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1
Theories and Social Science

The focus of this book is on using quantitative empirical research to test hypotheses and

build theory in political science and public policy. The book is designed to be used by

graduate students in the introductory and intermediate quantitative analysis courses. It is

important to note that quantitative analysis is not the only – or even the most important

– kind of analysis undertaken in political science and public policy research. Qualitative

analysis, including ethnographic studies, systematic cases analyses, focus groups, archival

studies, and qualitative elite interviews (to name only a few approaches) are of critical

importance for understanding social and political phenomena. With that understanding

in mind, this book and the associated courses focus on the development and application

of systematic analysis, hypothesis testing and theory building using quantitative data and

modeling. Specifically, we focus on developing research design, univariate analysis, and an

understanding of linear regression modeling and analysis (and related techniques). Through-

3
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out we provide with applications and examples using the R statistical platform.

1.1 The Scientific Method

Empirical research, as outlined in this book, is based on the scientific method. Science is a

particular way that some epistemologists believe we can understand the world around us.

Science, as a method, relies on both logic, as captured by theory, and empirical observation

of the world to determine whether the theory we have developed conforms to what we

actually observe. We seek to explain the world with our theories, and we test our theories

by deducing and testing hypotheses. When a working hypothesis is supported, we have

more confidence in our theory. When the null hypothesis is supported, it undermines our

proposed theory.

Science seeks a particular kind of knowledge and has certain biases. When we are

engaging in scientific research we are interested in reaching generalizations. Rather than

wanting to explain why President Trump’s approval dropped, we are interested in explaining

why presidential approval drops across various presidents, or, better yet, how economic

conditions a↵ect presidential approval. These generalizations should be logical (which is

nothing more than saying they should be grounded in a strong theory) and they should be

empirically verified (which, we will see means that we have tested hypotheses deduced from

our theory). We also look for generalizations that are causal in nature. Scientists actively

seek explanations grounded in causation rather than correlation. Scientific knowledge should

be replicable – meaning that other scholars should be able to reach the same conclusions

that you do. There should be inter-subjective agreement on scientific findings – meaning

that people, with di↵erent personal experiences and biases, should still reach the same

conclusion.

Scientists also tend to prefer simple explanations to complex ones. They have a bias

that says the world is pretty simple and that our theories should reflect that belief. Of

course, people are complex, so in the social sciences it can be dangerous to look only for

the simplest explanation as most concepts we consider have multiple causes.
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1.2 Theory and Empirical Research

This book is concerned with the connection between theoretical claims and empirical data.

It is about using statistical modeling; in particular, the tool of regression analysis, which

is used to develop and refine theories. We define theory broadly as a set of interrelated

propositions that seek to explain and, in some cases, predict an observed phenomenon.

Theory A set of interrelated propositions that seek to explain and predict an

observed phenomenon.

Theories contain three important characteristics that we discuss in detail below.

Characteristics of Good Theories

• Coherent and internally consistent

• Causal in nature

• Generate testable hypotheses

1.2.1 Coherent and Internally Consistent

The set of interrelated propositions that constitute a well structured theory are based on

concepts. In well-developed theories, the expected relationships among these concepts

are both coherent and internally consistent. Coherence means the identification of con-

cepts and the specified relationships among them are logical, ordered, and integrated. An

internally consistent theory will explain relationships with respect to a set of common

underlying causes and conditions, providing for consistency in expected relationships (and

avoidance of contradictions). For systematic quantitative research, the relevant theoretical

concepts are defined such that they can be measured and quantified. Some concepts are

relatively easy to quantify, such as the number of votes cast for the winning Presidential can-

didate in a specified year or the frequency of arrests for gang-related crimes in a particular

region and time period. Others are more di�cult, such as the concepts of democratization,
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political ideology or presidential approval. Concepts that are more di�cult to measure must

be carefully operationalized, which is a process of relating a concept to an observation

that can be measured using a defined procedure. For example, political ideology is often

operationalized through public opinion surveys that ask respondents to place themselves on

a Likert-type scale of ideological categories.

Concepts and Variables

A concept is a commonality across observed individual events or cases. It is a regularity

that we find in complex world. Concepts are our building blocks to understanding the world

and to developing theory that explains the world. Once we have identified concepts we seek

to explain them by developing theories based on them. Once we have explained a concept

we need to define it. We do so in two steps. First, we give it a dictionary-like definition,

called a nominal definition. Then, we develop an operational definition that identifies how

we can measure and quantify it.

Once a concept has been quantified, it is employed in modeling as a variable. In

statistical modeling, variables are thought of as either dependent or independent variables.

A dependent variable, Y , is the outcome variable; this is the concept we are trying to

explain and/or predict. The independent variable(s), X, is the variable(s) that is used

to predict or explain the dependent variable. The expected relationships between (and

among) the variables are specified by the theory.

Measurement

When measuring concepts, the indicators that are used in building and testing theories

should be both valid and reliable. Validity refers to how well the measurement captures

the concept. Face validity, for example, refers to the plausibility and general acceptance

of the measure, while the domain validity of the measure concerns the degree to which it

captures all relevant aspects of the concept. Reliability, by contrast, refers to how consistent

the measure is with repeated applications. A measure is reliable if, when applied to the

repeated observations in similar settings, the outcomes are consistent.
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Assessing the Quality of a Measure

Measurement is the process of assigning numbers to the phenomenon or concept that you

are interested in. Measurement is straight-forward when we can directly observe the phe-

nomenon. One agrees on a metric, such as inches or pounds, and then figures out how many

of those units are present for the case in question. Measurement becomes more challenging

when you cannot directly observe the concept of interest. In political science and public

policy, some of the things we want to measure are directly observable: how many dollars

were spent on a project or how many votes the incumbent receives, but many of our con-

cepts are not observable: is issue X on the public’s agenda, how successful is a program, or

how much do citizens trust the president. When the concept is not directly observable the

operational definition is especially important. The operational definition explains exactly

what the researcher will do to assign a number for each subject/case.

In reality, there is always some possibility that the number assigned does not reflect the

true value for that case, i.e., there may be some error involved. Error can come about for

any number of reasons, including mistakes in coding, the need for subjective judgments,

or a measuring instrument that lacks precision. These kinds of error will generally pro-

duce inconsistent results; that is, they reduce reliability. We can assess the reliability of

an indicator using one of two general approaches. One approach is a test-retest method

where the same subjects are measured at two di↵erent points in time. If the measure is

reliable the correlation between the two observations should be high. We can also assess

reliability by using multiple indicators of the same concept and determining if there is a

strong inter-correlation among them using statistical formulas such as Cronbach’s alpha or

Kuder-Richardson Formula 20 (KR-20).

We can also have error when our measure is not valid. Valid indicators measure the

concept we think they are measuring. The indicator should both converge with the concept

and discriminate between the concept and similar yet di↵erent concepts. Unfortunately

there is no failsafe way to determine whether an indicator is valid. There are, however,

a few things you can do to gain confidence in the validity of the indicator. First, you

can simply look at it from a logical perspective and ask if it seems like it is valid. Does
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it have face validity? Second, you can see if it correlates well with other indicators that

are considered valid, and in ways that are consistent with theory. This is called construct

validity. Third, you can determine if it works in the way expected, which is referred to

as predictive validity. Finally, we have more confidence if other researchers using the same

concept agree that the indicator is considered valid. This consensual validity at least ensures

that di↵erent researchers are talking about the same thing.

Measurement of Di↵erent Kinds of Concepts

Measurement can be applied to di↵erent kinds of concepts, which causes measures of di↵er-

ent concepts to vary. There are three primary levels of measurement; ordinal, interval,

and nominal. Ordinal level measures indicate relative di↵erences, such as more or less,

but do not provide equal distances between intervals on the measurement scale. Therefore,

ordinal measures cannot tell us how much more or less one observation is than another.

Imagine a survey question asking respondents to identify their annual income. Respon-

dents are given a choice of five di↵erent income levels: $0-20,000, $20,000-50,000, $50,000-

$100,000, and $100,000+. This measure gives us an idea of the rank order of respondents’

income, but it is impossible for us to identify consistent di↵erences between these responses.

With an interval level measure, the variable is ordered and the di↵erences between values

are consistent. Sticking with the example of income, survey respondents are now asked to

provide their annual income to the nearest ten thousand dollar mark (e.g., $10,000, $20,000,

$30,000, ect.). This measurement technique produces an interval level variable because we

have both a rank ordering and equal spacing between values. Ratio scales are interval mea-

sures with the special characteristic that the value of zero (0) indicates the absence of some

property. A value of zero (0) income in our example may indicate a person does not have

a job. Another example of a ratio scale is the Kelvin temperature scale, because zero (0)

degrees Kelvin indicates the complete absence of heat. Finally, a nominal level measure

identifies categorical di↵erences among observations. Numerical values assigned to nominal

variables have no inherent meaning, but only di↵erentiate one “type” (e.g., gender, race,

religion) from another.
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1.2.2 Theories and Causality

Theories should be causal in nature, meaning that an independent variable is thought

to have a causal influence on the dependent variable. In other words, a change in the

independent variable causes a change in the dependent variable. Causality can be thought

of as the “motor” that drives the model and provides the basis for explanation and (possibly)

prediction.

The Basis of Causality in Theories

1. Time Ordering: The cause precedes the e↵ect, X ! Y

2. Co-Variation: Changes in X are associated with changes in Y

3. Non-Spuriousness: There is not a variable Z that causes both X and Y

To establish causality we want to demonstrate that a change in the independent variable

is a necessary and su�cient condition for a change in the dependent variable (though more

complex, interdependent relationships can also be quantitatively modeled). We can think of

the independent variable as a treatment, ⌧ , and we speculate that ⌧ causes a change in our

dependent variable, Y . The “gold standard” for casual inference is an experiment where

a) the level of ⌧ is controlled by the researcher and b) subjects are randomly assigned to a

treatment or control group. The group that receives the treatment has outcome Y1 and the

control group has outcome Y0; the treatment e↵ect can be defined as ⌧ = Y1�Y0. Causality

is inferred because the treatment was only given to one group, and since these groups were

randomly assigned other influences should wash out. Thus the di↵erence ⌧ = Y1 � Y0 can

be attributed to the treatment.

Given the nature of social science and public policy theorizing, we often can’t control

the treatment of interest. For example, our case study in this text concerns the e↵ect of

political ideology on views about the environment. For this type of relationship, we cannot

randomly assign ideology in an experimental sense. Instead, we employ statistical controls

to account for the possible influences of confounding factors, such as age and gender. Using
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multiple regression we control for other factors that might influence the dependent variable.1

1.2.3 Generation of Testable Hypothesis

Theory building is accomplished through the testing of hypotheses derived from theory.

In simple form, a theory implies (sets of) relationships among concepts. These concepts

are then operationalized. Finally, models are developed to examine how the measures are

related. Properly specified hypotheses can be tested with empirical data, which are derived

from the application of valid and reliable measures to relevant observations. The testing

and re-testing of hypotheses develops levels of confidence that we can have for the core

propositions that constitute the theory. In short, empirically grounded theories must be

able to posit clear hypotheses that are testable. In this text, we discuss hypotheses and test

them using relevant models and data.

As noted above, this text uses the concepts of political ideology and views about the

environment as a case study in order to generate and test hypotheses about the relationships

between these variables. For example, based on popular media accounts, it is plausible to

expect that political conservatives are less likely to be concerned about the environment

than political moderates or liberals. Therefore, we can pose the working hypothesis that

measures of political ideology will be systematically related to measures of concern for the

environment – with conservatives showing less concern for the environment. In classical

hypothesis testing, the working hypothesis is tested against a null hypothesis. A null

hypothesis is an implicit hypothesis that posits the independent variable has no e↵ect (i.e.,

null e↵ect) on the dependent variable. In our example, the null hypothesis states ideology

has no e↵ect on environmental concern.

1.3 Theory and Functions

Closely related to hypothesis testing in empirical research is the concept of functional rela-

tionships – or functions. Hypotheses posit systematic relationships between variables, and

those relationships are expressed as functions. For example, we can hypothesize that an

1This matter will be discussed in more detail in the multiple regression section.
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Figure 1.1: Linear Function
y = f(x) = 5 + x
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individual’s productivity is related co↵ee consumption (productivity is a function of co↵ee

consumption).2

Functions are ubiquitous. When we perceive relational order or patterns in the world

around us, we are observing functions. Individual decisions about when to cross the street,

whether to take a nap, or engage in a barroom brawl can all be ascribed to patterns (the

“walk” light was lit; someone stayed up too late last night; a Longhorn insulted the Sooner

football team). Patterns are how we make sense of the world, and patterns are expressed as

functions. That does not mean the functions we perceive are always correct, or that they

allow us to predict perfectly. However, without functions we don’t know what to expect;

chaos prevails.

In mathematical terms, a function relates an outcome variable, y, to one or more inputs,

x. This can be expressed more generally as: y = f(x1, x2, x3, ...xn), which means y is ‘a

function of the x’s, or, y varies as a function of the x’s.

Functions form the basis of the statistical models that will be developed throughout

the text. In particular, this text will focus on linear regression, which is based on linear

functions such as y = f(x) = 5 + x, where 5 is a constant and x is a variable. We can plot

this function with the values of x ranging from �5 to 5. This is shown in Figure 1.1.

2The more co↵ee, the greater the productivity – up to a point! Beyond some level of consumption, co↵ee
may induce the jitters and ADD-type behavior, thereby undercutting productivity. Therefore the posited
function that links co↵ee consumption to productivity is non-linear, initially positive but then flat or negative
as consumption increases.
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Figure 1.2: Non-Linear Function: One Exponent
y = f(x) = 3� x2
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As you can see, the x values range from �5 to 5 and the corresponding y values range

from 0 to 10. The function produces a straight line because the changes in y are consistent

across all values of x. This type of function is the basis of the linear models we will develop,

therefore these models are said to have a linear functional form.

However, non-linear functional forms are also common. For example, y = f(x) = 3�x2

is a quadratic function, which is a type of polynomial function since it contains a square

term (an exponent). It is plotted in Figure 1.2. This function is non-linear because the

changes in y are not consistent across the full range of x.

Examples of Functions in Social Science Theories

As noted, functions are the basis of statistical models that are used to test hypotheses.

Below are a few examples of functions that are related to social science theories.

• Welfare and work incentives

– Employment = f(welfare programs, education level, work experience,...)

• Nuclear weapons proliferation

– Decision to develop nuclear weapons = f(perceived threat, incentives, sanc-

tions,...)

• “Priming” and political campaign contributions



13 CHAPTER 1. THEORIES AND SOCIAL SCIENCE

– Contribution($) = f(Prime (suggested $), income,...)

• Successful program implementation

– Implementation = f(clarity of law, level of public support, problem complex-

ity,...)

Try your hand at this with theories that are familiar to you. First, identify the dependent

and independent variables of interest; then develop your own conjectures about the form of

the functional relationship(s) among them.

1.4 Theory in Social Science

Theories play several crucial roles in the development of scientific knowledge. Some of these

include providing patterns for data interpretation, linking the results of related studies

together, providing frameworks for the study of concepts, and allowing the interpretation

of more general meanings from any single set of findings. Hoover and Todd (2004) provide

a very useful discussion of the role of theories in “scientific thinking” – find it and read

it! Perhaps, in the broadest sense, theories tie the enterprise of the social (or any) science

The Role of Theory in Social Science
Adapted from The Elements of Social Scientific Thinking by Kenneth Hoover and Todd Donovan (2004, 37)

• Theory provides patterns for the interpretation of data

• Theory links one study with another

• Theory supplies frameworks within which concepts acquire significance

• Theory allows us to interpret the larger meaning of our findings

together, as we build, revise, criticize and destroy theories in that collective domain referred

to as “the literature.”
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1.5 Outline of the Book

The goal of this text is to develop an understanding of how to build theories by testing

hypotheses using empirical data and statistical models. There are three necessary ingredi-

ents of strong empirical research. The first is a carefully constructed theory that generates

empirically testable hypotheses. Once tested, these hypothesis should have implications

for the development of theory. The second ingredient is quality data. The data should

be valid, reliable, and relevant. The final ingredient is using the appropriate model design

and execution. Specifically, the appropriate statistical models must be used to test the

hypotheses. Appropriate models are those that are properly specified, estimated, and use

data that conforms to the statistical assumptions. This course focuses on model design and

execution.

As noted, this text uses political ideology and views on the environment as a case study

to examine theory building in the social sciences.3 The text is organized by the idealized

steps of the research process. As a first step, this first chapter discussed theories and

hypothesis testing, which should always be (but often are not!) the first consideration.

The second chapter focuses on research design and issues of internal and external validity.

Chapter 3 examines data and covers specific ways to understand how the variables in the

data are distributed. This is vital to know before doing any type of statistical modeling.

The fourth chapter is an introduction to probability. The fifth chapter covers inference

and how to reach conclusions regarding a population when you are studying a sample.

The sixth chapter explores how to understand basic relationships that can hold between

two variables including cross tabulations, covariance, correlation, and di↵erence of means

tests. These relationships are the foundation of more sophisticated statistical approaches

and therefore understanding these relationships is often a precursor to the later steps of

statistical analysis. The seventh through tenth chapters focus on bivariate ordinary least

squares (OLS) regression, or OLS regression with a dependent variable and one independent

3As you may have already realized, social scientists often take these steps out of order ... we may “back
into” an insight, or skip a step and return to it later. There is no reliable cookbook for what we do. Rather,
think of the idealized steps of the scientific process as an important heuristic that helps us think through
our line of reasoning and analysis – often after the fact – to help us be sure that we learned what we think

we learned from our analysis.
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variable. This allows us to understand the mechanics of regression before moving on the

third section (chapters eleven to fifteen) that cover multiple OLS regression. The final

section of the book (chapter sixteen) covers logistic (logit) regression. Logit regression is

an example of a class of models called generalized linear models (GLM). GLMs allow for

linear analysis to be performed on di↵erent types of dependent variables that may not be

appropriate for OLS regression.

As a final note, this text makes extensive use of R. The code to reproduce all of the

examples is excluded in the text in such a way that it can be easily copied and pasted into

your R console. The data used for the examples is available as well. You can find it here:

http://crcm.ou.edu/epscordata/.



2
Research Design

Research design refers to the plan to collect information to address your research question.

It covers the set of procedures that are used to collect your data and how your data will be

analyzed. Your research plan identifies what type of design you are using. Your plan should

make clear what your research question is, what theory or theories will be considered, key

concepts, your hypotheses, your independent and dependent variables, their operational

definitions, your unit of analysis, and what statistical analysis you will use. It should also

address the strengths and weaknesses of your particular design. The major design categories

for scientific research are experimental designs and observational designs. The latter is some

times referred to as a correlational research design.

16
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2.1 Overview of the Research Process

Often scholars rely on data collected by other researchers and end up, de facto, with the

research design developed by the original scholars. But if you are collecting your own data

this stage becomes the key to the success of your project and the decisions you make at this

stage will determine both what you will be able to conclude and what you will not be able

to conclude. It is at this stage that all the elements of science come together.

We can think of research as starting with a problem or a research question and moving

to an attempt to provide an answer to that problem by developing a theory. If we want

to know how good (empirically accurate) that theory is we will want to put it to one or

more tests. Framing a research question and developing a theory could all be done from the

comforts of your backyard hammock. Or, they could be done by a journalist (or, for that

matter, by the village idiot) rather than a scientist. To move beyond that stage requires

more. To test the theory, we deduce one or more hypotheses from the theory, i.e., statements

that should be true if the theory accurately depicts the world. We test those hypotheses by

systematically observing the world—the empirical end of the scientific method. It requires

you to get out of that hammock and go observe the world. The observations you make allow

you to accept or reject your hypothesis, providing insights into the accuracy and value of

your theory. Those observations are conducted according to a plan or a research design.

2.2 Internal and External Validity

Developing a research design should be more than just a matter of convenience (although

there is an important element of that as we will discuss at the end of this chapter). Not

all designs are created equally and there are trade-o↵s we make when opting for one type

of design over another. The two major components of an assessment of a research design

are its internal validity and its external validity. Internal validity basically means we

can make a causal statement within the context of our study. We have internal validity

if, for our study, we can say our independent variable caused our dependent variable. To

make that statement we need to satisfy the conditions of causality we identified previously.

The major challenge is the issue of spuriousness. We have to ask if our design allows
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us to say our independent variable makes our dependent variable vary systematically as

it changes and that those changes in the dependent variable are not due to some third

or extraneous factor. It is worth noting that even with internal validity, you might have

serious problems when it comes to your theory. Suppose your hypothesis is that being

well-fed makes one more productive. Further suppose that you operationalize “being well-

fed” as consuming twenty Hostess Twinkies in an hour. If the Twinkie eaters are more

productive those who did not get the Twinkies your might be able to show causality, but

if your theory is based on the idea that “well-fed” means a balanced and healthy diet then

you still have a problematic research design. It has internal validity because what you

manipulated (Twinkie eating) a↵ected your dependent variable, but that conclusion does

not really bring any enlightenment to your theory.

The second basis for evaluating your research design is to assess its external validity.

External validity means that we can generalize the results of our study. It asks whether

our findings are applicable in other settings. Here we consider what population we are

interested in generalizing to. We might be interested in adult Americans, but if we have

studied a sample of first-year college students then we might not be able to generalize to

our target population. External validity means that we believe we can generalize to our

(and perhaps other) population(s). Along with other factors discussed below, replication is

a key to demonstrating external validity.

2.3 Major Classes of Designs

There are many ways to classify systematic, scientific research designs, but the most common

approach is to classify them as experimental or observational. Experimental designs are

most easily thought of as a standard laboratory experiment. In an experimental design the

researcher controls (holds constant) as many variables as possible and then assigns subjects

to groups, usually at random. If randomization works (and it will if the sample size is large

enough, but technically that means infinite in size), then the two groups are identical. The

researcher then manipulates the experimental treatment (independent variable) so that one

group is exposed to it and the other is not. The dependent variable is then observed. If the
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dependent variable is di↵erent for the two groups, we can have quite a bit of confidence that

the independent variable caused the dependent variable. That is, we have good internal

validity. In other words, the conditions that need to be satisfied to demonstrate causality

can be met with an experimental design. Correlation can be determined, time order is

evident, and spuriousness is not problem—there simply is no alternative explanation.

Unfortunately, in the social sciences the artificiality of the experimental setting often

creates suspect external validity. We may want to know the e↵ects of a news story on views

towards climate change so we conduct an experiment where participants are brought into

a lab setting and some (randomly selected) see the story and others watch a video clip

with a cute kitten. If the experiment is conducted appropriately, we can determine the

consequences of being exposed to the story. But, can we extrapolate from that study and

have confidence that the same consequences would be found in a natural setting, e.g., in

one’s living room with kids running around and a cold beverage in your hand? Maybe not.

A good researcher will do things that minimize the artificiality of the setting, but external

validity will often remain suspect.

Observational designs tend to have the opposite strengths and weaknesses. In an

observational design, the researcher cannot control who is exposed to the experimental

treatment; therefore, there is no random assignment and there is no control. Does smoking

cause heart disease? A researcher might approach that research question by collecting de-

tailed medical and life style histories of a group of subjects. If there is a correlation between

those who smoke and heart disease, can we conclude a causal relationship? Generally the

answer to that question is “no”, because any other di↵erence between the two groups is

an alternative explanation meaning that the relationship might be spurious. For better

or worse, though, there are fewer threats to external validity (see below for more detail)

because of the natural research setting.

A specific type of observational design, the natural experiment, requires mention

because they are increasingly used to great value. In a natural experiment, subjects are

exposed to di↵erent environmental conditions that are outside the control of the researcher,

but the process governing exposure to the di↵erent conditions arguably resembles random

assignment. Weather, for example, is an environmental condition that arguably mimics
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random assignment. For example, imagine a natural experiment where one part of New

York City gets a lot of snow on election day, whereas another part gets almost no snow.

Researchers do not control the weather, but might argue that patterns of snowfall are

basically random, or, at the very least, exogenous to voting behavior. If you buy this

argument, then you might use this as natural experiment to estimate the impact of weather

conditions on voter turnout. Because the experiment takes place in natural setting, external

validity is less of a problem. But, since we do not have control over all events, we may still

have internal validity questions.

2.4 Threats to Validity

To understand the pros and cons of various designs and to be able to better judge specific

designs, we identify specific threats to internal and external validity. Before we do

so, it is important to note that a (perhaps “the”) primary challenge to establishing internal

validity in the social sciences is the fact that most of the phenomena we care about have

multiple causes and are often a result of some complex set of interactions. For examples,

X may be only a partial cause of Y , or X may cause Y , but only when Z is present.

Multiple causation and interactive a↵ects make it very di�cult to demonstrate causality,

both internally and externally. Turning now to more specific threats, Table 2.1 identifies

common threats to internal validity and Table 2.2 identifies common threats to external

validity.
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Table 2.1: Common Threats to Internal Validity

Threat
History Any event that occurs while the experiment is in

progress might be an alternative explanation; using
a control group mitigates this concern

Maturation Normal changes over time (e.g. fatigue or aging) might
a↵ect the dependent variable; using a control group
mitigates this concern

Selection Bias If randomization is not used to assign participants, the
groups may not be equivalent

Experimental Mortality If groups lose participants (for example, due to drop-
ping out of the experiment) they may not be equiva-
lent

Testing A pre-test may confound the influence of the experi-
mental treatment; using a control group mitigates this
concern

Instrumentation Changes or di↵erences in the process of measurement
might alternatively account for di↵erences

Statistical Regression The natural tendency for extreme scores to regress or
move towards the mean

Table 2.2: Major Threats to External Validity

Threat
Testing Pre-testing or multiple measures may influence subse-

quent measurement
Interaction with Testing A pre-test may sensitize subjects to the e↵ects of the

experimental treatment
Sample Representation An unrepresentative sample will limited the ability to

draw inferences about the population
Interaction of Selection
Bias and Experimental
Treatment

A bias in selection may produce subjects that are more
or less sensitive to the experimental treatment

Experimental Setting The finding may not be transferable to a natural
setting; knowledge of participation may produce a
Hawthorne e↵ect



2.5. SOME COMMON DESIGNS 22

2.5 Some Common Designs

In this section we look at some common research designs, the notation used to symbolize

them, and then consider the internal and external validity of the designs. We start with

the most basic experimental design, the post-test only design Table 2.3. In this design sub-

jects are randomly assigned to one of two groups with one group receiving the experimental

treatment.1 There are advantages to this design in that it is relatively inexpensive and elim-

inates the threats associated with pre-testing. If randomization worked the (unobserved)

pre-test measures would be the same so any di↵erences in the observations would be due to

the experimental treatment. The problem is that randomization could fail us, especially if

the sample size is small.

Table 2.3: Post-test Only (with a Control Group) Experimental Design

R X O1

R O2

Many experimental groups are small and many researchers are not comfortable relying

on randomization without empirical verification that the groups are the same, so another

common design is the Pre-test, Post-test Design (Table 2.4). By conducting a pre-test, we

can be sure that the groups are identical when the experiment begins. The disadvantages

are that adding groups drives the cost up (and/or decreases the size of the groups) and that

the various threats due to testing start to be a concern. Consider the example used above

concerning a news story and views on climate change. If subjects were given a pre-test

on their views on climate change and then exposed to the news story, they might become

more attentive to the story. If a change occurs, we can say it was due to the story (internal

validity), but we have to wonder whether we can generalize to people who had not been

sensitized in advance.

1The symbol R means there is random assignment to the group. X symbolizes exposure to the experi-
mental treatment. O is an observation or measurement.
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Table 2.4: Pre-test, Post-Test (with a Control Group) Experimental Design

R O1 X O2

R O3 O4

A final experimental design deals with all the drawbacks of the previous two by com-

bining them into what is called the Solomon Four Group Design (Table 2.5). Intuitively it

is clear that the concerns of the previous two designs are dealt with in this design, but the

actual analysis is complicated. Moreover, this design is expensive so while it may represent

an ideal, most researchers find it necessary to compromise.

Table 2.5: Solomon Four Group Experimental Design

R X O1

R O2

R O3 X O4

R O5 O6

Even the Solomon Four Group design does not solve all of our validity problems. It still

likely su↵ers from the artificiality of the experimental setting. Researchers generally try

a variety of tactics to minimize the artificiality of the setting through a variety of e↵orts

such as watching the aforementioned news clip in a living room-like setting rather than on

a computer monitor in a cubicle or doing jury research in the courthouse rather than the

basement of a university building.

Observational designs lack random assignment, so all of the above designs can be con-

sidered observational designs when assignment to groups is not random. You might, for

example, want to consider the a↵ects of a new teaching style on student test scores. One

classroom might get the intervention (the new teaching style) and another not be exposed

to it (the old teaching style). Since students are not randomly assigned to classrooms it is

not experimental and the threats that result from selection bias become a concern (along

with all the same concerns we have in the experimental setting). What we gain, of course,

is the elimination or minimization of the concern about the experimental setting.

A final design that is commonly used is the repeated measures or longitudinal research

design where repeated observations are made over time and at some point there is an

intervention (experimental treatment) and then subsequent observations are made (Table



2.6. PLAN MEETS REALITY 24

2.6). Selection bias and testing threats are obvious concerns with this design. But there

are also concerns about history, maturation, and mortality. Anything that occurs between

On and On+1 becomes an alternative explanation for any changes we find. This design may

also have a control group, which would give clues regarding the threat of history. Because

of the extended time involved in this type of design, the researcher has to concerned about

experimental mortality and maturation.

Table 2.6: Repeated Measures Experimental Design

O1 O2 O3 On X On+1 On+2 On+2 On+3

This brief discussion illustrates major research designs and the challenges to maximizing

internal and external validity. With these experimental designs we worry about external

validity, but since we have said we seek the ability to make causal statements, it seems that

a preference might be given to research via experimental designs. Certainly we see more and

more experimental designs in political science with important contributions. But, before

we dismiss observational designs, we should note that in later chapters, we will provide an

approach to providing statistical controls which, in part, substitutes for the control we get

with experimental designs.

2.6 Plan Meets Reality

Research design is the process of linking together all the elements of your research project.

None of the elements can be taken in isolation, but must all come together to maximize

your ability to speak to your theory (and research question) while maximizing internal and

external validity within the constraints of your time and budget. The planning process is

not straightforward and there are times that you will feel you are taking a step backwards.

That kind of “progress” is normal.

Additionally, there is no single right way to design a piece of research to address your

research problem. Di↵erent scholars, for a variety of reasons, would end up with quite

di↵erent designs for the same research problem. Design includes trade-o↵s, e.g., internal vs.

external validity, and compromises based on time, resources, and opportunities. Knowing



25 CHAPTER 2. RESEARCH DESIGN

the subject matter – both previous research and the subject itself – helps the researcher

understand where a contribution can be made and when opportunities present themselves.



3
Exploring and Visualizing Data

You have your plan, you carry out your plan by getting out and collecting your data,

and then you put your data into a file. You are excited to test your hypothesis so you

immediately run your multiple regression analysis and look at your output. You can do

that (and probably will even if we advise against it), but what you need to do before you

can start to make sense of that output is to look carefully at your data. You will want to

know things like “how much spread do I have in my data” and “do I have any outliers”. (If

you have limited spread, you may discover that it is hard to explain variation in something

that is nearly a constant and if you have an outlier, your statistics may be focused on trying

to explain that one case.)

In this chapter, we will identify the ways to characterize your data before you do serious

analysis both to understand what you are doing statistically and to error-check.

26
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3.1 Characterizing Data

What does it mean to characterize your data? First, it means knowing how many observa-

tions are contained in your data, and the distribution of those observations over the range

of your variable(s). What kinds of measures (interval, ordinal, nominal) do you have, and

what are the ranges of valid measures for each variable? How many cases of missing (no

data) or mis-coded (measures that fall outside the valid range) do you have? What do

the coded values represent? While seemingly trivial, checking and evaluating your data for

these attributes can save you major headaches later. For example, missing values for an ob-

servation often get a special code – say, “-99” – to distinguish them from valid observations.

If you neglect to treat these values properly, R (or any other statistics program) will treat

that value as if it were valid and thereby turn your results into a royal hairball. We know of

cases in which even seasoned quantitative scholars have made the embarrassing mistake of

failing to properly handle missing values in their analyses. In at least one case, a published

paper had to be retracted for this reason. So don’t skimp on the most basic forms of data

characterization!

The dataset used for purposes of illustration in this version of this text is taken from

a survey of Oklahomans, conducted in 2016, by OU’s Center for Risk and Crisis Manage-

ment. The survey question wording and background will be provided in class. However,

for purposes of this chapter, note that the measure of ideology consists of a self-report of

political ideology on a scale that ranges from 1 (strong liberal) to 7 (strong conservative);

the measure of the perceived risk of climate change ranges from zero (no risk) to 10

(extreme risk). Age was measured in years.

It is often useful to graph the variables in your data set to get a better idea of their

distribution. In addition, we may want to compare the distribution of a variable to a

theoretical distribution (typically a normal distribution). This can be accomplished in

several ways, but we will show two here—a histogram and a density curve—and more will

be discussed in later chapters. Here we examine the distribution of the variable measuring

the perceived risk of climate change.

A histogram creates intervals of equal length, called bins, and displays the frequency of



3.1. CHARACTERIZING DATA 28

Histogram of ds$glbcc_risk

ds$glbcc_risk

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0

(a) Histogram

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

ds$glbcc_risk

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

(b) Density Curve

Figure 3.1: Distribution of Perceived Risks Posed by Climate Change

observations in each of the bins. To produce a histogram in R simply use the hist command

in the base package. Next, we plot the density of the observed data along with a normal

curve. This can be done with the sm.density command in the sm package. Note that the

normal distribution overlay using the sm.density function for the gccrsk variable is based

on the mean and standard deviation variable. The results are shown in Figure 3.1. As you

can see, the gccrsk varible is not quite normally distributed. The histogram illustrates

that the majority of observations are contained in the upper half of the variable’s range.

Moreover, the density curve indicates the the distribution if negatively skewed, and the

peak of the distribution is higher on the gccrsk scale than that of the theoretical normal

distribution.

hist(ds$glbcc_risk)

library(sm)

sm.density(ds$glbcc_risk, model = "Normal")

You can also get an overview of your data using a table known as a frequency distribu-

tion. The frequency distribution summarizes how often each value of your variable occurs

in the dataset. If your variable has a limited number of values that it can take on, you can

report all values, but if it has a large number of possible values (e.g., age of respondent),
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then you will want to create categories, or bins, to report those frequencies. In such cases,

it is generally easier to make sense of the percentage distribution. Table 3.1 is a frequency

distribution for the ideology variable. From that table we see, for example, that about one-

third of all respondents are moderates. We see the numbers decrease as we move away from

that category, but not uniformly. There are a few more people on the conservative extreme

than on the liberal side and that the number of people placing themselves in the penulti-

mate categories on either end is greater than those towards the middle. The histogram and

density curve would, of course, show the same pattern.

The other thing to watch for here (or in the charts) is whether there is an unusual

observation. If one person scored 17 in this table, you could be pretty sure a coding error

was made somewhere. You cannot find all your errors this way, but you can find some,

including the ones that have the potential to most seriously adversely a↵ect your analysis.

Table 3.1: Frequency Distribution for Ideology

Ideology Frequency Percentage
Cumulative
Percentage

1 Strongly Liberal 122 4.8 4.8
2 279 11.1 15.9
3 185 7.3 23.2
4 571 22.6 45.8
5 328 13.0 58.8
6 688 27.3 86.1
7 Strongly Conservative 351 13.9 100.0
Total 2524 100

In R, we can obtain the data for the above table with the following functions:

# frequency counts for each level

table(ds$ideol)

##

## 1 2 3 4 5 6 7

## 122 279 185 571 328 688 351

# To view precentages

prop.table(table(ds$ideol))

##

## 1 2 3 4 5 6
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## 0.04833597 0.11053883 0.07329635 0.22622821 0.12995246 0.27258320

## 7

## 0.13906498

# multiply the number by 100 and round to display 3 digits

round(prop.table(table(ds$ideol)), 3) * 100

##

## 1 2 3 4 5 6 7

## 4.8 11.1 7.3 22.6 13.0 27.3 13.9

Having obtained a sample, it is important to be able to characterize that sample. In

particular, it is important to understand the probability distributions associated with each

variable in the sample.

3.1.1 Central Tendency

Measures of central tendency are useful because a single statistic can be used to describe

the distribution. We focus on three measures of central tendency; the mean, the median,

and the mode.

Measures of Central Tendency

• The Mean: The arithmetic average of the values

• The Median: The value at the center of the distribution

• The Mode: The most frequently occurring value

We will primarily rely on the mean, because of its e�cient property of representing the

data. But medians – particularly when used in conjunction with the mean - can tell us a

great deal about the shape of the distribution of our data. We will return to this point

shortly.

3.1.2 Level of Measurement and Central Tendency

The three measures of central tendency – the mean, median, and mode – each tell us

something di↵erent about our data, but each has some limitations (especially when used
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alone). Knowing the mode tells us what is most common, but we do not know how common

and, using it alone, would not even leave us confident that it is an indicator of anything very

central. When rolling in your data, it is generally a good idea to roll in all the descriptive

statistics that you can to get a good feel for them.

One issue, though, is that your ability to use a statistic is dependent on the level of

measurement for the variable. The mean requires you to add all your observations together.

But you cannot perform mathematical functions on ordinal or nominal level measures. Your

data must be measured at the interval level to calculate a meaningful mean. (If you ask

R to calculate the mean student id number, it will, but what you get will be nonsense.)

Finding the middle item in an order listing of your observations (the median) requires the

ability to order your data, so your level of measurement must be at least ordinal. Therefore,

if you have nominal level data, you can only report the mode (but no median or mean) so

it is critical that you also look beyond central tendency to the overall distribution of the

data.

3.1.3 Moments

In addition to measures of central tendency,“moments” are important ways to characterize

the shape of the distribution of a sample variable. Moments are applicable when the data

measured is interval type (the level of measurement). The first four moments are those that

are most often used.

3.1.4 First Moment – Expected Value

The expected value of a variable is the value you would obtain if you could multiply all

possible values within a population by their probability of occurrence. Alternatively, it can

be understood as the mean value for a population variable. An expected value is a theoretical

number , because we usually cannot observe all possible occurrences of a variable. The mean

value for a sample is the average value for the variable X, and is calculated by adding the

values of X and dividing by the sample size n:

X̄ =
(x1 + x2 + x3 + xn)

n
(3.1)
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The First Four Moments

1. Expected Value: The expected value of a variable, E(X) is its mean.

E(X) = X̄ =
P

Xi
n

2. Variance: The variance of a variable concerns the way that the observed
values are spread around either side of the mean.

s2x =
P

(X�X̄)2

(n�1)

3. Skewness: The skewness of a variable is a measure of its asymmetry.

S =
P

(X�X̄)3

(n�1)

4. Kurtosis: The kurtosis of a variable is a measure of its peakedness.

K =
P

(X�X̄)4

(n�1)

This can be more compactly expressed as:

X̄ =

P
Xi

n
(3.2)

The mean of a variable can be calculated in R using the mean function. Here we illustrate the

calculation of means for our measures of ideology, age, and perceived risk of climate

change1.

mean(ds$ideol, na.rm = TRUE)

## [1] 4.652932

mean(ds$age, na.rm = TRUE)

## [1] 60.36749

mean(ds$glbcc_risk, na.rm = TRUE)

## [1] 5.945978

1The “na.rm=TRUE” portion of the following code simply tells R to exclude the missing (NA) values
from calculation
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3.1.5 The Second Moment – Variance and Standard Deviation

The variance of variable is a measure that illustrates how a variable is spread, or distributed,

around its mean. For samples, it is expressed as:

s2x =

P
(X � X̄)2

(n� 1)
(3.3)

The population variance is expressed as: �2
X .

Variance is measured in squared deviations from the mean, and the sum of these squared

variations is termed the total sum of squares. Why squared deviations? Why not just

sum the di↵erences? While the latter strategy would seemingly be simpler, but it would

always sum to zero. By squaring the deviations we make them all positive, so the sum of

squares will always be a positive number.

Total Sum of Squares Is the squared summed total of the variation of a variable around

its mean

This can be expressed as:

TSSx =
X

(Xi � X̄)2 (3.4)

therefore;

s2x =
TSSx

(n� 1)
(3.5)

The square root of variance, �2
x, is the standard deviation (s.d.) of a variable, �x. The

sample s.d. is expressed as:

sx =

sP
(X � X̄)2

(n� 1)
(3.6)

This can also be expressed as
p
s2x. The standard deviation of a variable can be obtained

in R with the sd function.2

sd(ds$ideol, na.rm = TRUE)

## [1] 1.731246

2What’s with those (n-1) terms in the denominators? These represent the “degrees of freedom” we have
to calculate the average squared deviations and variance. We “use up” one of our observations to be able to
calculate the first deviation – because without that first observation, what would there be to deviate from?
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sd(ds$age, na.rm = TRUE)

## [1] 14.20894

sd(ds$glbcc_risk, na.rm = TRUE)

## [1] 3.071251

3.1.6 The Third Moment – Skewness

Skewness is a measure of the asymmetry of a distribution. It is based on the third moment

and is expressed as: P
(X � X̄)3

(n� 1)
(3.7)

Skewness is calculated by dividing the third moment by the the cube of the s.d.

S =

P
(X�X̄)3

(n�1)

(
qP

(X�X̄)2

(n�1) )3
(3.8)

Specifically, skewness refers to the position of the expected value (i.e., mean) of a variable

distribution relative to its median. When the mean and median of a variable are roughly

equal, Ȳ ⇡ MdY , then the distribution is considered approximately symmetrical, S = 0.

This means that an equal proportion of the distribution of the variable lies on either side

of the mean. However, when the mean is larger than the median, Ȳ > MdY , then the

distribution has a positive skew, S > 0. When the median is larger than the mean, Ȳ <

MdY , this is a negative skew, S < 0. This is illustrated in Figure 3.2. Note that for a

normal distribution, S = 0.

3.1.7 The Fourth Moment – Kurtosis

The kurtosis of a distribution refers to the the peak of a variable (i.e., the mode) and the

relative frequency of observations in the tails. It is based on the fourth moment which is

expressed as: P
(X � X̄)4

(n� 1)
(3.9)
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Figure 3.2: Distributional Shapes

Kurtosis is calculated by dividing the fourth moment by the square of the second moment

(i.e., variance).

K =

P
(X�X̄)4

(n�1)

(
P

(X�X̄)2

(n�1) )2
(3.10)

In general, higher kurtosis is indicative of a distribution where the variance is a result of low

frequency yet more extreme observed values. In addition, when K < 3, the distribution is

platykurtic, which is flatter and/or more ”short-tailed” than a normal distribution. When

K > 3 the distribution is leptokurtic, which is a slim, high peak and long tails. In a normal

distribution K = 3.

3.1.8 Order Statistics

Apart from central tendency and moments, probability distributions can also be character-

ized by order statistics. Order statistics are based on the position of a value in an ordered

list. Typically, the list is ordered from low values to high values.

Median

The median is the value at the center of the distribution, therefore 50% of the observations

in the distribution will have values above the median and 50% will have values below. For
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Order Statistics

Summaries of values based on position in an ordered list of all values. Types of order
statistics include the minimum value, the maximum value, the median, quartiles, and
percentiles.

• Minimum Value: The lowest value of a distribution

• Maximum Value: The highest value of a distribution

• Median: The value at the center of a distribution

• Quartiles: Divides the values into quarters

• Percentiles: Divides the values into hundredths

samples with a n-size that is an odd number, the median is simply the value in the middle.

For example, with a sample consisting of the observed values of 1, 2, 3, 4, 5, the median is 3.

Distributions with an even numbered n-size, the median is the average of the two middle

values. The median of a sample consisting of the observed values of 1, 2, 3, 4, 5, 6 would be

3+4
2 or 3.5.

The the median is the order statistic for central tendency. In addition, it is more

“robust” in terms of extreme values than the mean. Extremely high values in a distribution

can pull the mean higher, and extremely low values pull the mean lower. The median is less

sensitive to these extreme values. The median is therefore the basis for “robust estimators,”

to be discussed later in this book.

Quartiles

Quartiles split the observations in a distribution into quarters. The first quartile, Q1,

consists of observations whose values are within the first 25% of the distribution. The values

of the second quartile, Q2, are contained within the first half (50%) of the distribution, and

is marked by the distribution’s median. The third quartile, Q3, includes the first 75% of

the observations in the distribution.

The interquartile range (IQR) measures the spread of the ordered values. It is calculated
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Figure 3.3: Box-plot of Climate Change Risk

by subtracting Q1 from Q3.

IQR = Q3 �Q1 (3.11)

The IQR contains the middle 50% of the distribution.

We can visually examine the order statistics of a variable with a boxplot. A boxplot

displays the range of the data, the first and third quartile, the median, and any outliers.

To obtain a boxplot use the boxplot command. It is shown in Figure 3.3.

boxplot(ds$glbcc_risk)

Percentiles

Percentiles list the data in hundredths. For example, scoring in the 99th percentile on

the GRE means that 99% of the other test takers had a lower score. Percentiles can be

incorporated with quartiles (and/or other order statistics) such that:

• First Quartile: 25th percentile
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• Second Quartile: 50th percentile (the median)

• Third Quartile: 75th percentile

Another way to compare a variable distribution to a theoretical distribution is with a

quantile-comparison plot (qq plot). A qq plot displays the observed percentiles against those

that would be expected in a normal distribution. This plot is often useful for examining

the tails of the distribution, and deviations of a distribution from normality. This is shown

in Figure 3.4.

qqnorm(ds$glbcc_risk)

qqline(ds$glbcc_risk)
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Figure 3.4: QQ Plot of Climate Change Risk

The qq plot provides an easy way to observe departures of a distribution from normality.

For example, the plot shown in Figure 3.4 indicates the perceived risk measure has more

observations in the tails of the distribution than would be expected if the variable was

normally distributed.
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R provides several ways to examine the central tendency, moments, and order statistics

for variables and for entire data sets. The summary function produces the minimum value,

the first quartile, median, mean, third quartile, max value, and the number of missing values

(Na’s).

summary(ds$ideol, na.rm = TRUE)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 1.000 4.000 5.000 4.653 6.000 7.000 23

summary(ds$age, na.rm = TRUE)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 18.00 52.00 62.00 60.37 70.00 99.00

summary(ds$gcclb_risk, na.rm = TRUE)

## Length Class Mode

## 0 NULL NULL

We can also use the describe function in the psych package to obtain more descriptive

statistics, including skewness and kurtosis.

library(psych)

describe(ds$ideol)

## vars n mean sd median trimmed mad min max range skew kurtosis

## X1 1 2524 4.65 1.73 5 4.75 1.48 1 7 6 -0.45 -0.8

## se

## X1 0.03

3.1.9 Summary

It is a serious mistake to get into your data analysis without understanding the basics of

your data. Knowing their range, the general distribution of your data, the shape of that

distribution, their central tendency, and so forth will give you important clues as you move

through your analysis and interpretation and prevent serious errors from occurring. Readers

also often need to know this information to provide a critical review of your work.

Overall, this chapter has focused on understanding and characterizing data. We refer

to the early process of evaluating a data set as rolling in the data – getting to know the
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characteristic shapes of the distributions of each of the variables, the meanings of the scales,

and the quality of the observations. The discussion of central tendency, moments, and order

statistics are all tools that you can use for that purpose. As a practicing scholar, policy

analyst or public administration practitioner, this early stage in quantitative analysis is not

optional; a failure to carefully and thoroughly understand your data can result in analytical

disaster, excruciating embarrassment, and maybe even horrible encounters with the Killer

Rabbit of Caerbannog.

Think of rolling in the data, then, as your version of the Holy Hand Grenade of Antioch.



4
Probability

Probability tells us how likely something is to occur. Probability concepts are also central

to inferential statistics - something we will turn to shortly. Probabilities range from 0 (when

there is no chance of the event occurring) to 1.0 (when the event will occur with certainty).

If you have a probability outside the 0 - 1.0 range, you have made an error! Colloquially

we often interchange probabilities and percentages, but probabilities refer to single events

while percentages refer to the portion of repeated events that we get the outcome we are

interested in. As of this writing, Victor Martinez is hitting .329 which means each time he

comes to bat he has a .329 probability of getting a hit or, 32.9% of the times that he bats

he gets a hit. We symbolize probabilities as the P(A), where A is that Victor Martinez gets

a hit. Of course the probability that the event will not occur is 1 - P(A).

41
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4.1 Finding Probabilities

There are two basic ways to find simple probabilities. One way to find a probability is a

priori, or using logic without any real world evidence or experience. If we know a die is not

loaded, we know the probability of rolling a two is 1 out of 6 or .167. Probabilities are easy

to find if every possible outcome has the same probability of occurring. If that is the case,

the probability is number of ways your outcome can be achieved over all possible outcomes.

The second method to determine a probability is called posterior, which uses the expe-

rience and evidence that has accumulated over time to determine the likelihood of an event.

If we do not know that the probability of getting a head is the same as the probability of

getting a tail when we flip a coin (and, therefore, we cannot use an a priori methodology),

we can flip the coin repeatedly. After flipping the coin, say, 6000 times, if we get 3000 heads

you can conclude the probability of getting a head is .5, i.e., 3000 divided by 6000.

Sometimes we want to look at probabilities in a more complex way. Suppose we want to

know how Martinez fares against right-handed pitchers. That kind of probability is referred

to as a conditional probability. The formal way that we might word that interest is:

what is Martinez’s probability of getting a hit given that the pitcher is right-handed? We

are establishing a condition (right-handed pitcher) and are only interested in the cases

that satisfy the condition. The calculation is the same as a simple probability, but it

eliminates his at-bats against lefties and only considers those at bats against right-handed

pitchers. In this case, he has 23 hits in 56 at bats (against right-handed pitchers) so his

probability of getting a hit against a right-handed pitcher is 23/56 or .411. (This example

uses the posterior method to find the probability, by the way.) A conditional probability is

symbolized as P (A|B) where A is getting a hit and B is the pitcher is right-handed. It is

read as the probability of A given B or the probability that Martinez will get a hit given

that the pitcher is right-handed.

Another type of probability that we often want is a joint probability. A joint probabil-

ity tells the likelihood of two (or more) events both occurring. Suppose you want to know

the probability that you will like this course and that you will get an A in it, simultaneously

– the best of all possible worlds. The formula for finding a joint probability is:
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P (A \B) = P (A) ⇤ P (B|A)orP (B) ⇤ P (A|B) (4.1)

The probability of two events occurring at the same time is the probability that the first

one will occur times the probability the second one will occur given that the first one has

occurred.

If events are independent the calculation is even easier. Events are independent if the

occurrence or non-occurrence of one does not a↵ect whether the other occurs. Suppose you

want to know the probability of liking this course and not needing to get gas on the way

home (your definition of a perfect day). Those events are presumably independent so the

P (B|A) = P (B) and the joint formula for independent events becomes:

P (A \B) = P (A) ⇤ P (B) (4.2)

The final type of probability is the union of two probabilities. The union of two

probabilities is the probability that either one event will occur or the other will occur –

either, or, it does not matter which one. You might go into a statistics class with some

dread and you might say a little prayer to yourself: “Please let me either like this class or

get an A. I do not care which one, but please give me at least one of them.” The formula

and symbols for that kind of probability is:

P (A [B) = P (A) + P (B)� P (A \B) (4.3)

It is easy to understand why we just add the P (A) and the P (B) but it may be less

clear why we subtract the joint probability. The answer is simple - because we counted

where they overlap twice (those instances in both A and in B) so we have to subtract out

one instance.

If, though, the events are mutually exclusive, we do not need to subtract the overlap.

Mutually exclusive events are events that cannot occur at the same time, so there is no

overlap. Suppose you are from Chicago and will be happy if either the Cubs or the White

Sox win the World Series. Those events are mutually exclusive since only one team can
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Figure 4.1: Area under the Normal Curve
source - http://whatilearned.wikia.com/wiki/File:Normal_curve_probability.jpg

win the World Series so to find the union of those probabilities we simple have to add the

probability of the Cubs winning to the probability of the White Sox winning.

4.2 Finding Probabilities with the Normal Curve

If we want to find the probability of a score falling in a certain range, e.g., between 3 and

7, or more than 12, we can use the normal to determine that probability. Our ability to

make that determination is based on some known characteristics on the normal curve. We

know that for all normal curves 68.26% of all scores fall within one standard deviation of

the mean, that 95.44% fall within two standard deviations, and that 99.72% fall within

three standard deviations. (The normal distribution is dealt with more formally in the next

chapter.) So, we know that something that is three or more standard deviations above

the mean is pretty rare. Figure 4.1 illustrates the probabilities associated with the normal

curve.

According to Figure 4.1, there is a .3413 probability of an observation falling between
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the mean and one standard deviation above the mean and, therefore, a .6826 probability

of a score falling within (+/�) one standard deviation of the mean. There is also a .8413

probability of a score being one standard deviation above the mean or less (.5 probability

of a score falling below the mean and a .3413 probability of a score falling between the

mean and one standard deviation above it). (Using the language we learned in Chapter 3,

another way to articulate that finding is to say that a score one standard deviation above

the mean is at the 84th percentile.) There is also a .1587 probability of a score being a

standard deviation above the mean or higher (1.0� .8413).

Intelligence tests have a mean of 100 and a standard deviation of 15. Someone with an

IQ of 130, then, is two standard deviations above the mean, meaning they score higher than

97.72% of the population. Suppose, though, your IQ is 140. Using Figure 4.1 would enable

us only to approximate how high that score is. To find out more precisely, we have to find

out how many standard deviations above the mean 140 is and then go to a more precise

normal curve table.

To find out how many standard deviations from the mean an observation is, we calcu-

lated a standardized, or Z-score. The formula to convert a raw score to a Z-score is:

Z =
x� µ

�
(4.4)

In this case, the Z-score is 140 � 100/15 or 2.67. Looking at the formula, you can see

that a Z-score of zero puts that score at the mean; a Z-score of one is one standard deviation

above the mean; and a Z-score of 2.67 is 2.67 standard deviations above the mean.

The next step is to go to a normal curve table to interpret that Z-score. Table 4.1 at the

end of the chapter contains such a table. To use the table you combine rows and columns

to find the score of 2.67. Where they cross we see the value .4962. That value means there

is a .4962 probability of scoring between the mean and a Z-score of 2.67. Since there is

a .5 probability of scoring below the mean adding the two values together gives a .9962

probability of finding an IQ of 140 or lower or a .0038 probability of someone having an IQ

of 140 or better.
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Bernoulli Probabilities
We can use a calculation known as the Bernoulli Process to determine the probability
of a certain number of successes in a given number of trials. For example, if you want to
know the probability of getting exactly three heads when you flip a coin four times, you
can use the Bernoulli calculation. To perform the calculation you need to determine
the number of trials (n), the number of successes you care about (k), the probability of
success on a single trial (p), and the probability (q) of not a success (1� p or q). The
operative formula is:

✓
n!

k!(n� k)!

◆
⇤ pk ⇤ qn�k (4.5)

The symbol n! is “n factorial” or n ⇤ (n � 1) ⇤ (n � 2) ... ⇤1. So if you want to know
the probability of getting three heads on four flips of a coin, n = 4, k = 3, p = .5, and
q = .5:

✓
4!

3!(4� 3)!

◆
⇤ .53 ⇤ .54�3 = .25 (4.6)

The Bernoulli process can be used only when both n ⇤ p and n ⇤ q are greater than ten.
It is also most useful when you are interested in exactly k successes. If you want to
know the probability of k or more, or k or fewer successes, it is easier to use the normal
curve. Bernoulli could still be used if your data is discrete, but you would have to do
repeated calculations.
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4.3 Summary

Probabilities are simple statistics but are important when we want to know the likelihood of

some event occurring. There are frequent real world instances where we find that informa-

tion valuable. We will see, starting in the next chapter, that probabilities are also central

to the concept of inference.
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Appendix 4.1 The Normal Curve Table

Table 4.1: Standard Normal Distribution - Area under the Normal Curve from 0 to X

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.02790 0.03188 0.03586
0.1 0.0398 0.04380 0.04776 0.05172 0.05567 0.05966 0.0636 0.06749 0.07142 0.07535
0.2 0.0793 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409
0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173
0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793
0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240
0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490
0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524
0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327
0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891
1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214
1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298
1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147
1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41308 0.41466 0.41621 0.41774
1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189
1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408
1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449
1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327
1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062
1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670
2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169
2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574
2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899
2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158
2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361
2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520
2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643
2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736
2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807
2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861
3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900
4.0 0.49979
5.0 0.4999997



5
Inference

This chapter considers the role of inference—learning about populations from samples—and

the practical and theoretical importance of understanding the characteristics of your data

before attempting to undertake statistical analysis. As we noted in the prior chapters, it is

a vital first step in empirical analysis to “roll in the data.”

5.1 Inference: Populations and Samples

The basis of hypothesis testing with statistical analysis is inference. In short, inference—

and inferential statistics by extension—means deriving knowledge about a population from

a sample of that population. Given that in most contexts it is not possible to have all the

data on an entire population of interest, we therefore need to sample from that population.1

1It is important to keep in mind that, for purposes of theory building, the population of interest may not
be finite. For example, if you theorize about general properties of human behavior, many of the members

49



5.1. INFERENCE: POPULATIONS AND SAMPLES 50

However, in order to be able to rely on inference, the sample must cover the theoretically

relevant variables, variable ranges, and contexts.

5.1.1 Populations and Samples

In doing statistical analysis we di↵erentiate between populations and samples. The popula-

tion is the total set of items that we care about. The sample is a subset of those items that we

study in order to understand the population. While we are interested in the population we

often need to resort to studying a sample due to time, financial, or logistic constraints that

might make studying the entire population infeasible. Instead, we use inferential statistics

to make inferences about the population from a sample.

5.1.2 Sampling and Knowing

Take a relatively common – but perhaps less commonly examined – expression about what

we “know” about the world around us. We commonly say we “know” people, and some we

know better than others. What does it mean to know someone? In part it must mean that

we can anticipate how that person would behave in a wide array of situations. If we know

that person from experience, then it must be that we have observed their behavior across a

su�cient variety of situations in the past to be able to infer how they would behave in future

situations. Put di↵erently, we have “sampled” their behavior across a relevant range of

situations and contexts to be confident that we can anticipate their behavior in the future.2

Similar considerations about sampling might apply to “knowing” a place, a group, or an

institution. Of equal importance, samples of observations across di↵erent combinations of

variables are necessary to identify relationships (or functions) between variables. In short,

samples – whether deliberately drawn and systematic or otherwise – are integral to what

we think we know of the world around us.

of the human population are not yet (or are no longer) alive. Hence it is not possible to include all of the
population of interest in your research. We therefore rely on samples.

2Of course, we also need to estimate changes – both gradual and abrupt – in how people behave over
time, which is the province of time-series analysis.
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5.1.3 Sampling Strategies

Given the importance of sampling, it should come as little surprise that there are numerous

strategies designed to provide useful inference about populations. For example, how can we

judge whether the temperature of a soup is appropriate before serving it? We might stir the

pot, to assure uniformity of temperature across possible (spoon-sized) samples, then sample

a spoonful. A particularly thorny problem in sampling concerns the practice of courtship, in

which participants may attempt to put “their best foot forward” to make a good impression.

Put di↵erently, the participants often seek to bias the sample of relational experiences to

make themselves look better than they might on average. Sampling in this context usually

involves (a) getting opinions of others, thereby broadening (if only indirectly) the size of the

sample, and (b) observing the courtship partner over a wide range of circumstances in which

the intended bias may be di�cult to maintain. Put formally, we may try to stratify the

sample by taking observations in appropriate “cells” that correspond to di↵erent potential

influences on behavior – say, high stress environments involving preparation for final exams

or meeting parents. In the best possible case, however, we try to wash out the e↵ect of

various influences on our samples through randomization. To pursue the courtship example

(perhaps a bit too far!), observations of behavior could be taken across interactions from a

randomly assigned array of partners and situations. But, of course, by then all bets are o↵

on things working out anyway.

5.1.4 Sampling Techniques

When engaging in inferential statistics to infer about the characteristics a population from

a sample, it is essential to be clear about how the sample was drawn. Sampling can be

a very complex subject with multiple stages involved in drawing the final sample. It is

desirable that the sample is some form of a probability sample, i.e., a sample in which

each member of the population has a known probability of being sampled. The most direct

form of an appropriate probability sample is a random sample where everyone has the

same probability of being sampled. A random sample has the advantages of simplicity (in

theory) and ease of inference as no adjustments to the data are needed. But, the reality of
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conducting a random sample may make the process quite challenging. Before we can draw

subjects at random, we need a list of all members of the population. For many populations

(e.g. adult US residents) that list is impossible to get. Not too long ago, it was reasonable

to conclude that a list of telephone numbers was a reasonable approximation of such a

listing for American households. During the era that landlines were ubiquitous, pollsters

could randomly call numbers (and perhaps ask for the adult in the household who had

the most recent birthday) to get a good approximation of a national random sample. (It

was also an era before caller identification and specialized ringtones which meant that calls

were routinely answered decreasing - but not eliminating - the concern with response bias.)

Of course, telephone habits have changed and pollsters finding it increasingly di�cult to

make the case that random dialing of landlines serves as a representative sample of adult

Americans.

Other forms of probability sampling are frequently used to overcome some of the dif-

ficulties that pure random sampling presents. Suppose our analysis will call upon us to

make comparisons based on race. Only 12.6% of Americans are African-American. Sup-

pose we also want to take into account religious preference. Only 5% of African-Americans

are Catholic, which means that only .6% of the population is both. If our sample size is

500, we might end up with three Catholic African-Americans. A stratified random sam-

ple (also called a quota sample) can address that problem. A stratified random sample is

similar to a simple random sample, but will draw from di↵erent subpopulations, strata, at

di↵erent rates. The total sample needs to be weighted, then, to be representative of the

entire population.

Another type of probability sample that is common in face-to-face surveys relies on

cluster sampling. Cluster sampling initially samples based on clusters (generally geo-

graphic units, such as census tracts) and then samples participants within those units. In

fact, this approach often uses multi-level sampling where the first level might be a sample

of congressional districts, then census tracts, and then households. The final sample will

need to be weighted in a complex way to reflect varying probabilities that individuals will

be included in the sample.

Non-probability samples, or those for which the probability of inclusion of a member
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of the population in the sample is unknown, can raise di�cult issues for statistical infer-

ence; however, under some conditions, they can be considered representative and used for

inferential statistics.

Convenience samples (e.g., undergraduate students in the Psychology Department

subject pool) are accessible and relatively low cost, but may di↵er from the larger popu-

lation to which you want to infer in important respects. Necessity may push a researcher

to use a convenience sample, but inference should be approached with caution. A conve-

nience sample based on “I asked people who come out of the bank” might provide quite

di↵erent results from a sample based on “I asked people who come out of a payday loan

establishment”.

Some non-probability samples are used because the researcher does not want to make

inferences to a larger population. A purposive or judgmental sample relies on the

researcher’s discretion regarding who can bring useful information to bear on the subject

matter. If we want to know why a piece of legislation was enacted, it makes sense to sample

the author and co-authors of the bill, committee members, leadership, etc. rather than a

random sample of members of the legislative body.

Snowball sampling is similar to a purposive sample in that we look for people with

certain characteristics but rely on subjects to recommend others who meet the criteria we

have in place. We might want to know about struggling young artists. They may be hard

to find, though, since their works are not hanging in galleries so we may start with a one

or more that we can find and then ask them who else we should interview.

Increasingly, various kinds of non-probability samples are employed in social science

research, and when this is done it is critical that the potential biases associated with the

samples be evaluated. But there is also growing evidence that non-probability samples can

be used inferentially - when done very carefully, using complex adjustments. Wang, et

al. (2014) demonstrate that a sample of Xbox users could be used to forecast the 2012

presidential election outcome. 3 The overview of the technique is relatively simple, but the

execution is more challenging. They divided their data into cells based on politically and

3Wei Wang, David Rothschild, Sharad Goel, and Andrew Gelman (2014) ”Forecasting Elections with
Non-Representative Polls,” Preprint submitted to International Journal of Forecasting March 31, 2014.
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demographically relevant variables (e.g., party id, gender, race, etc.) and ended up with over

175,000 cells - poststratification. (There were about three-quarters of a million participants

in the Xbox survey). Basically, they found the vote intention within each cell and then

weighted each cell based on a national survey using multilevel regression. Their final results

were strikingly accurate. Similarly, Nate Silver with FiveThirtyEight, has demonstrated

remarkable ability to forecast based on his weighted sample of polls taken by others.

Sampling techniques can be relatively straightforward, but as one moves away from

simple random sampling, the sampling process either becomes more complex or limits our

ability to draw inferences about a population. Researchers use all of these techniques

for good purposes and the best technique will depend on a variety of factors, such as

budget, expertise, need for precision, and what research question is being addressed. For

the remainder of this text, though, when we talk about drawing inferences, the data will

based upon an appropriately drawn, probability sample.

5.1.5 So How is it That We Know?

So why is it that the characteristics of samples can tell us a lot about the characteristics of

populations? If samples are properly drawn, the observations taken will provide a range of

values on the measures of interest that reflect those of the larger population. The connection

is that we expect the phenomenon we are measuring will have a distribution within the

population, and a sample of observations drawn from the population will provide useful

information about that distribution. The theoretical connection comes from probability

theory, which concerns the analysis of random phenomena. For present purposes, if we

randomly draw a sample of observations on a measure for an individual (say, discrete acts

of kindness), we can use probability theory to make inferences about the characteristics of

the overall population of the phenomenon in question. More specifically, probability theory

allows us to make inference about the shape of that distribution – how frequent are acts of

kindness committed, or what proportion of acts evidence kindness?

In sum, samples provide information about probability distributions. Probability

distributions include all possible values and the probabilities associated with those values.

The normal distribution is the key probability distribution in inferential statistics.
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5.2 The Normal Distribution

For purposes of statistical inference, the normal distribution is one of the most important

types of probability distributions. It forms the basis of many of the assumptions needed

to do quantitative data analysis, and is the basis for a wide range of hypothesis tests. A

standardized normal distribution has a mean, µ, of 0 and a standard deviation (s.d.), �, of

1. The distribution of an outcome variable, Y , can be described:

Y ⇠ N(µY ,�
2
Y ) (5.1)

where ⇠ stands for “distributed as”, N indicates the normal distribution, and mean µY

and variance �2
Y are the parameters. The probability function of the normal distribution is

expressed below:

The Normal Probability Density Function The probability density function (PDF)

of a normal distribution with mean µ and standard deviation �:

f(x) = 1
�
p
2⇡
e�(x�µ)2/2�2

The Standard Normal Probability Density Function The standard normal PDF has

a µ = 0 and � = 1

f(x) = 1p
2⇡
e�x2/2

Using the standard normal PDF, we can plot a normal distribution in R.

x <- seq(-4, 4, length = 200)

y <- 1/sqrt(2 * pi) * exp(-x^2/2)

plot(x, y, type = "l", lwd = 2)

Note that the the tails go to ±1. In addition, the density of a distribution over the range of

x is the key to hypothesis testing With a normal distribution, ⇠ 68% of the observations will

fall within 1 standard deviation of the mean, ⇠ 95% will fall within 2 standard deviations,

and ⇠ 99.7% within 3 standard deviations. This is illustrated in Figure 5.2.
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Figure 5.1: The Normal Distribution

The normal distribution is characterized by several important properties. The distri-

bution of observations is symmetrical around the mean µ; the frequency of observations is

highest (the mode) at µ, with more extreme values occurring with lower frequency (this can

be seen in Figure 5.2); and only the mean and variance are needed to characterize data and

test simple hypotheses.

The Properties of the Normal Distribution

• It is symmetrical around its mean and median, µ

• The highest probability (aka ”the mode”) occurs at its mean value

• Extreme values occur in the tails

• It is fully described by its two parameters, µ and �2

If the values for µ and �2 are known, which might be the case with a population, then we
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(a) ⇠ 68%: 1 s.d.
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(b) ⇠ 95%: 2 s.d.
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(c) ⇠ 99.7%: 3 s.d.

Figure 5.2: Normal Distribution and Standard Deviations
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can calculate a Z-score to compare di↵erences in µ and �2 between two normal distributions

or obtain the probability for a given value given µ and �2. The Z-score is calculated:

Z =
Y � µY

�
(5.2)

Therefore, if we have a normal distribution with a µ of 70 and a �2 of 9, we can calculate

a probability for i = 75. First we calculate the Z-score, then we determine the probability

of that score based on the normal distribution.

z <- (75 - 70)/3

z

## [1] 1.666667

p <- pnorm(1.67)

p

## [1] 0.9525403

p <- 1 - p

p

## [1] 0.04745968

As shown, a score of 75 falls just outside two standard deviations (> 0.95), and the proba-

bility of obtaining that score when µ = 70 and �2 = 9 is just under 5%.

5.2.1 Standardizing a Normal Distribution and Z-scores

A distribution can be plotted using the raw scores found in the original data. That plot

will have a mean and standard deviation calculated from the original data. To utilize the

normal curve to determine probability functions and for inferential statistics we will want

to convert that data so that it is standardized. We standardize so that the distribution is

consistent across all distributions. That standardization produces a set of scores that have

a mean of zero and a standard deviation of one. A standardized or Z-score of 1.5 means,

therefore, that the score is one and a half standard deviations about the mean. A Z-score

of -2.0 means that the score is two standard deviations below the mean.
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Figure 5.3: Normal Distribution and n-size

As formula 4.4 indicates, standardizing is a simple process. To move the mean from its

original value to a mean of zero, all you have to do is subtract the mean from each score.

To standardize the standard deviation to one all that is necessary is to divide each score

the standard deviation.

5.2.2 The Central Limit Theorem

An important property of samples is associated with the Central Limit Theorem (CLT).

Imagine for a moment that we have a very large (or even infinite) population, from which

we can draw as many samples as we’d like. According to the CLT, as the n-size (number

of observations) within a sample drawn from that population increases, the more the dis-

tribution of the means taken from samples of that size will resemble a normal distribution.

This is illustrated in Figure 5.3. Also note that the population does not need to have a

normal distribution for the CLT to apply. Finally, a distribution of means from a normal

population will be approximately normal at any sample size.



5.3. INFERENCES TO THE POPULATION FROM THE SAMPLE 60

5.2.3 Populations, Samples and Symbols

It is important to note that, by convention, the symbols used for representing population

parameters and sample statistics have di↵erent notation. These di↵erences are shown in

Table 5.1. In short, population parameters are typically identified by using Greek letters

and sample statistics are noted by English letters. Unless otherwise noted, the notation

used in the remainder of this chapter will be in terms of samples rather than populations.

Table 5.1: Sample and Population Notation

Concept Sample Statistic Population Parameter

Mean X̄ =

P
Xi

n
µX = E(X)

Variance s2x =

P
(X � X̄)2

(n� 1)
�2
x = V ar(X)

Standard Deviation sx =

sP
(X � X̄)2

(n� 1)
�x =

p
V ar(X)

5.3 Inferences to the Population from the Sample

Another key implication of the Central Limit Theorem that is illustrated in Figure 5.3 is

that the mean of repeated sample means is the same, regardless of sample size, and that

the mean of sample means is the population mean (assuming a large enough number of

samples). Those conclusions lead to the important point that the sample mean is the best

estimate of the population mean, i.e., the sample mean is an unbiased estimate of the

population mean. Figure 5.3 also illustrates as the sample size increases, the e�ciency of

the estimate increases. As the sample size increases, the mean of any particular sample is

more likely to approximate the population mean.

When we begin our research we should have some population in mind - the set of items

that we want to draw conclusions about. We might want to know about all adult Ameri-

cans or about human beings (past, present, and future) or about a specific meteorological

condition. There is only one way to know with certainty about that population and that is

to examine all cases that fit the definition of our population. Most of the time, though, we

cannot do that – in the case of adult Americans it would be very time-consuming, expensive,
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and logistically quite challenging and in the other two cases it simply would be impossible.

Our research, then, often forces us to rely on samples.

Because we rely on samples, inferential statistics are probability based. As Figure 5.3

illustrates, our sample could perfectly reflect our population; it could be (and is likely to

be) at least a reasonable approximation of the population; or the sample could deviate

substantially from the population. Two critical points are being made here: the best

estimates we have of our population parameters are our sample statistics, and we never

know with certainty how good that estimate is. We make decisions (statistical and real

world) based on probabilities.

5.3.1 Confidence Intervals

Because we are dealing with probabilities, if we are estimating a population parameter using

a sample statistic, we will want to know how much confidence to place in that estimate.

If we want to know a population mean, but only have a sample, the best estimate of that

population mean is the sample mean. To know how much confidence to have in a sample

mean, we put a “confidence interval” around it. A confidence interval will report both a

range for the estimate and the probability the population value falls in that range. We say,

for example, that we are 95% confident that the true value is between A and B.

To find that confidence interval, we rely on the standard error of the estimate.

Figure 5.3 plots the distribution of sample statistics drawn from repeated samples. As the

sample size increases, the estimates cluster closer to the true population value, i.e., the

standard deviation is smaller. We could use the standard deviation from repeated samples

to determine the confidence we can have in any particular sample, but in reality we are

no more likely to draw repeated samples than we are to study the entire population. The

standard error, though, provides an estimate of the standard deviation we would have if we

did drawn a number of samples. The standard error is based on the sample size and the

distribution of observations in our data:

SE =
sp
n

(5.3)
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where

s is the sample standard deviation

n is the size (number of observations) of the sample

The standard error can be interpreted just like a standard deviation. If we have a large

sample, we can say that 68.26% of all of our samples (assuming we drew repeated samples)

would fall within one standard error of our sample statistic or that 95.44% would fall within

two standard errors.

If our sample size is not large, instead of using z-scores to estimate confidence intervals,

we use t-scores to estimate the interval. T -scores are calculated just like z-score, but our

interpretation of them is slightly di↵erent. The confidence interval formula is:

x̄+ /� SEx ⇤ t (5.4)

To find the appropriate value for t, we need to decide what level of confidence we want

(generally 95%) and our degrees of freedom (df) which is n�1. We can find a confidence

interval with R using the t.test function. by default, t.test will test the hypothesis that the

mean of our variable of interest (gccriks) is equal to zero. It will also find the mean score

and a confidence interval for the gccrisk variable:

t.test(ds$glbcc_risk)

##

## One Sample t-test

##

## data: ds$glbcc_risk

## t = 97.495, df = 2535, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 5.826388 6.065568

## sample estimates:

## mean of x

## 5.945978

Moving from the bottom up on the output we see that our mean score is 5.95. Next,

we see that the 95% confidence interval is between 5.83 and 6.07. We are, therefore, 95%
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confident that the population mean is somewhere between those two scores. The first part

of the output tests the null hypothesis that the mean value is equal to zero – a topic we

will cover in the next section.

5.3.2 The Logic of Hypothesis Testing

We can use the same set of tools to test hypotheses. In this section, we introduce the logic

of hypothesis testing. In the next chapter we address it in more detail. Remember that a

hypothesis is a statement about the way the world is and that it may be true or false.

Hypotheses are generally deduced from our theory and if our expectations are confirmed,

we gain confidence in our theory. Hypothesis testing is where our ideas meet the real world.

Because of the nature of inferential statistics we cannot directly test hypotheses, but

instead test a null hypothesis. While a hypothesis is a statement of an expected rela-

tionship between two variables, the null hypothesis is a statement that says there is no

relationship between the two variables. A null hypothesis might read: As X increases, Y

does not change. (We will get more on this topic in the next chapter, but we want to get

the logic of the process here.)

Suppose a principal wants to cut down on absenteeism in her school and o↵ers an

incentive program for perfect attendance. Before the program, suppose the attendance

rate was 85%. After having the new program in place for awhile, she wants to know what

the current rate is so she takes a sample of days and estimates the current attendance

rate to be 88%. Her research hypothesis is: the attendance rate has gone up since the

announcement of the new program (i.e., attendance is great than 85%). Her null hypothesis

is that the attendance rate has not gone up since the announcement of the new program

(i.e. attendance is less than or equal to 85%). At first it seems that her null hypothesis is

wrong (88% > 85%), but since we are using a sample, it is possible that the true population

value is less than 85%. Based on her sample, how likely is it that the true population

value is less than 85%? If the likelihood is small (and remember there will always be some

chance), then we say our null hypothesis is wrong, i.e., we reject our null hypothesis,

but if the likelihood is reasonable we accept our null hypothesis. The standard we normally

use to make that determination is .05 – we want less than a .05 probability that we could
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have found our sample value (here 88%), if our null hypothesized value (85%) is true for

the population. We use the t-statistic to find that probability. The formula is:

t = x� µ

se
(5.5)

In the next section, we will look at some real examples and, more closely, at the calcula-

tion of these statistics and how to interpret them, but if we return to the output presented

above on gccrisk, we can see that R tested the null hypothesis that the true population

value for gccrisk is equal to zero. It reports a t = 97.495 and a p-value of 2.2e-16. That

p-value is less than .05 so we will reject our null hypothesis and be very confident that the

true population value is great than zero.

5.3.3 Some Miscellaneous Notes about Hypothesis Testing

Before suspending our discussion of hypothesis testing until the next section, there are a

few loose ends to tie up. First, you might be asking yourself where the .05 standard of

hypothesis testing comes from. Is there some magic to that number? The answer is “no”,

.05 is simply the standard, but some researchers report .10 or .01. The p value of .05,

though, is generally considered to provide a reasonable balance between making it nearly

impossible to reject a null hypothesis and to too easily cluttering our knowledge box with

things that we think are related but are not. Even using the .05 standard means that 5%

of the time when we reject the null hypothesis, we are wrong - there is no relationship.

(Besides giving you pause wondering what we are wrong about, it should also help you see

why science deems replication to be so important.)

Second, as we just implied, anytime we make a decision regarding accepting or rejecting

our null hypothesis, we could be wrong. The probabilities tell us that if p = 0.05, 5% of the

time when we reject the null hypothesis, we are wrong because it is actually true. We call

that type of mistake Type I Error. But, when we accept the null hypothesis, we could

also be wrong – there may be a relationship within the population. We call that Type II

Error. As should be evident, there is a trade-o↵ between the two. If we decide to use a p

value of .01 instead of .05, we make fewer Type I errors – just one out of 100, instead of 5
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out of 100. But, that also means that we increase by .04 the likelihood that we are accepting

a null hypothesis that is false – Type II Error. To rephrase the previous paragraph: .05

is normally considered to be a reasonable balance between the probability of committing

Type I Error as opposed to Type II Error. Of course, if the consequence of one type of

error or the other is greater, then you can adjust the p value.

Third, when testing hypotheses, we can use a one-tailed test or a two-tailed test.

The question is whether the entire .05 goes in one tail or is split evenly between the two tails

(making, e↵ectively, the p value equal to .025). Generally speaking, if we have a directional

hypothesis (e.g., as X increases so does Y), we will use a one-tail test. If we are expecting a

positive relationship, but find a strong negative relationship, we generally conclude that we

have a sampling quirk and that the relationship is null, rather than the opposite of what

we expected. If, for some reason, you have a hypothesis that does not specify the direction,

you would be interested in values in either tail and use a two-tailed test.

5.4 Di↵erences Between Groups

In addition to covariance and correlation (discussed in the next chapter), we can also ex-

amine di↵erences in some variable of interest between two or more groups. For example,

we may want to compare the mean of the perceived climate change risk variable for males

and females. First, we can examine these variables visually.

As coded in our dataset, gender (gender) is a numeric variable with a 1 for male and

0 for female. However, we may want to make gend a categorical variable with labels for

Female and Male, as opposed to a numeric variable coded as 0’s and 1’s. To do this we

make a new variable and use the factor command, which will tell R that the new variable

is a categorical variable. Then we will tell R that this new variable has two levels or factors,

Male and Female. Finally, we will label the factors of our new variable. We will name our

new variable f.gend.

ds$f.gend <- factor(ds$gender, levels = c(0, 1), labels = c("Female",

"Male"))
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Then we can observe di↵erences in the distributions of perceived risk for males and females

by creating density curves, using the densityplot function in the lattice package.

library(lattice)

densityplot(~ds$glbcc_risk | ds$f.gend)
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Figure 5.4: Density Plots of Climate Change Risk by Gender

Based on the density plots, it appears that some di↵erences exist between males and

females regarding perceived climate change risk. We can also use the by command to see

the gccrsk mean of climate change risk for males and females.

by(ds$glbcc_risk, ds$f.gend, mean, na.rm = TRUE)

## ds$f.gend: Female

## [1] 6.134259

## --------------------------------------------------------

## ds$f.gend: Male

## [1] 5.670577
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## [1] "Female" "Male"

Again there appears to be a di↵erence, with females perceiving greater risk on average

(6.13) than males (5.67). However we want to know whether these di↵erences are statisti-

cally significant. To test for the statistical significance of the di↵erence between groups,

we use a t-test.

5.4.1 t-tests

The t-test is based in the t distribution. The t distribution, also known as the Student’s t

distribution, is the probability distribution for sample estimates. It has similar properties,

and is related to, the normal distribution. The normal distribution is based on a population

where µ and �2 are known, however the t distribution is based on a sample where µ and

�2 are estimated, as the mean X̄ and variance s2x. The mean of the t distribution, like

the normal distribution is 0, but the variance, s2x, is conditioned by n � 1 degrees of

freedom(df). Degrees of freedom are the values used to calculate a statistic that are ”free”

to vary.4 A t distribution approaches the standard normal distribution as the number of

degrees of freedom increase.

In brief, we want to know the di↵erence of means between males and females, d =

X̄m� X̄f and if that di↵erence is statistically significant. This amounts to a hypothesis test

where our working hypothesis, H1, is that males are less likely than females to view climate

change as risky. The null hypothesis, HA, is that there is no di↵erence between males and

females regarding the risks associated with climate change. To test H1 we use the t-test

which is calculated:

t =
X̄m � X̄f

SEd
(5.6)

Where SEd is the standard error of the estimated di↵erences between the two groups. To

estimate SEd we need the SE of the estimated mean for each group. The SE is calculated:

SE =
sp
n

(5.7)

4In a di↵erence of means test across two groups, we ”use up” one observation when we separate the
observations into two groups. Hence the denominator reflects the loss of that used up observation: n-1.
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where s is the s.d. of the variable. H1 states that there is a di↵erence between males

and females, therefore under H1 it is expected that t > 0 since zero is the mean of the t

distribution. However, under HA it is expected that t = 0.

We can calculate this in R. First, we calculate the n size for males and females. Then

we calculate the SE for males and females.

n.total <- length(ds$gender)

nM <- sum(ds$gender, na.rm = TRUE)

nF <- n.total - nM

by(ds$glbcc_risk, ds$f.gend, sd, na.rm = TRUE)

## ds$f.gend: Female

## [1] 2.981938

## --------------------------------------------------------

## ds$f.gend: Male

## [1] 3.180171

sdM <- 2.82

seM <- 2.82/(sqrt(nM))

seM

## [1] 0.08803907

sdF <- 2.35

seF <- 2.35/(sqrt(nF))

seF

## [1] 0.06025641

Next, we need to calculate the SEd:

SEd =
q
SE2

M + SE2
F (5.8)

seD <- sqrt(seM^2 + seF^2)

seD

## [1] 0.1066851

Finally, we can calculate our t-score, and use the t.test function to check.
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by(ds$glbcc_risk, ds$f.gend, mean, na.rm = TRUE)

## ds$f.gend: Female

## [1] 6.134259

## --------------------------------------------------------

## ds$f.gend: Male

## [1] 5.670577

meanF <- 6.96

meanM <- 6.42

t <- (meanF - meanM)/seD

t

## [1] 5.061625

t.test(ds$glbcc_risk ~ ds$gender)

##

## Welch Two Sample t-test

##

## data: ds$glbcc_risk by ds$gender

## t = 3.6927, df = 2097.5, p-value = 0.0002275

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.2174340 0.7099311

## sample estimates:

## mean in group 0 mean in group 1

## 6.134259 5.670577

The di↵erence in the percieved risk between women and men, we have a t-value of 4.6.

This result is greater than zero, as expected by H1. In addition, as shown in the t.test

output the p-value—the probability of obtaining our result if the population di↵erence was

0—is extremely low at .0002275 (that’s the same as 2.275e-04). Therefore, we reject the

null hypothesis and concluded that there are di↵erences (on average) in the ways that males

and females perceive climate change risk.

5.5 Summary

In this chapter we gained an understanding of inferential statistics, how to use them to

place confidence intervals around an estimate, and got an overview of how to use them to

test hypotheses. In the next chapter we turn, more formally, to testing hypotheses using
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crosstabs and by comparing means of di↵erent groups. After that we continue to explore

hypothesis testing and model building using regression analysis.



6
Association of Variables

The last chapter focused on the characterization of distributions of a single variable. We

now turn to the associations between two or more variables. This chapter explores ways

to measure and visualize associations between variables. We start with ways to analyze

the relations between nominal and ordinal level variables, using cross-tabulation in R.

Then, for interval level variables, we examine the use of the measures of the covariance

and correlation between pairs of variables. Next we examine hypothesis testing between

two groups, where the focus in on how the groups di↵er, on average, with respect to an

interval level variable. Finally, we discuss scatterplots as a way to visually explore di↵erences

between pairs of variables.

71
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6.1 Cross-Tabulation

To determine if there is an association between two variables measured at the nominal or

ordinal levels we use cross-tabulation and a set of supporting statistics. A cross-tabulation

(or just crosstab) is a table that looks at the distribution of two variables simultaneously.

Table 6.1 provides a sample layout of a 2 X 2 table.

Table 6.1: Sample Table Layout

Dependent
Variable

Independent
Variable

IV - Low IV - High Total

DV - Low 60% 40% 53%
DV - High 40% 60% 47%

100%
n = 200

100%
n=100

n = 300

As Table 6.1 illustrates, a crosstab is set up so that the independent variable is on the

top, forming columns, and the dependent variable is on the side, forming rows. Toward the

upper left hand corner of the table are the low, or negative variable categories. Generally, a

table will be displayed in percentage format. The marginals for a table are the column totals

and the row totals and are the same as a frequency distribution would be for that variable.

Each cross-classification reports how many observations have that shared characteristic.

The cross-classification groups are referred to as cells, so Table 6.1 is a four-celled table.

A table like Table 6.1 provides a basis to begin to answer the question of whether our

independent and dependent variables are related. Remember that our null hypothesis says

there is no relationship between our IV and our DV. Looking at Table 6.1, we can say of

those low on the IV, 60% of them will also be low on the DV; and that those high on the

IV will be low on the DV 40% of the time. Our null hypothesis says there should be no

di↵erence, but in this case, there is a 20% di↵erence so it appears that our null hypothesis

is incorrect. What we learned in our inferential statistics chapter, though, tells us that it is

still possible that the null hypothesis is true. The question is how likely is it that we could

have a 20% di↵erence in our sample even if the null hypothesis is true?1

1To reiterate the general decision rule: if the probability that we could have a 20% di↵erence in our
sample if the null hypothesis is true is less than .05 we will reject our null hypothesis.
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We use the chi square statistic to test our null hypothesis when using crosstabs. To

find chi square (�2), we begin by assuming the null hypothesis to be true and find the

expected frequencies for each cell in our table. We do so using a posterior methodology

based on the marginals for our dependent variable. We see that 53% of our total sample is

low on the dependent variable. If our null hypothesis is correct, then where one is on the

independent variable should not matter so 53% of those who are low on the IV should be

low on the DV and 53% of those who are high on the IV should be low on the DV. Table

6.2 & 6.3 illustrate this pattern. To find the expected frequency for each cell, we simply

multiply the expected cell percentage times the number of people in each category of the

IV: the expected frequency for the low-low cell is .53 ⇤ 200 = 106; for the low-high cell, it

is .47 ⇤ 200 = 94; for the low-high cell it is .53 ⇤ 100 = 53; and for the high-high cell, the

expected frequency is .47 ⇤ 100 = 47. (See Table 6.2 & 6.3)

The formula for the chi square takes the expected frequency for each of the cells and

subtracts the observed frequency from it, squares those di↵erences, divides by the expected

frequency, and sums those values:

�2 =
X (O � E)2

E
(6.1)

where:

�2 = The Test Statistic
P

= The Summation Operator

O = Observed Frequencies

E = Expected Frequencies

Table 6.4 provides those calculations. It shows a final chi square of 10.73. With that

chi square, we can go to a chi square table to determine whether to accept or reject the null

hypothesis. Before going to that chi square table, we need to figure out two things. First,

we need to determine the level of significance we want, presumably .05. Second, we need to

determine our degrees of freedom. We will have more on that concept as we go on, but for

now, know that it is your number of rows minus one times your number of columns minus
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Table 6.2: Sample Null-Hypothesized Table Layout as Percentages

Dependent
Variable

Independent
Variable

IV - Low IV - High Total

DV - Low 53% 53% 53%
DV - High 47% 47% 47%

100%
n = 200

100%
n=100

n = 300

Table 6.3: Sample Null-Hypothesized Table Layout as Counts

Dependent
Variable

Independent
Variable

IV - Low IV - High Total

DV - Low 106 53 159
DV - High 94 47 141

200 100 300

one. In this case we have (2� 1)(2� 1) = 1 degree of freedom.

Table 6.4: Chi Square (�2) Calculation

Cell Observed Freq Expected Freq (O � E)2 (O�E)2

E

low-low 120 106 196 1.85
low-high 80 94 196 2.09
high-low 40 53 169 3.19
high-high 60 47 169 3.60
Total 10.73

Table 6.7 (at the end of this chapter) is a chi square table that shows the critical values

for various levels of significance and degrees of freedom. The critical value for one degree of

freedom with a .05 level of significance is 3.84. Since our chi square is larger than that we

can reject our null hypothesis - there is less than a .05 probability that we could have found

the results in our sample if there is no relationship in the population. In fact, if we follow

the row for one degree of freedom across, we see we can reject our null hypothesis even at

the .005 level of significance and, almost but not quite, at the .001 level of significance.

Having rejected the null hypothesis, we believe there is a relationship between the two

variables, but we still want to know how strong that relationship is. Measures of association

are used to determine the strength of a relationship. One type of measure of association
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relies on a co-variation model as elaborated upon in Sections 6.2 and 6.3. Co-variation

models are directional models and require ordinal or interval level measures; otherwise, the

variables have no direction. Here we consider alternative models.

If one or both of our variables is nominal we cannot specify directional change. Still,

we might see a recognizable pattern of change in one variable as the other variable varies.

Women might be more concerned about climate change than are men, for example. For

that type of case, we may use a reduction in error or a proportional reduction in error

(PRE) model. We consider how much better we predict using a naive model (assuming no

relationship) and compare it to how much better we predict when we use our independent

variable to make that prediction. These measures of association only range from 0 � 1.0,

since the sign otherwise indicates direction. Generally, we use this type of measure when

at least one our variables is nominal, but we will also use a PRE model measure, r2, in

regression analysis. Lambda is a commonly used PRE-based measure of association for

nominal level data, but it can underestimate the relationship in some circumstances.

Another set of measures of association suitable for nominal level data is based on chi

square. Cramer’s V is a simple chi square based indicator, but like chi square itself,

its value is a↵ected by the sample size and the dimensions of the table. Phi corrects for

sample size, but is appropriate only for a 2 X 2 table. The contingency coe�cient, C,

also corrects for sample size and can be applied to larger tables, but requires a square table,

i.e., the same number of rows and columns.

If we have ordinal level data, we can use a co-variation model, but the specific model

developed below in Section 6.3 looks at how observations are distributed around the means.

Since we cannot find a mean for ordinal level data, we need an alternative. Gamma is

commonly used with ordinal level data and provides a summary comparing how many ob-

servations fall around the diagonal in the table that supports a positive relationship (e.g.

observations in the low-low cell and the high-high cells) as opposed to observations following

the negative diagonal (e.g. the low-high cell and the high-low cells). Gamma ranges from

�1.0 to +1.0.

Crosstabulations and their associated statistics can be calculated using R. In this ex-
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ample we use the Global Climate Change dataset (ds). The dataset includes measures of

survey respondents: gender (female = 0, male = 1); perceived risk posed by climate change

or glbccrisk (0 = Not Risk; 10 = extreme risk), and political ideology (1 = strong liberal,

7 = strong conservative). Here we look at whether there is a relationship between gender

and the glbccrisk variable. The glbccrisk variable has eleven categories and to make the

table more manageable we recode it to five categories.

# Factor the gender variable

ds$f.gend <- factor(ds$gender, levels = c(0, 1), labels = c("Women",

"Men"))

# recode glbccrisk to five categories

library(car)

ds$r.glbcc_risk <- recode(ds$glbcc_risk, "0:1=1; 2:3=2; 4:6=3; 7:8:=4; 9:10=5; NA=NA")

Using the table function, we produce a frequency table reflecting the relationship be-

tween gender and the recoded glbccrisk variable.

# create the table

table(ds$r.glbcc_risk, ds$f.gend)

##

## Women Men

## 1 134 134

## 2 175 155

## 3 480 281

## 4 330 208

## 5 393 245

# create the table as an R Object

glbcc.table <- table(ds$r.glbcc_risk, ds$f.gend)

That table is di�cult to interpret because of the di↵erent numbers of men and women.

To make that table more interpretable, we convert it to percentages using the prop.table

function. Looking at that table, we can see that there are more men at the lower end of

the perceived risk scale and more women at the upper end.

# round to one digit and multiply by 100

round(prop.table(glbcc.table, 2) * 100, 1)
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##

## Women Men

## 1 8.9 13.1

## 2 11.6 15.2

## 3 31.7 27.5

## 4 21.8 20.3

## 5 26.0 23.9

The percentaged table suggests that there is a relationship between the two variables, but

also illustrates the challenge of relying on percentage di↵erences to determine the significance

of that relationship. So, to test our null hypothesis we calculate our chi square using the

chisq.test function.

# Chi Square Test

chisq.test(glbcc.table)

##

## Pearson's Chi-squared test

##

## data: glbcc.table

## X-squared = 21.729, df = 4, p-value = 0.0002269

R reports our chi square to equal 21.73. It also tells us that we have 4 degrees of freedom

and a p value of .0002269. Since that p value is substantially less than .05, we can reject our

null hypothesis with great confidence. There is, evidently, a relationship between gender

and percieved risk of climate change.

Finally, we want to know how strong the relationship is. We use the assocstats function

to get several measures of association. Since the table is not a 2 X 2 table nor square, neither

phi not the contingency coe�cient is appropriate, but we can report Cramer’s V. Cramer’s

V is .093, indicating a relatively weak relationship between gender and the perceived global

climate change risk variable.

library(vcd)

assocstats(glbcc.table)

## X^2 df P(> X^2)

## Likelihood Ratio 21.494 4 0.00025270

## Pearson 21.729 4 0.00022695

##
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## Phi-Coefficient : NA

## Contingency Coeff.: 0.092

## Cramer's V : 0.093

6.1.1 Crosstabulation and Control

In Chapter 2 we talked about the importance of experimental control if we want to make

causal statements. In experimental designs we rely on physical control and randomization

to provide that control which give us confidence in the causal nature of any relationship we

find. With quasi-experimental designs, however, we do not have that type of control and

have to wonder whether a relationship that we find might be spurious. At that point, we

promised that the situation is not hopeless with quasi-experimental designs and that there

are statistical substitutes for the control naturally a↵orded us in experimental designs. In

this section, we will describe that process when using crosstabulation. We will first look at

some hypothetical data to get some clean examples of what might happen when you control

for an alternative explanatory variable before looking at a real example using R.

The process used to control for an alternative explanatory variable, commonly referred

to as a third variable, is straightforward. To control for a third variable, we first construct

our original table between our independent and dependent variables. Then we sort our data

into subsets based on the categories of our third variable and reconstruct new tables using

our IV and DV for each subset of our data.

Suppose we hypothesize that people who are contacted about voting are more likely to

vote. Table 6.5 illustrates what we might find. (Remember all of these data are fabricated

to illustrate our points.) According to the first table, people who are contacted are 50%

more likely to vote than those who are not. But, a skeptic might say campaigns target

previous voters for contact and that previous voters are more likely to vote in subsequent

elections. That skeptic is making the argument that the relationship between contact and

voting is spurious and that the true cause of voting is voting history. To test that theory,

we control for voting history by sorting respondents into two sets – those who voted in the

last election and those who did not. We then reconstruct the original table for the two sets

of respondents. The new tables indicate that previous voters are 50% more likely to vote
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when contacted, and that those who did not vote previously are 50% more likely to vote

when contacted. The skeptic is wrong; the pattern found in our original data persists even

after controlling. We still remain reluctant to use causal language because another skeptic

might have another alternative explanation (which would require us to go through the same

process with the new third variable), but we do have more confidence in the possible causal

nature of the relationship between contact and voting.

The next example tests the hypothesis that those who are optimistic about the future

are more likely to vote for the incumbent than those who are pessimistic. Table 6.6 shows

that optimistic people are 25% more likely to vote for the incumbent than are pessimistic

people. But our skeptic friend might argue that feelings about the world are not nearly

as important as real life conditions. People with jobs vote for the incumbent more often

than those without a job and, of course, those with a job are more likely to feel good about

the world. To test that alternative, we control for whether the respondent has a job and

reconstruct new tables. When we do, we find that among those with a job, 70% vote for

the incumbent - regardless of their level of optimism about the world. And, among those

without a job, 40% vote for the incumbent, regardless of their optimism. In other words,

after controlling for job status, there is no relationship between level of optimism and voting

behavior. The original relationship was spurious.

A third outcome of controlling for a third variable might be some form of interaction or

specification e↵ect. The third variable a↵ects how the first two are related, but it does not

completely undermine the original relationship. For example, we might find the original

relationship to be stronger for one category of the control variable than another - or even to

be present in one case and not the other. Or, the pattern might suggest that both variables

have an influence on the dependent variable, looking like some form of joint causation. In

fact, it is possible for your relationship to appear to be null in your original table, but when

you control you might find a positive relationship for one category of your control variable

and negative for another.

Using an example from the Climate and Weather survey, we might hypothesize that

liberals are more likely to think that greenhouse gases are causing global warming. We

start by recoding ideology from 7 levels to 3, then constructing first a frequency table, then
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Table 6.5: Controlling for a Third Variable: Nothing Changes

All Respondents
Not Contacted Contacted

Not Vote 75% 25%
Vote 25% 75%

100% 100%

Respondents who Voted in the Last Election
Not Contacted Contacted

Not Vote 75% 25%
Vote 25% 75%

100% 100%

Respondents who Did Not Vote in the Last Election
Not Contacted Contacted

Not Vote 75% 25%
Vote 25% 75%

100% 100%

a percentage table of the relationship.

# recode variables ideology to 3 categories

library(car)

ds$r.ideol <- recode(ds$ideol, "1:2=1; 3:5=2; 6:7=3; NA=NA")

# factor the variables to add labels.

ds$f.ideol <- factor(ds$r.ideol, levels = c(1, 2, 3), labels = c("Liberal",

"Moderate", "Conservative"))

ds$f.glbcc <- factor(ds$glbcc, levels = c(0, 1), labels = c("GLBCC No",

"GLBCC Yes"))

# 3 Two variable table glbcc~ideology

v2.glbcc.table <- table(ds$f.glbcc, ds$f.ideol)

v2.glbcc.table

##

## Liberal Moderate Conservative

## GLBCC No 26 322 734

## GLBCC Yes 375 762 305

# Percentages by Column

round(prop.table(v2.glbcc.table, 2) * 100, 1)

##
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Table 6.6: Controlling for a Third Variable: Spurious

All Respondent
Pessimistic Optimistic

Not Vote Incumbent 55% 30%
Vote Incumbent 45% 70%

100% 100%

Have a Job
Pessimistic Optimistic

Not Vote Incumbent 30% 30%
Vote Incumbent 70% 70%

100% 100%

Not Have a Job
Pessimistic Optimistic

Not Vote Incumbent 60% 60%
Vote Incumbent 40% 40%

100% 100%

## Liberal Moderate Conservative

## GLBCC No 6.5 29.7 70.6

## GLBCC Yes 93.5 70.3 29.4

It appears that our hypothesis is supported as there is more than a 40% di↵erence between

liberals and conservatives with moderates in between, but let’s consider the chi square before

reject our null hypothesis:

# Chi-squared

chisq.test(v2.glbcc.table, correct = FALSE)

##

## Pearson's Chi-squared test

##

## data: v2.glbcc.table

## X-squared = 620.76, df = 2, p-value < 2.2e-16

The chi square is very large and our p-value, very small. We can reject our null hypothesis

with great confidence. Next, we consider the strength of association, using Cramer’s V

(since either Phi nor the contingency coe�cient is appropriate for a 3 X 2 table):
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# Cramer's V

library(vcd)

assocstats(v2.glbcc.table)

## X^2 df P(> X^2)

## Likelihood Ratio 678.24 2 0

## Pearson 620.76 2 0

##

## Phi-Coefficient : NA

## Contingency Coeff.: 0.444

## Cramer's V : 0.496

The Cramer’s V value of .496 indicates that we have a strong relationship between political

ideology and beliefs about climate change.

We might, though, want to look at gender as a control variable since we know gender is

related both to perceptions on the climate and ideology. First we need to generate a new

table with the control variable gender added. We start by factoring the gender variable.

# factor the variables to add labels.

ds$f.gend <- factor(ds$gend, levels = c(0, 1), labels = c("Women",

"Men"))

Then we create the new table. The R output is shown, in which the line “## , , = Women”

indicates the results for women and “## , , = Men” displays the results for men.

# 3 Two variable table glbcc~ideology+gend

v3.glbcc.table <- table(ds$f.glbcc, ds$f.ideol, ds$f.gend)

v3.glbcc.table

## , , = Women

##

##

## Liberal Moderate Conservative

## GLBCC No 18 206 375

## GLBCC Yes 239 470 196

##

## , , = Men

##

##

## Liberal Moderate Conservative

## GLBCC No 8 116 358

## GLBCC Yes 136 292 109
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# Percentages by Column for Women

round(prop.table(v3.glbcc.table[, , 1], 2) * 100, 1)

##

## Liberal Moderate Conservative

## GLBCC No 7.0 30.5 65.7

## GLBCC Yes 93.0 69.5 34.3

chisq.test(v3.glbcc.table[, , 1])

##

## Pearson's Chi-squared test

##

## data: v3.glbcc.table[, , 1]

## X-squared = 299.39, df = 2, p-value < 2.2e-16

assocstats(v3.glbcc.table[, , 1])

## X^2 df P(> X^2)

## Likelihood Ratio 326.13 2 0

## Pearson 299.39 2 0

##

## Phi-Coefficient : NA

## Contingency Coeff.: 0.407

## Cramer's V : 0.446

# Percentages by Column for Men

round(prop.table(v3.glbcc.table[, , 2], 2) * 100, 1)

##

## Liberal Moderate Conservative

## GLBCC No 5.6 28.4 76.7

## GLBCC Yes 94.4 71.6 23.3

chisq.test(v3.glbcc.table[, , 2])

##

## Pearson's Chi-squared test

##

## data: v3.glbcc.table[, , 2]

## X-squared = 320.43, df = 2, p-value < 2.2e-16

assocstats(v3.glbcc.table[, , 2])

## X^2 df P(> X^2)

## Likelihood Ratio 353.24 2 0

## Pearson 320.43 2 0
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##

## Phi-Coefficient : NA

## Contingency Coeff.: 0.489

## Cramer's V : 0.561

For both men and women, we still see more than a 40% di↵erence and the p value for

both tables chi square is 2.2e-16 and both Cramer’s V’s are greater than .30. It is clear that

even when controlling for gender, there is a robust relationship between ideology and glbcc.

But, those tables also suggest that women are slightly more inclined to see greenhouse gases

playing a role in climate change than are men. We may have an instance of joint causation

– where both ideology and gender a↵ect (“cause” is still too strong a word) views on the

impact of greenhouse gases on climate change.

Crosstabs, chi square, and measures of association are used with nominal and ordinal

data to get an overview of a relationship, its statistical significance, and the strength of a

relationship. In the next section we turn to ways to consider the same set of questions with

interval level data, before turning to the more advanced technique of regression analysis in

Part 2 of this book.

6.2 Covariance

Covariance is a simple measure of the way two variables move together, or “co-vary”. The

covariance of two variables, X and Y , can be expressed in population notation as:

cov(X,Y ) = E[(X � µx)(Y � µy)] (6.2)

Therefore, the covariance between X and Y is simply the product of the variation of X

around its expected value, and the variation of Y around its expected value. The sample

covariance is expressed as:

cov(X,Y ) =

P
(X � X̄)(Y � Ȳ )

(n� 1)
(6.3)

Covariance can be positive, negative, and zero. If the covariance is positive both vari-
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ables move in the same direction, therefore if X increases Y increases or if X decreases

Y decreases. Negative covariance means that the variables move in the opposite direction;

if X increases Y decreases. Finally, zero covariance indicates that there is no covariance

between X and Y .

6.3 Correlation

Correlation is closely related to covariance. In essence, correlation standardizes covariance

so it can be compared across variables. Correlation is represented by a correlation coe�cient

⇢, and is calculated by dividing the covariance of the two variables by the product of their

standard deviations. For populations it is expressed as:

⇢ =
cov(X,Y )

�x�y
(6.4)

For samples it is expressed as:

r =

P
(X � X̄)(Y � Ȳ )/(n� 1)

sxsy
(6.5)

Like covariance, correlations can be positive, negative, and zero. The possible values

of the correlation coe�cient r, range from -1, perfect negative relationship to 1, perfect

positive relationship. If r = 0, that indicates no correlation. Correlations can be calculated

in R, using the cor function.

cor(ds[c("age", "education", "ideol", "glbcc_risk")], use = "complete.obs")

## age education ideol glbcc_risk

## age 1.00000000 -0.06149090 0.08991177 -0.07514098

## education -0.06149090 1.00000000 -0.13246843 0.09115774

## ideol 0.08991177 -0.13246843 1.00000000 -0.59009431

## glbcc_risk -0.07514098 0.09115774 -0.59009431 1.00000000

Note that each variable is perfectly (and positively) correlated with itself - naturally! Age

is slightly and surprisingly negatively correlated with education (-0.06) and unsurprisingly

positively political ideology (+0.09). What this means is that, in this dataset and on
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average, older people are slightly less educated and more conservative than younger people.

Now notice the correlation coe�cient for the relationship between ideology and perceived

risk of climate change (glbccrisk). This correlation (-0.59) indicates that on average, the

more conservative the individual is, the less risky climate change is perceived to be.

6.4 Scatterplots

As noted earlier, it is often useful to try and see patterns between two variables. We

examined the density plots of males and females with regard to climate change risk, then

we tested these di↵erences for statistical significance. However, we often want to know

more than the mean di↵erence between groups; we often want to know if di↵erences exist

for variables with several possible values. For example, here we examine the relationship

between ideology and glbcc risk. One of the more e�cient ways to do this is to produce a

scatterplot, which will plot each case in a geometric space for both variables. To produce

a scatterplot we will use the plot command. Note, that since ideology and glbcc risk are

discrete variables(i.e., whole numbers) we need to “jitter” the data.2 The result is shown

in Figure 6.1.

plot(jitter(ds$glbcc_risk) ~ jitter(ds$ideol), col = "gray")

We can see that the density of values indicate that strong liberals—1’s on the ideology

scale—tend to view climate change as quite risky, whereas strong conservatives—7’s on

the ideology scale—tend to view climate change as less risky. Like our previous example,

we want to know more about the nature of this relationship. Therefore, we can plot a

regression line and a “lowess” line. These lines are the linear and nonlinear estimates of

the relationship between political ideology and perceived risk of climate change. We’ll have

more to say about the linear estimates when we turn to regression analysis in the next

chapter.

In this example the lowess function is sensative to missing data. We will remove the

2That means a “jit” (a very small value) is applied to each observed point on the plot, so you can see
observations that are “stacked” on the same coordinate. Ha! Just kidding; they’re not called jits. We don’t
know what they’re called. But they ought to be called jits.
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Figure 6.1: Scatterplot of Ideology and glbcc Risk

missing data using the na.omit function. The steps used in the example are: 1) to create

the temporary dataset–ds.missing, 2) complete the exercise, and 3) remove the ds.missing

from the environment.

ds.missing <- subset(ds, select = c("glbcc_risk", "ideol"))

ds.missing <- na.omit(ds.missing) # Generate new dataset with missing values removed

plot(jitter(ds.missing$glbcc_risk) ~ jitter(ds.missing$ideol),

col = "gray")

abline(lm(ds.missing$glbcc_risk ~ ds.missing$ideol))

lines(lowess(ds.missing$ideol, ds.missing$glbcc_risk), lty = 2,

col = "red")

rm(ds.missing) # remove the missing data from the environment

dev.off()

Note that the regression lines both slope downward, with average perceived risk ranging

from over 8 for the strong liberals (ideology=1) to less than 5 for strong conservatives

(ideology=7). This illustrates how scatterplots can provide information about the nature of

the relationship between two variables. We will take the next step – to bivariate regression

analysis – in the next chapter.
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Figure 6.2: Scatterplot of Ideology and GLBCC Risk with Regression Line and Lowess Line
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Table 6.7: Appendix 6.1: Chi Square Table

df P-Value
df 0.25 0.20 0.15 0.10 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 0.0005
1 1.32 1.64 2.07 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83 12.12
2 2.77 3.22 3.79 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82 15.20
3 4.11 4.64 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27 17.73
4 5.39 5.59 6.74 7.78 9.49 11.14 11.67 13.23 14.86 16.42 18.47 20.00
5 6.63 7.29 8.12 9.24 11.07 12.83 13.33 15.09 16.75 18.39 20.51 22.11
6 7.84 8.56 9.45 10.64 12.53 14.45 15.03 16.81 13.55 20.25 22.46 24.10
7 9.04 5.80 10.75 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32 26.02
8 10.22 11.03 12.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12 27.87
9 11.39 12.24 13.29 14.68 16.92 19.02 19.63 21.67 23.59 25.46 27.83 29.67
10 12.55 13.44 14.53 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29.59 31.42
11 13.70 14.63 15.77 17.29 19.68 21.92 22.62 24.72 26.76 28.73 31.26 33.14
12 14.85 15.81 16.99 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91 34.82
13 15.93 15.58 18.90 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53 36.48
14 17.12 18.15 19.4 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12 38.11
15 18.25 19.31 20.60 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70 39.72
16 19.37 20.47 21.79 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25 41.31
17 20.49 21.61 22.98 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79 42.88
18 21.60 22.76 24.16 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31 44.43
19 22.72 23.90 25.33 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82 45.97
20 23.83 25.04 26.50 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31 47.50
21 24.93 26.17 27.66 29.62 39.67 35.48 36.34 38.93 41.40 43.78 46.80 49.01
22 26.04 27.30 28.82 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27 50.51
23 27.14 28.43 29.98 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73 52.00
24 28.24 29.55 31.13 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18 53.48
25 29.34 30.68 32.28 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62 54.95
26 30.43 31.79 33.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05 56.41
27 31.53 32.91 34.57 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48 57.86
28 32.62 34.03 35.71 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89 59.30
29 33.71 35.14 36.85 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30 60.73
30 34.80 36.25 37.99 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70 62.16
40 45.62 47.27 49.24 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40 76.09
50 56.33 53.16 60.35 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66 89.56
60 66.98 68.97 71.34 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61 102.7
80 88.13 90.41 93.11 96.58 101.9 106.6 108.1 112.3 116.3 120.1 124.8 128.3
100 109.1 111.7 114.7 118.5 124.3 129.6 131.1 135.8 140.2 144.3 149.4 153.2
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7
The Logic of Ordinary Least Squares Estimation

This chapter begins the discussion of ordinary least squares (OLS) regression. OLS is

the “workhorse” of empirical social science and is a critical tool in hypothesis testing and

theory building. This chapter builds on the the discussion in Chapter 6, by showing how

OLS regression is used to estimate relationships between and among variables.

7.1 Theoretical Models

Models, as discussed earlier, are an essential component in theory building. They simplify

theoretical concepts, provide a precise way to evaluate relationships between variables,

and serve as a vehicle for hypothesis testing. As discussed in Chapter 1, one of the central

features of a theoretical model is the presumption of causality, and causality is based on three

factors; time ordering (observational or theoretical), co-variation, and non-spuriousness. Of
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these three assumptions, co-variation is the one analyzed using OLS. The often repeated

adage, “correlation is not causation” is key. Causation is driven by theory, but co-variation

is the critical part of empirical hypothesis testing.

When describing relationships, it is important to distinguish between those that are

deterministic versus stochastic. Deterministic relationships are “fully determined” such

that, knowing the values of the independent variable, you can perfectly explain (or predict)

the value of the dependent variable. Philosophers of Old (like Kant) imagined the universe

to be like a massive and complex clock which, once wound up and set ticking, would permit

perfect prediction of the future if you had all the information on the starting conditions.

There is no “error” in the prediction. Stochastic relationships, on the other hand, include

an irreducible random component, such that the independent variables permit only a partial

prediction of the dependent variable. But that stochastic (or random) component of the

variation in the dependent variable has a probability distribution that can be analyzed

statistically.

7.1.1 Deterministic Linear Model

The deterministic linear model serves as the basis for evaluating theoretical models. It is

expressed as:

Yi = ↵+ �Xi (7.1)

A deterministic model is systematic and contains no error, therefore Y is perfectly

predicted by X. This is illustrated in Figure 7.1. ↵ and � are the model parameters, and

are constant terms. � is the slope; the change in Y over the change in X. ↵ is the intercept;

the value of Y when X is zero.

Given that in social science we rarely work with deterministic models, nearly all models

contain a stochastic, or random, component.

7.1.2 Stochastic Linear Model

The stochastic, or statistical, linear model contains a systematic component, Y = ↵+�, and

a stochastic component called the error term. The error term is the di↵erence between
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Figure 7.1: Deterministic Model

the expected value of Yi and the observed value of Yi; Yi � µ. This model is expressed as:

Yi = ↵+ �Xi + ✏i (7.2)

where ✏i is the error term. In the deterministic model, each value of Y fits along the

regression line, however in a stochastic model the expected value of Y is conditioned by the

values of X. This is illustrated in Figure 7.2.

Figure 7.2 shows the conditional population distributions of Y for several values of

X, p(Y |X). The conditional means of Y given X are denoted µ.

µi ⌘ E(Yi) ⌘ E(Y |Xi) = ↵+ �Xi (7.3)

where

• ↵ = E(Y ) ⌘ µ when X = 0

• Each 1 unit increase in X increases E(Y ) by �

However, in the stochastic linear model variation in Y is caused by more than X, it is

also caused by the error term ✏. The error term is expressed as:
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Figure 7.2: Stochastic Linear Model

✏i = Yi � E(Yi)

= Yi � (↵+ �Xi)

= Yi � ↵� �Xi

Therefore;

Yi = E(Yi) + ✏

= ↵+ �Xi + ✏i

We make several important assumptions about the error term that are discussed in the next

section.
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Assumptions about the Error Term

There are three key assumptions about the error term; a) errors have identical distributions,

b) errors are independent, c) errors are normally distributed.1

Error Assumptions

1. Errors have identical distributions

E(✏2i ) = �2
✏

2. Errors are independent of X and other ✏i

E(✏i) ⌘ E(✏|xi) = 0

and

E(✏i) 6= E(✏j) for i 6= j

3. Errors are normally distributed

✏i ⇠ N(0,�2
✏ )

Taken together these assumption mean that the error term has a normal, independent,

and identical distribution (normal i.i.d.). However, we don’t know if, in any particular case,

these assumptions are met. Therefore we must estimate a linear model.

7.2 Estimating Linear Models

With stochastic models we don’t know if the error assumptions are met, nor do we know

the values of ↵ and � therefore we must estimate them. The stochastic model as shown in

Equation 7.4 is estimated as:

Yi = A+BXi + Ei (7.4)

where Ei is the residual term, or the estimated error term. Since no line can perfectly

pass through all the data points, we introduce a residual, E, into the regression equation.

1Actually, we assume only that the means of the errors drawn from repeated samples of observations
will be normally distributed – but we will deal with that wrinkle later on.
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Note that the predicted value of Y is denoted Ŷ ; y-hat.

Yi = A+BXi + Ei

= Ŷi + Ei

Ei = Yi � Ŷi

= Yi �A�BXi

7.2.1 Residuals

Residuals measure prediction errors, of how far observation Yi is from predicted Ŷi. This is

shown in Figure 7.3.

The residual term contains the accumulation (sum) of errors that can result from mea-

surement issues, modeling problems, and irreducible randomness. Ideally, the residual term

contains lots of small and independent influences that result in an overall random quality

of the distribution of the errors. When that distribution is not random – that is, when the

distribution of error has some systematic quality – the estimates of A and B may be biased.

Thus, when we evaluate our models we will focus on the shape of the distribution of our
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errors.

What’s in E?

Measurement Error

• Imperfect operationalizations

• Imperfect measure application

Modeling Error

• Modeling error/mis-specification

• Missing model explanation

• Incorrect assumptions about associations

• Incorrect assumptions about distributions

Stochastic ”noise”

• Unpredictable variability in the dependent variable

The goal of regression analysis is to minimize the error associated with the model esti-

mates. As noted, the residual term is the estimated error, or overall “miss” (e.g., Yi � Ŷi).

Specifically the goal is to minimize the sum of the squared errors,
P

E2. Therefore, we

need to find the values of A and B that minimize
P

E2.

Note that for a fixed set of data {A,B}, each possible choice of values for A and B

corresponds to a specific residual sum of squares,
P

E2. This can be expressed by the

following functional form:

S(A,B) =
nX

i=1

E2
i =

X
(Yi � Ŷi)

2 =
X

(Yi �A�BXi)
2 (7.5)

Minimizing this function requires specifying estimators for A and B such that S(A,B) =
P

E2 is at the lowest possible value. Finding this minimum value requires the use of
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calculus, which will be discussed in the next chapter. Before that we walk through a quick

example of simple regression.

7.3 An Example of Simple Regression

The following example uses a measure of peoples’ political ideology to predict their percep-

tions of the risks posed by global climate change. OLS regression can be done using the lm

function in R. For this example, we are using the tbur data set.

ols1 <- lm(ds$glbcc_risk ~ ds$ideol)

summary(ols1)

##

## Call:

## lm(formula = ds$glbcc_risk ~ ds$ideol)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.726 -1.633 0.274 1.459 6.506

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.81866 0.14189 76.25 <2e-16 ***

## ds$ideol -1.04635 0.02856 -36.63 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.479 on 2511 degrees of freedom

## (34 observations deleted due to missingness)

## Multiple R-squared: 0.3483,Adjusted R-squared: 0.348

## F-statistic: 1342 on 1 and 2511 DF, p-value: < 2.2e-16

The output in R provides a quite a lot of information about the relationship between the

measures of ideology and perceived risks of climate change. It provides an overview of the

distribution of the residuals; the estimated coe�cients for A and B; the results of hypothesis

tests; and overall measures of model “fit” – all of which we will discuss in detail in later

chapters. But, for now, note that the estimated B for ideology is negative, which indicates

that as the value for ideology increases—in our data this means more conservative—the

perceived risk of climate change decreases. Specifically, for each one unit increase in the
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Figure 7.4: Residuals of Simple Regression Example

ideology scale, perceived climate change risk decreases by -1.0463463.

We can also examine the distribution of the residuals, using a histogram and a density

curve. This is shown in Figure 7.4. Note that we will discuss residual diagnostics in detail

in future chapters.

hist(ols1$residual)

library(sm)

sm.density(ols1$residual, model = "Normal")

For purposes of this Chapter, be sure that you can run the basic bivariate OLS regression

model in R. If you can – congratulations! If not, try again. And again. And again...



8
Linear Estimation and Minimizing Error

As noted in the last chapter, the objective when estimating a linear model is to minimize

the aggregate of the squared error. Specifically, when estimating a linear model, Y =

A+BX+E, we seek to find the values of A and B that minimize the
P

E2. To accomplish

this, we use calculus.

8.1 Minimizing Error using Derivatives

In calculus, the derivative is a measure the slope of any function of x, or f(x), at each given

value of x. For the function f(x), the derivative is denoted as f 0(x) or, in spoken form, is

referred to as “f prime x”. Because the formula for
P

E2 is known, and can be treated as

a function, the derivative of that function permits the calculation of the change in the sum

of the squared error over each possible value of A and B. For that reason we need to find

100
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the derivative for
P

E2 with respect to changes in A and B. That, in turn, will permit us

to “derive” the values of A and B that result in the lowest possible
P

E2.

Look – we understand that all this sounds complicated. But it’s not all that complicated.

In this chapter we will walk through all the steps so you’ll see that its really rather simple

and, well, elegant. You will see that di↵erential calculus (the kind of calculus that is

concerned with rates of change) is built on a set of clearly defined rules for finding the

derivative for any function f(x). It’s like solving a puzzle. The next section outlines these

rules, so we can start solving puzzles.

8.1.1 Rules of Derivation

The following sections provide examples of the application of each rule.

Rule 1: the Power Rule

If f(x) = xn then f 0(x) = n ⇤ xn�1

Example:

f(x) = x6

f 0(x) = 6 ⇤ x6�1

= 6x5

A second example can be plotted in R. The function is f(x) = x2 and therefore, using

the power rule, the derivative is: f 0(x) = 2x.

x <- c(-5:5)

x

y <- x^2

y
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Derivative Rules

1. Power Rule

If f(x) = xn then f 0(x) = n ⇤ xn�1

2. Constant Rule

If f(x) = c then f 0(x) = 0

3. A Constant Times a Function

If f(x) = c ⇤ u(x) then f 0(x) = c ⇤ u0(x)

4. Di↵erentiating a Sum

If f(x) = u(x) + v(x) then f 0(x) = u0(x) + v0(x)

5. Product Rule

If f(x) = u(x) ⇤ v(x) then f 0(x) = u0(x) ⇤ v(x) + u(x) ⇤ v0(x)

6. Quotient Rule

If f(x) = N(x)
D(x) then f 0(x) = D(x)⇤N 0(x)�D0(x)⇤N(x)

[D(x)]2

7. Chain Rule

If f(x) = [u(x)]n then f 0(x) = n ⇤ [u(x)]n�1 ⇤ u0(x)
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Figure 8.1: Calculating Slopes for (x, y) Pairs

Rule 2: the Constant Rule

If f(x) = c then f 0(x) = 0

Example:

f(x) = 346

f 0(x) = 0

= 10x

Rule 3: a Constant Times a Function

If f(x) = c ⇤ u(x) then f 0(x) = c ⇤ u0(x)
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Example:

f(x) = 5x2

f 0(x) = 5 ⇤ 2x2�1

= 10x

Rule 4: Di↵erentiating a Sum

If f(x) = u(x) + v(x) then f 0(x) = u0(x) + v0(x)

Example:

f(x) = 4x2 + 32x

f 0(x) = (4x2)0 + (32x)0

= 4 ⇤ 2x2�1 + 32

= 8x+ 32

Rule 5: the Product Rule

If f(x) = u(x) ⇤ v(x) then f 0(x) = u0(x) ⇤ v(x) + u(x) ⇤ v0(x)

Example:

f(x) = x3(x� 5)

f 0(x) = (x3)0(x� 5) + (x3)(x� 5)0

= 3x2(x� 5) + (x3) ⇤ 1

= 3x3 � 15x2 + x3

= 4x3 � 15x2

In a second example, the product rule is applied the function y = f(x) = x2 � 6x + 5.

The derivative of this function is f 0(x) = 2x� 6. This function can be plotted in R.
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Figure 8.2: Plot of Function y = f(x) = x2 � 6x+ 5

x <- c(-1:7)

x

y <- x^2 - 6 * x + 5

y

plot(x, y, type = "o", pch = 19)

abline(h = 0, v = 0)

We can also use the derivative and R to calculate the slope for each value of X.

b <- 2 * x - 6

b

## [1] -8 -6 -4 -2 0 2 4 6 8

The values for X, which as shown in Figure 8.2 range from -8 to +8, return derivatives

(slopes at a point) ranging from -25 to +25.

Rule 6: the Quotient Rule

If f(x) = N(x)
D(x) then f 0(x) = D(x)⇤N 0(x)�D0(x)⇤N(x)

[D(x)]2
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Example:

f(x) =
x

x2 + 5

f 0(x) =
(x2 + 5)(x)0 � (x2 + 5)0(x)

(x2 + 5)2

=
(x2 + 5)� (2x)(x)

(x2 + 5)2

=
�x2 + 5

(x2 + 5)2

Rule 7: the Chain Rule

If f(x) = [u(x)]n then f 0(x) = n ⇤ [u(x)]n�1 ⇤ u0(x)

Example:

f(x) = (7x2 � 2x+ 13)5

f 0(x) = 5(7x2 � 2x+ 13)4 ⇤ (7x2 � 2x+ 13)0

= 5(7x2 � 2x+ 13)4 ⇤ (14x� 2)

8.1.2 Critical Points

Our goal is to use derivatives to find the values of A and B that minimize the sum of the

squared error. To do this we need to find the minima of a function. The minima is the

smallest value that a function takes, whereas the maxima is the largest value. To find the

minima and maxima, the critical points are key. The critical point is where the derivative

of the function is equal to 0, f 0(x) = 0. Note, that this is equivalent to the slope being

equal to 0.

Once a critical point is identified, the next step is to determine whether that point is

a minima or a maxima. The most straight forward way to do this is to identify the x,y

coordinates and plot. This can be done in R, as we will show using the function y = f(x) =

(x2 � 4x+ 5). The plot is shown in Figure 8.3.
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Example: Finding the Critical Points

To find the critical point for the function y = f(x) = (x2 � 4x+ 5);

• First find the derivative; f 0(x) = 2x� 4

• Set the derivative equal to 0; f 0(x) = 2x� 4 = 0

• Solve for x; x = 2

• Substitute 2 for x into the function and solve for y

y = f(2) = 22 � 4(2) + 5 = 1

• Thus, the critical point (there’s only one in this case) of the function is (2, 1)

x <- c(-5:5)

x

y <- x^2 - 4 * x + 5

y
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Figure 8.3: Identification of Critical Points

As can be seen, the critical point (2, 1) is a minima.
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8.1.3 Partial Derivation

When an equation includes two variables, one can take a partial derivative with respect to

only one variable while the other variable is simply treated as a constant. This is particularly

useful in our case, because the function
P

E2 has two variables – A and B.

Let’s take an example. For the function y = f(x, z) = x3 + 4xz � 5z2, we first take the

derivative of x holding z constant.

@y

@x
=

@f(x, z)

@x

= 3x2 + 4z

Next we take the derivative of z holding x constant.

@y

@z
=

@f(x, z)

@z

= 4x� 10z

8.2 Deriving OLS Estimators

Now that we have developed some of the rules for di↵erential calculus, we can see how OLS

finds values of A and B that minimizes the sum of the squared error. In formal terms, let’s

define the set, S(A,B) as a pair of regression estimators that jointly determine the residual

sum of squares given that: Yi = Ŷi + Ei = A+BXi + Ei. This function can be expressed:

S(A,B) =
nX

i=1

E2
i =

X
(Yi � Ŷi)

2 =
X

(Yi �A�BXi)
2

First we will derive A.

8.2.1 OLS Derivation of A

Take the partial derivatives of S(A,B) with-respect-to (w.r.t) A in order to determine the

formulation of A that minimizes S(A,B). Using the chain rule,



109 CHAPTER 8. LINEAR ESTIMATION AND MINIMIZING ERROR

@S(A,B)

@A
=

X
2(Yi �A�BXi)

2�1 ⇤ (Yi �A�BXi)
0

=
X

2(Yi �A�BXi)
1 ⇤ (�1)

= �2
X

(Yi �A�BXi)

= �2
X

Yi + 2nA+ 2B
X

Xi

Next set the derivative equal to 0.

@S(A,B)

@A
= �2

X
Yi + 2nA+ 2B

X
Xi = 0

Then, shift non-A terms to the other side of the equal sign:

2nA = 2
X

Yi � 2B
X

Xi

Finally, divide through by 2n:

2nA

2n
=

2
P

Yi � 2B
P

Xi

2n

A =

P
Yi
n

�B ⇤
P

Xi

n

= Ȳ �BX̄

) A = Ȳ �BX̄ (8.1)

8.2.2 OLS Derivation of B

Having found A, the next step is to derive B. This time we will take the partial derivative

w.r.t B. As you will see, the steps are just a little more involved for B than they were for

A.
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@S(A,B)

@B
=

X
2(Yi �A�BXi)

2�1 ⇤ (Yi �A�BXi)
0

=
X

2(Yi �A�BXi)
1 ⇤ (�Xi)

= 2
X

(�XiYi +AXi +BX2
i )

= �2
X

XiYi + 2A
X

Xi + 2B
X

X2
i

Since we know that A = Ȳ �BX̄, we can substitute Ȳ �BX̄ for A.

@S(A,B)

@B
= �2

X
XiYi + 2(Ȳ �BX̄)

X
Xi + 2B

X
X2

i

= �2
X

XiYi + 2Ȳ
X

Xi � 2BX̄
X

Xi + 2B
X

X2
i

Next, we can substitute
P

Yi
n for Ȳ and

P
Xi
n for X̄ and set it equal to 0.

@S(A,B)

@B
= �2

X
XiYi +

2
P

Yi
P

Xi

n
� 2B

P
Xi

P
Xi

n
+ 2B

X
X2

i = 0

Then, multiply through by n
2 and put all the B terms on the same side.

nB
X

X2
i �B(

X
Xi)

2 = n
X

XiYi �
X

Xi

X
Yi

B(n
X

X2
i � (

X
Xi)

2) = n
X

XiYi �
X

Xi

X
Yi

) B =
n
P

XiYi �
P

Xi
P

Yi
n
P

X2
i � (

P
Xi)2

The B term can be rearranged such that:

B =
⌃(Xi � X̄)(Yi � Ȳ )

⌃(Xi � X̄)2
(8.2)

Now remember what we are doing here: We used the partial derivatives for
P

E2 with

respect to A and B to find the values for A and B that will give us the smallest value
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for
P

E2. Put di↵erently, the formulas for B and A allow the calculation of the error-

minimizing slope (change in Y given a one unit change in X) and intercept (value for Y

when X is zero) for any data set representing a bivariate, linear relationship. No other

formulas will give us a line, using the same data, that will result in as small a squared-error.

Therefore, OLS is referred to as the Best Linear Unbiased Estimator (BLUE).

8.2.3 Interpreting B and A

In a regression equation Y = A+BX, where A is shown in Equation 8.1 and B is shown in

Equation 8.2. Equation 8.2 shows that for each 1-unit increase in X you get B units change

in Y . Equation 8.1 shows that when X is 0, Y is equal to A. Note that in a regression

model with no independent variables, A is simply the expected value (i.e., mean) of Y .

The intuition behind these formulas can be shown by using R to calculate “by hand” the

slope (B) and intercept (A) coe�cients. A theoretical simple regression model is structured

as follows:

Yi = ↵+ �Xi + ✏i

• ↵ and � are constant terms

• ↵ is the intercept

• � is the slope

• Xi is a predictor of Yi

• ✏ is the error term

The model is to be estimated is expressed as Y = A+BX + E.

As noted, the goal is to calculate the intercept coe�cient:

A = Ȳ �BX̄

and the slope coe�cient:

B =
⌃(Xi � X̄)(Yi � Ȳ )

⌃(Xi � X̄)2
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Using R, this can be accomplished in a few steps. First create a vector of values for x

and y (note that we just chose these values arbitrarily for purposes of this example).

x <- c(4, 2, 4, 3, 5, 7, 4, 9)

x

## [1] 4 2 4 3 5 7 4 9

y <- c(2, 1, 5, 3, 6, 4, 2, 7)

y

## [1] 2 1 5 3 6 4 2 7

Then, create objects for X̄ and Ȳ

xbar <- mean(x)

xbar

## [1] 4.75

ybar <- mean(y)

ybar

## [1] 3.75

Next, create objects for (X � X̄) and (Y � Ȳ ), the deviations of X and Y around their

means:

x.m.xbar <- x - xbar

x.m.xbar

## [1] -0.75 -2.75 -0.75 -1.75 0.25 2.25 -0.75 4.25

y.m.ybar <- y - ybar

y.m.ybar

## [1] -1.75 -2.75 1.25 -0.75 2.25 0.25 -1.75 3.25

Then, calculate B

B =
⌃(Xi � X̄)(Yi � Ȳ )

⌃(Xi � X̄)2
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Figure 8.4: Simple Regression of x and y

B <- sum((x.m.xbar) * (y.m.ybar))/sum((x.m.xbar)^2)

B

## [1] 0.7183099

Finally, calculate A

A = Ȳ �BX̄

A <- ybar - B * xbar

A

## [1] 0.3380282

To see the relationship, we can produce a scatterplot of x and y and then add our regression

line, as shown in Figure 8.4. So, for each unit increase in x, y increases by 0.7183099 and

when x is 0, y is equal to 0.3380282.

plot(x, y)

lines(x, A + B * x)

See figure 8.4.
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8.3 Summary

Whoa! Think of what you’ve accomplished here: You learned enough calculus to find a

minima for an equation with two variables, then applied that to the equation for the
P

E2.

You derived the error minimizing values for A and B. Then you used those formulae in R

to calculate “by hand” the OLS regression for a small dataset.

Congratulate yourself – you deserve it!



9
Bi-Variate Hypothesis Testing and Model Fit

The previous chapters discussed the logic of OLS regression and how to derive OLS estima-

tors. Now that simple regression is no longer a mystery, we will shift the focus to bi-variate

hypothesis testing and model fit. Note that the examples in this chapter use the tbur data

set. We recommend that you try the analyses in the chapter as you read.

9.1 Hypothesis Tests for Regression Coe�cients

Hypothesis testing is the key to theory building. This chapter is focused on empirical

hypothesis testing using OLS regression, using examples drawn from the accompanying

dataset (tbur.data). Here we will use the responses to the political ideology question (rang-

ing from 1=strong liberal, to 7=strong conservative), as well as responses to a question

concerning the survey respondents’ level of risk that global warming poses for people and

115
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the environment.1

Using the data from these questions, we posit the following hypothesis:

H1: On average, as respondents, become more politically conservative, they will

be less likely to express increased risk associated with global warming.

The null hypothesis, H0, is � = 0, positing that a respondents ideology has no relation-

ship with their views about the risks of global warming for people and the environment.

Our working hypothesis, H1, is � < 0. We expect � to be less than zero because we ex-

pect a negative slope between our measures of ideology and levels of risk associated with

global warming, given that a larger numeric value for ideology indicates a more conserva-

tive respondent. Note that this is a directional hypothesis since we are positing a negative

relationship. Typically, a directional hypothesis implies a one-tailed test where the critical

value is 0.05 on one side of the distribution. A non-directional hypothesis, � 6= 0 does not

imply a particular direction, it only implies that there is a relationship. This requires a

two-tailed test where the critical value is 0.025 on both sides of the distribution.

To test this hypothesis, we run the following code in R.

Before we begin, for this chapter, we need to make a special data set that just contains

the variables glbccrisk and ideol with missing values removed.

# Subsetting a data set with only variables glbcc_risk and

# ideol

ds.temp <- subset(ds, select = c(glbcc_risk, ideol))

# run the na.omit function to removed the value

ds.omit <- na.omit(ds.temp)

ols1 <- lm(glbcc_risk ~ ideol, data = ds)

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ ideol, data = ds)

##

## Residuals:

1The question wording was as follows: “On a scale from zero to ten, where zero means no risk and ten
means extreme risk, how much risk do you think global warming poses for people and the environment?”
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## Min 1Q Median 3Q Max

## -8.726 -1.633 0.274 1.459 6.506

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.81866 0.14189 76.25 <2e-16 ***

## ideol -1.04635 0.02856 -36.63 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.479 on 2511 degrees of freedom

## (34 observations deleted due to missingness)

## Multiple R-squared: 0.3483,Adjusted R-squared: 0.348

## F-statistic: 1342 on 1 and 2511 DF, p-value: < 2.2e-16

To know whether to accept of reject the null hypothesis, we need to first understand

the standard error associated with the model and our coe�cients. We start, therefore, with

consideration of the residual standard error of the regression model.

9.1.1 Residual Standard Error

The residual standard error (or standard error of the regression), measures spread of our

observations around the regression line. As will be discussed below, the residual standard

error is used to calculate the standard errors of the regression coe�cients, A and B.

The formula for the residual standard error is as follows:

SE =

s
⌃E2

i

n� 2
(9.1)

To calculate this in R, based on the model we just ran, we create an object called Se

and use the sqrt and sum commands.

Se <- sqrt(sum(ols1$residuals^2)/(length(ds.omit$glbcc_risk) -

2))

Se

## [1] 2.479022

Note that this result matches the result provided by the summary function in R, as shown

above.
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For our model, the results indicate that: Yi = 10.8186624 -1.0463463Xi + Ei. Another

sample of 2513 observations would almost certainly lead to di↵erent estimates for A and B.

If we drew many such samples, we’d get the sample distribution of the estimates. Because

we typically cannot draw many samples, we need to estimate the sample distribution, based

on our sample size and variance. To do that, we calculate the standard error of the slope

and intercept coe�cients, SE(B) and SE(A). These standard errors are our estimates of

how much variation we would expect in the estimates of B and A across di↵erent samples.

We use them to evaluate whether B and A are larger that would be expected to occur by

chance, if the real values of B and/or A are zero (the null hypotheses).

The standard error for B, SE(B) is:

SE(B) =
SEp
TSSX

(9.2)

where SE is the residual standard error of the regression, (as whown earlier in equation 9.1).

TSSX is the total sum of squares for X, that is the total sum of the squared deviations

(residuals) of X from its mean X̄;
P

(Xi � X̄)2. Note that the greater the deviation of X

around its mean as a proportion of the standard error of the model, the smaller the SE(B).

The smaller SE(B) is, the less variation we would expect in repeated estimates of B across

multiple samples.

The standard error for A, SE(A), is defined as:

SE(A) = SE ⇤

s
1

n
+

X̄2

TSSX
(9.3)

Again, the SE is the residual standard error, as shown in equation 9.1.

For A, the larger the data set, and the larger the deviation of X around its mean, the more

precise our estimate of A (i.e., the smaller SE(A) will be).

We can calculate the SE of A and B in R in a few steps. First, we create an object TSSx

that is the total sum of squares for the X variable.

TSSx <- sum((ds.omit$ideol - mean(ds.omit$ideol, na.rm = TRUE))^2)

TSSx
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## [1] 7532.946

Then, we create an object called SEa.

SEa <- Se * sqrt((1/length(ds.omit$glbcc_risk)) + (mean(ds.omit$ideol,

na.rm = T)^2/TSSx))

SEa

## [1] 0.1418895

Finally, we create SEb.

SEb <- Se/(sqrt(TSSx))

SEb

## [1] 0.02856262

Using the standard errors, we can determine how likely it is that our estimate of �

di↵ers from 0; that is how many standard errors our estimate is away from 0. To determine

this we use the t value. The t score is derived by dividing the regression coe�cient by its

standard error. For our model, the t value for � is as follows:

t <- ols1$coef[2]/SEb

t

## ideol

## -36.63342

The t value for our B is -36.6334214, meaning that B is -36.6334214 standard errors

away from zero. We can then ask: What is the probability, p value, of obtaining this result

if � = 0? According to the results shown earlier, p = 2e� 16. That is remarkably close to

zero. This result indicates that we can reject the null hypothesis that � = 0.

In addition, we can calculate the confidence interval (CI) for our estimate of B. This

means that in 95 out of 100 repeated applications, the confidence interval will contain �.

In the following example, we calculate a 95% CI. The CI is calculated as follows:

B ± 1.96(SE(B)) (9.4)
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We can easily calculate this in R. First, we calculate the upper limit then the lower limit

and then we use the confint function to check.

Bhi <- ols1$coef[2] - 1.96 * SEb

Bhi

## ideol

## -1.102329

Blow <- ols1$coef[2] + 1.96 * SEb

Blow

## ideol

## -0.9903636

confint(ols1)

## 2.5 % 97.5 %

## (Intercept) 10.540430 11.0968947

## ideol -1.102355 -0.9903377

As shown, the upper limit of our estimated B is -0.9903636, which is far below 0,

providing further support for rejecting H0.

So, using our example data, we tested the working hypothesis that political ideology

is negatively related to expressed risk of global warming to people and the environment.

Using simple OLS regression, we find support for that working hypothesis, and can reject

the null.

9.2 Measuring Goodness of Fit

Once we have constructed a regression model, it is natural to ask: how good is the model at

explaining variation in our dependent variable? We answer this question with a number of

statistics that indicate “model fit”. Basically, these statistics provide measures of the degree

to which the estimated relationships account for the variance in the dependent variable, Y .

There are several ways to examine how well the model “explains” the variance in Y .

First, we can examine the covariance of X and Y , which is a general measure of the sample

variance for X and Y . Then we can use a measure of sample correlation, which is the

standardized measure of covariation. Both of these measures provide indicators of the degree
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to which variation in X can account for variation in Y . Finally, we can examine R2, also

know as the coe�cient of determination, which is the standard measure of the goodness of

fit for OLS models.

9.2.1 Sample Covariance and Correlations

The sample covariance for a simple regression model is defined as:

SXY =
⌃(Xi � X̄)(Yi � Ȳ )

n� 1
(9.5)

Intuitively, this measure tells you, on average, whether a higher value of X (relative to

its mean) is associated with a higher or lower value of Y . Is the association negative or

positive? Covariance can be obtained quite simply in R by using the the cov function.

Sxy <- cov(ds.omit$ideol, ds.omit$glbcc_risk)

Sxy

## [1] -3.137767

The problem with covariance is that its magnitude will be entirely dependent on the

scales used to measure X and Y . That is, it is non-standard, and its meaning will vary

depending on what it is that is being measured. In order to compare sample covariation

across di↵erent samples and di↵erent measures, we use the sample correlation.

The sample correlation, r, is found by dividing SXY by the product of the standard

deviations of X, SX , and Y , SY .

r =
SXY

SXSY
=

⌃(Xi � X̄)(Yi � Ȳ )p
⌃(Xi � X̄)2⌃(Yi � Ȳ )2

(9.6)

To calculate this in R, we first make an object for SX and SY using the sd function.

Sx <- sd(ds.omit$ideol)

Sx

## [1] 1.7317

Sy <- sd(ds.omit$glbcc_risk)

Sy
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## [1] 3.070227

Then to find r:

r <- Sxy/(Sx * Sy)

r

## [1] -0.5901706

To check this we can use the cor function in R.

rbyR <- cor(ds.omit$ideol, ds.omit$glbcc_risk)

rbyR

## [1] -0.5901706

So what does the correlation coe�cient mean? The values range from +1 to -1, and a

value of +1 means there is a perfect positive relationship between X and Y . Each increment

of increase in X is matched by a constant increase in Y – with all observations lining up

neatly on a positive slope. A correlation coe�cient of -1, a perfect negative relationship,

would indicate that each increment of increase in X corresponds to a constant decrease

in Y – or a negatively sloped line. A correlation coe�cient of zero would describe no

relationship between X and Y .

9.2.2 Coe�cient of Determination: R2

The most often used measure of goodness of fit for OLS models is R2. R2 is derived from

three components; the total sum of squares, the explained sum of squares, and the residual

sum of squares. R2 is the ratio of ESS (explained sum of squares) to TSS (total sum of

squares).

The components of R2 are illustrated in Figure 9.1. As shown, for each observation

Yi, variation around the mean can be decomposed into that which is “explained” by the

regression and that which is not. In Figure 9.1, the deviation between the mean of Y

and the predicted value of Y , Ŷ , is the proportion of the variation of Yi that can be

explained (or predicted) by the regression. That is shown as a blue line. The deviation of
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Components of R2

• Total sum of squares (TSS): The sum of the squared variance of Y

P
E02

i =
P

(Y � Ȳ )2

• Residual sum of squares(RSS): The variance of Y not accounted for by the model

P
E2

i =
P

(Y � Ŷ )2 =
P

(Yi �A�BXi)2

• Explained sum of squares (ESS): The variance of Y accounted for in the model

It is the di↵erence between the TSS and the RSS.

ESS = TSS �RSS

• R2: The proportion of the total variance of Y explained by the model

R2 =
ESS

TSS

=
TSS �RSS

TSS

= 1� RSS

TSS
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Figure 9.1: The Components of R2

the observed value of Yi from the predicted value Ŷ (aka the residual, as discussed in the

previous chapter) is the unexplained deviation, shown in red. Together, the explained and

unexplained variation make up the total variation of Yi around the mean Ŷ .

To calculate R2 “by hand” in R, we must first determine the total sum of squares, which

is the sum of the squared di↵erences of the observed values of Y from the mean of Y ,

⌃(Yi � Ȳ )2. Using R, we can create an object called TSS.

TSS <- sum((ds.omit$glbcc_risk - mean(ds.omit$glbcc_risk))^2)

TSS

## [1] 23678.85

Remember that R2 is the ratio of the explained sum of squares to the total sum of

squares (ESS/TSS ). Therefore to calculate R2 we need to create an object called RSS, the

squared sum of our model residuals.

RSS <- sum(ols1$residuals^2)

RSS

## [1] 15431.48
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Next, we create and object called ESS, which is equal to TSS-RSS.

ESS <- TSS - RSS

ESS

## [1] 8247.376

Finally, we calculate the R2.

R2 <- ESS/TSS

R2

## [1] 0.3483013

Note–happily–that the R2, calculated by “by hand” in R matches the results provided

by the summary command.

The values for R2 can range from zero to 1. In the simple regression case, a value of

1 indicates that the modeled coe�cient (B) ”accounts for” all of the variation in Y . Put

di↵erently, all of the squared deviations in Yi around the mean (Ŷ ) are in ESS, with none in

the residual (RSS).2 A value of zero would indicate that all of the deviations in Yi around

the mean are in RSS – all residual or “error”. Our example shows that the variation in

political ideology (our X) accounts for roughly 34.8 percent of the variation in our measure

of perceived risk of global warming (Y ).

E↵ects Plot

The effects package provides a mechanism for viewing the e↵ect of ideology on the

dependent variable of perceived risk of global warming. Graphically (Figure 9.2), we see

as an individual becomes more conservative (ideology = 7), their perception of the risk of

global warming decreases.

## Effect plot

library(effects)

plot(effect("ideol", ols1))

Cleaning up the R Environment

2Note that with a bivariate model, R2 is equal to the square of the correlation coe�cient.
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Figure 9.2: E↵ects Plot of Ideology

If you recall, at the beginning of the chapter, we created several temporary data sets.

We should take the time to clear up our workspace for the next chapter.

# we can clean up from the temporary data sets for this

# chapter.

rm(ds.omit) #remove the omit data set

rm(ds.temp) #remove the temp data set

9.3 Summary

This chapter has focused on two key aspects of simple regression models – hypothesis testing

and measures of the goodness of model fit. With respect to the former, we focused on the

residual standard error, and its role in determining the probability that our model estimates,

B and A, are just random departures from a population in which � and ↵ are zero. We

showed, using R, how to calculate the residual standard errors for A and B and, using them,

to calculate the t-statistics and associated probabilities for hypothesis testing. For model

fit, we focused on model covariation and correlation, and finished up with a discussion of

the coe�cient of determination – R2. So now you are in a position to use simple regression,
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and to wage unremitting geek-war on those whose models are endowed with lesser R2s.



10
OLS Assumptions and Simple Regression

Diagnostics

Now that you know how to run and interpret simple regression results, we return to the

matter of the underlying assumptions of OLS models, and the steps we can take to deter-

mine whether those assumptions have been violated. We begin with a quick review of the

conceptual use of residuals, then turn to a set of “visual diagnostics” that can help you

identify possible problems in your model. We conclude with a set of steps you can take

to address model problems, should they be encountered. As with the previous chapter, we

will use examples drawn from the tbur data. As always, we recommend that you try the

analyses in the chapter as you read.
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10.1 A Recap of Modeling Assumptions

Recall from Chapter 4 that we identified three key assumptions about the error term that

are necessary for OLS to provide unbiased, e�cient linear estimators; a) errors have identical

distributions, b) errors are independent, c) errors are normally distributed.1

Error Assumptions

1. Errors have identical distributions

E(✏2i ) = �2
✏

2. Errors are independent of X and other ✏i

E(✏i) ⌘ E(✏|xi) = 0

and

E(✏i) 6= E(✏j) for i 6= j

3. Errors are normally distributed

✏i ⇠ N(0,�2
✏ )

Taken together these assumption mean that the error term has a normal, independent,

and identical distribution (normal i.i.d.). Figure 10.1 shows what these assumptions would

imply for the distribution of residuals around the predicted values of Y given X.

How can we determine whether our residuals approximate the expected pattern? The

most straight-forward approach is to visually examine the distribution of the residuals over

the range of the predicted values for Y . If all is well, there should be no obvious pattern to

the residuals – they should appear as a “sneeze plot” (i.e., it looks like you sneezed on the

plot. How gross!) as shown in Figure 10.2.

Generally, there is no pattern in such a sneeze plot of residuals. One of the di�culties

we have, as human beings, is that we tend to look at randomness and perceive patterns.

1Again, we assume only that the means of the errors drawn from repeated samples of observations will
be normally distributed – but we will often find that errors in a particular sample deviate significantly from
a normal distribution.
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Figure 10.2: Ideal Pattern of Residuals from a Simple OLS Model
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Our brains are wired to see patterns, even where their are none. Moreover, with random

distributions there will in some samples be clumps and gaps that do appear to depict some

kind of order when in fact there is none. There is the danger, then, of over-interpreting the

pattern of residuals to see problems that aren’t there. The key is to know what kinds of

patterns to look for, so when you do observe one you will know it.

10.2 When Things Go Bad with Residuals

Residual analysis is the process of looking for signature patterns in the residuals that

are indicative of failure in the underlying assumptions of OLS regression. Di↵erent kinds of

problems lead to di↵erent patterns in the residuals.

10.2.1 “Outlier” Data

Sometimes our data include unusual cases that behave di↵erently from most of our obser-

vations. This may happen for a number of reasons. The most typical is that the data have

been mis-coded, with some subgroup of the data having numerical values that lead to large

residuals. Cases like this can also arise when a subgroup of the cases di↵er from the others

in how X influences Y , and that di↵erence has not been captured in the model. This is a

problem referred to as the omission of important independent variables.2 Figure 10.3 shows

a stylized example, with a cluster of residuals falling at considerable distance from the rest.

This is a case of influential outliers. The e↵ect of such outliers can be significant, as

the OLS estimates of A and B seek to minimize overall squared error. In the case of

Figure 10.3, the e↵ect would be to shift the estimate of B to accommodate the unusual

observations, as illustrated in Figure 10.4. One possible response would be to omit the

unusual observations, as shown in Figure 10.4. Another would be to consider, theoretically

and empirically, why these observations are unusual. Are they, perhaps, miscoded? Or are

2Political scientists who study US electoral politics have had to account for unusual observations in the
Southern states. Failure in the model to account for these di↵erences would lead to prediction error and
ugly patterns in the residuals. Sadly, Professor Gaddie notes that scholars have not been su�ciently careful
– or perhaps well-trained? – to do this right. Professor Gaddie notes: “... instead of working to achieve
better model specification through the application of theory and careful thought, in the 1960s and 1970s
electoral scholars instead just threw out the South and all senate races, creating the perception that the
United States had 39 states and a unicameral legislature.”
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Figure 10.3: Unusual Data Patterns in Residuals

they codes representing missing values (e.g., “-99”)?

If they are not mis-codes, perhaps these outlier observations manifest a di↵erent kind

of relationship between X and Y , which might in turn require a revised theory and model.

We will address some modeling options to address this possibility when we explore multiple

regression, in Part III of this book.

In sum, outlier analysis looks at residuals for patterns in which some observations deviate

widely from others. If that deviation is influential, changing estimates of A and B as shown

in Figure 10.4, then you must examine the observations to determine whether they are

mis-coded. If not, you can evaluate whether the cases are theoretically distinct, such that

the influence of X on Y is likely to be di↵erent than for other cases. If you conclude that

this is so, you will need to respecify your model to account for these di↵erences. We will

discuss some options for doing that later in this chapter, and again in our discussion of

multiple regression.

10.2.2 Non-Constant Variance

A second thing to look for in visual diagnostics of residuals is non-constant variance, or

heteroscedasticity. In this case, the variation in the residuals over the range of pre-

dicted values for Y should be roughly even. A problem occurs when that variation changes
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Figure 10.4: Implications of Unusual Data Patterns in Residuals

substantially as the predicted value of Y changes, as is illustrated in Figure 10.5.

As Figure 10.5 shows, the width of the spread of the residuals grows as the predicted

value of Y increases, making a fan-shaped pattern. Equally concerning would be a case of

a “reverse fan”, or a pattern with a bulge in the middle and very “tight” distributions of

residuals at either extreme. These would all be cases in which the assumption of constant-

variance in the residuals (or “homoscedasticity”) fails, and are referred to as instances of

heteroscedasticity.

What are the implications of heteroscedasticity? Our hypothesis tests for the estimated

coe�cients (A and B) are based on the assumption that the standard errors of the estimates

(see the prior chapter) are normally distributed. If inspection of your residuals provides

evidence to question that assumption, then the interpretation of the t-values and p-values

may be problematic. Intuitively, in such a case the precision of our estimates of A and B

are not constant – but rather will depend on the predicted value of Y . So you might be

estimating B relatively precisely in some ranges of Y , and less precisely in others. That

means you cannot depend on the estimated t and p-values to test your hypotheses.
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Figure 10.5: Non-Constant Variance in the Residuals

10.2.3 Non-Linearity in the Parameters

One of the primary assumptions of simple OLS regression is that the estimated slope pa-

rameter (the B) will be constant, and therefore the model will be linear. Put di↵erently,

the e↵ect of any change in X on Y should be constant over the range of Y . Thus, if our

assumption is correct, the pattern of the residuals should be roughly symmetric, above and

below zero, over the range of predicted values.

If the real relationship between X and Y is not linear, however, the predicted (linear)

values for Y will systematically depart from the (curved) relationship that is represented

in the data. Figure 10.6 shows the kind of pattern we would expect in our residuals if the

observed relationship between X and Y is a strong curve, when we attempt to model it as

if it were linear.

What are the implications of non-linearity? First, because the slope is non-constant,

the estimate of B will be biased. In the illustration shown in Figure 10.6, B would under-

estimate the value of Y in both the low and high ranges of the predicted value of Y , and

overestimate it in the mid-range. In addition, the standard errors of the residuals will be

large, due to systematic over- and under-estimation of Y , making the model very ine�cient

(or imprecise).
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Predicted(Y(

E(

Figure 10.6: Non-Linearity in the Residuals

10.3 Application of Residual Diagnostics

This far we have used rather simple illustrations of residual diagnostics and the kinds of

patterns to look for. But you should be warned that, in real applications, the patterns are

rarely so clear. So we will walk through an example diagnostic session, using the the tbur

data set.

Our in-class lab example focuses on the relationship between political ideology (“ideol-

ogy” in our dataset) as a predictor of the perceived risks posed by climate change (“gccrsk”).

The model is specified in R as follows:

OLS_env <- lm(ds$glbcc_risk ~ ds$ideol)

Using the summary command in R, we can review the results.

summary(OLS_env)

##

## Call:

## lm(formula = ds$glbcc_risk ~ ds$ideol)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.726 -1.633 0.274 1.459 6.506
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.81866 0.14189 76.25 <2e-16 ***

## ds$ideol -1.04635 0.02856 -36.63 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.479 on 2511 degrees of freedom

## (34 observations deleted due to missingness)

## Multiple R-squared: 0.3483,Adjusted R-squared: 0.348

## F-statistic: 1342 on 1 and 2511 DF, p-value: < 2.2e-16

Note that, as was discussed in the prior chapter, the estimated value for B is negative

and highly statistically significant. This indicates that the more conservative the survey

respondent, the lower the perceived risks attributed to climate change. Now we will use

these model results and the associated residuals to evaluate the key assumptions of OLS,

beginning with linearity.

10.3.1 Testing for Non-Linearity

One way to test for non-linearity is to fit the model to a polynomial functional form. This

sounds impressive, but is quite easy to do and understand (really!). All you need to do

is include the square of the independent variable as a second predictor in the model. A

significant regression coe�cient on the squared variable indicates problems with linearity.

To do this, we first produce the squared variable.

# first we square the ideology variable and create a new

# variable to use in our model.

ds$ideology2 <- ds$ideol^2

summary(ds$ideology2)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

## 1.00 16.00 25.00 24.65 36.00 49.00 23

Next, we run the regression with the original independent variable and our new squared

variable. Finally, we check the regression output.
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OLS_env2 <- lm(glbcc_risk ~ ideol + ideology2, data = ds)

summary(OLS_env2)

##

## Call:

## lm(formula = glbcc_risk ~ ideol + ideology2, data = ds)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.564 -1.808 0.192 1.448 6.863

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.58238 0.28397 33.745 < 2e-16 ***

## ideol -0.34444 0.14274 -2.413 0.0159 *

## ideology2 -0.08234 0.01641 -5.018 5.58e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.467 on 2510 degrees of freedom

## (34 observations deleted due to missingness)

## Multiple R-squared: 0.3548,Adjusted R-squared: 0.3543

## F-statistic: 690.1 on 2 and 2510 DF, p-value: < 2.2e-16

A significant coe�cient on the squared ideology variable informs us that we probably

have a non-linearity problem. The significant and negative coe�cient for the square of

ideology means that the curve steepens (perceived risks fall faster) as the scale shifts further

up on the conservative side of the scale. We can supplement the polynomial regression test

by producing a residual plot with a formal Tukey test. The residual plot (car package

residualPlots function) displays the Pearson fitted values against the model’s observed

values. Ideally, the plots will produce flat red lines; curved lines represent non-linearity.

The output for the Tukey test is visible in the R workspace. The null hypothesis for the

Tukey test is a linear relationship, so a significant p-value is indicative of non-linearity. The

tukey test is reported as part of the residualPlots function in the car package.

# A significant p-value indicates non-linearity using the

# Tukey test

## Test stat Pr(>|t|)

## ds$ideol -5.018 0

## Tukey test -5.018 0
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Figure 10.7: Residual Plots Examining Model Linearity

## pdf

## 2

The curved red lines in Figure 10.7 in the residual plots and significant Tukey test indi-

cate a non-linear relationship in the model. This is a serious violation of a core assumption

of OLS regression, which means that the estimate of B is likely to be biased. Our find-

ings suggest that the relationship between ideology and perceived risks of climate change

is approximately linear from “strong liberals” to those who are “leaning Republican”. But

perceived risks seem to drop o↵ more rapidly as the scale rises toward “strong Republican.”

10.3.2 Testing for Normality in Model Residuals

Testing for normality in the model residuals will involve using many of the techniques

demonstrated in previous chapters. The first step is to graphically display the residuals in

order to see how closely the model residuals resemble a normal distribution. A formal test

for normality is also included in the demonstration.
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Figure 10.8: Histogram of Model Residuals

Start by creating a histogram of the model residuals.

hist(OLS_env$residuals)

The histogram in figure 10.8 indicates that the residuals are approximately normally

distributed, but there appears to be a negative skew. Next, we can create a smoothed

density of the model residuals compared to a theoretical normal distribution.

library(sm)

sm.density(OLS_env$residuals, model = "Normal")
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Figure 10.9: Smoothed Density Plot of Model Residuals

Figure 10.9 indicates the model residuals deviate slightly from a normal distributed

because of a slightly negative skew and a mean higher than we would expect in a normal

distribution. Our final ocular examination of the residuals will be a quartile plot (using the

qqPlot function from the car package).

library(car)

qqPlot(OLS_env$residuals)
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Figure 10.10: Quartile Plot of Model Residuals

According to Figure 10.10, it appears as if the residuals are normally distributed except

for the tails of the distribution. Taken together the graphical representations of the residuals

suggest modest non-normality. As a final step, we can conduct a formal Shapiro-Wilk test

for normality. The null hypothesis for a Shapiro-Wilk test is a normal distribution, so we

do not want to see a significant p-value.

# a significant value p-value potentially indicates the data

# is not normally distributed.

shapiro.test(OLS_env$residuals)

##

## Shapiro-Wilk normality test

##

## data: OLS_env$residuals

## W = 0.98901, p-value = 5.51e-13

The Shapiro-Wilk test confirms what we observed in the graphical displays of the model

residuals – the residuals are not normally distributed. Recall that our dependent variable

(gccrsk) appears to have a non-normal distribution. This could be the root of the non-
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Figure 10.11: Spread-Level Plot of Model Residuals

normality found in the model residuals. Given this information, steps must be taken to

assure that the model residuals meet the required OLS assumptions. One possibility would

be to transform the dependent variable (glbccrisk) in order to induce a normal distribution.

Another might be to add a polynomial term to the independent variable (ideology) as was

done above. In either case, you would need to recheck the residuals in order to see if the

model revisions adequately dealt with the problem. We suggest that you do just that!

10.3.3 Testing for Non-Constant Variance in the Residuals

Testing for non-constant variance (heteroscedasticity) in a model is fairly straightforward.

We can start by creating a spread-level plot that fits the studentized residuals against the

model’s fitted values. A line with a non-zero slope is indicative of heteroscedasticity. Figure

10.11 displays the spread-level plot from the car package.

spreadLevelPlot(OLS_env)
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The negative slope on the red line in Figure 10.11 indicates the model may contain

heteroscedasticity. We can also perform a formal test for non constant variance. The null

hypothesis is constant variance, so we do not want to see a significant p-value.

# a significant value indicates potential heteroscedasticity

# issues.

ncvTest(OLS_env)

## Non-constant Variance Score Test

## Variance formula: ~ fitted.values

## Chisquare = 68.107 Df = 1 p = 1.548597e-16

The significant p-value on the non-constant variance test informs us that there is a

problem with heteroscedasticity in the model. This is yet another violation of the core

assumptions of OLS regression, and it brings into doubt our hypothesis tests.

10.3.4 Examining Outlier Data

There are a number of ways to examine outlying observations in an OLS regression. This

section briefly illustrates a a subset of analytical tests that will provide a useful assessment of

potentially important outliers. The purpose of examining outlier data is twofold. First, we

want to make sure there are not any mis-coded or invalid data influencing our regression.

For example, an outlying observation with a value of “-99” would very likely bias our

results, and obviously needs to be corrected. Second, outlier data may indicate the need

to theoretically reconceptualize our model. Perhaps the relationship in the model is mis-

specified, with outliers at the extremes of a variable suggesting a non-linear relationship.

Or it may be that a subset of cases respond di↵erently to the independent variable, and

therefore must be treated as “special cases” in the model. Examining outliers allows us to

identify and address these potential problems.

One of the first things we can do is perform a Bonferroni Outlier Test. The Bonferroni

Outlier Tests uses a t distribution to test whether the model’s largest studentized residual

value’s outlier status is statistically di↵erent from the other observations in the model. A

significant p-value indicates an extreme outlier that warrants further examination. We use

the outlierTest function in the car package to perform a Bonferroni Outlier Test.
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# a significant p-value indicates extreme case for review

outlierTest(OLS_env)

##

## No Studentized residuals with Bonferonni p < 0.05

## Largest |rstudent|:

## rstudent unadjusted p-value Bonferonni p

## 589 -3.530306 0.00042255 NA

According to the R output, the Bonferroni p-value for the largest (absolute) residual

is not statistically significant. While this test is important for identifying a potentially

significant outlying observation, it is not a panacea for checking for patterns in outlying

data. Next we will examine the model’s df.betas in order to see which observations exert the

most influence on the model’s regression coe�cients. Dfbetas are measures of how much

the regression coe�cient changes when observation i is omitted. Larger values indicate an

observation that has considerable influence on the model.

A useful method for finding dfbeta obervations is to use the dfbetaPlots function in

the car package. We specify the option id.n=2 to show the two largest df.betas. See figure

10.12.

plotdb <- dfbetaPlots(OLS_env, id.n = 3)
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Figure 10.12: Plot of Model dfbetas Values using dfbetaPlots function

# Check the observations with high dfbetas. We see the

# values 589 and 615 returned. We only want to see results

# from columns gccrsk and ideology in tbur.data.

ds[c(589, 615), c("glbcc_risk", "ideol")]

## glbcc_risk ideol

## 589 0 2

## 615 0 2

These observations are interesting because they identify a potential problem in our

model specification. Both observations are considered outliers because the respondents self-

identified as “liberal” (ideology = 1) and rated their perceived risk of global climate change

as 0. These values deviate substantially from the norm for other strong liberals in the

dataset. Remember, as we saw earlier, our model has a problem with non-linearity – these

outlying observations seem to corroborate this finding. Examination of outliers sheds some

light on the issue.

Finally, we can produce a plot that combines studentized residuals, “hat values”, and

Cook’s D distances (these are measures of the amount of influence observations have on the
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Figure 10.13: Influence Bubble Plot

model) using circles as an indicator of influence – the larger the circle, the greater the influ-

ence. Figure 10.13 displays the combined influence plot. In addition, the influencePlot

function returns the values of greatest influence.

influencePlot(OLS_env, id.n = 3)

## StudRes Hat CookD

## 20 0.09192603 0.002172497 9.202846e-06

## 30 0.09192603 0.002172497 9.202846e-06

## 90 0.09192603 0.002172497 9.202846e-06

## 589 -3.53030574 0.001334528 8.289419e-03

## 615 -3.53030574 0.001334528 8.289419e-03

## 1054 -3.53030574 0.001334528 8.289419e-03

## pdf

## 2

Figure 10.13 indicates that there are a number of cases that warrant further examination.

We are already familiar with 589 and 615 Let’s add 20, 30, 90 and 1052.
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# review the results

ds[c(589, 615, 20, 30, 90, 1052), c("glbcc_risk", "ideol")]

## glbcc_risk ideol

## 589 0 2

## 615 0 2

## 20 10 1

## 30 10 1

## 90 10 1

## 1052 3 6

One important take-away from a visual examination of these observations is that there do

not appear to be any completely mis-coded or invalid data a↵ecting our model. In general,

even the most influential observations do not appear to be implausible cases. Observations

589 and 615 3 present an interesting problem regarding theoretical and model specification.

These observations represent respondents who self-reported as “liberal” (ideology=2) and

also rated the perceived risk of global climate change as 0 out of 10. These observations

therefore deviate from the model’s expected values (“strong liberal” respondents, on average,

believed global climate change represents a high risk). Earlier in our diagnostic testing

we found a problem with non-linearity. Taken together, it looks like the non-linearity in

our model is due to observations at the ideological extremes. One way we can deal with

this problem is to include a squared ideology variable (a polynomial) in the model, as

illustrated earlier in this chapter. However, it is also important to note this non-linear

relationship in the theoretical conceptualization of our model. Perhaps there is something

special about people with extreme ideologies that needs to be taken into account when

attempting to predict perceived risk of global climate change. This finding should also

inform our examination of post-estimation predictions – something that will be covered

later in this text.

3Of note, observations 20, 30, and 90 and 1052 are returned as well. There doesn’t appear to be anything
special about these four observations. Part of this may be due to the bivariate relationship and how the
influcencePlot function weights the data. The results are included for your review.
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10.4 So Now What? Implications of Residual Analysis

What should you do if you observe patterns in the residuals that seem to violate the as-

sumptions of OLS? If you find deviant cases – outliers that are shown to be highly influential

– you need to first evaluate the specific cases (observations). Is it possible that the data

were miscoded? We hear of many instances in which missing value codes (often “-99”) were

inadvertently left in the dataset. R would treat such values as if they were real data, often

generating glaring and influential outliers. Should that be the case, recode the o↵ending

variable observation as missing (“NA”) and try again.

But what if there is no obvious coding problem? It may be that the influential outlier is

appropriately measured, but that the observation is di↵erent in some theoretically important

way. Suppose, for example, that your model included some respondents who – rather than

diligently answering your questions – just responded at random to your survey questions.

They would introduce noise and error. If you could measure these slackers, you could either

exclude them or include a control variable in your model to account for their di↵erent

patterns of responses. We will discuss inclusion of model controls when we turn to multiple

regression modeling in later chapters.

What if your residual analysis indicates the presence of heteroscedasticity? Recall that

this will undermine your ability to do hypothesis tests in OLS. There are several options. If

the variation in fit over the range of the predicted value of Y could plausibly result from the

omission of an important explanatory variable, you should respecify your model accordingly

(more on this later in this book). It is often the case that you can improve the distribution

of residuals by including important but previously omitted variables. Measures of income,

when left out of consumer behavior models, often have this e↵ect.

Another approach is to use a di↵erent modeling approach that accounts for the het-

eroscedasticity in the estimated standard error. Of particular utility are robust estimators,

which can be employed using the rlm (robust linear model) function in the MASS package.

This approach increases the magnitude of the estimated standard errors, reducing the t-

values and resulting p-values. That means that the “cost” of running robust estimators is

that the precision of the estimates is reduced.
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Evidence of non-linearity in the residuals presents a thorny problem. This is a basic

violation of a central assumption of OLS, resulting in biased estimates of A and B. What can

you do? First, you can respecify your model to include a polynomial; you would include

both the X variable and a square of the X variable. Note that this will require you to

recode X. In this approach, the value of X is constant, while the value of the square of X

increases exponentially. So a relationship in which Y decreases as the square of X increases

will provide a progressively steeper slope as X rises. This is the kind of pattern we observed

in the example in which political ideology was used to predict the perceived risk posed by

climate change.

10.5 Summary

Now you are in a position to employ diagnostics – both visual and statistical – to evaluate

the results of your statistical models. Note that, once you have made your model corrections,

you will need to regenerate and re-evaluate your model residuals to determine whether the

problem has been ameliorated. Think of diagnostics as an iterative process in which you use

the model results to evaluate, diagnose, revise re-run, and re-evaluate your model. This is

where the real learning happens, as you challenge your theory (as specified in your model)

with observed data. So – have at it!
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Multiple Regression
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11
Introduction to Multiple Regression

In the chapters in Part 3 of this book, we will introduce and develop multiple ordinary

least squares regression – that is, linear regression models using two or more independent

(or explanatory) variables to predict a dependent variable. Most users simply refer to it

as “multiple regression”.1 This chapter will provide the background in matrix algebra that

is necessary to understand both the logic of, and notation commonly used for, multiple

regression. As we go, we will apply the matrix form of regression in examples using R to

provide a basic understanding of how multiple regression works. Chapter 12 will focus on

the key assumptions about the concepts and data that are necessary for OLS regression to

provide unbiased and e�cient estimates of the relationships of interest, and it will address

the key virtue of multiple regressions – the application of “statistical controls” in modeling

1It is useful to keep in mind the di↵erence between “multiple regression” and “multivariate regression”.
The latter predicts 2 or more dependent variables using an independent variable.
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relationships through the estimation of partial regression coe�cients. Chapter 13 will turn

to the process and set of choices involved in specifying and estimating multiple regression

models, and to some of the automated approaches to model building you‘d best avoid (and

why). Chapter 13 turns to some more complex uses of multiple regression, such as the

use and interpretation of “dummy” (dichotomous) independent variables, and modeling

interactions in the e↵ects of the independent variables. Chapter 14 concludes this part

of the book with the application of diagnostic evaluations to regression model residuals,

which will allow you to assess whether key modeling assumptions have been met and – if

not – what the implications are for your model results. By the time you have mastered

the chapters in this section, you will be well primed for understanding and using multiple

regression analysis.

11.1 Matrix Algebra and Multiple Regression

Matrix algebra is widely used for the derivation of multiple regression because it permits

a compact, intuitive depiction of regression analysis. For example, an estimated multiple

regression model in scalar notion is expressed as: Y = A+BX1 +BX2 +BX3 +E. Using

matrix notation, the same equation can be expressed in a more compact and (believe it or

not!) intuitive form: y = Xb+ e.

In addition, matrix notation is flexible in that it can handle any number of independent

variables. Operations performed on the model matrix X, are performed on all independent

variables simultaneously. Lastly, you will see that matrix expression is widely used in

statistical presentations of the results of OLS analysis. For all these reasons, then, we begin

with the development of multiple regression in matrix form.

11.2 The Basics of Matrix Algebra

A matrix is a rectangular array of numbers with rows and columns. As noted, operations

performed on matrices are performed on all elements of a matrix simultaneously. In this

section we provide the basic understanding of matrix algebra that is necessary to make

sense of the expression of multiple regression in matrix form.
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11.2.1 Matrix Basics

The individual numbers in a matrix are referred to as “elements”. The elements of a matrix

can be identified by their location in a row and column, denoted as Ar,c. In the following

example, m will refer to the matrix row and n will refer to the column.

Am,n =

2

66666664

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

3

77777775

Therefore, in the following matrix;

A =

2

64
10 5 8

�12 1 0

3

75

element a2,3 = 0 and a1,2 = 5.

11.2.2 Vectors

A vector is a matrix with single column or row. Here are some examples:

A =

2

66666664

6

�1

8

11

3

77777775

or

A =


1 2 8 7

�

11.2.3 Matrix Operations

There are several ”operations” that can be performed with and on matrices. Most of the

these can be computed with R, so we will use R examples as we go along. As always, you

will understand the operations better if you work the problems in R as we go. There is no

need to load a data set this time – we will enter all the data we need in the examples.
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11.2.4 Transpose

Transposing, or taking the “prime” of a matrix, switches the rows and columns.2 The

matrix

A =

2

64
10 5 8

�12 1 0

3

75

Once transposed is:

A0 =

2

66664

10 �12

5 1

8 0

3

77775

Note that the operation “hinges” on the element in the upper right-hand corner of A, A1,1,

so the first column of A becomes the first row on A0. To transpose a matrix in R, create a

matrix object then simply use the t command.

A <- matrix(c(10, -12, 5, 1, 8, 0), 2, 3)

A

## [,1] [,2] [,3]

## [1,] 10 5 8

## [2,] -12 1 0

t(A)

## [,1] [,2]

## [1,] 10 -12

## [2,] 5 1

## [3,] 8 0

11.2.5 Adding Matrices

To add matrices together, they must have the same dimensions, meaning that the matrices

must have the same number of rows and columns. Then, you simply add each element to

its counterpart by row and column. For example:

A =

2

64
4 �3

2 0

3

75+B =

2

64
8 1

4 �5

3

75 = A+B =

2

64
4 + 8 �3 + 1

2 + 4 0 + (�5)

3

75 =

2

64
12 �2

6 �5

3

75

To add matrices together in R, simply create two matrix objects and add them together.

2The use of “prime” in matrix algebra should not be confused with the use of ”prime” in the expression
of a derivative, as in X 0.
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A <- matrix(c(4, 2, -3, 0), 2, 2)

A

## [,1] [,2]

## [1,] 4 -3

## [2,] 2 0

B <- matrix(c(8, 4, 1, -5), 2, 2)

B

## [,1] [,2]

## [1,] 8 1

## [2,] 4 -5

A + B

## [,1] [,2]

## [1,] 12 -2

## [2,] 6 -5

See – how easy is that? No need to be afraid of a little matrix algebra!

11.2.6 Multiplication of Matrices

To multiply matrices they must be conformable, which means the number of columns in

the first matrix must match the number of rows in the second matrix.

ArXq ⇤BqXc = CrXc

Then, multiply column elements by the row elements, as shown here:

A =

2

66664

2 5

1 0

6 �2

3

77775
⇤B =

2

64
4 2 1

5 7 2

3

75 = AXB =

2

66664

(2X4) + (5X5) (2X2) + (5X7) (2X1) + (5X2)

(1X4) + (0X5) (1X2) + (0X7) (1X1) + (0X2)

(6X4) + (�2X5) (6X2) + (�2X7) (6X1) + (�2X2)

3

77775
=

2

66664

33 39 12

4 2 1

14 �2 2

3

77775

To multiply matrices in R, create two matrix objects and multiply them using the %*%

command.
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A <- matrix(c(2, 1, 6, 5, 0, -2), 3, 2)

A

## [,1] [,2]

## [1,] 2 5

## [2,] 1 0

## [3,] 6 -2

B <- matrix(c(4, 5, 2, 7, 1, 2), 2, 3)

B

## [,1] [,2] [,3]

## [1,] 4 2 1

## [2,] 5 7 2

A %*% B

## [,1] [,2] [,3]

## [1,] 33 39 12

## [2,] 4 2 1

## [3,] 14 -2 2

11.2.7 Identity Matrices

The identity matrix is a square matrix with 1’s on the diagonal and 0’s elsewhere. For a 4

x 4 matrix, it looks like this:

I =

2

66666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

It acts like a 1 in algebra; a matrix (A) times the identity matrix (I) is A. This can be

demonstrated in R.

A <- matrix(c(5, 3, 2, 4), 2, 2)

A

## [,1] [,2]

## [1,] 5 2

## [2,] 3 4

I <- matrix(c(1, 0, 0, 1), 2, 2)

I
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## [,1] [,2]

## [1,] 1 0

## [2,] 0 1

A %*% I

## [,1] [,2]

## [1,] 5 2

## [2,] 3 4

Note that, if you want to square a column matrix (that is, multiply it by itself), you can

simply take the transpose of the column (thereby making it a row matrix) and multiply

them. The square of column matrix A is A0A.

11.2.8 Matrix Inversion

The matrix inversion operation is a bit like dividing any number by itself in algebra. An

inverse of the A matrix is denoted A�1. Any matrix multiplied by its inverse is equal to

the identity matrix:

AA�1 = A�1A = I

For example,

A =

2

64
1 �1

�1 �1

3

75 and A�1 =

2

64
0.5 �0.5

�0.5 0.5

3

75 therefore A ⇤A�1 =

2

64
1 0

0 1

3

75

However, matrix inversion is only applicable to a square (i.e., number of rows equals

number of columns) matrix; only a square matrix can have an inverse.

Finding the Inverse of a Matrix

To find the inverse of a matrix, the values that will produce the identity matrix, create a

second matrix of variables and solve for I.

A =

2

64
3 1

2 4

3

75X

2

64
a b

c d

3

75 =

2

64
3a+ b 3c+ d

2a+ 4b 2c+ 4d

3

75 =

2

64
1 0

0 1

3

75

Set 3a + b = 1 and 2a + 4b = 0 and solve for a and b. In this case a = 2
5 and b = �1

5 .

Likewise, set 3c+ d = 0 and 2c+ 4d = 1; solving for c and d produces c = � 1
10 and d = 3

10 .



11.3. OLS REGRESSION IN MATRIX FORM 158

Therefore, A�1 =

2

64
2
5 � 1

10

�1
5

3
10

3

75

Finding the inverse matrix can also be done in R using the solve command.

A <- matrix(c(3, 2, 1, 4), 2, 2)

A

## [,1] [,2]

## [1,] 3 1

## [2,] 2 4

A.inverse <- solve(A)

A.inverse

## [,1] [,2]

## [1,] 0.4 -0.1

## [2,] -0.2 0.3

A %*% A.inverse

## [,1] [,2]

## [1,] 1 0

## [2,] 0 1

OK – now we have all the pieces we need to apply matrix algebra to multiple regression.

11.3 OLS Regression in Matrix Form

As was the case with simple regression, we want to minimize the sum of the squared errors,

e. In matrix notation, the OLS model is y = Xb + e, where e = y �Xb. The sum of the

squared e is:

X
e2i =


e1 e2 · · · en

�

2

66666664

e1

e2
...

en

3

77777775

= e0e (11.1)
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Therefore, we want to find the b that minimizes this function:

e0e = (y �Xb)0(y �Xb)

= y0y � b0X 0y � y0Xb+ b0X 0Xb

= y0y � 2b0X 0y + b0X 0Xb

To do this we take the derivative of e0e w.r.t b and set it equal to 0.

@e0e

@b
= �2X 0y + 2X 0Xb = 0

To solve this we subtract 2X 0Xb from both sides:

�2X 0Xb = �2X 0y

Then to remove the �2’s, we multiply each side by �1/2. This leaves us with:

(X 0X)b = X 0y

To solve for b we multiply both sides by the inverse of X 0X, (X 0X)�1. Note that for matrices

this is equivalent to dividing each side by X 0X. Therefore:

b = (X 0X)�1X 0y (11.2)

TheX 0X matrix is square, and therefore invertible (i.e., the inverse exists). However, the

X 0X matrix can be non-invertible (i.e., singular) if n < k—the number of k independent

variables exceeds the n-size—or if one or more of the independent variables is perfectly

correlated with another independent variable. This is termed perfect multicollinearity

and will be discussed in more detail in Chapter 14. Also note that the X 0X matrix contains

the basis for all the necessary means, variances, and covariances among the X’s.
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X 0X =

2

66666664

n
P

X1
P

X2
P

X3

P
X1

P
X2

1

P
X1X2

P
X1X3

P
X2

P
X2X1

P
X2

2

P
X2X3

P
X3

P
X3X1

P
X3X2

P
X2

3

3

77777775

Regression in Matrix Form

Assume a model using n observations, k parameters, and k � 1, Xi (independent)
variables.

y = Xb+ e

ŷ = Xb

b = (X 0X)�1X 0y

y = n ⇤ 1 column vector of observations of the DV, Y

ŷ = n ⇤ 1 column vector of predicted Y values

X = n ⇤ k matrix of observations of the IVs; first column 1s

b = k ⇤ 1 column vector of regression coe�cients; first row is A

e = n ⇤ 1 column vector of n residual values

Using the following steps, we will use R to calculate b; a vector of regression coe�cients,

ŷ; a vector of predicted y values, and e; a vector of residuals.

We want to fit the model y = Xb+ e to the following matrices:

y =

2

666666666666666664

6

11

4

3

5

9

10

3

777777777777777775

X =

2

666666666666666664

1 4 5 4

1 7 2 3

1 2 6 4

1 1 9 6

1 3 4 5

1 7 3 4

1 8 2 5

3

777777777777777775
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Create two objects, the y matrix and the X matrix.

y <- matrix(c(6, 11, 4, 3, 5, 9, 10), 7, 1)

y

## [,1]

## [1,] 6

## [2,] 11

## [3,] 4

## [4,] 3

## [5,] 5

## [6,] 9

## [7,] 10

X <- matrix(c(1, 1, 1, 1, 1, 1, 1, 4, 7, 2, 1, 3, 7, 8, 5, 2,

6, 9, 4, 3, 2, 4, 3, 4, 6, 5, 4, 5), 7, 4)

X

## [,1] [,2] [,3] [,4]

## [1,] 1 4 5 4

## [2,] 1 7 2 3

## [3,] 1 2 6 4

## [4,] 1 1 9 6

## [5,] 1 3 4 5

## [6,] 1 7 3 4

## [7,] 1 8 2 5

Calculate b: b = (X 0X)�1X 0y.

We can calculate this in R in just a few steps. First, we transpose X to get X 0.

X.prime <- t(X)

X.prime

## [,1] [,2] [,3] [,4] [,5] [,6] [,7]

## [1,] 1 1 1 1 1 1 1

## [2,] 4 7 2 1 3 7 8

## [3,] 5 2 6 9 4 3 2

## [4,] 4 3 4 6 5 4 5

Then we multiply X by X 0; (X 0X).

X.prime.X <- X.prime %*% X

X.prime.X

## [,1] [,2] [,3] [,4]
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## [1,] 7 32 31 31

## [2,] 32 192 104 134

## [3,] 31 104 175 146

## [4,] 31 134 146 143

Next, we find the inverse of X 0X; X 0X�1

X.prime.X.inv <- solve(X.prime.X)

X.prime.X.inv

## [,1] [,2] [,3] [,4]

## [1,] 12.2420551 -1.04528602 -1.01536017 -0.63771186

## [2,] -1.0452860 0.12936970 0.13744703 -0.03495763

## [3,] -1.0153602 0.13744703 0.18697034 -0.09957627

## [4,] -0.6377119 -0.03495763 -0.09957627 0.27966102

Then, we multiply X 0X�1 by X 0.

X.prime.X.inv.X.prime <- X.prime.X.inv %*% X.prime

X.prime.X.inv.X.prime

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0.43326271 0.98119703 1.50847458 -1.7677436 1.8561970 -0.6718750

## [2,] 0.01959746 0.03032309 -0.10169492 0.1113612 -0.2821769 0.1328125

## [3,] 0.07097458 0.02198093 -0.01694915 0.2073623 -0.3530191 0.1093750

## [4,] -0.15677966 -0.24258475 -0.18644068 0.1091102 0.2574153 -0.0625000

## [,7]

## [1,] -1.33951271

## [2,] 0.08977754

## [3,] -0.03972458

## [4,] 0.28177966

Finally, to obtain the b vector we multiply X 0X�1X 0 by y.

b <- X.prime.X.inv.X.prime %*% y

b

## [,1]

## [1,] 3.96239407

## [2,] 1.06064619

## [3,] 0.04396186

## [4,] -0.48516949

We can use the lm function in R to check and see whether our “by hand” matrix approach

gets the same result as does the “canned” multiple regression routine:
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lm(y ~ 0 + X)

##

## Call:

## lm(formula = y ~ 0 + X)

##

## Coefficients:

## X1 X2 X3 X4

## 3.96239 1.06065 0.04396 -0.48517

Calculate ŷ: ŷ = Xb.

To calculate the ŷ vector in R, simply multiply X and b.

y.hat <- X %*% b

y.hat

## [,1]

## [1,] 6.484110

## [2,] 10.019333

## [3,] 4.406780

## [4,] 2.507680

## [5,] 4.894333

## [6,] 9.578125

## [7,] 10.109640

Calculate e.

To calculate e, the vector of residuals, simply subtract the vector y from the vector ŷ.

e <- y - y.hat

e

## [,1]

## [1,] -0.4841102

## [2,] 0.9806674

## [3,] -0.4067797

## [4,] 0.4923199

## [5,] 0.1056674

## [6,] -0.5781250

## [7,] -0.1096398
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11.4 Summary

Whew! Now, using matrix algebra and calculus, you have derived the squared-error mini-

mizing formula for multiple regression. Not only that, you can use the matrix form, in R, to

calculate the estimated slope and intercept coe�cients, predict Y , and even calculate the

regression residuals. We’re on our way to true Geekdome!

Next stop: the key assumptions necessary for OLS to provide the best, unbiased, linear

estimates (BLUE) and the basis for statistical controls using multiple independent variables

in regression models.



12
The Logic of Multiple Regression

The logic of multiple regression can be readily extended from our earlier discussion of

simple regression. As with simple regression, multiple regression finds the regression line

(or regression “plane” with multiple independent variables) that minimizes the sum of the

squared errors. This chapter discusses the theoretical specification of the multiple regression

model, the key assumptions necessary for the model to provide the best linear unbiased

estimates (BLUE) of the e↵ects of the Xs on Y , the meaning of the partial regression

coe�cients, and hypothesis testing. Note that the examples in this chapter use the tbur

data set.

165
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12.1 Theoretical Specification

As with simple regression, the theoretical multiple regression model contains a systematic

component—Y = ↵+ �1Xi1 + �2Xi2 + . . .+ �kXik and a stochastic component—✏i. The

overall theoretical model is expressed as:

Y = ↵+ �1Xi1 + �2Xi2 + . . .+ �kXik + ✏i

where

• ↵ is the constant term

• �1 through �k are the parameters of IVs 1 through k

• k is the number of IVs

• ✏ is the error term

In matrix form the theoretical model can be much more simply expressed as: y = X� + ✏.

The empirical model that will be estimated can be expressed as:

Yi = A+B1Xi1 +B2Xi2 + . . .+BkXik + Ei

= Ŷi + Ei

Therefore, the residual sum of squares (RSS) for the model is expressed as:

RSS =
X

E2
i

=
X

(Yi � Ŷi)
2

=
X

(Yi � (A+B1Xi1 +B2Xi2 + . . .+BkXik))
2

12.1.1 Assumptions of OLS Regression

There are several important assumptions necessary for multiple regression. These assump-

tions include linearity, fixed X’s, and errors that are normally distributed.
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OLS Assumptions

Systematic Component

• Linearity

• Fixed X

Stochastic Component

• Errors have identical distributions

• Errors are independent of X and other ✏i

• Errors are normally distributed

Linearity

When OLS is used, it is assumed that a linear functional form is the correct specification

for the model being estimated. Note that linearity is assumed in the parameters (that is,

for the Bs), therefore the expected value of the dependent variable is a linear function of

the parameters, not necessarily of the variables themselves. So, as we will discuss in the

next chapter, it is possible to transform the variables (the Xs) to introduce non-linearity

into the model while retaining linear estimated coe�cients. For example, a model with a

squared X term can be estimated with OLS:

Y = A+BX2
i + E

However, a model with a squared B term cannot.

Fixed X

The assumption of fixed values of X means that the value of X in our observations is not

systematically related to the value of the other X’s. We can see this most clearly in an

experimental setting where the researcher can manipulate the experimental variable while
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Figure 12.1: Spurious Relationships

controlling for all other possible Xs through random assignment to a treatment and control

group. In that case, the value of the experimental treatment is completely unrelated to the

value of the other Xs – or, put di↵erently, the treatment variable is orthogonal to the other

Xs. This assumption is carried through to observational studies as well. Note that if X

is assumed to be fixed, then changes in Y are assumed to be a result of the independent

variations in the X’s and error (and nothing else).

12.2 Partial E↵ects

As noted in Chapter 1, multiple regression “controls” for the e↵ects of other variables on

the dependent variables. This is in order to manage possible spurious relationships, where

the variable Z influences the value of both X and Y . Figure 12.1 illustrates the nature of

spurious relationships between variables.

To control for spurious relationships, multiple regression accounts for the partial e↵ects

of one X on another X. Partial e↵ects deal with the shared variance between Y and the

X’s. This is illustrated in Figure 12.2. In this example, the number of deaths resulting from
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Figure 12.2: Partial E↵ects

house fires is positively associated with the number of fire trucks that are sent to the scene

of the fire. A simple-minded analysis would conclude that if fewer trucks are sent, fewer

fire-related deaths would occur. Of course, the number of trucks sent to the fire, and the

number of fire-related deaths, are both driven by the magnitude of the fire. An appropriate

control for the size of the fire would therefore presumably eliminate the positive association

between the number of fire trucks at the scene and the number of deaths (and may even

reverse the direction of the relationship, as the larger number of trucks may more quickly

suppress the fire).

In Figure 12.2, the Venn diagram on the left shows a pair of Xs that would jointly

predict Y better than either X alone. However, the overlapped area between X1 and X2

causes some confusion. That would need to be removed to estimate the “pure” e↵ect of X1

on Y . The diagram on the right represents a dangerous case. Overall, X1+X2 explain Y

well, but we don‘t know how the individual X1 or X2 influence Y . This clouds our ability

to see the e↵ects of either of the Xs on Y . In the extreme case of wholly overlapping

explanations by the IVs, we face the condition of multicolinearity that makes estimation
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of the partial regression coe�cients (the Bs) impossible.

In calculating the e↵ect of X1 on Y , we need to remove the e↵ect of the other X’s on

both X1 and Y . While multiple regression does this for us, we will walk through an example

to illustrate the concepts.

Partial E↵ects

In a case with two IVs, X1 and X2

Y = A+B1Xi1 +B2Xi2 + Ei

• Remove the e↵ect of X2 and Y

Ŷi = A1 +B1Xi2 + EiY |X2

• Remove the e↵ect of X2 on X1:

X̂i = A2 +B2Xi2 + EiX1|X2

So,

EiY |X2
= 0 +B3EiX1|X2

and
B3EiX1|X2

= B1Xi1

As an example, we will use age and ideology to predict perceived climate change risk.

ds.temp <- na.omit(subset(ds, select = c("glbcc_risk", "ideol",

"age")))

ols1 <- lm(glbcc_risk ~ ideol + age, data = ds.temp)

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ ideol + age, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.7913 -1.6252 0.2785 1.4674 6.6075

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.096064 0.244640 45.357 <2e-16 ***

## ideol -1.042748 0.028674 -36.366 <2e-16 ***

## age -0.004872 0.003500 -1.392 0.164

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.479 on 2510 degrees of freedom

## Multiple R-squared: 0.3488,Adjusted R-squared: 0.3483

## F-statistic: 672.2 on 2 and 2510 DF, p-value: < 2.2e-16

Note that the estimated coe�cient for ideology is -1.0427478. To see how multiple regression

removes the shared variance we first regress climate change risk on age and create an object

ols2.resids of the residuals.

ols2 <- lm(glbcc_risk ~ age, data = ds.temp)

summary(ols2)

##

## Call:

## lm(formula = glbcc_risk ~ age, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.4924 -2.1000 0.0799 2.5376 4.5867

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.933835 0.267116 25.958 < 2e-16 ***

## age -0.016350 0.004307 -3.796 0.00015 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.062 on 2511 degrees of freedom

## Multiple R-squared: 0.005706,Adjusted R-squared: 0.00531

## F-statistic: 14.41 on 1 and 2511 DF, p-value: 0.0001504

ols2.resids <- ols2$residuals

Note that, when modeled alone, the estimated e↵ect of age on glbccrsk is larger (-

0.0164) than it was in the multiple regression with ideology (-0.00487). This is because age

is correlated with ideology, and – because ideology is also related to glbccrsk – when we

don’t “control for” ideology the age variable carries some of the influence of ideology.
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Next, we regress ideology on age and create an object of the residuals.

ols3 <- lm(ideol ~ age, data = ds.temp)

summary(ols3)

##

## Call:

## lm(formula = ideol ~ age, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.9492 -0.8502 0.2709 1.3480 2.7332

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.991597 0.150478 26.526 < 2e-16 ***

## age 0.011007 0.002426 4.537 5.98e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.725 on 2511 degrees of freedom

## Multiple R-squared: 0.00813,Adjusted R-squared: 0.007735

## F-statistic: 20.58 on 1 and 2511 DF, p-value: 5.981e-06

ols3.resids <- ols3$residuals

Finally, we regress the residuals from ols2 on the residuals from ols3. Note that this regres-

sion does not include an intercept term.

ols4 <- lm(ols2.resids ~ 0 + ols3.resids)

summary(ols4)

##

## Call:

## lm(formula = ols2.resids ~ 0 + ols3.resids)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.7913 -1.6252 0.2785 1.4674 6.6075

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## ols3.resids -1.04275 0.02866 -36.38 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Residual standard error: 2.478 on 2512 degrees of freedom

## Multiple R-squared: 0.3451,Adjusted R-squared: 0.3448

## F-statistic: 1324 on 1 and 2512 DF, p-value: < 2.2e-16

As shown, the estimated B for EiX1|X2
, matches the estimated B for ideology in the first

regression. What we have done, and what multiple regression does, is “clean” both Y and

X1 (ideology) of their correlations with X2 (age) by using the residuals from the bivariate

regressions.

12.3 Multiple Regression Example

In this section, we walk through another example of multiple regression. First, we start

with our two IV model.

ols1 <- lm(glbcc_risk ~ age + ideol, data = ds.temp)

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ age + ideol, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.7913 -1.6252 0.2785 1.4674 6.6075

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.096064 0.244640 45.357 <2e-16 ***

## age -0.004872 0.003500 -1.392 0.164

## ideol -1.042748 0.028674 -36.366 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.479 on 2510 degrees of freedom

## Multiple R-squared: 0.3488,Adjusted R-squared: 0.3483

## F-statistic: 672.2 on 2 and 2510 DF, p-value: < 2.2e-16

The results show that the relationship between age and perceived risk (glbccrsk) is nega-

tive and insignificant. The relationship between ideology and perceived risk is also negative

and significant. The coe�cients of the X’s are interpreted in the same way as with simple
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Figure 12.3: Scatterplot and Regression Plane of gcc risk, age, and ideology

regression, except that we are now controlling for the e↵ect of the other X’s by removing

their influence on the estimated coe�cient. Therefore, we say that as ideology increases one

unit, perceptions of the risk of climate change (glbccrsk) decrease by -1.0427478, controlling

for the e↵ect of age.

As was the case with simple regression, multiple regression finds the intercept and slopes

that minimize the sum of the squared residuals. With only one IV the relationship can

be represented in a two-dimensional plane (a graph) as a line, but each IV adds another

dimension. Two IVs create a regression plane within a cube, as shown in Figure 12.3. The

Figure shows a scatterplot of GCC risk, age, and ideology coupled with the regression plane.

Note that this is a sample of 200 observations from the larger data set. Were we to add

more IVs, we would generate a hypercube... and we haven’t found a clever way to draw

that yet.

In the next example education is added to the model.



175 CHAPTER 12. THE LOGIC OF MULTIPLE REGRESSION

ds.temp <- na.omit(subset(ds, select = c("glbcc_risk", "age",

"education", "income", "ideol")))

ols2 <- lm(glbcc_risk ~ age + education + ideol, data = ds.temp)

summary(ols2)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + ideol, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.8092 -1.6355 0.2388 1.4279 6.6334

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.841669 0.308416 35.153 <2e-16 ***

## age -0.003246 0.003652 -0.889 0.374

## education 0.036775 0.028547 1.288 0.198

## ideol -1.044827 0.029829 -35.027 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.437 on 2268 degrees of freedom

## Multiple R-squared: 0.3607,Adjusted R-squared: 0.3598

## F-statistic: 426.5 on 3 and 2268 DF, p-value: < 2.2e-16

We see that as a respondent’s education increases one unit on the education scale, per-

ceived risk appears to increase by 0.0367752, keeping age and ideology constant. However,

this result is not significant. In the final example income is added to the model. Note

that the size and significance of education actually increases once income is included, indi-

cating that education only has bearing on the perceived risks of climate change once the

independent e↵ect of income is considered.

options(scipen = 999) #to turn off scientific notation

ols3 <- lm(glbcc_risk ~ age + education + income + ideol, data = ds.temp)

summary(ols3)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income + ideol, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -8.7991 -1.6654 0.2246 1.4437 6.5968

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.9232861851 0.3092149750 35.326 < 0.0000000000000002 ***

## age -0.0044231931 0.0036688855 -1.206 0.22810

## education 0.0632823391 0.0299443094 2.113 0.03468 *

## income -0.0000026033 0.0000009021 -2.886 0.00394 **

## ideol -1.0366154295 0.0299166747 -34.650 < 0.0000000000000002 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.433 on 2267 degrees of freedom

## Multiple R-squared: 0.363,Adjusted R-squared: 0.3619

## F-statistic: 323 on 4 and 2267 DF, p-value: < 0.00000000000000022

12.3.1 Hypothesis Testing and t-tests

The logic of hypothesis testing with multiple regression is a straightforward extension from

simple regression as described in Chapter 7. Below we will demonstrate how to use the

standard error of the ideology variable to test whether ideology influences perceptions of

the perceived risk of global climate change. Specifically, we posit:

H1: As respondents become more conservative, they will perceive climate change

to be less risky, all else equal.

Therefore, �ideology < 0. The null hypothesis is that �ideology = 0.

To test H1 we first need to find the standard error of the B for ideology, (Bj).

SE(Bj) =
SEp
RSSj

(12.1)

where RSSj = the residual sum of squares from the regression of Xj (ideology) on the other

Xs (age, education, income) in the model. RSSj captures all of the independent variation

in Xj . Note that the bigger RSSj , the smaller SE(Bj), and the smaller SE(Bj), the more

precise the estimate of Bj .
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SE (the standard error of the model) is:

SE =

r
RSS

n� k � 1

We can use R to find the RSS for ideology in our model. First we find the SE of the

model:

Se <- sqrt((sum(ols3$residuals^2))/(length(ds.temp$ideol) - 5 -

1))

Se

## [1] 2.43312

Then we find the RSS, for ideology:

ols4 <- lm(ideol ~ age + education + income, data = ds.temp)

summary(ols4)

##

## Call:

## lm(formula = ideol ~ age + education + income, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.2764 -1.1441 0.2154 1.4077 3.1288

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.5945481422 0.1944108986 23.633 < 0.0000000000000002 ***

## age 0.0107541759 0.0025652107 4.192 0.0000286716948757 ***

## education -0.1562812154 0.0207596525 -7.528 0.0000000000000738 ***

## income 0.0000028680 0.0000006303 4.550 0.0000056434561990 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.707 on 2268 degrees of freedom

## Multiple R-squared: 0.034,Adjusted R-squared: 0.03272

## F-statistic: 26.6 on 3 and 2268 DF, p-value: < 0.00000000000000022

RSSideol <- sum(ols4$residuals^2)

RSSideol

## [1] 6611.636



12.4. SUMMARY 178

Finally, we calculate the SE for ideology:

SEideol <- Se/sqrt(RSSideol)

SEideol

## [1] 0.02992328

Once the SE(Bj) is known, the t-test for the ideology coe�cient can be calculated. The

t value is the ratio of the estimated coe�cient to its standard error.

t =
Bj

SE(Bj)
(12.2)

This can be calculated using R.

ols3$coef[5]/SEideol

## ideol

## -34.64245

As we see, the result is statistically significant, and therefore we reject the null hypoth-

esis. Also note that the results match those from the R output for the full model, as was

shown earlier.

12.4 Summary

The use of multiple regression, when compared to simple bivariate regression, allows for

more sophisticated and interesting analyses. The most important feature is the ability

of the analyst (that’s you!) to statistically control for the e↵ects of all other IVs when

estimating any B. In essence, we “clean” the estimated relationship between any X and

Y of the influence of all other Xs in the model. Hypothesis testing in multiple regression

requires that we identify the independent variation in each X, but otherwise the estimated

standard error for each B is analogous to that for simple regression.

So, maybe it’s a little more complicated. But look at what we can observe! Our

estimates from the examples in this chapter show that age, income and education are all
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related to political ideology, but even when we control for their e↵ects, ideology retains a

potent influence on the perceived risks of climate change. Politics matters.



13
Multiple Regression and Model Building

This book focuses on the use of systematic quantitative analysis for purposes of building,

refining and testing theoretical propositions in the policy and social sciences. All of the

tools discussed so far – including univariate, bi-variate, and simple regression analysis –

provide means to evaluate distributions and test hypotheses concerning simple relationships.

Most policy and social theories, however, include multiple explanatory variables. Multiple

regression extends the utility of simple regression by permitting the inclusion of two or more

explanatory variables. This chapter discusses strategies for determining what variables to

include (or exclude) in the model. As before, we use the tbur data.
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13.1 Model Building

Model building is the process of deciding which independent variables to include in the

model.1 For our purposes, when deciding which variables to include, theory and findings

from the extant literature should be the most prominent guides. Apart from theory, how-

ever, this chapter examines empirical strategies that can help determine if the addition of

new variables improves overall model fit. In general, when adding a variable check for: a)

improved prediction based on empirical indicators, b) statistically and substantively sig-

nificant estimated coe�cients, and c) stability of model coe�cients—do other coe�cients

change when adding the new one – particularly look for sign changes.

13.1.1 Theory and Hypotheses

The most important guidance for deciding whether a variable (or variables) should be

included in your model is provided by theory and prior research. Simply put, knowing the

literature on your topic is vital to knowing what variables are important. You should be

able to articulate a clear theoretical reason for including each variable in your model. In

those cases where you don’t have much theoretical guidance, however, you should use model

parsimony, which is a function of simplicity and model fit, as your guide. You can focus on

whether the inclusion of a variable improves model fit. In the next section, we will explore

several empirical indicators that can be used to evaluate the appropriateness of inclusion of

variables.

13.1.2 Empirical Indicators

When building a model, it is best to start with a few IV’s and then begin adding other

variables. However, when adding a variable, check for:

1. Improved prediction (increase in adjusted R2)

2. Statistically and substantively significant estimated coe�cients

3. Stability of model coe�cients

1Model building also concerns decisions about model functional form, which we address in the next
chapter.
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• Do other coe�cients change when adding the new one?

• Particularly look for sign changes for estimated coe�cients.

Coe�cient of Determination: R2

R2 was previously discussed within the context of simple regression. The extension to

multiple regression is straightforward, except that multiple regression leads us to place

greater weight on the use of the adjusted R2. Recall that the adjusted R2 corrects for

the inclusion of multiple independent variables; R2 is the ratio of the explained sum of

squares to the total sum of squares (ESS/TSS ). The components of R2 for an observation

are illustrated in Figure 13.1. As before, for each observation Yi, variation around the mean

can be decomposed into that which is “explained” by the regression model and that which

is not.

R2 is expressed as:

R2 = 1� RSS

TSS
(13.1)

However, this formulation of R2 is insensitive to the complexity of the model and the
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degrees of freedom provided by your data. This means that an increase in the number of

k independent variables, can increase the R2. Adjusted R2 penalizes the R2 by correcting

for the degrees of freedom. It is defined as:

adjustedR2 = 1�
RSS

n�k�1
TSS

n�k�1

(13.2)

The R2 of two models can be compared, as illustrated by the following example. The first

(simpler) model consists of basic demographics (age, education, and income) as predictors

of climate change risk. The second (more complex) model adds the variable measuring

political ideology to the explanation.

ds.temp <- na.omit(subset(ds, select = c("glbcc_risk", "age",

"education", "income", "ideol")))

ols1 <- lm(glbcc_risk ~ age + education + income, data = ds.temp)

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.9189 -2.0546 0.0828 2.5823 5.1908

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.160506689 0.342491831 17.987 < 0.0000000000000002 ***

## age -0.015571138 0.004519107 -3.446 0.00058 ***

## education 0.225285858 0.036572082 6.160 0.000000000858 ***

## income -0.000005576 0.000001110 -5.022 0.000000551452 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.008 on 2268 degrees of freedom

## Multiple R-squared: 0.02565,Adjusted R-squared: 0.02437

## F-statistic: 19.91 on 3 and 2268 DF, p-value: 0.0000000000009815

ols2 <- lm(glbcc_risk ~ age + education + income + ideol, data = ds.temp)

summary(ols2)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income + ideol, data = ds.temp)
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##

## Residuals:

## Min 1Q Median 3Q Max

## -8.7991 -1.6654 0.2246 1.4437 6.5968

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.9232861851 0.3092149750 35.326 < 0.0000000000000002 ***

## age -0.0044231931 0.0036688855 -1.206 0.22810

## education 0.0632823391 0.0299443094 2.113 0.03468 *

## income -0.0000026033 0.0000009021 -2.886 0.00394 **

## ideol -1.0366154295 0.0299166747 -34.650 < 0.0000000000000002 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.433 on 2267 degrees of freedom

## Multiple R-squared: 0.363,Adjusted R-squared: 0.3619

## F-statistic: 323 on 4 and 2267 DF, p-value: < 0.00000000000000022

As can be seen by comparing the model results, the more complex model that includes

political ideology has a higher R2 than does the simpler model. This indicates that the

more complex model explains a greater fraction of the variance in perceived risks of climate

change. However, we don’t know if this improvement is statistically significant. In order to

determine whether the more complex model adds significantly to the explanation of perceive

risks, we can utilize the F -test.

F -test

The F -test is a test statistic based on the F distribution, in the same way the the t-test is

based on the t distribution. The F distribution skews right and ranges between 0 and 1.

Just like the t distribution, the F distribution approaches normal as the degrees of freedom

increase.2

F -tests are used to test for the statistical significance of the overall model fit. The null

hypothesis for an F -test is that the model o↵ers no improvement for predicting Yi over the

2Note that the F distribution is the square of a t-distributed variable with m degrees of freedom. The F
distribution has 1 degree of freedom in the numerator and m degrees of in the denominator:

t2m = F1,m
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mean of Y , Ȳ .

The formula for the F -test is:

F =
ESS
k

RSS
n�k�1

(13.3)

where k is the number of parameters and n� k � 1 are the degrees of freedom. Therefore,

F is a ratio of the explained variance to the residual variance, correcting for the number

of observations and parameters. The F -value is compared to the F -distribution, just like

a t-distribution, to obtain a p-value. Note that the R output includes the F statistic and p

value.

Nested F -test

For model building we turn to the nested F -test, which tests whether a more complex model

(with more IVs) adds to the explanatory power over a simpler model (with fewer IVs). To

find out, we calculate an F-statistic for the model improvement:

F =
ESS1�ESS0

q

RSS1
n�k�1

(13.4)

where q is the di↵erence in the number of IVs between the simpler and the mode complex

models. The complex model has k IVs (and estimates k parameters), and the simpler model

has k� q IVs (and estimates only k� q parameters). ESS1 is the explained sum of squares

for the complex model. RSS1 is the residual sum of squares for the complex model. ESS0

is the explained sum of squares for the simpler model. So the nested-F represents the ratio

of the additional explanation per added IV, over the residual sum of squares divided by the

model degrees of freedom.

We can use R, to calculate the F statistic based on our previous example.

TSS <- sum((ds.temp$glbcc_risk - mean(ds.temp$glbcc_risk))^2)

TSS

## [1] 21059.86

RSS.mod1 <- sum(ols1$residuals^2)

RSS.mod1
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## [1] 20519.57

ESS.mod1 <- TSS - RSS.mod1

ESS.mod1

## [1] 540.2891

RSS.mod2 <- sum(ols2$residuals^2)

RSS.mod2

## [1] 13414.89

ESS.mod2 <- TSS - RSS.mod2

ESS.mod2

## [1] 7644.965

F <- ((ESS.mod2 - ESS.mod1)/1)/(RSS.mod2/(length(ds.temp$glbcc_risk) -

4 - 1))

F

## [1] 1200.629

Or, you can simply use the anova function in R:

anova(ols1, ols2)

## Analysis of Variance Table

##

## Model 1: glbcc_risk ~ age + education + income

## Model 2: glbcc_risk ~ age + education + income + ideol

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 2268 20520

## 2 2267 13415 1 7104.7 1200.6 < 0.00000000000000022 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As shown using both approaches, the inclusion of ideology significantly improves model fit.

13.1.3 Risks in Model Building

As is true of most things in life, there are risks to consider when building statistical models.

First, are you including irrelevant X’s? These can increase model complexity, reduce ad-

justed R2, and increase model variability across samples. Remember that you should have

a theoretical basis for inclusion of all of the variables in your model.
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Second, are you omitting relevant X’s? Not including important variables can fail to

capture fit and can bias other estimated coe�cients, particularly when the omitted X is

related to both other X’s and to the dependent variable Y .

Finally, remember that we are using sample data. Therefore, about 5% of the time,

our sample will include random observations of X’s that result in B’s that meet classical

hypothesis tests – resulting in a Type I error. Conversely, the B’s may be important, but the

sample data will randomly include observations of X that result in estimated parameters

that do not meet the classical statistical tests – resulting in a Type II error. That’s why we

rely on theory, prior hypotheses, and replication.

13.2 Evils of Stepwise Regression

Almost all statistical software packages (includingR) permit a number of mechanical “search

strategies” for finding IVs that make a statistically significant contribution to the predic-

tion of the model dependent variable. The most common of these is called stepwise

regression, which may also be referred to as forward, backward (or maybe even upside

down!) stepwise regression. Stepwise procedures do not require that the analyst think – you

just have to designate a pool of possible IVs and let the package go to work, sifting through

the IVs to identify those that (on the basis of your sample data) appear to be related to

the model dependent variable. The stepwise procedures use sequential F-tests, sequentially

adding variables that “improve the fit” of the mindless model until there are no more IVs

that meet some threshold (usually p < 0.05) of statistical significance. These procedures

are like mechanically wringing all of the explanation you can get for Y out of some pool of

X.

You should already recognize that these kind of methods pose serious problems. First

and foremost, this is an atheoretical approach to model building. But, what if you have no

theory to start with – is a stepwise approach appropriate then? No, for several reasons. If

any of the candidate X variables are strongly correlated, the inclusion of the first one will

“use up” some of the explanation of the second, because of the way OLS calculates partial

regression coe�cients. For that reason, once one of the variables is mechanically selected,
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the other will tend to be excluded because it will have less to contribute to Y . Perhaps

more damning, stepwise approaches as highly susceptible to inclusion of spuriously related

variables. Recall that we are using samples, drawn from the larger population, and that

samples are subject to random variation. If the step-wise process uses the classical 0.05

cut-o↵ for inclusion of a variable, that means that one time in twenty (in the long run)

we will include a variable that meets the criterion only by random chance.3 Recall that

the classical hypothesis test requires that we specify our hypothesis in advance; step-wise

processes simply rummage around within a set of potential IVs to find those that fit.

There have been notable cases in which mechanical model building has resulted in seri-

ously problematic “findings” that have very costly implications for society. One is recounted

in the PBS Frontline episode called “Currents of Fear”.4 The story concerns whether elec-

tromagnetic fields (EMFs) from technologies including high-voltage power lines cause cancer

in people who are exposed. The problem was that “cancer clusters” could be identified that

were proximate to the power lines, but no laboratory experiments could find a connection.

But concerned citizens and activists persisted in believing there was a causal relationship.

In that context, the Swedish government sponsored a very ambitious study to settle the

question. Here is the text of the discussion from the Frontline program:

... in 1992, a landmark study appeared from Sweden. A huge investigation, it

enrolled everyone living within 300 meters of Sweden’s high-voltage transmission

line system over a 25-year period. They went far beyond all previous studies in

their e↵orts to measure magnetic fields, calculating the fields that the children

were exposed to at the time of their cancer diagnosis and before. This study

reported an apparently clear association between magnetic field exposure and

childhood leukemia, with a risk ratio for the most highly exposed of nearly 4.

The Swedish government announced it was investigating new policy options,

including whether to move children away from schools near power lines. Surely,

3Add to that the propensity of journals to publish articles that have new and exciting findings, in the
form of statistically significant modeled coe�cients, and you can see that there would be a substantial risk:
that of finding and promoting nonsense findings.

4The program was written, produced and directed by Jon Palfreman, and it
was first broadcast on June 13, 1995. The full transcript can be found here:
http://www.pbs.org/wgbh/pages/frontline/programs/transcripts/1319.html
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here was the proof that power lines were dangerous, the proof that even the

physicists and biological naysayers would have to accept. But three years after

the study was published, the Swedish research no longer looks so unassailable.

This is a copy of the original contractor’s report, which reveals the remarkable

thoroughness of the Swedish team. Unlike the published article, which just

summarizes part of the data, the report shows everything they did in great

detail, all the things they measured and all the comparisons they made.

When scientists saw how many things they had measured – nearly 800 risk ratios

are in the report – they began accusing the Swedes of falling into one of the most

fundamental errors in epidemiology, sometimes called the multiple comparisons

fallacy.

So, according to the Frontline report, the Swedish EMF study regressed the incidence

of nearly 800 possible cancers onto the proximity of its citizens to high-voltage power lines.

In some cases, there appeared to be a positive relationship. These they reported. In other

cases, there was no relationship, and in some the relationship was negative - which would

seem to imply (if you were so silly as to do so) that living near the high voltage lines

actually protected people from cancer. But only the positive relationships were included in

the reports, leading to a false impression that the study had confirmed that proximity to

high-voltage lines causes cancer. Embarrassing to the study authors, to put it mildly.

13.3 Summary

This chapter has focused on multiple regression model building. The keys to that pro-

cess are understanding (a) the critical role of theory and prior research findings in model

specification, and (b) the meaning of the partial regression coe�cients produced by OLS.

When theory is not well-developed, you can thoughtfully employ nested F-tests to evaluate

whether the hypothesized inclusion of an X variable meaningfully contributes to the ex-

planation of Y . But you should avoid reliance on mechanical model-building routines, like

step-wise regression, because these can lead you down into statistical perdition. None of us

want to see that happen!



14
Topics in Multiple Regression

Thus far we have developed the basis for multiple OLS reression using matrix algebra,

delved into the meaning of the estimated partial regression coe�cient, and revisited the

basis for hypothesis testing in OLS. In this chapter we turn to one of the key strengths

of OLS: the robust flexibility of OLS for model specification. First we will discuss how to

include binary variables (referred to as “dummy variables”) as IVs in an OLS model. Next

ww will show you how to build on dummy variables to model their interactions with other

variables in your model. Finally, we will address an alternative way to express the partial

regression coe�cients – using standardized coe�cients – that permit you to compare the

magnitudes of the estimated e↵ects of your IVs even when they are measured on di↵erent

scales. As has been our custom, the examples in this chapter are based on variable from

the tbur data set.
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14.1 Dummy Variables

Thus far, we have considered OLS models that include variables measured on interval level

scales (or, in a pinch and with caution, ordinal scales). That is fine when we have variables

for which we can develop valid and reliable interval (or ordinal) measures. But in the

policy and social sciences we often want to include in our analysis concepts that do not

readily admit to interval measure – including many cases in which a variable has an “on

- o↵”, or “present - absent” quality. In other cases we want to include a concept that is

essentially nominal in nature, such that an observation can be categorized as a subset but

not measured on a “high-low” or “more-less” type of scale. In these instances we can utilize

what is generally known as a dummy variable, but are also referred to as indicator variables,

Boolean variables, or categorical variables.

What the Heck are “Dummy Variables”?

• A dichotomous variable, with values of 0 and 1;

• A value of 1 represents the presence of some quality, a zero its absence;

• The 1s are compared to the 0s, who are known as the ”referent group”;

• Dummy variables are often thought of as a proxy for a qualitative variable.

Dummy variables allow for tests of the di↵erences in overall value of the Y for di↵erent

nominal groups in the data. They are akin to a di↵erence of means test for the groups

identified by the dummy variable. Dummy variables allow for comparisons between an

included (the 1s) and an omitted (the 0s) group. Therefore, it is important to be clear

about which group is omitted and serving as the “comparison category.”

It is often the case that there are more than two groups, represented by a set of nominal

categories. In that case, the variable will consist of two or more dummy variables, with 0/1

codes for each category except the referent group (which is omitted). Several examples of

categorical variables that can be represented on multiple regression with dummy variables

include:

• Experimental treatment and control groups (treatment=1, control=0)
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• Gender (male=1, female=0 or vice versa)

• Race and ethnicity (a dummy for each group, with one omitted referent group)

• Region of residence (dummy for each region with one omitted reference region)

• Type of education (dummy for each type with omitted reference type)

• Religious a�liation (dummy for each religious denomination with omitted reference)

The value of the dummy coe�cient represents the estimated di↵erence in Y between

the dummy group and the reference group. Because the estimated di↵erence is the average

over all of the Y observations, the dummy is best understood as a change in the value

of the intercept (A) for the “dummied” group. This is illustrated in Figure 14.1. In

this illustration, the value of Y is a function of X1 (a continuous variable) and X2 (a

dummy variable). When X2 is equal to 0 (the referent case) the top regression line applies.

When X2 = 1, the value of Y is reduced to the bottom line. In short, X2 has a negative

estimated partial regression coe�cient represented by the di↵erence in height between the

two regression lines.

For a case with multiple nominal categories (e.g., region) the procedure is as follows:

(a) determine which category will be assigned as the referent group; (b) create a dummy

variable for each of the other categories. For example, if you are coding a dummy for four

regions (North, South, East and West), you could designate the South as the referent group.

Then you would create dummies for the other three regions. Then, all observations from

the North would get a value of 1 in the North dummy, and zeros in all others. Similarly,

East and West observations would receive a 1 in their respective dummy category and zeros

elsewhere. The observations from the South region would be given values of zero in all

three categories. The interpretation of the partial regression coe�cients for each of the

three dummies would then be the estimated di↵erence in Y between observations from the

North, East and West and those from the South.

Now let’s walk through an example of an R model with a dummy variable and the

interpretation of that model. We will predict climate change risk using age, education,
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Figure 14.1: Dummy Intercept Variables

income, ideology, and ”gend”, a dummy variable for gender for which 1 = male and 0 =

female.

ols1 <- lm(glbcc_risk ~ age + education + income + ideol + gender,

data = ds.temp)

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income + ideol +

## gender, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.8976 -1.6553 0.1982 1.4814 6.7046

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.9396287313 0.3092105590 35.379 < 0.0000000000000002 ***

## age -0.0040621210 0.0036713524 -1.106 0.26865

## education 0.0665255149 0.0299689664 2.220 0.02653 *

## income -0.0000023716 0.0000009083 -2.611 0.00908 **

## ideol -1.0321209152 0.0299808687 -34.426 < 0.0000000000000002 ***

## gender -0.2221178483 0.1051449213 -2.112 0.03475 *
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.431 on 2265 degrees of freedom

## Multiple R-squared: 0.364,Adjusted R-squared: 0.3626

## F-statistic: 259.3 on 5 and 2265 DF, p-value: < 0.00000000000000022

First note that the inclusion of the dummy variables doe not change the manner in

which you interpret the other (non-dummy) variables in the model; the estimated partial

regression coe�cients for age, education, income and ideology should all be interpreted as

described in the prior chapter. Note that the estimated partial regression coe�cient for

“gender” is negative and statistically significant, indicating that males are less likely to be

concerned about the environment than are females. The estimate indicates that, all else

being equal, the average di↵erence between men and women on the climate change risk

scale is -0.2221178.

14.2 Interaction E↵ects

Dummy variables can also be used to estimate the ways in which the e↵ect of a variable

di↵ers across subsets of cases. These kinds of e↵ects are generally called “interactions”.

When an interaction occurs, the e↵ect of one X is dependent on the value of another.

Typically, an OLS model is additive, where the B’s are added together to predict Y ;

Yi = A+BX1 +BX2 +BX3 +BX4 + Ei.

However, an interaction model has a multiplicative e↵ect where two of the IVs are

multiplied;

Yi = A+BX1 +BX2 +BX3 ⇤BX4 + Ei.

A “slope dummy” is a special kind of interaction in which a dummy variable is interacted

with (multiplied by) a scale (ordinal or higher) variable. Suppose, for example, that you

hypothesized that the e↵ects of political of ideology on perceived risks of climate change

were di↵erent for men and women. Perhaps men are more likely than women to consis-

tently integrate ideology into climate change risk perceptions. In such a case, a dummy

variable (0=women, 1=men) could be interacted with ideology (1=strong liberal, 7=strong
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Figure 14.2: Illustration of Slope Interaction

conservative) to predict levels of perceived risk of climate change (0=no risk, 10=extreme

risk). If your hypothesized interaction was correct, you would observe the kind of pattern

as shown in Figure 14.2.

We can test our hypothesized interaction in R, controlling for the e↵ects of age and

income.

ols2 <- lm(glbcc_risk ~ age + income + education + gender * ideol,

data = ds.temp)

summary(ols2)

##

## Call:

## lm(formula = glbcc_risk ~ age + income + education + gender *

## ideol, data = ds.temp)

##

## Residuals:

## Min 1Q Median 3Q Max

## -8.718 -1.704 0.166 1.468 6.929

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 10.6004885194 0.3296900513 32.153 < 0.0000000000000002 ***
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Figure 14.3: Interaction of Ideology and Gender

## age -0.0041366805 0.0036653120 -1.129 0.25919

## income -0.0000023222 0.0000009069 -2.561 0.01051 *

## education 0.0682885587 0.0299249903 2.282 0.02258 *

## gender 0.5971981026 0.2987398877 1.999 0.04572 *

## ideol -0.9591306050 0.0389448341 -24.628 < 0.0000000000000002 ***

## gender:ideol -0.1750006234 0.0597401590 -2.929 0.00343 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.427 on 2264 degrees of freedom

## Multiple R-squared: 0.3664,Adjusted R-squared: 0.3647

## F-statistic: 218.2 on 6 and 2264 DF, p-value: < 0.00000000000000022

The results indicate a negative and significant interaction e↵ect for gender and ideology.

Consistent with our hypothesis, this means that the e↵ect of ideology on climate change

risk is more pronounced for males than females. Put di↵erently, the slope of ideology is

steeper for males than it is for females. This is shown in Figure 14.3.

In sum, dummy variables add greatly to the flexibility of OLS model specification. They

permit the inclusion of categorical variables, and they allow for testing hypotheses about
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interactions of groups with other IVs within the model. This kind of flexibility is one reason

that OLS models are widely used by social scientists and policy analysts.

14.3 Standardized Regression Coe�cients

In most cases, the various IVs in a model are represented on di↵erent measurement scales.

For example, ideology ranges from 1 to 7, while age ranges from 18 to over 90 years old.

These di↵erent scales make comparing the e↵ects of the various IVs di�cult. If we want to

directly compare the magnitudes of the e↵ects of ideology and age on levels of environmental

concern, we would need to standardize the variables.

One way to standardized variables is to create a Z-score based on each variable. Vari-

ables are standardized in this way as follows:

Zi =
Xi � X̄

sx
(14.1)

where sx is the s.d. of X. Standardizing the variables by creating Z-scores re-scales them

so that each variables has a mean of 0 and a s.d. of 1. Therefore, all variables have same

mean and s.d. It is important to realize (and it is somewhat counter-intuitive) that the

standardized variables retain all of the variation that was in the original measure.

A second way to standardize variables converts the unstandardized B, into a standard-

ized B0.

B0
k = Bk

sk
sY

(14.2)

where Bk is the unstandardized coe�cient of Xk, sk is the s.d. of Xk, and sy is the s.d. of

Y . Standardized regression coe�cients, also known as beta weights or “betas”, are those

we would get if we regress a standardized Y onto standardized X’s.

We can use the scale function in R to calculate a Z score for each of our variables, and

then re-run our model.

stan.ds <- data.frame(scale(ds.temp[, c("glbcc_risk", "age",

"education", "income", "ideol", "gender")]))

ols3 <- lm(glbcc_risk ~ age + education + income + ideol + gender,
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Interpreting Standardized Betas

• The standard deviation change in Y for a one-standard deviation change in X

• All X’s on a equal footing, so can compare the strength of the e↵ects of the X’s

Cannot be used for comparisons across samples

• Variances will di↵er across di↵erent samples

data = stan.ds)

summary(ols3)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income + ideol +

## gender, data = stan.ds)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.92180 -0.54357 0.06509 0.48646 2.20164

##

## Coefficients:

## Estimate Std. Error t value

## (Intercept) 0.0000000000000001685 0.0167531785616065292 0.000

## age -0.0187675384877126518 0.0169621356203379960 -1.106

## education 0.0395657731919867237 0.0178239180606745221 2.220

## income -0.0466922668201090602 0.0178816880127353542 -2.611

## ideol -0.5882792369403809785 0.0170882328807871603 -34.426

## gender -0.0359158695199312886 0.0170016561132237121 -2.112

## Pr(>|t|)

## (Intercept) 1.00000

## age 0.26865

## education 0.02653 *

## income 0.00908 **

## ideol < 0.0000000000000002 ***

## gender 0.03475 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.7984 on 2265 degrees of freedom

## Multiple R-squared: 0.364,Adjusted R-squared: 0.3626
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## F-statistic: 259.3 on 5 and 2265 DF, p-value: < 0.00000000000000022

In addition, we can convert the original unstandardized coe�cient for ideology, to a

standardized coe�cient.

sdX <- sd(ds.temp$ideol, na.rm = TRUE)

sdY <- sd(ds.temp$glbcc_risk, na.rm = TRUE)

ideology.prime <- ols1$coef[5] * (sdX/sdY)

ideology.prime

## ideol

## -0.5882792

Using either approach, standardized coe�cients allow us to compare the magnitudes of

the e↵ects of each of the IVs on Y .

14.4 Summary

This chapter has focused on options in designing and using OLS models. We first covered

the use of dummy variables to capture the e↵ects of group di↵erences on estimates of Y .

We then explained how dummy variables, when interacted with scale variables, can provide

estimates of the di↵erences in how the scale variable a↵ects Y across the di↵erent subgroups

represented by the dummy variable. Finally, we introduced the use of standardized regres-

sion coe�cients as a means to compare the e↵ects of di↵erent Xs on Y when the scales of

the Xs di↵er. Overall, these refinements in the use of OLS permit great flexibility in the

application of regression models to estimation and hypothesis testing in policy analysis and

social science research.



15
The Art of Regression Diagnostics

The previous chapters have focused on the mathematical bases of multiple OLS regression,

the use of partial regression coe�cients, and aspects of model design and construction. This

chapter returns our focus to the assessment of the statistical adequacy of our models, first

by revisiting the key assumptions necessary for OLS to provide the best, linear, unbiased es-

timates (BLUE) of the relationships between our model Xs and Y . We will then discuss the

“art” of diagnosing the results of OLS for potential violations of the key OLS assumptions.

We refer to this diagnostic process as an art because there is no “cook book approach” that

defines precisely what to do when problems are detected. Note that the examples in this

chapter use a subset dataset. This is a smaller data set, n = 500, based on the first 500

observations of the full data set used in prior chapters. We use this smaller dataset in order

to be able to illustrate, graphically, the diagnostic results described in this chapter.

200
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# create a new data frame with the first 500 observations

ds500 <- ds[1:500, c("glbcc_risk", "age", "education", "income",

"ideol")]

ds.small <- na.omit(ds500)

rownames(ds.small) <- seq(length = nrow(ds.small))

# For reference and experimentation here is code to randomly

# draw 500 observations from the subset. tbur.data.small <-

# tbur.data[sample(1:nrow(tbur.data), 500, replace=FALSE),]

15.1 OLS Error Assumptions Revisited

As described in earlier chapters, there is a set of key assumptions that must be met to

justify the use of the t and F distributions in the interpretation of OLS model results.

In particular, these assumptions are necessary for hypotheses tests and the generation of

confidence intervals. When met, the assumptions make OLS more e�cient than any other

unbiased estimator.

There is an additional set of assumptions needed for “correct” model specification. A

ideal model OLS would have the following characteristics:

• Y is a linear function of modeled X variables

• No X’s are omitted that a↵ect E(Y ) and that are correlated with included X’s. Note

that exclusion of other Xs that are related to Y , but are not related to the Xs in the

model, does not critically undermine the model estimates. However, it does reduce

the overall ability to explain Y .

• All X’s in the model a↵ect E(Y ).

Note that if we omit an X that is related to Y and other Xs in the model, we will bias the

estimate of the included Xs. Also consider the problem of including Xs that are related to

other Xs in the model, but not related to Y . This scenario would reduce the independent

variance in X used to predict Y .

Table 15.1 summarizes the various classes of assumption failures and their implications.
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OLS Assumptions

Systematic Component

• Linearity

• Fixed X

Stochastic Component

• Errors have constant variance across the range of X

E(✏2i ) = �2
✏

• Errors are independent of X and other ✏i

E(✏i) ⌘ E(✏|xi) = 0

and

E(✏i) 6= E(✏j) for i 6= j

• Errors are normally distributed

✏i ⇠ N(0,�2
✏ )
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Table 15.1: Summary of OLS Assumption Failures and their Implications

Problem Biased B Biased SE Invalid t/F Hi Var
Non-linear Yes Yes Yes —
Heteroscedasticity No Yes Yes Yes
Autocorrealtion No Yes Yes Yes
Non-normal error No No Yes Yes
Multicollinearity No No No Yes
Omit relevant X Yes Yes Yes —
Irrelevant X No No No Yes
X measurement Error Yes Yes Yes —

When considering the assumptions, our data permit empirical tests for some assump-

tions, but not all. Specifically, we can check for linearity, normality of the residuals, ho-

moscedasticity, data “outliers” and multicollinearity. However, we can’t check for corre-

lation between error and X’s, whether the mean error equals zero, and whether all the

relevant X’s are included.

15.2 OLS Diagnostic Techniques

In this section, we examine the residuals from a multiple regression model for potential

problems. Note that we use a subsample of the first 500 observations, drawn from the

larger “tbur.data” dataset, to permit easier evaluation of the plots of residuals. We begin

with an evaluation of the assumption of the linearity of the relationship between the Xs

and Y , and then evaluate assumptions regarding the error term.

Our multiple regression model predicts survey respondents’ levels of risk perceived of

climate change (Y ) using political ideology, age, household income, and educational achieve-

ment as independent variables (Xs). The results of the regression model as follows:

ols1 <- lm(glbcc_risk ~ age + education + income + ideol, data = ds.small)

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income + ideol, data = ds.small)

##

## Residuals:

## Min 1Q Median 3Q Max
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## -7.1617 -1.7131 -0.0584 1.7216 6.8981

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.0848259959 0.7246993630 16.676 <0.0000000000000002 ***

## age -0.0055585796 0.0084072695 -0.661 0.509

## education -0.0186146680 0.0697901408 -0.267 0.790

## income 0.0000001923 0.0000022269 0.086 0.931

## ideol -1.2235648372 0.0663035792 -18.454 <0.0000000000000002 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.353 on 445 degrees of freedom

## Multiple R-squared: 0.4365,Adjusted R-squared: 0.4315

## F-statistic: 86.19 on 4 and 445 DF, p-value: < 0.00000000000000022

On the basis of the R output, the model appears to be quite reasonable, with a statisti-

cally significant estimated partial regression coe�cient for political ideology. But let’s take

a closer look.

15.2.1 Non-Linearity

One of the most critical assumptions of OLS is that the relationships between variables

are linear in their functional form. We start with a stylized example (a fancy way of

saying we made it up!) of what a linear and nonlinear pattern of residuals would look like.

Figure 15.1a shows an illustration of how the residuals would look with a clearly linear

relationship, and Figure 15.1b illustrates how the the residuals would look with a clearly

non-linear relationship.

Now let’s look at the residuals from our example model. We can check the linear nature

of the relationship between the DV and the IVs in several ways. First we can plot the

residuals by the values of the IVs. We also can add a lowess line to demonstrate the

relationship between each of the IVs and the residuals, and add a line at 0 for comparison.

plot(jitter(ds.small$age), jitter(rstudent(ols1)), main = "Age")

abline(h = 0)

lines(lowess(ds.small$age, rstudent(ols1)), lty = 2, col = "red")

plot(jitter(ds.small$education), jitter(rstudent(ols1)), main = "Education")

abline(h = 0)
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Figure 15.1: Made Up Residual Examples

lines(lowess(ds.small$education, rstudent(ols1)), lty = 2, col = "red")

plot(jitter(ds.small$income), jitter(rstudent(ols1)), main = "Income")

abline(h = 0)

As we can see in Figure 15.2, the plots of residuals by both income and ideology seem to

indicate non-linear relationships. We can check this “ocular impression” by squaring each

term and using the anova function to compare model fit.

ds.small$age2 <- ds.small$age^2

ds.small$edu2 <- ds.small$education^2

ds.small$inc2 <- ds.small$income^2

ds.small$ideology2 <- ds.small$ideol^2

ols2 <- lm(glbcc_risk ~ age + age2 + education + edu2 + income +

inc2 + ideol + ideology2, data = ds.small)

summary(ols2)

##

## Call:

## lm(formula = glbcc_risk ~ age + age2 + education + edu2 + income +

## inc2 + ideol + ideology2, data = ds.small)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.1563 -1.5894 0.0389 1.4898 7.3417

##

## Coefficients:
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Figure 15.2: Checking for Non-Linearity

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.66069872535646 1.93057305147186 5.004 0.000000812 ***

## age 0.02973349791714 0.05734762412523 0.518 0.604385

## age2 -0.00028910659305 0.00050097599702 -0.577 0.564175

## education -0.48137978481400 0.35887879735475 -1.341 0.180499

## edu2 0.05131569933892 0.03722361864679 1.379 0.168723

## income 0.00000285263412 0.00000534134363 0.534 0.593564

## inc2 -0.00000000001131 0.00000000001839 -0.615 0.538966

## ideol -0.05726196851107 0.35319018414228 -0.162 0.871279

## ideology2 -0.13270718319750 0.03964680646295 -3.347 0.000886 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.33 on 441 degrees of freedom

## Multiple R-squared: 0.4528,Adjusted R-squared: 0.4429

## F-statistic: 45.61 on 8 and 441 DF, p-value: < 0.00000000000000022

The model output indicates that ideology may have a non-linear relationships with risk

perceptions of climate change. For ideology, only the squared term is significant, indicating

that levels of perceived risk of climate change decline at an increasing rate for those on the

most conservative end of the scale. Again, this is consistent with the visual inspection of
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the relationship between ideology and the residuals in Figure 15.2. The question remains

whether the introduction of these non-linear (polynomial) terms improves overall model fit.

We can check that with an analysis of variance across the simple model (without polynomial

terms) and the models with the squared terms.

anova(ols1, ols2)

## Analysis of Variance Table

##

## Model 1: glbcc_risk ~ age + education + income + ideol

## Model 2: glbcc_risk ~ age + age2 + education + edu2 + income + inc2 +

## ideol + ideology2

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 445 2464.2

## 2 441 2393.2 4 71.059 3.2736 0.01161 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we can see, the Anova test indicates that including the squared terms improves model

fit, therefore the relationships include nonlinear components.

A final way to check for non-linearity is Ramsey’s Regression Error Specification Test

(RESET). This tests the functional form of the model. Similar to our test using squared

terms, the RESET tests calculates an F statistic that compares the linear model with a

model(s) that raises the IVs to various powers. Specifically, it tests whether there are

statistically significant di↵erences in the R2 of each of the models. Similar to a nested F

test, it is calculated by:

F =

R2
1�R2

0
q

1�R2
1

n�k1

(15.1)

where R2
0 is the R2 of the linear model, R2

1 is the R2 of the polynomial model(s), q is the

number of new regressors, and k1 is the number of IVs in the polynomial model(s). The

null hypothesis is that the functional relationship between the X’s and Y is linear, therefore

the coe�cients of the second and third powers to the IVs are zero. If there is a low p-value

(i.e., if we can reject the null hypothesis), non-linear relationships are suspected. This test

can be run using the resettest function from the lmtest package. Here we are setting the
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IVs to the second and third powers and we are examining the regressor variables.1

library(lmtest)

resettest(ols1, power = 2:3, type = "regressor")

##

## RESET test

##

## data: ols1

## RESET = 2.2752, df1 = 8, df2 = 437, p-value = 0.02157

Again, the test provides evidence that we have a non-linear relationship.

What should we do when we identify a nonlinear relationship between our Y and Xs ?

The first step is to look closely at the bi-variate plots, to try to discern the correct functional

form for each X regressor. If the relationship looks curvilinear, try a polynomial regression

in which you include both X and X2 for the relevant IVs. It may also be the case that

a skewed DV or IV is causing the problem. This is not unusual when, for example, the

income variable plays an important role in the model, and the distribution of income is

skewed upward. In such a case, you can try transforming the skewed variable, using an

appropriate log form.

It is possible that variable transformations won’t su�ce, however. In that case, you

may have no other option by to try non-linear forms of regression. These non-OLS kinds of

models typically use maximal likelihood functions (see the next chapter) to fit the model

to the data. But that takes us considerably beyond the focus of this book.

15.2.2 Non-Constant Variance, or Heteroscedasticity

Recall that OLS requires constant variance because the even spread of residuals is assumed

for both F and t tests. To examine constant variance, we can produce (read as “make up”)

a baseline plot to demonstrate what constant variance in the residuals “should” look like.

As we can see in Figure 15.3a, the residuals are spread evenly and in a seemingly random

fashion, much like the “sneeze plot” discussed in Chapter 10. This is the ideal pattern,

indicating that the residuals do not vary systematically over the range of the predicted

1See the lmtest package documentation for more options and information.
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Figure 15.3: Made Up Residual Examples

value for X. The residuals are homoscedastistic, and thus provide the appropriate basis for

the F and t tests needed for evaluating your hypotheses.

We can also present a clearly heteroscedastistic residual term. In this case the residuals

do vary systematically over the range of X, indicating that the precision of the estimates of

Y will vary considerably over the range of predicted values. Note the distinctive fan shape

in Figure 15.3b, indicating that predictions of Y lose precision as the value of X increases.

The first step in determining whether we have constant variance is to plot the the

residuals by the fitted values for Y , as follows:2

plot(jitter(fitted(ols1)), jitter(residuals(ols1)), xlab = "Fitted",

ylab = "Residuals")

abline(h = 0, col = "red")

Based on the pattern evident in Figure 15.4, the residuals appear to show heteroscedasticity.

We can test for non-constant error using the Breusch-Pagan (aka Cook-Weisberg) test. This

tests the null hypothesis that the error variance is constant, therefore a small p value would

indicate that we have heteroscedasticity. In R we can use the ncvTest function from the car

package.

2Note that we jitter the points to make them easier to see.
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Figure 15.4: Multiple Regression Residuals and Fitted Values

ncvTest(ols1)

## Non-constant Variance Score Test

## Variance formula: ~ fitted.values

## Chisquare = 12.70938 Df = 1 p = 0.0003638269

The non-constant variance test provides confirmation that the residuals from our model are

heteroscedastistic.

What are the implications? Our t-tests for the estimated partial regression coe�cients

assumed constant variance. With the evidence of heteroscedasticity, we conclude that these

tests are unreliable (the precision of our estimates will be greater in some ranges of X than

others).

They are several steps that can be considered when confronted by heteroscedasticity

in the residuals. First, we can consider whether we need to re-specify the model, possibly

because we have some omitted variables. If model re-specification does not correct the

problem, we can use non-OLS regression techniques that include robust estimated standard
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errors. Robust standard errors are appropriate when error variance is unknown. Robust

standard errors do not change the estimate of B, but adjust the estimated standard error

of each coe�cient, SE(B), thus giving more accurate p values. In this example, we draw

on White’s (1980)3 method to calculate robust standard errors.

White uses a heteroskedasticity consistent covariance matrix (hccm) to calculate

standard errors when the error term has non-constant variance. Under the OLS assumption

of constant error variance, the covariance matrix of b is:

V (b) = (X 0X)�1X 0V (y)X(X 0X)�1

where V (y) = �2
eIn, therefore, V (b) = �2

e(X
0X)�1. If the error terms have distinct variances,

a consistent estimator constrains ⌃ to a diagonal matrix of the squared residuals, ⌃ =

diag(�2
1, . . . ,�

2
n) where �

2
i is estimated by e2i . Therefore the hccm estimator is expressed as:

Vhccm(b) = (X 0X)�1X 0diag(e2i , . . . , e
2
n)X(X 0X)�1

We can use the hccm function from the car package to calculate the robust standard

errors for our regression model, predicting perceived environmental risk (Y ) with political

ideology, age, education and income as the X variables.

library(car)

sqrt(diag(hccm(ols1)))

## (Intercept) age education income ideol

## 0.668778725013 0.008030365625 0.069824489564 0.000002320899 0.060039031426

Using the hccm function we can create a function in R that will calculate the robust

standard errors and the subsequent t-values and p-values.

library(car)

robust.se <- function(model) {
s <- summary(model)

wse <- sqrt(diag(hccm(ols1)))

3H White, 1980. ”A Heteroskedasticity-consistent covariance matrix estimator and a direct test for
heteroskedasticity.” Econometrica 48: 817-838.
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t <- model$coefficients/wse

p <- 2 * pnorm(-abs(t))

results <- cbind(model$coefficients, wse, t, p)

dimnames(results) <- dimnames(s$coefficients)

results

}

We can then compare our results with the original simple regression model results.

summary(ols1)

##

## Call:

## lm(formula = glbcc_risk ~ age + education + income + ideol, data = ds.small)

##

## Residuals:

## Min 1Q Median 3Q Max

## -7.1617 -1.7131 -0.0584 1.7216 6.8981

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 12.0848259959 0.7246993630 16.676 <0.0000000000000002 ***

## age -0.0055585796 0.0084072695 -0.661 0.509

## education -0.0186146680 0.0697901408 -0.267 0.790

## income 0.0000001923 0.0000022269 0.086 0.931

## ideol -1.2235648372 0.0663035792 -18.454 <0.0000000000000002 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2.353 on 445 degrees of freedom

## Multiple R-squared: 0.4365,Adjusted R-squared: 0.4315

## F-statistic: 86.19 on 4 and 445 DF, p-value: < 0.00000000000000022

robust.se(ols1)

## Estimate Std. Error t value

## (Intercept) 12.0848259958670 0.668778725013 18.06999168

## age -0.0055585796372 0.008030365625 -0.69219509

## education -0.0186146679570 0.069824489564 -0.26659225

## income 0.0000001922905 0.000002320899 0.08285175

## ideol -1.2235648372311 0.060039031426 -20.37948994

## Pr(>|t|)

## (Intercept) 0.00000000000000000000000000000000000000000000000000000000000000000000000054921988962793404323143119

## age 0.48881482326776815039437451559933833777904510498046875000000000000000000000000000000000000000000000

## education 0.78978312137982031870819810137618333101272583007812500000000000000000000000000000000000000000000000

## income 0.93396941638148500697269582815351895987987518310546875000000000000000000000000000000000000000000000

## ideol 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002542911



213 CHAPTER 15. THE ART OF REGRESSION DIAGNOSTICS

As we see the estimated B’s remain the same, but the estimated standard errors, t-values

and p-values are adjusted to reflect the robust estimation. Despite these adjustments, the

results of the hypothesis test remain unchanged.

It is important to note that, while robust estimators can help atone for heteroscedasticity

in your models, their use should not be seen as an alternative to careful model construction.

The first step should always be to evaluate your model specification and functional form

(e.g., the use of polynomials, inclusion of relevant variables), as well as possible measurement

error, before resorting to robust estimation.

15.2.3 Independence of E

As noted above, we cannot test for the assumption that the error term E is independent

of the X’s. However we can test to see whether the error terms, Ei, are correlated with

each other. One of the assumptions of OLS is that E(✏i) 6= E(✏j) for i 6= j. When

there is a relationship between the residuals, this is referred to as serial correlation or

autocorrelation. Autocorrelation is most likely to occur with time-series data, however it

can occur with cross-sectional data as well. To test for autocorrelation we use the Durbin-

Watson, d, test statistic. The d statistic is expressed as:

d =

Pn
i=2(Ei � Ei�1)2Pn

i=1E
2
i

(15.2)

The d statistics ranges from 0 to 4; 0  d  4. A 0 indicates perfect positive correction,

4 indicates perfect negative correlation, and a 2 indicates no autocorrelation. Therefore, we

look for values of d that are close to 2.

We can use the dwtest function in the lmtest package to test the null hypothesis that

autocorrelation is 0, meaning that we don’t have autocorrelation.

library(lmtest)

dwtest(ols1)

##

## Durbin-Watson test

##

## data: ols1
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## DW = 1.9008, p-value = 0.1441

## alternative hypothesis: true autocorrelation is greater than 0

Generally, a Durbin-Watson result between 1.5 and 2.5 indicates, that any autocorrelation

in the data will not have a discernible e↵ect on your estimates. The test for our example

model indicates that we do not have an autocorrelation problem with this model. If we did

find autocorrelation, we would need to respecify our model to account for (or estimate) the

relationships among the error terms. In time series analysis, where observations are taken

sequentially over time, we would typically include a “lag” term (in which the value of Y

in period t is predicted by the value of Y in period t � 1). This is a typical AR1 model,

which would be discussed in a time-series analysis course. The entangled residuals can,

of course, be much more complex, and require more specialized models (e.g., ARIMA or

vector-autoregression models). These approaches are beyond the scope of this text.

15.2.4 Normality of the Residuals

This is a critical assumption for OLS because (along with homoscedasticity) it is required

for hypothesis tests and confidence interval estimation. It is particularly sensitive with

small samples. Note that non-normality will increase sample-to-sample variation in model

estimates.

To examine normality of the residuals we first plot the residuals and then run what is

known as the Shapiro-Wilk normality test. Here we run the test on our example model,

and plot the residuals.

hist(ols1$residuals)

library(sm)

sm.density(ols1$residuals, model = "Normal")

boxplot(ols1$residuals)
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(d) QQ Plot

Figure 15.5: Multiple Regression Residuals

qqnorm(ols1$residuals, ylab = "Residuals")

qqline(ols1$residuals)

It appears from the graphs, on the basis of an “ocular test”, that the residuals are

potentially normally distributed. Therefore, to perform a statistical test for non-normality,

we use the Shapiro-Wilk, W , test statistic. W is expressed as:

W =
(
Pn

i=1 aix(i))
2

Pn
i=1(xi � x̄)2

(15.3)

where x(i) are the ordered sample values and ai are constants generated from the means,

variances, and covariances of the order statistics from a normal distribution. The Shapiro-
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Wilk tests the null hypothesis that the residuals are normally distributed. To perform this

test in R, use the shapiro.test function.

shapiro.test(ols1$residuals)

##

## Shapiro-Wilk normality test

##

## data: ols1$residuals

## W = 0.99566, p-value = 0.2485

Since we have a relatively large p value we fail to reject the null hypothesis of normally

distributed errors. Our residuals are, accoridng to our visual examination and this test,

normally distributed.

To adjust for non-normal errors we can use robust estimators, as discussed earlier with

respect to heteroscedasticity. Robust estimators correct for non-normality, but produce

estimated standard errors of the partial regression coe�cients that tend to be larger, and

hence produce less model precision. Other possible steps, where warranted, include transfor-

mation of variables that may have non-linear relationships with Y . Typically this involves

taking log transformations of the suspect variables.

15.2.5 Outliers, Leverage, and Influence

Apart from the distributional behavior of residuals, it is also important to examine the

residuals for “unusual” observations. Unusual observations in the data may be cases of mis-

coding (e.g., �99), mis-measurement, or perhaps special cases that require di↵erent kinds

of treatment in the model. All of these may appear as unusual cases that are observed

in your diagnostic analysis. The unusual cases that we should be most concerned about

are regression outliers, that are potentially influential and that are suspect because of their

di↵erences from other cases.

Why should we worry about outliers? Recall that OLS minimizes the sum of the squared

residuals for a model. Unusual cases – which by definition will have large outliers – have the

potential to substantially influence our estimates of B because their already large residuals

are squared. A large outlier can thus result in OLS estimates that change the model intercept
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and slope.

There are several steps that can help identify outliers and their e↵ects on your model.

The first – and most obvious – is to examine the range of values in your Y and X variables.

Do they fall within the appropriate ranges?

This step – too often omitted even by experienced analysts – can help you avoid often

agonizing mis-steps that result from inclusion of miscoded data or missing values (e.g.,

“-99”) that need to be recoded before running your model. If you fail to identify these

problems, they will show up in your residual analysis as outliers. But it is much easier to

catch the problem before you run your model.

But sometimes we find outliers for reasons other than mis-codes, and identification

requires careful examination of your residuals. First we discuss how to find outliers –

unusual values of Y – and leverage – unusual values of X – since they are closely related.

Outliers

A regression outlier is an observation that has an unusual value on the dependent variable

Y , conditioned on the values of the independent variables, X. Note that an outlier can have

a large residual value, but not necessarily a↵ect the estimated slope or intercept. Below we

examine a few ways to identify potential outliers, and their e↵ects on our estimated slope

coe�cients.

Using the regression example, we first plot the residuals to look for any possible outliers.

In this plot we are plotting the raw residuals for each of the 500 observations. This is shown

in Figure 15.6.

plot(ols1$residuals, ylab = "Residuals")

abline(h = 0, col = "red")

dev.off()

Next, we can sort the residuals and find the case with the largest absolute value and

examine that case.

# Sort the residuals

output.1 <- sort(ols1$residuals) # smallest first
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Figure 15.6: Index Plot of Residuals: Multiple Regression

output.2 <- sort(ols1$residuals, decreasing = TRUE) # largest first

# The head function return the top results, the argument 1

# returns 1 variable only

head(output.1, 1) # smallest residual absolute value

## 298

## -7.161695

head(output.2, 1) # largest residual absolute value

## 94

## 6.898077

Then, we can examine the X and Y values of those cases on key variables. Here we

examine the values across all independent variables in the model.

ds.small[c(298, 94), c("age", "education", "income", "ideol",

"glbcc_risk")] # [c(row numbers),c(column numbers)]

## age education income ideol glbcc_risk

## 298 69 6 100000 2 2
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## 94 55 7 94000 7 10

By examining the case of 298, we can see that this is outlier because the observed values

of Y are far from what would be expected, given the values of X. A wealthy older liberal

would most likely rate climate change as riskier than a 2. In case 94, a strong conservaitice

rates climate change risk at the lowest possible value. This observation, while not consistent

with the estimated relationship between ideology and environmental concern, is certainly

not implausible. But the unusual appearance of a case with a strong conservative leaning,

and high risk of cliamte change results in a large residual.

What we really want to know is: does any particular case substantially change the

regression results? If a case substantively change the results than it is said to have influence.

Individual cases can be outliers, but still be influential. Note that DFBETAS are case

statistics, therefore a DFBETA value will be calculated for each variable for each case.

DFBETAS

DFBETAS measure the influence of case i on the j estimated coe�cients. Specifically, it

asks by how many standard errors does Bj change when case i is removed DFBETAS are

expressed as:

DFBETASij =
Bj(�i) �Bj

SE(Bj)
(15.4)

Note that if DFBETAS > 0, then case i pulls Bj up, and if DFBETAS < 0, then case i pulls

Bj down. In general, if |DFBETASij | > 2p
n
then these cases warrant further examination.

Note that this approach gets the top 5% of influential cases, given the sample size. For both

simple (bi-variate) and multiple regression models the DFBETA cut-o↵s can be calculated

in R.

df <- 2/sqrt(500)

df

## [1] 0.08944272

In this case, if |DFBETAS| > 0.0894427 then they can be examined for possible influence.

Note, however, than in large datasets this may prove to be di�cult, so you should examine
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the largest DFBETAS first. In our example, we will look only at the largest 5 DFBETAS.

To calculate the DFBETAS we use the dfbetas function. Then we examine the DF-

BETA values for the first five rows of our data.

df.ols1 <- dfbetas(ols1)

df.ols1[1:5, ]

## (Intercept) age education income ideol

## 1 -0.004396485 0.005554545 0.01043817 -0.01548697 -0.005616679

## 2 0.046302381 -0.007569305 -0.02671961 -0.01401653 -0.042323468

## 3 -0.002896270 0.018301623 -0.01946054 0.02534233 -0.023111519

## 4 -0.072106074 0.060263914 0.02966501 0.01243482 0.015464937

## 5 -0.057608817 -0.005345142 -0.04948456 0.06456577 0.134103149

We can then plot the DFBETAS for each of the IVs in our regression models, and

create lines for ±0.089. Figure 15.7 shows the DFBETAS for each variable in the multiple

regression model.

par(mfrow = c(2, 2))

plot(df.ols1[, 2], ylab = "dfbeta(Age)")

abline(h = c(2/sqrt(500), -2/sqrt(500)), lty = 2, col = "red")

plot(df.ols1[, 3], ylab = "dfbeta(Education)")

abline(h = c(2/sqrt(500), -2/sqrt(500)), lty = 2, col = "red")

plot(df.ols1[, 4], ylab = "dfbeta(Income)")

abline(h = c(2/sqrt(500), -2/sqrt(500)), lty = 2, col = "red")

plot(df.ols1[, 5], ylab = "dfbeta(Ideology)")

abline(h = c(2/sqrt(500), -2/sqrt(500)), lty = 2, col = "red")

dev.off()

As can be seen, several cases seem to exceed the 0.089 cut-o↵. Next we find the case

with the highest absolute DFBETA value, and examine the X and Y values for that case.

################### Return Absolute Value dfbeta

names(df.ols1) <- row.names(ds.small)

df.ols1[abs(df.ols1) == max(abs(df.ols1))]

## <NA>

## 0.4112137

# a observation name may not be returned - let's figure out

# the observation

# convert df.osl1 from matrix to dataframe

class(df.ols1)
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Figure 15.7: Index Plot of DFBETAS: Multiple Regression

## [1] "matrix"

df2.ols1 <- as.data.frame(df.ols1)

# add an id variable

df2.ols1$id <- 1:450 # generate a new observation number

# head function returns one value, based on ,1 syntax -

# head(data_set[with(data_set, order(+/-variable)), ], 1)

# Ideology

head(df2.ols1[with(df2.ols1, order(-ideol)), ], 1) # order declining

## (Intercept) age education income ideol id

## 298 -0.001083869 -0.1276632 -0.04252348 -0.07591519 0.2438799 298

head(df2.ols1[with(df2.ols1, order(+ideol)), ], 1) # order increasing

## (Intercept) age education income ideol id

## 131 -0.0477082 0.1279219 -0.03641922 0.04291471 -0.09833372 131

# Income

head(df2.ols1[with(df2.ols1, order(-income)), ], 1) # order declining



15.2. OLS DIAGNOSTIC TECHNIQUES 222

## (Intercept) age education income ideol id

## 445 -0.05137992 -0.01514244 -0.009938873 0.4112137 -0.03873292 445

head(df2.ols1[with(df2.ols1, order(+income)), ], 1) # order increasing

## (Intercept) age education income ideol id

## 254 0.06766781 -0.06611698 0.08166577 -0.4001515 0.04501527 254

# Age

head(df2.ols1[with(df2.ols1, order(-age)), ], 1) # order declining

## (Intercept) age education income ideol id

## 78 -0.2146905 0.1786665 0.04131316 -0.01755352 0.1390403 78

head(df2.ols1[with(df2.ols1, order(+age)), ], 1) # order increasing

## (Intercept) age education income ideol id

## 420 0.183455 -0.2193257 -0.1906404 0.02477437 0.1832784 420

# Education - we find the amount - ID 308 for edu

head(df2.ols1[with(df2.ols1, order(-education)), ], 1) # order declining

## (Intercept) age education income ideol id

## 308 -0.1751724 0.06071469 0.1813973 -0.05557382 0.09717012 308

head(df2.ols1[with(df2.ols1, order(+education)), ], 1) # order increasing

## (Intercept) age education income ideol id

## 95 0.05091437 0.1062966 -0.2033285 -0.02741242 -0.005880984 95

# View the output

df.ols1[abs(df.ols1) == max(abs(df.ols1))]

## <NA>

## 0.4112137

df.ols1[c(308), ] # dfbeta number is observation 131 - education

## (Intercept) age education income ideol

## -0.17517243 0.06071469 0.18139726 -0.05557382 0.09717012

ds.small[c(308), c("age", "education", "income", "ideol", "glbcc_risk")]

## age education income ideol glbcc_risk

## 308 51 2 81000 3 4

Note that this “severe outlier” is indeed an interesting case – a 51 year old with a high

school diploma, relatively high income, who is slightly liberal and perceivs low risk for
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climate change. But this outlier is not implausible, and therefore we can be reassured that

– even in this most extreme case – we do not have problematic outliers.

So, having explored the residuals from our model, we found a number of outliers, some

with significant influence on our model results. In inspection of the most extreme outlier

gave us no cause to worry that the observations were inappropriately distorting our model

results. But what should you do if you find puzzling, implausible observations that may

influence your model?

First, as always, evaluate your theory. Is it possible that the case represented a class

of observations that behave systematically di↵erently than the other cases? This is of

particular concern if you have a cluster of cases, all determined to be outliers, that have

similar properties. You may need to modify your theory to account for this subgroup.

One such example can be found in the study of American politics, wherein the Southern

states routinely appeared to behave di↵erently than others. Most careful e↵orts to model

state (and individual) political behavior account for the unique aspects of southern politics,

in ways ranging from the addition of dummy variables to interaction terms in regression

models.

How would you determine whether the model (and theory) should be revised? Look

closely at the deviant cases – what can you learn from them? Try experiments by running

the models with controls – dummies and interaction terms. What e↵ects do you observe? If

your results suggest theoretical revisions, you will need to collect new data to test your new

hypotheses. Remember: In empirical studies, you need to keep your discoveries distinct

from your hypothesis tests.

As a last resort, if you have troubling outliers for which you cannot account in theory,

you might decide omit those observations from your model and re-run your analyses. We

do not recommend this course of action, because it can appear to be a case of “jiggering

the data” to get the results you want.

15.2.6 Multicollinearity

Multicollinearity is the correlation of the IVs in the model. Note that if any Xi is a linear

combination of other X’s in the model, Bi cannot be estimated. As discussed previously,
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the partial regression coe�cient strips both the X’s and Y of the overlapping covariation

by regressing one X variable on all other X variables:

EXi|Xj
= Xi � X̂i

X̂i = A+BXj

If an X is perfectly predicted by the other X’s, then:

EXi|Xj
= 0

and

R2
k = 1

where R2
k is the R2 obtained from regressing all Xk on all other X’s.

We rarely find perfect multicollinearity in practice, but high multicollinearity results in

loss of statistical resolution. Such as:

• Large standard errors

• Low t-stats, high p-values

– This erodes the resolution of our hypothesis tests

• Enormous sensitivity to small changes in:

– Data

– Model specification

You should always check the correlations between the IVs during the model building

process. This is a way to quickly identify possible multicollinearity issues.

cor(data.frame(na.omit(subset(ds, select = c("age", "education",

"income", "ideol")))))

## age education income ideol

## age 1.00000000 -0.06370223 -0.11853753 0.08535126

## education -0.06370223 1.00000000 0.30129917 -0.13770584

## income -0.11853753 0.30129917 1.00000000 0.04147114

## ideol 0.08535126 -0.13770584 0.04147114 1.00000000
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There do not appear to be any variables that are so highly correlated that it would result

in problems with multicolinearity.

We will discuss two more formal ways to check for multicollinearity. First, is the Vari-

ance Inflation Factor (VIF), and the second is tolerance. The VIF is the degree to

which the variance of other coe�cients is increased due to the inclusion of the specified

variable. It is expressed as:

VIF =
1

1�R2
k

(15.5)

Note that as R2
k increases the variance of Xk increases. A general rule of thumb is that

VIF > 5 is problematic.

Another, and related, way to measure multicollinearity is tolerance. The tolerance of

any X, Xk, is the proportion of its variance not shared with the other X’s.

tolerance = 1�R2
k (15.6)

Note that this is mathematically equivalent to 1
V IF . The rule of thumb for acceptable

tolerance is partly a function of n-size:

• If n < 50, tolerance should exceed 0.7

• If n < 300, tolerance should exceed 0.5

• If n < 600, tolerance should exceed 0.3

• If n < 1000, tolerance should exceed 0.1

Both VIF and tolerance can be calculated in R.

vif(ols1)

## age education income ideol

## 1.024094 1.098383 1.101733 1.009105

1/vif(ols1)

## age education income ideol

## 0.9764731 0.9104295 0.9076611 0.9909775
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Note that, for our example model, we are well within acceptable limits on both VIF and

tolerance.

If multicollinearity is suspected, what can you do? One option is to drop one of the

highly co-linear variables. However, this may result in model mis-specification. As with

other modeling considerations, you must use theory as a guide. A second option would be

to add new data, thereby lessening the threat posed by multicolinearity. A third option

would be to obtain data from specialized samples that maximize independent variation in

the collinear variables (e.g., elite samples may disentangle the e↵ects of income, education,

and other SES-related variables).

Yet another strategy involves reconsidering why your data are so highly correlated.

It may be that your measures are in fact di↵erent “indicators” of the same underlying

theoretical concept. This can happen, for example, when you measure sets of attitudes that

are all influenced by a more general attitude or belief system. In such a case, data scaling is

a promising option. This can be accomplished by building an additive scale, or using various

scaling options in R. Another approach would be to use techniques such as factor analysis

to tease out the underlying (or “latent”) variables represented by your indicator variables.

Indeed, the combination of factor analysis and regression modeling is an important and

widely used approach, referred to as structural equation modeling (SEM). But that is a

topic for another book and another course.

15.3 Summary

In this chapter we have described how you can approach the diagnostic stage for OLS

multiple regression analysis. We described the key threats to the necessary assumptions of

OLS, and listed them and their e↵ects in Table 15.1. But we also noted that diagnostics

are more of an art than a simple recipe. In this business you will learn as you go, both in

the analysis of a particular model (or set of models) and in the development of your own

approach and procedures. We wish you well, Grasshopper!
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16
Logit Regression

Logit regression is a part of a larger class of generalized linear models (GLM). In this chapter

we first briefly discuss GLMs, and then move on into a more in-depth discussion of logistic

regression. Once again, the examples in this chapter use the tbur data set.

16.1 Generalized Linear Models

GLMs provide a modeling structure that can relate a linear model to response variables

that do not have normal distributions. The distribution of Y is assumed to belong to one

of an exponential family of distributions, including the Gaussian, Binomial, and Poisson

distributions. GLMs are fit to the data by the method of maximum likelihood.

Like OLS, GLMs contain a stochastic component and a systematic component. The

228
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Figure 16.1: Exponential “families” of GLM Models

systematic component is expressed as:

⌘ = ↵+ �1Xi1 + �2Xi2 + . . .+ �kXik (16.1)

However, GLMs also contain a “link function” that relates the response variable, Yi, to the

systematic linear component, ⌘. Table 16.1 shows the major exponential “families” of GLM

models, and indicates the kinds of link functions involved in each. Note that OLS models

would fall within the Gaussian family. In the next section we focus on the binomial family,

and on logit estimation in particular.

16.2 Logit Estimation

Logit is used when predicting limited dependent variables, specifically those in which Y is

represented by 0’s and 1’s. By virtue of the binary dependent variable, these models do not

meet the key assumptions of OLS. Logit uses maximum likelihood estimation (MLE), which

is a counterpart to minimizing least squares. MLE identifies the probability of obtaining

the sample as a function of the model parameters (i.e., the X’s). It answers the question,

what are the values for B’s that make the sample most likely? In other words, the likelihood

function expresses the probability of obtaining the observed data as a function of the model

parameters. Estimates of A and B are based on maximizing a likelihood function of the

observed Y values. In logit estimation we seek P (Y = 1), the probability that Y = 1. The

odds that Y = 1 is expressed as:
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O(Y = 1) =
P (Y = 1)

1� P (Y = 1)

Logits, L, are the natural logarithm of the odds:

L = logeO

= loge
P

1� P

They can range from �1, when P = 0, to 1, when P = 1. L is the estimated systematic

linear component:

L = A+B1Xi1 + . . .+BkXik

By reversing the logit we can obtain the predicted probability that Y = 1 for each of the i

observations.

Pi =
1

1� e�Li
(16.2)

where e = 2.71828 . . ., the base number of natural logarithms. Note that L is a linear

function, but P is a non-linear S-shaped function as shown in Figure 16.2. Also note,

that Equation 16.2 is the link function that relates the linear component to the non-linear

response variable.

In more formal terms, each observation, i, contributes to the likelihood function by Pi

if Yi = 1, and by 1� Pi if Yi = 0. This is defined as:

P Yi
i (1� Pi)

1�Yi

The likelihood function is the product (multiplication) of all these individual contributions:

` =
Y

P Yi
i (1� Pi)

1�Yi
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Figure 16.2: Predicted Probability as a Logit Function of X

The likelihood function is the largest for the model that best predicts Y = 1 or Y = 0,

therefore when the predicted value of Y is correct and close to 1 or 0, the likelihood function

is maximized.

To estimate the model parameters, we seek to maximize the log of the likelihood function.

We use the log because it converts the multiplication into addition, and is therefore easier

to calculate. The log likelihood is:

loge` =
nX

i=1

[YilogePi + (1� Yi)loge(1� Pi)]

The solution involves taking the first derivative of the log likelihood with respect to each

of the B’s, setting them to zero, and solving the simultaneous equation. The solution of the

equation isn’t linear, so it can’t be solved directly. Instead, it’s solved through a sequential

estimation process that looks for successively better “fits” of the model.

For the most part, the key assumptions required for logit models are analogous to those

required for OLS. The key di↵erences are that (a) we do not assume a linear relationship
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between the Xs and Y , and (b) we do not assume normally distributed, homoscedastistic

residuals. The key assumptions that are retained are shown below.

Logit Assumptions and Qualifiers

• The model is correctly specified

– True conditional probabilities are logistic function of the X’s

– No important X’s omitted; no extraneous X’s included

– No significant measurement error

• The cases are independent

• No X is a linear function of other X’s

– Increased multicollinearity leads to greater imprecision

• Influential cases can bias estimates

• Sample size: n� k � 1 should exceed 100

– Independent covariation between the Xs and Y is critical

The following example uses demographic information to predict beliefs about anthro-

pogenic climate change.

logit1 <- glm(glbcc ~ age + gender + education + income, data = ds.temp,

family = binomial())

summary(logit1)

##

## Call:

## glm(formula = glbcc ~ age + gender + education + income, family = binomial(),

## data = ds.temp)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.707 -1.250 0.880 1.053 1.578

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.4431552007 0.2344093710 1.891 0.058689 .

## age -0.0107882966 0.0031157929 -3.462 0.000535 ***

## gender -0.3131329979 0.0880376089 -3.557 0.000375 ***
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## education 0.1580178789 0.0251302944 6.288 0.000000000322 ***

## income -0.0000023799 0.0000008013 -2.970 0.002977 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 3114.5 on 2281 degrees of freedom

## Residual deviance: 3047.4 on 2277 degrees of freedom

## AIC: 3057.4

##

## Number of Fisher Scoring iterations: 4

As we can see age and gender are both negative and statistically significant predictors of

climate change opinion. Below we discuss logit hypothesis tests, goodness of fit, and how

to interpret the logit coe�cients.

16.2.1 Logit Hypothesis Tests

In some ways, hypothesis testing with logit is quite similar to that using OLS. The same

use of p-values is employed, however they di↵er in how they are derived. The logit analysis

makes use of the Wald z-statistic, which is similar to the t-stat in OLS. The Wald z score

compares the estimated coe�cient to the asymptotic standard error, (aka the normal dis-

tribution). The p-value is derived from the asymptotic standard-normal distribution. Each

estimated coe�cient has a Wald z-score and a p-value that shows the probability that the

null hypothesis is correct, given the data.

z =
Bj

SE(Bj)
(16.3)

16.2.2 Goodness of Fit

Given that logit regression is estimated using MLE, the goodness-of-fit statistics di↵er from

those of OLS. Here we examine three measures of fit: log-likelihood, the pseudo R2, and

the Akaike information criteria (AIC).
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Log-Likelihood

To test for the overall null hypothesis that all B’s are equal to zero, similar to an overall

F -test in OLS, we can compare the log-likelihood of the demographic model with 4 IVs to

the initial “null model” which includes only the intercept term. In general, a smaller log-

likelihood indicates a better fit. Using the deviance statistic G2 (aka the likelihood-ratio

test statistic), we can determine whether the di↵erence is statistically significant. G2 is

expressed as:

G2 = 2(logeL1 � logeL0) (16.4)

where L1 is the demographic model and L0 is the null model. The G2 test statistic takes

the di↵erence between the log likelihoods of the two models and compares that to a �2

distribution with q degrees of freedom, where q is the di↵erence in the number of IVs. We

can calculate this in R. First, we run a null model predicting belief that greenhouse gases

are causing the climate to change, using only the intercept:

logit0 <- glm(glbcc ~ 1, data = ds.temp)

summary(logit0)

##

## Call:

## glm(formula = glbcc ~ 1, data = ds.temp)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.5732 -0.5732 0.4268 0.4268 0.4268

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.57318 0.01036 55.35 <0.0000000000000002 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 0.2447517)

##

## Null deviance: 558.28 on 2281 degrees of freedom

## Residual deviance: 558.28 on 2281 degrees of freedom

## AIC: 3267.1

##
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## Number of Fisher Scoring iterations: 2

We then calculate the log likelihood for the null model,

logeL0 (16.5)

logLik(logit0)

## 'log Lik.' -1631.548 (df=2)

Next, we calculate the log likelihood for the demographic model,

logeL0 (16.6)

Recall that we generated this model (dubbed “logit1”) earlier:

logLik(logit1)

## 'log Lik.' -1523.724 (df=5)

Finally, we calculate the G statistic and perform the chi-square test for statistical sig-

nificance:

G <- 2 * (-1523 - (-1631))

G

## [1] 216

pchisq(G, df = 3, lower.tail = FALSE)

## [1] 0.0000000000000000000000000000000000000000000001470144

We can see by the very low p-value that the demographic model o↵ers a significant im-

provement in fit.

The same approach can be used to compare nested models, similar to nested F -tests in

OLS. For example, we can include ideology in the model and use the anova function to see

if the ideology variable improves model fit. Note that we specify the �2 test.
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logit2 <- glm(glbcc ~ age + gender + education + income + ideol,

family = binomial(), data = ds.temp)

summary(logit2)

##

## Call:

## glm(formula = glbcc ~ age + gender + education + income + ideol,

## family = binomial(), data = ds.temp)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.6661 -0.8939 0.3427 0.8324 2.0212

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 4.0545788430 0.3210639034 12.629 < 0.0000000000000002 ***

## age -0.0042866683 0.0036304540 -1.181 0.237701

## gender -0.2044012213 0.1022959122 -1.998 0.045702 *

## education 0.1009422741 0.0293429371 3.440 0.000582 ***

## income -0.0000010425 0.0000008939 -1.166 0.243485

## ideol -0.7900118618 0.0376321895 -20.993 < 0.0000000000000002 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 3114.5 on 2281 degrees of freedom

## Residual deviance: 2404.0 on 2276 degrees of freedom

## AIC: 2416

##

## Number of Fisher Scoring iterations: 4

anova(logit1, logit2, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: glbcc ~ age + gender + education + income

## Model 2: glbcc ~ age + gender + education + income + ideol

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 2277 3047.4

## 2 2276 2404.0 1 643.45 < 0.00000000000000022 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As we can see, adding ideology significantly improves the model.
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Pseudo R2

A measure that is equivalent to the R2 in OLS does not exist for logit. Remember that

explaining variance in Y is not the goal of MLE. However, a “pseudo” R2 measure exists

that compares the residual deviance of the null model with that of the full model. Like

the R2 measure, pseudo R2 ranges from 0 to 1 with values closer to 1 indicating improved

model fit.

Deviance is analogous to the residual sum of squares for a linear model. It is expressed

as:

deviance = �2(logeL) (16.7)

It is simply the log-likelihood of the model multiplied by a �2. The pseudo R2 is 1 minus

the ratio of the deviance of the full model L1 to the deviance of the null model L0:

pseudoR2 = 1� �2(logeL1)

�2(logeL0)
(16.8)

This can be calculated in R using the full model with ideology.

pseudoR2 <- 1 - (logit2$deviance/logit2$null.deviance)

pseudoR2

## [1] 0.2281165

The pseudo R2 of the model is 0.2281165. Note that the 0.2281165 is only an approximation

of explained variance, and should be used in combination with other measures of fit such

as AIC.

Akaike Information Criteria

Another way to examine goodness-of-fit is the Akaike information criteria (AIC). Like the

adjusted R2 for OLS, the AIC takes into account the parsimony of the model by penalizing

for the number of parameters. But AIC is useful only in a comparative manner – either

with the null model or an alternative model. It does not purport to describe the percent of

variance in Y accounted for, as does the pseudo R2.
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AIC is defined as -2 times the residual deviance of the model plus two times the number

of parameters; k IVs plus the intercept:

AIC = �2(logeL) + 2(k + 1) (16.9)

Note that smaller values are indicative of a better fit. The AIC is most useful when com-

paring the fit of alternative (not necessarily nested) models. In R, AIC is given as part of

the summary output for a glm object, but we can also calculate it and verify.

aic.logit2 <- logit2$deviance + 2 * 6

aic.logit2

## [1] 2416.002

logit2$aic

## [1] 2416.002

16.2.3 Interpreting Logits

The logits, L, are logged odds, and therefore the coe�cients that are produced must be

interpreted as logged odds. This means that for each unit change in ideology the predicted

logged odds of believing climate change has an anthropogenic cause decrease by -0.7900119.

This interpretation, through mathematically straightforward, is not terribly informative.

Below we discuss two ways to make the interpretation of logit analysis more intuitive.

Calculate Odds

Logits can be used to directly calculate odds by taking the antilog of any of the coe�cients:

antilog = eB

For example, using ideology:

exp(logit2$coef[6])
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## ideol

## 0.4538394

Therefore, for each 1-unit increase in the ideology scale (i.e., becoming more conservative)

the odds of believing that climate change is human caused decrease by 0.4538394.

Predicted Probabilities

The most straightforward way to interpret logits is to Equation 16.2.3. To calculate the

e↵ect of a particular independent variable, Xi, on the probability of Y = 1, set all Xj ’s at

their means, then calculate:

P̂ =
1

1 + e�L̂

We can then evaluate the change in predicted probabilities that Y=1 across the range of

values in Xi.

This procedure can be demonstrated in a two steps. First, calculate L holding all the

variables except ideology at their mean. Second, calculate the predicted probabilities for

each level of ideology. The first ten rows of the data are then shown.

L <- logit2$coef[1] + logit2$coef[2] * mean(ds.temp$age) + logit2$coef[3] *

mean(ds.temp$gender) + logit2$coef[4] * mean(ds.temp$education) +

logit2$coef[5] * mean(ds.temp$income) + logit2$coef[6] *

(ds.temp$ideol)

P <- 1/(1 + exp(-L))

C <- cbind(ds.temp$ideol, L, P)

C[1:10, ]

## L P

## [1,] 6 -0.5867935 0.3573709

## [2,] 3 1.7832421 0.8560967

## [3,] 6 -0.5867935 0.3573709

## [4,] 4 0.9932303 0.7297255

## [5,] 4 0.9932303 0.7297255

## [6,] 2 2.5732540 0.9291203

## [7,] 4 0.9932303 0.7297255

## [8,] 7 -1.3768053 0.2015226

## [9,] 3 1.7832421 0.8560967

## [10,] 7 -1.3768053 0.2015226
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Figure 16.3: Predicted Probability of believing that Greenhouse Gases cause Climate
Change by Ideology

The output shows, for each case, the ideology measure for the respondent followed by

the values for the logit (L) and the estimated probability (p) that the individual believes

man-made greenhouse gasses are causing climate change. We can also graph the results,

with 95% confidence intervals. This is shown in Figure 16.3.

data <- data.frame(age = mean(ds.temp$age), gender = mean(ds.temp$gender),

education = mean(ds.temp$education), income = mean(ds.temp$income),

ideol = 1:7)

preds <- predict(logit2, newdata = data, se.fit = T, type = "link")

lower <- plogis(with(preds, fit - 2 * se.fit))

upper <- plogis(with(preds, fit + 2 * se.fit))

plot(plogis(preds[["fit"]]) ~ data[["ideol"]], type = "l", xlab = "Ideology",

ylab = "GHG cause GCC", ylim = c(min(lower), max(upper)))

lines(data[["ideol"]], lower, lty = 2)

lines(data[["ideol"]], upper, lty = 2)

We can see that as respondents become more conservative, the probability of believing that

climate change is man-made decreases at what appears to be an increasing rate.
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16.3 Summary

As an analysis and research tool, logit modeling expands your capabilities beyond those

that can reasonably be estimated with OLS. Now you can accommodate models with binary

dependent variables. Logit models are a family of generalized linear models that are useful

for predicting the odds or probabilities, of outcomes for binary dependent variables. This

chapter has described the manner in which logits are calculated, how model fit can be

characterized, and several methods for making the logit results readily interpretable.

Perhaps one of the greatest di�culties in applications of logit models is the clear com-

munication of the meaning of the results. The estimated coe�cients show the change in

the log of the odds for a one unit increase in the X variable – not the usual way to de-

scribe e↵ects. But, as described in this chapter, these estimated coe�cients can be readily

transformed into changes in the odds, or the logit itself can be “reversed” to provide esti-

mated probabilities. Of particular utility are logit graphics, showing the estimated shift in

Y from values of zero to one; the estimated probabilities of Y=1 for cases with specified

combinations of values in the X variables; and estimates of the ranges of probabilities for

Y=1 across the ranges of values in any X.

In sum, the use of logit models will expand your ability to test hypotheses to include a

range of outcomes that are binary in nature. Given that a great deal of the phenomena of

interest in the policy and social sciences are of this kind, you will find this capability to be

an important part of your research toolkit.
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Appendix: Basic R

This Appendix willl introduce you to the basics of programming languages, such as R, as

well as explain why we have chosen to use R in our course and this textbook. Then we will

provide you with some basic programming skills in R that are generally unrelated to the

use of R as a statistical software such as downloading, reading, manipulating and writing

data. In so doing, we will prepare and introduce you to the data used throughout the book

and for associated exercises.

17.1 Introduction to R

R is a language and environment for statistical computing and graphics. It was developed

at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and

colleagues. It is based o↵ of another language called S. R is an integrated suite of software

243
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facilities for data manipulation, calculation and graphical display. It includes:

• an e↵ective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, coherent, integrated collection of intermediate tools for data analysis,

• graphical facilities for data analysis and display either on-screen or on hardcopy, and

• a well-developed, simple and e↵ective programming language which includes condi-

tionals, loops, user-defined recursive functions and input and output facilities.

R is a powerful and e↵ective tool for computing, statistics and analysis, and producing

graphics. However, many applications exist that can do these or similar things. R has a

number of benefits that make it particularly useful for a book such as this. First, similar to

the book itself, R is open source and free. This comes with a set of associated advantages.

Free is, of course, the best price. Additionally, this allows you, the student or reader, to take

this tool with you wherever you go. You are not dependent on your employer to buy or have

a license of a particular software. This is especially relevant as other software with similar

functionality often cost hundreds, if not thousands, of dollars for a single license. The open

source nature of R has resulted in a robust set of users, across a wide variety of disciplines

including political science, who are constantly updating and revising the language. R there-

fore has some of the most up-to-date and innovative functionality and methods available

to its users should they know where to look. Within R, these functions and tools are of-

ten implemented as packages. Packages allow advanced users of R to contribute statistical

methods and computing tools to the general users of R. These packages are reviewed and

vetted and then added to the CRAN repository. Later, we will cover some basic packages

we will use throughout the book. The CRAN repository is where we will download R.

17.2 Downloading R and RStudio

In this section we will provide instructions to downloading R and RStudio. RStudio is an

integrated development environment (IDE) that makes R a bit more user-friendly. In the
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class associated with this text, RStudio will primarily be used; however, it should be noted

other IDEs exist for R. Additionally, R can be used without the aid of an IDE should you

decide to do so.

First to download R we need to go to the R project website repository as mentioned

before. This can be found here. This website has many references relevant to R Users. To

download R, go to the CRAN here. It is recommended that individuals choose the mirror

that is nearest their actual location. (For the purposes of this class, we therefore recommend

the Revolution Analytics mirror in Dallas though really any Mirror will do just fine.) Once

here, you will want to click the link that says download R for your relevant operating system

(Mac, Windows, or Linux). On the next page, you will click the link that says install R for

the first time. This will open a page that should look something like this:

Figure 17.1: R Download Page

Here you will click the Download R link at the top of the page. This should download

the Installation Wizard for R. Once this has begun, you will click through the Wizard. You

can choose where to locate your copy of R, to create a desktop icon, among other things.

Unless you know what you are doing or have particular preferences, the default settings will

work and are preferred.

At this point, you now have R downloaded on your device and can be pretty much

ready to go. However, as stated previously, we are also going to show you how to download



17.3. INTRODUCTION TO PROGRAMMING 246

RStudio. You will find the site to download RStudio here. It should look like this:

Figure 17.2: RStudio Download Page

Here you will scroll down until it looks like 17.3. Then you will want to use the links

under the installer subtitle for your relevant operating system again. You do not need to use

the links under the tarball/zip header. As with R, you should then simply follow the default

locations and settings in the Installer of RStudio. As we said before, RStudio simply makes

the use of R a little easier and more user friendly. It includes some of the functionality that

often makes other statistical softwares preferred for initially teaching students statistics.

Once you have R and RStudio downloaded, you are prepared to dive right in. However,

before we do that we want to introduce you to some common terminology in the fields of

programming as well as statistics that may be helpful in your understanding of R.

17.3 Introduction to Programming

R is a programming language similar to other languages such a Java, Python, and others

in many respects. As such it comes with a terminology that may be unfamilair to most

readers. In this section we introduce some of this terminology in order to give readers the

working knowledge necessary to utilize the rest of the book to the best of its ability. One
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Figure 17.3: Bottom of RStudio Download Page

particular thing to note is that R is an object oriented programming language. This

means the program is organized around the data we are feeding it rather than the logical

procedures used to manipulate it. This introduces to the important concept of data types

and structures. For R, and programming languages generally, there is no agreed upon

or common usage of the terms data type versus data structure. For the purposes of

this book, we will attempt to use the term data structure to refer to the ways in which

data are organized and data type to the characteristics of the particular data within the

strucutre. Data types make up the building blocks of data strutures. There are many

data types; we will cover only the most common ones that are releavant to our book. The

first is the character type. This is simply a single Unicode character. The second is a

string. Strings are simply a set of characters. This data type can contain, among other

things, respodents’ names and other common text data. The next data type is the logical

type. This type simple indicates whether or not a statement or condition is True or False.

It is often represented as a 0/1 in many cases. Finally, there are numerical data types.

One is the integer which is, as you may recall, a number with nothing after the decimal

point. On the other hand, the float data type allows for numbers with numbers before and

after the decimal point.
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In R, there are a plethora of data structures to structure our data types. We will focus

on a few common ones. Probably the simplest data structure is a vector. A vector is

an object where all elements are of the same data type. A scalar is simply a vector with

only one value. For the purposes of this book, a variable is often represented as a vector

or the column of a dataset. Factors are vectors with a fixed set of values called levels. A

common example of this in the social sciences is sex with only two levels- male or female.

A matrix is a two dimensional collection of values, all of the same type. Thus, a matrix

is simply a collection of vectors. An array is a matrix with more than 2-dimensions. The

data structure we will use most is a dataframe. A data frame is simply a matrix but the

values do not all have to be the same type. Therefore, a dataframe can have a vector that is

text data type, a vector that is numerical data type, and a vector that is a logical data type

or any possible combination. Finally, lists are collections of these data structures. They

are essentially a method of gathering together a set of dataframes, matrices, etc. These will

not commonly be used in our book but are important in many applications. Now that we

have covered the basic types and structures of data we are going to explain how to get data

into R.

17.4 Uploading/Reading Data

R can handle a variety of di↵erent file types as data. The primary type that will be used

for the book and accompanying course is a comma separated file or .csv file type. A CSV

is a convenient file type that is portable across many operating platforms (Mac, Windows,

etc) as well as statistical/data manipulation softwares. Other common file types are text

(.txt) and Excel files (.xls or .xlsx). R also has its own file type called a R data file with the

.RData extension. Other statistical softwares also have their own file types such as Stata’s

.dta file extension. R has built in functionality to deal with .csv and .txt as well as a few

other file extensions. Uploading other data types requires special packages (haven, foreign,

and readxl are popular for these purposes). These methods work for uploading files from

the hard drives on our computers. You can also directly download data from the internet

in R from a variety of sources and using a variety of packages.
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For the purposes of the book, we will acquire our data by going here. You will then put

your e-mail where it says Request Data. You should then receive an e-mail with the data

attached as a .csv file. First, you will want to download this data onto your computer. We

recommend creating a folder specifically for the book and its data (and if you’re in the class

for your classwork). This file will be your working directory. For each script we run in class,

you will have to set your workin directory. An easy way to do this in RStudio is to go to the

Session tab. Scroll about halfway down to the option that says “Set Working Directory”

and then click “Choose Directory...” This then opens up an explorer or search panel that

allows you to choose the folder that you have saved the data in. This will then create a line

of code in the console of RStudio that you then copy and paste into the Code editor to set

the working directory for your data. You then run this code by hitting Ctrl+Enter on the

highlighted line.

Once this has been done, it is a good idea to check your directory. One easy way to do

this is the ‘list.files()‘ command which will list all files saved in the folder you have set as

your working directory. If you have done this correctly, the data you downloaded should

show up as a file. Once you have done this, uploading the data will be easy. Simply write

one line of code:

newdat <- read.csv("w1_w13_longdata.csv")

list.files()

This line of code loads our data saved as a .csv into R and saves it as an object (remem-

ber, object oriented programming from earlier) that we call ds (short for dataset). This is

the convention for the entire book. Now that we have the data downloaded from the in-

ternet and uploaded into R we are going to introduce you to some brief data manipulation

techniques.
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17.5 Data Manipulation in R

R is a very flexible tool for manipulating data into various subsets and forms. There are

many useful packages ad functions for doing this including the dplyr package, tidyr package,

and more. R and its packages will allow users to transform their data from long to wide

formats, remove NA values, recode variables, etc. In order to make the downloaded date

more manageable for the book, we are going to do two things. First we want to restrict our

data to one wave. The data we downloaded represent many waves of a quarterly survey that

is sent to a panel of Oklahoma residents on weather, climate and policy preferences. This

book will not venture into panel data analysis or time series analysis as it is an introductory

text and therefore we want simply one cross section of data for our analysis. This can be

done with one simple line of code:

newdat <- subset(newdat, newdat$wave_id == "Wave 12 (Fall 2016)")

What this line of code is doing is creating an object, that we have again named ds in

order to overwrite our old object, that has only the 12th wave of data from the survey.

In e↵ect, this is removing all rows in which waveid, the variable that indicates the survey

wave, does not equal twelve. Across these many waves, many di↵erent questions are asked

and various variables are collected. We now want to remove all columns or variables that

were not collected in wave twelve. This can also be done with one line of code:

newdat <- newdat[, !apply(is.na(newdat), 2, all)]

This line of code is a bit more complicated but what it is essentially doing is first

searching all of ds for NA values using the is.na function. It is then returning a logical

value of TRUE or FALSE—if a cell does have an NA then the value returned is TRUE

and vice versa. It is then searching by column which is represented by the number 2 (rows

are represented by the number 1) to see if all of the values are TRUE or FALSE. This

then returns a logical value for the column, either TRUE if all of the rows/cells are NAs

or FALSE if at least one row/cell in the column is not an NA. The ! is then reversing the

TRUE and FALSE meanings. Now TRUE means a column that is not all NA and therefore
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one we want to keep. Finally, the brackets are another way to subset our data set. This

allows us to keep all columns where the returned value is TRUE or not all values were

NA. Because we are concerned with columns, we write the function after the comma. If we

wanted to do a similar thing but with rows we would put the function before the comma.

Finally, now that we have done this we want to save this dataset to our working directory

which will be explained in the following section

17.6 Saving/Writing Data

Saving or writing data that we have manipulated is a useful tool. It allows us to easily share

datasets we have created with others. This is useful for collaboration, especially with other

users who may not use R. Additionally, this will be useful for the book as our new dataset

is the one that will be worked with throughout the book. This dataset is much smaller than

the one we originally downloaded and therefore will allow for quicker load times as well as

hopefully reduce potential confusion. The code to save this data set is rather simple as well:

write.csv(newdat, "Class Data Set.csv")

This line of code allows us to save the dataset we created and saved in the object named

ds as a new .csv file in our working directory called Class Data Set. Having successfully

downloaded R and RStudio, learned some basic programming and data manipulation tech-

niques, and saved the class data set to your working directory you are ready to use the rest

of the book to its fullest potential.


