JAMB SYLLABUS

MATHEMATICS

GENERAL OBJECTIVES

The aim of the Unified Tertiary Matriculation Examination (UTME) syllabus in Mathematics is to prepare the candidates for the Board's examination. It is designed to test the achievement of the course objectives which are to:

(1) acquire computational and manipulative skills;

(2) develop precise, logical and formal reasoning skills;

(3) develop deductive skills in interpretation of graphs, diagrams and data;

(4) apply mathematical concepts to resolve issues in daily living.

This syllabus is divided into five sections:

I. Number and Numeration.

II. Algebra

III. Geometry/Trigonometry.

IV. Calculus

V. Statistics

DETAILED SYLLABUS

SECTION I

NUMBER AND NUMERATION.

TOPICS/CONTENTS/NOTES	OBJECTIVES
1. Number bases:	Candidates should be able to:
(a) operations in different	i. perform four basic
number bases from 2 to 10;	operations (x,+,-,÷);
(b) conversion from one base	ii. convert one base to
to another including fractional	another.
parts.	
2. Fractions, Decimals,	Candidates should be able to:
Approximations and	
Percentages:	i. perform basic operations
	$(x,+,-,\div)$ on fractions and
(a) fractions and decimals;	decimals;
(b) significant figures;	ii. express to specified number
(c) decimal places;	of significant figures and
(d) percentage errors;	decimal places;
(e) simple interest;	iii. calculate simple interest,
(f) profit and loss percent;	profit and loss per cent; ratio
(g) ratio, proportion and rate;	proportion and rate;
(h) shares and valued added	iv. Solve problems involving

tax (VAT).	share and VAT.
3. Indices, Logarithms and Surds:	Candidates should be able to:
(a) laws of indices;	i. apply the laws of indices in calculation;
(b) standard form;	ii. establish the relationship
(c) laws of logarithm;	between indices and
(d) logarithm of any positive	logarithms in solving
number to a given base;	problems;
(e) change of bases in	iii. solve problems in different
logarithm and application;	bases in logarithms;
(f) relationship between	iv. simplify and rationalize
indices and logarithm;	surds;
(g) Surds.	v. perform basic operations on
	surds.
4. Sets:	Candidates should be able to:
(a) types of sets	i. identify types of sets, i.e.
(b) algebra of sets	empty, universal,
(c) Venn diagrams and their	complements, subsets, finite,
applications.	infinite and disjoint sets;
	ii. solve problems involving
	cardinality of sets;
	iii. solve set problems using
	symbols;

iv. use Venn diagrams to solve
problems involving not more
than 3 sets.

SECTION II: ALGEBRA

TOPICS/CONTENTS/NOTES	OBJECTIVES
1. Polynomials:	Candidates should be able to:
(a) change of subject of	i. find the subject of the
formula	formula of a given equation;
(b) factor and remainder	ii. apply factor and remainder
theorems	theorem to factorize a given
(c) factorization of polynomials	expression;
of degree not exceeding 3.	iii. multiply and divide
(d) multiplication and division	polynomials of degree not
of polynomials	more than 3;
(e) roots of polynomials not	iv. factorize by regrouping
exceeding degree 3	difference of two squares,
(f) simultaneous equations	perfect squares and cubic
including one linear one	expressions; etc.
quadratic;	v. solve simultaneous
(g) graphs of polynomials of	equations – one linear, one
degree not greater than 3.	quadratic;

	vi. interpret graphs of
	polynomials including
	applications to maximum and
	minimum values.
2. Variation:	Candidates should be able to:
(a) direct	i. solve problems involving
(b) inverse	direct, inverse, joint and
(c) joint	partial variations;
(d) partial	ii. solve problems on
(e) percentage increase and	percentage increase and
decrease.	decrease in variation.
3. Inequalities:	Candidates should be able to:
(a) analytical and graphical	i. solve problems on linear and
solutions of linear inequalities;	quadratic inequalities;
(b) quadratic inequalities with	ii. interpret graphs of
integral roots only.	inequalities.
4. Progression:	Candidates should be able to:
(a) nth term of a progression	i. determine the nth term of a
(b) sum of A. P. and G. P.	progression;
	ii. compute the sum of A. P.
	and G.P;

	iii. sum to infinity of a given G.P.
5. Binary Operations:	Candidates should be able to:
(a) properties of closure,	i. solve problems involving
commutativity, associativity	closure, commutativity,
and distributivity;	associativity and distributivity;
(b) identity and inverse	ii. solve problems involving
elements (simple cases only).	identity and inverse elements.
6. Matrices and	Candidates should be able to:
Determinants:	
	i. perform basic operations
(a) algebra of matrices not	(x,+,-,÷) on matrices;
exceeding 3 x 3;	ii. calculate determinants;
(b) determinants of matrices	iii. compute inverses of 2 x 2
not exceeding 3 x 3;	matrices.
(c) inverses of 2 x 2 matrices	
[excluding quadratic and	
higher degree equations].	

SECTION III

GEOMETRY AND TRIGONOMETRY.

TOPICS/CONTENTS/NOTES	OBJECTIVES
1. Euclidean Geometry:	Candidates should be able to:
lines (b) Polygons: triangles, quadrilaterals and general polygons; (c) Circles: angle properties,	iii. calculate angles using circle
2. Mensuration:	Candidates should be able to:
(a) lengths and areas of planegeometrical figures;(b) lengths of arcs and chordsof a circle;(c) Perimeters and areas of	 i. calculate the perimeters and areas of triangles, quadrilaterals, circles and composite figures;
sectors and segments of circles;	ii. find the length of an arc, a chord, perimeters and areas of

(d) surface areas and volumes	sectors and segments of
of simple solids and composite	circles;
figures;	iii. calculate total surface areas
(e) the earth as a sphere:	and volumes of cuboids,
longitudes and latitudes.	cylinders. cones, pyramids,
	prisms, spheres and composite
	figures;
	iv. determine the distance
	between two points on the
	earth's surface.
3. Loci:	Candidates should be able to:
locus in 2 dimensions based on	identify and interpret loci
geometric principles relating to	relating to parallel lines,
lines and curves.	perpendicular bisectors, angle
	bisectors and circles.
4. Coordinate Geometry:	Candidates should be able to:
(a) midpoint and gradient of a	i. determine the midpoint and
line segment;	gradient of a line segment;
(b) distance between two	ii. find the distance between
points;	two points;
(c) parallel and perpendicular	iii. identify conditions for
lines;	parallelism and
(d) equations of straight lines.	perpendicularity;

	iv. find the equation of a line
	in the two-point form, point-
	slope form, slope intercept
	form and the general form.
5. Trigonometry:	Candidates should be able to:
(a) trigonometrical ratios of	i. calculate the sine, cosine
angles;	and tangent of angles between
(b) angles of elevation and	- 360° ≤ ⊖ ≤ 360°;
depression;	ii. apply these special angles,
(c) bearings;	e.g. 30°, 45°, 60°, 75°, 90°,
(d) areas and solutions of	1050, 135° to solve simple
triangle;	problems in trigonometry;
(e) graphs of sine and cosine;	iii. solve problems involving
(f) sine and cosine formulae.	angles of elevation and
	depression;
	iv. solve problems involving
	bearings;
	v. apply trigonometric
	formulae to find areas of
	triangles;
	vi. solve problems involving
	sine and cosine graphs.
1	

SECTION IV CALCULUS

TOPICS/CONTENTS/NOTES	OBJECTIVES
1. Differentiation:	Candidates should be able to:
 (a) limit of a function (b) differentiation of explicit algebraic and simple trigonometrical functions – sine, cosine and tangent. 	 i. find the limit of a function ii. differentiate explicit algebraic and simple trigonometrical functions.
2.Applicationofdifferentiation:(a) rate of change;(b) maxima and minima.	Candidates should be able to: solve problems involving applications of rate of change, maxima and minima.
3. Integration:	Candidates should be able to:
 (a) integration of explicit algebraic and simple trigonometrical functions; (b) area under the curve. 	 i. solve problems of integration involving algebraic and simple trigonometric functions; ii. calculate area under the curve (simple cases only).

SECTION V STATISTICS

TOPICS/CONTENTS/NOTES	OBJECTIVES
1. Representation of data:	Candidates should be able to:
(a) frequency distribution;(b) histogram, bar chart and pie chart.	 i. identify and interpret frequency distribution tables; ii. interpret information on histogram, bar chat and pie chart.
2. Measures of Location:	Candidates should be able to:
 (a) mean, mode and median of ungrouped and grouped data – (simple cases only); (b) cumulative frequency. 	 i. calculate the mean, mode and median of ungrouped and grouped data (simple cases only); ii. use ogive to find the median, quartiles and percentiles.
3. Measures of Dispersion:	Candidates should be able to:
range, mean deviation, variance and standard deviation.	calculate the range, mean deviation, variance and

	standard deviation of
	ungrouped and grouped data.
4. Permutation and	Candidates should be able to:
Combination:	
	solve simple problems
(a) Linear and circular	involving permutation and
arrangements;	combination.
(b) Arrangements involving	
repeated objects.	
5. Probability:	Candidates should be able to:
(a) experimental probability	solve simple problems in
(tossing of coin, throwing of a	probability (including addition
dice etc);	and multiplication).
(b) Addition and multiplication	
of probabilities (mutual and	
independent cases).	

DISCLAIMER

The above topics are where all your JAMB Mathematics questions for this year will come from but it does **NOT** say which 'topic in particular' and how many questions per topic.

You are advised to read according to this syllabus and also study **past questions** on Mathematics to be well-prepared for the exam.

Speaking of which,

Would you like to download JAMB Mathematics past questions **FREE OF CHARGE** right now?

Click on the link below...

www.examministry.com