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1. Introduction 
This chapter begins by discussing what statistics are and why the study of statistics 
is important. Subsequent sections cover a variety of topics all basic to the study of 
statistics. The only theme common to all of these sections is that they cover 
concepts and ideas important for other chapters in the book.

A. What are Statistics?
B. Importance of Statistics
C. Descriptive Statistics
D. Inferential Statistics
E. Variables
F. Percentiles
G. Measurement
H. Levels of Measurement
I. Distributions
J. Summation Notation
K. Linear Transformations
L. Logarithms
M. Exercises
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What Are Statistics 
by Mikki Hebl 

Learning Objectives
1. Describe the range of applications of statistics
2. Identify situations in which statistics can be misleading
3. Define “Statistics”

Statistics include numerical facts and figures. For instance:

• The largest earthquake measured 9.2 on the Richter scale.

• Men are at least 10 times more likely than women to commit murder.

• One in every 8 South Africans is HIV positive.

• By the year 2020, there will be 15 people aged 65 and over for every new baby 
born.

The study of statistics involves math and relies upon calculations of numbers. But 
it also relies heavily on how the numbers are chosen and how the statistics are 
interpreted. For example, consider the following three scenarios and the 
interpretations based upon the presented statistics. You will find that the numbers 
may be right, but the interpretation may be wrong. Try to identify a major flaw 
with each interpretation before we describe it.

1) A new advertisement for Ben and Jerry's ice cream introduced in 
late May of last year resulted in a 30% increase in ice cream sales for 
the following three months. Thus, the advertisement was effective. 
 
A major flaw is that ice cream consumption generally increases in the 
months of June, July, and August regardless of advertisements. This 
effect is called a history effect and leads people to interpret outcomes 
as the result of one variable when another variable (in this case, one 
having to do with the passage of time) is actually responsible.  
 
2) The more churches in a city, the more crime there is. Thus, 
churches lead to crime. 

11



 
A major flaw is that both increased churches and increased crime rates 
can be explained by larger populations. In bigger cities, there are both 
more churches and more crime. This problem, which we will discuss 
in more detail in Chapter 6, refers to the third-variable problem. 
Namely, a third variable can cause both situations; however, people 
erroneously believe that there is a causal relationship between the two 
primary variables rather than recognize that a third variable can cause 
both.  
 
3) 75% more interracial marriages are occurring this year than 25 
years ago. Thus, our society accepts interracial marriages. 
 
A major flaw is that we don't have the information that we need. What 
is the rate at which marriages are occurring? Suppose only 1% of 
marriages 25 years ago were interracial and so now 1.75% of 
marriages are interracial (1.75 is 75% higher than 1). But this latter 
number is hardly evidence suggesting the acceptability of interracial 
marriages. In addition, the statistic provided does not rule out the 
possibility that the number of interracial marriages has seen dramatic 
fluctuations over the years and this year is not the highest. Again, 
there is simply not enough information to understand fully the impact 
of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they 
are something more than that. In the broadest sense, “statistics” refers to a range of 
techniques and procedures for analyzing, interpreting, displaying, and making 
decisions based on data.
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Importance of  Statistics 
by Mikki Hebl 

Learning Objectives
1. Give examples of statistics encountered in everyday life
2. Give examples of how statistics can lend credibility to an argument
Like most people, you probably feel that it is important to “take control of your 
life.” But what does this mean? Partly, it means being able to properly evaluate the 
data and claims that bombard you every day. If you cannot distinguish good from 
faulty reasoning, then you are vulnerable to manipulation and to decisions that are 
not in your best interest. Statistics provides tools that you need in order to react 
intelligently to information you hear or read. In this sense, statistics is one of the 
most important things that you can study.

To be more specific, here are some claims that we have heard on several 
occasions. (We are not saying that each one of these claims is true!)
• 4 out of 5 dentists recommend Dentine.
• Almost 85% of lung cancers in men and 45% in women are tobacco-related.
• Condoms are effective 94% of the time.
• Native Americans are significantly more likely to be hit crossing the street than 

are people of other ethnicities.
• People tend to be more persuasive when they look others directly in the eye and 

speak loudly and quickly.
• Women make 75 cents to every dollar a man makes when they work the same 

job.
• A surprising new study shows that eating egg whites can increase one's life span.
• People predict that it is very unlikely there will ever be another baseball player 

with a batting average over 400.
• There is an 80% chance that in a room full of 30 people that at least two people 

will share the same birthday.
• 79.48% of all statistics are made up on the spot.
All of these claims are statistical in character. We suspect that some of them sound 
familiar; if not, we bet that you have heard other claims like them. Notice how 
diverse the examples are. They come from psychology, health, law, sports, 
business, etc. Indeed, data and data interpretation show up in discourse from 
virtually every facet of contemporary life.

13



Statistics are often presented in an effort to add credibility to an argument or 
advice. You can see this by paying attention to television advertisements. Many of 
the numbers thrown about in this way do not represent careful statistical analysis. 
They can be misleading and push you into decisions that you might find cause to 
regret. For these reasons, learning about statistics is a long step towards taking 
control of your life. (It is not, of course, the only step needed for this purpose.) The 
present electronic textbook is designed to help you learn statistical essentials. It 
will make you into an intelligent consumer of statistical claims.

You can take the first step right away. To be an intelligent consumer of 
statistics, your first reflex must be to question the statistics that you encounter. The 
British Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said, 
“There are three kinds of lies -- lies, damned lies, and statistics.” This quote 
reminds us why it is so important to understand statistics. So let us invite you to 
reform your statistical habits from now on. No longer will you blindly accept 
numbers or findings. Instead, you will begin to think about the numbers, their 
sources, and most importantly, the procedures used to generate them.

We have put the emphasis on defending ourselves against fraudulent claims 
wrapped up as statistics. We close this section on a more positive note. Just as 
important as detecting the deceptive use of statistics is the appreciation of the 
proper use of statistics. You must also learn to recognize statistical evidence that 
supports a stated conclusion. Statistics are all around you, sometimes used well, 
sometimes not. We must learn how to distinguish the two cases.
 
Now let us get to work!
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Descriptive Statistics 
by Mikki Hebl 

Prerequisites
• none 

Learning Objectives
1. Define “descriptive statistics”
2. Distinguish between descriptive statistics and inferential statistics
Descriptive statistics are numbers that are used to summarize and describe data. 
The word “data” refers to the information that has been collected from an 
experiment, a survey, an historical record, etc. (By the way, “data” is plural. One 
piece of information is called a “datum.”) If we are analyzing birth certificates, for 
example, a descriptive statistic might be the percentage of certificates issued in 
New York State, or the average age of the mother. Any other number we choose to 
compute also counts as a descriptive statistic for the data from which the statistic is 
computed. Several descriptive statistics are often used at one time to give a full 
picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing 
beyond the data at hand. Generalizing from our data to another set of cases is the 
business of inferential statistics, which you'll be studying in another section. Here 
we focus on (mere) descriptive statistics.

Some descriptive statistics are shown in Table 1. The table shows the 
average salaries for various occupations in the United States in 1999. 
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Table 1. Average salaries for various occupations in 1999.

Descriptive statistics like these offer insight into American society. It is interesting 
to note, for example, that we pay the people who educate our children and who 
protect our citizens a great deal less than we pay people who take care of our feet 
or our teeth.

For more descriptive statistics, consider Table 2. It shows the number of 
unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. From this 
table we see that men outnumber women most in Jacksonville, NC, and women 
outnumber men most in Sarasota, FL. You can see that descriptive statistics can be 
useful if we are looking for an opposite-sex partner! (These data come from the 
Information Please Almanac.)

Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas 
in 1990.

$112,760 pediatricians

$106,130 dentists

$100,090 podiatrists

$76,140 physicists

$53,410 architects,

$49,720 school, clinical, and counseling 
psychologists

$47,910 flight attendants

$39,560 elementary school teachers

$38,710 police officers

$18,980 floral designers

Cities with mostly 
men

Men per 100 
Women

Cities with mostly 
women

Men per 100 
Women

1. Jacksonville, NC 224 1. Sarasota, FL 66

2. Killeen-Temple, TX 123 2. Bradenton, FL 68

3. Fayetteville, NC 118 3. Altoona, PA 69
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NOTE: Unmarried includes never-married, widowed, and divorced persons, 15 years or older. 

These descriptive statistics may make us ponder why the numbers are so disparate 
in these cities. One potential explanation, for instance, as to why there are more 
women in Florida than men may involve the fact that elderly individuals tend to 
move down to the Sarasota region and that women tend to outlive men. Thus, more 
women might live in Sarasota than men. However, in the absence of proper data, 
this is only speculation.

You probably know that descriptive statistics are central to the world of 
sports. Every sporting event produces numerous statistics such as the shooting 
percentage of players on a basketball team. For the Olympic marathon (a foot race 
of 26.2 miles), we possess data that cover more than a century of competition. (The 
first modern Olympics took place in 1896.) The following table shows the winning 
times for both men and women (the latter have only been allowed to compete since 
1984).

Table 3. Winning Olympic marathon times.

4. Brazoria, TX 117 4. Springfield, IL 70

5. Lawton, OK 116 5. Jacksonville, TN 70

6. State College, PA 113 6. Gadsden, AL 70

7. Clarksville-
Hopkinsville, TN-KY

113 7. Wheeling, WV 70

8. Anchorage, Alaska 112 8. Charleston, WV 71

9. Salinas-Seaside-
Monterey, CA

112 9. St. Joseph, MO 71

10. Bryan-College 
Station, TX

111 10. Lynchburg, VA 71

Women

Year Winner Country Time

1984 Joan Benoit USA 2:24:52

1988 Rosa Mota POR 2:25:40
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1992 Valentina Yegorova UT 2:32:41

1996 Fatuma Roba ETH 2:26:05

2000 Naoko Takahashi JPN 2:23:14

2004 Mizuki Noguchi JPN 2:26:20

Men

Year Winner Country Time

1896 Spiridon Louis GRE 2:58:50

1900 Michel Theato FRA 2:59:45

1904 Thomas Hicks USA 3:28:53

1906 Billy Sherring CAN 2:51:23

1908 Johnny Hayes USA 2:55:18

1912 Kenneth McArthur S. Afr. 2:36:54

1920 Hannes Kolehmainen FIN 2:32:35

1924 Albin Stenroos FIN 2:41:22

1928 Boughra El Ouafi FRA 2:32:57

1932 Juan Carlos Zabala ARG 2:31:36

1936 Sohn Kee-Chung JPN 2:29:19

1948 Delfo Cabrera ARG 2:34:51

1952 Emil Ztopek CZE 2:23:03

1956 Alain Mimoun FRA 2:25:00

1960 Abebe Bikila ETH 2:15:16

1964 Abebe Bikila ETH 2:12:11

1968 Mamo Wolde ETH 2:20:26

1972 Frank Shorter USA 2:12:19

1976 Waldemar Cierpinski E.Ger 2:09:55

1980 Waldemar Cierpinski E.Ger 2:11:03

1984 Carlos Lopes POR 2:09:21

1988 Gelindo Bordin ITA 2:10:32
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There are many descriptive statistics that we can compute from the data in the 
table. To gain insight into the improvement in speed over the years, let us divide 
the men's times into two pieces, namely, the first 13 races (up to 1952) and the 
second 13 (starting from 1956). The mean winning time for the first 13 races is 2 
hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for 
the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does 
this prove that the fastest men are running faster? Or is the difference just due to 
chance, no more than what often emerges from chance differences in performance 
from year to year? We can't answer this question with descriptive statistics alone. 
All we can affirm is that the two means are “suggestive.”

Examining Table 3 leads to many other questions. We note that Takahashi 
(the lead female runner in 2000) would have beaten the male runner in 1956 and all 
male runners in the first 12 marathons. This fact leads us to ask whether the gender 
gap will close or remain constant. When we look at the times within each gender, 
we also wonder how far they will decrease (if at all) in the next century of the 
Olympics. Might we one day witness a sub-2 hour marathon? The study of 
statistics can help you make reasonable guesses about the answers to these 
questions.

1992 Hwang Young-Cho S. Kor 2:13:23

1996 Josia Thugwane S. Afr. 2:12:36

2000 Gezahenge Abera ETH 2:10.10

2004 Stefano Baldini ITA 2:10:55
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Inferential Statistics 
by Mikki Hebl 

Prerequisites
• Chapter 1: Descriptive Statistics  

Learning Objectives
1. Distinguish between a sample and a population 
2. Define inferential statistics 
3. Identify biased samples 
4. Distinguish between simple random sampling and stratified sampling 
5. Distinguish between random sampling and random assignment 

Populations and samples 
In statistics, we often rely on a sample --- that is, a small subset of a larger set of 
data --- to draw inferences about the larger set. The larger set is known as the 
population from which the sample is drawn.

Example #1: You have been hired by the National Election Commission to 
examine how the American people feel about the fairness of the voting 
procedures in the U.S. Who will you ask? 

It is not practical to ask every single American how he or she feels about the 
fairness of the voting procedures. Instead, we query a relatively small number of 
Americans, and draw inferences about the entire country from their responses. The 
Americans actually queried constitute our sample of the larger population of all 
Americans. The mathematical procedures whereby we convert information about 
the sample into intelligent guesses about the population fall under the rubric of 
inferential statistics.

A sample is typically a small subset of the population. In the case of voting 
attitudes, we would sample a few thousand Americans drawn from the hundreds of 
millions that make up the country. In choosing a sample, it is therefore crucial that 
it not over-represent one kind of citizen at the expense of others. For example, 
something would be wrong with our sample if it happened to be made up entirely 
of Florida residents. If the sample held only Floridians, it could not be used to infer 
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the attitudes of other Americans. The same problem would arise if the sample were 
comprised only of Republicans. Inferential statistics are based on the assumption 
that sampling is random. We trust a random sample to represent different segments 
of society in close to the appropriate proportions (provided the sample is large 
enough; see below).

Example #2: We are interested in examining how many math classes have 
been taken on average by current graduating seniors at American colleges 
and universities during their four years in school. Whereas our population in 
the last example included all US citizens, now it involves just the graduating 
seniors throughout the country. This is still a large set since there are 
thousands of colleges and universities, each enrolling many students. (New 
York University, for example, enrolls 48,000 students.) It would be 
prohibitively costly to examine the transcript of every college senior. We 
therefore take a sample of college seniors and then make inferences to the 
entire population based on what we find. To make the sample, we might first 
choose some public and private colleges and universities across the United 
States. Then we might sample 50 students from each of these institutions. 
Suppose that the average number of math classes taken by the people in our 
sample were 3.2. Then we might speculate that 3.2 approximates the number 
we would find if we had the resources to examine every senior in the entire 
population. But we must be careful about the possibility that our sample is 
non-representative of the population. Perhaps we chose an overabundance of 
math majors, or chose too many technical institutions that have heavy math 
requirements. Such bad sampling makes our sample unrepresentative of the 
population of all seniors. 

To solidify your understanding of sampling bias, consider the following 
example. Try to identify the population and the sample, and then reflect on 
whether the sample is likely to yield the information desired. 
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Example #3: A substitute teacher wants to know how students in the class 
did on their last test. The teacher asks the 10 students sitting in the front row 
to state their latest test score. He concludes from their report that the class 
did extremely well. What is the sample? What is the population? Can you 
identify any problems with choosing the sample in the way that the teacher 
did? 

In Example #3, the population consists of all students in the class. The sample is 
made up of just the 10 students sitting in the front row. The sample is not likely to 
be representative of the population. Those who sit in the front row tend to be more 
interested in the class and tend to perform higher on tests. Hence, the sample may 
perform at a higher level than the population.

Example #4: A coach is interested in how many cartwheels the average 
college freshmen at his university can do. Eight volunteers from the 
freshman class step forward. After observing their performance, the coach 
concludes that college freshmen can do an average of 16 cartwheels in a row 
without stopping. 

In Example #4, the population is the class of all freshmen at the coach's university. 
The sample is composed of the 8 volunteers. The sample is poorly chosen because 
volunteers are more likely to be able to do cartwheels than the average freshman; 
people who can't do cartwheels probably did not volunteer! In the example, we are 
also not told of the gender of the volunteers. Were they all women, for example? 
That might affect the outcome, contributing to the non-representative nature of the 
sample (if the school is co-ed).

Simple Random Sampling 
Researchers adopt a variety of sampling strategies. The most straightforward is 
simple random sampling. Such sampling requires every member of the population 
to have an equal chance of being selected into the sample. In addition, the selection 
of one member must be independent of the selection of every other member. That 
is, picking one member from the population must not increase or decrease the 
probability of picking any other member (relative to the others). In this sense, we 
can say that simple random sampling chooses a sample by pure chance. To check 
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your understanding of simple random sampling, consider the following example. 
What is the population? What is the sample? Was the sample picked by simple 
random sampling? Is it biased?

Example #5: A research scientist is interested in studying the experiences of 
twins raised together versus those raised apart. She obtains a list of twins 
from the National Twin Registry, and selects two subsets of individuals for 
her study. First, she chooses all those in the registry whose last name begins 
with Z. Then she turns to all those whose last name begins with B. Because 
there are so many names that start with B, however, our researcher decides 
to incorporate only every other name into her sample. Finally, she mails out 
a survey and compares characteristics of twins raised apart versus together. 

In Example #5, the population consists of all twins recorded in the National Twin 
Registry. It is important that the researcher only make statistical generalizations to 
the twins on this list, not to all twins in the nation or world. That is, the National 
Twin Registry may not be representative of all twins. Even if inferences are limited 
to the Registry, a number of problems affect the sampling procedure we described. 
For instance, choosing only twins whose last names begin with Z does not give 
every individual an equal chance of being selected into the sample. Moreover, such 
a procedure risks over-representing ethnic groups with many surnames that begin 
with Z. There are other reasons why choosing just the Z's may bias the sample. 
Perhaps such people are more patient than average because they often find 
themselves at the end of the line! The same problem occurs with choosing twins 
whose last name begins with B. An additional problem for the B's is that the 
“every-other-one” procedure disallowed adjacent names on the B part of the list 
from being both selected. Just this defect alone means the sample was not formed 
through simple random sampling.

Sample size matters 
Recall that the definition of a random sample is a sample in which every member 
of the population has an equal chance of being selected. This means that the 
sampling procedure rather than the results of the procedure define what it means 
for a sample to be random. Random samples, especially if the sample size is small, 
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are not necessarily representative of the entire population. For example, if a 
random sample of 20 subjects were taken from a population with an equal number 
of males and females, there would be a nontrivial probability (0.06) that 70% or 
more of the sample would be female. (To see how to obtain this probability, see the 
section on the binomial distribution in Chapter 5.) Such a sample would not be 
representative, although it would be drawn randomly. Only a large sample size 
makes it likely that our sample is close to representative of the population. For this 
reason, inferential statistics take into account the sample size when generalizing 
results from samples to populations. In later chapters, you'll see what kinds of 
mathematical techniques ensure this sensitivity to sample size.

More complex sampling 
Sometimes it is not feasible to build a sample using simple random sampling. To 
see the problem, consider the fact that both Dallas and Houston are competing to 
be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most 
Texans prefer Houston to Dallas as the host, or the reverse. Given the 
impracticality of obtaining the opinion of every single Texan, you must construct a 
sample of the Texas population. But now notice how difficult it would be to 
proceed by simple random sampling. For example, how will you contact those 
individuals who don’t vote and don’t have a phone? Even among people you find 
in the telephone book, how can you identify those who have just relocated to 
California (and had no reason to inform you of their move)? What do you do about 
the fact that since the beginning of the study, an additional 4,212 people took up 
residence in the state of Texas? As you can see, it is sometimes very difficult to 
develop a truly random procedure. For this reason, other kinds of sampling 
techniques have been devised. We now discuss two of them.

Random assignment 
In experimental research, populations are often hypothetical. For example, in an 
experiment comparing the effectiveness of a new anti-depressant drug with a 
placebo, there is no actual population of individuals taking the drug. In this case, a 
specified population of people with some degree of depression is defined and a 
random sample is taken from this population. The sample is then randomly divided 
into two groups; one group is assigned to the treatment condition (drug) and the 
other group is assigned to the control condition (placebo). This random division of 
the sample into two groups is called random assignment. Random assignment is 
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critical for the validity of an experiment. For example, consider the bias that could 
be introduced if the first 20 subjects to show up at the experiment were assigned to 
the experimental group and the second 20 subjects were assigned to the control 
group. It is possible that subjects who show up late tend to be more depressed than 
those who show up early, thus making the experimental group less depressed than 
the control group even before the treatment was administered.

In experimental research of this kind, failure to assign subjects randomly to 
groups is generally more serious than having a non-random sample. Failure to 
randomize (the former error) invalidates the experimental findings. A non-random 
sample (the latter error) simply restricts the generalizability of the results.

Stratified Sampling 
Since simple random sampling often does not ensure a representative sample, a 
sampling method called stratified random sampling is sometimes used to make the 
sample more representative of the population. This method can be used if the 
population has a number of distinct “strata” or groups. In stratified sampling, you 
first identify members of your sample who belong to each group. Then you 
randomly sample from each of those subgroups in such a way that the sizes of the 
subgroups in the sample are proportional to their sizes in the population.

Let's take an example: Suppose you were interested in views of capital 
punishment at an urban university. You have the time and resources to interview 
200 students. The student body is diverse with respect to age; many older people 
work during the day and enroll in night courses (average age is 39), while younger 
students generally enroll in day classes (average age of 19). It is possible that night 
students have different views about capital punishment than day students. If 70% 
of the students were day students, it makes sense to ensure that 70% of the sample 
consisted of day students. Thus, your sample of 200 students would consist of 140 
day students and 60 night students. The proportion of day students in the sample 
and in the population (the entire university) would be the same. Inferences to the 
entire population of students at the university would therefore be more secure.
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Variables 
by Heidi Ziemer 

Prerequisites
•none

Learning Objectives

1. Define and distinguish between independent and dependent variables
2. Define and distinguish between discrete and continuous variables
3. Define and distinguish between qualitative and quantitative variables

Independent and dependent variables 
Variables are properties or characteristics of some event, object, or person that can 
take on different values or amounts (as opposed to constants such as π that do not 
vary). When conducting research, experimenters often manipulate variables. For 
example, an experimenter might compare the effectiveness of four types of 
antidepressants. In this case, the variable is “type of antidepressant.” When a 
variable is manipulated by an experimenter, it is called an independent variable. 
The experiment seeks to determine the effect of the independent variable on relief 
from depression. In this example, relief from depression is called a dependent 
variable. In general, the independent variable is manipulated by the experimenter 
and its effects on the dependent variable are measured.

Example #1: Can blueberries slow down aging? A study indicates that 
antioxidants found in blueberries may slow down the process of aging. In 
this study, 19-month-old rats (equivalent to 60-year-old humans) were fed 
either their standard diet or a diet supplemented by either blueberry, 
strawberry, or spinach powder. After eight weeks, the rats were given 
memory and motor skills tests. Although all supplemented rats showed 
improvement, those supplemented with blueberry powder showed the most 
notable improvement.  

1. What is the independent variable? (dietary supplement: none, blueberry, 
strawberry, and spinach) 

26



2. What are the dependent variables? (memory test and motor skills test)  

Example #2: Does beta-carotene protect against cancer? Beta-carotene 
supplements have been thought to protect against cancer. However, a study 
published in the Journal of the National Cancer Institute suggests this is 
false. The study was conducted with 39,000 women aged 45 and up. These 
women were randomly assigned to receive a beta-carotene supplement or a 
placebo, and their health was studied over their lifetime. Cancer rates for 
women taking the beta-carotene supplement did not differ systematically 
from the cancer rates of those women taking the placebo.  

1. What is the independent variable? (supplements: beta-carotene or 
placebo) 

2. What is the dependent variable? (occurrence of cancer) 

Example #3: How bright is right? An automobile manufacturer wants to 
know how bright brake lights should be in order to minimize the time 
required for the driver of a following car to realize that the car in front is 
stopping and to hit the brakes. 

1. What is the independent variable? (brightness of brake lights) 

2. What is the dependent variable? (time to hit brakes) 

Levels of an Independent Variable 
If an experiment compares an experimental treatment with a control treatment, 
then the independent variable (type of treatment) has two levels: experimental and 
control. If an experiment were comparing five types of diets, then the independent 
variable (type of diet) would have 5 levels. In general, the number of levels of an 
independent variable is the number of experimental conditions.
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Qualitative and Quantitative Variables 
An important distinction between variables is between qualitative variables and 
quantitative variables. Qualitative variables are those that express a qualitative 
attribute such as hair color, eye color, religion, favorite movie, gender, and so on. 
The values of a qualitative variable do not imply a numerical ordering. Values of 
the variable “religion” differ qualitatively; no ordering of religions is implied. 
Qualitative variables are sometimes referred to as categorical variables. 
Quantitative variables are those variables that are measured in terms of numbers. 
Some examples of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent 
variable was type of supplement: none, strawberry, blueberry, and spinach. The 
variable “type of supplement” is a qualitative variable; there is nothing quantitative 
about it. In contrast, the dependent variable “memory test” is a quantitative 
variable since memory performance was measured on a quantitative scale (number 
correct).

Discrete and Continuous Variables 
Variables such as number of children in a household are called discrete variables 
since the possible scores are discrete points on the scale. For example, a household 
could have three children or six children, but not 4.53 children. Other variables 
such as “time to respond to a question” are continuous variables since the scale is 
continuous and not made up of discrete steps. The response time could be 1.64 
seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of 
measurement preclude most measured variables from being truly continuous.
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Percentiles 
by David Lane 

Prerequisites
•none

Learning Objectives
1. Define percentiles
2. Use three formulas for computing percentiles
A test score in and of itself is usually difficult to interpret. For example, if you 
learned that your score on a measure of shyness was 35 out of a possible 50, you 
would have little idea how shy you are compared to other people. More relevant is 
the percentage of people with lower shyness scores than yours. This percentage is 
called a percentile. If 65% of the scores were below yours, then your score would 
be the 65th percentile.

Two Simple Definitions of Percentile 
There is no universally accepted definition of a percentile. Using the 65th 
percentile as an example, the 65th percentile can be defined as the lowest score that 
is greater than 65% of the scores. This is the way we defined it above and we will 
call this “Definition 1.” The 65th percentile can also be defined as the smallest 
score that is greater than or equal to 65% of the scores. This we will call 
“Definition 2.” Unfortunately, these two definitions can lead to dramatically 
different results, especially when there is relatively little data. Moreover, neither of 
these definitions is explicit about how to handle rounding. For instance, what rank 
is required to be higher than 65% of the scores when the total number of scores is 
50? This is tricky because 65% of 50 is 32.5. How do we find the lowest number 
that is higher than 32.5% of the scores? A third way to compute percentiles 
(presented below) is a weighted average of the percentiles computed according to 
the first two definitions. This third definition handles rounding more gracefully 
than the other two and has the advantage that it allows the median to be defined 
conveniently as the 50th percentile.
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A Third Definition 
Unless otherwise specified, when we refer to “percentile,” we will be referring to 
this third definition of percentiles. Let's begin with an example. Consider the 25th 
percentile for the 8 numbers in Table 1. Notice the numbers are given ranks 
ranging from 1 for the lowest number to 8 for the highest number.

Table 1. Test Scores.

The first step is to compute the rank (R) of the 25th percentile. This is done using 
the following formula:

where P is the desired percentile (25 in this case) and N is the number of numbers 
(8 in this case). Therefore,

If R is an integer, the Pth percentile is be the number with rank R. When R is not 
an integer, we compute the Pth percentile by interpolation as follows:
1. Define IR as the integer portion of R (the number to the left of the decimal 

point). For this example, IR = 2. 
2. Define FR as the fractional portion of R. For this example, FR = 0.25.

Number Rank

3 
5 
7 
8 
9 

11 
13 
15

1 
2 
3 
4 
5 
6 
7 
8

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 
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4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
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4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 
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100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 
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3. Find the scores with Rank IR and with Rank IR + 1. For this example, this means 
the score with Rank 2 and the score with Rank 3. The scores are 5 and 7. 

4. Interpolate by multiplying the difference between the scores by FR and add the 
result to the lower score. For these data, this is (0.25)(7 - 5) + 5 = 5.5.

Therefore, the 25th percentile is 5.5. If we had used the first definition (the smallest 
score greater than 25% of the scores), the 25th percentile would have been 7. If we 
had used the second definition (the smallest score greater than or equal to 25% of 
the scores), the 25th percentile would have been 5.

For a second example, consider the 20 quiz scores shown in Table 2.

Table 2. 20 Quiz Scores.

We will compute the 25th and the 85th percentiles. For the 25th,

Score Rank

4 
4 
5 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
9 
9 
9 

10 
10 
10

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 
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IR = 5 and FR = 0.25. 

Since the score with a rank of IR (which is 5) and the score with a rank of IR + 1 
(which is 6) are both equal to 5, the 25th percentile is 5. In terms of the formula:

25th percentile = (.25) x (5 - 5) + 5 = 5. 

For the 85th percentile,

IR = 17 and FR = 0.85 

Caution: FR does not generally equal the percentile to be 
computed as it does here. 

The score with a rank of 17 is 9 and the score with a rank of 18 is 10. Therefore, 
the 85th percentile is:

(0.85)(10 - 9) + 9 = 9.85 

Consider the 50th percentile of the numbers 2, 3, 5, 9.

IR = 2 and FR = 0.5. 

The score with a rank of IR is 3 and the score with a rank of IR + 1 is 5. Therefore, 
the 50th percentile is:

(0.5)(5 - 3) + 3 = 4. 

Finally, consider the 50th percentile of the numbers 2, 3, 5, 9, 11.

IR = 3 and FR = 0. 

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 

Percentiles 

 

� =
�
100 × (� + 1) 

 

� =
25
100 ×

(8 + 1) =
9
4 = 2.25 

 

� =
25
100 ×

(20 + 1) =
21
4 = 5.25 

 

� =
85
100 ×

(20 + 1) = 17.85 

 

� =
50
100 ×

(4 + 1) = 2.5 

 

� =
50
100 ×

(5 + 1) = 3 

 

Summation Notation 

 32



Whenever FR = 0, you simply find the number with rank IR. In this case, the third 
number is equal to 5, so the 50th percentile is 5. You will also get the right answer 
if you apply the general formula:

50th percentile = (0.00) (9 - 5) + 5 = 5. 
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Levels of  Measurement 
by Dan Osherson and David M. Lane 

Prerequisites
•Chapter 1: Variables

Learning Objectives
1. Define and distinguish among nominal, ordinal, interval, and ratio scales
2. Identify a scale type
3. Discuss the type of scale used in psychological measurement
4. Give examples of errors that can be made by failing to understand the proper 

use of measurement scales

Types of Scales 
Before we can conduct a statistical analysis, we need to measure our dependent 
variable. Exactly how the measurement is carried out depends on the type of 
variable involved in the analysis. Different types are measured differently. To 
measure the time taken to respond to a stimulus, you might use a stop watch. Stop 
watches are of no use, of course, when it comes to measuring someone's attitude 
towards a political candidate. A rating scale is more appropriate in this case (with 
labels like “very favorable,” “somewhat favorable,” etc.). For a dependent variable 
such as “favorite color,” you can simply note the color-word (like “red”) that the 
subject offers.

Although procedures for measurement differ in many ways, they can be 
classified using a few fundamental categories. In a given category, all of the 
procedures share some properties that are important for you to know about. The 
categories are called “scale types,” or just “scales,” and are described in this 
section.

Nominal scales 
When measuring using a nominal scale, one simply names or categorizes 
responses. Gender, handedness, favorite color, and religion are examples of 
variables measured on a nominal scale. The essential point about nominal scales is 
that they do not imply any ordering among the responses. For example, when 
classifying people according to their favorite color, there is no sense in which 
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green is placed “ahead of” blue. Responses are merely categorized. Nominal scales 
embody the lowest level of measurement.

Ordinal scales 
A researcher wishing to measure consumers' satisfaction with their microwave 
ovens might ask them to specify their feelings as either “very dissatisfied,” 
“somewhat dissatisfied,” “somewhat satisfied,” or “very satisfied.” The items in 
this scale are ordered, ranging from least to most satisfied. This is what 
distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales 
allow comparisons of the degree to which two subjects possess the dependent 
variable. For example, our satisfaction ordering makes it meaningful to assert that 
one person is more satisfied than another with their microwave ovens. Such an 
assertion reflects the first person's use of a verbal label that comes later in the list 
than the label chosen by the second person.

On the other hand, ordinal scales fail to capture important information that 
will be present in the other scales we examine. In particular, the difference between 
two levels of an ordinal scale cannot be assumed to be the same as the difference 
between two other levels. In our satisfaction scale, for example, the difference 
between the responses “very dissatisfied” and “somewhat dissatisfied” is probably 
not equivalent to the difference between “somewhat dissatisfied” and “somewhat 
satisfied.” Nothing in our measurement procedure allows us to determine whether 
the two differences reflect the same difference in psychological satisfaction. 
Statisticians express this point by saying that the differences between adjacent 
scale values do not necessarily represent equal intervals on the underlying scale 
giving rise to the measurements. (In our case, the underlying scale is the true 
feeling of satisfaction, which we are trying to measure.)

What if the researcher had measured satisfaction by asking consumers to 
indicate their level of satisfaction by choosing a number from one to four? Would 
the difference between the responses of one and two necessarily reflect the same 
difference in satisfaction as the difference between the responses two and three? 
The answer is No. Changing the response format to numbers does not change the 
meaning of the scale. We still are in no position to assert that the mental step from 
1 to 2 (for example) is the same as the mental step from 3 to 4.
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Interval scales 
Interval scales are numerical scales in which intervals have the same interpretation 
throughout. As an example, consider the Fahrenheit scale of temperature. The 
difference between 30 degrees and 40 degrees represents the same temperature 
difference as the difference between 80 degrees and 90 degrees. This is because 
each 10-degree interval has the same physical meaning (in terms of the kinetic 
energy of molecules).

Interval scales are not perfect, however. In particular, they do not have a true 
zero point even if one of the scaled values happens to carry the name “zero.” The 
Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent 
the complete absence of temperature (the absence of any molecular kinetic energy). 
In reality, the label “zero” is applied to its temperature for quite accidental reasons 
connected to the history of temperature measurement. Since an interval scale has 
no true zero point, it does not make sense to compute ratios of temperatures. For 
example, there is no sense in which the ratio of 40 to 20 degrees Fahrenheit is the 
same as the ratio of 100 to 50 degrees; no interesting physical property is preserved 
across the two ratios. After all, if the “zero” label were applied at the temperature 
that Fahrenheit happens to label as 10 degrees, the two ratios would instead be 30 
to 10 and 90 to 40, no longer the same! For this reason, it does not make sense to 
say that 80 degrees is “twice as hot” as 40 degrees. Such a claim would depend on 
an arbitrary decision about where to “start” the temperature scale, namely, what 
temperature to call zero (whereas the claim is intended to make a more 
fundamental assertion about the underlying physical reality).

Ratio scales 
The ratio scale of measurement is the most informative scale. It is an interval scale 
with the additional property that its zero position indicates the absence of the 
quantity being measured. You can think of a ratio scale as the three earlier scales 
rolled up in one. Like a nominal scale, it provides a name or category for each 
object (the numbers serve as labels). Like an ordinal scale, the objects are ordered 
(in terms of the ordering of the numbers). Like an interval scale, the same 
difference at two places on the scale has the same meaning. And in addition, the 
same ratio at two places on the scale also carries the same meaning.

The Fahrenheit scale for temperature has an arbitrary zero point and is 
therefore not a ratio scale. However, zero on the Kelvin scale is absolute zero. This 
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makes the Kelvin scale a ratio scale. For example, if one temperature is twice as 
high as another as measured on the Kelvin scale, then it has twice the kinetic 
energy of the other temperature.

Another example of a ratio scale is the amount of money you have in your 
pocket right now (25 cents, 55 cents, etc.). Money is measured on a ratio scale 
because, in addition to having the properties of an interval scale, it has a true zero 
point: if you have zero money, this implies the absence of money. Since money has 
a true zero point, it makes sense to say that someone with 50 cents has twice as 
much money as someone with 25 cents (or that Bill Gates has a million times more 
money than you do).

What level of measurement is used for psychological variables? 
Rating scales are used frequently in psychological research. For example, 
experimental subjects may be asked to rate their level of pain, how much they like 
a consumer product, their attitudes about capital punishment, their confidence in an 
answer to a test question. Typically these ratings are made on a 5-point or a 7-point 
scale. These scales are ordinal scales since there is no assurance that a given 
difference represents the same thing across the range of the scale. For example, 
there is no way to be sure that a treatment that reduces pain from a rated pain level 
of 3 to a rated pain level of 2 represents the same level of relief as a treatment that 
reduces pain from a rated pain level of 7 to a rated pain level of 6.

In memory experiments, the dependent variable is often the number of items 
correctly recalled. What scale of measurement is this? You could reasonably argue 
that it is a ratio scale. First, there is a true zero point; some subjects may get no 
items correct at all. Moreover, a difference of one represents a difference of one 
item recalled across the entire scale. It is certainly valid to say that someone who 
recalled 12 items recalled twice as many items as someone who recalled only 6 
items.

But number-of-items recalled is a more complicated case than it appears at 
first. Consider the following example in which subjects are asked to remember as 
many items as possible from a list of 10. Assume that (a) there are 5 easy items and 
5 difficult items, (b) half of the subjects are able to recall all the easy items and 
different numbers of difficult items, while (c) the other half of the subjects are 
unable to recall any of the difficult items but they do remember different numbers 
of easy items. Some sample data are shown below.
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Let's compare (i) the difference between Subject A's score of 2 and Subject B's 
score of 3 and (ii) the difference between Subject C's score of 7 and Subject D's 
score of 8. The former difference is a difference of one easy item; the latter 
difference is a difference of one difficult item. Do these two differences necessarily 
signify the same difference in memory? We are inclined to respond “No” to this 
question since only a little more memory may be needed to retain the additional 
easy item whereas a lot more memory may be needed to retain the additional hard 
item. The general point is that it is often inappropriate to consider psychological 
measurement scales as either interval or ratio.

Consequences of level of measurement 
Why are we so interested in the type of scale that measures a dependent variable? 
The crux of the matter is the relationship between the variable's level of 
measurement and the statistics that can be meaningfully computed with that 
variable. For example, consider a hypothetical study in which 5 children are asked 
to choose their favorite color from blue, red, yellow, green, and purple. The 
researcher codes the results as follows:

This means that if a child said her favorite color was “Red,” then the choice was 
coded as “2,” if the child said her favorite color was “Purple,” then the response 
was coded as 5, and so forth. Consider the following hypothetical data:

Subject Easy Items Difficult Items Score

A 0 0 1 1 0 0 0 0 0 0 2

B 1 0 1 1 0 0 0 0 0 0 3

C 1 1 1 1 1 1 1 0 0 0 7

D 1 1 1 1 1 0 1 1 0 1 8

Color Code

Blue 
Red 

Yellow 
Green 
Purple

1 
2 
3 
4 
5

38



Each code is a number, so nothing prevents us from computing the average code 
assigned to the children. The average happens to be 3, but you can see that it would 
be senseless to conclude that the average favorite color is yellow (the color with a 
code of 3). Such nonsense arises because favorite color is a nominal scale, and 
taking the average of its numerical labels is like counting the number of letters in 
the name of a snake to see how long the beast is.

Does it make sense to compute the mean of numbers measured on an ordinal 
scale? This is a difficult question, one that statisticians have debated for decades. 
The prevailing (but by no means unanimous) opinion of statisticians is that for 
almost all practical situations, the mean of an ordinally-measured variable is a 
meaningful statistic. However, there are extreme situations in which computing the 
mean of an ordinally-measured variable can be very misleading.

Subject Color Code

1 
2 
3 
4 
5

Blue 
Blue 

Green 
Green 
Purple

1 
1 
4 
4 
5
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Distributions 
by David M. Lane and Heidi Ziemer 

Prerequisites
•Chapter 1: Variables

Learning Objectives
1. Define “distribution”
2. Interpret a frequency distribution
3. Distinguish between a frequency distribution and a probability distribution
4. Construct a grouped frequency distribution for a continuous variable
5. Identify the skew of a distribution
6. Identify bimodal, leptokurtic, and platykurtic distributions

Distributions of Discrete Variables 
I recently purchased a bag of Plain M&M's. The M&M's were in six different 
colors. A quick count showed that there were 55 M&M's: 17 brown, 18 red, 7 
yellow, 7 green, 2 blue, and 4 orange. These counts are shown below in Table 1.

Table 1. Frequencies in the Bag of M&M's

This table is called a frequency table and it describes the distribution of M&M 
color frequencies. Not surprisingly, this kind of distribution is called a frequency 
distribution. Often a frequency distribution is shown graphically as in Figure 1.

Color Frequency

Brown 
Red 

Yellow 
Green 
Blue 

Orange

17 
18 
7 
7 
2 
4
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Figure 1. Distribution of 55 M&M's.

The distribution shown in Figure 1 concerns just my one bag of M&M's. You 
might be wondering about the distribution of colors for all M&M's. The 
manufacturer of M&M's provides some information about this matter, but they do 
not tell us exactly how many M&M's of each color they have ever produced. 
Instead, they report proportions rather than frequencies. Figure 2 shows these 
proportions. Since every M&M is one of the six familiar colors, the six proportions 
shown in the figure add to one. We call Figure 2 a probability distribution because 
if you choose an M&M at random, the probability of getting, say, a brown M&M is 
equal to the proportion of M&M's that are brown (0.30).
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Figure 2. Distribution of all M&M's.

Notice that the distributions in Figures 1 and 2 are not identical. Figure 1 portrays 
the distribution in a sample of 55 M&M's. Figure 2 shows the proportions for all 
M&M's. Chance factors involving the machines used by the manufacturer 
introduce random variation into the different bags produced. Some bags will have a 
distribution of colors that is close to Figure 2; others will be further away.

Continuous Variables 
The variable “color of M&M” used in this example is a discrete variable, and its 
distribution is also called discrete. Let us now extend the concept of a distribution 
to continuous variables.

The data shown in Table 2 are the times it took one of us (DL) to move the 
cursor over a small target in a series of 20 trials. The times are sorted from shortest 
to longest. The variable “time to respond” is a continuous variable. With time 
measured accurately (to many decimal places), no two response times would be 
expected to be the same. Measuring time in milliseconds (thousandths of a second) 
is often precise enough to approximate a continuous variable in psychology. As 
you can see in Table 2, measuring DL's responses this way produced times no two 
of which were the same. As a result, a frequency distribution would be 
uninformative: it would consist of the 20 times in the experiment, each with a 
frequency of 1.
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Table 2. Response Times

The solution to this problem is to create a grouped frequency distribution. In a 
grouped frequency distribution, scores falling within various ranges are tabulated. 
Table 3 shows a grouped frequency distribution for these 20 times.

Table 3. Grouped frequency distribution

Grouped frequency distributions can be portrayed graphically. Figure 3 shows a 
graphical representation of the frequency distribution in Table 3. This kind of graph 
is called a histogram. Chapter 2 contains an entire section devoted to histograms.
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Figure 3. A histogram of the grouped frequency distribution shown in Table 
3. The labels on the X-axis are the middle values of the range they 
represent.

Probability Densities 
The histogram in Figure 3 portrays just DL's 20 times in the one experiment he 
performed. To represent the probability associated with an arbitrary movement 
(which can take any positive amount of time), we must represent all these potential 
times at once. For this purpose, we plot the distribution for the continuous variable 
of time. Distributions for continuous variables are called continuous distributions. 
They also carry the fancier name probability density. Some probability densities 
have particular importance in statistics. A very important one is shaped like a bell, 
and called the normal distribution. Many naturally-occurring phenomena can be 
approximated surprisingly well by this distribution. It will serve to illustrate some 
features of all continuous distributions.

An example of a normal distribution is shown in Figure 4. Do you see the 
“bell”? The normal distribution doesn't represent a real bell, however, since the left 
and right tips extend indefinitely (we can't draw them any further so they look like 
they've stopped in our diagram). The Y-axis in the normal distribution represents 
the “density of probability.” Intuitively, it shows the chance of obtaining values 
near corresponding points on the X-axis. In Figure 4, for example, the probability 
of an observation with value near 40 is about half of the probability of an 
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observation with value near 50. (For more information, see Chapter 7.) 
 

Figure 4. A normal distribution.

 
Although this text does not discuss the concept of probability density in detail, you 
should keep the following ideas in mind about the curve that describes a 
continuous distribution (like the normal distribution). First, the area under the 
curve equals 1. Second, the probability of any exact value of X is 0. Finally, the 
area under the curve and bounded between two given points on the X-axis is the 
probability that a number chosen at random will fall between the two points. Let us 
illustrate with DL's hand movements. First, the probability that his movement takes 
some amount of time is one! (We exclude the possibility of him never finishing his 
gesture.) Second, the probability that his movement takes exactly 
598.956432342346576 milliseconds is essentially zero. (We can make the 
probability as close as we like to zero by making the time measurement more and 
more precise.) Finally, suppose that the probability of DL's movement taking 
between 600 and 700 milliseconds is one tenth. Then the continuous distribution 
for DL's possible times would have a shape that places 10% of the area below the 
curve in the region bounded by 600 and 700 on the X-axis.
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Shapes of Distributions 
Distributions have different shapes; they don't all look like the normal distribution 
in Figure 4. For example, the normal probability density is higher in the middle 
compared to its two tails. Other distributions need not have this feature. There is 
even variation among the distributions that we call “normal.” For example, some 
normal distributions are more spread out than the one shown in Figure 4 (their tails 
begin to hit the X-axis further from the middle of the curve --for example, at 10 
and 90 if drawn in place of Figure 4). Others are less spread out (their tails might 
approach the X-axis at 30 and 70). More information on the normal distribution 
can be found in a later chapter completely devoted to them.

The distribution shown in Figure 4 is symmetric; if you folded it in the 
middle, the two sides would match perfectly. Figure 5 shows the discrete 
distribution of scores on a psychology test. This distribution is not symmetric: the 
tail in the positive direction extends further than the tail in the negative direction. A 
distribution with the longer tail extending in the positive direction is said to have a 
positive skew. It is also described as “skewed to the right.”

Figure 5. A distribution with a positive skew. 

Figure 6 shows the salaries of major league baseball players in 1974 (in thousands 
of dollars). This distribution has an extreme positive skew.
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Figure 6. A distribution with a very large positive skew.

A continuous distribution with a positive skew is shown in Figure 7.

Figure 7. A continuous distribution with a positive skew.
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Although less common, some distributions have a negative skew. Figure 8 shows 
the scores on a 20-point problem on a statistics exam. Since the tail of the 
distribution extends to the left, this distribution is skewed to the left.

Figure 8. A distribution with negative skew. This histogram shows the 
frequencies of various scores on a 20-point question on a statistics 
test.
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A continuous distribution with a negative skew is shown in Figure 9.

Figure 9. A continuous distribution with a negative skew.

The distributions shown so far all have one distinct high point or peak. The 
distribution in Figure 10 has two distinct peaks. A distribution with two peaks is 
called a bimodal distribution.
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Figure 10. Frequencies of times between eruptions of the Old Faithful 
geyser. Notice the two distinct peaks: one at 1.75 and the other at 
4.25.

Distributions also differ from each other in terms of how large or “fat” their tails 
are. Figure 11 shows two distributions that differ in this respect. The upper 
distribution has relatively more scores in its tails; its shape is called leptokurtic. 
The lower distribution has relatively fewer scores in its tails; its shape is called 
platykurtic.
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Figure 11. Distributions differing in kurtosis. The top distribution has long 
tails. It is called “leptokurtic.” The bottom distribution has short tails. 
It is called “platykurtic.”
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Summation Notation 
by David M. Lane 

Prerequisites
• None

Learning Objectives
1. Use summation notation to express the sum of all numbers
2. Use summation notation to express the sum of a subset of numbers
3. Use summation notation to express the sum of squares
Many statistical formulas involve summing numbers. Fortunately there is a 
convenient notation for expressing summation. This section covers the basics of 
this summation notation.

Let's say we have a variable X that represents the weights (in grams) of 4 
grapes. The data are shown in Table 1.

Table 1. Weights of 4 grapes.

We label Grape 1's weight X1, Grape 2's weight X2, etc. The following formula 
means to sum up the weights of the four grapes:

The Greek letter Σ indicates summation. The “i = 1” at the bottom indicates that 
the summation is to start with X1 and the 4 at the top indicates that the summation 
will end with X4. The “Xi” indicates that X is the variable to be summed as i goes 
from 1 to 4. Therefore,

Grape X

1 
2 
3 
4
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5.1 
4.9 
4.4
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The symbol

indicates that only the first 3 scores are to be summed. The index variable i goes 
from 1 to 3.

When all the scores of a variable (such as X) are to be summed, it is often 
convenient to use the following abbreviated notation:

Thus, when no values of i are shown, it means to sum all the values of X.
Many formulas involve squaring numbers before they are summed. This is 

indicated as 

= 21.16 + 26.01 + 24.01 + 19.36 = 90.54. 

Notice that:

because the expression on the left means to sum up all the values of X and then 
square the sum (19² = 361), whereas the expression on the right means to square 
the numbers and then sum the squares (90.54, as shown).

Some formulas involve the sum of cross products. Table 2 shows the data for 
variables X and Y. The cross products (XY) are shown in the third column. The 
sum of the cross products is 3 + 4 + 21 = 28.
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Table 2. Cross Products.

In summation notation, this is written as:

X Y XY

1 
2 
3

3 
2 
7

3 
4 
21
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Linear Transformations 
by David M. Lane 

Prerequisites
• None

Learning Objectives
1. Give the formula for a linear transformation
2. Determine whether a transformation is linear
3. Describe what is linear about a linear transformation
Often it is necessary to transform data from one measurement scale to another. For 
example, you might want to convert height measured in feet to height measured in 
inches. Table 1 shows the heights of four people measured in both feet and inches. 
To transform feet to inches, you simply multiply by 12. Similarly, to transform 
inches to feet, you divide by 12.
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Table 1. Converting between feet and inches.

Some conversions require that you multiply by a number and then add a second 
number. A good example of this is the transformation between degrees Centigrade 
and degrees Fahrenheit. Table 2 shows the temperatures of 5 US cities in the early 
afternoon of November 16, 2002.

Table 2. Temperatures in 5 cities on 11/16/2002.

The formula to transform Centigrade to Fahrenheit is:

F = 1.8C + 32 

The formula for converting from Fahrenheit to Centigrade is

C = 0.5556F - 17.778 

The transformation consists of multiplying by a constant and then adding a second 
constant. For the conversion from Centigrade to Fahrenheit, the first constant is 1.8 
and the second is 32.

Figure 1 shows a plot of degrees Centigrade as a function of degrees 
Fahrenheit. Notice that the points form a straight line. This will always be the case 
if the transformation from one scale to another consists of multiplying by one 
constant and then adding a second constant. Such transformations are therefore 
called linear transformations.

Feet Inches
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City Degrees Fahrenheit Degrees Centigrade

Houston 
Chicago 
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Miami 

Phoenix
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70
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2.78 
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25.56 
21.11
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Figure 1. Degrees Centigrade as a function of degrees Fahrenheit
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Logarithms 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions

Learning Objectives
1. Compute logs using different bases
2. Convert between bases
3. State the relationship between logs and proportional change

The log transformation reduces positive skew. This can be valuable both for 
making the data more interpretable and for helping to meet the assumptions of 
inferential statistics.

Basics of Logarithms (Logs) 
Logs are, in a sense, the opposite of exponents. Consider the following simple 
expression:
102 = 100
Here we can say the base of 10 is raised to the second power. Here is an example 
of a log:
Log10(100) = 2
This can be read as: The log base ten of 100 equals 2. The result is the power that 
the base of 10 has to be raised to in order to equal the value (100). Similarly,
Log10(1000) = 3
since 10 has to be raised to the third power in order to equal 1,000.

These examples all used base 10, but any base could have been used. There 
is a base which results in “natural logarithms” and that is called e and equals 
approximately 2.718. It is beyond the scope of this book to explain what is 
“natural” about it. Natural logarithms can be indicated either as: Ln(x) or loge(x)

Changing the base of the log changes the result by a multiplicative constant. 
To convert from Log10 to natural logs, you multiply by 2.303. Analogously, to 
convert in the other direction, you divide by 2.303.
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Taking the antilog of a number undoes the operation of taking the log. 
Therefore, since Log10(1000) = 3, the antilog10 of 3 is 1,000. Taking the antilog of 
a number simply raises the base of the logarithm in question to that number.

Logs and Proportional Change 
A series of numbers that increases proportionally will increase in equal amounts 
when converted to logs. For example, the numbers in the first column of Table 1 
increase by a factor of 1.5 so that each row is 1.5 times as high as the preceding 
row. The Log10 transformed numbers increase in equal steps of 0.176.

Table 1. Proportional raw changes are equal in log units.

As another example, if one student increased their score from 100 to 200 while a 
second student increased their's from 150 to 300, the percentage change (100%) is 
the same for both students. The log difference is also the same, as shown below. 

Log10(100) = 2.000 
Log10(200) = 2.301 
Difference: 0.301 
 
Log10(150) = 2.176 
Log10(300) = 2.477 
Difference: 0.301

Arithmetic Operations

Rules for logs of products and quotients are shown below.
Log(AB) = Log(A) + Log(B) 

Log(A/B) = Log(A) - Log(B) 

For example,
Log10(10 x 100) = Log10(10) + Log10(100) = 1 + 2 = 3.

Raw Log

4.0 
6.0 
9.0 

13.5

0.602 
0.778 
0.954 
1.130

59



Similarly,
Log10(100/10) = Log10(100) - Log10(10) = 2 - 1 = 1. 
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Statistical Literacy 
by Denise Harvey and David M. Lane 

Prerequisites
• Chapter 1: Levels of Measurement

The Board of Trustees at a university commissioned a top management-consulting 
firm to address the admission processes for academic and athletic programs. The 
consulting firm wrote a report discussing the trade-off between maintaining 
academic and athletic excellence. One of their key findings was: 

The standard for an athlete’s admission, as reflected in SAT 
scores alone, is lower than the standard for non-athletes by as 
much as 20 percent, with the weight of  this difference being 
carried by the so-called “revenue sports” of  football and 
basketball. Athletes are also admitted through a different 
process than the one used to admit non-athlete students. 

What do you think?
Based on what you have learned in this chapter about measurement scales, does it 
make sense to compare SAT scores using percentages? Why or why not?
 
Think about this before continuing: 

As you may know, the SAT has an arbitrarily-determined lower 
limit on test scores of  200. Therefore, SAT is measured on 
either an ordinal scale or, at most, an interval scale. However, it 
is clearly not measured on a ratio scale. Therefore, it is not 
meaningful to report SAT score differences in terms of  
percentages. For example, consider the effect of  subtracting 200 
from every student's score so that the lowest possible score is 0. 
How would that affect the difference as expressed in 
percentages? 
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Exercises 

Prerequisites
• All material presented in Chapter: “Introduction”

1. A teacher wishes to know whether the males in his/her class have more 
conservative attitudes than the females. A questionnaire is distributed assessing 
attitudes and the males and the females are compared. Is this an example of 
descriptive or inferential statistics?

2. A cognitive psychologist is interested in comparing two ways of presenting 
stimuli on sub- sequent memory. Twelve subjects are presented with each method 
and a memory test is given. What would be the roles of descriptive and 
inferential statistics in the analysis of these data?

3. If you are told only that you scored in the 80th percentile, do you know from 
that description exactly how it was calculated? Explain.

4. A study is conducted to determine whether people learn better with spaced or 
massed practice. Subjects volunteer from an introductory psychology class. At 
the beginning of the semester 12 subjects volunteer and are assigned to the 
massed-practice condition. At the end of the semester 12 subjects volunteer and 
are assigned to the spaced-practice condition. This experiment involves two 
kinds of non-random sampling: (1) Subjects are not randomly sampled from 
some specified population and (2) subjects are not randomly assigned to 
conditions. Which of the problems relates to the generality of the results? Which 
of the problems relates to the validity of the results? Which problem is more 
serious?

5. Give an example of an independent and a dependent variable.

6. Categorize the following variables as being qualitative or quantitative: 
Rating of the quality of a movie on a 7-point scale 
Age 
Country you were born in  
Favorite Color 
Time to respond to a question
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7. Specify the level of measurement used for the items in Question 6.

8. Which of the following are linear transformations? 
Converting from meters to kilometers  
Squaring each side to find the area 
Converting from ounces to pounds 
Taking the square root of each person's height. 
Multiplying all numbers by 2 and then adding 5 
Converting temperature from Fahrenheit to Centigrade

9. The formula for finding each student’s test grade (g) from his or her raw score 
(s) on a test is as follows: g = 16 + 3s

Is this a linear transformation?

If a student got a raw score of 20, what is his test grade?

10. For the numbers 1, 2, 4, 16, compute the following: 
ΣX 
ΣX2  
(ΣX)2 

11. Which of the frequency polygons has a large positive skew? Which has a large 
negative skew?

12. What is more likely to have a skewed distribution: time to solve an anagram 
problem (where the letters of a word or phrase are rearranged into another 
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word or phrase like “dear” and “read” or “funeral” and “real fun”) or scores on 
a vocabulary test?

Questions from Case Studies

Angry Moods (AM) case study

13. (AM) Which variables are the participant variables? (They act as independent 
variables in this study.)

14. (AM) What are the dependent variables?

15. (AM) Is Anger-Out a quantitative or qualitative variable?

Teacher Ratings (TR) case study

16. (TR) What is the independent variable in this study?

ADHD Treatment (AT) case study

17. (AT) What is the independent variable of this experiment? How many levels 
does it have?

18. (AT) What is the dependent variable? On what scale (nominal, ordinal, interval, 
ratio) was it measured?
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2. Graphing Distributions 
A. Qualitative Variables
B. Quantitative Variables

1. Stem and Leaf Displays
2. Histograms
3. Frequency Polygons
4. Box Plots
5. Bar Charts
6. Line Graphs
7. Dot Plots

C. Exercises 

Graphing data is the first and often most important step in data analysis. In this day 
of computers, researchers all too often see only the results of complex computer 
analyses without ever taking a close look at the data themselves. This is all the 
more unfortunate because computers can create many types of graphs quickly and 
easily.

This chapter covers some classic types of graphs such bar charts that were 
invented by William Playfair in the 18th century as well as graphs such as box 
plots invented by John Tukey in the 20th century.
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Graphing Qualitative Variables 
by David M. Lane 

Prerequisites
• Chapter 1: Variables 

Learning Objectives
1. Create a frequency table
2. Determine when pie charts are valuable and when they are not
3. Create and interpret bar charts
4. Identify common graphical mistakes
When Apple Computer introduced the iMac computer in August 1998, the 
company wanted to learn whether the iMac was expanding Apple’s market share. 
Was the iMac just attracting previous Macintosh owners? Or was it purchased by 
newcomers to the computer market and by previous Windows users who were 
switching over? To find out, 500 iMac customers were interviewed. Each customer 
was categorized as a previous Macintosh owner, a previous Windows owner, or a 
new computer purchaser.
This section examines graphical methods for displaying the results of the 
interviews. We’ll learn some general lessons about how to graph data that fall into 
a small number of categories. A later section will consider how to graph numerical 
data in which each observation is represented by a number in some range. The key 
point about the qualitative data that occupy us in the present section is that they do 
not come with a pre-established ordering (the way numbers are ordered). For 
example, there is no natural sense in which the category of previous Windows 
users comes before or after the category of previous Macintosh  users. This 
situation may be contrasted with quantitative data, such as a person’s weight. 
People of one weight are naturally ordered with respect to people of a different 
weight.

Frequency Tables 
All of the graphical methods shown in this section are derived from frequency 
tables. Table 1 shows a frequency table for the results of the iMac study; it shows 
the frequencies of the various response categories. It also shows the relative 
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frequencies, which are the proportion of responses in each category. For example, 
the relative frequency for “none” of 0.17 = 85/500.

Table 1. Frequency Table for the iMac Data.

Pie Charts 
The pie chart in Figure 1 shows the results of the iMac study. In a pie chart, each 
category is represented by a slice of the pie. The area of the slice is proportional to 
the percentage of responses in the category. This is simply the relative frequency 
multiplied by 100. Although most iMac purchasers were Macintosh owners, Apple 
was encouraged by the 12% of purchasers who were former Windows users, and 
by the 17% of purchasers who were buying a computer for the first time. 

Figure 1. Pie chart of iMac purchases illustrating frequencies of previous 
computer ownership.

Previous Ownership Frequency Relative Frequency

None 85 0.17

Windows 60 0.12

Macintosh 355 0.71

Total 500 1

71%

12%

17%

Macintosh

None

Windows
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Pie charts are effective for displaying the relative frequencies of a small number of 
categories. They are not recommended, however, when you have a large number of 
categories. Pie charts can also be confusing when they are used to compare the 
outcomes of two different surveys or experiments. In an influential book on the use 
of graphs, Edward Tufte asserted “The only worse design than a pie chart is several 
of them.”

Here is another important point about pie charts. If they are based on a small 
number of observations, it can be misleading to label the pie slices with 
percentages. For example, if just 5 people had been interviewed by Apple 
Computers, and 3 were former Windows users, it would be misleading to display a 
pie chart with the Windows slice showing 60%. With so few people interviewed, 
such a large percentage of Windows users might easily have occurred  since chance 
can cause large errors with small samples. In this case, it is better to alert the user 
of the pie chart to the actual numbers involved. The slices should therefore be 
labeled with the actual frequencies observed (e.g., 3) instead of with percentages.

Bar charts 
Bar charts can also be used to represent frequencies of different categories. A bar 
chart of the iMac purchases is shown in Figure 2. Frequencies are shown on the Y-
axis and the type of computer previously owned is shown on the X-axis. Typically, 
the Y-axis shows the number of observations in each category rather than the 
percentage of observations in each category as is typical in pie charts. 

68



Figure 2. Bar chart of iMac purchases as a function of previous computer 
ownership.

Comparing Distributions 
Often we need to compare the results of different surveys, or of different 
conditions within the same overall survey. In this case, we are comparing the 
“distributions” of responses between the surveys or conditions. Bar charts are often 
excellent for illustrating differences between two distributions. Figure 3 shows the 
number of people playing card games at the Yahoo web site on a Sunday and on a 
Wednesday in the spring of 2001. We see that there were more players overall on 
Wednesday compared to Sunday. The number of people playing Pinochle was 
nonetheless the same on these two days. In contrast, there were about twice as 
many people playing hearts on Wednesday as on Sunday. Facts like these emerge 
clearly from a well-designed bar chart.

Previous
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Frequency

None 85 0.17
Windows 60 0.12
Macintosh 355 0.71
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Figure 3. A bar chart of the number of people playing different card games 
on Sunday and Wednesday.

The bars in Figure 3 are oriented horizontally rather than vertically. The horizontal 
format is useful when you have many categories because there is more room for 
the category labels. We’ll have more to say about bar charts when we consider 
numerical quantities later in this chapter.

Some graphical mistakes to avoid 
Don’t get fancy! People sometimes add features to graphs that don’t help to convey 
their information. For example, 3-dimensional bar charts such as the one shown in 
Figure 4 are usually not as effective as their two-dimensional counterparts.

Wednesday Sunday
Poker 680 653
Blackjack 1082 1124
Bridge 1635 991
Gin 1800 1172
Cribbage 2100 1855
Hearts 2683 1425
Canasta 3189 3099
Pinochle 3628 3629
Euchre 6471 5492
Spades 7208 6785

Poker

Blackjack

Bridge

Gin

Cribbage

Hearts

Canasta

Pinochle

Euchre

Spades

0 2000 4000 6000 8000

Wednesday Sunday
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Figure 4. A three-dimensional version of Figure 2.

Here is another way that fanciness can lead to trouble. Instead of plain bars, it is 
tempting to substitute meaningful images. For example, Figure 5 presents the iMac 
data using pictures of computers. The heights of the pictures accurately represent 
the number of buyers, yet Figure 5 is misleading because the viewer's attention will 
be captured by areas. The areas can exaggerate the size differences between the 
groups. In terms of percentages, the ratio of previous Macintosh owners to 
previous Windows owners is about 6 to 1. But the ratio of the two areas in Figure 5 
is about 35 to 1. A biased person wishing to hide the fact that many Windows 
owners purchased iMacs would be tempted to use Figure 5 instead of Figure 2! 
Edward Tufte coined the term “lie factor” to refer to the ratio of the size of the 
effect shown in a graph to the size of the effect shown in the data. He suggests that 
lie factors greater than 1.05 or less than 0.95 produce unacceptable distortion. 

Previous
Ownership Frequency

Relative
Frequency

None 85 0.17
Windows 60 0.12
Macintosh 355 0.71
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Figure 5. A redrawing of Figure 2 with a lie factor greater than 8.

Another distortion in bar charts results from setting the baseline to a value other 
than zero. The baseline is the bottom of the Y-axis, representing the least number 
of cases that could have occurred in a category. Normally, but not always, this 
number should be zero. Figure 6 shows the iMac data with a baseline of 50. Once 
again, the differences in areas suggests a different story than the true differences in 
percentages. The number of Windows-switchers seems minuscule compared to its 
true value of 12%.
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Figure 6. A redrawing of Figure 2 with a baseline of 50.

Finally, we note that it is a serious mistake to use a line graph when the X-axis 
contains merely qualitative variables. A line graph is essentially a bar graph with 
the tops of the bars represented by points joined by lines (the rest of the bar is 
suppressed). Figure 7 inappropriately shows a line graph of the card game data 
from Yahoo. The drawback to Figure 7 is that it gives the false impression that the 
games are naturally ordered in a numerical way when, in fact, they are ordered 
alphabetically.
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Figure 7. A line graph used inappropriately to depict the number of people 
playing different card games on Sunday and Wednesday.

Summary 
Pie charts and bar charts can both be effective methods of portraying qualitative 
data. Bar charts are better when there are more than just a few categories and for 
comparing two or more distributions. Be careful to avoid creating misleading 
graphs.
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Graphing Quantitative Variables 

1. Stem and Leaf Displays
2. Histograms
3. Frequency Polygons
4. Box Plots
5. Bar Charts
6. Line Graphs
7. Dot Plots
As discussed in the section on variables in Chapter 1, quantitative variables are 
variables measured on a numeric scale. Height, weight, response time, subjective 
rating of pain, temperature, and score on an exam are all examples of quantitative 
variables. Quantitative variables are distinguished from categorical (sometimes 
called qualitative) variables such as favorite color, religion, city of birth, favorite 
sport in which there is no ordering or measuring involved.

There are many types of graphs that can be used to portray distributions of 
quantitative variables. The upcoming sections cover the following types of graphs: 
(1) stem and leaf displays, (2) histograms, (3) frequency polygons, (4) box plots, 
(5) bar charts, (6) line graphs, (7) dot plots, and (8) scatter plots (discussed in a 
different chapter). Some graph types such as stem and leaf displays are best-suited 
for small to moderate amounts of data, whereas others such as histograms are best-
suited for large amounts of data. Graph types such as box plots are good at 
depicting differences between distributions. Scatter plots are used to show the 
relationship between two variables.
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Stem and Leaf  Displays 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions

Learning Objectives
1. Create and interpret basic stem and leaf displays
2. Create and interpret back-to-back stem and leaf displays
3. Judge whether a stem and leaf display is appropriate for a given data set
A stem and leaf display is a graphical method of displaying data. It is particularly 
useful when your data are not too numerous. In this section, we will explain how to 
construct and interpret this kind of graph.

As usual, we will start with an example. Consider Table 1 that shows the 
number of touchdown passes (TD passes) thrown by each of the 31 teams in the 
National Football League in the 2000 season. 

Table 1. Number of touchdown passes.

A stem and leaf display of the data is shown in Figure 1. The left portion of Figure 
1 contains the stems. They are the numbers 3, 2, 1, and 0, arranged as a column to 
the left of the bars. Think of these numbers as 10’s digits. A stem of 3, for example, 
can be used to represent the 10’s digit in any of the numbers from 30 to 39. The 
numbers to the right of the bar are leaves, and they represent the 1’s digits. Every 
leaf in the graph therefore stands for the result of adding the leaf to 10 times its 
stem.

37, 33, 33, 32, 29, 28, 
28, 23, 22, 22, 22, 21, 
21, 21, 20, 20, 19, 19, 
18, 18, 18, 18, 16, 15, 
14, 14, 14, 12, 12, 9, 6
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Figure 1. Stem and leaf display of the number of touchdown passes.
To make this clear, let us examine Figure 1 more closely. In the top row, the four 
leaves to the right of stem 3 are 2, 3, 3, and 7. Combined with the stem, these 
leaves represent the numbers 32, 33, 33, and 37, which are the numbers of TD 
passes for the first four teams in Table 1. The next row has a stem of 2 and 12 
leaves. Together, they represent 12 data points, namely, two occurrences of 20 TD 
passes, three occurrences of 21 TD passes, three occurrences of 22 TD passes, one 
occurrence of 23 TD passes, two occurrences of 28 TD passes, and one occurrence 
of 29 TD passes. We leave it to you to figure out what the third row represents. The 
fourth row has a stem of 0 and two leaves. It stands for the last two entries in Table 
1, namely 9 TD passes and 6 TD passes. (The latter two numbers may be thought 
of as 09 and 06.)

One purpose of a stem and leaf display is to clarify the shape of the 
distribution. You can see many facts about TD passes more easily in Figure 1 than 
in Table 1. For example, by looking at the stems and the shape of the plot, you can 
tell that most of the teams had between 10 and 29 passing TD's, with a few having 
more and a few having less. The precise numbers of TD passes can be determined 
by examining the leaves.

We can make our figure even more revealing by splitting each stem into two 
parts. Figure 2 shows how to do this. The top row is reserved for numbers from 35 
to 39 and holds only the 37 TD passes made by the first team in Table 1. The 
second row is reserved for the numbers from 30 to 34 and holds the 32, 33, and 33 
TD passes made by the next three teams in the table. You can see for yourself what 
the other rows represent.

3|2337 
2|001112223889 
1|2244456888899 
0|69

3|7 
3|233 
2|889 
2|001112223 
1|56888899 
1|22444 
0|69
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Figure 2. Stem and leaf display with the stems split in two.

Figure 2 is more revealing than Figure 1 because the latter figure lumps too many 
values into a single row. Whether you should split stems in a display depends on 
the exact form of your data. If rows get too long with single stems, you might try 
splitting them into two or more parts.

There is a variation of stem and leaf displays that is useful for comparing 
distributions. The two distributions are placed back to back along a common 
column of stems. The result is a “back-to-back stem and leaf display.” Figure 3 
shows such a graph. It compares the numbers of TD passes in the 1998 and 2000 
seasons. The stems are in the middle, the leaves to the left are for the 1998 data, 
and the leaves to the right are for the 2000 data. For example, the second-to-last 
row shows that in 1998 there were teams with 11, 12, and 13 TD passes, and in 
2000 there were two teams with 12 and three teams with 14 TD passes.

Figure 3. Back-to-back stem and leaf display. The left side shows the 1998 
TD data and the right side shows the 2000 TD data.

Figure 3 helps us see that the two seasons were similar, but that only in 1998 did 
any teams throw more than 40 TD passes.

There are two things about the football data that make them easy to graph 
with stems and leaves. First, the data are limited to whole numbers that can be 
represented with a one-digit stem and a one-digit leaf. Second, all the numbers are 
positive. If the data include numbers with three or more digits, or contain decimals, 
they can be rounded to two-digit accuracy. Negative values are also easily handled. 
Let us look at another example.

Table 2 shows data from the case study Weapons and Aggression. Each 
value is the mean difference over a series of trials between the times it took an 
experimental subject to name aggressive words (like “punch”) under two 
conditions. In one condition, the words were preceded by a non-weapon word such 

11

332
8865

44331110
987776665

321
7

4
3
3
2
2
1
1
0

7
233
889
001112223
56888899
22444
69

78

http://onlinestatbook.com/2/case_studies/guns.html


as “bug.” In the second condition, the same words were preceded by a weapon 
word such as “gun” or “knife.” The issue addressed by the experiment was whether 
a preceding weapon word would speed up (or prime) pronunciation of the 
aggressive word compared to a non-weapon priming word. A positive difference 
implies greater priming of the aggressive word by the weapon word. Negative 
differences imply that the priming by the weapon word was less than for a neutral 
word. 

Table 2. The effects of priming (thousandths of a second).

You see that the numbers range from 43.2 to -27.4. The first value indicates that 
one subject was 43.2 milliseconds faster pronouncing aggressive words when they 
were preceded by weapon words than when preceded by neutral words. The value 
-27.4 indicates that another subject was 27.4 milliseconds slower pronouncing 
aggressive words when they were preceded by weapon words.

The data are displayed with stems and leaves in Figure 4. Since stem and 
leaf displays can only portray two whole digits (one for the stem and one for the 
leaf) the numbers are first rounded. Thus, the value 43.2 is rounded to 43 and 
represented with a stem of 4 and a leaf of 3. Similarly, 42.9 is rounded to 43. To 
represent negative numbers, we simply use negative stems. For example, the 
bottom row of the figure represents the number –27. The second-to-last row 
represents the numbers -10, -10, -15, etc. Once again, we have rounded the original 
values from Table 2.

 4|33 
 3|6 
 2|00456 
 1|00134 
 0|1245589 
-0|0679 
-1|005559 
-2|7 

43.2, 42.9, 35.6, 25.6, 25.4, 23.6, 20.5, 19.9, 14.4, 12.7, 11.3, 
10.2, 10.0, 9.1, 7.5, 5.4, 4.7, 3.8, 2.1, 1.2, -0.2, -6.3, -6.7, 
-8.8, -10.4, -10.5, -14.9, -14.9, -15.0, -18.5, -27.4
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Figure 4. Stem and leaf display with negative numbers and rounding.

Observe that the figure contains a row headed by “0” and another headed by “-0.” 
The stem of 0 is for numbers between 0 and 9, whereas the stem of -0 is for 
numbers between 0 and -9. For example, the fifth row of the table holds the 
numbers 1, 2, 4, 5, 5, 8, 9 and the sixth row holds 0, -6, -7, and -9. Values that are 
exactly 0 before rounding should be split as evenly as possible between the “0” and 
“-0” rows. In Table 2, none of the values are 0 before rounding. The “0” that 
appears in the “-0” row comes from the original value of -0.2 in the table.

Although stem and leaf displays are unwieldy for large data sets, they are 
often useful for data sets with up to 200 observations. Figure 5 portrays the 
distribution of populations of 185 US cities in 1998. To be included, a city had to 
have between 100,000 and 500,000 residents.

Figure 5. Stem and leaf display of populations of 185 US cities with 
populations between 100,000 and 500,000 in 1988.

Since a stem and leaf plot shows only two-place accuracy, we had to round the 
numbers to the nearest 10,000. For example the largest number (493,559) was 

4|899 
4|6 
4|4455 
4|333 
4|01 
3|99 
3|677777 
3|55 
3|223 
3|111 
2|8899 
2|666667 
2|444455 
2|22333 
2|000000 
1|88888888888899999999999 
1|666666777777 
1|444444444444555555555555 
1|2222222222222222222333333333 
1|000000000000000111111111111111111111111111 
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rounded to 490,000 and then plotted with a stem of 4 and a leaf of 9. The fourth 
highest number (463,201) was rounded to 460,000 and plotted with a stem of 4 and 
a leaf of 6. Thus, the stems represent units of 100,000 and the leaves represent 
units of 10,000. Notice that each stem value is split into five parts: 0-1, 2-3, 4-5, 
6-7, and 8-9.

Whether your data can be suitably represented by a stem and leaf display 
depends on whether they can be rounded without loss of important information. 
Also, their extreme values must fit into two successive digits, as the data in Figure 
5 fit into the 10,000 and 100,000 places (for leaves and stems, respectively). 
Deciding what kind of graph is best suited to displaying your data thus requires 
good judgment. Statistics is not just recipes!
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Histograms 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions

• Chapter 2: Graphing Qualitative Data

Learning Objectives
1. Create a grouped frequency distribution
2. Create a histogram based on a grouped frequency distribution
3. Determine an appropriate bin width
A histogram is a graphical method for displaying the shape of a distribution. It is 
particularly useful when there are a large number of observations. We begin with 
an example consisting of the scores of 642 students on a psychology test. The test 
consists of 197 items each graded as “correct” or “incorrect.” The students' scores 
ranged from 46 to 167.

The first step is to create a frequency table. Unfortunately, a simple 
frequency table would be too big, containing over 100 rows. To simplify the table, 
we group scores together as shown in Table 1.

Table 1. Grouped Frequency Distribution of Psychology Test Scores

Interval's Lower 
Limit

Interval's Upper 
Limit

Class Frequency

39.5 49.5 3

49.5 59.5 10

59.5 69.5 53

69.5 79.5 107

79.5 89.5 147

89.5 99.5 130

99.5 109.5 78

109.5 119.5 59

119.5 129.5 36
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To create this table, the range of scores was broken into intervals, called class 
intervals. The first interval is from 39.5 to 49.5, the second from 49.5 to 59.5, etc. 
Next, the number of scores falling into each interval was counted to obtain the 
class frequencies. There are three scores in the first interval, 10 in the second, etc.

Class intervals of width 10 provide enough detail about the distribution to be 
revealing without making the graph too “choppy.” More information on choosing 
the widths of class intervals is presented later in this section. Placing the limits of 
the class intervals midway between two numbers (e.g., 49.5) ensures that every 
score will fall in an interval rather than on the boundary between intervals.
In a histogram, the class frequencies are represented by bars. The height of each 
bar corresponds to its class frequency. A histogram of these data is shown in Figure 
1.

Figure 1. Histogram of scores on a psychology test.
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The histogram makes it plain that most of the scores are in the middle of the 
distribution, with fewer scores in the extremes. You can also see that the 
distribution is not symmetric: the scores extend to the right farther than they do to 
the left. The distribution is therefore said to be skewed. (We'll have more to say 
about shapes of distributions in Chapter 3.)

In our example, the observations are whole numbers. Histograms can also be 
used when the scores are measured on a more continuous scale such as the length 
of time (in milliseconds) required to perform a task. In this case, there is no need to 
worry about fence sitters since they are improbable. (It would be quite a 
coincidence for a task to require exactly 7 seconds, measured to the nearest 
thousandth of a second.) We are therefore free to choose whole numbers as 
boundaries for our class intervals, for example, 4000, 5000, etc. The class 
frequency is then the number of observations that are greater than or equal to the 
lower bound, and strictly less than the upper bound. For example, one interval 
might hold times from 4000 to 4999 milliseconds. Using whole numbers as 
boundaries avoids a cluttered appearance, and is the practice of many computer 
programs that create histograms. Note also that some computer programs label the 
middle of each interval rather than the end points.

Histograms can be based on relative frequencies instead of actual 
frequencies. Histograms based on relative frequencies show the proportion of 
scores in each interval rather than the number of scores. In this case, the Y-axis 
runs from 0 to 1 (or somewhere in between if there are no extreme proportions). 
You can change a histogram based on frequencies to one based on relative 
frequencies by (a) dividing each class frequency by the total number of 
observations, and then (b) plotting the quotients on the Y-axis (labeled as 
proportion).

There is more to be said about the widths of the class intervals, sometimes 
called bin widths. Your choice of bin width determines the number of class 
intervals. This decision, along with the choice of starting point for the first interval, 
affects the shape of the histogram. There are some “rules of thumb” that can help 
you choose an appropriate width. (But keep in mind that none of the rules is 
perfect.) Sturges’ rule is to set the number of intervals as close as possible to 1 + 
Log2(N), where Log2(N) is the base 2 log of the number of observations. The 
formula can also be written as 1 + 3.3 Log10(N) where Log10(N) is the log base 10 
of the number of observations. According to Sturges’ rule, 1000 observations 
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would be graphed with 11 class intervals since 10 is the closest integer to 
Log2(1000). We prefer the Rice rule, which is to set the number of intervals to 
twice the cube root of the number of observations. In the case of 1000 
observations, the Rice rule yields 20 intervals instead of the 11 recommended by 
Sturges' rule. For the psychology test example used above, Sturges’ rule 
recommends 10 intervals while the Rice rule recommends 17. In the end, we 
compromised and chose 13 intervals for Figure 1 to create a histogram that seemed 
clearest. The best advice is to experiment with different choices of width, and to 
choose a histogram according to how well it communicates the shape of the 
distribution.

To provide experience in constructing histograms, we have developed an 
interactive demonstration (external link; Java required). The demonstration reveals 
the consequences of different choices of bin width and of lower boundary for the 
first interval. 
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Frequency Polygons 
by David M. Lane 

Prerequisites
• Chapter 2: Histograms

Learning Objectives
1. Create and interpret frequency polygons
2. Create and interpret cumulative frequency polygons
3. Create and interpret overlaid frequency polygons
Frequency polygons are a graphical device for understanding the shapes of 
distributions. They serve the same purpose as histograms, but are especially helpful 
for comparing sets of data. Frequency polygons are also a good choice for 
displaying cumulative frequency distributions.

To create a frequency polygon, start just as for histograms, by choosing a 
class interval. Then draw an X-axis representing the values of the scores in your 
data. Mark the middle of each class interval with a tick mark, and label it with the 
middle value represented by the class. Draw the Y-axis to indicate the frequency of 
each class. Place a point in the middle of each class interval at the height 
corresponding to its frequency. Finally, connect the points. You should include one 
class interval below the lowest value in your data and one above the highest value. 
The graph will then touch the X-axis on both sides.

A frequency polygon for 642 psychology test scores shown in Figure 1 was 
constructed from the frequency table shown in Table 1.

Table 1. Frequency Distribution of Psychology Test Scores

Lower 
Limit

Upper 
Limit

Count Cumulative Count

29.5 39.5 0 0

39.5 49.5 3 3

49.5 59.5 10 13

59.5 69.5 53 66

69.5 79.5 107 173
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The first label on the X-axis is 35. This represents an interval extending from 29.5 
to 39.5. Since the lowest test score is 46, this interval has a frequency of 0. The 
point labeled 45 represents the interval from 39.5 to 49.5. There are three scores in 
this interval. There are 147 scores in the interval that surrounds 85.

You can easily discern the shape of the distribution from Figure 1. Most of 
the scores are between 65 and 115. It is clear that the distribution is not symmetric 
inasmuch as good scores (to the right) trail off more gradually than poor scores (to 
the left). In the terminology of Chapter 3 (where we will study shapes of 
distributions more systematically), the distribution is skewed.

79.5 89.5 147 320

89.5 99.5 130 450

99.5 109.5 78 528

109.5 119.5 59 587

119.5 129.5 36 623

129.5 139.5 11 634

139.5 149.5 6 640

149.5 159.5 1 641

159.5 169.5 1 642

169.5 170.5 0 642
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Figure 1. Frequency polygon for the psychology test scores.

A cumulative frequency polygon for the same test scores is shown in Figure 2. The 
graph is the same as before except that the Y value for each point is the number of 
students in the corresponding class interval plus all numbers in lower intervals. For 
example, there are no scores in the interval labeled “35,” three in the interval “45,” 
and 10 in the interval “55.” Therefore, the Y value corresponding to “55” is 13. 
Since 642 students took the test, the cumulative frequency for the last interval is 
642.
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Figure 2. Cumulative frequency polygon for the psychology test scores.

Frequency polygons are useful for comparing distributions. This is achieved by 
overlaying the frequency polygons drawn for different data sets. Figure 3 provides 
an example. The data come from a task in which the goal is to move a computer 
cursor to a target on the screen as fast as possible. On 20 of the trials, the target 
was a small rectangle; on the other 20, the target was a large rectangle. Time to 
reach the target was recorded on each trial. The two distributions (one for each 
target) are plotted together in Figure 3. The figure shows that, although there is 
some overlap in times, it generally took longer to move the cursor to the small 
target than to the large one.
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Figure 3. Overlaid frequency polygons.

It is also possible to plot two cumulative frequency distributions in the same graph. 
This is illustrated in Figure 4 using the same data from the cursor task. The 
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difference in distributions for the two targets is again evident. 

 
Figure 4. Overlaid cumulative frequency polygons.
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Box Plots 
by David M. Lane 

Prerequisites
• Chapter 1: Percentiles
• Chapter 2: Histograms
• Chapter 2: Frequency Polygons

Learning Objectives
1. Define basic terms including hinges, H-spread, step, adjacent value, outside 

value, and far out value
2. Create a box plot
3. Create parallel box plots
4. Determine whether a box plot is appropriate for a given data set
We have already discussed techniques for visually representing data (see 
histograms and frequency polygons). In this section we present another important 
graph, called a box plot. Box plots are useful for identifying outliers and for 
comparing distributions. We will explain box plots with the help of data from an 
in-class experiment. Students in Introductory Statistics were presented with a page 
containing 30 colored rectangles. Their task was to name the colors as quickly as 
possible. Their times (in seconds) were recorded. We'll compare the scores for the 
16 men and 31 women who participated in the experiment by making separate box 
plots for each gender. Such a display is said to involve parallel box plots.

There are several steps in constructing a box plot. The first relies on the 
25th, 50th, and 75th percentiles in the distribution of scores. Figure 1 shows how 
these three statistics are used. For each gender we draw a box extending from the 
25th percentile to the 75th percentile. The 50th percentile is drawn inside the box. 
Therefore, the bottom of each box is the 25th percentile, the top is the 75th 
percentile, and the line in the middle is the 50th percentile.
The data for the women in our sample are shown in Table 1.
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Table 1. Women's times.

For these data, the 25th percentile is 17, the 50th percentile is 19, and the 75th 
percentile is 20. For the men (whose data are not shown), the 25th percentile is 19, 
the 50th percentile is 22.5, and the 75th percentile is 25.5.

Figure 1. The first step in creating box plots.

Before proceeding, the terminology in Table 2 is helpful.

Table 2. Box plot terms and values for women's times.

14 
15 
16 
16 
17

17 
17 
17 
17 
18

18 
18 
18 
18 
18

19 
19 
19 
20 
20

20 
20 
20 
20 
21

21 
22 
23 
24 
24

29

M
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F
Gender

Name Formula Value

Upper Hinge 75th Percentile 20

Lower Hinge 25th Percentile 17
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Continuing with the box plots, we put “whiskers” above and below each box to 
give additional information about the spread of data. Whiskers are vertical lines 
that end in a horizontal stroke. Whiskers are drawn from the upper and lower 
hinges to the upper and lower adjacent values (24 and 14 for the women's data).

H-Spread Upper Hinge - Lower Hinge 3

Step 1.5 x H-Spread 4.5

Upper Inner Fence Upper Hinge + 1 Step 24.5

Lower Inner Fence Lower Hinge - 1 Step 12.5

Upper Outer Fence Upper Hinge + 2 Steps 29

Lower Outer Fence Lower Hinge - 2 Steps 8

Upper Adjacent Largest value below Upper Inner Fence 24

Lower Adjacent Smallest value above Lower Inner Fence 14

Outside Value A value beyond an Inner Fence but not beyond 
an Outer Fence

29

Far Out Value A value beyond an Outer Fence None
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Figure 2. The box plots with the whiskers drawn.

Although we don't draw whiskers all the way to outside or far out values, we still 
wish to represent them in our box plots. This is achieved by adding additional 
marks beyond the whiskers. Specifically, outside values are indicated by small 
“o's” and far out values are indicated by asterisks (*). In our data, there are no far-
out values and just one outside value. This outside value of 29 is for the women 
and is shown in Figure 3.
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Figure 3. The box plots with the outside value shown.

There is one more mark to include in box plots (although sometimes it is omitted). 
We indicate the mean score for a group by inserting a plus sign. Figure 4 shows the 
result of adding means to our box plots.
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Figure 4. The completed box plots.

Figure 4 provides a revealing summary of the data. Since half the scores in a 
distribution are between the hinges (recall that the hinges are the 25th and 75th 
percentiles), we see that half the women's times are between 17 and 20 seconds 
whereas half the men's times are between 19 and 25.5 seconds. We also see that 
women generally named the colors faster than the men did, although one woman 
was slower than almost all of the men. Figure 5 shows the box plot for the women's 
data with detailed labels.
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Figure 5. The box plots for the women's data with detailed labels. 

Box plots provide basic information about a distribution. For example, a 
distribution with a positive skew would have a longer whisker in the positive 
direction than in the negative direction. A larger mean than median would also 
indicate a positive skew. Box plots are good at portraying extreme values and are 
especially good at showing differences between distributions. However, many of 
the details of a distribution are not revealed in a box plot and to examine these 
details one should use create a histogram and/or a stem and leaf display.

Variations on box plots 
Statistical analysis programs may offer options on how box plots are created. For 
example, the box plots in Figure 6 are constructed from our data but differ from the 
previous box plots in several ways.
1. It does not mark outliers.
2. The means are indicated by green lines rather than plus signs.
3. The mean of all scores is indicated by a gray line.
4. Individual scores are represented by dots. Since the scores have been rounded to 

the nearest second, any given dot might represent more than one score.

O

+

Outer Fence 29.0

Inner Fence 24.5

Mean 19.2

Upper Adjacent 24.0

Lower Adjacent 14.0

Upper Hinge 20.0

Lower Hinge 17.0

Median 19.0
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5. The box for the women is wider than the box for the men because the widths of 
the boxes are proportional to the number of subjects of each gender (31 women 
and 16 men).

Figure 6. Box plots showing the individual scores and the means.
Each dot in Figure 6 represents a group of subjects with the same score (rounded to 
the nearest second). An alternative graphing technique is to jitter the points. This 
means spreading out different dots at the same horizontal position, one dot for each 
subject. The exact horizontal position of a dot is determined randomly (under the 
constraint that different dots don’t overlap exactly). Spreading out the dots helps 
you to see multiple occurrences of a given score. However, depending on the dot 
size and the screen resolution, some points may be obscured even if the points are 
jittered. Figure 7 shows what jittering looks like.
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Figure 7. Box plots with the individual scores jittered.

Different styles of box plots are best for different situations, and there are no firm 
rules for which to use. When exploring your data, you should try several ways of 
visualizing them. Which graphs you include in your report should depend on how 
well different graphs reveal the aspects of the data you consider most important.
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Bar Charts 
by David M. Lane 

Prerequisites
• Chapter 2: Graphing Qualitative Variables

Learning Objectives
1. Create and interpret bar charts
2. Judge whether a bar chart or another graph such as a box plot would be more 

appropriate
In the section on qualitative variables, we saw how bar charts could be used to 
illustrate the frequencies of different categories. For example, the bar chart shown 
in Figure 1 shows how many purchasers of iMac computers were previous 
Macintosh users, previous Windows users, and new computer purchasers.

Figure 1. iMac buyers as a function of previous computer ownership.

In this section we show how bar charts can be used to present other kinds of 
quantitative information, not just frequency counts. The bar chart in Figure 2 
shows the percent increases in the Dow Jones, Standard and Poor 500 (S & P), and 
Nasdaq stock indexes from May 24th 2000 to May 24th 2001. Notice that both the 
S & P and the Nasdaq had “negative increases” which means that they decreased in 
value. In this bar chart, the Y-axis is not frequency but rather the signed quantity 
percentage increase.
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Figure 2. Percent increase in three stock indexes from May 24th 2000 to 
May 24th 2001.

Bar charts are particularly effective for showing change over time. Figure 3, for 
example, shows the percent increase in the Consumer Price Index (CPI) over four 
three-month periods. The fluctuation in inflation is apparent in the graph.
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Figure 3. Percent change in the CPI over time. Each bar represents percent increase 
for the three months ending at the date indicated.

Bar charts are often used to compare the means of different experimental 
conditions. Figure 4 shows the mean time it took one of us (DL) to move the cursor 
to either a small target or a large target. On average, more time was required for 
small targets than for large ones.

Figure 4. Bar chart showing the means for the two conditions.

Although bar charts can display means, we do not recommend them for this 
purpose. Box plots should be used instead since they provide more information 
than bar charts without taking up more space. For example, a box plot of the 
cursor-movement data is shown in Figure 5. You can see that Figure 5 reveals more 
about the distribution of movement times than does Figure 4.
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Figure 5. Box plots of times to move the cursor to the small and large 
targets.

The section on qualitative variables presented earlier in this chapter discussed the 
use of bar charts for comparing distributions. Some common graphical mistakes 
were also noted. The earlier discussion applies equally well to the use of bar charts 
to display quantitative variables.
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Line Graphs 
by David M. Lane 

Prerequisites
• Chapter 2: Bar Charts

Learning Objectives
1. Create and interpret line graphs
2. Judge whether a line graph would be appropriate for a given data set
A line graph is a bar graph with the tops of the bars represented by points joined by 
lines (the rest of the bar is suppressed). For example, Figure 1 was presented in the 
section on bar charts and shows changes in the Consumer Price Index (CPI) over 
time.

Figure 1. A bar chart of the percent change in the CPI over time. Each bar 
represents percent increase for the three months ending at the date 
indicated.

A line graph of these same data is shown in Figure 2. Although the figures are 
similar, the line graph emphasizes the change from period to period.
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Figure 2. A line graph of the percent change in the CPI over time. Each point 
represents percent increase for the three months ending at the date 
indicated.

Line graphs are appropriate only when both the X- and Y-axes display ordered 
(rather than qualitative) variables. Although bar charts can also be used in this 
situation, line graphs are generally better at comparing changes over time. Figure 
3, for example, shows percent increases and decreases in five components of the 
CPI. The figure makes it easy to see that medical costs had a steadier progression 
than the other components. Although you could create an analogous bar chart, its 
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interpretation would not be as easy. 

Figure 3. A line graph of the percent change in five components of the CPI 
over time.

Let us stress that it is misleading to use a line graph when the X-axis contains 
merely qualitative variables. Figure 4 inappropriately shows a line graph of the 
card game data from Yahoo, discussed in the section on qualitative variables. The 
defect in Figure 4 is that it gives the false impression that the games are naturally 
ordered in a numerical way.
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Figure 4. A line graph, inappropriately used, depicting the number of people 
playing different card games on Wednesday and Sunday.
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Dot Plots 
by David M. Lane 

Prerequisites
• Chapter 2: Bar Charts

Learning Objectives
1. Create and interpret dot plots
2. Judge whether a dot plot would be appropriate for a given data set

Dot plots can be used to display various types of information. Figure 1 uses a dot 
plot to display the number of M & M's of each color found in a bag of M & M's. 
Each dot represents a single M & M. From the figure, you can see that there were 3 
blue M & M's, 19 brown M & M's, etc. 
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Figure 1. A dot plot showing the number of M & M's of various colors in a bag of 
M & M's. 

The dot plot in Figure 2 shows the number of people playing various card 
games on the Yahoo website on a Wednesday. Unlike Figure 1, the location rather 
than the number of dots represents the frequency.

Figure 2. A dot plot showing the number of people playing various card games on a 
Wednesday. 

The dot plot in Figure 3 shows the number of people playing on a Sunday 
and on a Wednesday. This graph makes it easy to compare the popularity of the 
games separately for the two days, but does not make it easy to compare the 
popularity of a given game on the two days.
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Figure 3. A dot plot showing the number of people playing various card games on a 
Sunday and on a Wednesday.
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Figure 4. An alternate way of showing the number of people playing various card 
games on a Sunday and on a Wednesday.

The dot plot in Figure 4 makes it easy to compare the days of the week for specific 
games while still portraying differences among games.
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Statistical Literacy 
by Seyd Ercan and David Lane 

Prerequisites
• Chapter 2: Graphing Distributions
 
Fox News aired the line graph below showing the number unemployed during four 
quarters between 2007 and 2010. 

What do you think?
Does Fox News' line graph provide misleading information? Why or Why not?
 
Think about this before continuing: 

There are major flaws with the Fox News graph. First, the title 
of  the graph is misleading. Although the data show the number 
unemployed, Fox News’ graph is titled "Job Loss by Quarter." 
Second, the intervals on the X-axis are misleading. Although 
there are 6 months between September 2008 and March 2009 
and 15 months between March 2009 and June 2010, the 
intervals are represented in the graph by very similar lengths. 
This gives the false impression that unemployment increased 
steadily. 

The graph presented below is corrected so that distances on the 
X-axis are proportional to the number of  days between the 
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dates. This graph shows clearly that the rate of  increase in the 
number unemployed is greater between September 2008 and 
March 2009 than it is between March 2009 and June 2010. 
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Exercises 

Prerequisites
• All material presented in the Graphing Distributions chapter

1. Name some ways to graph quantitative variables and some ways to graph 
qualitative variables.

2. Based on the frequency polygon displayed below, the most common test grade 
was around what score? Explain.

3. An experiment compared the ability of three groups of participants to remember 
briefly-presented chess positions. The data are shown below. The numbers 
represent the number of pieces correctly remembered from three chess positions. 
Create side-by-side box plots for these three groups. What can you say about the 
differences between these groups from the box plots?
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4. You have to decide between displaying your data with a histogram or with a 
stem and leaf display. What factor(s) would affect your choice?

5. In a box plot, what percent of the scores are between the lower and upper 
hinges?

6. A student has decided to display the results of his project on the number of hours 
people in various countries slept per night. He compared the sleeping patterns of 
people from the US, Brazil, France, Turkey, China, Egypt, Canada, Norway, and 
Spain. He was planning on using a line graph to display this data. Is a line graph 
appropriate? What might be a better choice for a graph?

7. For the data from the 1977 Stat. and Biom. 200 class for eye color, construct: 
a. pie graph 
b. horizontal bar graph 
c. vertical bar graph
d. a frequency table with the relative frequency of each eye color
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(Question submitted by J. Warren, UNH)

8. A graph appears below showing the number of adults and children who prefer 
each type of soda. There were 130 adults and kids surveyed. Discuss some 
ways in which the graph below could be improved.

	

9. Which of the box plots on the graph has a large positive skew? Which has a 
large negative skew?
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Question from Case Studies

Angry Moods (AM) case study

10. (AM) Is there a difference in how much males and females use aggressive 
behavior to improve an angry mood? For the “Anger-Out” scores:
a. Create parallel box plots.
b. Create a back to back stem and leaf displays (You may have trouble finding 
a computer to do this so you may have to do it by hand. Use a fixed-width font 
such as Courier.)

11. (AM) Create parallel box plots for the Anger-In scores by sports participation.

12. (AM) Plot a histogram of the distribution of the Control-Out scores.

13. (AM) Create a bar graph comparing the mean Control-In score for the athletes 
and the non- athletes. What would be a better way to display this data?
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14. (AM) Plot parallel box plots of the Anger Expression Index by sports 
participation. Does it look like there are any outliers? Which group reported 
expressing more anger?

Flatulence (F) case study

15. (F) Plot a histogram of the variable “per day.”

16. (F) Create parallel box plots of “how long” as a function gender. Why is the 
25th percentile not showing? What can you say about the results?

17. (F) Create a stem and leaf plot of the variable “how long.” What can you say 
about the shape of the distribution?

Physicians’ Reactions (PR) case study

18. (PR) Create box plots comparing the time expected to be spent with the 
average-weight and overweight patients.

19. (PR) Plot histograms of the time spent with the average-weight and overweight 
patients. 

20. (PR) To which group does the patient with the highest expected time belong?

Smiles and Leniency (SL) case study

21. (SL) Create parallel box plots for the four conditions.

22. (SL) Create back to back stem and leaf displays for the false smile and neutral 
conditions. (It may be hard to find a computer program to do this for you, so be 
prepared to do it by hand). 

ADHD Treatment (AT) case study

23. (AT) Create a line graph of the data. Do certain dosages appear to be more 
effective than others?
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24. (AT) Create a stem and leaf plot of the number of correct responses of the 
participants after taking the placebo (d0 variable). What can you say about the 
shape of the distribution?

25. (AT) Create box plots for the four conditions. You may have to rearrange the 
data to get a computer program to create the box plots.

SAT and College GPA (SG) case study

26. (SG)Create histograms and stem and leaf displays of both high-school grade 
point average and university grade point average. In what way(s) do the 
distributions differ?

27. The April 10th issue of the Journal of the American Medical Association 
reports a study on the effects of anti-depressants. The study involved 340 
subjects who were being treated for major depression. The subjects were 
randomly assigned to receive one of three treatments: St. John’s wort (an herb), 
Zoloft (Pfizer’s cousin of Lilly’s Prozac) or placebo for an 8-week period. The 
following are the mean scores (approximately) for the three groups of subjects 
over the eight-week experiment. The first column is the baseline. Lower scores 
mean less depression. Create a graph to display these means.

 

28. For the graph below, of heights of singers in a large chorus. What word starting 
with the letter “B” best describes the distribution?
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29. Pretend you are constructing a histogram for describing the distribution of 
salaries for individuals who are 40 years or older, but are not yet retired. (a) 
What is on the Y-axis? Explain. (b) What is on the X-axis? Explain. (c) 
What would be the probable shape of the salary distribution? Explain why. 
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3. Summarizing Distributions 
A. Central Tendency

1. What is Central Tendency
2. Measures of Central Tendency
3. Median and Mean
4. Additional Measures
5. Comparing measures

B. Variability
1. Measures of Variability

C. Shape
1. Effects of Transformations
2. Variance Sum Law I

D. Exercises
 
Descriptive statistics often involves using a few numbers to summarize a 
distribution. One important aspect of a distribution is where its center is located. 
Measures of central tendency are discussed first. A second aspect of a distribution 
is how spread out it is. In other words, how much the numbers in the distribution 
vary from one another. The second section describes measures of variability. 
Distributions can differ in shape. Some distributions are symmetric whereas others 
have long tails in just one direction. The third section describes measures of the 
shape of distributions. The final two sections concern (1) how transformations 
affect measures summarizing distributions and (2) the variance sum law, an 
important relationship involving a measure of variability.
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What is Central Tendency? 
by David M. Lane and Heidi Ziemer 

Prerequisites
• Chapter 1: Distributions
• Chapter 2: Stem and Leaf Displays

Learning Objectives
1. Identify situations in which knowing the center of a distribution would be 

valuable
2. Give three different ways the center of a distribution can be defined
3. Describe how the balance is different for symmetric distributions than it is for 

asymmetric distributions.
What is “central tendency,” and why do we want to know the central tendency of a 
group of scores? Let us first try to answer these questions intuitively. Then we will 
proceed to a more formal discussion.

Imagine this situation: You are in a class with just four other students, and 
the five of you took a 5-point pop quiz. Today your instructor is walking around the 
room, handing back the quizzes. She stops at your desk and hands you your paper. 
Written in bold black ink on the front is “3/5.” How do you react? Are you happy 
with your score of 3 or disappointed? How do you decide? You might calculate 
your percentage correct, realize it is 60%, and be appalled. But it is more likely 
that when deciding how to react to your performance, you will want additional 
information. What additional information would you like?

If you are like most students, you will immediately ask your neighbors, 
“Whad'ja get?” and then ask the instructor, “How did the class do?” In other words, 
the additional information you want is how your quiz score compares to other 
students' scores. You therefore understand the importance of comparing your score 
to the class distribution of scores. Should your score of 3 turn out to be among the 
higher scores, then you'll be pleased after all. On the other hand, if 3 is among the 
lower scores in the class, you won't be quite so happy.

This idea of comparing individual scores to a distribution of scores is 
fundamental to statistics. So let's explore it further, using the same example (the 
pop quiz you took with your four classmates). Three possible outcomes are shown 
in Table 1. They are labeled “Dataset A,” “Dataset B,” and “Dataset C.” Which of 
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the three datasets would make you happiest? In other words, in comparing your 
score with your fellow students' scores, in which dataset would your score of 3 be 
the most impressive?

In Dataset A, everyone's score is 3. This puts your score at the exact center 
of the distribution. You can draw satisfaction from the fact that you did as well as 
everyone else. But of course it cuts both ways: everyone else did just as well as 
you.

Table 1. Three possible datasets for the 5-point make-up quiz.

Now consider the possibility that the scores are described as in Dataset B. This is a 
depressing outcome even though your score is no different than the one in Dataset 
A. The problem is that the other four students had higher grades, putting yours 
below the center of the distribution.

Finally, let's look at Dataset C. This is more like it! All of your classmates 
score lower than you so your score is above the center of the distribution.

Now let's change the example in order to develop more insight into the 
center of a distribution. Figure 1 shows the results of an experiment on memory for 
chess positions. Subjects were shown a chess position and then asked to 
reconstruct it on an empty chess board. The number of pieces correctly placed was 
recorded. This was repeated for two more chess positions. The scores represent the 
total number of chess pieces correctly placed for the three chess positions. The 
maximum possible score was 89.

Student Dataset A Dataset B Dataset C

You 3 3 3

John's 3 4 2

Maria's 3 4 2

Shareecia's 3 4 2

Luther's 3 5 1

125



Figure 1. Back-to-back stem and leaf display. The left side shows the 
memory scores of the non-players. The right side shows the scores of 
the tournament players.

Two groups are compared. On the left are people who don't play chess. On the 
right are people who play a great deal (tournament players). It is clear that the 
location of the center of the distribution for the non-players is much lower than the 
center of the distribution for the tournament players.

We're sure you get the idea now about the center of a distribution. It is time 
to move beyond intuition. We need a formal definition of the center of a 
distribution. In fact, we'll offer you three definitions! This is not just generosity on 
our part. There turn out to be (at least) three different ways of thinking about the 
center of a distribution, all of them useful in various contexts. In the remainder of 
this section we attempt to communicate the idea behind each concept. In the 
succeeding sections we will give statistical measures for these concepts of central 
tendency.

Definitions of Center 
Now we explain the three different ways of defining the center of a distribution. All 
three are called measures of central tendency.

Balance Scale 
One definition of central tendency is the point at which the distribution is in 
balance. Figure 2 shows the distribution of the five numbers 2, 3, 4, 9, 16 placed 
upon a balance scale. If each number weighs one pound, and is placed at its 
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position along the number line, then it would be possible to balance them by 
placing a fulcrum at 6.8.

Figure 2. A balance scale.

For another example, consider the distribution shown in Figure 3. It is balanced by 
placing the fulcrum in the geometric middle. 

Figure 3. A distribution balanced on the tip of a triangle.

Figure 4 illustrates that the same distribution can't be balanced by placing the 
fulcrum to the left of center.
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Figure 4. The distribution is not balanced.

Figure 5 shows an asymmetric distribution. To balance it, we cannot put the 
fulcrum halfway between the lowest and highest values (as we did in Figure 3). 
Placing the fulcrum at the “half way” point would cause it to tip towards the left. 

Figure 5. An asymmetric distribution balanced on the tip of a triangle.

The balance point defines one sense of a distribution's center.

Smallest Absolute Deviation 
Another way to define the center of a distribution is based on the concept of the 
sum of the absolute deviations (differences). Consider the distribution made up of 
the five numbers 2, 3, 4, 9, 16. Let's see how far the distribution is from 10 
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(picking a number arbitrarily). Table 2 shows the sum of the absolute deviations of 
these numbers from the number 10.

Table 2. An example of the sum of absolute deviations

The first row of the table shows that the absolute value of the difference between 2 
and 10 is 8; the second row shows that the absolute difference between 3 and 10 is 
7, and similarly for the other rows. When we add up the five absolute deviations, 
we get 28. So, the sum of the absolute deviations from 10 is 28. Likewise, the sum 
of the absolute deviations from 5 equals 3 + 2 + 1 + 4 + 11 = 21. So, the sum of the 
absolute deviations from 5 is smaller than the sum of the absolute deviations from 
10. In this sense, 5 is closer, overall, to the other numbers than is 10.
We are now in a position to define a second measure of central tendency, this time 
in terms of absolute deviations. Specifically, according to our second definition, the 
center of a distribution is the number for which the sum of the absolute deviations 
is smallest. As we just saw, the sum of the absolute deviations from 10 is 28 and 
the sum of the absolute deviations from 5 is 21. Is there a value for which the sum 
of the absolute deviations is even smaller than 21? Yes. For these data, there is a 
value for which the sum of absolute deviations is only 20. See if you can find it.

Smallest Squared Deviation 
We shall discuss one more way to define the center of a distribution. It is based on 
the concept of the sum of squared deviations (differences). Again, consider the 
distribution of the five numbers 2, 3, 4, 9, 16. Table 3 shows the sum of the squared 
deviations of these numbers from the number 10.

Values
Absolute Deviations 

from 10

2 
3 
4 
9 

16

8 
7 
6 
1 
6

Sum 28
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Table 3. An example of the sum of squared deviations.

The first row in the table shows that the squared value of the difference between 2 
and 10 is 64; the second row shows that the squared difference between 3 and 10 is 
49, and so forth. When we add up all these squared deviations, we get 186. 
Changing the target from 10 to 5, we calculate the sum of the squared deviations 
from 5 as 9 + 4 + 1 + 16 + 121 = 151. So, the sum of the squared deviations from 5 
is smaller than the sum of the squared deviations from 10. Is there a value for 
which the sum of the squared deviations is even smaller than 151? Yes, it is 
possible to reach 134.8. Can you find the target number for which the sum of 
squared deviations is 134.8?

The target that minimizes the sum of squared deviations provides another 
useful definition of central tendency (the last one to be discussed in this section). It 
can be challenging to find the value that minimizes this sum.

Values
Squared Deviations 

from 10

2 
3 
4 
9 

16

64 
49 
36 
1 

36

Sum 186
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Measures of  Central Tendency 
by David M. Lane 

Prerequisites
• Chapter 1: Percentiles 
• Chapter 1: Distributions
• Chapter 3: Central Tendency 

Learning Objectives
1. Compute mean
2. Compute median
3. Compute mode
In the previous section we saw that there are several ways to define central 
tendency. This section defines the three most common measures of central 
tendency: the mean, the median, and the mode. The relationships among these 
measures of central tendency and the definitions given in the previous section will 
probably not be obvious to you.

This section gives only the basic definitions of the mean, median and mode. 
A further discussion of the relative merits and proper applications of these statistics 
is presented in a later section.

Arithmetic Mean 
The arithmetic mean is the most common measure of central tendency. It is simply 
the sum of the numbers divided by the number of numbers. The symbol “μ” is used 
for the mean of a population. The symbol “M” is used for the mean of a sample. 
The formula for μ is shown below:

 

where ΣX is the sum of all the numbers in the population and N is the number of 
numbers in the population.

The formula for M is essentially identical:
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where ΣX is the sum of all the numbers in the sample and N is the number of 
numbers in the sample.

As an example, the mean of the numbers 1, 2, 3, 6, 8 is 20/5 = 4 regardless 
of whether the numbers constitute the entire population or just a sample from the 
population.

Table 1 shows the number of touchdown (TD) passes thrown by each of the 
31 teams in the National Football League in the 2000 season. The mean number of 
touchdown passes thrown is 20.4516 as shown below.

 

Table 1. Number of touchdown passes.

 
Although the arithmetic mean is not the only “mean” (there is also a geometric 
mean), it is by far the most commonly used. Therefore, if the term “mean” is used 
without specifying whether it is the arithmetic mean, the geometric mean, or some 
other mean, it is assumed to refer to the arithmetic mean.

Median 
The median is also a frequently used measure of central tendency. The median is 
the midpoint of a distribution: the same number of scores is above the median as 
below it. For the data in Table 1, there are 31 scores. The 16th highest score (which 
equals 20) is the median because there are 15 scores below the 16th score and 15 
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37, 33, 33, 32, 29, 28, 
28, 23, 22, 22, 22, 21, 
21, 21, 20, 20, 19, 19, 
18, 18, 18, 18, 16, 15, 
14, 14, 14, 12, 12, 9, 6
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scores above the 16th score. The median can also be thought of as the 50th 
percentile.

Computation of the Median 
When there is an odd number of numbers, the median is simply the middle number. 
For example, the median of 2, 4, and 7 is 4. When there is an even number of 
numbers, the median is the mean of the two middle numbers. Thus, the median of 
the numbers 2, 4, 7, 12 is:

 

When there are numbers with the same values, then the formula for the third 
definition of the 50th percentile should be used.

Mode 
The mode is the most frequently occurring value. For the data in Table 1, the mode 
is 18 since more teams (4) had 18 touchdown passes than any other number of 
touchdown passes. With continuous data, such as response time measured to many 
decimals, the frequency of each value is one since no two scores will be exactly the 
same (see discussion of continuous variables). Therefore the mode of continuous 
data is normally computed from a grouped frequency distribution. Table 2 shows a 
grouped frequency distribution for the target response time data. Since the interval 
with the highest frequency is 600-700, the mode is the middle of that interval 
(650).

Table 2. Grouped frequency distribution
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Range Frequency

500-600 
600-700 
700-800 
800-900 

900-1000 
1000-1100
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6 
5 
5 
0 
1
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Median and Mean 
by David M. Lane 

Prerequisites
• Chapter 3: What is Central Tendency
• Chapter 3: Measures of Central Tendency

Learning Objectives
1. State when the mean and median are the same
2. State whether it is the mean or median that minimizes the mean absolute 

deviation
3. State whether it is the mean or median that minimizes the mean squared 

deviation
4. State whether it is the mean or median that is the balance point on a balance 

scale
In the section “What is central tendency,” we saw that the center of a distribution 
could be defined three ways: (1) the point on which a distribution would balance, 
(2) the value whose average absolute deviation from all the other values is 
minimized, and (3) the value whose squared difference from all the other values is 
minimized. The mean is the point on which a distribution would balance, the 
median is the value that minimizes the sum of absolute deviations, and the mean is 
the value that minimizes the sum of the squared deviations.

Table 1 shows the absolute and squared deviations of the numbers 2, 3, 4, 9, 
and 16 from their median of 4 and their mean of 6.8. You can see that the sum of 
absolute deviations from the median (20) is smaller than the sum of absolute 
deviations from the mean (22.8). On the other hand, the sum of squared deviations 
from the median (174) is larger than the sum of squared deviations from the mean 
(134.8).
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Table 1. Absolute and squared deviations from the median of 4 and the mean of 
6.8.

Figure 1 shows that the distribution balances at the mean of 6.8 and not at the 
median of 4. The relative advantages and disadvantages of the mean and median 
are discussed in the section “Comparing Measures” later in this chapter.

Figure 1. The distribution balances at the mean of 6.8 and not at the median 
of 4.0.

When a distribution is symmetric, then the mean and the median are the same. 
Consider the following distribution: 1, 3, 4, 5, 6, 7, 9. The mean and median are 
both 5. The mean, median, and mode are identical in the bell-shaped normal 
distribution.

Value Absolute 
Deviation from 

Median

Absolute 
Deviation from 

Mean

Squared 
Deviation from 

Median

Squared 
Deviation from 

Mean

2 2 4.8 4 23.04

3 1 3.8 1 14.44

4 0 2.8 0 7.84

9 5 2.2 25 4.84

16 12 9.2 144 84.64

Total 20 22.8 174 134.8
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Additional Measures of  Central Tendency 
by David M. Lane 

Prerequisites
• Chapter 1: Percentiles
• Chapter 1: Distributions
• Chapter 3: What is Central Tendency
• Chapter 3: Measures of Central Tendency
• Chapter 3: Mean and Median

Learning Objectives
1. Compute the trimean
2. Compute the geometric mean directly
3. Compute the geometric mean using logs
4. Use the geometric to compute annual portfolio returns
5. Compute a trimmed mean
 
Although the mean, median, and mode are by far the most commonly used 
measures of central tendency, they are by no means the only measures. This section 
defines three additional measures of central tendency: the trimean, the geometric 
mean, and the trimmed mean. These measures will be discussed again in the 
section “Comparing Measures of Central Tendency.”

Trimean 
The trimean is a weighted average of the 25th percentile, the 50th percentile, and 
the 75th percentile. Letting P25 be the 25th percentile, P50 be the 50th and P75 be 
the 75th percentile, the formula for the trimean is:

Consider the data in Table 2. The 25th percentile is 15, the 50th  is 20 and the 75th 
percentile is 23.
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Table 1. Number of touchdown passes.

Table 2. Percentiles.

The trimean is therefore :

Geometric Mean 
The geometric mean is computed by multiplying all the numbers together and then 
taking the nth root of the product. For example, for the numbers 1, 10, and 100, the 
product of all the numbers is: 1 x 10 x 100 = 1,000. Since there are three numbers, 
we take the cubed root of the product (1,000) which is equal to 10. The formula for 
the geometric mean is therefore

where the symbol Π means to multiply. Therefore, the equation says to multiply all 
the values of X and then raise the result to the 1/Nth power. Raising a value to the 
1/Nth power is, of course, the same as taking the Nth root of the value. In this case, 
10001/3 is the cube root of 1,000.

The geometric mean has a close relationship with logarithms. Table 3 shows 
the logs (base 10) of these three numbers. The arithmetic mean of the three logs is 
1. The anti-log of this arithmetic mean of 1 is the geometric mean. The anti-log of 
1 is 101 = 10. Note that the geometric mean only makes sense if all the numbers are 
positive.

37, 33, 33, 32, 29, 28, 28, 23, 22, 22, 22, 21, 21, 21, 20, 
20, 19, 19, 18, 18, 18, 18, 16, 15, 14, 14, 14, 12, 12, 9, 6

Percentile Value

25 
50 
75

15 
20 
23
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Table 3. Logarithms.

The geometric mean is an appropriate measure to use for averaging rates. For 
example, consider a stock portfolio that began with a value of $1,000 and had 
annual returns of 13%, 22%, 12%, -5%, and -13%. Table 4 shows the value after 
each of the five years.

Table 4. Portfolio Returns

The question is how to compute average annual rate of return. The answer is to 
compute the geometric mean of the returns. Instead of using the percents, each 
return is represented as a multiplier indicating how much higher the value is after 
the year. This multiplier is 1.13 for a 13% return and 0.95 for a 5% loss. The 
multipliers for this example are 1.13, 1.22, 1.12, 0.95, and 0.87. The geometric 
mean of these multipliers is 1.05. Therefore, the average annual rate of return is 
5%. Table 5 shows how a portfolio gaining 5% a year would end up with the same 
value ($1,276) as shown in Table 4.

Table 5. Portfolio Returns

X Log10(X)

1 
10 

100

0 
1 
2

Year Return Value

1 
2 
3 
4 
5

13% 
22% 
12% 
-5% 
-13%

1,130 
1,379 
1,544 
1,467 
1,276

Year Return Value
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Trimmed Mean 
To compute a trimmed mean, you remove some of the higher and lower scores and 
compute the mean of the remaining scores. A mean trimmed 10% is a mean 
computed with 10% of the scores trimmed off: 5% from the bottom and 5% from 
the top. A mean trimmed 50% is computed by trimming the upper 25% of the 
scores and the lower 25% of the scores and computing the mean of the remaining 
scores. The trimmed mean is similar to the median which, in essence, trims the 
upper 49+% and the lower 49+% of the scores. Therefore the trimmed mean is a 
hybrid of the mean and the median. To compute the mean trimmed 20% for the 
touchdown pass data shown in Table 1, you remove the lower 10% of the scores (6, 
9, and 12) as well as the upper 10% of the scores (33, 33, and 37) and compute the 
mean of the remaining 25 scores. This mean is 20.16.

1
2
3
4
5

5% 
5% 
5% 
5% 
5%

1,050
1,103
1,158
1,216
1,276
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Comparing Measures of  Central Tendency 
by David M. Lane 

Prerequisites
• Chapter 1: Percentiles
• Chapter 1: Distributions
• Chapter 3: What is Central Tendency
• Chapter 3: Measures of Central Tendency
• Chapter 3: Mean and Median

Learning Objectives
1. Understand how the difference between the mean and median is affected by 

skew
2. State how the measures differ in symmetric distributions
3. State which measure(s) should be used to describe the center of a skewed 

distribution
How do the various measures of central tendency compare with each other? For 
symmetric distributions, the mean, median, trimean, and trimmed mean are equal, 
as is the mode except in bimodal distributions. Differences among the measures 
occur with skewed distributions. Figure 1 shows the distribution of 642 scores on 
an introductory psychology test. Notice this distribution has a slight positive skew.
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Figure 1. A distribution with a positive skew.

Measures of central tendency are shown in Table 1. Notice they do not differ 
greatly, with the exception that the mode is considerably lower than the other 
measures. When distributions have a positive skew, the mean is typically higher 
than the median, although it may not be in bimodal distributions. For these data, 
the mean of 91.58 is higher than the median of 90. Typically the trimean and 
trimmed mean will fall between the median and the mean, although in this case, 
the trimmed mean is slightly lower than the median. The geometric mean is lower 
than all measures except the mode.
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Table 1. Measures of central tendency for the test scores.

 
The distribution of baseball salaries (in 1994) shown in Figure 2 has a much more 
pronounced skew than the distribution in Figure 1. 

Figure 2. A distribution with a very large positive skew. This histogram 
shows the salaries of major league baseball players (in thousands of 
dollars).

Table 2 shows the measures of central tendency for these data. The large skew 
results in very different values for these measures. No single measure of central 
tendency is sufficient for data such as these. If you were asked the very general 
question: “So, what do baseball players make?” and answered with the mean of 
$1,183,000, you would not have told the whole story since only about one third of 
baseball players make that much. If you answered with the mode of $250,000 or 

Measure Value

Mode 
Median 
Geometric Mean 
Trimean 
Mean trimmed 50% 
Mean

84.00 
90.00 
89.70 
90.25 
89.81 
91.58
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the median of $500,000, you would not be giving any indication that some players 
make many millions of dollars. Fortunately, there is no need to summarize a 
distribution with a single number. When the various measures differ, our opinion is 
that you should report the mean, median, and either the trimean or the mean 
trimmed 50%. Sometimes it is worth reporting the mode as well. In the media, the 
median is usually reported to summarize the center of skewed distributions. You 
will hear about median salaries and median prices of houses sold, etc. This is better 
than reporting only the mean, but it would be informative to hear more statistics.

Table 2. Measures of central tendency for baseball salaries (in thousands of 
dollars).

Measure Value

Mode 
Median 
Geometric Mean 
Trimean 
Mean trimmed 50% 
Mean

250 
500 
555 
792 
619 

1,183
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Measures of  Variability 
by David M. Lane 

Prerequisites
• Chapter 1: Percentiles
• Chapter 1: Distributions
• Chapter 3: Measures of Central Tendency

Learning Objectives
1. Determine the relative variability of two distributions
2. Compute the range
3. Compute the inter-quartile range
4. Compute the variance in the population
5. Estimate the variance from a sample
6. Compute the standard deviation from the variance

What is Variability? 
Variability refers to how “spread out” a group of scores is. To see what we mean by 
spread out, consider graphs in Figure 1. These graphs represent the scores on two 
quizzes. The mean score for each quiz is 7.0. Despite the equality of means, you 
can see that the distributions are quite different. Specifically, the scores on Quiz 1 
are more densely packed and those on Quiz 2 are more spread out. The differences 
among students were much greater on Quiz 2 than on Quiz 1.
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Quiz 1

Quiz 2

Figure 1. Bar charts of two quizzes.

The terms variability, spread, and dispersion are synonyms, and refer to how 
spread out a distribution is. Just as in the section on central tendency where we 
discussed measures of the center of a distribution of scores, in this chapter we will 
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discuss measures of the variability of a distribution. There are four frequently used 
measures of variability: range, interquartile range, variance, and standard 
deviation. In the next few paragraphs, we will look at each of these four measures 
of variability in more detail.

Range 
The range is the simplest measure of variability to calculate, and one you have 
probably encountered many times in your life. The range is simply the highest 
score minus the lowest score. Let’s take a few examples. What is the range of the 
following group of numbers: 10, 2, 5, 6, 7, 3, 4? Well, the highest number is 10, 
and the lowest number is 2, so 10 - 2 = 8. The range is 8. Let’s take another 
example. Here’s a dataset with 10 numbers: 99, 45, 23, 67, 45, 91, 82, 78, 62, 51. 
What is the range? The highest number is 99 and the lowest number is 23, so 99 - 
23 equals 76; the range is 76. Now consider the two quizzes shown in Figure 1. On 
Quiz 1, the lowest score is 5 and the highest score is 9. Therefore, the range is 4. 
The range on Quiz 2 was larger: the lowest score was 4 and the highest score was 
10. Therefore the range is 6.

Interquartile Range 
The interquartile range (IQR) is the range of the middle 50% of the scores in a 
distribution. It is computed as follows:

IQR = 75th percentile - 25th percentile 

For Quiz 1, the 75th percentile is 8 and the 25th percentile is 6. The interquartile 
range is therefore 2. For Quiz 2, which has greater spread, the 75th percentile is 9, 
the 25th percentile is 5, and the interquartile range is 4. Recall that in the 
discussion of box plots, the 75th percentile was called the upper hinge and the 25th 
percentile was called the lower hinge. Using this terminology, the interquartile 
range is referred to as the H-spread.

A related measure of variability is called the semi-interquartile range. The 
semi-interquartile range is defined simply as the interquartile range divided by 2. If 
a distribution is symmetric, the median plus or minus the semi-interquartile range 
contains half the scores in the distribution.
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Variance 
Variability can also be defined in terms of how close the scores in the distribution 
are to the middle of the distribution. Using the mean as the measure of the middle 
of the distribution, the variance is defined as the average squared difference of the 
scores from the mean. The data from Quiz 1 are shown in Table 1. The mean score 
is 7.0. Therefore, the column “Deviation from Mean” contains the score minus 7. 
The column “Squared Deviation” is simply the previous column squared.
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Table 1. Calculation of Variance for Quiz 1 scores.

One thing that is important to notice is that the mean deviation from the mean is 0. 
This will always be the case. The mean of the squared deviations is 1.5. Therefore, 
the variance is 1.5. Analogous calculations with Quiz 2 show that its variance is 
6.7. The formula for the variance is:

Scores Deviation from Mean Squared Deviation

9 2 4

9 2 4

9 2 4

8 1 1

8 1 1

8 1 1

8 1 1

7 0 0

7 0 0

7 0 0

7 0 0

7 0 0

6 -1 1

6 -1 1

6 -1 1

6 -1 1

6 -1 1

6 -1 1

5 -2 4

5 -2 4

Means

7 0 1.5
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where σ2 is the variance, μ is the mean, and N is the number of numbers. For Quiz 
1, μ = 7 and N = 20.

If the variance in a sample is used to estimate the variance in a population, 
then the previous formula underestimates the variance and the following formula 
should be used:

where s2 is the estimate of the variance and M is the sample mean. Note that M is 
the mean of a sample taken from a population with a mean of μ. Since, in practice, 
the variance is usually computed in a sample, this formula is most often used.

Let's take a concrete example. Assume the scores 1, 2, 4, and 5 were 
sampled from a larger population. To estimate the variance in the population you 
would compute s2 as follows:

There are alternate formulas that can be easier to use if you are doing your 
calculations with a hand calculator:

and

For this example,
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as with the other formula.

Standard Deviation 
The standard deviation is simply the square root of the variance. This makes the 
standard deviations of the two quiz distributions 1.225 and 2.588. The standard 
deviation is an especially useful measure of variability when the distribution is 
normal or approximately normal (see Chapter 7) because the proportion of the 
distribution within a given number of standard deviations from the mean can be 
calculated. For example, 68% of the distribution is within one standard deviation 
of the mean and approximately 95% of the distribution is within two standard 
deviations of the mean. Therefore, if you had a normal distribution with a mean of 
50 and a standard deviation of 10, then 68% of the distribution would be between 
50 - 10 = 40 and 50 +10 =60. Similarly, about 95% of the distribution would be 
between 50 - 2 x 10 = 30 and 50 + 2 x 10 = 70. The symbol for the population 
standard deviation is σ; the symbol for an estimate computed in a sample is s. 
Figure 2 shows two normal distributions. The red distribution has a mean of 40 and  
a standard deviation of 5; the blue distribution has a mean of 60 and a standard 
deviation of 10. For the red distribution, 68% of the distribution is between 45 and 
55; for the blue distribution, 68% is between 50 and 70.
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Figure 2. Normal distributions with standard deviations of 5 and 10.
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Shapes of  Distributions 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Measures of Central Tendency
• Chapter 3: Variability

Learning Objectives
1. Compute skew using two different formulas
2. Compute kurtosis
We saw in the section on distributions in Chapter 1 that shapes of distributions can 
differ in skew and/or kurtosis. This section presents numerical indexes of these two 
measures of shape.

Skew 
Figure 1 shows a distribution with a very large positive skew. Recall that 
distributions with positive skew have tails that extend to the right.

Figure 1. A distribution with a very large positive skew. This histogram 
shows the salaries of major league baseball players (in thousands of 
dollars).
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Distributions with positive skew normally have larger means than medians. The 
mean and median of the baseball salaries shown in Figure 1 are $1,183,417 and 
$500,000 respectively. Thus, for this highly-skewed distribution, the mean is more 
than twice as high as the median. The relationship between skew and the relative 
size of the mean and median lead the statistician Pearson to propose the following 
simple and convenient numerical index of skew:

The standard deviation of the baseball salaries is 1,390,922. Therefore, Pearson's 
measure of skew for this distribution is 3(1,183,417 - 500,000)/1,390,922 = 1.47.

Just as there are several measures of central tendency, there is more than one 
measure of skew. Although Pearson's measure is a good one, the following 
measure is more commonly used. It is sometimes referred to as the third moment 
about the mean.

Kurtosis 
The following measure of kurtosis is similar to the definition of skew. The value 
“3” is subtracted to define “no kurtosis” as the kurtosis of a normal distribution. 
Otherwise, a normal distribution would have a kurtosis of 3.
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Effects of  Linear Transformations 
by David M. Lane 

Prerequisites
• Chapter 1: Linear Transformations

Learning Objectives
1. Define a linear transformation
2. Compute the mean of a transformed variable
3. Compute the variance of a transformed variable
This section covers the effects of linear transformations on measures of central 
tendency and variability. Let's start with an example we saw before in the section 
that defined linear transformation: temperatures of cities. Table 1 shows the 
temperatures of 5 cities.

Table 1. Temperatures in 5 cities on 11/16/2002.

Recall that to transform the degrees Fahrenheit to degrees Centigrade, we use the 
formula

C = 0.55556F - 17.7778 

which means we multiply each temperature Fahrenheit by 0.556 and then subtract 
17.7778. As you might have expected, you multiply the mean temperature in 
Fahrenheit by 0.556 and then subtract 17.778 to get the mean in Centigrade. That 
is, (0.556)(54) - 17.7778 = 12.22. The same is true for the median. Note that this 

City Degrees Fahrenheit Degrees Centigrade

Houston 
Chicago 

Minneapolis 
Miami 

Phoenix

54 
37 
31 
78 
70

12.22 
2.78 

-0.56 
25.56 
21.11

Mean 
Median

54.000 
54.000

12.220 
12.220

Variance 330 101.852

SD 18.166 10.092
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relationship holds even if the mean and median are not identical as they are in 
Table 1.

The formula for the standard deviation is just as simple: the standard 
deviation in degrees Centigrade is equal to the standard deviation in degrees 
Fahrenheit times 0.556. Since the variance is the standard deviation squared, the 
variance in degrees Centigrade is equal to 0.5562 times the variance in degrees 
Fahrenheit.

To sum up, if a variable X has a mean of μ, a standard deviation of σ, and a 
variance of σ2, then a new variable Y created using the linear transformation

Y = bX + A 

will have a mean of bμ+A, a standard deviation of bσ, and a variance of b2σ2.
It should be noted that  the term “linear transformation” is defined 

differently in the field of linear algebra. For details, follow this link.
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Variance Sum Law I 
by David M. Lane 

Prerequisites
• Chapter 3: Variance

Learning Objectives
1. Compute the variance of the sum of two uncorrelated variables
2. Compute the variance of the difference between two uncorrelated variables
As you will see in later sections, there are many occasions in which it is important 
to know the variance of the sum of two variables. Consider the following situation: 
(a) you have two populations, (b) you sample one number from each population, 
and (c) you add the two numbers together. The question is, “What is the variance 
of this sum?” For example, suppose the two populations are the populations of 8-
year old males and 8-year-old females in Houston, Texas, and that the variable of 
interest is memory span. You repeat the following steps thousands of times: (1) 
sample one male and one female, (2) measure the memory span of each, and (3) 
sum the two memory spans. After you have done this thousands of times, you 
compute the variance of the sum. It turns out that the variance of this sum can be 
computed according to the following formula:

 

where the first term is the variance of the sum, the second term is the variance of 
the males and the third term is the variance of the females. Therefore, if the 
variances on the memory span test for the males and females respectively were 0.9 
and 0.8, respectively, then the variance of the sum would be 1.7.

The formula for the variance of the difference between the two variables 
(memory span in this example) is shown below. Notice that the expression for the 
difference is the same as the formula for the sum.

 

More generally, the variance sum law can be written as follows:
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which is read: “The variance of X plus or minus Y is equal to the variance of X 
plus the variance of Y.”

These formulas for the sum and difference of variables given above only 
apply when the variables are independent.

In this example, we have thousands of randomly-paired scores. Since the scores are 
paired randomly, there is no relationship between the memory span of one member 
of the pair and the memory span of the other. Therefore the two scores are 
independent. Contrast this situation with one in which thousands of people are 
sampled and two measures (such as verbal and quantitative SAT) are taken from 
each. In this case, there would be a relationship between the two variables since 
higher scores on the verbal SAT are associated with higher scores on the 
quantitative SAT (although there are many examples of people who score high on 
one test and low on the other). Thus the two variables are not independent and the 
variance of the total SAT score would not be the sum of the variances of the verbal 
SAT and the quantitative SAT. The general form of the variance sum law is 
presented in a section in the chapter on correlation.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 3: Median and Mean

The playbill for the Alley Theatre in Houston wants to appeal to advertisers. They 
reported the mean household income and the median age of theatergoers.
 
What do you think?
What might have guided their choice of the mean or median?

It is likely that they wanted to emphasize that theatergoers had 
high income but de-emphasize how old they are. The 
distributions of  income and age of  theatergoers probably have 
positive skew. Therefore the mean is probably higher than the 
median, which results in higher income and lower age than if  
the median household income and mean age had been 
presented. 
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Exercises 

Prerequisites
• All material presented in the Summarizing Distributions chapter

1. Make up a dataset of 12 numbers with a positive skew. Use a statistical program 
to compute the skew. Is the mean larger than the median as it usually is for 
distributions with a positive skew? What is the value for skew?

2. Repeat Problem 1 only this time make the dataset have a negative skew.

3. Make up three data sets with 5 numbers each that have: 
(a) the same mean but different standard deviations. 
(b) the same mean but different medians. 
(c) the same median but different means.

4. Find the mean and median for the following three variables:

5. A sample of 30 distance scores measured in yards has a mean of 10, a variance 
of 9, and a standard deviation of 3 (a) You want to convert all your distances 
from yards to feet, so you multiply each score in the sample by 3. What are the 
new mean, variance, and standard deviation? (b) You then decide that you only 
want to look at the distance past a certain point. Thus, after multiplying the 
original scores by 3, you decide to subtract 4 feet from each of the scores. Now 
what are the new mean, variance, and standard deviation?

6. You recorded the time in seconds it took for 8 participants to solve a puzzle. 
These times appear below. However, when the data was entered into the 
statistical program, the score that was supposed to be 22.1 was entered as 21.2. 
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You had calculated the following measures of central tendency: the mean, the 
median, and the mean trimmed 25%. Which of these measures of central 
tendency will change when you correct the recording error?

7. For the test scores in question #6, which measures of variability (range, standard 
deviation, variance) would be changed if the 22.1 data point had been 
erroneously recorded as 21.2?

8. You know the minimum, the maximum, and the 25th, 50th, and 75th percentiles 
of a distribution. Which of the following measures of central tendency or 
variability can you determine?
mean, median, mode, trimean, geometric mean, range, interquartile range, 
variance, standard deviation

9. For the numbers 1, 3, 4, 6, and 12: 
Find the value (v) for which Σ(X-v)2 is minimized. 
Find the value (v) for which Σ|x-v| is minimized. 

10. Your younger brother comes home one day after taking a science test. He says 
that some- one at school told him that “60% of the students in the class scored 
above the median test grade.” What is wrong with this statement? What if he had 
said “60% of the students scored below the mean?”

11. An experiment compared the ability of three groups of participants to 
remember briefly- presented chess positions. The data are shown below. The 
numbers represent the number of pieces correctly remembered from three chess 
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positions. Compare the performance of each group. Consider spread as well as 
central tendency.

	

12. True/False: A bimodal distribution has two modes and two medians.

13. True/False: The best way to describe a skewed distribution is to report the 
mean.

14. True/False: When plotted on the same graph, a distribution with a mean of 50 
and a standard deviation of 10 will look more spread out than will a 
distribution with a mean of 60 and a standard deviation of 5.

15. Compare the mean, median, trimean in terms of their sensitivity to extreme 
scores.

16. If the mean time to respond to a stimulus is much higher than the median time 
to respond, what can you say about the shape of the distribution of response 
times?

17. A set of numbers is transformed by taking the log base 10 of each number. The 
mean of the transformed data is 1.65. What is the geometric mean of the 
untransformed data?

18. Which measure of central tendency is most often used for returns on 
investment?
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19. The histogram is in balance on the fulcrum. What are the mean, median, and 
mode of the distribution (approximate where necessary)?

Questions from Case Studies

Angry Moods (AM) case study

20. (AM) Does Anger-Out have a positive skew, a negative skew, or no skew?

21. (AM) What is the range of the Anger-In scores? What is the interquartile 
range?

22. (AM) What is the overall mean Control-Out score? What is the mean Control-
Out score for the athletes? What is the mean Control-Out score for the non-
athletes?

23. (AM) What is the variance of the Control-In scores for the athletes? What is the 
variance of the Control-In scores for the non-athletes?

Flatulence (F) case study

24. (F) Based on a histogram of the variable “perday”, do you think the mean or 
median of this variable is larger? Calculate the mean and median to see if you 
are right.

Stroop (S) case study
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25.(S) Compute the mean for “words”. 

26. (S#2) Compute the mean and standard deviation for “colors”.

Physicians’ Reactions (PR) case study

27.(PR) What is the mean expected time spent for the average-weight patients? 
What is the mean expected time spent for the overweight patients?

28.(PR) What is the difference in means between the groups? By approximately 
how many standard deviations do the means differ?

Smiles and Leniency (SL) case study

29.(SL) Find the mean, median, standard deviation, and interquartile range for the 
leniency scores of each of the four groups.

ADHD Treatment (AT) case study

30.(AT) What is the mean number of correct responses of the participants after 
taking the placebo (0 mg/kg)?

31.(AT) What are the standard deviation and the interquartile range of the d0 
condition?
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4. Describing Bivariate Data 
A. Introduction to Bivariate Data 
B. Values of the Pearson Correlation
C. Properties of Pearson's r
D. Computing Pearson's r
E. Variance Sum Law II
F. Exercises 

A dataset with two variables contains what is called bivariate data. This chapter 
discusses ways to describe the relationship between two variables. For example, 
you may wish to describe the relationship between the heights and weights of 
people to determine the extent to which taller people weigh more.

The introductory section gives more examples of bivariate relationships and 
presents the most common way of portraying these relationships graphically. The 
next five sections discuss Pearson's correlation, the most common index of the 
relationship between two variables. The final section, “Variance Sum Law II,” 
makes use of Pearson's correlation to generalize this law to bivariate data.
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Introduction to Bivariate Data 
by Rudy Guerra and David M. Lane 

Prerequisites
• Chapter 1: Variables
• Chapter 1: Distributions
• Chapter 2: Histograms
• Chapter 3: Measures of Central Tendency
• Chapter 3: Variability
• Chapter 3: Shapes of Distributions

Learning Objectives
1. Define “bivariate data”
2. Define “scatter plot”
3. Distinguish between a linear and a nonlinear relationship
4. Identify positive and negative associations from a scatter plot
Measures of central tendency, variability, and spread summarize a single variable 
by providing important information about its distribution. Often, more than one 
variable is collected on each individual. For example, in large health studies of 
populations it is common to obtain variables such as age, sex, height, weight, blood 
pressure, and total cholesterol on each individual. Economic studies may be 
interested in, among other things, personal income and years of education. As a 
third example, most university admissions committees ask for an applicant's high 
school grade point average and standardized admission test scores (e.g., SAT). In 
this chapter we consider bivariate data, which for now consists of two quantitative 
variables for each individual. Our first interest is in summarizing such data in a 
way that is analogous to summarizing univariate (single variable) data.

By way of illustration, let's consider something with which we are all 
familiar: age. Let’s begin by asking if people tend to marry other people of about 
the same age. Our experience tells us “yes,” but how good is the correspondence? 
One way to address the question is to look at pairs of ages for a sample of married 
couples. Table 1 below shows the ages of 10 married couples. Going across the 
columns we see that, yes, husbands and wives tend to be of about the same age, 
with men having a tendency to be slightly older than their wives. This is no big 
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surprise, but at least the data bear out our experiences, which is not always the 
case.

Table 1. Sample of spousal ages of 10 White American Couples.

The pairs of ages in Table 1 are from a dataset consisting of 282 pairs of spousal 
ages, too many to make sense of from a table. What we need is a way to 
summarize the 282 pairs of ages. We know that each variable can be summarized 
by a histogram (see Figure 1) and by a mean and standard deviation (See Table 2).

Figure 1. Histograms of spousal ages.

Table 2. Means and standard deviations of spousal ages.

Each distribution is fairly skewed with a long right tail. From Table 1 we see that 
not all husbands are older than their wives and it is important to see that this fact is 
lost when we separate the variables. That is, even though we provide summary 
statistics on each variable, the pairing within couple is lost by separating the 
variables. We cannot say, for example, based on the means alone what percentage 
of couples has younger husbands than wives. We have to count across pairs to find 
this out. Only by maintaining the pairing can meaningful answers be found about 
couples per se. Another example of information not available from the separate 
descriptions of husbands and wives' ages is the mean age of husbands with wives 

Husband 36 72 37 36 51 50 47 50 37 41

Wife 35 67 33 35 50 46 47 42 36 41

Mean
Standard 
Deviation

Husbands 49 11

Wives 47 11
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of a certain age. For instance, what is the average age of husbands with 45-year-old 
wives? Finally, we do not know the relationship between the husband's age and the 
wife's age.

We can learn much more by displaying the bivariate data in a graphical form 
that maintains the pairing. Figure 2 shows a scatter plot of the paired ages. The x-
axis represents the age of the husband and the y-axis the age of the wife.

Figure 2. Scatter plot showing wife’s age as a function of husband’s age.
There are two important characteristics of the data revealed by Figure 2. First, it is 
clear that there is a strong relationship between the husband's age and the wife's 
age: the older the husband, the older the wife. When one variable (Y) increases 
with the second variable (X), we say that X and Y have a positive association. 
Conversely, when Y decreases as X increases, we say that they have a negative 
association.

Second, the points cluster along a straight line. When this occurs, the 
relationship is called a linear relationship.

Figure 3 shows a scatter plot of Arm Strength and Grip Strength from 149 
individuals working in physically demanding jobs including electricians, 
construction and maintenance workers, and auto mechanics. Not surprisingly, the 
stronger someone's grip, the stronger their arm tends to be. There is therefore a 
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positive association between these variables. Although the points cluster along a 
line, they are not clustered quite as closely as they are for the scatter plot of spousal 
age.

Figure 3. Scatter plot of Grip Strength and Arm Strength.

Not all scatter plots show linear relationships. Figure 4 shows the results of an 
experiment conducted by Galileo on projectile motion. In the experiment, Galileo 
rolled balls down an incline and measured how far they traveled as a function of 
the release height. It is clear from Figure 4 that the relationship between “Release 
Height” and “Distance Traveled” is not described well by a straight line: If you 
drew a line connecting the lowest point and the highest point, all of the remaining 
points would be above the line. The data are better fit by a parabola.
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Figure 4. Galileo's data showing a non-linear relationship.

Scatter plots that show linear relationships between variables can differ in several 
ways including the slope of the line about which they cluster and how tightly the 
points cluster about the line. A statistical measure of the strength of the relationship 
between two quantitative variables that takes these factors into account is the 
subject of the next section.
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Values of  the Pearson Correlation 
by David M. Lane 

Prerequisites
• Chapter 4: Introduction to Bivariate Data

Learning Objectives
1. Describe what Pearson's correlation measures
2. Give the symbols for Pearson's correlation in the sample and in the population
3. State the possible range for Pearson's correlation
4. Identify a perfect linear relationship
The Pearson product-moment correlation coefficient is a measure of the strength of 
the linear relationship between two variables. It is referred to as Pearson's 
correlation or simply as the correlation coefficient. If the relationship between the 
variables is not linear, then the correlation coefficient does not adequately represent 
the strength of the relationship between the variables.

The symbol for Pearson's correlation is “ρ” when it is measured in the 
population and “r” when it is measured in a sample. Because we will be dealing 
almost exclusively with samples, we will use r to represent Pearson's correlation 
unless otherwise noted.

Pearson's r can range from -1 to 1. An r of -1 indicates a perfect negative 
linear relationship between variables, an r of 0 indicates no linear relationship 
between variables, and an r of 1 indicates a perfect positive linear relationship 
between variables. Figure 1 shows a scatter plot for which r = 1.
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Figure 1. A perfect linear relationship, r = 1.
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Figure 2. A perfect negative linear relationship, r = -1.
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Figure 3. A scatter plot for which r = 0. Notice that there is no relationship 
between X and Y.

With real data, you would not expect to get values of r of exactly -1, 0, or 1. The 
data for spousal ages shown in Figure 4 and described in the introductory section 
has an r of 0.97.

Figure 4. Scatter plot of spousal ages, r = 0.97.
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Figure 5. Scatter plot of Grip Strength and Arm Strength, r = 0.63.

The relationship between grip strength and arm strength depicted in Figure 5 (also 
described in the introductory section) is 0.63.
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Properties of  Pearson's r 
by David M. Lane 

Prerequisites
• Chapter 1: Linear Transformations
• Chapter 4: Introduction to Bivariate Data 

Learning Objectives
1. State the range of values for Pearson's correlation
2. State the values that represent perfect linear relationships
3. State the relationship between the correlation of Y with X and the correlation of 

X with Y
4. State the effect of linear transformations on Pearson's correlation
A basic property of Pearson's r is that its possible range is from -1 to 1. A 
correlation of -1 means a perfect negative linear relationship, a correlation of 0 
means no linear relationship, and a correlation of 1 means a perfect positive linear 
relationship.

Pearson's correlation is symmetric in the sense that the correlation of X with 
Y is the same as the correlation of Y with X. For example, the correlation of 
Weight with Height is the same as the correlation of Height with Weight.

A critical property of Pearson's r is that it is unaffected by linear 
transformations. This means that multiplying a variable by a constant and/or 
adding a constant does not change the correlation of that variable with other 
variables. For instance, the correlation of Weight and Height does not depend on 
whether Height is measured in inches, feet, or even miles. Similarly, adding five 
points to every student's test score would not change the correlation of the test 
score with other variables such as GPA.
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Computing Pearson's r 
by David M. Lane 

Prerequisites
• Chapter 1: Summation Notation
• Chapter 4: Introduction to Bivariate Data

Learning Objectives
1. Define X and x
2. State why Σxy = 0 when there is no relationship
3. Calculate r
There are several formulas that can be used to compute Pearson's correlation. Some 
formulas make more conceptual sense whereas others are easier to actually 
compute. We are going to begin with a formula that makes more conceptual sense.

We are going to compute the correlation between the variables X and Y 
shown in Table 1. We begin by computing the mean for X and subtracting this 
mean from all values of X. The new variable is called “x.” The variable “y” is 
computed similarly. The variables x and y are said to be deviation scores because 
each score is a deviation from the mean. Notice that the means of x and y are both 
0. Next we create a new column by multiplying x and y.

Before proceeding with the calculations, let's consider why the sum of the xy 
column reveals the relationship between X and Y. If there were no relationship 
between X and Y, then positive values of x would be just as likely to be paired with 
negative values of y as with positive values. This would make negative values of 
xy as likely as positive values and the sum would be small. On the other hand, 
consider Table 1 in which high values of X are associated with high values of Y 
and low values of X are associated with low values of Y. You can see that positive 
values of x are associated with positive values of y and negative values of x are 
associated with negative values of y. In all cases, the product of x and y is positive, 
resulting in a high total for the xy column. Finally, if there were a negative 
relationship then positive values of x would be associated with negative values of y 
and negative values of x would be associated with positive values of y. This would 
lead to negative values for xy.
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Table 1. Calculation of r.

Pearson's r is designed so that the correlation between height and weight is the 
same whether height is measured in inches or in feet. To achieve this property, 
Pearson's correlation is computed by dividing the sum of the xy column (Σxy) by 
the square root of the product of the sum of the x2 column (Σx2) and the sum of the 
y2 column (Σy2). The resulting formula is:

 

and therefore

 

An alternative computational formula that avoids the step of computing deviation 
scores is:

 

 X Y x y xy x2 y2

 1 4 -3 -5 15 9 25

 3 6 -1 -3 3 1 9

 5 10 1 1 1 1 1

 5 12 1 3 3 1 9

 6 13 2 4 8 4 16

Total 20 45 0 0 30 16 60

Mean 4 9 0 0 6   
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Variance Sum Law II 
by David M. Lane 

Prerequisites
• Chapter 1: Variance Sum Law I
• Chapter 4: Values of Pearson's Correlation

Learning Objectives
1. State the variance sum law when X and Y are not assumed to be independent
2. Compute the variance of the sum of two variables if the variance of each and 

their correlation is known
3. Compute the variance of the difference between two variables if the variance of 

each and their correlation is known
Recall that when the variables X and Y are independent, the variance of the sum or 
difference between X and Y can be written as follows:

 

which is read: “The variance of X plus or minus Y is equal to the variance of X 
plus the variance of Y.”

When X and Y are correlated, the following formula should be used:

 

where ρ is the correlation between X and Y in the population. For example, if the 
variance of verbal SAT were 10,000, the variance of quantitative SAT were 11,000 
and the correlation between these two tests were 0.50, then the variance of total 
SAT (verbal + quantitative) would be:

 

which is equal to 31,488. The variance of the difference is:
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which is equal to 10,512.
If the variances and the correlation are computed in a sample, then the 

following notation is used to express the variance sum law:

 ��±�� = ��� + ��� ± 2����� 

 

 

179



Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 4: Values of Pearson's Correlation

The graph below showing the relationship between age and sleep is based on a 
graph that appears on this web page.
 

 
 
What do you think?
Why might Pearson's correlation not be a good way to describe the relationship?

Pearson's correlation measures the strength of  the linear 
relationship between two variables. The relationship here is not 
linear. As age increases, hours slept decreases rapidly at first but 
then levels off. 
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Exercises 

Prerequisites
• All material presented in the Describing Bivariate Data chapter

1. Describe the relationship between variables A and C. Think of things these 
variables could represent in real life.

2. Make up a data set with 10 numbers that has a positive correlation.

3. Make up a data set with 10 numbers that has a negative correlation.

4. If the correlation between weight (in pounds) and height (in feet) is 0.58, find: 
(a) the correlation between weight (in pounds) and height (in yards) (b) the 
correlation between weight (in kilograms) and height (in meters).

5. Would you expect the correlation between High School GPA and College GPA 
to be higher when taken from your entire high school class or when taken from 
only the top 20 students? Why?
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6. For a certain class, the relationship between the amount of time spent studying 
and the test grade earned was examined. It was determined that as the amount of 
time they studied increased, so did their grades. Is this a positive or negative 
association?

7. For this same class, the relationship between the amount of time spent studying 
and the amount of time spent socializing per week was also examined. It was 
determined that the more hours they spent studying, the fewer hours they spent 
socializing. Is this a positive or negative association?

8. For the following data:
a. Find the deviation scores for Variable A that correspond to the raw scores of 2 
and 8.
b. Find the deviation scores for Variable B that correspond to the raw scores of 5 
and 4.
c. Just from looking at these scores, do you think these variables are positively or 
negatively correlated? Why?
d. Now calculate the correlation. Were you right?

	

9. Students took two parts of a test, each worth 50 points. Part A has a variance of 
25, and Part B has a variance of 49. The correlation between the test scores is 
0.6. (a) If the teacher adds the grades of the two parts together to form a final test 
grade, what would the variance of the final test grades be? (b) What would the 
variance of Part A - Part B be?

10. True/False: The correlation in real life between height and weight is r=1.
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11. True/False: It is possible for variables to have r=0 but still have a strong 
association.

12. True/False: Two variables with a correlation of 0.3 have a stronger linear 
relationship than two variables with a correlation of -0.7.

13. True/False: After polling a certain group of people, researchers found a 0.5 
correlation between the number of car accidents per year and the driver’s age. 
This means that older people get in more accidents.

14. True/False: The correlation between R and T is the same as the correlation 
between T and R.

15. True/False: To examine bivariate data graphically, the best choice is two side 
by side histograms.

16. True/False: A correlation of r=1.2 is not possible.

Questions from Case Studies

Angry Moods (AM) case study

17. (AM) What is the correlation between the Control-In and Control-Out scores?

18. (AM) Would you expect the correlation between the Anger-Out and Control-
Out scores to be positive or negative? Compute this correlation.

Flatulence (F) case study

19. (F) Is there are relationship between the number of male siblings and 
embarrassment in front of romantic interests? Create a scatterplot and compute 
r.

Stroop (S) case study

20. (S) Create a scatterplot showing “words” on the X-axis and “ colors “ on the Y-
axis.
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21. (S) Compute the correlation between “colors” and “words.”

22. (S) Sort the data by color-naming time. Choose only the 23 fastest color-
namers. 
(a) What is the new correlation?
(b) What is the technical term for the finding that this correlation is smaller 
than the correlation for the full dataset?

Animal Research (AR) case study

23. (AR) What is the overall correlation between the belief that animal research is 
wrong and belief that animal research is necessary?

ADHD Treatment (AT) case study

24. (AT) What is the correlation between the participants’ correct number of 
responses after taking the placebo and their correct number of responses after 
taking 0.60 mg/kg of MPH?
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5. Probability 
A. Introduction
B. Basic Concepts
C. Permutations and Combinations
D. Poisson Distribution
E. Multinomial Distribution
F. Hypergeometric Distribution
G. Base Rates
H. Exercises 

Probability is an important and complex field of study. Fortunately, only a few 
basic issues in probability theory are essential for understanding statistics at the 
level covered in this book. These basic issues are covered in this chapter.

The introductory section discusses the definitions of probability. This is not 
as simple as it may seem. The section on basic concepts covers how to compute 
probabilities in a variety of simple situations. The section on base rates discusses 
an important but often-ignored factor in determining probabilities.
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Remarks on the Concept of  “Probability” 
by Dan Osherson 

Prerequisites
• None

Learning Objectives
1. Define symmetrical outcomes
2. Distinguish between frequentist and subjective approaches
3. Determine whether the frequentist or subjective approach is better suited for a 

given situation
Inferential statistics is built on the foundation of probability theory, and has been 
remarkably successful in guiding opinion about the conclusions to be drawn from 
data. Yet (paradoxically) the very idea of probability has been plagued by 
controversy from the beginning of the subject to the present day. In this section we 
provide a glimpse of the debate about the interpretation of the probability concept.

One conception of probability is drawn from the idea of symmetrical 
outcomes. For example, the two possible outcomes of tossing a fair coin seem not 
to be distinguishable in any way that affects which side will land up or down. 
Therefore the probability of heads is taken to be 1/2, as is the probability of tails. 
In general, if there are N symmetrical outcomes, the probability of any given one 
of them occurring is taken to be 1/N. Thus, if a six-sided die is rolled, the 
probability of any one of the six sides coming up is 1/6.

Probabilities can also be thought of in terms of relative frequencies. If we 
tossed a coin millions of times, we would expect the proportion of tosses that came 
up heads to be pretty close to 1/2. As the number of tosses increases, the proportion 
of heads approaches 1/2. Therefore, we can say that the probability of a head is 1/2.

If it has rained in Seattle on 62% of the last 100,000 days, then the 
probability of it raining tomorrow might be taken to be 0.62. This is a natural idea 
but nonetheless unreasonable if we have further information relevant to whether it 
will rain tomorrow. For example, if tomorrow is August 1, a day of the year on 
which it seldom rains in Seattle, we should only consider the percentage of the 
time it rained on August 1. But even this is not enough since the probability of rain 
on the next August 1 depends on the humidity. (The chances are higher in the 
presence of high humidity.) So, we should consult only the prior occurrences of 
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August 1 that had the same humidity as the next occurrence of August 1. Of 
course, wind direction also affects probability. You can see that our sample of prior 
cases will soon be reduced to the empty set. Anyway, past meteorological history is 
misleading if the climate is changing.

For some purposes, probability is best thought of as subjective. Questions 
such as “What is the probability that Ms. Garcia will defeat Mr. Smith in an 
upcoming congressional election?” do not conveniently fit into either the symmetry 
or frequency approaches to probability. Rather, assigning probability 0.7 (say) to 
this event seems to reflect the speaker's personal opinion --- perhaps his 
willingness to bet according to certain odds. Such an approach to probability, 
however, seems to lose the objective content of the idea of chance; probability 
becomes mere opinion.

Two people might attach different probabilities to the election outcome, yet 
there would be no criterion for calling one “right” and the other “wrong.” We 
cannot call one of the two people right simply because she assigned higher 
probability to the outcome that actually transpires. After all, you would be right to 
attribute probability 1/6 to throwing a six with a fair die, and your friend who 
attributes 2/3 to this event would be wrong. And you are still right (and your friend 
is still wrong) even if the die ends up showing a six! The lack of objective criteria 
for adjudicating claims about probabilities in the subjective perspective is an 
unattractive feature of it for many scholars.

Like most work in the field, the present text adopts the frequentist approach 
to probability in most cases. Moreover, almost all the probabilities we shall 
encounter will be nondogmatic, that is, neither zero nor one. An event with 
probability 0 has no chance of occurring; an event of probability 1 is certain to 
occur. It is hard to think of any examples of interest to statistics in which the 
probability is either 0 or 1. (Even the probability that the Sun will come up 
tomorrow is less than 1.)

The following example illustrates our attitude about probabilities. Suppose 
you wish to know what the weather will be like next Saturday because you are 
planning a picnic. You turn on your radio, and the weather person says, “There is a 
10% chance of rain.” You decide to have the picnic outdoors and, lo and behold, it 
rains. You are furious with the weather person. But was she wrong? No, she did not 
say it would not rain, only that rain was unlikely. She would have been flatly 
wrong only if she said that the probability is 0 and it subsequently rained. 
However, if you kept track of her weather predictions over a long period of time 
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and found that it rained on 50% of the days that the weather person said the 
probability was 0.10, you could say her probability assessments are wrong.

So when is it accurate to say that the probability of rain is 0.10? According 
to our frequency interpretation, it means that it will rain 10% of the days on which 
rain is forecast with this probability.
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Basic Concepts 
by David M. Lane 

Prerequisites
• Chapter 5: Introduction to Probability

Learning Objectives
1. Compute probability in a situation where there are equally-likely outcomes
2. Apply concepts to cards and dice
3. Compute the probability of two independent events both occurring
4. Compute the probability of either of two independent events occurring
5. Do problems that involve conditional probabilities
6. Compute the probability that in a room of N people, at least two share a 

birthday
7. Describe the gambler’s fallacy

Probability of a Single Event 
If you roll a six-sided die, there are six possible outcomes, and each of these 
outcomes is equally likely. A six is as likely to come up as a three, and likewise for 
the other four sides of the die. What, then, is the probability that a one will come 
up? Since there are six possible outcomes, the probability is 1/6. What is the 
probability that either a one or a six will come up? The two outcomes about which 
we are concerned (a one or a six coming up) are called favorable outcomes. Given 
that all outcomes are equally likely, we can compute the probability of a one or a 
six using the formula:

In this case there are two favorable outcomes and six possible outcomes. So the 
probability of throwing either a one or six is 1/3. Don't be misled by our use of the 
term “favorable,” by the way. You should understand it in the sense of “favorable 
to the event in question happening.” That event might not be favorable to your 
well-being. You might be betting on a three, for example.
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The above formula applies to many games of chance. For example, what is 
the probability that a card drawn at random from a deck of playing cards will be an 
ace? Since the deck has four aces, there are four favorable outcomes; since the 
deck has 52 cards, there are 52 possible outcomes. The probability is therefore 4/52 
= 1/13. What about the probability that the card will be a club? Since there are 13 
clubs, the probability is 13/52 = 1/4.

Let's say you have a bag with 20 cherries: 14 sweet and 6 sour. If you pick a 
cherry at random, what is the probability that it will be sweet? There are 20 
possible cherries that could be picked, so the number of possible outcomes is 20. 
Of these 20 possible outcomes, 14 are favorable (sweet), so the probability that the 
cherry will be sweet is 14/20 = 7/10. There is one potential complication to this 
example, however. It must be assumed that the probability of picking any of the 
cherries is the same as the probability of picking any other. This wouldn't be true if 
(let us imagine) the sweet cherries are smaller than the sour ones. (The sour 
cherries would come to hand more readily when you sampled from the bag.) Let us 
keep in mind, therefore, that when we assess probabilities in terms of the ratio of 
favorable to all potential cases, we rely heavily on the assumption of equal 
probability for all outcomes.

Here is a more complex example. You throw 2 dice. What is the probability 
that the sum of the two dice will be 6? To solve this problem, list all the possible 
outcomes. There are 36 of them since each die can come up one of six ways. The 
36 possibilities are shown in Table 1.
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Table 1. 36 possible outcomes.

You can see that 5 of the 36 possibilities total 6. Therefore, the probability is 5/36.
If you know the probability of an event occurring, it is easy to compute the 

probability that the event does not occur. If P(A) is the probability of Event A, then 
1 - P(A) is the probability that the event does not occur. For the last example, the 
probability that the total is 6 is 5/36. Therefore, the probability that the total is not 
6 is 1 - 5/36 = 31/36.

Probability of Two (or more) Independent Events 
Events A and B are independent events if the probability of Event B occurring is 
the same whether or not Event A occurs. Let's take a simple example. A fair coin is 
tossed two times. The probability that a head comes up on the second toss is 1/2 
regardless of whether or not a head came up on the first toss. The two events are 
(1) first toss is a head and (2) second toss is a head. So these events are 
independent. Consider the two events (1) “It will rain tomorrow in Houston” and 
(2) “It will rain tomorrow in Galveston” (a city near Houston). These events are 
not independent because it is more likely that it will rain in Galveston on days it 
rains in Houston than on days it does not.

Die 1 Die 2 Total Die 1 Die 2 Total Die 1 Die 2 Total

1 1 2 3 1 4 5 1 6

1 2 3 3 2 5 5 2 7

1 3 4 3 3 6 5 3 8

1 4 5 3 4 7 5 4 9

1 5 6 3 5 8 5 5 10

1 6 7 3 6 9 5 6 11

2 1 3 4 1 5 6 1 7

2 2 4 4 2 6 6 2 8

2 3 5 4 3 7 6 3 9

2 4 6 4 4 8 6 4 10

2 5 7 4 5 9 6 5 11

2 6 8 4 6 10 6 6 12
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Probability of A and B 
When two events are independent, the probability of both occurring is the product 
of the probabilities of the individual events. More formally, if events A and B are 
independent, then the probability of both A and B occurring is:

P(A and B) = P(A) x P(B) 

where P(A and B) is the probability of events A and B both occurring, P(A) is the 
probability of event A occurring, and P(B) is the probability of event B occurring.

If you flip a coin twice, what is the probability that it will come up heads 
both times? Event A is that the coin comes up heads on the first flip and Event B is 
that the coin comes up heads on the second flip. Since both P(A) and P(B) equal 
1/2, the probability that both events occur is

1/2 x 1/2 = 1/4 

Let’s take another example. If you flip a coin and roll a six-sided die, what is 
the probability that the coin comes up heads and the die comes up 1? Since the two 
events are independent, the probability is simply the probability of a head (which is 
1/2) times the probability of the die coming up 1 (which is 1/6). Therefore, the 
probability of both events occurring is 1/2 x 1/6 = 1/12.

One final example: You draw a card from a deck of cards, put it back, and 
then draw another card. What is the probability that the first card is a heart and the 
second card is black? Since there are 52 cards in a deck and 13 of them are hearts, 
the probability that the first card is a heart is 13/52 = 1/4. Since there are 26 black 
cards in the deck, the probability that the second card is black is 26/52 = 1/2. The 
probability of both events occurring is therefore 1/4 x 1/2 = 1/8.

See the discussion on conditional probabilities later in this section to see 
how to compute P(A and B) when A and B are not independent.

Probability of A or B 
If Events A and B are independent, the probability that either Event A or Event B 
occurs is:

P(A or B) = P(A) + P(B) - P(A and B) 

In this discussion, when we say “A or B occurs” we include three possibilities:
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1. A occurs and B does not occur
2. B occurs and A does not occur
3. Both A and B occur
This use of the word “or” is technically called inclusive or because it includes the 
case in which both A and B occur. If we included only the first two cases, then we 
would be using an exclusive or.
(Optional) We can derive the law for P(A-or-B) from our law about P(A-and-B). 
The event “A-or-B” can happen in any of the following ways:
1. A-and-B happens
2. A-and-not-B happens
3. not-A-and-B happens.
The simple event A can happen if either A-and-B happens or A-and-not-B happens. 
Similarly, the simple event B happens if either A-and-B happens or not-A-and-B 
happens. P(A) + P(B) is therefore P(A-and-B) + P(A-and-not-B) + P(A-and-B) + 
P(not-A-and-B), whereas P(A-or-B) is P(A-and-B) + P(A-and-not-B) + P(not-A-
and-B). We can make these two sums equal by subtracting one occurrence of P(A-
and-B) from the first. Hence, P(A-or-B) = P(A) + P(B) - P(A-and-B).

 
Now for some examples. If you flip a coin two times, what is the probability that 
you will get a head on the first flip or a head on the second flip (or both)? Letting 
Event A be a head on the first flip and Event B be a head on the second flip, then 
P(A) = 1/2, P(B) = 1/2, and P(A and B) = 1/4. Therefore,

P(A or B) = 1/2 + 1/2 - 1/4 = 3/4. 

If you throw a six-sided die and then flip a coin, what is the probability that you 
will get either a 6 on the die or a head on the coin flip (or both)? Using the formula,

An alternate approach to computing this value is to start by computing the 
probability of not getting either a 6 or a head. Then subtract this value from 1 to 
compute the probability of getting a 6 or a head. Although this is a complicated 
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method, it has the advantage of being applicable to problems with more than two 
events. Here is the calculation in the present case. The probability of not getting 
either a 6 or a head can be recast as the probability of

(not getting a 6) AND (not getting a head). 

This follows because if you did not get a 6 and you did not get a head, then you did 
not get a 6 or a head. The probability of not getting a six is 1 - 1/6 = 5/6. The 
probability of not getting a head is 1 - 1/2 = 1/2. The probability of not getting a six 
and not getting a head is 5/6 x 1/2 = 5/12. This is therefore the probability of not 
getting a 6 or a head. The probability of getting a six or a head is therefore (once 
again) 1 - 5/12 = 7/12.

If you throw a die three times, what is the probability that one or more of 
your throws will come up with a 1? That is, what is the probability of getting a 1 
on the first throw OR a 1 on the second throw OR a 1 on the third throw? The 
easiest way to approach this problem is to compute the probability of

 NOT getting a 1 on the first throw 
AND not getting a 1 on the second throw 
AND not getting a 1 on the third throw. 

The answer will be 1 minus this probability. The probability of not getting a 1 on 
any of the three throws is 5/6 x 5/6 x 5/6 = 125/216. Therefore, the probability of 
getting a 1 on at least one of the throws is 1 - 125/216 = 91/216.

Conditional Probabilities 
Often it is required to compute the probability of an event given that another event 
has occurred. For example, what is the probability that two cards drawn at random 
from a deck of playing cards will both be aces? It might seem that you could use 
the formula for the probability of two independent events and simply multiply 4/52 
x 4/52 = 1/169. This would be incorrect, however, because the two events are not 
independent. If the first card drawn is an ace, then the probability that the second 
card is also an ace would be lower because there would only be three aces left in 
the deck.

Once the first card chosen is an ace, the probability that the second card 
chosen is also an ace is called the conditional probability of drawing an ace. In this 
case, the “condition” is that the first card is an ace. Symbolically, we write this as:
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P(ace on second draw | an ace on the first draw) 

The vertical bar “|” is read as “given,” so the above expression is short for: “The 
probability that an ace is drawn on the second draw given that an ace was drawn on 
the first draw.” What is this probability? Since after an ace is drawn on the first 
draw, there are 3 aces out of 51 total cards left. This means that the probability that 
one of these aces will be drawn is 3/51 = 1/17.

 If Events A and B are not independent, then 
P(A and B) = P(A) x P(B|A). 

Applying this to the problem of two aces, the probability of drawing two aces from 
a deck is 4/52 x 3/51 = 1/221.

One more example: If you draw two cards from a deck, what is the 
probability that you will get the Ace of Diamonds and a black card? There are two 
ways you can satisfy this condition: (1) You can get the Ace of Diamonds first and 
then a black card or (2) you can get a black card first and then the Ace of 
Diamonds. Let's calculate Case 1. The probability that the first card is the Ace of 
Diamonds is 1/52. The probability that the second card is black given that the first 
card is the Ace of Diamonds is 26/51 because 26 of the remaining 51 cards are 
black. The probability is therefore 1/52 x 26/51 = 1/102. Now for Case 2: the 
probability that the first card is black is 26/52 = 1/2. The probability that the 
second card is the Ace of Diamonds given that the first card is black is 1/51. The 
probability of Case 2 is therefore 1/2 x 1/51 = 1/102, the same as the probability of 
Case 1. Recall that the probability of A or B is P(A) + P(B) - P(A and B). In this 
problem, P(A and B) = 0 since a card cannot be the Ace of Diamonds and be a 
black card. Therefore, the probability of Case 1 or Case 2 is 1/102 + 1/102 = 2/102 
= 1/51. So, 1/51 is the probability that you will get the Ace of Diamonds and a 
black card when drawing two cards from a deck.

Birthday Problem 
If there are 25 people in a room, what is the probability that at least two of them 
share the same birthday. If your first thought is that it is 25/365 = 0.068, you will 
be surprised to learn it is much higher than that. This problem requires the 
application of the sections on P(A and B) and conditional probability.
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This problem is best approached by asking what is the probability that no 
two people have the same birthday. Once we know this probability, we can simply 
subtract it from 1 to find the probability that two people share a birthday.

If we choose two people at random, what is the probability that they do not 
share a birthday? Of the 365 days on which the second person could have a 
birthday, 364 of them are different from the first person's birthday. Therefore the 
probability is 364/365. Let's define P2 as the probability that the second person 
drawn does not share a birthday with the person drawn previously. P2 is therefore 
364/365. Now define P3 as the probability that the third person drawn does not 
share a birthday with anyone drawn previously given that there are no previous 
birthday matches. P3 is therefore a conditional probability. If there are no previous 
birthday matches, then two of the 365 days have been “used up,” leaving 363 non-
matching days. Therefore P3 = 363/365. In like manner, P4 = 362/365, P5 = 
361/365, and so on up to P25 = 341/365.

In order for there to be no matches, the second person must not match any 
previous person and the third person must not match any previous person, and the 
fourth person must not match any previous person, etc. Since P(A and B) = 
P(A)P(B), all we have to do is multiply P2, P3, P4 ...P25 together. The result is 
0.431. Therefore the probability of at least one match is 0.569.

Gambler’s Fallacy 
A fair coin is flipped five times and comes up heads each time. What is the 
probability that it will come up heads on the sixth flip? The correct answer is, of 
course, 1/2. But many people believe that a tail is more likely to occur after 
throwing five heads. Their faulty reasoning may go something like this: “In the 
long run, the number of heads and tails will be the same, so the tails have some 
catching up to do.”

The error in this reasoning is that the proportion of heads approaches 0.5 but 
the number of heads does not approach the number of tails. The results of a 
simulation (external link; requires Java) are shown in Figure 1. (The quality of the 
image is somewhat low because it was captured from the screen.)
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Figure 1. The results of simulating 1,500,000 coin flips. The graph on the left 
shows the difference between the number of heads and the number of tails as 
a function of the number of flips. You can see that there is no consistent 
pattern. After the final flip, there are 968 more tails than heads. The graph on 
the right shows the proportion of heads. This value goes up and down at the 
beginning, but converges to 0.5 (rounded to 3 decimal places) before 
1,000,000 flips.
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Permutations and Combinations 
by David M. Lane 

Prerequisites
none

Learning Objectives
1. Calculate the probability of two independent events occurring
2. Define permutations and combinations
3. List all permutations and combinations
4. Apply formulas for permutations and combinations
This section covers basic formulas for determining the number of various possible 
types of outcomes. The topics covered are: (1) counting the number of possible 
orders, (2) counting using the multiplication rule, (3) counting the number of 
permutations, and (4) counting the number of combinations.

Possible Orders 
Suppose you had a plate with three pieces of candy on it: one green, one yellow, 
and one red. You are going to pick up these three pieces one at a time. The question 
is: In how many different orders can you pick up the pieces? Table 1 lists all the 
possible orders. There are two orders in which red is first: red, yellow, green and 
red, green, yellow. Similarly, there are two orders in which yellow is first and two 
orders in which green is first. This makes six possible orders in which the pieces 
can be picked up.
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Table 1. Six Possible Orders.

The formula for the number of orders is shown below. 

Number of orders = n! 

where n is the number of pieces to be picked up. The symbol “!” stands for 
factorial. Some examples are:

 3! = 3 x 2 x 1 = 6 
4! = 4 x 3 x 2 x 1 = 24 
5! = 5 x 4 x 3 x 2 x 1 = 120 

This means that if there were 5 pieces of candy to be picked up, they could be 
picked up in any of 5! = 120 orders.

Multiplication Rule 
Imagine a small restaurant whose menu has 3 soups, 6 entrées, and 4 desserts. How 
many possible meals are there? The answer is calculated by multiplying the 
numbers to get 3 x 6 x 4 = 72. You can think of it as first there is a choice among 3 
soups. Then, for each of these choices there is a choice among 6 entrées resulting 
in 3 x 6 = 18 possibilities. Then, for each of these 18 possibilities there are 4 
possible desserts yielding 18 x 4 = 72 total possibilities.

Permutations 
Suppose that there were four pieces of candy (red, yellow, green, and brown) and 
you were only going to pick up exactly two pieces. How many ways are there of 

Number First Second Third

1 red yellow green

2 red green yellow

3 yellow red green

4 yellow green red

5 green red yellow

6 green yellow red
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picking up two pieces? Table 2 lists all the possibilities. The first choice can be any 
of the four colors. For each of these 4 first choices there are 3 second choices. 
Therefore there are 4 x 3 = 12 possibilities.

Table 2. Twelve Possible Orders.

More formally, this question is asking for the number of permutations of four 
things taken two at a time. The general formula is:

where nPr is the number of permutations of n things taken r at a time. In other 
words, it is the number of ways r things can be selected from a group of n things. 
In this case,

It is important to note that order counts in permutations. That is, choosing red and 
then yellow is counted separately from choosing yellow and then red. Therefore 
permutations refer to the number of ways of choosing rather than the number of 

Number First Second

1 red yellow

2 red green

3 red brown

4 yellow red

5 yellow green

6 yellow brown

7 green red

8 green yellow

9 green brown

10 brown red

11 brown yellow

12 brown green
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possible outcomes. When order of choice is not considered, the formula for 
combinations is used.

Combinations 
Now suppose that you were not concerned with the way the pieces of candy were 
chosen but only in the final choices. In other words, how many different 
combinations of two pieces could you end up with? In counting combinations, 
choosing red and then yellow is the same as choosing yellow and then red because 
in both cases you end up with one red piece and one yellow piece. Unlike 
permutations, order does not count. Table 3 is based on Table 2 but is modified so 
that repeated combinations are given an “x” instead of a number. For example, 
“yellow then red” has an “x” because the combination of red and yellow was 
already included as choice number 1. As you can see, there are six combinations of 
the three colors.

Table 3. Six Combinations.

The formula for the number of combinations is shown below where nCr is the 
number of combinations for n things taken r at a time.

Number First Second

1 red yellow

2 red green

3 red brown

x yellow red

4 yellow green

5 yellow brown

x green red

x green yellow

6 green brown

x brown red

x brown yellow

x brown green
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For our example,

which is consistent with Table 3.
As an example application, suppose there were six kinds of toppings that one could 
order for a pizza. How many combinations of exactly 3 toppings could be ordered? 
Here n = 6 since there are 6 toppings and r = 3 since we are taking 3 at a time. The 
formula is then:
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Binomial Distribution 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Variability
• Chapter 5: Basic Probability

Learning Objectives
1. Define binomial outcomes
2. Compute the probability of getting X successes in N trials
3. Compute cumulative binomial probabilities
4. Find the mean and standard deviation of a binomial distribution
When you flip a coin, there are two possible outcomes: heads and tails. Each 
outcome has a fixed probability, the same from trial to trial. In the case of coins, 
heads and tails each have the same probability of 1/2. More generally, there are 
situations in which the coin is biased, so that heads and tails have different 
probabilities. In the present section, we consider probability distributions for which 
there are just two possible outcomes with fixed probabilities summing to one. 
These distributions are called binomial distributions.

A Simple Example 
The four possible outcomes that could occur if you flipped a coin twice are listed 
below in Table 1. Note that the four outcomes are equally likely: each has 
probability 1/4. To see this, note that the tosses of the coin are independent (neither 
affects the other). Hence, the probability of a head on Flip 1 and a head on Flip 2 is 
the product of P(H) and P(H), which is 1/2 x 1/2 = 1/4. The same calculation 
applies to the probability of a head on Flip 1 and a tail on Flip 2. Each is 1/2 x 1/2 
= 1/4.

Table 1. Four Possible Outcomes.
Outcome First Flip Second Flip

1 Heads Heads

2 Heads Tails
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The four possible outcomes can be classified in terms of the number of heads that 
come up. The number could be two (Outcome 1), one (Outcomes 2 and 3) or 0 
(Outcome 4). The probabilities of these possibilities are shown in Table 2 and in 
Figure 1. Since two of the outcomes represent the case in which just one head 
appears in the two tosses, the probability of this event is equal to 1/4 + 1/4 = 1/2. 
Table 2 summarizes the situation.

Table 2. Probabilities of Getting 0, 1, or 2 Heads.

Figure 1. Probabilities of 0, 1, and 2 heads.
Figure 1 is a discrete probability distribution: It shows the probability for each of 
the values on the X-axis. Defining a head as a “success,” Figure 1 shows the 
probability of 0, 1, and 2 successes for two trials (flips) for an event that has a 

3 Tails Heads

4 Tails Tails

Number of Heads Probability

0 1/4

1 1/2

2 1/4

0

0.25

0.5

0 1 2

Pr
o
b
ab
ili
ty

Number3of3Heads
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probability of 0.5 of being a success on each trial. This makes Figure 1 an example 
of a binomial distribution.

The Formula for Binomial Probabilities 
The binomial distribution consists of the probabilities of each of the possible 
numbers of successes on N trials for independent events that each have a 
probability of π (the Greek letter pi) of occurring. For the coin flip example, N = 2 
and π = 0.5. The formula for the binomial distribution is shown below:

where P(x) is the probability of x successes out of N trials, N is the number of 
trials, and π is the probability of success on a given trial. Applying this to the coin 
flip example,

If you flip a coin twice, what is the probability of getting one or more heads? Since 
the probability of getting exactly one head is 0.50 and the probability of getting 
exactly two heads is 0.25, the probability of getting one or more heads is 0.50 + 
0.25 = 0.75.

Now suppose that the coin is biased. The probability of heads is only 0.4. 
What is the probability of getting heads at least once in two tosses? Substituting 
into the general formula above, you should obtain the answer .64.

Cumulative Probabilities 
We toss a coin 12 times. What is the probability that we get from 0 to 3 heads? The 
answer is found by computing the probability of exactly 0 heads, exactly 1 head, 
exactly 2 heads, and exactly 3 heads. The probability of getting from 0 to 3 heads 
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is then the sum of these probabilities. The probabilities are: 0.0002, 0.0029, 
0.0161, and 0.0537. The sum of the probabilities is 0.073. The calculation of 
cumulative binomial probabilities can be quite tedious. Therefore we have 
provided a binomial calculator (external link; requires Java)to make it easy to 
calculate these probabilities.

Mean and Standard Deviation of Binomial Distributions 
Consider a coin-tossing experiment in which you tossed a coin 12 times and 
recorded the number of heads. If you performed this experiment over and over 
again, what would the mean number of heads be? On average, you would expect 
half the coin tosses to come up heads. Therefore the mean number of heads would 
be 6. In general, the mean of a binomial distribution with parameters N (the 
number of trials) and π (the probability of success on each trial) is:

µ = Nπ 

where μ is the mean of the binomial distribution. The variance of the binomial 
distribution is:

σ2 = Nπ(1-π) 

where σ2 is the variance of the binomial distribution.
Let's return to the coin-tossing experiment. The coin was tossed 12 times, so 

N = 12. A coin has a probability of 0.5 of coming up heads. Therefore, π = 0.5. The 
mean and variance can therefore be computed as follows:

 µ = Nπ = (12)(0.5) = 6 
σ2 = Nπ(1-π) = (12)(0.5)(1.0 - 0.5) = 3.0. 

Naturally, the standard deviation (σ) is the square root of the variance (σ2).
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Poisson Distribution 
by David M. Lane 

Prerequisites
• Chapter 1: Logarithms

The Poisson distribution can be used to calculate the probabilities of various 
numbers of “successes” based on the mean number of successes. In order to apply 
the Poisson distribution, the various events must be independent. Keep in mind that 
the term “success” does not really mean success in the traditional positive sense. It 
just means that the outcome in question occurs.

Suppose you knew that the mean number of calls to a fire station on a 
weekday is 8. What is the probability that on a given weekday there would be 11 
calls? This problem can be solved using the following formula based on the 
Poisson distribution:

 

 e is the base of natural logarithms (2.7183) 
µ is the mean number of “successes” 
x is the number of “successes” in question 

For this example,

 

since the mean is 8 and the question pertains to 11 fires.
The mean of the Poisson distribution is μ. The variance is also equal to μ. 

Thus, for this example, both the mean and the variance are equal to 8.
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Multinomial Distribution 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Variability
• Chapter 5: Basic Probability
• Chapter 5: Binomial Distribution

Learning Objectives
1. Define multinomial outcomes
2. Compute probabilities using the multinomial distribution

The binomial distribution allows one to compute the probability of obtaining a 
given number of binary outcomes. For example, it can be used to compute the 
probability of getting 6 heads out of 10 coin flips. The flip of a coin is a binary 
outcome because it has only two possible outcomes: heads and tails. The 
multinomial distribution can be used to compute the probabilities in situations in 
which there are more than two possible outcomes. For example, suppose that two 
chess players had played numerous games and it was determined that the 
probability that Player A would win is 0.40, the probability that Player B would 
win is 0.35, and the probability that the game would end in a draw is 0.25. The 
multinomial distribution can be used to answer questions such as: “If these two 
chess players played 12 games, what is the probability that Player A would win 7 
games, Player B would win 2 games, and the remaining 3 games would be 
drawn?” The following formula gives the probability of obtaining a specific set of 
outcomes when there are three possible outcomes for each event: 

 

where

 p is the probability, 
n is the total number of events 

p=
(n1!)(n2!)(n3!)

n! p1n1p2
n2p3

n3
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n1 is the number of times Outcome 1 occurs, 
n2 is the number of times Outcome 2 occurs, 
n3 is the number of times Outcome 3 occurs, 
p1 is the probability of Outcome 1 
p2 is the probability of Outcome 2, and 
p3 is the probability of Outcome 3. 

For the chess example,

 n  = 12 (12 games are played), 
n1 = 7 (number won by Player A), 
n2 = 2 (number won by Player B), 
n3 = 3 (the number drawn), 
p1 = 0.40 (probability Player A wins) 
p2 = 0.35(probability Player B wins) 
p3 = 0.25(probability of a draw) 

 

The formula for k outcomes is: 

 

p=
(7!) (2!)(3!)
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Hypergeometric Distribution 
by David M. Lane 

Prerequisites
• Chapter 5: Binomial Distribution
• Chapter 5: Permutations and Combinations

The hypergeometric distribution is used to calculate probabilities when sampling 
without replacement. For example, suppose you first randomly sample one card 
from a deck of 52. Then, without putting the card back in the deck you sample a 
second and then (again without replacing cards) a third. Given this sampling 
procedure, what is the probability that exactly two of the sampled cards will be 
aces (4 of the 52 cards in the deck are aces). You can calculate this probability 
using the following formula based on the hypergeometric distribution: 
 

 

where

 k is the number of “successes” in the 
population 
x is the number of “successes” in the sample 
N is the size of the population 
n is the number sampled 
p is the probability of obtaining exactly x 
successes 
kCx is the number of combinations of k things 
taken x at a time 

In this example, k = 4 because there are four aces in the deck, x = 2 because the 
problem asks about the probability of getting two aces, N = 52 because there are 52 
cards in a deck, and n = 3 because 3 cards were sampled. Therefore,
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The mean and standard deviation of the hypergeometric distribution are:
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Base Rates 
by David M. Lane 

Prerequisites
• Chapter 5: Basic Concepts 

Learning Objectives
1. Compute the probability of a condition from hits, false alarms, and base rates 

using a tree diagram
2. Compute the probability of a condition from hits, false alarms, and base rates 

using Bayes' Theorem
Suppose that at your regular physical exam you test positive for Disease X. 
Although Disease X has only mild symptoms, you are concerned and ask your 
doctor about the accuracy of the test. It turns out that the test is 95% accurate. It 
would appear that the probability that you have Disease X is therefore 0.95. 
However, the situation is not that simple.

For one thing, more information about the accuracy of the test is needed 
because there are two kinds of errors the test can make: misses and false positives. 
If you actually have Disease X and the test failed to detect it, that would be a miss. 
If you did not have Disease X and the test indicated you did, that would be a false 
positive. The miss and false positive rates are not necessarily the same. For 
example, suppose that the test accurately indicates the disease in 99% of the people 
who have it and accurately indicates no disease in 91% of the people who do not 
have it. In other words, the test has a miss rate of 0.01 and a false positive rate of 
0.09. This might lead you to revise your judgment and conclude that your chance 
of having the disease is 0.91. This would not be correct since the probability 
depends on the proportion of people having the disease. This proportion is called 
the base rate.

Assume that Disease X is a rare disease, and only 2% of people in your 
situation have it. How does that affect the probability that you have it? Or, more 
generally, what is the probability that someone who tests positive actually has the 
disease? Let's consider what would happen if one million people were tested. Out 
of these one million people, 2% or 20,000 people would have the disease. Of these 
20,000 with the disease, the test would accurately detect it in 99% of them. This 
means that 19,800 cases would be accurately identified. Now let's consider the 
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98% of the one million people (980,000) who do not have the disease. Since the 
false positive rate is 0.09, 9% of these 980,000 people will test positive for the 
disease. This is a total of 88,200 people incorrectly diagnosed.

To sum up, 19,800 people who tested positive would actually have the 
disease and 88,200 people who tested positive would not have the disease. This 
means that of all those who tested positive, only

19,800/(19,800 + 88,200) = 0.1833 

of them would actually have the disease. So the probability that you have the 
disease is not 0.95, or 0.91, but only 0.1833.

These results are summarized in Table 1. The numbers of people diagnosed 
with the disease are shown in red. Of the one million people tested, the test was 
correct for 891,800 of those without the disease and for 19,800 with the disease; 
the test was correct 91% of the time. However, if you look only at the people 
testing positive (shown in red), only 19,800 (0.1833) of the 88,200 + 19,800 = 
108,000 testing positive actually have the disease.

Table 1. Diagnosing Disease X.

Bayes' Theorem 
This same result can be obtained using Bayes' theorem. Bayes' theorem considers 
both the prior probability of an event and the diagnostic value of a test to determine 
the posterior probability of the event. For the current example, the event is that you 
have Disease X. Let's call this Event D. Since only 2% of people in your situation 
have Disease X, the prior probability of Event D is 0.02. Or, more formally, P(D) = 
0.02. If D' represents the probability that Event D is false, then P(D') = 1 - P(D) = 
0.98.

True Condition

No Disease 
980,000

Disease 
20,000

Test Result Test Result

Positive 
88,200

Negative 
891,800

Positive 
19,800

Negative 
200
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To define the diagnostic value of the test, we need to define another event: 
that you test positive for Disease X. Let's call this Event T. The diagnostic value of 
the test depends on the probability you will test positive given that you actually 
have the disease, written as P(T|D), and the probability you test positive given that 
you do not have the disease, written as P(T|D'). Bayes' theorem shown below 
allows you to calculate P(D|T), the probability that you have the disease given that 
you test positive for it.

The various terms are:

 P(T|D)  = 0.99 
P(T|D') = 0.09 
P(D)    = 0.02 
P(D')   = 0.98 

Therefore,

which is the same value computed previously.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 5: Base Rates

This webpage gives the FBI list of warning signs for school shooters.
 
What do you think?
Do you think it is likely that someone showing a majority of these signs would 
actually shoot people in school?

Fortunately the vast majority of  students do not become 
shooters. It is necessary to take this base rate information into 
account in order to compute the probability that any given 
student will be a shooter. The warning signs are unlikely to be 
sufficiently predictive to warrant the conclusion that a student 
will become a shooter. If  an action is taken on the basis of  these 
warning signs, it is likely that the student involved would never 
have become a shooter even without the action. 
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Exercises 

Prerequisites
• All material presented in the Probability Chapter

1. (a) What is the probability of rolling a pair of dice and obtaining a total score of 
9 or more? (b) What is the probability of rolling a pair of dice and obtaining a 
total score of 7?

2. A box contains four black pieces of cloth, two striped pieces, and six dotted 
pieces. A piece is selected randomly and then placed back in the box. A second 
piece is selected randomly. What is the probability that:
a. both pieces are dotted? 
b. the first piece is black and the second piece is dotted? 
c. one piece is black and one piece is striped?

3. A card is drawn at random from a deck. (a) What is the probability that it is an 
ace or a king? (b) What is the probability that it is either a red card or a black 
card?

4. The probability that you will win a game is 0.45. (a) If you play the game 80 
times, what is the most likely number of wins? (b) What are the mean and 
variance of a binomial distribution with p = 0.45 and N = 80?

5. A fair coin is flipped 9 times. What is the probability of getting exactly 6 heads?

6.When Susan and Jessica play a card game, Susan wins 60% of the time. If they 
play 9 games, what is the probability that Jessica will have won more games than 
Susan?

7.You flip a coin three times. (a) What is the probability of getting heads on only 
one of your flips? (b) What is the probability of getting heads on at least one flip?

8. A test correctly identifies a disease in 95% of people who have it. It correctly 
identifies no disease in 94% of people who do not have it. In the population, 3% 
of the people have the disease. What is the probability that you have the disease 
if you tested positive?
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9. A jar contains 10 blue marbles, 5 red marbles, 4 green marbles, and 1 yellow 
marble. Two marbles are chosen (without replacement). (a) What is the 
probability that one will be green and the other red? (b) What is the probability 
that one will be blue and the other yellow?

10. You roll a fair die five times, and you get a 6 each time. What is the probability 
that you get a 6 on the next roll?

11. You win a game if you roll a die and get a 2 or a 5. You play this game 60 
times. 
a. What is the probability that you win between 5 and 10 times (inclusive)? 
b. What is the probability that you will win the game at least 15 times?
 c. What is the probability that you will win the game at least 40 times?
d. What is the most likely number of wins. 
e. What is the probability of obtaining the number of wins in d? 
Explain how you got each answer or show your work.

12. In a baseball game, Tommy gets a hit 30% of the time when facing this pitcher. 
Joey gets a hit 25% of the time. They are both coming up to bat this inning.
a. What is the probability that Joey or Tommy will get a hit? 
b. What is the probability that neither player gets a hit? 
c. What is the probability that they both get a hit?

13. An unfair coin has a probability of coming up heads of 0.65. The coin is flipped 
50 times. What is the probability it will come up heads 25 or fewer times? 
(Give answer to at least 3 decimal places).

14.You draw two cards from a deck, what is the probability that: 
a. both of them are face cards (king, queen, or jack)?
b. you draw two cards from a deck and both of them are hearts?

15. True/False: You are more likely to get a pattern of HTHHHTHTTH than 
HHHHHHHHTT when you flip a coin 10 times.
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16. True/False: Suppose that at your regular physical exam you test positive for a 
relatively rare disease. You will need to start taking medicine if you have the 
disease, so you ask your doc- tor about the accuracy of the test. It turns out that 
the test is 98% accurate. The probability that you have Disease X is therefore 
0.98 and the probability that you do not have it is .02. Explain your answer.

Questions from Case Studies

Diet and Health (DH) case study

17. (DH)
a. What percentage of people on the AHA diet had some sort of illness or 
death?
b. What is the probability that if you randomly selected a person on the AHA 
diet, he or she would have some sort of illness or death?
c. If 3 people on the AHA diet are chosen at random, what is the probability 
that they will all be healthy?

18. (DH)
a. What percentage of people on the Mediterranean diet had some sort of 
illness or death?
b. What is the probability that if you randomly selected a person on the 
Mediterranean diet, he or she would have some sort of illness or death?
c. What is the probability that if you randomly selected a person on the 
Mediterranean diet, he or she would have cancer?
d. If you randomly select five people from the Mediterranean diet, what is the 
probability that they would all be healthy?

The following questions are from ARTIST (reproduced with permission)

218



19. Five faces of a fair die are painted black, and one face is painted white. The die 
is rolled six times. Which of the following results is more likely?
a. Black side up on five of the rolls; white side up on the other roll 
b. Black side up on all six rolls 
c. a and b are equally likely

20. One of the items on the student survey for an introductory statistics course was 
“Rate your intelligence on a scale of 1 to 10.” The distribution of this variable 
for the 100 women in the class is presented below. What is the probability of 
randomly selecting a woman from the class who has an intelligence rating that 
is LESS than seven (7)?

a. (12 + 24)/100 = .36 
b. (12 + 24 + 38)/100 = .74 
c. 38/100 = .38 
d. (23 + 2 + 1)/100 = .26 
e. None of the above.

21. You roll 2 fair six-sided dice. Which of the following outcomes is most likely 
to occur on the next roll? A. Getting double 3. B. Getting a 3 and a 4. C. They 
are equally likely. Explain your choice.
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22. If Tahnee flips a coin 10 times, and records the results (Heads or Tails), which 
outcome below is more likely to occur, A or B? Explain your choice.

23. A bowl has 100 wrapped hard candies in it. 20 are yellow, 50 are red, and 30 
are blue. They are well mixed up in the bowl. Jenny pulls out a handful of 10 
candies, counts the number of reds, and tells her teacher. The teacher writes the 
number of red candies on a list. Then, Jenny puts the candies back into the 
bowl, and mixes them all up again. Four of Jenny’s classmates, Jack, Julie, 
Jason, and Jerry do the same thing. They each pick ten candies, count the reds, 
and the teacher writes down the number of reds. Then they put the candies 
back and mix them up again each time. The teacher’s list for the number of 
reds is most likely to be (please select one):
a. 8,9,7,10,9 
b. 3,7,5,8,5 
c. 5,5,5,5,5 
d. 2,4,3,4,3 
e. 3,0,9,2,8

24. An insurance company writes policies for a large number of newly-licensed 
drivers each year. Suppose 40% of these are low-risk drivers, 40% are 
moderate risk, and 20% are high risk. The company has no way to know which 
group any individual driver falls in when it writes the policies. None of the 
low-risk drivers will have an at-fault accident in the next year, but 10% of the 
moderate-risk and 20% of the high-risk drivers will have such an accident. If a 
driver has an at-fault accident in the next year, what is the probability that he or 
she is high-risk?

25. You are to participate in an exam for which you had no chance to study, and for 
that reason cannot do anything but guess for each question (all questions being 
of the multiple choice type, so the chance of guessing the correct answer for 
each question is 1/d, d being the number of options (distractors) per question; 
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so in case of a 4-choice question, your guess chance is 0.25). Your instructor 
offers you the opportunity to choose amongst the following exam formats: I. 6 
questions of the 4-choice type; you pass when 5 or more answers are correct; 
II. 5 questions of the 5-choice type; you pass when 4 or more answers are 
correct; III. 4 questions of the 10-choice type; you pass when 3 or more 
answers are correct. Rank the three exam formats according to their 
attractiveness. It should be clear that the format with the highest probability to 
pass is the most attractive format. Which would you choose and why?

26. Consider the question of whether the home team wins more than half of its 
games in the National Basketball Association. Suppose that you study a simple 
random sample of 80 professional basketball games and find that 52 of them 
are won by the home team.
a. Assuming that there is no home court advantage and that the home team 
therefore wins 50% of its games in the long run, determine the probability that 
the home team would win 65% or more of its games in a simple random 
sample of 80 games.
b. Does the sample information (that 52 of a random sample of 80 games are 
won by the home team) provide strong evidence that the home team wins more 
than half of its games in the long run? Explain.

27. A refrigerator contains 6 apples, 5 oranges, 10 bananas, 3 pears, 7 peaches, 11 
plums, and 2 mangos.
a. Imagine you stick your hand in this refrigerator and pull out a piece of fruit 
at random. What is the probability that you will pull out a pear?
b. Imagine now that you put your hand in the refrigerator and pull out a piece 
of fruit. You decide you do not want to eat that fruit so you put it back into the 
refrigerator and pull out another piece of fruit. What is the probability that the 
first piece of fruit you pull out is a banana and the second piece you pull out is 
an apple?
c. What is the probability that you stick your hand in the refrigerator one time 
and pull out a mango or an orange?
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6. Research Design 
A.  Scientific Method
B.  Measurement
C.  Basics of Data Collection
D.  Sampling Bias
E.  Experimental Designs
F.  Causation
G.  Exercises 
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Scientific Method 
by David M. Lane

Prerequisites
• none 
This section contains a brief discussion of the most important principles of the 
scientific method. A thorough treatment of the philosophy of science is beyond the 
scope of this work.

One of the hallmarks of the scientific method is that it depends on empirical 
data. To be a proper scientific investigation, the data must be collected 
systematically. However, scientific investigation does not necessarily require 
experimentation in the sense of manipulating variables and observing the results. 
Observational studies in the fields of astronomy, developmental psychology, and 
ethology are common and provide valuable scientific information.

Theories and explanations are very important in science. Theories in science 
can never be proved since one can never be 100% certain that a new empirical 
finding inconsistent with the theory will never be found.

Scientific theories must be potentially disconfirmable. If a theory can 
accommodate all possible results then it is not a scientific theory. Therefore, a 
scientific theory should lead to testable hypotheses. If a hypothesis is disconfirmed, 
then the theory from which the hypothesis was deduced is incorrect. For example, 
the secondary reinforcement theory of attachment states that an infant becomes 
attached to its parent by means of a pairing of the parent with a primary reinforcer 
(food). It is through this “secondary reinforcement” that the child-parent bond 
forms. The secondary reinforcement theory has been disconfirmed by numerous 
experiments. Perhaps the most notable is one in which infant monkeys were fed by 
a surrogate wire mother while a surrogate cloth mother was available. The infant 
monkeys formed no attachment to the wire monkeys and frequently clung to the 
cloth surrogate mothers (Harlow, 1958).

If a hypothesis derived from a theory is confirmed, then the theory has 
survived a test and it becomes more useful and better thought of by the researchers 
in the field. A theory is not confirmed when correct hypotheses are derived from it.

A key difference between scientific explanations and faith-based 
explanations is simply that faith-based explanations are based on faith and do not 
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need to be testable. This does not mean that an explanation that cannot be tested is 
incorrect in some cosmic sense. It just means that it is not a scientific explanation.

The method of investigation in which a hypothesis is developed from a 
theory and then confirmed or disconfirmed involves deductive reasoning. However, 
deductive reasoning does not explain where the theory came from in the first place. 
In general, a theory is developed by a scientist who is aware of many empirical 
findings on a topic of interest. Then, through a generally poorly understood process 
called “induction,” the scientist develops a way to explain all or most of the 
findings within a relatively simple framework or theory.

An important attribute of a good scientific theory is that it is parsimonious. 
That is, that it is simple in the sense that it uses relatively few constructs to explain 
many empirical findings. A theory that is so complex that it has as many 
assumptions as it has predictions is not very valuable.

Although strictly speaking, disconfirming an hypothesis deduced from a 
theory disconfirms the theory, it rarely leads to the abandonment of the theory. 
Instead, the theory will probably be modified to accommodate the inconsistent 
finding. If the theory has to be modified over and over to accommodate new 
findings, the theory generally becomes less and less parsimonious. This can lead to 
discontent with the theory and the search for a new theory. If a new theory is 
developed that can explain the same facts in a more parsimonious way, then the 
new theory will eventually supersede the old theory.
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Measurement 
by David M. Lane 

Prerequisites
• Values of Pearson's Correlation
• Variance Sum Law
• Chapter 3: Measures of Variability

Learning Objectives

1. Define reliability
2. Describe reliability in terms of true scores and error
3. Compute reliability from the true score and error variance
4. Define the standard error of measurement and state why it is valuable
5. State the effect of test length on reliability
6. Distinguish between reliability and validity
7. Define three types of validity
8. State the how reliability determines the upper limit to validity
 
The measurement of psychological attributes such as self-esteem can be complex. 
A good measurement scale should be both reliable and valid. These concepts will 
be discussed in turn.

Reliability 
The notion of reliability revolves around whether you would get at least 
approximately the same result if you measure something twice with the same 
measurement instrument. A common way to define reliability is the correlation 
between parallel forms of a test. Letting “test” represent a parallel form of the test, 
the symbol rtest,test is used to denote the reliability of the test.

True Scores and Error 
Assume you wish to measure a person's mean response time to the onset of a 
stimulus. For simplicity, assume that there is no learning over tests which, of 
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course, is not really true. The person is given 1,000 trials on the task and you 
obtain the response time on each trial.

The mean response time over the 1,000 trials can be thought of as the 
person's “true” score, or at least a very good approximation of it. Theoretically, the 
true score is the mean that would be approached as the number of trials increases 
indefinitely.

An individual response time can be thought of as being composed of two 
parts: the true score and the error of measurement. Thus if the person's true score 
were 345 and their response on one of the trials were 358, then the error of 
measurement would be 13. Similarly, if the response time were 340, the error of 
measurement would be -5.

Now consider the more realistic example of a class of students taking a 100-
point true/false exam. Let's assume that each student knows the answer to some of 
the questions and has no idea about the other questions. For the sake of simplicity, 
we are assuming there is no partial knowledge of any of the answers and for a 
given question a student either knows the answer or guesses. Finally, assume the 
test is scored such that a student receives one point for a correct answer and loses a 
point for an incorrect answer. In this example, a student's true score is the number 
of questions they know the answer to and their error score is their score on the 
questions they guessed on. For example, assume a student knew 90 of the answers 
and guessed correctly on 7 of the remaining 10 (and therefore incorrectly on 3). 
Their true score would be 90 since that is the number of answers they knew. Their 
error score would be 7 - 3 = 4 and therefore their actual test score would be 90 + 4.

Every test score can be thought of as the sum of two independent 
components, the true score and the error score. This can be written as:

 

The following expression follows directly from the Variance Sum Law:

 

Reliability in Terms of True Scores and Error

It can be shown that the reliability of a test, rtest,test, is the ratio of true-score 
variance to test-score variance. This can be written as:
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It is important to understand the implications of the role the variance of true scores 
plays in the definition of reliability: If a test were given in two populations for 
which the variance of the true scores differed, the reliability of the test would be 
higher in the population with the higher true-score variance. Therefore, reliability 
is not a property of a test per se but the reliability of a test in a given population.

Assessing Error of Measurement 
The reliability of a test does not show directly how close the test scores are to the 
true scores. That is, it does not reveal how much a person's test score would vary 
across parallel forms of the test. By definition, the mean over a large number of 
parallel tests would be the true score. The standard deviation of a person's test 
scores would indicate how much the test scores vary from the true score. This 
standard deviation is called the standard error of measurement. In practice, it is not 
practical to give a test over and over to the same person and/or assume that there 
are no practice effects. Instead, the following formula is used to estimate the 
standard error of measurement.

 

where smeasurement is the standard error of measurement, stest is the standard deviation 
of the test scores, and rtest,test is the reliability of the test. Taking the extremes, if the 
reliability is 0, then the standard error of measurement is equal to the standard 
deviation of the test; if the reliability is perfect (1.0) then the standard error of 
measurement is 0.

Increasing Reliability 
It is important to make measures as reliable as is practically possible. Suppose an 
investigator is studying the relationship between spatial ability and a set of other 
variables. The higher the reliability of the test of spatial ability, the higher the 
correlations will be. Similarly, if an experimenter seeks to determine whether a 
particular exercise regiment decreases blood pressure, the higher the reliability of 
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the measure of blood pressure, the more sensitive the experiment. More precisely, 
the higher the reliability the higher the power of the experiment. Power is covered 
in detail in Chapter 13. Finally, if a test is being used to select students for college 
admission or employees for jobs, the higher the reliability of the test the stronger 
will be the relationship to the criterion.

Two basic ways of increasing reliability are (1) to improve the quality of the 
items and (2) to increase the number of items. Items that are either too easy so that 
almost everyone gets them correct or too difficult so that almost no one gets them 
correct are not good items: they provide very little information. In most contexts, 
items which about half the people get correct are the best (other things being 
equal).

Items that do not correlate with other items can usually be improved. 
Sometimes the item is confusing or ambiguous.

Increasing the number of items increases reliability in the manner shown by 
the following formula:

 

where k is the factor by which the test length is increased, rnew,new is the reliability 
of the new longer test, and rtest,test is the current reliability. For example, if a test 
with 50 items has a reliability of .70 then the reliability of a test that is 1.5 times 
longer (75 items) would be calculated as follows

 

which equals 0.78. Thus increasing the number of items from 50 to 75 would 
increase the reliability from 0.70 to 0.78.

It is important to note that this formula assumes the new items have the same 
characteristics as the old items. Obviously adding poor items would not increase 
the reliability as expected and might even decrease the reliability.
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Validity 
The validity of a test refers to whether the test measures what it is supposed to 
measure. The three most common types of validity are face validity, empirical 
validity, and construct validity. We consider these types of validity below.

Face Validity 
A test's face validity refers to whether the test appears to measure what it is 
supposed to measure. That is, does the test “on its face” appear to measure what it 
is supposed to be measuring. An Asian history test consisting of a series of 
questions about Asian history would have high face validity. If the test included 
primarily questions about American history then it would have little or no face 
validity as a test of Asian history.

Predictive Validity 
Predictive validity (sometimes called empirical validity) refers to a test's ability to 
predict a relevant behavior. For example, the main way in which SAT tests are 
validated is by their ability to predict college grades. Thus, to the extent these tests 
are successful at predicting college grades they are said to possess predictive 
validity.

Construct Validity 
Construct validity is more difficult to define. In general, a test has construct 
validity if its pattern of correlations with other measures is in line with the 
construct it is purporting to measure. Construct validity can be established by 
showing a test has both convergent and divergent validity. A test has convergent 
validity if it correlates with other tests that are also measures of the construct in 
question. Divergent validity is established by showing the test does not correlate 
highly with tests of other constructs. Of course, some constructs may overlap so 
the establishment of convergent and divergent validity can be complex.

To take an example, suppose one wished to establish the construct validity of 
a new test of spatial ability. Convergent and divergent validity could be established 
by showing the test correlates relatively highly with other measures of spatial 
ability but less highly with tests of verbal ability or social intelligence.
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Reliability and Predictive Validity 
The reliability of a test limits the size of the correlation between the test and other 
measures. In general, the correlation of a test with another measure will be lower 
than the test's reliability. After all, how could a test correlate with something else as 
high as it correlates with a parallel form of itself? Theoretically it is possible for a 
test to correlate as high as the square root of the reliability with another measure. 
For example, if a test has a reliability of 0.81 then it could correlate as high as 0.90 
with another measure. This could happen if the other measure were a perfectly 
reliable test of the same construct as the test in question. In practice, this is very 
unlikely.

A correlation above the upper limit set by reliabilities can act as a red flag. 
For example, Vul, Harris, Winkielman, and Paschler (2009) found that in many 
studies the correlations between various fMRI activation patterns and personality 
measures were higher than their reliabilities would allow. A careful examination of 
these studies revealed serious flaws in the way the data were analyzed.
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Basics of  Data Collection 
by Heidi Zeimer 

Prerequisites
• None

Learning Objectives

1. Describe how a variable such as height should be recorded
2. Choose a good response scale for a questionnaire
Most statistical analyses require that your data be in numerical rather than verbal 
form (you can’t punch letters into your calculator). Therefore, data collected in 
verbal form must be coded so that it is represented by numbers. To illustrate, 
consider the data in Table 1.

Table 1. Example Data

Can you conduct statistical analyses on the above data or must you re-code it in 
some way? For example, how would you go about computing the average height of 
the 5 students. You cannot enter students’ heights in their current form into a 
statistical program -- the computer would probably give you an error message 
because it does not understand notation such as 5’4”. One solution is to change all 
the numbers to inches. So, 5’4” becomes (5 x 12 ) + 4 = 64, and 6’1” becomes (6 x 
12 ) + 1 = 73, and so forth. In this way, you are converting height in feet and inches 
to simply height in inches. From there, it is very easy to ask a statistical program to 
calculate the mean height in inches for the 5 students.

Student 
Name

Hair 
Color

Gender Major Height Computer
Experience

Norma Brown Female Psychology 5’4” Lots

Amber Blonde Female Social Science 5’7” Very little

Paul Blonde Male History 6’1” Moderate

Christopher Black Male Biology 5’10” Lots

Sonya Brown Female Psychology 5’4” Little
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You may ask, “Why not simply ask subjects to write their height in inches in 
the first place?” Well, the number one rule of data collection is to ask for 
information in such a way as it will be most accurately reported. Most people know 
their height in feet and inches and cannot quickly and accurately convert it into 
inches “on the fly.” So, in order to preserve data accuracy, it is best for researchers 
to make the necessary conversions.

Let’s take another example. Suppose you wanted to calculate the mean 
amount of computer experience for the five students shown in Table 1. One way 
would be to convert the verbal descriptions to numbers as shown in Table 2. Thus, 
“Very Little” would be converted to “1” and “Little” would be converted to “2.”

Table 2. Conversion of verbal descriptions to numbers

Measurement Examples 

Example #1: How much information should I record? 
Say you are volunteering at a track meet at your college, and your job is to record 
each runner’s time as they pass the finish line for each race. Their times are shown 
in large red numbers on a digital clock with eight digits to the right of the decimal 
point, and you are told to record the entire number in your tablet. Thinking eight 
decimal places is a bit excessive, you only record runners’ times to one decimal 
place. The track meet begins, and runner number one finishes with a time of 
22.93219780 seconds. You dutifully record her time in your tablet, but only to one 
decimal place, that is 22.9. Race number two finishes and you record 32.7 for the 
winning runner. The fastest time in Race number three is 25.6. Race number four 
winning time is 22.9, Race number five is…. But wait! You suddenly realize your 
mistake; you now have a tie between runner one and runner four for the title of 
Fastest Overall Runner! You should have recorded more information from the 
digital clock -- that information is now lost, and you cannot go back in time and 
record running times to more decimal places.

The point is that you should think very carefully about the scales and 
specificity of information needed in your research before you begin collecting data. 
If you believe you might need additional information later but are not sure, 

1 2 3 4 5
Very Little Little Moderate Lots Very Lots
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measure it; you can always decide to not use some of the data, or “collapse” your 
data down to lower scales if you wish, but you cannot expand your data set to 
include more information after the fact. In this example, you probably would not 
need to record eight digits to the right of the decimal point. But recording only one 
decimal digit is clearly too few.

Example #2 
Pretend for a moment that you are teaching five children in middle school (yikes!), 
and you are trying to convince them that they must study more in order to earn 
better grades. To prove your point, you decide to collect actual data from their 
recent math exams, and, toward this end, you develop a questionnaire to measure 
their study time and subsequent grades. You might develop a questionnaire which 
looks like the following:

1. Please write your name: ____________________________ 

2. Please indicate how much you studied for this math exam:  
     a lot……………moderate……….…….little 

3. Please circle the grade you received on the math exam:  
     A  B  C  D  F 

Given the above questionnaire, your obtained data might look like the following:

Eyeballing the data, it seems as if the children who studied more received better 
grades, but it’s difficult to tell. “Little,” “lots,” and “B,” are imprecise, qualitative 
terms. You could get more precise information by asking specifically how many 
hours they studied and their exact score on the exam. The data then might look as 
follows:

Name Amount Studied Grade

John Little C

Sally Moderate B

Alexander Lots A

Linda Moderate A

Thomas Little B

Name Hours studied % Correct
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Of course, this assumes the students would know how many hours they studied. 
Rather than trust the students' memories, you might ask them to keep a log of their 
study time as they study.

John 5 71

Sally 9 83

Alexander 13 97

Linda 12 91

Thomas 7 85
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Sampling Bias 
by David M. Lane 

Prerequisites
• Inferential Statistics (including sampling)

Learning Objectives

1. Recognize sampling bias
2. Distinguish among self-selection bias, undercoverage bias, and survivorship 

bias

Descriptions of various types of sampling such as simple random sampling and 
stratified random sampling are covered in the inferential statistics section of 
Chapter 1. This section discusses various types of sampling biases including self-
selection bias and survivorship bias. Examples of other sampling biases that are not 
easily categorized will also be given.

It is important to keep in mind that sampling bias refers to the method of 
sampling, not the sample itself. There is no guarantee that random sampling will 
result in a sample representative of the population just as not every sample 
obtained using a biased sampling method will be greatly non-representative of the 
population.

Self-Selection Bias 
Imagine that a university newspaper ran an ad asking for students to volunteer for a 
study in which intimate details of their sex lives would be discussed. Clearly the 
sample of students who would volunteer for such a study would not be 
representative of the students at the university. Similarly, an online survey about 
computer use is likely to attract people more interested in technology than is 
typical. In both of these examples, people who “self-select” themselves for the 
experiment are likely to differ in important ways from the population the 
experimenter wishes to draw conclusions about. Many of the admittedly “non-
scientific” polls taken on television or web sites suffer greatly from self-selection 
bias.
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A self-selection bias can result when the non-random component occurs 
after the potential subject has enlisted in the experiment. Considering again the 
hypothetical experiment in which subjects are to be asked intimate details of their 
sex lives, assume that the subjects did not know what the experiment was going to 
be about until they showed up. Many of the subjects would then likely leave the 
experiment resulting in a biased sample.

Undercoverage Bias 
A common type of sampling bias is to sample too few observations from a segment 
of the population. A commonly-cited example of undercoverage is the poll taken 
by the Literary Digest in 1936 that indicated that Landon would win an election 
against Roosevelt by a large margin when, in fact, it was Roosevelt who won by a 
large margin. A common explanation is that poorer people were undercovered 
because they were less likely to have telephones and that this group was more 
likely to support Roosevelt.

A detailed analysis by Squire (1988) showed that it was not just an 
undercoverage bias that resulted in the faulty prediction of the election results. He 
concluded that, in addition to the undercoverage described above, there was a 
nonresponse bias (a form of self-selection bias) such that those favoring Landon 
were more likely to return their survey than were those favoring Roosevelt.

Survivorship Bias 
Survivorship bias occurs when the observations recorded at the end of the 
investigation are a non-random set of those present at the beginning of the 
investigation. Gains in stock funds is an area in which survivorship bias often plays 
a role. The basic problem is that poorly-performing funds are often either 
eliminated or merged into other funds. Suppose one considers a sample of stock 
funds that exist in the present and then calculates the mean 10-year appreciation of 
those funds. Can these results be validly generalized to other stock funds of the 
same type? The problem is that the poorly-performing stock funds that are not still 
in existence (did not survive for 10 years) are not included. Therefore, there is a 
bias toward selecting better-performing funds. There is good evidence that this 
survivorship bias is substantial (Malkiel, 1995).

In World War II, the statistician Abraham Wald analyzed the distribution of 
hits from anti-aircraft fire on aircraft returning from missions. The idea was that 
this information would be useful for deciding where to place extra armor. A naive 
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approach would be to put armor at locations that were frequently hit to reduce the 
damage there. However, this would ignore the survivorship bias occurring because 
only a subset of aircraft return. Wald's approach was the opposite: if there were few 
hits in a certain location on returning planes, then hits in that location were likely 
to bring a plane down. Therefore, he recommended that locations without hits on 
the returning planes should be given extra armor. A detailed and mathematical 
description of Wald's work can be found in Mangel and Samaniego (1984.)
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Experimental Designs 
by David M. Lane 

Prerequisites
• Chapter 1: Variables

Learning Objectives

1. Distinguish between between-subject and within-subject designs
2. State the advantages of within-subject designs
3. Define “multi-factor design” and “factorial design”
4. Identify the levels of a variable in an experimental design
5. Describe when counterbalancing is used
There are many ways an experiment can be designed. For example, subjects can all 
be tested under each of the treatment conditions or a different group of subjects can 
be used for each treatment. An experiment might have just one independent 
variable or it might have several. This section describes basic experimental designs 
and their advantages and disadvantages.

Between-Subjects Designs 
In a between-subjects design, the various experimental treatments are given to 
different groups of subjects. For example, in the “Teacher Ratings” case study, 
subjects were randomly divided into two groups. Subjects were all told they were 
going to see a video of an instructor's lecture after which they would rate the 
quality of the lecture. The groups differed in that the subjects in one group were 
told that prior teaching evaluations indicated that the instructor was charismatic 
whereas subjects in the other group were told that the evaluations indicated the 
instructor was punitive. In this experiment, the independent variable is 
“Condition” and has two levels (charismatic teacher and punitive teacher). It is a 
between-subjects variable because different subjects were used for the two levels 
of the independent variable: subjects were in either the “charismatic teacher” or the 
“punitive teacher” condition. Thus the comparison of the charismatic-teacher 
condition with the punitive-teacher condition is a comparison between the subjects 
in one condition with the subjects in the other condition.
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The two conditions were treated exactly the same except for the instructions 
they received. Therefore, it would appear that any difference between conditions 
should be attributed to the treatments themselves. However, this ignores the 
possibility of chance differences between the groups. That is, by chance, the raters 
in one condition might have, on average, been more lenient than the raters in the 
other condition. Randomly assigning subjects to treatments ensures that all 
differences between conditions are chance differences; it does not ensure there will 
be no differences. The key question, then, is how to distinguish real differences 
from chance differences. The field of inferential statistics answers just this 
question. The inferential statistics applicable to testing the difference between the 
means of the two conditions covered in Chapter 12. Analyzing the data from this 
experiment reveals that the ratings in the charismatic-teacher condition were higher 
than those in the punitive-teacher condition. Using inferential statistics, it can be 
calculated that the probability of finding a difference as large or larger than the one 
obtained if the treatment had no effect is only 0.018. Therefore it seems likely that 
the treatment had an effect and it is not the case that all differences were chance 
differences.

Independent variables often have several levels. For example, in the “Smiles 
and Leniency” case study, the independent variable is “type of smile” and there are 
four levels of this independent variable: (1) false smile, (2) felt smile, (3) miserable 
smile, and (4) a neutral control. Keep in mind that although there are four levels, 
there is only one independent variable. Designs with more than one independent 
variable are considered next.

Multi-Factor Between-Subject Designs 
In the “Bias Against Associates of the Obese” experiment, the qualifications of 
potential job applicants were judged. Each applicant was accompanied by an 
associate. The experiment had two independent variables: the weight of the 
associate (obese or average) and the applicant's relationship to the associate (girl 
friend or acquaintance). This design can be described as an Associate's Weight (2) 
x Associate's Relationship (2) factorial design. The numbers in parentheses 
represent the number of levels of the independent variable. The design was a 
factorial design because all four combinations of associate's weight and associate's 
relationship were included. The dependent variable was a rating of the applicant's 
qualifications (on a 9-point scale).

239



If two separate experiments had been conducted, one to test the effect of 
Associate's Weight and one to test the effect of Associate's Relationship then there 
would be no way to assess whether the effect of Associate's Weight depended on 
the Associate's Relationship. One might imagine that the Associate's Weight would 
have a larger effect if the associate were a girl friend rather than merely an 
acquaintance. A factorial design allows this question to be addressed. When the 
effect of one variable does differ depending on the level of the other variable then 
it is said that there is an interaction between the variables.

Factorial designs can have three or more independent variables. In order to 
be a between-subjects design there must be a separate group of subjects for each 
combination of the levels of the independent variables.

Within-Subjects Designs 
A within-subjects design differs from a between-subjects design in that the same 
subjects perform at all levels of the independent variable. For example consider the 
“ADHD Treatment” case study. In this experiment, subjects diagnosed as having 
attention deficit disorder were each tested on a delay of gratification task after 
receiving methylphenidate (MPH). All subjects were tested four times, once after 
receiving one of the four doses. Since each subject was tested under each of the 
four levels of the independent variable “dose,” the design is a within-subjects 
design and dose is a within-subjects variable. Within-subjects designs are 
sometimes called repeated-measures designs.

Counterbalancing 
In a within-subject design it is important not to confound the order in which a task 
is performed with the experimental treatment. For example, consider the problem 
that would have occurred if, in the ADHD study, every subject had received the 
doses in the same order starting with the lowest and continuing to the highest. It is 
not unlikely that experience with the delay of gratification task would have an 
effect. If practice on this task leads to better performance, then it would appear that 
higher doses caused the better performance when, in fact, it was the practice that 
caused the better performance.

One way to address this problem is to counterbalance the order of 
presentations. In other words, subjects would be given the doses in different orders 
in such a way that each dose was given in each sequential position an equal 
number of times. An example of counterbalancing is shown in Table 1. 
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Table 1. Counterbalanced order for four subjects.

It should be kept in mind that counterbalancing is not a satisfactory solution if 
there are complex dependencies between which treatment precedes which and the 
dependent variable. In these cases, it is usually better to use a between-subjects 
design than a within-subjects design.

Advantage of Within-Subjects Designs 
An advantage of within-subjects designs is that individual differences in subjects' 
overall levels of performance are controlled. This is important because subjects 
invariably will differ greatly from one another. In an experiment on problem 
solving, some subjects will be better than others regardless of the condition they 
are in. Similarly, in a study of blood pressure some subjects will have higher blood 
pressure than others regardless of the condition. Within-subjects designs control 
these individual differences by comparing the scores of a subject in one condition 
to the scores of the same subject in other conditions. In this sense each subject 
serves as his or her own control. This typically gives within-subjects designs 
considerably more power than between-subjects designs. That is, this makes 
within-subjects designs more able to detect an effect of the independent variable 
than are between-subjects designs.

Within-subjects designs are often called “repeated-measures” designs since 
repeated measurements are taken for each subject. Similarly, a within-subject 
variable can be called a repeated-measures factor.

Complex Designs 
Designs can contain combinations of between-subject and within-subject variables. 
For example, the “Weapons and Aggression” case study has one between-subject 
variable (gender) and two within-subject variables (the type of priming word and 
the type of word to be responded to).

Subject 0 mg/kg .15 mg/kg .30 mg/kg .60 mg/kg

1 First Second Third Fourth

2 Second Third Fourth First

3 Third Fourth First Second

4 Fourth First Second Third
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Causation 
by David M. Lane 

Prerequisites
• Chapter 1: What are Statistics
• Chapter 3: Measures of Variability
• Chapter 4: Pearson's Correlation
• Chapter 6: Experimental Designs

Learning Objectives
1. Explain how experimentation allows causal inferences
2. Explain the role of unmeasured variables
3. Explain the “third-variable” problem
4. Explain how causation can be inferred in non-experimental designs
The concept of causation is a complex one in the philosophy of science. Since a 
full coverage of this topic is well beyond the scope of this text, we focus on two 
specific topics: (1) the establishment of causation in experiments and (2) the 
establishment of causation in non-experimental designs.

Establishing Causation in Experiments 
Consider a simple experiment in which subjects are sampled randomly from a 
population and then assigned randomly to either the experimental group or the 
control group. Assume the condition means on the dependent variable differed. 
Does this mean the treatment caused the difference?

To make this discussion more concrete, assume that the experimental group 
received a drug for insomnia, the control group received a placebo, and the 
dependent variable was the number of minutes the subject slept that night. An 
obvious obstacle to inferring causality is that there are many unmeasured variables 
that affect how many hours someone sleeps. Among them are how much stress the 
person is under, physiological and genetic factors, how much caffeine they 
consumed, how much sleep they got the night before, etc. Perhaps differences 
between the groups on these factors are responsible for the difference in the 
number of minutes slept.

At first blush it might seem that the random assignment eliminates 
differences in unmeasured variables. However, this is not the case. Random 

242



assignment ensures that differences on unmeasured variables are chance 
differences. It does not ensure that there are no differences. Perhaps, by chance, 
many subjects in the control group were under high stress and this stress made it 
more difficult to fall asleep. The fact that the greater stress in the control group was 
due to chance does not mean it could not be responsible for the difference between 
the control and the experimental groups. In other words, the observed difference in 
“minutes slept” could have been due to a chance difference between the control 
group and the experimental group rather than due to the drug's effect.

This problem seems intractable since, by definition, it is impossible to 
measure an “unmeasured variable” just as it is impossible to measure and control 
all variables that affect the dependent variable. However, although it is impossible 
to assess the effect of any single unmeasured variable, it is possible to assess the 
combined effects of all unmeasured variables. Since everyone in a given condition 
is treated the same in the experiment, differences in their scores on the dependent 
variable must be due to the unmeasured variables. Therefore, a measure of the 
differences among the subjects within a condition is a measure of the sum total of 
the effects of the unmeasured variables. The most common measure of differences 
is the variance. By using the within-condition variance to assess the effects of 
unmeasured variables, statistical methods determine the probability that these 
unmeasured variables could produce a difference between conditions as large or 
larger than the difference obtained in the experiment. If that probability is low, then 
it is inferred (that's why they call it inferential statistics) that the treatment had an 
effect and that the differences are not entirely due to chance. Of course, there is 
always some nonzero probability that the difference occurred by chance so total 
certainty is not a possibility.

Causation in Non-Experimental Designs 
It is almost a cliché that correlation does not mean causation. The main fallacy in 
inferring causation from correlation is called the “third-variable problem” and 
means that a third variable is responsible for the correlation between two other 
variables. An excellent example used by Li (1975) to illustrate this point is the 
positive correlation in Taiwan in the 1970's between the use of contraception and 
the number of electric appliances in one's house. Of course, using contraception 
does not induce you to buy electrical appliances or vice versa. Instead, the third 
variable of education level affects both.
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Does the possibility of a third-variable problem make it impossible to draw 
causal inferences without doing an experiment? One approach is to simply assume 
that you do not have a third-variable problem. This approach, although common, is 
not very satisfactory. However, be aware that the assumption of no third-variable 
problem may be hidden behind a complex causal model that contains sophisticated 
and elegant mathematics.

A better though, admittedly more difficult approach, is to find converging 
evidence. This was the approach taken to conclude that smoking causes cancer. 
The analysis included converging evidence from retrospective studies, prospective 
studies, lab studies with animals, and theoretical understandings of cancer causes.

A second problem is determining the direction of causality. A correlation 
between two variables does not indicate which variable is causing which. For 
example, Reinhart and Rogoff (2010) found a strong correlation between public 
debt and GDP growth. Although some have argued that public debt slows growth, 
most evidence supports the alternative that slow growth increases public debt.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 6: Causation

A low level of HDL have long been known to be a risk factor for heart disease. 
Taking niacin has been shown to increase HDL levels and has been recommended 
for patients with low levels of HDL. The assumption of this recommendation is 
that niacin causes HDL to increase thus causing a lower risk for heart disease.
 
What do you think?
What experimental design involving niacin would test whether the relationship 
between HDL and heart disease is causal?

You could randomly assign patients with low levels of  HDL to a 
condition in which they received niacin or to one in which they 
did not. A finding that niacin increased HDL without 
decreasing heart disease would cast doubt on the causal 
relationship. This is exactly what was found in a study 
conducted by the NIH. See the description of  the results here. 
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Exercises 

1. To be a scientific theory, the theory must be potentially ______________.
2. What is the difference between a faith-based explanation and a scientific 

explanation?
3. What does it mean for a theory to be parsimonious?
4. Define reliability in terms of parallel forms.
5. Define true score.
6. What is the reliability if the true score variance is 80 and the test score 

variance is 100?
7. What statistic relates to how close a score on one test will be to a score on a 

parallel form?
8. What is the effect of test length on the reliability of a test?
9. Distinguish between predictive validity and construct validity.
10. What is the theoretical maximum correlation of a test with a criterion if the 

test has a reliability of .81?
11. An experiment solicits subjects to participate in a highly stressful experiment. 

What type of sampling bias is likely to occur?
12. Give an example of survivorship bias not presented in this text.
13. Distinguish “between-subject” variables from “within-subjects” variables.
14. Of the variables “gender” and “trials,” which is likely to be a between-subjects 

variable and which a within-subjects variable?
15. Define interaction.
16. What is counterbalancing used for?
17. How does randomization deal with the problem of pre-existing differences 

between groups?
18. Give an example of the “third-variable problem” other than those in this text.
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7. Normal Distributions 
A. Introduction
B. History
C. Areas of Normal Distributions
D. Standard Normal
E. Exercises
Most of the statistical analyses presented in this book are based on the bell-shaped 
or normal distribution. The introductory section defines what it means for a 
distribution to be normal and presents some important properties of normal 
distributions. The interesting history of the discovery of the normal distribution is 
described in the second section. Methods for calculating probabilities based on the 
normal distribution are described in Areas of Normal Distributions.  A frequently 
used normal distribution is called the Standard Normal distribution and is 
described in the section with that name. The binomial distribution can be 
approximated by a normal distribution. The section Normal Approximation to the 
Binomial shows this approximation. 
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Introduction to Normal Distributions 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Central Tendency
• Chapter 3: Variability

Learning Objectives
1. Describe the shape of normal distributions
2. State 7 features of normal distributions
The normal distribution is the most important and most widely used distribution in 
statistics. It is sometimes called the “bell curve,” although the tonal qualities of 
such a bell would be less than pleasing. It is also called the “Gaussian curve” after 
the mathematician Karl Friedrich Gauss. As you will see in the section on the 
history of the normal distribution, although Gauss played an important role in its 
history, de Moivre first discovered the normal distribution.

Strictly speaking, it is not correct to talk about “the normal distribution” 
since there are many normal distributions. Normal distributions can differ in their 
means and in their standard deviations. Figure 1 shows three normal distributions. 
The green (left-most) distribution has a mean of -3 and a standard deviation of 0.5, 
the distribution in red (the middle distribution) has a mean of 0 and a standard 
deviation of 1, and the distribution in black (right-most) has a mean of 2 and a 
standard deviation of 3. These as well as all other normal distributions are 
symmetric with relatively more values at the center of the distribution and 
relatively few in the tails.
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Figure 1. Normal distributions differing in mean and standard deviation.

The density of the normal distribution (the height for a given value on the x-axis) is 
shown below. The parameters μ and σ are the mean and standard deviation, 
respectively, and define the normal distribution. The symbol e is the base of the 
natural logarithm and π is the constant pi.

Since this is a non-mathematical treatment of statistics, do not worry if this 
expression confuses you. We will not be referring back to it in later sections.

Seven features of normal distributions are listed below. These features are 
illustrated in more detail in the remaining sections of this chapter.
1. Normal distributions are symmetric around their mean.
2. The mean, median, and mode of a normal distribution are equal.
3. The area under the normal curve is equal to 1.0.
4. Normal distributions are denser in the center and less dense in the tails.
5. Normal distributions are defined by two parameters, the mean (μ) and the 

standard deviation (σ).
6. 68% of the area of a normal distribution is within one standard deviation of the 

mean.
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7. Approximately 95% of the area of a normal distribution is within two standard 
deviations of the mean.
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History of  the Normal Distribution 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Central Tendency
• Chapter 3: Variability
• Chapter 5: Binomial Distribution

Learning Objectives

1. Name the person who discovered the normal distribution and state the problem 
he applied it to

2. State the relationship between the normal and binomial distributions
3. State who related the normal distribution to errors
4. Describe briefly the central limit theorem
5. State who was the first to prove the central limit theorem
In the chapter on probability, we saw that the binomial distribution could be used 
to solve problems such as “If a fair coin is flipped 100 times, what is the 
probability of getting 60 or more heads?” The probability of exactly x heads out of 
N flips is computed using the formula:

 

 

where x is the number of heads (60), N is the number of flips (100), and π is the 
probability of a head (0.5). Therefore, to solve this problem, you compute the 
probability of 60 heads, then the probability of 61 heads, 62 heads, etc., and add up 
all these probabilities. Imagine how long it must have taken to compute binomial 
probabilities before the advent of calculators and computers.

Abraham de Moivre, an 18th century statistician and consultant to gamblers, 
was often called upon to make these lengthy computations. de Moivre noted that 
when the number of events (coin flips) increased, the shape of the binomial 
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distribution approached a very smooth curve. Binomial distributions for 2, 4, 12, 
and 24 flips are shown in Figure 1.

Figure 1. Examples of binomial distributions. The heights of the blue bars 
represent the probabilities.

de Moivre reasoned that if he could find a mathematical expression for this curve, 
he would be able to solve problems such as finding the probability of 60 or more 
heads out of 100 coin flips much more easily. This is exactly what he did, and the 
curve he discovered is now called the “normal curve.”
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Figure 2. The normal approximation to the binomial distribution for 12 coin 
flips. The smooth curve is the normal distribution. Note how well it 
approximates the binomial probabilities represented by the heights of 
the blue lines.

 
The importance of the normal curve stems primarily from the fact that the 
distributions of many natural phenomena are at least approximately normally 
distributed. One of the first applications of the normal distribution was to the 
analysis of errors of measurement made in astronomical observations, errors that 
occurred because of imperfect instruments and imperfect observers. Galileo in the 
17th century noted that these errors were symmetric and that small errors occurred 
more frequently than large errors. This led to several hypothesized distributions of 
errors, but it was not until the early 19th century that it was discovered that these 
errors followed a normal distribution. Independently, the mathematicians Adrain in 
1808 and Gauss in 1809 developed the formula for the normal distribution and 
showed that errors were fit well by this distribution.

This same distribution had been discovered by Laplace in 1778 when he 
derived the extremely important central limit theorem, the topic of a later section 
of this chapter. Laplace showed that even if a distribution is not normally 
distributed, the means of repeated samples from the distribution would be very 
nearly normally distributed, and that the larger the sample size, the closer the 
distribution of means would be to a normal distribution. 

Most statistical procedures for testing differences between means assume 
normal distributions. Because the distribution of means is very close to normal, 
these tests work well even if the original distribution is only roughly normal.
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of 100 coin flips much more easily. This is exactly what he did, and the curve he
discovered is now called the "normal curve."

Figure 2. The normal approximation to the binomial
distribution for 12 coin flips. The smooth curve is
the normal distribution. Note how well it
approximates the binomial probabilities
represented by the heights of the blue lines.

 
The importance of the normal curve stems primarily from the fact that the

distribution of many natural phenomena are at least approximately normally distributed.
One of the first applications of the normal distribution was to the analysis of errors of
measurement made in astronomical observations, errors that occurred because of
imperfect instruments and imperfect observers. Galileo in the 17th century noted that
these errors were symmetric and that small errors occurred more frequently than large
errors. This led to several hypothesized distributions of errors, but it was not until the
early 19th century that it was discovered that these errors followed a normal
distribution. Independently the mathematicians Adrian in 1808 and Gauss in 1809
developed the formula for the normal distribution and showed that errors were fit well
by this distribution.

This same distribution had been discovered by Laplace in 1778 when he derived the
extremely important central limit theorem, the topic of a later section of this chapter.
Laplace showed that even if a distribution is not normally distributed, the means of
repeated samples from the distribution would be very nearly normal, and that the larger
the sample size, the closer the distribution would be to a normal distribution. Most
statistical procedures for testing differences between means assume normal
distributions. Because the distribution of means is very close to normal, these tests
work well even if the distribution itself is only roughly normal.

Quételet was the first to apply the normal distribution to human characteristics. He
noted that characteristics such as height, weight, and strength were normally
distributed.
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Quételet was the first to apply the normal distribution to human 
characteristics. He noted that characteristics such as height, weight, and strength 
were normally distributed.

255



Areas Under Normal Distributions 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 3: Central Tendency
• Chapter 3: Variability
• Chapter 7: Introduction to Normal Distributions 

Learning Objectives
1. State the proportion of a normal distribution within 1 standard deviation of the 

mean
2. State the proportion of a normal distribution that is more than 1.96 standard 

deviations from the mean
3. Use the normal calculator  to calculate an area for a given X”
4. Use the normal calculator to calculate X for a given area
Areas under portions of a normal distribution can be computed by using calculus. 
Since this is a non-mathematical treatment of statistics, we will rely on computer 
programs and tables to determine these areas. Figure 1 shows a normal distribution 
with a mean of 50 and a standard deviation of 10. The shaded area between 40 and 
60 contains 68% of the distribution.

Figure 1. Normal distribution with a mean of 50 and standard deviation of 
10. 68% of the area is within one standard deviation (10) of the mean 
(50).
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Figure 2 shows a normal distribution with a mean of 100 and a standard deviation 
of 20. As in Figure 1, 68% of the distribution is within one standard deviation of 
the mean.

Figure 2. Normal distribution with a mean of 100 and standard deviation of 
20. 68% of the area is within one standard deviation (20) of the mean 
(100).

The normal distributions shown in Figures 1 and 2 are specific examples of the 
general rule that 68% of the area of any normal distribution is within one standard 
deviation of the mean.

Figure 3 shows a normal distribution with a mean of 75 and a standard 
deviation of 10. The shaded area contains 95% of the area and extends from 55.4 to 
94.6. For all normal distributions, 95% of the area is within 1.96 standard 
deviations of the mean. For quick approximations, it is sometimes useful to round 
off and use 2 rather than 1.96 as the number of standard deviations you need to 
extend from the mean so as to include 95% of the area.
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Figure 3. A normal distribution with a mean of 75 and a standard deviation 
of 10. 95% of the area is within 1.96 standard deviations of the mean.

Areas under the normal distribution can be calculated with this online calculator.

258

http://onlinestatbook.com/2/calculators/normal.html


Standard Normal Distribution 
by David M. Lane 

Prerequisites
• Chapter 3: Effects of Linear Transformations
• Chapter 7: Introduction to Normal Distributions 

Learning Objectives
1. State the mean and standard deviation of the standard normal distribution
2. Use a Z table
3. Use the normal calculator
4. Transform raw data to Z scores
As discussed in the introductory section, normal distributions do not necessarily 
have the same means and standard deviations. A normal distribution with a mean 
of 0 and a standard deviation of 1 is called a standard normal distribution.

Areas of the normal distribution are often represented by tables of the 
standard normal distribution. A portion of a table of the standard normal 
distribution is shown in Table 1.

Table 1. A portion of a table of the standard normal distribution.

Z Area below

-2.5 0.0062

-2.49 0.0064

-2.48 0.0066

-2.47 0.0068

-2.46 0.0069

-2.45 0.0071

-2.44 0.0073

-2.43 0.0075

-2.42 0.0078

-2.41 0.008

-2.4 0.0082
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The first column titled “Z” contains values of the standard normal distribution; the 
second column contains the area below Z. Since the distribution has a mean of 0 
and a standard deviation of 1, the Z column is equal to the number of standard 
deviations below (or above) the mean. For example, a Z of -2.5 represents a value 
2.5 standard deviations below the mean. The area below Z is 0.0062.

The same information can be obtained using the following Java applet. 
Figure 1 shows how it can be used to compute the area below a value of -2.5 on the 
standard normal distribution. Note that the mean is set to 0 and the standard 
deviation is set to 1.

-2.39 0.0084

-2.38 0.0087

-2.37 0.0089

-2.36 0.0091

-2.35 0.0094

-2.34 0.0096

-2.33 0.0099

-2.32 0.0102
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Figure 1. An example from the applet.

A value from any normal distribution can be transformed into its corresponding 
value on a standard normal distribution using the following formula:

Z = (X - µ)/σ 

where Z is the value on the standard normal distribution, X is the value on the 
original distribution, μ is the mean of the original distribution, and σ is the standard 
deviation of the original distribution.

As a simple application, what portion of a normal distribution with a mean 
of 50 and a standard deviation of 10 is below 26? Applying the formula, we obtain

Z = (26 - 50)/10 = -2.4. 

From Table 1, we can see that 0.0082 of the distribution is below -2.4. There is no 
need to transform to Z if you use the applet as shown in Figure 2.
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-2.41 0.008

-2.4 0.0082

-2.39 0.0084

-2.38 0.0087

-2.37 0.0089

-2.36 0.0091

-2.35 0.0094

-2.34 0.0096

-2.33 0.0099

-2.32 0.0102

The first column titled "Z" contains values of the standard normal distribution; the
second column contains the area below Z. Since the distribution has a mean of 0 and a
standard deviation of 1, the Z column is equal to the number of standard deviations
below (or above) the mean. For example, a Z of -2.5 represents a value 2.5 standard
deviations below the mean. The area below Z is 0.0062.

The same information can be obtained using the following Java applet. Figure 1
shows how it can be used to compute the area below a value of -2.5 on the standard
normal distribution. Note that the mean is set to 0 and the standard deviation is set to
1.

Figure 1. An example from the applet.
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Figure 2. Area below 26 in a normal distribution with a mean of 50 and a 
standard deviation of 10.

If all the values in a distribution are transformed to Z scores, then the distribution 
will have a mean of 0 and a standard deviation of 1. This process of transforming a 
distribution to one with a mean of 0 and a standard deviation of 1 is called 
standardizing the distribution.
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Calculate Areas

A value from any normal distribution can be transformed into its corresponding value on
a standard normal distribution using the following formula:

Z = (X - µ)/!

where Z is the value on the standard normal distribution, X is the value on the original
distribution, μ is the mean of the original distribution and σ is the standard deviation of
the original distribution.

As a simple application, what portion of a normal distribution with a mean of 50 and
a standard deviation of 10 is below 26. Applying the formula we obtain

Z = (26 - 50)/10 = -2.4.

From Table 1, we can see that 0.0082 of the distribution is below -2.4. There is no
need to transform to Z if you use the applet as shown in Figure 2.

Figure 2. Area below 26 in a normal
distribution with a mean of 50 and a
standard deviation of 10.

If all the values in a distribution are transformed to Z scores, then the distribution will
have a mean of 0 and a standard distribution. This process of transforming a
distribution to one with a mean of 0 and a standard deviation of 1 is called
standardizing the distribution.
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Normal Approximation to the Binomial 
by David M. Lane 

Prerequisites
• Chapter 5: Binomial Distribution
• Chapter 7: History of the Normal Distribution
• Chapter 7: Areas of Normal Distributions

Learning Objectives
1. State the relationship between the normal distribution and the binomial 

distribution
2. Use the normal distribution to approximate the binomial distribution
3. State when the approximation is adequate

In the section on the history of the normal distribution, we saw that the normal 
distribution can be used to approximate the binomial distribution. This section 
shows how to compute these approximations.

Let’s begin with an example. Assume you have a fair coin and wish to know 
the probability that you would get 8 heads out of 10 flips. The binomial distribution 
has a mean of μ = Nπ = (10)(0.5) = 5 and a variance of σ2 = Nπ(1-π) = (10)(0.5)
(0.5) = 2.5. The standard deviation is therefore 1.5811. A total of 8 heads is (8 - 5)/
1.5811 = 1.897 standard deviations above the mean of the distribution. The 
question then is, “What is the probability of getting a value exactly 1.897 standard 
deviations above the mean?” You may be surprised to learn that the answer is 0: 
The probability of any one specific point is 0. The problem is that the binomial 
distribution is a discrete probability distribution, whereas the normal distribution is 
a continuous distribution.

The solution is to round off and consider any value from 7.5 to 8.5 to 
represent an outcome of 8 heads. Using this approach, we figure out the area under 
a normal curve from 7.5 to 8.5. The area in green in Figure 1 is an approximation 
of the probability of obtaining 8 heads.
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Figure 1. Approximating the probability of 8 heads with the normal 
distribution.

The solution is therefore to compute this area. First we compute the area below 8.5, 
and then subtract the area below 7.5.

The results of using the normal area calculator to find the area below 8.5 are 
shown in Figure 2. The results for 7.5 are shown in Figure 3.

Figure 2. Area below 8.5
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Prerequisites
Binomial Distribution, History of the Normal Distribution, Areas of Normal Distributions
In the section on the history of the normal distribution, we saw that the normal
distribution can be used to approximate the binomial distribution. This section shows
how to compute these approximations.

Lets begin with an example. Assume you have a fair coin and wish to know the
probability that you would get 8 heads out of 10 flips. The binomial distribution has a
mean of μ = Nπ = (10)(0.5) = 5 and a variance of σ2 = Nπ(1-π)= (10)(0.5)(0.5) =
2.5. The standard deviation is therefore 1.5811. A total of 8 heads is (8 - 5)/1.5811
=1.8973 standard deviations above the mean of the distribution. The question then is,
"What is the probability of getting a value exactly 1.8973 standard deviations above
the mean?" You may be surprised to learn that the answer is 0: The probability of any
one specific point is 0. The problem is that the binomial distribution is a discrete
probability distribution whereas the normal distribution is a continuous distribution.

The solution is to round off and consider any value from 7.5 to 8.5 to represent an
outcome of 8 heads. Using this approach, we figure out the area under a normal curve
from 7.5 to 8.5. The area in green in Figure 1 is an approximation of the probability of
obtaining 8 heads.

Figure 1. Approximating the probability of
8 heads with the normal distribution.
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Figure 3. Area below 7.5.

The difference between the areas is 0.044, which is the approximation of the 
binomial probability. For these parameters, the approximation is very accurate. The 
demonstration in the next section allows you to explore its accuracy with different 
parameters.

If you did not have the normal area calculator, you could find the solution 
using a table of the standard normal distribution (a Z table) as follows:
1. Find a Z score for 8.5 using the formula Z = (8.5 - 5)/1.5811 = 2.21.
2. Find the area below a Z of 2.21 = 0.987.
3. Find a Z score for 7.5 using the formula Z = (7.5 - 5)/1.5811 = 1.58.
4. Find the area below a Z of 1.58 = 0.943.
5. Subtract the value in step 4 from the value in step 2 to get 0.044.
The same logic applies when calculating the probability of a range of outcomes. 
For example, to calculate the probability of 8 to 10 flips, calculate the area from 
7.5 to 10.5.

The accuracy of the approximation depends on the values of N and π. A rule 
of thumb is that the approximation is good if both Nπ and N(1-π) are both greater 
than 10.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 7: Areas Under the Normal Distribution
• Chapter 7: Shapes of Distributions

Risk analyses often are based on the assumption of normal distributions. Critics 
have said that extreme events in reality are more frequent than would be expected 
assuming normality. The assumption has even been called a "Great Intellectual 
Fraud."
A recent article discussing how to protect investments against extreme events 
defined "tail risk" as "A tail risk, or extreme shock to financial markets, is 
technically defined as an investment that moves more than three standard 
deviations from the mean of a normal distribution of investment returns."
 
What do you think?
Tail risk can be evaluated by assuming a normal distribution and computing the 
probability of such an event. Is that how "tail risk" should be evaluated? 

Events more than three standard deviations from the mean are 
very rare for normal distributions. However, they are not as rare 
for other distributions such as highly-skewed distributions. If  the 
normal distribution is used to assess the probability of  tail 
events defined this way, then the "tail risk" will be 
underestimated. 
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Exercises 

Prerequisites
• All material presented in the Normal Distributions chapter

1. If scores are normally distributed with a mean of 35 and a standard deviation of 
10, what percent of the scores is:
a. greater than 34? 
b. smaller than 42? 
c. between 28 and 34? 

2. What are the mean and standard deviation of the standard normal distribution? 
(b) What would be the mean and standard deviation of a distribution created by 
multiplying the standard normal distribution by 8 and then adding 75?

3. The normal distribution is defined by two parameters. What are they?

4. What proportion of a normal distribution is within one standard deviation of the 
mean? (b) What proportion is more than 2.0 standard deviations from the mean? 
(c) What proportion is between 1.25 and 2.1 standard deviations above the mean?

5. A test is normally distributed with a mean of 70 and a standard deviation of 8. 
(a) What score would be needed to be in the 85th percentile? (b) What score 
would be needed to be in the 22nd percentile?

6. Assume a normal distribution with a mean of 70 and a standard deviation of 12. 
What limits would include the middle 65% of the cases?

7. A normal distribution has a mean of 20 and a standard deviation of 4. Find the Z 
scores for the following numbers: (a) 28 (b) 18 (c) 10 (d) 23

8. Assume the speed of vehicles along a stretch of I-10 has an approximately 
normal distribution with a mean of 71 mph and a standard deviation of 8 mph.
a. The current speed limit is 65 mph. What is the proportion of vehicles less than 
or equal to the speed limit?
b. What proportion of the vehicles would be going less than 50 mph? 
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c. A new speed limit will be initiated such that approximately 10% of vehicles 
will be over the speed limit. What is the new speed limit based on this criterion?
d. In what way do you think the actual distribution of speeds differs from a 
normal distribution?

9. A variable is normally distributed with a mean of 120 and a standard deviation 
of 5. One score is randomly sampled. What is the probability it is above 127?

10. You want to use the normal distribution to approximate the binomial 
distribution. Explain what you need to do to find the probability of obtaining 
exactly 7 heads out of 12 flips.

11. A group of students at a school takes a history test. The distribution is normal 
with a mean of 25, and a standard deviation of 4. (a) Everyone who scores in 
the top 30% of the distribution gets a certificate. What is the lowest score 
someone can get and still earn a certificate? (b) The top 5% of the scores get to 
compete in a statewide history contest. What is the lowest score someone can 
get and still go onto compete with the rest of the state?

12. Use the normal distribution to approximate the binomial distribution and find 
the probability of getting 15 to 18 heads out of 25 flips. Compare this to what 
you get when you calculate the probability using the binomial distribution. 
Write your answers out to four decimal places.

13. True/false: For any normal distribution, the mean, median, and mode will be 
equal.

14. True/false: In a normal distribution, 11.5% of scores are greater than Z = 1.2.

15. True/false: The percentile rank for the mean is 50% for any normal distribution.

16. True/false: The larger the n, the better the normal distribution approximates the 
binomial distribution.

17. True/false: A Z-score represents the number of standard deviations above or 
below the mean.
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18. True/false: Abraham de Moivre, a consultant to gamblers, discovered the 
normal distribution when trying to approximate the binomial distribution to 
make his computations easier. 

Answer questions 19 - 21 based on the graph below:

19. True/false: The standard deviation of the blue distribution shown below is 
about 10.

20. True/false: The red distribution has a larger standard deviation than the blue 
distribution.

21. True/false: The red distribution has more area underneath the curve than the 
blue distribution does.

Questions from Case Studies

Angry Moods (AM) case study

22. For this problem, use the Anger Expression (AE) scores.
a. Compute the mean and standard deviation.
b. Then, compute what the 25th, 50th and 75th percentiles would be if the 
distribution were normal.
c. Compare the estimates to the actual 25th, 50th, and 75th percentiles.

Physicians’ Reactions (PR) case study
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23. (PR) For this problem, use the time spent with the overweight patients. (a) 
Compute the mean and standard deviation of this distribution. (b) What is the 
probability that if you chose an overweight participant at random, the doctor 
would have spent 31 minutes or longer with this person? (c) Now assume this 
distribution is normal (and has the same mean and standard deviation). Now 
what is the probability that if you chose an overweight participant at random, 
the doctor would have spent 31 minutes or longer with this person?

The following questions are from ARTIST (reproduced with permission)

	

24. A set of test scores are normally distributed. Their mean is 100 and standard 
deviation is 20. These scores are converted to standard normal z scores. What 
would be the mean and median of this distribution?
a. 0 
b. 1 
c. 50 
d. 100

25. Suppose that weights of bags of potato chips coming from a factory follow a 
normal distribution with mean 12.8 ounces and standard deviation .6 ounces. If 
the manufacturer wants to keep the mean at 12.8 ounces but adjust the standard 
deviation so that only 1% of the bags weigh less than 12 ounces, how small 
does he/she need to make that standard deviation?

26. A student received a standardized (z) score on a test that was -. 57. What does 
this score tell about how this student scored in relation to the rest of the class? 
Sketch a graph of the normal curve and shade in the appropriate area.
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27. Suppose you take 50 measurements on the speed of cars on Interstate 5, and 
that these measurements follow roughly a Normal distribution. Do you expect 
the standard deviation of these 50 measurements to be about 1 mph, 5 mph, 10 
mph, or 20 mph? Explain.

28. Suppose that combined verbal and math SAT scores follow a normal 
distribution with mean 896 and standard deviation 174. Suppose further that 
Peter finds out that he scored in the top 3% of SAT scores. Determine how high 
Peter’s score must have been.

29. Heights of adult women in the United States are normally distributed with a 
population mean of μ= 63.5 inches and a population standard deviation of σ = 
2.5. A medical re- searcher is planning to select a large random sample of adult 
women to participate in a future study. What is the standard value, or z-value, 
for an adult woman who has a height of 68.5 inches?

30. An automobile manufacturer introduces a new model that averages 27 miles 
per gallon in the city. A person who plans to purchase one of these new cars 
wrote the manufacturer for the details of the tests, and found out that the 
standard deviation is 3 miles per gallon. Assume that in-city mileage is 
approximately normally distributed.
a. What is the probability that the person will purchase a car that averages less 
than 20 miles per gallon for in-city driving?
b. What is the probability that the person will purchase a car that averages 
between 25 and 29 miles per gallon for in-city driving?
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8. Advanced Graphs 
A.  Q-Q Plots
B.  Contour Plots 
C.  3D Plots 
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Quantile-Quantile (q-q) Plots 
by David Scott 

Prerequisites
• Chapter 1: Distributions
• Chapter 1: Percentiles
• Chapter 2: Histograms
• Chapter 4: Introduction to Bivariate Data 
• Chapter 7: Introduction to Normal Distributions

Learning Objectives
1. State what q-q plots are used for.
2. Describe the shape of a q-q plot when the distributional assumption is met.
3. Be able to create a normal q-q plot.

Introduction 
The quantile-quantile or q-q plot is an exploratory graphical device used to check 
the validity of a distributional assumption for a data set. In general, the basic idea 
is to compute the theoretically expected value for each data point based on the 
distribution in question. If the data indeed follow the assumed distribution, then the 
points on the q-q plot will fall approximately on a straight line.

Before delving into the details of q-q plots, we first describe two related 
graphical methods for assessing distributional assumptions: the histogram and the 
cumulative distribution function (CDF). As will be seen, q-q plots are more general 
than these alternatives.

Assessing Distributional Assumptions 
As an example, consider data measured from a physical device such as the spinner 
depicted in Figure 1. The red arrow is spun around the center, and when the arrow 
stops spinning, the number between 0 and 1 is recorded. Can we determine if the 
spinner is fair?
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Figure 1. A physical device that gives samples from a uniform distribution.

If the spinner is fair, then these numbers should follow a uniform distribution. To 
investigate whether the spinner is fair, spin the arrow n times, and record the 
measurements by {μ1, μ2, ..., μn}. In this example, we collect n = 100 samples. The 
histogram provides a useful visualization of these data. In Figure 2, we display 
three different histograms on a probability scale. The histogram should be flat for a 
uniform sample, but the visual perception varies depending on whether the 
histogram has 10, 5, or 3 bins. The last histogram looks flat, but the other two 
histograms are not obviously flat. It is not clear which histogram we should base 
our conclusion on.

Figure 2. Three histograms of a sample of 100 uniform points.
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If the spinner is fair, then these numbers should follow a uniform distribution. To
investigate whether the spinner is fair, spin the arrow n times, and record the
measurements by {μ1, μ2, ..., μn}. In this example we collect n = 100 samples. The
histogram provides a useful visualization of these data. In Figure 2, we display three
different histograms on a probability scale. The histogram should be flat for a uniform
sample, but the visual perception varies depending on whether the histogram has 10, 5,
or 3 bins. The last histogram looks flat, but the other two histograms are not obviously
flat. It is not clear which histogram we should base our conclusion on.

Figure 2. Three histograms of a sample of 100 uniform points.

Alternatively, we might use the cumulative distribution function (CDF), which is
denoted by F(μ). The CDF gives the probability that the spinner gives a value less than
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Figure 1: A physical device that gives samples from a uniform distribution.

If the spinner is fair, then these numbers should follow a uniform distribu-
tion. Spin the arrow n times, and record the measurements by {u1, u2, . . . , un}.
Collect n = 100 samples. The histogram provides a useful visualization of
these data. In Figure 2, we display three di↵erent histograms on a prob-
ability scale. The histogram should be flat for a uniform sample, but the
visual perception varies whether the histogram has 10, 5, or 3 bins. The last
histogram looks flat, but the other two histograms are not obviously flat.
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Alternatively, we might use the cumulative distribution function (CDF), which is 
denoted by F(μ). The CDF gives the probability that the spinner gives a value less 
than or equal to μ, that is, the probability that the red arrow lands in the interval [0, 
μ]. By simple arithmetic, F(μ) = μ, which is the diagonal straight line y = x. The 
CDF based upon the sample data is called the empirical CDF (ECDF), is denoted 
by

 

and is defined to be the fraction of the data less than or equal to μ; that is,

 

In general, the ECDF takes on a ragged staircase appearance. 
For the spinner sample analyzed in Figure 2, we computed the ECDF and 

CDF, which are displayed in Figure 3. In the left frame, the ECDF appears close to 
the line y = x, shown in the middle frame. In the right frame, we overlay these two 
curves and verify that they are indeed quite close to each other. Observe that we do 
not need to specify the number of bins as with the histogram.

Figure 3. The empirical and theoretical cumulative distribution functions of 
a sample of 100 uniform points.

Alternatively, we might use the cumulative distribution function (CDF),
which is denoted by F (u). The CDF gives the probability that the spinner
gives a value less than or equal to u, that is, the probability that the red
arrow lands in the interval [0, u]. By simple arithmetic, F (u) = u, which is
the diagonal straight line y = x. The CDF based upon the sample data is
called the empirical CDF (ECDF), is denoted by F̂n(u), and is defined to be
fraction of the data less than or equal to u; that is,

F̂n(u) =
# ui  u

n
.

In general, the ECDF takes on a ragged staircase appearance.
For the spinner sample analyzed in Figure 2, we computed the ECDF and

CDF, which are displayed in Figure 3. In the left frame, the ECDF appears
close to the line y = x, shown in the middle frame. In the right frame, we
overlay these two curves and verify that they are indeed quite close to each
other. Observe that we do not need to specify the number of bins as with
the histogram.

u
0 .2 .4 .6 .8 1

0

.2

.4

.6

.8

1

Pr
ob

ab
ilit

y

Empirical
CDF

u
0 .2 .4 .6 .8 1

Theoretical
CDF

u
0 .2 .4 .6 .8 1

Overlaid
CDFs

Figure 3: The empirical and theoretical cumulative distribution functions of
a sample of 100 uniform points.

3 q-q plot for uniform data

The q-q plot for uniform data is very similar to the empirical cdf graphic,
except with the axes reversed. The q-q plot provides a visual comparison of
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q-q plot for uniform data 
The q-q plot for uniform data is very similar to the empirical CDF graphic, except 
with the axes reversed. The q-q plot provides a visual comparison of the sample 
quantiles to the corresponding theoretical quantiles. In general, if the points in a q-
q plot depart from a straight line, then the assumed distribution is called into 
question.

Here we define the qth quantile of a batch of n numbers as a number ξq such 
that a fraction q x n of the sample is less than ξq, while a fraction (1 - q) x n of the 
sample is greater than ξq. The best known quantile is the median, ξ0.5, which is 
located in the middle of the sample.

Consider a small sample of 5 numbers from the spinner 

µ1 = 0.41, µ2 = 0.24, µ3 = 0.59, µ4 = 0.03, µ5 =0.67. 

Based upon our description of the spinner, we expect a uniform distribution to 
model these data. If the sample data were “perfect,” then on average there would 
be an observation in the middle of each of the 5 intervals: 0 to .2, .2 to .4, .4 to .6, 
and so on. Table 1 shows the 5 data points (sorted in ascending order) and the 
theoretically expected value of each based on the assumption that the distribution 
is uniform (the middle of the interval). 

Table 1. Computing the Expected Quantile Values. 
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on. Table 1 shows the 5 data points (sorted in ascending order) and the theoretically
expected value of each based on the assumption that the distribution is uniform (the
middle of the interval). 

Table 1. Computing the Expected Quantile Values.

Data (μ) Rank (i)
Middle of the ith

Interval
.03
.24
.41
.59
.67

1
2
3
4
5

.1

.3

.5

.7

.9

The theoretical and empirical CDF's are shown in Figure 4 and the q-q plot is shown in
the left frame of Figure 5. 

Figure 4: The theoretical and empirical CDFs of a small sample of 5
uniform points, together with the expected values of the 5 points
(red dots in the right frame).

In general, we consider the full set of sample quantiles to be the sorted data values

µ(1) < µ(2) < µ(3) < !!! < µ(n-1) < µ(n) ,

where the parentheses in the subscript indicate the data have been ordered. Roughly
speaking, we expect the first ordered value to be in the middle of the interval (0, 1/n),
the second to be in the interval (1/n, 2/n), and the last to be in the middle of the
interval ((n - 1)/n, 1). Thus we take as the theoretical quantile the value

Data (µ) Rank (i)
Middle of the 

ith Interval

0.03 1 0.1

0.24 2 0.3

0.41 3 0.5

0.59 4 0.7

0.67 5 0.9
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The theoretical and empirical CDFs are shown in Figure 4 and the q-q plot is 
shown in the left frame of Figure 5. 

Figure 4. The theoretical and empirical CDFs of a small sample of 5 uniform 
points, together with the expected values of the 5 points (red dots in 
the right frame).

In general, we consider the full set of sample quantiles to be the sorted data values

µ(1) < µ(2) < µ(3) < ··· < µ(n-1) < µ(n) , 

where the parentheses in the subscript indicate the data have been ordered. 
Roughly speaking, we expect the first ordered value to be in the middle of the 
interval (0, 1/n), the second to be in the middle of the interval (1/n, 2/n), and the 
last to be in the middle of the interval ((n - 1)/n, 1). Thus, we take as the theoretical 
quantile the value

 

where q corresponds to the ith ordered sample value. We subtract the quantity 0.5 
so that we are exactly in the middle of the interval ((i - 1)/n, i/n). These ideas are 
depicted in the right frame of Figure 4 for our small sample of size n = 5.

We are now prepared to define the q-q plot precisely. First, we compute the n 
expected values of the data, which we pair with the n data points sorted in 
ascending order. For the uniform density, the q-q plot is composed of the n ordered 
pairs
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Figure 4: The empirical CDF of a small sample of 5 uniform points, together
with the expected values of the 5 points (red dots in the right frame).

In general, we consider the full set of sample quantiles to be the sorted
data values

u(1) < u(2) < u(3) < · · · < u(n�1) < u(n) ,

where the parentheses in the subscript indicate the data have been ordered.
Roughly speaking, we expect the first ordered value to be in the middle of
the interval (0, 1/n), the second to be in the interval (1/n, 2/n), and the
last to be in the middle of the interval ((n � 1)/n, 1). Thus we take as the
theoretical quantile the value

⇠q = q ⇡ i � 0.5

n
,

where q corresponds to the ith ordered sample value. We subtract the quan-
tity 0.5 so that we are exactly in the middle of the interval ((i � 1)/n, i/n).
These ideas are depicted in the right frame of Figure 4 for our small sample
of size n = 5.
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sorted in ascending order. For the uniform density, the q-q plot is composed
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This definition is slightly di↵erent from the ECDF, which includes the points
(u(i), i/n). In the left frame of Figure 5, we display the q-q plot of the 5
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This definition is slightly different from the ECDF, which includes the points (u(i), 
i/n). In the left frame of Figure 5, we display the q-q plot of the 5 points in Table 1. 
In the right two frames of Figure 5, we display the q-q plot of the same batch of 
numbers used in Figure 2. In the final frame, we add the diagonal line y = x as a 
point of reference.

Figure 5. (Left) q-q plot of the 5 uniform points. (Right) q-q plot of a sample 
of 100 uniform points.

The sample size should be taken into account when judging how close the q-q plot 
is to the straight line. We show two other uniform samples of size n = 10 and n = 
1000 in Figure 6. Observe that the q-q plot when n = 1000 is almost identical to the 
line y = x, while such is not the case when the sample size is only n = 10.
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In general, we consider the full set of sample quantiles to be the sorted
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last to be in the middle of the interval ((n � 1)/n, 1). Thus we take as the
theoretical quantile the value

⇠q = q ⇡ i � 0.5

n
,

where q corresponds to the ith ordered sample value. We subtract the quan-
tity 0.5 so that we are exactly in the middle of the interval ((i � 1)/n, i/n).
These ideas are depicted in the right frame of Figure 4 for our small sample
of size n = 5.

We are now prepared to define the q-q plot precisely. First, we compute
the n expected values of the data, which we pair with the n data points
sorted in ascending order. For the uniform density, the q-q plot is composed
of the n ordered pairs

✓
i � 0.5

n
, u(i)

◆
, for i = 1, 2, . . . , n .

This definition is slightly di↵erent from the ECDF, which includes the points
(u(i), i/n). In the left frame of Figure 5, we display the q-q plot of the 5

5points in Table 1. In the right two frames of Figure 5, we display the q-q plot
of the same batch of numbers used in Figure 2. In the final frame we add
the diagonal line y = x as a point of reference.
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Figure 5: (Left) q-q plot of the 5 uniform points. (Right) q-q plot of a sample
of 100 uniform points.

The sample size should be taken into account when judging how close the
q-q plot is to the straight line. We show two other uniform samples of size
n = 10 and n = 1000 in Figure 6. Observe that the q-q plot when n = 1000
is almost identical to the line y = x, while such is not the case when the
sample size is only n = 10.
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Figure 6: q-q plot of a sample of 10 and 1000 uniform points.

What if the data are in fact not uniform? In Figure 7 we show the
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Figure 6. q-q plots of a sample of 10 and 1000 uniform points.

In Figure 7, we show the q-q plots of two random samples that are not uniform. In 
both examples, the sample quantiles match the theoretical quantiles only at the 
median and at the extremes. Both samples seem to be symmetric around the 
median. But the data in the left frame are closer to the median than would be 
expected if the data were uniform. The data in the right frame are further from the 
median than would be expected if the data were uniform.

Figure 7. q-q plots of two samples of size 1000 that are not uniform.

In fact, the data were generated in the R language from beta distributions with 
parameters a = b = 3 on the left and a = b = 0.4 on the right. In Figure 8 we display 
histograms of these two data sets, which serve to clarify the true shapes of the 
densities. These are clearly non-uniform.

points in Table 1. In the right two frames of Figure 5, we display the q-q plot
of the same batch of numbers used in Figure 2. In the final frame we add
the diagonal line y = x as a point of reference.
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Figure 5: (Left) q-q plot of the 5 uniform points. (Right) q-q plot of a sample
of 100 uniform points.

The sample size should be taken into account when judging how close the
q-q plot is to the straight line. We show two other uniform samples of size
n = 10 and n = 1000 in Figure 6. Observe that the q-q plot when n = 1000
is almost identical to the line y = x, while such is not the case when the
sample size is only n = 10.
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Figure 6: q-q plot of a sample of 10 and 1000 uniform points.

What if the data are in fact not uniform? In Figure 7 we show the
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q-q plots of two random samples that are not uniform. In both examples,
the sample quantiles match the theoretical quantiles only at the median and
at the extremes. Both samples seem to be symmetric around the median. But
the data in the left frame are closer to the median than would be expected
if the data were uniform. The data in the right frame are further from the
median than would be expected if the data were uniform.
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Figure 7: q-q plots of two samples of size 1000 that are not uniform.

In fact, the data were generated in the R language from beta distributions
with parameters a = b = 3 on the left and a = b = 0.4 on the right. In Figure
8 we display histograms of these two data sets, which serve to clarify the true
shapes of the densities. These are clearly non-uniform.
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Figure 8: Histograms of the two non-uniform data sets.
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Figure 8. Histograms of the two non-uniform data sets.

q-q plot for normal data 
The definition of the q-q plot may be extended to any continuous density. The q-q 
plot will be close to a straight line if the assumed density is correct. Because the 
cumulative distribution function of the uniform density was a straight line, the q-q 
plot was very easy to construct. For data that are not uniform, the theoretical 
quantiles must be computed in a different manner.

Let {z1, z2, ..., zn} denote a random sample from a normal distribution  
with mean μ = 0 and standard deviation σ = 1. Let the ordered values be  
denoted by

z(1) < z(2) < z(3) < ... < z(n-1) < z(n). 

These n ordered values will play the role of the sample quantiles.
Let us consider a sample of 5 values from a distribution to see how they 

compare with what would be expected for a normal distribution. The 5 values in 
ascending order are shown in the first column of Table 2.

q-q plots of two random samples that are not uniform. In both examples,
the sample quantiles match the theoretical quantiles only at the median and
at the extremes. Both samples seem to be symmetric around the median. But
the data in the left frame are closer to the median than would be expected
if the data were uniform. The data in the right frame are further from the
median than would be expected if the data were uniform.
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Figure 7: q-q plots of two samples of size 1000 that are not uniform.

In fact, the data were generated in the R language from beta distributions
with parameters a = b = 3 on the left and a = b = 0.4 on the right. In Figure
8 we display histograms of these two data sets, which serve to clarify the true
shapes of the densities. These are clearly non-uniform.
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Figure 8: Histograms of the two non-uniform data sets.
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Table 2. Computing the Expected Quantile Values for Normal Data.
 of the Two Non-Uniform Data Sets.

Just as in the case of the uniform distribution, we have 5 intervals. However, with a 
normal distribution the theoretical quantile is not the middle of the interval but 
rather the inverse of the normal distribution for the middle of the interval. Taking 
the first interval as an example, we want to know the z value such that 0.1 of the 
area in the normal distribution is below z. This can be computed using the Inverse 
Normal Calculator as shown in Figure 9. Simply set the “Shaded Area” field to the 
middle of the interval (0.1) and click on the “Below” button. The result is -1.28. 
Therefore, 10% of the distribution is below a z value of -1.28.

Data (z) Rank (i)
Middle of the ith 

Interval z

-1.96 1 0.1 -1.28

-0.78 2 0.3 -0.52

0.31 3 0.5 0

1.15 4 0.7 0.52

1.62 5 0.9 1.28
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Figure 9. Example of the Inverse Normal Calculator for finding a value of 
the expected quantile from a normal distribution.

The q-q plot for the data in Table 2 is shown in the left frame of Figure 11.
In general, what should we take as the corresponding theoretical quantiles? 

Let the cumulative distribution function of the normal density be denoted by Φ(z). 
In the previous example, Φ(-1.28) = 0.10 and Φ(0.00) = 0.50. Using the quantile 
notation, if ξq is the qth quantile of a normal distribution, then

Φ(ξq) = q. 

That is, the probability a normal sample is less than ξq is in fact just q.
Consider the first ordered value, z(1). What might we expect the value of 

Φ(z(1)) to be? Intuitively, we expect this probability to take on a value in the 
interval (0, 1/n). Likewise, we expect Φ(z(2)) to take on a value in the interval (1/n, 
2/n). Continuing, we expect Φ(z(n)) to fall in the interval ((n - 1)/n, 1/n). Thus, the 
theoretical quantile we desire is defined by the inverse (not reciprocal) of the 
normal CDF. In particular, the theoretical quantile corresponding to the empirical 
quantile z(i) should be

11/7/10 1:09 PMQ-Q plots
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a normal distribution the theoretical quantile is not the middle of the interval but the
inverse of the normal distribution for the middle. Taking the first interval as an example,
we want to know the z value such that 0.1 of the area in the normal distribution is
below z. This can be computed using the Inverse Normal Calculator as shown in Figure
9. Simply set the “Shaded Area” field to the middle of the interval (0.1) and click on
the “Below” button. The result is -1.28. Therefore, 10% of the distribution is below a z
value of -1.28.

Figure 9. Example of the inverse normal calculator for finding a value
of the expected quantile from a normal distribution.

The q-q plot for the data in Table 2 is shown in the left frame of Figure 11.
In general, what should we take as the corresponding theoretical quanitiles? Let the

cumulative distribution function of the normal density be denoted by Φ(z). In the
previous example, Φ(-1.28) = 0.10 and Φ(0.50) = 0.50. Using the quantile notation, if
ξq is the qth quantile of a normal distribution, then

"(#q)= q.

That is, the probability a normal sample is less than ξq is in fact just q.
Consider the first ordered value z(1). What might we expect the value of Φ(z(1)) to

be? Intuitively, we expect this probability to take on a value in the interval (0, 1/n).
Likewise, we expect Φ(z(2)) to take on a value in the interval (1/n, 2/n). Continuing, we
expect Φ(z(n)) to fall in the interval ((n - 1)/n, 1/n). Thus the theoretical quantile we
desire is defined by the inverse (not reciprocal) of the normal CDF. In particular, the
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The empirical CDF and theoretical quantile construction for the small sample 
given in Table 2 are displayed in Figure 10. For the larger sample of size 100, the 
first few expected quantiles are -2.576, -2.170, and -1.960.

Figure 10. The empirical CDF of a small sample of 5 normal points, together 
with the expected values of the 5 points (red dots in the right frame).

In the left frame of Figure 11, we display the q-q plot of the small normal sample 
given in Table 2. The remaining frames in Figure 11 display the q-q plots of normal 
random samples of size n = 100 and n = 1000. As the sample size increases, the 
points in the q-q plots lie closer to the line y = x.

Figure 11. q-q plots of normal data.
As before, a normal q-q plot can indicate departures from normality. The two most 
common examples are skewed data and data with heavy tails (large kurtosis). In 

Figure 9: Example of the inverse normal calculator for finding a value of the
expected quantile from a normal distribution.

In general, what should we take as the corresponding theoretical quan-
tiles? Let the cumulative distribution function of the normal density be
denoted by �(z). In the previous example, �(�1.28) = 0.10 and �(0.00) =
0.50. Using the quantile notation, if ⇠q is the qth quantile of a normal distri-
bution, then

�(⇠q) = q .

That is, the probability a normal sample is less than ⇠q is in fact just q.
Consider the first ordered value z(1). What might we expect the value

of �(z(1)) to be? Intuitively, we expect this probability to take on a value
in the interval (0, 1/n). Likewise, we expect �(z(2)) to take on a value in
the interval (1/n, 2/n). Continuing, we expect �(z(n)) to fall in the interval
((n � 1)/n, 1/n). Thus the theoretical quantile we desire is defined by the
inverse (not reciprocal) of the normal CDF. In particular, the theoretical
quantile corresponding to the empirical quantile z(i) should be

��1

✓
i � 0.5

n

◆
for i = 1, 2, . . . , n .

The empirical CDF and theoretical quantile construction for the small sample
give in Table 2 are displayed in Figure 10. For the larger sample of size 100,
the first few expected quantiles are -2.576, -2.170, and -1.960.
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Figure 10: The empirical CDF of a small sample of 5 normal points, together
with the expected values of the 5 points (red dots in the right frame).

In the left frame of Figure 11, we display the q-q plot of small normal
sample given in Table 2. The remaining frames in Figure 11 display the
q-q plots of normal random samples of size n = 100 and n = 1000. As the
sample size increases, the points in the q-q plots lie closer to the line y = x
as the sample size n increases.
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Figure 11: q-q plots of normal data.

As before, a normal q-q plot can indicate departures from normality. The
two most common examples are skewed data and data with heavy tails (large
kurtosis). In Figure 12 we show normal q-q plots for a chi-squared (skewed)
data set and a Student’s-t (kurtotic) data set, both of size n = 1000. The
data were first standardized. The red line is again y = x. Notice in particular
that the data from the t distribution follow the normal curve fairly closely
until the last dozen or so points on each extreme.
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Figure 10: The empirical CDF of a small sample of 5 normal points, together
with the expected values of the 5 points (red dots in the right frame).

In the left frame of Figure 11, we display the q-q plot of small normal
sample given in Table 2. The remaining frames in Figure 11 display the
q-q plots of normal random samples of size n = 100 and n = 1000. As the
sample size increases, the points in the q-q plots lie closer to the line y = x
as the sample size n increases.
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Figure 11: q-q plots of normal data.

As before, a normal q-q plot can indicate departures from normality. The
two most common examples are skewed data and data with heavy tails (large
kurtosis). In Figure 12 we show normal q-q plots for a chi-squared (skewed)
data set and a Student’s-t (kurtotic) data set, both of size n = 1000. The
data were first standardized. The red line is again y = x. Notice in particular
that the data from the t distribution follow the normal curve fairly closely
until the last dozen or so points on each extreme.
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Figure 12 we show normal q-q plots for a chi-squared (skewed) data set and a 
Student’s-t (kurtotic) data set, both of size n = 1000. The data were first 
standardized. The red line is again y = x. Notice, in particular, that the data from 
the t distribution follow the normal curve fairly closely until the last dozen or so 
points on each extreme.

Figure 12. q-q plots for standardized non-normal data (n = 1000).

q-q plots for normal data with general mean and scale 
Our previous discussion of q-q plots for normal data all assumed that our data were 
standardized. One approach to constructing q-q plots is to first standardize the data 
and then proceed as described previously. An alternative is to construct the plot 
directly from raw data.

In this section we present a general approach for data that are not 
standardized. Why did we standardize the data in Figure 12? The q-q plot is 
comprised of the n points

If the original data {zi} are normal, but have an arbitrary mean μ and standard 
deviation σ, then the line y = x will not match the expected theoretical quantile. 
Clearly, the linear transformation
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Figure 12: q-q plots for standardized non-normal data (n = 1000).

5 q-q plots for normal data with general mean
and scale

Why did we standardize the data in Figure 12? The q-q plot is comprised of
the n points
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for i = 1, 2, . . . , n .

If the original data {zi} are normal, but have an arbitrary mean µ and stan-
dard deviation �, then the line y = x will not match the expected theoretical
quantile. Clearly the linear transformation

µ + � · ⇠q

would provide the qth theoretical quantile on the transformed scale. In prac-
tice, with a new data set

{x1, x2, . . . , xn} ,

the normal q-q plot would consist of the n points
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for i = 1, 2, . . . , n .

Instead of plotting the line y = x as a reference line, the line

y = x̄ + s · x
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Figure 12: q-q plots for standardized non-normal data (n = 1000).

5 q-q plots for normal data with general mean
and scale

Why did we standardize the data in Figure 12? The q-q plot is comprised of
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If the original data {zi} are normal, but have an arbitrary mean µ and stan-
dard deviation �, then the line y = x will not match the expected theoretical
quantile. Clearly the linear transformation

µ + � · ⇠q

would provide the qth theoretical quantile on the transformed scale. In prac-
tice, with a new data set
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the normal q-q plot would consist of the n points
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µ + σ ξq 

would provide the qth theoretical quantile on the transformed scale. In practice, 
with a new data set

{x1,x2,...,xn} , 

the normal q-q plot would consist of the n points

Instead of plotting the line y = x as a reference line, the line

y = M + s · x 

should be composed, where M and s are the sample moments (mean and standard 
deviation) corresponding to the theoretical moments μ and σ. Alternatively, if the 
data are standardized, then the line y = x would be appropriate, since now the 
sample mean would be 0 and the sample standard deviation would be 1.

Example: SAT Case Study 
The SAT case study followed the academic achievements of 105 college students 
majoring in computer science. The first variable is their verbal SAT score and the 
second is their grade point average (GPA) at the university level. Before we 
compute inferential statistics using these variables, we should check if their 
distributions are normal. In Figure 13, we display the q-q plots of the verbal SAT 
and university GPA variables.
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Figure 13. q-q plots for the student data (n = 105).

The verbal SAT seems to follow a normal distribution reasonably well, except in 
the extreme tails. However, the university GPA variable is highly non-normal. 
Compare the GPA q-q plot to the simulation in the right frame of Figure 7. These 
figures are very similar, except for the region where x ≈ -1. To follow these ideas, 
we computed histograms of the variables and their scatter diagram in Figure 14. 
These figures tell quite a different story. The university GPA is bimodal, with about 
20% of the students falling into a separate cluster with a grade of C. The scatter 
diagram is quite unusual. While the students in this cluster all have below average 
verbal SAT scores, there are as many students with low SAT scores whose GPAs 
were quite respectable. We might speculate as to the cause(s): different 
distractions, different study habits, but it would only be speculation. But observe 
that the raw correlation between verbal SAT and GPA is a rather high 0.65, but 
when we exclude the cluster, the correlation for the remaining 86 students falls a 
little to 0.59.

should be composed, where x̄ and s are the sample moments corresponding to
the theoretical moments µ and �. Alternatively, if the data are standardized,
then the line y = x would be appropriate, since now the sample mean would
be 0 and the sample standard deviation would be 1.

As an example, we re-examine the SAT case study that followed the
academic achievements of 105 college students. The first variable is their
verbal SAT score and the second is their grade point average (GPA) at the
university level. Before we compute a correlation coe�cient, we should check
if the distributions of the two variables are both normal. In Figure 13, we
display the q-q plots of the verbal SAT and university GPA variables.
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Figure 13: q-q plots for the student data (n = 105).

The verbal SAT seems to follow a normal distribution reasonably well,
except in the extreme tails. However, the university GPA variable is highly
non-normal. Compare the GPA q-q plot to the simulation in the right frame
of Figure 7. These figures are very similar, except for the region where
x ⇡ �1. To follow these ideas, we computed histograms of the variables and
their scatter diagram in Figure 14. These figures tell quite a di↵erent story.
The university GPA is bimodal, with about 20% of the students falling into
a separate cluster with a grade of C. The scatter diagram is quite unusual.
While the students in this cluster all have below average verbal SAT scores,
there are as many students with low SAT scores whose GPA’s were quite
respectable. We might speculate as to the cause(s): di↵erent majors, di↵erent
study habits, but it would only be speculation. But observe that the raw
correlation between verbal SAT and GPA is a rather high 0.65, but when we
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Figure 14. Histograms and scatter diagram of the verbal SAT and GPA 
variables for the 105 students.

Discussion 
Parametric modeling usually involves making assumptions about the shape of data, 
or the shape of residuals from a regression fit. Verifying such assumptions can take 
many forms, but an exploration of the shape using histograms and q-q plots is very 
effective. The q-q plot does not have any design parameters such as the number of 
bins for a histogram.

In an advanced treatment, the q-q plot can be used to formally test the null 
hypothesis that the data are normal. This is done by computing the correlation 
coefficient of the n points in the q-q plot. Depending upon n, the null hypothesis is 
rejected if the correlation coefficient is less than a threshold. The threshold is 
already quite close to 0.95 for modest sample sizes.

We have seen that the q-q plot for uniform data is very closely related to the 
empirical cumulative distribution function. For general density functions, the so-
called probability integral transform takes a random variable X and maps it to the 
interval (0, 1) through the CDF of X itself, that is,

Y = FX(X) 

which has been shown to be a uniform density. This explains why the q-q plot on 
standardized data is always close to the line y = x when the model is correct.  
Finally, scientists have used special graph paper for years to make relationships 
linear (straight lines). The most common example used to be semi-log paper, on 
which points following the formula y = aebx appear linear. This follows of course 
since log(y) = log(a) + bx, which is the equation for a straight line. The q-q plots 

exclude the cluster, the correlation for the remaining 86 students falls a little
to 0.59.
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Figure 14: Histograms and scatter diagram of the verbal SAT and GPA
variables for the 105 students.

6 Discussion

Parametric modeling usually involves making assumptions about the shape
of data, or the shape of residuals from a regression fit. Verifying such assump-
tions can take many forms, but an exploration of the shape using histograms
and q-q plots are very e↵ective. The q-q plot does not have any design pa-
rameters such as the number of bins for a histogram.

In an advanced course, the q-q plot can be used to formally test the
null hypothesis that the data are normal. This is done by computing the
correlation coe�cient of the n points in the q-q plot. Depending upon n, the
null hypothesis is rejected if the correlation coe�cient is less than a threshold.
The threshold is already quite close to 0.95 for modest sample sizes.

We have seen that the q-q plot for uniform data is very close related to
the empirical cumulative distribution function. For general density functions,
the so-called probability integral transform takes a random variable X and
maps it to the interval (0, 1) through the CDF of X itself, that is,

Y = FX(X)

which has been shown to be a uniform density. This explains why the q-q plot
on standardized data is always close to the line y = x when the model is
correct.
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may be thought of as being “probability graph paper” that makes a plot of the 
ordered data values into a straight line. Every density has its own special 
probability graph paper.
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Contour Plots 
by David Lane 

Prerequisites
• none

Learning Objectives
1. Describe a contour plot.
2. Interpret a contour plot
 
Contour plots portray data for three variables in two dimensions. The plot contains 
a number of contour lines. Each contour line is shown in an X-Y plot and has a 
constant value on a third variable. Consider the Figure 1 that contains data on the 
fat, non-sugar carbohydrates, and calories present in a variety of breakfast cereals. 
Each line shows the carbohydrate and fat levels for cereals with the same number 
of calories. Note that the number of calories is not determined exactly by the fat 
and non-sugar carbohydrates since cereals also differ in sugar and protein. 
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Figure 1. A contour plot showing calories as a function of fat and 
carbohydrates.

An alternative way to draw the plot is shown in Figure 2. The areas with the same 
number of calories are shaded. 
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Figure 2. A contour plot showing calories as a function of fat and 
carbohydrates with areas shaded. An area represents values less than 
or equal to the label to the right of the area.
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3D Plots 
by David Lane 

Prerequisites
• Chapter 4: Introduction to Bivariate Data

Learning Objectives
1. Describe a 3D Plot.
2. Give an example of the value of a 3D plot.

Just as two-dimensional scatter plots show the data in two dimensions, 3D plots 
show data in three dimensions. Figure 1 shows a 3D scatter plot of the fat, non-
sugar carbohydrates, and calories from a variety of cereal types.

Figure 1. A 3D scatter plot showing fat, non-sugar carbohydrates, and 
calories from a variety of cereal types.
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Many statistical packages allow you to rotate the axes interactively to view the data 
from a different vantage point. Figure 2 is an example.

Figure 2. An alternative 3D scatter plot showing fat, non-sugar 
carbohydrates, and calories.

A fourth dimension can be represented as long as it is represented as a nominal 
variable. Figure 3 represents the different manufacturers by using different colors.
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Figure 3. The different manufacturers are color coded.

Interactively rotating 3D plots can sometimes reveal aspects of the data not 
otherwise apparent. Figure 4 shows data from a pseudo random number generator. 
Figure 4 does not show anything systematic and the random number generator 
appears to generate data with properties similar to those of true random numbers.
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Figure 4. A 3D scatter plot showing 400 values of X, Y, and Z from a pseudo 
random number generator.

Figure 5 shows a different perspective on these data. Clearly they were not 
generated by a random process.
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Figure 5. A different perspective on the 3D scatter plot showing 400 values 
of X, Y, and Z from a pseudo random number generator. 

 
 
Figures 4 and 5 are reproduced with permission from R snippets by Bogumil 
Kaminski.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 8: Contour Plots

This web page portrays altitudes in the United States.
 
What do you think?
What part of the state of Texas (North, South, East, or West) contains the highest 
elevation?

West Texas 
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Exercises 
1. What are Q-Q plots useful for?
2. For the following data, plot the theoretically expected z score as a function of 
the actual z score (a Q-Q plot).

 
3. For the data in problem 2, describe how the data differ from a normal 
distribution. 
 
4. For the “SAT and College GPA” case study data, create a contour plot looking at 
College GPA as a function of Math SAT and High School GPA. Naturally, you 
should use a computer to do this.
5. For the “SAT and College GPA” case study data, create a 3D plot using the 
variables College GPA, Math SAT, and High School GPA. Naturally, you should 
use a computer to do this.

0
0
0
0
0
0

0.1
0.1
0.1
0.1
0.1
0.2
0.2
0.3
0.3
0.4

0.5
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.7
0.7
0.8
0.8
0.8
0.8

0.8
0.9
1
1

1.1
1.1
1.2
1.2
1.2
1.2
1.2
1.2
1.3
1.3
1.3
1.3

1.3
1.4
1.4
1.5
1.6
1.7
1.7
1.7
1.8
1.8
1.9
1.9
2
2
2

2.1

2.1
2.1
2.1
2.1
2.1
2.1
2.3
2.5
2.7
3

4.2
5

5.7
12.4
15.2

298



9. Sampling Distributions 

Prerequisites
• none 

A. Introduction
B. Sampling Distribution of the Mean
C. Sampling Distribution of Difference Between Means
D. Sampling Distribution of Pearson's r
E. Sampling Distribution of a Proportion
F. Exercises
The concept of a sampling distribution is perhaps the most basic concept in 
inferential statistics. It is also a difficult concept because a sampling distribution is 
a theoretical distribution rather than an empirical distribution.

The introductory section defines the concept and gives an example for both a 
discrete and a continuous distribution. It also discusses how sampling distributions 
are used in inferential statistics.

The remaining sections of the chapter concern the sampling distributions of 
important statistics: the Sampling Distribution of the Mean, the Sampling 
Distribution of the Difference Between Means, the Sampling Distribution of r, and 
the Sampling Distribution of a Proportion.
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Introduction to Sampling Distributions 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 1: Inferential Statistics 

Learning Objectives
1. Define inferential statistics
2. Graph a probability distribution for the mean of a discrete variable
3. Describe a sampling distribution in terms of “all possible outcomes”
4. Describe a sampling distribution in terms of repeated sampling
5. Describe the role of sampling distributions in inferential statistics
6. Define the standard error of the mean
Suppose you randomly sampled 10 people from the population of women in 
Houston, Texas, between the ages of 21 and 35 years and computed the mean 
height of your sample. You would not expect your sample mean to be equal to the 
mean of all women in Houston. It might be somewhat lower or it might be 
somewhat higher, but it would not equal the population mean exactly. Similarly, if 
you took a second sample of 10 people from the same population, you would not 
expect the mean of this second sample to equal the mean of the first sample.

Recall that inferential statistics concern generalizing from a sample to a 
population. A critical part of inferential statistics involves determining how far 
sample statistics are likely to vary from each other and from the population 
parameter. (In this example, the sample statistics are the sample means and the 
population parameter is the population mean.) As the later portions of this chapter 
show, these determinations are based on sampling distributions.

Discrete Distributions 
We will illustrate the concept of sampling distributions with a simple example. 
Figure 1 shows three pool balls, each with a number on it. Suppose two of the balls 
are selected randomly (with replacement) and the average of their numbers is 
computed. All possible outcomes are shown below in Table 1.
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Figure 1. The pool balls. 

Table 1. All possible outcomes when two balls are sampled with replacement.

Notice that all the means are either 1.0, 1.5, 2.0, 2.5, or 3.0. The frequencies of 
these means are shown in Table 2. The relative frequencies are equal to the 
frequencies divided by nine because there are nine possible outcomes.

Table 2. Frequencies of means for N = 2.

1 2 3

Outcome Ball 1 Ball 2 Mean

1 1 1 1

2 1 2 1.5

3 1 3 2

4 2 1 1.5

5 2 2 2

6 2 3 2.5

7 3 1 2

8 3 2 2.5

9 3 3 3

Mean Frequency Relative Frequency

1 1 0.111

1.5 2 0.222

2 3 0.333

2.5 2 0.222

3 1 0.111
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Figure 2 shows a relative frequency distribution of the means based on Table 2. 
This distribution is also a probability distribution since the Y-axis is the probability 
of obtaining a given mean from a sample of two balls in addition to being the 
relative frequency. 

Figure 2. Distribution of means for N = 2.

The distribution shown in Figure 2 is called the sampling distribution of the mean. 
Specifically, it is the sampling distribution of the mean for a sample size of 2 (N = 
2). For this simple example, the distribution of pool balls and the sampling 
distribution are both discrete distributions. The pool balls have only the values 1, 2, 
and 3, and a sample mean can have one of only five values shown in Table 2.

There is an alternative way of conceptualizing a sampling distribution that 
will be useful for more complex distributions. Imagine that two balls are sampled 
(with replacement) and the mean of the two balls is computed and recorded. Then 
this process is repeated for a second sample, a third sample, and eventually 
thousands of samples. After thousands of samples are taken and the mean 
computed for each, a relative frequency distribution is drawn. The more samples, 
the closer the relative frequency distribution will come to the sampling distribution 
shown in Figure 2. As the number of samples approaches infinity, the relative 
frequency distribution will approach the sampling distribution. This means that you 
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can conceive of a sampling distribution as being a relative frequency distribution 
based on a very large number of samples. To be strictly correct, the relative 
frequency distribution approaches the sampling distribution as the number of 
samples approaches infinity.

It is important to keep in mind that every statistic, not just the mean, has a 
sampling distribution. For example, Table 3 shows all possible outcomes for the 
range of two numbers (larger number minus the smaller number). Table 4 shows 
the frequencies for each of the possible ranges and Figure 3 shows the sampling 
distribution of the range.

Table 3. All possible outcomes when two balls are sampled with replacement.
Outcome Ball 1 Ball 2 Range

1 1 1 0

2 1 2 1

3 1 3 2

4 2 1 1

5 2 2 0

6 2 3 1

7 3 1 2

8 3 2 1

9 3 3 0
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Table 4. Frequencies of ranges for N = 2.

Figure 3. Distribution of ranges for N = 2.

It is also important to keep in mind that there is a sampling distribution for various 
sample sizes. For simplicity, we have been using N = 2. The sampling distribution 
of the range for N = 3 is shown in Figure 4.

Range Frequency Relative Frequency

0 3 0.333

1 4 0.444

2 2 0.222
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Figure 4. Distribution of ranges for N = 3.

Continuous Distributions 
In the previous section, the population consisted of three pool balls. Now we will 
consider sampling distributions when the population distribution is continuous. 
What if we had a thousand pool balls with numbers ranging from 0.001 to 1.000 in 
equal steps? (Although this distribution is not really continuous, it is close enough 
to be considered continuous for practical purposes.) As before, we are interested in 
the distribution of means we would get if we sampled two balls and computed the 
mean of these two balls. In the previous example, we started by computing the 
mean for each of the nine possible outcomes. This would get a bit tedious for this 
example since there are 1,000,000 possible outcomes (1,000 for the first ball x 
1,000 for the second). Therefore, it is more convenient to use our second 
conceptualization of sampling distributions which conceives of sampling 
distributions in terms of relative frequency distributions. Specifically, the relative 
frequency distribution that would occur if samples of two balls were repeatedly 
taken and the mean of each sample computed.

When we have a truly continuous distribution, it is not only impractical but 
actually impossible to enumerate all possible outcomes. Moreover, in continuous 
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distributions, the probability of obtaining any single value is zero. Therefore, as 
discussed in the section “Distributions” in Chapter 1, these values are called 
probability densities rather than probabilities.

Sampling Distributions and Inferential Statistics 
As we stated in the beginning of this chapter, sampling distributions are important 
for inferential statistics. In the examples given so far, a population was specified 
and the sampling distribution of the mean and the range were determined. In 
practice, the process proceeds the other way: you collect sample data, and from 
these data you estimate parameters of the sampling distribution. This knowledge of 
the sampling distribution can be very useful. For example, knowing the degree to 
which means from different samples would differ from each other and from the 
population mean would give you a sense of how close your particular sample mean 
is likely to be to the population mean. Fortunately, this information is directly 
available from a sampling distribution. The most common measure of how much 
sample means differ from each other is the standard deviation of the sampling 
distribution of the mean. This standard deviation is called the standard error of the 
mean. If all the sample means were very close to the population mean, then the 
standard error of the mean would be small. On the other hand, if the sample means 
varied considerably, then the standard error of the mean would be large.

To be specific, assume your sample mean were 125 and you estimated that 
the standard error of the mean were 5 (using a method shown in a later section). If 
you had a normal distribution, then it would be likely that your sample mean would 
be within 10 units of the population mean since most of a normal distribution is 
within two standard deviations of the mean.

Keep in mind that all statistics have sampling distributions, not just the 
mean. In later sections we will be discussing the sampling distribution of the 
variance, the sampling distribution of the difference between means, and the 
sampling distribution of Pearson's correlation, among others.
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Sampling Distribution of  the Mean 
by David M. Lane 

Prerequisites
• Chapter 3: Variance Sum Law I 
• Chapter 9: Introduction to Sampling Distributions

Learning Objectives
1. State the mean and variance of the sampling distribution of the mean
2. Compute the standard error of the mean
3. State the central limit theorem
The sampling distribution of the mean was defined in the section introducing 
sampling distributions. This section reviews some important properties of the 
sampling distribution of the mean.

Mean 
The mean of the sampling distribution of the mean is the mean of the population 
from which the scores were sampled. Therefore, if a population has a mean μ, then 
the mean of the sampling distribution of the mean is also μ. The symbol μM is used 
to refer to the mean of the sampling distribution of the mean. Therefore, the 
formula for the mean of the sampling distribution of the mean can be written as:

µM = µ 

Variance 
The variance of the sampling distribution of the mean is computed as follows:

That is, the variance of the sampling distribution of the mean is the population 
variance divided by N, the sample size (the number of scores used to compute a 
mean). Thus, the larger the sample size, the smaller the variance of the sampling 
distribution of the mean.
(optional paragraph) This expression can be derived very easily from the variance 
sum law. Let's begin by computing the variance of the sampling distribution of the 
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sum of three numbers sampled from a population with variance σ2. The variance of 
the sum would be σ2 + σ2 + σ2. For N numbers, the variance would be Nσ2. Since 
the mean is 1/N times the sum, the variance of the sampling distribution of the 
mean would be 1/N2 times the variance of the sum, which equals σ2/N.

The standard error of the mean is the standard deviation of the sampling 
distribution of the mean. It is therefore the square root of the variance of the 
sampling distribution of the mean and can be written as:

The standard error is represented by a σ because it is a standard deviation. The 
subscript (M) indicates that the standard error in question is the standard error of 
the mean.

Central Limit Theorem 
The central limit theorem states that:

Given a population with a finite mean µ and a finite non-
zero variance σ2, the sampling distribution of the mean 
approaches a normal distribution with a mean of µ and a 
variance of σ2/N as N, the sample size, increases. 

The expressions for the mean and variance of the sampling distribution of the mean 
are not new or remarkable. What is remarkable is that regardless of the shape of the 
parent population, the sampling distribution of the mean approaches a normal 
distribution as N increases. If you have used the “Central Limit Theorem 
Demo,” (external link; requires Java) you have already seen this for yourself. As a 
reminder, Figure 1 shows the results of the simulation for N = 2 and N = 10. The 
parent population was a uniform distribution. You can see that the distribution for 
N = 2 is far from a normal distribution. Nonetheless, it does show that the scores 
are denser in the middle than in the tails. For N = 10 the distribution is quite close 
to a normal distribution. Notice that the means of the two distributions are the 
same, but that the spread of the distribution for N = 10 is smaller.
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Figure 1. A simulation of a sampling distribution. The parent population is 
uniform. The blue line under “16” indicates that 16 is the mean. The 
red line extends from the mean plus and minus one standard deviation.

Figure 2 shows how closely the sampling distribution of the mean approximates a 
normal distribution even when the parent population is very non-normal. If you 
look closely you can see that the sampling distributions do have a slight positive 
skew. The larger the sample size, the closer the sampling distribution of the mean 
would be to a normal distribution.

11/8/10 12:43 PMSampling Distribution of the Mean

Page 3 of 4http://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html

Figure 2 shows how closely the sampling distribution of the mean approximates a
normal distribution even when the parent population is very non-normal. If you look
closely you can see that the sampling distributions do have a slight positive skew. The
larger the sample size, the closer the sampling distribution of the mean would be to a
normal distribution.

Figure 2. A simulation of a sampling
distribution. The parent population is very
non-normal.

 

Check Answer  Previous Question  Next Question  

309



Figure 2. A simulation of a sampling distribution. The parent population is 
very non-normal.

11/8/10 12:43 PMSampling Distribution of the Mean
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Figure 2 shows how closely the sampling distribution of the mean approximates a
normal distribution even when the parent population is very non-normal. If you look
closely you can see that the sampling distributions do have a slight positive skew. The
larger the sample size, the closer the sampling distribution of the mean would be to a
normal distribution.

Figure 2. A simulation of a sampling
distribution. The parent population is very
non-normal.

 

Check Answer  Previous Question  Next Question  
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Sampling Distribution of  Difference Between Means 
by David M. Lane 

Prerequisites
• Chapter 3: Variance Sum Law I 
• Chapter 9: Sampling Distributions
• Chapter 9: Sampling Distribution of the Mean

Learning Objectives
1. State the mean and variance of the sampling distribution of the difference 

between means
2. Compute the standard error of the difference between means
3. Compute the probability of a difference between means being above a specified 

value
Statistical analyses are very often concerned with the difference between means. A 
typical example is an experiment designed to compare the mean of a control group 
with the mean of an experimental group. Inferential statistics used in the analysis 
of this type of experiment depend on the sampling distribution of the difference 
between means.

The sampling distribution of the difference between means can be thought of 
as the distribution that would result if we repeated the following three steps over 
and over again: (1) sample n1 scores from Population 1 and n2 scores from 
Population 2, (2) compute the means of the two samples (M1 and M2), and (3) 
compute the difference between means, M1 - M2. The distribution of the 
differences between means is the sampling distribution of the difference between 
means.

As you might expect, the mean of the sampling distribution of the difference 
between means is:

 

which says that the mean of the distribution of differences between sample means 
is equal to the difference between population means. For example, say that the 
mean test score of all 12-year-olds in a population is 34 and the mean of 10-year-
olds is 25. If numerous samples were taken from each age group and the mean 
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difference computed each time, the mean of these numerous differences between 
sample means would be 34 - 25 = 9.

From the variance sum law, we know that:

 

which says that the variance of the sampling distribution of the difference between 
means is equal to the variance of the sampling distribution of the mean for 
Population 1 plus the variance of the sampling distribution of the mean for 
Population 2. Recall the formula for the variance of the sampling distribution of 
the mean:

 

Since we have two populations and two samples sizes, we need to distinguish 
between the two variances and sample sizes. We do this by using the subscripts 1 
and 2. Using this convention, we can write the formula for the variance of the 
sampling distribution of the difference between means as:

 

Since the standard error of a sampling distribution is the standard deviation of the 
sampling distribution, the standard error of the difference between means is:

 

Just to review the notation, the symbol on the left contains a sigma (σ), which 
means it is a standard deviation. The subscripts M1 - M2 indicate that it is the 
standard deviation of the sampling distribution of M1 - M2.

Now let's look at an application of this formula. Assume there are two 
species of green beings on Mars. The mean height of Species 1 is 32 while the 
mean height of Species 2 is 22. The variances of the two species are 60 and 70, 
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respectively, and the heights of both species are normally distributed. You 
randomly sample 10 members of Species 1 and 14 members of Species 2. What is 
the probability that the mean of the 10 members of Species 1 will exceed the mean 
of the 14 members of Species 2 by 5 or more? Without doing any calculations, you 
probably know that the probability is pretty high since the difference in population 
means is 10. But what exactly is the probability?

First, let’s determine the sampling distribution of the difference between 
means. Using the formulas above, the mean is

 

The standard error is:

 

The sampling distribution is shown in Figure 1. Notice that it is normally 
distributed with a mean of 10 and a standard deviation of 3.317. The area above 5 
is shaded blue.

Figure 1. The sampling distribution of the difference between means.

The last step is to determine the area that is shaded blue. Using either a Z table or 
the normal calculator, the area can be determined to be 0.934. Thus the probability 
that the mean of the sample from Species 1 will exceed the mean of the sample 
from Species 2 by 5 or more is 0.934.

As shown below, the formula for the standard error of the difference 
between means is much simpler if the sample sizes and the population variances 
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The sampling distribution is shown in Figure 1. Notice that it is normally distributed with
a mean of 10 and a standard deviation of 3.317. The area above 5 is shaded blue.

Figure 1. The sampling distribution
of the difference between means.

The last step is to determine the area that is shaded blue. Using either a Z table or the
normal calculator, the area can be determined to be 0.934. Thus the probability that
the mean of the sample from Species 2 will exceed the mean of the sample from
Species 1 by 5 or more is 0.934.

As shown below, the formula for the standard error of the difference between
means is much simpler if the sample sizes and the population variances are equal. Since
the variances and samples sizes are the same, there is no need to use the subscripts 1
and 2 to differentiate these terms.

This simplified version of the formula can be used for the following problem: The mean
height of 15-year olds boys (in cm) is 175 and the variance is 64. For girls, the mean is
165 and the variance is 64. If eight boys and eight girls were sampled, what is the
probability that the mean height of the sample of girls would be higher than the mean
height of the boys? In other words, what is the probability that the mean height of girls
minus the mean height of boys is greater than 0?

As before, the problem can be solved in terms of the sampling distribution of the
difference between means (girls - boys). The mean of the distribution is 165 - 175 = -
10. The standard deviation of the distribution is:

A graph of the distribution is shown in Figure 2. It is clear that it is unlikely that the
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are equal. When the variances and samples sizes are the same, there is no need to 
use the subscripts 1 and 2 to differentiate these terms.

 

This simplified version of the formula can be used for the following problem: The 
mean height of 15-year-old boys (in cm) is 175 and the variance is 64. For girls, 
the mean is 165 and the variance is 64. If eight boys and eight girls were sampled, 
what is the probability that the mean height of the sample of girls would be higher 
than the mean height of the sample of boys? In other words, what is the probability 
that the mean height of girls minus the mean height of boys is greater than 0?

As before, the problem can be solved in terms of the sampling distribution of 
the difference between means (girls - boys). The mean of the distribution is 165 - 
175 = -10. The standard deviation of the distribution is:

A graph of the distribution is shown in Figure 2. It is clear that it is unlikely that 
the mean height for girls would be higher than the mean height for boys since in 
the population boys are quite a bit taller. Nonetheless it is not inconceivable that 
the girls' mean could be higher than the boys' mean.

Figure 2. Sampling distribution of the difference between mean heights.
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mean height for girls would be higher than the mean height for boys since in the
population boys are quite a bit taller. Nonetheless it is not inconceivable that the girls'
mean could be higher than the boys' mean.

Figure 2. Sampling distribution of
the difference between mean
heights.

A difference between means of 0 or higher is a difference of 10/4 = 2.5 standard
deviations above the mean of -10. The probability of a score 2.5 or more standard
deviations above the mean is 0.0062.

 

Check Answer  Previous Question  Next Question  

Question 1 out of 4.
Population 1 has a mean of 20 and a variance of 100. Population 2 has a mean
of 15 and a variance of 64. You sample 20 scores from Pop 1 and 16 scores
from Pop 2. What is the mean of the sampling distribution of the difference
between means (Pop 1 - Pop 2)? 

Previous Section  |  Next Section
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A difference between means of 0 or higher is a difference of 10/4 = 2.5 standard 
deviations above the mean of -10. The probability of a score 2.5 or more standard 
deviations above the mean is 0.0062.
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Sampling Distribution of  Pearson's r 
by David M. Lane 

Prerequisites
• Chapter 4: Values of the Pearson Correlation
• Chapter 9: Introduction to Sampling Distributions 

Learning Objectives
1. State how the shape of the sampling distribution of r deviates from normality
2. Transform r to z'
3. Compute the standard error of z'
4. Calculate the probability of obtaining an r above a specified value
Assume that the correlation between quantitative and verbal SAT scores in a given 
population is 0.60. In other words, ρ = 0.60. If 12 students were sampled randomly, 
the sample correlation, r, would not be exactly equal to 0.60. Naturally different 
samples of 12 students would yield different values of r. The distribution of values 
of r after repeated samples of 12 students is the sampling distribution of r.

The shape of the sampling distribution of r for the above example is shown 
in Figure 1. You can see that the sampling distribution is not symmetric: it is 
negatively skewed. The reason for the skew is that r cannot take on values greater 
than 1.0 and therefore the distribution cannot extend as far in the positive direction 
as it can in the negative direction. The greater the value of ρ, the more pronounced 
the skew.
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Figure 1. The sampling distribution of r for N = 12 and ρ = 0.60.

Figure 2 shows the sampling distribution for ρ = 0.90. This distribution has a very 
short positive tail and a long negative tail.
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Figure 2 shows the sampling distribution for ρ = 0.90. This distribution has a very short
positive tail and a long negative tail.

Figure 2. The sampling distribution
of r for N = 12 and ρ = 0.90.

Referring back to the SAT example, suppose you wanted to know the probability
that in a sample of 19 students, the sample value of r would be 0.75 or higher. You
might think that all you would need to know to compute this probability is the mean
and standard error of the sampling distribution of r. However, since the sampling
distribution is not normal, you would still not be able to solve the problem. Fortunately,
the statistician Fisher developed a way to transform r to a variable that is normally
distributed with a known standard error. The variable is called z' and the formula for the
transformation is given below.

z' = 0.5 ln[(1+r)/(1-r)]

The details of the formula are not important here since normally you will use either a
table or calculator to do the transformation. What is important is that z' is normally
distributed and has a standard error of

where N is the number of pairs of scores.
Let's return to the question of determining the probability of getting a sample

correlation of 0.75 or above in a sample of 12 from a population with a correlation of
0.60. The first step is to convert both 0.60 and 0.75 to z's. The values are 0.693 and
0.973 respectively. The standard error of z' for N = 12 is 0.333. Therefore the
question is reduced to the following: given a normal distribution with a mean of 0.693
and a standard deviation of 0.333, what is the probability of obtaining a value of 0.973
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Figure 2. The sampling distribution of  r for N = 12 and 
ρ = 0.90. 
Referring back to the SAT example, suppose you wanted to know the probability 
that in a sample of 12 students, the sample value of r would be 0.75 or higher. You 
might think that all you would need to know to compute this probability is the 
mean and standard error of the sampling distribution of r. However, since the 
sampling distribution is not normal, you would still not be able to solve the 
problem. Fortunately, the statistician Fisher developed a way to transform r to a 
variable that is normally distributed with a known standard error. The variable is 
called z' and the formula for the transformation is given below.

z' = 0.5 ln[(1+r)/(1-r)] 

The details of the formula are not important here since normally you will use either 
a table or calculator (external link) to do the transformation. What is important is 
that z' is normally distributed and has a standard error of

 

where N is the number of pairs of scores.
Let's return to the question of determining the probability of getting a sample 

correlation of 0.75 or above in a sample of 12 from a population with a correlation 
of 0.60. The first step is to convert both 0.60 and 0.75 to their z' values, which are 
0.693 and 0.973, respectively. The standard error of z' for N = 12 is 0.333. 
Therefore, the question is reduced to the following: given a normal distribution 
with a mean of 0.693 and a standard deviation of 0.333, what is the probability of 
obtaining a value of 0.973 or higher? The answer can be found directly from the 
normal calculator (external link) to be 0.20. Alternatively, you could use the 
formula:

z = (X - µ)/σ = (0.973 - 0.693)/0.333 = 0.841 

and use a table to find that the area above 0.841 is 0.20.
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Sampling Distribution of  p 
by David M. Lane 

Prerequisites
• Chapter 5: Binomial Distribution
• Chapter 7: Normal Approximation to the Binomial
• Chapter 9: Introduction to Sampling Distributions

Learning Objectives
1. Compute the mean and standard deviation of the sampling distribution of p
2. State the relationship between the sampling distribution of p and the normal 

distribution
Assume that in an election race between Candidate A and Candidate B, 0.60 

of the voters prefer Candidate A. If a random sample of 10 voters were polled, it is 
unlikely that exactly 60% of them (6) would prefer Candidate A. By chance the 
proportion in the sample preferring Candidate A could easily be a little lower than 
0.60 or a little higher than 0.60. The sampling distribution of p is the distribution 
that would result if you repeatedly sampled 10 voters and determined the 
proportion (p) that favored Candidate A. 

The sampling distribution of p is a special case of the sampling distribution 
of the mean. Table 1 shows a hypothetical random sample of 10 voters. Those who 
prefer Candidate A are given scores of 1 and those who prefer Candidate B are 
given scores of 0. Note that seven of the voters prefer candidate A so the sample 
proportion (p) is

p = 7/10 = 0.70 

As you can see, p is the mean of the 10 preference scores. 
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Table 1. Sample of voters.

The distribution of p is closely related to the binomial distribution. The binomial 
distribution is the distribution of the total number of successes (favoring Candidate 
A, for example), whereas the distribution of p is the distribution of the mean 
number of successes. The mean, of course, is the total divided by the sample size, 
N. Therefore, the sampling distribution of p and the binomial distribution differ in 
that p is the mean of the scores (0.70) and the binomial distribution is dealing with 
the total number of successes (7). 

The binomial distribution has a mean of

µ = Nπ 

Dividing by N to adjust for the fact that the sampling distribution of p is dealing 
with means instead of totals, we find that the mean of the sampling distribution of 
p is:

µp = π 

The standard deviation of the binomial distribution is:

 

Voter Preference

1 1

2 0

3 1

4 1

5 1

6 0

7 1

8 0

9 1

10 1
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Dividing by N because p is a mean not a total, we find the standard error of p:

 

Returning to the voter example, π = 0.60 (Don't confuse π = 0.60, the population 
proportion, with p = 0.70, the sample proportion) and N = 10. Therefore, the mean 
of the sampling distribution of p is 0.60. The standard error is

 

The sampling distribution of p is a discrete rather than a continuous distribution. 
For example, with an N of 10, it is possible to have a p of 0.50 or a p of 0.60, but 
not a p of 0.55.

The sampling distribution of p is approximately normally distributed if N is 
fairly large and π is not close to 0 or 1. A rule of thumb is that the approximation is 
good if both Nπ and N(1 - π) are greater than 10. The sampling distribution for the 
voter example is shown in Figure 1. Note that even though N(1 - π) is only 4, the 
approximation is quite good. 

Figure 1. The sampling distribution of p. Vertical bars are the probabilities; 
the smooth curve is the normal approximation.
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The sampling distribution of p is approximately normally distributed if N is fairly
large and π is not close to 0 or 1. A rule of thumb is that the approximation is
good if both N π and N(1 - π) are both greater than 10. The sampling distribution
for the voter example is shown in Figure 1. Note that even though N(1 - π) is only
4, the approximation is quite good.

Figure 1. The sampling distribution of p.
Vertical bars are the probabilities; the smooth
curve is the normal approximation.

Check Answer  Previous Question  Next Question  

Question 1 out of 4.
The binomial distribution is the distribution of the total number of
successes whereas the distribution of p is: 

 the distribution of the mean number of successes

 the distribution of the total number of failures

 the distribution of the ratio of successes to failures

 a distribution with a mean of .5

Previous Section  |  Next Section
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 9: Introduction
• Chapter 9: Sampling Distribution of the Mean

The monthly jobs report always gets a lot of attention. Presidential candidates refer 
to the report when it favors their position. Referring to the August 2012 report in 
which only 96,000 jobs were created, Republican presidential challenger Mitt 
Romney stated "the weak jobs report is devastating news for American workers 
and American families ... a harsh indictment of the president's handling of the 
economy." When the September 2012 report was released showing 114,000 jobs 
were created (and the previous report was revised upwards), some supporters of 
Romney claimed the data were tampered with for political reasons. The most 
famous statement, "Unbelievable jobs numbers...these Chicago guys will do 
anything..can't debate so change numbers," was made by former Chairman and 
CEO of General Electric.
 
What do you think?
The standard error of the monthly estimate is 100,000. Given that, what do you 
think of the difference between the two job reports?

The difference between the two reports is very small given that 
the standard error is 100,000. It is not sensible to take any single 
jobs report too seriously. 
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Exercises 

Prerequisites
All material presented in the Sampling Distributions chapter

1. A population has a mean of 50 and a standard deviation of 6. (a) What are the 
mean and standard deviation of the sampling distribution of the mean for N = 
16? (b) What are the mean and standard deviation of the sampling distribution of 
the mean for N = 20?

2. Given a test that is normally distributed with a mean of 100 and a standard 
deviation of 12, find:
a. the probability that a single score drawn at random will be greater than 110
b. the probability that a sample of 25 scores will have a mean greater than 105
c. the probability that a sample of 64 scores will have a mean greater than 105
d. the probability that the mean of a sample of 16 scores will be either less than 
95 or greater than 105

3. What term refers to the standard deviation of a sampling distribution?

4. (a) If the standard error of the mean is 10 for N = 12, what is the standard error 
of the mean for N = 22? (b) If the standard error of the mean is 50 for N = 25, 
what is it for N = 64?

5. A questionnaire is developed to assess women’s and men’s attitudes toward 
using animals in research. One question asks whether animal research is wrong 
and is answered on a 7-point scale. Assume that in the population, the mean for 
women is 5, the mean for men is 4, and the standard deviation for both groups is 
1.5. Assume the scores are normally distributed. If 12 women and 12 men are 
selected randomly, what is the probability that the mean of the women will be 
more than 2 points higher than the mean of the men?

6. If the correlation between reading achievement and math achievement in the 
population of fifth graders were 0.60, what would be the probability that in a 
sample of 28 students, the sample correlation coefficient would be greater than 
0.65?
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7. If numerous samples of N = 15 are taken from a uniform distribution and a 
relative frequency distribution of the means is drawn, what would be the shape of 
the frequency distribution?

8. A normal distribution has a mean of 20 and a standard deviation of 10. Two 
scores are sampled randomly from the distribution and the second score is 
subtracted from the first. What is the probability that the difference score will be 
greater than 5? Hint: Read the Variance Sum Law section of Chapter 3.

9. What is the shape of the sampling distribution of r? In what way does the shape 
depend on the size of the population correlation?

10. If you sample one number from a standard normal distribution, what is the 
probability it will be 0.5?

11. A variable is normally distributed with a mean of 120 and a standard deviation 
of 5. Four scores are randomly sampled. What is the probability that the mean 
of the four scores is above 127?

12. The correlation between self-esteem and extraversion is .30. A sample of 84 is 
taken. a. What is the probability that the correlation will be less than 0.10? b. 
What is the probability that the correlation will be greater than 0.25?

13. The mean GPA for students in School A is 3.0; the mean GPA for students in 
School B is 2.8. The standard deviation in both schools is 0.25. The GPAs of 
both schools are normally distributed. If 9 students are randomly sampled from 
each school, what is the probability that:
a. the sample mean for School A will exceed that of School B by 0.5 or more?
b. the sample mean for School B will be greater than the sample mean for 
School A?

14. In a city, 70% of the people prefer Candidate A. Suppose 30 people from this 
city were sampled.
a. What is the mean of the sampling distribution of p? 
b. What is the standard error of p? 
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c. What is the probability that 80% or more of this sample will prefer 
Candidate A?

15. When solving problems where you need the sampling distribution of r, what is 
the reason for converting from r to z’?

16. In the population, the mean SAT score is 1000. Would you be more likely (or 
equally likely) to get a sample mean of 1200 if you randomly sampled 10 
students or if you randomly sampled 30 students? Explain.

17. True/false: The standard error of the mean is smaller when N = 20 than when N 
= 10.

18. True/false: The sampling distribution of r = .8 becomes normal as N increases.

19. True/false: You choose 20 students from the population and calculate the mean 
of their test scores. You repeat this process 100 times and plot the distribution 
of the means. In this case, the sample size is 100.

20. True/false: In your school, 40% of students watch TV at night. You randomly 
ask 5 students every day if they watch TV at night. Every day, you would find 
that 2 of the 5 do watch TV at night.

21. True/false: The median has a sampling distribution.

22. True/false: Refer to the figure below. The population distribution is shown in 
black, and its corresponding sampling distribution of the mean for N = 10 is 
labeled “A.”
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Questions from Case Studies

Angry Moods (AM) case study

23. (AM) 
a. How many men were sampled? 
b. How many women were sampled?

24. (AM) What is the mean difference between men and women on the Anger-Out 
scores?

25. (AM) Suppose in the population, the Anger-Out score for men is two points 
higher than it is for women. The population variances for men and women are 
both 20. Assume the Anger- Out scores for both genders are normally 
distributed. Given this information about the population parameters:
(a) What is the mean of the sampling distribution of the difference between 
means?
(b) What is the standard error of the difference between means?
(c) What is the probability that you would have gotten this mean difference 
(see #24) or less in your sample?

Animal Research (AR) case study
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26. (AR) How many people were sampled to give their opinions on animal 
research?

27. (AR) What is the correlation in this sample between the belief that animal 
research is wrong and belief that animal research is necessary?

28. (AR) Suppose the correlation between the belief that animal research is wrong 
and the belief that animal research is necessary is -.68 in the population.
(a) Convert -.68 to z’.
(b) Find the standard error of this sampling distribution.
(c) Assuming the data used in this study was randomly sampled, what is the 
probability that you would get this correlation or stronger (closer to -1)?
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10. Estimation 
A. Introduction
B. Degrees of Freedom
C. Characteristics of Estimators
D. Confidence Intervals

1. Introduction
2. Confidence Interval for the Mean
3. t distribution
4. Confidence Interval for the Difference Between Means
5. Confidence Interval for Pearson's Correlation
6. Confidence Interval for a Proportion

 
One of the major applications of statistics is estimating population parameters from 
sample statistics. For example, a poll may seek to estimate the proportion of adult 
residents of a city that support a proposition to build a new sports stadium. Out of a 
random sample of 200 people, 106 say they support the proposition. Thus in the 
sample, 0.53 of the people supported the proposition. This value of 0.53 is called a 
point estimate of the population proportion. It is called a point estimate because the 
estimate consists of a single value or point.

The concept of degrees of freedom and its relationship to estimation is 
discussed in Section B. “Characteristics of Estimators” discusses two important 
concepts: bias and precision.

Point estimates are usually supplemented by interval estimates called 
confidence intervals. Confidence intervals are intervals constructed using a method 
that contains the population parameter a specified proportion of the time. For 
example, if the pollster used a method that contains the parameter 95% of the time 
it is used, he or she would arrive at the following 95% confidence interval: 0.46 < 
π < 0.60. The pollster would then conclude that somewhere between 0.46 and 0.60 
of the population supports the proposal. The media usually reports this type of 
result by saying that 53% favor the proposition with a margin of error of 7%. The 
sections on confidence intervals show how to compute confidence intervals for a 
variety of parameters.
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Introduction to Estimation 
by David M. Lane 

Prerequisites
• Chapter 3 Measures of Central Tendency
• Chapter 3: Variability

Learning Objectives
1. Define statistic
2. Define parameter
3. Define point estimate
4. Define interval estimate
5. Define margin of error
One of the major applications of statistics is estimating population parameters from 
sample statistics. For example, a poll may seek to estimate the proportion of adult 
residents of a city that support a proposition to build a new sports stadium. Out of a 
random sample of 200 people, 106 say they support the proposition. Thus in the 
sample, 0.53 of the people supported the proposition. This value of 0.53 is called a 
point estimate of the population proportion. It is called a point estimate because the 
estimate consists of a single value or point.

Point estimates are usually supplemented by interval estimates called 
confidence intervals. Confidence intervals are intervals constructed using a method 
that contains the population parameter a specified proportion of the time. For 
example, if the pollster used a method that contains the parameter 95% of the time 
it is used, he or she would arrive at the following 95% confidence interval: 0.46 < 
π < 0.60. The pollster would then conclude that somewhere between 0.46 and 0.60 
of the population supports the proposal. The media usually reports this type of 
result by saying that 53% favor the proposition with a margin of error of 7%.

In an experiment on memory for chess positions, the mean recall for 
tournament players was 63.8 and the mean for non-players was 33.1. Therefore a 
point estimate of the difference between population means is 30.7. The 95% 
confidence interval on the difference between means extends from 19.05 to 42.35. 
You will see how to compute this kind of interval in another section.
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Degrees of  Freedom 
by David M. Lane 

Prerequisites
• Chapter 3: Measures of Variability
• Chapter 10: Introduction to Estimation

Learning Objectives
1. Define degrees of freedom
2. Estimate the variance from a sample of 1 if the population mean is known
3. State why deviations from the sample mean are not independent
4. State the general formula for degrees of freedom in terms of the number of 

values and the number of estimated parameters
5. Calculate s2

Some estimates are based on more information than others. For example, an 
estimate of the variance based on a sample size of 100 is based on more 
information than an estimate of the variance based on a sample size of 5. The 
degrees of freedom (df) of an estimate is the number of independent pieces of 
information on which the estimate is based.

As an example, let's say that we know that the mean height of Martians is 6 
and wish to estimate the variance of their heights. We randomly sample one 
Martian and find that its height is 8. Recall that the variance is defined as the mean 
squared deviation of the values from their population mean. We can compute the 
squared deviation of our value of 8 from the population mean of 6 to find a single 
squared deviation from the mean. This single squared deviation from the mean 
(8-6)2 = 4 is an estimate of the mean squared deviation for all Martians. Therefore, 
based on this sample of one, we would estimate that the population variance is 4. 
This estimate is based on a single piece of information and therefore has 1 df. If we 
sampled another Martian and obtained a height of 5, then we could compute a 
second estimate of the variance,  (5-6)2 = 1. We could then average our two 
estimates (4 and 1) to obtain an estimate of 2.5. Since this estimate is based on two 
independent pieces of information, it has two degrees of freedom. The two 
estimates are independent because they are based on two independently and 
randomly selected Martians. The estimates would not be independent if after 
sampling one Martian, we decided to choose its brother as our second Martian.
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As you are probably thinking, it is pretty rare that we know the population 
mean when we are estimating the variance. Instead, we have to first estimate the 
population mean (μ) with the sample mean (M). The process of estimating the 
mean affects our degrees of freedom as shown below.

Returning to our problem of estimating the variance in Martian heights, let's 
assume we do not know the population mean and therefore we have to estimate it 
from the sample. We have sampled two Martians and found that their heights are 8 
and 5. Therefore M, our estimate of the population mean, is

M = (8+5)/2 = 6.5. 

We can now compute two estimates of variance:

Estimate 1 = (8-6.5)2 = 2.25 

Estimate 2 = (5-6.5)2 = 2.25 

Now for the key question: Are these two estimates independent? The answer is no 
because each height contributed to the calculation of M. Since the first Martian's 
height of 8 influenced M, it also influenced Estimate 2. If the first height had been, 
for example, 10, then M would have been 7.5 and Estimate 2 would have been 
(5-7.5)2 = 6.25 instead of 2.25. The important point is that the two estimates are not 
independent and therefore we do not have two degrees of freedom. Another way to 
think about the non-independence is to consider that if you knew the mean and one 
of the scores, you would know the other score. For example, if one score is 5 and 
the mean is 6.5, you can compute that the total of the two scores is 13 and therefore 
that the other score must be 13-5 = 8.

In general, the degrees of freedom for an estimate is equal to the number of 
values minus the number of parameters estimated en route to the estimate in 
question. In the Martians example, there are two values (8 and 5) and we had to 
estimate one parameter (μ) on the way to estimating the parameter of interest (σ2). 
Therefore, the estimate of variance has 2 - 1 = 1 degree of freedom. If we had 
sampled 12 Martians, then our estimate of variance would have had 11 degrees of 
freedom. Therefore, the degrees of freedom of an estimate of variance is equal to N 
- 1 where N is the number of observations.

Recall from the section on variability that the formula for estimating the 
variance in a sample is:
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Characteristics of  Estimators 
by David M. Lane 

Prerequisites
• Chapter 3: Measures of Central Tendency 
• Chapter 3: Variability 
• Chapter 9: Introduction to Sampling Distributions 
• Chapter 9: Sampling Distribution of the Mean
• Chapter 10: Introduction to Estimation 
• Chapter 10: Degrees of Freedom

Learning Objectives
1. Define bias
2. Define sampling variability
3. Define expected value
4. Define relative efficiency
 
This section discusses two important characteristics of statistics used as point 
estimates of parameters: bias and sampling variability. Bias refers to whether an 
estimator tends to either over or underestimate the parameter. Sampling variability 
refers to how much the estimate varies from sample to sample.

Have you ever noticed that some bathroom scales give you very different 
weights each time you weigh yourself? With this in mind, let's compare two scales. 
Scale 1 is a very high-tech digital scale and gives essentially the same weight each 
time you weigh yourself; it varies by at most 0.02 pounds from weighing to 
weighing. Although this scale has the potential to be very accurate, it is calibrated 
incorrectly and, on average, overstates your weight by one pound. Scale 2 is a 
cheap scale and gives very different results from weighing to weighing. However, 
it is just as likely to underestimate as overestimate your weight. Sometimes it 
vastly overestimates it and sometimes it vastly underestimates it. However, the 
average of a large number of measurements would be your actual weight. Scale 1 
is biased since, on average, its measurements are one pound higher than your 
actual weight. Scale 2, by contrast, gives unbiased estimates of your weight. 
However, Scale 2 is highly variable and its measurements are often very far from 

333



your true weight. Scale 1, in spite of being biased, is fairly accurate. Its 
measurements are never more than 1.02 pounds from your actual weight.

We now turn to more formal definitions of variability and precision. 
However, the basic ideas are the same as in the bathroom scale example.

Bias 
A statistic is biased if the long-term average value of the statistic is not the 
parameter it is estimating. More formally, a statistic is biased if the mean of the 
sampling distribution of the statistic is not equal to the parameter. The mean of the 
sampling distribution of a statistic is sometimes referred to as the expected value of 
the statistic.

As we saw in the section on the sampling distribution of the mean, the mean 
of the sampling distribution of the (sample) mean is the population mean (μ). 
Therefore the sample mean is an unbiased estimate of μ. Any given sample mean 
may underestimate or overestimate μ, but there is no systematic tendency for 
sample means to either under or overestimate μ.

In the section on variability, we saw that the formula for the variance in a 
population is 

whereas the formula to estimate the variance from a sample is

Notice that the denominators of the formulas are different: N for the population 
and N-1 for the sample. If N is used in the formula for s2, then the estimates tend to 
be too low and therefore biased. The formula with N-1 in the denominator gives an 
unbiased estimate of the population variance. Note that N-1 is the degrees of 
freedom.

Sampling Variability 
The sampling variability of a statistic refers to how much the statistic varies from 
sample to sample and is usually measured by its standard error ; the smaller the 
standard error, the less the sampling variability. For example, the standard error of 
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the mean is a measure of the sampling variability of the mean. Recall that the 
formula for the standard error of the mean is

The larger the sample size (N), the smaller the standard error of the mean and 
therefore the lower the sampling variability.

Statistics differ in their sampling variability even with the same sample size. 
For example, for normal distributions, the standard error of the median is larger 
than the standard error of the mean. The smaller the standard error of a statistic, the 
more efficient the statistic. The relative efficiency of two statistics is typically 
defined as the ratio of their standard errors. However, it is sometimes defined as the 
ratio of their squared standard errors.
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Confidence Intervals 
by David M. Lane 

A. Introduction
B. Confidence Interval for the Mean
C. t distribution
D. Confidence Interval for the Difference Between Means
E. Confidence Interval for Pearson's Correlation
F. Confidence Interval for a Proportion
These sections show how to compute confidence intervals for a variety of 
parameters.
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Introduction to Confidence Intervals 
by David M. Lane 

Prerequisites
• Chapter 5: Introduction to Probability
• Chapter 10: Introduction to Estimation
• Chapter 10: Characteristics of Estimators

Learning Objectives
1. Define confidence interval
2. State why a confidence interval is not the probability the interval contains the 

parameter
Say you were interested in the mean weight of 10-year-old girls living in the 
United States. Since it would have been impractical to weigh all the 10-year-old 
girls in the United States, you took a sample of 16 and found that the mean weight 
was 90 pounds. This sample mean of 90 is a point estimate of the population mean. 
A point estimate by itself is of limited usefulness because it does not reveal the 
uncertainty associated with the estimate; you do not have a good sense of how far 
this sample mean may be from the population mean. For example, can you be 
confident that the population mean is within 5 pounds of 90? You simply do not 
know.

Confidence intervals provide more information than point estimates. 
Confidence intervals for means are intervals constructed using a procedure 
(presented in the next section) that will contain the population mean a specified 
proportion of the time, typically either 95% or 99% of the time. These intervals are 
referred to as 95% and 99% confidence intervals respectively. An example of a 
95% confidence interval is shown below:

72.85 < µ < 107.15 

There is good reason to believe that the population mean lies between these two 
bounds of 72.85 and 107.15 since 95% of the time confidence intervals contain the 
true mean.

If repeated samples were taken and the 95% confidence interval computed 
for each sample, 95% of the intervals would contain the population mean. 
Naturally, 5% of the intervals would not contain the population mean.

337



It is natural to interpret a 95% confidence interval as an interval with a 0.95 
probability of containing the population mean. However, the proper interpretation 
is not that simple. One problem is that the computation of a confidence interval 
does not take into account any other information you might have about the value of 
the population mean. For example, if numerous prior studies had all found sample 
means above 110, it would not make sense to conclude that there is a 0.95 
probability that the population mean is between 72.85 and 107.15. What about 
situations in which there is no prior information about the value of the population 
mean? Even here the interpretation is complex. The problem is that there can be 
more than one procedure that produces intervals that contain the population 
parameter 95% of the time. Which procedure produces the “true” 95% confidence 
interval? Although the various methods are equal from a purely mathematical point 
of view, the standard method of computing confidence intervals has two desirable 
properties: each interval is symmetric about the point estimate and each interval is 
contiguous. Recall from the introductory section in the chapter on probability that, 
for some purposes, probability is best thought of as subjective. It is reasonable, 
although not required by the laws of probability, that one adopt a subjective 
probability of 0.95 that a 95% confidence interval, as typically computed, contains 
the parameter in question.

Confidence intervals can be computed for various parameters, not just the 
mean. For example, later in this chapter you will see how to compute a confidence 
interval for ρ, the population value of Pearson's r, based on sample data.
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t Distribution 
by David M. Lane 

Prerequisites
• Chapter 7: Normal Distribution,
• Chapter 7: Areas Under Normal Distributions
• Chapter 10: Degrees of Freedom

Learning Objectives
1. State the difference between the shape of the t distribution and the normal 

distribution
2. State how the difference between the shape of the t distribution and normal 

distribution is affected by the degrees of freedom
3. Use a t table to find the value of t to use in a confidence interval
4. Use the t calculator to find the value of t to use in a confidence interval 

In the introduction to normal distributions it was shown that 95% of the area of a 
normal distribution is within 1.96 standard deviations of the mean. Therefore, if 
you randomly sampled a value from a normal distribution with a mean of 100, the 
probability it would be within 1.96σ of 100 is 0.95. Similarly, if you sample N 
values from the population, the probability that the sample mean (M) will be 
within 1.96 σM of 100 is 0.95.

Now consider the case in which you have a normal distribution but you do 
not know the standard deviation. You sample N values and compute the sample 
mean (M) and estimate the standard error of the mean (σM) with sM. What is the 
probability that M will be within 1.96 sM of the population mean (μ)? This is a 
difficult problem because there are two ways in which M could be more than 1.96 
sM from μ: (1) M could, by chance, be either very high or very low and (2) sM 
could, by chance, be very low. Intuitively, it makes sense that the probability of 
being within 1.96 standard errors of the mean should be smaller than in the case 
when the standard deviation is known (and cannot be underestimated). But exactly 
how much smaller? Fortunately, the way to work out this type of problem was 
solved in the early 20th century by W. S. Gosset who determined the distribution of 
a mean divided by its estimate of the standard error. This distribution is called the 
Student's t distribution or sometimes just the t distribution. Gosset worked out the t 
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distribution and associated statistical tests while working for a brewery in Ireland. 
Because of a contractual agreement with the brewery, he published the article 
under the pseudonym “Student.” That is why the t test is called the “Student's t 
test.”

The t distribution is very similar to the normal distribution when the estimate 
of variance is based on many degrees of freedom, but has relatively more scores in 
its tails when there are fewer degrees of freedom. Figure 1 shows t distributions 
with 2, 4, and 10 degrees of freedom and the standard normal distribution. Notice 
that the normal distribution has relatively more scores in the center of the 
distribution and the t distribution has relatively more in the tails. The t distribution 
is therefore leptokurtic. The t distribution approaches the normal distribution as the 
degrees of freedom increase.

Figure 1. A comparison of t distributions with 2, 4, and 10 df and the standard 
normal distribution. The distribution with the highest peak is the 2 df distribution, 
the next highest is 4 df, the highest after that is 10 df, and the lowest is the standard 
normal distribution.

-6 -4 -2 0 2 4 6
t
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Since the t distribution is leptokurtic, the percentage of the distribution within 1.96 
standard deviations of the mean is less than the 95% for the normal distribution. 
Table 1 shows the number of standard deviations from the mean required to 
contain 95% and 99% of the area of the t distribution for various degrees of 
freedom. These are the values of t that you use in a confidence interval. The 
corresponding values for the normal distribution are 1.96 and 2.58 respectively. 
Notice that with few degrees of freedom, the values of t are much higher than the 
corresponding values for a normal distribution and that the difference decreases as 
the degrees of freedom increase. The values in Table 1 can be obtained from the 
“Find t for a confidence interval” calculator.

Table 1. Abbreviated t table.

Returning to the problem posed at the beginning of this section, suppose you 
sampled 9 values from a normal population and estimated the standard error of the 
mean (σM) with sM. What is the probability that M would be within 1.96sM of μ? 
Since the sample size is 9, there are N - 1 = 8 df. From Table 1 you can see that 
with 8 df the probability is 0.95 that the mean will be within 2.306 sM of μ. The 
probability that it will be within 1.96 sM of μ is therefore lower than 0.95. 
A “t distribution” calculator can be used to find that 0.086 of the area of a t 
distribution is more than 1.96 standard deviations from the mean, so the probability 
that M would be less than 1.96sM from μ is 1 - 0.086 = 0.914.

df 0.95 0.99

2 4.303 9.925

3 3.182 5.841

4 2.776 4.604

5 2.571 4.032

8 2.306 3.355

10 2.228 3.169

20 2.086 2.845

50 2.009 2.678

100 1.984 2.626
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As expected, this probability is less than 0.95 that would have been obtained if σM 
had been known instead of estimated.

342



Confidence Interval for the Mean 
by David M. Lane 

Prerequisites
• Chapter 7: Areas Under Normal Distributions
• Chapter 9: Sampling Distribution of the Mean
• Chapter 10: Introduction to Estimation
• Chapter 10: Introduction to Confidence Intervals
• Chapter 10: t distribution

Learning Objectives
1. Use the inverse normal distribution calculator to find the value of z to use for a 

confidence interval
2. Compute a confidence interval on the mean when σ is known
3. Determine whether to use a t distribution or a normal distribution
4. Compute a confidence interval on the mean when σ is estimated
When you compute a confidence interval on the mean, you compute the mean of a 
sample in order to estimate the mean of the population. Clearly, if you already 
knew the population mean, there would be no need for a confidence interval. 
However, to explain how confidence intervals are constructed, we are going to 
work backwards and begin by assuming characteristics of the population. Then we 
will show how sample data can be used to construct a confidence interval.

Assume that the weights of 10-year-old children are normally distributed 
with a mean of 90 and a standard deviation of 36. What is the sampling distribution 
of the mean for a sample size of 9? Recall from the section on the sampling 
distribution of the mean that the mean of the sampling distribution is μ and the 
standard error of the mean is

 

For the present example, the sampling distribution of the mean has a mean of 90 
and a standard deviation of 36/3 = 12. Note that the standard deviation of a 
sampling distribution is its standard error. Figure 1 shows this distribution. The 
shaded area represents the middle 95% of the distribution and stretches from 66.48 
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to 113.52. These limits were computed by adding and subtracting 1.96 standard 
deviations to/from the mean of 90 as follows:
 

 90 - (1.96)(12) = 66.48 
90 + (1.96)(12) = 113.52 

The value of 1.96 is based on the fact that 95% of the area of a normal distribution 
is within 1.96 standard deviations of the mean; 12 is the standard error of the mean.

Figure 1. The sampling distribution of the mean for N=9. The middle 95% of 
the distribution is shaded.

Figure 1 shows that 95% of the means are no more than 23.52 units (1.96 standard 
deviations) from the mean of 90. Now consider the probability that a sample mean 
computed in a random sample is within 23.52 units of the population mean of 90. 
Since 95% of the distribution is within 23.52 of 90, the probability that the mean 
from any given sample will be within 23.52 of 90 is 0.95. This means that if we 
repeatedly compute the mean (M) from a sample, and create an interval ranging 
from M - 23.52 to M + 23.52, this interval will contain the population mean 95% 
of the time. In general, you compute the 95% confidence interval for the mean with 
the following formula:

 Lower limit = M - Z.95σm 
Upper limit = M + Z.95σm 
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where Z.95 is the number of standard deviations extending from the mean of a 
normal distribution required to contain 0.95 of the area and σM is the standard error 
of the mean.

If you look closely at this formula for a confidence interval, you will notice 
that you need to know the standard deviation (σ) in order to estimate the mean. 
This may sound unrealistic, and it is. However, computing a confidence interval 
when σ is known is easier than when σ has to be estimated, and serves a 
pedagogical purpose. Later in this section we will show how to compute a 
confidence interval for the mean when σ has to be estimated.

Suppose the following five numbers were sampled from a normal 
distribution with a standard deviation of 2.5: 2, 3, 5, 6, and 9. To compute the 95% 
confidence interval, start by computing the mean and standard error:

M = (2 + 3 + 5 + 6 + 9)/5 = 5. 

 

Z.95 can be found using the normal distribution calculator and specifying that the 
area is 0.95 and indicating that you want the area to be between the cutoff points. 
The value is 1.96. If you had wanted to compute the 99% confidence interval, you 
would have set the shaded area to 0.99 and the result would have been 2.58. 
 
The confidence interval can then be computed as follows:

Lower limit = 5 - (1.96)(1.118)= 2.81 
Upper limit = 5 + (1.96)(1.118)= 7.19 

You should use the t distribution rather than the normal distribution when the 
variance is not known and has to be estimated from sample data. When the sample 
size is large, say 100 or above, the t distribution is very similar to the standard 
normal distribution. However, with smaller sample sizes, the t distribution is 
leptokurtic, which means it has relatively more scores in its tails than does the 
normal distribution. As a result, you have to extend farther from the mean to 
contain a given proportion of the area. Recall that with a normal distribution, 95% 
of the distribution is within 1.96 standard deviations of the mean. Using the t 
distribution, if you have a sample size of only 5, 95% of the area is within 2.78 
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standard deviations of the mean. Therefore, the standard error of the mean would 
be multiplied by 2.78 rather than 1.96.

The values of t to be used in a confidence interval can be looked up in a table 
of the t distribution. A small version of such a table is shown in Table 1. The first 
column, df, stands for degrees of freedom, and for confidence intervals on the 
mean, df is equal to N - 1, where N is the sample size.

Table 1. Abbreviated t table.

You can also use the “inverse t distribution” calculator to find the t values to use in 
confidence intervals.

Assume that the following five numbers are sampled from a normal 
distribution: 2, 3, 5, 6, and 9 and that the standard deviation is not known. The first 
steps are to compute the sample mean and variance:

         M = 5 
        s2 = 7.5 

The next step is to estimate the standard error of the mean. If we knew the 
population variance, we could use the following formula:

 

df 0.95 0.99

2 4.303 9.925

3 3.182 5.841

4 2.776 4.604

5 2.571 4.032

8 2.306 3.355

10 2.228 3.169

20 2.086 2.845

50 2.009 2.678

100 1.984 2.626
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Instead we compute an estimate of the standard error (sM):

 

The next step is to find the value of t. As you can see from Table 1, the value for 
the 95% confidence interval for df = N - 1 = 4 is 2.776. The confidence interval is 
then computed just as it is with σM. The only differences are that sM and t rather 
than σM and Z are used.

 Lower limit = 5 - (2.776)(1.225) = 1.60 
Upper limit = 5 + (2.776)(1.225) = 8.40 

More generally, the formula for the 95% confidence interval on the mean is:

 Lower limit = M - (tCL)(sM) 
Upper limit = M + (tCL)(sM) 

where M is the sample mean, tCL is the t for the confidence level desired (0.95 in 
the above example), and sM is the estimated standard error of the mean.

We will finish with an analysis of the Stroop Data. Specifically, we will 
compute a confidence interval on the mean difference score. Recall that 47 subjects 
named the color of ink that words were written in. The names conflicted so that, for 
example, they would name the ink color of the word “blue” written in red ink. The 
correct response is to say “red” and ignore the fact that the word is “blue.” In a 
second condition, subjects named the ink color of colored rectangles.
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Table 2. Response times in seconds for 10 subjects.

Table 2 shows the time difference between the interference and color-naming 
conditions for 10 of the 47 subjects. The mean time difference for all 47 subjects is 
16.362 seconds and the standard deviation is 7.470 seconds. The standard error of 
the mean is 1.090. A t table shows the critical value of t for 47 - 1 = 46 degrees of 
freedom is 2.013 (for a 95% confidence interval). Therefore the confidence interval 
is computed as follows:

Lower limit = 16.362 - (2.013)(1.090) = 14.17 
Upper limit = 16.362 + (2.013)(1.090) = 18.56 

Therefore, the interference effect (difference) for the whole population is likely to 
be between 14.17 and 18.56 seconds.

Naming Colored 
Rectangle Interference Difference

17 38 21

15 58 43

18 35 17

20 39 19

18 33 15

20 32 12

20 45 25

19 52 33

17 31 14

21 29 8
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Difference between Means 
by David M. Lane 

Prerequisites
• Chapter 9: Sampling Distribution of Difference between Means
• Chapter 10: Confidence Intervals
• Chapter 10: Confidence Interval on the Mean

Learning Objectives
1. State the assumptions for computing a confidence interval on the difference 

between means
2. Compute a confidence interval on the difference between means
3. Format data for computer analysis
It is much more common for a researcher to be interested in the difference between 
means than in the specific values of the means themselves. We take as an example 
the data from the “Animal Research” case study. In this experiment, students rated 
(on a 7-point scale) whether they thought animal research is wrong. The sample 
sizes, means, and variances are shown separately for males and females in Table 1.

Table 1. Means and Variances in Animal Research study.

As you can see, the females rated animal research as more wrong than did the 
males. This sample difference between the female mean of 5.35 and the male mean 
of 3.88 is 1.47. However, the gender difference in this particular sample is not very 
important. What is important is the difference in the population. The difference in 
sample means is used to estimate the difference in population means. The accuracy 
of the estimate is revealed by a confidence interval.

In order to construct a confidence interval, we are going to make three 
assumptions:
1.  The two populations have the same variance. This assumption is called the 

assumption of homogeneity of variance.
2. The populations are normally distributed.

Condition n Mean Variance

Females 17 5.353 2.743

Males 17 3.882 2.985
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3. Each value is sampled independently from each other value.
 The consequences of violating these assumptions are discussed in Chapter 12. For 
now, suffice it to say that small-to-moderate violations of assumptions 1 and 2 do 
not make much difference.

A confidence interval on the difference between means is computed using 
the following formula:

 

 

where M1 - M2 is the difference between sample means, tCL is the t for the desired 
level of confidence, and   is the estimated standard error of the difference 
between sample means. The meanings of these terms will be made clearer as the 
calculations are demonstrated.

We continue to use the data from the “Animal Research” case study and will 
compute a confidence interval on the difference between the mean score of the 
females and the mean score of the males. For this calculation, we will assume that 
the variances in each of the two populations are equal.

The first step is to compute the estimate of the standard error of the 
difference between means . Recall from the relevant section in the chapter 
on sampling distributions that the formula for the standard error of the difference in 
means in the population is:

 

In order to estimate this quantity, we estimate σ2 and use that estimate in place of 
σ2. Since we are assuming the population variances are the same, we estimate this 
variance by averaging our two sample variances. Thus, our estimate of variance is 
computed using the following formula:
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where MSE is our estimate of σ2. In this example,
MSE = (2.743 + 2.985)/2 = 2.864.

Note that MSE stands for “mean square error” and is the mean squared 
deviation of each score from its group’s mean.

Since n (the number of scores in each condition) is 17,

 

The next step is to find the t to use for the confidence interval (tCL). To 
calculate tCL, we need to know the degrees of freedom. The degrees of freedom is 
the number of independent estimates of variance on which MSE is based. This is 
equal to (n1 - 1) + (n2 - 1) where n1 is the sample size of the first group and n2 is the 
sample size of the second group. For this example, n1= n2 = 17. When n1= n2, it is 
conventional to use “n” to refer to the sample size of each group. Therefore, the 
degrees of freedom is 16 + 16 = 32.
From either the above calculator or a t table, you can find that the t for a 95% 
confidence interval for 32 df is 2.037.

We now have all the components needed to compute the confidence interval. 
First, we know the difference between means:

M1 - M2 = 5.353 - 3.882 = 1.471 

We know the standard error of the difference between means is

 

and that the t for the 95% confidence interval with 32 df is

tCL = 2.037 

Therefore, the 95% confidence interval is

Lower Limit = 1.471 - (2.037)(0.5805) = 0.29 

Upper Limit = 1.471 +(2.037)(0.5805) = 2.65 
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We can write the confidence interval as:

0.29 ≤ µf - µm ≤ 2.65 

where μf is the population mean for females and μm is the population mean for 
males. This analysis provides evidence that the mean for females is higher than the 
mean for males, and that the difference between means in the population is likely 
to be between 0.29 and 2.65.

Formatting Data for Computer Analysis 
Most computer programs that compute t tests require your data to be in a specific 
form. Consider the data in Table 2.

Table 2. Example Data

Here there are two groups, each with three observations. To format these data for a 
computer program, you normally have to use two variables: the first specifies the 
group the subject is in and the second is the score itself. For the data in Table 2, the 
reformatted data look as follows: 

Group 1 Group 2

3 5

4 6

5 7
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Table 3. Reformatted Data

 Computations for Unequal Sample Sizes (optional) 
The calculations are somewhat more complicated when the sample sizes are not 
equal. One consideration is that MSE, the estimate of variance, counts the sample 
with the larger sample size more than the sample with the smaller sample size. 
Computationally this is done by computing the sum of squares error (SSE) as 
follows:

 

where M1 is the mean for group 1 and M2 is the mean for group 2. Consider the 
following small example:

Table 4. Example Data

M1 = 4 and M2 = 3. 

SSE = (3-4)2 + (4-4)2 + (5-4)2 + (2-3)2 + (4-3)2 = 
4 

G Y

1 3

1 4

1 5

2 5

2 6

2 7

��� =
��	 + �		

2  

 

 

������ = �2���
� = �(2)(2.864)

17 = 0.5805 

 

 

�������.
��
 

 

 

��� =�(� ���)	 +�(� ��	)	 

 

 

������ = �2���
�  

 

 

������ = �
2���
��

 

Group 1 Group 2

3 2

4 4

5  

353



Then, MSE is computed by: 

MSE = SSE/df 

where the degrees of freedom (df) is computed as before: 

 df = (n1 -1) + (n2 -1) = (3-1) + (2-1) = 3.  
MSE = SSE/df = 4/3 = 1.333. 

The formula 

 

is replaced by

 

where nh is the harmonic mean of the sample sizes and is computed as follows:

 

and

 

tCL for 3 df and the 0.05 level = 3.182.
Therefore the 95% confidence interval is

Lower Limit = 1 - (3.182)(1.054)= -2.35 

Upper Limit = 1 + (3.182)(1.054)= 4.35 

We can write the confidence interval as:
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-2.35 ≤ µ1 - µ2 ≤ 4.35 
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Correlation 
by David M. Lane 

Prerequisites
• Chapter 4: Values of the Pearson Correlation
• Chapter 9: Sampling Distribution of Pearson's r
• Chapter 10: Confidence Intervals

Learning Objectives
1. State why the z’ transformation is necessary
2. Compute the standard error of z'
3. Compute a confidence interval on ρ
The computation of a confidence interval on the population value of Pearson's 
correlation (ρ) is complicated by the fact that the sampling distribution of r is not 
normally distributed. The solution lies with Fisher's z' transformation described in 
the section on the sampling distribution of Pearson's r. The steps in computing a 
confidence interval for p are:
1. Convert r to z'
2. Compute a confidence interval in terms of z'
3. Convert the confidence interval back to r.
Let's take the data from the case study Animal Research as an example. In this 
study, students were asked to rate the degree to which they thought animal research 
is wrong and the degree to which they thought it is necessary. As you might have 
expected, there was a negative relationship between these two variables: the more 
that students thought animal research is wrong, the less they thought it is necessary. 
The correlation based on 34 observations is -0.654. The problem is to compute a 
95% confidence interval on ρ based on this r of -0.654.

The conversion of r to z' can be done using a calculator. This calculator 
shows that the z' associated with an r of -0.654 is -0.78.

The sampling distribution of z' is approximately normally distributed and 
has a standard error of
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For this example, N = 34 and therefore the standard error is 0.180. The Z for a 95% 
confidence interval (Z.95) is 1.96, as can be found using the normal distribution 
calculator (setting the shaded area to .95 and clicking on the “Between” button). 
The confidence interval is therefore computed as:

 Lower limit = -0.78 - (1.96)(0.18)= -1.13 
Upper limit = -0.78 + (1.96)(0.18)= -0.43 

The final step is to convert the endpoints of the interval back to r using a table or 
the calculator. The r associated with a z' of -1.13 is -0.81 and the r associated with 
a z' of -0.43 is -0.40. Therefore, the population correlation (p) is likely to be 
between -0.81 and -0.40. The 95% confidence interval is:

-0.81 ≤ ρ ≤ -0.40 

To calculate the 99% confidence interval, you use the Z for a 99% confidence 
interval of 2.58 as follows:

 Lower limit = -0.775 - (2.58)(0.18) = -1.24 
Upper limit = -0.775 + (2.58)(0.18) = -0.32 

Converting back to r, the confidence interval is:

-0.84 ≤ ρ ≤ -0.31 

Naturally, the 99% confidence interval is wider than the 95% confidence interval.
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Proportion 
by David M. Lane 

Prerequisites
• Chapter 7: Introduction to the Normal Distribution
• Chapter 7: Normal Approximation to the Binomial
• Chapter 9: Sampling Distribution of the Mean 
• Chapter 9: Sampling Distribution of a Proportion
• Chapter 10: Confidence Intervals
• Chapter 10: Confidence Interval on the Mean

Learning Objectives
1. Estimate the population proportion from sample proportions
2. Apply the correction for continuity
3. Compute a confidence interval
A candidate in a two-person election commissions a poll to determine who is 
ahead. The pollster randomly chooses 500 registered voters and determines that 
260 out of the 500 favor the candidate. In other words, 0.52 of the sample favors 
the candidate. Although this point estimate of the proportion is informative, it is 
important to also compute a confidence interval. The confidence interval is 
computed based on the mean and standard deviation of the sampling distribution of 
a proportion. The formulas for these two parameters are shown below:

µp = π 

 

Since we do not know the population parameter π, we use the sample proportion p 
as an estimate. The estimated standard error of p is therefore
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We start by taking our statistic (p) and creating an interval that ranges (Z.95)(sp) in 
both directions where Z.95 is the number of standard deviations extending from the 
mean of a normal distribution required to contain 0.95 of the area. (See the section 
on the confidence interval for the mean). The value of Z.95 is computed with the 
normal calculator and is equal to 1.96. We then make a slight adjustment to correct 
for the fact that the distribution is discrete rather than continuous.

sp is calculated as shown below:

 

To correct for the fact that we are approximating a discrete distribution with a 
continuous distribution (the normal distribution), we subtract 0.5/N from the lower 
limit and add 0.5/N to the upper limit of the interval. Therefore the confidence 
interval is

 

 Lower: 0.52 - (1.96)(0.0223) - 0.001 = 0.475 
Upper: 0.52 + (1.96)(0.0223) + 0.001 = 0.565 

.475 ≤ π ≤ .565 

Since the interval extends 0.045 in both directions, the margin of error is 0.045. In 
terms of percent, between 47.5% and 56.5% of the voters favor the candidate and 
the margin of error is 4.5%. Keep in mind that the margin of error of 4.5% is the 
margin of error for the percent favoring the candidate and not the margin of error 
for the difference between the percent favoring the candidate and the percent 
favoring the opponent. The margin of error for the difference is 9%, twice the 
margin of error for the individual percent. Keep this in mind when you hear reports 
in the media; the media often get this wrong.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 10: Proportions

In July of 2011, Gene Munster of Piper Jaffray reported the results of a survey in a note 
to clients. This research was reported throughout the media. Perhaps the fullest 
description was presented on the CNNMoney website (A service of CNN, Fortune, and 
Money) in an article entitled “Survey: iPhone retention 94% vs. Android 47%.” The data 
were collected by asking people in food courts and baseball stadiums what their current 
phone was and what phone they planned to buy next. The data were collected in the 
summer of 2011. Below is a portion of the data:

 
What do you think?
The article contains the strong caution: “It's only a tiny sample, so large 
conclusions must not be drawn.” This caution appears to be a welcome change 
from the overstating of findings typically found in the media. But has this report 
understated the importance of the study? Perhaps it is valid to draw some "large 
conclusions."?

The confidence interval on the proportion extends from 0.87 to 
1.0 (some methods give the interval from 0.85 to 0.97). Even the 
lower bound indicates the vast majority of  iPhone owners plan 
to buy another iPhone. A strong conclusion can be made even 
with this sample size. 

Phone Keep Change Proportion

iPhone 58 4 0.94

Android 17 19 0.47
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Exercises 

Prerequisites
• All material presented in the Estimation Chapter

1. When would the mean grade in a class on a final exam be considered a statistic? 
When would it be considered a parameter?

2. Define bias in terms of expected value.

3. Is it possible for a statistic to be unbiased yet very imprecise? How about being 
very accurate but biased?

4. Why is a 99% confidence interval wider than a 95% confidence interval? 

5. When you construct a 95% confidence interval, what are you 95% confident 
about?

6. What is the difference in the computation of a confidence interval between cases 
in which you know the population standard deviation and cases in which you 
have to estimate it?

7. Assume a researcher found that the correlation between a test he or she 
developed and job performance was 0.55 in a study of 28 employees. If 
correlations under .35 are considered unacceptable, would you have any 
reservations about using this test to screen job applicants?

8. What is the effect of sample size on the width of a confidence interval?

9. How does the t distribution compare with the normal distribution? How does 
this difference affect the size of confidence intervals constructed using z 
relative to those constructed using t? Does sample size make a difference?

10. The effectiveness of a blood-pressure drug is being investigated. How might an 
experimenter demonstrate that, on average, the reduction in systolic blood 
pressure is 20 or more?
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11. A population is known to be normally distributed with a standard deviation of 
2.8. (a) Compute the 95% confidence interval on the mean based on the 
following sample of nine: 8, 9, 10, 13, 14, 16, 17, 20, 21. (b) Now compute the 
99% confidence interval using the same data.

12. A person claims to be able to predict the outcome of flipping a coin. This 
person is correct 16/25 times. Compute the 95% confidence interval on the 
proportion of times this person can predict coin flips correctly. What 
conclusion can you draw about this test of his ability to predict the future?

13. What does it mean that the variance (computed by dividing by N) is a biased 
statistic?

14. A confidence interval for the population mean computed from an N of 16 
ranges from 12 to 28. A new sample of 36 observations is going to be taken. 
You can’t know in advance exactly what the confidence interval will be 
because it depends on the random sample. Even so, you should have some idea 
of what it will be. Give your best estimation.

15. You take a sample of 22 from a population of test scores, and the mean of your 
sample is 60. (a) You know the standard deviation of the population is 10. 
What is the 99% confidence interval on the population mean. (b) Now assume 
that you do not know the population standard deviation, but the standard 
deviation in your sample is 10. What is the 99% confidence interval on the 
mean now?

16. You read about a survey in a newspaper and find that 70% of the 250 people 
sampled prefer Candidate A. You are surprised by this survey because you 
thought that more like 50% of the population preferred this candidate. Based 
on this sample, is 50% a possible population proportion? Compute the 95% 
confidence interval to be sure.

17. Heights for teenage boys and girls were calculated. The mean height for the 
sample of 12 boys was 174 cm and the variance was 62. For the sample of 12 
girls, the mean was 166 cm and the variance was 65. Assuming equal variances 
and normal distributions in the population, (a) What is the 95% confidence 
interval on the difference between population means? (b) What is the 99% 
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confidence interval on the difference between population means? (c) Do you 
think it is very unlikely that the mean difference in the population is about 5? 
Why or why not?

18. You were interested in how long the average psychology major at your college 
studies per night, so you asked 10 psychology majors to tell you the amount 
they study. They told you the following times: 2, 1.5, 3, 2, 3.5, 1, 0.5, 3, 2, 4. 
(a) Find the 95% confidence interval on the population mean. (b) Find the 90% 
confidence interval on the population mean.

19. True/false: As the sample size gets larger, the probability that the confidence 
interval will contain the population mean gets higher.

20. True/false: You have a sample of 9 men and a sample of 8 women. The degrees 
of freedom for the t value in your confidence interval on the difference between 
means is 16.

21. True/false: Greek letters are used for statistics as opposed to parameters.

22. True/false: In order to construct a confidence interval on the difference between 
means, you need to assume that the populations have the same variance and are 
both normally distributed.
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23. True/false: The red distribution represents the t distribution and the blue 
distribution represents the normal distribution.

	

Questions from Case Studies

Angry Moods (AM) case study

24. (AM) Is there a difference in how much males and females use aggressive 
behavior to improve an angry mood? For the “Anger-Out” scores, compute a 
99% confidence interval on the difference between gender means.

25. (AM) Calculate the 95% confidence interval for the difference between the 
mean Anger-In score for the athletes and non-athletes. What can you conclude?

26. (AM) Find the 95% confidence interval on the population correlation between 
the Anger- Out and Control-Out scores.

Flatulence (F) case study

27. (F) Compare men and women on the variable “perday.” Compute the 95% 
confidence interval on the difference between means.
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28. (F) What is the 95% confidence interval of the mean time people wait before 
farting in front of a romantic partner.

Animal Research (AR) case study

29. (AR) What percentage of the women studied in this sample strongly agreed 
(gave a rating of 7) that using animals for research is wrong?

30. (AR) Use the proportion you computed in #29. Compute the 95% confidence 
interval on the population proportion of women who strongly agree that animal 
research is wrong.

31. (AR) Compute a 95% confidence interval on the difference between the gender 
means with respect to their beliefs that animal research is wrong.

ADHD Treatment (AT) case study

32. (AT) What is the correlation between the participants’ correct number of 
responses after taking the placebo and their correct number of responses after 
taking 0.60 mg/kg of MPH? Compute the 95% confidence interval on the 
population correlation.

Weapons and Aggression (WA) case study

33. (WA) Recall that the hypothesis is that a person can name an aggressive word 
more quickly if it is preceded by a weapon word prime than if it is preceded by 
a neutral word prime. The first step in testing this hypothesis is to compute the 
difference between (a) the naming time of aggressive words when preceded by 
a neutral word prime and (b) the naming time of aggressive words when 
preceded by a weapon word prime separately for each of the 32 participants. 
That is, compute an - aw for each participant.
a. (WA) Would the hypothesis of this study be supported if the difference were 
positive or if it were negative? 
b. What is the mean of this difference score? 
c. What is the standard deviation of this difference score? 
d. What is the 95% confidence interval of the mean difference score? 
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e. What does the confidence interval computed in (d) say about the hypothesis.

Diet and Health (DH) case study

34. (DH) Compute a 95% confidence interval on the proportion of people who are 
healthy on the AHA diet.

The following questions are from ARTIST (reproduced with permission)

35. Suppose that you take a random sample of 10,000 Americans and find that 
1,111 are left- handed. You perform a test of significance to assess whether the 
sample data provide evidence that more than 10% of all Americans are left-
handed, and you calculate a test statistic of 3.70 and a p-value of .0001. 
Furthermore, you calculate a 99% confidence interval for the proportion of left-
handers in America to be (.103,.119). Consider the following statements: The 
sample provides strong evidence that more than 10% of all Americans are left-
handed. The sample provides evidence that the proportion of left-handers in 
America is much larger than 10%. Which of these two statements is the more 
appropriate conclusion to draw? Explain your answer based on the results of 
the significance test and confidence interval.

36. A student wanted to study the ages of couples applying for marriage licenses in 
his county. He studied a sample of 94 marriage licenses and found that in 67 
cases the husband was older than the wife. Do the sample data provide strong 
evidence that the husband is usually older than the wife among couples 
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applying for marriage licenses in that county? Explain briefly and justify your 
answer.

37. Imagine that there are 100 different researchers each studying the sleeping 
habits of college freshmen. Each researcher takes a random sample of size 50 
from the same population of freshmen. Each researcher is trying to estimate the 
mean hours of sleep that freshmen get at night, and each one constructs a 95% 
confidence interval for the mean. Approximately how many of these 100 
confidence intervals will NOT capture the true mean?
a. None 
b. 1 or 2 
c. 3 to 7 
d. about half 
e. 95 to 100 
f. other
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11. Logic of  Hypothesis Testing 
A. Introduction
B. Significance Testing
C. Type I and Type II Errors
D. One- and Two-Tailed Tests
E. Interpreting Significant Results
F. Interpreting Non-Significant Results
G. Steps in Hypothesis Testing
H. Significance Testing and Confidence Intervals
I. Misconceptions
J. Exercises 

When interpreting an experimental finding, a natural question arises as to whether 
the finding could have occurred by chance. Hypothesis testing is a statistical 
procedure for testing whether chance is a plausible explanation of an experimental 
finding. Misconceptions about hypothesis testing are common among practitioners 
as well as students. To help prevent these misconceptions, this chapter goes into 
more detail about the logic of hypothesis testing than is typical for an introductory-
level text.
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Introduction 
by David M. Lane 

Prerequisites
• Chapter 5: Binomial Distribution

Learning Objectives
1. Describe the logic by which it can be concluded that someone can distinguish 

between two things
2. State whether random assignment ensures that all uncontrolled sources of 

variation will be equal
3. Define precisely what the probability is that is computed to reach the 

conclusion that a difference is not due to chance
4. Distinguish between the probability of an event and the probability of a state of 

the world
5. Define “null hypothesis”
6. Be able to determine the null hypothesis from a description of an experiment
7. Define “alternative hypothesis” 

The statistician R. Fisher explained the concept of hypothesis testing with a story 
of a lady tasting tea. Here we will present an example based on James Bond who 
insisted that martinis should be shaken rather than stirred. Let's consider a 
hypothetical experiment to determine whether Mr. Bond can tell the difference 
between a shaken and a stirred martini. Suppose we gave Mr. Bond a series of 16 
taste tests. In each test, we flipped a fair coin to determine whether to stir or shake 
the martini. Then we presented the martini to Mr. Bond and asked him to decide 
whether it was shaken or stirred. Let's say Mr. Bond was correct on 13 of the 16 
taste tests. Does this prove that Mr. Bond has at least some ability to tell whether 
the martini was shaken or stirred?

This result does not prove that he does; it could be he was just lucky and 
guessed right 13 out of 16 times. But how plausible is the explanation that he was 
just lucky? To assess its plausibility, we determine the probability that someone 
who was just guessing would be correct 13/16 times or more. This probability can 
be computed from the binomial distribution and the binomial distribution 
calculator shows it to be 0.0106. This is a pretty low probability, and therefore 
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someone would have to be very lucky to be correct 13 or more times out of 16 if 
they were just guessing. So either Mr. Bond was very lucky, or he can tell whether 
the drink was shaken or stirred. The hypothesis that he was guessing is not proven 
false, but considerable doubt is cast on it. Therefore, there is strong evidence that 
Mr. Bond can tell whether a drink was shaken or stirred.

Let's consider another example. The case study Physicians' Reactions sought 
to determine whether physicians spend less time with obese patients. Physicians 
were sampled randomly and each was shown a chart of a patient complaining of a 
migraine headache. They were then asked to estimate how long they would spend 
with the patient. The charts were identical except that for half the charts, the patient 
was obese and for the other half, the patient was of average weight. The chart a 
particular physician viewed was determined randomly. Thirty-three physicians 
viewed charts of average-weight patients and 38 physicians viewed charts of obese 
patients. 

The mean time physicians reported that they would spend with obese 
patients was 24.7 minutes as compared to a mean of 31.4 minutes for normal-
weight patients. How might this difference between means have occurred? One 
possibility is that physicians were influenced by the weight of the patients. On the 
other hand, perhaps by chance, the physicians who viewed charts of the obese 
patients tend to see patients for less time than the other physicians. Random 
assignment of charts does not ensure that the groups will be equal in all respects 
other than the chart they viewed. In fact, it is certain the groups differed in many 
ways by chance. The two groups could not have exactly the same mean age (if 
measured precisely enough such as in days). Perhaps a physician's age affects how 
long physicians see patients. There are innumerable differences between the groups 
that could affect how long they view patients. With this in mind, is it plausible that 
these chance differences are responsible for the difference in times?

To assess the plausibility of the hypothesis that the difference in mean times 
is due to chance, we compute the probability of getting a difference as large or 
larger than the observed difference (31.4 - 24.7 = 6.7 minutes) if the difference 
were, in fact, due solely to chance. Using methods presented in Chapter 12, this 
probability can be computed to be 0.0057. Since this is such a low probability, we 
have confidence that the difference in times is due to the patient's weight and is not 
due to chance.

371



 
The Probability Value 
It is very important to understand precisely what the probability values mean. In 
the James Bond example, the computed probability of 0.0106 is the probability he 
would be correct on 13 or more taste tests (out of 16) if he were just guessing.

It is easy to mistake this probability of 0.0106 as the probability 
he cannot tell the difference. This is not at all what it means.  

The probability of 0.0106 is the probability of a certain outcome (13 or more out of 
16) assuming a certain state of the world (James Bond was only guessing). It is not 
the probability that a state of the world is true. Although this might seem like a 
distinction without a difference, consider the following example. An animal trainer 
claims that a trained bird can determine whether or not numbers are evenly 
divisible by 7. In an experiment assessing this claim, the bird is given a series of 16 
test trials. On each trial, a number is displayed on a screen and the bird pecks at 
one of two keys to indicate its choice. The numbers are chosen in such a way that 
the probability of any number being evenly divisible by 7 is 0.50. The bird is 
correct on 9/16 choices. Using the binomial distribution, we can compute that the 
probability of being correct nine or more times out of 16 if one is only guessing is 
0.40. Since a bird who is only guessing would do this well 40% of the time, these 
data do not provide convincing evidence that the bird can tell the difference 
between the two types of numbers. As a scientist, you would be very skeptical that 
the bird had this ability. Would you conclude that there is a 0.40 probability that the 
bird can tell the difference? Certainly not! You would think the probability is much 
lower than 0.0001.

To reiterate, the probability value is the probability of an outcome (9/16 or 
better) and not the probability of a particular state of the world (the bird was only 
guessing). In statistics, it is conventional to refer to possible states of the world as 
hypotheses since they are hypothesized states of the world. Using this terminology, 
the probability value is the probability of an outcome given the hypothesis. It is not 
the probability of the hypothesis given the outcome.

This is not to say that we ignore the probability of the hypothesis. If the 
probability of the outcome given the hypothesis is sufficiently low, we have 
evidence that the hypothesis is false. However, we do not compute the probability 
that the hypothesis is false. In the James Bond example, the hypothesis is that he 
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cannot tell the difference between shaken and stirred martinis. The probability 
value is low (0.0106), thus providing evidence that he can tell the difference. 
However, we have not computed the probability that he can tell the difference. A 
branch of statistics called Bayesian statistics provides methods for computing the 
probabilities of hypotheses. These computations require that one specify the 
probability of the hypothesis before the data are considered and therefore are 
difficult to apply in some contexts. 

The Null Hypothesis  
The hypothesis that an apparent effect is due to chance is called the null 
hypothesis. In the Physicians' Reactions example, the null hypothesis is that in the 
population of physicians, the mean time expected to be spent with obese patients is 
equal to the mean time expected to be spent with average-weight patients. This null 
hypothesis can be written as:

µobese = µaverage 

or as 

µobese - µaverage = 0. 

The null hypothesis in a correlational study of the relationship between high school 
grades and college grades would typically be that the population correlation is 0. 
This can be written as

ρ = 0 

where ρ is the population correlation (not to be confused with r, the correlation in 
the sample). 

Although the null hypothesis is usually that the value of a parameter is 0, 
there are occasions in which the null hypothesis is a value other than 0. For 
example, if one were testing whether a subject differed from chance in their ability 
to determine whether a flipped coin would come up heads or tails, the null 
hypothesis would be that π = 0.5. 

Keep in mind that the null hypothesis is typically the opposite of the 
researcher's hypothesis. In the Physicians' Reactions study, the researchers 
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hypothesized that physicians would expect to spend less time with obese patients. 
The null hypothesis that the two types of patients are treated identically is put 
forward with the hope that it can be discredited and therefore rejected. If the null 
hypothesis were true, a difference as large or larger than the sample difference of 
6.7 minutes would be very unlikely to occur. Therefore, the researchers rejected the 
null hypothesis of no difference and concluded that in the population, physicians 
intend to spend less time with obese patients. 

If the null hypothesis is rejected, then the alternative to the null hypothesis 
(called the alternative hypothesis) is accepted. The alternative hypothesis is simply 
the reverse of the null hypothesis. If the null hypothesis 

 µobese = µaverage 

is rejected, then there are two alternatives:

 µobese < µaverage 
µobese > µaverage. 

Naturally, the direction of the sample means determines which alternative is 
adopted. Some textbooks have incorrectly argued that rejecting the null hypothesis 
that two populations means are equal does not justify a conclusion about which 
population mean is larger. Kaiser (1960) showed how it is justified to draw a 
conclusion about the direction of the difference.
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Significance Testing 
by David M. Lane 

Prerequisites
• Chapter 5: Binomial Distribution
• Chapter 11: Introduction to Hypothesis Testing 

Learning Objectives
1. Describe how a probability value is used to cast doubt on the null hypothesis
2. Define “statistically significant”
3. Distinguish between statistical significance and practical significance
4. Distinguish between two approaches to significance testing
A low probability value casts doubt on the null hypothesis. How low must the 
probability value be in order to conclude that the null hypothesis is false? Although 
there is clearly no right or wrong answer to this question, it is conventional to 
conclude the null hypothesis is false if the probability value is less than 0.05. More 
conservative researchers conclude the null hypothesis is false only if the 
probability value is less than 0.01. When a researcher concludes that the null 
hypothesis is false, the researcher is said to have rejected the null hypothesis. The 
probability value below which the null hypothesis is rejected is called the α level 
or simply α. It is also called the significance level.

When the null hypothesis is rejected, the effect is said to be statistically 
significant. For example, in the Physicians Reactions case study, the probability 
value is 0.0057. Therefore, the effect of obesity is statistically significant and the 
null hypothesis that obesity makes no difference is rejected. It is very important to 
keep in mind that statistical significance means only that the null hypothesis of 
exactly no effect is rejected; it does not mean that the effect is important, which is 
what “significant” usually means. When an effect is significant, you can have 
confidence the effect is not exactly zero. Finding that an effect is significant does 
not tell you about how large or important the effect is.

Do not confuse statistical significance with practical 
significance. A small effect can be highly significant if the 
sample size is large enough. 
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Why does the word “significant” in the phrase “statistically significant” mean 
something so different from other uses of the word? Interestingly, this is because 
the meaning of “significant” in everyday language has changed. It turns out that 
when the procedures for hypothesis testing were developed, something was 
“significant” if it signified something. Thus, finding that an effect is statistically 
significant signifies that the effect is real and not due to chance. Over the years, the 
meaning of “significant” changed, leading to the potential misinterpretation.

There are two approaches (at least) to conducting significance tests. In one 
(favored by R. Fisher) a significance test is conducted and the probability value 
reflects the strength of the evidence against the null hypothesis. If the probability is 
below 0.01, the data provide strong evidence that the null hypothesis is false. If the 
probability value is below 0.05 but larger than 0.01, then the null hypothesis is 
typically rejected, but not with as much confidence as it would be if the probability 
value were below 0.01. Probability values between 0.05 and 0.10 provide weak 
evidence against the null hypothesis and, by convention, are not considered low 
enough to justify rejecting it. Higher probabilities provide less evidence that the 
null hypothesis is false.

The alternative approach (favored by the statisticians Neyman and Pearson) 
is to specify an α level before analyzing the data. If the data analysis results in a 
probability value below the α level, then the null hypothesis is rejected; if it is not, 
then the null hypothesis is not rejected. According to this perspective, if a result is 
significant, then it does not matter how significant it is. Moreover, if it is not 
significant, then it does not matter how close to being significant it is. Therefore, if 
the 0.05 level is being used, then probability values of 0.049 and 0.001 are treated 
identically. Similarly, probability values of 0.06 and 0.34 are treated identically.

The former approach (preferred by Fisher) is more suitable for scientific 
research and will be adopted here. The latter is more suitable for applications in 
which a yes/no decision must be made. For example, if a statistical analysis were 
undertaken to determine whether a machine in a manufacturing plant were 
malfunctioning, the statistical analysis would be used to determine whether or not 
the machine should be shut down for repair. The plant manager would be less 
interested in assessing the weight of the evidence than knowing what action should 
be taken. There is no need for an immediate decision in scientific research where a 
researcher may conclude that there is some evidence against the null hypothesis, 
but that more research is needed before a definitive conclusion can be drawn.
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Type I and II Errors 
by David M. Lane 

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Significance Testing

Learning Objectives
1. Define Type I and Type II errors
2. Interpret significant and non-significant differences
3. Explain why the null hypothesis should not be accepted when the effect is not 

significant
In the Physicians' Reactions case study, the probability value associated with the 
significance test is 0.0057. Therefore, the null hypothesis was rejected, and it was 
concluded that physicians intend to spend less time with obese patients. Despite the 
low probability value, it is possible that the null hypothesis of no true difference 
between obese and average-weight patients is true and that the large difference 
between sample means occurred by chance. If this is the case, then the conclusion 
that physicians intend to spend less time with obese patients is in error. This type of 
error is called a Type I error. More generally, a Type I error occurs when a 
significance test results in the rejection of a true null hypothesis.

By one common convention, if the probability value is below 0.05 then the 
null hypothesis is rejected. Another convention, although slightly less common, is 
to reject the null hypothesis if the probability value is below 0.01. The threshold 
for rejecting the null hypothesis is called the α level or simply α. It is also called 
the significance level. As discussed in the introduction to hypothesis testing, it is 
better to interpret the probability value as an indication of the weight of evidence 
against the null hypothesis than as part of a decision rule for making a reject or do-
not-reject decision. Therefore, keep in mind that rejecting the null hypothesis is not 
an all-or-nothing decision.

The Type I error rate is affected by the α level: the lower the α level the 
lower the Type I error rate. It might seem that α is the probability of a Type I error. 
However, this is not correct. Instead, α is the probability of a Type I error given 
that the null hypothesis is true. If the null hypothesis is false, then it is impossible 
to make a Type I error.
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The second type of error that can be made in significance testing is failing to 
reject a false null hypothesis. This kind of error is called a Type II error. Unlike a 
Type I error, a Type II error is not really an error. When a statistical test is not 
significant, it means that the data do not provide strong evidence that the null 
hypothesis is false. Lack of significance does not support the conclusion that the 
null hypothesis is true. Therefore, a researcher should not make the mistake of 
incorrectly concluding that the null hypothesis is true when a statistical test was not 
significant. Instead, the researcher should consider the test inconclusive. Contrast 
this with a Type I error in which the researcher erroneously concludes that the null 
hypothesis is false when, in fact, it is true.

A Type II error can only occur if the null hypothesis is false. If the null 
hypothesis is false, then the probability of a Type II error is called β (beta). The 
probability of correctly rejecting a false null hypothesis equals 1- β and is called 
power. Power is covered in detail in Chapter 13.
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One- and Two-Tailed Tests 
by David M. Lane 

Prerequisites
• Chapter 6: Binomial Distribution
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Statistical Significance

Learning Objectives
1. Define one- and two-tailed tests
2. State the difference between one- and two-tailed hypotheses
3. State when it is valid to use a one-tailed test
In the James Bond case study, Mr. Bond was given 16 trials on which he judged 
whether a martini had been shaken or stirred. He was correct on 13 of the trials. 
From the binomial distribution, we know that the probability of being correct 13 or 
more times out of 16 if one is only guessing is 0.0106. Figure 1 shows a graph of 
the binomial. The red bars show the values greater than or equal to 13. As you can 
see in the figure, the probabilities are calculated for the upper tail of the 
distribution. A probability calculated in only one tail of the distribution is called a 
“one-tailed probability.” 

379



Figure 1. The binomial distribution. The upper (right-hand) tail is red.

A slightly different question can be asked of the data: “What is the probability of 
getting a result as extreme or more extreme than the one observed”? Since the 
chance expectation is 8/16, a result of 3/13 is equally as extreme as 13/16. Thus, to 
calculate this probability, we would consider both tails of the distribution. Since the 
binomial distribution is symmetric when π = 0.5, this probability is exactly double 
the probability of 0.0106 computed previously. Therefore, p = 0.0212. A 
probability calculated in both tails of a distribution is called a two-tailed 
probability (see Figure 2). 
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Figure 2. The binomial distribution. Both tails are red.

Should the one-tailed or the two-tailed probability be used to assess Mr. Bond's 
performance? That depends on the way the question is posed. If we are asking 
whether Mr. Bond can tell the difference between shaken or stirred martinis, then 
we would conclude he could if he performed either much better than chance or 
much worse than chance. If he performed much worse than chance, we would 
conclude that he can tell the difference, but he does not know which is which. 
Therefore, since we are going to reject the null hypothesis if Mr. Bond does either 
very well or very poorly, we will use a two-tailed probability.

On the other hand, if our question is whether Mr. Bond is better than chance 
at determining whether a martini is shaken or stirred, we would use a one-tailed 
probability. What would the one-tailed probability be if Mr. Bond were correct on 
only 3 of the 16 trials? Since the one-tailed probability is the probability of the 
right-hand tail, it would be the probability of getting 3 or more correct out of 16. 
This is a very high probability and the null hypothesis would not be rejected.

The null hypothesis for the two-tailed test is π = 0.5. By contrast, the null 
hypothesis for the one-tailed test is π ≤ 0.5. Accordingly, we reject the two-tailed 
hypothesis if the sample proportion deviates greatly from 0.5 in either direction. 
The one-tailed hypothesis is rejected only if the sample proportion is much greater 
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than 0.5. The alternative hypothesis in the two-tailed test is π ≠ 0.5. In the one-
tailed test it is π > 0.5.

You should always decide whether you are going to use a one-tailed or a 
two-tailed probability before looking at the data. Statistical tests that compute one-
tailed probabilities are called one-tailed tests; those that compute two-tailed 
probabilities are called two-tailed tests. Two-tailed tests are much more common 
than one-tailed tests in scientific research because an outcome signifying that 
something other than chance is operating is usually worth noting. One-tailed tests 
are appropriate when it is not important to distinguish between no effect and an 
effect in the unexpected direction. For example, consider an experiment designed 
to test the efficacy of treatment for the common cold. The researcher would only be 
interested in whether the treatment was better than a placebo control. It would not 
be worth distinguishing between the case in which the treatment was worse than a 
placebo and the case in which it was the same because in both cases the drug 
would be worthless.

Some have argued that a one-tailed test is justified whenever the researcher 
predicts the direction of an effect. The problem with this argument is that if the 
effect comes out strongly in the non-predicted direction, the researcher is not 
justified in concluding that the effect is not zero. Since this is unrealistic, one-tailed 
tests are usually viewed skeptically if justified on this basis alone.
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Interpreting Significant Results 
by David M. Lane 

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Statistical Significance, Type I and II Errors
• Chapter 11: One and Two-Tailed Tests 

Learning Objectives
1. Discuss whether rejection of the null hypothesis should be an all-or-none 

proposition
2. State the usefulness of a significance test when it is extremely likely that the 

null hypothesis of no difference is false even before doing the experiment
When a probability value is below the α level, the effect is statistically significant 
and the null hypothesis is rejected. However, not all statistically significant effects 
should be treated the same way. For example, you should have less confidence that 
the null hypothesis is false if p = 0.049 than p = 0.003. Thus, rejecting the null 
hypothesis is not an all-or-none proposition.

If the null hypothesis is rejected, then the alternative to the null hypothesis 
(called the alternative hypothesis) is accepted. Consider the one-tailed test in the 
James Bond case study: Mr. Bond was given 16 trials on which he judged whether 
a martini had been shaken or stirred and the question is whether he is better than 
chance on this task. The null hypothesis for this one-tailed test is that π ≤ 0.5 where 
π is the probability of being correct on any given trial. If this null hypothesis is 
rejected, then the alternative hypothesis that π > 0.5 is accepted. If π is greater than 
0.5, then Mr. Bond is better than chance on this task.

Now consider the two-tailed test used in the Physicians' Reactions case 
study. The null hypothesis is:

 µobese = µaverage. 

If this null hypothesis is rejected, then there are two alternatives:

 µobese < µaverage 
µobese > µaverage. 
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Naturally, the direction of the sample means determines which alternative is 
adopted. If the sample mean for the obese patients is significantly lower than the 
sample mean for the average-weight patients, then one should conclude that the 
population mean for the obese patients is lower than the sample mean for the 
average-weight patients.

There are many situations in which it is very unlikely two conditions will 
have exactly the same population means. For example, it is practically impossible 
that aspirin and acetaminophen provide exactly the same degree of pain relief. 
Therefore, even before an experiment comparing their effectiveness is conducted, 
the researcher knows that the null hypothesis of exactly no difference is false. 
However, the researcher does not know which drug offers more relief. If a test of 
the difference is significant, then the direction of the difference is established. This 
point is also made in the section on the relationship between confidence intervals 
and significance tests.
Optional

Some textbooks have incorrectly stated that rejecting the null hypothesis that two 
population means are equal does not justify a conclusion about which population 
mean is larger. Instead, they say that all one can conclude is that the population 
means differ. The validity of concluding the direction of the effect is clear if you 
note that a two-tailed test at the 0.05 level is equivalent to two separate one-tailed 
tests each at the 0.025 level. The two null hypotheses are then

 µobese ≥ µaverage 
µobese ≤ µaverage. 

If the former of these is rejected, then the conclusion is that the population mean 
for obese patients is lower than that for average-weight patients. If the latter is 
rejected, then the conclusion is that the population mean for obese patients is 
higher than that for average-weight patients. See Kaiser (1960).
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Interpreting Non-Significant Results 
by David M. Lane 

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Significance Testing
• Chapter 11: Type I and II Errors

Learning Objectives
1. State what it means to accept the null hypothesis
2. Explain why the null hypothesis should not be accepted
3. Describe how a non-significant result can increase confidence that the null 

hypothesis is false
4. Discuss the problems of affirming a negative conclusion
When a significance test results in a high probability value, it means that the data 
provide little or no evidence that the null hypothesis is false. However, the high 
probability value is not evidence that the null hypothesis is true. The problem is 
that it is impossible to distinguish a null effect from a very small effect. For 
example, in the James Bond Case Study, suppose Mr. Bond is, in fact, just barely 
better than chance at judging whether a martini was shaken or stirred. Assume he 
has a 0.51 probability of being correct on a given trial (π = 0.51). Let's say 
Experimenter Jones (who did not know π = 0.51) tested Mr. Bond and found he 
was correct 49 times out of 100 tries. How would the significance test come out? 
The experimenter’s significance test would be based on the assumption that Mr. 
Bond has a 0.50 probability of being correct on each trial (π = 0.50). Given this 
assumption, the probability of his being correct 49 or more times out of 100 is 
0.62. This means that the probability value is 0.62, a value very much higher than 
the conventional significance level of 0.05. This result, therefore, does not give 
even a hint that the null hypothesis is false. However, we know (but Experimenter 
Jones does not) that π = 0.51 and not 0.50 and therefore that the null hypothesis is 
false. So, if Experimenter Jones had concluded that the null hypothesis was true 
based on the statistical analysis, he or she would have been mistaken. Concluding 
that the null hypothesis is true is called accepting the null hypothesis. To do so is a 
serious error.

Do not accept the null hypothesis when you do not reject it. 
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So how should the non-significant result be interpreted? The experimenter should 
report that there is no credible evidence Mr. Bond can tell whether a martini was 
shaken or stirred, but that there is no proof that he cannot. It is generally 
impossible to prove a negative. What if I claimed to have been Socrates in an 
earlier life? Since I have no evidence for this claim, I would have great difficulty 
convincing anyone that it is true. However, no one would be able to prove 
definitively that I was not.

Often a non-significant finding increases one's confidence that the null 
hypothesis is false. Consider the following hypothetical example. A researcher 
develops a treatment for anxiety that he or she believes is better than the traditional 
treatment. A study is conducted to test the relative effectiveness of the two 
treatments: 20 subjects are randomly divided into two groups of 10. One group 
receives the new treatment and the other receives the traditional treatment. The 
mean anxiety level is lower for those receiving the new treatment than for those 
receiving the traditional treatment. However, the difference is not significant. The 
statistical analysis shows that a difference as large or larger than the one obtained 
in the experiment would occur 11% of the time even if there were no true 
difference between the treatments. In other words, the probability value is 0.11. A 
naive researcher would interpret this finding as evidence that the new treatment is 
no more effective than the traditional treatment. However, the sophisticated 
researcher, although disappointed that the effect was not significant, would be 
encouraged that the new treatment led to less anxiety than the traditional treatment. 
The data support the thesis that the new treatment is better than the traditional one 
even though the effect is not statistically significant. This researcher should have 
more confidence that the new treatment is better than he or she had before the 
experiment was conducted. However, the support is weak and the data are 
inconclusive. What should the researcher do? A reasonable course of action would 
be to do the experiment again. Let's say the researcher repeated the experiment and 
again found the new treatment was better than the traditional treatment. However, 
once again the effect was not significant and this time the probability value was 
0.07. The naive researcher would think that two out of two experiments failed to 
find significance and therefore the new treatment is unlikely to be better than the 
traditional treatment. The sophisticated researcher would note that two out of two 
times the new treatment was better than the traditional treatment. Moreover, two 
experiments each providing weak support that the new treatment is better, when 
taken together, can provide strong support. Using a method for combining 
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probabilities, it can be determined that combining the probability values of 0.11 
and 0.07 results in a probability value of 0.045. Therefore, these two non-
significant findings taken together result in a significant finding.

Although there is never a statistical basis for concluding that an effect is 
exactly zero, a statistical analysis can demonstrate that an effect is most likely 
small. This is done by computing a confidence interval. If all effect sizes in the 
interval are small, then it can be concluded that the effect is small. For example, 
suppose an experiment tested the effectiveness of a treatment for insomnia. 
Assume that the mean time to fall asleep was 2 minutes shorter for those receiving 
the treatment than for those in the control group and that this difference was not 
significant. If the 95% confidence interval ranged from -4 to 8 minutes, then the 
researcher would be justified in concluding that the benefit is eight minutes or less. 
However, the researcher would not be justified in concluding the null hypothesis is 
true, or even that it was supported.
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Steps in Hypothesis Testing 
by David M. Lane 

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Statistical Significance
• Chapter 11: Type I and II Errors

Learning Objectives
1. Be able to state the null hypothesis for both one-tailed and two-tailed tests
2. Differentiate between a significance level and a probability level
3. State the four steps involved in significance testing 

1. The first step is to specify the null hypothesis. For a two-tailed test, the null 
hypothesis is typically that a parameter equals zero although there are 
exceptions. A typical null hypothesis is μ1 - μ2 = 0 which is equivalent to μ1 = 
μ2. For a one-tailed test, the null hypothesis is either that a parameter is greater 
than or equal to zero or that a parameter is less than or equal to zero. If the 
prediction is that μ1 is larger than μ2, then the null hypothesis (the reverse of the 
prediction) is μ2 - μ1 ≥ 0. This is equivalent to μ1 ≤ μ2.

2. The second step is to specify the α level which is also known as the significance 
level. Typical values are 0.05 and 0.01. 

3. The third step is to compute the probability value (also known as the p value). 
This is the probability of obtaining a sample statistic as different or more 
different from the parameter specified in the null hypothesis given that the null 
hypothesis is true. 

4. Finally, compare the probability value with the α level. If the probability value 
is lower then you reject the null hypothesis. Keep in mind that rejecting the null 
hypothesis is not an all-or-none decision. The lower the probability value, the 
more confidence you can have that the null hypothesis is false. However, if your 
probability value is higher than the conventional α level of 0.05, most scientists 
will consider your findings inconclusive. Failure to reject the null hypothesis 
does not constitute support for the null hypothesis. It just means you do not 
have sufficiently strong data to reject it.
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Significance Testing and Confidence Intervals 
by David M. Lane 

Prerequisites
• Chapter 10: Confidence Intervals Introduction
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Significance Testing 

Learning Objectives
1. Determine from a confidence interval whether a test is significant
2. Explain why a confidence interval makes clear that one should not accept the 

null hypothesis
There is a close relationship between confidence intervals and significance tests. 
Specifically, if a statistic is significantly different from 0 at the 0.05 level then the 
95% confidence interval will not contain 0. All values in the confidence interval are 
plausible values for the parameter whereas values outside the interval are rejected 
as plausible values for the parameter. In the Physicians' Reactions case study, the 
95% confidence interval for the difference between means extends from 2.00 to 
11.26. Therefore, any value lower than 2.00 or higher than 11.26 is rejected as a 
plausible value for the population difference between means. Since zero is lower 
than 2.00, it is rejected as a plausible value and a test of the null hypothesis that 
there is no difference between means is significant. It turns out that the p value is 
0.0057. There is a similar relationship between the 99% confidence interval and 
significance at the 0.01 level.

Whenever an effect is significant, all values in the confidence interval will be 
on the same side of zero (either all positive or all negative). Therefore, a significant 
finding allows the researcher to specify the direction of the effect. There are many 
situations in which it is very unlikely two conditions will have exactly the same 
population means. For example, it is practically impossible that aspirin and 
acetaminophen provide exactly the same degree of pain relief. Therefore, even 
before an experiment comparing their effectiveness is conducted, the researcher 
knows that the null hypothesis of exactly no difference is false. However, the 
researcher does not know which drug offers more relief. If a test of the difference 
is significant, then the direction of the difference is established because the values 
in the confidence interval are either all positive or all negative.
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If the 95% confidence interval contains zero (more precisely, the parameter 
value specified in the null hypothesis), then the effect will not be significant at the 
0.05 level. Looking at non-significant effects in terms of confidence intervals 
makes clear why the null hypothesis should not be accepted when it is not rejected: 
Every value in the confidence interval is a plausible value of the parameter. Since 
zero is in the interval, it cannot be rejected. However, there is an infinite number of  
other values in the interval (assuming continuous measurement), and none of them 
can be rejected either.
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Misconceptions 
by David M. Lane 

Prerequisites
• Chapter 11: Introduction to Hypothesis Testing
• Chapter 11: Statistical Significance
• Chapter 11: Type I and II Errors

Learning Objectives
1. State why the probability value is not the probability the null hypothesis is false
2. Explain why a low probability value does not necessarily mean there is a large 

effect
3. Explain why a non-significant outcome does not mean the null hypothesis is 

probably true
Misconceptions about significance testing are common. This section lists three 
important ones.
1. Misconception: The probability value is the probability that the null hypothesis 
is false.  
Proper interpretation: The probability value is the probability of a result as extreme 
or more extreme given that the null hypothesis is true. It is the probability of the 
data given the null hypothesis. It is not the probability that the null hypothesis is 
false. 

2. Misconception: A low probability value indicates a large effect. 
Proper interpretation: A low probability value indicates that the sample outcome 
(or one more extreme) would be very unlikely if the null hypothesis were true. A 
low probability value can occur with small effect sizes, particularly if the sample 
size is large. 

3. Misconception: A non-significant outcome means that the null hypothesis is 
probably true. 
Proper interpretation: A non-significant outcome means that the data do not 
conclusively demonstrate that the null hypothesis is false.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 11: Interpreting Non-Significant Results

Research in March, 2012 reported here found evidence for the existence of the 
Higgs Boson particle. However, the evidence for the existence of the particle was 
not statistically significant.
 
What do you think?
Did the researchers conclude that their investigation had been a failure or did they 
conclude they have evidence of the particle, just not strong enough evidence to 
draw a confident conclusion?

One of  the investigators stated, "We see some tantalizing 
evidence but not significant enough to make a stronger 
statement." Therefore, they were encouraged by the result. In a 
subsequent study, the evidence was significant. 
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Exercises 

Prerequisites
• All material presented in the Logic of Hypothesis Testing chapter

1. An experiment is conducted to test the claim that James Bond can taste the 
difference between a Martini that is shaken and one that is stirred. What is the 
null hypothesis?

2. The following explanation is incorrect. What three words should be added to 
make it correct?
The probability value is the probability of obtaining a statistic as different (add 
three words here) from the parameter specified in the null hypothesis as the 
statistic obtained in the experiment. The probability value is computed assuming 
that the null hypothesis is true.

3. Why do experimenters test hypotheses they think are false?

4. State the null hypothesis for:
a. An experiment testing whether echinacea decreases the length of colds.
b. A correlational study on the relationship between brain size and intelligence.
c. An investigation of whether a self-proclaimed psychic can predict the outcome 
of a coin flip.
d. A study comparing a drug with a placebo on the amount of pain relief. (A one-
tailed test was used.)

5. Assume the null hypothesis is that μ = 50 and that the graph shown below is the 
sampling distribution of the mean (M). Would a sample value of M= 60 be 
significant in a two-tailed test at the .05 level? Roughly what value of M would 
be needed to be significant?
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6. A researcher develops a new theory that predicts that vegetarians will have more 
of a particular vitamin in their blood than non-vegetarians. An experiment is 
conducted and vegetarians do have more of the vitamin, but the difference is not 
significant. The probability value is 0.13. Should the experimenter’s confidence 
in the theory increase, decrease, or stay the same?

7. A researcher hypothesizes that the lowering in cholesterol associated with 
weight loss is really due to exercise. To test this, the researcher carefully controls 
for exercise while com- paring the cholesterol levels of a group of subjects who 
lose weight by dieting with a control group that does not diet. The difference 
between groups in cholesterol is not significant. Can the researcher claim that 
weight loss has no effect?

8. A significance test is performed and p = .20. Why can’t the experimenter claim 
that the probability that the null hypothesis is true is .20?

9. For a drug to be approved by the FDA, the drug must be shown to be safe and 
effective. If the drug is significantly more effective than a placebo, then the drug 
is deemed effective. What do you know about the effectiveness of a drug once it 
has been approved by the FDA (assuming that there has not been a Type I error)?

10. When is it valid to use a one-tailed test? What is the advantage of a one-tailed 
test? Give an example of a null hypothesis that would be tested by a one-tailed 
test.

11. Distinguish between probability value and significance level.
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12. Suppose a study was conducted on the effectiveness of a class on “How to take 
tests.” The SAT scores of an experimental group and a control group were 
compared. (There were 100 subjects in each group.) The mean score of the 
experimental group was 503 and the mean score of the control group was 499. 
The difference between means was found to be significant, p = .037. What do 
you conclude about the effectiveness of the class?

13. Is it more conservative to use an alpha level of .01 or an alpha level of .05? 
Would beta be higher for an alpha of .05 or for an alpha of .01?

14. Why is “Ho: “M1 = M2” not a proper null hypothesis?

15. An experimenter expects an effect to come out in a certain direction. Is this 
sufficient basis for using a one-tailed test? Why or why not?

16. How do the Type I and Type II error rates of one-tailed and two-tailed tests 
differ?

17. A two-tailed probability is .03. What is the one-tailed probability if the effect 
were in the specified direction? What would it be if the effect were in the other 
direction?

18. You choose an alpha level of .01 and then analyze your data.
a. What is the probability that you will make a Type I error given that the null 
hypothesis is true?
b. What is the probability that you will make a Type I error given that the null 
hypothesis is false?

19. Why doesn’t it make sense to test the hypothesis that the sample mean is 42?

20. True/false: It is easier to reject the null hypothesis if the researcher uses a 
smaller alpha (α) level.

21. True/false: You are more likely to make a Type I error when using a small 
sample than when using a large sample.
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22. True/false: You accept the alternative hypothesis when you reject the null 
hypothesis. 

23. True/false: You do not accept the null hypothesis when you fail to reject it. 

24. True/false: A researcher risks making a Type I error any time the null 
hypothesis is rejected.
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12. Testing Means 
A. Single Mean
B. Difference between Two Means (Independent Groups)
C. All Pairwise Comparisons Among Means
D. Specific Comparisons
E. Difference between Two Means (Correlated Pairs)
F. Specific Comparisons (Correlated Observations)
G. Pairwise Comparisons (Correlated Observations)
H. Exercises
Many, if not most experiments are designed to compare means. The experiment 
may involve only one sample mean that is to be compared to a specific value. Or 
the experiment could be testing differences among many different experimental 
conditions, and the experimenter could be interested in comparing each mean with 
each of the other means. This chapter covers methods of comparing means in many 
different experimental situations.

The topics covered here in sections C, D, F, and G are typically covered in 
other texts in a chapter on Analysis of Variance. We prefer to cover them here since 
they bear no necessary relationship to analysis of variance. As discussed by 
Wilkinson (1999), it is not logical to consider the procedures in this chapter as tests 
to be performed subsequent to an analysis of variance. Nor is it logical to call them 
post-hoc tests as some computer programs do.
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Testing a Single Mean 
by David M. Lane 

Prerequisites
• Chapter 7: Normal Distributions 
• Chapter 7: Areas Under Normal Distributions
• Chapter 9: Sampling Distribution of the Mean
• Chapter 9: Introduction to Sampling Distributions
• Chapter 10: t Distribution
• Chapter 11: Logic of Hypothesis Testing

Learning Objectives
1. Compute the probability of a sample mean being at least as high as a specified 

value when σ is known
2. Compute a two-tailed probability
3. Compute the probability of a sample mean being at least as high as a specified 

value when σ is estimated
4. State the assumptions required for item 3 above
This section shows how to test the null hypothesis that the population mean is 
equal to some hypothesized value. For example, suppose an experimenter wanted 
to know if people are influenced by a subliminal message and performed the 
following experiment. Each of nine subjects is presented with a series of 100 pairs 
of pictures. As a pair of pictures is presented, a subliminal message is presented 
suggesting the picture that the subject should choose. The question is whether the 
(population) mean number of times the suggested picture is chosen is equal to 50. 
In other words, the null hypothesis is that the population mean (μ) is 50. The 
(hypothetical) data are shown in Table 1. The data in Table 1 have a sample mean 
(M) of 51. Thus the sample mean differs from the hypothesized population mean 
by 1.
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Table 1. Distribution of scores.

The significance test consists of computing the probability of a sample mean 
differing from μ by one (the difference between the hypothesized population mean 
and the sample mean) or more. The first step is to determine the sampling 
distribution of the mean. As shown in Chapter 9, the mean and standard deviation 
of the sampling distribution of the mean are

µM = µ 

and

 

respectively. It is clear that μM = 50. In order to compute the standard deviation of 
the sampling distribution of the mean, we have to know the population standard 
deviation (σ). 

The current example was constructed to be one of the few instances in which 
the standard deviation is known. In practice, it is very unlikely that you would 
know σ and therefore you would use s, the sample estimate of σ. However, it is 
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instructive to see how the probability is computed if σ is known before proceeding 
to see how it is calculated when σ is estimated. 

For the current example, if the null hypothesis is true, then based on the 
binomial distribution, one can compute that variance of the number correct is

σ2 = Nπ(1-π) 

= 100(0.5)(1-0.5) 

= 25. 

Therefore, σ = 5. For a σ of 5 and an N of 9, the standard deviation of the sampling 
distribution of the mean is 5/3 = 1.667. Recall that the standard deviation of a 
sampling distribution is called the standard error.

To recap, we wish to know the probability of obtaining a sample mean of 51 
or more when the sampling distribution of the mean has a mean of 50 and a 
standard deviation of 1.667. To compute this probability, we will make the 
assumption that the sampling distribution of the mean is normally distributed. We 
can then use the normal distribution calculator (external link) as shown in Figure 1.

Figure 1. Probability of a sample mean being 51 or greater.

Notice that the mean is set to 50, the standard deviation to 1.667, and the area 
above 51 is requested and shown to be 0.274.
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Therefore, the probability of obtaining a sample mean of 51 or larger is 
0.274. Since a mean of 51 or higher is not unlikely under the assumption that the 
subliminal message has no effect, the effect is not significant and the null 
hypothesis is not rejected.

The test conducted above was a one-tailed test because it computed the 
probability of a sample mean being one or more points higher than the 
hypothesized mean of 50 and the area computed was the area above 51. To test the 
two-tailed hypothesis, you would compute the probability of a sample mean 
differing by one or more in either direction from the hypothesized mean of 50. You 
would do so by computing the probability of a mean being less than or equal to 49 
or greater than or equal to 51.

The results of the normal distribution calculator are shown in Figure 2.

Figure 2. Probability of a sample mean being less than or equal to 49 or greater 
than or equal to 51.
As you can see, the probability is 0.548 which, as expected, is twice the probability 
of 0.274 shown in Figure 1.

Before normal calculators such as the one illustrated above were widely 
available, probability calculations were made based on the standard normal 
distribution. This was done by computing Z based on the formula
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where Z is the value on the standard normal distribution, M is the sample mean, μ 
is the hypothesized value of the mean, and σM is the standard error of the mean. 
For this example, Z = (51-50)/1.667 = 0.60. The normal calculator with a mean of 
0 and a standard deviation of 1 is shown in Figure 3.

Figure 3. Calculation using the standardized normal distribution.

Notice that the probability (the shaded area) is the same as previously calculated 
(for the one-tailed test).

As noted, in real-world data analyses it is very rare that you would know σ 
and wish to estimate μ. Typically σ is not known and is estimated in a sample by s, 
and σM is estimated by sM. For our next example, we will consider the data in the 
“ADHD Treatment” case study. These data consist of the scores of 24 children with 
ADHD on a delay of gratification (DOG) task. Each child was tested under four 
dosage levels. Table 2 shows the data for the placebo (0 mg) and highest dosage 
level (0.6 mg) of methylphenidate. Of particular interest here is the column labeled 
“Diff” that shows the difference in performance between the 0.6 mg (D60) and the 
0 mg (D0) conditions. These difference scores are positive for children who 
performed better in the 0.6 mg condition than in the control condition and negative 
for those who scored better in the control condition. If methylphenidate has a 
positive effect, then the mean difference score in the population will be positive. 
The null hypothesis is that the mean difference score in the population is 0.
 

403



Table 2. DOG scores as a function of dosage.

To test this null hypothesis, we compute t using a special case of the following 
formula:

D0 D60 Diff

57 62 5

27 49 22

32 30 -2

31 34 3

34 38 4

38 36 -2

71 77 6

33 51 18

34 45 11

53 42 -11

36 43 7

42 57 15

26 36 10

52 58 6

36 35 -1

55 60 5

36 33 -3

42 49 7

36 33 -3

54 59 5

34 35 1

29 37 8

33 45 12

33 29 -4
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The special case of this formula applicable to testing a single mean is

 

where t is the value we compute for the significance test, M is the sample mean, μ 
is the hypothesized value of the population mean, and sM is the estimated standard 
error of the mean. Notice the similarity of this formula to the formula for Z.

In the previous example, we assumed that the scores were normally 
distributed. In this case, it is the population of difference scores that we assume to 
be normally distributed.

The mean (M) of the N = 24 difference scores is 4.958, the hypothesized 
value of μ is 0, and the standard deviation (s) is 7.538. The estimate of the standard 
error of the mean is computed as:

 

Therefore, t = 4.96/1.54 = 3.22. The probability value for t depends on the degrees 
of freedom. The number of degrees of freedom is equal to N - 1 = 23. A t 
distribution calculator shows that a t less than -3.22 or greater than 3.22 is only 
0.0038. Therefore, if the drug had no effect, the probability of finding a difference 
between means as large or larger (in either direction) than the difference found is 
very low. Therefore the null hypothesis that the population mean difference score is 
zero can be rejected. The conclusion is that the population mean for the drug 
condition is higher than the population mean for the placebo condition.

Review of Assumptions 
1. Each value is sampled independently from each other value.
2. The values are sampled from a normal distribution.
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Differences between Two Means (Independent Groups) 
by David M. Lane 

Prerequisites
• Chapter 9: Sampling Distribution of Difference between Means
• Chapter 10: Confidence Intervals
• Chapter 10: Confidence Interval on the Difference between Means
• Chapter 11: Logic of Hypothesis Testing
• Chapter 12: Testing a Single Mean

Learning Objectives
1. State the assumptions for testing the difference between two means
2. Estimate the population variance assuming homogeneity of variance
3. Compute the standard error of the difference between means
4. Compute t and p for the difference between means
5. Format data for computer analysis
It is much more common for a researcher to be interested in the difference between 
means than in the specific values of the means themselves. This section covers how 
to test for differences between means from two separate groups of subjects. A later 
section describes how to test for differences between the means of two conditions 
in designs where only one group of subjects is used and each subject is tested in 
each condition.

We take as an example the data from the “Animal Research” case study. In 
this experiment, students rated (on a 7-point scale) whether they thought animal 
research is wrong. The sample sizes, means, and variances are shown separately 
for males and females in Table 1.

Table 1. Means and Variances in Animal Research study.

As you can see, the females rated animal research as more wrong than did the 
males. This sample difference between the female mean of 5.35 and the male mean 
of 3.88 is 1.47. However, the gender difference in this particular sample is not very 

Group n Mean Variance

Females 17 5.353 2.743

Males 17 3.882 2.985
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important. What is important is whether there is a difference in the population 
means.

In order to test whether there is a difference between population means, we 
are going to make three assumptions:
1. The two populations have the same variance. This assumption is called the 

assumption of homogeneity of variance.
2. The populations are normally distributed.
3. Each value is sampled independently from each other value. This assumption 

requires that each subject provide only one value. If a subject provides two 
scores, then the scores are not independent. The analysis of data with two scores 
per subject is shown in the section on the correlated t test later in this chapter.

Small-to-moderate violations of assumptions 1 and 2 do not make much difference. 
It is important not to violate assumption 3.

We saw the following general formula for significance testing in the section 
on testing a single mean:

 

In this case, our statistic is the difference between sample means and our 
hypothesized value is 0. The hypothesized value is the null hypothesis that the 
difference between population means is 0.

We continue to use the data from the “Animal Research” case study and will 
compute a significance test on the difference between the mean score of the 
females and the mean score of the males. For this calculation, we will make the 
three assumptions specified above.

The first step is to compute the statistic, which is simply the difference 
between means.

M1 - M2 = 5.3529 - 3.8824 = 1.4705. 

Since the hypothesized value is 0, we do not need to subtract it from the statistic.
The next step is to compute the estimate of the standard error of the statistic. 

In this case, the statistic is the difference between means so the estimated standard 
error of the statistic is (sM1-M2). Recall from the relevant section in the chapter on 
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sampling distributions that the formula for the standard error of the difference 
between means is:

 

In order to estimate this quantity, we estimate σ2 and use that estimate in place of 
σ2. Since we are assuming the two population variances are the same, we estimate 
this variance by averaging our two sample variances. Thus, our estimate of 
variance is computed using the following formula:

 

where MSE is our estimate of σ2. In this example,

MSE = (2.743 + 2.985)/2 = 2.864. 

Since n (the number of scores in each group) is 17,

 

The next step is to compute t by plugging these values into the formula:

t = 1.4705/.5805 = 2.533. 

Finally, we compute the probability of getting a t as large or larger than 2.533 or as 
small or smaller than -2.533. To do this, we need to know the degrees of freedom. 
The degrees of freedom is the number of independent estimates of variance on 
which MSE is based. This is equal to (n1 - 1) + (n2 - 1), where n1 is the sample size 
of the first group and n2 is the sample size of the second group. For this example, 
n1  =  n2 = 17. When n1  =  n2, it is conventional to use “n” to refer to the sample 
size of each group. Therefore, the degrees for freedom is 16 + 16 = 32.
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Once we have the degrees of freedom, we can use a t distribution calculator 
to find that the probability value for a two-tailed test is 0.0164. The two-tailed test 
is used when the null hypothesis can be rejected regardless of the direction of the 
effect. This is the probability of a t < -2.533 or a t > 2.533. A one-tailed test would 
result in a probability of 0.0082, which is half the two-tailed probability.

Formatting Data for Computer Analysis 
Most computer programs that compute t tests require your data to be in a specific 
form. Consider the data in Table 2.

Table 2. Example Data.

Here there are two groups, each with three observations. To format these data for a 
computer program, you normally have to use two variables: the first specifies the 
group the subject is in and the second is the score itself. The reformatted version of 
the data in Table 2 is shown in Table 3.

Table 3. Reformatted Data

Computations for Unequal Sample Sizes (optional) 
The calculations are somewhat more complicated when the sample sizes are not 
equal. One consideration is that MSE, the estimate of variance, counts the group 

Group 1 Group 2

3 2

4 6

5 8

G Y

1 3

1 4

1 5

2 2

2 6

2 8
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with the larger sample size more than the group with the smaller sample size. 
Computationally, this is done by computing the sum of squares error (SSE) as 
follows:

 

where M1 is the mean for group 1 and M2 is the mean for group 2. Consider the 
following small example:

Table 4. Unequal n

M1 = 4 and M2 = 3. 
 
SSE = (3-4)2 + (4-4)2 + (5-4)2 + (2-3)2 + (4-3)2  
= 4 

Then, MSE is computed by:

 

The formula

 

is replaced by
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where nh is the harmonic mean of the sample sizes and is computed as follows:

 

and

 

Therefore,

t = (4-3)/1.054 = 0.949 

and the two-tailed p = 0.413.
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All Pairwise Comparisons Among Means 
by David M. Lane 

Prerequisites
• Chapter 12: Difference Between Two Means (Independent Groups)

Learning Objectives
1. Define pairwise comparison
2. Describe the problem with doing t tests among all pairs of means
3. Calculate the Tukey HSD test
4. Explain why Tukey test should not necessarily be considered a follow-up test
Many experiments are designed to compare more than two conditions. We will take 
as an example the case study “Smiles and Leniency.” In this study, the effect of 
different types of smiles on the leniency showed to a person was investigated. An 
obvious way to proceed would be to do a t test of the difference between each 
group mean and each of the other group means. This procedure would lead to the 
six comparisons shown in Table 1.

The problem with this approach is that if you did this analysis, you would 
have six chances to make a Type I error. Therefore, if you were using the 0.05 
significance level, the probability that you would make a Type I error on at least 
one of these comparisons is greater than 0.05. The more means that are compared, 
the more the Type I error rate is inflated. Figure 1 shows the number of possible 
comparisons between pairs of means (pairwise comparisons) as a function of the 
number of means. If there are only two means, then only one comparison can be 
made. If there are 12 means, then there are 66 possible comparisons.
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Table 1. Six Comparisons among Means.

 

Figure 1. Number of pairwise comparisons as a function of the number of 
means.
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Figure 2 shows the probability of a Type I error as a function of the number of 
means. As you can see, if you have an experiment with 12 means, the probability is 
about 0.70 that at least one of the 66 comparisons among means would be 
significant even if all 12 population means were the same.

Figure 2. Probability of a Type I Error as a Function of the Number of 
Means.

The Type I error rate can be controlled using a test called the Tukey Honestly 
Significant Difference test or Tukey HSD for short. The Tukey HSD is based on a 
variation of the t distribution that takes into account the number of means being 
compared. This distribution is called the studentized range distribution.
Let's return to the leniency study to see how to compute the Tukey HSD test. You 
will see that the computations are very similar to those of an independent-groups t 
test. The steps are outlined below:
1. Compute the means and variances of each group. They are shown below.
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2. Compute MSE, which is simply the mean of the variances. It is equal to 2.65. 
3. Compute

 

for each pair of means, where Mi is one mean, Mj is the other mean, and n is the 
number of scores in each group. For these data, there are 34 observations per 
group. The value in the denominator is 0.279.
4. Compute p for each comparison using the Studentized Range Calculator 
(external link; requires Java). The degrees of freedom is equal to the total number 
of observations minus the number of means. For this experiment, df = 136 - 4 = 
132.

The tests for these data are shown in Table 2. The only significant 
comparison is between the false smile and the neutral smile.

Table 2. Six Pairwise Comparisons.

It is not unusual to obtain results that on the surface appear paradoxical. For 
example, these results appear to indicate that (a) the false smile is the same as the 
miserable smile, (b) the miserable smile is the same as the neutral control, and (c) 
the false smile is different from the neutral control. This apparent contradiction is 
avoided if you are careful not to accept the null hypothesis when you fail to reject 

Miserable 4.91 2.11

Neutral 4.12 2.32
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Comparison Mi-Mj Q p

False - Felt 0.46 1.65 0.649

False - Miserable 0.46 1.65 0.649

False - Neutral 1.25 4.48 0.01

Felt - Miserable 0 0 1

Felt - Neutral 0.79 2.83 0.193

Miserable - Neutral 0.79 2.83 0.193
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it. The finding that the false smile is not significantly different from the miserable 
smile does not mean that they are really the same. Rather it means that there is not 
convincing evidence that they are different. Similarly, the non-significant 
difference between the miserable smile and the control does not mean that they are 
the same. The proper conclusion is that the false smile is higher than the control 
and that the miserable smile is either (a) equal to the false smile, (b) equal to the 
control, or (c) somewhere in-between.

Assumptions 
The assumptions of the Tukey test are essentially the same as for an independent-
groups t test: normality, homogeneity of variance, and independent observations. 
The test is quite robust to violations of normality. Violating homogeneity of 
variance can be more problematical than in the two-sample case since the MSE is 
based on data from all groups. The assumption of independence of observations is 
important and should not be violated.

Computer Analysis 
For most computer programs, you should format your data the same way you do 
for independent-groups t test. The only difference is that if you have, say, four 
groups, you would code each group as 1, 2, 3, or 4 rather than just 1 or 2.

Although full-featured statistics programs such as SAS, SPSS, R, and others 
can compute Tukey's test, smaller programs (including Analysis Lab) may not. 
However, these programs are generally able to compute a procedure known as 
Analysis of Variance (ANOVA). This procedure will be described in detail in a 
later chapter. Its relevance here is that an ANOVA computes the MSE that is used 
in the calculation of Tukey's test. For example, the following shows the ANOVA 
summary table for the “Smiles and Leniency” data.

The column labeled MS stands for “Mean Square” and therefore the value 2.6489 
in the “Error” row and the MS column is the “Mean Squared Error” or MSE. 
Recall that this is the same value computed here (2.65) when rounded off.
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Tukey's Test Need Not Be A Follow-Up to ANOVA 
Some textbooks introduce the Tukey test only as a follow-up to an analysis of 
variance. There is no logical or statistical reason why you should not use the Tukey 
test even if you do not compute an ANOVA (or even know what one is). If you or 
your instructor do not wish to take our word for this, see the excellent article on 
this and other issues in statistical analysis by Wilkinson and the Task Force on 
Statistical Inference (1999).

Computations for Unequal Sample Sizes (optional) 
The calculation of MSE for unequal sample sizes is similar to its calculation in an 
independent-groups t test. Here are the steps:
1. Compute a Sum of Squares Error (SSE) using the following formula

 

where Mi is the mean of the ith group and k is the 
number of groups.  

2. Compute the degrees of freedom error (dfe) by subtracting the number of groups 
(k) from the total number of observations (N). Therefore,

dfe N - k. 

Compute MSE by dividing SSE by dfe:

MSE = SSE/dfe. 

For each comparison of means, use the harmonic mean of the n's for the two means 
(nh).

All other aspects of the calculations are the same as when you have equal 
sample sizes.
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Specific Comparisons (Independent Groups) 
by David M. Lane 

Prerequisites
• Chapter 12: Difference Between Two Means (Independent Groups)

Learning Objectives
1. Define linear combination
2. Specify a linear combination in terms of coefficients
3. Do a significance test for a specific comparison
There are many situations in which the comparisons among means are more 
complicated than simply comparing one mean with another. This section shows 
how to test these more complex comparisons. The methods in this section assume 
that the comparison among means was decided on before looking at the data. 
Therefore these comparisons are called planned comparisons. A different 
procedure is necessary for unplanned comparisons.

Let's begin with the made-up data from a hypothetical experiment shown in 
Table 1. Twelve subjects were selected from a population of high-self-esteem 
subjects (esteem = 1) and an additional 12 subjects were selected from a population 
of low-self-esteem subjects (esteem = 2). Subjects then performed on a task and 
(independent of how well they really did) half in each esteem category were told 
they succeeded (outcome = 1) and the other half were told they failed (outcome = 
2). Therefore, there were six subjects in each of the four esteem/outcome 
combinations and 24 subjects all together.

After the task, subjects were asked to rate (on a 10-point scale) how much of 
their outcome (success or failure) they attributed to themselves as opposed to being 
due to the nature of the task.
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Table 1. Data from Hypothetical Experiment.

The means of the four conditions are shown in Table 2.

outcome esteem attrib

1 1 7

1 1 8

1 1 7

1 1 8

1 1 9

1 1 5

1 2 6

1 2 5

1 2 7

1 2 4

1 2 5

1 2 6

2 1 4

2 1 6

2 1 5

2 1 4

2 1 7

2 1 3

2 2 9

2 2 8

2 2 9

2 2 8

2 2 7

2 2 6
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Table 2. Mean ratings of self-attributions of success or failure.

There are several questions we can ask about the data. We begin by asking 
whether, on average, subjects who were told they succeeded differed significantly 
from subjects who were told they failed. The means for subjects in the success 
condition are 7.333 for the high-self-esteem subjects and 5.500 for the low-self-
esteem subjects. Therefore, the mean for all subjects in the success condition is 
(7.3333 + 5.5000)/2 = 6.4167. Similarly, the mean for all subjects in the failure 
condition is (4.8333 + 7.8333)/2 = 6.3333. The question is: How do we do a 
significance test for this difference of 6.4167-6.3333 = 0.083?

The first step is to express this difference in terms of a linear combination 
using a set of coefficients and the means. This may sound complex, but it is really 
pretty easy. We can compute the mean of the success conditions by multiplying 
each success mean by 0.5 and then adding the result. In other words, we compute

(.5)(7.333) + (.5)(5.500) 
= 3.67 + 2.75 
= 6.42 

Similarly we can compute the mean of the failure conditions by multiplying each 
failure mean by 0.5 and then adding the result:

(.5)(4.833) + (.5)(7.833) 
= 2.417 + 3.917 
= 6.33 

The difference between the two means can be expressed as

.5 x 7.333 + .5 x 5.500 -(.5 x 4.833 + .5 x 7.833)= 

.5 x 7.333 + .5 x 5.500 - .5 x 4.833 - .5 x 7.8333 

Outcome Esteem Mean

Success High Self-Esteem 7.333

Low Self-Esteem 5.5

Failure High Self-Esteem 4.833

Low Self-Esteem 7.833
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We therefore can compute the difference between the “success” mean and the 
“failure” mean by multiplying each “success” mean by 0.5, each “failure” mean by 
-0.5 and adding the results. In Table 3, the coefficient column is the multiplier and 
the product column in the result of the multiplication. If we add up the four values 
in the product column we get:

L = 3.667 + 2.750 - 2.417 - 3.917 = 0.083 

This is the same value we got when we computed the difference between means 
previously (within rounding error). We call the value “L” for “linear combination.”

Table 3. Coefficients for comparing low and high self-esteem.

Now, the question is whether our value of L is significantly different from 0. The 
general formula for L is

 

where ci is the ith coefficient and Mi is the ith mean. As shown above, L = 0.083. 
The formula for testing L for significance is shown below:

 

In this example,

 

Outcome Esteem Mean Coeff Product

Success High Self-Esteem 7.333 0.5 3.667

Low Self-Esteem 5.5 0.5 2.75

Failure High Self-Esteem 4.833 -0.5 -2.417

Low Self-Esteem 7.833 -0.5 -3.917
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MSE is the mean of the variances. The four variances are shown in Table 4. Their 
mean is 1.625. Therefore MSE = 1.625.

Table 4. Variances of attributions of success or failure to oneself.

The value of n is the number of subjects in each group. Here n = 6.
Putting it all together,

 

We need to know the degrees for freedom in order to compute the probability 
value. The degrees of freedom is

df = N - k 

where N is the total number of subjects (24) and k is the number of groups (4). 
Therefore, df = 20. Using the Online Calculator, we find that the two-tailed 
probability value is 0.874. Therefore, the difference between the “success” 
condition and the “failure” condition is not significant.

A more interesting question about the results is whether the effect of 
outcome (success or failure) differs depending on the self-esteem of the subject. 
For example, success may make high-self-esteem subjects more likely to attribute 
the outcome to themselves, whereas success may make low-self-esteem subjects 
less likely to attribute the outcome to themselves.

To test this, we have to test a difference between differences. Specifically, is 
the difference between success and failure outcomes for the high-self-esteem 
subjects different from the difference between success and failure outcomes for the 
low-self-esteem subjects? The means in Table 5 suggest that this is the case. For 
the high-self-esteem subjects, the difference between the success and failure 

Outcome Esteem Variance

Success High Self-Esteem 1.867

Low Self-Esteem 1.1

Failure High Self-Esteem 2.167

Low Self-Esteem 1.367
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attribution scores is 7.333 - 4.833 = 2.500. For low-self-esteem subjects, the 
difference is 5.500 - 7.833 = -2.333. The difference between differences is 2.500 - 
(-2.333) = 4.833.

The coefficients to test this difference between differences are shown in 
Table 5.

Table 5. Coefficients for testing differences between differences.

If it is hard to see where these coefficients came from, consider that our difference 
between differences was computed this way:

(7.33 - 4.83) - (5.5 - 7.83) 

= 7.3 - 4.83 - 5.5 + 7.83 

= (1)7.3 + (-1)4.83 + (-1)5.5 + (1)7.83 

The values in parentheses are the coefficients.
To continue the calculations,

 

 

 

The two-tailed p value is 0.0002. Therefore, the difference between differences is 
highly significant.

Self-Esteem Outcome Mean Coefficient Product

High Success 7.333 1 7.333

Failure 4.833 -1 -4.833

Low Success 5.5 -1 -5.5

Failure 7.833 1 7.833
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In a later chapter on Analysis of Variance, you will see that comparisons 
such as this are testing what is called an interaction. In general, there is an 
interaction when the effect of one variable differs as a function of the level of 
another variable. . In this example, the effect of the outcome variable is different 
depending on the subject's self-esteem. For the high-self-esteem subjects, success 
led to more self-attribution than did failure; for the low-self-esteem subjects, 
success led to less self-attribution than did failure.

Multiple Comparisons 
The more comparisons you make, the greater your chance of a Type I error. It is 
useful to distinguish between two error rates: (1) the per-comparison error rate 
and (2) the familywise error rate. The per-comparison error rate is the probability 
of a Type I error for a particular comparison. The familywise error rate is the 
probability of making one or more Type I errors in a family or set of comparisons. 
In the attribution experiment discussed previously, we computed two comparisons. 
If we use the 0.05 level for each comparison, then the per-comparison rate is 
simply 0.05. The familywise rate can be complex. Fortunately, there is a simple 
approximation that is fairly accurate when the number of comparisons is small. 
Defining α as the per-comparison error rate and c as the number of comparisons, 
the following inequality always holds true for the familywise error rate (FW):

FW ≤ cα 

This inequality is called the Bonferroni inequality. In practice, FW can be 
approximated by cα. This is a conservative approximation since FW can never be 
greater than cα and is generally less than cα.

The Bonferroni inequality can be used to control the familywise error rate as 
follows: If you want the familywise error rate to be α, you use α/c as the per-
comparison error rate. This correction, called the Bonferroni correction, will 
generally result in a familywise error rate less than α. Alternatively, you could 
multiply the by c and use the original α level.

Should the familywise error rate be controlled? Unfortunately, there is no 
clear-cut answer to this question. The disadvantage of controlling the familywise 
error rate is that it makes it more difficult to obtain a significant result for any 
given comparison: The more comparisons you do, the lower the per-comparison 
rate must be and therefore the harder it is to reach significance. That is, the power 
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is lower when you control the familywise error rate. The advantage is that you 
have a lower chance of making a Type I error.

One consideration is the definition of a family of comparisons. Let's say you 
conducted a study in which you were interested in whether there was a difference 
between male and female babies in the age at which they started crawling. After 
you finished analyzing the data, a colleague of yours had a totally different 
research question: Do babies who are born in the winter differ from those born in 
the summer in the age they start crawling? Should the familywise rate be 
controlled or should it be allowed to be greater than 0.05? Our view is that there is 
no reason you should be penalized (by lower power) just because your colleague 
used the same data to address a different research question. Therefore, the 
familywise error rate need not be controlled. Consider the two comparisons done 
on the attribution example at the beginning of this section: These comparisons are 
testing completely different hypotheses. Therefore, controlling the familywise rate 
is not necessary.

Now consider a study designed to investigate the relationship between 
various variables and the ability of subjects to predict the outcome of a coin flip. 
One comparison is between males and females; a second comparison is between 
those over 40 and those under 40; a third is between vegetarians and non-
vegetarians; and a fourth is between firstborns and others. The question of whether 
these four comparisons are testing different hypotheses depends on your point of 
view. On the one hand, there is nothing about whether age makes a difference that 
is related to whether diet makes a difference. In that sense, the comparisons are 
addressing different hypotheses. On the other hand, the whole series of 
comparisons could be seen as addressing the general question of whether anything 
affects the ability to predict the outcome of a coin flip. If nothing does, then 
allowing the familywise rate to be high means that there is a high probability of 
reaching the wrong conclusion.

 Orthogonal Comparisons 
In the preceding sections, we talked about comparisons being independent. 
Independent comparisons are often called orthogonal comparisons. There is a 
simple test to determine whether two comparisons are orthogonal: If the sum of the 
products of the coefficients is 0, then the comparisons are orthogonal. Consider 
again the experiment on the attribution of success or failure. Table 6 shows the 
coefficients previously presented in Table 3 and in Table 5. The column “C1” 

425



contains the coefficients from the comparison shown in Table 3; the column “C2” 
contains the coefficients from the comparison shown in Table 5. The column 
labeled “Product” is the product of these two columns. Note that the sum of the 
numbers in this column is 0. Therefore, the two comparisons are orthogonal.

Table 6. Coefficients for two orthogonal comparisons.

Table 7 shows two comparisons that are not orthogonal. The first compares the 
high-self-esteem subjects to the low-self-esteem subjects; the second considers 
only those in the success group and compares high-self-esteem subjects to low-
self-esteem subjects. The failure group is ignored by using 0's as coefficients. 
Clearly the comparison of high-self-esteem subjects to low-self-esteem subjects for 
the whole sample is not independent of the comparison for the success group only. 
You can see that the sum of the products of the coefficients is 0.5 and not 0.

Outcome Esteem C1 C2 Product

Success High Self-Esteem 0.5 1 0.5

Low Self-Esteem 0.5 -1 -0.5

Failure High Self-Esteem -0.5 -1 0.5

Low Self-Esteem -0.5 1 -0.5

426



Table 7. Coefficients for two non-orthogonal comparisons.

Outcome Esteem C1 C2 Product

Success High Self-Esteem 0.5 0.5 0.25

Low Self-Esteem -0.5 -0.5 0.25

Failure High Self-Esteem 0.5 0 0

Low Self-Esteem -0.5 0 0

427



Difference Between Two Means (Correlated Pairs) 
by David M. Lane 

Prerequisites
• Chapter 4: Values of the Pearson Correlation 
• Chapter 10: t Distribution
• Chapter 11: Hypothesis Testing
• Chapter 12: Testing a Single Mean
• Chapter 12: Difference Between Two Means (Independent Groups)

Learning Objectives
1. Determine whether you have correlated pairs or independent groups
2. Compute a t test for correlated pairs
Let's consider how to analyze the data from the “ADHD Treatment” case study. 
These data consist of the scores of 24 children with ADHD on a delay of 
gratification (DOG) task. Each child was tested under four dosage levels. In this 
section, we will be concerned only with testing the difference between the mean of 
the placebo (D0) condition and the mean of the highest dosage condition (D60).  
The first question is why the difference between means should not be tested using 
the procedure described in the section Difference Between Two Means 
(Independent Groups). The answer lies in the fact that in this experiment we do not 
have independent groups. The scores in the D0 condition are from the same 
subjects as the scores in the D60 condition. There is only one group of subjects, 
each subject being tested in both the D0 and D60 conditions.

Figure 1 shows a scatter plot of the 60-mg scores (D60) as a function of the 
0-mg scores (D0). It is clear that children who get more correct in the D0 condition 
tend to get more correct in the D60 condition. The correlation between the two 
conditions is high: r = 0.80. Clearly these two variables are not independent.
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Figure 1. Number of correct responses made in the 60-mg condition as a function 
of the number of correct responses in the 0-mg condition.

Computations 
You may recall that the method to test the difference between these means was 
presented in the section on “Testing a Single Mean.” The computational procedure 
is to compute the difference between the D60 and the D0 conditions for each child 
and test whether the mean difference is significantly different from 0. The 
difference scores are shown in Table 1. As shown in the section on testing a single 
mean, the mean difference score is 4.96 which is significantly different from 0: t = 
3.22, df = 23, p = 0.0038. This t test has various names including “correlated t 
test” and “related-pairs t test.”

In general, the correlated t test is computed by first computing the 
differences between the two scores for each subject. Then, a test of a single mean is 
computed on the mean of these difference scores.

Table 1. DOG scores as a function of dosage.
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If you had mistakenly used the method for an independent-groups t test with these 
data, you would have found that t = 1.42, df = 46, and p = 0.15. That is, the 
difference between means would not have been found to be statistically significant. 
This is a typical result: correlated t tests almost always have greater power than 
independent-groups t tests. This is because in correlated t tests, each difference 
score is a comparison of performance in one condition with the performance of that 
same subject in another condition. This makes each subject “their own control” and 

32 30 -2

31 34 3

34 38 4

38 36 -2

71 77 6

33 51 18

34 45 11

53 42 -11

36 43 7

42 57 15

26 36 10

52 58 6

36 35 -1

55 60 5

36 33 -3

42 49 7

36 33 -3

54 59 5

34 35 1

29 37 8

33 45 12

33 29 -4
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keeps differences between subjects from entering into the analysis. The result is 
that the standard error of the difference between means is smaller in the correlated t 
test and, since this term is in the denominator of the formula for t, results in a 
larger t.

Details about the Standard Error of the Difference between Means 
(Optional) 
To see why the standard error of the difference between means is smaller in a 
correlated t test, consider the variance of difference scores. As shown in the section 
on the Variance Sum Law, the variance of the sum or difference of the two 
variables X and Y is:

 

Therefore, the variance of difference scores is the variance in the first condition (X) 
plus the variance in the second condition (Y) minus twice the product of (1) the 
correlation, (2) the standard deviation of X, and (3) the standard deviation of Y. For 
the current example, r = 0.80 and the variances and standard deviations are shown 
in Table 2.

Table 2. Variances and Standard Deviations

The variance of the difference scores of 56.82 can be computed as:

128.02 + 151.78 - (2)(0.80)(11.31)(12.32) 

which is equal to 56.82 except for rounding error. Notice that the higher the 
correlation, the lower the standard error of the mean.
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 D0 D60 D60 - D0

Variance 128.02 151.78 56.82

Sd 11.31 12.32 7.54
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Specific Comparisons (Correlated Observations) 
by David M. Lane 

Prerequisites
• Chapter 10: t Distribution 
• Chapter 12: Hypothesis Testing, Testing a Single Mean
• Chapter 12: Specific Comparisons
• Chapter 12: Difference Between Two Means (Correlated Pairs)

Learning Objectives
1. Determine whether to use the formula for correlated comparisons or 

independent-groups comparisons
2. Compute t for a comparison for repeated-measures data
In the "Weapons and Aggression" case study, subjects were asked to read words 
presented on a computer screen as quickly as they could. Some of the words were 
aggressive words such as injure or shatter. Others were control words such as 
relocate or consider. These two types of words were preceded by words that were 
either the names of weapons, such as shotgun or grenade, or non-weapon words, 
such as rabbit or fish. For each subject, the mean reading time across words was 
computed for these four conditions. The four conditions are labeled as shown in 
Table 1. Table 2 shows the data from five subjects.

Table 1. Description of Conditions.

Variable Description

aw The time in milliseconds (msec) to name an aggressive word 
following a weapon word prime.

an The time in milliseconds (msec) to name an aggressive word 
following a non-weapon word prime.

cw The time in milliseconds (msec) to name a control word following a 
weapon word prime.

cn The time in milliseconds (msec) to name a control word following a 
non-weapon word prime.
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Table 2. Data from Five Subjects

One question was whether reading times would be shorter when the preceding 
word was a weapon word (aw and cw conditions) than when it was a non-weapon 
word (an and cn conditions). In other words, is

L1 = (an + cn) - (aw + cw) 

greater than 0? This is tested for significance by computing L1 for each subject and 
then testing whether the mean value of L1 is significantly different from 0. Table 3 
shows L1 for the first five subjects. L1 for Subject 1 was computed by

L1 = (440 + 452) - (447 + 432) = 892 - 879 = 13 

Table 3. L1 for Five Subjects

Once L1 is computed for each subject, the significance test described in the section 
“Testing a Single Mean” can be used. First we compute the mean and the standard 
error of the mean for L1. There were 32 subjects in the experiment. Computing L1 
for the 32 subjects, we find that the mean and standard error of the mean are 5.875 
and 4.2646, respectively. We then compute

Subject aw an cw cn

1 447 440 432 452

2 427 437 469 451

3 417 418 445 434

4 348 371 353 344

5 471 443 462 463

Subject aw an cw cn L1

1 447 440 432 452 13

2 427 437 469 451 -8

3 417 418 445 434 -10

4 348 371 353 344 14

5 471 443 462 463 -27
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where M is the sample mean, μ is the hypothesized value of the population mean 
(0 in this case), and sM is the estimated standard error of the mean. The calculations 
show that t = 1.378. Since there were 32 subjects, the degrees of freedom is 32 - 1 
= 31. The t distribution calculator shows that the two-tailed probability is 0.178.

A more interesting question is whether the priming effect (the difference 
between words preceded by a non-weapon word and words preceded by a weapon 
word) is different for aggressive words than it is for non-aggressive words. That is, 
do weapon words prime aggressive words more than they prime non-aggressive 
words? The priming of aggressive words is (an - aw). The priming of non-
aggressive words is (cn - cw). The comparison is the difference:
L2 = (an - aw) - (cn - cw).
 
Table 4 shows L2 for five of the 32 subjects.

Table 4. L2 for Five Subjects

The mean and standard error of the mean for all 32 subjects are 8.4375 and 3.9128, 
respectively. Therefore, t = 2.156 and p = 0.039.

Multiple Comparisons 
Issues associated with doing multiple comparisons are the same for related 
observations as they are for multiple comparisons among independent groups.
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Subject aw an cw cn L2

1 447 440 432 452 -27

2 427 437 469 451 28

3 417 418 445 434 12

4 348 371 353 344 32

5 471 443 462 463 -29
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Orthogonal Comparisons 
The most straightforward way to assess the degree of dependence between two 
comparisons is to correlate them directly. For the weapons and aggression data, the 
comparisons L1 and L2 are correlated 0.24. Of course, this is a sample correlation 
and only estimates what the correlation would be if L1 and L2 were correlated in 
the  population. Although mathematically possible, orthogonal comparisons with 
correlated observations are very rare.
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Pairwise Comparisons (Correlated Observations) 
by David M. Lane 

Prerequisites
• Chapter 12: Difference between Two Means (Independent Groups)
• Chapter 12: All Pairwise Comparisons Among Means
• Chapter 12: Difference Between Two Means
• Chapter 12: Difference Between Two Means ( Correlated Pairs)
• Chapter 12: Specific Comparisons (Independent Groups)
• Chapter 12: Specific Comparisons (Correlated Observations)

Learning Objectives
1. Compute the Bonferroni correction
2. Calculate pairwise comparisons using the Bonferroni correction
In the section on all pairwise comparisons among independent groups, the Tukey 
HSD test was the recommended procedure. However, when you have one group 
with several scores from the same subjects, the Tukey test makes an assumption 
that is unlikely to hold: The variance of difference scores is the same for all 
pairwise differences between means.

The standard practice for pairwise comparisons with correlated observations 
is to compare each pair of means using the method outlined in the section 
“Difference Between Two Means (Correlated Pairs)” with the addition of the 
Bonferroni correction described in the section “Specific Comparisons.” For 
example, suppose you were going to do all pairwise comparisons among four 
means and hold the familywise error rate at 0.05. Since there are six possible 
pairwise comparisons among four means, you would use 0.05/6 = 0.0083 for the 
per-comparison error rate.

As an example, consider the case study “Stroop Interference.” There were 
three tasks each performed by 47 subjects. In the “words” task, subjects read the 
names of 60 color words written in black ink; in the “color” task, subjects named 
the colors of 60 rectangles; in the “interference” task, subjects named the ink color 
of 60 conflicting color words. The times to read the stimuli were recorded. In order 
to compute all pairwise comparisons, the difference in times for each pair of 
conditions for each subject is calculated. Table 1 shows these scores for five of the 
47 subjects.
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Table 1. Pairwise Differences

The means, standard deviations (Sd), and standard error of the mean (Sem), t, and 
p for all 47 subjects are shown in Table 2. The t's are computed by dividing the 
means by the standard errors of the mean. Since there are 47 subjects, the degrees 
of freedom is 46. Notice how different the standard deviations are. For the Tukey 
test to be valid, all population values of the standard deviation would have to be 
the same.

Table 2. Pairwise Comparisons.

Using the Bonferroni correction for three comparisons, the p value has to be below 
0.05/3 = 0.0167 for an effect to be significant at the 0.05 level. For these data, all p 
values are far below that, and therefore all pairwise differences are significant.

W-C W-I C-I

-3 -24 -21

2 -41 -43

-1 -18 -17

-4 -23 -19

-2 -17 -15

Comparison Mean Sd Sem t p

W-C -4.15 2.99 0.44 -9.53 <0.001

W-I -20.51 7.84 1.14 -17.93 <0.001

C-I -16.36 7.47 1.09 -15.02 <0.001
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 12: Single Mean

Research on the effectiveness of surgery for weight loss reported here found that 
"The surgery was associated with significantly greater weight loss [than the control 
group who dieted] through 2 years (61.3 versus 11.2 pounds, p<0.001)."
 
What do you think?
What test could have been used and how would it have been computed?

For each subject a difference score between their initial weight 
and final weight could be computed. A t test of  whether the 
mean difference score differs significantly from 0 could then be 
computed. The mean difference score will equal the difference 
between the mean weight losses of  the two groups (61.3 - 11.2 = 
50.1). 
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Exercises 

Prerequisites
• All material presented in the Testing Means chapter 

1.The scores of a random sample of 8 students on a physics test are as follows: 60, 
62, 67, 69, 70, 72, 75, and 78.
a. Test to see if the sample mean is significantly different from 65 at the .05 level. 
Report the t and p values.
b. The researcher realizes that she accidentally recorded the score that should 
have been 76 as 67. Are these corrected scores significantly different from 65 at 
the .05 level?

2. A (hypothetical) experiment is conducted on the effect of alcohol on perceptual 
motor ability. Ten subjects are each tested twice, once after having two drinks 
and once after having two glasses of water. The two tests were on two different 
days to give the alcohol a chance to wear off. Half of the subjects were given 
alcohol first and half were given water first. The scores of the 10 subjects are 
shown below. The first number for each subject is their per- formance in the 
“water” condition. Higher scores reflect better performance. Test to see if alcohol 
had a significant effect. Report the t and p values.

3. The scores on a (hypothetical) vocabulary test of a group of 20 year olds and a 
group of 60 year olds are shown below.

water alcohol
16 13
15 13
11 10
20 18
19 17
14 11
13 10
15 15
14 11
16 16

20 yr olds 60 yr olds
27 26
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a. Test the mean difference for significance using the .05 level. 

b. List the assumptions made in computing your answer.

4. The sampling distribution of a statistic is normally distributed with an estimated 
standard error of 12 (df = 20). (a) What is the probability that you would have 
gotten a mean of 107 (or more extreme) if the population parameter were 100? Is 
this probability significant at the .05 level (two-tailed)? (b) What is the 
probability that you would have gotten a mean of 95 or less (one-tailed)? Is this 
probability significant at the .05 level? You may want to use the t Distribution 
calculator for this problem.

5. How do you decide whether to use an independent groups t test or a correlated t 
test (test of dependent means)?

6. An experiment compared the ability of three groups of subjects to remember 
briefly-presented chess positions. The data are shown below.

a. Using the Tukey HSD procedure, determine which groups are significantly 
different from each other at the .05 level.

26 29
21 29
24 29
15 27
18 16
17 20
12 27
13

Non-players Beginners Tournament players
22.1 32.5 40.1
22.3 37.1 45.6
26.2 39.1 51.2
29.6 40.5 56.4
31.7 45.5 58.1
33.5 51.3 71.1
38.9 52.6 74.9
39.7 55.7 75.9
43.2 55.9 80.3
43.2 57.7 85.3
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b. Now compare each pair of groups using t-tests. Make sure to control for the 
familywise error rate (at 0.05) by using the Bonferroni correction. Specify the 
alpha level you used.

7. Below are data showing the results of six subjects on a memory test. The three 
scores per subject are their scores on three trials (a, b, and c) of a memory task. 
Are the subjects get- ting better each trial? Test the linear effect of trial for the 
data.

a. Compute L for each subject using the contrast weights -1, 0, and 1. That is, 
compute (-1)(a) + (0)(b) + (1)(c) for each subject.
b. Compute a one-sample t-test on this column (with the L values for each 
subject) you created.

8. Participants threw darts at a target. In one condition, they used their preferred 
hand; in the other condition, they used their other hand. All subjects performed in 
both conditions (the order of conditions was counterbalanced). Their scores are 
shown below.

a. Which kind of t-test should be used? 
b. Calculate the two-tailed t and p values using this t test. 
c. Calculate the one-tailed t and p values using this t test. 

9. Assume the data in the previous problem were collected using two different 
groups of subjects: One group used their preferred hand and the other group used 

a b c
4 6 7
3 7 8
2 8 5
1 4 7
4 6 9
2 4 2

Preferred Non-preferred
12 7
7 9
11 8
13 10
10 9
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their non-preferred hand. Analyze the data and compare the results to those for 
the previous problem.

10. You have 4 means, and you want to compare each mean to every other mean. 
(a) How many tests total are you going to compute? (b) What would be the 
chance of making at least one Type I error if the Type I error for each test was 
.05 and the tests were independent? (c) Are the tests independent and how does 
independence/non-independence affect the probability in (b).

11. In an experiment, participants were divided into 4 groups. There were 20 
participants in each group, so the degrees of freedom (error) for this study was 
80 - 4 = 76. Tukey’s HSD test was performed on the data. (a) Calculate the p 
value for each pair based on the Q value given below. You will want to use the 
Studentized Range Calculator. (b) Which differences are significant at the .05 
level?

12. If you have 5 groups in your study, why shouldn’t you just compute a t test of 
each group mean with each other group mean?

13. You are conducting a study to see if students do better when they study all at 
once or in intervals. One group of 12 participants took a test after studying for 
one hour continuously. The other group of 12 participants took a test after 
studying for three twenty minute sessions. The first group had a mean score of 
75 and a variance of 120. The second group had a mean score of 86 and a 
variance of 100.
a. What is the calculated t value? Are the mean test scores of these two groups 
significantly different at the .05 level?
b. What would the t value be if there were only 6 participants in each group? 
Would the scores be significant at the .05 level?

Comparison of Groups Q
A - B 3.4
A - C 3.8
A - D 4.3
B - C 1.7
B - D 3.9
C - D 3.7
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14. A new test was designed to have a mean of 80 and a standard deviation of 10. A 
random sample of 20 students at your school take the test, and the mean score 
turns out to be 85. Does this score differ significantly from 80?

15. You perform a one-sample t test and calculate a t statistic of 3.0. The mean of 
your sample was 1.3 and the standard deviation was 2.6. How many 
participants were used in this study?

16. True/false: The contrasts (-3, 1 1 1) and (0, 0 , -1, 1) are orthogonal.

17. True/false: If you are making 4 comparisons between means, then based on the 
Bonferroni correction, you should use an alpha level of .01 for each test.

18. True/false: Correlated t tests almost always have greater power than 
independent t tests.

19. True/false: The graph below represents a violation of the homogeneity of 
variance assumption.
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20. True/false: When you are conducting a one-sample t test and you know the 
population standard deviation, you look up the critical t value in the table based 
on the degrees of freedom.

Questions from Case Studies

Angry Moods (AM) case study

21. (AM) Do athletes or non-athletes calm down more when angry? Conduct a t 
test to see if the difference between groups in Control-In scores is statistically 
significant.

22. (AM) Do people in general have a higher Anger-Out or Anger-In score? 
Conduct a t test on the difference between means of these two scores. Are these 
two means independent or dependent?

Smiles and Leniency (SL) case study
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23. (SL) Compare each mean to the neutral mean. Be sure to control for the 
familywise error rate.

24. (SL) Does a “felt smile” lead to more leniency than other types of smiles? (a) 
Calculate L (the linear combination) using the following contrast weights false: 
-1, felt: 2, miserable: -1, neutral: 0. (b) Perform a significance test on this value 
of L.

Animal Research (AR) case study

25. (AR) Conduct an independent samples t test comparing males to females on the 
belief that animal research is necessary.

26. (AR) Based on the t test you conducted in the previous problem, are you able 
to reject the null hypothesis if alpha = 0.05? What about if alpha = 0.1?

27. (AR) Is there any evidence that the t test assumption of homogeneity of 
variance is violated in the t test you computed in #25?

ADHD Treatment (AT) case study

28. (AT) Compare each dosage with the dosage below it (compare d0 and d15, d15 
and d30, and d30 and d60). Remember that the patients completed the task 
after every dosage. (a) If the familywise error rate is .05, what is the alpha level 
you will use for each comparison when doing the Bonferroni correction? (b) 
Which differences are significant at this level?

29. (AT) Does performance increase linearly with dosage?
a. Plot a line graph of this data.
b. Compute L for each patient. To do this, create a new variable where you 
multiply the following coefficients by their corresponding dosages and then 
sum up the total: (-3)d0 + (-1)d15 + (1)d30 + (3)d60 (see #7). What is the mean 
of L?
c. Perform a significance test on L. Compute the 95% confidence interval for L.
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13. Power 
A.  Introduction
B.  Example Calculations
C.  Factors Affecting Power
D.  Exercises
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Introduction to Power 
by David M. Lane 

Prerequisites
• Chapter 11: Significance Testing
• Chapter 11: Type I and Type II Errors
• Chapter 11: Misconceptions

Learning Objectives
1. Define power
2. Identify situations in which it is important to estimate power
Suppose you work for a foundation whose mission is to support researchers in 
mathematics education and your role is to evaluate grant proposals and decide 
which ones to fund. You receive a proposal to evaluate a new method of teaching 
high-school algebra. The research plan is to compare the achievement of students 
taught by the new method with the achievement of students taught by the 
traditional method. The proposal contains good theoretical arguments why the new 
method should be superior and the proposed methodology is sound. In addition to 
these positive elements, there is one important question still to be answered: Does 
the experiment have a high probability of providing strong evidence that the new 
method is better than the standard method if, in fact, the new method is actually 
better? It is possible, for example, that the proposed sample size is so small that 
even a fairly large population difference would be difficult to detect. That is, if the 
sample size is small, then even a fairly large difference in sample means might not 
be significant. If the difference is not significant, then no strong conclusions can be 
drawn about the population means. It is not justified to conclude that the null 
hypothesis that the population means are equal is true just because the difference is 
not significant. Of course, it is not justified to conclude that this null hypothesis is 
false. Therefore, when an effect is not significant, the result is inconclusive. You 
may prefer that your foundation's money be used to fund a project that has a higher 
probability of being able to make a strong conclusion.

Power is defined as the probability of correctly rejecting a false null 
hypothesis. In terms of our example, it is the probability that given there is a 
difference between the population means of the new method and the standard 
method, the sample means will be significantly different. The probability of failing 
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to reject a false null hypothesis is often referred to as β (the Greek letter beta). 
Therefore power can be defined as:

power = 1 - β. 

It is very important to consider power while designing an experiment. You should 
avoid spending a lot of time and/or money on an experiment that has little chance 
of finding a significant effect.
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Example Calculations 
by David M. Lane 

Prerequisites
• Chapter 5: Binomial Distribution
• Chapter 12: Testing a Single Mean
• Chapter 13: Introduction to Power

Learning Objectives
1. Compute power using the binomial distribution
2. Compute power using the normal distribution
3. Use a power calculator to compute power for the t distribution
In the “Shaking and Stirring Martinis” case study, the question was whether Mr. 
Bond could tell the difference between martinis that were stirred and martinis that 
were shaken. For the sake of this example, assume he can tell the difference and is 
able to correctly state whether a martini had been shaken or stirred 0.75 of the 
time. Now, suppose an experiment is being conducted to investigate whether Mr. 
Bond can tell the difference. Specifically, is Mr. Bond correct more than 0.50 of the 
time? We know that he is (that's an assumption of the example). However, the 
experimenter does not know and asks Mr. Bond to judge 16 martinis. The 
experimenter will do a significance test based on the binomial distribution. 
Specifically, if a one tailed test is significant at the 0.05 level, then he or she will 
conclude that Mr. Bond can tell the difference. The probability value is computed 
assuming the null hypothesis is true (π = 0.50). Therefore, the experimenter will 
determine how many times Mr. Bond is correct, and compute the probability of 
being correct that many or more times given that the null hypothesis is true. The 
question is: what is the probability the experimenter will correctly reject the null 
hypothesis that π = 0.50? In other words, what is the power of this experiment?

The binomial distribution for N = 16 and π = 0.50 is shown in Figure 1. The 
probability of being correct on 11 or more trials is 0.105 and the probability of 
being correct on 12 or more trials is 0.038. Therefore, the probability of being 
correct on 12 or more trials is less than 0.05. This means that the null hypothesis 
will be rejected if Mr. Bond is correct on 12 or more trials and will not be rejected 
otherwise.
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Figure 1. The binomial distribution for N = 16 and π = 0.50.

We know that Mr. Bond is correct 0.75 of the time. (Obviously the experimenter 
does not know this or there would be no need for an experiment.) The binomial 
distribution with N = 16 and π = 0.75 is shown in Figure 2. 

Figure 2. The binomial distribution for N = 16 and π = 0.75.
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The probability of being correct on 12 or more trials is 0.63. Therefore, the power 
of the experiment is 0.63.

To sum up, the probability of being correct on 12 or more trials given that 
the null hypothesis is true is less than 0.05. Therefore, if Mr. Bond is correct on 12 
or more trials, the null hypothesis will be rejected. Given Mr. Bond's true ability to 
be correct on 0.75 of the trials, the probability he will be correct on 12 or more 
trials is 0.63. Therefore power is 0.63.

In the section on testing a single mean for significance in Chapter 12, the 
first example was based on the assumption that the experimenter knew the 
population variance. Although this is rarely true in practice, the example is very 
useful for pedagogical purposes. For the same reason, the following example 
assumes the experimenter knows the population variance. Power calculators are 
available for situations in which the experimenter does not know the population 
variance.

Suppose a math achievement test were known to have a mean of 75 and a 
standard deviation of 10. A researcher is interested in whether a new method of 
teaching results in a higher mean. Assume that although the experimenter does not 
know it, the population mean for the new method is 80. The researcher plans to 
sample 25 subjects and do a one-tailed test of whether the sample mean is 
significantly higher than 75. What is the probability that the researcher will 
correctly reject the false null hypothesis that the population mean for the new 
method is 75 or lower? The following shows how this probability is computed.

The researcher assumes that the population standard deviation with the new 
method is the same as with the old method (10) and that the distribution is normal. 
Since the population standard deviation is assumed to be known, the researcher can 
use the normal distribution rather than the t distribution to compute the p value. 
Recall that the standard error of the mean (σM) is

 

which is equal to 10/5 = 2 in this example. As can be seen in Figure 3, if the null 
hypothesis that the population mean equals 75 is true, then the probability of a 
sample mean being greater than or equal to 78.29 is 0.05. Therefore, the 
experimenter will reject the null hypothesis if the sample mean, M, is 78.29 or 
larger.

Example Calculations 

 

�� =
�
��
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Figure 3. The sampling distribution of the mean if the null hypothesis is true. 

The question, then, is what is the probability the experimenter gets a sample mean 
greater than 78.29 given that the population mean is 80? Figure 4 shows that this 
probability is 0.80.

Figure 4. The sampling distribution of the mean if the population mean is 80. 
The test is significant if the sample mean is 78.29 or higher.

Therefore, the probability that the experimenter will reject the null hypothesis that 
the population mean for the new method is 75 or lower is 0.80. In other words, 
power = 0.80.

Calculation of power is more complex for t tests and for Analysis of 
Variance. There are many programs that compute power. 
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Factors Affecting Power 
by David M. Lane 

Prerequisites
• Chapter 11: Significance Testing
• Chapter 11: Type I and Type II Errors
• Chapter 11: One- and Two-Tailed Tests
• Chapter 13: Introduction to Power
• Chapter 13: Example Calculations

Learning Objectives
1. State five factors affecting power
2. State what the effect of each of the factors is
Several factors affect the power of a statistical test. Some of the factors are under 
the control of the experimenter, whereas others are not. The following example 
will be used to illustrate the various factors.

Suppose a math achievement test were known to be normally distributed 
with a mean of 75 and a standard deviation of σ. A researcher is interested in 
whether a new method of teaching results in a higher mean. Assume that although 
the experimenter does not know it, the population mean μ  for the new method is 
larger than 75. The researcher plans to sample N subjects and do a one-tailed test 
of whether the sample mean is significantly higher than 75. In this section, we 
consider factors that affect the probability that the researcher will correctly reject 
the false null hypothesis that the population mean is 75. In other words, factors that 
affect power.

Sample Size 
Figure 1 shows that the larger the sample size, the higher the power. Since sample 
size is typically under an experimenter's control, increasing sample size is one way 
to increase power. However, it is sometimes difficult and/or expensive to use a 
large sample size.
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Figure 1. The relationship between sample size and power for H0: μ = 75, 
real μ = 80, one-tailed α = 0.05, for σ's of 10 and 15.

Standard Deviation 
Figure 1 also shows that power is higher when the standard deviation is small than 
when it is large. For all values of N, power is higher for the standard deviation of 
10 than for the standard deviation of 15 (except, of course, when N = 0). 
Experimenters can sometimes control the standard deviation by sampling from a 
homogeneous population of subjects, by reducing random measurement error, and/
or by making sure the experimental procedures are applied very consistently.

Difference between Hypothesized and True Mean 
Naturally, the larger the effect size, the more likely it is that an experiment would 
find a significant effect. Figure 2 shows the effect of increasing the difference 
between the mean specified by the null hypothesis (75) and the population mean μ 
for standard deviations of 10 and 15.
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Figure 1 also shows that power is higher when the standard deviation is small than
when it is large. For all values of N, power is higher for the standard deviation of 10
than for the standard deviation of 15 (except, of course, when N = 0). Experimenters
can sometimes control the standard deviation by sampling from a homogeneous
population of subjects, by reducing random measurement error, and/or by making sure
the experimental procedures are applied very consistently.
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Naturally, the larger the effect size, the more likely it is that an experiment would find a
significant effect. Figure 2 shows the effect of increasing the difference between the
mean specified by the null hypothesis (75) and the population mean μ for standard
deviations of 10 and 15.

Figure 2. The relationship between power and μ with
H0: μ = 75, one-tailed α = 0.05, for σ's of 10 and 15.
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Figure 2. The relationship between μ and power for H0: μ = 75, one-tailed α = 
0.05, for σ's of 10 and 15.

Significance Level 
There is a trade-off between the significance level and power: the more stringent 
(lower) the significance level, the lower the power. Figure 3 shows that power is 
lower for the 0.01 level than it is for the 0.05 level. Naturally, the stronger the 
evidence needed to reject the null hypothesis, the lower the chance that the null 
hypothesis will be rejected.
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There is a tradeoff between the significance level and power: the more stringent (lower)
the significance level, the lower the power. Figure 3 shows that power is lower for the
0.01 level than it is for the 0.05 level. Naturally, the stronger the evidence needed to
reject the null hypothesis, the lower the chance that the null hypothesis will be
rejected.

Figure 3. The relationship between power and significance
level with one-tailed tests: μ = 75, real μ = 80, and σ = 10.
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Figure 3. The relationship between significance level and power with one-tailed 
tests: μ = 75, real μ = 80, and σ = 10.

One- versus Two-Tailed Tests 
Power is higher with a one-tailed test than with a two-tailed test as long as the 
hypothesized direction is correct. A one-tailed test at the 0.05 level has the same 
power as a two-tailed test at the 0.10 level. A one-tailed test, in effect, raises the 
significance level.
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There is a tradeoff between the significance level and power: the more stringent (lower)
the significance level, the lower the power. Figure 3 shows that power is lower for the
0.01 level than it is for the 0.05 level. Naturally, the stronger the evidence needed to
reject the null hypothesis, the lower the chance that the null hypothesis will be
rejected.

Figure 3. The relationship between power and significance
level with one-tailed tests: μ = 75, real μ = 80, and σ = 10.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 13:

A research design to compare three drugs for the treatment of Alzheimer's disease 
is described here. For the first two years of the study, researchers will follow the 
subjects with scans and memory tests.
 
What do you think?
The data could be analyzed as a between-subjects design or as a within-subjects 
design. What type of analysis would be done for each type of design and how 
would the choice of designs affect power?

For a between-subjects design, the subjects in the different 
conditions would be compared after two years. For a within-
subjects design, the change in subjects' scores in the different 
conditions would be compared. The latter would be more 
powerful. 
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Exercises 

Prerequisites

1. Define power in your own words.

2. List 3 measures one can take to increase the power of an experiment. Explain 
why your measures result in greater power.

3. Population 1 mean = 36 
Population 2 mean = 45 
Both population variances are 10.
What is the probability that a t test will find a significant difference between 
means at the 0.05 level? Give results for both one- and two-tailed tests. Hint: the 
power of a one-tailed test at 0.05 level is the power of a two-tailed test at 0.10.

4. Rank order the following in terms of power.

5. Alan, while snooping around his grandmother's basement stumbled upon a shiny 
object protruding from under a stack of boxes . When he reached for the object a 
genie miraculously materialized and stated: “You have found my magic coin. If 
you flip this coin an infinite number of times you will notice that heads will show 
60% of the time.” Soon after the genie's declaration he vanished, never to be seen 
again. Alan, excited about his new magical discovery, approached his friend Ken 
and told him about what he had found. Ken was skeptical of his friend's story, 
however, he told Alan to flip the coin 100 times and to record how many flips 
resulted with heads.

  Population 1 
Mean

n Population 2 
Mean

Standard 
Deviation

a 29 20 43 12

b 34 15 40 6

c 105 24 50 27

d 170 2 120 10
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(a) What is the probability that Alan will be able convince Ken that his coin has 
special powers by finding a p value below 0.05 (one tailed).
Use the Binomial Calculator (and some trial and error)
(b) If Ken told Alan to flip the coin only 20 times, what is the probability that 
Alan will not be able to convince Ken (by failing to reject the null hypothesis at 
the 0.05 level)?
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14. Regression 
A. Introduction to Simple Linear Regression
B. Partitioning Sums of Squares
C. Standard Error of the Estimate
D. Inferential Statistics for b and r
E. Influential Observations
F. Regression Toward the Mean
G. Introduction to Multiple Regression
H.  Exercises
This chapter is about prediction. Statisticians are often called upon to develop 
methods to predict one variable from other variables. For example, one might want 
to predict college grade point average from high school grade point average. Or, 
one might want to predict income from the number of years of education.
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Introduction to Linear Regression 
by David M. Lane

Prerequisites
• Chapter 3: Measures of Variability
• Chapter 4: Describing Bivariate Data 

Learning Objectives
1. Define linear regression
2. Identify errors of prediction in a scatter plot with a regression line
In simple linear regression, we predict scores on one variable from the scores on a 
second variable. The variable we are predicting is called the criterion variable and 
is referred to as Y. The variable we are basing our predictions on is called the 
predictor variable and is referred to as X. When there is only one predictor 
variable, the prediction method is called simple regression. In simple linear 
regression, the topic of this section, the predictions of Y when plotted as a function 
of X form a straight line.

The example data in Table 1 are plotted in Figure 1. You can see that there is 
a positive relationship between X and Y. If you were going to predict Y from X, the 
higher the value of X, the higher your prediction of Y.

Table 1. Example data.

X Y

1 1

2 2

3 1.3

4 3.75

5 2.25
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Figure 1. A scatter plot of the example data.

Linear regression consists of finding the best-fitting straight line through the points. 
The best-fitting line is called a regression line. The black diagonal line in Figure 2 
is the regression line and consists of the predicted score on Y for each possible 
value of X. The vertical lines from the points to the regression line represent the 
errors of prediction. As you can see, the red point is very near the regression line; 
its error of prediction is small. By contrast, the yellow point is much higher than 
the regression line and therefore its error of prediction is large.
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Figure 2. A scatter plot of the example data. The black line consists of the 
predictions, the points are the actual data, and the vertical lines 
between the points and the black line represent errors of prediction.

The error of prediction for a point is the value of the point minus the predicted 
value (the value on the line). Table 2 shows the predicted values (Y') and the errors 
of prediction (Y-Y'). For example, the first point has a Y of 1.00 and a predicted Y 
of 1.21. Therefore, its error of prediction is -0.21.

Table 2. Example data.

You may have noticed that we did not specify what is meant by “best-fitting line.” 
By far the most commonly used criterion for the best-fitting line is the line that 
minimizes the sum of the squared errors of prediction. That is the criterion that was 
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X Y Y' Y-Y' (Y-Y')2

1 1 1.21 -0.21 0.044

2 2 1.635 0.365 0.133

3 1.3 2.06 -0.76 0.578

4 3.75 2.485 1.265 1.6

5 2.25 2.91 -0.66 0.436
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used to find the line in Figure 2. The last column in Table 2 shows the squared 
errors of prediction. The sum of the squared errors of prediction shown in Table 2 
is lower than it would be for any other regression line.

The formula for a regression line is

Y' = bX + A 

where Y' is the predicted score, b is the slope of the line, and A is the Y intercept. 
The equation for the line in Figure 2 is

Y' = 0.425X + 0.785 

For X = 1,

Y' = (0.425)(1) + 0.785 = 1.21. 

For X = 2,

Y' = (0.425)(2) + 0.785 = 1.64. 

Computing the Regression Line 
In the age of computers, the regression line is typically computed with statistical 
software. However, the calculations are relatively easy are given here for anyone 
who is interested. The calculations are based on the statistics shown in Table 3. MX 
is the mean of X, MY is the mean of Y, sX is the standard deviation of X, sY is the 
standard deviation of Y, and r is the correlation between X and Y.

Table 3. Statistics for computing the regression line

The slope (b) can be calculated as follows:

 

and the intercept (A) can be calculated as

MX MY sX sY r
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A = MY - bMX. 

For these data,

 

A = 2.06 - (0.425)(3) = 0.785 

Note that the calculations have all been shown in terms of sample statistics rather 
than population parameters. The formulas are the same; simply use the parameter 
values for means, standard deviations, and the correlation.

Standardized Variables 
The regression equation is simpler if variables are standardized so that their means 
are equal to 0 and standard deviations are equal to 1, for then b = r and A = 0. This 
makes the regression line:

ZY' = (r)(ZX) 

where ZY' is the predicted standard score for Y, r is the correlation, and ZX is the 
standardized score for X. Note that the slope of the regression equation for 
standardized variables is r.

Figure 3 shows a scatterplot with the regression line predicting the 
standardized Verbal SAT from the standardized Math SAT.

A Real Example 
The case study, “SAT and College GPA” contains high school and university 
grades for 105 computer science majors at a local state school. We now consider 
how we could predict a student's university GPA if we knew his or her high school 
GPA.

Figure 3 shows a scatter plot of University GPA as a function of High School 
GPA. You can see from the figure that there is a strong positive relationship. The 
correlation is 0.78. The regression equation is

Univ GPA' = (0.675)(High School GPA) + 1.097 
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Therefore, a student with a high school GPA of 3 would be predicted to have a 
university GPA of

University GPA' = (0.675)(3) + 1.097 = 3.12. 

Figure 3. University GPA as a function of High School GPA.

Assumptions 
It may surprise you, but the calculations shown in this section are assumption free. 
Of course, if the relationship between X and Y is not linear, a different shaped 
function could fit the data better. Inferential statistics in regression are based on 
several assumptions, and these assumptions are presented in a later section of this 
chapter.
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Partitioning the Sums of  Squares 
by David M. Lane 

Prerequisites
• Chapter 14: Introduction to Linear Regression

Learning Objectives
1. Compute the sum of squares Y
2. Convert raw scores to deviation scores
3. Compute predicted scores from a regression equation
4. Partition sum of squares Y into sum of squares predicted and sum of squares 

error
5. Define r2 in terms of sum of squares explained and sum of squares Y
One useful aspect of regression is that it can divide the variation in Y into two 
parts: the variation of the predicted scores and the variation in the errors of 
prediction. The variation of Y is called the sum of squares Y and is defined as the 
sum of the squared deviations of Y from the mean of Y. In the population, the 
formula is

 

where SSY is the sum of squares Y, Y is an individual value of Y, and my is the 
mean of Y. A simple example is given in Table 1. The mean of Y is 2.06 and SSY is 
the sum of the values in the third column and is equal to 4.597.

Table 1. Example of SSY.
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Y Y-my (Y-my)2

1 -1.06 1.1236

2 -0.06 0.0036

1.3 -0.76 0.5776

3.75 1.69 2.8561

2.25 0.19 0.0361
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When computed in a sample, you should use the sample mean, M, in place of the 
population mean:

 

It is sometimes convenient to use formulas that use deviation scores rather than 
raw scores. Deviation scores are simply deviations from the mean. By convention, 
small letters rather than capitals are used for deviation scores. Therefore, the score, 
y indicates the difference between Y and the mean of Y. Table 2 shows the use of 
this notation. The numbers are the same as in Table 1.

Table 2. Example of SSY using Deviation Scores.

The data in Table 3 are reproduced from the introductory section. The column X 
has the values of the predictor variable and the column Y has the criterion 
variable. The third column, y, contains the the differences between the column Y 
and the mean of Y. 
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Table 3. Example data. The last row contains column sums.

The fourth column, y2, is simply the square of the y column. The column Y' 
contains the predicted values of Y. In the introductory section, it was shown that 
the equation for the regression line for these data is

Y' = 0.425X + 0.785. 

The values of Y' were computed according to this equation. The column y' contains 
deviations of Y' from the mean of Y' and y'2 is the square of this column. The next-
to-last column, Y-Y', contains the actual scores (Y) minus the predicted scores (Y'). 
The last column contains the squares of these errors of prediction.

We are now in a position to see how the SSY is partitioned. Recall that SSY 
is the sum of the squared deviations from the mean. It is therefore the sum of the y2 
column and is equal to 4.597. SSY can be partitioned into two parts: the sum of 
squares predicted (SSY') and the sum of squares error (SSE). The sum of squares 
predicted is the sum of the squared deviations of the predicted scores from the 
mean predicted score. In other words, it is the sum of the y'2 column and is equal to 
1.806. The sum of squares error is the sum of the squared errors of prediction. It is 
therefore the sum of the (Y-Y')2 column and is equal to 2.791. This can be summed 
up as:

 SSY = SSY' + SSE 
4.597 = 1.806 + 2.791 

X Y y y2 Y' y' y'2 Y-Y' (Y-Y')2

1 1 -1.06 1.1236 1.21 -0.85 0.7225 -0.21 0.044

2 2 -0.06 0.0036 1.635 -0.425 0.1806 0.365 0.133

3 1.3 -0.76 0.5776 2.06 0 0 -0.76 0.578

4 3.75 1.69 2.8561 2.485 0.425 0.1806 1.265 1.6

5 2.25 0.19 0.0361 2.91 0.85 0.7225 -0.66 0.436

15 10.3 0 4.597 10.3 0 1.806 0 2.791
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There are several other notable features about Table 3. First, notice that the sum of 
y and the sum of y' are both zero. This will always be the case because these 
variables were created by subtracting their respective means from each value. Also, 
notice that the mean of Y-Y' is 0. This indicates that although some Y values are 
higher than their respective predicted Y values and some are lower, the average 
difference is zero.

The SSY is the total variation, the SSY' is the variation explained, and the 
SSE is the variation unexplained. Therefore, the proportion of variation explained 
can be computed as:

 

Similarly, the proportion not explained is:

 

There is an important relationship between the proportion of variation explained 
and Pearson's correlation: r2 is the proportion of variation explained. Therefore, if r 
= 1, then, naturally, the proportion of variation explained is 1; if r = 0, then the 
proportion explained is 0. One last example: for r = 0.4, the proportion of variation 
explained is 0.16.

Since the variance is computed by dividing the variation by N (for a 
population) or N-1 (for a sample), the relationships spelled out above in terms of 
variation also hold for variance. For example,

 

where the first term is the variance total, the second term is the variance of Y', and 
the last term is the variance of the errors of prediction (Y-Y'). Similarly, r2 is the 
proportion of variance explained as well as the proportion of variation explained.

Summary Table 
It is often convenient to summarize the partitioning of the data in a table such as 
Table 4. The degrees of freedom column (df) shows the degrees of freedom for 
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each source of variation. The degrees of freedom for the sum of squares explained 
is equal to the number of predictor variables. This will always be 1 in simple 
regression. The error degrees of freedom is equal to the total number of 
observations minus 2. In this example, it is 5 - 2 = 3. The total degrees of freedom 
is the total number of observations minus 1. 
Table 4. Summary Table for Example Data

Source Sum of Squares df Mean Square

Explained 1.806 1 1.806

Error 2.791 3 0.93

Total 4.597 4  
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Standard Error of  the Estimate 
by David M. Lane 

Prerequisites
• Chapter 3: Measures of Variability
• Chapter 14: Introduction to Linear Regression
• Chapter 14: Partitioning Sums of Squares 

Learning Objectives
1. Make judgments about the size of the standard error of the estimate from a 

scatter plot
2. Compute the standard error of the estimate based on errors of prediction
3. Compute the standard error using Pearson's correlation
4. Estimate the standard error of the estimate based on a sample
Figure 1 shows two regression examples. You can see that in Graph A, the points 
are closer to the line than they are in Graph B. Therefore, the predictions in Graph 
A are more accurate than in Graph B.

Figure 1. Regressions differing in accuracy of prediction. 

The standard error of the estimate is a measure of the accuracy of predictions. 
Recall that the regression line is the line that minimizes the sum of squared 
deviations of prediction (also called the sum of squares error). The standard error 
of the estimate is closely related to this quantity and is defined below:
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where σest is the standard error of the estimate, Y is an actual score, Y' is a 
predicted score, and N is the number of pairs of scores. The numerator is the sum 
of squared differences between the actual scores and the predicted scores. 
Note the similarity of the formula for σest to the formula for σ:

In fact, σest is the standard deviation of the errors of prediction (each Y - Y’ is an 
error of prediction). 

Assume the data in Table 1 are the data from a population of five X, Y pairs.

Table 1. Example data.

The last column shows that the sum of the squared errors of prediction is 2.791. 
Therefore, the standard error of the estimate is

 

There is a version of the formula for the standard error in terms of Pearson's 
correlation:

 X Y Y' Y-Y' (Y-Y')2

 1 1 1.21 -0.21 0.044

 2 2 1.635 0.365 0.133

 3 1.3 2.06 -0.76 0.578

 4 3.75 2.485 1.265 1.6

 5 2.25 2.91 -0.66 0.436

Sum 15 10.3 10.3 0 2.791
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where ρ is the population value of Pearson's correlation and SSY is

 

For the data in Table 1, my = 10.30, SSY = 4.597 and r = 0.6268. Therefore,

 

which is the same value computed previously.
Similar formulas are used when the standard error of the estimate is 

computed from a sample rather than a population. The only difference is that the 
denominator is N-2 rather than N. The reason N-2 is used rather than N-1 is that 
two parameters (the slope and the intercept) were estimated in order to estimate the 
sum of squares. Formulas for a sample comparable to the ones for a population are 
shown below:
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Inferential Statistics for b and r 
by David M. Lane 

Prerequisites
• Chapter 9: Sampling Distribution of r
• Chapter 9: Confidence Interval for r

Learning Objectives
1. State the assumptions that inferential statistics in regression are based upon
2. Identify heteroscedasticity in a scatter plot
3. Compute the standard error of a slope
4. Test a slope for significance
5. Construct a confidence interval on a slope
6. Test a correlation for significance
7. Construct a confidence interval on a correlation
This section shows how to conduct significance tests and compute confidence 
intervals for the regression slope and Pearson's correlation. As you will see, if the 
regression slope is significantly different from zero, then the correlation coefficient 
is also significantly different from zero.

Assumptions 
Although no assumptions were needed to determine the best-fitting straight line, 
assumptions are made in the calculation of inferential statistics. Naturally, these 
assumptions refer to the population, not the sample.
1. Linearity: The relationship between the two variables is linear.
2. Homoscedasticity: The variance around the regression line is the same for all 

values of X. A clear violation of this assumption is shown in Figure 1. Notice 
that the predictions for students with high high-school GPAs are very good, 
whereas the predictions for students with low high-school GPAs are not very 
good. In other words, the points for students with high high-school GPAs are 
close to the regression line, whereas the points for low high-school GPA 
students are not.
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Figure 1. University GPA as a function of High School GPA.  

3. The errors of prediction are distributed normally. This means that the 
distributions of deviations from the regression line are normally distributed. It does 
not mean that X or Y is normally distributed.

Significance Test for the Slope (b) 
Recall the general formula for a t test:

 

As applied here, the statistic is the sample value of the slope (b) and the 
hypothesized value is 0. The degrees of freedom for this test are:

df = N-2 

where N is the number of pairs of scores.
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The estimated standard error of b is computed using the following formula:

 

where sb is the estimated standard error of b, sest is the standard error of the 
estimate, and SSX is the sum of squared deviations of X from the mean of X. SSX 
is calculated as

 

where Mx is the mean of X. As shown previously, the standard error of the estimate 
can be calculated as

 

These formulas are illustrated with the data shown in Table 1. These data are 
reproduced from the introductory section. The column X has the values of the 
predictor variable and the column Y has the values of the criterion variable. The 
third column, x, contains the differences between the values of column X and the 
mean of X. The fourth column, x2, is the square of the x column. The fifth column, 
y, contains the differences between the values of column Y and the mean of Y. The 
last column, y2, is simply the square of the y column. 
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Table 1. Example data.

The computation of the standard error of the estimate (sest) for these data is shown 
in the section on the standard error of the estimate. It is equal to 0.964.

sest = 0.964 

SSX is the sum of squared deviations from the mean of X. It is, therefore, equal to 
the sum of the x2 column and is equal to 10.

SSX = 10.00 

We now have all the information to compute the standard error of b:

 

As shown previously, the slope (b) is 0.425. Therefore,

 

df = N-2 = 5-2 = 3. 

The p value for a two-tailed t test is 0.26. Therefore, the slope is not significantly 
different from 0.

X Y x x2 y y2

1 1 -2 4 -1.06 1.1236

2 2 -1 1 -0.06 0.0036

3 1.3 0 0 -0.76 0.5776

4 3.75 1 1 1.69 2.8561

5 2.25 2 4 0.19 0.0361

Sum 15 10.3 0 10 0 4.597
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Confidence Interval for the Slope 
The method for computing a confidence interval for the population slope is very 
similar to methods for computing other confidence intervals. For the 95% 
confidence interval, the formula is:

 lower limit: b - (t.95)(sb) 
upper limit: b + (t.95)(sb) 

where t.95 is the value of t to use for the 95% confidence interval.
The values of t to be used in a confidence interval can be looked up in a table 

of the t distribution. A small version of such a table is shown in Table 2. The first 
column, df, stands for degrees of freedom.

Table 2. Abbreviated t table.

You can also use the “inverse t distribution” calculator (external link; requires 
Java) to find the t values to use in a confidence interval.

Applying these formulas to the example data,

 lower limit: 0.425 - (3.182)(0.305) = -0.55 
upper limit: 0.425 + (3.182)(0.305) = 1.40 

Significance Test for the Correlation 
The formula for a significance test of Pearson's correlation is shown below:

df 0.95 0.99

2 4.303 9.925

3 3.182 5.841

4 2.776 4.604

5 2.571 4.032

8 2.306 3.355

10 2.228 3.169

20 2.086 2.845

50 2.009 2.678

100 1.984 2.626
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where N is the number of pairs of scores. For the example data,

 

Notice that this is the same t value obtained in the t test of b. As in that test, the 
degrees of freedom is N-2 = 5-2 = 3.
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Influential Observations 
by David M. Lane 

Prerequisites
• Chapter 14: Introduction to Linear Regression

Learning Objectives
1. Define “influence”
2. Describe what makes a point influential
3. Define “leverage”
4. Define “distance”
It is possible for a single observation to have a great influence on the results of a 
regression analysis. It is therefore important to be alert to the possibility of 
influential observations and to take them into consideration when interpreting the 
results.

Influence 
The influence of an observation can be thought of in terms of how much the 
predicted scores for other observations would differ if the observation in question 
were not included. Cook's D is a good measure of the influence of an observation 
and is proportional to the sum of the squared differences between predictions made 
with all observations in the analysis and predictions made leaving out the 
observation in question. If the predictions are the same with or without the 
observation in question, then the observation has no influence on the regression 
model. If the predictions differ greatly when the observation is not included in the 
analysis, then the observation is influential.

A common rule of thumb is that an observation with a value of Cook's D 
over 1.0 has too much influence. As with all rules of thumb, this rule should be 
applied judiciously and not thoughtlessly.

An observation's influence is a function of two factors: (1) how much the 
observation's value on the predictor variable differs from the mean of the predictor 
variable and (2) the difference between the predicted score for the observation and 
its actual score. The former factor is called the observation's leverage. The latter 
factor is called the observation's distance.
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Calculation of Cook's D (Optional) 
The first step in calculating the value of Cook's D for an observation is to predict 
all the scores in the data once using a regression equation based on all the 
observations and once using all the observations except the observation in 
question. The second step is to compute the sum of the squared differences 
between these two sets of predictions. The final step is to divide this result by 2 
times the MSE (see the section on partitioning the variance).

Leverage 
The leverage of an observation is based on how much the observation's value on 
the predictor variable differs from the mean of the predictor variable. The greater 
an observation's leverage, the more potential it has to be an influential observation. 
For example, an observation with the mean on the predictor variable has no 
influence on the slope of the regression line regardless of its value on the criterion 
variable. On the other hand, an observation that is extreme on the predictor 
variable has, depending on its distance, the potential to affect the slope greatly.

Calculation of Leverage (h) 
The first step is to standardize the predictor variable so that it has a mean of 0 and a 
standard deviation of 1. Then, the leverage (h) is computed by squaring the 
observation's value on the standardized predictor variable, adding 1, and dividing 
by the number of observations.

Distance 
The distance of an observation is based on the error of prediction for the 
observation: The greater the error of prediction, the greater the distance. The most 
commonly used measure of distance is the studentized residual. The studentized 
residual for an observation is closely related to the error of prediction for that 
observation divided by the standard deviation of the errors of prediction. However, 
the predicted score is derived from a regression equation in which the observation 
in question is not counted. The details of the computation of a studentized residual 
are a bit complex and are beyond the scope of this work.

An observation with a large distance will not have that much influence if its 
leverage is low. It is the combination of an observation's leverage and distance that 
determines its influence.
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Example 
Table 1 shows the leverage, studentized residual, and influence for each of the five 
observations in a small dataset.

Table 1. Example Data.

Observation A has fairly high leverage, a relatively high residual, and 
moderately high influence.

Observation B has small leverage and a relatively small residual. It has very 
little influence.

Observation C has small leverage and a relatively high residual. The 
influence is relatively low.

Observation D has the lowest leverage and the second highest residual. 
Although its residual is much higher than Observation A, its influence 
is much less because of its low leverage.

Observation E has by far the largest leverage and the largest residual. This 
combination of high leverage and high residual makes this 
observation extremely influential.

Figure 1 shows the regression line for the whole dataset (blue) and the regression 
line if the observation in question is not included (red) for all observations. The 
observation in question is circled. Naturally, the regression line for the whole 
dataset is the same in all panels. The residual is calculated relative to the line for 
which the observation in question is not included in the analysis. This can be seen 
most clearly for Observation E which lies very close to the regression line 

ID X Y h R D

A 1 2 0.39 -1.02 0.4

B 2 3 0.27 -0.56 0.06

C 3 5 0.21 0.89 0.11

D 4 6 0.2 1.22 0.19

E 8 7 0.73 -1.68 8.86

h is the leverage, R is the studentized residual, and D is Cook's measure of influence.
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computed when it is included but very far from the regression line when it is 
excluded from the calculation of the line.

Figure 1. Illustration of leverage, residual, and influence. 
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The circled points are not included in the calculation of the red regression line. All 
points are included in the calculation of the blue regression line.
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Regression Toward the Mean 
by David M. Lane 

Prerequisites
• Chapter 14: Regression Introduction

Learning Objectives
1. Explain what regression towards the mean is
2. State the conditions under which regression toward the mean occurs
3. Identify situations in which neglect of regression toward the mean leads to 

incorrect conclusions
4. Explain how regression toward the mean relates to a regression equation.
Regression toward the mean involves outcomes that are at least partly due to 
chance. We begin with an example of a task that is entirely chance: Imagine an 
experiment in which a group of 25 people each predicted the outcomes of flips of a 
fair coin. For each subject in the experiment, a coin is flipped 12 times and the 
subject predicts the outcome of each flip. Figure 1 shows the results of a simulation 
of this “experiment.” Although most subjects were correct from 5 to 8 times out of 
12, one simulated subject was correct 10 times. Clearly, this subject was very lucky 
and probably would not do as well if he or she performed the task a second time. In 
fact, the best prediction of the number of times this subject would be correct on the 
retest is 6 since the probability of being correct on a given trial is 0.5 and there are 
12 trials.
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Figure 1. Histogram of results of a simulated experiment.

More technically, the best prediction for the subject's result on the retest is the 
mean of the binomial distribution with N = 12 and p = 0.50. This distribution is 
shown in Figure 2 and has a mean of 6.

Figure 2. Binomial Distribution for N = 12 and p = .50.

The point here is that no matter how many coin flips a subject predicted correctly, 
the best prediction of their score on a retest is 6.

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10 11

0

0.05

0.1

0.15

0.2

0.25

0 1 3 4 5 6 7 8 9 10 11 12

488



Now we consider a test we will call “Test A” that is partly chance and partly 
skill: Instead of predicting the outcomes of 12 coin flips, each subject predicts the 
outcomes of 6 coin flips and answers 6 true/false questions about world history. 
Assume that the mean score on the 6 history questions is 4. A subject's score on 
Test A has a large chance component but also depends on history knowledge. If a 
subject scored very high on this test (such as a score of 10/12), it is likely that they 
did well on both the history questions and the coin flips. For example, if they only 
got four of the history questions correct, they would have had to have gotten all six 
of the coin predictions correct, and this would have required exceptionally good 
luck. If given a second test (Test B) that also included coin predictions and history 
questions, their knowledge of history would be helpful and they would again be 
expected to score above the mean. However, since their high performance on the 
coin portion of Test A would not be predictive of their coin performance on Test B, 
they would not be expected to fare as well on Test B as on Test A. Therefore, the 
best prediction of their score on Test B would be somewhere between their score 
on Test A and the mean of Test B. This tendency of subjects with high values on a 
measure that includes chance and skill to score closer to the mean on a retest is 
called “regression toward the mean.”

The essence of the regression-toward-the-mean phenomenon is that people 
with high scores tend to be above average in skill and in luck, and that only the 
skill portion is relevant to future performance. Similarly, people with low scores 
tend to be below average in skill and luck and their bad luck is not relevant to 
future performance. This does not mean that all people who score high have above 
average luck. However, on average they do.

Almost every measure of behavior has a chance and a skill component to it. 
Take a student's grade on a final exam as an example. Certainly, the student's 
knowledge of the subject will be a major determinant of his or her grade. However, 
there are aspects of performance that are due to chance. The exam cannot cover 
everything in the course and therefore must represent a subset of the material. 
Maybe the student was lucky in that the one aspect of the course the student did 
not understand well was not well represented on the test. Or, maybe, the student 
was not sure which of two approaches to a problem would be better but, more or 
less by chance, chose the right one. Other chance elements come into play as well. 
Perhaps the student was awakened early in the morning by a random phone call, 
resulting in fatigue and lower performance. And, of course, guessing on multiple 
choice questions is another source of randomness in test scores.
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There will be regression toward the mean in a test-retest situation whenever 
there is less than a perfect (r = 1) relationship between the test and the retest. This 
follows from the formula for a regression line with standardized variables shown 
below.

ZY' = (r)(ZX) 

From this equation it is clear that if the absolute value of r is less than 1, then the 
predicted value of ZY will be closer to 0,  the mean for standardized scores, than is 
ZX. Also, note that if the correlation between X and Y is 0, as it would be for a task 
that is all luck, the predicted standard score for Y is its mean, 0, regardless of the 
score on X. 

Figure 3 shows a scatter plot with the regression line predicting the 
standardized Verbal SAT from the standardized Math SAT. Note that the slope of 
the line is equal to the correlation of 0.835 between these variables.

Figure 3. Prediction of Standardized Verbal SAT from Standardized Math 
SAT.
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The point represented by a blue diamond has a value of 1.6 on the standardized 
Math SAT. This means that this student scored 1.6 standard deviations above the 
mean on Math SAT. The predicted score is (r)(1.6) = (0.835)(1.6) = 1.34. The 
horizontal line on the graph shows the value of the predicted score. The key point 
is that although this student scored 1.6 standard deviations above the mean on 
Math SAT, he or she is only predicted to score 1.34 standard deviations above the 
mean on Verbal SAT. Thus, the prediction is that the Verbal SAT score will be 
closer to the mean of 0 than is the Math SAT score. Similarly, a student scoring far 
below the mean on Math SAT will be predicted to score higher on Verbal SAT.

Regression toward the mean occurs in any situation in which observations 
are selected on the basis of performance on a task that has a random component. If 
you choose people on the basis of their performance on such a task, you will be 
choosing people partly on the basis of their skill and partly on the basis of their 
luck on the task. Since their luck cannot be expected to be maintained from trial to 
trial, the best prediction of a person's performance on a second trial will be 
somewhere between their performance on the first trial and the mean performance 
on the first trial. The degree to which the score is expected to “regress toward the 
mean” in this manner depends on the relative contributions of chance and skill to 
the task: the greater the role of chance, the more the regression toward the mean.

Errors Resulting From Failure to Understand Regression Toward the 
Mean 
Failure to appreciate regression toward the mean is common and often leads to 
incorrect interpretations and conclusions. One of the best examples is provided by 
Nobel Laureate Daniel Kahneman in his autobiography (external link). Dr. 
Kahneman was attempting to teach flight instructors that praise is more effective 
than punishment. He was challenged by one of the instructors who relayed that in 
his experience praising a cadet for executing a clean maneuver is typically 
followed by a lesser performance, whereas screaming at a cadet for bad execution 
is typically followed by improved performance. This, of course, is exactly what 
would be expected based on regression toward the mean. A pilot's performance, 
although based on considerable skill, will vary randomly from maneuver to 
maneuver. When a pilot executes an extremely clean maneuver, it is likely that he 
or she had a bit of luck in their favor in addition to their considerable skill. After 
the praise but not because of it, the luck component will probably disappear and 
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the performance will be lower. Similarly, a poor performance is likely to be partly 
due to bad luck. After the criticism but not because of it, the next performance will 
likely be better. To drive this point home, Kahneman had each instructor perform a 
task in which a coin was tossed at a target twice. He demonstrated that the 
performance of those who had done the best the first time deteriorated, whereas the 
performance of those who had done the worst improved.

Regression toward the mean is frequently present in sports performance. A 
good example is provided by Schall and Smith (2000), who analyzed many aspects 
of baseball statistics including the batting averages of players in 1998. They chose 
the 10 players with the highest batting averages (BAs) in 1998 and checked to see 
how well they did in 1999. According to what would be expected based on 
regression toward the mean, these players should, on average, have lower batting 
averages in 1999 than they did in 1998. As can be seen in Table 1, 7/10 of the 
players had lower batting averages in 1999 than they did in 1998. Moreover, those 
who had higher averages in 1999 were only slightly higher, whereas those who 
were lower were much lower. The average decrease from 1998 to 1999 was 33 
points. Even so, most of these players had excellent batting averages in 1999 
indicating that skill was an important component of their 1998 averages.

Table 1. How the Ten Players with the Highest BAs in 1998 did in 1999.

Figure 4 shows the batting averages of the two years. The decline from 1998 to 
1999 is clear. Note that although the mean decreased from 1998, some players 
increased their batting averages. This illustrates that regression toward the mean 

1998 1999 Difference

363 
354 
339 
337 
336 
331 
328 
328 
327 
327

379 
298 
342 
281 
249 
298 
297 
303 
257 
332

16 
-56 
3 

-56 
-87 
-33 
-31 
-25 
-70 
5
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does not occur for every individual. Although the predicted scores for every 
individual will be lower, some of the predictions will be wrong.

Figure 4. Quantile plots of the batting averages. The line connects the means 
of the plots.

Regression toward the mean plays a role in the so-called “Sophomore Slump,” a 
good example of which is that a player who wins “rookie of the year” typically 
does less well in his second season. A related phenomenon is called the Sports 
Illustrated Cover Jinx.
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improvement program. All first graders in a school district were given a reading 
achievement test and the 50 lowest-scoring readers were enrolled in the program. 
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would be expected to improve in the retest, which would increase their scores with 
or without the treatment program.

For a real example, consider an experiment that sought to determine whether 
the drug propranolol would increase the SAT scores of students thought to have 
test anxiety (external link). Propranolol was given to 25 high-school students 
chosen because IQ tests and other academic performance indicated that they had 
not done as well as expected on the SAT. On a retest taken after receiving 
propranolol, students improved their SAT scores an average of 120 points. This 
was a significantly greater increase than the 38 points expected simply on the basis 
of having taken the test before. The problem with the study is that the method of 
selecting students likely resulted in a disproportionate number of students who had 
bad luck when they first took the SAT. Consequently, these students would likely 
have increased their scores on a retest with or without the propranolol. This is not 
to say that propranolol had no effect. However, since possible propranolol effects 
and regression effects were confounded, no firm conclusions should be drawn.

Randomly assigning students to either the propranolol group or a control 
group would have improved the experimental design. Since the regression effects 
would then not have been systematically different for the two groups, a significant 
difference would have provided good evidence for a propranolol effect.
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Introduction to Multiple Regression 
by David M. Lane 

Prerequisites
• Chapter 14: Simple Linear Regression
• Chapter 14: Partitioning Sums of Squares
• Chapter 14: Standard Error of the Estimate
• Chapter 14: Inferential Statistics for b and r

Learning Objectives
1. State the regression equation
2. Define “regression coefficient”
3. Define “beta weight”
4. Explain what R is and how it is related to r
5. Explain why a regression weight is called a “partial slope”
6. Explain why the sum of squares explained in a multiple regression model is 

usually less than the sum of the sums of squares in simple regression
7. Define R2 in terms of proportion explained
8. Test R2 for significance
9. Test the difference between a complete and reduced model for significance
10. State the assumptions of multiple regression and specify which aspects of the 

analysis require assumptions
In simple linear regression, a criterion variable is predicted from one predictor 
variable. In multiple regression, the criterion is predicted by two or more variables. 
For example, in the SAT case study, you might want to predict a student's 
university grade point average on the basis of their High-School GPA (HSGPA) 
and their total SAT score (verbal + math). The basic idea is to find a linear 
combination of HSGPA and SAT that best predicts University GPA (UGPA). That 
is, the problem is to find the values of b1 and b2 in the equation shown below that 
gives the best predictions of UGPA. As in the case of simple linear regression, we 
define the best predictions as the predictions that minimize the squared errors of 
prediction.

UGPA' = b1HSGPA + b2SAT + A 
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where UGPA' is the predicted value of University GPA and A is a constant. For 
these data, the best prediction equation is shown below:

UGPA' = 0.541 x HSGPA + 0.008 x SAT + 0.540 

In other words, to compute the prediction of a student's University GPA, you add 
up (a) their High-School GPA multiplied by 0.541, (b) their SAT multiplied by 
0.008, and (c) 0.540. Table 1 shows the data and predictions for the first five 
students in the dataset.

Table 1. Data and Predictions.

The values of b (b1 and b2) are sometimes called “regression coefficients” and 
sometimes called “regression weights.” These two terms are synonymous.

The multiple correlation (R) is equal to the correlation between the predicted 
scores and the actual scores. In this example, it is the correlation between UGPA' 
and UGPA, which turns out to be 0.79. That is, R = 0.79. Note that R will never be 
negative since if there are negative correlations between the predictor variables and 
the criterion, the regression weights will be negative so that the correlation 
between the predicted and actual scores will be positive.

Interpretation of Regression Coefficients 
A regression coefficient in multiple regression is the slope of the linear relationship 
between the criterion variable and the part of a predictor variable that is 
independent of all other predictor variables. In this example, the regression 
coefficient for HSGPA can be computed by first predicting HSGPA from SAT and 
saving the errors of prediction (the differences between HSGPA and HSGPA'). 
These errors of prediction are called “residuals” since they are what is left over in 
HSGPA after the predictions from SAT are subtracted, and they represent the part 

HSGPA SAT UGPA'

3.45 1232 3.38

2.78 1070 2.89

2.52 1086 2.76

3.67 1287 3.55

3.24 1130 3.19
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of HSGPA that is independent of SAT. These residuals are referred to as 
HSGPA.SAT, which means they are the residuals in HSGPA after having been 
predicted by SAT. The correlation between HSGPA.SAT and SAT is necessarily 0.

The final step in computing the regression coefficient is to find the slope of 
the relationship between these residuals and UGPA. This slope is the regression 
coefficient for HSGPA. The following equation is used to predict HSGPA from 
SAT:

HSGPA' = -1.314 + 0.0036 x SAT 

The residuals are then computed as:

HSGPA - HSGPA' 

The linear regression equation for the prediction of UGPA by the residuals is

UGPA' = 0.541 x HSGPA.SAT + 3.173 

Notice that the slope (0.541) is the same value given previously for b1 in the 
multiple regression equation.

This means that the regression coefficient for HSGPA is the slope of the 
relationship between the criterion variable and the part of HSPGA that is 
independent of (uncorrelated with) the other predictor variables. It represents the 
change in the criterion variable associated with a change of one in the predictor 
variable when all other predictor variables are held constant. Since the regression 
coefficient for HSGPA is 0.54, this means that, holding SAT constant, a change of 
one in HSGPA is associated with a change of 0.54 in UGPA. If two students had 
the same SAT and differed in HSGPA by 2, then you would predict they would 
differ in UGPA by (2)(0.54) = 1.08. Similarly, if they differed by 0.5, then you 
would predict they would differ by (0.50)(0.54) = 0.27.

The slope of the relationship between the part of a predictor variable 
independent of other predictor variables and the criterion is its partial slope. Thus 
the regression coefficient of 0.541 for HSGPA and the regression coefficient of 
0.008 for SAT are partial slopes. Each partial slope represents the relationship 
between the predictor variable and the criterion holding constant all of the other 
predictor variables.
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It is difficult to compare the coefficients for different variables directly 
because they are measured on different scales. A difference of 1 in HSGPA is a 
fairly large difference, whereas a difference of 1 on the SAT is negligible. 
Therefore, it can be advantageous to transform the variables so that they are on the 
same scale. The most straightforward approach is to standardize the variables so 
that they all have a standard deviation of 1. A regression weight for standardized 
variables is called a “beta weight” and is designated by the Greek letter β. For 
these data, the beta weights are 0.625 and 0.198. These values represent the change 
in the criterion (in standard deviations) associated with a change of one standard 
deviation on a predictor [holding constant the value(s) on the other predictor(s)]. 
Clearly, a change of one standard deviation on HSGPA is associated with a larger 
difference than a change of one standard deviation of SAT. In practical terms, this 
means that if you know a student's HSGPA, knowing the student's SAT does not 
aid the prediction of UGPA much. However, if you do not know the student's 
HSGPA, his or her SAT can aid in the prediction since the β weight in the simple 
regression predicting UGPA from SAT is 0.68. For comparison purposes, the β 
weight in the simple regression predicting UGPA from HSGPA is 0.78. As is 
typically the case, the partial slopes are smaller than the slopes in simple 
regression.

Partitioning the Sums of Squares 
Just as in the case of simple linear regression, the sum of squares for the criterion 
(UGPA in this example) can be partitioned into the sum of squares predicted and 
the sum of squares error. That is,

SSY = SSY' + SSE 

which for these data:

20.798 = 12.961 + 7.837 

The sum of squares predicted is also referred to as the “sum of squares explained.” 
Again, as in the case of simple regression,

Proportion Explained = SSY'/SSY 
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In simple regression, the proportion of variance explained is equal to r2; in multiple 
regression, the proportion of variance explained is equal to R2.

In multiple regression, it is often informative to partition the sums of squares 
explained among the predictor variables. For example, the sum of squares 
explained for these data is 12.96. How is this value divided between HSGPA and 
SAT? One approach that, as will be seen, does not work is to predict UGPA in 
separate simple regressions for HSGPA and SAT. As can be seen in Table 2, the 
sum of squares in these separate simple regressions is 12.64 for HSGPA and 9.75 
for SAT. If we add these two sums of squares we get 22.39, a value much larger 
than the sum of squares explained of 12.96 in the multiple regression analysis. The 
explanation is that HSGPA and SAT are highly correlated (r = .78) and therefore 
much of the variance in UGPA is confounded between HSGPA or SAT. That is, it 
could be explained by either HSGPA or SAT and is counted twice if the sums of 
squares for HSGPA and SAT are simply added.

Table 2. Sums of Squares for Various Predictors

 
Table 3 shows the partitioning of the sums of squares into the sum of squares 
uniquely explained by each predictor variable, the sum of squares confounded 
between the two predictor variables, and the sum of squares error. It is clear from 
this table that most of the sum of squares explained is confounded between HSGPA 
and SAT. Note that the sum of squares uniquely explained by a predictor variable is 
analogous to the partial slope of the variable in that both involve the relationship 
between the variable and the criterion with the other variable(s) controlled.

Predictors Sum of Squares

HSGPA 12.64

SAT 9.75

HSGPA and SAT 12.96
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Table 3. Partitioning the Sum of Squares 

The sum of squares uniquely attributable to a variable is computed by comparing 
two regression models: the complete model and a reduced model. The complete 
model is the multiple regression with all the predictor variables included (HSGPA 
and SAT in this example). A reduced model is a model that leaves out one of the 
predictor variables. The sum of squares uniquely attributable to a variable is the 
sum of squares for the complete model minus the sum of squares for the reduced 
model in which the variable of interest is omitted. As shown in Table 2, the sum of 
squares for the complete model (HSGPA and SAT) is 12.96. The sum of squares 
for the reduced model in which HSGPA is omitted is simply the sum of squares 
explained using SAT as the predictor variable and is 9.75. Therefore, the sum of 
squares uniquely attributable to HSGPA is 12.96 - 9.75 = 3.21. Similarly, the sum 
of squares uniquely attributable to SAT is 12.96 - 12.64 = 0.32. The confounded 
sum of squares in this example is computed by subtracting the sum of squares 
uniquely attributable to the predictor variables from the sum of squares for the 
complete model: 12.96 - 3.21 - 0.32 = 9.43. The computation of the confounded 
sums of squares in analyses with more than two predictors is more complex and 
beyond the scope of this text.

Since the variance is simply the sum of squares divided by the degrees of 
freedom, it is possible to refer to the proportion of variance explained in the same 
way as the proportion of the sum of squares explained. It is slightly more common 
to refer to the proportion of variance explained than the proportion of the sum of 
squares explained and, therefore, that terminology will be adopted frequently here.

When variables are highly correlated, the variance explained uniquely by the 
individual variables can be small even though the variance explained by the 
variables taken together is large. For example, although the proportions of variance 

Source Sum of Squares Proportion

HSGPA (unique) 3.21 0.15

SAT (unique) 0.32 0.02

HSGPA and SAT 
(Confounded)

9.43 0.45

Error 7.84 0.38

Total 20.8 1
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explained uniquely by HSGPA and SAT are only 0.15 and 0.02 respectively, 
together these two variables explain 0.62 of the variance. Therefore, you could 
easily underestimate the importance of variables if only the variance explained 
uniquely by each variable is considered. Consequently, it is often useful to consider 
a set of related variables. For example, assume you were interested in predicting 
job performance from a large number of variables some of which reflect cognitive 
ability. It is likely that these measures of cognitive ability would be highly 
correlated among themselves and therefore no one of them would explain much of 
the variance independent of the other variables. However, you could avoid this 
problem by determining the proportion of variance explained by all of the 
cognitive ability variables considered together as a set. The variance explained by 
the set would include all the variance explained uniquely by the variables in the set 
as well as all the variance confounded among variables in the set. It would not 
include variance confounded with variables outside the set. In short, you would be 
computing the variance explained by the set of variables that is independent of the 
variables not in the set.

Inferential Statistics 
We begin by presenting the formula for testing the significance of the contribution 
of a set of variables. We will then show how special cases of this formula can be 
used to test the significance of R2 as well as to test the significance of the unique 
contribution of individual variables.

The first step is to compute two regression analyses: (1) an analysis in which 
all the predictor variables are included and (2) an analysis in which the variables in 
the set of variables being tested are excluded. The former regression model is 
called the “complete model” and the latter is called the “reduced model.” The basic 
idea is that if the reduced model explains much less than the complete model, then 
the set of variables excluded from the reduced model is important.

The formula for testing the contribution of a group of variables is:

 

where:
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SSQC is the sum of squares for the complete model, 

SSQR is the sum of squares for the reduced model, 

pC is the number of predictors in the complete 
model, 

pR is the number of predictors in the reduced 
model, 

SSQT is the sum of squares total (the sum of 
squared deviations of the criterion variable 
from its mean), and 

N is the total number of observations 

The degrees of freedom for the numerator is pc - pr and the degrees of freedom for 
the denominator is N - pC -1. If the F is significant, then it can be concluded that 
the variables excluded in the reduced set contribute to the prediction of the 
criterion variable independently of the other variables.

This formula can be used to test the significance of R2 by defining the 
reduced model as having no predictor variables. In this application, SSQR and pR = 
0. The formula is then simplified as follows:

 

which for this example becomes:

 

F( pc,N−pc−1)=

SSQC

pC

SSQT − SSQC

N − pC −1

=
MSexplained

MSerror

F( pc−pr,N−pc−1)=

SSQC − SSQR

pC − pR

SSQT − SSQC

N − pC −1

=
MSexplained

MSerror

F(1,102)=

12.96− 9.75
2−1

20.80−12.96
105− 2−1

=
3.212
0.077

= 41.80
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SSQC
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N − pC −1

=
MSexplained

MSerror
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12.96
2
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6.48
0.08

= 84.35.

F=

12.96−12.64
2−1

20.80−12.96
105− 2−1
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0.322
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= 4.19

!

!
!
!

502



The degrees of freedom are 2 and 102. The F distribution calculator shows that p < 
0.001.

The reduced model used to test the variance explained uniquely by a single 
predictor consists of all the variables except the predictor variable in question. For 
example, the reduced model for a test of the unique contribution of HSGPA 
contains only the variable SAT. Therefore, the sum of squares for the reduced 
model is the sum of squares when UGPA is predicted by SAT. This sum of squares 
is 9.75. The calculations for F are shown below:

 

The degrees of freedom are 1 and 102. The F distribution calculator shows that p < 
0.001.

Similarly, the reduced model in the test for the unique contribution of SAT 
consists of HSGPA.

 

The degrees of freedom are 1 and 102. The F distribution calculator shows that p = 
0.0432.

The significance test of the variance explained uniquely by a variable is 
identical to a significance test of the regression coefficient for that variable. A 
regression coefficient and the variance explained uniquely by a variable both 
reflect the relationship between a variable and the criterion independent of the 
other variables. If the variance explained uniquely by a variable is not zero, then 
the regression coefficient cannot be zero. Clearly, a variable with a regression 
coefficient of zero would explain no variance.
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Other inferential statistics associated with multiple regression that are 
beyond the scope of this text. Two of particular importance are (1) confidence 
intervals on regression slopes and (2) confidence intervals on predictions for 
specific observations. These inferential statistics can be computed by standard 
statistical analysis packages such as R, SPSS, STATA, SAS, and JMP.

Assumptions 
No assumptions are necessary for computing the regression coefficients or for 
partitioning the sums of squares. However, there are several assumptions made 
when interpreting inferential statistics. Moderate violations of Assumptions 1-3 do 
not pose a serious problem for testing the significance of predictor variables. 
However, even small violations of these assumptions pose problems for confidence 
intervals on predictions for specific observations.
1. Residuals are normally distributed: 

As in the case of simple linear regression, the residuals are the errors of 
prediction. Specifically, they are the differences between the actual scores on 
the criterion and the predicted scores. A Q-Q plot for the residuals for the 
example data is shown below. This plot reveals that the actual data values at the 
lower end of the distribution do not increase as much as would be expected for 
a normal distribution. It also reveals that the highest value in the data is higher 
than would be expected for the highest value in a sample of this size from a 
normal distribution. Nonetheless, the distribution does not deviate greatly from 
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normality. 

2. Homoscedasticity: 
It is assumed that the variance of the errors of prediction are the same for all 
predicted values. As can be seen below, this assumption is violated in the 
example data because the errors of prediction are much larger for observations 
with low-to-medium predicted scores than for observations with high predicted 
scores. Clearly, a confidence interval on a low predicted UGPA would 
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underestimate the uncertainty.

3. Linearity: 
It is assumed that the relationship between each predictor variable and the 
criterion variable is linear. If this assumption is not met, then the predictions 
may systematically overestimate the actual values for one range of values on a 
predictor variable and underestimate them for another. 
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 14: Regression Toward the Mean

In a discussion about the Dallas Cowboy football team, there was a comment that 
the quarterback threw far more interceptions in the first two games than is typical 
(there were two interceptions per game). The author correctly pointed out that, 
because of regression toward the mean, performance in the future is expected to 
improve. However, the author defined regression toward the mean as, "In nerd 
land, that basically means that things tend to even out over the long run."

 
What do you think?
Comment on that definition.

That definition is sort of  correct, but it could be stated more 
precisely. Things don't always tend to even out in the long run. 
If  a great player has an average game, then things wouldn't 
even out (to the average of  all players) but would regress toward 
that player's high mean performance. 
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Exercises 

Prerequisites
All material presented in the Regression chapter

1. What is the equation for a regression line? What does each term in the line refer 
to?

2. The formula for a regression equation is Y’ = 2X + 9. 
a. What would be the predicted score for a person scoring 6 on X? 
b. If someone’s predicted score was 14, what was this person’s score on X? 

3. What criterion is used for deciding which regression line fits best?

4. What does the standard error of the estimate measure? What is the formula for 
the standard error of the estimate?

5. 

a. In a regression analysis, the sum of squares for the predicted scores is 100 and 
the sum of squares error is 200, what is R2?

b. In a different regression analysis, 40% of the variance was explained. The sum 
of squares total is 1000. What is the sum of squares of the predicted values?

6. For the X,Y data below, compute: 
a. r and determine if it is significantly different from zero. 
b. the slope of the regression line and test if it differs significantly from zero.
c. the 95% confidence interval for the slope.
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7. What assumptions are needed to calculate the various inferential statistics of 
linear regression?

8. The correlation between years of education and salary in a sample of 20 people 
from a certain company is .4. Is this correlation statistically significant at the 
.05 level?

9. A sample of X and Y scores is taken, and a regression line is used to predict Y 
from X. If SSY’ = 300, SSE = 500, and N = 50, what is:
(a) SSY? 
(b) the standard error of the estimate? 
(c) R2?

10. Using linear regression, find the predicted post-test score for someone with a 
score of 45 on the pre-test.

>0����"����!�"���!"���� ���  � ����"����!#��"�����!% �,����"��!�"����� �%����� �"���!"��3
�� ���  � ����"����!#��"�,

���!"���� ���  � ����"����!#��"���!������!% �����"������% ��)����� ����#��!0��

����� �%����!��!������'!/

�
�"!�������"���!"%���"���&�!�"����!#��"��'�������!��3:����"�����������"� 0

?0�
�0������ �� �!!��������)!�!-�"���!%�����!�%� �!��� �"���� ����"���!�� �!��!�988�����"���!%�����

!�%� �!��  � ��!�:88-�'��"��!��:,�
�0���������� ��"� �� �!!��������)!�!-�<8D����"���&� ������'�!��(�������0�
���!%�����!�%� �!�

"�"����!�98880����"��!�"���!%�����!�%� �!����"���� ����"���&��%�!,
�5��:�E�49882;885�E�80;;;
�5�		1�E�80<8�(�9888�E�<880�

@0��� �"����-���"������'-�����%"�/�
�0� �������"� ���������"��!�!��������"�)����� ��"�� ���*� �0
�0�"���A=D�������������"� &����� �"���!����0
�� ��
<� >�
;� ?�
=� 9:�
99� 9?�
98� A�
9<� :9�
�
�5� �E�80@<A:.����E�808;:<0�
�� ��� �-� ��!�!��������"�)����� ��"�� ���8�����'������ ����"�"���
�%����)��"��!�!����"��!���!�0

9:0����"��!!%��#��!�� ���������"������%��"��"���&� ��%!����� ��#���!"�#!#�!��������� � �� �!3
!���,

� ����!!%��#��!�� ����������� �� �"������%��"��"���&� ��%!����� ��#���!"�#!#�!��������� �
 �� �!!���/�
95������ �")
:5�����!����!#��")
;5��� ����)���!" ��%"��� �!��%��!

510



11. The equation for a regression line predicting the number of hours of TV 
watched by children (Y) from the number of hours of TV watched by their 
parents (X) is Y' = 4 + 1.2X. The sample size is 12.
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a. If the standard error of b is .4, is the slope statistically significant at the .05 
level? 
b. If the mean of X is 8, what is the mean of Y?

12. Based on the table below, compute the regression line that predicts Y from X.

	

13. Does A or B have a larger standard error of the estimate?

	

14. True/false: If the slope of a simple linear regression line is statistically 
significant, then the correlation will also always be significant.

15. True/false: If the slope of the relationship between X an Y is larger for 
Population 1 than for Population 2, the correlation will necessarily be larger in 
Population 1 than in Population 2. Why or why not?

16. True/false: If the correlation is .8, then 40% of the variance is explained.

17. True/false: If the actual Y score was 31, but the predicted score was 28, then 
the error of prediction is 3.

Questions from Case Studies

Angry Moods (AM) case study
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18. (AM) Find the regression line for predicting Anger-Out from Control-Out. 
a. What is the slope? 
b. What is the intercept? 
c. Is the relationship at least approximately linear?
d. Test to see if the slope is significantly different from 0. 
e. What is the standard error of the estimate?

SAT and GPA (SG) case study

19. (SG) Find the regression line for predicting the overall university GPA from the 
high school GPA.
a. What is the slope?
b. What is the y-intercept?
c. If someone had a 2.2 GPA in high school, what is the best estimate of his or 
her college GPA?
d. If someone had a 4.0 GPA in high school, what is the best estimate of his or 
her college GPA?

Driving (D) case study

20. (D) What is the correlation between age and how often the person chooses to 
drive in inclement weather? Is this correlation statistically significant at the .01 
level? Are older people more or less likely to report that they drive in inclement 
weather?

21. (D) What is the correlation between how often a person chooses to drive in 
inclement weather and the percentage of accidents the person believes occur in 
inclement weather? Is this correlation significantly different from 0?

22. (D) Use linear regression to predict how often someone rides public 
transportation in inclement weather from what percentage of accidents that 
person thinks occur in inclement weather. (Pubtran by Accident)
(a) Create a scatter plot of this data and add a regression line. 
(b) What is the slope? 
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(c) What is the intercept?
(d) Is the relationship at least approximately linear? 
(e) Test if the slope is significantly different from 0. 
(f) Comment on possible assumption violations for the test of the slope. 
(g) What is the standard error of the estimate?
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15. Analysis of  Variance 
A. Introduction
B. ANOVA Designs
C. One-Factor ANOVA (Between-Subjects)
D. Multi-Factor ANOVA (Between-Subjects)
E. Unequal Sample Sizes
F. Tests Supplementing ANOVA
G. Within-Subjects ANOVA
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Introduction 
by David M. Lane 

Prerequisites
• Chapter 3: Variance
• Chapter 11: Significance Testing
• Chapter 12: All Pairwise Comparisons among Means 

Learning Objectives
1. What null hypothesis is tested by ANOVA
2. Describe the uses of ANOVA
Analysis of Variance (ANOVA) is a statistical method used to test differences 
between two or more means. It may seem odd that the technique is called 
“Analysis of Variance” rather than “Analysis of Means.” As you will see, the name 
is appropriate because inferences about means are made by analyzing variance. 

ANOVA is used to test general rather than specific differences among means. 
This can be seen best by example. In the case study “Smiles and Leniency,” the 
effect of different types of smiles on the leniency shown to a person was 
investigated. Four different types of smiles (neutral, false, felt, miserable) were 
investigated. The chapter “All Pairwise Comparisons among Means” showed how 
to test differences among means. The results from the Tukey HSD test are shown 
in Table 1.

Table 1. Six pairwise comparisons.

Notice that the only significant difference is between the False and Neutral 
conditions.

Comparison Mi-Mj Q p

False - Felt 0.46 1.65 0.649

False - Miserable 0.46 1.65 0.649

False - Neutral 1.25 4.48 0.01

Felt - Miserable 0 0 1

Felt - Neutral 0.79 2.83 0.193

Miserable - Neutral 0.79 2.83 0.193
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ANOVA tests the non-specific null hypothesis that all four population means 
are equal. That is

µfalse = µfelt = µmiserable = µneutral. 

This non-specific null hypothesis is sometimes called the omnibus null hypothesis. 
When the omnibus null hypothesis is rejected, the conclusion is that at least one 
population mean is different from at least one other mean. However, since the 
ANOVA does not reveal which means are different from which, it offers less 
specific information than the Tukey HSD test. The Tukey HSD is therefore 
preferable to ANOVA in this situation. Some textbooks introduce the Tukey test 
only as a follow-up to an ANOVA. However, there is no logical or statistical reason 
why you should not use the Tukey test even if you do not compute an ANOVA.

You might be wondering why you should learn about ANOVA when the 
Tukey test is better. One reason is that there are complex types of analyses that can 
be done with ANOVA and not with the Tukey test. A second is that ANOVA is by 
far the most commonly-used technique for comparing means, and it is important to 
understand ANOVA in order to understand research reports.
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Analysis of  Variance Designs 
by David M. Lane 

Prerequisites
• Chapter 15: Introduction to ANOVA

Learning Objectives
1. Be able to identify the factors and levels of each factor from a description of an 

experiment
2. Determine whether a factor is a between-subjects or a within-subjects factor
3. Define factorial design
There are many types of experimental designs that can be analyzed by ANOVA. 
This section discusses many of these designs and defines several key terms used.

Factors and Levels 
The section on variables defined an independent variable as a variable manipulated 
by the experimenter. In the case study “Smiles and Leniency,” the effect of 
different types of smiles on the leniency showed to a person was investigated. Four 
different types of smiles (neutral, false, felt, miserable, on leniency) were shown. 
In this experiment, “Type of Smile” is the independent variable. In describing an 
ANOVA design, the term factor is a synonym of independent variable. Therefore, 
“Type of Smile” is the factor in this experiment. Since four types of smiles were 
compared, the factor “Type of Smile” has four levels.

An ANOVA conducted on a design in which there is only one factor is called 
a one-way ANOVA. If an experiment has two factors, then the ANOVA is called a 
two-way ANOVA. For example, suppose an experiment on the effects of age and 
gender on reading speed were conducted using three age groups (8 years, 10 years, 
and 12 years) and the two genders (male and female). The factors would be age 
and gender. Age would have three levels and gender would have two levels.
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Between- and Within-Subjects Factors 
In the “Smiles and Leniency” study, the four levels of the factor “Type of Smile” 
were represented by four separate groups of subjects. When different subjects are 
used for the levels of a factor, the factor is called a between-subjects factor or a 
between-subjects variable. The term “between subjects” reflects the fact that 
comparisons are between different groups of subjects.

In the “ADHD Treatment” study, every subject was tested with each of four 
dosage levels (0, 0.15, 0.30, 0.60 mg/kg) of a drug. Therefore there was only one 
group of subjects, and comparisons were not between different groups of subjects 
but between conditions within the same subjects. When the same subjects are used 
for the levels of a factor, the factor is called a within-subjects factor or a within-
subjects variable. Within-subjects variables are sometimes referred to as repeated-
measures variables since there are repeated measurements of the same subjects.

Multi-Factor Designs 
It is common for designs to have more than one factor. For example, consider a 
hypothetical study of the effects of age and gender on reading speed in which 
males and females from the age levels of 8 years, 10 years, and 12 years are tested. 
There would be a total of six different groups as shown in Table 1.

Table 1. Gender x Age Design

This design has two factors: age and gender. Age has three levels and gender has 
two levels. When all combinations of the levels are included (as they are here), the 
design is called a factorial design. A concise way of describing this design is as a 
Gender (2) x Age (3) factorial design where the numbers in parentheses indicate 

Group Gender Age

1 Female 8

2 Female 10

3 Female 12

4 Male 8

5 Male 10

6 Male 12
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the number of levels. Complex designs frequently have more than two factors and 
may have combinations of between- and within-subjects factors.
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One-Factor ANOVA (Between Subjects) 
by David M. Lane 

Prerequisites
• Chapter 3: Variance
• Chapter 7: Introduction to Normal Distributions
• Chapter 11: Significance Testing
• Chapter 11: One- and Two-Tailed Tests
• Chapter 12: t Test of Differences Between Groups
• Chapter 15: Introduction to ANOVA
• Chapter 15: ANOVA Designs 

Learning Objectives
1. State what the Mean Square Error (MSE) estimates when the null hypothesis is 

true and when the null hypothesis is false
2. State what the Mean Square Between (MSB) estimates when the null 

hypothesis is true and when the null hypothesis is false
3. State the assumptions of a one-way ANOVA
4. Compute MSE
5. Compute MSB
6. Compute F and its two degrees of freedom parameters
7. Describe the shape of the F distribution
8. Explain why ANOVA is best thought of as a two-tailed test even though 

literally only one tail of the distribution is used
9. State the relationship between the t and F distributions
10. Partition the sums of squares into conditions and error
11. Format data to be used with a computer statistics program
This section shows how ANOVA can be used to analyze a one-factor between-
subjects design. We will use as our main example the “Smiles and Leniency” case 
study. In this study there were four conditions with 34 subjects in each condition. 
There was one score per subject. The null hypothesis tested by ANOVA is that the 
population means for all conditions are the same. This can be expressed as follows:

H0: µ1 = µ2 = ... = µk 
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where H0 is the null hypothesis and k is the number of conditions. In the smiles and 
leniency study, k = 4 and the null hypothesis is

H0: µfalse = µfelt = µmiserable = µneutral. 

If the null hypothesis is rejected, then it can be concluded that at least one of the 
population means is different from at least one other population mean.

Analysis of variance is a method for testing differences among means by 
analyzing variance. The test is based on two estimates of the population variance 
(σ2). One estimate is called the mean square error (MSE) and is based on 
differences among scores within the groups. MSE estimates σ2 regardless of 
whether the null hypothesis is true (the population means are equal). The second 
estimate is called the mean square between (MSB) and is based on differences 
among the sample means. MSB only estimates σ2 if the population means are 
equal. If the population means are not equal, then MSB estimates a quantity larger 
than σ2. Therefore, if the MSB is much larger than the MSE, then the population 
means are unlikely to be equal. On the other hand, if the MSB is about the same as 
MSE, then the data are consistent with the hypothesis that the population means 
are equal.

Before proceeding with the calculation of MSE and MSB, it is important to 
consider the assumptions made by ANOVA:
1. The populations have the same variance. This assumption is called the 

assumption of homogeneity of variance.
2. The populations are normally distributed.
3. Each value is sampled independently from each other value. This assumption 

requires that each subject provide only one value. If a subject provides two 
scores, then the values are not independent. The analysis of data with two 
scores per subject is shown in the section on within-subjects ANOVA later in 
this chapter.

These assumptions are the same as for a t test of differences between groups except 
that they apply to two or more groups, not just to two groups.

The means and variances of the four groups in the “Smiles and Leniency” 
case study are shown in Table 1. Note that there are 34 subjects in each of the four 
conditions (False, Felt, Miserable, and Neutral).
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Table 1. Means and Variances from “Smiles and Leniency” Study

Sample Sizes 
The first calculations in this section all assume that there is an equal number of 
observations in each group. Unequal sample size calculations are shown in the 
section on sources of variation. We will refer to the number of observations in each 
group as n and the total number of observations as N. For these data there are four 
groups of 34 observations. Therefore n = 34 and N = 136. 

Computing MSE 
Recall that the assumption of homogeneity of variance states that the variance 
within each of the populations (σ2) is the same. This variance, σ2, is the quantity 
estimated by MSE and is computed as the mean of the sample variances. For these 
data, the MSE is equal to 2.6489.

Computing MSB 
The formula for MSB is based on the fact that the variance of the sampling 
distribution of the mean is

 

where n is the sample size of each group. Rearranging this formula, we have

 

Therefore, if we knew the variance of the sampling distribution of the mean, we 
could compute σ2 by multiplying it by n. Although we do not know the variance of 
the sampling distribution of the mean, we can estimate it with the variance of the 

Condition Mean Variance

FALSE 5.3676 3.338

Felt 4.9118 2.8253

Miserable 4.9118 2.1132

Neutral 4.1176 2.3191
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sample means. For the leniency data, the variance of the four sample means is 
0.270. To estimate σ2, we multiply the variance of the sample means (0.270) by n 
(the number of observations in each group, which is 34). We find that MSB = 
9.179.
To sum up these steps:
1. Compute the means.
2. Compute the variance of the means.
3. Multiply the variance of the means by n.

Recap 
If the population means are equal, then both MSE and MSB are estimates of σ2 and 
should therefore be about the same. Naturally, they will not be exactly the same 
since they are just estimates and are based on different aspects of the data: The 
MSB is computed from the sample means and the MSE is computed from the 
sample variances.

If the population means are not equal, then MSE will still estimate σ2 
because differences in population means do not affect variances. However, 
differences in population means affect MSB since differences among population 
means are associated with differences among sample means. It follows that the 
larger the differences among sample means, the larger the MSB. In short, MSE 
estimates σ2 whether or not the population means are equal, whereas MSB 
estimates σ2 only when the population means are equal and estimates a larger 
quantity when they are not equal.

Comparing MSE and MSB 
The critical step in an ANOVA is comparing MSE and MSB. Since MSB estimates 
a larger quantity than MSE only when the population means are not equal, a 
finding of a larger MSB than an MSE is a sign that the population means are not 
equal. But since MSB could be larger than MSE by chance even if the population 
means are equal, MSB must be much larger than MSE in order to justify the 
conclusion that the population means differ. But how much larger must MSB be? 
For the “Smiles and Leniency” data, the MSB and MSE are 9.179 and 2.649, 
respectively. Is that difference big enough? To answer, we would need to know the 
probability of getting that big a difference or a bigger difference if the population 
means were all equal. The mathematics necessary to answer this question were 
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worked out by the statistician R. Fisher. Although Fisher's original formulation 
took a slightly different form, the standard method for determining the probability 
is based on the ratio of MSB to MSE. This ratio is named after Fisher and is called 
the F ratio.

For these data, the F ratio is

F = 9.179/2.649 = 3.465. 

Therefore, the MSB is 3.465 times higher than MSE. Would this have been likely 
to happen if all the population means were equal? That depends on the sample size. 
With a small sample size, it would not be too surprising because results from small 
samples are unstable. However, with a very large sample, the MSB and MSE are 
almost always about the same, and an F ratio of 3.465 or larger would be very 
unusual. Figure 1 shows the sampling distribution of F for the sample size in the 
“Smiles and Leniency” study. As you can see, it has a positive skew. 

Figure 1. Distribution of F.

From Figure 1, you can see that F ratios of 3.465 or above are unusual occurrences. 
The area to the right of 3.465 represents the probability of an F that large or larger 
and is equal to 0.018 and therefore the null hypothesis can be rejected. The 
conclusion that at least one of the population means is different from at least one of 
the others is justified.
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and MSE are 9.179 and 2.649 respectively. Is that difference big enough? To answer,
we would need to know the probability of getting this big a difference or a bigger
difference between if the population means were all equal. The mathematics necessary
to answer this question were worked out by the statistician R. Fisher. Although Fisher's
original formulation took a slightly different form, the standard method for determining
the probability is based on the ratio of MSB to MSE. This ratio is named after Fisher and
is called the F ratio.

For these data, the F ratio is

F = 9.179/2.649 = 3.465.

Therefore, the MSB is 3.465 times higher than MSE. Would this have been likely to
happen if all the population means were equal? That depends on the sample size. With a
small sample size, it would not be too surprising because small samples are unreliable.
However, with a very large sample, the MSB and MSE are almost always about the same,
and an F ratio of 3.465 or larger would be very unusual. Figure 1 shows the sampling
distribution of F for the sample size in the Smiles and Leniency study. As you can see, it
has a positive skew. For larger sample sizes, the skew is less.

Figure 1. Distribution of F.

From Figure 1 you can see that F ratios of 3.465 or above are unusual occurrences.
The area to the right of 3.465 represents the probability of an F that large or larger and
is equal to 0.018. In other words, given the null hypothesis that all the population
means are equal, the probability value is 0.018 and therefore the null hypothesis can be
rejected. Therefore, the conclusion that at least one of the population means is
different from at least on of the others is justified.

As stated previously, the shape of the F distribution depends on the sample size.
More precisely, it depends on two degrees of freedom (df) parameters: one for the
numerator (MSB) and one for the denominator (MSE). Recall that the degrees of
freedom for an estimate of variance is equal to the number of scores minus one. Since
the MSB is the variance of k means, it has k-1 df. The MSE is an average of k variances
each with n-1 df. Therefore the df for MSE is k(n-1) = N-k where N is the total number
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The shape of the F distribution depends on the sample size. More precisely, it 
depends on two degrees of freedom (df) parameters: one for the numerator (MSB) 
and one for the denominator (MSE). Recall that the degrees of freedom for an 
estimate of variance is equal to the number of observations minus one. Since the 
MSB is the variance of k means, it has k - 1 df. The MSE is an average of k 
variances, each with n-1 df. Therefore, the df for MSE is k(n - 1) = N - k. where N 
is the total number of observations, n is the number of observations in each group, 
and k is the number of groups. To summarize:
dfnumerator   = k-1 
dfdenominator = N-k
 
For the “Smiles and Leniency” data,
dfnumerator   = k-1 = 4-1 = 3  
dfdenominator = N-k = 136-4 = 132 
F = 3.465
The F distribution calculator shows that p = 0.018.

One-Tailed or Two? 
Is the probability value from an F ratio a one-tailed or a two-tailed probability? In 
the literal sense, it is a one-tailed probability since, as you can see in Figure 1, the 
probability is the area in the right-hand tail of the distribution. However, the F ratio 
is sensitive to any pattern of differences among means. It is, therefore, a test of a 
two-tailed hypothesis and is best considered a two-tailed test.

Relationship to the t test 
Since an ANOVA and an independent-groups t test can both test the difference 
between two means, you might be wondering which one to use. Fortunately, it does 
not matter since the results will always be the same. When there are only two 
groups, the following relationship between F and t will always hold:

F(1,dfd) = t2(df) 

where dfd is the degrees of freedom for the denominator of the F test and df is the 
degrees of freedom for the t test. dfd will always equal df.
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Sources of Variation 
Why do scores in an experiment differ from one another? Consider the scores of 
two subjects in the “Smiles and Leniency” study: one from the “False Smile” 
condition and one from the “Felt Smile” condition. An obvious possible reason that 
the scores could differ is that the subjects were treated differently (they were in 
different conditions and saw different stimuli). A second reason is that the two 
subjects may have differed with regard to their tendency to judge people leniently. 
A third is that, perhaps, one of the subjects was in a bad mood after receiving a low 
grade on a test. You can imagine that there are innumerable other reasons why the 
scores of the two subjects could differ. All of these reasons except the first 
(subjects were treated differently) are possibilities that were not under 
experimental investigation and, therefore, all of the differences (variation) due to 
these possibilities are unexplained. It is traditional to call unexplained variance 
error even though there is no implication that an error was made. Therefore, the 
variation in this experiment can be thought of as being either variation due to the 
condition the subject was in or due to error (the sum total of all reasons the 
subjects' scores could differ that were not measured).
One of the important characteristics of ANOVA is that it partitions the variation 
into its various sources. In ANOVA, the term sum of squares (SSQ) is used to 
indicate variation. The total variation is defined as the sum of squared differences 
between each score and the mean of all subjects. The mean of all subjects is called 
the grand mean and is designated as GM. (When there is an equal number of 
subjects in each condition, the grand mean is the mean of the condition means.) 
The total sum of squares is defined as

 

which means to take each score, subtract the grand mean from it, square the 
difference, and then sum up these squared values. For the “Smiles and Leniency” 
study, SSQtotal = 377.19.

The sum of squares condition is calculated as shown below.
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where n is the number of scores in each group, k is the number of groups, M1 is the 
mean for Condition 1, M2 is the mean for Condition 2, and Mk is the mean for 
Condition k. For the “Smiles and Leniency” study, the values are:

SSQcondition = 34[(5.37-4.83)2 + (4.91-4.83)2 + 
(4.91-4.83)2 + (4.12-4.83)2] 

= 27.5 

If there are unequal sample sizes, the only change is that the following formula is 
used for the sum of squares condition:

 

where ni is the sample size of the ith condition. SSQtotal is computed the same way 
as shown above.

The sum of squares error is the sum of the squared deviations of each score 
from its group mean. This can be written as

 

where Xi1 is the ith score in group 1 and M1 is the mean for group 1, Xi2 is the ith 
score in group 2 and M2 is the mean for group 2, etc. For the “Smiles and 
Leniency” study, the means are: 5.368, 4.912, 4.912, and 4.118. The SSQerror is 
therefore:

(2.5-5.368)2 + (5.5-5.368)2 + ... + (6.5-4.118)2 = 
349.65 

The sum of squares error can also be computed by subtraction:

SSQerror = SSQtotal - SSQcondition 

SSQerror = 377.189 - 27.535 = 349.65. 
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Therefore, the total sum of squares of 377.19 can be partitioned into SSQcondition 
(27.53) and SSQerror (349.66).

Once the sums of squares have been computed, the mean squares (MSB and 
MSE) can be computed easily. The formulas are:

MSB = SSQcondition/dfn 

where dfn is the degrees of freedom numerator and is equal to k - 1 = 3.

MSB = 27.535/3 = 9.18 

which is the same value of MSB obtained previously (except for rounding error). 
Similarly,

MSE = SSQerror/dfn 

where dfd is the degrees of freedom for the denominator and is equal to N - k.

dfd = 136 - 4 = 132 

MSE = 349.66/132 = 2.65 

which is the same as obtained previously (except for rounding error). Note that the 
dfd is often called the dfe for degrees of freedom error.

The Analysis of Variance Summary Table shown below is a convenient way 
to summarize the partitioning of the variance. The rounding errors have been 
corrected. 

Table 2. ANOVA Summary Table

The first column shows the sources of variation, the second column shows the 
degrees of freedom, the third shows the sums of squares, the fourth shows the 

Source df SSQ MS F p

Condition 3 27.5349 9.1783 3.465 0.0182

Error 132 349.6544 2.6489   

Total 135 377.1893    
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mean squares, the fifth shows the F ratio, and the last shows the probability value. 
Note that the mean squares are always the sums of squares divided by degrees of 
freedom. The F and p are relevant only to Condition. Although the mean square 
total could be computed by dividing the sum of squares by the degrees of freedom, 
it is generally not of much interest and is omitted here.

Formatting data for Computer Analysis 
Most computer programs that compute ANOVAs require your data to be in a 
specific form. Consider the data in Table 3.

Table 3. Example Data

Here there are three groups, each with three observations. To format these data for 
a computer program, you normally have to use two variables: the first specifies the 
group the subject is in and the second is the score itself. The reformatted version of 
the data in Table 3 is shown in Table 4.

Group 1 Group 2 Group 3

3 2 8

4 4 5

5 6 5
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Table 4. Reformatted Data

G Y

1 3

1 4

1 5

2 2

2 4

2 6

3 8

3 5

3 5
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Multi-Factor Between-Subjects Designs 
by David M. Lane 

Prerequisites
• Chapter 15: Introduction to ANOVA
• Chapter 15: ANOVA Designs 

Learning Objectives
1. Define main effect, simple effect, interaction, and marginal mean
2. State the relationship between simple effects and interaction
3. Compute the source of variation and df for each effect in a factorial design
4. Plot the means for an interaction
5. Define three-way interaction

Basic Concepts and Terms 
In the “Bias Against Associates of the Obese” case study, the researchers were 
interested in whether the weight of a companion of a job applicant would affect 
judgments of a male applicant's qualifications for a job. Two independent variables 
were investigated: (1) whether the companion was obese or of typical weight and 
(2) whether the companion was a girlfriend or just an acquaintance. One approach 
could have been to conduct two separate studies, one with each independent 
variable. However, it is more efficient to conduct one study that includes both 
independent variables. Moreover, there is a much bigger advantage than efficiency 
for including two variables in the same study: it allows a test of the interaction 
between the variables. There is an interaction when the effect of one variable 
differs depending on the level of a second variable. For example, it is possible that 
the effect of having an obese companion would differ depending on the 
relationship to the companion. Perhaps there is more prejudice against a person 
with an obese companion if the companion is a girlfriend than if she is just an 
acquaintance. If so, there would be an interaction between the obesity factor and 
the relationship factor. 

There are three effects of interest in this experiment:
1. Weight: Are applicants judged differently depending on the weight of their 

companion?
2. Relationship: Are applicants judged differently depending on their relationship 

with their companion?
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3. Weight x Relationship Interaction: Does the effect of weight differ depending 
on the relationship with the companion?

 
The first two effects (Weight and Relationship) are both main effects. A main effect 
of an independent variable is the effect of the variable averaging over the levels of 
the other variable(s). It is convenient to talk about main effects in terms of 
marginal means. A marginal mean for a level of a variable is the mean of the 
means of all levels of the other variable. For example, the marginal mean for the 
level “Obese” is the mean of “Girlfriend Obese” and “Acquaintance Obese.” Table 
1 shows that this marginal mean is equal to the mean of 5.65 and 6.15, which is 
5.90. Similarly, the marginal mean for the level “Typical” is the mean of 6.19 and 
6.59, which is 6.39. The main effect of Weight is based on a comparison of these 
two marginal means. Similarly, the marginal means for “Girlfriend” and 
“Acquaintance” are 5.92 and 6.37..

Table 1. Means for All Four Conditions

In contrast to a main effect, which is the effect of a variable averaged across levels 
of another variable, the simple effect of a variable is the effect of the variable at a 
single level of another variable. The simple effect of Weight at the level of 
“Girlfriend” is the difference between the “Girlfriend Typical” and the “Girlfriend 
Obese” conditions. The difference is 6.19-5.65 = 0.54. Similarly, the simple effect 
of Weight at the level of “Acquaintance” is the difference between the 
“Acquaintance Typical” and the “Acquaintance Obese” conditions. The difference 
is 6.59-6.15 = 0.44.

Recall that there is an interaction when the effect of one variable differs 
depending on the level of another variable. This is equivalent to saying that there is 
an interaction when the simple effects differ. In this example, the simple effects of 

 Companion Weight  

Obese Typical Marginal 
Mean

Relationship Girlfriend 5.65 6.19 5.92

Acquaintance 6.15 6.59 6.37

 Marginal Mean 5.9 6.39  
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weight are 0.54 and 0.44.  As shown below, these simple effects are not 
significantly different. 

Tests of Significance 
The important questions are not whether there are main effects and interactions in 
the sample data. Instead, what is important is what the sample data allow you to 
conclude about the population. This is where Analysis of Variance comes in. 
ANOVA tests main effects and interactions for significance. An ANOVA Summary 
Table for these data is shown in Table 2. 

Table 2. ANOVA Summary Table

Consider first the effect of “Weight.” The degrees of freedom (df) for “Weight” is 
1. The degrees of freedom for a main effect is always equal to the number of levels 
of the variable minus one. Since there are two levels of the “Weight” variable 
(typical and obese), the df is 2 - 1 = 1. We skip the calculation of the sum of 
squares (SSQ) not because it is difficult, but because it is so much easier to rely on 
computer programs to compute it. The mean square (MS) is the sum of squares 
divided by the df. The F ratio is computed by dividing the MS for the effect by the 
MS for error (MSE). For the effect of “Weight,” F = 10.4673/1.6844 = 6.214. The 
last column, p, is the probability of getting an F of 6.214 or larger given that there 
is no effect of weight in the population. The p value is 0.0136 and therefore the 
null hypothesis of no main effect of “Weight” is rejected. The conclusion is that 
being accompanied by an obese companion lowers judgments of qualifications.

The effect “Relation” is interpreted the same way. The conclusion is that 
being accompanied by a girlfriend leads to lower ratings than being accompanied 
by an acquaintance. 

The df for an interaction is the product of the df's of variables in the 
interaction. For the “Weight x Relation” interaction (W x R), the df = 1 since both 

Source df SSQ MS F p

Weight 1 10.4673 10.4673 6.214 0.0136

Relation 1 8.8144 8.8144 5.233 0.0234

W x R 1 0.1038 0.1038 0.062 0.8043

Error 172 289.7132 1.6844   

Total 175 310.1818    
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Weight and Relation have one df: 1 x 1 = 1. The p value for the interaction is 
0.8043, which is the probability of getting an interaction as big or bigger than the 
one obtained in the experiment if there were no interaction in the population. 
Therefore, these data provide no evidence for an interaction. Always keep in mind 
that the lack of evidence for an effect does not justify the conclusion that there is 
no effect. In other words, you do not accept the null hypothesis just because you do 
not reject it. 

For “Error,” the degrees of freedom is equal to the total number of 
observations minus the total number of groups. The sample sizes of the four 
conditions in this experiment are shown in Table 3. The total number of 
observations is 40 + 42 + 40 + 54 = 176. Since there are four groups, dfe = 176 - 4 
= 172.  

Table 3. Sample Sizes for All Four Conditions

The final row in the ANOVA Summary Table is “Total.” The degrees of freedom 
total is equal to the sum of all degrees of freedom. It is also equal to the number of 
observations minus 1, or 176 - 1 = 175. When there are equal sample sizes, the sum 
of squares total will equal the sum of all other sums of squares. However, when 
there are unequal sample sizes, as there are here, this will not generally be true. 
The reasons for this are complex and are discussed in the section Unequal Sample 
Sizes.

Plotting Means  
Although the plot shown in Figure 1 illustrates the main effects as well as the 
interaction (or lack of an interaction), it is called an interaction plot. It is important 
to consider the components of this plot carefully. First, the dependent variable is on 
the Y-axis. Second, one of the independent variables is on the X-axis. In this case, 
it is the variable “Weight.” Finally, a separate line is drawn for each level of the 
other independent variable. It is better to label the lines right on the graph, as 
shown here, than with a legend. 

 Companion Weight

Obese Typical

Relationship Girlfriend 40 42

Acquaintance 40 54
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Figure 1. An interaction plot.

If you have three or more levels on the X-axis, you should not use lines unless 
there is some numeric ordering to the levels. If your variable on the X-axis is a 
qualitative variable, you can use a plot such as the one in Figure 2. However, as 
discussed in the section on bar charts, it would be better to replace each bar with a 
box plot. 
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Figure 2. Plot with a qualitative variable on the X-axis.
 
Figure 3 shows such a plot. Notice how it contains information about the medians, 
quantiles, and minimums and maximums not contained in Figure 2. Most 
important, you get an idea about how much the distributions overlap from Figure 3 
which you do not get from Figure 2. 
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Figure 3. Box plots.
Line graphs are a good option when there are more than two levels of a numeric 
variable. Figure 4 shows an example. A line graph has the advantage of showing 
the pattern of interaction clearly. Its disadvantage is that it does not convey the 
distributional information contained in box plots. 

Figure 4. Plot with a quantitative variable on the X-axis.
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Line graphs are a common option with more than two levels if the variable is
numeric. Figure 4 shows an example. A line graph has the advantage of showing
the pattern of interaction clearly. Its disadvantage is that it does not convey the
distributional information contained in box plots.

Figure 4. Plot With a Quantitative Variable on the X-
axis

AANN E EXAMPLEXAMPLE  WITHWITH I INTERACTIONNTERACTION

The following example was presented in the section on specific comparisons
among means. It is also relevant here.

This example uses the made-up data from a hypothetical experiment shown in
Table 4. Twelve subjects were selected from a population of high-self-esteem
subjects and an additional 12 subjects were selected from a population of low-
self-esteem subjects. Subjects then performed on a task and (independent of how
well they really did) half were told they succeeded and the other half were told
they failed . Therefore there were six subjects in each esteem/success
combination and 24 subjects altogether.
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An Example with Interaction 
The following example was presented in the section on specific comparisons 
among means. It is also relevant here.

This example uses the made-up data from a hypothetical experiment shown 
in Table 4. Twelve subjects were selected from a population of high-self-esteem 
subjects and an additional 12 subjects were selected from a population of low-self-
esteem subjects. Subjects then performed on a task and (independent of how well 
they really did) half in each esteem category were told they succeeded and the 
other half were told they failed. Therefore, there were six subjects in each of the 
four esteem/outcome combinations and 24 subjects in all.

After the task, subjects were asked to rate (on a 10-point scale) how much of 
their outcome (success or failure) they attributed to themselves as opposed to being 
due to the nature of the task. 

Table 4. Data from Hypothetical Experiment on Attribution

The ANOVA Summary Table for these data is shown in Table 5. 

 Esteem

High Low

Outcome

Success

7 6

8 5

7 7

8 4

9 5

5 6

Failure

4 9

6 8

5 9

4 8

7 7

3 6
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Table 5. ANOVA Summary Table for Made-Up Data

As you can see, the only significant effect is the Outcome x Esteem (O x E) 
interaction. The form of the interaction can be seen in Figure 5. 
 

 

Figure 5. Interaction plot for made-up data.

Source df SSQ MS F p

Outcome 1 0.0417 0.0417 0.0256 0.8744

Esteem 1 2.0417 2.0417 1.2564 0.2756

O x E 1 35.0417 35.0417 21.5641 0.0002

Error 20 32.5 1.625   

Total 23 69.625    
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Clearly the effect of “Outcome” is different for the two levels of “Esteem”: For 
subjects high in self-esteem, failure led to less attribution to oneself than did 
success. By contrast, for subjects low in self-esteem, failure led to more attribution 
to oneself than did success. Notice that the two lines in the graph are not parallel. 
Nonparallel lines indicate interaction. The significance test for the interaction 
determines whether it is justified to conclude that the lines in the population are not 
parallel. Lines do not have to cross for there to be an interaction. 

Three-Factor Designs 
Three-factor designs are analyzed in much the same way as two-factor designs. 
Table 6 shows the analysis of a study described by Franklin and Cooley (2002) 
investigating three factors on the strength of industrial fans: (1) Hole Shape (Hex 
or Round), (2) Assembly Method (Staked or Spun), and (3) Barrel Surface 
(Knurled or Smooth). The dependent variable, Breaking Torque, was measured in 
foot-pounds. There were eight observations in each of the eight combinations of 
the three factors.

As you can see in Table 6, there are three main effects, three two-way 
interactions, and one three-way interaction. The degrees of freedom for the main 
effects are, as in a two-factor design, equal to the number of levels of the factor 
minus one. Since all the factors here have two levels, all the main effects have one 
degree of freedom. The interaction degrees of freedom is always equal to the 
product of the degrees of freedom of the component parts. This holds for the three-
factor interaction as well as for the two-factor interactions. The error degrees of 
freedom is equal to the number of observations (64) minus the number of groups 
(8) and equals 56.

Table 6. ANOVA Summary Table for Fan Data

Source df SSQ MS F p

Hole 1 8258.27 8258.27 266.68 <0.0001

Assembly 1 13369.14 13369.14 431.73 <0.0001

H x A 1 2848.89 2848.89 92 <0.0001

Barrel 1 35.0417 35.0417 21.5641 <0.0001

H x B 1 594.14 594.14 19.1865 <0.0001

A x B 1 135.14 135.14 4.36 0.0413
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A three-way interaction means that the two-way interactions differ as a function of 
the level of the third variable. The usual way to portray a three-way interaction is 
to plot the two-way interactions separately. Figure 6 shows the Barrel (Knurled or 
Smooth) x Assembly (Staked or Spun) separately for the two levels of Hole Shape 
(Hex or Round). For the Hex Shape, there is very little interaction with the lines 
being close to parallel with a very slight tendency for the effect of Barrel to be 
bigger for Staked than for Spun. The two-way interaction for the Round Shape is 
different: The effect of Barrel is bigger for Spun than for Staked. The finding of a 
significant three-way interaction indicates that this difference in two-way 
interactions is significant.

  
 Figure 6. Plot of the three-way interaction.

Formatting Data for Computer Analysis 
The data in Table 4 have been reformatted in Table 7. Note how there is one 
column to indicate the level of outcome and one column to indicate the level of 
esteem. The coding is as follows:  

High-self-esteem:1 

Low self-esteem: 2 

H x A x B 1 1396.89 1396.89 45.11 <0.0001

Error 56 1734.12 30.97   

Total 63 221386.91    
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Success: 1 

Failure: 2 

Table 7. Attribution Data Reformatted

outcome esteem attrib

1 1 7

1 1 8

1 1 7

1 1 8

1 1 9

1 1 5

1 2 6

1 2 5

1 2 7

1 2 4

1 2 5

1 2 6

2 1 4

2 1 6

2 1 5

2 1 4

2 1 7

2 1 3

2 2 9

2 2 8

2 2 9

2 2 8

2 2 7

2 2 6
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Unequal Sample Sizes 
by David M. Lane 

Prerequisites
• Chapter 15: ANOVA Designs
• Chapter 15: Multi-Factor Designs

Learning Objectives
1. State why unequal n can be a problem
2. Define confounding
3. Compute weighted and unweighted means
4. Distinguish between Type I and Type III sums of squares
5. Describe why the cause of the unequal sample sizes makes a difference in the 

interpretation

The Problem of Confounding 
Whether by design, accident, or necessity, the number of subjects in each of the 
conditions in an experiment may not be equal. For example, the sample sizes for 
the “Bias Against Associates of the Obese” case study are shown in Table 1. 
Although the sample sizes were approximately equal, the “Acquaintance Typical” 
condition had the most subjects. Since n is used to refer to the sample size of an 
individual group, designs with unequal sample sizes are sometimes referred to as 
designs with unequal n.

Table 1. Sample Sizes for “Bias Against Associates of the Obese” Study.

We consider an absurd design to illustrate the main problem caused by unequal n. 
Suppose an experimenter were interested in the effects of diet and exercise on 
cholesterol. The sample sizes are shown in Table 2.

 Companion Weight

Obese Typical

Relationship
Girl Friend 40 42

Acquaintance 40 54
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Table 2. Sample Sizes for “Diet and Exercise” Example.

What makes this example absurd is that there are no subjects in either the “Low-
Fat No-Exercise” condition or the “High-Fat Moderate-Exercise” condition. The 
hypothetical data showing change in cholesterol are shown in Table 3. 

Table 3. Data for “Diet and Exercise” Example.

The last column shows the mean change in cholesterol for the two diet conditions, 
whereas the last row shows the mean change in cholesterol for the two Exercise 
conditions. The value of -15 in the lower-right-most cell in the table is the mean of 
all subjects.

We see from the last column that those on the low-fat diet lowered their 
cholesterol an average of 25 units, whereas those on the high-fat diet lowered 
theirs by only an average of 5 units. However, there is no way of knowing whether 
the difference is due to diet or to exercise since every subject in the low-fat 

 Exercise

Moderate None

Diet
Low Fat 5 0

High Fat 0 5

 Exercise

Moderate None Mean

Diet

Low Fat

-20 -25

-25

-30

-35

-15

High Fat

-20 -5

6

-10

-6

5

 Mean -25 -5 -15
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condition was in the moderate-exercise condition and every subject in the high-fat 
condition was in the no-exercise condition. Therefore, Diet and Exercise are 
completely confounded. The problem with unequal n is that it causes confounding.

Weighted and Unweighted Means 
The difference between weighted and unweighted means is a difference critical for 
understanding how to deal with the confounding resulting from unequal n.

Weighted and unweighted means will be explained using the data shown in 
Table 4. Here, Diet and Exercise are confounded because 80% of the subjects in 
the low-fat condition exercised as compared to 20% of those in the high-fat 
condition. However, there is not complete confounding as there was with the data 
in Table 3.

The weighted mean for “Low Fat” is computed as the mean of the “Low-Fat 
Moderate-Exercise” mean and the “Low-Fat No-Exercise” mean, weighted in 
accordance with sample size. To compute a weighted mean, you multiply each 
mean by its sample size and divide by N, the total number of observations. Since 
there are four subjects in the “Low-Fat Moderate-Exercise” condition and one 
subject in the “Low-Fat No-Exercise” condition, the means are weighted by factors 
of 4 and 1 as shown below, where Mw is the weighted mean. 

 

The weighted mean for the low-fat condition is also the mean of all five scores in 
this condition. Thus if you ignore the factor “Exercise,” you are implicitly 
computing weighted means.

The unweighted mean for the low-fat condition (Mu) is simply the mean of 
the two means.
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Table 4. Data for Diet and Exercise with Partial Confounding Example

One way to evaluate the main effect of Diet is to compare the weighted mean for 
the low-fat diet (-26) with the weighted mean for the high-fat diet (-4). This 
difference of -22 is called “the effect of diet ignoring exercise” and is misleading 
since most of the low-fat subjects exercised and most of the high-fat subjects did 
not. However, the difference between the unweighted means of -15.625 (-23.75 
minus -8.125) is not affected by this confounding and is therefore a better measure 
of the main effect. In short, weighted means ignore the effects of other variables 
(exercise in this example) and result in confounding; unweighted means control for 
the effect of other variables and therefore eliminate the confounding.

Statistical analysis programs use different terms for means that are computed 
controlling for other effects. SPSS calls them estimated marginal means, whereas 
SAS and SAS JMP call them least squares means.

 Exercise

Moderate None
Weighted 

Mean
Unweighted 

Mean

Diet

Low Fat

-20 -20 -26 -23.75

-25

-30

-35

M=-27.5 M=-20.0

High Fat

-15 6 -4 -8.125

-6

5

-10

M=-15.0 M=-1.25

 Weighted Mean -25 -5  

Unweighted 
Mean

-21.25 -10.625
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Types of Sums of Squares 
When there is unequal n, the sum of squares total is not equal to the sum of the 
sums of squares for all the other sources of variation. This is because the 
confounded sums of squares are not apportioned to any source of variation. For the 
data in Table 5, the sum of squares for Diet is 390.625, the sum of squares for 
Exercise is 180.625, and the sum of squares confounded between these two factors 
is 819.375 (the calculation of this value is beyond the scope of this introductory 
text). In the ANOVA Summary Table shown in Table 5, this large portion of the 
sums of squares is not apportioned to any source of variation and represents the 
“missing” sums of squares. That is, if you add up the sums of squares for Diet, 
Exercise, D x E, and Error, you get 902.625. If you add the confounded sum of 
squares of 819.375 to this value, you get the total sum of squares of 1722.000. 
When confounded sums of squares are not apportioned to any source of variation, 
the sums of squares are called Type III sums of squares. Type III sums of squares 
are, by far, the most common and if sums of squares are not otherwise labeled, it 
can safely be assumed that they are Type III.

Table 5. ANOVA Summary Table for Type III SSQ

When all confounded sums of squares are apportioned to sources of variation, the 
sums of squares are called Type I sums of squares. The order in which the 
confounded sums of squares are apportioned is determined by the order in which 
the effects are listed. The first effect gets any sums of squares confounded between 
it and any of the other effects. The second gets the sums of squares confounded 
between it and subsequent effects, but not confounded with the first effect, etc. The 
Type I sums of squares are shown in Table 6. As you can see, with Type I sums of 
squares, the sum of all sums of squares is the total sum of squares.

Source df SSQ MS F p

Diet 1 390.625 390.625 7.42 0.034

Exercise 1 180.625 180.625 3.43 0.113

D x E 1 15.625 15.625 0.3 0.605

Error 6 315.75 52.625   

Total 9 1722    
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Table 6. ANOVA Summary Table for Type I SSQ

In Type II sums of squares, sums of squares confounded between main effects are 
not apportioned to any source of variation, whereas sums of squares confounded 
between main effects and interactions are apportioned to the main effects. In our 
example, there is no confounding between the D x E interaction and either of the 
main effects. Therefore, the Type II sums of squares are equal to the Type III sums 
of squares. 

Which Type of Sums of Squares to Use (optional)

Type I sums of squares allow the variance confounded between two main effects to 
be apportioned to one of the main effects. Unless there is a strong argument for 
how the confounded variance should be apportioned (which is rarely, if ever, the 
case), Type I sums of squares are not recommended.

There is not a consensus about whether Type II or Type III sums of squares 
is to be preferred. On the one hand, if there is no interaction, then Type II sums of 
squares will be more powerful for two reasons: (1) variance confounded between 
the main effect and interaction is properly assigned to the main effect and (2) 
weighting the means by sample sizes gives better estimates of the effects. To take 
advantage of the greater power of Type II sums of squares, some have suggested 
that if the interaction is not significant, then Type II sums of squares should be 
used. Maxwell and Delaney (2003) caution that such an approach could result in a 
Type II error in the test of the interaction. That is, it could lead to the conclusion 
that there is no interaction in the population when there really is one. This, in turn, 
would increase the Type I error rate for the test of the main effect. As a result, their 
general recommendation is to use Type III sums of squares. 

Maxwell and Delaney (2003) recognized that some researchers prefer Type 
II sums of squares when there are strong theoretical reasons to suspect a lack of 

Source df SSQ MS F p

Diet 1 1210 1210 22.99 0.003

Exercise 1 180.625 180.625 3.43 0.113

D x E 1 15.625 15.625 0.3 0.605

Error 6 315.75 52.625   

Total 9 1722    
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interaction and the p value is much higher than the typical α level of 0.05. 
However, this argument for the use of Type II sums of squares is not entirely 
convincing. As Tukey (1991) and others have argued, it is doubtful that any effect, 
whether a main effect or an interaction, is exactly 0 in the population. Incidentally, 
Tukey argued that the role of significance testing is to determine whether a 
confident conclusion can be made about the direction of an effect, not simply to 
conclude that an effect is not exactly 0.

Finally, if one assumes that there is no interaction, then an ANOVA model 
with no interaction term should be used rather than Type II sums of squares in a 
model that includes an interaction term. (Models without interaction terms are not 
covered in this book).

There are situations in which Type II sums of squares are justified even if 
there is strong interaction. This is the case because the hypotheses tested by Type II 
and Type III sums of squares are different, and the choice of which to use should 
be guided by which hypothesis is of interest. Recall that Type II sums of squares 
weight cells based on their sample sizes whereas Type III sums of squares weight 
all cells the same. Consider Figure 1 which shows data from a hypothetical A(2) x 
B(2) design. The sample sizes are shown numerically and are represented 
graphically by the areas of the endpoints. 

Figure 1. An interaction plot with unequal sample sizes.

First, let's consider the hypothesis for the main effect of B tested by the Type III 
sums of squares. Type III sums of squares weight the means equally and, for these 
data, the marginal means for b1 and b2 are equal:
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(b1a1 + b1a2)/2 = (7 + 9)/2 = 8.  

(b2a1 + b2a2)/2 = (14 + 2)/2 = 8. 

Thus, there is no main effect of B when tested using Type III sums of squares.
For Type II sums of squares, the means are weighted by sample size. For b1:

(4 x b1a1 + 8 x b1a2)/12 =  

(4 x 7 + 8 x 9)/12 = 8.33 

For b2: 

(12 x b2a1 + 8 x b2a2)/20 =  

(12 x 14 + 8 x 2)/20 = 9.2. 

Since the weighted marginal mean for b2 is larger than the weighted marginal mean 
for b1, there is a main effect of B when tested using Type II sums of squares.

The Type II and Type III analyses are testing different hypotheses. First, let's 
consider the case in which the differences in sample sizes arise because in the 
sampling of intact groups, the sample cell sizes reflect the population cell sizes (at 
least approximately). In this case, it makes sense to weight some means more than 
others and conclude that there is a main effect of B. This is the result obtained with 
Type II sums of squares. However, if the sample size differences arose from 
random assignment, and there just happened to be more observations in some cells 
than others, then one would want to estimate what the main effects would have 
been with equal sample sizes and, therefore, weight the means equally. With the 
means weighted equally, there is no main effect of B, the result obtained with Type 
III sums of squares.

Causes of Unequal Sample Sizes 
None of the methods for dealing with unequal sample sizes are valid if the 
experimental treatment is the source of the unequal sample sizes. Imagine an 
experiment seeking to determine whether publicly performing an embarrassing act 
would affect one's anxiety about public speaking. In this imaginary experiment, the 
experimental group is asked to reveal to a group of people the most embarrassing 
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thing they have ever done. The control group is asked to describe what they had at 
their last meal. Twenty subjects are recruited for the experiment and randomly 
divided into two equal groups of 10, one for the experimental treatment and one for 
the control. Following their descriptions, subjects are given an attitude survey 
concerning public speaking. This seems like a valid experimental design. However, 
of the 10 subjects in the experimental group, four withdrew from the experiment 
because they did not wish to publicly describe an embarrassing situation. None of 
the subjects in the control group withdrew. Even if the data analysis were to show a 
significant effect, it would not be valid to conclude that the treatment had an effect 
because a likely alternative explanation cannot be ruled out; namely, subjects who 
were willing to describe an embarrassing situation differed from those who were 
not. Thus, the differential dropout rate destroyed the random assignment of 
subjects to conditions, a critical feature of the experimental design. No amount of 
statistical adjustment can compensate for this flaw.
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Tests Supplementing ANOVA 
by David M. Lane 

Prerequisites
• Chapter 15: One-Factor ANOVA, Multi-Factor ANOVA
• Chapter 15: Pairwise Comparisons Among Means
• Chapter 15: Specific Comparisons Among Means 

Learning Objectives
1. Compute Tukey HSD test
2. Describe an interaction in words
3. Describe why one might want to compute simple effect tests following a 

significant interaction
The null hypothesis tested in a one-factor ANOVA is that all the population means 
are equal. Stated more formally,

H0: µ1 = µ2 = ... = µk 

where H0 is the null hypothesis and k is the number of conditions. When the null 
hypothesis is rejected, all that can be said is that at least one population mean is 
different from at least one other population mean. The methods for doing more 
specific tests described in "All Pairwise Comparisons among Means" and in 
"Specific Comparisons" apply here. Keep in mind that these tests are valid whether 
or not they are preceded by an ANOVA.

Main Effects 
As will be seen, significant main effects in multi-factor designs can be followed up 
in the same way as significant effects in one-way designs. Table 1 shows the data 
from an imaginary experiment with three levels of Factor A and two levels of 
Factor B.
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Table 1. Made-Up Example Data.

Table 2 shows the ANOVA Summary Table for these data. The significant main 
effect of A indicates that, in the population, at least one of the marginal means for 
A is different from at least one of the others.

Table 2. ANOVA Summary Table for Made-Up Example Data.

The Tukey HSD test can be used to test all pairwise comparisons among means in 
a one-factor ANOVA as well as comparisons among marginal means in a multi-
factor ANOVA. The formula for the equal-sample-size case is shown below.

 A1 A2 A3 Marginal Means

B1

5 9 5

7.08

4 8 9

6 7 9

5 8 8

Mean = 5 Mean = 8 Mean = 8.25

B2

4 8 8

6.5

3 6 9

6 8 7

8 5 6

Mean = 5.25 Mean = 6.75 Mean = 7.50

Marginal Means 5.125 7.375 7.875 6.79

Source df SSQ MS F p

A 2 34.333 17.17 9.29 0.002

B 1 2.042 2.04 1.1 0.307

A x B 2 2.333 1.167 0.63 0.543

Error 18 33.25 1.847   

Total 23 71.958   
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where Mi and Mj are marginal means, MSE is the mean square error from the 
ANOVA, and n is the number of scores each mean is based upon. For this example, 
MSE = 1.847 and n = 8 because there are eight scores at each level of A. The 
probability value can be computed using the Studentized Range Calculator. The 
degrees of freedom is equal to the degrees of freedom error. For this example, df = 
18. The results of the Tukey HSD test are shown in Table 3. The mean for A1 is 
significantly lower than the mean for A2 and the mean for A3. The means for A2 
and A3 are not significantly different.

Table 3. Pairwise Comparisons Among Marginal Means for A.

Specific comparisons among means are also carried out much the same way as 
shown in the relevant section on testing means. The formula for L is

 

where ci is the coefficient for the ith marginal mean and Mi is the ith marginal mean. 
For example, to compare A1 with the average of A2 and A3, the coefficients would 
be 1, -0.5, -0.5. Therefore,

L = (1)(5.125) + (-0.5)(7.375) + (-0.5)(7.875) 

= -2.5. 

To compute t, use:
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A1 - A2 -2.25 -4.68 0.01
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A2 - A3 -0.5 -1.04 0.746
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= -4.25 

where MSE is the mean square error from the ANOVA and n is the number of 
scores each marginal mean is based on (eight in this example). The degrees of 
freedom is the degrees of freedom error from the ANOVA and is equal to 18. Using 
the Online Calculator, we find that the two-tailed probability value is 0.0005. 
Therefore, the difference between A1 and the average of A2 and A3 is significant.

Important issues concerning multiple comparisons and orthogonal 
comparisons are discussed in the Specific Comparisons section in the Testing 
Means chapter.

Interactions 
The presence of a significant interaction makes the interpretation of the results 
more complicated. Since an interaction means that the simple effects are different, 
the main effect as the mean of the simple effects does not tell the whole story. This 
section discusses how to describe interactions, proper and improper uses of simple 
effects tests, and how to test components of interactions.

Describing Interactions 
A crucial first step in understanding a significant interaction is constructing an 
interaction plot. Figure 1 shows an interaction plot from data presented in the 
section on Multi-Factor ANOVA.
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Figure 1. Interaction plot for made-up data.

The second step is to describe the interaction in a clear and understandable way. 
This is often done by describing how the simple effects differed. Since this should 
be done using as little jargon as possible, the expression “simple effect” need not 
appear in the description. An example is as follows:

 
The effect of  Outcome differed depending on the subject's self-
esteem. The difference between the attribution to self  following 
success and the attribution to self  following failure was larger for 
high-self-esteem subjects (mean difference = 2.50) than for low-
self-esteem subjects (mean difference = -2.33). 

No further analyses are helpful in understanding the interaction since the 
interaction means only that the simple effects differ. The interaction's significance 
indicates that the simple effects differ from each other, but provides no information 
about whether they differ from zero.
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Simple Effect Tests 
It is not necessary to know whether the simple effects differ from zero in order to 
understand an interaction because the question of whether simple effects differ 
from zero has nothing to do with interaction except that if they are both zero there 
is no interaction. It is not uncommon to see research articles in which the authors 
report that they analyzed simple effects in order to explain the interaction. 
However, this is not a valid approach since an interaction does not depend on the 
analysis of the simple effects.

However, there is a reason to test simple effects following a significant 
interaction. Since an interaction indicates that simple effects differ, it means that 
the main effects are not general. In the made-up example, the main effect of 
Outcome is not very informative, and the effect of outcome should be considered 
separately for high- and low-self-esteem subjects.

As will be seen, the simple effects of Outcome are significant and in 
opposite directions: Success significantly increases attribution to self for high-self-
esteem subjects and significantly lowers attribution to self for low-self-esteem 
subjects. This is a very easy result to interpret.

What would the interpretation have been if neither simple effect had been 
significant? On the surface, this seems impossible: How can the simple effects both 
be zero if they differ from each other significantly as tested by the interaction? The 
answer is that a non-significant simple effect does not mean that the simple effect 
is zero: the null hypothesis should not be accepted just because it is not rejected.
(See section on Interpreting Non-Significant Results)

If neither simple effect is significant, the conclusion should be that the 
simple effects differ, and that at least one of them is not zero. However, no 
conclusion should be drawn about which simple effect(s) is/are not zero.

Another error that can be made by mistakenly accepting the null hypothesis 
is to conclude that two simple effects are different because one is significant and 
the other is not. Consider the results of an imaginary experiment in which the 
researcher hypothesized that addicted people would show a larger increase in brain 
activity following some treatment than would non-addicted people. In other words, 
the researcher hypothesized that addiction status and treatment would interact. The 
results shown in Figure 2 are very much in line with the hypothesis. However, the 
test of the interaction resulted in a probability value of 0.08, a value not quite low 
enough to be significant at the conventional 0.05 level. The proper conclusion is 
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that the experiment supports the researcher's hypothesis, but not strongly enough to 
allow a confident conclusion. 

Figure 2. Made-up data with one significant simple effect.

Unfortunately, the researcher was not satisfied with such a weak conclusion and 
went on to test the simple effects. It turned out that the effect of Treatment was 
significant for the Addicted group (p = 0.02) but not significant for the Non-
Addicted group (p = 0.09). The researcher then went on to conclude that since 
there is an effect of Treatment for the Addicted group but not for the Non-Addicted 
group, the hypothesis of a greater effect for the former than for the latter group is 
demonstrated. This is faulty logic, however, since it is based on accepting the null 
hypothesis that the simple effect of Treatment is zero for the Non-Addicted group 
just because it is not significant.

Components of Interaction (optional) 
Figure 3 shows the results of an imaginary experiment on diet and weight loss. A 
control group and two diets were used for both overweight teens and overweight 
adults.
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Figure 3. Made-up Data for Diet Study.
 
The difference between Diet A and the Control diet was essentially the same for 
teens and adults, whereas the difference between Diet B and Diet A was much 
larger for the teens than it was for the adults. Over one portion of the graph the 
lines are parallel, whereas over another portion they are not. It is possible to test 
these portions or components of interactions using the method of specific 
comparisons discussed previously. The test of the difference between Teens and 
Adults on the difference between Diets A and B could be tested with the 
coefficients shown in Table 4. Naturally, the same consideration regarding multiple 
comparisons and orthogonal comparisons that apply to other comparisons among 
means also apply to comparisons involving components of interactions. 
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Table 4. Coefficients for a Component of the Interaction.

Age Group Diet Coefficient

Teen Control 0

Teen A 1

Teen B -1

Adult Control 0

Adult A -1

Adult B 1
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Within-Subjects ANOVA 
by David M. Lane 

Prerequisites
• Chapter 12: Difference Between Two Means (Correlated Pairs)
• Chapter 15: Additional Measures of Central Tendency
• Chapter 15: Introduction to ANOVA
• Chapter 15: ANOVA Designs, Multi-Factor ANOVA

Learning Objectives
1. Define a within-subjects factor
2. Explain why a within-subjects design can be expected to have more power than 

a between-subjects design
3. Be able to create the Source and df columns of an ANOVA summary table for a 

one-way within-subjects design
4. Explain error in terms of interaction
5. Discuss the problem of carryover effects
6. Be able to create the Source and df columns of an ANOVA summary table for a 

design with one between-subjects and one within-subjects variable
7. Define sphericity
8. Describe the consequences of violating the assumption of sphericity
9. Discuss courses of action that can be taken if sphericity is violated
Within-subjects factors involve comparisons of the same subjects under different 
conditions. For example, in the “ADHD Treatment” study, each child's 
performance was measured four times, once after being on each of four drug doses 
for a week. Therefore, each subject's performance was measured at each of the four 
levels of the factor “Dose.” Note the difference from between-subjects factors for 
which each subject's performance is measured only once and the comparisons are 
among different groups of subjects. A within-subjects factor is sometimes referred 
to as a repeated-measures factor since repeated measurements are taken on each 
subject. An experimental design in which the independent variable is a within-
subjects factor is called a within-subjects design.

An advantage of within-subjects designs is that individual differences in 
subjects' overall levels of performance are controlled. This is important because 
subjects invariably will differ from one another. In an experiment on problem 
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solving, some subjects will be better than others regardless of the condition they 
are in. Similarly, in a study of blood pressure some subjects will have higher blood 
pressure than others regardless of the condition. Within-subjects designs control 
these individual differences by comparing the scores of a subject in one condition 
to the scores of the same subject in other conditions. In this sense each subject 
serves as his or her own control. This typically gives within-subjects designs 
considerably more power than between-subjects designs.

One-Factor Designs 
Let's consider how to analyze the data from the “ADHD Treatment” case study. 
These data consist of the scores of 24 children with ADHD on a delay of 
gratification (DOG) task. Each child was tested under four dosage levels. For now, 
we will be concerned only with testing the difference between the mean in the 
placebo condition (the lowest dosage, D0) and the mean in the highest dosage 
condition (D60). The details of the computations are relatively unimportant since 
they are almost universally done by computers. Therefore we jump right to the 
ANOVA Summary table shown in Table 1.

Table 1. ANOVA Summary Table

The first source of variation, “Subjects,” refers to the differences among subjects. 
If all the subjects had exactly the same mean (across the two dosages), then the 
sum of squares for subjects would be zero; the more subjects differ from each 
other, the larger the sum of squares subjects.

Dosage refers to the differences between the two dosage levels. If the means 
for the two dosage levels were equal, the sum of squares would be zero. The larger 
the difference between means, the larger the sum of squares.

The error reflects the degree to which the effect of dosage is different for 
different subjects. If subjects all responded very similarly to the drug, then the 
error would be very low. For example, if all subjects performed moderately better 

Source df SSQ MS F p

Subjects 23 5781.98 251.39   

Dosage 1 295.02 295.02 10.38 0.004

Error 23 653.48 28.41   

Total 47 6730.48    
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with the high dose than they did with the placebo, then the error would be low. On 
the other hand, if some subjects did better with the placebo while others did better 
with the high dose, then the error would be high. It should make intuitive sense that 
the less consistent the effect of dosage, the larger the dosage effect would have to 
be in order to be significant. The degree to which the effect of dosage differs 
depending on the subject is the Subjects x Dosage interaction. Recall that an 
interaction occurs when the effect of one variable differs depending on the level of 
another variable. In this case, the size of the error term is the extent to which the 
effect of the variable “Dosage” differs depending on the level of the variable 
“Subjects.” Note that each subject is a different level of the variable “Subjects.”

Other portions of the summary table have the same meaning as in between-
subjects ANOVA. The F for dosage is the mean square for dosage divided by the 
mean square error. For these data, the F is significant with p = 0.004. Notice that 
this F test is equivalent to the t test for correlated pairs, with F = t2.

Table 2 shows the ANOVA Summary Table when all four doses are included 
in the analysis. Since there are now four dosage levels rather than two, the df for 
dosage is three rather than one. Since the error is the Subjects x Dosage interaction, 
the df for error is the df for “Subjects” (23) times the df for Dosage (3) and is equal 
to 69.

Table 2. ANOVA Summary Table

Carryover Effects 
Often performing in one condition affects performance in a subsequent condition 
in such a way as to make a within-subjects design impractical. For example, 
consider an experiment with two conditions. In both conditions subjects are 
presented with pairs of words. In Condition A, subjects are asked to judge whether 
the words have similar meaning whereas in Condition B, subjects are asked to 
judge whether they sound similar. In both conditions, subjects are given a surprise 

Source df SSQ MS F p

Subjects 23 9065.49 394.15   

Dosage 3 557.61 185.87 5.18 0.003

Error 69 2476.64 35.89   

Total 95 12099.74    
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memory test at the end of the presentation. If Condition were a within-subjects 
variable, then there would be no surprise after the second presentation and it is 
likely that the subjects would have been trying to memorize the words.

Not all carryover effects cause such serious problems. For example, if 
subjects get fatigued by performing a task, then they would be expected to do 
worse on the second condition they were in. However, as long as the order of 
presentation is counterbalanced so that half of the subjects are in Condition A first 
and Condition B second, the fatigue effect itself would not invalidate the results, 
although it would add noise and reduce power. The carryover effect is symmetric 
in that having Condition A first affects performance in Condition B to the same 
degree that having Condition B first affects performance in Condition A.

Asymmetric carryover effects cause more serious problems. For example, 
suppose performance in Condition B were much better if preceded by Condition A, 
whereas performance in Condition A was approximately the same regardless of 
whether it was preceded by Condition B. With this kind of carryover effect, it is 
probably better to use a between-subjects design.

One Between- and One Within-Subjects Factor 
In the “Stroop Interference” case study, subjects performed three tasks: naming 
colors, reading color words, and naming the ink color of color words. Some of the 
subjects were males and some were females. Therefore, this design had two 
factors: gender and task. The ANOVA Summary Table for this design is shown in 
Table 3.

Table 3. ANOVA Summary Table for Stroop Experiment

The computations for the sums of squares will not be covered since computations 
are normally done by software. However, there are some important things to learn 

Source df SSQ MS F p

Gender 1 83.32 83.32 1.99 0.165

Error 45 1880.56 41.79   

Task 2 9525.97 4762.99 228.06 <0.001

Gender x 
Task

2 55.85 27.92 1.34 0.268

Error 90 1879.67 20.89   
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from the summary table. First, notice that there are two error terms: one for the 
between-subjects variable Gender and one for both the within-subjects variable 
Task and the interaction of the between-subjects variable and the within-subjects 
variable. Typically, the mean square error for the between-subjects variable will be 
higher than the other mean square error. In this example, the mean square error for 
Gender is about twice as large as the other mean square error.

The degrees of freedom for the between-subjects variable is equal to the 
number of levels of the between-subjects variable minus one. In this example, it is 
one since there are two levels of gender. Similarly, the degrees of freedom for the 
within-subjects variable is equal to the number of levels of the variable minus one. 
In this example, it is two since there are three tasks. The degrees of freedom for the 
interaction is the product of the degrees of freedom for the two variables. For the 
Gender x Task interaction, the degrees of freedom is the product of degrees of 
freedom Gender (which is 1) and the degrees of freedom Task (which is 2) and is 
equal to 2.

Assumption of Sphericity 
Within-subjects ANOVA makes a restrictive assumption about the variances and 
the correlations among the dependent variables. Although the details of the 
assumption are beyond the scope of this book, it is approximately correct to say 
that it is assumed that all the correlations are equal and all the variances are equal. 
Table 4 shows the correlations among the three dependent variables in the Stroop 
Interference case study.

Table 4. Correlations Among Dependent Variables

Note that the correlation between the word reading and the color naming variables 
of 0.7013 is much higher than the correlation between either of these variables 
with the interference variable. Moreover, as shown in Table 5, the variances among 
the variables differ greatly.

 word reading color 
naming

interference

word reading 1 0.7013 0.1583

color naming 0.7013 1 0.2382

interference 0.1583 0.2382 1
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Table 5. Variances.

Naturally the assumption of sphericity, like all assumptions, refers to populations 
not samples. However, it is clear from these sample data that the assumption is not 
met in the population.

Consequences of Violating the Assumption of Sphericity 
Although ANOVA is robust to most violations of its assumptions, the assumption 
of sphericity is an exception: Violating the assumption of sphericity leads to a 
substantial increase in the Type I error rate. Moreover, this assumption is rarely 
met in practice. Although violations of this assumption had at one time received 
little attention, the current consensus of data analysts is that it is no longer 
considered acceptable to ignore them.

 Approaches to Dealing with Violations of Sphericity 
If an effect is highly significant, there is a conservative test that can be used to 
protect against an inflated Type I error rate. This test consists of adjusting the 
degrees of freedom for all within-subjects variables as follows: The degrees of 
freedom numerator and denominator are divided by the number of scores per 
subject minus one. Consider the effect of Task shown in Table 3. There are three 
scores per subject and therefore the degrees of freedom should be divided by two. 
The adjusted degrees of freedom are:

(2)(1/2) = 1 for the numerator and 

(90)(1/2 = 45 for the denominator 

The probability value is obtained using the F probability calculator with the new 
degrees of freedom parameters. The probability of an F of 228.06 of larger with 1 
and 45 degrees of freedom is less than 0.001. Therefore, there is no need to worry 
about the assumption violation in this case.

Variable Variance

word reading 15.77

color naming 13.92

interference 55.07

567



Possible violation of sphericity does make a difference in the interpretation 
of the analysis shown in Table 2. The probability value of an F or 5.18 with 1 and 
23 degrees of freedom is 0.032, a value that would lead to a more cautious 
conclusion than the p value of 0.003 shown in Table 2.

The correction described above is very conservative and should only be used 
when, as in Table 3, the probability value is very low. A better correction, but one 
that is very complicated to calculate, is to multiply the degrees of freedom by a 
quantity called ε (the Greek letter epsilon). There are two methods of calculating ε. 
The correction called the Huynh-Feldt (or H-F) is slightly preferred to the one 
called the Greenhouse Geisser (or G-G), although both work well. The G-G 
correction is generally considered a little too conservative.

A final method for dealing with violations of sphericity is to use a 
multivariate approach to within-subjects variables. This method has much to 
recommend it, but it is beyond the scope of this text.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 15: Multi-factor ANOVA

A research design to compare three drugs for the treatment of Alzheimer's disease 
is described here. For the first two years of the study, researchers will follow the 
subjects with scans and memory tests.
 
What do you think?
Assume the data were analyzed as a two-factor design with pre-post testing as one 
factor and the three drugs as the second factor. What term in an ANOVA would 
reflect whether the pre-post change was different for the three drugs??

It would be the interaction of  the two factors since the question 
is whether the effect of  one factor (pre-post) differs as a function 
of  the level of  a second factor (drug). 
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Exercises 

Prerequisites
• All material presented in the ANOVA Chapter

1. What is the null hypothesis tested by analysis of variance?

2. What are the assumptions of between-subjects analysis of variance?

3. What is a between-subjects variable?

4. Why not just compute t-tests among all pairs of means instead computing an 
analysis of variance?

5. What is the difference between “N” and “n”? 

6. How is it that estimates of variance can be used to test a hypothesis about 
means?

7. Explain why the variance of the sample means has to be multiplied by “n” in the 
computation of MSbetween.

8. What kind of skew does the F distribution have?

9. When do MSbetween and MSerror estimate the same quantity?

10. If an experiment is conducted with 5 conditions and 6 subjects in each 
condition, what are dfn and dfe?

11. How is the shape of the F distribution affected by the degrees of freedom?

12. What are the two components of the total sum of squares in a one-factor 
between-subjects design?

13. How is the mean square computed from the sum of squares?

14. An experimenter is interested in the effects of two independent variables on 
self-esteem. What is better about conducting a factorial experiment than 
conducting two separate experiments, one for each independent variable?
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15. An experiment is conducted on the effect of age (5 yr, 10 yr and 15 yr) and 
treatment condition (experimental versus control) on reading speed. Which 
statistical term (main effect, simple effect, interaction, specific comparison) 
applies to each of the descriptions of effects.
a. The effect of the treatment was larger for 15-year olds than it was for 5- or 
10-year olds.
b. Overall, subjects in the treatment condition performed faster than subjects in 
the control condition.
c. The age effect was significant under the treatment condition.
d. The difference between the 15- year olds and the average of the 5- and 10-
year olds was significant.
e. As they grow older, children read faster.

16. An A(3) x B(4) factorial design with 6 subjects in each group is analyzed. Give 
the source and degrees of freedom columns of the analysis of variance 
summary table.

17. The following data are from a hypothetical study on the effects of age and time 
on scores on a test of reading comprehension. Compute the analysis of variance 
summary table.

	

18. Define “Three-way interaction”
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19. Define interaction in terms of simple effects.

20. Plot an interaction for an A(2) x B(2) design in which the effect of B is greater 
at A1 than it is at A2. The dependent variable is “Number correct.” Make sure 
to label both axes.

21. Following are two graphs of population means for 2 x 3 designs. For each 
graph, indicate which effect(s) (A, B, or A x B) are nonzero.

22. The following data are from an A(2) x B(4) factorial design.

	
a. Compute an analysis of variance. 
b. Test differences among the four levels of B using the Bonferroni correction. 
c. Test the linear component of trend for the effect of B. 
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d. Plot the interaction. 
e. Describe the interaction in words.

23. Why are within-subjects designs usually more powerful than between-subjects 
design?

24. What source of variation is found in an ANOVA summary table for a within-
subjects design that is not in in an ANOVA summary table for a between-
subjects design. What happens to this source of variation in a between-subjects 
design?

25. The following data contain three scores from each of five subjects. The three 
scores per subject are their scores on three trials of a memory task.

a. Compute an ANOVA 
b. Test all pairwise differences between means using the Bonferroni test at the 
.01 level. 
c. Test the linear and quadratic components of trend for these data.

26. Give the source and df columns of the ANOVA summary table for the 
following experiments:
a. Twenty two subjects are each tested on a simple reaction time task and on a 
choice reaction time task.
b. Twelve male and 12 female subjects are each tested under three levels of 
drug dosage: 0 mg, 10 mg, and 20 mg.
c. Twenty subjects are tested on a motor learning task for three trials a day for 
two days.
d. An experiment is conducted in which depressed people are either assigned to 
a drug therapy group, a behavioral therapy group, or a control group. Ten 
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subjects are assigned to each group. The level of measured once a month for 
four months.

Questions from Case Studies

Stroop Interference (S) case study

27. (S) The dataset Stroop Interference has the scores (times) for males and 
females on each of three tasks.
a. Do a Gender (2) x Task (3) analysis of variance. 
b. Plot the interaction.

ADHD Treatment (AT) case study

28. (AT) The dataset ADHD Treatment has four scores per subject. a. Is the design 
between-subjects or within-subjects? b. Create an ANOVA summary table.

29. (AT) Using the Anger Expression Index from the Angry Moods study as the 
dependent variable, perform a 2x2 ANOVA with gender and sports 
participation as the two factors. Do athletes and non-athletes differ significantly 
in how much anger they express? Do the genders differ significantly in Anger 
Expression Index? Is the effect of sports participation significantly different for 
the two genders?

Weapons and Aggression (WA) case study

30. (WA) Using the Weapons and Aggression data, Compute a 2x2 ANOVA with 
the follow- ing two factors: prime type (was the first word a weapon or not?) 
and word type (was the second word aggressive or non-aggressive?). Consider 
carefully whether the variables are between-subject or within-subjects 
variables.

“Smiles and Leniency” (SL) case study
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31. (SL) Compute the ANOVA summary table for the smiles and leniency data.
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16. Transformations 
A.  Log
B.  Tukey's Ladder of Powers
C.  Box-Cox Transformations
D.  Exercises 
The focus of statistics courses is the exposition of appropriate methodology to 
analyze data to answer the question at hand. Sometimes the data are given to you, 
while other times the data are collected as part of a carefully-designed experiment. 
Often the time devoted to statistical analysis is less than 10% of the time devoted 
to data collection and preparation. If aspects of the data preparation fail, then the 
success of the analysis is in jeopardy. Sometimes errors are introduced into the 
recording of data. Sometimes biases are inadvertently introduced in the selection of 
subjects or the mis-calibration of monitoring equipment. 

In this chapter, we focus on the fact that many statistical procedures work 
best if individual variables have certain properties. The measurement scale of a 
variable should be part of the data preparation effort. For example, the correlation 
coefficient does not require the variables have a normal shape, but often 
relationships can be made clearer by re-expressing the variables. An economist 
may choose to analyze the logarithm of prices if the relative price is of interest. A 
chemist may choose to perform a statistical analysis using the inverse temperature 
as a variable rather than the temperature itself. But note that the inverse of a 
temperature will differ depending on whether it is measured in °F, °C, or °K.

The introductory chapter covered linear transformations. These 
transformations normally do not change statistics such as Pearson’s r, although 
they do affect the mean and standard deviation. The first section here is on log 
transformations which are useful to reduce skew. The second section is on Tukey’s 
ladder of powers. You will see that log transformations are a special case of the 
ladder of powers. Finally, we cover the relatively advanced topic of the Box-Cox 
transformation.
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Log Transformations 
by David M. Lane 

Prerequisites
• Chapter 1: Logarithms
• Chapter 1: Shapes of Distributions
• Chapter 3: Additional Measures of Central Tendency
• Chapter 4: Introduction to Bivariate Data

Learning Objectives
1. State how a log transformation can help make a relationship clear
2. Describe the relationship between logs and the geometric mean

The log transformation can be used to make highly skewed distributions less 
skewed. This can be valuable both for making patterns in the data more 
interpretable and for helping to meet the assumptions of inferential statistics.

Figure 1 shows an example of how a log transformation can make patterns 
more visible. Both graphs plot the brain weight of animals as a function of their 
body weight. The raw weights are shown in the upper panel; the log-transformed 
weights are plotted in the lower panel.

body weights: Fit Y by X of Brain by Body/1000 Page 1 of 1

-1000

0

1000

2000

3000

4000

5000

6000

7000

Br
ai

n

0 10000 20000 30000 40000 50000 60000 70000 80000
Body/1000

Bivariate Fit of Brain By Body/1000

577



Figure 1. Scatter plots of brain weight as a function of body weight in terms 
of both raw data (upper panel) and log-transformed data (lower 
panel).

It is hard to discern a pattern in the upper panel whereas the strong relationship is 
shown clearly in the lower panel.

The comparison of the means of log-transformed data is actually a 
comparison of geometric means. This occurs because, as shown below, the anti-log 
of the arithmetic mean of log-transformed values is the geometric mean.

Table 1 shows the logs (base 10) of the numbers 1, 10, and 100. The 
arithmetic mean of the three logs is

(0 + 1 + 2)/3 = 1 

The anti-log of this arithmetic mean of 1 is:

101 = 10 
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which is the geometric mean:

(1 x 10 x 100).3333 = 10. 

Table 1. Logarithms.

Therefore, if the arithmetic means of two sets of log-transformed data are equal 
then the geometric means are equal.

X Log10(X)

1 
10 

100

0 
1 
2
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Tukey Ladder of  Powers 
by David W. Scott 

Prerequisites
• Chapter 1: Logarithms 
• Chapter 4: Bivariate Data
• Chapter 4: Values of Pearson Correlation 
• Chapter 12: Independent Groups t Test
• Chapter 13: Introduction to Power
• Chapter 16: Tukey Ladder of Powers

Learning Objectives
1. Give the Tukey ladder of transformations
2. Find a transformation that reveals a linear relationship
3. Find a transformation to approximate a normal distribution

Introduction 
We assume we have a collection of bivariate data

(x1,y1),(x2,y2),...,(xn,yn) 

and that we are interested in the relationship between variables x and y. Plotting the 
data on a scatter diagram is the first step. As an example, consider the population of 
the United States for the 200 years before the Civil War. Of course, the decennial 
census began in 1790. These data are plotted two ways in Figure 1. Malthus 
predicted that geometric growth of populations coupled with arithmetic growth of 
grain production would have catastrophic results. Indeed the US population 
followed an exponential curve during this period.
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Figure 1. The US population from 1670 - 1860. The Y-axis on the right panel 
is on a log scale.

Tukey's Transformation Ladder 
Tukey (1977) describes an orderly way of re-expressing variables using a power 
transformation. You may be familiar with polynomial regression (a form of 
multiple regression) in which the simple linear model y = b0 + b1X is extended 
with terms such as b2x2 + b3x3 + b4x4. Alternatively, Tukey suggests exploring 
simple relationships such as

y = b0 + b1Xλ or yλ = b0 + b1X (Equation 1) 

where λ is a parameter chosen to make the relationship as close to a straight line as 
possible. Linear relationships are special, and if a transformation of the type xλ or 
yλ works as in Equation (1), then we should consider changing our measurement 
scale for the rest of the statistical analysis.

There is no constraint on values of λ that we may consider. Obviously 
choosing λ = 1 leaves the data unchanged. Negative values of λ are also 
reasonable. For example, the relationship

y = b0 + b1/x 

would be represented by λ = −1. The value λ = 0 has no special value, since X0 = 1, 
which is just a constant. Tukey (1977) suggests that it is convenient to simply 
define the transformation when λ = 0 to be the logarithm function rather than the 

2 Tukey’s Transformation Ladder

We assume we have a collection of bivariate data

(x1, y1), (x2, y2), . . . , (xn, yn)

and that we are interested in the relationship between variables x and y.
Plotting the data on a scatter diagram is first step.

As an example, consider the population of the United States for the 200
years before the Civil War. Of course, the decennial census began in 1790.
These data are plotted two ways in Figure 1. Malthus predicted that geomet-
ric growth of populations coupled with arithmetic growth of grain production
would have catastrophic results. Indeed the US population followed an ex-
ponential curve during this period.
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Figure 1: The US population from 1670 - 1860 on graph and semi-log scales.

Tukey (1977) describes an orderly way of re-expressing variables using a
power transformation. You should be familiar with polynomial regression,
where the simple linear model y = b0 + b1x is extended with terms such as
b2x2 + b3x3 + b4x4. Alternatively, Tukey suggests exploring simple relation-
ships such as

y = b0 + b1x
� or y� = b0 + b1x , (1)

where � is a parameter chosen to make the relationship as close to a straight
line as possible. Linear relationships are special, and if a transformation of

2
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constant 1. We shall revisit this convention shortly. The following table gives 
examples of the Tukey ladder of transformations.

Table 1. Tukey's Ladder of Transformations

If x takes on negative values, then special care must be taken so that the 
transformations make sense, if possible. We generally limit ourselves to variables 
where x > 0 to avoid these considerations. For some dependent variables such as 
the number of errors, it is convenient to add 1 to x before applying the 
transformation.

Also, if the transformation parameter λ is negative, then the transformed 
variable xλ is reversed. For example, if x is increasing, then 1/x is decreasing. We 
choose to redefine the Tukey transformation to be -(xλ) if λ < 0 in order to preserve 
the order of the variable after transformation. Formally, the Tukey transformation 
is defined as

 
In Table 2 we reproduce Table 1 but using the modified definition when λ < 0. 

Table 2. Modified Tukey's Ladder of Transformations 

the type x� or y� works as in Equation (1), then we should consider changing
our measurement scale for the rest of the statistical analysis.

There is no constraint on values of � that we may consider. Obviously
choosing � = 1 leaves the data unchanged. Negative values of � are also
reasonable. For example, the relationship

y = b0 +
b1

x

would be represented by � = �1. The value � = 0 has no special value, since
x0 = 1, which is just a constant. Tukey (1977) suggests that it is convenient
to simply define the transformation when � = 0 to be the logarithm function
rather than the constant 1. We shall revisit this convention shortly. The
following table gives examples of the Tukey ladder of transformations.

Table 1: Tukey’s Ladder of Transformation

� -2 -1 -1/2 0 1/2 1 2

Xfm 1
x2

1
x

1p
x log x

p
x x x2

If x takes on negative values, then special care must be taken so that
the transformations make sense, if possible. We generally limit ourselves to
variables where x > 0 to avoid these considerations.

Also, if the transformation parameter is negative, then the transformed
variable x� is reversed. For example, if x is increasing, then 1/x is decreasing.
We choose to redefine the Tukey transformation to be �x� if � < 0 in order to
preserve the order of the variable after transformation. Formally, the Tukey
transformation is defined to be

x̃� =

8
<

:

x� if � > 0
log x if � = 0
�(x�) if � < 0

(2)

In Table 2 we reproduce Table 1 but using the modified definition when
� < 0.
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Table 2: Modified Tukey’s Ladder of Transformation

� -2 -1 -1/2 0 1/2 1 2

Xfm �1
x2

�1
x

�1p
x log x

p
x x x2

3 The Best Transformation

The goal is to find a value of � that makes the scatter diagram as linear as
possible. For the US population, the logarithmic transformation applied to
y makes the relationship almost perfectly linear. The red dashed line in the
right frame of Figure 1 has a slope of about 1.35; that is, the US population
grew at a rate of about 35% per decade.

The logarithmic transformation corresponds to the choice � = 0 by
Tukey’s convention. In Figure 2, we display the scatter diagram (x, ỹ�) of
the US population data for other choices of �.
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Figure 2: The US population from 1670 to 1860 for various values of �.

The raw data are plotted in the bottom right frame of Figure 2 when
� = 1. The logarithmic fit is in the upper right frame when � = 0. Notice how
the scatter diagram smoothly morphs from concave to convex as � increases.
Thus intuitively there is a unique best choice of � corresponding to the “most
linear” graph.
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The Best Transformation for Linearity 
The goal is to find a value of λ that makes the scatter diagram as linear as possible. 
For the US population, the logarithmic transformation applied to y makes the 
relationship almost perfectly linear. The red dashed line in the right frame of Figure 
1 has a slope of about 1.35; that is, the US population grew at a rate of about 35% 
per decade.

The logarithmic transformation corresponds to the choice λ = 0 by Tukey's 
convention. In Figure 2, we display the scatter diagram of the US population data 
for λ = 0 as well as for other choices of λ.

Figure 2. The US population from 1670 to 1860 for various values of λ.

The raw data are plotted in the bottom right frame of Figure 2 when λ = 1. The 
logarithmic fit is in the upper right frame when λ = 0. Notice how the scatter 
diagram smoothly morphs from convex to concave as λ increases. Thus intuitively 
there is a unique best choice of λ corresponding to the “most linear” graph.

One way to make this choice objective is to use an objective function for this 
purpose. One approach might be to fit a straight line to the transformed points and 
try to minimize the residuals. However, an easier approach is based on the fact that 
the correlation coefficient, r, is a measure of the linearity of a scatter diagram. In 
particular, if the points fall on a straight line then their correlation will be r = 1. 
(We need not worry about the case when r = −1 since we have defined the Tukey 
transformed variable xλ to be positively correlated with x itself.)
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Tukey’s convention. In Figure 2, we display the scatter diagram (x, ỹ�) of
the US population data for other choices of �.
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Figure 2: The US population from 1670 to 1860 for various values of �.

The raw data are plotted in the bottom right frame of Figure 2 when
� = 1. The logarithmic fit is in the upper right frame when � = 0. Notice how
the scatter diagram smoothly morphs from concave to convex as � increases.
Thus intuitively there is a unique best choice of � corresponding to the “most
linear” graph.
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In Figure 3, we plot the correlation coefficient of the scatter diagram  
as a function of λ. It is clear that the logarithmic transformation (λ = 0) is nearly 
optimal by this criterion.

Figure 3. Graph of US population correlation coefficient as function of λ.

Is the US population still on the same exponential growth pattern? In Figure 4 we 
display the US population from 1630 to 2000 using the transformation and fit used 
in the right frame of Figure 1. Fortunately, the exponential growth (or at least its 
rate) was not sustained into the Twentieth Century. If it had, the US population in 
the year 2000 would have been over 2 billion (2.07 to be exact), larger than the 
population of China.

One way to make this choice objective is to use an objective function for
this purpose. One approach might be to fit a straight line to the transformed
points and try to minimize the residuals. However, a easier approach is
to recall that the correlation coe�cient is a measure of the linearity of a
scatter diagram. In particular, if the points fall on a straight line then their
correlation will be ⇢ = 1. (We need not worry about the case when ⇢ = �1
since we have defined the Tukey transformed variable x̃� to be positively
correlated with x itself.)

In Figure 3, we plot the correlation coe�cient of the scatter diagram
(x, ỹ�) as a function of �. It is clear that the logarithmic transformation
(� = 0) is nearly optimal by this criterion.
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Is the US population still on the same exponential growth pattern? In
Figure 4 we display the US population from 1630 to 2000 using the transfor-
mation and fit as in the right frame of Figure 1. Fortunately, the exponential
growth (or at least its rate) was not sustained into the Twentieth Century.
If it had, the US population in the year 2000 would have been over 2 billion
(2.07 to be exact), larger than the population of China.
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Is the US population still on the same exponential growth pattern? In
Figure 4 we display the US population from 1630 to 2000 using the transfor-
mation and fit as in the right frame of Figure 1. Fortunately, the exponential
growth (or at least its rate) was not sustained into the Twentieth Century.
If it had, the US population in the year 2000 would have been over 2 billion
(2.07 to be exact), larger than the population of China.
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Figure 4. Graph of US population 1630-2000 with λ = 0.
We can examine the decennial census population figures of individual states as 
well. In Figure 5 we display the population data for the state of New York from 
1790 to 2000, together with an estimate of the population in 2008. Clearly 
something unusual happened starting in 1970. (This began the period of mass 
migration to the West and South as the rust belt industries began to shut down.) 
Thus, we compute the best λ value using the data from 1790-1960 in the middle 
frame of Figure 5. The right frame displays the transformed data, together with the 
linear fit for the 1790-1960 period. The value of λ = 0.41 is not obvious and one 
might reasonably choose to use λ = 0.50 for practical reasons.

Figure 5. Graphs related to the New York state population 1790-2008.
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Figure 4: Graph of US population 1630-2000 with � = 0.

We can examine the decennial census population figures of individual
states as well. In Figure 5 we display the population data for the state of
New York from 1790 to 2000, together with an estimate of the population in
2008. Clearly something unusual happened starting in 1970. (This began the
period of mass migration to the West and South as the rust belt industries
began to shut down.) Thus we compute the best � value using the data from
1790-1960 in the middle frame of Figure 5. The right frame displays the
transformed data, together with the linear fit for the 1790-1960 period. The
physical value of � = 0.41 is not obvious and one might reasonably choose
to use � = 0.50 for practical reasons.
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We can examine the decennial census population figures of individual
states as well. In Figure 5 we display the population data for the state of
New York from 1790 to 2000, together with an estimate of the population in
2008. Clearly something unusual happened starting in 1970. (This began the
period of mass migration to the West and South as the rust belt industries
began to shut down.) Thus we compute the best � value using the data from
1790-1960 in the middle frame of Figure 5. The right frame displays the
transformed data, together with the linear fit for the 1790-1960 period. The
physical value of � = 0.41 is not obvious and one might reasonably choose
to use � = 0.50 for practical reasons.
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If we look at one of the younger states in the West, the picture is different. Arizona 
has attracted many retirees and immigrants. Figure 6 summarizes our findings. 
Indeed, the growth of population in Arizona is logarithmic, and appears to still be 
logarithmic through 2005.

Figure 6. Graphs related to the Arizona state population 1910-2005.

Reducing Skew 
Many statistical methods such as t tests and the analysis of variance assume normal 
distributions. Although these methods are relatively robust to violations of 
normality, transforming the distributions to reduce skew can markedly increase 
their power.

As an example, the data in the “Stereograms” case study is very skewed. A t 
test of the difference between the two conditions using the raw data results in a p 
value of 0.056, a value not conventionally considered significant. However, after a 
log transformation (λ = 0) that reduces the skew greatly, the p value is 0.023 which 
is conventionally considered significant.

The demonstration in Figure 7 shows distributions of the data from the 
Stereograms case study as transformed with various values of λ. Decreasing λ 
makes the distribution less positively skewed. Keep in mind that λ = 1 is the raw 
data. Notice that there is a slight positive skew for λ = 0 but much less skew than 
found in the raw data (λ = 1). Values of below 0 result in negative skew. 

If we look at one of the younger states in the West, the picture is di↵erent.
Arizona has attracted many retirees and immigrants. Figure 6 summarizes
our findings. Indeed, the growth of population in Arizona is logarithmic, and
appears to still be logarithmic through 2005.
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4 Box-Cox Transformation

George Box and Sir David Cox collaborated on one paper (Box, 1964). The
story is that while Cox was visiting Box at Wisconsin, they decided they
should write a paper together because of the similarity of their names (and
that both are British). In fact, Professor Box is married to the daughter of
Sir Ronald Fisher.

The Box-Cox transformation of the variable x is also indexed by �, and
is defined as

x0
� =

x� � 1

�
. (3)

At first glance, although the formula in Equation (3) is a scaled version of
x�, this transformation does not appear to be the same as the Tukey formula
in Equation (2). However, a closer look shows that when � < 0, both x̃� and
x0
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Figure 7. Distribution of data from the Stereogram case study for various 
values of λ.
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Box-Cox Transformations 
by David Scott

Prerequisites

This section assumes a higher level of mathematics background than most other 
sections of this work. 
• Chapter 1: Logarithms 
• Chapter 3: Additional Measures of Central Tendency (Geometic Mean)
• Chapter 4: Bivariate Data
• Chapter 4: Values of Pearson Correlation 
• Chapter 16: Tukey Ladder of Powers

George Box and Sir David Cox collaborated on one paper (Box, 1964). The story 
is that while Cox was visiting Box at Wisconsin, they decided they should write a 
paper together because of the similarity of their names (and that both are British). 
In fact, Professor Box is married to the daughter of Sir Ronald Fisher.

The Box-Cox transformation of the variable x is also indexed by λ, and is 
defined as

(Equation 1) 

At first glance, although the formula in Equation (1) is a scaled version of the 
Tukey transformation xλ, this transformation does not appear to be the same as the 
Tukey formula in Equation (2). However, a closer look shows that when λ < 0, 
both xλ and x′λ change the sign of xλ to preserve the ordering. Of more interest is 
the fact that when λ = 0, then the Box-Cox variable is the indeterminate form 0/0. 
Rewriting the Box-Cox formula as

as λ → 0. This same result may also be obtained using l'Hôpital's rule from your 
calculus course. This gives a rigorous explanation for Tukey's suggestion that the 

If we look at one of the younger states in the West, the picture is di↵erent.
Arizona has attracted many retirees and immigrants. Figure 6 summarizes
our findings. Indeed, the growth of population in Arizona is logarithmic, and
appears to still be logarithmic through 2005.
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Figure 6: Graphs related to the Arizona state population 1910-2005.
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log transformation (which is not an example of a polynomial transformation) may 
be inserted at the value λ = 0.

Notice with this definition of x′λ that x = 1 always maps to the point x′λ = 0 
for all values of λ. To see how the transformation works, look at the examples in 
Figure 1. In the top row, the choice λ = 1 simply shifts x to the value x−1, which is 
a straight line. In the bottom row (on a semi-logarithmic scale), the choice λ = 0 
corresponds to a logarithmic transformation, which is now a straight line. We 
superimpose a larger collection of transformations on a semi-logarithmic scale in 
Figure 2.

Figure 1. Examples of the Box-Cox transformation x′λ versus x for λ = −1, 0, 
1. In the second row, x′λ is plotted against log(x). The red point is at 
(1, 0).

as � ! 0. This same result may also be obtained using l’Hopital’s rule from
your calculus course. This gives a rigorous explanation for Tukey’s sugges-
tion that the log transformation (which is not an example of a polynomial
transformation) may be inserted at the value � = 0.

Notice with this definition of x0
� that x = 1 always maps to the point

x0
� = 0 for all values of �. To see how the transformation works, look at the

examples in Figure 7. In the top row, the choice � = 1 simply shifts x to the
value x�1, which is a straight line. In the bottom row (on a semi-logarithmic
scale), the choice � = 0 corresponds to a logarithmic transformation, which
is now a straight line. We superimpose a larger collection of transformation
on a semi-logarithmic scale in Figure 8.

λ = −1

●

λ = 0

●

λ = 1

●

−1
.0

−0
.5

0.
0

0.
5

1.
0

0.5 1.0 1.5 2.0

λ = −1

●

0.5 1.0 1.5 2.0

λ = 0

●

0.5 1.0 1.5 2.0

λ = 1

●

−1
.0

−0
.5

0.
0

0.
5

1.
0

Figure 7: Examples of the Box-Cox transformation x0
� versus x for � =
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Figure 2. Examples of the Box-Cox transformation  versus log(x) for −2 < λ 
< 3. The bottom curve corresponds to λ = −2 and the upper to λ = 3.

Transformation to Normality 
Another important use of variable transformation is to eliminate skewness and 
other distributional features that complicate analysis. Often the goal is to find a 
simple transformation that leads to normality. In the article on q-q plots, we discuss 
how to assess the normality of a set of data,

x1,x2,...,xn. 

Data that are normal lead to a straight line on the q-q plot. Since the correlation 
coefficients maximized when a scatter diagram is linear, we can use the same 
approach above to find the most normal transformation.
Specifically, we form the n pairs
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Figure 8: Examples of the Box-Cox transformation x0
� versus log(x) for �2 <

� < 3. The bottom curve corresponds to � = �2 and the upper to � = 3.

5 Transformation to Normality

Another important use of variable transformation is to eliminate skewness
and other distributional features that complicate analysis. Often the goal is
to find a simple transformation that leads to normality.

In the article on q-q plots, we discuss how to assess the normality of a set
of data,

x1, x2, . . . , xn .

Data that are normal lead to a straight line on the q-q plot. Since the
correlation coe�cient is maximized when a scatter diagram is linear, we can
use the same approach above to find the most normal transformation.

9
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where Φ−1 is the inverse CDF of the normal density and x(i) denotes the ith sorted 
value of the data set. As an example, consider a large sample of British household 
incomes taken in 1973, normalized to have mean equal to one (n = 7,125). Such 
data are often strongly skewed, as is clear from Figure 3. The data were sorted and 
paired with the 7125 normal quantiles. The value of λ that gave the greatest 
correlation (r = 0.9944) was λ = 0.21.

Figure 3. (L) Density plot of the 1973 British income data. (R) The best 
value of λ is 0.21.

The kernel density plot of the optimally transformed data is shown in the left frame 
of Figure 4. While this figure is much less skewed than in Figure 3, there is clearly 
an extra “component” in the distribution that might reflect the poor. Economists 
often analyze the logarithm of income corresponding to λ = 0; see Figure 4. The 
correlation is only r = 0.9901 in this case, but for convenience, the log-transform 
probably will be preferred.

Specifically, we form the n pairs
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, for i = 1, 2, . . . , n ,

where ��1 is the inverse cdf of the normal density and x(i) denotes the ith

sorted value of the data set.
As an example, consider a large sample of British household incomes

taken in 1973, normalized to have mean equal to one (n = 7125). Such data
are often strongly skewed, as is clear from Figure 9. The data were sorted
and paired with the 7125 normal quantiles. The value of � that gave the
greatest correlation (r = 0.9944) was � = 0.21.
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Figure 9: (L) Density plot of the 1973 British income data. (R) The best
value of � is 0.21.

The kernel density plot of the optimally transformed data is shown in the
left frame of Figure 10. While this figure is much less skewed than in Figure
9, there is clearly an extra “component” in the distribution that might reflect
the poor. Economists often analyze the logarithm of income corresponding
to � = 0; see Figure 10. The correlation is only r = 0.9901 in this case, but
for convenience, the log-transform probably will be preferred.
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value of � is 0.21.

The kernel density plot of the optimally transformed data is shown in the
left frame of Figure 10. While this figure is much less skewed than in Figure
9, there is clearly an extra “component” in the distribution that might reflect
the poor. Economists often analyze the logarithm of income corresponding
to � = 0; see Figure 10. The correlation is only r = 0.9901 in this case, but
for convenience, the log-transform probably will be preferred.
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Figure 4. (L) Density plot of the 1973 British income data transformed with 
λ = 0.21. (R) The log-transform with λ = 0.

Other Applications 
Regression analysis is another application where variable transformation is 
frequently applied. For the model

and fitted model

each of the predictor variables xj can be transformed. The usual criterion is the 
variance of the residuals, given by

Occasionally, the response variable y may be transformed. In this case, care must 
be taken because the variance of the residuals is not comparable as λ varies. Let 

 represent the geometric mean of the response variables.
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Figure 10: (L) Density plot of the 1973 British income data transformed with
�⇤ = 0.21. (R) The log-transform with � = 0.
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ḡy =

 
nY

i=1

yi

!1/n

.

11

Income
−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

Income
D

en
si

ty
−4 −2 0 2

D
en

si
ty

Figure 10: (L) Density plot of the 1973 British income data transformed with
�⇤ = 0.21. (R) The log-transform with � = 0.

6 Other Applications

Regression analysis is another application where variable transformation is
frequently applied. For the model

y = �0 + �1x1 + �2x2 + · · · + �pxp + ✏

and fitted model
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Then the transformed response is defined as

When λ = 0 (the logarithmic case),

For more examples and discussions, see Kutner, Nachtsheim, Neter, and Li (2004).
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Then the transformed response is defined as

y0
� =

y� � 1

� · ḡ��1
y

.

When � = 0 (the logarithmic case),

y0
0 = ḡy · log(y) .

Of course, one can simultaneously transform both the predictor and the
response variables. For more examples and discussions, see Kutner et al.
(2004).
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� · ḡ��1
y

.

When � = 0 (the logarithmic case),

y0
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 16: Logarithms

Many financial web pages give you the option of using a linear or a logarithmic Y-
axis. An example from Google Finance is shown below.

 
What do you think?
To get a straight line with the linear option chosen, the price would have to go up 
the same amount every time period. What would result in a straight line with the 
logarithmic option chosen?

The price would have to go up the same proportion every time 
period. For example, go up 0.1% every day. 

594



References 
Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, Journal of the 

Royal Statistical Society, Series B, 26, 211-252.
Kutner, M., Nachtsheim, C., Neter, J., and Li, W. (2004). Applied Linear Statistical 

Models, McGraw-Hill/Irwin, Homewood, IL.
Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley, Reading, MA.

595



Exercises 

Prerequisites

All Content in This Chapter
1. When is a log transformation valuable? 

2. If  the arithmetic mean of  log10 transformed data were 3, what would be the 
geometric mean? 

3. Using Tukey's ladder of  transformation, transform the following data using a λ 
of  0.5: 9, 16, 25 

4. What value of  λ in Tukey's ladder decreases skew the most? 

5. What value of  λ in Tukey's ladder increases skew the most? 

6. In the ADHD case study, transform the data in the placebo condition (D0) with 
λ's of  .5, 0, -.5, and -1. How does the skew in each of  these compare to the skew 
in the raw data. Which transformation leads to the least skew? 
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17. Chi Square 
A. Chi Square Distribution
B. One-Way Tables
C. Contingency Tables
D. Exercises
Chi Square is a distribution that has proven to be particularly useful in statistics. 
The first section describes the basics of this distribution. The following two 
sections cover the most common statistical tests that make use of the Chi Square 
distribution. The section “One-Way Tables” shows how to use the Chi Square 
distribution to test the difference between theoretically expected and observed 
frequencies. The section “Contingency Tables” shows how to use Chi Square to 
test the association between two nominal variables. This use of Chi Square is so 
common that it is often referred to as the “Chi Square Test.”
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Chi Square Distribution 
by David M. Lane 

Prerequisites
• Chapter 1: Distributions
• Chapter 7: Standard Normal Distribution
• Chapter 10: Degrees of Freedom 

Learning Objectives
1. Define the Chi Square distribution in terms of squared normal deviates
2. Describe how the shape of the Chi Square distribution changes as its degrees of 

freedom increase
A  standard normal deviate is a random sample from the standard normal 
distribution. The Chi Square distribution is the distribution of the sum of squared 
standard normal deviates. The degrees of freedom of the distribution is equal to the 
number of standard normal deviates being summed. Therefore, Chi Square with 
one degree of freedom, written as χ2(1), is simply the distribution of a single 
normal deviate squared. The area of a Chi Square distribution below 4 is the same 
as the area of a standard normal distribution below 2, since 4 is 22.

Consider the following problem: you sample two scores from a standard 
normal distribution, square each score, and sum the squares. What is the 
probability that the sum of these two squares will be six or higher? Since two 
scores are sampled, the answer can be found using the Chi Square distribution with 
two degrees of freedom. A Chi Square calculator can be used to find that the 
probability of a Chi Square (with 2 df) being six or higher is 0.050.

The mean of a Chi Square distribution is its degrees of freedom. Chi Square 
distributions are positively skewed, with the degree of skew decreasing with 
increasing degrees of freedom. As the degrees of freedom increases, the Chi 
Square distribution approaches a normal distribution. Figure 1 shows density 
functions for three Chi Square distributions. Notice how the skew decreases as the 
degrees of freedom increase.
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Figure 1. Chi Square distributions with 2, 4, and 6 degrees of freedom.

The Chi Square distribution is very important because many test statistics are 
approximately distributed as Chi Square. Two of the more common tests using the 
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Chi Square distribution are tests of deviations of differences between theoretically 
expected and observed frequencies (one-way tables) and the relationship between 
categorical variables (contingency tables). Numerous other tests beyond the scope 
of this work are based on the Chi Square distribution.
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One-Way Tables (Testing Goodness of  Fit) 
by David M. Lane 

Prerequisites
• Chapter 5: Basic Concepts of Probability
• Chapter 11: Significance Testing
• Chapter 17: Chi Square Distribution

Learning Objectives
1. Describe what it means for there to be theoretically-expected frequencies
2. Compute expected frequencies
3. Compute Chi Square
4. Determine the degrees of freedom
The Chi Square distribution can be used to test whether observed data differ 
significantly from theoretical expectations. For example, for a fair six-sided die, 
the probability of any given outcome on a single roll would be 1/6. The data in 
Table 1 were obtained by rolling a six-sided die 36 times. However, as can be seen 
in Table 1, some outcomes occurred more frequently than others. For example, a 
“3” came up nine times, whereas a “4” came up only two times. Are these data 
consistent with the hypothesis that the die is a fair die? Naturally, we do not expect 
the sample frequencies of the six possible outcomes to be the same since chance 
differences will occur. So, the finding that the frequencies differ does not mean that 
the die is not fair. One way to test whether the die is fair is to conduct a 
significance test. The null hypothesis is that the die is fair. This hypothesis is tested 
by computing the probability of obtaining frequencies as discrepant or more 
discrepant from a uniform distribution of frequencies as obtained in the sample. If 
this probability is sufficiently low, then the null hypothesis that the die is fair can 
be rejected.

Table 1. Outcome Frequencies from a Six-Sided Die

Outcome Frequency

1 8

2 5

3 9
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The first step in conducting the significance test is to compute the expected 
frequency for each outcome given that the null hypothesis is true. For example, the 
expected frequency of a “1” is 6, since the probability of a “1” coming up is 1/6 
and there were a total of 36 rolls of the die.

Expected frequency = (1/6)(36) = 6 

Note that the expected frequencies are expected only in a theoretical sense. We do 
not really “expect” the observed frequencies to match the “expected frequencies” 
exactly.

The calculation continues as follows. Letting E be the expected frequency of 
an outcome and O be the observed frequency of that outcome, compute

 

for each outcome. Table 2 shows these calculations.

Table 2. Outcome Frequencies from a Six-Sided Die

Next we add up all the values in Column 4 of Table 2.

 

4 2

5 7

6 5
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Outcome E O (E-O)2/E

1 6 8 0.667

2 6 5 0.167

3 6 9 1.5

4 6 2 2.667

5 6 7 0.167

6 6 5 0.167
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This sampling distribution of

 

is approximately distributed as Chi Square with k-1 degrees of freedom, where k is 
the number of categories. Therefore, for this problem the test statistic is

 

which means the value of Chi Square with 5 degrees of freedom is 5.333.
From a Chi Square calculator it can be determined that the probability of a 

Chi Square of 5.333 or larger is 0.377. Therefore, the null hypothesis that the die is 
fair cannot be rejected.

The Chi Square test can also be used to test other deviations between 
expected and observed frequencies. The following example shows a test of whether 
the variable “University GPA” in the SAT and College GPA case study is normally 
distributed.

The first column in Table 3 shows the normal distribution divided into five 
ranges. The second column shows the proportions of a normal distribution falling 
in the ranges specified in the first column. The expected frequencies (E) are 
calculated by multiplying the number of scores (105) by the proportion. The final 
column shows the observed number of scores in each range. It is clear that the 
observed frequencies vary greatly from the expected frequencies. Note that if the 
distribution were normal, then there would have been only about 35 scores 
between 0 and 1, whereas 60 were observed.

Table 3. Expected and Observed Scores for 105 University GPA Scores.
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Range Proportion E O

Above 1 0.159 16.695 9

0 to 1 0.341 35.805 60

-1 to 0 0.341 35.805 17

Below -1 0.159 16.695 19
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The test of whether the observed scores deviate significantly from the expected 
scores is computed using the familiar calculation.

 

The subscript “3” means there are three degrees of freedom. As before, the degrees 
of freedom is the number of outcomes minus one, which is three in this example. 
The Chi Square distribution calculator shows that p < 0.001 for this Chi Square. 
Therefore, the null hypothesis that the scores are normally distributed can be 
rejected.
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Contingency Tables 
by David M. Lane 

Prerequisites
• Chapter 17: Chi Square Distribution
• Chapter 17: One-Way Tables

Learning Objectives
1. State the null hypothesis tested concerning contingency tables
2. Compute expected cell frequencies
3. Compute Chi Square and df
This section shows how to use Chi Square to test the relationship between nominal 
variables for significance. For example, Table 1 shows the data from the 
Mediterranean Diet and Health case study.

Table 1. Frequencies for Diet and Health Study

The question is whether there is a significant relationship between diet and 
outcome. The first step is to compute the expected frequency for each cell based on 
the assumption that there is no relationship. These expected frequencies are 
computed from the totals as follows. We begin by computing the expected 
frequency for the AHA Diet/Cancers combination. Note that 22/605 subjects 
developed cancer. The proportion who developed cancer is therefore 0.0364. If 
there were no relationship between diet and outcome, then we would expect 0.0364 
of those on the AHA diet to develop cancer. Since 303 subjects were on the AHA 
diet, we would expect (0.0364)(303) = 11.02 cancers on the AHA diet. Similarly, 
we would expect (0.0364)(302) = 10.98 cancers on the Mediterranean diet. In 

 Outcome

Diet Cancers Fatal Heart 
Disease

Non-Fatal 
Heart 

Disease

Healthy Total

AHA 15 24 25 239 303

Mediterranean 7 14 8 273 302

Total 22 38 33 512 605
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general, the expected frequency for a cell in the ith row and the jth column is equal 
to

 

where Ei,j is the expected frequency for cell i,j, Ti is the total for the ith row, Tj is 
the total for the jth column, and T is the total number of observations. For the AHA 
Diet/Cancers cell, i = 1, j = 1, Ti = 303, Tj = 22, and T = 605. Table 2 shows the 
expected frequencies (in parenthesis) for each cell in the experiment. Table 2 
shows the expected frequencies (in parenthesis) for each cell in the experiment.

 Table 2. Observed and Expected Frequencies for Diet and Health Study

The significance test is conducted by computing Chi Square as follows.

 

The degrees of freedom is equal to (r-1)(c-1), where r is the number of rows and c 
is the number of columns. For this example, the degrees of freedom is (2-1)(4-1) = 
3. The Chi Square calculator can be used to determine that the probability value for 
a Chi Square of 16.55 with three degrees of freedom is equal to 0.0009. Therefore, 
the null hypothesis of no relationship between diet and outcome can be rejected.

A key assumption of this Chi Square test is that each subject contributes data 
to only one cell. Therefore, the sum of all cell frequencies in the table must be the 
same as the number of subjects in the experiment. Consider an experiment in 
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which each of 16 subjects attempted two anagram problems. The data are shown in 
Table 3.

Table 3. Anagram problem data

It would not be valid to use the Chi Square test on these data since each subject 
contributed data to two cells: one cell based on their performance on Anagram 1 
and one cell based on their performance on Anagram 2. The total of the cell 
frequencies in the table is 32, but the total number of subjects is only 16.

The formula for Chi Square yields a statistic that is only approximately a Chi 
Square distribution. In order for the approximation to be adequate, the total number 
of subjects should be at least 20. Some authors claim that the correction for 
continuity should be used whenever an expected cell frequency is below 5. 
Research in statistics has shown that this practice is not advisable. For example, 
see: Bradley, Bradley, McGrath, & Cutcomb (1979). The correction for continuity 
when applied to 2 x 2 contingency tables is called the Yates correction.

 Anagram 1 Anagram 2

Solved 10 4

Did not Solve 6 12
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 17: Contingency Tables

An experiment was conducted to test whether the spice saffron can inhibit liver 
cancer. Two groups of rats were tested. Both groups were injected with chemicals 
known to increase the chance of liver cancer. The experimental group was fed 
saffron (n = 24) whereas the control group was not (n = 8). The experiment is 
described here.  
 
Only 4 of the 24 subjects in the saffron group developed cancer as compared to 6 
of the 8 subjects in the control group.

 
What do you think?
What method could be used to test whether this difference between the 
experimental and control groups is statistically significant?

The Chi Square test of  contingency tables could be used. It 
yields a  Chi Squared (df  = 1) of  9.50 which has an associated p 
of  0.002.𝛘 
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Exercises 

Prerequisites
• All material presented in the Chi Square Chapter

1. Which of the two Chi Square distributions shown below (A or B) has the larger 
degrees of freedom? How do you know?

2. Twelve subjects were each given two flavors of ice cream to taste and then were 
asked whether they liked them. Two of the subjects liked the first flavor and nine 
of them liked the second flavor. Is it valid to use the Chi Square test to determine 
whether this difference in proportions is significant? Why or why not?

3. A die is suspected of being biased. It is rolled 25 times with the following result:
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Conduct a significance test to see if the die is biased. (a) What Chi Square value 
do you get and how many degrees of freedom does it have? (b) What is the p 
value?

4. A recent experiment investigated the relationship between smoking and urinary 
incontinence. Of the 322 subjects in the study who were incontinent, 113 were 
smokers, 51 were former smokers, and 158 had never smoked. Of the 284 
control subjects who were not in- continent, 68 were smokers, 23 were former 
smokers, and 193 had never smoked.
a. Create a table displaying this data.
b. What is the expected frequency in each cell?
c. Conduct a significance test to see if there is a relationship between smoking 
and incontinence. What Chi Square value do you get? What p value do you get?
d. What do you conclude?

5. At a school pep rally, a group of sophomore students organized a free raffle for 
prizes. They claim that they put the names of all of the students in the school in 
the basket and that they randomly drew 36 names out of this basket. Of the prize 
winners, 6 were freshmen, 14 were sophomores, 9 were juniors, and 7 were 
seniors. The results do not seem that random to you. You think it is a little fishy 
that sophomores organized the raffle and also won the most prizes. Your school is 
composed of 30% freshmen, 25% sophomores, 25% juniors, and 20% seniors.
a. What are the expected frequencies of winners from each class? 
b. Conduct a significance test to determine whether the winners of the prizes 
were distributed throughout the classes as would be expected based on the 
percentage of students in each group. Report your Chi Square and p values.
c. What do you conclude?
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6. Some parents of the West Bay little leaguers think that they are noticing a 
pattern. There seems to be a relationship between the number on the kids’ jerseys 
and their position. These parents decide to record what they see. The hypothetical 
data appear below. Conduct a Chi Square test to determine if the parents’ 
suspicion that there is a relationship between jersey number and position is right. 
Report your Chi Square and p values.

7. True/false: A Chi Square distribution with 2 df has a larger mean than a Chi 
Square distribution with 12 df.

8. True/false: A Chi Square test is often used to determine if there is a significant 
relationship between two continuous variables.

9. True/false: Imagine that you want to determine if the spinner shown below is 
biased. You spin it 50 times and write down how many times the arrow lands in 
each section. You will reject the null hypothesis at the .05 level and determine 
that this spinner is biased if you calculate a Chi Square value of 7.82 or higher.

Questions from Case Studies

SAT and GPA (SG) case study
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10. (SG) Answer these items to determine if the math SAT scores are normally 
distributed. You may want to first standardize the scores.
a. If these data were normally distributed, how many scores would you expect 
there to be in each of these brackets: (i) smaller than 1 SD below the mean, (ii) 
in between the mean and 1 SD below the mean, (iii) in between the mean and 1 
SD above the mean, (iv) greater than 1 SD above the mean?
b. How many scores are actually in each of these brackets?
c. Conduct a Chi Square test to determine if the math SAT scores are normally 
distributed based on these expected and observed frequencies.

Diet and Health (DH) case study

11. (DH) Conduct a Pearson Chi Square test to determine if there is any 
relationship between diet and outcome. Report the Chi Square and p values and 
state your conclusions.

The following questions are from ARTIST (reproduced with permission)

12. A study compared members of a medical clinic who filed complaints with a 
random sample of members who did not complain. The study divided the 
complainers into two subgroups: those who filed complaints about medical 
treatment and those who filed nonmedical complaints. Here are the data on the 
total number in each group and the number who voluntarily left the medical 
clinic. Set up a two-way table. Analyze these data to see if there is a 
relationship between complaint (no, yes - medical, yes - nonmedical) and 
leaving the clinic (yes or no).
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13. Imagine that you believe there is a relationship between a person’s eye color 
and where he or she prefers to sit in a large lecture hall. You decide to collect 
data from a random sample of individuals and conduct a chi-square test of 
independence. What would your two-way table look like? Use the information 
to construct such a table, and be sure to label the different levels of each 
category.

14. A geologist collects hand-specimen sized pieces of limestone from a particular 
area. A qualitative assessment of both texture and color is made with the 
following results. Is there evidence of association between color and texture for 
these limestones? Explain your answer.

15. Suppose that college students are asked to identify their preferences in political 
affiliation (Democrat, Republican, or Independent) and in ice cream (chocolate, 
vanilla, or straw- berry). Suppose that their responses are represented in the 
following two-way table (with some of the totals left for you to calculate).

a. What proportion of the respondents prefer chocolate ice cream?
b. What proportion of the respondents are Independents?
c. What proportion of Independents prefer chocolate ice cream?
d. What proportion of those who prefer chocolate ice cream are Independents?
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e. Analyze the data to determine if there is a relationship between political 
party preference and ice cream preference.

16. NCAA collected data on graduation rates of athletes in Division I in the 
mid-1980s. Among 2,332 men, 1,343 had not graduated from college, and 
among 959 women, 441 had not graduated.
a. Set up a two-way table to examine the relationship between gender and 
graduation.
b. Identify a test procedure that would be appropriate for analyzing the 
relationship between gender and graduation. Carry out the procedure and state 
your conclusion
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18. Distribution-Free Tests 
by David M. Lane 

A. Benefits of Distribution-Free Tests
B. Randomization Tests

1. Two Means
2. Two or More Means
3. Randomization Tests: Association (Pearson's r)
4. Contingency Tables (Fisher's Exact Test)

C. Rank Randomization Tests
1. Two Means (Mann-Whitney U, Wilcoxon Rank Sum)
2. Two or More Means (Kruskal-Wallis)
3. Association (Spearman's ρ)

D. Exercises
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Benefits 
by David M. Lane 

Prerequisites
• Chapter 7: Normal Distributions
• Chapter 3: Shapes of Distributions
• Chapter 13: Introduction to Power
• Chapter 16: Transformations

Learning Objectives
1. State how distribution-free tests can avoid an inflated Type I error rate
2. State how how distribution-free tests can affect power

Most tests based on the normal distribution are said to be robust when the 
assumption of normality is violated. To the extent to which actual probability 
values differ from nominal probability values, the actual probability values tend to 
be higher than the nominal p values. For example, if the probability of a difference 
as extreme or more extreme were 0.04, the test might report that the probability 
value is 0.06. Although this sounds like a good thing because the Type I error rate 
is lower than the nominal rate, it has a serious downside: reduced power. When the 
null hypothesis is false, the probability of rejecting the null hypothesis can be 
substantially lower than it would have been if the distributions were distributed 
normally.

Tests assuming normality can have particularly low power when there are 
extreme values or outliers. A contributing factor is the sensitivity of the mean to 
extreme values. Although transformations can ameliorate this problem in some 
situations, they are not a universal solution.

Tests assuming normality often have low power for leptokurtic distributions. 
Transformations are generally less effective for reducing kurtosis than for 
reducing.

Because distribution-free tests do not assume normality, they can be less 
susceptible to non-normality and extreme values. Therefore, they can be more 
powerful than the standard tests of means that assume normality.
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Randomization Tests: Two Conditions 
by David M. Lane 

Prerequisites
• Chapter 18: Permutations and Combinations
• Chapter 11: One- and Two-Tailed Tests

Learning Objectives
1. Explain the logic of randomization tests
2. Compute a randomization test of the difference between independent groups

The data in Table 1 are from a fictitious experiment comparing an experimental 
group with a control group. The scores in the Experimental Group are generally 
higher than those in the Control Group with the Experimental Group mean of 14 
being considerably higher than the Control Group mean of 4. Would a difference 
this large or larger be likely if the two treatments had identical effects? The 
approach taken by randomization tests is to consider all possible ways the values 
obtained in the experiment could be assigned to the two groups. Then, the location 
of the actual data within the list is used to assess how likely a difference that large 
or larger would occur by chance.

Table 1. Fictitious data.

First, consider all possible ways the 8 values could be divided into two sets of 4. 
We can apply the formula from the section on Permutations and Combinations for 
the number of combinations of n items taken r at a time and find that there are 70 
ways.
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Of these 70 ways of dividing the data, how many result in a difference between 
means of 10 or larger? From Table 1 you can see that there are two rearrangements 
that would lead to a bigger difference than 10: (a) the score of 7 could have been in 
the Control Group with the score of 9 in the Experimental Group and (b) the score 
of 8 could have been in the Control Group with the score of 9 in the Experimental 
Group. Therefore, including the actual data, there are 3 ways to produce a 
difference as large or larger than the one obtained. This means that if assignments 
to groups were made randomly, the probability of this large or a larger advantage 
of the Experimental Group is 3/70 = 0.0429. Since only one direction of difference 
is considered (Experimental larger than Control), this is a one-tailed probability. 
The two-tailed probability is 0.0857 since there are 6/70 ways to arrange the data 
so that the absolute value of the difference between groups is as large or larger than 
the one obtained.

Clearly, this type of analysis would be very time consuming for even 
moderate sample sizes. Therefore, it is most useful for very small sample sizes.

An alternate approach made practical by computer software is to randomly 
divide the data into groups thousands of times and count the proportion of times 
the difference is as big or bigger than that found with the actual data. If the number 
of times the data are divided randomly is very large, then this proportion will be 
very close to the proportion you would get if you listed all possible ways the data 
could be divided.
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Randomization Tests: Two or More Conditions 
by David M. Lane

Prerequisites
• Chapter 18: Randomization Tests (two conditions)

Learning Objectives
1. Compute a randomization test for differences among more than two conditions.

The method of randomization for testing differences among more than two means 
is essentially very similar to the method when there are exactly two means. Table 1 
shows the data from a fictitious experiment with three groups.

Table 1. Fictitious data.

The first step in a randomization test is to decide on a test statistic. Then we 
compute the proportion of the possible arrangements of the data for which that test 
statistic is as large as or larger than the arrangement of the actual data. When 
comparing several means, it is convenient to use the F ratio. The F ratio is 
computed not to test for significance directly, but as a measure of how different the 
groups are. For these data, the F ratio for a one-way ANOVA is 2.06.

The next step is to determine how many arrangements of the data result in as 
large or larger F ratios. There are 6 arrangements that lead to the same F of 2.06: 
the six arrangements of the three columns. One such arrangement is shown in 
Table 2. The six are:

 (1) T1, T2, Control 
(2) T1, Control, T2 
(3) T2, T1, Control 
(4) T2, Control, T1 
(5) Control, T1, T2 
(6) Control, T2, T1  

T1 T2 Control

7 
8 
11 
12

14 
19 
21 

122

0 
2 
5 
9
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For each of the 6 arrangements there are two changes that lead to a higher F ratio: 
swapping the 7 for the 9 (which gives an F of 2.08) and swapping the 8 for the 9 
(which gives an F of 2.07). The former of these two is shown in Table 3.

Table 2. Fictitious data with data for T1 and T2 swapped

Table 3. Data from Table 1 with the 7 and the 9 swapped.

Thus, there are six arrangements, each with two swaps that lead to a larger F ratio. 
Therefore, the number of arrangements with an F as large or larger than the actual 
arrangement is 6 (for the arrangements with the same F) + 12 (for the arrangements 
with a larger F), which makes 18 in all.

The next step is to determine the total number of possible arrangements. 
This can be computed from the following formula:

 

where n is the number of observations in each group (assumed to be the same for 
all groups), and k is the number of groups. Therefore, the proportion of 
arrangements with an F as large or larger than the F of 2.06 obtained with the data 
is

18/13,824 = 0.0013. 

Thus, if there were no treatment effect, it is very unlikely that an F as large or 
larger than the one obtained would be found.
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Randomization Tests: Association (Pearson's r) 
by David M. Lane 

Prerequisites
• Chapter 14: Inferential Statistics for b and r

Learning Objectives
1. Compute a randomization test for Pearson's r.
A significance test for Pearson's r is described in the section inferential statistics 
for b and r. The significance test described in that section assumes normality. This 
section describes a method for testing the significance of r that makes no 
distributional assumptions.

Table 1. Example data.

The approach is to consider the X variable fixed and compare the correlation 
obtained in the actual data to the correlations that could be obtained by rearranging 
the Y variable. For the data shown in Table 1, the correlation between X and Y is 
0.385. There is only one arrangement of Y that would produce a higher correlation. 
This arrangement is shown in Table 2 and the r is 0.945. Therefore, there are two 
arrangements of Y that lead to correlations as high or higher than the actual data.

Table 2. The example data arranged to give the highest r.

X Y

1 1

2.4 2

3.8 2.3

4 3.7

11 2.5

X Y

1 1

2.4 2

3.8 2.3
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The next step is to calculate the number of possible arrangements of Y. The number 
is simply N! where N is the number of pairs of scores. Here, the number of 
arrangements is 5! = 120. Therefore, the probability value is 2/120 = 0.017. Note 
that this is a one-tailed probability since it is the proportion of arrangements that 
give an r as large or larger. For the two-tailed probability, you would also count 
arrangements for which the value of r were less than or equal to -0.385. In 
randomization tests, the two-tailed probability is not necessarily double the one-
tailed probability.

4 2.5

11 3.7
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Randomization Tests: Contingency Tables: (Fisher's 
Exact Test) 
by David M. Lane 

Prerequisites
• Chapter 17: Contingency Tables

Learning Objectives
1. State the situation when Fisher's exact test can be used
2. Calculate Fisher's exact test
3. Describe how conservative the Fisher exact test is relative to a Chi Square test
The chapter on Chi Square showed one way to test the relationship between two 
nominal variables. A special case of this kind of relationship is the difference 
between proportions. This section shows how to compute a significance test for a 
difference in proportions using a randomization test. Suppose, in a fictitious 
experiment, 4 subjects in an Experimental Group and 4 subjects in a Control Group 
are asked to solve an anagram problem. Three of the 4 subjects in the Experimental 
Group and none of the subjects in the Control Group solved the problem. Table 1 
shows the results in a contingency table.

Table 1. Anagram Problem Data.

The significance test we are going to perform is called the Fisher Exact Test. The 
basic idea is to take the row totals and column totals as “given” and add the 
probability of obtaining the pattern of frequencies obtained in the experiment and 
the probabilities of all other patterns that reflect a greater difference between 
conditions. The formula for obtaining any given pattern of frequencies is:

Experimental Control Total

Solved 3 0 3

Did not 
Solve

1 4 5

Total 4 4 8
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where N is the total sample size (8), n is the sample size for the first group (4), r is 
the number of successes in the first group (3), and R is the total number of 
successes (3). For this example, the probability is

 

Since more extreme outcomes do not exist given the row and column totals, the p 
value is 0.0714. This is a one-tailed probability since it only considers outcomes as 
extreme or more extreme favoring the Experimental Group. An equally extreme 
outcome favoring the Control Group is shown in Table 2, which also has a 
probability of 0.0714. Therefore, the two-tailed probability is 0.1428. Note that in 
the Fisher Exact Test, the two-tailed probability is not necessarily double the one-
tailed probability.

Table 2. Anagram Problem Favoring Control Group.

The Fisher Exact Test is “exact” in the sense that it is not based on a statistic that is 
approximately distributed as, for example, Chi Square. However, because it 
assumes that both marginal totals are fixed, it can be considerably less powerful 
than the Chi Square test. Even though the Chi Square test is an approximate test, 
the approximation is quite good in most cases and tends to have too low a Type I 
error rate more often than too high a Type I error rate.
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Experimental Control Total

Solved 0 3 3

Did not 
Solve

4 1 5

Total 4 4 8
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Rank Randomization: Two Conditions (Mann-Whitney 
U, Wilcoxon Rank Sum) 
by David M. Lane 

Prerequisites
• Chapter 5: Permutations and Combinations
• Chapter 17: Randomization Tests for Two Conditions

Learning Objectives
1. State the difference between a randomization test and a rank randomization test
2. Describe why rank randomization tests are more common
3. Be able to compute a Mann-Whitney U test

The major problem with randomization tests is that they are very difficult to 
compute. Rank randomization tests are performed by first converting the scores to 
ranks and then computing a randomization test. The primary advantage of rank 
randomization tests is that there are tables that can be used to determine 
significance. The disadvantage is that some information is lost when the numbers 
are converted to ranks. Therefore, rank randomization tests are generally less 
powerful than randomization tests based on the original numbers.

There are several names for rank randomization tests for differences in 
central tendency. The two most common are the Mann-Whitney U test and the 
Wilcoxon Rank Sum Test

Consider the data shown in Table that were used as an example in the section 
on randomization tests.

Table 1. Fictitious data.

A rank randomization test on these data begins by converting the numbers to ranks.

Experimental Control

7 
8 
11 
30

0 
2 
5 
9
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Table 2. Fictitious data converted to ranks. Rank sum = 24.

The probability value is determined by computing the proportion of the possible 
arrangements of these ranks that result in a difference between ranks of as large or 
larger than those in the actual data (Table 2). Since the sum of the ranks (the 
numbers 1-8) is a constant (36 in this case), we can use the computational shortcut 
of finding the proportion of arrangements for which the sum of the ranks in the 
Experimental Group is as high or higher than the sum here (4 + 5 + 7 + 8) = 24.

First, consider how many ways the 8 values could be divided into two sets of 
4. We can apply the formula from the section on Permutations and Combinations 
for the number of combinations of n items taken r at a time (n = the total number of 
observations; r = the number of observations in the first group) and find that there 
are 70 ways.

 

Of these 70 ways of dividing the data, how many result in a sum of ranks of 24 or 
more? Tables 3-5 show three rearrangements that would lead to a rank sum of 24 
or larger.

Table 3. Rearrangement of data converted to ranks. Rank sum = 26.

Experimental Control

4 
5 
7 
8

1 
2 
3 
6

!!! =
!!

! − ! ! !! =
8!

8− 4 ! 4! = 70!
!
!
!

!""#$%&'&$() = (!!)! = 4! ! = 13,824!
!
!
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!
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!
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Experimental Control

6 
5 
7 
8

1 
2 
3 
4
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Table 4. Rearrangement of data converted to ranks. Rank sum = 25.

Therefore, the actual data represent 1 arrangement with a rank sum of 24 or more 
and the 3 arrangements represent three others. Therefore, there are 4 arrangements 
with a rank sum of 24 or more. This makes the probability equal to 4/70 = 0.057. 
Since only one direction of difference is considered (Experimental larger than 
Control), this is a one-tailed probability. The two-tailed probability is (2)(0.057) = 
0.114, since there are 8/70 ways to arrange the data so that the sum of the ranks is 
either (a) as large or larger or (b) as small or smaller than the sum found for the 
actual data.

The beginning of this section stated that rank randomization tests were easier 
to compute than randomization tests because tables are available for rank 
randomization tests. Table 6 can be used to obtain the critical values for equal 
sample sizes of 4-10.

For the present data, both n1 and n2 = 4 so, as can be determined from the 
table, the rank sum for the Experimental Group must be at least 25 for the 
difference to be significant at the 0.05 level (one-tailed). Since the sum of ranks 
equals 24, the probability value is somewhat above 0.05. In fact, by counting the 
arrangements with the sum of ranks greater than or equal to 24, we found that the 
probability value is 0.057. Naturally a table can only give the critical value rather 
than the p value itself. However, with a larger sample size, such as 10 subjects per 
group, it becomes very time consuming to count all arrangements equalling or 
exceeding the rank sum of the data. Therefore, for practical reasons, the critical 
value sometimes suffices.

Experimental Control

4 
6 
7 
8

1 
2 
3 
5
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Table 5. Rearrangement of data converted to ranks. Rank sum = 24.

Table 6. Critical values.

For larger sample sizes than covered in the tables, you can use the following 
expression that is approximately normally distributed for moderate to large sample 
sizes.

 

where: 
Wa is the sum of the ranks for the first group 
na is the sample size for the first group 
nb is the sample size for the second group 
Z is the test statistic  

The probability value can be determined from Z using the normal distribution 
calculator.

Experimental Control

3 
6 
7 
8

1 
2 
4 
5

One-Tailed Test
Rank Sum for Higher Group

n1 n2 0.2 0.1 0.05 0.025 0.01 0.005
4 4 22 23 25 26 . .
5 5 33 35 36 38 39 40
6 6 45 48 50 52 54 55
7 7 60 64 66 69 71 73
8 8 77 81 85 87 91 93
9 9 96 101 105 109 112 115

10 10 117 123 128 132 136 139

! =!! − !!(!! + !! + 1)/2
!!!!(!! + !! + 1)/12

!

!
!

! = −3 ! + 1 + 12
!(! + 1)

!!!
!!

!

!!!
!

!
!

! = −3 136+ 1 + 12
136×137

2732!
34 + 2385

!

34 + 2424.5
!

34 + 1776
!

34 = 9.10!
629



The data from the Stereograms Case Study can be analyzed using this test. 
For these data, the sum of the ranks for Group 1 ( Wa) is 1911, the sample size for 
Group 1 ( na) is 43, and the sample size for Group 2 ( nb) is 35. Plugging these 
values into the formula results in a Z of 2.13, which has a two-tailed p of 0.033.
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Rank Randomization: Two or More Conditions 
(Kruskal-Wallis) 
by David M. Lane 

Prerequisites
• Chapter 17: Chi Square Distribution 
• Chapter 18: Randomization Test for Two or More Conditions
• Chapter 18: Rand Randomization (Two Groups)

Learning Objectives
1. Compute the Kruskal-Wallis test
The Kruskal-Wallis test is a rank-randomization test that extends the Wilcoxon test 
to designs with more than two groups. It tests for differences in central tendency in 
designs with one between-subjects variable. The test is based on a statistic H that is 
approximately distributed as Chi Square. The formula for H is shown below:

 

where 

 N is the total number of observations, 
Ti is the sum of ranks for the ith group, 
ni is the sample size for the ith group,          
k is the number of groups.  

The first step is to convert the data to ranks (ignoring group membership) and then 
find the sum of the ranks for each group. Then, compute H using the formula 
above. Finally, the significance test is done using a Chi Square distribution with 
k-1 degrees of freedom.

For the “Smiles and Leniency” case study, the sum of the ranks for the four 
conditions are:

 False:     2732.0 
Felt:      2385.5 
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! = −3 136+ 1 + 12
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34 + 1776
!

34 = 9.10!
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Miserable: 2424.5 
Neutral:   1776.0 

Note that since there are “ties” in the data, the mean rank of the ties is used. For 
example, there were 10 scores of 2.5 which tied for ranks 4-13. The average of the 
numbers 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 is 8.5. Therefore, all values of 2.5 were 
assigned ranks of 8.5.

The sample size for each group is 34.

 

Using the Chi Square Calculator (external link; requires Java) for Chi Square = 
9.28 with 4-1 = 3 df results in a p value of 0.028. Thus the null hypothesis of no 
leniency effect can be rejected.

H =- 3(136 + 1) +
(136)(137)

12
34

27322

+
34

2385.52

+
34

2424.52

+
34

17762

c m=9.28
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Rank Randomization for Association (Spearman's ρ) 
by David M. Lane 

Prerequisites
• Chapter 4: Values of Pearson's r
• Chapter 18: Randomization Test for Pearson's r

Learning Objectives
1. Compute Spearman's ρ
2. Test Spearman's ρ for significance
The rank randomization test for association is equivalent to the randomization test 
for Pearson's r except that the numbers are converted to ranks before the analysis 
is done. Table 1 shows 5 values of X and Y. Table 2 shows these same data 
converted to ranks (separately for X and Y).

Table 1. Example data.

Table 2. Ranked data.

X Y

1 1

2.4 2

3.8 2.3

4 3.7

11 2.5

X Y

1 1

2 2

3 3

4 5

5 4
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The approach is to consider the X variable fixed and compare the correlation 
obtained in the actual ranked data to the correlations that could be obtained by 
rearranging the Y variable. For the data shown in Table 2, the correlation between 
X and Y is 0.90. The correlation of ranks is called “Spearman's ρ.” 

There is only one arrangement of Y that produces a higher correlation than 
0.90: A correlation of 1.0 results if the fourth and fifth observations' Y values are 
switched (see Table 3). There are also three other arrangements that produce an r of 
0.90 (see Tables 4, 5, and 6). Therefore, there are five arrangements of Y that lead 
to correlations as high or higher than the actual ranked data (Tables 2 through 6). 

The next step is to calculate the number of possible arrangements of Y. The 
number is simply N!, where N is the number of pairs of scores. Here, the number 
of arrangements is 5! = 120. Therefore, the probability value is 5/120 = 0.042. 
Note that this is a one-tailed probability since it is the proportion of arrangements 
that give a correlation as large or larger. The two-tailed probability is 0.084.

Since it is hard to count up all the possibilities when the sample size is even 
moderately large, it is convenient to have a table of critical values.

From the table shown below, you can see that the critical value for a one-
tailed test with 5 observations at the 0.05 level is 0.90. Since the correlation for the 
sample data is 0.90, the association is significant at the 0.05 level (one-tailed). As 
shown above, the probability value is 0.042. Since the critical value for a two-
tailed test is 1.0, Spearman's ρ is not significant in a two-tailed test.

N .05 2-tail .01 2-tail .05 1-tail .01 1-tail

5 1 0.9 1

6 0.886 1 0.829 0.943

7 0.786 0.929 0.714 0.893

8 0.738 0.881 0.643 0.833

9 0.7 0.833 0.6 0.783

10 0.648 0.794 0.564 0.745

11 0.618 0.755 0.536 0.709

12 0.587 0.727 0.503 0.671

13 0.56 0.703 0.484 0.648

14 0.538 0.675 0.464 0.622

15 0.521 0.654 0.443 0.604

16 0.503 0.635 0.429 0.582

17 0.485 0.615 0.414 0.566

18 0.472 0.6 0.401 0.55

19 0.46 0.584 0.391 0.535
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20 0.447 0.57 0.38 0.52

21 0.435 0.556 0.37 0.508

22 0.425 0.544 0.361 0.496

23 0.415 0.532 0.353 0.486

24 0.406 0.521 0.344 0.476

25 0.398 0.511 0.337 0.466

26 0.39 0.501 0.331 0.457

27 0.382 0.491 0.324 0.448

28 0.375 0.483 0.317 0.44

29 0.368 0.475 0.312 0.433

30 0.362 0.467 0.306 0.425

31 0.356 0.459 0.301 0.418

32 0.35 0.452 0.296 0.412

33 0.345 0.446 0.291 0.405

34 0.34 0.439 0.287 0.399

35 0.335 0.433 0.283 0.394

36 0.33 0.427 0.279 0.388

37 0.325 0.421 0.275 0.383

38 0.321 0.415 0.271 0.378

39 0.317 0.41 0.267 0.373

40 0.313 0.405 0.264 0.368

41 0.309 0.4 0.261 0.364

42 0.305 0.395 0.257 0.359

43 0.301 0.391 0.254 0.355

44 0.298 0.386 0.251 0.351

45 0.294 0.382 0.248 0.347

46 0.291 0.378 0.246 0.343

47 0.288 0.374 0.243 0.34

48 0.285 0.37 0.24 0.336

49 0.282 0.366 0.238 0.333

50 0.279 0.363 0.235 0.329
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 1: Levels of Measurement
• Chapter 18: Benefits
• Chapter 18: Rank Randomization for Two Conditions,

Cardiac troponins are markers of myocardial damage. The levels of troponin in 
subjects with and without signs of right ventricular strain in the electrocardiogram 
were compared in the experiment described here. 

The Wilcoxon rank sum test was used to test for significance. The troponin 
concentration in patients with signs of right ventricular strain was higher (median = 
0.03 ng/ml) than in patients without right ventricular strain (median < 0.01 ng/ml), 
p<0.001.
 
What do you think?
Why might the authors have used the Wilcoxon test rather than a t test? Do you 
think the conclusions would have been different? 

Perhaps the distributions were very non-normal. Typically a 
transformation can be done to make a distribution more normal 
but that is not always the case. It is almost certain the same 
conclusion would have been reached, although it would have 
been described in terms of  mean differences instead of  median 
differences. 
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Exercises 

Prerequisites

All of this chapter

1. For the following data, how many ways could the data be arranged (including 
the original arrangement) so that the advantage of the Experimental Group mean 
over the Control Group mean is as large or larger then the original arrangement.

2. For the data in Problem 1, how many ways can the data be rearranged?

3. What is the one-tailed probability for a test of the difference.

4. For the following data, how many ways can the data be rearranged?

5. In general, are rank randomization tests or randomization tests more powerful?

6. What is the advantage of rank randomization tests over randomization tests?

7. Test whether the differences among conditions for the data in Problem 1 is 
significant (one tailed) at the .01 level using a rank randomizaton test. 

Questions from Case Studies

Experimental Control

5 
10 
15 
16 
17

1 
2 
3 
4 
9

T1 T2 Control

7 
8 
11

14 
19 
21

0 
2 
5
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SAT and GPA (SG) case study

8. (SG) Compute Spearman's ρ for the relationship between UGPA and SAT.

Stereograms (S) case study

9. (S) Test the difference in central tendency between the two conditions using a 
rank-randomization test (with the normal approximation) with a one-tailed test. 
Give the Z and the p.

Smiles and Leniency (SL) case study

10. (SL) Test the difference in central tendency between the four conditions using a 
rank-randomization test (with the normal approximation). Give the Chi Square 
and the p.
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19. Effect Size 
A. Proportions
B. Difference between Means
C. Variance Explained
D. Exercises
Researchers often seek to learn more than whether the variable under investigation 
has an effect and/or the direction of the effect. This is particularly true for research 
that has practical applications. For example, an investigation of the efficacy of a 
pain-relief drug would seek to determine the extent of the relief and not merely 
whether there was any relief. Similarly, a study of a test-preparation course's 
efficacy would seek to determine how much the course raises students' test scores. 
Finally, a study of the relationship between exercise and blood pressure would seek 
to determine how much blood pressure decreases for a given amount of exercise. 
In all of these examples, a significance test would not be sufficient since it would 
only provide the researcher with information about the existence and direction of 
the effect. It would not provide any information about the size of the effect.

Before we proceed with a discussion of how to measure effect size, it is 
important to consider that for some research it is the presence or absence of an 
effect rather than its size that is important. A controversial example is provided by 
Bem (2011) who investigated precognition. Bem found statistically significant 
evidence that subjects' responses are affected by future events. That is, he rejected 
the null hypothesis that there is no effect. The important question is not the size of 
the effect but, rather, whether it exists at all. It would be truly remarkable if future 
events affect present responses even a little. It is important to note that subsequent 
research (Ritchie, Wiseman, & French, 2012) has failed to replicate Bem's results 
and the likelihood that the precognition effects he described are real is very low.
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Proportions 
by David M. Lane 

Prerequisites
• none

Learning Objectives
1. Compute absolute risk reduction
2. Compute relative risk reduction
3. Compute number needed to treat

Often the interpretation of a proportion is self-evident. For example, the obesity 
rate for white non-Hispanic adults living in the United States was estimated by a 
study conducted between 2006 and 2008 to be 24%. This value of 24% is easily 
interpretable and indicates the magnitude of the obesity problem in this population.

Often the question of interest involves the comparison of two outcomes. For 
example, consider the analysis of proportions in the case study “Mediterranean 
Diet and Health.” In this study, one group of people followed the diet 
recommended by the American Heart Association (AHA), whereas a second group 
followed the “Mediterranean Diet.” One interesting comparison is between the 
proportions of people who were healthy throughout the study as a function of diet. 
It turned out that 0.79 of the people who followed the AHA diet and 0.90 of those 
who followed the Mediterranean diet were healthy. How is the effect size of diet 
best measured?

We will take the perspective that we are assessing the benefits of switching 
from the AHA diet to the Mediterranean diet. One way to assess the benefits is to 
compute the difference between the proportion who were not healthy on the AHA 
diet (0.21) with the proportion who were not healthy on the Mediterranean diet 
(0.10). Therefore, the difference in proportions is:

0.21 - 0.10 = 0.11. 

This measure of the benefit is called the Absolute Risk Reduction (ARR).
To define ARR more formally, let C be the proportion of people in the 

control group with the ailment of interest and T be the proportion in the treatment 
group. ARR can then be defined as:
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ARR = C - T 

Alternatively, one could measure the difference in terms of percentages. For our 
example, the proportion of non-healthy people on the Mediterranean diet (0.10) is 
52% lower than the proportion of non-healthy people on the AHA diet (0.21). This 
value is computed as follows:

(0.21 - 0.10)/0.21 x 100 = 52% 

This measure of the benefit is called the Relative Risk Reduction (RRR). The 
general formula for RRR is:

RRR = (C - T)/C x 100 

where C and T are defined as before.
A third commonly used measure is the “odds ratio.” For our example, the 

odds of being healthy on the Mediterranean diet are 90:10 = 9:1; the odds on the 
AHA diet are 79:21 = 3.76:1. The ratio of these two odds is 9/3.76 = 2.39. 
Therefore, the odds of being healthy on the Mediterranean diet is 2.39 times the 
odds of being healthy on the AHA diet. Note that the odds ratio is the ratio of the 
odds and not the ratio of the probabilities.

A fourth measure is the number of people who need to be treated in order to 
prevent one person from having the ailment of interest. In our example, being 
treated means changing from the AHA diet to the Mediterranean diet. The number 
who need to be treated can be defined as

N = 1/ARR 

For our example,

N = 1/0.11 = 9 

Therefore, one person who would otherwise not be healthy would be expected to 
stay healthy for every nine people changing from the AHA diet to the 
Mediterranean diet.

The obvious question is which of these measures is the best one. Although 
each measure has its proper uses, the RRR measure can exaggerate the importance 
of an effect, especially when the absolute risks are low. For example, if a drug 
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reduced the risk of a certain disease from 1 in 1,000,000 to 1 in 2,000,000, the 
RRR is 50%. However, since the ARR is only 0.0000005, the practical reduction in 
risk is minimal.
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Difference Between Two Means 
by David M. Lane 

Prerequisites
• Chapter 3: Measures of Variability
• Chapter 12: Differences between Two Means (Independent Groups)
• Chapter 16: Chapter Log Transformations

Learning Objectives
1. State how the inherent meaningfulness of the scales affects the type of measure 

that should be used
2. Compute g
3. Compute d
4. State the effect of the variability of subjects on the size of standardized 

measures

When the units of a measurement scale are meaningful in their own right, then the 
difference between means is a good and easily interpretable measure of effect size. 
For example, a study conducted by Holbrook, Crowther, Lotter, Cheng and King in 
2000 investigated the effectiveness of benzodiazepine for the treatment of 
insomnia. These researchers found that, compared to a placebo, this drug increased 
total sleep duration by a mean of 61.8 minutes. This difference in means shows 
clearly the degree to which benzodiazepine is effective. (It is important to note that 
the drug was found to sometimes have adverse side effects.)

When the dependent variable is measured on a ratio scale, it is often 
informative to consider the proportional difference between means in addition to 
the absolute difference. For example, if in the Holbrook et al. study the mean total 
sleep time for the placebo group were 120 minutes, then the 61.8-minute increase 
would represent a 51% increase in sleep time. On the other hand, if the mean sleep 
time for the placebo were 420 minutes, then the 61.8-minute increase would 
represent a 15% increase in sleep time.

It is interesting to note that if a log transformation is applied to the 
dependent variable, then equal percent changes on the original scale will result in 
equal absolute changes on the log scale. For example, suppose the mean sleep time 
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increased 10% from 400 minutes to 440 in one condition and 10% from 300 to 330 
minutes in a second condition. If we take the log base 10 of these values, we find 
that Log(440) - Log(400) = 2.643 - 2.602 = 0.041 and, similarly, Log(330) - 
Log(300) = 2.518 - 2.477 = 0.041.

Many times the dependent variable is measured on a scale that is not 
inherently meaningful. For example, in the “Animal Research” case study, attitudes 
toward animal research were measured on a 7-point scale. The mean rating of 
women on whether animal research is wrong was 1.47 scale units higher than the 
mean rating of men. However, it is not clear whether this 1.47-unit difference 
should be considered a large effect or a small effect, since it is not clear exactly 
what this difference means.

When the scale of a dependent variable is not inherently meaningful, it is 
common to consider the difference between means in standardized units. That is, 
effect size is measured in terms of the number of standard deviations the means 
differ by. Two commonly used measures are Hedges' g and Cohen's d. Both of 
these measures consist of the difference between means divided by the standard 
deviation. They differ only in that Hedges' g uses the version of the standard 
deviation formula in which you divide by N-1, whereas Cohen's d uses the version 
in which you divide by N. The two formulas are given below.

 

 

where M1 is the mean of the first group, M2 is the mean of the second group, MSE 
is the mean square error, and N is the total number of observations.

Standardized measures such as Cohen's d and Hedges' g have the advantage 
that they are scale free. That is, since the dependent variable is standardized, the 
original units are replaced by standardized units and are interpretable even if the 
original scale units do not have clear meaning. Consider the Animal Research case 
study in which attitudes were measured on a 7-point scale. On a rating of whether 
animal research is wrong, the mean for women was 5.353, the mean for men was 
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3.882, and MSE was 2.864. Hedges’ g can be calculated to be 0.87. It is more 
meaningful to say that the means were 0.87 standard deviations apart than 1.47 
scale units apart since the scale units are not well defined.

It is natural to ask what constitutes a large effect. Although there is no 
objective answer to this question, the guidelines suggested by Cohen (1988) stating 
that an effect size of 0.2 is a small effect, an effect size of 0.5 is a medium effect, 
and an effect size of 0.8 is a large effect have been widely adopted. Based on these 
guidelines, the effect size of 0.87 is a large effect.

It should be noted, however, that these guidelines are somewhat arbitrary 
and have not been universally accepted. For example, Lenth (2001) argued that 
other important factors are ignored if Cohen's definition of effect size is used to 
choose a sample size to achieve a given level of power.

Interpretational Issues 
It is important to realize that the importance of an effect depends on the context. 
For example, a small effect can make a big difference if only extreme observations 
are of interest. Consider a situation in which a test is used to select students for a 
highly selective program. Assume that there are two types of students (red and 
blue) and that the mean for the red students is 52, the mean for the blue students is 
50, both distributions are normal, and the standard deviation for each distribution is 
10. The difference in means is therefore only 0.2 standard deviations and would 
generally be considered to be a small difference. Now assume that only students 
who scored 70 or higher would be selected for the program. Would there be a big 
difference between the proportion of blue and red students who would be able to be 
accepted into the program? It turns out that the proportion of red students who 
would qualify is 0.036 and the proportion of blue students is 0.023. Although this 
difference is small in absolute terms, the ratio of red to blue students who qualify is 
1.6:1. This means that if 100 students were to be accepted and if equal numbers of 
randomly-selected red and blue students applied, 62% would be red and 38% 
would be blue. In most contexts this would be considered an important difference.

When the effect size is measured in standard deviation units as it is for 
Hedges' g and Cohen's d, it is important to recognize that the variability in the 
subjects has a large influence on the effect size measure. Therefore, if two 
experiments both compared the same treatment to a control but the subjects were 
much more homogeneous in Experiment 1 than in Experiment 2, then a 
standardized effect size measure would be much larger in the former experiment 
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than in the latter. Consider two hypothetical experiments on the effect of an 
exercise program on blood pressure. Assume that the mean effect on systolic blood 
pressure of the program is 10mmHg and that, due to differences in the subject 
populations sampled in the two experiments, the standard deviation was 20 in 
Experiment 1 and 30 in Experiment 2. Under these conditions, the standardized 
measure of effect size would be 0.50 in Experiment 1 and 0.33 in Experiment 2. 
This standardized difference in effect size occurs even though the effectiveness of 
the treatment is exactly the same in the two experiments.
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Proportion of  Variance Explained 
by David M. Lane 

Prerequisites
• Chapter 15: One-Factor ANOVA (Between Subjects)
• Chapter 14: Partitioning Sums of Squares
• Chapter 14: Multiple Regression

Learning Objectives
1. State the difference in bias between η2 and ω2

2. Compute η2

3. Compute ω2

4. Distinguish between ω2 and partial ω2

5. State the bias in R2 and what can be done to reduce it 

Effect sizes are often measured in terms of the proportion of variance explained by 
a variable. In this section, we discuss this way to measure effect size in both 
ANOVA designs and in correlational studies.

ANOVA Designs 
Responses of subjects will vary in just about every experiment. Consider, for 
example, the “Smiles and Leniency” case study. A histogram of the dependent 
variable “leniency” is shown in Figure 1. It is clear that the leniency scores vary 
considerably. There are many reasons why the scores differ. One, of course, is that 
subjects were assigned to four different smile conditions and the condition they 
were in may have affected their leniency score. In addition, it is likely that some 
subjects are generally more lenient than others, thus contributing to the differences 
among scores. There are many other possible sources of differences in leniency 
ratings including, perhaps, that some subjects were in better moods than other 
subjects and/or that some subjects reacted more negatively than others to the looks 
or mannerisms of the stimulus person. You can imagine that there are innumerable 
other reasons why the scores of the subjects could differ.

647



Figure 1. Distribution of leniency scores.

One way to measure the effect of conditions is to determine the proportion of the 
variance among subjects' scores that is attributable to conditions. In this example, 
the variance of scores is 2.794. The question is how this variance compares with 
what the variance would have been if every subject had been in the same treatment 
condition. We estimate this by computing the variance within each of the treatment 
conditions and taking the mean of these variances. For this example, the mean of 
the variances is 2.649. Since the mean variance within the smile conditions is not 
that much less than the variance ignoring conditions, it is clear that “Smile 
Condition” is not responsible for a high percentage of the variance of the scores. 
The most convenient way to compute the proportion explained is in terms of the 
sum of squares “conditions” and the sum of squares total. The computations for 
these sums of squares are shown in the chapter on ANOVA. For the present data, 
the sum of squares for “Smile Condition” is 27.544 and the sum of squares total is 
377.189. Therefore, the proportion explained by “Smile Condition” is:

27.544/377.189 = 0.073. 

Thus, 0.073 or 7.3% of the variance is explained by “Smile Condition.”
An alternative way to look at the variance explained is as the proportion 

reduction in error. The sum of squares total (377.189) represents the variation when 
“Smile Condition” is ignored and the sum of squares error (377.189 - 27.544 = 
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349.654) is the variation left over when “Smile Condition” is accounted for. The 
difference between 377.189 and 349.654 is 27.535. The reduction in error of 
27.535 represents a proportional reduction of 27.535/377.189 = 0.073, the same 
value as computed in terms of proportion of variance explained.

This measure of effect size, whether computed in terms of variance 
explained or in terms of percent reduction in error, is called η2 where η is the 
Greek letter eta. Unfortunately, η2 tends to overestimate the variance explained and 
is therefore a biased estimate of the proportion of variance explained. As such, it is 
not recommended (despite the fact that it is reported by a leading statistics 
package).

An alternative measure, ω2 (omega squared), is unbiased and can be 
computed from

 

where MSE is the mean square error and k is the number of conditions. For this 
example, k = 4 and ω2 = 0.052.

It is important to be aware that both the variability of the population sampled 
and the specific levels of the independent variable are important determinants of 
the proportion of variance explained. Consider two possible designs of an 
experiment investigating the effect of alcohol consumption on driving ability. As 
can be seen in Table 1, Design 1 has a smaller range of doses and a more diverse 
population than Design 2. What are the implications for the proportion of variance 
explained by Dose? Variation due to Dose would be greater in Design 2 than 
Design 1 since alcohol is manipulated more strongly than in Design 1. However, 
the variance in the population should be greater in Design 1 since it includes a 
more diverse set of drivers. Since with Design 1 the variance due to Dose would be 
smaller and the total variance would be larger, the proportion of variance explained 
by Dose would be much less using Design 1 than using Design 2. Thus, the 
proportion of variance explained is not a general characteristic of the independent 
variable. Instead, it is dependent on the specific levels of the independent variable 
used in the experiment and the variability of the population sampled.
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Table 1. Design Parameters

Factorial Designs 
In one-factor designs, the sum of squares total is the sum of squares condition plus 
the sum of squares error. The proportion of variance explained is defined relative to 
sum of squares total. In an A x B design, there are three sources of variation (A, B, 
A x B) in addition to error. The proportion of variance explained for a variable (A, 
for example) could be defined relative to the sum of squares total (SSQA + SSQB 
+SSQAxB + SSQerror) or relative to SSQA + SSQerror.

To illustrate with an example, consider a hypothetical experiment on the 
effects of age (6 and 12 years) and of methods for teaching reading (experimental 
and control conditions). The means are shown in Table 2. The standard deviation of 
each of the four cells (Age x Treatment combinations) is 5. (Naturally, for real 
data, the standard deviations would not be exactly equal and the means would not 
be whole numbers.) Finally, there were 10 subjects per cell resulting in a total of 40 
subjects.

Table 2. Condition Means

The sources of variation, degrees of freedom, and sums of squares from the 
analysis of variance summary table as well as four measures of effect size are 
shown in Table 3. Note that the sum of squares for age is very large relative to the 

Design Doses Population

1
0.00 
0.30 
0.60

All Drivers between 16 and 80 Years

2
0.00 

0.50 1.00
Experienced Drivers between 25 and 30 
Years

  Treatment

Age Experimental Control

6 40 42

12 50 56
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other two effects. This is what would be expected since the difference in reading 
ability between 6- and 12-year-olds is very large relative to the effect of condition.

Table 3. ANOVA Summary Table

First, we consider the two methods of computing η2, labeled η2 and partial η2. The 
value of η2 for an effect is simply the sum of squares for this effect divided by the 
sum of squares total. For example, the η2 for Age is 1440/2540 = 0.567. As in a 
one-factor design, η2 is the proportion of the total variation explained by a variable. 
Partial η2 for Age is SSQAge divided by (SSQAge + SSQerror) which is 1440/2340 = 
0.615.

As you can see, the partial η2 is larger than η2. This is because the 
denominator is smaller for the partial η2. The difference between η2 and partial η2 

is even larger for the effect of condition. This is because SSQAge is large and it 
makes a big difference whether or not it is included in the denominator.

As noted previously, it is better to use ω2 than η2 because η2 has a positive 
bias. You can see that the values for ω2 are smaller than for η2. The calculations for 
ω2 are shown below:

 

 

where N is the total number of observations.

Source df SSQ η2

partial
η2 ω2

partial
ω2

Age 1 1440 0.567 0.615 0.552 0.586

Condition 1 160 0.063 0.151 0.053 0.119

A x C 1 40 0.016 0.043 0.006 0.015

Error 36 900

Total 39 2540
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The choice of whether to use ω2 or the partial ω2 is subjective; neither one is 
correct or incorrect. However, it is important to understand the difference and, if 
you are using computer software, to know which version is being computed. 
(Beware, at least one software package labels the statistics incorrectly).

Correlational Studies 
In the section “Partitioning the Sums of Squares” in the Regression chapter, we 
saw that the sum of squares for Y (the criterion variable) can be partitioned into the 
sum of squares explained and the sum of squares error. The proportion of variance 
explained in multiple regression is therefore:

SSQexplained/SSQtotal 

In simple regression, the proportion of variance explained is equal to r2; in multiple 
regression, it is equal to R2.
In general, R2 is analogous to η2and is a biased estimate of the variance explained. 
The following formula for adjusted R2 is analogous to ω2 and is less biased 
(although not completely unbiased):

 

where N is the total number of observations and p is the number of predictor 
variables.
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Statistical Literacy 
by David M. Lane 

Prerequisites
• Chapter 19:

This article describes some health effects of drinking coffee. Among the key 
findings were (a) women who drank four or more cups a day reduced their risk of 
endometrial cancer by 25% compared with those who drank less than one cup a 
day and (b) men who drank six or more cups had a 60% lower risk of developing 
the most deadly form of prostate cancer than those who drank less than one cup a 
day.
 
What do you think?
What is the technical term for the measure of risk reduction reported? What 
measures of risk reduction cannot be determined from the article? What additional 
information would have been helpful for assessing risk reduction? 

This is called the "relative risk reduction." The article does not 
provide information necessary to compute the absolute risk 
reduction, the odds ratio, or the number needed to treat. It 
would have been helpful if  the article had reported the 
proportion of  women drinking less than one cup a day who 
developed endometrial cancer as well as the analogous statistic 
for men and prostate cancer.
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Exercises 

Prerequisites

All content in this chapter

1. If the probability of a disease is .34 without treatment and .22 with treatment 
then what is the 
(a) absolute risk reduction 
(b) relative risk reduction 
(c) Odds ratio 
(d) Number needed to treat

2. When is it meaningful to compute the proportional difference between means?

3. The mean for an experimental group is 12, the mean for the control group were 
8, the MSE from the ANOVA is 16, and N, the number of observations is 20, 
compute g and d.

4. Two experiments investigated the same variables but one of the experiment had 
subject who differed greatly from each other whereas the subjects in the other 
experiment were relatively homogeneous. Which experiment would likely have 
the larger value of g?

5. Why is ω2 preferable to η2?

6. What is the difference between η2 and partial η2?

Questions from Case Studies

Teacher Ratings (TR)

7. (TR) What are the values of d and g?

8. (TR) What are the values of ω2 and η2?

Smiles and Leniency (SL)

9. (SL)What are the values of ω2 and η2? 
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Obesity and Bias (OB)

10. For compute ω2 and partial ω2 for the effect of “Weight” in a “Weight x 
Relatedness” ANOVA.
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20. Case Studies 
The case studies give examples of practical applications of statistical analyses. 
Many of the case studies contain the actual raw data. Some contain discussions of 
how the the data were analyzed. 

All links below are external links. 
 

1. Angry Moods
2. Flatulence
3. Physicians Reactions to Patient Size
4. Teacher Ratings
5. Mediterranean Diet and Health
6. Smiles and Leniency
7. Animal Research
8. ADHD Treatment
9. Weapons and Aggression
10. SAT and College GPA
11. Stereograms
12. Driving
13. Stroop Interference
14. TV Violence
15. Bias Against Associates of the Obese
16. Shaking and Stirring Martinis
17. Adolescent Lifestyle Choices
18. Chocolate and Body Weight
19. Bedroom TV and Hispanic Children
20. Weight and Sleep Apnea
21. Misusing SEM
22. School Gardens and Vegetable Consumption
23. TV and Hypertension
24. Dietary Supplements
25. Young People and Binge Drinking
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26. Sugar Consumption in the US Diet
27. Nutrition Information Sources and Older Adults
28. Mind Set Exercise and the Placebo Effect
29. Predicting Present and Future Affect
30. Exercise and Memory
31. Parental Recognition of Child Obesity
32. Educational Attainment and Racial, Ethnic, and Gender Disparity
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21. Glossary 
a priori Comparison 
A comparison that is planned before (a priori) conducting the experiment or at least 
before the data are examined. 

Absolute Deviation 
The absolute value of  the difference between two numbers. The absolute deviation 
between 5 and 3 is 2; between 3 and 5 is 2; and between -4 and 2 it is 6. 

Alternative Hypothesis 
In hypothesis testing, the null hypothesis and an alternative hypothesis are put forward. If  
the data are sufficiently strong to reject the null hypothesis, then the null hypothesis is 
rejected in favor of  an alternative hypothesis. For instance, if  the null hypothesis were that 
μ1 = μ2 then the alternative hypothesis (for a two-tailed test) would be μ1 ≠ μ2 . 

Analysis of  Variance 
Analysis of  variance is a method for testing hypotheses about means. It is the most widely-
used method of  statistical inference for the analysis of  experimental data. 

Antilog  
Taking the anti-log of  a number undoes the operation of  taking the log. Therefore, since 
Log10(1000)= 3, the antilog10 of  3 is 1,000. Taking the antilog of  X raises the base of  the 
logarithm in question to X. 

Average  
(i) The (arithmetic) mean 

(ii) Any measure of  central tendency 

Bar Chart  
A graphical method of  presenting data. A bar is drawn for each level of  a variable. The 
height of  each bar contains the value of  the variable. Bar charts are useful for displaying 
things such as frequency counts and percent increases. They are not recommended for 
displaying means (despite the widespread practice) since box plots present more 
information in the same amount of  space. 

Base Rate 
The true proportion of  a population having some condition, attribute or disease. For 
example, the proportion of  people with schizophrenia is about 0.01. It is very important 
to consider the base rate when classifying people. As the saying goes, “if  you hear hoofs, 
think horse not zebra” since you are more likely to encounter a horse than a zebra (at 
least in most places.)  
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Bayes' Theorem 
Bayes' theorem considers both the prior probability of  an event and the diagnostic value 
of  a test to determine the posterior probability of  the event. The theorem is shown below: 

 
where P(D|T) is the posterior probability of  condition D given test result T, P(T|D) is the 
conditional probability of  T given D, P(D) is the prior probability of  D, P(T|D') is the 
conditional probability of  T given not D, and P(D') is the probability of  not D'. 

Beta weight  
A standardized regression coefficient. 

Between-Subjects Factor/Variable 
Between-subject variables are independent variables or factors in which a different group 
of  subjects is used for each level of  the variable. If  an experiment is conducted comparing 
four methods of  teaching vocabulary and if  a different group of  subjects is used for each 
of  the four teaching methods, then teaching method is a between-subjects variable. 

Bias  
1. A sampling method is biased if  each element does not have an equal chance of  being 
selected. A sample of  internet users found reading an online statistics book would be a 
biased sample of  all internet users. A random sample is unbiased. Note that possible bias 
refers to the sampling method, not the result. An unbiased method could, by chance, lead 
to a very non-representative sample.  
 
2. An estimator is biased if  it systematically overestimates or underestimates the 
parameter it is estimating. In other words, it is biased if  the mean of  the sampling 
distribution of  the statistic is not the parameter it is estimating, The sample mean is an 
unbiased estimate of  the population mean. The mean squared deviation of  sample scores 
from their mean is a biased estimate of  the variance since it tends to underestimate the 
population variance. 

Bimodal Distribution  
A distribution with two distinct peaks.  

Binomial Distribution  
A probability distribution for independent events for which there are only two possible 
outcomes such as a coin flip. If  one of  the two outcomes is defined as a success, then the 
probability of  exactly x successes out of  N trials (events) is given by: 

 

! 

" = N# (1$# )

P(D | T ) =
P(T | D)P(D)

P(T | D)P(D)+ P(T | D' )P(D' )
 

€ 

P(x) =
N!

x!(N − x)!
π x (1−π)N−x
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Bin Width 
Also known as the class interval, the bin width is a division of  data for use in a histogram. 
For instance, it is possible to partition scores on a 100 point test into class intervals of  
1-25, 26-49, 50-74 and 75-100. 

Bivariate  
Bivariate data is data for which there are two variables for each observation. That is, two 
scores per subject. 

Bonferroni Correction 
In general, to keep the familywise error rate (FER) at or below .05, the per-comparison 
error rate (PCER) should be: PCER = .05/c where c is the number of  comparisons. 
More generally, to insure that the FER is less than or equal to alpha, use PCER = alpha/
c. 

Box Plot  
One of  the more effective graphical summaries of  a data set, the box plot generally shows 
mean, median, 25th and 75th percentiles, and outliers. A standard box plot is composed 
of  the median, upper hinge, lower hinge, higher adjacent value, lower adjacent value, 
outside values, and far out values. An example is shown below. Parallel box plots are very 
useful for comparing distributions. 

 

Central Tendency 
There are many measures of  the center of  a distribution. These are called measures of  
central tendency. The most common are the mean, median, and, mode. Others include 
the trimean, trimmed mean, and geometric mean.) 

Class Frequency  
One of  the components of  a histogram, the class frequency is the number of  observations 
in each class interval. See also: relative frequency. 

O

+

Outer Fence 29.0

Inner Fence 24.5

Mean 19.2

Upper Adjacent 24.0

Lower Adjacent 14.0

Upper Hinge 20.0
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Class Interval  
Also known as bin width, the class interval is a division of  data for use in a histogram. For 
instance, it is possible to partition scores on a 100 point test into class intervals of  1-25, 
26-49, 50-74 and 75-100. 

Conditional Probability  
The probability that event A occurs given that event B has already occurred is called the 
conditional probability of  A given B. Symbolically, this is written as P(A|B). The 
probability it rains on Monday given that it rained on Sunday would be written as P(Rain 
on Monday | Rain on Sunday). 

Confidence Interval  
A confidence interval is a range of  scores likely to contain the parameter being estimated. 
Intervals can be constructed to be more or less likely to contain the parameter: 95% of  
95% confidence intervals contain the estimated parameter whereas 99% of  99% 
confidence intervals contain the estimated parameter. The wider the confidence interval, 
the more uncertainty there is about the value of  the parameter. 

Confounding 
Two or more variables are confounded if  their effects cannot be separated because they 
vary together. For example, if  a study on the effect of  light inadvertently manipulated 
heat along with light, then light and heat would be confounded. 

Cook's D  
Cook's D is a measure of  the influence of  an observation in regression and is proportional 
to the sum of  the squared differences between predictions made with all observations in 
the analysis and predictions made leaving out the observation in question. 

Constant  
A value that does not change. Values such as π, or the mass of  the Earth are constants.  

Continuous Variables  
Variables that can take on any value in a certain range. Time and distance are 
continuous; gender, SAT score and “time rounded to the nearest second” are not. 
Variables that are not continuous are known as discrete variables. No measured variable is 
truly continuous; however, discrete variables measured with enough precision can often be 
considered continuous for practical purposes. 

Counterbalance  
Counterbalancing is a method of  avoiding confounding among variables. Consider an 
experiment in which subjects are tested on both an auditory reaction time task (in which 
subjects respond to an auditory stimulus) and a visual reaction time task (in which subjects 
respond to a visual stimulus). Half  of  the subjects are given the visual task first and the 
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other half  of  the subjects are given the auditory task first. That way, there is no 
confounding of  order of  presentation and task. 

Criterion Variable  
In regression analysis (such as linear regression) the criterion variable is the variable being 
predicted. In general, the criterion variable is the dependent variable. 

Cumulative Frequency Distribution 
A distribution showing the number of  observations less than or equal to values on the X-
axis. The following graph shows a cumulative distribution for scores on a test. 

 

Dependent Variable  
A variable that measures the experimental outcome. In most experiments, the effects of  
the independent variable on the dependent variables are observed. For example, if  a 
study investigated the effectiveness of  an experimental treatment for depression, then the 
measure of  depression would be the dependent variable.

Descriptive Statistics 

1. The branch of  statistics concerned with describing and summarizing data. 

2. A set of  statistics such as the mean, standard deviation, and skew that describe a 
distribution. 

Deviation Scores  
Scores that are expressed as differences (deviations) from some value, usually the mean. 
To convert data to deviation scores typically means to subtract the mean score from each 
other score. Thus, the values 1, 2, and 3 in deviation-score form would be computed by 
subtracting the mean of  2 from each value and would be -1, 0, 1. 
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Degrees of  Freedom  
The degrees of  freedom of  an estimate is the number of  independent pieces of  
information that go into the estimate. In general, the degrees of  freedom for an estimate 
is equal to the number of  values minus the number of  parameters estimated en route to 
the estimate in question. For example, to estimate the population variance, one must first 
estimate the population mean. Therefore, if  the estimate of  variance is based on N 
observations, there are N-1 degrees of  freedom. 

Discrete Variables  
Variables that can only take on a finite number of  values are called “discrete variables.” 
All qualitative variables are discrete. Some quantitative variables are discrete, such as 
performance rated as 1,2,3,4, or 5, or temperature rounded to the nearest degree. 
Sometimes, a variable that takes on enough discrete values can be considered to be 
continuous for practical purposes. One example is time to the nearest millisecond. 

Distribution  
The distribution of  empirical data is called a frequency distribution and consists of  a 
count of  the number of  occurrences of  each value. If  the data are continuous, then a 
grouped frequency distribution is used. Typically, a distribution is portrayed using a 
frequency polygon or a histogram. 

Mathematical equations are often used to define distributions. The normal distribution is, 
perhaps, the best known example. Many empirical distributions are approximated well by 
mathematical distributions such as the normal distribution. 

Expected Value 
The expected value of  a statistic is the mean of  the sampling distribution of  the statistic. 
It can be loosely thought of  as the long-run average value of  the statistic. 

Factor (Independent Variable) 
Variables that are manipulated by the experimenter, as opposed to dependent variables. 
Most experiments consist of  observing the effect of  the independent variable(s) on the 
dependent variable(s). 

Factorial Design  
In a factorial design, each level of  each independent variable is paired with each level of  
each other independent variable. Thus, a 2 x 3 factorial design consists of  the 6 possible 
combinations of  the levels of  the independent variables. 

False Positive  
A false positive occurs when a diagnostic procedure returns a positive result while the true 
state of  the subject is negative. For example, if  a test for strep says the patient has strep 
when in fact he or she does not, then the error in diagnosis would be called a false 
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positive. In some contexts, a false positive is called a false alarm. The concept is similar to 
a Type I error in significance testing. 

Familywise Error Rate 
When a series of  significance tests is conducted, the familywise error rate (FER) is the 
probability that one or more of  the significance tests results in a Type I error. 

Far Out Value  
One of  the components of  a box plot, far out values are those that are more than 2 steps 
beyond the nearest hinge. They are beyond an outer fence. 

Favorable Outcome  
A favorable outcome is the outcome of  interest. For example one could define a favorable 
outcome in the flip of  a coin as a head. The term “favorable outcome” does not 
necessarily mean that the outcome is desirable – in some experiments, the favorable 
outcome could be the failure of  a test, or the occurrence of  an undesirable event. 

Frequency Distribution  
For a discrete variable, a frequency distribution consists of  the distribution of  the number 
of  occurrences for each value of  the variable. For a continuous variable, it is the number 
of  occurrences for a variety of  ranges of  variables.  

Frequency Polygon  
A frequency polygon is a graphical representation of  a distribution. It partitions the 
variable on the x-axis into various contiguous class intervals of  (usually) equal widths. The 
heights of  the polygon's points represent the class frequencies. 
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Frequency Table  
A table containing the number of  occurrences in each class of  data; for example, the 
number of  each color of  M&Ms in a bag. Frequency tables often used to create 
histograms and frequency polygons. When a frequency table is created for a quantitative 
variable, a grouped frequency table is generally used. 

Grouped Frequency Table  
A grouped frequency table shows the number of  values for various ranges of  scores. 
Below is shown a grouped frequency table for response times (in milliseconds) for a simple 
motor task. 

Geometric Mean 
The geometric mean is a measure of  central tendency. The geometric mean of  n 
numbers is obtained by multiplying all of  them together, and then taking the nth root of  
them. For example, for the numbers 1, 10, and 100, the product of  all the numbers is: 1 x 
10 x 100 = 1,000. Since there are three numbers, we take the cubed root of  the product 
(1,000) which is equal to 10. 

Grouped Frequency Distribution  
A grouped frequency distribution is a frequency distribution in which frequencies are 
displayed for ranges of  data rather than for individual values. For example, the 
distribution of  heights might be calculated by defining one-inch ranges. The frequency of  
individuals with various heights rounded off  to the nearest inch would then be tabulated.  

Harmonic Mean 
The harmonic mean of  n numbers (x1 to xn) is computed using the formula 

 

where nh is the harmonic mean. Often the harmonic mean of  sample sizes is computed. 

Range Frequency

500-600 
600-700 
700-800 
800-900 

900-1000 
1000-1100

3 
6 
5 
5 
0 
1
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Histogram  
 A histogram is a graphical representation of  a distribution . It partitions the variable on 
the x-axis into various contiguous class intervals of  (usually) equal widths. The heights of  
the bars represent the class frequencies. 

History Effect 
A problem of  confounding where the passage of  time, and not the variable of  interest, is 
responsible for observed effects. See also: third variable problem. 

Homogeneity of  Variance 
The assumption that the variances of  all the populations are equal. 

Homoscedasticity  
In linear regression, the assumption that the varance around the regression line is the 
same for all values of  the predictor variable. 

H-Spread  
One of  the components of  a box plot, the H-spread is the difference between the upper 
hinge and the lower hinge. 

Independence 
Two variables are said to be independent if  the value of  one variable provides no 
information about the value of  the other variable. These two variables would be 
uncorrelated so that Pearson's r would be 0. 

Two events are independent if  the probability the second event occurring is the same 
regardless of  whether or not the first event occurred. 

Independent Events  
Events A and B are independent events if  the probability of  Event B occurring is the 
same whether or not Event A occurs. For example, if  you throw two dice, the probability 
that the second die comes up 1 is independent of  whether the first die came up 1. 
Formally, this can be stated in terms of  conditional probabilities: P(A|B) = P(A) and P(B|
A) = P(B). 

Independent Variable (Factor) 
Variables that are manipulated by the experimenter, as opposed to dependent variables. 
Most experiments consist of  observing the effect of  the independent variable(s) on the 
dependent variable(s). 

Inferential Statistics 
The branch of  statistics concerned with drawing conclusions about a population from a 
sample. This is generally done through random sampling, followed by inferences made 
about central tendency, or any of  a number of  other aspects of  a distribution. 
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Influence  
Influence refers to the degree to which a single observation in regression influences the 
estimation of  the regression parameters. It is often measured in terms how much the 
predicted scores for other observations would differ if  the observation in question were 
not included. 

Inner Fence 
In a box plot, the lower inner fence is one step below the lower hinge while the upper 
inner fence is one step above the upper hinge. 

Interaction 
Two independent variables interact if  the effect of  one of  the variables differs depending 
on the level of  the other variable. 

Interaction Plot 
An interaction plot displays the levels of  one variable on the X axis and has a separate 
line for the means of  each level of  the other variable. The Y axis is the dependent 
variable. A look at this graph shows that the effect of  dosage is different for males than it 
is for females. 

 

Interquartile Range  
The Interquartile Range (IQR) is the 75th percentile minus the 25th percentile. It is a 
robust measure of  variability. 

Interval Estimate 
An interval estimate is a range of  scores likely to contain the estimated parameter. It can 
be used synonymously with “confidence interval.” 
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Interval Scale 
One of  four commonly used levels of  measurement, an interval scales is a numerical 
scales in which intervals have the same meaning throughout. As an example, consider the 
Fahrenheit scale of  temperature. The difference between 30 degrees and 40 degrees 
represents the same temperature difference as the difference between 80 degrees and 90 
degrees. This is because each 10 degree interval has the same physical meaning (in terms 
of  the kinetic energy. Unlike ratio scales, interval scales do not have a true zero point. 

Jitter 
When points in a graph are jittered, the are moved horizontally so that all the points can 
be seen and none are hidden due to overlapping values. An example is shown below: 

 

Kurtosis 
Kurtosis measures how fat or thin the tails of  a distribution are relative to a normal 
distribution. It is commonly defined as: 

 
Distributions with long tails are called leptokurtic; distributions with short tails are called 
platykurtic. Normal distributions have zero kurtosis. 

Leptokurtic  
A distribution with long tails relative to a normal distribution is leptokurtic. 

Level 
When a factor consists of  various treatment conditions, each treatment condition is 
considered a level of  that factor. For example, if  the factor were drug dosage, and three 
doses were tested, then each dosage would be one level of  the factor and the factor would 
have three levels. 
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Levels of  Measurement  
Measurement scales differ in their level of  measurement. There are four common levels 
of  measurement: 

1. Nominal scales are only labels. 

2. Ordinal Scales are ordered but are not truly quantitative. Equal intervals on the 
ordinal scale do not imply equal intervals on the underlying trait. 

3. Interval scales are are ordered and equal intervals equal intervals on the 
underlying trait. However, interval scales do not have a true zero point. 

4. Ratio scales are interval scales that do have a true zero point. With ratio scales, it is 
sensible to talk about one value being twice as large as another, for example. 

Leverage  
Leverage is a factor affecting the influence of  an observation in regression. Leverage is 
based on how much the observation's value on the predictor variable differs from the 
mean of  the predictor variable. The greater an observation's leverage, the more potential 
it has to be an influential observation. 

Lie Factor 
Many problems can arise when fancy graphs are used over plain ones. Distortions can 
occur when the heights of  objects are used to indicate the value because most people will 
pay attention to the areas of  the objects rather than their height. The lie factor is the ratio 
of  the effect apparent in the graph to actual effect in the data; if  it deviates by more than 
0.05 from 1, the graph is generally unacceptable. The lie factor in the following graph is 
almost 6. 

 

Lies  
There are three types of  lies: 

1. regular lies 
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2. damned lies 

3.  statistics 

This is according to Benjamin Disraeli as quoted by Mark Twain. 

Line Graph  
Essentially a bar graph in which the height of  each par is represented by a single point, 
with each of  these points connected by a line. Line graphs are best used to show change 
over time, and should not be used if  your X-axis is not an ordered variable. An example is 
shown below. 

 

Linear Combination 
A linear combination of  variables is a way of  creating a new variable by combining other 
variables. A linear combination is one in which each variable is multiplied by a coefficient 
and the are products summed. For example, if  

	 Y = 3X1 + 2X2 + .5X3 

then Y is a linear combination of  the variables X1, X2, and X3. 

Linear Regression  
Linear regression is a method for predicting a criterion variable from one or more 
predictor variable. In simple regression, the criterion is predicted from a single predictor 
variable and the best-fitting straight line is of  the form 

	 Y' = bX + A 

where Y' is the predicted score, X is the predictor variable, b is the slope, and A is the Y 
intercept. Typically, the criterion for the “best fitting” line is the line for which the sum of  
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the squared errors of  prediction is minimized. In multiple regression, the criterion is 
predicted from two or more predictor variables. 

Linear Relationship  
There is a perfect linear relationship between two variables if  a scatterplot of  the points 
falls on a straight line. The relationship is linear even if  the points diverge from the line as 
long as the divergence is random rather than being systematic. 

Linear Transformation 
A linear transformation is any transformation of  a variable that can be achieved by 
multiplying it by a constant, and then adding a second constant. If  Y is the transformed 
value of  X, then Y = aX + b. The transformation from degrees Fahrenheit to degrees 
Centigrade is linear and is done using the formula: 
 
	 C = 0.55556F - 17.7778. 

Logarithm 
The logarithm of  a number is the power the base of  the logarithm has to be raised to in 
order to equal the number. If  the base of  the logarithm is 10 and the number is 1,000, 
then the log is 3 since 10 has to be raised to the 3rd power to equal 1,000. 

Lower Adjacent Value 
A component of  a box plot, the lower adjacent value is smallest value in the data above 
the inner lower fence. 

Lower Hinge 
A component of  a box plot, the lower hinge is the 25th percentile. The upper hinge is the 
75th percentile. 

Main Effect 
A main effect of  an independent variable is the effect of  the variable averaging over all 
levels of  the other variable(s). For example, in a design with age and gender as factors, the 
main effect of  gender would be the difference between the genders averaging across all 
ages used in the experiment.  

Margin of  Error 
When a statistic is used to estimate a parameter, it is common to compute a confidence 
interval. The margin of  error is the difference between the statistic and the endpoints of  
the interval. For example, if  the statistic were 0.6 and the confidence interval ranged from 
0.4 to 0.8, then the margin of  error would be 0.20. Unless otherwise specified, the 95% 
confidence interval is used. 
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Marginal Mean 
In a design with two factors, the marginal means for one factor are the means for that 
factor averaged across all levels of  the other factor. In the table shown below, the two 
factors are “Relationship” and “Companion Weight.” The marginal means for each of  
the two levels of  Relationship (Girl Friend and Acquaintance) are computed by averaging 
across the two levels of  Companion Weight. Thus, the marginal mean for Acquaintance 
of  6.37 is the mean of  6.15 and 6.59. 

Mean  
Also known as the arithmetic mean, the mean is typically what is meant by the word 
“average.” The mean is perhaps the most common measure of  central tendency. The 
mean of  a variable is given by (the sum of  all its values)/(the number of  values). For 
example, the mean of  4, 8, and 9 is 7. The sample mean is written as M, and the 
population mean as the Greek letter mu (μ). Despite its popularity, the mean may not be 
an appropriate measure of  central tendency for skewed distributions, or in situations with 
outliers. Other than the arithmetic mean, there is the geometric mean and the harmonic 
mean. 

Median  
The median is a popular measure of  central tendency. It is the 50th percentile of  a 
distribution. To find the median of  a number of  values, first order them, then find the 
observation in the middle: the median of  5, 2, 7, 9, and 4 is 5. (Note that if  there is an 
even number of  values, one takes the average of  the middle two: the median of  4, 6, 8, 
and 10 is 7.) The median is often more appropriate than the mean in skewed distributions 
and in situations with outliers. 

Misses 
Misses occur when a diagnostic test returns a negative result, but the true state of  the 
subject is positive. For example, if  a person has strep throat and the diagnostic test fails to 
indicate it, then a miss has occurred. The concept is similar to a Type II error in 
significance testing. 

  Companion Weight  

Obese Typical Marginal Mean

Relationship Girl Friend 5.65 6.19 5.92

Acquaintance 6.15 6.59 6.37

Marginal Mean 5.9 6.39

673



Mode 
The mode is a measure of  central tendency. It is the most frequent value in a distribution: 
the mode of  3, 4, 4, 5, 5, 5, 8 is 5. Note that the mode may be very different from the 
mean and the median. 

Multiple Regression 
Multiple regression is linear regression in which two or more predictor variables are used 
to predict the criterion. 

Negative Association 
There is a negative association between variables X and Y if  smaller values of  X are 
associated with larger values of  Y and larger values of  X are associated with smaller 
values of  Y. 

Nominal Scales  
A nominal scale is one of  four commonly-used levels of  measurement. No ordering is 
implied, and addition/subtraction and multiplication/division would be inappropriate for 
a variable on a nominal scale. {Female, Male} and {Buddhist, Christian, Hindu, Muslim} 
have no natural ordering (except alphabetic). Occasionally, numeric values are nominal: 
for instance, if  a variable were coded as Female = 1, Male =2, the set {1,2} is still 
nominal. 

Non-representative  
A non-representative sample is a sample that does not accurately reflect the population. 

Normal Distribution 
One of  the most common continuous distributions, a normal distribution is sometimes 
referred to as a “bell-shaped distribution.” If  μ is the distribution mean, and σ the 
standard deviation, then the height (ordinate) of  the normal distribution is given by 
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A graph of  a normal distribution with a mean of  50 and a standard deviation of  10  is 
shown below. 

 

If  the mean is 0 and the standard deviation is 1, the distribution is referred to as the 
“standard normal distribution.” 

Null Hypothesis 
A null hypothesis is a hypothesis tested in significance testing. It is typically the hypothesis 
that a parameter is zero or that a difference between parameters is zero. For example, the 
null hypothesis might be that the difference between population means is zero. 
Experimenters typically design experiments to allow the null hypothesis to be rejected. 

Omnibus Null Hypothesis 
The null hypothesis that all population means are equal. 

One Tailed 
The last step in significance testing involves calculating the probability that a statistic 
would differ as much or more from the parameter specified in the null hypothesis as does 
the statistics obtained in the experiment.  
 
A probability computed considering differences in only one direction, such as the statistic 
is larger than the parameter, is called a one-tailed probability. For example, if  a parameter 
is 0 and the statistic is 12, a one-tailed probability (the positive tail) would be the 
probability of  a statistic being ≥  to 12. Compare with the two-tailed probability which 
would be the probability of  being either  ≤ -12 or ≥12. 

Ordinal Scales 
One of  four commonly-used levels of  measurement, an ordinal scale is a set of  ordered 
values. However, there is no set distance between scale values. For instance, for the scale: 
(Very Poor, Poor, Average, Good, Very Good) is an ordinal scale. You can assign 
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numerical values to an ordinal scale: rating performance such as 1 for “Very Poor,” 2 for 
“Poor,” etc, but there is no assurance that the difference between a score of  1 and 2 
means the same thing as the difference between a score of  and 2 and 3. 

Orthogonal Comparisons 
When comparisons among means provide completely independent information, the 
comparisons are called “orthogonal.” If  an experiment with four groups were conducted, 
then a comparison of  Groups 1 and 2 would be orthogonal to a comparison of  Groups 3 
and 4 since there is nothing in the comparison of  Groups 1 and 2 that provides 
information about the comparison of  Groups 3 and 4. 

Outer Fence 
In a box plot, the lower outer fence is two steps below the lower hinge whereas the upper 
inner fence is two steps above the upper hinge. 

Outlier 
Outliers are atypical, infrequent observations; values that have an extreme deviation from 
the center of  the distribution. There is no universally-agreed on criterion for defining an 
outlier, and outliers should only be discarded with extreme caution. However, one should 
always assess the effects of  outliers on the statistical conclusions. 

Outside Values 
A component of  a box plot, outside values are more than one step beyond the nearest 
hinge but not more than two steps. They are beyond an inner fence but not beyond an 
outer fence. 

Pairwise Comparisons  
Two or more box plots drawn on the same Y-axis. These are often useful in comparing 
features of  distributions. An example portraying the times it took samples of  women and 
men to do a task is shown below. 

Parallel Box Plots  
Two or more box plots drawn on the same Y-axis. These are often useful in comparing 
features of  distributions. An example portraying the times it took samples of  women and 
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men to do a task is shown below. 

 

Parameter 
A value calculated in a population. For example, the mean of  the numbers in a 
population is a parameter. Compare with a statistic, which is a value computed in a 
sample to estimate a parameter. 

Partial slope 
The partial slope in multiple regression is the slope of  the relationship between the part 
of  the predictor variable that is independent of  the other predictor variables and 
criterion. It is also the regression coefficient for the predictor variable in question. 

Pearson's r  
Pearson's correlation is a measure of  the strength of  the linear relationship between two 
variables. It ranges from -1 for a perfect negative relationship to +1 for a perfect positive 
relationship. A correlation of  0 means that there is no linear relationship. 

Percentiles 
There is no universally accepted definition of  a percentile. Using the 65th percentile as an 
example, some statisticians define the 65th percentile as the lowest score that is greater than 
65% of  the scores. Others have defined the 65th percentile as the lowest score that is 
greater than or equal to 65% of  the scores. A more sophisticated definition is given below. 

The first step is to compute the rank (R) of  the percentile in question. This is done using 
the following formula: 
 
	 R = P/100 x (N + 1) 
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where P is the desired percentile and N is the number of  numbers. If  R is an integer, then 
the Pth percentile is the number with rank R. When R is not an integer, we compute the 
Pth percentile by interpolation as follows: 

1. Define IR as the integer portion of  R (the number to the left of  the decimal point). 

2. Define FR as the fractional portion or R. 

3. Find the scores with Rank IR and with Rank IR + 1.  

4. Interpolate by multiplying the difference between the scores by FR and add the result 
to the lower score. 

Per-Comparison Error Rate 
The per-comparison error rate refers to the Type I error rate of  any one significance test 
conducted as part of  a series of  significance tests. Thus, if  10 significance tests were each 
conducted at 0.05 significance level, then the per-comparison error rate would be 0.05. 
Compare with the familywise error rate. 

Pie Chart 
A graphical representation of  data, the pie chart shows relative frequencies of  classes of  
data. It is a circle cut into a number of  wedges, one for each class, with the area of  each 
wedge proportional to its relative frequency. Pie charts are only effective for a small 
number of  classes, and are one of  the less effective graphical representations. 

Placebo  
A device used in clinical trials, the placebo is visually indistinguishable from the study 
medication, but in reality has no medical effect (often, a sugar pill). A group of  subjects 
chosen randomly takes the placebo, the others take one or another type of  medication. 
This is done to prevent confounding the medical and psychological effects of  the drug. 
Even a sugar pill can lead some patients to report improvement and side effects. 

Planned Comparison 
A comparison that is planned before conducting the experiment or at least before the data 
are examined. Also called an a priori comparison. 

Platykurtic 
A distribution with short tails relative to a normal distribution is platykurtic. See also 
“kurtosis.” 

Point Estimate 
When a parameter is being estimated, the estimate can be either a single number or it can 
be a range of  numbers such as in a confidence interval. When the estimate is a single 
number, the estimate is called a “point estimate.” 
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Polynomial Regression 
Polynomial regression is a form of  multiple regression in which powers of  a predictor 
variable instead of  other predictor variables are used. In the following example, the 
criterion (Y) is predicted by X, X2 and, X3. 

	 Y = b1X + b2X2 + b3X3 + A 

Population 
A population is the complete set of  observations a researcher is interested in. Contrast this 
with a sample which is a subset of  a population. A population can be defined in a manner 
convenient for a researcher. For example, one could define a population as all girls in 
fourth grade in Houston, Texas. Or, a different population is the set of  all girls in fourth 
grade in the United States. Inferential statistics are computed from sample data in order 
to make inferences about the population. 

Positive Association 
There is a positive association between variables X and Y if  smaller values of  X are 
associated with smaller values of  Y and larger values of  X are associated with larger 
values of  Y. 

Posterior Probability 
The posterior probability of  an event is the probability of  the event computed following 
the collection of  new data. One begins with a prior probability of  an event and revises it 
in the light of  new data. For example, if  0.01 of  a population has schizophrenia then the 
probability that a person drawn at random would have schizophrenia is 0.01. This is the 
prior probability. If  you then learn that that their score on a personality test suggests the 
person is schizophrenic, you would adjust your probability accordingly. The adjusted 
probability is the posterior probability. 

Power 
In significance testing, power is the probability of  rejecting a false null hypothesis.  

Precision 
A statistic's precision concerns to how close it is expected to be to the parameter it is 
estimating. Precise statistics are vary less from sample to sample. The precision of  a 
statistic is usually defined in terms of  it standard error. 

Predictor 
A predictor variable is a variable used in regression to predict another variable. It is 
sometimes referred to as an independent variable if  it is manipulated rather than just 
measured. 

Prior Probability 
The prior probability of  an event is the probability of  the event computed before the 
collection of  new data. One begins with a prior probability of  an event and revises it in 

679



the light of  new data. For example, if  0.01 of  a population has schizophrenia then the 
probability that a person drawn at random would have schizophrenia is 0.01. This is the 
prior probability. If  you then learn that that there score on a personality test suggests the 
person is schizophrenic, you would adjust your probability accordingly. The adjusted 
probability is the posterior probability. 

Probability Density 
For a discrete random variable, a probability distribution contains the probability of  each 
possible outcome. However, for a continuous random variable, the probability of  any one 
outcome is zero (if  you specify it to enough decimal places). A probability density function 
is a formula that can be used to compute probabilities of  a range of  outcomes for a 
continuous random variable. The sum of  all densities is always 1.0 and the value of  the 
function is always greater or equal to zero. 

Probability Distribution 
For a discrete random variable, a probability distribution contains the probability of  each 
possible outcome. The sum of  all probabilities is always 1.0. See binomial distribution for 
an example.  

Probability Value 
In significance testing, the probability value (sometimes called the p value) is the 
probability of  obtaining a statistic as different or more different from the parameter 
specified in the null hypothesis as the statistic obtained in the experiment. The probability 
value is computed assuming the null hypothesis is true. The lower the probability value, 
the stronger the evidence that the null hypothesis is false. Traditionally, the null hypothesis 
is rejected if  the probability value is below 0.05. 

Qualitative Variable  
Also known as categorical variables, qualitative variables are variables with no natural 
sense of  ordering. They are therefore measured on a nominal scale. For instance, hair 
color (Black, Brown, Gray, Red, Yellow) is a qualitative variable, as is name (Adam, Becky, 
Christina, Dave . . .). Qualitative variables can be coded to appear numeric but their 
numbers are meaningless, as in male=1, female=2. Variables that are not qualitative are 
known as quantitative variables. 

Quantitative Variable 
Variables that are measured on a numeric or quantitative scale. Ordinal, interval and 
ratio scales are quantitative. A country’s population, a person’s shoe size, or a car’s speed 
are all quantitative variables. Variables that are not quantitative are known as qualitative 
variables. 
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Quantile-Quantile Plot 
A quantile-quantile or q-q plot is an exploratory graphical device used to check the 
validity of  a distributional assumption for a data set. In general, the basic idea is to 
compute the theoretically expected value for each data point based on the distribution in 
question. If  the data indeed follow the assumed distribution, then the points on the q-q 
plot will fall approximately on a straight line. 

Random Assignment 
Random assignment occurs when the subjects in an experiment are randomly assigned to 
conditions. Random assignment prevents systematic confounding of  treatment effects 
with other variables. 

Random Sampling 
The process of  selecting a subset of  a population for the purposes of  statistical inference. 
Random sampling means that every member of  the population is equally likely to be 
chosen. 

Range 
The difference between the maximum and minimum values of  a variable or distribution. 
The range is the simplest measure of  variability. 

Ratio Scale  
One of  the four basic levels of  measurement, a ratio scale is a numerical scale with a true 
zero point and in which a given size interval has the same interpretation for the entire 
scale. Weight is a ratio scale, Therefore, it is meaningful to say that a 200 pound person 
weighs twice as much as a 100 pound person. 

Regression 
Regression means “prediction.” The regression of  Y on X means the prediction of  Y by 
X.  

Regression Coefficient 
A regression coefficient is the slope of  the regression line in simple regression or the 
partial slope in multiple regression. 

Regression Line  
In linear regression, the line of  best fit is called the regression line. 

Relative Frequency 
The proportion of  observations falling into a given class. For example, if  a bag of  55 M & 
M's has 11 green M&M's, then the frequency of  green M&M's is 11 and the relative 
frequency is 11/55 = 0.20. Relative frequencies are often used in histograms, pie charts, 
and bar graphs. 
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Relative Frequency Distribution 
A relative frequency distribution is just like a frequency distribution except that it consists 
of  the proportions of  occurrences instead of  the numbers of  occurrences for each value 
(or range of  values) of  a variable. 

Reliability 
Although there are many ways to conceive of  the reliability of  a test, the classical way is 
to define the reliability as the correlation between two parallel forms of  the test. When 
defined this way, the reliability is the ratio of  true score variance to test score variance. 
Chronbach's α is a common measure of  reliability. 

Repeated Measures Factor 
A within-subjects variable is an independent variable that is manipulated by testing each 
subject at each level of  the variable. Compare with a between-subjects variable in which 
different groups of  subjects are used for each level of  the variable. Also called a “repeated 
measures variable.” 

Repeated Measures Variable 
A within-subjects variable is an independent variable that is manipulated by testing each 
subject at each level of  the variable. Compare with a between-subjects variable in which 
different groups of  subjects are used for each level of  the variable. Also called a “repeated 
measures factor.” 

Representative Sample 
A representative sample is a sample chosen to match the qualities of  the population from 
which it is drawn. With a large sample size, random sampling will approximate a 
representative sample; stratified random sampling can be used to make a small sample 
more representative. 

Robust 
Something is robust if  it holds up well in the face of  adversity. A measure of  central 
tendency or variability is considered robust if  it is not greatly affected by a few extreme 
scores. A statistical test is considered robust if  it works well in spite of  moderate violations 
of  the assumptions on which it is based. 

Sample 
A sample is a subset of  a population, often taken for the purpose of  statistical inference. 
Generally, one uses a random sample.  

Sampling Distribution 
A sampling distribution can be thought of  as a relative frequency distribution with a very 
large number of  samples. More precisely, a relative frequency distribution approaches the 
sampling distribution as the number of  samples approaches infinity. When a variable is 
discrete, the heights of  the distribution are probabilities. When a variable is continuous, 
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the class intervals have no width and and the heights of  the distribution are probability 
densities. 

Scatter Plot 
A scatter plot of  two variables shows the values of  one variable on the Y axis and the 
values of  the other variable on the X axis. Scatter plots are well suited for revealing the 
relationship between two variables. The scatter plot shown below illustrates the 
relationship between grip strength and arm strength in a sample of  workers. 

 

Semi-Interquartile Range  
The semi interquartile range is the interquartile range divided by 2. It is a robust 
measure of variability. The Interquartile Range is the (75th percentile – 25th percentile).
Significance Level 
In significance testing, the significance level is the highest value of  a probability value for 
which the null hypothesis is rejected. Common significance levels are 0.05 and 0.01. If  the 
0.05 level is used, then the null hypothesis is rejected if  the probability value is less than or 
equal to 0.05. 

Significance Testing 
A statistical procedure that tests the viability of  the null hypothesis. If  data (or more 
extreme data) are very unlikely given that the null hypothesis is true, then the null 
hypothesis is rejected. If  the data or more extreme data are not unlikely, then the null 
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hypothesis is not rejected. If  the null hypothesis is rejected, then the result of  the test is 
said to be significant. A statistically significant effect does not mean the effect is important. 

Simple effect 
The simple effect of  a factor is the effect of  that factor at a single level of  another factor. 
For example, in a design with age and gender as factors, the effect of  age for females 
would be one of  the simple effects of  age. 

Simple Regression 
Simple regression is linear regression in which one more predictor variable is used to 
predict the criterion. 

Skew 
A distribution is skewed if  one tail extends out further than the other. A distribution has a 
positive skew (is skewed to the right) if  the tail to the right is longer. It has a negative skew 
(skewed to the left) if  the tail to the left is longer. 

Slope 
The slope of  a line is the change in Y for each change of  one unit of  X. It is sometimes 
defined as “rise over run” which is the same thing. The slope of  the black line in the 
graph is 0.675 because the line increases by 0.675 each time X increases by 1.0. 

 

Squared Deviation 
A squared deviation is the difference between two values, squared. The number that 
minimizes the sum of  squared deviations for a variable is its mean. 

Standard Deviation  
The standard deviation is a widely used measure of  variability. It is computed by taking 
the square root of  the variance. An important attribute of  the standard deviation as a 
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measure of  variability is that if  the mean and standard deviation of  a normal distribution 
are known, it is possible to compute the percentile rank associated with any given score. 

Standard Error  
The standard error of  a statistic is the standard deviation of  the sampling distribution of  
that statistic. For example, the standard error of  the mean is the standard deviation of  the 
sampling distribution of  the mean. Standard errors play a critical role in constructing 
confidence intervals and in significance testing. 

Standard Error of  Measurement 
In test theory, the standard error of  measurement is the standard deviation of  observed 
test scores for a given true score. It is usually estimated with the following formula in 
which stest is the standard deviation of  the test scores and rtest,test is the reliability of  the 
test. 

 

 

Standard Error of  the Estimate  
The standard error of  the estimate is the standard deviation of  the error of  prediction in 
linear regression. It is a measure of  the accuracy of  prediction. 

In the population is is calculated with the following formula: 

 

In a sample, it is estimated with: 

 

Standard Error of  the Mean  

he standard error of  the mean is the standard deviation of  the sampling distribution of  
the mean. The formula for the standard error of  the mean in a population is: 
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where σ is the standard deviation and N is the sample size. When computed in a sample, 
the estimate of  the standard error of  the mean is: 

 

Standard Normal Distribution 
The standard normal distribution is a normal distribution with a mean of  0 and a 
standard deviation of  1. 

Standard Normal Deviate 
The number of  standard deviations a score is from the mean of  its population. The term 
“normal deviate” should only be used in reference to normal distributions. The 
transformation from a raw score X to a z score can be done using the following formula: 

z = (X - μ)/σ 

Transforming a variable in this way is called “standardizing” the variable. It should be 
kept in mind that if  X is not normally distributed then the transformed variable will not 
be normally distributed either. 

Standardize 
A variable is standardized if  it has a mean of  0 and a standard deviation of  1. The 
transformation from a raw score X to a standard score can be done using the following 
formula: 

Xstandardized = (X - μ)/σ 

where μ is the mean and σ is the standard deviation. Transforming a variable in this way 
is called “standardizing” the variable. It should be kept in mind that if  X is not normally 
distributed then the transformed variable will not be normally distributed either. 

Statistics  
1. What you are studying right now, also known as statistical analysis, or statistical 

inference. It is a field of  study concerned with summarizing data, interpreting data, 
and making decisions based on data. 

2. A quantity calculated in a sample to estimate a value in a population is called a 
“statistic.” 

Stem and Leaf  Display 
A quasi-graphical representation of  numerical data. Generally, all but the final digit of  
each value is a stem, the final digit is the leaf. The stems are placed in a vertical list, with 
each matched leaf  on one side. Stem and leaf  displays can be very useful for visualizing 
small data sets with no more than two significant digits. An example is shown below. In 
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this example, you multiply the stems by 10 and add the value of  the leaf  to obtain the 
numeric value. Thus the maximum number of  touchdown passes is 3 x 10 + 7 = 37. 
 

Step 
One of  the components of  a box plot, the step is 1.5 times the difference between the 
upper hinge and the lower hinge. See also: H-spread. 

Stratified Random Sampling 
In stratified random sampling, the population is divided into a number of  subgroups (or 
strata). Random samples are then taken from each subgroup with sample sizes 
proportional to the size of  the subgroup in the population. For instance, if  a population 
contained equal numbers of  men and women, and the variable of  interest is suspected to 
vary by gender, one might conduct stratified random sampling to insure a representative 
sample. 

Studentized Range Distribution 
The studentized range distribution is used to test the difference between the largest and 
smallest means. It is similar to the t distribution which is used when there are only two 
means. 

Sturgis' Rule  
One method of  determining the number of  classes for a histogram, Sturgis’ rule is to take 
1 + Log2(N) classes, rounded to the nearest integer. 

Sum of  Squares Error  
In linear regression, the sum of  squares error is the sum of  squared errors of  prediction. 
In analysis of  variance, it is the sum of  squared deviations from cell means for between-
subjects factors and the Subjects x Treatment interaction for within-subject factors. 

Symmetric Distribution 
In a symmetric distribution, the upper and lower halves of  the distribution are mirror 
images of  each other. In a symmetric distribution, the mean is equal to the median. 

t distribution 
The t distribution is the distribution of  a value sampled from a normal distribution 
divided by an estimate of  the distribution's standard deviation. In practice, the value is 
typically a statistic such as the mean or the difference between means and the standard 
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deviation is an estimate of  the standard error of  the statistic. The t distribution in 
leptokurtic. 

t test 
Most commonly, a significance test of  the difference between means based on the t 
distribution. Other applications include (a) testing the significance of  the difference 
between a sample mean and a hypothesized value of  the mean and (b) testing a specific 
contrast among means. 

Third Variable Problem 
A type of  confounding in which a third variable leads to a mistaken causal relationship 
between two others. For instance, cities with a greater number of  churches have a higher 
crime rate. However, more churches do not lead to more crime, but instead the third 
variable, population, leads to both more churches and more crime. 

Touchdown Pass  
In American football, a touchdown pass occurs when a completed pass results in a 
touchdown. The pass may be to a player in the end zone or to a player who subsequently 
runs into the end zone. A touchdown is worth 6 points and allows for a chance at one 
(and by some rules two) additional point(s). 

Trimean 
The trimean is a robust measure of  central tendency; it is a weighted average of  the 25th, 
50th, and 75th percentiles. Specifically it is computed as follows: 

 
Trimean = 0.25 x 25th + 0.5 x 50th + 0.25 x 75th. 

Trimmed Mean 
The trimmed mean is a robust measure of  central tendency generally falling between the 
mean and the median. As in the computation of  the median, all observations are ordered. 
Next, the highest and lowest alpha percent of  the data are removed, where alpha ranges 
from 0 to 50. Finally, the mean of  the remaining observations is taken. The trimmed 
mean has advantages over both the mean and median, but is analytically more 
intractable. 

True Score 
A person's true score on a test is the mean score they would get if  they took the test over 
and over again assuming no practice effects. In practice, the true score is not known but it 
is important theoretical concept. 

Tukey HSD Test 
The “Honestly Significantly Different” (HSD) test developed by the statistician John 
Tukey to test all pairwise comparisons among means. The test is based on the 
“studentized range distribution.” 
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Two Tailed 
The last step in significance testing involves calculating the probability that a statistic 
would differ as much or more from the parameter specified in the null hypothesis as does 
the statistics obtained in the experiment.  

A probability computed considering differences in both direction (statistic either larger or 
smaller than the parameter) is called two-tailed probability. For example, if  a parameter is 
0 and the statistic is 12, a two-tailed probability would be the he probability of  being 
either ≤ -12 or ≥12. Compare with the one-tailed probability which would be the 
probability of  a statistic being ≥ to 12 if  that were the direction specified in advance. 

Type I Error  
In significance testing, the error of  rejecting a true null hypothesis. 

Type II Error 
In significance testing, the failure to reject a false null hypothesis. 

Unbiased 
A sample is said to be unbiased when every individual has an equal chance of  being 
chosen from the population.  

An estimator is unbiased if  it does not systematically overestimate or underestimate the 
parameter it is estimating. In other words, it is unbiased if  the mean of  the sampling 
distribution of  the statistic is the parameter it is estimating, The sample mean is an 
unbiased estimate of  the population mean.  

Unplanned Comparison 
When the comparison among means is decided on after viewing the data, the comparison 
is called an “unplanned comparison” or a post-hoc comparison. Different statistical tests 
are required for unplanned comparisons than for planned comparisons. 

Upper Hinge 
The upper hinge is one of  the components of  a box plot; it is the 75th percentile. 

Upper Adjacent Value  
One of  the components of  a box plot, the higher adjacent value is the largest value in the 
data below the 75th percentile. 

Variability  
Variability refers to the extent to which values differ from one another. That is, how much 
they vary. Variability can also be thought of  as how spread out a distribution is. The 
standard deviation and the semi-interquartile range are measures of  variability. 

Variable 
Something that can take on different values. For example, different subjects in an 
experiment weigh different amounts. Therefore “weight” is a variable in the experiment. 
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Or, subjects may be given different doses of  a drug. This would make “dosage” a variable. 
Variables can be dependent or independent, qualitative or quantitative, and continuous or 
discrete. 

Variance 
The variance is a widely used measure of  variability. It is defined as the mean squared 
deviation of  scores from the mean. The formula for variance computed in an entire 
population is: 
 

 

where σ2 represents the variance, μ is the mean, and N is the number of  scores. 

  

When computed in a sample in order to estimate the variance in the population, the 
formula is: 
 

 

where s2 is the estimate of  variance, M is the sample mean, and N is the number of  scores 
in the sample. 

Variance Sum Law 
The variance sum law is an expression for the variance of  the sum of  two variables. If  the 
variables are independent and therefore Pearson's r = 0, the following formula represents 
the variance of  the sum and difference of  the variables X and Y: 
 

  
Note that you add the variances for both X + Y and X - Y. 
 
If  X and Y are correlated, then the following formula (which the former is a special case) 
should be used: 
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where ρ is the population value of  the correlation. In a sample r is used as an estimate of  
ρ. 

Within-Subjects Design 
An experimental design in which the independent variable is a within-subjects variable. 

Within-Subjects Factor 
A within-subjects factor is an independent variable that is manipulated by testing each 
subject at each level of  the variable. Compare with a between-subjects factor in which 
different groups of  subjects are used for each level of  the variable. 

Within-Subjects Variable 
A within-subjects variable is an independent variable that is manipulated by testing each 
subject at each level of  the variable. Compare with a between-subjects variable in which 
different groups of  subjects are used for each level of  the variable. 

Y Intercept 
The Y-intercept of  a line is the value of  Y at the point that the line intercepts the Y axis. 
It is the value of  Y when X equals 0. The Y intercept of  the black line shown in the 
graph is 0.785. 
 

 

z score 
The number of  standard deviations a score is from the mean of  its population. The term 
“standard score” is usually used for normal populations; the terms “z score” and “normal 
deviate” should only be used in reference to normal distributions. The transformation 
from a raw score X to a z score can be done using the following formula: 

1.00

2.00

1.30

3.75

2.25

0

1

2

3

4

5

0 1 2 3 4 5 6

Y

X

691



	 z = (X - μ)/σ 

Transforming a variable in this way is called “standardizing” the variable. It should be 
kept in mind that if  X is not normally distributed then the transformed variable will not 
be normally distributed either. 
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