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MODULE-I 

 Introduction to OS 

A program that acts as an intermediary between a user of a computer and the 

computer hardware 

Operating system goals: 

o Execute user programs and make solving user problems easier 

o Make the computer system convenient to use 

o Use the computer hardware in an efficient manner 

 Computer System Structure 

 Computer system can be divided into four components 

o Hardware – provides basic computing resources 

 CPU, memory, I/O devices 

o Operating system 

 Controls and coordinates use of hardware among various 

applications and users 

o Application programs – define the ways in which the system resources are 

used to solve the computing problems of the users 

 Word processors, compilers, web browsers, database systems, 

video games 

o Users 

 People, machines, other computers 



 

OS Definition 

 OS is a resource allocator 

o Manages all resources 

o Decides between conflicting requests for efficient and fair resource use 

 OS is a control program 

o Controls execution of programs to prevent errors and improper use of the 

computer 

Computer Startup 

 bootstrap program is loaded at power-up or reboot 

o Typically stored in ROM or EPROM, generally known as firmware 

o Initializes all aspects of system 

o Loads operating system kernel and starts execution 

 

 

 

 



Computer System Organisation 

 

 One or more CPUs, device controllers connect through common bus providing 

access to shared memory 

 Concurrent execution of CPUs and devices competing for memory cycles 

 I/O devices and the CPU can execute concurrently 

 Each device controller is in charge of a particular device type 

 Each device controller has a local buffer 

 CPU moves data from/to main memory to/from local buffers 

 I/O is from the device to local buffer of controller 

 Device controller informs CPU that it has finished its operation by causing an 

interrupt  

 Interrupt transfers control to the interrupt service routine generally, through the 

interrupt vector, which contains the addresses of all the service routines 

 Interrupt architecture must save the address of the interrupted instruction 

 Incoming interrupts are disabled while another interrupt is being processed to 

prevent a lost interrupt  



 A trap is a software-generated interrupt caused either by an error or a user 

request 

 An operating system is interrupt driven 

 The operating system preserves the state of the CPU by storing registers and the 

program counter 

 Determines which type of interrupt has occurred: 

 polling 

 vectored interrupt system 

 Separate segments of code determine what action should be taken for each type 

of interrupt 

I/O Structure 

 After I/O starts, control returns to user program only upon I/O completion 

o Wait instruction idles the CPU until the next interrupt 

o Wait loop (contention for memory access) 

o At most one I/O request is outstanding at a time, no simultaneous I/O 

processing 

 After I/O starts, control returns to user program without waiting for I/O completion 

o System call – request to the operating system to allow user to wait for I/O 

completion 

o Device-status table contains entry for each I/O device indicating its type, 

address, and state 

o Operating system indexes into I/O device table to determine device status 

and to modify table entry to include interrupt 

Storage Structure 

 Main memory – only large storage media that the CPU can access directly 

 Secondary storage – extension of main memory that provides large 

nonvolatile storage capacity 



 Magnetic disks – rigid metal or glass platters covered with magnetic recording 

material  

Direct Memory Access Structure 

 Used for high-speed I/O devices able to transmit information at close to 

memory speeds 

 Device controller transfers blocks of data from buffer storage directly to main 

memory without CPU intervention 

 Only one interrupt is generated per block, rather than the one interrupt per 

byte 

Storage Hierarchy 

 Storage systems organized in hierarchy 

o Speed 

o Cost 

o Volatility 

 



Caching 

 Important principle, performed at many levels in a computer (in hardware, 

operating system, software) 

 Information in use copied from slower to faster storage temporarily 

 Faster storage (cache) checked first to determine if information is there 

o If it is, information used directly from the cache (fast) 

o If not, data copied to cache and used there 

 Cache smaller than storage being cached 

o Cache management important design problem 

o Cache size and replacement policy 

o Disk surface is logically divided into tracks, which are subdivided into 

sectors 

o The disk controller determines the logical interaction between the device 

and the computer  

Computer System Architecture 

 Most systems use a single general-purpose processor (PDAs through 

mainframes) 

o Most systems have special-purpose processors as well 

 Multiprocessors systems growing in use and importance 

o Also known as parallel systems, tightly-coupled systems 

o Advantages include 

 Increased throughput 

 Economy of scale 

 Increased reliability – graceful degradation or fault tolerance 

o Two types 

 Asymmetric Multiprocessing 



 Symmetric Multiprocessing 

 

 

 

Fig: Symmetric multiprocessing architecture 

Operating System Structure 

 Multiprogramming needed for efficiency 

o Single user cannot keep CPU and I/O devices busy at all times 

o Multiprogramming organizes jobs (code and data) so CPU always has one 

to execute 



o A subset of total jobs in system is kept in memory 

o One job selected and run via job scheduling 

o When it has to wait (for I/O for example), OS switches to another job 

 Timesharing (multitasking) is logical extension in which CPU switches jobs so 

frequently that users can interact with each job while it is running, creating 

interactive computing 

o Response time should be < 1 second 

o Each user has at least one program executing in memory process 

o If several jobs ready to run at the same time  CPU scheduling 

o If processes don’t fit in memory, swapping moves them in and out to run 

o Virtual memory allows execution of processes not completely in memory 

 Operating System Operation 

 Interrupt driven by hardware 

 Software error or request creates exception or trap 

o Division by zero, request for operating system service 

 Other process problems include infinite loop, processes modifying each other or 

the operating system 

 Dual-mode operation allows OS to protect itself and other system components 

o User mode and kernel mode  

o Mode bit provided by hardware 

 Provides ability to distinguish when system is running user code or 

kernel code 

 Some instructions designated as privileged, only executable in 

kernel mode 

 System call changes mode to kernel, return from call resets it to 

user 

 Timer to prevent infinite loop / process hogging resources 



o Set interrupt after specific period 

o Operating system decrements counter 

o When counter zero generate an interrupt 

o Set up before scheduling process to regain control or terminate program 

that exceeds allotted time 

 

OS Services 

 One set of operating-system services provides functions that are helpful to the user: 

o User interface - Almost all operating systems have a user interface (UI) 

 Varies between Command-Line (CLI), Graphics User Interface (GUI), 

Batch 

o Program execution - The system must be able to load a program into memory 

and to run that program, end execution, either normally or abnormally 

(indicating error) 

o I/O operations -  A running program may require I/O, which may involve a file 

or an I/O device  

o File-system manipulation -  The file system is of particular interest. Obviously, 

programs need to read and write files and directories, create and delete them, 

search them, list file Information, permission management.  

 One set of operating-system services provides functions that are helpful to the user 

(Cont):  

o Communications – Processes may exchange information, on the same 

computer or between computers over a network 



 Communications may be via shared memory or through message 

passing (packets moved by the OS) 

o Error detection – OS needs to be constantly aware of possible errors 

 May occur in the CPU and memory hardware, in I/O devices, in user 

program 

 For each type of error, OS should take the appropriate action to ensure 

correct and consistent computing 

 Debugging facilities can greatly enhance the user’s and programmer’s 
abilities to efficiently use the system 

 Another set of OS functions exists for ensuring the efficient operation of the system 

itself via resource sharing 

o Resource allocation - When  multiple users or multiple jobs running 

concurrently, resources must be allocated to each of them 

 Many types of resources -  Some (such as CPU cycles, main memory, 

and file storage) may have special allocation code, others (such as I/O 

devices) may have general request and release code  

o Accounting - To keep track of which users use how much and what kinds of 

computer resources 

o Protection and security - The owners of information stored in a multiuser or 

networked computer system may want to control use of that information, 

concurrent processes should not interfere with each other 

 Protection involves ensuring that all access to system resources is 

controlled 

 Security of the system from outsiders requires user authentication, 

extends to defending external I/O devices from invalid access attempts 

 If a system is to be protected and secure, precautions must be 

instituted throughout it. A chain is only as strong as its weakest link. 

 



 

System Call 

 Programming interface to the services provided by the OS 

 Typically written in a high-level language (C or C++) 

 Mostly accessed by programs via a high-level Application Program Interface 

(API) rather than direct system call use 

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X), 

and Java API for the Java virtual machine (JVM) 

Example 

 System call sequence to copy the contents of one file to another file 

 



 Typically, a number associated with each system call 

o System-call interface maintains a table indexed according to these 

numbers 

 The system call interface invokes intended system call in OS kernel and returns 

status of the system call and any return values 

 The caller need know nothing about how the system call is implemented 

o Just needs to obey API and understand what OS will do as a result call 

o Most details of  OS interface hidden from programmer by API   

 Managed by run-time support library (set of functions built into 

libraries included with compiler) 

 

Types of system call 

 Process control 

 File management 

 Device management 

 Information maintenance 



 Communications 

 Protection 

 

OS Structure 

n MS-DOS – written to provide the most functionality in the least space 

l Not divided into modules 

l Although MS-DOS has some structure, its interfaces and levels of 

functionality are not well separated 



 

Fig: MS Dos structure 

Layered Approach 

 The operating system is divided into a number of layers (levels), each built on top 

of lower layers.  The bottom layer (layer 0), is the hardware; the highest (layer N) 

is the user interface. 

 With modularity, layers are selected such that each uses functions (operations) 

and services of only lower-level layers 

 

Fig: Layered System 



 

Fig: UNIX system structure 

Micro Kernel Sructure 

 Moves as much from the kernel into “user” space 

 Communication takes place between user modules using message passing 

 Benefits: 

o Easier to extend a microkernel 

o Easier to port the operating system to new architectures 

o More reliable (less code is running in kernel mode) 

o More secure 

 Detriments: 

o Performance overhead of user space to kernel space communication 

Virtual Machne 

 A virtual machine takes the layered approach to its logical conclusion.  It treats 

hardware and the operating system kernel as though they were all hardware 

 A virtual machine provides an interface identical to the underlying bare hardware 



 The operating system host creates the illusion that a process has its own processor 

and (virtual memory) 

 Each guest provided with a (virtual) copy of underlying computer 

Process Management 

 An operating system executes a variety of programs: 

o Batch system – jobs 

o Time-shared systems – user programs or tasks 

 Textbook uses the terms job and process almost interchangeably 

 Process – a program in execution; process execution must progress in sequential 

fashion 

 A process includes: 

o program counter  

o stack 

o data section 

 

 



Process State 

As a process executes, it changes state  

o new:  The process is being created 

o running:  Instructions are being executed 

o waiting:  The process is waiting for some event to occur 

o ready:  The process is waiting to be assigned to a processor 

o terminated:  The process has finished execution 

 

Fig: Process Transition Diagram 

PCB: Process Control Block 

Information associated with each process 

 Process state 

 Program counter 

 CPU registers 

 CPU scheduling information 

 Memory-management information 

 Accounting information 

 I/O status information 



 

Fig: PCB 

Context Switching 

 When CPU switches to another process, the system must save the state of the 

old process and load the saved state for the new process via a context switch 

 Context of a process represented in the PCB 

 Context-switch time is overhead; the system does no useful work while switching 

 Time dependent on hardware support 

Process Scheduling Queues 

 Job queue – set of all processes in the system 

 Ready queue – set of all processes residing in main memory, ready and waiting 

to execute 

 Device queues – set of processes waiting for an I/O device 

 Processes migrate among the various queues 



 

Fig: Process Scheduling 

 

Schedulers 

 Long-term scheduler  (or job scheduler) – selects which processes should be 

brought into the ready queue 



 Short-term scheduler  (or CPU scheduler) – selects which process should be 

executed next and allocates CPU 

 Short-term scheduler is invoked very frequently (milliseconds)  (must be fast) 

 Long-term scheduler is invoked very infrequently (seconds, minutes)  (may be 

slow) 

 The long-term scheduler controls the degree of multiprogramming 

 Processes can be described as either: 

o I/O-bound process – spends more time doing I/O than computations, 

many short CPU bursts 

o CPU-bound process – spends more time doing computations; few very 

long CPU bursts 

Process Creation 

 Parent process create children processes, which, in turn create other 

processes, forming a tree of processes 

 Generally, process identified and managed via a process identifier (pid) 

 Resource sharing 

o Parent and children share all resources 

o Children share subset of parent’s resources 

o Parent and child share no resources 

 Execution 

o Parent and children execute concurrently 

o Parent waits until children terminate 

 Address space 

o Child duplicate of parent 

o Child has a program loaded into it 

 UNIX examples 

o fork system call creates new process 



o exec system call used after a fork to replace the process’ memory space 
with a new program 

 

Process Termination 

 Process executes last statement and asks the operating system to delete it (exit) 

o Output data from child to parent (via wait) 

o Process’ resources are deallocated by operating system 

 Parent may terminate execution of children processes (abort) 

o Child has exceeded allocated resources 

o Task assigned to child is no longer required 

o If parent is exiting 

 Some operating system do not allow child to continue if its parent 

terminates 

 All children terminated - cascading termination 

Inter Process Communication 

 Processes within a system may be independent or cooperating 

 Cooperating process can affect or be affected by other processes, including sharing 

data 

 Reasons for cooperating processes: 

o Information sharing 

o Computation speedup 

o Modularity 



o Convenience  

 Cooperating processes need interprocess communication (IPC) 

 Two models of IPC 

o Shared memory 

o Message passing 

 

Fig:a- Message Passing, b- Shared Memory 

Cooperating Process 

 Independent process cannot affect or be affected by the execution of another 

process 

 Cooperating process can affect or be affected by the execution of another process 

 Advantages of process cooperation 

o Information sharing  

o Computation speed-up 

o Modularity 



o Convenience 

Producer Consumer Problem 

 Paradigm for cooperating processes, producer process produces information that is 

consumed by a consumer process 

o unbounded-buffer places no practical limit on the size of the buffer 

o bounded-buffer assumes that there is a fixed buffer size 

 

 

 

 

 

 

 

Fig: Producer Process 

 

 

 

 

 

Fig: Consumer Process 

 

IPC-Message Passing 

 Mechanism for processes to communicate and to synchronize their actions 

 Message system – processes communicate with each other without resorting to 

shared variables 

 IPC facility provides two operations: 

 while (true) { 

   /* Produce an item */ 

        while (((in = (in + 1) % BUFFER SIZE count)  == out) 

      ;   /* do nothing -- no free buffers */ 

     buffer[in] = item; 

     in = (in + 1) % BUFFER SIZE; 

     } 

  while (true) { 

          while (in == out) 

                 ; // do nothing -- nothing to consume 

      // remove an item from the buffer 

      item = buffer[out]; 

      out = (out + 1) % BUFFER SIZE; 

 return item; 



o send(message) – message size fixed or variable  

o receive(message) 

 If P and Q wish to communicate, they need to: 

o establish a communication link between them 

o exchange messages via send/receive 

 Implementation of communication link 

o physical (e.g., shared memory, hardware bus) 

o logical (e.g., logical properties) 

Direct Communication 

 Processes must name each other explicitly: 

o send (P, message) – send a message to process P 

o receive(Q, message) – receive a message from process Q 

 Properties of communication link 

o Links are established automatically 

o A link is associated with exactly one pair of communicating processes 

o Between each pair there exists exactly one link 

 The link may be unidirectional, but is usually bi-directional 

Indirect Communication 

 Messages are directed and received from mailboxes (also referred to as ports) 

o Each mailbox has a unique id 

o Processes can communicate only if they share a mailbox 

 Properties of communication link 

o Link established only if processes share a common mailbox 

o A link may be associated with many processes 

o Each pair of processes may share several communication links 



o Link may be unidirectional or bi-directional  

o Operations 

 create a new mailbox 

 send and receive messages through mailbox 

 destroy a mailbox 

o Primitives are defined as: 

  send(A, message) – send a message to mailbox A 

  receive(A, message) – receive a message from mailbox A 

o Allow a link to be associated with at most two processes 

o Allow only one process at a time to execute a receive operation 

o Allow the system to select arbitrarily the receiver.  Sender is notified who 

the receiver was. 

Synchronisation 

 Message passing may be either blocking or non-blocking 

 Blocking is considered synchronous 

o Blocking send has the sender block until the message is received 

o Blocking receive has the receiver block until a message is available 

 Non-blocking is considered asynchronous 

o Non-blocking send has the sender send the message and continue 

o Non-blocking receive has the receiver receive a valid message or null 

Buffering 

Queue of messages attached to the link; implemented in one of three ways 

1. Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous) 

2. Bounded capacity – finite length of n messages 

Sender must wait if link full 



3. Unbounded capacity – infinite length  

Sender never waits 

Thread 

 A thread is a flow of execution through the process code, with its own 

program counter, system registers and stack.  

 A thread is also called a light weight process. Threads provide a way to 

improve application performance through parallelism.  

 Threads represent a software approach to improving performance of 

operating system by reducing the overhead thread is equivalent to a classical 

process. 

 

Fig: Single threaded vs multithreaded process 

Benefits 

 Responsiveness 

 Resource Sharing 

 Economy 

 Scalability 

 



User Threads 

 Thread management done by user-level threads library 

 Three primary thread libraries: 

o  POSIX Pthreads  

o  Win32 threads 

o  Java threads 

Kernel Thread 

 Supported by the Kernel 

 Examples 

o Windows XP/2000 

o Solaris 

o Linux 

o Tru64 UNIX 

o Mac OS X 

Multithreading Models 

 Many-to-One 

o Many user-level threads mapped to single kernel thread 

o Examples: 

o Solaris Green Threads 

o GNU Portable Threads 



 

 One-to-One 

o Each user-level thread maps to kernel thread 

o Examples 

o Windows NT/XP/2000 

o Linux 

o Solaris 9 and later 

 

 Many-to-Many 

o Allows many user level threads to be mapped to many kernel threads 

o Allows the  operating system to create a sufficient number of kernel 

threads 

o Solaris prior to version 9 

o Windows NT/2000 with the ThreadFiber package 



 

Thread Library 

 Thread library provides programmer with API for creating and managing threads 

 Two primary ways of implementing 

o Library entirely in user space 

o Kernel-level library supported by the OS 

Pthreads 

 May be provided either as user-level or kernel-level 

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization 

 API specifies behavior of the thread library, implementation is up to development 

of the library 

 Common in UNIX operating systems (Solaris, Linux, Mac OS X) 

Java Threads 

 Java threads are managed by the JVM 

 Typically implemented using the threads model provided by underlying OS 

 Java threads may be created by: 

o Extending Thread class 

o Implementing the Runnable interface 

 



Threading Issues 

 Semantics of fork() and exec() system calls 

 Thread cancellation of target thread 

o Asynchronous or deferred 

 Signal handling 

 Thread pools 

 Thread-specific data 

 Scheduler activations 

Thread Cancellation 

 Terminating a thread before it has finished 

 Two general approaches: 

o Asynchronous cancellation terminates the target thread  immediately 

o Deferred cancellation allows the target thread to periodically check if it 

should be cancelled 

Thread Pools 

 Create a number of threads in a pool where they await work 

 Advantages: 

o Usually slightly faster to service a request with an existing thread than 

create a new thread 

o Allows the number of threads in the application(s) to be bound to the size 

of the pool 

Thread Scheduling 

 Distinction between user-level and kernel-level threads 

 Many-to-one and many-to-many models, thread library schedules user-level 

threads to run on LWP 

o Known as process-contention scope (PCS) since scheduling 

competition is within the process 



 Kernel thread scheduled onto available CPU is system-contention scope 

(SCS) – competition among all threads in system 

Difference between Process and Thread 

Process Thread 

Process is heavy weight or resource 

intensive. 

Thread is light weight taking lesser 

resources than a process. 

Process switching needs interaction with 

operating system. 

Thread switching does not need to 

interact with operating system. 

In multiple processing environments each 

process executes the same code but has its 

own memory and file resources. 

All threads can share same set of 

open files, child processes. 

If one process is blocked then no other 

process can execute until the first process is 

unblocked. 

While one thread is blocked and 

waiting, second thread in the same 

task can run. 

Multiple processes without using threads use 

more resources. 

Multiple threaded processes use 

fewer resources. 

In multiple processes each process operates 

independently of the others. 

One thread can read, write or change 

another thread's data. 

Process Scheduling 

 Maximum CPU utilization obtained with multiprogramming 

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution 

and I/O wait 

 CPU burst distribution 



 

Fig: CPU burst and I/O burst 

CPU Scheduler 

 Selects from among the processes in memory that are ready to execute, and 

allocates the CPU to one of them 

 CPU scheduling decisions may take place when a process: 

1. Switches from running to waiting state 

2. Switches from running to ready state 

3. Switches from waiting to ready 

4. Terminates 

 Scheduling under 1 and 4 is nonpreemptive  

 All other scheduling is preemptive 

Dispatcher 



 Dispatcher module gives control of the CPU to the process selected by the short-

term scheduler; this involves: 

o switching context 

o switching to user mode 

o jumping to the proper location in the user program to restart that program 

 Dispatch latency – time it takes for the dispatcher to stop one process and start 

another running 

CPU Scheduling Criteria 

 Max CPU utilization 

 Max throughput 

 Min turnaround time  

 Min waiting time  

 Min response time 

CPU Scheduling Algorithms 

 

A. First Come First Serve Scheduling 

 Schedule the task first which arrives first 

 Non preemptive In nature 

B. Shortest Job First Scheduling 

 Associate with each process the length of its next CPU burst.  Use these 

lengths to schedule the process with the shortest time 

 SJF is optimal – gives minimum average waiting time for a given set of 

processes 

o The difficulty is knowing the length of the next CPU request 

Priority Scheduling 

 A priority number (integer) is associated with each process 



 The CPU is allocated to the process with the highest priority (smallest integer 

 highest priority) 

o Preemptive 

o nonpreemptive  

 SJF is a priority scheduling where priority is the predicted next CPU burst 

time 

 Problem  Starvation – low priority processes may never execute 

 Solution  Aging – as time progresses increase the priority of the process 

Round Robin Scheduling 

 Each process gets a small unit of CPU time (time quantum), usually 10-100 

milliseconds.  After this time has elapsed, the process is preempted and 

added to the end of the ready queue. 

 If there are n processes in the ready queue and the time quantum is q, then 

each process gets 1/n of the CPU time in chunks of at most q time units at 

once.  No process waits more than (n-1)q time units. 

 Performance 

o q large  FIFO 

o q small  q must be large with respect to context switch, otherwise 

overhead is too high 

 

 

Multilevel Queue Scheduling 

 Ready queue is partitioned into separate queues: 

foreground (interactive) 

background (batch) 

 Each queue has its own scheduling algorithm 

o foreground – RR 

o background – FCFS 



 Scheduling must be done between the queues 

o Fixed priority scheduling; (i.e., serve all from foreground then from 

background).  Possibility of starvation. 

o Time slice – each queue gets a certain amount of CPU time which it 

can schedule amongst its processes; i.e., 80% to foreground in RR 

o 20% to background in FCFS  

 

Multilevel Feedback Queue Scheduling 

 A process can move between the various queues; aging can be implemented 

this way 

 Multilevel-feedback-queue scheduler defined by the following parameters: 

o number of queues 

o scheduling algorithms for each queue 

o method used to determine when to upgrade a process 

o method used to determine when to demote a process 

o method used to determine which queue a process will enter when that 

process needs service 



MODULE-II 

Process Synchronization 

 Concurrent access to shared data may result in data inconsistency 

 Maintaining data consistency requires mechanisms to ensure the orderly 

execution of cooperating processes 

 Suppose that we wanted to provide a solution to the consumer-producer problem 

that fills all the buffers. We can do so by having an integer count that keeps track 

of the number of full buffers.  Initially, count is set to 0. It is incremented by the 

producer after it produces a new buffer and is decremented by the consumer 

after it consumes a buffer. 

 

 

 

 

 

 

Race Condition 

 A situation like this, where several processes access and manipulate the same 

data concurrently and the outcome of the execution depends on the particular 

order in which the access takes place, is called a race condition. 

 count++ could be implemented as 

 

     register1 = count 

Pseudocode for Producer Process 

while (true) { 

              /*  produce an item and put in 

nextProduced  */ 

       while (count == BUFFER_SIZE) 

   ; // do nothing 

         buffer [in] = nextProduced; 

         in = (in + 1) % BUFFER_SIZE; 

         count++; 

 

Pseudocode for Consumer Process 

    while (true)  { 

         while (count == 0) 

          ; // do nothing 

          nextConsumed =  buffer[out]; 

           out = (out + 1) % 

BUFFER_SIZE; 

                   count--; 

   /*  consume the item in 

nextConsumed  

 } 



     register1 = register1 + 1 

     count = register1 

 count-- could be implemented as 

 

     register2 = count 

     register2 = register2 - 1 

     count = register2 

 Consider this execution interleaving with “count = 5” initially: 

S0: producer execute register1 = count   {register1 = 5} 

S1: producer execute register1 = register1 + 1   {register1 = 6}  

S2: consumer execute register2 = count   {register2 = 5}  

S3: consumer execute register2 = register2 - 1   {register2 = 4}  

S4: producer execute count = register1   {count = 6 }  

S5: consumer execute count = register2   {count = 4} 

Critical Section Problem  

A section of code, common to n cooperating processes, in which the processes may be 

accessing common variables.  

A Critical Section Environment contains:  

 Entry Section Code requesting entry into the critical section.  

 Critical Section Code in which only one process can execute at any one time.  

 Exit Section The end of the critical section, releasing or allowing others in.  

 Remainder Section Rest of the code AFTER the critical se 



  

 Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process 

has a segment of code, called a critical section, in which the process may be 

changing common variables, updating a table, writing a file, and so on.  

 The important feature of the system is that, when one process is executing in its 

critical section, no other process is allowed to execute in its critical section. That 

is, no two processes are executing in their critical sections at the same time. 

 The critical-section problem is to design a protocol that the processes can use 

to cooperate. Each process must request permission to enter its critical section. 

The section of code implementing this 

 request is the entry section. The critical section may be followed by an exit 

section. The remaining code is the remainder section. 

Solution to Critical Section Problem 

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections 

2. Progress - If no process is executing in its critical section and there exist some 

processes that wish to enter their critical section, then the selection of the 

processes that will enter the critical section next cannot be postponed indefinitely 

3. Bounded Waiting -  A bound must exist on the number of times that other 

processes are allowed to enter their critical sections after a process has made a 

request to enter its critical section and before that request is granted 

 Assume that each process executes at a nonzero speed  

 No assumption concerning relative speed of the N processes 

 



Peterson’s Solution 

 Two process solution 

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be 

interrupted. 

 The two processes share two variables: 

o int turn;  

o Boolean flag[2] 

 The variable turn indicates whose turn it is to enter the critical section.   

 The flag array is used to indicate if a process is ready to enter the critical section. 

flag[i] = true implies that process Pi is ready! 

 

Hardware Synchronization 

 Many systems provide hardware support for critical section code 

 Uniprocessors – could disable interrupts 

o Currently running code would execute without preemption 

o Generally too inefficient on multiprocessor systems 

 Operating systems using this not broadly scalable 

 Modern machines provide special atomic hardware instructions 

 Atomic = non-interruptable  



o Either test memory word and set value 

o Or swap contents of two memory words 

Solution to Critical Section Problem using Lock 

do {  

  acquire lock  

   critical section  

  release lock  

   remainder section  

 } while (TRUE);  

 

TestAndndSet Instruction 

         boolean TestAndSet (boolean *target) 

          { 

               boolean rv = *target; 

               *target = TRUE; 

               return rv: 

          } 

Solution using TestAndSet 

 Shared boolean variable lock., initialized to false. 

 Solution: 

  do { 

                     while ( TestAndSet (&lock )) 

                                 ;   // do nothing 

                               //    critical section 

                     lock = FALSE; 

                               //      remainder section  

           } while (TRUE); 



Sawp Instruction 

         void Swap (boolean *a, boolean *b) 

          { 

                  boolean temp = *a; 

                  *a = *b; 

                  *b = temp: 

          } 

Solution using Swap 

 Shared Boolean variable lock initialized to FALSE; Each process has a local 

Boolean variable key 

 Solution: 

          do { 

                    key = TRUE; 

                    while ( key == TRUE) 

                             Swap (&lock, &key ); 

       

                                 //    critical section 

                     lock = FALSE; 

                                //      remainder section  

           } while (TRUE); 

Bounded-waiting Mutual Exclusion with TestandSet() 

 do {  

  waiting[i] = TRUE;  

  key = TRUE;  

  while (waiting[i] && key)  



   key = TestAndSet(&lock);  

  waiting[i] = FALSE;  

   // critical section  

  j = (i + 1) % n;  

  while ((j != i) && !waiting[j])  

   j = (j + 1) % n;  

  if (j == i)  

   lock = FALSE;  

  else  

   waiting[j] = FALSE;  

   // remainder section  

 } while (TRUE); 

Semaphore 

 Synchronization tool that does not require busy waiting  

 Semaphore S – integer variable 

 Two standard operations modify S: wait() and signal() 

 Originally called P() and V() 

 Less complicated 

 Can only be accessed via two indivisible (atomic) operations 

 

 

 

 

 

 Counting semaphore – integer value can range over an unrestricted domain 

wait (S) {  

           while S <= 0 

            ; // no-op 

              S--; 

      } 

signal (S) {  

        S++; 

     } 

 



 Binary semaphore – integer value can range only between 0  

and 1; can be simpler to implement 

o Also known as mutex locks  

 Can implement a counting semaphore S as a binary semaphore 

 Provides mutual exclusion 

Semaphore mutex;    //  initialized to 1 

do { 

 wait (mutex); 

         // Critical Section 

     signal (mutex); 

  // remainder section 

} while (TRUE); 

Semaphore Implementation 

 Must guarantee that no two processes can execute wait () and signal () on the 

same semaphore at the same time 

 Thus, implementation becomes the critical section problem where the wait and 

signal code are placed in the crtical section. 

o Could now have busy waiting in critical section implementation 

 But implementation code is short 

 Little busy waiting if critical section rarely occupied 

 Note that applications may spend lots of time in critical sections and therefore 

this is not a good solution. 

 With each semaphore there is an associated waiting queue. Each entry in a 

waiting queue has two data items: 

o  value (of type integer) 

o  pointer to next record in the list 

 Two operations: 



o block – place the process invoking the operation on the      appropriate 

waiting queue. 

o wakeup – remove one of processes in the waiting queue and place it in 

the ready queue. 

 Implementation of wait: 

            wait(semaphore *S) {  

   S->value--;  

   if (S->value < 0) {  

    add this process to S->list;  

    block();  

   }  

  } 

 Implementation of signal: 

  signal(semaphore *S) {  

   S->value++;  

   if (S->value <= 0) {  

    remove a process P from S->list;  

    wakeup(P);  

   } 

  }  

Classical Problems of Synchronization 

 Bounded-Buffer Problem 

 Readers and Writers Problem 

 Dining-Philosophers Problem 

 

 



Bounded-Buffer Problem 

The pool consists of n buffers, each capable of holding one item. The mutex semaphore 

provides mutual exclusion for accesses to the buffer pool and is initialized to the value 

1. The empty and full semaphores count the number of empty and full buffers. The 

semaphore empty is initialized to the value n; the semaphore full is initialized to the 

value 0. 

 N buffers, each can hold one item 

 Semaphore mutex initialized to the value 1 

 Semaphore full initialized to the value 0 

 Semaphore empty initialized to the value N. 

 The structure of the producer process 

 do  { 

                         //   produce an item in nextp  

                   wait (empty); 

                   wait (mutex); 

                         //  add the item to the  buffer 

                    signal (mutex); 

                    signal (full); 

           } while (TRUE); 

 The structure of the consumer process 

           do { 

                    wait (full); 

                    wait (mutex); 

                             //  remove an item from  buffer to nextc  

                    signal (mutex); 

                    signal (empty); 



              

                            //  consume the item in nextc  

           } while (TRUE); 

Readers-Writers Problem 

Suppose that a database is to be shared among several concurrent processes. Some of 

these processes may want only to read the database, whereas others may want to 

update (that is, to read and write) the database. We distinguish between these two 

types of processes by referring to the former as readers and to the latter as writers. 

Obviously, if two readers access the shared data simultaneously, no adverse effects will 

result. However, if a writer and some other process (either a reader or a writer) access 

the database simultaneously, 

chaos may ensue. 

 A data set is shared among a number of concurrent processes 

o Readers – only read the data set; they do not perform any updates 

o Writers   – can both read and write 

 Problem – allow multiple readers to read at the same time.  Only one single 

writer can access the shared data at the same time 

 Shared Data 

o Data set 

o Semaphore mutex initialized to 1 

o Semaphore wrt initialized to 1 

o Integer readcount initialized to 0 

 The structure of a writer process 

                      do { 

                        wait (wrt) ; 

                 



                             //    writing is performed 

                        signal (wrt) ; 

             } while (TRUE); 

 The structure of a reader process 

         do { 

                       wait (mutex) ; 

                       readcount ++ ; 

                       if (readcount == 1)   

             wait (wrt) ; 

                       signal (mutex) 

                 

                               // reading is performed 

                        wait (mutex) ; 

                        readcount  - - ; 

                        if (readcount  == 0)   

            signal (wrt) ; 

                        signal (mutex) ; 

              } while (TRUE); 

 

Dining-Philosophers Problem 

Consider five philosophers who spend their lives thinking and eating. The philosophers 

share a circular table surrounded by five chairs, each belonging to one philosopher. In 

the center of the table is a bowl of rice, and the table is laid with five single chopsticks). 

When a philosopher thinks, she does not interact with her colleagues. From time to 

time, a philosopher gets hungry and tries to pick up the two chopsticks that are closest 

to her (the chopsticks that are between her and her left and right neighbors). A 

philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a 



chopstick that is already in the hand of a neighbor. When a hungry philosopher has both 

her chopsticks at the same time, she eats without releasing the chopsticks. When she is 

finished eating, she puts down both chopsticks and starts thinking again. 

 Shared data  

o Bowl of rice (data set) 

o Semaphore chopstick [5] initialized to 1 

 The structure of Philosopher i: 

do  {  

          wait ( chopstick[i] ); 

      wait ( chopStick[ (i + 1) % 5] ); 

  

              //  eat 

      signal ( chopstick[i] ); 

      signal (chopstick[ (i + 1) % 5] ); 

  

                 //  think 

} while (TRUE); 

 

Monitors 

 A high-level abstraction that provides a convenient and effective mechanism for 

process synchronization 

 Only one process may be active within the monitor at a time 

monitor monitor-name 

{ 

 // shared variable declarations 

 procedure P1 (…) { …. } 

  … 

 procedure Pn (…) {……} 

     Initialization code ( ….) { … } 

  … 

 } 



} 

Schematic view of a Monitor 

 
Condition Variables 

 condition x, y; 

 Two operations on a condition variable: 

o x.wait ()  – a process that invokes the operation is suspended. 

 x.signal () – resumes one of processes (if any) that invoked x.wait () 

Monitor with Condition Variables 

 

 



Monitor Implementation Using Semaphores 

 

 Variables  

  semaphore mutex;  // (initially  = 1) 

  semaphore next;     // (initially  = 0) 

  int next-count = 0; 

 Each procedure F  will be replaced by 

   wait(mutex); 

        …     

                                                        body of F; 

        … 

   if (next_count > 0) 

    signal(next) 

   else  

    signal(mutex); 

 Mutual exclusion within a monitor is ensured. 

Monitor Implementation 

For each condition variable x, we  have: 

  semaphore x_sem; // (initially  = 0) 

  int x-count = 0; 

The operation x.wait can be implemented as: 

   

  x-count++; 

  if (next_count > 0) 

   signal(next); 

  else 

   signal(mutex); 

  wait(x_sem); 

  x-count--; 

The operation x.signal can be implemented as: 

  if (x-count > 0) { 



   next_count++; 

   signal(x_sem); 

   wait(next); 

   next_count--; 

  } 

    

Deadlock 

 A set of blocked processes each holding a resource and waiting to acquire a 

resource held by another process in the set 

 Example  

o System has 2 disk drives 

o P1 and P2 each hold one disk drive and each needs another one 

 Example  

o semaphores A and B, initialized to 1  

    P0     P1  

wait (A);  wait(B) 

wait (B);  wait(A) 

System Model 

 Resource types R1, R2, . . ., Rm  (CPU cycles, memory space, I/O devices) 

 Each resource type Ri has Wi instances. 

 Each process utilizes a resource as follows: 

o request  

o use  

o release 



Deadlock Characterization 

 Mutual exclusion:  only one process at a time can use a resource 

 Hold and wait:  a process holding at least one resource is waiting to acquire 

additional resources held by other processes 

 No preemption:  a resource can be released only voluntarily by the process 

holding it, after that process has completed its task 

 Circular wait:  there exists a set {P0, P1, …, P0} of waiting processes such that 

P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is 

held by P2, …, Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting 

for a resource that is held by P0. 

Resource Allocation Graph 

 A set of vertices V and a set of edges E. 

 V is partitioned into two types: 

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system 

o R = {R1, R2, …, Rm}, the set consisting of all resource types in the system 

 request edge – directed edge P1  Rj  

 assignment edge – directed edge Rj  Pi  

 Process  

 Resource Type with 4 instances  

 Pi requests instance of Rj  



 Pi is holding an instance of Rj  

            

Fig: RAG          Fig: RAG with a deadlock 

 If graph contains no cycles  no deadlock 

 If graph contains a cycle   

o if only one instance per resource type, then deadlock 

o if several instances per resource type, possibility of deadlock 

Methods for Handling Deadlock 

 Ensure that the system will never enter a deadlock state 

 Allow the system to enter a deadlock state and then recover 

 Ignore the problem and pretend that deadlocks never occur in the system; used 

by most operating systems, including UNIX 

Deadlock Prevention 

 Mutual Exclusion – not required for sharable resources; must hold for 

nonsharable resources 



 Hold and Wait – must guarantee that whenever a process requests a resource, 

it does not hold any other resources 

o Require process to request and be allocated all its resources before it 

begins execution, or allow process to request resources only when the 

process has none 

o Low resource utilization; starvation possible 

 No Preemption – 

o If a process that is holding some resources requests another resource that 

cannot be immediately allocated to it, then all resources currently being 

held are released 

o Preempted resources are added to the list of resources for which the 

process is waiting 

o Process will be restarted only when it can regain its old resources, as well 

as the new ones that it is requesting 

 Circular Wait – impose a total ordering of all resource types, and require that 

each process requests resources in an increasing order of enumeration 

Deadlock Avoidance 

 Requires that the system has some additional a priori information available 

 Simplest and most useful model requires that each process declare the 

maximum number of resources of each type that it may need 

 The deadlock-avoidance algorithm dynamically examines the resource-allocation 

state to ensure that there can never be a circular-wait condition. 

 Resource-allocation state is defined by the number of available and allocated 

resources, and the maximum demands of the processes 

Safe state 

 When a process requests an available resource, system must decide if 

immediate allocation leaves the system in a safe state 

 System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the  

processes  is the systems such that  for each Pi, the resources that Pi can still 



request can be satisfied by currently available resources + resources held by all 

the Pj, with j < i  

 That is: 

o If Pi resource needs are not immediately available, then Pi can wait until all 

Pj have finished 

o When Pj is finished, Pi can obtain needed resources, execute, return 

allocated resources, and terminate 

o When Pi terminates, Pi +1 can obtain its needed resources, and so on  

Facts 

 

 

 

 

 

Deadlock Avoidance Algorithm 

 Single instance of a resource type 

o Use a resource-allocation graph 

 Multiple instances of a resource type 

o  Use the banker’s algorithm 

n If a system is in safe state  no deadlocks 

n If a system is in unsafe state  possibility of deadlock 

n Avoidance  ensure that a system will never enter an unsafe 

state. 



RAG Scheme 

 Claim edge Pi  Rj indicated that process Pj may request resource Rj; 

represented by a dashed line 

 Claim edge converts to request edge when a process requests a resource 

 Request edge converted to an assignment edge when the  resource is allocated 

to the process 

 When a resource is released by a process, assignment edge reconverts to a 

claim edge 

 Resources must be claimed a priori in the system  

 

Banker’s Algorithm 

Assumptions 

 Multiple instances 

 Each process must a priori claim maximum use 

 When a process requests a resource it may have to wait   

 When a process gets all its resources it must return them in a finite amount of 

time 

Data Structure for Bankers’ Algorithm 

Let n = number of processes, and m = number of resources types.  

 Available:  Vector of length m. If available [j] = k, there are k instances of 

resource type Rj  available 

 Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k 

instances of resource type Rj  



 Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently allocated k 

instances of Rj  

 Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to 

complete its task 

    Need [i,j] = Max[i,j] – Allocation [i,j] 

Safety Algorithm 

1. Let Work and Finish be vectors of length m and n, respectively.  Initialize: 

Work = Available 

Finish [i] = false for i = 0, 1, …, n- 1 

2. Find and i such that both:  

(a) Finish [i] = false  

(b) Needi  Work 

If no such i exists, go to step 4 

3. Work = Work + Allocationi 

Finish[i] = true 

go to step 2 

4. If Finish [i] == true for all i, then the system is in a safe state 

Resource Request Algorithm 

Request = request vector for process Pi.  If Requesti [j] = k then process Pi wants k 

instances of resource type Rj  

1. If Requesti  Needi go to step 2.  Otherwise, raise error condition, since process 

has exceeded its maximum claim 

2. If Requesti  Available, go to step 3.  Otherwise Pi  must wait, since resources 

are not available 

3. Pretend to allocate requested resources to Pi by modifying the state as follows: 

  Available = Available  – Request; 

  Allocationi = Allocationi + Requesti; 

  Needi = Needi – Requesti; 

 If safe  the resources are allocated to Pi 

 If unsafe  Pi must wait, and the old resource-allocation state is 

restored 



Deadlock Detection 

 Allow system to enter deadlock state  

 Detection algorithm 

 Recovery scheme 

Recovery from Deadlock 

   A. Process Termination 

 Abort all deadlocked processes 

 Abort one process at a time until the deadlock cycle is eliminated 

 In which order should we choose to abort? 

o Priority of the process 

o How long process has computed, and how much longer to completion 

o Resources the process has used 

o Resources process needs to complete 

o How many processes will need to be terminated 

B. Resource Preemption 

 Selecting a victim – minimize cost 

 Rollback – return to some safe state, restart process for that state 

 Starvation –  same process may always be picked as victim, include 

number of rollback in cost factor 

Memory Management 

 Program must be brought (from disk)  into memory and placed within a process 

for it to be run 

 Main memory and registers are only storage CPU can access directly 

 Register access in one CPU clock (or less) 

 Main memory can take many cycles 

 Cache sits between main memory and CPU registers 

 Protection of memory required to ensure correct operation 

 A pair of base and limit registers define the logical address space 



Logical vs Physical Address Space 

 The concept of a logical address space that is bound to a separate physical 

address space is central to proper memory management 

o Logical address – generated by the CPU; also referred to as virtual 

address 

o Physical address – address seen by the memory unit 

 Logical and physical addresses are the same in compile-time and load-time 

address-binding schemes; logical (virtual) and physical addresses differ in 

execution-time address-binding scheme 

Address Binding 

 Address binding of instructions and data to memory addresses can happen at 

three different stages 

o Compile time:  If memory location known a priori, absolute code can be 

generated; must recompile code if starting location changes 

o Load time:  Must generate relocatable code if memory location is not 

known at compile time 

o Execution time:  Binding delayed until run time if the process can be 

moved during its execution from one memory segment to another.  Need 

hardware support for address maps (e.g., base and limit registers) 

Memory Management Unit 

 Hardware device that maps virtual to physical address 

 In MMU scheme, the value in the relocation register is added to every address 

generated by a user process at the time it is sent to memory 

 The user program deals with logical addresses; it never sees the real physical 

addresses 

Dynamic Loading 

 Routine is not loaded until it is called 

 Better memory-space utilization; unused routine is never loaded 



 Useful when large amounts of code are needed to handle infrequently occurring 

cases 

 No special support from the operating system is required implemented through 

program design 

Dynamic Linking 

 Linking postponed until execution time 

 Small piece of code, stub, used to locate the appropriate memory-resident library 

routine 

 Stub replaces itself with the address of the routine, and executes the routine 

 Operating system needed to check if routine is in processes’ memory address 

 Dynamic linking is particularly useful for libraries 

 System also known as shared libraries 

Swapping 

 A process can be swapped temporarily out of memory to a backing store, and 

then brought back into memory for continued execution 

 Backing store – fast disk large enough to accommodate copies of all memory 

images for all users; must provide direct access to these memory images 

 Roll out, roll in – swapping variant used for priority-based scheduling 

algorithms; lower-priority process is swapped out so higher-priority process can 

be loaded and executed 

 Major part of swap time is transfer time; total transfer time is directly proportional 

to the amount of memory swapped 

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux, 

and Windows) 

 System maintains a ready queue of ready-to-run processes which have memory 

images on disk 



 

Contiguous Allocation 

 Main memory usually into two partitions: 

o Resident operating system, usually held in low memory with interrupt 

vector 

o User processes then held in high memory 

 Relocation registers used to protect user processes from each other, and from 

changing operating-system code and data 

o Base register contains value of smallest physical address 

o Limit register contains range of logical addresses – each logical address 

must be less than the limit register  

o MMU maps logical address dynamically 

 Multiple-partition allocation 

o Hole – block of available memory; holes of various size are scattered 

throughout memory 

o When a process arrives, it is allocated memory from a hole large enough 

to accommodate it 

o Operating system maintains information about: 

a) allocated partitions    b) free partitions (hole) 



Dynamic Storage Allocation Problem 

 First-fit:  Allocate the first hole that is big enough 

 Best-fit:  Allocate the smallest hole that is big enough; must search entire list, 

unless ordered by size   

o Produces the smallest leftover hole 

 Worst-fit:  Allocate the largest hole; must also search entire list   

o Produces the largest leftover hole 

Fragmentation 

 External Fragmentation – total memory space exists to satisfy a request, but it 

is not contiguous 

 Internal Fragmentation – allocated memory may be slightly larger than 

requested memory; this size difference is memory internal to a partition, but not 

being used 

 Reduce external fragmentation by compaction 

o Shuffle memory contents to place all free memory together in one large 

block 

o Compaction is possible only if relocation is dynamic, and is done at 

execution time 

o I/O problem 

 Latch job in memory while it is involved in I/O 

 Do I/O only into OS buffers 

Paging 

 Logical address space of a process can be noncontiguous; process is allocated 

physical memory whenever the latter is available 

 Divide physical memory into fixed-sized blocks called frames (size is power of 2, 

between 512 bytes and 8,192 bytes) 

 Divide logical memory into blocks of same size called pages  

 Keep track of all free frames 



 To run a program of size n pages, need to find n free frames and load program 

 Set up a page table to translate logical to physical addresses 

 Internal fragmentation 

 Address generated by CPU is divided into: 

o Page number (p) – used as an index into a page table which contains 

base address of each page in physical memory 

o Page offset (d) – combined with base address to define the physical 

memory address that is sent to the memory unit 

 

Implementation of Page table 

 Page table is kept in main memory 

 Page-table base register (PTBR) points to the page table 

 Page-table length register (PRLR) indicates size of the page table 

 In this scheme every data/instruction access requires two memory accesses.  

One for the page table and one for the data/instruction. 



 The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-aside 

buffers (TLBs) 

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – 

uniquely identifies each process to provide address-space protection for that 

process 

Paging with TLB 

 

Memory Protection 

 Memory protection implemented by associating protection bit with each frame 

 Valid-invalid bit attached to each entry in the page table: 

o “valid” indicates that the associated page is in the process’ logical address 
space, and is thus a legal page 

o “invalid” indicates that the page is not in the process’ logical address 
space 

Shared Pages 

 Shared code 



o One copy of read-only (reentrant) code shared among processes (i.e., text 

editors, compilers, window systems). 

o Shared code must appear in same location in the logical address space of 

all processes 

 Private code and data  

o Each process keeps a separate copy of the code and data 

o The pages for the private code and data can appear anywhere in the 

logical address space 

Structure of Page table 

Hierarchical Paging 

 Break up the logical address space into multiple page tables 

 A simple technique is a two-level page table 

 



Hashed Page Tables 

 The virtual page number is hashed into a page table 

o This page table contains a chain of elements hashing to the same location 

 Virtual page numbers are compared in this chain searching for a match 

o If a match is found, the corresponding physical frame is extracted 

 

Inverted Page Tables 

 One entry for each real page of memory 

 Entry consists of the virtual address of the page stored in that real memory 

location, with information about the process that owns that page 

 Decreases memory needed to store each page table, but increases time needed 

to search the table when a page reference occurs 

 Use hash table to limit the search to one — or at most a few — page-table 

entries 



 

Segmentation 

 Memory-management scheme that supports user view of memory  

 A program is a collection of segments 

o A segment is a logical unit such as: main program, procedure, function, 

method, object, local variables, global variables, common block, stack, 

symbol table, arrays 

 Logical address consists of a two tuple: 

 <segment-number, offset>, 

 Segment table – maps two-dimensional physical addresses; each table entry 

has: 

o base – contains the starting physical address where the segments reside 

in memory 

o limit – specifies the length of the segment 

 Segment-table base register (STBR) points to the segment table’s location in 
memory 

 Segment-table length register (STLR) indicates number of segments used by a 

program; 

 segment number s is legal if s < STLR 

 Protection 



o With each entry in segment table associate: 

 validation bit = 0  illegal segment 

 read/write/execute privileges 

 Protection bits associated with segments; code sharing occurs at segment level 

 Since segments vary in length, memory allocation is a dynamic storage-

allocation problem 

 A segmentation example is shown in the following diagram 

 

Virtual Memory Management 

 Virtual memory – separation of user logical memory from physical memory. 

o Only part of the program needs to be in memory for execution 

o Logical address space can therefore be much larger than physical 

address space 

o Allows address spaces to be shared by several processes 

o Allows for more efficient process creation 

 Virtual memory can be implemented via: 

o Demand paging  

o Demand segmentation 



Demand Paging 

 Bring a page into memory only when it is needed 

o Less I/O needed 

o Less memory needed  

o Faster response 

o More users 

 Page is needed  reference to it 

o invalid reference  abort 

o not-in-memory  bring to memory 

 Lazy swapper – never swaps a page into memory unless page will be needed 

o Swapper that deals with pages is a pager 

 With each page table entry a valid–invalid bit is associated 

(v  in-memory, i  not-in-memory) 

 Initially valid–invalid bit is set to i on all entries 

 During address translation, if valid–invalid bit in page table entry  is I  page 

fault 

Page Fault 

If there is a reference to a page, first reference to that page will trap to operating 

system:              page fault 

1. Operating system looks at another table to decide: 

l Invalid reference  abort 

l Just not in memory 

2. Get empty frame 

3. Swap page into frame 

4. Reset tables 

5. Set validation bit = v  



6. Restart the instruction that caused the page fault 

 

Page Replacement 

 Prevent over-allocation of memory by modifying page-fault service routine to 

include page replacement 

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages 

are written to disk 

 Page replacement completes separation between logical memory and physical 

memory – large virtual memory can be provided on a smaller physical memory 

 Find the location of the desired page on disk 

 Find a free frame: 

   -  If there is a free frame, use it 

   -  If there is no free frame, use a page replacement  algorithm to select a victim 

frame 

 Bring  the desired page into the (newly) free frame; update the page and frame 

tables 



 Restart the process 

 

Page Replacement algorithm 

FIFO (First-in-First-Out) 

 A FIFO replacement algorithm associates with each page the time when that 

page was brought into memory.  

 When a page must be replaced, the oldest page is chosen. 

 Belady’s Anomaly: more frames  more page faults ( for some page-

replacement algorithms, the page-fault rate may increase as the number of 

allocated frames increases.) 

 Ex- 

 



 

OPTIMAL PAGE REPLACEMENT 

 Replace page that will not be used for longest period of time 

 Ex- 

 
 

LRU (LEAST RECENTLY USED) 

 LRU replacement associates with each page the time of that page’s last use. 
 When a page must be replaced, LRU chooses the page that has not been used 

for the longest period of time. 

 Ex- 

 
 

Allocation of Frames 

 Each process needs minimum number of pages 

 Two major allocation schemes 

o fixed allocation 

o priority allocation 

 Equal allocation – For example, if there are 100 frames and 5 processes, give 

each process 20 frames. 

 Proportional allocation – Allocate according to the size of process 
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Global vs Local Allocation 

 Global replacement – process selects a replacement frame from the set of all 

frames; one process can take a frame from another 

 Local replacement – each process selects from only its own set of allocated 

frames 

Thrashing 

 If a process does not have “enough” pages, the page-fault rate is very high.  This 

leads to: 

o low CPU utilization 

o operating system thinks that it needs to increase the degree of 

multiprogramming 

o another process added to the system 

 Thrashing  a process is busy swapping pages in and out  

 

 



MODULE-III 

File System 

File 

 Contiguous logical address space 

 Types:  

o Data 

 numeric 

 character 

 binary 

o Program 

File Structure 

 None - sequence of words, bytes 

 Simple record structure 

o Lines  

o Fixed length 

o Variable length 

 Complex Structures 

o Formatted document 

o Relocatable load file  

 Can simulate last two with first method by inserting appropriate control 

characters 

 Who decides: 

o Operating system 

l Program 

 



File Attribute 

 Name – only information kept in human-readable form 

 Identifier – unique tag (number) identifies file within file system 

 Type – needed for systems that support different types 

 Location – pointer to file location on device 

 Size – current file size 

 Protection – controls who can do reading, writing, executing 

 Time, date, and user identification – data for protection, security, and usage 

monitoring 

 Information about files are kept in the directory structure, which is maintained on 

the disk 

File Types 

 

 



 

File Operations 

 Create, Write, Read, Reposition within file, Delete, Truncate 

 Open(Fi) – search the directory structure on disk for entry Fi, and move the 

content of entry to memory 

 Close (Fi) – move the content of entry Fi in memory to directory structure on disk 

File Access Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

n Sequential Access 

  read next 

  write next  

  reset 

  no read after last write 

   (rewrite) 

 

n Direct Access 

  read n 

  write n 

  position to n 

   read next 

   write next  

  rewrite n 

 n = relative block number 



Directory Structure 

A. Single Level Directory 

 A single directory for all users 

 Naming problem 

 Grouping problem 

 

 

B. Two Level Directory 

 Separate directory for each user 

 Path name 

 Can have the same file name for different user 

 Efficient searching 

 No grouping capability 

 

 

 



 

 

C. Tree Structure Directory 

 Efficient searching 

 Grouping Capability 

 

D. Acyclic Graph Directories 

 



 Have shared subdirectories and files 

File Sharing 

 Sharing of files on multi-user systems is desirable 

 Sharing may be done through a protection scheme 

 On distributed systems, files may be shared across a network 

 Network File System (NFS) is a common distributed file-sharing method 

 User IDs identify users, allowing permissions and protections to be per-user 

 Group IDs allow users to be in groups, permitting group access rights 

 Uses networking to allow file system access between systems 

o Manually via programs like FTP 

o Automatically, seamlessly using distributed file systems 

o Semi automatically via the world wide web 

 Client-server model allows clients to mount remote file systems from servers 

o Server can serve multiple clients 

o Client and user-on-client identification is insecure or complicated 

o NFS is standard UNIX client-server file sharing protocol 

o CIFS is standard Windows protocol 

o Standard operating system file calls are translated into remote calls 

 Distributed Information Systems (distributed naming services) such as LDAP, 

DNS, NIS, Active Directory implement unified access to information needed for 

remote computing 

 Remote file systems add new failure modes, due to network failure, server failure 

 Recovery from failure can involve state information about status of each remote 

request 

 Stateless protocols such as NFS include all information in each request, allowing 

easy recovery but less security 



 Consistency semantics specify how multiple users are to access a shared file 

simultaneously 

o Similar to Ch 7 process synchronization algorithms 

 Tend to be less complex due to disk I/O and network latency (for 

remote file systems 

o Andrew File System (AFS) implemented complex remote file sharing 

semantics 

o Unix file system (UFS) implements: 

 Writes to an open file visible immediately to other users of the same 

open file 

 Sharing file pointer to allow multiple users to read and write 

concurrently 

o AFS has session semantics 

 Writes only visible to sessions starting after the file is closed 

File System Structure 

 File structure 

o Logical storage unit 

o Collection of related information 

n File system resides on secondary storage (disks) 

n File system organized into layers 

n File control block – storage structure consisting of information about a file 

 

 

 

 

 

 



Layered File System 

 

File Control Block 

 

File Allocation Methods 

An allocation method refers to how disk blocks are allocated for files: 

A. Contiguous Allocation 

n Each file occupies a set of contiguous blocks on the disk 



n Simple – only starting location (block #) and length (number of blocks) are 

required 

n Random access 

n Wasteful of space (dynamic storage-allocation problem) 

n Files cannot grow 

 

B. Linked Allocation 

n Each file is a linked list of disk blocks: blocks may be scattered anywhere on the 

disk. 

n Simple – need only starting address 

n Free-space management system – no waste of space  

n No random access 

n Mapping 



 

C. Indexed Allocation 

 

n Brings all pointers together into the index block.  

n Need index table 

n Random access 



n Dynamic access without external fragmentation, but have overhead of index 

block. 

Secondary Storage Structure 

Magnetic Disk 

 Magnetic disks provide bulk of secondary storage of modern computers 

o Drives rotate at 60 to 200 times per second 

o Transfer rate is rate at which data flow between drive and computer 

o Positioning time (random-access time) is time to move disk arm to 
desired cylinder (seek time) and time for desired sector to rotate under 
the disk head (rotational latency) 

o Head crash results from disk head making contact with the disk surface 

 That’s bad 

 Disks can be removable 

 Drive attached to computer via I/O bus 

o Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI 

o Host controller in computer uses bus to talk to disk controller built into 
drive or storage array 

 

 



Magnetic Tap 

 Was early secondary-storage medium 

 Relatively permanent and holds large quantities of data 

 Access time slow 

 Random access ~1000 times slower than disk 

 Mainly used for backup, storage of infrequently-used data, transfer medium 

between systems 

 Kept in spool and wound or rewound past read-write head 

 Once data under head, transfer rates comparable to disk 

 20-200GB typical storage 

Disk Structure 

 Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the 

logical block is the smallest unit of transfer.  

 The 1-dimensional array of logical blocks is mapped into the sectors of the disk 

sequentially. 

o Sector 0 is the first sector of the first track on the outermost cylinder. 

o Mapping proceeds in order through that track, then the rest of the tracks in 

that cylinder, and then through the rest of the cylinders from outermost to 

innermost. 

Disk Scheduling 

 The operating system is responsible for using hardware efficiently — for the disk 

drives, this means having a fast access time and disk bandwidth. 

 Access time has two major components 

o Seek time is the time for the disk are to move the heads to the cylinder 

containing the desired sector. 



o Rotational latency is the additional time waiting for the disk to rotate the 

desired sector to the disk head. 

 Minimize seek time 

 Seek time  seek distance 

 Disk bandwidth is the total number of bytes transferred, divided by the total time 

between the first request for service and the completion of the last transfer.  

Disk Scheduling Algorithms 

FCFS 

 This algorithm is intrinsically fair, but it generally does not provide the fastest 

service. 

 

SSTF (Shortest Seek Time First) 

n Selects the request with the minimum seek time from the current head position. 

n SSTF scheduling is a form of SJF scheduling; may cause starvation of some 

requests. 



 

SCAN 

 The disk arm starts at one end of the disk, and moves toward the other end, 

servicing requests until it gets to the other end of the disk, where the head 

movement is reversed and servicing continues. 

 Sometimes called the elevator algorithm. 

 



C-SCAN 

 Provides a more uniform wait time than SCAN. 

 The head moves from one end of the disk to the other. servicing requests as it 

goes.  When it reaches the other end, however, it immediately returns to the 

beginning of the disk, without servicing any requests on the return trip. 

 Treats the cylinders as a circular list that wraps around from the last cylinder to 

the first one 

 

C-LOOK 

 Version of C-SCAN 

 Arm only goes as far as the last request in each direction, then reverses direction 

immediately, without first going all the way to the end of the disk.  



 

Disk Management 

 Low-level formatting, or physical formatting — Dividing a disk into sectors that 

the disk controller can read and write. 

 To use a disk to hold files, the operating system still needs to record its own data 

structures on the disk. 

o Partition the disk into one or more groups of cylinders. 

o Logical formatting or “making a file system”. 

 Boot block initializes system. 

o The bootstrap is stored in ROM. 

o Bootstrap loader program. 

 Methods such as sector sparing used to handle bad blocks. 

 The controller can be told to replace each bad sector logically with one of the 

spare sectors. This scheme is known as sector sparing or forwarding. 

Swap Space Management 

 Swap-space — Virtual memory uses disk space as an extension of main 

memory. 



 Swap-space can be carved out of the normal file system or, more commonly, it 

can be in a separate disk partition. 

 A swap space can reside in one of two places: it can be carved out of the normal 

file system, or it can be in a separate disk partition. 

  If the swap space is simply a large file within the file system, normal file-system 

routines can be used to create it, name it, and allocate its space. 

 Alternatively, swap space can be created in a separate raw partition. No file 

system or directory structure is placed in this space.  

 A separate swap-space storage manager is used to allocate and deallocate the 

blocks from the raw partition. 

I/O Systems 

I/O Hardware 

 A device communicates with a computer system by sending signals over a cable 

or even through the air. The device communicates with the machine via a 

connection point, or port—for example, a serial port. 

 If devices share a common set of wires, the connection is called a bus. 

 A bus is a set of wires and a rigidly defined protocol that specifies a set of 

messages that can be sent on the wires.  

 When device A has a cable that plugs into device B, and device B has a cable 

that plugs into device C, and device C plugs into a port on the computer, this 

arrangement is called a daisy chain. A daisy chain usually operates as a bus. 

 A PCI bus (the common PC system bus) connects the processor–memory 

subsystem to fast devices, and an expansion bus connects relatively slow 

devices, such as the keyboard and serial and USB ports.  

 Disks are connected together on a Small Computer System Interface (SCSI) 

bus plugged into a SCSI controller. 



 A controller is a collection of electronics that can operate a port, a bus, or a 

device.  

 A serial-port controller is a simple device controller. It is a single chip (or portion 

of a chip) in the computer that controls the signals on the wires of a serial port.  

 But the SCSI protocol is complex, the SCSI bus controller is often implemented 

as a separate circuit board (or a host adapter) that plugs into the computer. It 

typically contains a processor, microcode, and some private memory to enable it 

to process the SCSI protocol messages. 

 

Polling 

 Determines state of device  

o command-ready 

o busy 

o Error  

 Busy-wait cycle to wait for I/O from device 



Interrupt 

 CPU Interrupt-request line triggered by I/O device 

 Interrupt handler receives interrupts 

 Maskable to ignore or delay some interrupts 

 Interrupt vector to dispatch interrupt to correct handler 

 Most CPUs have two interrupt request lines. One is the nonmaskable interrupt, 

which is reserved for events such as unrecoverable memory errors.  

 The second interrupt line is maskable: it can be turned off by the CPU before the 

execution of critical instruction sequences that must not be interrupted. 

  The maskable interrupt is used by device controllers to request service. 

 Interrupt mechanism also used for exceptions 

 

 



 

Direct Memory Access 

 Used to avoid programmed I/O for large data movement  

 Requires DMA controller 

 Bypasses CPU to transfer data directly between I/O device and memory  

 

 

Application I/O Interface 

 I/O system calls encapsulate device behaviors in generic classes 

 Device-driver layer hides differences among I/O controllers from kernel 

 Devices vary in many dimensions 

o Character-stream or block 

o Sequential or random-access 

o Sharable or dedicated 

o Speed of operation 



o read-write, read only, or write only 

Kernel I/O Structure 

 

Characteristics of I/O Devices 

 



Block and Character Devices 

 Block devices include disk drives 

o Commands include read, write, seek  

o Raw I/O or file-system access 

o Memory-mapped file access possible 

 Character devices include keyboards, mice, serial ports 

o Commands include get, put  

o Libraries layered on top allow line editing 

Network Devices 

 Varying enough from block and character to have own interface 

 Unix and Windows NT/9x/2000 include socket interface 

o Separates network protocol from network operation 

o Includes select functionality 

 Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes) 

Clock and Timers 

 Provide current time, elapsed time, timer  

 Programmable interval timer used for timings, periodic interrupts 

Blocking and Non-blocking I/O 

 Blocking - process suspended until I/O completed 

o Easy to use and understand 

o Insufficient for some needs 

 Nonblocking - I/O call returns as much as available 

o User interface, data copy (buffered I/O) 

o Implemented via multi-threading 



o Returns quickly with count of bytes read or written 

 Asynchronous - process runs while I/O executes 

o Difficult to use 

o I/O subsystem signals process when I/O completed 

Kernel I/O Subsystem 

 Scheduling 

o Some I/O request ordering via per-device queue 

o Some OSs try fairness 

 Buffering - store data in memory while transferring between devices 

o To cope with device speed mismatch 

o To cope with device transfer size mismatch 

o To maintain “copy semantics” 

 Caching - fast memory holding copy of data 

o Always just a copy 

o Key to performance 

 Spooling - hold output for a device 

o If device can serve only one request at a time  

o i.e., Printing 

 Device reservation - provides exclusive access to a device 

o System calls for allocation and deallocation  

l Watch out for deadlock 

Reference 

Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin, 

"Operating System Concepts, Ninth Edition ", 


