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Abstract 

This tutorial paper introduces the implementation of Multilevel Structural Equation Modeling 

(MSEM) using Blimp, a free, user-friendly, and flexible software for Bayesian estimation. 

Aimed at readers with some familiarity with MSEM and Bayesian methods, the tutorial walks 

through the specifications of a basic multilevel model in Blimp, progressively incorporating 

latent variables, random slopes, contextual effects, and moderated mediation effects. For 

illustrative purposes, we use a simulated multilevel dataset to examine the association 

between teacher-student relationships, students’ interest in math, and students’ math 

achievement. 

keywords: Multilevel structural equation modeling, Bayesian estimation, Blimp  

 

Introduction 

This tutorial provides practical guidance on conducting Bayesian estimation for 

Multilevel Structural Equation Modeling (MSEM) using Blimp, a free and accessible 

software. MSEM integrates the flexibility of Structural Equation Modeling with multilevel 

modeling to account for nested data structures—such as students within classrooms 

(Preacher, Zyphur, & Zhang, 2010). This approach enables researchers to examine latent 

relationships at both individual and group levels. However, estimation using Maximum 

Likelihood Estimation (MLE) can be challenging, especially when models include random 

slopes. Such models often require intensive computation, leading to slow estimation, 

convergence issues, or simplified model structures that may compromise the accuracy and 

richness of their analyses (Asparouhov & Muthén, 2010). 

Bayesian estimation offers a promising alternative. It addresses many of the 

limitations of MLE by better accommodating model complexity, relaxing distributional 

assumptions, and providing more stable estimates in small samples (Muthén & Asparouhov, 
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2012). While statistical software packages like Stan (Stan Development Team, 2020) and 

WinBUGS (Lunn et al., 2000) support Bayesian estimation, they often demand considerable 

expertise in both Bayesian statistics and programming. The blavaan package in R offers more 

accessibility by using syntax similar to lavaan (Merkle & Rosseel, 2018), but its current 

functionality for MSEM is limited to random intercept models (Merkle, n.d.). Mplus (Muthén 

& Muthén, 1998–2021) integrates Bayesian features with a more user-friendly interface, but 

it comes with a cost and certain limitations in flexibility. 

Blimp (Keller & Enders, 2023a) bridges this gap by offering full Bayesian estimation 

for MSEM with a user-friendly interface and support for complex models. Notably, Blimp 

supports categorical predictors and mediators in moderation analysis, including multilevel 

moderated mediation and MNLFA (Moderated Nonlinear Factor Analysis) - features not 

available in Mplus. Despite its capabilities, Blimp remains underutilized among applied 

researchers. This tutorial introduces Blimp through an illustrative example—a 1-1-1 

mediation model with two random slopes exploring relationships among teacher-student 

relationships (REL), student interest in math (INT), and math achievement (ACH). Detailed 

code examples, output, and the Mplus syntax corresponding to the Blimp codes are provided 

in the supplementary materials (OSF: 

https://osf.io/frzvu/?view_only=f73070c6e1954f19933c2cae30a8393b), allowing readers to 

replicate our demonstrations and adapt them to their research. For a more comprehensive 

overview of Bayesian estimation and MSEM, see Gelman et al. (2013), Wang and Wang 

(2019), and Muthén and Asparouhov (2012).  

Multilevel Structural Equation Modeling 

Multilevel Structural Equation Modeling (MSEM) integrates Multilevel Modeling 

(MLM) and Structural Equation Modeling (SEM) to account for hierarchical data structures 

and latent variables simultaneously. This framework is specifically designed to address 
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challenges inherent in hierarchical data structures and latent variable measurement, making it 

particularly valuable for educational, psychological, and social science research.  

MSEM is highly flexible and can handle many different research questions for 

multilevel structures. For instance, consider a study examining how teacher-student 

relationships (REL) influence students’ interest in math (INT) and their math achievement 

(ACH). At the student level (i.e., within-school, level 1), we might hypothesize a mediation 

model wherein teacher-student relationships affect students’ interest, which then impacts 

their math achievement. At the school level (i.e., between-school, level 2), similar 

associations could emerge: schools with stronger overall teacher-student relationships might 

report higher levels of student math interest and improved math performance. MSEM allows 

researchers to model such multilevel mediation processes simultaneously at both levels, 

accounting for the nested data structure. 

In the following section, we begin by reviewing how MSEM accounts for both 

sampling error and measurement error. Next, we discuss incorporating random slopes and 

modeling multilevel mediation. Finally, we introduce contextual effects and explain how to 

address cross-level moderation and moderated mediation. 

Addressing Sampling Error 

The primary strengths of MSEM lie in its ability to handle sampling error in nested 

data structures. MSEM decomposes the variance and covariance structures into within-group 

and between-group components. This approach ensures more precise modeling of 

relationships across different levels. Often referred to as a multilevel path model (Kaplan, 

1998), the framework explicitly accounts for the hierarchical nature of the data, allowing 

researchers to disentangle and model structures at both the individual and group levels 

effectively. 
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The decomposition of observed variables into between-group and within-group 

components for clustered data to handle sampling error is mathematically represented as: 

 𝑦!" = 𝑦# + 𝑦$ = 𝛼 + 𝑢" + 𝑒!"	 (1)	

where 𝑦!" represents the observed variable, 𝑦# is the between-group component, 𝑦$ is the 

within-group component, 𝛼 is the grand mean, 𝑢" is the group-level residual, and 𝑒!" is the 

individual-level residual. This decomposition allows for the separate modeling of covariance 

structures at both between- and within-group levels: 

 𝛴% = 𝛴# + 𝛴$	 	 (2)	

where 𝛴% 	is the total covariance matrix, 𝛴# is the between-level covariance matrix, and 𝛴$ is 

the within-level covariance matrix. In doing so, MSEM separates the variance components 

attributable to individual differences within groups (within-group variance; individual student 

differences) and differences between groups (between-group variance; school differences).  

 When applied to the example scenario, the equation is set up like a mediation model 

at each level1 with composite values to address the sampling errors. Consider a path model 

with three observed variables (i.e., ACH, INT, and REL) measured at the within-school level 

(Level 1), expressed as: 

 𝐴𝐶𝐻& = 𝛽'&𝐼𝑁𝑇& + 𝛽(&𝑅𝐸𝐿& + 𝑒)*+! 	 (3)	

𝐼𝑁𝑇& = 𝛾,&𝑅𝐸𝐿& + 𝑒-.%! 	

where 𝑒)*+! and 𝑒-.%! represent the residuals at the student levels, and 𝛽'
&, 𝛽(

&, and 𝛾,
& are 

the regression coefficients among the three variables at the student levels. At the between-

school level (Level 2), the model can be expressed as: 

 𝐴𝐶𝐻' = 𝜈)*+ + 𝛽''𝐼𝑁𝑇' + 𝛽('𝑅𝐸𝐿' + 𝑒)*+" (4)

 𝐼𝑁𝑇' = 𝜈-.% + 𝛾,'𝑅𝐸𝐿' + 𝑒-.%" 	

where 𝜈)*+ is the intercept and 𝑒)*+" and 𝑒-.%" represent the residuals at the school level.  

 
1 In particular, it is the so-called 1-1-1 mediation model, which will be discussed later. 
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𝛽'
', 𝛽(

', and 𝛾,
'  are the regression coefficients among the three variables at the school levels. 

This framework allows researchers to model the structural relationships among the variables 

at the within-school level while simultaneously accounting for the relationships among the 

variables at the between-school. 

It is important to note that centering plays a crucial role in multilevel modeling 

because it clarifies the interpretations of the model coefficients (Enders & Tofighi, 2007). At 

the within level, group-mean centering is used to isolate individual-level effects by removing 

between-group differences. This ensures that within-level coefficients reflect relationships 

among individuals within the same group—without interference from higher-level variation. 

At the between-level, grand-mean centering is typically applied to interpret effects relative to 

the overall sample mean. This allows between-level coefficients to show how group-level 

predictors influence outcomes when other variables are at their average values. 

Addressing Measurement Error 

Beyond sampling error, MSEM also addresses measurement error by incorporating 

latent variables. Psychological concepts like math interest are considered hypothetical 

constructs that cannot be directly measured (i.e., latent or unobservable; Wang & Wang, 

2019). MSEM employs measurement models with multiple observed indicators to accurately 

represent latent constructs and account for measurement error.  

Building on the earlier example, the multilevel path model can be extended to include 

latent variables:  

 𝜂)*+
& = 𝛽'&𝜂-.%& + 𝛽(&𝜂/01& + 𝑒2#$%! 	 (5)	

𝜂-.%
& = 𝛾,&𝜂/01& + 𝑒2&'(! 	

 𝜂)*+
' = 𝛽''𝜂-.%' + 𝛽('𝜂/01' + 𝑒2#$%" 	 (6)	

𝜂-.%
' = 𝛾,'𝜂/01' + 𝑒2&'(" 	

where 𝜂& and 𝜂' indicate the underlying latent constructs for the within-school and between-
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school levels. The terms 𝑒& and 𝑒' are residuals for endogenous latent constructs (𝜂)*+ , 

𝜂-.%) at the student level and school level respectively, which are assumed to follow a normal 

distribution with a mean of zero and variance. Similarly, the exogenous latent construct, 

𝜂/01	, also follows a normal distribution with a mean of zero and an estimated variance. The 

regression coefficients maintain the same interpretations as specified in Equations (3) and (4).  

The latent constructs 𝜂& and 𝜂' are linked to the observed indicators as follows: 

 𝐴𝐶𝐻!" = 𝜈)*+)
' + 𝛬&)*+𝜂)*+!"& + 𝛬')*+𝜂)*+"' + 𝜖)*+!"& 	+ 	𝜖)*+"' 		 (7)	

	 𝐼𝑁𝑇!" = 𝜈-.%)
' + 𝛬&-.%𝜂-.%!"& + 𝛬'-.%𝜂-.%"' + 𝜖-.%!"& + 𝜖-.%"'      	

	 𝑅𝐸𝐿!" = 𝜈/01)
' + 𝛬&/01𝜂/01!"& + 𝛬'/01𝜂/01"' + 𝜖/01!"& 	+ 	𝜖/01"' 	

where ig refers to individual i within group g. The term 𝜈' represents the intercepts of 

indicators at the between-schools, 𝛬!"&  and 𝛬"' are the factor loadings for the within-school 

and between-school latent constructs, and 𝜖!"&  and 𝜖"' are within-school and between-school 

residuals, following normal distribution with the mean of zero and the variance of 𝜃.  

Random slopes 

In MSEM, the inclusion of random slopes adds a layer of complexity that requires 

careful consideration. Random slopes allow for the modeling of individual differences in the 

relationships between variables across different levels of analysis (Kaplan, 1998). By 

capturing variability in within-level effects, random slopes provide insights into how the 

strength or direction of relationships between variables varies across groups. For example, the 

impact of teacher-student relationships on math interest (i.e., 𝛾,
&) or the influence of math 

interest on math achievement (i.e., 𝛽'
&) at the student level may differ significantly between 

schools. 
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A key conceptual point is that random slopes inherently represent interactions 

between a Level 1 predictor and the grouping structure (Enders et al., 2020). Consider 𝜂-.%
& =

𝛾,&𝜂/01& + 𝑒2&'(! 	in Equation (5). If 𝛾,
& is modeled as a random effect, then: 

	 𝛾,"
& = 𝛾33 + 𝜖4"			 (8)	

where 𝜖4" represents the deviation of the individual estimate from the grand mean. 

Substituting into the original regression equation yields: 

	 𝜂-.%
& = (𝛾33 + 𝜖4")𝜂/01& + 𝑒2&'(! 		 (9)	

𝜂-.%
& = 𝛾33𝜂/01& + 𝜖4"𝜂/01& + 𝑒2&'(! 	

Here, the term 𝜖4"𝜂/01&  reveals the essence of a random slope—it represents a group-specific 

interaction effect,  where the strength of the relationship between 𝜂/01
&  on 𝜂-.%

&  depends on 

the school context (g). In cases where the predictor is a latent construct (e.g., 𝜂/01
& ), the 

random slope becomes a latent-by-latent interaction; with observed predictors, it becomes a 

latent-by-manifest interaction (Keller, 2022). Either way, the implication is the same: the 

strength of an effect depends on where (or in which group) it occurs. In other words, the 

slopes of 𝜂/01
&  is moderated by the group context, much like how interaction terms in a 

traditional regression model indicate conditional effects.  

When multiple random effects are included (e.g., both 𝛾,
& 	and	𝛽,

& 	in Equation 5), the 

formulation for random slopes is: 

 𝛽'"
& = 𝛽33 + 𝜖5"			 (8)	

𝛾,"
& = 𝛾33 + 𝜖4"	

	 𝑇 = 	F𝛩#"		𝜃𝛽"4* 	𝛩6"	H		 (9)	

where 𝛽33 and 𝛾33 represent the fixed slope of 𝛽'"
&  and 𝛾,"

& , respectively, and 𝜖𝛽"	and	𝜖𝛾"	are	

disturbance terms assumed to be normally distributed with mean zero and covariance matrix 
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T. A positive covariance 𝜃#𝑏𝛾𝑎 means that higher-level units with larger 𝛾, values are likely to 

also have larger 𝛽' values. On the other hand, a negative 𝜃#𝑏𝛾𝑎 implies that units with higher 

𝛾, values are more likely to have smaller 𝛽' values (Kenny, Korchmaros, & Bolger, 2003).  

Multilevel Mediation Effects 

Mediation analysis is a powerful tool for uncovering the mechanisms between the 

predictor, mediator, and outcome variables. MSEM extends this capability to hierarchical 

data structures frequently encountered in psychology and education research (Bauer, 

Preacher, & Gil, 2006). Mediation effects can be explored at both within- and between-group 

levels. In our example, mediation analysis can reveal how math teacher relationships (REL) 

influence math achievement (ACH) through math interest (INT) at both student and school 

levels. The a-path (i.e., 𝛾,
& 	and	𝛾,

') captures the effect of the predictor (REL) on the mediator 

(INT), and the b-path (i.e., 𝛽'
& 	and	𝛽'

') represents the effect of the mediator (INT) on the 

outcome (ACH). Their product (ab) quantifies the indirect effect, while the direct effect of 

REL on ACH is represented by the c'-path. The total effect is the sum of the direct and indirect 

effects, expressed as c = ab + c' (Bollen, 1987).2 

Mediation models in MSEM can range in complexity depending on the level at which 

each variable is measured, with structures like 1-1-1, 2-1-1, or 2-2-1 (Preacher et al., 2010). 

The present study focuses on a 1-1-1 mediation model, where the mediation process operates 

at both within-level (Level 1) and between-level (Level 2). The model examines how a Level 

1 predictor (REL) affects a mediator (INT) at the individual level and how the mediator 

subsequently influences an outcome (ACH). This is represented by the a-path (effect of REL 

on INT) and the b-path (effect of INT on ACH). This model enables the analysis of 

 
2 When the mediator or outcome variable is binary or polytomous, the interpretation of the product of a and b as 
the indirect effect may not hold. There is significant discussion around this issue. For further exploration of non-
continuous mediators or outcomes, see Muthén & Asparouhov (2015). The scope of this study, however, is 
limited to continuous variables. 
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relationships at the individual level while simultaneously modeling relationships at the group 

level, allowing for a comprehensive examination of mediation effects at both levels within a 

single model. 

One important aspect of multilevel mediation in MSEM is that when the mediation 

effects 𝑎 and 𝑏 are treated as random variables and are correlated, the expected value of their 

product 𝑎×𝑏 does not equal the product of their individual expected values, as is typically 

assumed in single-level mediation models (Kenny et al., 2003). In the context of multilevel 

models, the expected value of 𝐸(𝛾,"
& 𝛽'"& ) is expressed as 𝐸(𝛾'"

& )𝐸(𝛽'"
& )+𝜃#𝑏𝛾𝑎 (Goodman, 

1960), where 𝜃#𝑏𝛾𝑎 represents the covariance between 𝛾,"
&  and 𝛽'"

& , accounting for the 

potential correlation between these effects.   

Contextual Effects 

Contextual effects are essential for understanding how group-level characteristics 

influence outcomes beyond individual-level effects. Without accounting for contextual 

effects, researchers risk conflating individual and group influences, leading to 

misinterpretation of relationships between variables in hierarchical data (Enders & Tofighi, 

2007). For instance, the relationship between a student’s interest in math and their 

achievement may differ from the relationship between their average level of math interest in 

their school and student achievement. Contextual effects help to disentangle these influences, 

providing deeper insights into how individual and group dynamics interact. 

In multilevel models, contextual effects are calculated by isolating group-level 

influences while accounting for individual-level variability. While between-school and 

within-school effects are separately defined, they can be confounded because within-group 

relationships often mirror group-level patterns. To isolate the contextual effect—also known 

as the compositional effect—the within-school effect is subtracted from the between-school 

effect (Enders & Tofighi, 2007; Raudenbush, 2002). For example, the contextual effect for 
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the b-path parameter is calculated as: 

 𝛽𝑏
$%&'()'*+, = 𝛽-- − 𝛽-.			 (10)	

where 𝛽'
'	is the between-school effect of math interest on achievement, and 𝛽'

& is the 

within-school effect. This contextual effect represents the expected difference in math 

achievement between two students with the same level of math interest, but who attend 

schools differing by one unit in the average math interest. It is important to note that in the 

presence of random slopes, Equation 10 holds only in expectation (Laird & Ware, 1982).  

Cross-level moderation and moderated mediation 

In multilevel mediation models with random slopes, cross-level moderation effects 

can be explored by incorporating Level 2 covariates. These models treat the within-cluster a-

path and b-path as random, and their variability is explained by a Level 2 covariate, such as 

socioeconomic status (SES). This relationship can be formulated as: 

 𝛽'"
& = 𝛽'3 + 𝛽'9𝑆𝐸𝑆'" + 𝜖5") 			 (11)	

𝛾,"
& = 𝛾,3 + 𝛾,9𝑆𝐸𝑆'" + 𝜖4*) 	

where 𝑆𝐸𝑆'" is a level 2 variable. 𝛽'9 and 𝛾,9 capture cross-level moderation effects — 

indicating how the strength of the within-level relationship varies as a function of SES. 

The indirect effect with a cross-level covariate is defined as: 

 𝐸(𝛾,&𝛽'
&|𝑆𝐸𝑆" = 𝑠𝑒𝑠) = (𝛽'3 + 𝛽'9𝑠𝑒𝑠)(𝛾,3 + 𝛾,9𝑠𝑒𝑠) + 𝜎,'		 (12)	

, where 𝜎,' is the covariance between the two random slopes. When moderated mediation is 

present, researchers can evaluate simple indirect effects at different levels of the moderator 

(Bauer et al., 2006). For example, when SES equals its mean (SES = 0), the indirect effect 

simplifies to 𝛽'3𝛾,3	+ 𝜎,'. Conditional effects at specific levels of SES (e.g., ±1 SD from the 

grand mean) can be evaluated by computing the expected value of the indirect effect at those 

SES values, as presented in Equation (13).  Importantly, this standard deviation should reflect 
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the appropriate level of analysis: Level 2 SD for between-level effects, and Level 1 SD for 

within-level effects. 

 𝐸(𝛾,&𝛽'
&|𝑤9 = 𝑠𝑒𝑠 + 𝑆𝐷) = (𝛽'3 + 𝛽'9𝑤9)(𝛾,3 + 𝛾,9𝑤9) + 𝜎,'			 (13)	

𝐸(𝛾,&𝛽'
&|𝑤: = 𝑠𝑒𝑠 − 𝑆𝐷) = (𝛽'3 + 𝛽'9𝑤:)(𝛾,3 + 𝛾,9𝑤:) + 𝜎,'	

Incorporating Level 2 covariates enables the assessment of moderated mediation 

effects across different levels of the moderator. This approach helps clarify how the 

mediation pathways (the a-path and b-path) vary as a function of SES. It provides deeper 

insights into the dynamics of the mediation process at both the within-cluster and between-

cluster levels, revealing how individual and group-level factors interact to influence 

outcomes. 

Bayesian Inference 

As discussed so far, MSEMs are well-established within the frequentist framework 

(i.e., ML). However, as model complexity grows—whether due to multiple random slopes, 

numerous latent factors, or high-dimensional structures—ML methods often struggle. 

Convergence issues and excessive computation times become common, especially with small 

sample sizes or complex model specifications. Bayesian estimation offers a compelling 

alternative. Instead of relying on direct numerical integration, Bayesian methods utilize 

Markov Chain Monte Carlo (MCMC) algorithms (e.g., Gibbs sampling) to estimate model 

parameters. This iterative approach samples from conditional distributions to construct full 

posterior distributions, capturing the range of plausible parameter values based on the data 

and prior assumptions (Gelman et al., 2013). Statistical software programs like Blimp and 

Mplus implement these algorithms efficiently. 

This pragmatic use of Bayesian estimation—primarily for overcoming computational 

hurdles—has been described as "Bayes as Computational Frequentism" (Levy & McNeish, 
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2023).3 In this approach, Bayesian tools are leveraged to obtain frequentist-like point 

estimates and uncertainty measures when ML estimation becomes impractical. The 

inferential framework remains fundamentally frequentist; the Bayesian machinery serves 

primarily as a computational workaround. 

In this context, posterior means or medians serve as analogs to ML estimates, and 

posterior standard deviations act as Bayesian counterparts to standard errors (Kruschke & 

Liddell, 2018; McElreath, 2020). Likewise, credible intervals are often interpreted similarly 

to confidence intervals—although they differ philosophically, their presentation and use can 

align in practical terms. To minimize the influence of prior assumptions, researchers using 

this approach typically rely on diffuse or weakly informative priors, especially in large 

samples where the data tend to dominate the priors. 

While diffuse priors are common in this computational framework, one of Bayesian 

estimation’s true strengths lies in its ability to incorporate informative priors. This shifts the 

focus from computational convenience to Bayes as Updating or Augmenting the Likelihood. 

Informative priors, derived from prior research or theoretical reasoning, help stabilize 

estimation—particularly in small-sample scenarios—and can improve estimate precision 

(McNeish, 2016). As sample size increases, the impact of priors fades, and Bayesian 

estimates converge toward their frequentist equivalents—a phenomenon known as 

asymptotic equivalence (Gelman et al., 2013). 

Another advantage of Bayesian methods is their flexibility in distributional 

assumptions, which is especially useful in contexts like mediation analysis, where indirect 

effects (products of coefficients) rarely follow a normal distribution (Yuan & MacKinnon, 

2009). Bayesian estimation naturally accommodates these non-normalities, yielding more 

 
3 Bayesian analyses can be conceptualized as computational frequentism, likelihood augmentation, updating, 
joint distribution analysis, multilevel model building. See Levy & McNeish (2023) for further discussion. 
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accurate credible intervals for indirect effects—even in complex or nested models. 

From a philosophical standpoint, Bayesian offers a more intuitive interpretation of 

uncertainty by treating parameters as random variables with posterior distributions (Etz & 

Vandekerckhove, 2018; McElreath, 2020). Bayesian approaches also offer practical tools for 

assessing convergence, such as the Gelman-Rubin diagnostic, often referred to as Potential 

Scale Reduction (PSR) or 𝑅U, which assesses if multiple MCMC chains have mixed well 

(Gelman & Rubin, 1992). An 𝑅U value below 1.05 or 1.10 typically indicates adequate 

convergence, whereas higher values suggest the need for additional iterations or model 

adjustments (Brooks & Gelman, 1998; Gelman et al., 2013). 

In summary, Bayesian estimation offers numerous advantages for MSEMs, including 

improved convergence for complex models, flexibility in addressing distributional 

assumptions, and straightforward estimation of mediation effects in the multilevel 

frameworks. Whether used for computational pragmatism or full Bayesian reasoning, this 

approach enables richer and more robust insights into multilevel data structures—particularly 

when traditional estimation methods fall short. 

Application of MSEM with Blimp 

This section illustrates the application of MSEM using Blimp, based on the 

hypothesized mediation example previously discussed. The analysis examines relationships 

among three latent factors—math achievement (ACH), math interest (INT), and teacher-

student relationships (REL)—as well as one covariate, socioeconomic status (SES). Each 

latent factor is measured by four continuous indicators. The dataset used for this analysis, 

which is generated by the authors specifically for illustrative purposes, consists of 100 

schools (clusters), each with 30 students. 

In this hypothesized model, the within-school associations between REL and INT, 

and between INT and ACH, are assumed to vary across schools. These associations are 
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modeled as random slopes within the MSEM framework, enabling the estimation of within-

level mediation effects that differ between schools. To account for the variability in these 

effects, SES is introduced as a cross-level moderator. While SES is measured at the within-

school level, it is applied at both the within- and between-school levels. Specifically, at the 

between-school level, SES moderates the within-school level indirect effect of teacher-

student relationships (REL) on math achievement (ACH) through math interest (INT). Note 

that the data are simulated and observational, and any causal interpretations are intended for 

illustrative purposes. We include them to demonstrate typical approaches to interpreting the 

results of the mediation models, but caution is needed when drawing causal conclusions in 

non-experimental contexts.  

The following section provides a step-by-step guide through four models, each 

accompanied by the corresponding Blimp syntax to illustrate the application of MSEM. All 

relevant syntax, outputs, data, and corresponding Mplus syntax for the Blimp analyses are 

available at https://osf.io/frzvu/?view_only=f73070c6e1954f19933c2cae30a8393b.  

● Model 1: Introduces a basic multilevel path model.  

● Model 2: Expands on Model 1 by incorporating a measurement model, allowing for 

latent constructs. 

● Model 3: Builds on Model 2 by adding random slopes, enabling the testing of both 

between- and within-school indirect effects as well as contextual effects. 

● Model 4: Further extends Model 3 by introducing a Level 2 covariate as a cross-level 

moderator, facilitating the examination of moderated mediation effects. 

Basic Settings 

Before diving into multilevel modeling, it is essential to understand the basic syntax 

for Blimp. Blimp uses # symbol for single-line comments. The analysis begins by specifying 

the file directory using the DATA command, followed by listing the relevant variables using 

https://osf.io/frzvu/?view_only=f73070c6e1954f19933c2cae30a8393b
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the VARIABLE command, where four indicators are listed for each construct (ACH, INT, 

REL), one covariate (SES), cluster id variable (schid), and student id variable (id). Blimp 

requires users to specify the names of any latent variables involved in the model. In this 

example, ACH_w represents the latent variables at Level 1. For Level 2 latent variable, the 

cluster id variable must be specified as schid = ACH_b. 

The Level 2 identifier is specified using the CLUSTERID command. Missing data is 

specified through the MISSING command. It may also be noted that Blimp uses a seed for 

reproducibility (SEED)—a positive integer that allows users to replicate the results of the 

pseudo-random number generator. For Bayesian estimation, the BURN and ITERATIONS 

commands are used to specify the number of burn-in samples and total number of iterations, 

respectively. The CHAIN command determines the number of MCMC chains used. The total 

number of iterations is calculated as the number of iterations per chain multiplied by the 

number of chains. Unless otherwise specified, the default prior distributions in Blimp are 

used for Bayesian estimation (see the Blimp User’s Guide (Keller & Enders, 2023b) for 

details). Once these basic settings are defined, Blimp is ready to perform Bayesian multilevel 

analysis without requiring additional configuration.  

Blimp Syntax 

DATA: data.csv;                      #Read in data 
VARIABLES: ACH1:ACH4 INT1:INT4 REL1:REL4 SES schid id;  #List variables 
LATENT: ACH_w schid = ACH_b;          #Specify latent variables 
CLUSTERID: schid;                     #Specify between-level identifier 
MISSING: NA;                          #Missing Data 
SEED: 46;                             #Set a seed 
BURN: 10000;      #Specify a number of burn-in iterations 
ITERATIONS: 10000;#Specify number of iterations after burn-in period 
CHAIN: 4;         #Specify number of chains 

 

Model 1. Multilevel path model 

Before moving onto the main model (MSEM), we first elaborate on the multilevel 

path model, where only sampling errors are addressed. As illustrated in Figure 1, this is a 1-1-
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1 multilevel mediation model, where mediation occurs across both the within-level (Level 1) 

and the between-level (Level 2). This model explores how the predictor (REL) influences the 

mediator (INT), and in turn, how the mediator impacts the outcome (ACH). These pathways, 

known as the a-path (REL to INT) and b-path (INT to ACH), are designed to capture 

variability both across individuals and between clusters.  

In the following Blimp syntax, the LATENT command is used to define the three 

between-level (Level 2) variables: ACH_b, INT_b, and REL_b. Then, in the MODEL 

command, group-mean centering at the within-level (Level 1) is used to compute the within-

level deviations by subtracting the between-level means. For instance, within-level math 

achievement is computed as ACH_w = ACH - ACH_b, representing individual deviation 

of math achievement from its group mean (ACH_b). At the between-level (Level 2), Blimp 

uses grand-mean centering to capture the between-cluster deviations of each variable. For 

instance, the syntax ACH_bc = ACH_b - gm_ACH captures the between-level deviation 

from the grand mean (gm_ACH). Here, gm_ACH is the label assigned to the intercept of 

ACH_b. Because all predictors are group-mean centered, gm_ACH reflects the grand mean of 

ACH by definition.  

The mediation pathways at the within-level are specified by regressing the math 

achievement (ACH_w) on the within-level deviations of the mediator (math interest; INT_w) 

and the predictor (math teacher relations; REL_w) using the syntax ACH ~ INT_w REL_w 

and INT ~ REL_w. These correspond to the mediation paths in the within-cluster level box 

in Figure 1: path 𝑎& (from REL_w to INT_w), path 𝑏& (from INT_w to ACH_w), and path 

𝑐& (from REL_w to ACH_w). Likewise, the mediation pathways at the between-level are 

specified by regressing the group means of the outcome and mediator on the between-level 

deviations of the predictor and mediator, using the syntax ACH_b ~ INT_bc REL_bc 
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and INT_b ~ REL_bc. These paths correspond to 𝑎', 𝑏', 𝑐'	and in the between-cluster 

box in Figure 1.  

Blimp allows users to organize the syntax by level using the optional “blocks” (e.g., 

within_l1 and between_l2). While this is not required, these blocks help improve the 

clarity and structure of the model specification. Another noteworthy feature is the @ operator, 

which labels parameters. For instance, ACH ~ 1@ACH_b indicates that the intercept of ACH 

is labeled as ACH_b, which is also defined as a latent variable at the between-level. Note that 

the within-level intercepts are not freely estimated but are fixed to between-level latent 

variables, which vary across clusters.  

Blimp Syntax 

LATENT:    
 #Define between-school latent variables 
  schid = ACH_b INT_b REL_b; 
  
 MODEL: 
 within_l1: 
 #Define group mean-centered deviations 
  ACH_w = ACH - ACH_b; 
  INT_w = INT - INT_b; 
  REL_w = REL - REL_b; 
 
 #Fit within Models 
  ACH ~ 1@ACH_b INT_w REL_w; 
  INT ~ 1@INT_b REL_w; 
  REL ~ 1@REL_b; 
 
 between_l2: 
 #Define grand mean-centered deviations 
  ACH_bc = ACH_b - gm_ACH; 
  INT_bc = INT_b - gm_INT; 
  REL_bc = REL_b - gm_REL; 
 
 #Fit between Models 
  ACH_b ~ 1@gm_ACH INT_bc REL_bc; 
  INT_b ~ 1@gm_INT REL_bc; 
  REL_b ~ 1@gm_REL; 
Note. ACH, INT, and REL represent the average scores of math achievement, math interest, and 

math teacher relations, respectively, each measured by four indicators (ACH1-ACH4 for math 

achievement, INT1-INT4 for math interest, and REL1-REL4 for math teacher relations). 
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[Figure 1 about here] 

[Table 1 about here] 

Table 1 presents the model estimates, 95% credible intervals, and the 𝑅U values for 

convergence. Since all 𝑅U values are below the threshold of 1.05, this indicates that the model 

has successfully achieved satisfactory convergence. First, the within-school paths from REL 

to INT and ACH are estimated to be 0.279 (95% CI: 0.240, 0.319) and 0.224 (95% CI: 0.184, 

0.262), respectively, with the path from INT to ACH estimated at 0.430 (95% CI: 0.395, 

0.465). The credible intervals for all paths do not include zero, indicating that the effects are 

significantly different from zero. These results suggest that, given this model, for each 

additional unit increase in REL within an individual (relative to others in the school), INT 

and ACH are expected to increase by approximately 0.279 and 0.224 units. Furthermore, an 

increase in INT leads to a corresponding increase in ACH by 0.430 units.  

In the between-school model, the path from REL to INT and ACH is estimated at 

0.621 (95% CI: 0.455, 0.783) and 0.277 (95% CI: 0.090, 0.458) and is significantly different 

from zero. This suggests that for each additional unit increase in the average REL at the 

school level, the school’s average achievement is expected to increase by 0.62 and 0.28 units. 

The between-school effects of INT on ACH are 0.55 (95% CI: 0.361, 0.737), and statistically 

significant. 

Model 2. Multilevel Structural Equation model  

In Model 2, the multilevel path model is extended to incorporate a measurement 

model, addressing both measurement and sampling errors as shown in Figure 2. Blimp treats 

latent variables as missing data and estimates them iteratively through data augmentation 

(Lee & Shi, 2000; Palomo, Dunson, & Bollen, 2007; Merkle & Rosseel, 2018), rather than 

integrating them out from a joint multivariate distribution with observed variables (Kaplan & 

Depaoli, 2012; Muthén & Asparouhov, 2012; Merkle, Fitzsimmons, Uanhoro, & Goodrich, 
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2020). Therefore, the LATENT command is used to define and name these unobserved 

variables. We can then use the -> to load multiple indicators onto the latent variable. For 

example, ACH_w -> ACH1:ACH4 indicates that the latent factor ACH_w is measured by the 

observed variable ACH1 through ACH4. In our syntax, we omit the ACH1:ACH4|0 

constraint because we estimate residual variances at both the within- and between-levels. 

However, if between-level residual variances are intended to be constrained to zero, the 

ACH1:ACH4|0 specification should be explicitly added (i.e., ACH_w -> 

ACH1:ACH4|0). This ensures that all residual variance is attributed to the within-level only. 

At the between-level, the intercepts of the indicators are not fixed and freely 

estimated, as shown in ACH_b -> ACH1:ACH4. The zero intercepts for the latent variables 

do not have to be specified, as they are automatically included by default for model 

identification (e.g., ACH_b ~ 1@0). The same approach is applied to all other latent factors in 

the model. By using latent factors, we improve the precision of our estimates by explicitly 

modeling measurement error, which provides a more accurate representation of the 

relationships among the variables in both the within-level and between-level models, 

provided the latent variable model accurately reflects the true data generating process and is 

not misspecified (Rhemtulla, van Bork, & Borsboom, 2020). 

Blimp Syntax 
LATENT: 
 ACH_w INT_w REL_w ;         #Latent at the within-level 
 schid = ACH_b INT_b REL_b;  #Latent at the between-level 
 
 MODEL:  
 Within-level Model: 
 ACH_w -> ACH1:ACH4;    #Define latent factors 
 INT_w -> INT1:INT4;  
 REL_w -> REL1:REL4;  
 
 ACH_w ~ INT_w REL_w;        #Set regressions  
 INT_w ~ REL_w; 
 
 Between-level Model: 
 ACH_b -> ACH1:ACH4;         #Define latent variables 
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 INT_b -> INT1:INT4; 
 REL_b -> REL1:REL4; 
 
 ACH_b ~ INT_b REL_b;       #Set regressions  
 INT_b ~ REL_b; 
Note. ACH, INT, and REL represent the latent factors of math achievement, math interest, and math 

teacher relations, respectively, each underlying four indicators (ACH1-ACH4 for math achievement, 

INT1-INT4 for math interest, and REL1-REL4 for math teacher relations). The suffixes 'b' and 'w' 

denote the between-school and within-school levels, respectively.  

 

[Figure 2 about here] 

[Table 2 about here] 

Table 2 presents the model estimates for the mediation model with latent factors. 

Unlike Model 1, the latent factors are employed at both levels to account for measurement 

error. The within- and between-level loadings from each latent factor to the corresponding 

indicators are approximately 1.0, with the first loading excluded as it is fixed to 1.0. Factor 

loadings can be interpreted in the same way as in the typical Structural Equation Modeling 

(SEM). They indicate the strength of the association between the observed indicators and the 

latent factor. When standardized, the square of the standardized factor loadings represents the 

proportion of variance in the indicator that is explained by the latent factor. In Table 2, the 

standardized factor loadings are approximately 0.5–0.6, suggesting that 25–36% of the 

variance in the indicators is explained by the latent factors, both within-school and between-

school. 

Regarding the regression coefficients, the within-school paths from REL to INT and 

ACH are estimated to be 0.338 (95% CI: 0.288, 0.389) and 0.245 (95% CI: 0.197, 0.294), 

respectively, with the path from INT to ACH estimated at 0.475 (95% CI: 0.431, 0.520). In 

the between-school model, the path from REL to INT and ACH is estimated at 0.601 (95% 

CI: 0.432, 0.789) and 0.220 (95% CI: 0.035, 0.415) and both paths are significantly different 

from zero. This suggests that for each additional unit increase in the average REL at the 
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school level, the school’s average achievement is expected to increase by 0.22 units and the 

school’s average interest in math increases by 0.60. The between-school effects of INT on 

ACH are 0.577 (95% CI: 0.358, 0.819). 

Compared to the estimates from Model 1, these coefficients are generally higher. This 

difference arises because Model 2 accounts for measurement errors by separating the latent 

constructs from the error components, thereby effectively reducing the noise introduced by 

imperfect measurements. As a result, the coefficients in Model 2 are more accurate, whereas 

those in Model 1 are attenuated due to unaddressed measurement error, provided that Model 

2 is correctly specified and adequately captures the underlying measurement structure. 

Model 3. Model with random slopes to indirect paths 

In Model 3 (see Figure 3), random slopes are introduced to account for the variability 

in within-school effects across schools, allowing for a more accurate estimation of the 

mediation effect by modeling how these pathways differ across schools. In this model, we 

also estimate the indirect effects for between- and within-school levels, as well as examine 

contextual effects.  

Random slopes 

To estimate random slopes, random slopes are specified in the LATENT command 

(i.e., RSa, RSb). The Blimp syntax for the random slope model includes several specifications 

to capture variability in relationships across schools. In the within-level model, the notation 

INT_w@RSb assigns a random slope (RSb) to the effect of INT_w on ACH_w, allowing this 

effect to vary between schools. Similarly, REL_w@RSa attaches the random slope (RSa) to 

the effect of REL_W on INT_w, allowing this effect to vary across schools. At the between-

level, RSb ~ 1@b_w sets the intercept of the random slope RSb to b_w, representing the 

average effect of INT_w on ACH_w across schools. Similarly, RSa ~ 1@a_w sets the 

intercept of RSa to a_w, representing the average effect of REL_w on INT_w across 
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schools. The bottom three lines of syntax specify the variances and covariances of two 

random slopes. Specifically, the syntax RSb ~~ RSb and RSa ~~ RSa specify the variances of 

two random slopes that capture how much these effects vary across schools. The RSb ~~ 

RSa@rCor sets the “correlation” between two random slopes, labeled as rCor. This 

correlation term reveals whether variability in the effect of INT_w on ACH_w is related to 

variability in the effect of REL_w on INT_w across schools.  

Blimp Syntax 

LATENT: 
 ACH_w INT_w REL_w;                   
 schid = ACH_b INT_b REL_b RSa RSb; 
 
 MODEL:   
 Within-level model: 
  ACH_w -> ACH1:ACH4;  
  INT_w -> INT1:INT4;  
  REL_w -> REL1:REL4;  
 
  ACH_w ~ INT_w@RSb REL_w; 
  INT_w ~ REL_w@RSa; 
 
 Between-level model: 
  ACH_b -> ACH1:ACH4; 
  INT_b -> INT1:INT4; 
  REL_b -> REL1:REL4; 
 
  ACH_b ~ MI_b@b_b REL_b ; 
  INT_b ~ REL_b@a_b ; 
 
  RSb ~ 1@b_w; 
  RSa ~ 1@a_w; 
  RSa ~~ RSa; 
  RSb ~~ RSb; 
  RSa ~~ RSb@rCor; 
Note. ACH, INT, and REL represent the latent factors of math achievement, math interest, and math 

teacher relations, respectively, each underlying four indicators (ACH1-ACH4 for math achievement, 

INT1-INT4 for math interest, and REL1-REL4 for math teacher relations). The suffixes 'b' and 'w' 

denote the between-school and within-school levels, respectively.  

 

[Figure 3 about here] 

[Table 3 about here] 
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Table 3 presents the random slope estimates from Blimp. The means of random slope 

(RSa and RSb) indicate the average within-school effects for the a- and b-path at the within-

school level. The variances and correlation of RSa and RSb reflect how much the within-

school effects vary across schools and how they relate to each other. 

The means of RSa and RSb, with estimated medians of 0.331 and 0.458 respectively, 

indicate the average within-school effects for two separate pathways, labeled as a-path and b-

path. These estimates are supported by relatively narrow 95% credible intervals, suggesting a 

reasonable degree of certainty: RSa ranges from 0.213 to 0.452, and RSb ranges from 0.359 

to 0.559. 

The variances for RSa and RSb are 0.309 and 0.212, respectively. The larger variance 

for RSa suggests that the a-path has greater variability in its impact between schools 

compared to the b-path. This indicates that while RSb effects are relatively stable across 

schools, RSa effects fluctuate more significantly, potentially pointing to factors that 

differentially influence the a-path at the school level. 

The correlation between RSa and RSb is 0.027 (95% CI: -0.033, 0.091). This reflects 

a slightly positive association implying that when one pathway shows a higher within-school 

effect, the other tends to have a higher effect as well. However, the strength of this 

relationship is not particularly strong, suggesting that while there is some linkage between 

RSa and RSb, they largely capture distinct aspects of within-school variability. Overall, the 

table provides insights into how the within-school effects vary across schools and how the 

pathways relate to each other, emphasizing the heterogeneity in the data at the school level. 

Mediation effects 

Blimp provides features to compute additional parameters, such as indirect effects 

(including moderated indirect effects) and contextual effects. These parameters can be 
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computed directly in the PARAMETERS section. For instance, to compute the mediation 

effects at the within- and between-levels, the following syntax can be used: 

med_w = a_w * b_w + rCov; 

med_b = a_b * b_b; 

where med_w and med_b are defined as the within-school and the between-school mediation 

effect, respectively; and rCov denotes the covariance between two random slopes. 

By default, Blimp estimates the relationship between random slopes as a correlation. 

To compute the within-school mediation effect involving random slopes, the correlation must 

be converted into the covariance. This can be achieved by labeling the correlation as RSb ~~ 

RSa@rCor, where rCorr represents the correlation between the two random slopes. Then, 

the covariance is then computed as 𝜎,' = 𝜌,'X𝜎,:𝜎':, where the total variance of two 

random slopes are obtained as RSa.totalvar and RSa.totalvar. 

Blimp Syntax 

PARAMETERS:  
 #Covariance between two random slopes 
 rCov = rCor * sqrt(RSa.totalvar * RSb.totalvar); 
 #Mediation effects 
 med_w = a_w * b_w + rCov; 
 med_b = a_b * b_b; 

 

Table 3 presents the estimated mediation effects at both the within-school (MED_W) 

and between-school (MED_B) levels. These effects describe the indirect influence of teacher-

student relationships (REL) on math achievement (ACH) through math interest (INT). The 

within-school mediation effect (MED_W) is estimated at 0.151 (95% CI: 0.090, 0.223). This 

significant positive mediation effect implies that, within individual schools, improvements in 

teacher-student relations are associated with higher student interest in mathematics, which in 

turn leads to enhanced math achievement. The credible interval does not include zero, 

indicating a robust indirect effect that is consistently positive within schools. At the between-

school level, the mediation effect (MED_B) is estimated at 0.343 (0.201, 0.525). This suggests 
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that schools with stronger overall teacher-student relationships (REL) tend to have higher 

levels of student math interest (INT), which subsequently translates to improved math 

achievement (ACH) at the school level. Similar to the within-school effect, the between-

school mediation effect is statistically significant as the credible interval does not include 

zero. However, it is slightly smaller in magnitude compared to the within-school mediation 

effect, suggesting that the impact of teacher-student relationships (REL) on math interest 

(INT) and subsequent achievement (ACH) is somewhat attenuated when aggregated across 

schools. 

Contextual effects 

Contextual effects can be computed similarly to mediation effects for a-, b-, and 

indirect effects. These effects are derived by subtracting the within-school effects from the 

between-school effects (e.g., a_con = a_b - a_w;). 

Blimp Syntax 

PARAMETERS:  
 #Contextual effects 
 a_con = a_b - a_w; 
 b_con = b_b - b_w; 
 med_con = med_b - med_w ; 

 

Table 3 presents the estimated contextual effects for a-, b-, and indirect paths, 

respectively. The calculated contextual effects (A_CON and B_CON) provide additional 

insight into the discrepancies between within-school and between-school dynamics. The 

contextual effect for REL to INT (A_CON = 0.273) and for INT to ACH (B_CON = 0.115) are 

both positive, indicating that the between-school effects are stronger after accounting for the 

within-school relationships. This suggests that schools with higher average teacher-student 

relationship quality tend to foster greater student interest in math and achievement at a 

collective level, above and beyond individual-level effects. 
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The contextual mediation effect is significant (MED_CON = 0.192, 95% CI: 0.033, 

0.383). This positive contextual mediation effect suggests that the indirect relationship 

between teacher-student relationships (REL) and math achievement (ACH), mediated through 

student interest in math (INT), is more pronounced at the between-school level than at the 

within-school level, although it is not significant. These contextual effects emphasize the 

importance of examining how group-level dynamics, such as the overall quality of teacher-

student relationships within a school, can shape broader patterns of student outcomes. While 

individual-level relationships are important, the results suggest that the collective 

environment within a school—how teachers and students interact on average—may have an 

even greater impact on factors such as student interest and achievement. This suggests that 

the dynamics at the group or school level may not merely mirror individual-level patterns but 

instead offer additional insights into how a positive school climate collectively influences 

students. Focusing on these group-level effects allow us to gain a better understanding of how 

changes in the overall school environment can drive some significant improvements in 

student outcomes. 

Model 4. Model with cross-level moderation effects 

MSEM can incorporate cross-level moderation to explore how the relationships 

between variables vary based on between-school moderators. As illustrated in Figure 4, 

Model 4 employs individual socioeconomic status (SES) as a covariate, decomposed into 

student-level (SES_w) and school-level (SES_b) similar to Model 1. In this model, both 

SES_w and SES_b are modeled to influence math interest (INT) and math achievement 

(ACH) at both student- and school-levels. For moderated mediation, the school-level 

socioeconomic status (SES_b) influences the random slopes of a- and b-path. It indicates that 

the student-level effect of math teacher relations on math interest (a-path) may vary 

depending on the school-level SES, and the student-level effect of math interest on math 
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achievement (b-path) may also depend on the school-level SES. By modeling these 

interactions, the analysis captures how school-level socioeconomic context shapes the 

relationships at the student level. 

To estimate moderated mediation effects, conditional mediation effects can be 

calculated for different levels of the moderator, such as SES_b. Typically, these conditional 

effects are computed at ± one standard deviation from the mean of SES_b, enabling an 

examination of how the mediation effects vary depending on the level of the moderator. In 

Blimp, the same approach is used to calculate moderated mediation effects. When SES_b is 

one standard deviation above the mean, the conditional mediation effect is (a_w + SESb_a * 

sqrt(SES_b.totalvar))*(b_w + SESb_b * sqrt(SES_b.totalvar)). When SES_b is 

one standard deviation below the mean, it is (a_w - SESb_a * sqrt(SES_b.totalvar)) * 

(b_w - SESb_b * sqrt(SES_b.totalvar)). 

Blimp Syntax 

LATENT: 
 ACH_w INT_w REL_w ;                 
 schid = ACH_b INT_b REL_b SES_b RSa RSb; 
 
 MODEL:   
 Within-level model: 
 SES_w = SES - SES_b; 
 SES ~ 1@SES_b; 
 
 ACH_w -> ACH1:ACH4; 
 INT_w -> INT1:INT4; 
 REL_w -> REL1:REL4; 
 
 ACH_w ~ INT_w@RSb REL_w SES_w; 
 INT_w ~ REL_w@RSa SES_w; 
 REL_w ~~ SES; 
 
 Between-level model: 
 SES_bc  = SES_b  - gm_SES; 
 SES_b  ~ 1@gm_SES ; 
  
 ACH_b -> ACH1:ACH4; 
 INT_b -> INT1:INT4; 
 REL_b -> REL1:REL4; 
 
 ACH_b ~ INT_b@b_b REL_b SES_bc; 
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 INT_b ~ REL_b@a_b  SES_bc; 
 
 REL_b ~~ SES_b ; 
 
 RSb ~ 1@b_w SES_bc@SESb_b;   
 RSa ~ 1@a_w SES_bc@SESb_a; 
 
 RSb ~~ RSb; 
 RSa ~~ RSa; 
 RSb ~~ RSa@rCor; 
 
PARAMETERS:  
 rCov = rCor * sqrt(RSa.totalvar * RSb.totalvar); 
 #Moderated mediation effects 
 mome_p1 = (a_w + SESb_a*sqrt(SES_b.totalvar)) * (b_w + 
SESb_b*sqrt(SES_b.totalvar)) + rCov; 
 mome_m1 = (a_w - SESb_a*sqrt(SES_b.totalvar)) * (b_w - 
SESb_b*sqrt(SES_b.totalvar)) + rCov; 

 

[Figure 4 about here] 

[Table 4 about here] 

Cross-level moderation 

Table 4 summarizes the results of the cross-level moderation effects of between-

school SES on the a-path (RS2: REL to INT) and b-path (RS1: INT to ACH) within the 

multilevel mediation model. SES serves as a Level 2 covariate, representing whether schools 

are more affluent or economically disadvantaged, and its effects on the random slopes 

provide insights into the moderating role of school socioeconomic status on these mediation 

pathways. 

The effect of SES on RSa (REL to INT), with an estimated median of 0.357 (95% CI: 

0.253, 0.465) indicates a significant, positive moderation. This suggests that in schools with 

higher socioeconomic status, the positive effect of teacher-student relationships (REL) on 

interest in math (INT) is stronger. Essentially, in more affluent schools, improving teacher-

student relationships seems to have a greater impact on fostering student interest in math, 

which may be attributed to additional resources or supportive environments available in such 
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settings. 

The effect of SES on RSb (INT to ACH), with an estimated median of 0.088 (95% CI: 

-0.015, 0.188), also reveals an insignificant but positive moderation. This suggests that the 

impact of math interest (INT) on math achievement (ACH) is considerably stronger in schools 

with higher SES, although this interpretation depends on strong causal assumptions. In 

affluent schools, increased student interest in math more effectively translates into improved 

math achievement, potentially due to enhanced access to learning materials, better 

instructional quality, or more encouragement and support from both teachers and parents. 

However, these interpretations are limited by the non-experimental nature of the simulated 

data, and causal inferences should be made with caution. 

Moderated mediation effects 

Table 4 presents the results of the moderated mediation effects, assessing how the 

mediation effects vary based on the level of school socioeconomic status (SES) at ±1 

standard deviation from the mean. When SES is at 1 standard deviation above the mean 

(MOME_P1), the estimated mediation effect is 0.349 (95% CI: 0.219, 0.518). These 

significant positive mediation effects suggest that when school SES is high, the indirect 

effect from teacher-student relationships (REL) through math interest (INT) to math 

achievement (ACH) is strong. Specifically, in more affluent schools, enhanced teacher-student 

relationships may potentially be associated with increased student interest in mathematics, 

which effectively contributes to higher math achievement. Again, these interpretations are 

intended for illustrative purposes and should not be taken as evidence of causal relationships. 

Notably, the credible intervals do not include zero, indicating a robust positive effect at high 

levels of SES. 

Conversely, when SES is at 1 standard deviation below the mean (MOME_M1), the 

moderated mediation effect is estimated at 0.009 (95% CI: -0.101, 0.076). The moderated 
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mediation effect is statistically insignificant since the confidence interval includes zero. This 

suggests that in lower-SES schools, although teacher-student relationships are positively 

associated with student interest and, subsequently, math achievement, the effect is weaker 

compared to higher-SES schools. 

Discussion 

Social and behavioral researchers frequently confront the challenge of analyzing 

complex, nested data structures that require advanced statistical techniques. This tutorial 

offers a step-by-step guide for implementing Bayesian Multilevel Structural Equation 

Modeling (MSEM) using Blimp, a user-friendly software that supports flexible model 

specifications. Using an example of math achievement (ACH), math interest (INT), and 

teacher-student relationships (REL), we guide readers through the specification and 

estimation of progressively complex models in Blimp, demonstrating the power of Bayesian 

MSEM for addressing multilevel mediation and complex data structures.  

We began with a basic multilevel path model, establishing a 1-1-1 mediation 

framework that distinguished the within- and between-group relationships. This initial model 

illustrated how Bayesian MSEM can address sampling error in nested data using observed 

variables, providing a conceptual foundation for understanding multilevel mediation 

processes. We then extended the model by incorporating latent variables to account for 

measurement error. This enabled constructs to be defined using multiple observed indicators, 

leading to more precise parameter estimates and a clearer understanding of the relationships 

between variables across both levels. 

Next, we extended the model to include random slopes, allowing mediation paths to 

vary across clusters. This component demonstrated how Bayesian MSEM can accommodate 

heterogeneity in effects across groups, an important feature when modeling real-world 

variation. We further incorporated contextual effects, helping to separate the individual-level 



32 
 

from group-level influences. Finally, we implemented a model with cross-level moderated 

mediation, where a Level 2 covariate—school-level socioeconomic status (SES)—was used 

to explain variability in the mediation paths. This demonstrated how group-level moderators 

can shape individual-level processes, emphasizing the integrative capacity of Bayesian 

MSEM for testing complex interaction effects across levels. 

Throughout these four models, the tutorial emphasized practical syntax 

implementation in Blimp, clarified key statistical concepts (e.g., latent measurement, random 

effects, mediation, and moderation), and highlighted interpreting model results and 

understanding their implications in applied research contexts. These model-based examples 

underscore how Bayesian estimation allows for the analysis of complex models—including 

those involving random slopes and indirect effects—that might be challenging to estimate 

using traditional methods. 

While the tutorial centers on two-level MSEM, the modeling framework and 

interpretation strategies can be extended to more complex settings, including longitudinal 

data structures, cross-lagged panel models, and higher-level hierarchies. Altogether, this 

resource equips researchers with both conceptual and practical tools for applying Bayesian 

MSEM to a range of empirical questions. 
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Table 1. Parameter Estimates for 1-1-1 Mediation Model with Observed Variables  

 Est (Median) SD Lower CI Upper CI 𝑅" 

Parameters Within Level 

INT ← REL 0.279 0.020 0.240 0.319 1.0003 

ACH ← INT 0.430 0.018 0.395 0.465 1.0001 

ACH ← REL 0.224 0.020 0.184 0.262 1.0001 

Parameters Between Level 

INT ← REL 0.621 0.083 0.455 0.783 1.0003 

ACH ← INT 0.550 0.096 0.361 0.737 1.0004 

ACH ← REL 0.277 0.094 0.090 0.458 1.0007 

Note. CI = 95% credible intervals. Bolded estimates have credible intervals that do not include zero, indicating 

statistical significance.  
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Table 2. Parameter Estimates for 1-1-1 Mediation Model with Latent Variables  

 Est (Median) SD Lower CI Upper CI Std.Est. 

Parameters Within Level 

INT ← REL 0.338 0.026 0.288 0.389 0.292 

ACH ← INT 0.475 0.023 0.431 0.520 0.457 

ACH ← REL 0.245 0.025 0.197 0.294 0.203 

ACH2 by ACH 1.024 0.022 0.982 1.067 0.659 

ACH3 by ACH 0.991 0.021 0.950 1.033 0.658 

ACH4 by ACH 0.984 0.021 0.943 1.026 0.656 

INT2 by INT 0.959 0.022 0.917 1.004 0.621 

INT3 by INT 0.954 0.022 0.913 0.998 0.621 

INT4 by INT 0.960 0.022 0.918 1.004 0.631 

REL2 by REL 0.972 0.027 0.921 1.027 0.578 

REL3 by REL 0.939 0.026 0.889 0.992 0.557 

REL4 by REL 1.006 0.028 0.953 1.062 0.604 

Parameters Between Level 

INT ← REL 0.601 0.091 0.432 0.789 0.667 

ACH ← INT 0.577 0.117 0.358 0.819 0.589 

ACH ← REL 0.220 0.096 0.035 0.415 0.251 

ACH2 by ACH 1.150 0.093 0.977 1.347 0.532 

ACH3 by ACH 1.102 0.092 0.934 1.293 0.524 

ACH4 by ACH 1.136 0.087 0.978 1.319 0.544 

INT2 by INT 1.048 0.088 0.887 1.236 0.521 

INT3 by INT 1.112 0.085 0.954 1.286 0.554 

INT4 by INT 1.054 0.083 0.908 1.234 0.532 

REL2 by REL 0.940 0.072 0.808 1.087 0.556 

REL3 by REL 1.023 0.071 0.899 1.176 0.604 

REL4 by REL 0.902 0.067 0.780 1.047 0.540 

Note. CI = 95% credible intervals. Bolded estimates have credible intervals that do not include zero, indicating 

statistical significance. 
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Table 3. Parameter Estimates for 1-1-1 Mediation Model with Two Random Slopes  

 Est (Median) SD Lower CI Upper CI 

Parameters Between Level 

RSa Mean 0.331 0.061 0.213 0.452 

RSb Mean 0.458 0.051 0.359 0.559 

RSa Var 0.309 0.056 0.221 0.441 

RSb Var 0.212 0.039 0.151 0.301 

RSa, RSb Cor 0.027 0.031 -0.033 0.091 

MED_B 0.343 0.083 0.201 0.525 

MED_W 0.151 0.034 0.090 0.223 

A_CON 0.273 0.110 0.063 0.494 

B_CON 0.115 0.128 -0.121 0.380 

MED_CON 0.192 0.089 0.033 0.383 

Note. CI = 95% credible intervals. Bolded estimates have credible intervals that do not include zero, indicating 

statistical significance. 
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Table 4. Parameter Estimates for 1-1-1 Mediation Model with Cross-Level Moderation Effects  

 Est (Median) SD Lower CI Upper CI 

Parameters Between Level 

RSa ← SES 0.357 0.054 0.253 0.465 

RSb ← SES 0.088 0.051 -0.015 0.188 

MOME_P1 0.349 0.076 0.219 0.518 

MOME_M1 0.009 0.045 -0.101 0.076 

Note. CI = 95% credible intervals. Bolded estimates have credible intervals that do not include zero, indicating 

statistical significance. 
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Figure 1. 1-1-1 Mediation Model with Observed Variables 

Note. residual terms are omitted. 

 

 
Figure 2. 1-1-1 Mediation Model with Latent Variables 

Note. residual terms are omitted. 
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Figure 3. 1-1-1 Mediation Model with Two Random Slopes 

Note. residual terms are omitted. 

 
Figure 4. 1-1-1 Mediation Model with Cross-Level Moderation Effects 

Note. residual terms are omitted. 

 

 


