillips

Example: Predicting customer value

A website specializing in dongles (dongles-r-us.com) wants to predict the total dollar amount that
visitors will spend on their site. It has installed some software that can track three variables:

• time (the amount of time on the page in seconds): X1,
• jiggle (the amount of mouse movement in cm): X2, and
• scroll (how far they scroll the page down in cm): X3.

Also, for a set of past customers they have recorded the
• sales (how much they spend on dongles in cents): y.

We see a portion of their data set here with n = 11 customers:

time: X1 jiggle: X2 scroll: X3 sales: y
232 33 402 2201
10 22 160 0

6437 343 231 7650
512 101 17 5599
441 212 55 8900
453 53 99 1742
2 2 10 0

332 79 154 1215
182 20 89 699
123 223 12 2101
424 32 15 8789

To build a model, we recast the data as an 11 × 4 matrix X = [1, X1, X2, X3]. We let y be the
11-dimensional column vector.

X =

1 232 33 402
1 10 22 160
1 6437 343 231
1 512 101 17
1 441 212 55
1 453 53 99
1 2 2 10
1 332 79 154
1 182 20 89
1 123 223 12
1 424 32 15

y =

2201
0

7650
5599
8900
1742

0
1215
699
2101
8789

The goal is to learn the 4-dimensional column vector α = [α0;α1;α2, α3] so

y ≈ Xα.

Setting α = (XTX)−1XT y obtains (roughly) α0 = 2626, α1 = 0.42, α2 = 12.72, and α3 =
−6.50. This implies an average customer with no interaction on the site generates α0 = $2.62.
That time does not have a strong effect here (only a coefficient α1 at only 0.42), but jiggle has a
strong correlation (with coefficient α2 = 12.72, this indicates 12 cents for every centimeter of mouse
movement). Meanwhile scroll has a negative effect (with coefficient α3 = −6.5); this means that
the more they scroll, the less likely they are to spend (just browsing dongles!).

Math for Data copyright: Jeff M. Phillips

Given a data point xi = (xi,1, xi,2, . . . , xi,d), we can again evaluate our prediction ŷi = M(xi) using
the residual value ri = |yi − ŷi| = |yi = M(xi)|. And to evaluate a set of n data points, it is standard to
consider the sum of squared error as

SSE(X, y,M) =

n∑

i=1

r2
i =

n∑

i=1

(yi −M(xi))
2.

To obtain the coefficients which minimize this error, we can now do so with very simple linear algebra.

First we construct a n × (d + 1) data matrix X̃ = [1, X1, X2, . . . , Xd], where the first column 1 is the
n-dimensional all ones column vector [1; 1; . . . ; 1]. Each of the next d columns is a column vector Xj ,
where xi,j = Xi,j is the ith entry of Xj and represents the jth coordinate of data point xi. Then we let y
be a n-dimensional column vector containing all the dependent variables. Now we can simply calculate the
(d+ 1)-dimensional column vector α = (α0, α1, . . . , αd) as

α = (X̃T X̃)−1X̃T y.

Let us compare to the simple case where we have 1 explanatory variable. The (X̃T X̃)−1 term replaces
the 1

‖X̄‖2 term. The X̃T y replaces the dot product 〈Ȳ , X̄〉. And we do not need to separately solve for

the intercept b, since we have created a new column in X̃ of all 1s. The α0 replaces the intercept b; it is
multiplied by a value 1 in X̃ equivalent to b just standing by itself.

Often the matricesX and X̃ are used interchangeably, and hence we drop the ˜ from X̃ in most situations.
We can either simply treat all data points xi as one-dimension larger (with always a 1 in the first coordinate),
or we can fit a model on the original matrix X and ignore the offset parameter α0, which is then by default
0. The former approach, where each xi is just assumed one dimension larger is more common since it
automatically handles the offset parameter.

Math for Data copyright: Jeff M. Phillips

Geometry of the Normal Equations

Why does α = (XTX)−1XT y minimize the sum of squared errors:

SSE(X, y,M) =

n∑

i=1

r2
i =

n∑

i=1

(yi − 〈α, xi〉)2?

Fixing the dataX and y, and representingM by its parameters α, we can consider a function S(α) =
SSE(X, y,M). Then we observe that S(α) is a quadratic function in α, and it is convex (see T6), so
its minimum is when the gradient is 0. This will be true when each partial derivative is 0. Let Xi,j

be the jth coordinate of xi so residual ri = (yi − 〈α, xi〉) has partial derivative dri
dαj

= −Xi,j . Then
set to 0 each partial derivative:

0 =
dS(α)

dαj
= 2

n∑

i=1

ri
dri
dαj

= 2

n∑

i=1

ri(−Xi,j) = 2

n∑

i=1

(yi − 〈α, xi〉)(−Xi,j)

We can rearrange this into the normal equations

n∑

i=1

Xi,j〈xi, α〉 =

n∑

i=1

Xi,jyi for all j ∈ {1, 2, . . . , d}

equivalently (XTX)α = XT y.

Multiplying by the inverse gram matrix XTX on both sides reveals the desired α = (XTX)−1XT y.
Geometry: To see why these are called the normal equations, consider a form

0 = (y −Xα)TX,

where 0 is the all-zeros vector in Rn. Thus for any vector v ∈ Rn, then

0 = (y −Xα)TXv = 〈y −Xα,Xv〉.

This includes when v = α; under this setting then Xv = Xα = ŷ. Notice that r = y −Xα is the
vector in Rn that stores all residuals (so y = ŷ + r). Then the normal equations implies that

0 = 〈y −Xα,Xα〉 = 〈r, ŷ〉;

that is, for the optimal α, the prediction ŷ and the residual vector r are orthogonal. Since ŷ = Xα
is restricted to the (d + 1)-dimensional span of the columns of X , and α minimizes ‖r‖2, then this
orthogonality implies that r is the normal vector to this (d+ 1)-dimensional subspace.

import numpy as np
from numpy import linalg as LA

directly
alpha = np.dot(np.dot(LA.inv(np.dot(X.T,X)),X.T),y.T)

or with LA.lstsq
alpha = LA.lstsq(X,y)[0]

Math for Data copyright: Jeff M. Phillips

5.3 Polynomial Regression
Sometimes linear relations are not sufficient to capture the true pattern going on in the data with even a
single dependent variable x. Instead we would like to build a model of the form:

ŷ = M2(x) = α0 + α1x+ α2x
2

or more generally for some polynomial of degree p

ŷ = Mp(x) = α0 + α1x+ α2x
2 + . . .+ αpx

p

= α0 +

p∑

i=1

αix
i.

Example: Predicting Height and Weight with Polynomials

We found more height and weight data, in addition to the ones in the height-weight example above.

height (in) weight (lbs)
61.5 125
73.5 208
62.5 138
63 145
64 152
71 180
69 172

72.5 199
72 194

67.5 172

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 1 fit

But can we do better if we fit with a polynomial?

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 2 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 3 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 4 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 5 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 10 fit

60 62 64 66 68 70 72 74 76
100

120

140

160

180

200

220

240
degree 15 fit

Math for Data copyright: Jeff M. Phillips

Again we can measure error for a single data point (xi, yi) as a residual as ri = |ŷ− yi| = |Mα(xi)− yi|
and the error on n data points as the sum of squared residuals

SSE(P,Mα) =
n∑

i=1

r2
i =

n∑

i=1

(Mp(xi)− yi)2.

Under this error measure, it turns out we can again find a simple solution for the residualsα = (α0, α1, . . . , αp).
For each dependent variable data value x we create a (p+ 1)-dimensional vector

v = (1, x, x2, . . . , xp).

And then for n data points (x1, y1), . . . , (xn, yn) we can create an n× (p+ 1) data matrix

X̃p =

1 x1 x2
1 . . . xp1

1 x2 x2
2 . . . xp2

...
...

...
. . .

...
1 xn x2

n . . . xpn

 y =

y1

y2
...
vn

 .

Then we can solve the same way as if each data value raised to a different power was a different dependent
variable. That is we can solve for the coefficients α = (α0, α1, α2, . . . , αp) as

α = (X̃T
p X̃p)

−1X̃T
p y.

5.4 Cross Validation

So it appears, as we increase p larger and larger, the data is fit better and better. The only downside appears
to be the number of columns needed in the matrix X̃p, right? Unfortunately, that is not right. Then how (and
why?) do we choose the correct value of p, the degree of the polynomial fit?

A (very basic) statistical (hypothesis testing) approach may be choose a model of the data (the best fit
curve for some polynomial degree p, and assume Gaussian noise), then calculate the probability that the
data fell outside the error bounds of that model. But maybe many different polynomials are a good fit?

In fact, if we choose p as n − 1 or greater, then the curve will polynomially interpolate all of the points.
That is, it will pass through all points, so all points have a residual of exactly 0 (up to numerical precision).
This is the basis of a lot of geometric modeling (e.g., for CAD), but it turns out bad for data modeling.

Math for Data copyright: Jeff M. Phillips

Example: Simple polynomial example

Consider the simple data set of 9 points

x 1 2 3 4 5 6 7 8 9
y 4 6 8.2 9 9.5 11 11.5 12 11.2

With the following polynomial fits for p = {1, 2, 3, 4, 5, 8}. Believe your eyes, for p = 8, the curve
actually passes through each and every point exactly.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 1 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 2 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 3 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 4 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 5 fit

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 8 fit

Recall, our goal was for a new data point with only an x value to predict its y-value. Which do you
think does the best job?

Generalization and Cross-Validation. Our ultimate goal in regression is generalization (how well do we
predict on new data), not SSE! Using some error measure (SSE) to fit a line or curve, is a good proxy for
what we want, but in many cases (as with polynomial regression), it can be abused. We want to know how
our model will generalize to new data. How would we measure this without new data?

The solution is cross-validation. In the simplest form, we randomly split our data into training data (on
which we build a model) and testing data (on which we evaluate our model). The testing serves to estimate
how well we would do on future data which we do not have.

• Why randomly?: Because you do not want to bias the model to do better on some parts than other in
how you choose the split. Also, since we assume the data elements come iid from some underlying
distribution, then the test data is also iid if you chose it randomly.

• How large should the test data be?: It depends on the data set. Both 10% and 33% are common.

Let (X, y) be the full data set (with n rows of data), and we split it into data sets (Xtrain, ytrain) and
(Xtest, ytest) with ntrain and ntest rows, respectively. With n = ntrain + ntest. Next we build a model with the
training data, e.g.,

α = (XT
trainXtrain)−1XT

trainytrain.

Math for Data copyright: Jeff M. Phillips

Then we evaluate the model Mα on the test data Xtest, often using SSE(Xtest, ytest,Mα) as

SSE(Xtest, ytest,Mα) =
∑

(xi,yi)∈(Xtest,ytest)

(yi −Mα(xi))
2 =

∑

(xi,yi)∈(Xtest,ytest)

(yi − 〈(xi; 1), α〉)2.

We can use the testing data for two purposes:

• To estimate how well our model would perform on new data, yet unseen. That is the predicted residual
of a new data point is precisely SSE(Xtest, ytest,Mα)/ntest.

• To choose the correct parameter for a model (which p to use)?

Its important to not use the same (Xtest, ytest) to do both tasks. If we choose a model with (Xtest, ytest), then
we should reserve even more data for predicting the generalization error. When using the test data to choose
a model parameter, then it is being used to build the model; thus evaluating generalization with this same
data can suffer the same fate as testing and training with the same data.

So how should we choose the best p? We calculate models Mαp for each value p on the same training
data. Then calculate the model error SSE(Xtest, ytest,Mαp) for each p, and see which has the smallest value.
That is we train on (Xtrain, ytrain) and test(evaluate) on (Xtest, ytest).

Example: Simple polynomial example with Cross Validation

Now split our data sets into a train set and a test set:

train:
x 2 3 4 6 7 8
y 6 8.2 9 11 11.5 12

test:
x 1 5 9
y 4 9.5 11.2

With the following polynomial fits for p = {1, 2, 3, 4, 5, 8} generating model Mαp on the test data.
We then calculate the SSE(xtest, ytest,Mαp) score for each (as shown):

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 1 fit | SSE 17.600

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 2 fit | SSE 2.749

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 3 fit | SSE 2.800

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 4 fit | SSE 9.634

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 5 fit | SSE 101.513

0 2 4 6 8 10
0

2

4

6

8

10

12

14

degree 8 fit | SSE 46.422

And the polynomial model with degree p = 2 has the lowest SSE score of 2.749. It is also the
simplest model that does a very good job by the “eye-ball” test. So we would choose this as our
model.

Math for Data copyright: Jeff M. Phillips

Leave-one-out Cross Validation. But, not training on the test data means that you use less data, and your
model is worse! If your data is limited, you may not want to “waste” this data!

If your data is very large, then leaving out 10% is not a big deal. But if you only have 9 data points it can
be. The smallest the test set could be is 1 point. But then it is not a very good representation of the full data
set.

The alternative is to create n different training sets, each of size n−1 (X1,train, X2,train, . . . , Xn,train), where
Xi,train contains all points except for xi, which is a one-point test set. Then we build n different models
M1,M2, . . . ,Mn, evaluate each model Mi on the one test point xi to get an error Ei = (yi−Mi(xi))

2, and
average their errors E = 1

n

∑n
i=1Ei. Again, the parameter with the smallest associated average error E is

deemed the best. This allows you to build a model on as much data as possible, while still using all of the
data to test.

However, this requires roughly n times as long to compute as the other techniques, so is often too slow
for really big data sets.

import matplotlib as mpl
mpl.use(’PDF’)
import matplotlib.pyplot as plt
import scipy as sp
import numpy as np
import math
from numpy import linalg as LA

def plot_poly(x,y,xE,yE,p):
plt.scatter(x,y, s=80, c="blue")
plt.scatter(xE,yE, s=20, c="green")
plt.axis([0,10,0,15])

s=sp.linspace(0,10,101)

coefs=sp.polyfit(x,y,p)
ffit = np.poly1d(coefs)
plt.plot(s,ffit(s),’r-’,linewidth=2.0)

#evaluate on xE, yE
resid = ffit(xE)
RSSE = LA.norm(resid-yE)
SSE = RMSE * RMSE

title = "degree %s fit | SSE %0.3f" % (p, SSE)
plt.title(title)
file = "CVpolyReg%s.pdf" % p
plt.savefig(file, bbox_inches=’tight’)
plt.clf()
plt.cla()

train data
xT = np.array([2, 3, 4, 6, 7, 9])
yT = np.array([6, 8.2, 9, 11, 11.5, 11.2])

#test data
xE = np.array([1, 5, 8])
yE = np.array([4, 9.5, 12])

Math for Data copyright: Jeff M. Phillips

p_vals = [1,2,3,4,5,8]
for i in p_vals:

plot_poly(xT,yT,xE,yE,i)

5.5 Regularized Regression
Returning to linear regression with multiple explanatory variables, cross-validation can again be useful to
help tune our model. This at first may seem contradictory, as there is one optimal model which minimizes
SSE; but we will see this is useful when there are more dimensions d (the explanatory variables) than
needed to build a model from n data points. Indeed these methods can extend the least squares regression
framework to when d is greater than n, which from a linear algebraic perspective seems impossible since
then the SSE solution is under-defined.

Gauss-Markov Theorem Linear regression is in some sense optimal, as formalized by the Gauss-Markov
Theorem. This states that, for data (X, y), the linear model Mα derived from α = (XTX)−1XT y is the
best possible, conditioned on three things:

• best is defined as lowest variance in residuals (the SSE cost we study)
• the solution has 0 expected error, and
• all errors εi = xiα− yi are not known to be correlated.

It is important to examine these benign seeming conditions. There are reasonable alternatives to the first
condition, but studying the SSE is ultimately reasonable, it is the minimum variance solution. The third
condition can in some cases be challenged as well, but requires more information than we typically assume
and will involve ideas beyond the scope of this text. The second condition seems the most benign – why
would we want to expect to have non-zero error? But this condition, it turns out, is the most ripe to exploit
in ways that improve upon ordinary linear squares regression.

5.5.1 Tikhonov Regularization for Ridge Regression
We first introduce Tikhonov regularization, which results in a parameterized linear regression known as
ridge regression. Consider again a data set (X, y) with n data points. Now instead of minimizing α over

SSE(X, y,Mα) =

n∑

i=1

(yi −Mα(xi))
2 = ‖Xα− y‖22

we introduce a new cost function for a parameter s > 0 as

W◦(X, y, α, s) =
1

n
‖Xα− y‖22 + s‖α‖22.

This cost function is similar to before, except it adds a regularization term +s‖α‖22. This term is adding
a bias towards α, and in particular, it is biasing α to be smaller; if there are two vectors α1 and α2 such
that ‖Xα1 − y‖22 = ‖Xα2 − y‖22, then this cost function will prefer whichever has a smaller norm. In fact
this will also prefer some vectors (representing models) α which do not correspond to the smallest values
‖Xα−y‖22, since they will make up for it with an even smaller term s‖α‖22. Indeed the larger that parameter
s, the more a small norm of α is favored versus its fit to the data.

The normalization of the ‖Xα − y‖22 by 1/n makes it easier to understand the s‖α‖22 as the number of
data points n change. This essentially compares the s‖α‖22 term with the effect of a single data point.

Math for Data copyright: Jeff M. Phillips

Geometry of Favoring a Small ‖α‖

Consider the simple example with one explanatory variable. In this case, the α1 parameter corre-
sponds to the slope of the line. Very large sloped models are inherently unstable. A small change in
the x-value will lead to large changes in the y value (i.e., if ŷ = α1x then ŷδ = α1(x+δ) = ŷ+α1δ.
This picture only shows the affect of α with one explanatory variable, but this is most useful with
many explanatory variables. In this setting, it is more common to extrapolate: make predictions on
new x′ which are outside the region occupied by the data X . In higher dimensions, it is hard to
cover the entire domain with observations. And in these settings where predictions are made past the
extent of data, it is even more dangerous to have parameters αj which seem to fit the data locally, but
change rapidly beyond the extent of the data.
Hence, smaller α are simpler models that are more cautious in extrapolated predictions, and so the
predictions ŷ are less sensitive to changes in x.

Moreover, it turns out that solving for the solution α◦s which minimizes W◦(X, y, α, s) is as simple as for
the ordinary least squares where s = 0. In particular

α◦s = arg min
α
W◦(X, y, α, s) = (XTX + (s/n)I)−1XT y.

where I is the d× d identity matrix.
Recall that the matrix inverse is not defined if the matrix is not full rank. So in the case whereX has fewer

data points (n) than dimensions (d), then ordinary least squares (with s = 0) will not be solvable this way.
Moreover, even if n > d, but if some of the eigenvectors of XTX are very small, then this matrix inverse
operation will be numerically unstable. Adding the (s/n)I term explicitly adds (s/n) to all eigenvalues,
hence making the operation more stable. Explicitly, it makes the regression biased but more stable with
respect to directions within Rd where X has small covariance.

Improved generalization. Indeed, it can be shown that appropriately setting some s > 0 can ”get around”
the Gauss-Markov Theorem. Formally, consider data drawn iid from a distribution (X, y) ∼ µα where given
some choice of x, then y = 〈x, α〉+ ε, where ε is unbiased noise. Then unless always |ε| = 0, there exists
some s > 0 such that predictions on new data from the same µα will have smaller SSE using the optimum
from W◦ than from ordinary least squares.

This improved error argument is non-constructive since we do not explicitly know the distribution µα
from which our data is drawn (we only observe our data (X, y)). However, we can use cross-validation to
select the best choice of s on some testing data.

5.5.2 Lasso
A surprisingly effective variant of this regularization is known as the lasso. It replaces the W◦ cost function,
again using a parameter s > 0 as

W�(X, y, α, s) =
1

n
‖Xα− y‖22 + s‖α‖1.

This has the same general form as ridge regression, but it makes the subtle change in the norm of the
regularizer from ‖ · ‖22 to ‖ · ‖1.

This alternative form of regularization has all of the basic robustness and stronger generalization proper-
ties associated with biasing towards as a smaller normed choice of α in ridge regression. However, it also
has two additional effects. First, the L1 norm is less simple to optimize with respect to. Although there
are algorithmic and combinatorial approaches, there is not a simple closed form using the matrix inverse

Math for Data copyright: Jeff M. Phillips

available anymore. We will discuss a couple ways to optimize this object soon, and then in the more gen-
eral context of the following chapter. Second, this formulation has the additional benefit that it also biases
towards sparser solutions. That is, for large enough values of s, the optimal choice of

α�s = arg min
α
W�(X, y, α, s)

will have multiple coordinates α�s,j = 0. And, in general, as s increases the number of indexes j with
α�s,j = 0 will increase.

Sparser models α, those with several coordinates αj = 0, are useful for various reasons. If the number
of non-zero coordinates is small, it is simpler to understand and more efficient to use. That is, to make a
prediction from a new data point x, only the coordinates which correspond to non-zero αj values need to
be considered. And while this does not definitively say which coordinates are actually meaningful towards
understanding the dependent variable, it provides a small and viable set. The process of selecting such a
subset is known variable selection. It is known that under some often reasonable assumptions, if the data is
indeed drawn from a sparse model with noise, then using lasso to recover α�s for the proper s can recover
the true model exactly. This striking result is relatively recent, and already has many important implications
in statistical inference, signal processing, and machine learning.

5.5.3 Dual Constrained Formulation

There is an equivalent formulation to both ridge regression and lasso that will make it easer to understand
their optimization properties, and to describe a common approach used to solve for their solution. That
is, instead of solving the modified objective functions W◦ and W�, we can solve the original least squares
objective ‖Xα− y‖22, but instead provide a hard constraint on the allowable values of α.

Specifically, we can reformulate ridge regression for some parameter t > 0 as

α◦t = arg min
α
‖Xα− y‖22 such that ‖α‖22 ≤ t

and lasso again using some t > 0, as

α�t = arg min
α
‖Xα− y‖22 such that ‖α‖1 ≤ t.

For ridge regression for each parameter s > 0 and solution α◦s there is a corresponding parameter t > 0
so α◦t = α◦s . And respectively, for lasso for each s there is a t so α�s = α�t . To see this, for a fixed s, find
the solution α◦s (e.g., using the closed form solution), then set t = ‖α◦s‖. Now using this value of t, the
solution α◦t will match that of α◦s since it satisfies the hard norm constraint, and if there was another solution
α satisfying that norm constraint with a smaller ‖Xα− y‖ value, this would be smaller in both terms of W◦
than α◦s , a contradiction to the optimality of α◦s .

Hence, we can focus on solving either the soft norm formulations W◦ and W� formulations or the hard
norm formulations, for ridge regression or lasso. Ultimately, we will search over the choices of parameters
s or t using cross-validation, so we do not need to know the correspondence ahead of time.

Math for Data copyright: Jeff M. Phillips

Geometry of Sparse Models with Lasso

Consider the hard constraint variants of lasso and ridge regression with some parameter t. We will
visualize the geometry of this problem when there are d = 2 explanatory variables. The value of t
constrains the allowable values of α to be within metric balls around the origin. These are shown
below as an L1-ball for lasso (in green) and an L2-ball for ridge regression (in blue). Note that
the constraint for ridge is actually ‖α‖22 ≤ t, where the norm is squared (this is the most common
formulation, which we study), but we can always just consider the square root of that value t as the
one we picture – the geometry is unchanged.

Then we can imagine the (unconstrained) ordinary least squares solution α∗ as outside of both of
these balls. The cost function ‖Xα − y‖22 is quadratic, so it must vary as a parabola as a function
of α, with minimum at α∗. This is shown with red shading. Note that the values of α which have a
fixed value in ‖Xα− y‖22 form concentric ellipses centered at α∗.

k↵k2 = t

k↵k1 = t

t
↵�
t with ridge regression

↵⇤ with OLS

↵⇧
t with lasso

The key difference between ridge regression and lasso is now apparent in their solutions. Because the
L1-ball is “pointier,” and specifically along the coordinate axes, it reaches out along these coordinate
axes. Thus the innermost ellipse around α∗ which the L1-ball reaches tends to be along these coor-
dinate axes – whereas there is no such property with the L2-ball. These coordinate axes correspond
with values of α which have 0 coordinates, thus the lasso solution with L1 constraint explicitly biases
towards sparse solutions.

The same phenomenon holds in higher dimensions (but which are harder to draw). However, in this
setting, the L1-ball is even pointier. The quadratic cost function now may not always first intersect
the L1-ball along a single coordinate axes (which has only a single non-zero coordinate), but it will
typically intersect the L1-ball along multi-dimensional ridges between coordinate axes, with only
those coordinates as non-zero.

As t becomes smaller, it is more and more likely that the solution is found on a high-degree corner
or ridge (with fewer non-zero coordinates), since it is harder for the convex ellipses to sneak past
the pointy corners. As t becomes larger, the solution approaches the OLS solution a∗, and unless α∗

itself has coordinates very close to 0, then it will tend to reach the L1 ball away from those corners.

Math for Data copyright: Jeff M. Phillips

5.5.4 Orthogonal Matching Pursuit
As mentioned, there is not a simple closed form solution for lasso, but there is a common approach towards
finding a good solution which retains its most important properties. And indeed running this procedure,
orthogonal matching pursuit (OMP), does a good job of revealing these properties. When OMP is run with
the lasso objective, then it is sometimes called basis pursuit or forward subset selection because it iteratively
reveals a meaningful set of features or a basis within the data X which captures the trends with respect to
the dependent variable.

Ethical Questions with Feature Selection

Lasso and Orthogonal Matching Pursuit can be used for feature selection, that is choosing a limited
number of dimensions (the features) with which predictions from regression can generalize nearly
as well, or in some cases better, than if all of the features are used. However, these approaches can
be unstable when two features (or sets of features) are correlated. That is, there could be multiple
subsets of features of the same size which provided nearly as good generalization.

Now consider you are working in a large business that pays for various sorts of indicators or features
for customers or products it is trying to model. You notice that by small changes in the regularization
parameter, two different subsets of features are selected, with both providing approximately the same
generalization estimates when cross-validating. Changing which subsets you choose to purchase and
use will dramatically affect the business of one of the companies trying to sell these features. Do you
have an obligation to keep the financial benefits of this company in mind as you select features?

Alternatively, while the two subsets of features provide similar generalization predictions when av-
eraged across the entire data set, on many individual data sets, it changes the predictions drastically.
For instance, this may update the prediction for a product line to go from profitable to unprofitable.
How should you investigate this prognostication before acting on it?

The OMP algorithm (sketched in Algorithm 5.5.1) uses a fixed value of s, initially sets αj = 0 in all
coordinates, and iteratively chooses coordinates j which tend to minimize the objective W� when made
non-zero. It can also be run with W◦. As coordinates are chosen and assigned a value, a residual vector r of
the part of y not yet captured is updated. Initially r = y, and as the algorithm is run and better fits are found
‖r‖22 decreases, as desired. In each successive round, the next best coordinate is selected using only r (not
the original y); this is the key insight that makes this algorithm tractable. And in particular, this can be done
by choosing the coordinate j which maximizes a linear operator (a dot product)

j∗ = arg max
j
|〈r,Xj〉|

where Xj is the n-dimensional, jth column of the data matrix X . It is then possible to solve for αj∗ as

αj∗ = arg min
γ
‖r −Xjγ‖2 + s|γ| = 1

‖Xj‖2
(
〈r,Xj〉 ±

s

2

)
.

The choice of ± (either addition or subtraction of the s/2) term needs to be checked in the full expression.
This algorithm is greedy, and may not result in the true optimal solution. It may initially choose a coordi-

nate which is not in the true optimum. And it may assign it a value αj which is not the true optimum value.
However, there are situations when the noise is small enough that this approach will still work. When using
theW◦ objective for ridge regression, then at each step when solving for αj , we can solve for all coordinates
selected so far; and this is more robust to local minimum.

For either objective, this can be run until a fixed number k coordinates have been chosen (as in Algorithm
5.5.1), or until the residual’s norm ‖r‖22 is below some threshold. For the feature selection goal, these

Math for Data copyright: Jeff M. Phillips

Algorithm 5.5.1 Orthogonal Matching Pursuit
Set r = y; and αj = 0 for all j ∈ [d]
for i = 1 to k do

Set Xj = arg maxXj′∈X |〈r,Xj′〉|
Set αj = arg minγ ‖r −Xjγ‖2 + s|γ|
Set r = r −Xjαj

Return α

coordinates are given an ordering where the more pertinent ones are deemed more relevant for the modeling
problem.

Example: Orthogonal Matching Pursuit with n < d

Nevertheless, consider the data set (X, y) where X has n = 5 data points and d = 7 dimensions.

X =

1 8 −3 5 4 −9 4
1 −2 4 8 −2 −3 2
1 9 6 −7 4 −5 −5
1 6 −14 −5 −3 9 −2
1 −2 11 −6 3 −5 1

y =

−43.22
−46.11
−24.63
42.61
−19.76

This was generated by applying a model αT = [0, 0, 0,−5, 0, 2, 0] ontoX and adding a small amount
of noise to obtain y. Running ordinary least squares would fail since the system has more unknowns
(d = 7) than equations (n = 5). However, we could run ridge regression; setting s = 4.0 fits a dense
model α◦0.5 = [0.17,−0.23,−0.15,−4.76, 0.26, 1.86,−0.53].

Running OMP with the W� objective, again using regularization parameter s = 0.5, does recover a
sparse model. The first step identifies index j = 4 as having its column XT

4 = [5, 8,−7,−5,−6] as
being most correlated with r = y. Solving for α∗4 = −5.46 which is large (in absolute value) than
the optimal −5.0. We then update

r = r −X4α
∗
4 = [−15.91,−2.41,−13.60, 15.29,−13.01]

This suboptimal choice of α∗4 is still enough to reduce the norm of r from ‖r‖ = 82.50 to ‖r‖ =
29.10.
The next step again correctly selects j = 5 for column XT

6 = [−9,−3,−5, 9,−5] having the most
remaining alignment with r. It solves for α∗6 = 1.89, less than the ideal 2.0. This updates

r = r −X6α
∗
6 = [1.16, 3.28,−4.12,−1.77,−3.52]

reducing the residual norm to ‖r‖ = 6.68.
If we run for another step, the algorithm will again choose j = 4, and now choose α∗4 = 0.44. If we
sum this with the previous choice, then the final value is −5.02, very close to the true model. After
updating the residual norm goes down to ‖r‖ = 1.77.

import numpy as np
from numpy import linalg as LA

X = np.array([[1, 8, -3, 5, 4, -9, 4],[1,-2,4,8,-2,-3,2],[1,9,6,-7,4,-5,-5],
[1,6,-14,-5,-3,9,-2],[1,-2,11,-6,3,-5,1]])

Math for Data copyright: Jeff M. Phillips

a = np.array([0,0,0,-5,0,2,0])
noise = np.random.normal(0,0.5,5)
y = np.dot(X,a) + noise
s = 4.0 # regularization parameter
k = 3 # number of iterations

print "norm: ", LA.norm(y), y

r = y
for i in range(k):

select column index most aligned with residual
j = np.argmax(abs(np.dot(r,X)))

find best model parameter at j to fit residual
ajp = (np.dot(r,X[:,j])+s/2) / (LA.norm(X[:,j])**2)
ajm = (np.dot(r,X[:,j])-s/2) / (LA.norm(X[:,j])**2)
if LA.norm(r-X[:,j]*ajp) + s*abs(ajp) < LA.norm(r-X[:,j]*ajm) + s*abs(ajm):
aj = ajp

else:
aj = ajm

udpate residual
r = r - X[:,j]*aj
print "update: ", j, aj, LA.norm(r)

Ordinary Least Squares
print "OLS: ", np.dot(np.dot(LA.inv(np.dot(X.T,X)),X.T),y.T)
Ridge Regression
print "ridge: ", np.dot(np.dot(LA.inv(np.dot(X.T,X) + s*np.identity(7)),X.T),y.T)

An alternative to orthogonal matching pursuit is called least angle regression. Instead of explicitly adding
one coordinate at a time for a fixed s, it follows the hard constraint objective. This method iteratively
increases the constraint t while maintaining the optimal solution. With t = 0, then the solution α�t = 0.
And as t increases, then initially a single coordinate is made non-zero in the optimal solution. Because the
boundaries facets of the L1-ball grow at a simple linear rate as t increases, then we can exactly describe
the increases in the solution to α�t as a linear equation of t. Moreover, solving another quadratic equation
can be used to determine when the next coordinate is made non-zero, until eventually all coordinates are
non-zero, and the OLS solution α∗ is recovered. This also builds a model Mα�t

for every value t, so it can
be cross-validated as it is built.

Compressed Sensing. A demonstration of what sort of data can be recovered exactly using lasso, is
shown in the compressed sensing problem. There are variants of this problem that show up in computer
vision, astronomy, and medical imagining; we will examine a simple form.

First consider an unknown signal vector s ∈ Rd. It is d-dimensional, but is known to have most of its
coordinates as 0. In our case, we consider with m � d non-zero coordinates, and for simplicity assume
these have value 1. For example, imagine a telescope scanning the sky. For most snapshots, the telescope
sees nothing (a 0), but occasionally it sees a star (a 1). This maps to our model when it takes d snapshots,
and only sees m stars. Many other examples exists: a customer will buy m out of d products a store sells;
an earthquake registers on only m out of d days on record; or only m out of d people test positive for a rare
genetic marker. We will use as an example s as

sT = [0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0].

But this problem is interesting because, as mentioned, s is unknown. Instead we “sense” s with a known

Math for Data copyright: Jeff M. Phillips

compressed vector xi ∈ {−1, 0,+1}d. For example, let

xTi = [-1 0 1 0 1 1 -1 1 0 -1 0 0 1 -1 -1 1 0 1 0 1 -1 -1 -1 0 1 0 0 -1 0 1 0 0].

The sensing of s with xi is recorded as yi = 〈xi, s〉, which is a single scalar value (in our setting an integer).
In our example

yi = 〈xi, s〉 = 0+0+0+0+1+0+0+0+0+0+0+0+0+0+0+1+0+0+0+1-1+0-1+0+0+0+0+0+0+1+0+0 = 2.

Moreover, in general we will have n measurements values y1, y2, . . . , yn using n known measurement
vectors x1, x2, . . . , xn. Stacking the measurement values y = [y1; y2; . . . ; yn] and vectors into a matrix
X = [x1;x2; . . . ;xn] results in the familiar form

y = Xs.

And the goal is to recover s using only y andX . This appears to be precisely a regression problem! However,
the we are interested in the case where d� n. In particular, this can be solvable when n = C ·m log(d/m),
for the constant C ∈ (4, 20) depending on the recovery approach. Given our assumption that m � d (e.g.,
m = 50 and d = 10,000) this is a remarkable compression, since for instance just storing the location of
each 1 bit uses log d bits (its index in binary), for a total of about m log d.

The simplest recovery approach is with Orthogonal Matching Pursuit; this requires the measurement size
constant C closer to 20. This modified version of OMP is sketched in Algorithm 5.5.2. The key step
is modified to choose the dimension j where the column in the measurement matrix Xj has the largest dot
product with r. We guess this has a 1 bit, and then factor out the effect of the measurement matrix witnessing
a 1 bit at that location in the residual r. This is repeated either for a fixed (m) number of steps, or until the
residual becomes all 0.

Algorithm 5.5.2 Orthogonal Matching Pursuit for Compressed Sensing
Set r = y; and s = [0; 0; . . . , 0].
for i = 1 to m do

Set j = arg maxj′〈r,Xj′〉.
Set sj = 1.
Set r = r −Xj .

Return s.

Math for Data copyright: Jeff M. Phillips

Example: Recovery in Compressed Sensing

Consider a specific example for running Orthogonal Matching Pursuit, this has d = 10, m = 3 and
n = 6. Let the (unknown) input signal be

s = [0, 0, 1, 0, 0, 1, 0, 0, 1, 0].

Let the known measurement matrix be

X =

0 1 1 −1 −1 0 −1 0 −1 0
−1 −1 0 1 −1 0 0 −1 0 1
1 −1 1 −1 0 −1 1 1 0 0
1 0 −1 0 0 1 −1 −1 1 1
−1 0 0 0 1 0 1 0 1 −1
0 0 −1 −1 −1 0 −1 1 −1 0

so for instance the first row x1 = (0, 1, 1,−1,−1, 0,−1, 0,−1, 0) yields measurement

〈x1, s〉 = 0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + (−1) + 0 = 0.

The observed measurement vector is

y = XsT = [0, 0, 0, 1, 1,−2]T .

Columns 9 has the most explanatory power towards y, based on X . We let j = 9 so Xj = X9 =
(−1, 0, 0, 1, 1,−1)T . Then s9 = 1 and r = y −X9 = (1, 0, 0, 0, 0,−1).

Next, we observe that column 3 has the most explanatory power for the new r. We set s3 = 1 and
update r = r −X3 = (0, 0,−1, 1, 0, 0). Note: This progress seemed sideways at best. It increased
our non-zero s values, but did not decrease ‖r − y‖.
Finally, we observe column 6 has the most explanatory power of the new r. We set s6 = 1 and update
r = r −X6γ3 = (0, 0, 0, 0, 0, 0). We have now completely explained y using only 3 data elements.

This will not always work so cleanly on a small example. Using OMP typically needs something like
n = 20m log d measurements (instead of n = 6). Larger measurement sets act like concentrating
random variables, and the larger the sets the more likely that at each step we chose the correct index
j as most explanatory.

Math for Data copyright: Jeff M. Phillips

Exercises

We will use a dataset found here:
http://www.cs.utah.edu/˜jeffp/teaching/FoDA/D3.csv

Q5.1: Let the first column of the data set be the explanatory variable x, and let the fourth column be the
dependent variable y. [That is: ignore columns 2 and 3 for now]

1. Run simple linear regression to predict y from x. Report the linear model you found. Predict
the value of y for new x values 0.3, for 0.5, and for 0.8.

2. Use cross-validation to predict generalization error, with error of a single data point (x, y) from
a model M as (M(x)− y)2. Describe how you did this, and which data was used for what.

3. On the same data, run polynomial regression for p = 2, 3, 4, 5. Report polynomial models for
each. With each of these models, predict the value of y for a new x values of 0.3, for 0.5, and
for 0.8.

4. Cross-validate to choose the best model. Describe how you did this, and which data was used
for what.

Q5.2: Now let the first three columns of the data set be separate explanatory variables x1, x2, x3. Again
let the fourth column be the dependent variable y.

• Run linear regression simultaneously using all three explanatory variables. Report the lin-
ear model you found. Predict the value of y for new (x1,x2,x3) values (0.3, 0.4, 0.1), for
(0.5, 0.2, 0.4), and for (0.8, 0.2, 0.7).

• Use cross-validation to predict generalization error; as usual define the error of a single data
point (x1, x2, x3, y) from a model M as (M(x1,x2,x3) − y)2. Describe how you did this,
and which data was used for what.

Q5.3: Consider a data set (X, y) where X ∈ Rn×3; and its decomposition into a test (Xtest, ytest) and a
training data set (Xtrain, ytrain). Assume that Xtrain is not just a subset of X , but also prepends a
columns of all 1s. We build a linear model

α = (XT
trainXtrain)−1XT

trainytrain.

where α ∈ R4. The test data (Xtest, ytest) consists of two data points: (x1, y1) and (x2, y2), where
x1, x2 ∈ R3. Explain how to use (write a mathematical expression) this test data to estimate the
generalization error. That is, if one new data point arrives x, how much squared error would we
expect the model α to have compared to the unknown true value y?

Math for Data copyright: Jeff M. Phillips

Math for Data copyright: Jeff M. Phillips

6 Gradient Descent

In this topic we will discuss optimizing over general functions f . Typically the function is defined f : Rd →
R; that is its domain is multi-dimensional (in this case d-dimensional point α) and output is a real scalar (R).
This often arises to describe the “cost” of a model which has d parameters which describe the model (e.g.,
degree (d − 1)-polynomial regression) and the goal is to find the parameters α = (α1, α2, . . . , αd) with
minimum cost. Although there are special cases where we can solve for these optimal parameters exactly,
there are many cases where we cannot. What remains in these cases is to analyze the function f , and try to
find its minimum point. The most common solution for this is gradient descent where we try to “walk” in a
direction so the function decreases until we no longer can.

6.1 Functions
We review some basic properties of a function f : Rd → R. Again, the goal will be to unveil abstract tools
that are often easy to imagine in low dimensions, but automatically generalize to high-dimensional data. We
will first provide definitions without any calculous.

Let Br(α) define a Euclidean ball around a point α ∈ Rd of radius r. That is, it includes all points
{p ∈ Rd | ‖α − p‖ ≤ r}, within a Euclidean distance of r from α. We will use Br(α) to define a local
neighborhood around a point α. The idea of “local” is quite flexible, and we can use any value of r > 0,
basically it can be as small as we need it to be, as long as it is strictly greater than 0.

Minima and maxima. A local maximum of f is a point α ∈ Rd so for some neighborhood Br(α), all
points p ∈ Br(α) have smaller (or equal) function value than at α: f(p) ≤ f(α). A local minimum of f is a
point α ∈ Rd so for some neighborhood Br(α), all points p ∈ Br(α) have larger (or equal) function value
than at α: f(p) ≥ f(α). If we remove the “or equal” condition for both definitions for p ∈ Br(α), p 6= α,
we say the maximum or minimum points are strict.

A point α ∈ Rd is a global maximum of f if for all p ∈ Rd, then f(p) ≤ f(α). Likewise, a point α ∈ Rd
is a global minimum if for all p ∈ Rd, then f(p) ≥ f(α). There may be multiple global minimum and
maximum. If there is exactly one point α ∈ Rd that is a global minimum or global maximum, we again say
it is strict.

When we just use the term minimum or maximum (without local or global) it implies a local minimum or
maximum.

Focusing on a function restricted to a closed and bounded subset S ⊂ Rd, if the function is continuous
(that is, there exists a δ such that for all α ∈ Rd, there exists a radius rδ such that if p ∈ Brδ(α), then
|f(α)− f(p)| ≤ δ), then the function must have a global minimum and a global maximum. It may occur on
the boundary of S.

A saddle point α ∈ Rd (for d > 1) has within any neighborhood Br(α) a points p ∈ Br(α) with
f(p) < f(α) (the lower points) and p′ ∈ Br(α) with f(p′) > f(α) (the upper points). In particular, it is
a saddle if within Br(α) there are disconnected regions of upper points (and of lower points). The notion
of saddle point is defined differently for d = 1. If these regions are connected, and it is not a minimum or
maximum, then it is a regular point.

For an arbitrary (or randomly) chosen point α, it is usually a regular point (except for examples you are
unlikely to encounter, the set of minimum, maximum, and saddle points are finite, while the set of regular
points is infinite).

101

Example: Continuous Functions

Here we show some example functions, where the α-value on the x-axis represents a d-dimensional
space. The first function has local minimum and maximum. The second function has a constant
value, so every point is a global minimum and a global maximum. The third function f is convex,
which is demonstrated with the line segment between points (p, f(p)) and (q, f(q)) is always above
the function f .

R

↵ 2 Rd

global minimum

local minimum

local maximum

R

↵ 2 Rd

global maximum

global minimum

R

↵ 2 Rd pq

1
3 (p, f(p)) +

2
3 (q, f(q))

Convex functions. In many cases we will assume (or at least desire) that our function is convex.
To define this it will be useful to define a line ` ⊂ Rd as follows with any two points p, q ∈ Rd. Then a

line `p,q is the set of all points defined by any scalar λ ∈ R as

`p,q = {x = λp+ (1− λ)q | λ ∈ R}.

When λ ∈ [0, 1], then this defines the line segment between p and q.
A function is convex if for any two points p, q ∈ Rd, on the line segment between them has value less

than (or equal) to the values at the weighted average of p and q. That is, it is convex if

For all p, q ∈ R and for all λ ∈ [0, 1] f(λp+ (1− λ)q) ≤ λf(p) + (1− λ)f(q).

Removing the “or equal” condition, the function becomes strictly convex.
There are many very cool properties of convex functions. For instance, for two convex functions f and g,

then h(α) = f(α) + g(α) is convex and so is h(α) = max{f(α), g(α)}. But one will be most important
for us:

Convexity and Global Minimums: Any local minimum of a convex function will also be a global
minimum. A strictly convex function will have at most a single minimum: the global minimum.

This means if we find a minimum, then we must have also found a global minimum (our goal).

6.2 Gradients
For a function f(α) = f(α1, α2, . . . , αd), and a unit vector u = (u1, u2, . . . , ud) which represents a direc-
tion, then the directional derivative is defined

∇uf(α) = lim
h→0

f(α+ hu)− f(α)

h
.

We are interested in functions f which are differentiable; this implies that ∇uf(α) is well-defined for all α
and u. The converse is not necessarily true.

Let e1, e2, . . . , ed ∈ Rd be a specific set of unit vectors so that ei = (0, 0, . . . , 0, 1, 0, . . . , 0) where for ei
the 1 is in the ith coordinate.

Math for Data copyright: Jeff M. Phillips

Then define

∇if(α) = ∇eif(α) =
d

dαi
f(α).

It is the derivative in the ith coordinate, treating all other coordinates as constants.
We can now, for a differentiable function f , define the gradient of f as

∇f =
df

dα1
e1 +

df

dα2
e2 + . . .+

df

dαd
ed =

(
df

dα1
,

df

dα2
, . . . ,

df

dαd

)
.

Note that∇f is a function from Rd → Rd, which we can evaluate at any point α ∈ Rd.

Example: Gradient

For α = (x, y, z) ∈ R3, consider the function f(x, y, z) = 3x2 − 2y3 − 2xez . Then ∇f =
(6x− 2ez,−6y2,−2xez) and ∇f(3,−2, 1) = (18− 2e, 24,−6e).

Linear approximation. From the gradient we can easily recover the directional derivative of f at point α,
for any direction (unit vector) u as

∇uf(α) = 〈∇f(α), u〉.

This implies the gradient describes the linear approximation of f at a point α. The slope of the tangent plane
of f at α in any direction u is provided by∇uf(α).

Hence, the direction which f is increasing the most at a point α is the unit vector u where ∇uf(α) =
〈∇f(α), u〉 is the largest. This occurs at∇f(α) = ∇f(α)/‖∇f(α)‖, the normalized gradient vector.

To find the minimum of a function f , we then typically want to move from any point α in the direction
−∇f(α); at regular points this is the direction of steepest descent.

6.3 Gradient Descent
Gradient descent is a family of techniques that, for a differentiable function f : Rd → R, try to identify
either

min
α∈Rd

f(α) and/or α∗ = arg min
α∈Rd

f(α).

This is effective when f is convex and we do not have a “closed form” solution α∗. The algorithm is iterative,
in that it may never reach the completely optimal α∗, but it keeps getting closer and closer.

Algorithm 6.3.1 Gradient Descent(f, αstart)

initialize α(0) = αstart ∈ Rd.
repeat
α(k+1) := α(k) − γk∇f(α(k))

until (‖∇f(α(k))‖ ≤ τ)
return α(k)

Basically, for any starting point α(0) the algorithm moves to another point in the direction opposite to
the gradient, in the direction that locally decreases f the fastest. How fast it moves depends on the scalar
learning rate γk and the magnitude of the gradient vector∇f(α(k)).

Math for Data copyright: Jeff M. Phillips

Stopping condition. The parameter τ is the tolerance of the algorithm. If we assume the function is
differentiable, then at the minimum α∗, we must have that ∇f(α) = (0, 0, . . . , 0). So for α close to the
minimum, ∇f(α) should also have a small norm. The algorithm may never reach the true minimum (and
we do not know what it is, so we cannot directly compare against the function value). So we use ‖∇f‖ as a
proxy.

In other settings, we may run for a fixed number T steps. Although this does not automatically tune
the algorithm to the input, as using a tolerance τ may, it is easier to describe and compare. Hence, most
examples in this text will use this method.

6.3.1 Learning Rate
The most critical parameter of gradient descent is γ, the learning rate. In many cases the algorithm will keep
γk = γ fixed for all k. It controls how fast the algorithm works. But if it is too large, when we approach the
minimum, then the algorithm may go too far, and overshoot it.

How should we choose γ? There is no consensus to this answer, and often in practice it is tuned in ad-hoc
ways. In the following, we will describe some mathematically described scenarios where something formal
can be said about how to choose γ. In some cases, these analysis show that if the function satisfies a mild
property, then many fixed choices of γ will result in accuracy guarantees. We will also show methods where
it helps to adjust the learning parameter γk adaptively.

Lipschitz bound. We say a function g : Rd → Rk is L-Lipschitz if for all p, q ∈ Rd that

‖g(p)− g(q)‖ ≤ L‖p− q‖.

This property is useful when g = ∇f is describing the gradient of a cost function f . If ∇f is L-Lipschitz,
and we set γ ≤ 1

L , then gradient descent will converge to a stationary point. Moreover, if f is convex with
global minimum α∗, then after k = O(1/ε) steps we can guarantee that

f(α(k))− f(α∗) ≤ ε.

For the k = O(1/ε) claim (and others stated below), we assume that f(α(0)) − f(α∗) is less than some
absolute constant. Intuitively, the closer we start to the optimum, the fewer steps it will take.

For a convex quadratic function f (e.g., most cost functions derived by sum of squared errors), then the
gradient∇f is L-Lipschitz.

Example: Strongly Convex Function

We show an example η-strongly convex function f , in blue. At any point p, it is sandwiched between
two convex quadratic functions in green. The convex quadratic function which lower bounds f has
an L-Lipschitz gradient.

p

f(p)

↵ 2 Rd

R

f(p) + hrf(↵), p� ↵i

f(p) + hrf(↵), p� ↵i+ L
2 kp� ↵k2

f(p) + hrf(↵), p� ↵i+ ⌘
2kp� ↵k2

Math for Data copyright: Jeff M. Phillips

Strongly Convex Functions. A function f : Rd → R is η-strongly convex with parameter η > 0 if for all
α, p ∈ Rd then

f(p) ≤ f(α) + 〈∇f(α), p− α〉+
η

2
‖p− α‖2.

Intuitively, this implies that f is at least quadratic. That is, along any direction u = p−α
‖p−α‖ the function 〈f, u〉

is 1-dimensional, and then its second derivative d2

du2
〈f, u〉 is strictly positive; it is at least η > 0. Similarly,

saying a function f has an L-Lipschitz gradient is equivalent to the condition that d2

du2
〈f(α), u〉 ≤ L for all

α, p ∈ Rd where u = p−α
‖p−α‖ .

For an η-strongly convex function f , that has an L-Lipschitz gradient, with global minimum α∗, then
gradient descent with learning rate γ ≤ 2/(η + L) after only k = O(log(1/ε)) steps will achieve

f(α(k))− f(α∗) ≤ ε.

The constant in k = O(log(1/ε)) depends on the condition number L/η. The conditions of this bound,
imply that f is sandwiched between two convex quadratic functions; specifically for any α, p ∈ Rd that we
can bound

f(α) + 〈∇f(α), p− α〉+
L

2
‖p− α‖2 ≤ f(p) ≤ f(α) + 〈∇f(α), p− α〉+

η

2
‖p− α‖2.

When an algorithm converges at such a rate (takes O(log(1/ε)) steps to obtain ε error), it is known as
linear convergence since the log-error log(f(α(k))− f(α∗)) looks like a linear function of k.

In practice, since many functions we consider will be convex quadratic functions (e.g., are derived from
sum of squared error cost functions), then the error will decreases exponentially fast in terms of the number
of steps of gradient descent, if the learning rate is set sufficiently small. That is, only a constant number
of steps are required to resolve each bit of precision in the function value at the optimum! However, if the
learning rate is set too small, then the constant (number of steps to resolve one bit) will increase.

So at this point, we have explained that for many situations there is a learning rate for which gradient
descent will work extremely well. If we can analytically bound various properties of the second derivative
of the function, then we can use these bounds to choose such a rate. However, we have not yet explained a
formal way to find such a rate in general where we can only evaluate the gradient at any point α ∈ Rd.

Line search. An alternative, referred to as “line search” is to solve for the (approximately) optimal γk
at each step. Once we have computed the gradient ∇f(α(k)) then we have reduced the high-dimensional
minimization problem to a one-dimensional problem. Note if f is convex, then f restricted to this one-
dimensional search is also convex. We still need to find the minimum of an unknown function, but we can
perform some procedure akin to binary search. We first find a value γ′ such that

f
(
α(k) − γ′∇f(α(k))

)
> f(α(k))

then we keep subdividing the region [0, γ′] into pieces, and excluding ones which cannot contain the mini-
mum.

For instance the golden section search divides a range [b, t] containing the optimal γk into three sub-
intervals (based on the golden ratio) so [b, t] = [b, b′)∪ [b′, t′]∪ (t′, t]. And each step, we can determine that
either γk /∈ [b, b′) if f(t′) < f(b′), or γk /∈ (t′, t] if f(b′) < f(t′). This reduces the range to [b′, t] or [b, t′],
respectively, and we recurse.

In other situations, we can solve for the optimal γk exactly at each step. This is the case if we can again
analytically take the derivative d

dγ

(
f(α(k))− γ∇f(α(k))

)
and solve for the γ where it is equal to 0.

Math for Data copyright: Jeff M. Phillips

Adjustable rate. In practice, line search is often slow. Also, we may not have a Lipschitz bound. It is often
better to try a few fixed γ values, probably being a bit conservative. As long as f(α(k)) keep decreasing, it
works well. This also may alert us if there is more than one local minimum if the algorithm converges to
different locations.

An algorithm called “backtracking line search” automatically tunes the parameter γ. It uses a fixed
parameter β ∈ (0, 1) (preferably in (0.1, 0.8); for instance use β = 3/4). Start with a large step size γ (e.g.,
γ = 1). Then at each step of gradient descent at location α, if

f(α− γ∇f(α)) > f(α)− γ

2
‖∇f(α)‖2

then update γ = βγ. This shrinks γ over the course of the algorithm, and if f is strongly convex, it will
eventually decrease γ until it satisfies the condition for linear convergence.

Example: Gradient Descent with Fixed Learning Rate

Consider the function f where α = (x, y) ∈ R2 is defined

f(x, y) = (
3

4
x− 3

2
)2 + (y − 2)2 +

1

4
xy

and has gradient

∇f(x, y) =

(
9

8
x− 9

4
+

1

4
y , 2y − 4 +

1

4
x

)
.

We run gradient descent for 10 iterations within initial position (5, 4), while varying the learning rate
in the range γ = {0.01, 0.1, 0.2, 0.3, 0.5, 0.75}.

0 1 2 3 4 5
0

1

2

3

4

5
gamma 0.01 | final grad 5.764

0 1 2 3 4 5
0

1

2

3

4

5
gamma 0.10 | final grad 1.305

0 1 2 3 4 5
0

1

2

3

4

5
gamma 0.20 | final grad 0.342

0 1 2 3 4 5
0

1

2

3

4

5
gamma 0.30 | final grad 0.092

0 1 2 3 4 5
0

1

2

3

4

5
gamma 0.50 | final grad 0.003

0 1 2 3 4 5
0

1

2

3

4

5
gamma 0.75 | final grad 0.028

We see that with γ very small, the algorithm does not get close to the minimum. When γ is too large,
then the algorithm jumps around a lot, and is in danger of not converging. But at a learning rate of
γ = 0.3 it converges fairly smoothly and reaches a point where ‖∇f(x, y)‖ is very small. Using
γ = 0.5 almost overshoots in the first step; γ = 0.3 is smoother, and it is probably best to use a curve
that looks smooth like that one, but with a few more iterations.

Math for Data copyright: Jeff M. Phillips

import matplotlib as mpl
mpl.use(’PDF’)
import numpy as np
import matplotlib.pyplot as plt
from numpy import linalg as LA

def func(x,y):
return (0.75*x-1.5)**2 + (y-2.0)**2 + 0.25*x*y

def func_grad(vx,vy):
dfdx = 1.125*vx - 2.25 + 0.25*vy
dfdy = 2.0*vy - 4.0 + 0.25*vx
return np.array([dfdx,dfdy])

#prepare for contour plot
xlist = np.linspace(0, 5, 26)
ylist = np.linspace(0, 5, 26)
x, y = np.meshgrid(xlist, ylist)
z = func(x,y)
lev = np.linspace(0,20,21)

#iterate location
v_init = np.array([5,4])
num_iter = 10
values = np.zeros([num_iter,2])

for gamma in [0.01, 0.1, 0.2, 0.3, 0.5, 0.75]:
values[0,:] = v_init
v = v_init

actual gradient descent algorithm
for i in range(1,num_iter):
v = v - gamma * func_grad(v[0],v[1])
values[i,:] = v

#plotting
plt.contour(x,y,z,levels=lev)
plt.plot(values[:,0],values[:,1],’r-’)
plt.plot(values[:,0],values[:,1],’bo’)
grad_norm = LA.norm(func_grad(v[0],v[1]))
title = "gamma %0.2f | final grad %0.3f" % (gamma,grad_norm)
plt.title(title)
file = "gd-%2.0f.pdf" % (gamma*100)
plt.savefig(file, bbox_inches=’tight’)
plt.clf()
plt.cla()

6.4 Fitting a Model to Data
For data analysis, the most common use of gradient descent is to fit a model to data. In this setting we have
a data set (X, y) = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈ Rd ×R and a family of models M so each possible
model Mα is defined by a d-dimensional vector α = {α1, α2, . . . , αk} for k parameters.

Next we define a loss function L((X, y),Mα) which measures the difference between what the model
predicts and what the data values are. To choose which parameters generate the best model, we let f(α) :
Rd → R be our function of interest, defined f(α) = L((X, y),Mα). Then we can run gradient descent to

Math for Data copyright: Jeff M. Phillips

find our model Mα∗ . For instance we can set

f(α) = L((X, y),Mα) = SSE(P,Mα) =
∑

(xi,yi)∈(X,y)

(yi −Mα(xi))
2. (6.1)

This is used for examples including maximum likelihood (or maximum log-likelihood) estimators from
Bayesian inference. This includes finding a single point estimator with Gaussian (where we had a closed-
form solution), but also many other variants (often where there is no known closed-form solution). It also
includes least squares regression and its many variants; we will see this in much more detail next. And will
include other topics (including clustering, PCA, classification) we will see later in class.

6.4.1 Least Mean Squares Updates for Regression
Now we will work through how to use gradient descent for simple quadratic regression on 1-dimensional
explanatory variables. That is, this will specify the function f(α) in equation (6.1) to have k = 3 parameters
as α = (α0, α1, α2), and so for each (xi, yi) ∈ (X, y) we have xi ∈ R. Then we can write the model again
as a dot product

Mα(xi) = 〈α, (1, xi, x2
i)〉 = α0 + α1xi + α2x

2
i

It is straightforward to generalize to linear regression, multiple-explanatory variable linear regression, or
general polynomial regression from here. For instance, in this case, we can represent xi as the 3-dimensional
feature vector q = (q0 = x0

i = 1, q1 = x1
i , q2 = x2

i) of explanatory variables. Then the model is Mα(xi) =
〈α, q〉. For simple linear regression, we simply omit the quadratic term α2x

2
i from the above model. For

other polynomial forms of regression, the expansion simply includes more terms and powers. And for
multiple explanatory variables they are each given a corresponding feature coordinate, possible to some
power, or multiplied with other explanatory variables in the polynomial models. We will continue using
1-dimensional quadratic regression as an example.

Now to specify the gradient descent step

α := α− γ∇f(α)

we only need to define ∇f(α). We will first show this for the case where n = 1, that is when there is a
single data point (x1, y1). For quadratic regression, the cost function f1(α) = (α0 + α1x1 + α2x

2
1 − y1)2

is convex. Next derive
d

dαj
f(α) =

d

dαj
(Mα(x1)− y1)2

= 2(Mα(x1)− y1)
d

dαj
(Mα(x1)− y1)

= 2(Mα(x1)− y1)
d

dαj
(

2∑

j=0

αjx
j
1 − y1)

= 2(Mα(x1)− y1)xj1

Using this convenient form (which generalizes to any polynomial model), we define

∇f(α) =

(
d

dα0
f(α),

d

dα1
f(α),

d

dα2
f(α)

)

= 2
(
(Mα(x1)− y1), (Mα(x1)− y1)x1, (Mα(x1)− y1)x2

1

)
.

Applying α := α − γ∇f(α) according to this specification is known as the LMS (least mean squares)
update rule or the Widrow-Huff learning rule. Quite intuitively, the magnitude the update is proportional to
the residual norm (Mα(x1) − y1). So if we have a lot of error in our guess of α, then we take a large step;
if we do not have a lot of error, we take a small step.

Math for Data copyright: Jeff M. Phillips

6.4.2 Decomposable Functions
To generalize this to multiple data points (n > 1), there are two standard ways. Both of these take strong
advantage of the cost function f(α) being decomposable. That is, we can write

f(α) =
n∑

i=1

fi(α),

where each fi depends only on the ith data point pi ∈ P . In particular, where pi = (xi, yi), then for
quadratic regression

fi(α) = (Mα(xi)− yi)2 = (α0 + α1xi + α2x
2
i − yi)2.

First notice that since f is the sum of fis, where each is convex, then f must also be convex; in fact the
sum of these usually becomes strongly convex (as long as the corresponding feature vectors are full rank).
Also two approaches towards gradient descent will take advantage of this decomposition in slightly different
ways. This decomposable property holds for most loss functions for fitting a model to data.

Batch gradient descent. The first technique, called batch gradient descent, simply extends the definition
of ∇f(α) to the case with multiple data points. Since f is decomposable, then we use the linearity of the
derivative to define

d

dαj
f(α) =

n∑

i=1

d

dαj
fi(α) =

n∑

i=1

2(Mα(xi)− yi)xji

and thus

∇f(α) =

(
2

n∑

i=1

(Mα(xi)− yi), 2
n∑

i=1

(Mα(xi)− yi)xi, 2
n∑

i=1

(Mα(xi)− yi)x2
i

)

=
n∑

i=1

(
2(Mα(xi)− yi), 2(Mα(xi)− yi)xi, 2(Mα(xi)− yi)x2

i

)

= 2
n∑

i=1

(Mα(xi)− yi)
(
1, xi, x

2
i

)
.

That is, the step is now just the sum of the terms from each data point. Since f is (strongly) convex, then
we can apply all of the nice convergence results discussed about (strongly) convex f before. However,
computing∇f(α) each step takes O(n) time, which can be slow for large n (i.e., for large data sets).

Algorithm 6.4.1 Incremental Gradient Descent(f, αstart)

initialize α(0) = αstart ∈ Rd; i = 1.
repeat
α(k+1) := α(k) − γk∇fi(α(k))
i := (i+ 1) mod n

until (‖∇f(α(k))‖ ≤ τ) (?)
return α(k)

Stochastic gradient descent. The second technique is called incremental gradient descent; see Algo-
rithm 6.4.1. It avoids computing the full gradient each step, and only computes ∇fi(α) for a single data
point pi ∈ P . For quadratic regression with Mα(x) = 〈α, (1, x, x2)〉 it is

∇fi(α) = 2(Mα(xi)− yi)(1, xi, x2
i).

Math for Data copyright: Jeff M. Phillips

Implementation Hints:
(?) The norm of a single gradient is not stable. Instead a better stopping condition averages the
gradient norm over several (lets say B steps). The condition may then be 1

B

∑B−1
b=0 ‖∇f(α(k−b))‖ ≤

τ , and is only checked after B steps are taken.

A more common variant of this is called stochastic gradient descent; see Algorithm 6.4.2. Instead of
choosing the data points in order, it selects a data point pi at random each iteration (the term “stochastic”
refers to this randomness).

Algorithm 6.4.2 Stochastic Gradient Descent(f, αstart)

initialize α(0) = αstart ∈ Rd
repeat

Randomly choose i ∈ {1, 2, . . . , n}
α(k+1) := α(k) − γk∇fi(α(k))

until (‖∇f(α(k))‖ ≤ τ) (?)
return α(k)

On very large data sets (i.e., big data!), these algorithms are often much faster than the batch version since
each iteration now takes O(1) time. However, it does not automatically inherit all of the nice convergence
results from what is known about (strongly) convex functions. Yet in many settings, there is an abundance
of data points described by the same model. They should have a roughly similar effect. In practice when
one is far from the optimal model, these steps converge about as well as the batch version (but much much
faster in runtime). When one is close to the optimal model, then the incremental / stochastic variants may
not exactly converge. However, if one is satisfied to reach a point that is close enough to optimal, there are
some randomized (PAC-style) guarantees possible for the stochastic variant. And in fact, for very large data
sets (i.e., n is very big) they typically converge before the algorithm even uses all (or even most) of the data
points.

Math for Data copyright: Jeff M. Phillips

Exercises

We will use a dataset http://www.cs.utah.edu/˜jeffp/teaching/FoDA/D4.csv

Q6.1: Consider a function f(x, y) with gradient∇f(x, y) = (x−1, 2y+x). Starting at a value (x = 1, y =
2), and a learning rate of γ = 1, execute one step of gradient descent.

Q6.2: Consider running gradient descent with a fixed learning rate γ. For each of the following, we plot the
function value over 10 steps (the function is different each time). Decide whether the learning rate is
probably too high, too low, or about right.

1. f1: 100, 99, 98, 97, 96, 95, 94, 93, 92, 91

2. f2: 100, 50, 75, 60, 65, 45, 75, 110, 90, 85

3. f3: 100, 80, 65, 50, 40, 35, 31, 29, 28, 27.5, 27.3

4. f4: 100, 80, 60, 40, 20, 0, -20, -40, -60, -80, -100

Q6.3: Consider two functions

f1(x, y) = (x− 5)2 + (y + 2)2 − 2xy f2(x, y) = (1− (y − 4))2 + 20((x+ 6)− (y − 4)2)2

Starting with (x, y) = (0, 2) run the gradient descent algorithm for each function. Run for T itera-
tions, and report the function value at the end of each step.

1. First, run with a fixed learning rate of γ = 0.05 for f1 and γ = 0.0015 for f2.

2. Second, run with any variant of gradient descent you want. Try to get the smallest function value
after T steps.

For f1 you are allowed only T = 10 steps. For f2 you are allowed T = 100 steps.

Q6.4: In the first D4.csv dataset provided, use the first three columns as explanatory variables x1, x2, x3,
and the fourth as the dependent variable y. Run gradient descent on α ∈ R4, using the dataset provided
to find a linear model

ŷ = α0 + α1x1 + α2x2 + α3x3

minimizing the sum of squared errors. Run for as many steps as you feel necessary. On each step of
your run, print on a single line: (1) the model parameters α(i) = [α

(i)
0 , α

(i)
1 , α

(i)
2 , α

(i)
3], (2) the value

of a function f(α(i)), estimating the sum of squared errors, and (3) the gradient∇f(α(i)). (These are
the sort of things you would do to check/debug a gradient descent algorithm; you may also want to
plot some of these.)

1. First run batch gradient descent.

2. Second run incremental gradient descent.

Choose one method which you preferred (either is ok to choose), and explain why you preferred it to
the other method.

Q6.5: Explain what parts of the above procedures would change if you instead are minimizing the sum of
residuals, not the sum of squared residuals?

• Is the function still convex?

• Does the gradient always exist?

Math for Data copyright: Jeff M. Phillips

Math for Data copyright: Jeff M. Phillips

7 Principal Component Analysis

This topic will build a series of techniques to deal with high-dimensional data. Unlike regression problems,
our goal is not to predict a value (the y-coordinate), it is to understand the “shape” of the data, for instance a
low-dimensional representation that captures most of meaning of the high-dimensional data. This is some-
times referred to as unsupervised learning (as opposed to regression and classification, where the data has
labels, known as supervised learning). Like most unsupervised settings, it can be a lot of fun, but its easy to
get yourself into trouble if you are not careful.

We will cover many interconnected tools, including the singular value decomposition (SVD), eigenvectors
and eigenvalues, the power method, principal component analysis, and multidimensional scaling.

7.1 Data Matrices
We will start with data in a matrix A ∈ Rn×d, and will call upon linear algebra to rescue us. It is useful to
think of each row ai of A as a data point in Rd, so there are n data points. Each dimension j ∈ 1, 2, . . . , d
corresponds with an attribute of the data points.

Example: Data Matrices

There are many situations where data matrices arise.

• Consider a set of n weather stations reporting temperature over d points in time. Then each
row ai corresponds to a single weather station, and each coordinate Ai,j of that row is the
temperature at station i at time j.

• In movie ratings, we may consider n users who have rated each of dmovies on a score of 1−5.
Then each row ai represents a user, and the jth entry of that user is the score given to the j
movie.

• Consider the price of a stock measured over time (say the closing price each day). Many
time-series models consider some number of days (d days, for instance 25 days) to capture the
pattern of the stock at any given time. So for a given closing day, we consider the d previous
days. If we have data on the stock for 4 years (about 1000 days the stock market is open), then
we can create a d-dimensional data points (the previous d = 25 days) for each day (except the
first 25 or so). The data matrix is then comprised of n data points ai, where each corresponds
to the closing day, and the previous d days. The jth entry is the value on (j − 1) days before
the closing day i.

• Finally consider a series of pictures of a shape (say the Utah teapot). The camera position is
fixed as is the background, but we vary two things: the rotation of the teapot, and the amount
of light. Here each pictures is a set of say d pixels (say 10,000 if it is 100× 100), and there are
n pictures. Each picture is a row of length d, and each pixel corresponds to a column of the
matrix. Similar, but more complicated scenarios frequently occur with pictures of a persons
face, or 3d-imaging of an organ.

In each of these scenarios, there are many (n) data points, each with d attributes. The following will be
very important:

113

• all coordinates have the same units!

If this “same units” property does not hold, then when we measure a distance between data points in Rd,
usually using the L2-norm, then the distance is nonsensical.

The next goal is to uncover a pattern, or a model M . In this case, the model will be a low-dimensional
subspace F . It will represent a k-dimensional space, where k << d. For instance in the example with
images, there are only two parameters which are changing (rotation, and lighting), so despite having d =
10,000 dimensions of data, 2 should be enough to represent everything.

7.1.1 Projections
Different than in linear regression this family of techniques will measure error as a projection from ai ∈ Rd
to the closest point πF (ai) on F . To define this we will use linear algebra.

First recall, that given a unit vector u ∈ Rd and any data point p ∈ Rd, then the dot product

〈u, p〉

is the norm of p projected onto the line through u. If we multiply this scalar by u then

πu(p) = 〈u, p〉u,

and it results in the point on the line through u that is closest to data point p. This is a projection of p onto u.
To understand this for a subspace F , we will need to define a basis. For now we will assume that F

contains the origin (0, 0, 0, . . . , 0) (as did the line through u). Then if F is k-dimensional, then this means
there is a k-dimensional basis UF = {u1, u2, . . . , uk} so that

• For each ui ∈ UF we have ‖ui‖ = 1, that is ui is a unit vector.

• For each pair ui, uj ∈ UF we have 〈ui, uj〉 = 0; the pairs are orthogonal.

• For any point x ∈ F we can write x =
∑k

i=1 αiui; in particular αi = 〈x, ui〉.

Given such a basis, then the projection on to F of a point p ∈ Rd is simply

πF (p) =

k∑

i=1

〈ui, p〉ui.

Thus if p happens to be exactly in F , then this recovers p exactly.
The other powerful part of the basis UF is the it defines a new coordinate system. Instead of using the d

original coordinates, we can use new coordinates (α1(p), α2(p), . . . , αk(p)) where αi(p) = 〈ui, p〉. To be
clear πF (p) is still in Rd, but there is a k-dimensional representation if we restrict to F .

WhenF is d-dimensional, this operation can still be interesting. The basis we chooseUF = {u1, u2, . . . , ud}
could be the same as the original coordinate axis, that is we could have ui = ei = (0, 0, . . . , 0, 1, 0, . . . , 0)
where only the ith coordinate is 1. But if it is another basis, then this acts as a rotation (with possibility of
also a mirror flip). The first coordinate is rotated to be along u1; the second along u2; and so on. In πF (p),
the point p does not change, just its representation.

Math for Data copyright: Jeff M. Phillips

7.1.2 SSE Goal
As usual our goal will be to minimize the sum of squared errors. In this case we define this as

SSE(A,F) =
∑

ai∈A
‖ai − πF (ai)‖2,

and our desired k-dimensional subspace F is

F ∗ = arg min
F

SSE(A,F)

As compared to linear regression, this is much less a “proxy goal” where the true goal was prediction. Now
we have no labels (the yi values), so we simply try to fit a model through all of the data.

How do we solve for this?

• Linear regression does not work, its cost function is different.

• It is not obvious how to use gradient descent. The restriction that each ui ∈ UF is a unit vector puts
in a constraint, in fact a non-convex one. There are ways to deal with this, but we have not discussed
these yet.

• ... linear algebra will come back to the rescue, now in the form of the SVD.

7.2 Singular Value Decomposition
A really powerful and useful linear algebra operation is called the singular value decomposition. It extracts
an enormous amount of information about a matrix A. This section will define it and discuss many of its
uses. Then we will describe one algorithm how to construct it. But in general, one simply calls the procedure
in your favorite programming language and it calls the same highly-optimized back-end from the Fortran
LAPACK library.

from scipy import linalg as LA
U, s, Vt = LA.svd(A)

The SVD takes in a matrix A ∈ Rn×d and outputs three matrices U ∈ Rn×n, S ∈ Rn×d and V ∈ Rd×d,
so that A = USV T .

[U, S, V] = svd(A)

=A U S
VT

The structure that lurks beneath. The matrix S only has non-zero elements along its diagonal. So
Si,j = 0 if i 6= j. The remaining values σ1 = S1,1, σ2 = S2,2, . . ., σr = Sr,r are known as the singular
values. They have the property that

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0

Math for Data copyright: Jeff M. Phillips

where r ≤ min{n, d} is the rank of the matrix A. So the number of non-zero singular values reports the
rank (this is a numerical way of computing the rank or a matrix).

The matrices U and V are orthogonal. Thus, their columns are all unit vectors and orthogonal to each
other (within each matrix). The columns of U , written u1, u2, . . . , un, are called the left singular vectors;
and the columns of V (i.e., rows of V T), written v1, v2, . . . , vd, are called the right singular vectors.

This means for any vector x ∈ Rd, the columns of V (the right singular vectors) provide a basis. That is,
we can write x =

∑d
i=1 αivi for αi = 〈x, vi〉. Similarly for any vector y ∈ Rn, the columns of U (the left

singular vectors) provide a basis. This also implies that ‖x‖ = ‖V Tx‖ and ‖y‖ = ‖yU‖.

=A U

S VT

one data point

left singular vector

right singular vector

singular value
importance of singular vectors
decreasing rank order: �j � �j+1

important directions (vj by �j)
orthogonal: creates basis

maps contribution of data points
to singular values

v1
v2

x

kAxk

Tracing the path of a vector. To illustrate what this decomposition demonstrates, a useful exercise is to
trace what happens to a vector x ∈ Rd as it is left-multiplied by A, that is Ax = USV Tx.

First V Tx produces a new vector ξ ∈ Rd. It essentially changes no information, just changes the basis to
that described by the right singular values. For instance the new i coordinate ξi = 〈vi, x〉.

Next η ∈ Rn is the result of SV Tx = Sξ. It scales ξ by the singular values of S. Note that if d < n (the
case we will focus on), then the last n − d coordinates of η are 0. In fact, for j > r (where r = rank(A))
then ηj = 0. For j ≤ r, then the vector η is stretched longer in the first coordinates since these have larger
values.

The final result is a vector y ∈ Rn, the result of Ax = USV Tx = Uη. This again just changes the basis
of η so that it aligns with the left singular vectors. In the setting n > d, the last n − d left singular vectors
are meaningless since the corresponding entries in η are 0.

Working backwards ... this final U matrix can be thought of mapping the effect of η onto each of the data
points ofA. The η vector, in turn, can be thought of as scaling by the content of the data matrixA (the U and
V T matrices contain no scaling information). And the ξ vector arises via the special rotation matrix V T that
puts the starting point x into the right basis to do the scaling (from the original d-dimensional coordinates
to one that suits the data better).

Math for Data copyright: Jeff M. Phillips

Example: Tracing through the SVD

Consider a matrix

A =

4 3
2 2
−1 −3
−5 −2

 ,

and its SVD [U, S, V] = svd(A):

U =

−0.6122 0.0523 0.0642 0.7864
−0.3415 0.2026 0.8489 −0.3487
0.3130 −0.8070 0.4264 0.2625
0.6408 0.5522 0.3057 0.4371

 , S =

8.1655 0

0 2.3074
0 0
0 0

 , V =

(
−0.8142 −.5805
−0.5805 0.8142

)
.

Now consider a vector x = (0.243, 0.97) (scaled very slightly so it is a unit vector, ‖x‖ = 1).
Multiplying by V T rotates (and flips) x to ξ = V Tx; still ‖ξ‖ = 1

x1

x2

v1

v2

x

v1

v2

⇠

Next multiplying by S scales ξ to η = Sξ. Notice there are an imaginary third and fourth coordinates
now; they are both coming out of the page! Don’t worry, they won’t poke you since their magnitude
is 0.

v1

v2⌘

Finally, y = Uη = Ax is again another rotation of η in this four dimensional space.

Math for Data copyright: Jeff M. Phillips

import scipy as sp
import numpy as np
from scipy import linalg as LA

A = np.array([[4.0,3.0], [2.0,2.0], [-1.0,-3.0], [-5.0,-2.0]])

U, s, Vt = LA.svd(A, full_matrices=False)

print U
#[[-0.61215255 -0.05228813]
[-0.34162337 -0.2025832]
[0.31300005 0.80704816]
[0.64077586 -0.55217683]]
print s
#[8.16552039 2.30743942]
print Vt
#[[-0.81424526 -0.58052102]
[0.58052102 -0.81424526]]

x = np.array([0.243,0.97])
x = x/LA.norm(x)

xi = Vt.dot(x)
print xi
#[-0.7609864 -0.64876784]

S = LA.diagsvd(s,2,2)
eta = S.dot(xi)
print eta
#[-6.21384993 -1.49699248]

y = U.dot(eta)
print y
#[3.88209899 2.42606187 -3.1530804 -3.15508046]

print A.dot(x)
#[3.88209899 2.42606187 -3.1530804 -3.15508046]

7.2.1 Best Rank-k Approximation
So how does this help solve the initial problem of finding F ∗, which minimized the SSE? The singular
values hold the key.

It turns out that there is a unique singular value decomposition, up to ties in the singular values. This
means, there is exactly one (up to singular value ties) set of right singular values which rotate into a basis
so that ‖Ax‖ = ‖SV Tx‖ for all x ∈ Rd (recall that U is orthogonal, so it does not change the norm,
‖Uη‖ = ‖η‖).

Next we realize that the singular values come in sorted order σ1 ≥ σ2 ≥ . . . ≥ σr. In fact, they are
defined so that we choose v1 so it maximizes ‖Av1‖, then we find the next singular vector v2 which is
orthogonal to v1 and maximizes ‖Av2‖, and so on. Then σi = ‖Avi‖.

If we define F with the basis UF = {v1, v2, . . . , vk}, then

‖x− πF (x)‖2 =

∥∥∥∥∥
d∑

i=1

vi〈x, vi〉 −
k∑

i=1

vi〈x, vi〉
∥∥∥∥∥

2

=
d∑

i=k+1

〈x, vi〉2.

Math for Data copyright: Jeff M. Phillips

so the projection error is that part of x in the last (d− k) right singular vectors.
But we are not trying to directly predict new data here (like in regression). Rather, we are trying to

approximate the data we have. We want to minimize
∑

i ‖ai − πF (ai)‖2. But for any unit vector u, we
recall now that

‖Au‖2 =

n∑

i=1

〈ai, u〉.

Thus the projection error can be measured with a set of orthonormal vectors w1, w2, . . . , wd−k which are
each orthogonal to F , as

∑n−k
j=1 ‖Awj‖2. When defining F as the first k right singular values, then these

orthogonal vectors are the remaining (n− k) right singular vectors, so the projection error is

n∑

i=1

‖ai − πF (ai)‖2 =

d∑

j=k+1

‖Avj‖2 =

d∑

j=k+1

σ2
j .

And thus by how the right singular vectors are defined, this expression is minimized when F is defined as
the span of the first k singular values.

Best rank-k approximation. A similar goal is to find the best rank-k approximation ofA. That is a matrix
Ak ∈ Rn×d so that rank(Ak) = k and it minimizes both

‖A−Ak‖2 and ‖A−Ak‖F .
Note that ‖A−Ak‖2 = σk+1 and ‖A−Ak‖2F =

∑d
j=k+1 σ

2
j .

Remarkably, this Ak matrix also comes from the SVD. If we set Sk as the matrix S in the decomposition
so that all but the first k singular values are 0, then it has rank k. Hence Ak = USkV

T also has rank k and
is our solution. But we can notice that when we set most of Sk to 0, then the last (d− k) columns of V are
meaningless since they are only multiplied by 0s in USkV T , so we can also set those to all 0s, or remove
them entirely (along with the last (d− k) columns of Sk). Similar we can make 0 or remove the last (n− k)
columns of U . These matrices are referred to as Vk and Uk respectively, and also Ak = UkSkV

T
k .

=A U

S VT
kk

kk

7.3 Eigenvalues and Eigenvectors
A related matrix decomposition to SVD is the eigendecomposition. This is only defined for a square matrix
B ∈ Rn×n.

An eigenvector of B is a vector v such that there is some scalar λ that

Bv = λv.

That is, multiplying B by v results in a scaled version of v. The associated value λ is called the eigenvalue.
As a convention, we typically normalize v so ‖v‖ = 1.

In general, a square matrix B ∈ Rn×n may have up to n eigenvectors (a matrix V ∈ Rn×n) and values (a
vector l ∈ Rn). Some of the eigenvalues may be complex numbers (even when all of its entries are real!).

Math for Data copyright: Jeff M. Phillips

from scipy import linalg as LA
l, V = LA.eig(B)

For this reason, we will focus on positive semidefinite matrices. A positive definite matrix B ∈ Rn×n
is a symmetric matrix with all positive eigenvalues. Another characterization is for every vector x ∈ Rn
then xTBx is positive. A positive semidefinite matrix B ∈ Rn×n may have some eigenvalues at 0 and are
otherwise positive; equivalently for any vector x ∈ Rn, then xTBx may be zero or positive.

How do we get positive semi-definite matrices? Lets start with a data matrix A ∈ Rn×d. Then we can
construct two positive semidefinite matrices

BR = ATA and BL = AAT .

Matrix BR is d × d and BL is n × n. If the rank of A is d, then BR is positive definite. If the rank of A is
n, then BL is positive definite.

Eigenvectors and eigenvalues relation to SVD. Next consider the SVD ofA so that [U, S, V] = svd(A).
Then we can write

BRV = ATAV = (V SUT)(USV T)V = V S2.

Note that the last step follows because for orthogonal matrices U and V , then UTU = I and V TV = I ,
where I is the identity matrix, which has no effect. The matrix S is a diagonal square1 matrix S =
diag(σ1, σ2, . . . , σd). Then S2 = SS (the product of S with S) is again diagonal with entries S2 =
diag(σ2

1, σ
2
2, . . . , σ

2
d).

Now consider a single column vi of V (which is the ith right singular vector of A). Then extracting this
column’s role in the linear system BRV = V S2 we obtain

BRvi = viσ
2
i .

This means that ith right singular vector of A is an eigenvector (in fact the ith eigenvector) of BR = ATA.
Moreover, the ith eigenvalue λi of BR is the ith singular value of A squared: λi = σ2

i .
Similarly we can derive

BLU = AATU = (USV T)(V SUT)U = US2,

and hence the left singular vectors of A are the eigenvectors of BL = AAT and the eigenvalues of BL are
the squared singular values of A.

Eigendecomposition. In general, the eigenvectors provide a basis for a matrix B ∈ Rn×n in the same
way that the right V or left singular vectors U provide a basis for matrix A ∈ Rn×d. In fact, it is again a
very special basis, and is unique up to the multiplicity of eigenvalues. This implies that all eigenvectors are
orthogonal to each other.

Let V = [v1, v2, . . . , vn] be the eigenvectors of the matrix B ∈ Rn×n, as columns in the matrix V . Also
let L = diag(λ1, λ2, . . . , λd) be the eigenvalues of B stored on the diagonal of matrix L. Then we can
decompose B as

B = V LV −1.

1Technically, S ∈ Rn×d. To make this simple argument work, lets first assume w.l.o.g. (without loss of generality) that d ≤ n.
Then the bottom n− d rows of S are all zeros, which mean the right n− d rows of U do not matter. So we can ignore both these
n − d rows and columns. Then S is square. This makes U no longer orthogonal, so UTU is then a projection, not identity; but it
turns out this is a project to the span of A, so the argument still works.

Math for Data copyright: Jeff M. Phillips

Note that the inverse of L is L−1 = diag(1/λ1, 1/λ2, . . . , 1/λn). Hence we can write

B−1 = V L−1V −1.

When B is positive definite, it has n positive eigenvectors and eigenvalues; hence V is orthogonal, so
V −1 = V T . Thus in this situation, given the eigendecomposition, we now have a way to compute the
inverse

B−1 = V L−1V T ,

which was required in our almost closed-form solution for linear regression. Now we just need to compute
the eigendecomposition, which we will discuss next.

7.4 The Power Method
The power method refers to what is probably the simplest algorithm to compute the first eigenvector and
value of a matrix. By factoring out the effect of the first eigenvector, we can then recursively repeat the
process on the remainder until we have found all eigenvectors and values. Moreover, this implies we can
also reconstruct the singular value decomposition as well.

We will consider B ∈ Rn×n, a positive semidefinite matrix: B = ATA.

Algorithm 7.4.1 PowerMethod(B, q)

initialize u(0) as a random unit vector.
for i = 1 to q do
u(i) := Bu(i−1)

return v := u(q)/‖u(q)‖

We can unroll the for loop to reveal another interpretation. We can directly set v(q) = Bqv(0), so all itera-
tions are incorporated into one matrix-vector multiplication. Recall that Bq = B ·B ·B · . . . ·B, for q times.
However, these q matrix multiplications are much more expensive then q matrix-vector multiplications.

Alternatively we are provided only the matrixA (whereB = ATA) then we can run the algorithm without
explicitly constructing B (since for instance if d > n and A ∈ Rn×d, then the size of B (d2) may be much
larger than A (nd)). Then we simply replace the inside of the for-loop with

u(i) := AT (Au(i−1))

where we first multiply ũ = Au(i−1) and then complete u(i) = AT ũ.

Recovering all eigenvalues. The output of PowerMethod(B = ATA, q) is a single unit vector v, which
we will argue is arbitrarily close to the first eigenvector v1. Clearly we can recover the first eigenvalue as
λ1 = ‖Bv1‖. Since we know the eigenvectors form a basis forB, they are orthogonal. Hence, after we have
constructed the first eigenvector v1, we can factor it out from B as follows:

A1 := A−Av1v
T
1

B1 := AT1 A1

Then we run PowerMethod(B1 = AT1 A1, q) to recover v2, and λ2; factor them out of B1 to obtain B2, and
iterate.

Math for Data copyright: Jeff M. Phillips

Geometry of Why the Power Method Works?

To understand why the power method works, assume we know the eigenvectors v1, v2, . . . , vn and
eigenvalues λ1, λ2, . . . , λn of B ∈ Rn×n.
Since the eigenvectors form a basis for B, and assuming it is full rank, then also for all of Rn (if not,
then it does not have n eigenvalues, and we can fill out the rest of the basis of Rn arbitrarily). Hence,
for any vector, including the initialization random vector u(0) can be written as

u(0) =

n∑

j=1

αjvj .

Recall that αj = 〈u(0), vj〉, and since it is random, it is possible to claim that with probability at least
1/2 that for any αj we have that |αj | ≥ 1

2

√
na. We will now assume that this holds for j = 1, so

α1 > 1/2
√
n.

Next since we can interpret that algorithm as v = Bqu(0), then lets analyze Bq. If B has jth
eigenvector vj and eigenvalue λj , that is, Bvj = λjvj , then Bq has jth eigenvalue λqj since

Bqvj = B ·B · . . . ·Bvj = Bq−1(vjλj) = Bq−2(vjλj)λj = vjλ
q
j .

This holds for each eigenvalue of Bq. Hence we can rewrite output by summing over the terms in
the eigenbasis as

v =

∑n
j=1 αjλ

q
jvj√∑n

j=1(αjλ
q
j)

2
.

Finally, we would like to show our output v is close to the first eigenvector v1. We can measure
closeness with the dot product (actually we will need to use its absolute value since we might find
something close to −v1).

|〈Bqu(0), v1〉| =
α1λ

q
1√∑n

j=1(αjλ
q
j)

2

≥ α1λ
q
1√

α2
1λ

2q
1 + nλ2t

2

≥ α1λ
q
1

α1λ
q
1 + λq2

√
n

= 1− λq2
√
n

α1λ
q
1 + λq2

√
n

≥ 1− 2
√
n

(
λ2

λ1

)q
.

The first inequality holds because λ1 ≥ λ2 ≥ λj for all j > 2. The third inequality (going to third
line) holds by dropping the λq2

√
n term in the denominator, and since α1 > 1/2

√
n.

Thus if there is “gap” between the first two eigenvalues (λ1/λ2 is large), then this algorithm con-
verges quickly to where |〈v, v1〉| = 1.

aSince u(0) is a unit vector, its norm is 1, and because {v1, . . . , vn} is a basis, then 1 = ‖u(0)‖2 =
∑n
j=1 α

2
j . Since it

is random, then E[α2
j] = 1/n for each j. Applying a concentration of measure (almost a Markov Inequality, but need to

be more careful), we can argue that with probability 1/2 any α2
j > (1/4) · (1/n), and hence αj > (1/2) · (1/

√
n).

Math for Data copyright: Jeff M. Phillips

7.5 Principal Component Analysis
Recall that the original goal of this topic was to find the k-dimensional subspace F to minimize

‖A− πF (A)‖2F =
∑

ai∈A
‖ai − πF (ai)‖2.

We have not actually solved this yet. The top k right singular values Vk of A only provided this bound
assuming that F contains the origin: (0, 0, . . . , 0). However, this might not be the case!

Principal Component Analysis (PCA) is an extension of the SVD when we do not restrict that the subspace
Vk must go through the origin. It turns out, like with simple linear regression, that the optimal F must go
through the mean of all of the data. So we can still use the SVD, after a simple preprocessing step called
centering to shift the data matrix so its mean is exactly at the origin.

Specifically, centering is adjusting the original input data matrix A ∈ Rn×d so that each column (each
dimension) has an average value of 0. This is easier than it seems. Define āj = 1

n

∑n
i=1Ai,j (the average

of each column j). Then set each Ãi,j = Ai,j − āj to represent the entry in the ith row and jth column of
centered matrix Ã.

There is a centering matrixCn = In− 1
n11T where In is the n×n identity matrix, 1 is the all-ones column

vector (of length n) and thus 11T is the all-ones n× n matrix. Then we can also just write Ã = CnA.
Now to perform PCA on a data set A, we compute [U, S, V] = svd(CnA) = svd(Ã).
Then the resulting singular values diag(S) = {σ1, σ2, . . . , σr} are known as the principal values, and the

top k right singular vectors Vk = [v1 v2 . . . vk] are known as the top-k principal directions.
This often gives a better fitting to the data than just SVD. The SVD finds the best rank-k approximation

ofA, which is the best k-dimensional subspace (up to Frobenius and spectral norms) which passes through
the origin. If all of the data is far from the origin, this can essentially “waste” a dimension to pass through
the origin. However, we also need to store the shift from the origin, a vector c̃ = (ã1, ã2, . . . , ãd) ∈ Rd.

7.6 Multidimensional Scaling
Dimensionality reduction is an abstract problem with input of a high-dimensional data set P ⊂ Rd and a
goal of finding a corresponding lower dimensional data set Q ⊂ Rk, where k << d, and properties of P
are preserved in Q. Both low-rank approximations through direct SVD and through PCA are examples of
this: Q = πVk(P). However, these techniques require an explicit representation of P to start with. In some
cases, we are only presented P more abstractly. There two common situations:

• We are provided a set of n objects X , and a bivariate function d : X ×X → R that returns a distance
between them. For instance, we can put two cities into an airline website, and it may return a dollar
amount for the cheapest flight between those two cities. This dollar amount is our “distance.”

• We are simply provided a matrix D ∈ Rn×n, where each entry Di,j is the distance between the ith
and jth point. In the first scenario, we can calculate such a matrix D.

Multi-Dimensional Scaling (MDS) has the goal of taking such a distance matrixD for n points and giving
low-dimensional (typically) Euclidean coordinates to these points so that the embedded points have similar
spatial relations to that described in D. If we had some original data set A which resulted in D, we could
just apply PCA to find the embedding. It is important to note, in the setting of MDS we are typically just
given D, and not the original data A. However, as we will show next, we can derive a matrix that will act
like AAT using only D.

A similarity matrix M is an n × n matrix where entry Mi,j is the similarity between the ith and the jth
data point. The similarity often associated with Euclidean distance ‖ai − aj‖ is the standard inner (or dot

Math for Data copyright: Jeff M. Phillips

product) 〈ai, aj〉. We can write

‖ai − aj‖2 = ‖ai‖2 + ‖aj‖2 − 2〈ai, aj〉,

and hence
〈ai, aj〉 =

1

2

(
‖ai‖2 + ‖aj‖2 − ‖ai − aj‖2

)
. (7.1)

Next we observe that for the n× n matrix AAT the entry [AAT]i,j = 〈ai, aj〉. So it seems hopeful we can
derive AAT from D using equation (7.1). That is we can set ‖ai − aj‖2 = D2

i,j . However, we need also
need values for ‖ai‖2 and ‖aj‖2.

Since the embedding has an arbitrary shift to it (if we add a shift vector s to all embedding points,
then no distances change), then we can arbitrarily choose a1 to be at the origin. Then ‖a1‖2 = 0 and
‖aj‖2 = ‖a1 − aj‖2 = D2

1,j . Using this assumption and equation (7.1), we can then derive the similarity
matrixAAT . Then we can run the eigen-decomposition onAAT and use the coordinates of each point along
the first k eigenvectors to get an embedding. This is known as classical MDS.

It is often used for k as 2 or 3 so the data can be easily visualized.
There are several other forms that try to preserve the distance more directly, where as this approach

is essentially just minimizing the squared residuals of the projection from some unknown original (high-
dimensional embedding). One can see that we recover the distances with no error if we use all n eigenvectors
– if they exist. However, as mentioned, there may be less than n eigenvectors, or they may be associated
with complex eigenvalues. So if our goal is an embedding into k = 3 or k = 10, there is no guarantee that
this will work, or even what guarantees this will have. But MDS is used a lot nonetheless.

Math for Data copyright: Jeff M. Phillips

Exercises

We will use a dataset, here: http://www.cs.utah.edu/˜jeffp/teaching/FoDA/A.csv

Q7.1: Read data set A.csv as a matrix A ∈ R30×6. Compute the SVD of A and report

1. the third right singular vector,

2. the second singular value, and

3. the fourth left singular vector.

4. What is the rank of A?

Compute Ak for k = 2.

1. What is ‖A−Ak‖2F ?

2. What is ‖A−Ak‖22?

Center A. Run PCA to find the best 2-dimensional subspace F to minimize ‖A− πF (A)‖2F . Report

1. ‖A− πF (A)‖2F and

2. ‖A− πF (A)‖22.

Q7.2: Consider another matrix A ∈ R8×4 with squared singular values σ2
1 = 10, σ2

2 = 5, σ2
3 = 2, and

σ2
4 = 1.

1. What is the rank of A?

2. What is ‖A−A2‖2F , where A2 is the best rank-2 approximation of A.

3. What is ‖A−A2‖22, where A2 is the best rank-2 approximation of A.

4. What is ‖A‖22?

5. What is ‖A‖2F ?

Let v1, v2, v3, v4 be the right singular vectors of A.

1. What is ‖Av2‖2?

2. What is 〈v1, v3〉?
3. What is ‖v4‖?

Let a1 ∈ R4 be the first row of A.

1. Write a1 in the basis defined by the right singular vectors of A.

Q7.3: Consider two matrices A1 and A2 both in R10×3. A1 has singular values σ1 = 20, σ2 = 2, and
σ3 = 1.5. A2 has singular values σ1 = 8, σ2 = 4, and σ3 = 0.001.

1. For which matrix will the power method converge faster to the top eigenvector of AT1 A1 (or
AT2 A2, respectively), and why?

Given the eigenvectors v1, v2, v3 of ATA. Explain step by step how to recover the following. Specifi-
cally, you should write the answers as linear algebraic expressions in terms of v1, v2, v3, and A; it can
involve taking norms, matrix multiply, addition, subtraction, but not something more complex like
SVD.

Math for Data copyright: Jeff M. Phillips

2. the second singular value of A

3. the first right singular vector of A

4. the third left singular vector of A

Math for Data copyright: Jeff M. Phillips

8 Clustering

This topic will focus on automatically grouping data points into subsets of similar points. There are numer-
ous ways to define this problem, and most of them are quite messy. And many techniques for clustering
actually lack a mathematical formulation. We will initially focus on what is probably the cleanest and most
used formulation: assignment-based clustering which includes k-center and the notorious k-means cluster-
ing. But, for background, we will begin with a mathematical detour in Voronoi diagrams. Then we will also
describe various other clustering formulations to give insight into the breadth and variety of approaches in
this subdomain.

On clusterability: While we present a variety of clustering approaches, and there are many more
in the data mining literature, its important to remember the following:
When data is easily or naturally clusterable, most clustering algorithms work quickly and well.
When data is not easily or naturally clusterable, then no algorithm will find good clusters.
These statement is perhaps debatable, and “easily or naturally clusterable” is not defined here. But
there are definitely many ways to cluster data, and the most common ones all work on common sense
data examples with clusters.

8.1 Voronoi Diagrams
Consider a set S = {s1, s2, . . . , sk} ⊂ Rd of sites. We would like to understand how these points can carve
up the space Rd.

We now think of this more formally as the post office problem. Let these k sites each define the location
of a post office. For all points in Rd (e.g., a point on the map for points in R2), we would like to assign it to
the closest post office. For a fixed point x ∈ Rd, we can just check the distance to each post office:

φS(x) = arg min
si∈S
‖x− si‖.

However, this may be slow (naively take O(k) time for each point x), and does not provide a general
representation or understanding for all points. The “correct” solution to this problem is the Voronoi diagram.

The Voronoi diagram decomposes Rd into k regions (a Voronoi cell), one for each site. The region for
site si is defined.

Ri = {x ∈ Rd | φS(x) = si}.
If we have these regions nicely defined, this solves the post office problem. For any point x, we just need
to determine which region it lies in (for instance in R2, once we have defined these regions, through an
extension of binary search, we can locate the region containing any x ∈ R2 in only O(log k) time). But
what do these regions look like, and what properties do they have.

Voronoi edges and vertices. We will start our discussion in R2. Further, we will assume that the sites S
are in general position: in this setting, it means that no set of three points lie on a common line, and that no
set of four points lie on a common circle.

The boundary between two regions Ri and Rj , called a Voronoi edge, is a line or line segment. This edge
ei,j is defined

ei,j = {x ∈ R2 | ‖x− si‖ = ‖x− sj‖ ≤ ‖x− s`‖ for all ` 6= i, j}

127

as the set of all points equal distance to si and sj , and not closer to any other point s`.
Why is this set a line segment? If we only have two points in S, then it is the bisector between them. Draw

a circle centered at any point x on this bisector, and if it intersects one of si or sj , it will also intersect the
other. This is true since we can decompose the squared distance from x to si along orthogonal components:
along the edge, and perpendicular to the edge from si to πei,j (si).

Similarly, a Voronoi vertex vi,j,` is a point where three sites si, sj , and s` are all equidistance, and no
other points are closer:

vi,j,k = {x ∈ R2 | ‖x− si‖ = ‖x− sj‖ = ‖x = s`‖ ≤ ‖x− sk‖ for all k 6= i, j, `}.

This vertex is the intersection (and end point) of three Voronoi edges ei,i, ei,`, and ej,`. Think of sliding a
point x along an edge ei,j and maintaining the circle centered at x and touching si and sj . When this circle
grows to where it also touches s`, then ei,j stops.

Example: Voronoi Diagram

See the following example with k = 6 sites in R2. Notice the following properties: edges may be
unbounded, and the same with regions. The circle centered at v1,2,3 passes through s1, s2, and s3.
Also, Voronoi cell R3 has 5 = k − 1 vertices and edges.

s1

s2

s3

s4

s5

s6

e1,2

e1,3

e2,3

v1,2,3

Size complexity. So how complicated can these Voronoi diagrams get? A single Voronoi cell can have
k−1 vertices and edges. So can the entire complex be of sizeO(k2) (each of k regions requiring complexity
O(k))? No. The Voronoi vertices and edges describe a planar graph (i.e., can be drawn in the plane, R2, with
no edges crossing). And planar graphs have asymptotically the same number of edges, faces, and vertices.
In particular, Euler’s Formula for a planar graph with n vertices, m edges, and k faces is that k+n−m = 2.
And Kuratowski’s criteria says for n ≥ 3, then m ≤ 3n − 6. Hence, k ≤ 2n − 4 for n ≥ 3. The duality
construction to Delauney triangulations (discussed below) will complete the argument. Since there are k
faces (the k Voronoi cells, one for each site), then there are alsoO(k) edges andO(k) vertices. In particular,
there will be precisely 2k − 5 vertices and 3k − 6 edges.

However, this does not hold in R3. In particular, for R3 and R4, the complexity (number of cells, vertices,
edges, faces, etc) is O(k2). This means, there could be roughly as many edges as their are pairs of vertices!

But it can get much worse. In Rd (for general d) then the complexity is O(kdd/2e). This is a lot. Hence,
this structure is impractical to construct in high dimensions.

Math for Data copyright: Jeff M. Phillips

Curse of dimensionality: The curse of dimensionality, refers to when a problem has a nice, sim-
ple, and low-complexity structure in low dimensions, but then becomes intractable and unintuitive
in high-dimensions. For instance, many geometric properties, like the size complexity of Voronoi
diagrams, have linear complexity and are easy to draw in low-dimensions, but are unintuitive, and
have size complexity that grows exponentially as the dimension grows.

Moreover, since this structure is explicitly tied to the post office problem, and the nearest neighbor func-
tion φS , it indicates that (a) in R2 this function is nicely behaved, but (b) in high dimensions, it is quite
complicated.

8.1.1 Delaunay Triangulation
A fascinating aspect of the Voronoi diagram is that it can be converted into a very special graph called the
Delaunay triangulation where the sites S are vertices. This is the dual of the Voronoi diagram.

• Each face Ri of the Voronoi diagram maps to a vertex si in the Delaunay triangulation.

• Each vertex vi,j,` in the Voronoi diagram maps to a triangular face fi,j,` in the Delaunay triangulation.

• Each edge ei,j in the Voronoi diagram maps to an edge ēi,j in the Delaunay triangulation.

Example: Delaunay Triangulation

See the following example with 6 sites in R2. Notice that every edge, face, and vertex in the Delau-
nay triangulation corresponds to a edge, vertex, and face in the Voronoi diagram. Interestingly, the
associated edges may not intersection; see e2,6 and ē2,6.

s1

s2

s3

s4

s5

s6

e1,2

e1,3

e2,3

v1,2,3

e2,6

ē2,6

Because of the duality between the Voronoi diagram and the Delaunay triangulation, their complexities
are the same. That means the Voronoi diagram is of size O(k) for k sites in R2, but more generally is of size
O(kdd/2e) in Rd.

The existence of of the Delaunay triangulation shows that there always exist a triangulation: A graph with
vertices of a given set of points S ⊂ R2 so that all edges are straightline segments between the vertices,
and each face is a triangle. In fact, there are many possible triangulations: one can always simply construct
some triangulation greedily, draw any possible edges that does not cross other edges until no more can be
drawn.

Math for Data copyright: Jeff M. Phillips

The Delaunay triangulation, however, is quite special. This is the triangulation that maximizes the small-
est angle over all triangles; for meshing applications in graphics and simulation, skinny triangles (with small
angles) cause numerical issues, and so these are very useful.

In circle property. Another cool way to define the Delaunay triangulation is through the in circle property.
For any three points, the smallest enclosing ball either has all three points on the boundary, or has two points
on the boundary and they are antipodal to each other. Any circle with two points antipodal on the boundary
si and sj (i.e., si and sj are on exact opposite spots on the circle), and contains no other points, then the
edge ei,j is in the Delaunay triangulation. The set of edges defined by pairs of points defining empty circles
is a subset of the Delaunay triangulation called the Gabriel graph.

Any circle with three points on its boundary si, sj , and s`, and no points in its interior, then the face fi,j,`
is in the Delaunay triangulation, as well as its three edges ei,j , ei,` and ej,`. But does not imply those edges
are in the Gabriel graph.

For instance, on a quick inspection, (in the example above) it may not be clear if edge e3,5 or e4,6 should
be in the Delaunay triangulation. Clearly it can not be both since they cross. But the ball with boundary
through s3, s4, and s6 would contain s5, so the face f3,4,6 cannot be in the Delaunay triangulation. On the
other hand the ball with boundary through s3, s6, and s5 does not contain s4 or any other points in S, so the
face f3,5,6 is in the Delaunay triangulation.

8.1.2 Connection to Assignment-based Clustering
So what is the connection to clustering? Given a large set X ⊂ Rd of size n, we would like to find a set of k
sites S (post office locations) so that each point x ∈ X is near some post office. This is a proxy problem. So
given a set of sites S, determining for each x ∈ X which site is closest is exactly determined by the Voronoi
diagram.

In particular, in assignment-based clustering, each cluster is represented by a single site s ∈ S, to which
all other points in the cluster are “assigned.” Consider a set X , and distance d : X × X → R+, and the
output is a set S = {s1, s2, . . . , sk}. Using the Voronoi diagram this implicitly defines a set of clusters
where φS(x) = arg mins∈S d(x, s). Then the k-means clustering problem is to find the set S of k clusters
(often, but not always as a subset of X) to

minimize
∑

x∈X
d(φS(x), x)2.

So we want every point assigned to the closest center, and want to minimize the sum of the squared distance
of all such assignments.

There are several other useful variants including:

• the k-center clustering problem: minimize maxx∈X d(φS(x), x)

• the k-median clustering problem: minimize
∑

x∈X d(φS(x), x)
The k-mediod variant is similar to k-median, but restricts that the centers S must be a subset of P .

Moreover, the mixture of Gaussians approach will allow for more flexibility in the assignment and more
modeling power in the shape of each cluster.

8.2 Gonzalez Algorithm for k-Center Clustering
We begin with what is arguably the simplest and most general clustering algorithm: the Gonzalez algorithm.
This algorithm directly maps to the k-center formulation, where again every point is assigned to the closest
center, and the goal is to minimize the length of the longest distance of any such assignment pairing.

Math for Data copyright: Jeff M. Phillips

Unfortunately, the k-center clustering problem is NP-hard to solve exactly.1 In fact, for the general case,
it is NP-hard to find a clustering within a factor 2 of the optimal cost!

Luckily, there is a simple, elegant, and efficient algorithm that achieves this factor 2 approximation. That
is, for value k and a set X , it finds a set of k sites Ŝ so

max
x∈X

d(φŜ(x), x) ≤ 2 max
x∈X

d(φS∗(x), x),

where S∗ is the set of k sites with optimal cost. That is S∗ = argminS:|S|=k maxx∈X d(φS(x), x). More-
over, in practice, this often works better than the worst case theoretical guarantee. This algorithm, presented
as Algorithm 8.2.1, is usually attributed to Teofilo F. Gonzalez (1985), hence the name. It can be described
with the following maxim: Be greedy, and avoid your neighbors!.

Algorithm 8.2.1 Gonzalez Algorithm(X, k)

Choose s1 ∈ X arbitrarily. Initialize S = {s1}.
for i = 2 to k do

Set si = arg maxx∈X d(x, φS(x)).
Include S = S ∪ {si}.

The algorithm is iterative, building up the set of sites S over the run of algorithm. It initializes the first
site s1 arbitrarily. And it maintains a set of sites S which have i sites after i steps; that is initially the set
only contains the one site s1 chosen so far. Then it adds to the set the point x ∈ X which is furthest from
any of the current sites; that is the one with largest φS(x) value. This function φS changes over the course
of the algorithm as more sites are added to S.

In other words, back to our maxim, it always adds a new site that is furthest from current set of sites.

1The term NP-hard (i.e., non-deterministic polynomial time hard), refers to being as hard as a set of problems in terms of
runtime with respect to the size of their input. For these problems, if the correct solution is found, it can be verified quickly (in
time polynomial in the size of the input), but to find that correct solution the only known approaches are essentially equivalent to a
brute-force search over an exponentially large set of possible solutions, taking time exponential in the input size. It is not known if
it must take time exponential in the input size, or if there may be a solution which takes time polynomial in the input size (the class
of problems P); but in practice, it is often assumed this is not possible. In short, these problems are probably very hard to solve
efficiently.

Math for Data copyright: Jeff M. Phillips

Implementation Hints:
This algorithm only takes time proportional to kn = O(kn). There are k rounds, and each round
can be done in about n time. We maintain the map φSi(x) for each x; in the algorithm we will just
use an array φ, where φ[j] stores the index of the assigned site for the jth point xj . That is, at any
point in the algorithm, point xj is assigned to sφ[j]. When a new si is found, and added to the set of
centers, all n assignments φSi(x) can be updated in linear time (i.e., O(n) time), by checking each
distance d(x, φSi−1(x)) against d(x, si) and switching the assignment if the latter is smaller. Then
the minimum can be found in the next round on a linear scan (or on the same linear scan).

Algorithm: Gonzalez-Clustering(X, k)

Choose s1 ∈ X arbitrarily, and set φ[j] = 1 for all j ∈ [n]
for i = 2 to k do
M = 0, si = x1

for j = 1 to n do
if d(xj , sφ[j]) > M then
M = d(xj , sφ[j]), si = xj

for j = 1 to n do
if d(xj , sφ[j]) > d(xj , si) then
φ[j] = i

We summarize the properties of this simple, elegant, and efficient algorithm. This works for any metric
d, and the 2-approximation guarantee will still hold. The resulting set of sites S are a subset of the input
points X , this means it does not rely on the input points being part of a nice, easy to visualize, space, e.g.,
Rd. However, this algorithm biases the choice of centers to be on the “edges” of the dataset, each chosen
site is as far away from existing sites as possible, and then is never adjusted. There are heuristics to adjust
centers afterwards, including the algorithms for k-means and k-mediod clustering.

8.3 Lloyd’s Algorithm for k-Means Clustering
Probably the most famous clustering formulation is k-means, which we recall is an instance of assignment-
based clustering. Specifically, the k-means clustering problem is to find the set S of k clusters to minimize

cost(X,S) =
∑

x∈X
‖φS(x)− x‖2.

So we want every point assigned to the closest site, and want to minimize the sum of the squared distance
of all such assignments.

We emphasize the term “k-means” refers to a problem formulation, not to any one algorithm. There are
many algorithms with aim of solving the k-means problem formulation, exactly or approximately. We will
mainly focus on the most common: Lloyd’s algorithm. Unfortunately, it is commonly written in data mining
literature “the k-means algorithm,” which typically should be more clearly stated as Lloyd’s algorithm.

8.3.1 Lloyd’s Algorithm
When people think of the k-means problem, they usually think of the following algorithm. It is usually
attributed to Stuart P. Lloyd from a document in 1957, although it was not published until 1982.2

2Apparently, the IBM 650 computer Lloyd was using in 1957 did not have enough computational power to run the (very simple)
experiments he had planned. This was replaced by the IBM 701, but it did not have quite the same “quantization” functionality as

Math for Data copyright: Jeff M. Phillips

The algorithm is again fairly simple and elegant; however, unlike Gonzalez’s algorithm for k-center, the
sites are all iteratively updated. It initializes with any set of k sites, and then iteratively updates the locations
of these sites. Moreover, this assumes that the input data X lies in Rd; it can be generalized to X in a few
other Euclidean-like spaces as well.

As shown in Algorithm 8.3.1, each iteration is split into two steps. In the first step each point x ∈ X
is explicitly mapped to the closest site si = φS(x). In the second step, the set of points Xi = {x ∈ X |
φS(x) = si} which are mapped to the ith site si are gathered, and that site is adjusted to the average of all
points in Xi.

This second step is why we assume X ∈ Rd since the average operation can be naturally defined for
Rd (as 1

|Xi|
∑

x∈Xi x). This results in a point in Rd, but not necessarily a point in X . So, differing from
Gonzalez algorithm, this does not in general return a set of sites S which are drawn from the input set X .

Algorithm 8.3.1 Lloyd’s Algorithm(X, k)

Choose k points S ⊂ X arbitrarily?
repeat

for all x ∈ X: assign x to Xi so φS(x) = si the closest site si ∈ S to x
for all si ∈ S: update si = 1

|Xi|
∑

x∈Xi x the average of Xi = {x ∈ X | φS(x) = si}
until (the set S is unchanged, or other termination condition)

Convergence. This iterative process is continued until some termination condition is obtained. Algorithm
8.3.1 describes this as when the location of S is unchanged between iterates.

In general if the main loop has R iterations (or rounds), then this takes time proportional to Rnk (and can
be made closer to Rn log k with faster nearest neighbor search in some low-dimensional cases). But how
large is R; that is, how many iterations do we need?

We argue that the cost function cost(X,S) always decreases and thus the number of rounds is finite. In
fact, each round improves upon the results of the previous round. However, the number of steps until this
absolute termination condition is met may be quite large (indeed in certain cases exponentially large!). So
in practice such a strict variant is rarely used. Rather, it is common to run for a specified and fixed number
of rounds, say R = 10 or R = 20. Another common approach, as in gradient descent, is to check if the
change in cost(X,S) is less than a sufficiently small threshold.

the IBM 650, and the work was forgotten. Lloyd was also worried about some issues regarding the k-means problem not having a
unique minimum.

Math for Data copyright: Jeff M. Phillips

Geometry of Iterative Convergence

The number of rounds is finite. This is true since the cost function cost(X,S) will always decrease.
To see this, writing it as a sum over S.

cost(X,S) =
∑

x∈X
‖φS(x)− x‖2 =

∑

si∈S

∑

x∈Xi

‖si − x‖2.

Then in each step of the repeat-until loop, this must decrease. The first step holds since it moves
each x ∈ X to a subset Xi with the corresponding center si closer to (or the same distance to) x
than before. So for each x the term ‖x − si‖ is reduced (or the same). The second step holds since
for each inner sum

∑
x∈Xi ‖si − x‖2, the single point si which minimizes this cost is precisely the

average of Xi (see T2). So reassigning si as described also decreases the cost (or keeps it the same).
Importantly, if the cost decreases each step, then it cannot have the same set of centers S on two
different steps, since that would imply the assignment sets {Xi} would also be the same. Thus, in
order for this to happen, the cost would need to decrease after the first occurrence, and then increase
to obtain the second occurrence, which is not possible.
Since, there are finite ways each set of points can be assigned to different clusters, then, the algorithm
terminates in a finite number of steps.

Unfortunately, no matter how the convergence condition is chosen, this algorithm is not guaranteed to
find the optimal set of sites. It is easy to get stuck in a local minimum, and this may happen somewhat
commonly with a large k. There are two typically ways to help manage the consequences of this property:
careful initialization and random restarts.

A random restart, uses the insight that the choice of initialization can be chosen randomly, and this starting
point is what determines what minimum is reached. So, then the basic Lloyd’s algorithm can be run multiple
times (e.g., 3-5 times) with different random initializations. Then, ultimately the set of sites S, across all
random restarts, which obtain the lowest cost(X,S) is returned.

Initialization. The initial paper by Lloyd advocates to choose the initial partition ofX into disjoint subsets
X1, X2, . . . , Xk arbitrarily. However, some choices will not be very good. For instance, if we randomly
place each x ∈ X into some Xi, then (by the central limit theorem) we expect all si = 1

|Xi|
∑

x∈Xi x to all
be close to the mean of the full data set 1

|X|
∑

x∈X x.
A bit safer way to initialize the data is to choose a set S ⊂ X at random. Since each si is chosen

separately (not as an average of data points), there is no convergence to mean phenomenon. However, even
with this initialization, we may run Lloyd’s algorithm to completion, and find a sub-optimal solution (a local
minimum!). However, there are scenarios where such random initialization is unlikely to find the right local
minimum, even under several random restarts.

A more principled way to choose an initial set S is to use an algorithm like Gonzalez (see T8.2), or k-
means++ (see T.8.4). In particular, the initialization by Gonzalez is guaranteed to be within a factor of 2 of
the optimal k-center objective. While this objective is different than the k-means objective, it in that sense
cannot be too bad; and then Lloyd’s algorithm will only improve from that point on. k-means++ is similar,
but randomized, and more tuned to the specific k-means objective.

from sklearn.cluster import KMeans
import numpy as np
X = np.array([[2, 3], [2, 4], [2, 2],[7, 1], [7, 2], [7, 3]])
kmeans = KMeans(n_clusters=2).fit(X)

print kmeans.labels_

Math for Data copyright: Jeff M. Phillips

[1 1 1 0 0 0]

print kmeans.cluster_centers_
#[[7. 2.]
[2. 3.]]

Number of clusters. So what is the right value of k? Like with PCA, there is no perfect answer towards
choosing how many dimensions the subspace should be. When k is not given to you, typically, you would
run with many different values of k. Then create a plot of cost(S,X) as a function of k. This cost will
always decrease with larger k; but of course k = n is of no use. At some point, the cost will not decrease
much between values (this implies that probably two centers are used in the same grouping of data, so the
squared distance to either is similar). Then this is a good place to choose k.

8.3.2 k-Means++
The initialization approach for Lloyd’s algorithm, that is most tuned to the k-means objective is known as k-
means++, or D2-sampling. This algorithm is randomized, unlike Gonzalez, so it is compatible with random
restarts. Indeed analyses which argues for approximation guarantees in Lloyd’s algorithm require several
random restarts with k-means++.

Algorithm 8.3.2 k-Means++ Algorithm(X, k)

Choose s1 ∈ X arbitrarily. Initialize S = {s1}.
for i = 2 to k do

Choose si from X with probability proportional to d(x, φS(x))2.
Update S = S ∪ {si}.

As Algorithm 8.3.2 describes, the structure is like Gonzalez algorithm, but is not completely greedy. It
iteratively chooses each next center randomly – the further the squared distances is from an existing center,
the more likely it is chosen. For a large set of points (perhaps grouped together) which are far from an
existing center, then it is very likely that one (it does not matter so much which one) of them will be chosen
as the next center. This makes it likely that any “true” cluster will find some point as a suitable representative.

The critical step in this algorithm, and the difference from Gonzalez, is choosing the new center pro-
portional to some value (the value d(x, φS(x))2). Recall that this task has an elegant solution called the
Partition of Unity, discussed in the context of Importance Sampling.

8.3.3 k-Mediod Clustering
Like many algorithms in this book, Lloyd’s depends on the use of a SSE cost function. Critically, this works
because for X ∈ Rd, then

1

|X|
∑

x∈X
x = average(X) = arg min

s∈Rd

∑

x∈X
‖s− x‖2.

There are not in general similar properties for other costs functions, or when X is not in Rd. For instance,
one may want to solve the k-medians problem where one just minimizes the sum of (non-squared) distances.
In particular, this subset has no closed form solution forX ∈ Rd for d > 1. Most often gradient descent-type
approaches are used for finding an updated center under a k-median objective.

An alternative to the averaging step is to choose

si = arg min
s∈Xi

∑

x∈Xi

d(x, s)

Math for Data copyright: Jeff M. Phillips

where (.x, s) is an arbitrary measure (like non-squared Euclidean distance) between x and s. That is, we
choose an s from the set Xi. This is particularly useful when X is in a non-Euclidean metric space where
averaging may not be well-defined. For the specific case where d(x, s) = ‖x − s‖ (for the k-median
problem), then this variant of the formulation is called k-mediods. Moreover, the most common hueristic
for this problem is adapt Lloyd’s algorithm by substituting the averaging step with the minimum over all as
points in that set, as in Algorithm 8.3.3.

Algorithm 8.3.3 k-Mediod Hueristic(X, k)

Choose k points S ⊂ X arbitrarily?
repeat

for all x ∈ X: assign x to Xi so φS(x) = si the closest site si ∈ S to x
for all si ∈ S: update si = arg mins∈Xi

∑
x∈Xi d(x, s) the best choice of site from Xi

until (the set S is unchanged, or other termination condition)

This optimization step of choosing each si in each iteration is now considerably slower to implement than
the averaging step in Lloyd’s algorithm. However, that it always chooses si so that it is an element of X
can be an advantage. This allows the algorithm to generalize to use arbitrary distance functions d in place
of Euclidean distance. Now if the data objects X are customers, documents, or websites an appropriate
distance function can be used, and the site at the center of a cluster can be an element of the data set, and
thus an interpretable quantity.

Ethical Questions with Clustering and Outliers

The k-mediod clustering formulation is often used because it is general, but also fairly robust to
outliers. A single outlier point may be chosen as a separate cluster center for k-center or k-means
clustering, with no other points in that cluster. However, for k-mediods or k-median clustering it is
more likely to be added to an existing cluster without as dramatically increasing the cost function.
Typically this property is viewed as a positive for k-mediods in that the resulting cluster subsets are
not greatly distorted by a single outlier.

However, if these outliers are then added to a cluster for which it does not fit, it may cause other
problems. For instance, if a model is fit to each cluster, then this outlier may distort this model.

Consider the case where each data point is a person applying for a loan. It may be an outlier is
included in a cluster, and has had multiple bankruptcies that caused them to default on the loan, and
cost previous banks to lose a lot of money. This outlier may distort the model of that cluster so it
predicts all of the customers in it are not expected to return on the loan, in expectation. On the other
hand, excluding that data point would allow the model to predict more accurately that most of the
customers will repay the loan, and be profitable. As a data modeler, what obligations do you have to
check for such outliers within a clustering? What is a good way to mitigate the effects of instability
in the way data points are clustered? Does the answer to the previous questions remain the same,
even if the expected overall profit level for the bank should stay the same?

8.3.4 Soft Clustering
Sometimes it is not desirable to assign each point to exactly one cluster. Instead, we may split a point
between one or more clusters, assigning a fractional value to each. This is known as soft clustering whereas
the original formulation is known as hard clustering.

Math for Data copyright: Jeff M. Phillips

There are many ways to achieve a soft clustering. For instance, consider the following Voronoi diagram-
based approach based on natural neighbor interpolation (NNI). Let V (S) be the Voronoi diagram of the sites
S (which decomposes Rd). Then construct V (S ∪ x) for a particular data point x; the Voronoi diagram of
the sites S with the addition of one point x. For the region Rx defined by the point x in V (S ∪x), overlay it
on the original Voronoi diagram V (S). This region Rx will overlap with regions Ri in the original Voronoi
diagram; compute the volume vi for the overlap with each such region. Then the fractional weight for x into
each site si is defined wi(x) = vi/

∑n
i=1 vi.

We can plug any such step into Lloyd’s algorithm, and then recalculate si as the weighted average of all
points partially assigned to the ith cluster.

8.4 Mixture of Gaussians
The k-means formulation tends to define clusters of roughly equal size. The squared cost discourages points
far from any center. It also, does not adapt much to the density of individual centers.

An extension is to fit each cluster Xi with a Gaussian distribution Gd(µi,Σi), defined by a mean µi and a
covariance matrix Σi. Recall that the pdf of a d-dimensional Gaussian distribution is defined

fµ,Σ(x) =
1

(2π)d/2
1√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where |Σ| is the determinant of Σ . Previously we had only considered this distribution where Σ = I was
the identity matrix, and it was ignored in the notation. For instance, for d = 2, and the standard deviation in
the x-direction of X is σx, and in the y-direction is σy, and their correlation is ρ, then

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
.

Now the goal is, given a parameter k, find a set of k pdfs F = {f1, f2, . . . , fk} where fi = fµi,Σi to
maximize ∏

x∈X
max
fi∈F

fi(x),

or equivalently to minimize ∑

x∈X
min
fi∈F
− log(fi(x)).

For the special case where we restrict that Σi = I (the identity matrix) for each mixture, then one can check
that the second formulation (the log-likelihood version) is equivalent to the k-means problem (depending on
choice of hard or soft clustering).

This hints that we can adapt Lloyds algorithm towards this problem as well. To replace the first step of
the inner loop, we assign each x ∈ X to the Gaussian which maximizes fi(x):

for all x ∈ X: assign x to Xi so i = arg max
i∈1...k

fi(x).

But for the second step, we need to replace a simple average with an estimation of the best fitting Gaussian
to a data set Xi. This is also simple. First, calculate the mean as µi = 1

|Xi|
∑

x∈Xi x. Then calculate the
covariance matrix Σi of Xi as the sum of outer products

Σi =
∑

x∈Xi

(x− µi)(x− µi)T .

Indeed the covariance of the Gaussian fit to eachXi is better understood by its principal component analysis.
Calculating µi, and subtracting from each x ∈ Xi is the centering step. Letting X̄i = {x − µi | x ∈ Xi},
then Σi = V S2V T where [U, S, V] = svd(X̄i). Now, the top principle directions v1, v2, . . . describe the
directions of most variance.

Math for Data copyright: Jeff M. Phillips

8.4.1 Expectation-Maximization
The standard way to fit a mixture of Gaussians actually uses a soft-clustering. Each point x ∈ X is given
a weight wi = fi(x)/

∑
i fi(x) for its assignment to each cluster. Then the mean and covariance matrix

is estimated using weighted averages. The soft-clustering variant of the procedure extension to Lloyd’s
algorithm described above is outlined in Algorithm 8.4.1.

Algorithm 8.4.1 EM Algorithm for Mixture of Gaussians
Choose k points S ⊂ X
for all x ∈ X: set wi(x) = 1 for φS(x) = si, and wi(x) = 0 otherwise
repeat

for i ∈ [1 . . . k] do
Calculate Wi =

∑
x∈X wi(x) the total weight for cluster i

Set µi = 1
Wi

∑
x∈X wi(x)x the weighted average

Set Σi = 1
Wi

∑
x∈X wi(x− µi)(x− µi)T the weighted covariance

for x ∈ X do
for all i ∈ [1 . . . k]: set wi(x) = fi(x)/

∑
i fi(x) partial assignments using fi = fµi,Σi

until (
∑

x∈X
∑k

i=1− log(wi(x) · fi(x)) has small change)

This procedure is the classic example of a framework called expectation-maximization. This is an alter-
nating optimization procedure, which alternates between maximizing the probability of some model (the
partial assignment step) and calculating the most likely model using expectation (the average, covariance
estimating step).

But this is a much more general framework. It is particularly useful in situations (like this one) where the
true optimization criteria is messy and complex, often non-convex; but it can be broken into two or more
steps where each step can be solved with a (near) closed form. Or if there is no closed form, but each part is
individually convex, then gradient descent can be invoked.

8.5 Hierarchical Clustering
Clustering can provide more than a partition, it can also provide a hierarchy of the clusters. That is, at the
root of a hierarchy all data points are in the same cluster. And at the leaf nodes, each data point is in its own
cluster. Then the intermediate layers can provide various levels of refinement, depending on how many or
how tightly related clusters are desired.

Example: Hierarchy of Clusters

This small example shows the hierarchy of clusters found on n = 5 data points. Associated with
these clusters and this progression is a tree, showing the local order in which points are merged into
clusters.

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

Math for Data copyright: Jeff M. Phillips

There are two basic approaches towards this: top-down and bottom-up. The top-down approach starts
with all data points in the same cluster, and iteratively partitions the data into 2 (or sometimes more) parts.
The main task then, is given a data set, how to split it into two components as best possible. The canonical
top-down clustering approach is spectral clustering. This is primarily based on graph ideas, but can be
generalized to work with any choice of similarity function s (or implicitly a linked distance function d), so
the base object is an affinity matrix instead of the adjacency matrix of a graph. An in depth discussion is
deferred to the Graphs chapter.

The bottom-up approach, often called hierarchical agglomerative clustering takes the opposite tact, out-
lined in Algorithm 8.5.1. Starting with a cluster for each data point, its main task is to determine which
pair of clusters to join into a single cluster. As the standard choice is, the closest two clusters, then the key
element is to study distances between clusters.

Algorithm 8.5.1 Hierarchical Agglomerative Clustering
Each xi ∈ X is a separate cluster Si.
while there exist at least 2 clusters do

Find the closest two clusters Si, Sj
Merge Si and Sj into a single cluster

There are many ways to define such a distance dC . Each is defined with respect to another general
distance function d which can be applied to individual data points, and in some cases also representative
objects. The most common are:

• Single Link: dC(Si, Sj) = argminsi∈Si,sj∈Sj d(si, sj).
This takes the distance between the closest two points among all points in the clusters. This allows the
clusters to adjust to the shape and density of the data, but can lead to oddly shaped clusters as well.

• Mean Link: dC(Si, Sj) =
∑

si∈Si
∑

sj∈Sj d(si, sj).
This takes the average distance between pairs of points in a cluster. It behaves similar to the k-means
objective.

• Complete Link: dC(Si, Sj) = argmaxsi∈Si,sj∈Sj d(si, sj).
This enforces “round” clusters. It can only join two clusters if all points are similar.

• Center Link: dC(Si, Sj) = d(ci, cj) where ci and cj are central points representing Si and Sj .
The choice of how to define the central point is varied. For instance it could be the average, median,
representative median as in k-means, k-medians, or k-mediods objectives. Or it could be any other
easy to determine or robust way to represent the clusters.

These variants of clusters provide additional structural information beyond center-based clusters, in that
they also provide which clusters are close to each other, or allow a user to refine to different levels of
granularity. However, this comes at the cost of efficiency. For instance, on n data points, these algorithms
naively take time proportional to n3. Some improvements or approximations can reduce this to closer to
time proportional to n2, but may add instability to the results.

Math for Data copyright: Jeff M. Phillips

Ethical Questions with Forced Hierarchies

Hierarchies can create powerful visuals to help make sense of complex data sets that are compared
using a complex distance function over abstract data representations. For instance, phylogentic trees
are the dominate way to attempt to present evolutionary connections between species. However,
these connections can provide false insights by those over-eager to make new scientific or business
connections.

A common way to model and predict the careers of professional athletes is to use their early years
to cluster and group athletes with others who had careers before them. Then an up-and-coming
athlete can be predicted to have careers similar to those in the same cluster. However, if a new mold
of athlete – e.g., basketball players who shoot many 3-pointers, and are very tall – has many junior
players, but not senior players to use to predict their career. If they are grouped with other tall players,
a coach or general manager may treat them as rebounders minimizing their effectiveness. Or if they
are treated as shooting guards, they may be given more value. How might the use of the clustering
and its hierarchy be used to mitigate this potential downsides of this possible models?

Such effects are amplified in less scrutinize hiring and management situations. Consider a type of job
applicant who has traditionally not be hired in a role, how will their clustering among past applicants
be harmful or helpful for their chance at being hired, or placed in a management role? And as a data
modeler, what is your role in aiding in these decisions?

8.6 Mean Shift Clustering
Now for something completely different. Clustering is a very very broad field with no settled upon approach.
To demonstrate this, we will quickly review an algorithm called mean shift clustering. This algorithm shifts
each data point individually to its weighted center of mass. It terminates when all points converge to isolated
sets.

First begin with a bivariate kernel function K : X ×X → R such as the (unnormalized) Gaussian kernel

K(x, p) = exp(−‖x− p‖2/σ2)

for some given bandwidth parameter σ. The weighted center of mass around each point p ∈ X is then
defined as

µ(p) =

∑
x∈X K(x, p)x∑
x∈X K(x, p)

.

The algorithm just shifts each point to its center of mass: p← µ(p).

Algorithm 8.6.1 Mean Shift
repeat

for all p ∈ X: calculate µ(p) =
∑
x∈X K(x,p)x∑
x∈X K(x,p) .

for all p ∈ X: set p← µ(p).
until (the average change ‖p− µ(p)‖ is small)

This algorithm does not require a parameter k. However, it has other parameters, most notably the choice
of kernel K and its bandwidth σ. With the Gaussian kernel (since it has infinite support, K(x, p) > 0
for all x, p), it will only stop when all x are at the same point. Thus the termination condition is also
important. Alternatively, a different kernel with bounded support may terminate automatically (without a

Math for Data copyright: Jeff M. Phillips

specific condition); for this reason (and for speed) truncated Gaussians (i.e., K trunc
τ (x, p) = {0 if ‖x− p‖ >

τ ; otherwise K(x, p)}) are often used.
This algorithm not only clusters the data, but also is a key technique for de-noising data. This is a process

that not just removes noise (as often thought of as outliers), but attempts to adjusts points to where they
should have been before being perturbed by noise – similar to mapping a point to its cluster center.

Geometry of Kernel Density Estimates

A kernel density estimate is a powerful modeling tool that allows one to take a finite set of points
P ⊂ Rd and a smoothing operator, a kernel K, and transform them into a continuous function
KDEP : Rd → R.
The most common kernel is the Gaussian kernel

K(p, x) =
1

σd
√

2πd
exp(−‖x− p‖2/(2σ2)),

which is precisely the evaluation of the Gaussian distribution Gd(x) with mean p and standard devi-
ation σ evaluated at x. Thus it can be interpreted as taking the “mass” of a point p and spreading it
out according to this probability distribution.
Now, a kernel density estimate is defined at a point x ∈ Rd as

KDEP (x) =
1

|P |
∑

p∈P
K(p, x).

That is, it gives each point p ∈ P a mass of 1
|P | (each weighted uniformly), then spreads each of

these |P | masses out using the Gaussian kernels, and sums them up. While P is discrete in nature,
the kernel density estimate KDEP allows one to interpolate between these points in a smooth natural
way.

Math for Data copyright: Jeff M. Phillips

Exercises

We will use two datasets, here: http://www.cs.utah.edu/˜jeffp/teaching/FoDA/P.csv
and here: http://www.cs.utah.edu/˜jeffp/teaching/FoDA/Q.csv

Q8.1: Download data sets P and Q. Both have 120 data points, each in 6 dimensions, can be thought of as
data matrices in R120×6. For each, run some algorithm to construct the k-means clustering of them.
Diagnose how many clusters you think each data set should have by finding the solution for k equal
to 1, 2, 3, . . . , 10.

Q8.2: Draw the Voronoi diagram of the following set of points.

Q8.3: What should you do, if running Lloyd’s algorithm for k-means clustering (k = 2), and you reach
this scenario, where the algorithm terminates? (The black circles are data points and red stars are the
centers).

Q8.4: Construct a data set X with 5 points in R2 and a set S of k = 3 sites so that Lloyds algorithm will
have converged, but there is another set S′, of size k = 3, so that cost(X,S′) < cost(X,S). Explain
why S′ is better than S, but that Lloyds algorithm will not move from S.

Math for Data copyright: Jeff M. Phillips

9 Classification

This topic returns to prediction. Unlike linear regression where we were predicting a numeric value, in this
case we are predicting a class: winner or loser, yes or no, rich or poor, positive or negative. Ideas from
linear regression can be applied here, but we will instead overview a different, but still beautiful family of
techniques based on linear classification.

This is perhaps the central problem in data analysis. For instance, you may want to predict:

• will a sports team win a game?

• will a politician be elected?

• will someone like a movie?

• will someone click on an ad?

• will I get a job? (If you can build a good classifier, then probably yes!)

Each of these is typically solved by building a general purpose classifier (about sports or movies etc), then
applying it to the problem in question.

9.1 Linear Classifiers
Our input here is a point set X ⊂ Rd, where each element xi ∈ X also has an associated label yi. And
yi ∈ {−1,+1}.

Like in regression, our goal is prediction and generalization. We assume each (xi, yi) ∼ µ; that is,
each data point pair, is drawn iid from some fixed but unknown distribution. Then our goal is a function
g : Rd → R, so that if yi = +1, then g(xi) ≥ 0 and if yi = −1, then g(xi) ≤ 0.

We will restrict that g is linear. For a data point x ∈ Rd, written x = (x(1), x(2), . . . , x(d)) we enforce that

g(x) = α0 + x(1)α1 + x(2)α2 + . . .+ x(d)αd = α0 +
d∑

j=1

x(j)αj ,

for some set of scalar parameters α = (α0, α1, α2, . . . , αd). Typically, different notation is used: we set
b = α0 and w = (w1, w2, . . . , wd) = (α1, α2, . . . , αd) ∈ Rd. Then we write

g(x) = b+ x(1)w1 + x(2)w2 + . . .+ x(d)wd = 〈w, x〉+ b.

We can now interpret (w, b) as defining a halfspace in Rd. Herew is the normal of that halfspace boundary
(the single direction orthogonal to it) and b is the distance from the origin 0 = (0, 0, . . . , 0) to the halfspace
boundary in the direction w/‖w‖. Because w is normal to the halfspace boundary, b is also distance from
the closest point on the halfspace boundary to the origin (in any direction).

We typically ultimately usew as a unit vector, but it is not important since this can be adjusted by changing
b. Let w, b be the desired halfspace with ‖w‖ = 1. Now assume we have another w′, b′ with ‖w′‖ = β 6= 1
and w = w′/‖w′‖, so they point in the same direction, and b′ set so that they define the same halfspace. This
implies b′ = b/β. So the normalization of w can simply be done post-hoc without changing any structure.

Recall, our goal is g(x) ≥ 0 if y = +1 and g(x) ≤ 0 if y = −1. So if x lies directly on the halfspace
then g(x) = 0.

143

Example: Linear Separator in R2

Here we show a set X ∈ R2 of 13 points with 6 labeled + and 7 labeled −. A linear classifier
perfectly separates them. It is defined with a normal direction w (pointing towards the positive
points) and an offset b.

w

b

Using techniques we have already learned, we can immediately apply two approaches towards this prob-
lem.

Linear classification via linear regression. For each data points (xi, yi) ∈ Rd×R, we can immediately
represent xi as the value of d explanatory variables, and yi as the single dependent variable. Then we can
set up a n × (d + 1) matrix X̃ , where the ith row is (1, xi); that is the first coordinate is 1, and the next d
coordinates come from the vector xi. Then with a y ∈ Rn vector, we can solve for

α = (X̃T X̃)−1X̃T y

we have a set of d+ 1 coefficients α = (α0, α1, . . . , αd) describing a linear function g : Rd → R defined

g(x) = 〈α, (1, x)〉.

Hence b = α0 and w = (α1, α2, . . . , αd). For x such that g(x) > 0, we predict y = +1 and for g(x) < 0,
we predict y = −1.

However, this approach is optimizing the wrong problem. It is minimizing how close our predictions
g(x) is to −1 or +1, by minimizing the sum of squared errors. But our goal is to minimize the number of
mispredicted values, not the numerical value.

Math for Data copyright: Jeff M. Phillips

Example: Linear Regression for Classification

We show 6 positive points and 7 negative points in Rd mapped to Rd+1. All of the d-coordinates are
mapped to the x-axis. The last coordinate is mapped to the y-axis and is either +1 (a positive points)
or −1 (a negative points). Then the best linear regression fit is shown, and the points where it has
y-coordinate 0 defines the boundary of the halfspace. Note, despite there being a linear separator,
this method misclassifies two points because it is optimizing the wrong measure.

w

b
Rd

R

Linear classification via gradient descent. Since, the linear regression SSE cost function is not the
correct one, what is the correct one? We might define a cost function ∆

∆(g, (X, y)) =
n∑

i=1

(1− 1(sign(yi) = sign(g(xi)))

which uses the identity function 1 (defined 1(TRUE) = 1 and 1(FALSE) = 0) to represent the number of
misclassified points. This is what we would like to minimize.

Unfortunately, this function is discrete, so it does not have a useful (or well-defined) gradient. And, it
is also not convex. Thus, encoding g as a (d + 1)-dimensional parameter vector (b, w) = α and running
gradient descent is not feasible.

However, most classification algorithms run some variant of gradient descent. To do so we will use a
different cost function as a proxy for ∆, called a loss function. We explain this next.

9.1.1 Loss Functions
To use gradient descent for classifier learning, we will use a proxy for ∆ called a loss functions L. These
are sometimes implied to be convex, and their goal is to approximate ∆. And in most cases, they are
decomposable, so we can write

L(g, (X, y)) =

n∑

i=1

`i(g, (xi, yi))

=

n∑

i=1

`i(zi) where zi = yig(xi).

Note that the clever expression zi = yig(xi) handles when the function g(xi) correctly predicts the positive
or negative example in the same way. If yi = +1, and correctly g(xi) > 0, then zi > 0. On the other hand,
if yi = −1, and correctly g(xi) < 0, then also zi > 0. For instance, the desired cost function, ∆ is written

∆(z) =

{
0 if z ≥ 0

1 if z < 0.

Math for Data copyright: Jeff M. Phillips

Most loss functions `i(z) which are convex proxies for ∆ mainly focus on how to deal with the case
zi < 0 (or zi < 1). The most common ones include:

• hinge loss: `i = max(0, 1− z)

• smoothed hinge loss: `i =

0 if z ≥ 1

(1− z)2/2 if 0 < z < 1
1
2 − z if z ≤ 0

• squared hinge loss: `i = max(0, 1− z)2

• logistic loss: `i = ln(1 + exp(−z))

z z z z z

`i `i
`i `i

�

hinge smoothed
hinge

squared
hinge

logistic

ReLU

The hinge loss is the closest convex function to ∆; in fact it strictly upper bounds ∆. However, it is
non-differentiable at the “hinge-point,” (at z = 1) so it takes some care to use it in gradient descent. The
smoothed hinge loss and squared hinge loss are approximations to this which are differentiable everywhere.
The squared hinge loss is quite sensitive to outliers (similar to SSE). The smoothed hinge loss (related to the
Huber loss) is a nice combination of these two loss functions.

The logistic loss can be seen as a continuous approximation to the ReLU (rectified linear unit) loss func-
tion, which is the hinge loss shifted to have the hinge point at z = 0. The logistic loss also has easy-to-take
derivatives (does not require case analysis) and is smooth everywhere. Minimizing this loss for classification
is called logistic regression.

9.1.2 Cross Validation and Regularization
Ultimately, in running gradient descent for classification, one typically defines the overall cost function f
also using a regularization term r(α). For instance r(α) = ‖α‖2 is easy to use (has nice derivatives) and
r(α) = ‖α‖1 (the L1 norm) induces sparsity, as discussed in the context of regression. In general, the
regularizer typically penalizes larger values of α, resulting in some bias, but less over-fitting of the data.

The regularizer r(α) is combined with a loss function L(gα, (X, y)) =
∑n

i=1 `i(gα, (xi, yi)) as

f(α) = L(gα, (X, y)) + ηr(α),

where η ∈ R is a regularization parameter that controls how drastically to regularize the solution.
Note that this function f(α) is still decomposable, so one can use batch, incremental, or most commonly

stochastic gradient descent.

Cross-validation. Backing up a bit, the true goal is not minimizing f or L, but predicting the class for
new data points. For this, we again assume all data is drawn iid from some fixed but unknown distribution.
To evaluate how well out results generalizes, we can use cross-validation (holding out some data from the
training, and calculating the expected error of ∆ on these held out “testing” data points).

We can also choose the regularization parameter η by choosing the one that results in the best generaliza-
tion on the test data after training using each on some training data.

Math for Data copyright: Jeff M. Phillips

Ethical Questions with Data Imbalance and Classification

Generalization goals are typically phrased so a data point has the smallest expected loss. However,
this can lead to issues when the data is imbalanced. Consider a data set consisting for two types of
students applying to college. Let us use hair color as a proxy, and assume each applicant has blue
hair or green hair. If each type has different criteria that would make them successful, a classifier
can still use the hair color attribute in conjunction with other traits to make useful prediction across
both types of applicant. However, if there are significantly more applicants with green hair, then
the classifier will have a smaller expected loss (and even better generalization error) if it increases
weights for the traits that correspond with green-haired applicants succeeding. This will make it more
accurate on the green-haired applicants, but perhaps less accurate on the blue-haired applicants, yet
more accurate overall on average across all applicants. This provides worse prediction and more
uncertainty for the green-haired students due only to the color of their hair; it may even lower their
overall acceptance rate. What can be done as a data analyst to find such discrepancies? And should
something be changed in the modeling if these discrepancies are found?

9.2 Perceptron Algorithm
Of the above algorithms, generic linear regression is not solving the correct problem, and gradient descent
methods do not really use any structure of the problem. In fact, as we will see we can replace the linear
function gα(x) = 〈α, (1, x)〉 with any function g (even non-linear ones) as long as we can take the gradient.

Now we will introduce the perceptron algorithm which explicitly uses the linear structure of the problem.
(Technically, it only uses the fact that there is an inner product – which we will exploit in generalizations.)

Simplifications: For simplicity, we will make several assumptions about the data. First we will assume
that the best linear classifier (w∗, b∗) defines a halfspace whose boundary passes through the origin. This
implies b∗ = 0, and we can ignore it. This is basically equivalent to (for data point (x′i, yi) ∈ Rd′ ×R using
xi = (1, x′i) ∈ Rd where d′ + 1 = d.

Second, we assume that for all data points (xi, yi) that ‖xi‖ ≤ 1 (e.g., all data points live in a unit ball).
This can be done by choosing the point xmax ∈ X with largest norm ‖xmax‖, and dividing all data points
by ‖xmax‖ so that point has norm 1, and all other points have smaller norms.

Finally, we assume that there exists a perfect linear classifier. One that classifies each data point to the
correct class. There are variants to deal with the cases without perfect classifiers, but are beyond the scope
of this text.

The algorithm. Now to run the algorithm, we start with some normal direction w (initialized as any
positive point), and then add mis-classified points to w one at a time.

Algorithm 9.2.1 Perceptron(X, y)

Initialize w = yixi for any (xi, yi) ∈ (X, y)
repeat

For any (xi, yi) such that yi〈xi, w〉 < 0 (is mis-classified) : update w ← w + yixi
until (no mis-classified points or T steps)
return w ← w/‖w‖

Basically, if we find a mis-classified point (xi, yi) and yi = +1, then we set w = w + xi. This “pushes”
w more in the direction of xi, but also makes it longer. Having w more in the direction of w, tends to make
it have dot-product (with a normalized version of w) closer to 1.

Math for Data copyright: Jeff M. Phillips

Similar, if we find a mis-classified point (xi, yi) with yi = −1, the we set w = w − xi; this pushes the
negative of w more towards xi, and thus w more away from xi, and thus its dot product more likely to be
negative.

Implementation Hints:
To implement the Perceptron algorithm, inside the inner loop we need to find some misclassified
point (xi, yi), if one exists. This can require another implicit loop. A common approach would be to,
for some ordering of points (x1, y1), (x2, y2), . . . (xn, yn) keep an iterator index i that is maintained
outside the repeat-until loop. It is modularly incremented every step: it loops around to i = 1
after i = n. That is, the algorithm keeps cycling through the data set, and updating w for each
misclassified point if observes.

Algorithm: Perceptron(X, y)

Initialize w = yixi for any (xi, yi) ∈ (X, y); Set i = 1; t = 0; LAST-UPDATE = 1
repeat

if (yi〈xi, w〉 < 0)
w ← w + yixi
t = t+ 1; LAST-UPDATE = i

i = i+ 1 mod n
until (t = T or LAST-UPDATE = i)
return w ← w/‖w‖

The margin. To understand why the perceptron works, we need to introduce the concept of a margin.
Given a classifier (w, b), the margin is

γ = min
(xi,yi)∈X

yi(〈w, xi〉+ b).

Its the minimum distance of any data point xi to the boundary of the halfspace. In this sense the optimal
classifier (or the maximum margin classifier) (w∗, b∗) is the one that maximizes the margin

(w∗, b∗) = arg max
(w,b)

min
(xi,yi)∈X

yi(〈w, xi〉+ b)

γ∗ = min
(xi,yi)∈X

yi(〈w∗, xi〉+ b∗).

A max-margin classifier, is one that not just classifies all points correctly, but does so with the most
“margin for error.” That is, if we perturbed any data point or the classifier itself, this is the classifier which
can account for the most perturbation and still predict all points correctly. It also tends to generalize (in the
cross-validation sense) to new data better than other perfect classifiers.

Math for Data copyright: Jeff M. Phillips

Example: Margin of Linear Classifier

For a set X of 13 points in R2, and a linear classifier defined with (w, b). We illustrate the margin in
pink. The margin γ = min(xi,yi) yi(〈w, xi〉 + b). The margin is drawn with an↔ for each support
point.

w

b

The maximum margin classifier (w∗, b∗) for X ⊂ Rd can always be defined uniquely by d+ 1 points (at
least one negative, and at least one positive). These points S ⊂ X are such that for all (xi, yi) ∈ S

γ∗ = yi〈w∗, xi〉+ b.

These are known as the support points, since they “support” the margin strip around the classifier boundary.

Math for Data copyright: Jeff M. Phillips

Geometry of Why Perceptron Works

w

w

w

w

Here we will show that after at most T = (1/γ∗)2 steps (where γ∗ is the
margin of the maximum margin classifier), then there can be no more mis-
classified points.

To show this we will bound two terms as a function of t, the number of
mistakes found. The terms are 〈w,w∗〉 and ‖w‖2 = 〈w,w〉; this is before
we ultimately normalize w in the return step.
First we can argue that ‖w‖2 ≤ t, since each step increases ‖w‖2 by at
most 1:

〈w+yixi, w+yixi〉 = 〈w,w〉+(yi)
2〈xi, xi〉+2yi〈w, xi〉 ≤ 〈w,w〉+1+0.

This is true since each ‖xi‖ ≤ 1, and if xi is mis-classified, then yi〈w, xi〉
is negative.
Second, we can argue that 〈w,w∗〉 ≥ tγ∗ since each step increases it by at
least γ∗. Recall that ‖w∗‖ = 1

〈w + yixi, w
∗〉 = 〈w,w∗〉+ (yi)〈xi, w∗〉 ≥ 〈w,w∗〉+ γ∗.

The inequality follows from the margin of each point being at least γ∗ with
respect to the max-margin classifier w∗.
Combining these facts (〈w,w∗〉 ≥ tγ∗ and ‖w‖2 ≤ t) together we obtain

tγ∗ ≤ 〈w,w∗〉 ≤ 〈w, w

‖w‖〉 = ‖w‖ ≤
√
t.

Solving for t yields t ≤ (1/γ∗)2 as desired.

9.3 Kernels
It turns out all we need to get any of the above perceptron machinery to work is a well-defined (generalized)
inner-product. For two vectors p = (p1, . . . , pd), x = (x1, . . . , xd) ∈ Rd, we have always used as the inner
product:

〈p, x〉 =

d∑

i=1

pi · xi.

However, we can define inner products more generally as a kernel K(p, x). For instance, we can use the
following non-linear functions

• K(p, x) = exp(−‖p− x‖2/σ2) for the Gaussian kernel, with bandwidth σ,

• K(p, x) = exp(−‖p− x‖/σ) for the Laplace kernel, with bandwidth σ, and

• K(p, x) = (〈p, x〉+ c)r for the polynomial kernel of power r, with control parameter c > 0.

Are these linear classifiers? No. In fact, this is how you model various forms of non-linear classifiers.
The “decision boundary” is no longer described by the boundary of a halfspace. For the polynomial kernel,
the boundary must now be a polynomial surface of degree r. For the Gaussian and Laplace kernel it can be
even more complex; the σ parameter essentially bounds the curvature of the boundary.

Math for Data copyright: Jeff M. Phillips

9.3.1 The Dual: Mistake Counter
To use a more general kernel within the Perceptron algorithm, we need a different interpretation of how to
keep track of the weight vector w. Recall, that each step we increment w by yixi for some misclassified
data point (xi, yi). Instead we will maintain a length n vector α = (α1, α2, . . . , αn), where αi represents
the number of times that data point (xi, yi) has been misclassified. That we can rewrite

w =
n∑

i=1

αiyixi.

That is, instead of directly maintaining w, we maintain a length n set of counters α, and keep track of which
signed data points yixi to be added to reconstructw as needed. Now in the linear case the function g, applied
to a new data point p ∈ Rd becomes

g(p) = 〈w, p〉 = 〈
n∑

i=1

αiyixi, p〉 =
n∑

i=1

αiyi〈xi, p〉.

This seems wasteful to keep such a large vector α ∈ Rn around, especially if the number of data points
n becomes very large. In contrast, the size of the original version w ∈ Rd does not change as the dataset
increases. However, we only need to keep track of the non-zero elements of α, and if we run perceptron,
there are at most (1/γ∗)2 of these. So this is not significantly more space, depending on the relationship
between d and 1/γ∗.

The beauty of this form, is that now we can easily replace 〈xi, p〉 with any other kernel K(xi, p). That is,
the function g(p) now becomes generalized to

g(p) = 〈w, p〉 =
n∑

i=1

αiyiK(xi, p).

Note this g is precisely a kernel density estimate, with some elements having negative weights (if yi = −1).
Then a point p is classified as positive if g(p) > 0 and negative otherwise.

9.3.2 Feature Expansion
If the margin is small, the data is not separable, or we simply do not want to deal with the unknown size of
a mistake counter, there is another option to use these non-linear kernels. We can take all data, and apply a
non-linear transformation to a higher-dimensional space so the problem is linear again.

For a polynomial kernel, on d-dimensional data points, this is equivalent to the polynomial regression
expansion, described in Chapter 5.3. For a two dimensional data point p = (p1, p2), we map this to a
5-dimensional space

p 7→ q = (q1 = p1, q2 = p2, q3 = p2
1, q4 = p1p2, q5 = p2

2).

Then we search over a 6-dimensional parameter space (b, w) with w = (w1, w2, w3, w4, w5) and (with an
abuse of notation, since the dimension ofw is not d) the kernel definedK(p, w) = 〈q, w〉. More specifically,
the z associated with a data point (p, y) as input to a loss function `(z) is defined

z = y · (K(p, w) + b) = y · (〈q, w〉+ b).

Note that the number of free parameters in the feature expansion version of the polynomial kernel is larger
than when retaining the kernel in the form K(x, p) = (〈x, p〉 + b)r, when it is only d + 1. In particular,

Math for Data copyright: Jeff M. Phillips

when p ∈ Rd and the polynomial degree r is large, then this dimensionality can get high very quickly; the
dimension of q is O(qr).

Such expansion is also possible for many other radius basis kernel (e.g., Gaussian, Laplace), but it is only
approximate and randomized. Usually it requires the dimensionality of q to be about 100 or more to get a
faithful representation.

Like in the case of regression, overfitting can be an issue. However, this effect can be mostly controlled by
the regularization term. In the case of the polynomial kernel limiting the polynomial degree r, prevents too
complex a model. With the Gaussian and Laplace, and other similar kernels, the increased dimensionality
does not lead to overfitting, but too small a value of σ may. In both cases these parameters (r and σ) can be
appropriately chosen with cross-validation.

9.3.3 Support Vector Machines
A more general way to work with complex kernels is called a support vector machine or SVM. Like with
the illustration of the margin for linear classifiers, there are a small number of data points which determine
the margin, the support vectors. Just these points are enough to determine the optimal margin.

In the case of complex non-linear kernels (e.g., Gaussians), all of the points may be support vectors.
Worse, the associated linear expanded space, the result of complete variable expansion, is actually infinite!
This means, the true weight vector w would be infinite as well, so there is no feasible way to run gradient
descent on its parameters.

However, in most cases the actual number of support vectors is small. Thus it will be useful to represent
the weight vector w as a linear combination of these support vectors, without every explicitly construct-
ing them. Consider a linear expansion of a kernel K to an m-dimensional space (think of m as being
sufficiently large that it might as well be infinite). However, consider if there are only k support vectors
{s1, s2, . . . , sk} ⊂ X where X is the full data set. Each support vector si ∈ Rd has a representation
qi ∈ Rm. But the normal vector w ∈ Rm can be written as a linear combination of the qis; that is, for some
parameters α1, α2, . . ., we must be able to write

w =

k∑

i=1

αiqi

Thus, given the support vectors {s1, . . . , sk}we can representw in the span of S (and the origin), reparametrized
as a k-dimensional vector α = (α1, α2, . . . , αk). This α vector is precisely the mistake counter for only the
support vectors (the non-zero components), although in this case the coordinates need not be integers.

More concretely, we can apply this machinery without ever constructing the qi vectors. Each can be
implicitly represented as the function qi = K(si, ·). Recall, we only ever need to use the qi in 〈qi, w〉. And
we can expand w to

w =

k∑

i=1

αiqi =

k∑

i=1

αiK(si, ·).

Given this expansion, if we consider a special class of kernels called “reproducing kernels” which include
Gaussian and Laplace, then we have a super-cool property:

K(w, p) =
k∑

i=1

αiK(si, p).

Ultimately, for a data point (p, y), the z in the loss function `(z) is defined

z = yK(w, p) = y

k∑

i=1

αiK(si, p).

Math for Data copyright: Jeff M. Phillips

There are multiple ways to actually optimize SVMs: the task of finding the support vectors S = {s1, . . . , sk},
and assigning their weights α = {α1, . . . , αk}. One is to run the kernelized Perceptron algorithm, as out-
lined above. Alternatively, given a fixed set of support vectors S, one can directly optimize over α using
gradient descent, including any loss function and regularizer as before with linear classifiers. Thus, if we
do not know S, we can just assume S = X , the full data set. Then we can apply standard gradient descent
over α ∈ Rn. As mentioned, in most cases, most αi values are 0 (and those close enough to 0 can often be
rounded to 0). Only the points with non-zero weights are kept as support vectors.

Alternatively, stochastic gradient descent works like perceptron, and may only use a fraction of the data
points. If we use a version of Hinge Loss, only misclassified points or those near the boundary have a non-
zero gradient. The very strongly classified points have zero gradient, and the associated αi coordinates may
remain 0. The proper choice of loss function, and regularizer, can induces sparsity on the α values; and the
data points not used are not support vectors.

9.4 kNN Classifiers
Now for something completely different. There are many ways to define a classifier, and we have just
touched on some of them. These include decision trees (which basically just ask a series of yes/no questions
and are very interpretable) to deep neural networks (which are more complex, far less interpretable, but can
achieve more accuracy). We will describe one more simple classifier.

The k-NN classifier (or k-nearest neighbors classifier) works as follows. Choose a scalar parameter
k (it will be far simpler to choose k as an odd number, say k = 5). Next define a majority function
maj : {−1,+1}k → {−1,+1}. For a set Y = (y1, y2, . . . , yk) ∈ {−1,+1}k it is defined

maj(Y) =

{
+1 if more than k/2 elements of Y are +1

−1 if more than k/2 elements of Y are −1.

Then for a data set X where each element xi ∈ X has an associated label yi ∈ {−1,+1}, define a k-nearest
neighbor function φX,k(q) that returns the k points in X which are closest to a query point q. Next let sign
report yi for any input point xi; for a set of inputs xi, it returns the set of values yi.

Finally, the k-NN classifier is

g(q) = maj(sign(φX,k(q))).

That is, it finds the k-nearest neighbors of query point q, and considers all of the class labels of those points,
and returns the majority vote of those labels.

A query point q near many other positive points will almost surely return +1, and symmetrically for
negative points. This classifier works surprisingly well for many problems but relies on a good choice of
distance function to define φX,k.

Unfortunately, the model for the classifier depends on all of X . So it may take a long time to evaluate on
a large data set X . In contrast the functions g for non-kernelized methods above take O(d) time to evaluate
for points in Rd, and thus are very efficient.

9.5 Neural Networks
A neural network is a learning algorithm intuitively based on how a neuron works in the brain. A neuron
takes in a set of inputs x = (x1, x2, . . . , xd) ∈ Rd, weights each input by a corresponding scalar w =
(w1, w2, . . . , wd) and “fires” a signal if the total weight

∑d
i=1wixi is greater than some threshold b.

Math for Data copyright: Jeff M. Phillips

x1

x2

xd wd

w1

> b?
{0, 1}

w2

w3

x3
dX

j=1

wi · xi � b = hx,wi � b > 0?

A neural network, is then just a network or graph of neurons like these. Typically, these are arranged
in layers. In the first layer, there may be d input values x1, x2, . . . , xd. These may provide the input to
t neurons (each neuron might use fewer than all inputs). Each neuron produces an output y1, y2, . . . , yt.
These outputs then serve as the input to the second layer, and so on.

In a neural net, typically each xi and yi is restricted to a range [−1, 1] or [0, 1] or [0,∞), not just the two
classes {−1,+1}. Since a linear function does not guarantee this of its output, instead of a binary threshold,
to achieve this at the output of each node, they typically add an activation function φ(y). Common ones are

• hyperbolic tangent : φ(y) = tanh(y) = ey−e−y
ey+e−y ∈ [−1, 1]

• sigmoid : φ(y) = 1
1+e−y = ey

ey+1 ∈ [0, 1]

• ReLu : φ(y) = max(0, y) ∈ [0,∞).

These functions are not linear, and nor binary. They act as a “soft” version of binary. The hyperbolic tangent
and sigmoid stretch values near 0 away from 0. Large values stay large (in the context of the range). So it
makes most values almost on the boundaries of the range. And importantly, they are differentiable.

The ReLu has become very popular. It is not everywhere differentiable, but is convex. Its basically the
most benign version of activation, and is more likely the original neuron, in that if the value y is negative, it
gets snapped to 0. If its positive, it keeps its value.

A two-layer neural network is already a powerful way to build classifiers, and with enough neurons in
the middle layer, is capable of learning any function. However, deep neural nets with 3 or often many
more layers (say 20 or 100 or more) have become very popular due to their effectiveness in many tasks,
ranging from image classification to language understanding. To be effective, typically, this requires heavy
engineering in how the layers are defined, and how the connections between layers are made.

Once the connections are determined, then the goal is to learn the weights on each neuron so that for a
given input, a final neuron fires if the input satisfies some pattern (e.g., the input are pixels to a picture, and
it fires if the picture contains a car). This is theorized to be “loosely” how the human brain works. Although,
neural nets have pretty much diverged in how they learn from attempts to replicate the structure and process
of learning in the human brain.

Training. Given a data set X with labeled data points (x, y) ∈ X (with x ∈ Rd and y ∈ {−1,+1}), we
already know how to train a single neuron so for input x it tends to fire if y = 1 and not fire if y = −1. It is
just a linear classifier! So, we can use the perceptron algorithm, or gradient descent with a well-chosen loss
function.

However, for neural networks to attain more power than simple linear classifiers, they need to be at least
two layers, and are often deep (e.g., for “deep learning”) with 20, 100, or more layers. For these networks,
the perceptron algorithm no longer works since it does not properly propagate across layers. However, a
version of gradient descent called back-propagation can be used. In short, it computes the gradient across
the edge weights in a network by chaining partial derivatives backwards through the network.

Training deep nets to work can be quite finicky. Their optimization function is not convex, and without
various training tricks, it can be very difficult to find a good global set of weights. Indeed the best and
“right” methods are an active research area.

Math for Data copyright: Jeff M. Phillips

Exercises

Q9.1: Consider the following “loss” function. `i(zi) = (1 − zi)
2/2, where for a data point (xi, yi) and

prediction function f , then zi = yi · f(xi). Predict how this might work within a gradient descent
algorithm for classification.

Q9.2: Consider a data set (X, y), where each data point (x1,i, x2,i, yi) is in R2 × {−1,+1}. Provide the
psuedo-code for the Perceptron Algorithm using a polynomial kernel of degree 2. You can have
a generic stopping condition, where the algorithm simply runs for T steps for some parameter T .
(There are several correct ways to do this, but be sure to explain how to use a polynomial kernel
clearly.)

Q9.3: Consider a set of 1-dimensional data points

(x1 = 0, y1 = +1) (x2 = 1, y1 = −1) (x3 = 2, y1 = +1) (x4 = 4, y1 = +1)

(x5 = 6, y1 = −1) (x6 = 7, y1 = −1) (x7 = 8, y1 = +1) (x8 = 9, y1 = −1)

Predict -1 or +1 using a kNN (k-nearest neighbor) classifier with k = 3 on the following queries.

1. x = 3

2. x = 9

3. x = −1

Q9.4: Consider the following Algorithm 1, called the Double-Perceptron. We will run this on an input set
X consisting of points X ∈ Rn×d and corresponding labels y ∈ {−1,+1}.

Algorithm 9.5.1 Double-Perceptron(X)

Initialize w = yixi for any (xi, yi) ∈ (X, y)
repeat

For any (xi, yi) such that yi〈xi, w〉 < 0 (is mis-classified) : update w ← w + 2·yixi
until (no mis-classified points or T steps)
return w ← w/‖w‖

For each of the following questions, the answer can be faster, slower, the same, or not at all. And
should be accompanied with an explanation.

1. Compared with Algorithm 9.2.1 (Perceptron) in the notes, explain how this algorithm with con-
verge.

2. Next consider transforming the input data set X (not the y labels) so that all coordinates are di-
vided by 2. Now if we run Double-Perceptron how will the results compare to regular Perceptron
(Algorithm 9.2.1) on the original data set X .

3. Finally, consider taking the original data set (X, y) and multiplying all entries in y by −1, then
running the original Perceptron algorithm. How will the convergence compare to running the
same Perceptron algorithm, on the original data set.

Q9.5: Consider a matrixA ∈ Rn×4. Each row represents a customer (there are n customers in the database).
The first column is the age of the customer in years, the second column is the number of days since the
customer entered the database, the third column is the total cost of all purchases ever by the customer

Math for Data copyright: Jeff M. Phillips

in dollars, and the last column is the total profit in dollars generated by the customer. So each column
has a different unit.

For each of the following operations, decide if it is reasonable or unreasonable.

1. Run simple linear regression using the first three columns to build a model to predict the fourth
column.

2. Use k-means clustering to group the customers into 4 types using Euclidean distance between
rows as the distance.

3. Use PCA to find the best 2-dimensional subspace, so we can draw the customers in a R2 in way
that has the least projection error.

4. Use the linear classification to build a model based on the first three columns to predict if the
customer will make a profit +1 or not −1.

Q9.6: Consider a “loss” function, called an double-hinged loss function

`i(z) =

0 if z > 1

1− z if 0 ≤ z ≤ 1

1 if z ≤ 0.

where the overall cost for a dataset (X, y), given a linear function g(x) = 〈(1, x), α〉 is defined
L(g, (X, y)) =

∑n
i=1 `i(yi · g(xi)).

1. What problems might a gradient descent algorithm have when attempting to minimize L by
choosing the best α?

2. Explain if the problem would be better or worse using stochastic gradient descent?

Math for Data copyright: Jeff M. Phillips

10 Graphs

A central object in data analysis is a graph G = (V,E) defined by a set of vertices V and edges between
those vertices E. The vertices can serve as proxy for any data type (e.g., social network users, a companies
products, or waypoints on a map), and the graph representation then simplifies the structure of these data
items down to only their connectivity. This structure can of course be composed with many other structures
we have studied (vectors, matrices, etc); but this chapter will focus specifically on what can be inferred from
the graphs. In this section, we overview how graphs can be used to model movement of information, which
reveals which vertices are most important. We also show how to cluster or find interesting subgraphs that
capture where more interesting or meaningful patterns appear.

Basic definitions and models for graphs. Formally, a (undirected) graph G = (V,E) is defined by a
set of vertices V = {v1, v2, . . . , vn} and a set of edges E = {e1, e2, . . . , em} where each edge ej is an
unordered pair of edges: ej = {vi, vi′}. In a directed graph edges are ordered and ej = (vi, vi′) indicates
that node vi points to vi′ , but not the other direction.

Two vertices v1 and vk are connected if there is a sequence of edges 〈e1, . . . , ek−1〉 such that e1 contains
v1, ek−1 contains vk, and consecutive edges can be ordered so ej = {vi, vi+1} and ej+1 = {vi+1, vi+2}
where the second element in ej is the same as the first in ej+1. The graph distance dE(vi, vi′) (induced by
edges set E) between any two vertices vi, vi′ ∈ V is the minimum number of edges requires to get from vi
to vi′ . It is a metric for undirected graphs; for directed graphs it may not be symmetric.

Example: Undirected Graph

Consider graph G = (V,E) with the following vertices V = {a, b, c, d, e, f, g} and edges E ={
{a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {c, e}, {e, f}, {e, g}, {f, g}, {f, h}

}
.

a

b

c

d

e

f

g

h

Alternatively, G can be represented as a matrix with 1 if there is an edge, and 0 otherwise.

a b c d e f g h

a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

=

0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

The distance dE(a, g) = 3, realized by the edges {a, c}, {c, e}, and {e, g}.
We will use this graph as a running example throughout much of this chapter.

157

Matrix representations of graphs. The matrix representation of a graph is essential for understanding
many of its structure properties. We initiate this below with the two most basic and essential such rep-
resentations, but will generalize and extend from these in the sections below. It should be noted that in
practice, this can be extremely space-inefficient way to store the graph. These matrices have |V |2 cells,
however, in many cases the number of actual edges |E| is much closer to the number of vertices (say
|E| ≤ 20|V | or |E| ≤ 5|V | log2 |V | or |E| ≤ |V |1.2 are often not unreasonable). On the small examples
we can present in this text, these assumptions are not meaningful. But many graph datasets in industry (e.g.,
where |V | > 1,000,000) this difference can correspond with the dataset fitting easily on a laptop, or with
requiring a cluster of computers.

The most natural representation of a graph as a matrix is the adjacency matrix A. For an n vertex graph,
it is an n× n matrix that records 1 in Ai,j for each each edge ei,j = {vi, vj}. Entries are 0 otherwise.

The degree matrix is a square and diagonal n× n matrix. This means it only has non-zero entries on the
diagonals Di,i. In particular, Di,i records the degree of vertex vi, which is the number of edges containing
vi. In particular, we will sometimes use the matrix D−1/2. Recall a square matrix can be multiplied by
itself, so in general for a positive integer power p, the matrix operation Dp refers to multiplying D by itself
p times as D ·D · . . . ·D. However, for fractional powers this is less intuitive, and in generally not always
defined. For diagonal matrices with positive entries on all diagonal elements, we can simply define Dp as
the diagonal matrix replacing each Di,i with Dp

i,i. In particular, this means it is easy to invert a diagonal
matrix since D−1 is just replaces each Di,i with 1/Di,i). One can check that definition is consistent with
the more general definition of a matrix power; that is so (Dp)1/p = D.

Example: Adjacency and Degree Matrices

Again using our example graph, we can define the adjacency A and degree matrix D:

A =

0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0

D =

3 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1

.

Taking D to the power −1/2 is now

D−1/2 =

0.577 0 0 0 0 0 0 0
0 0.707 0 0 0 0 0 0
0 0 0.577 0 0 0 0 0
0 0 0 0.577 0 0 0 0
0 0 0 0 0.577 0 0 0
0 0 0 0 0 0.577 0 0
0 0 0 0 0 0 0.707 0
0 0 0 0 0 0 0 1

.

Math for Data copyright: Jeff M. Phillips

10.1 Markov Chains

A Markov chains (V, P, q) is defined by a set of nodes V , a probability transition matrix P , and an initial
state q. We will see soon how P can be induced from the matrix representation of an edge set, so this
structure is closely connected to understanding graphs; for now we describe it in a more general context.
Moveover, in many of the most useful and often desirable contexts q is not needed, and the initial part of
this discussion will be aimed at showing how to remove the dependence on q.

The point of a Markov chain (V, P, q) is to understand the “movement around” or “flow through” the
vertex set V . This movement is governed by the matrix P , but to get a grasp on this, it is important to start
with how to think about this, via its initial state q.

The initial state q represents a probability distribution over vertices. For instance, if the mental model
of this process is a random walk around the vertices of a graph, then an initial state q (i.e., specifically at a
vertex b ∈ V with probability 1, in our running example) is

qT = [0 1 0 0 0 0 0 0].

A more general model is when there is not a single vertex which dictates the state, but a distribution over
possible vertices. Then if there is a 10% chance of being in state a, a 30% chance of being in state d and a
60% change of being in state f , this represents as

qT = [0.1 0 0 0.3 0 0.6 0 0].

In general we need to enforce that q ∈ ∆|V |, that is, it represents a probability distribution, so

• each q[i] ≥ 0

• ∑i q[i] = 1.

Now the probability transition matrix P is a column normalized matrix. That is each column must satisfy
a probability distribution; each column Pj ∈ ∆|V |, so the entrees are non-negative and sum to 1. Each ith
column represents the probability that, conditioned on starting at vertex vi where the next vertex would be.
That is, entry Pi,i′ describes that from vertex vi the probability is Pi,i′ that the next vertex is vi′ . Using an
adjacency matrix A, we can derive P by normalizing all of the columns so Pj = Aj/‖A‖1.

Math for Data copyright: Jeff M. Phillips

Example: Probability Transition Matrix

The running example adjacency matrix A can derive a probability transition matrix P as

P =

0 1/2 1/3 1/3 0 0 0 0
1/3 0 0 1/3 0 0 0 0
1/3 0 0 1/3 1/3 0 0 0
1/3 1/2 1/3 0 0 0 0 0
0 0 1/3 0 0 1/3 1/2 0
0 0 0 0 1/3 0 1/2 1
0 0 0 0 1/3 1/3 0 0
0 0 0 0 0 1/3 0 0

.

We can also present this as a graph, where directed edges show the probability transition probability
from one node to another. The lack of an edge represents 0 probability of a transition. This sort of
representation is already very cluttered, and thus is not scalable to much larger graphs.

a

b

c

d

e

f

g

h

1/3

1/3
1/3

1/3

1/3

1/3

1/3

1/3
1/3

1/3 1/3
1/3

1/3

1/3
1/3

1/2
1/2

1/2

1/2

1

Note that although the initial graph was undirected, this new graph is directed. For instance edge
(a, b) from a to b has probability 1/3 while edge (b, a) from b to a has probability 1/2. Or more
dramatically, edge (f, h) from f to h has probability 1/3, where as edge (h, f) from f to h has
probability 1; that is, vertex h always transitions to f .

Now given a state qT = [0 1 0 0 0 0 0 0] can “transition” to the next state as (using our example P)

q1 = Pq =

[
1

2
0 0

1

2
0 0 0 0

]T
.

Then we can get to the next state as

q2 = Pq1 = PPq = P 2q =

[
1

6

2

6

2

6

1

6
0 0 0 0

]T
.

and

q3 = Pq2 =

[
1

3

1

9

1

9

1

3

1

9
0 0 0

]T
.

In general we can write qn = Pnq, that is starting with q and “hitting” q on the left n times by P , the
transition matrix.

This is called a “Markov” chain after Andrey Markov, because it is a Markov process. This naming refers
to that this process only depends on its current state, and nothing prior to that (unless it is implicitly encoded
in the current state).

There are two ways to think about this Markov chain process.

Math for Data copyright: Jeff M. Phillips

• It describes a random walk of a point starting at one vertex, this corresponds with a single 1 coordinate
in q. Then at each step it decides where to go next randomly based on the appropriate column of P ,
with the jth column of P encoding the transtion probability of the jth vertex. It moves to exactly one
new state. Then repeat.

• It describes the probability distribution of a random walk. At each state, we only track the distribution
of where it might be: this is qn after n steps. Alternatively, we can consider Pn, then for any initial
state q0, Pnq0 describers the distribution of where q0 might be after n steps. So entry Pnj,i (jth column,
ith row) describes the probability that a point starting in j will be in state i after n steps.

Usually, only one of these two interpretations is considered. They correspond to quite different algorithms
and purposes, each with their own advantages. We will discuss both.

10.1.1 Ergodic Markov Chains

A Markov chain is ergodic if there exists some t such that for all n ≥ t, then each entry in Pn is positive.
This means that from any starting position, after t steps there is always a chance we are in every state. That
is, for any q, then qn = Pnq is positive in all entries. It is important to make the distinction in the definition
that it is not that we have some positive entry for some n ≥ t, but for all n ≥ t, as we will see.

When is a Markov chain not ergodic? To characterize when a Markov chain is ergodic, it is simpler to
rule out the cases when it is not ergodic, and then if it does not satisfy these properties, it must be ergodic.
There are three such non-ergodic properties:

• It is cyclic. This means that it alternates between different sets of states every 2 or 3 or in general p
steps. This strict, even a single low probability event that it deviates from this makes it not cyclic.
The cyclic nature does not need to be on the entire graph, it may only be on a disconnected part of the
graph.

Example: Cyclic Probability Transition Matrices

Here are some example cyclic transition matrices:

(
0 1
1 0

)

0 1 0
0 0 1
1 0 0

0 1/2 1/2 1/2 1/2 0
1/4 0 0 0 0 1/4
1/4 0 0 0 0 1/4
1/4 0 0 0 0 1/4
1/4 0 0 0 0 1/4
0 1/2 1/2 1/2 1/2 0

• It has absorbing and transient states. This corresponds to some Markov chains which can separate
V into two class A, T ⊂ V so that if a random walk leaves some node in T and lands in a state in
A, then it never returns to any state in T . In this case, the nodes A are absorbing, and the nodes in
T are transient. Note that this only happens when the initial graph is directed, so the walk cannot go
backwards on an edge.

Math for Data copyright: Jeff M. Phillips

Example: Absorbing and Transient Probability Transition Matrices

Here are some examples:

(
1/2 0
1/2 1

)

0 1 0
1 0 1
0 0 0

1/2 1/2 0 0 0 0
1/2 49/100 0 0 0 0
0 1/100 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4

• It is not connected. This property indicates that there are two sets of notes A,B ⊂ V such that there
is no possible way to transition from any node in A to any node in B.

Example: Disconnected Probability Transition Matrices

And some examples:

(
1 0
0 1

)

0 1 0
1 0 0
0 0 1

1/2 1/2 0 0 0 0
1/2 1/2 0 0 0 0
0 0 1/3 1/2 1/3 0
0 0 1/3 0 1/3 0
0 0 1/3 1/2 1/3 0
0 0 0 0 0 1

When it is ergodic. From now on, we will assume that the Markov chain is ergodic. At a couple of critical
points we will show simple modifications to existing chains to help ensure this.

Now there is an amazing property that happens. Let P ∗ = Pn as n→∞; this is well-defined, and it will
converge to a limiting matrix P ∗. Now let q∗ = P ∗q. That is, there is also a limiting state, and this does not
depend on the choice of q.

Ergodic Markov Chains: They have a limiting probability transition matrix (P ∗ = Pn as n→∞)
and a limiting state q∗ = P ∗q, which is the same for any initial state q.

This property has are varied and important consequences.

• For all starting states q, the final state is q∗ (if we run the chain long enough). So we can analyze
such chains, just based on V and P ; or if P is derived from an adjacency matrix, this is analyzing
properties of the inducing graph.

• As we do a random walk, we will eventually have an expected state precisely described by q∗. So
we can analyze the process of such random walks without actually simulating an indefinite number of
such processes, as long as we can derive the state q∗ and final matrix P ∗.

• The final state is stable, specifically q∗ = PP ∗q thus q∗ = Pq∗. That is the probability of being in
a state i and leaving to j, is the same as being in another state j and arriving at i; this is called the
delicate balance. Globally, we can generalize this to say, the probability of being in any state i and
leaving (to any other state) is the same as being any other state and arriving in i. Thus, if a distribution

Math for Data copyright: Jeff M. Phillips

starts in q0 = q∗ it is already in the final distribution. And the “further” it starts (e.g. q0 is more
different from q∗), the longer it will takes to converge.

Moreover, q∗ is the first eigenvector of P , after normalizing so the sum of its elements are 1. In Matlab
[V,L] = eig(P); and let v1 = V(:,1); and qstar = v1/sum(v1) to get the stable distribu-
tion qstar. . This second eigenvalue λ2 determines the rate of convergence. The smaller λ2, the faster the
rate of convergence.

Example: Limiting States

In our example graph,

q∗ = (0.15, 0.1, 0.15, 0.15, 0.15, 0.15, 0.1, 0.05)T = (
3

20
,

1

10
,

3

20
,

3

20
,

3

20
,

3

20
,

1

10
,

1

20
)T .

Note that this distribution is not uniform and is also not directly proportional to the transition proba-
bilities. It is a global property about the connectivity of the underlying graph. Vertex h which is the
most isolated has the smallest probability, and more central nodes have higher probability.

The second eigenvalue of P is 0.875 which is small enough that the convergence is fast. If the part of
the graph containing {a, b, c, d} was made harder to transition to or from the other part of the graph,
this value could be much larger (e.g., 0.99). On the other hand if another edge was added between
say d and f , then this would be much smaller (e.g., 0.5), and the convergence would be even faster.

10.1.2 Metropolis Algorithm
The Metropolis Algorithm, sometimes referred to as Markov Chains Monte Carlo (MCMC) was developed
by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953 to help develop the atomic bomb. There
is some controversy over who really deserves credit for the invention. But, the lesson is, it pays to have
a name that is both cool sounding, and earliest in alphabetical order! This has had enormous influence in
statistical physics and in computing Bayesian statistics.

Here each state v ∈ V has a weight associated with it:

w(v) where
∑

v∈V
w(v) = W.

More generally, V may be continuous and then W =
∫
v∈V w(v) dv. Then we want to land in a state v with

probability w(v)/W . But...

• V might be very large, and W unknown.
• V can be continuous, so there can be no way to calculate W . One can think of this as a probe-only

distribution, since you can measure µ(v) = cw(v) at any one state at a time where c is some unknown
constant (related to W).

Then the goal is to design a special Markov chain so q∗[v] = w(v)/W (without knowing W).
The algorithm sketched in Algorithm 10.1.1, starts with some v0 ∈ V so q = [0 0 0 . . . 1 . . . 0 0]T .

Then iterate as follows. Choose neighbor u (proportional to K(v, u)) where K is some notion of neighbor-
hood/similarity (for instance a kernel, like a Gaussian kernel). And move to uwith probability min{1, w(u)/w(v)}.

This implicitly defines a Markov chain on the state space V . The transition matrix is defined by the
algorithm, but is not realized as a matrix. Importantly, if the chain is ergodic, then there exists some t such
that i ≥ t, then Pr[vi = v] = w(v)/W . This value t is not only a limiting notion, but holds for some finite t

Math for Data copyright: Jeff M. Phillips

Algorithm 10.1.1 Metropolis on V and w
Initialize v0 = [0 0 0 . . . 1 . . . 0 0]T .
repeat

Generate u ∼ K(v, ·)
if (w(u) ≥ w(vi)) then

Set vi+1 = u
else

With probability w(u)/w(v) set vi+1 = u; otherwise set vi+1 = vi.
until “converged”
return V = {v1, v2, . . . , }

(even if V is continuous), through a property called “coupling from the past”. However, determining when
such a t has occurred analytically placing an upper bound on the value required for t can be challenging.

Often the goal is to create many samples from w, which can then be used as a proxy for the unknown
w to estimate various quantities via concentration of measure bounds. The most formal analysis of such
algorithms often dictates that it is run for t steps, take one sample, then run for another t steps and take
one additional sample, and so on repeating tk times to get k samples. This of course seems wasteful, but is
necessary to strictly ensure samples are independent.

In practice, it is more common to run for t = 1000 steps (the “burn in” period), then take the next
k = 5000 steps as a random sample. This repeats a total of only t + k steps. This second method has
“auto-correlation”, as samples vi and vi+1 are likely to be “near” each other (either since K is local, or
because it did not accept a new state). Officially, we should take only one point every s steps, where s
depends on the degree of auto-correlation. But in practice, we take all k samples, but treat them (for purpose
of concentration bounds) as k/s samples.

10.2 PageRank
Search engines were revolutionized in the late 1990s when Google was formed, with the PageRank algo-
rithm as the basis for ranking webpages within its search engine. Before PageRank other search engines
(e.g., Altavista, Lycos, Infoseek) and indexes (e.g., Yahoo!, LookSmart) were based almost entirely on a
combination of the content of the pages and manually curated lists. These aspects are still used as part of an
overall search and ranking method, but PageRank added the perspective of also considering the importance
of pages based on the global structure of the webgraph.

The webgraph is a graph where each vertex is a webpage, and directed edges are created when one
webpage links to another one. Search engines implicitly had stored this graphs already, since they ran
“crawlers.” These were algorithms which randomly followed links from one webpage to another, in this
case, with the purpose of cataloging the content of each webpage so it could be put into a large nearest-
neighbor search algorithm (often based on cosine similarity using bag-of-words models or Jaccard similarity
using k-gram models).

Intuitively, the PageRank model extended the idea of a crawler to be a “random surfer,” someone who
randomly browses webpages. The goal was to identify webpages which a random surfer would commonly
reach, and to mark them as more important in the search engine. This model can be formalized as a Markov
chain, and the importance is given by the limiting state distribution q∗.

However, this only works when the graph is ergodic. And the webgraph is very non-ergodic. It is not
connected. And there are webpages which are linked to, but do not link to anything else; these are absorbing
states. Worse, spammers could (and do!) intentionally create such sets webpages to capture the attention of
crawlers and random surfers.

Math for Data copyright: Jeff M. Phillips

Example: Webgraph

Below is an example directed webgraph. It is disconnected and has absorbing and transient states.

This includes a large part with black and grey edges; this two-layer structure mirrors those used by
spammers to attract traffic of random surfers and automated ranking in search engines. The grey
edges are planted links to the yellow pages they control. These grey edges might be in comments on
blogs, or links on twitter, or any other click bate. Then the yellow pages can be easily updated to
direct traffic to the black pages which pay the spammers to get promoted. The effect of this sort of
structure can be reduced with PageRank, but is not completely eliminated.

So PageRank adds one additional, but crucial, change to the standard Markov chain analysis of the web-
graph: teleportation. Roughly every seven steps (15% of the time), it instructs the random surfer to jump to
a completely random node in the webgraph. This makes the graph connected, eliminates absorbing states,
increases convergence rates, and jumps out of traps set up by webgraph spammers. That is, it is now er-
godic, so the limiting state q∗ exists. Moreover, there is an efficient way to implement this without making
the webgraph artificially dense, and exploding the memory requirements.

Formalization of the model. Let P be the n× n probability transition matrix formed by normalizing the
webgraph adjacency matrix. Let Q be another probability transition matrix that is a normalized complete
graph. That is, each entry is precisely 1/n. Now the probability transition matrix which represents the
PageRank algorithm is

R = (1− β)P + βQ,

where β is the probability of jumping to a random node. As mentioned a typical setting is β = 0.15.
Now consider a random surfer whose state is q. Then in one iteration, the state is updated as

q1 = Rq.

This operation itself is slow to implement sinceR is dense, since each entry has value at least β/n. However
we can use the linearity to decompose this as:

q1 = Rq = (1− β)Pq + βQq = (1− β)Pq + (β/n)1.

Here 1 represents the length n, all 1s vector. Since Q has identical columns, then it does not matter which
column is chosen, and q is eliminated from the second term. And more importantly, the second term is now
a constant; it just adds β/n to each coordinate created by the sparse matrix multiply (1 − β)Pq. The state
after i rounds can be computed inductively as

qi = Rqi−1 = (1− β)Pqi−1 + (β/n)1.

Math for Data copyright: Jeff M. Phillips

The limiting state q∗ ofR is known as the PageRank vector. Each coordinate is associated with a webpage,
and provides an “importance” of that page based on the structure of the webgraph. It is one of the factors
that goes into the ranking of pages within Google’s search engine.

However, we cannot yet just create q∗ based on the first eigenvector of R. Because R is dense, this is too
slow to do using standard libraries. But, we can adapt the power method, to use the efficient updates in the
sparse matrix P . That is the inductively constructed qi, for i large enough, is a good approximation of q∗.

Moreover, because the graph has a β-fraction of the complete graph, it is well connected, and the second
eigenvalue will be large, and it will converge quickly. Also, after a good estimate of the q∗ is found, then if
the graph is updated, we can used the old estimate to have a good starting point towards the new converged
to distribution. Thus, even on a graph as large as the webgraph, only a few (no more than 50, often much
fewer) iterations are required to get a good precision on the estimate of q∗ of R.

Ethical Questions with TrustRank

It is generally accepted that some webpages are more trustworthy than others. For instance,
Wikipedia pages, top-level pages at reputable universities, established newspapers, and government
pages. These sources typically have a formal review process and a reputation to uphold. On the other
hand, pages which are parts of blogs, comment sections on news articles, and personal social media
pages are typically much less trustworthy.

With this in mind, variants on PageRank have been developed with this trust in mind, as a way
to help combat advanced spamming attempts. This works by having trusted pages more frequently
teleported to, and less likely to be teleported from. This is easy to implement by adjusting the 1 vector
in (β/n)1. Denote the limiting vector of this process the trustRank score. It has been suggested that
webpages which deviate in their standard PageRank score and their trustRank score are more likely
to be spam webpages, and can be down-weighted in the search results.

What are the ethical considerations one should consider when choosing to implement this? And what
considerations should be taken in how to build the updated trust weighting?

10.3 Spectral Clustering on Graphs
Spectral clustering is an example of top-down hierarchical clustering. That is, it finds the best way to
split the data into two parts, then recurses on both parts until some desired level of resolution has been
reached. Within this top-down framework, the key operation of splitting the data is through a mapping to
one dimension – a sorted order – and then uses this order to find the best split.

Spectral clustering is most simply defined starting from a graph representation, although we will see
who it can use a similarity function s to construct an equivalent form for any data set. From the graph
representation, it defines a special conversion to another matrix called a Laplacian, and uses the eigen-
decomposition to define the one-dimension ordering. For the remainder of this section we will focus on
interpreting these graph and matrix representations, and how to use them to define the one-dimensional
ordering.

So how should we cluster a graph? Typically, on graphs the clustering is a partition of the vertex set.
That is a single hard cluster is a subset S ⊂ V . And to perform top-down clustering, the elements to analyze
is a subset S ⊂ V and its compliment S̄ = V \ S.

The edges are then the quantity used to determine how good the clustering is. In general, we want many
edges within a cluster, and few edges between clusters. Define the volume of a cluster vol(S) as the number
of edges with at least one vertex in V . Also, the cut cut(S, T) between two clusters S, T is defined as the

Math for Data copyright: Jeff M. Phillips

number of edges with one vertex in S and the other in T . Ultimately a good clustering has large vol(S) for
each cluster and a small cut(S, T) for each pair of clusters.

Specifically, the normalized cut between S and T is

ncut(S, T) =
cut(S, T)

vol(S)
+

cut(S, T)

vol(T)
.

And as a result the key step in top-down graph clustering is to find the cluster S (and compliment T = V \S)
that has the minimum ncut(S, T). Dividing by vol(S) and vol(T) prevents us from finding either S or T
that is too small, and the cut(S, T) in the numerator will ensure a small number of edges are crossing this
partition.

Example: Normalized Cut

In the running example graph, clusters S = {a, b, c, d} and the singleton cluster with S′ = {h} both
have a small cut value with both cut(S′, S̄′) = 1 and cut(S, S̄) = 1. The volumes however are very
different with vol(S) = 6 and vol(S̄) = 5 while vol(S′) = 1 and vol(S̄′) = 10.

a

b

c

d

e

f

g

h

S0S

The difference in volumes shows up in the normalized cut score for S and S′. Specifically
ncut(S′, S̄′) = 1 + 1

10 = 1.1, whereas ncut(S, S̄) = 1
6 + 1

5 = 0.367. Overall S results in the
smallest normalized cut score; this aligns with how it intuitively is the partition which best divides
the vertices in a balanced way without separating along too many edges.

Affinity matrix. This algorithm will start with the adjacency matrix A of a graph, and then transform it
further. However, the adjacency matrix A need not be 0 − 1. It can be filled with the similarity value
defined by some similarity function s : X ×X → [0, 1] defined between elements of a dataset X; then A
stands for affinity. The degree matrix is still diagonal but is now defined as the sum of elements in a row
(or column — it must be symmetric). The remainder of the spectral clustering formulation and algorithm
will be run the same way; however we continue the description the graph representation as it more clean.
However, this generalization allows us to apply spectral clustering to point sets with a arbitrarily data set
and an appropriate similar measure s.

When the similarity of a pair is very small, it is often a good heuristic to round the values down to 0 in
the matrix to allow algorithms to take advantage of fast sparse linear algebraic subroutines.

10.3.1 Laplacians and their Eigen-Structure
The key step in spectral clustering is found by mapping a graph to its Laplacian, and then using the top
eigenvector to guide the normalized cut. The term “spectral” refers to the use of eigenvalues. We start by
defining the (unnormalized) Laplacian matrix of a graph G with n vertices as L0 = D −A.

Math for Data copyright: Jeff M. Phillips

Example: Laplacian matrix

The Laplacian matrix of our example graph is

L0 = D −A =

3 −1 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0 0
−1 0 3 −1 −1 0 0 0
−1 −1 −1 3 0 0 0 0
0 0 −1 0 3 −1 −1 0
0 0 0 0 −1 3 −1 −1
0 0 0 0 −1 −1 2 0
0 0 0 0 0 −1 0 1

.

Note that the entries in each row and column of L0 sum up to 0. We can think of D as the flow into
a vertex, and think of A as the flow out of the vertex (related to the Markov chain formulation). This
describes a process where the “flow keeps flowing,” so it does not get stuck anywhere. That is, as
much flows in as flows out of each vertex.

It is now useful to consider the eigen-decomposition of L0 = U0Λ0U
T
0 . The first eigenvalue/vector is

not useful: the first eigenvalue is always 0 and the first eigenvector has each element the same. However,
the second eigenvalue/vector are important descriptors of the graph. In particular, the second eigenvec-
tor, known as the Fielder vector, can be interpreted as providing a useful 1-dimensional representation of
vertices of the graph which preserves connectivity. Taking k eigenvectors provides a k-dimensional rep-
resentation; however, these are all unit vectors, but should not be treated equally. Rather, the vertices
can be given a k-dimensional representation using the corresponding part of the eigenvectors uj scaled by
1/
√
λj , the jth eigenvalue. For eigenvectors uj = (uj,1, uj,2, . . . , uj,n), the ith vertex can be represented as

(u2,i/
√
λ2, u3,i/

√
λ3, . . . , uk+1,i/

√
λk+1) ∈ Rk. This scaling correctly implies that the relative importance

between two eigenvectors is governed by the ratio between their eigenvalues.

Math for Data copyright: Jeff M. Phillips

Example: Laplacian-based Embedding

The following table shows the eigenvalues λ1, . . . , λ8 and eigenvectors u1, . . . , u8 of the Laplacian
L0.

λ 0 0.278 1.11 2.31 3.46 4 4.82

U 1/
√

8 −.36 0.08 0.10 0.28 0.25 1/
√

2

1/
√

8 −.42 0.18 0.64 −.38 0.25 0

1/
√

8 −.20 −.11 0.61 0.03 −.25 0

1/
√

8 −.36 0.08 0.10 0.28 0.25 −1/
√

2

1/
√

8 0.17 −.37 0.21 −.54 −.25 0

1/
√

8 0.36 −.08 −.10 −.28 0.75 0

1/
√

8 0.31 −.51 −.36 −.56 0.56 0

1/
√

8 0.50 0.73 0.08 0.11 0.11 0

Next we plot the vertices using the implied 2-dimensional representation from (u2/
√
λ2) and

(u3/
√
λ3). Note that drawing keeps edge-connected vertices nearby. Moreover, points a and d are

directly on top of each other. From the perspective of the graph, they are indistinguishable. Indeed,
the eigenstructure does not separate them until u7.

a
b

c
d

e

f

g

h

v3 = 1

v3 = �1

v2 = �1 v2 = 1

This k-dimensional representation hints at how to perform the cut into two subsets. In fact, the typical
strategy is to only use a single eigenvector, u2. This provides a 1-dimensional representation of the vertices,
a sorted order. There are then two common approaches to find the cut.

The first approach is to just select vertices with values less than 0 in S, and those greater or equal to 0
in S̄. For large complex graphs, this does not always work as well as the next approach; in particular, there
may be two vertices which have values both very close to 0, but one is negative and one is positive. Often,
we would like to place these into the same cluster.

The second approach is to consider the cut defined by any threshold in this sorted order. For instance we
can define Sτ = {vi ∈ V | u2,i ≤ τ} for some threshold τ . In particular, it is easy to find the choice of Sτ
which maximizes ncut(Sτ , S̄τ) by updating this score as τ is increased by incrementally adding points to
Sτ (and removing from S̄τ).

Normalized Laplacian. However, to optimize the cut found using this family of approaches to maximize
the normalized cut, it is better to use a different form of the Laplacian known as the normalized Laplacian

Math for Data copyright: Jeff M. Phillips

L of a graph. For a graph G, an identity matrix I , and the graph’s diagonal matrix D and adjacency matrix
A, its normalized Laplacian is defined as L = I −D−1/2AD−1/2.

We can also convert L0 to the normalized Laplacian L using the D−1/2 matrix as

L = I −D−1/2AD−1/2 = D−1/2L0D
−1/2.

The left- and right-multiplication by D−1/2 can be thought of as normalizing by the degrees. That is each
entry Pi,j of P = D−1/2AD−1/2 (and edge (vi, vj)) is normalized by the amount of flow in and out of the
nodes vi and vj of its corresponding edge (vi, vj).

Example: Normalized Laplacian

The normalized Laplacian matrix of our example graph is L = I −D−1/2AD−1/2 =

1 −0.408 −0.333 −0.333 0 0 0 0
−0.408 1 0 −0.408 0 0 0 0
−0.333 0 1 −0.333 −0.333 0 0 0
−0.333 −0.408 −0.333 1 0 0 0 0

0 0 −0.333 0 1 −0.333 −0.408 0
0 0 0 0 −0.333 1 −0.408 −0.577
0 0 0 0 −0.408 −0.408 1 0
0 0 0 0 0 −0.577 0 1

.

Using that the normalized Laplacian is mechanically the same as using the (unnormalized) Laplacian.
The second eigenvector provides a sorted order of the vertices, and the best normalized cut can be found
among the subsets according to this sorted order. Then to complete the spectral clustering, this procedure is
recursively repeated on each subset until some designed resolution has been reached.

Math for Data copyright: Jeff M. Phillips

Example: Normalized Laplacian-based Embedding

The following table shows the eigenvalues λ1, . . . , λ8 and eigenvectors u1, . . . , u8 of the normalized
Laplacian L for our example graph.

λ 0 0.125 0.724 1.00 1.33 1.42 1.66 1.73

V −.39 0.38 −.09 0.00 0.71 0.26 −.32 0.16
−.32 0.36 −.27 0.50 0.00 −.51 0.38 −.18
−.39 0.18 0.36 −.61 0.00 0.03 0.47 −.29
−.39 0.38 −.09 0.00 −.71 0.26 −.32 0.16
−.39 −.28 0.48 0.00 0.00 −.57 0.31 0.33
−.39 −.48 −.29 0.00 0.00 0.05 −.31 −.65
−.31 −.36 0.27 0.50 0.00 0.51 0.38 −.18
−.22 −.32 −.61 −.35 0.00 −.07 0.27 0.51

Again we can plot the vertices using the implied 2-dimensional representation from (u2/
√
λ2) and

(u3/
√
λ3). Again the drawing keeps edge-connected vertices nearby and does not distinguish points

a and d.

a
b

c

d

e

f

g

h

v3 = 1

v3 = �1

v2 = �1 v2 = 1

Compared to the plot based on L0, this one is even more dramatically stretched out along u2. Also,
note that while the suggested cut along u2 is still at τ = 0, the direction of the orientation is flipped.
The vertices {a, b, c, d} are now all positive, while the others are negative. The is because the eigen-
decomposition is not unique in the choice of signs of the eigenvectors, even if eigenvalues are distinct.
Its also worth observing that in the second coordinate defined by u3, vertex f now has different sign
that vertices g and e, because the normalized Laplacian values larger cardinality cuts more than the
unnormalized Laplacian.

10.4 Communities in Graphs
Finding relationships and communities from a social network has been a holy grail for the internet data
explosion since the late 90s; before Facebook, and even before MySpace. This information is important
for targeted advertising, for identifying influential people, and for predicting trends before they happen, or
spurring them to make them happen.

At the most general, a social network is a large directed graph G = (V,E). For decades, psychologists
and others studied small scale networks (100 friends, seniors in a high school). Anything larger was too
hard to collect and work with.

Also mathematicians studied large graphs, famously as properties of random graphs. For instance, the
Erdös-Rényi model assumed that each pair of vertices had an edge with probability p ∈ (0, 1). As p

Math for Data copyright: Jeff M. Phillips

increased as a function |V |, they could study properties of the connectedness of the graph: one large con-
nected component forms, then the entire graph is connected, then cycles and more complex structures appear
at greater rates.

Ethical Questions with collecting large social network graphs

There are many large active and influential social networks (Facebook, Twitter, Instagram). These
are influential because they are an important source of information and news for their users. But in
many cases the full versions of these networks are closely guarded secrets by the companies. These
networks are expensive to host and maintain, and most of these hosting companies derive value and
profit by applying targeted advertising to the users.

Various example networks are available through inventive and either sanctioned or unsanctioned
information retrieval and scraping techniques. Is it ethical to try to scrape public or semi-private
posts of users for either academic or entrepreneurial reasons?

Some social media companies attempted to quantify the happiness derived by users based on how
they interacted with the social network. This included some approaches by which the study poten-
tially decreased the happiness of the users (e.g., showing only negative posts). Was it useful to test
these experiments, and how what could go wrong with this ability?

Example: Why do people join groups?

Before large social networks on the internet it was a painstaking and noisy process to collect net-
works. And tracking them over time was even more difficult. Now it is possible to study the forma-
tion of these structures, and collect this data at large scale on the fly. This allows for more quantitative
studies of many questions. As an example anthropological question: Why do people join groups?

Consider a group of people C that have tight connections (say in a social network). Consider two
people X (Xavier) and Y (Yolonda). Who is more likely to join group C?

• X has three friends in C, all connected.
• Y has three friends in C, none connected.

Before witnessing large social networks, both sides had viable theories with reasonable arguments.
Arguments forX were that there was safety and trust in friends who know each other. Arguments for
Y were that there was independent support for joining the group; hearing about it from completely
different reasons might be more convincing than from a single group of the same size. For static
network data, it is probability impossible to distinguish empirically between these cases. But this can
be verified by just seeing which scenario is more common as networks form, and users decided to
add pre-defined labels indicating a group.

It turns out the answer is: X Vertices tend to form tightly connected subsets of graphs.

10.4.1 Preferential Attachment
How do edges form in an evolving graph? An important concept is called preferential attachment: If edge
(a, b) and (a, c) exist in a graph, then it is more likely than random for (b, c) to exist. Reasons include

• b and c somehow already trust each other (through a).
• a may have incentive to bring b and c together.

Math for Data copyright: Jeff M. Phillips

• All edges may result from common phenomenon (e.g. church group).

This has been widely observed in large networks in many settings. Although the exact model which real-
izes this, and how the probability is adjusted is debated, the general property is accepted as a key principle.
Notably, this is not compatible with the famous mathematical model of Erdös-Rényi graphs which assumes
all edges are equally likely. And so the rich mathematics associated with that model needs to be avoided or
re-worked to apply to most typical large networks.

A key consequence of this is that the number of triangles in the graph becomes an important parameter in
judging the health of the network as a whole or its components.

10.4.2 Betweenness
One way of defining communities of a graph, is a procedure through an importance labeling on the graphs
vertices or edges. For instance, it could be the PageRank importance assigned to vertices. Once an impor-
tance has been assigned, these objects may hold a universal quality or connection, and the parts which are
connected despite these objects make up communities. Thus, we can remove all nodes or edges weighted
above a threshold, and the remaining connected components may defined the true communities of the graph.

A powerful definition of importance on edges which is especially effective in this paradigm is the be-
tweenness score. Specifically, the betweenness of an edge (a, b) is defined as

betw(a, b) = fraction of shortest paths that use edge (a, b).

A large score may indicate an edge does not represent a central part of a community. If to get between two
communities you need to take this edge, its betweenness score will be high. A “facilitator edge”, but not a
community edge.

Similarly, the betweenness of a vertex is the number of shortest paths that go through this vertex.
Calculating betw(a, b) for all edges can be time consuming. It typically requires for each vertex, comput-

ing shortest paths to all other vertices (the all pairs shortest path problem). Then for each vertex, its effect
on every edges can be calculated bt running a careful dynamic programming on the DAG (directed acyclic
graph) defined by its shortest path.

10.4.3 Modularity
Communities can be defined and formed without providing an entire partition of the vertices, as in a cluster-
ing. The common alternative approach is to define a score on each potential community C ⊂ V , and then
search for subsets with large score. The most common score for this approach is called modularity and, at a
high level it is

Q(C) = (fraction of edges in group)− (expected fraction of edges in group).

So the higher the more tightly packed the community is.
More precisely, we use the adjacency matrix A to denote existing edges, where Ai,j as 1 if edge (i, j)

exists, and 0 otherwise. The expected value of an edge for two nodes i and j with degree di and dj ,
respectively, is Ei,j = didj/2|E|. Note this allows self edges. Now formally,

Q(C) =
1

4|E|

∑

C∈C

∑

i,j∈C
(Ai,j − Ei,j)

 .

This score can obtain values Q(C) ∈ [−1/2, 1]. If the number of edges exceeds the expectation defined this
way, then it is positive. Typically when Q ∈ [0.3, 0.7] this is would be deemed a significant group.

Math for Data copyright: Jeff M. Phillips

Finding high modularity subsets can be a challenging search problem. Spectral clustering can efficiently
provide good initial guesses – although the goal of this approach was to not rely on such methods. Once an
initial guess is formed, or starting from a single vertex communityC, then they can be incrementally updated
to look for high modularity communities. Either, one can add the one vertex at a time that most increases
the score, or all vertices which individually increase the score. Alternatively, a random walk, similar to the
metropolis algorithm can be used to explore the space of communities.

Math for Data copyright: Jeff M. Phillips

Exercises

Q10.1: Consider the following probability transition matrix

M =

.2 0.5 0 0 0 0 0 0 0 0

.8 0.2 0 0 0 0 0 0.1 0 0
0 0.3 0 0.3 0.2 0 0 0 0 0
0 0 0.5 0 0.2 0.5 0 0 0 0
0 0 0.5 0.3 0 0.5 0 0 0 0
0 0 0 0.4 0.4 0 0 0 0 0
0 0 0 0 0.2 0 0 0.5 0.4 0
0 0 0 0 0 0 0.8 0 0 0.3
0 0 0 0 0 0 0.2 0 0 0.7
0 0 0 0 0 0 0 0.4 0.6 0

We will consider four ways to find q∗ = M tq0 as t→∞.

• (Matrix Power:) Choose some large enough value t, and create M t. Then apply q∗ = (M t)q0.
There are two ways to create M t, first we can just let M i+1 = M i ∗M , repeating this process
t − 1 times. Alternatively, (for simplicity assume t is a power of 2), then in log2 t steps create
M2i = M i ∗M i.
• (State Propagation:) Iterate qi+1 = M ∗ qi for some large enough number t iterations.
• (Random Walk:) Starting with a fixed state q0 = [0, 0, . . . , 1, . . . , 0, 0]T where there is only a

1 at the ith entry, and then transition to a new state with only a 1 in the jth entry by choosing a
new location proportional to the values in the ith column of M . Iterate this some large number
t0 of steps to get state q′0. (This is the burn in period.)
Now make t new step starting at q′0 and record the location after each step. Keep track of how
many times you have recorded each location and estimate q∗ as the normalized version (recall
‖q∗‖1 = 1) of the vector of these counts.
• (Eigen-Analysis:) Compute eig(M) and take the first eigenvector after it has been normalized.

1. Run each method (with t = 1024, q0 = [1, 0, 0, . . ., 0]T and t0 = 100 when needed) and report
the answers.

2. Rerun the Matrix Power and State Propagation techniques with q0 = [0.1, 0.1, . . . , 0.1]T . For
what value of t is required to get as close to the true answer as the older initial state?

3. Explain at least one Pro and one Con of each approach. The Pro should explain a situation
when it is the best option to use. The Con should explain why another approach may be better
for some situation.

4. Is the Markov chain ergodic? Explain why or why not.

5. Each matrix M row and column represents a node of the graph, label these from 1 to 10 starting
from the top and from the left. What nodes can be reached from node 4 in one step, and with
what probabilities?

Math for Data copyright: Jeff M. Phillips

