

LECTURE NOTES

ON

OPERATING SYSTEM

SUBJECT CODE: PCCS 4304 (3-0-0)

PREPARED BY

DR. PRASHANTA KUMAR PATRA
COLLEGE OF ENGINEERING AND TECHNOLOGY, BHUBANESWAR

PCCS4304 OPERATING SYSTEM (3-0-0)

MODULE-I 12 Hours

INTRODUCTION TO OPERATING SYSTEM:

What is an Operating System? Simple Batch Systems, Multiprogramming and Time Sharing

systems. Personal Computer Systems, Parallel Systems, Distributed Systems and Real time

Systems.

Operating System Structures: Operating System Services, System components, Protection

system, Operating System Services, system calls

PROCESS MANAGEMENT:

Process Concept, Process Scheduling, Operation on Processes, Interprocess communication,

Examples of IPC Systems, Multithreading Models, Threading Issues, Process Scheduling Basic

concepts, scheduling criteria, scheduling algorithms, Thread Scheduling.

MODULE-II 12 Hours

PROCESS COORDINATION: Synchronization: The Critical section problem, Peterson’s solution,
Synchronization hardware, Semaphores, Classical problems of synchronization, Monitors.

Deadlocks: System model, Deadlock Characterization Methods for Handling Deadlocks,

Deadlock Prevention, Deadlock avoidance, Deadlock Detection, recovery from Deadlock.

MEMORY MANAGEMENT: Memory Management strategies, Logical versus Physical Address

space, swapping, contiguous Allocation, Paging, Segmentation.

Virtual Memory: Background, Demand paging, performance of Demand paging, Page

Replacement, Page Replacement Algorithms. Allocation of frames, Thrashing, Demand

Segmentation.

MODULE-III 11 Hours

STORAGE MANAGEMENT:

File System Concept, Access Methods, File System Structure, File System Structure, File

System Implementation, Directory implementation, Efficiency and Performance, Recovery,

Overview of Mass Storage Structure, Disk Structure, Disk Scheduling, Disk Management, Swap-

Space Management, I/O System Overview, I/O Hardware, Application I/O Interface, Kernel I/O

Subsystem, Transforming I/O Request to Hardware Operation.

CASE STUDIES: The LINUX System, Windows XP, Windows Vista

TEXT BOOK:

1. Operating System Concepts – Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 8
th

edition, Wiley-India, 2009.

2. Mordern Operating Systems – Andrew S. Tanenbaum, 3
rd

Edition, PHI

3. Operating Systems: A Spiral Approach – Elmasri, Carrick, Levine, TMH Edition

REFERENCE BOOK:

1. Operating Systems – Flynn, McHoes, Cengage Learning

2. Operating Systems – Pabitra Pal Choudhury, PHI

3. Operating Systems – William Stallings, Prentice Hall

4. Operating Systems – H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3
rd

Edition, Pearson

MODULE-I

 Introduction to OS

A program that acts as an intermediary between a user of a computer and the

computer hardware

Operating system goals:

o Execute user programs and make solving user problems easier

o Make the computer system convenient to use

o Use the computer hardware in an efficient manner

 Computer System Structure

 Computer system can be divided into four components

o Hardware – provides basic computing resources

 CPU, memory, I/O devices

o Operating system

 Controls and coordinates use of hardware among various

applications and users

o Application programs – define the ways in which the system resources are

used to solve the computing problems of the users

 Word processors, compilers, web browsers, database systems,

video games

o Users

 People, machines, other computers

OS Definition

 OS is a resource allocator

o Manages all resources

o Decides between conflicting requests for efficient and fair resource use

 OS is a control program

o Controls execution of programs to prevent errors and improper use of the

computer

Computer Startup

 bootstrap program is loaded at power-up or reboot

o Typically stored in ROM or EPROM, generally known as firmware

o Initializes all aspects of system

o Loads operating system kernel and starts execution

Computer System Organisation

 One or more CPUs, device controllers connect through common bus providing

access to shared memory

 Concurrent execution of CPUs and devices competing for memory cycles

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its operation by causing an

interrupt

 Interrupt transfers control to the interrupt service routine generally, through the

interrupt vector, which contains the addresses of all the service routines

 Interrupt architecture must save the address of the interrupted instruction

 Incoming interrupts are disabled while another interrupt is being processed to

prevent a lost interrupt

 A trap is a software-generated interrupt caused either by an error or a user

request

 An operating system is interrupt driven

 The operating system preserves the state of the CPU by storing registers and the

program counter

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should be taken for each type

of interrupt

I/O Structure

 After I/O starts, control returns to user program only upon I/O completion

o Wait instruction idles the CPU until the next interrupt

o Wait loop (contention for memory access)

o At most one I/O request is outstanding at a time, no simultaneous I/O

processing

 After I/O starts, control returns to user program without waiting for I/O completion

o System call – request to the operating system to allow user to wait for I/O

completion

o Device-status table contains entry for each I/O device indicating its type,

address, and state

o Operating system indexes into I/O device table to determine device status

and to modify table entry to include interrupt

Storage Structure

 Main memory – only large storage media that the CPU can access directly

 Secondary storage – extension of main memory that provides large

nonvolatile storage capacity

 Magnetic disks – rigid metal or glass platters covered with magnetic recording

material

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit information at close to

memory speeds

 Device controller transfers blocks of data from buffer storage directly to main

memory without CPU intervention

 Only one interrupt is generated per block, rather than the one interrupt per

byte

Storage Hierarchy

 Storage systems organized in hierarchy

o Speed

o Cost

o Volatility

Caching

 Important principle, performed at many levels in a computer (in hardware,

operating system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is there

o If it is, information used directly from the cache (fast)

o If not, data copied to cache and used there

 Cache smaller than storage being cached

o Cache management important design problem

o Cache size and replacement policy

o Disk surface is logically divided into tracks, which are subdivided into

sectors

o The disk controller determines the logical interaction between the device

and the computer

Computer System Architecture

 Most systems use a single general-purpose processor (PDAs through

mainframes)

o Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

o Also known as parallel systems, tightly-coupled systems

o Advantages include

 Increased throughput

 Economy of scale

 Increased reliability – graceful degradation or fault tolerance

o Two types

 Asymmetric Multiprocessing

 Symmetric Multiprocessing

Fig: Symmetric multiprocessing architecture

Operating System Structure

 Multiprogramming needed for efficiency

o Single user cannot keep CPU and I/O devices busy at all times

o Multiprogramming organizes jobs (code and data) so CPU always has one

to execute

o A subset of total jobs in system is kept in memory

o One job selected and run via job scheduling

o When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs so

frequently that users can interact with each job while it is running, creating

interactive computing

o Response time should be < 1 second

o Each user has at least one program executing in memory process

o If several jobs ready to run at the same time CPU scheduling

o If processes don’t fit in memory, swapping moves them in and out to run

o Virtual memory allows execution of processes not completely in memory

 Operating System Operation

 Interrupt driven by hardware

 Software error or request creates exception or trap

o Division by zero, request for operating system service

 Other process problems include infinite loop, processes modifying each other or

the operating system

 Dual-mode operation allows OS to protect itself and other system components

o User mode and kernel mode

o Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or

kernel code

 Some instructions designated as privileged, only executable in

kernel mode

 System call changes mode to kernel, return from call resets it to

user

 Timer to prevent infinite loop / process hogging resources

o Set interrupt after specific period

o Operating system decrements counter

o When counter zero generate an interrupt

o Set up before scheduling process to regain control or terminate program

that exceeds allotted time

OS Services

 One set of operating-system services provides functions that are helpful to the user:

o User interface - Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI), Graphics User Interface (GUI),

Batch

o Program execution - The system must be able to load a program into memory

and to run that program, end execution, either normally or abnormally

(indicating error)

o I/O operations - A running program may require I/O, which may involve a file

or an I/O device

o File-system manipulation - The file system is of particular interest. Obviously,

programs need to read and write files and directories, create and delete them,

search them, list file Information, permission management.

 One set of operating-system services provides functions that are helpful to the user

(Cont):

o Communications – Processes may exchange information, on the same

computer or between computers over a network

 Communications may be via shared memory or through message

passing (packets moved by the OS)

o Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user

program

 For each type of error, OS should take the appropriate action to ensure

correct and consistent computing

 Debugging facilities can greatly enhance the user’s and programmer’s
abilities to efficiently use the system

 Another set of OS functions exists for ensuring the efficient operation of the system

itself via resource sharing

o Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory,

and file storage) may have special allocation code, others (such as I/O

devices) may have general request and release code

o Accounting - To keep track of which users use how much and what kinds of

computer resources

o Protection and security - The owners of information stored in a multiuser or

networked computer system may want to control use of that information,

concurrent processes should not interfere with each other

 Protection involves ensuring that all access to system resources is

controlled

 Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts

 If a system is to be protected and secure, precautions must be

instituted throughout it. A chain is only as strong as its weakest link.

System Call

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program Interface

(API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X),

and Java API for the Java virtual machine (JVM)

Example

 System call sequence to copy the contents of one file to another file

 Typically, a number associated with each system call

o System-call interface maintains a table indexed according to these

numbers

 The system call interface invokes intended system call in OS kernel and returns

status of the system call and any return values

 The caller need know nothing about how the system call is implemented

o Just needs to obey API and understand what OS will do as a result call

o Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built into

libraries included with compiler)

Types of system call

 Process control

 File management

 Device management

 Information maintenance

 Communications

 Protection

OS Structure

n MS-DOS – written to provide the most functionality in the least space

l Not divided into modules

l Although MS-DOS has some structure, its interfaces and levels of

functionality are not well separated

Fig: MS Dos structure

Layered Approach

 The operating system is divided into a number of layers (levels), each built on top

of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N)

is the user interface.

 With modularity, layers are selected such that each uses functions (operations)

and services of only lower-level layers

Fig: Layered System

Fig: UNIX system structure

Micro Kernel Sructure

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message passing

 Benefits:

o Easier to extend a microkernel

o Easier to port the operating system to new architectures

o More reliable (less code is running in kernel mode)

o More secure

 Detriments:

o Performance overhead of user space to kernel space communication

Virtual Machne

 A virtual machine takes the layered approach to its logical conclusion. It treats

hardware and the operating system kernel as though they were all hardware

 A virtual machine provides an interface identical to the underlying bare hardware

 The operating system host creates the illusion that a process has its own processor

and (virtual memory)

 Each guest provided with a (virtual) copy of underlying computer

Process Management

 An operating system executes a variety of programs:

o Batch system – jobs

o Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must progress in sequential

fashion

 A process includes:

o program counter

o stack

o data section

Process State

As a process executes, it changes state

o new: The process is being created

o running: Instructions are being executed

o waiting: The process is waiting for some event to occur

o ready: The process is waiting to be assigned to a processor

o terminated: The process has finished execution

Fig: Process Transition Diagram

PCB: Process Control Block

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

Fig: PCB

Context Switching

 When CPU switches to another process, the system must save the state of the

old process and load the saved state for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching

 Time dependent on hardware support

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting

to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Fig: Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be

brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be

executed next and allocates CPU

 Short-term scheduler is invoked very frequently (milliseconds) (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) (may be

slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

o I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts

o CPU-bound process – spends more time doing computations; few very

long CPU bursts

Process Creation

 Parent process create children processes, which, in turn create other

processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

o Parent and children share all resources

o Children share subset of parent’s resources

o Parent and child share no resources

 Execution

o Parent and children execute concurrently

o Parent waits until children terminate

 Address space

o Child duplicate of parent

o Child has a program loaded into it

 UNIX examples

o fork system call creates new process

o exec system call used after a fork to replace the process’ memory space
with a new program

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

o Output data from child to parent (via wait)

o Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

o Child has exceeded allocated resources

o Task assigned to child is no longer required

o If parent is exiting

 Some operating system do not allow child to continue if its parent

terminates

 All children terminated - cascading termination

Inter Process Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including sharing

data

 Reasons for cooperating processes:

o Information sharing

o Computation speedup

o Modularity

o Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

o Shared memory

o Message passing

Fig:a- Message Passing, b- Shared Memory

Cooperating Process

 Independent process cannot affect or be affected by the execution of another

process

 Cooperating process can affect or be affected by the execution of another process

 Advantages of process cooperation

o Information sharing

o Computation speed-up

o Modularity

o Convenience

Producer Consumer Problem

 Paradigm for cooperating processes, producer process produces information that is

consumed by a consumer process

o unbounded-buffer places no practical limit on the size of the buffer

o bounded-buffer assumes that there is a fixed buffer size

Fig: Producer Process

Fig: Consumer Process

IPC-Message Passing

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to

shared variables

 IPC facility provides two operations:

 while (true) {

 /* Produce an item */

 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 }

 while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

o send(message) – message size fixed or variable

o receive(message)

 If P and Q wish to communicate, they need to:

o establish a communication link between them

o exchange messages via send/receive

 Implementation of communication link

o physical (e.g., shared memory, hardware bus)

o logical (e.g., logical properties)

Direct Communication

 Processes must name each other explicitly:

o send (P, message) – send a message to process P

o receive(Q, message) – receive a message from process Q

 Properties of communication link

o Links are established automatically

o A link is associated with exactly one pair of communicating processes

o Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as ports)

o Each mailbox has a unique id

o Processes can communicate only if they share a mailbox

 Properties of communication link

o Link established only if processes share a common mailbox

o A link may be associated with many processes

o Each pair of processes may share several communication links

o Link may be unidirectional or bi-directional

o Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

o Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

o Allow a link to be associated with at most two processes

o Allow only one process at a time to execute a receive operation

o Allow the system to select arbitrarily the receiver. Sender is notified who

the receiver was.

Synchronisation

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

o Blocking send has the sender block until the message is received

o Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

o Non-blocking send has the sender send the message and continue

o Non-blocking receive has the receiver receive a valid message or null

Buffering

Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

Thread

 A thread is a flow of execution through the process code, with its own

program counter, system registers and stack.

 A thread is also called a light weight process. Threads provide a way to

improve application performance through parallelism.

 Threads represent a software approach to improving performance of

operating system by reducing the overhead thread is equivalent to a classical

process.

Fig: Single threaded vs multithreaded process

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Scalability

User Threads

 Thread management done by user-level threads library

 Three primary thread libraries:

o POSIX Pthreads

o Win32 threads

o Java threads

Kernel Thread

 Supported by the Kernel

 Examples

o Windows XP/2000

o Solaris

o Linux

o Tru64 UNIX

o Mac OS X

Multithreading Models

 Many-to-One

o Many user-level threads mapped to single kernel thread

o Examples:

o Solaris Green Threads

o GNU Portable Threads

 One-to-One

o Each user-level thread maps to kernel thread

o Examples

o Windows NT/XP/2000

o Linux

o Solaris 9 and later

 Many-to-Many

o Allows many user level threads to be mapped to many kernel threads

o Allows the operating system to create a sufficient number of kernel

threads

o Solaris prior to version 9

o Windows NT/2000 with the ThreadFiber package

Thread Library

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing

o Library entirely in user space

o Kernel-level library supported by the OS

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development

of the library

 Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Java Threads

 Java threads are managed by the JVM

 Typically implemented using the threads model provided by underlying OS

 Java threads may be created by:

o Extending Thread class

o Implementing the Runnable interface

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread

o Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

 Scheduler activations

Thread Cancellation

 Terminating a thread before it has finished

 Two general approaches:

o Asynchronous cancellation terminates the target thread immediately

o Deferred cancellation allows the target thread to periodically check if it

should be cancelled

Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

o Usually slightly faster to service a request with an existing thread than

create a new thread

o Allows the number of threads in the application(s) to be bound to the size

of the pool

Thread Scheduling

 Distinction between user-level and kernel-level threads

 Many-to-one and many-to-many models, thread library schedules user-level

threads to run on LWP

o Known as process-contention scope (PCS) since scheduling

competition is within the process

 Kernel thread scheduled onto available CPU is system-contention scope

(SCS) – competition among all threads in system

Difference between Process and Thread

Process Thread

Process is heavy weight or resource

intensive.

Thread is light weight taking lesser

resources than a process.

Process switching needs interaction with

operating system.

Thread switching does not need to

interact with operating system.

In multiple processing environments each

process executes the same code but has its

own memory and file resources.

All threads can share same set of

open files, child processes.

If one process is blocked then no other

process can execute until the first process is

unblocked.

While one thread is blocked and

waiting, second thread in the same

task can run.

Multiple processes without using threads use

more resources.

Multiple threaded processes use

fewer resources.

In multiple processes each process operates

independently of the others.

One thread can read, write or change

another thread's data.

Process Scheduling

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution

and I/O wait

 CPU burst distribution

Fig: CPU burst and I/O burst

CPU Scheduler

 Selects from among the processes in memory that are ready to execute, and

allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-

term scheduler; this involves:

o switching context

o switching to user mode

o jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start

another running

CPU Scheduling Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

CPU Scheduling Algorithms

A. First Come First Serve Scheduling

 Schedule the task first which arrives first

 Non preemptive In nature

B. Shortest Job First Scheduling

 Associate with each process the length of its next CPU burst. Use these

lengths to schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of

processes

o The difficulty is knowing the length of the next CPU request

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest integer

 highest priority)

o Preemptive

o nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst

time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the process

Round Robin Scheduling

 Each process gets a small unit of CPU time (time quantum), usually 10-100

milliseconds. After this time has elapsed, the process is preempted and

added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then

each process gets 1/n of the CPU time in chunks of at most q time units at

once. No process waits more than (n-1)q time units.

 Performance

o q large FIFO

o q small q must be large with respect to context switch, otherwise

overhead is too high

Multilevel Queue Scheduling

 Ready queue is partitioned into separate queues:

foreground (interactive)

background (batch)

 Each queue has its own scheduling algorithm

o foreground – RR

o background – FCFS

 Scheduling must be done between the queues

o Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.

o Time slice – each queue gets a certain amount of CPU time which it

can schedule amongst its processes; i.e., 80% to foreground in RR

o 20% to background in FCFS

Multilevel Feedback Queue Scheduling

 A process can move between the various queues; aging can be implemented

this way

 Multilevel-feedback-queue scheduler defined by the following parameters:

o number of queues

o scheduling algorithms for each queue

o method used to determine when to upgrade a process

o method used to determine when to demote a process

o method used to determine which queue a process will enter when that

process needs service

MODULE-II

Process Synchronization

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly

execution of cooperating processes

 Suppose that we wanted to provide a solution to the consumer-producer problem

that fills all the buffers. We can do so by having an integer count that keeps track

of the number of full buffers. Initially, count is set to 0. It is incremented by the

producer after it produces a new buffer and is decremented by the consumer

after it consumes a buffer.

Race Condition

 A situation like this, where several processes access and manipulate the same

data concurrently and the outcome of the execution depends on the particular

order in which the access takes place, is called a race condition.

 count++ could be implemented as

 register1 = count

Pseudocode for Producer Process

while (true) {

 /* produce an item and put in

nextProduced */

 while (count == BUFFER_SIZE)

 ; // do nothing

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 count++;

Pseudocode for Consumer Process

 while (true) {

 while (count == 0)

 ; // do nothing

 nextConsumed = buffer[out];

 out = (out + 1) %

BUFFER_SIZE;

 count--;

 /* consume the item in

nextConsumed

 }

 register1 = register1 + 1

 count = register1

 count-- could be implemented as

 register2 = count

 register2 = register2 - 1

 count = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 = 4}

S4: producer execute count = register1 {count = 6 }

S5: consumer execute count = register2 {count = 4}

Critical Section Problem

A section of code, common to n cooperating processes, in which the processes may be

accessing common variables.

A Critical Section Environment contains:

 Entry Section Code requesting entry into the critical section.

 Critical Section Code in which only one process can execute at any one time.

 Exit Section The end of the critical section, releasing or allowing others in.

 Remainder Section Rest of the code AFTER the critical se

 Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process

has a segment of code, called a critical section, in which the process may be

changing common variables, updating a table, writing a file, and so on.

 The important feature of the system is that, when one process is executing in its

critical section, no other process is allowed to execute in its critical section. That

is, no two processes are executing in their critical sections at the same time.

 The critical-section problem is to design a protocol that the processes can use

to cooperate. Each process must request permission to enter its critical section.

The section of code implementing this

 request is the entry section. The critical section may be followed by an exit

section. The remaining code is the remainder section.

Solution to Critical Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some

processes that wish to enter their critical section, then the selection of the

processes that will enter the critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has made a

request to enter its critical section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

Peterson’s Solution

 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be

interrupted.

 The two processes share two variables:

o int turn;

o Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section.

 The flag array is used to indicate if a process is ready to enter the critical section.

flag[i] = true implies that process Pi is ready!

Hardware Synchronization

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

o Currently running code would execute without preemption

o Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

o Either test memory word and set value

o Or swap contents of two memory words

Solution to Critical Section Problem using Lock

do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

TestAndndSet Instruction

 boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

Solution using TestAndSet

 Shared boolean variable lock., initialized to false.

 Solution:

 do {

 while (TestAndSet (&lock))

 ; // do nothing

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

Sawp Instruction

 void Swap (boolean *a, boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }

Solution using Swap

 Shared Boolean variable lock initialized to FALSE; Each process has a local

Boolean variable key

 Solution:

 do {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

Bounded-waiting Mutual Exclusion with TestandSet()

 do {

 waiting[i] = TRUE;

 key = TRUE;

 while (waiting[i] && key)

 key = TestAndSet(&lock);

 waiting[i] = FALSE;

 // critical section

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = FALSE;

 else

 waiting[j] = FALSE;

 // remainder section

 } while (TRUE);

Semaphore

 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

 Counting semaphore – integer value can range over an unrestricted domain

wait (S) {

 while S <= 0

 ; // no-op

 S--;

 }

signal (S) {

 S++;

 }

 Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement

o Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

 wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

} while (TRUE);

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal () on the

same semaphore at the same time

 Thus, implementation becomes the critical section problem where the wait and

signal code are placed in the crtical section.

o Could now have busy waiting in critical section implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and therefore

this is not a good solution.

 With each semaphore there is an associated waiting queue. Each entry in a

waiting queue has two data items:

o value (of type integer)

o pointer to next record in the list

 Two operations:

o block – place the process invoking the operation on the appropriate

waiting queue.

o wakeup – remove one of processes in the waiting queue and place it in

the ready queue.

 Implementation of wait:

 wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

 }

 Implementation of signal:

 signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

 }

Classical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded-Buffer Problem

The pool consists of n buffers, each capable of holding one item. The mutex semaphore

provides mutual exclusion for accesses to the buffer pool and is initialized to the value

1. The empty and full semaphores count the number of empty and full buffers. The

semaphore empty is initialized to the value n; the semaphore full is initialized to the

value 0.

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

 The structure of the producer process

 do {

 // produce an item in nextp

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (TRUE);

 The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer to nextc

 signal (mutex);

 signal (empty);

 // consume the item in nextc

 } while (TRUE);

Readers-Writers Problem

Suppose that a database is to be shared among several concurrent processes. Some of

these processes may want only to read the database, whereas others may want to

update (that is, to read and write) the database. We distinguish between these two

types of processes by referring to the former as readers and to the latter as writers.

Obviously, if two readers access the shared data simultaneously, no adverse effects will

result. However, if a writer and some other process (either a reader or a writer) access

the database simultaneously,

chaos may ensue.

 A data set is shared among a number of concurrent processes

o Readers – only read the data set; they do not perform any updates

o Writers – can both read and write

 Problem – allow multiple readers to read at the same time. Only one single

writer can access the shared data at the same time

 Shared Data

o Data set

o Semaphore mutex initialized to 1

o Semaphore wrt initialized to 1

o Integer readcount initialized to 0

 The structure of a writer process

 do {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 } while (TRUE);

 The structure of a reader process

 do {

 wait (mutex) ;

 readcount ++ ;

 if (readcount == 1)

 wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

 readcount - - ;

 if (readcount == 0)

 signal (wrt) ;

 signal (mutex) ;

 } while (TRUE);

Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers

share a circular table surrounded by five chairs, each belonging to one philosopher. In

the center of the table is a bowl of rice, and the table is laid with five single chopsticks).

When a philosopher thinks, she does not interact with her colleagues. From time to

time, a philosopher gets hungry and tries to pick up the two chopsticks that are closest

to her (the chopsticks that are between her and her left and right neighbors). A

philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a

chopstick that is already in the hand of a neighbor. When a hungry philosopher has both

her chopsticks at the same time, she eats without releasing the chopsticks. When she is

finished eating, she puts down both chopsticks and starts thinking again.

 Shared data

o Bowl of rice (data set)

o Semaphore chopstick [5] initialized to 1

 The structure of Philosopher i:

do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

Monitors

 A high-level abstraction that provides a convenient and effective mechanism for

process synchronization

 Only one process may be active within the monitor at a time

monitor monitor-name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 …

 procedure Pn (…) {……}

 Initialization code (….) { … }

 …

 }

}

Schematic view of a Monitor

Condition Variables

 condition x, y;

 Two operations on a condition variable:

o x.wait () – a process that invokes the operation is suspended.

 x.signal () – resumes one of processes (if any) that invoked x.wait ()

Monitor with Condition Variables

Monitor Implementation Using Semaphores

 Variables

 semaphore mutex; // (initially = 1)

 semaphore next; // (initially = 0)

 int next-count = 0;

 Each procedure F will be replaced by

 wait(mutex);

 …

 body of F;

 …

 if (next_count > 0)

 signal(next)

 else

 signal(mutex);

 Mutual exclusion within a monitor is ensured.

Monitor Implementation

For each condition variable x, we have:

 semaphore x_sem; // (initially = 0)

 int x-count = 0;

The operation x.wait can be implemented as:

 x-count++;

 if (next_count > 0)

 signal(next);

 else

 signal(mutex);

 wait(x_sem);

 x-count--;

The operation x.signal can be implemented as:

 if (x-count > 0) {

 next_count++;

 signal(x_sem);

 wait(next);

 next_count--;

 }

Deadlock

 A set of blocked processes each holding a resource and waiting to acquire a

resource held by another process in the set

 Example

o System has 2 disk drives

o P1 and P2 each hold one disk drive and each needs another one

 Example

o semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

System Model

 Resource types R1, R2, . . ., Rm (CPU cycles, memory space, I/O devices)

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

o request

o use

o release

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource

 Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes

 No preemption: a resource can be released only voluntarily by the process

holding it, after that process has completed its task

 Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that

P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is

held by P2, …, Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting

for a resource that is held by P0.

Resource Allocation Graph

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

o P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

o R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

 request edge – directed edge P1 Rj

 assignment edge – directed edge Rj Pi

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Fig: RAG Fig: RAG with a deadlock

 If graph contains no cycles no deadlock

 If graph contains a cycle

o if only one instance per resource type, then deadlock

o if several instances per resource type, possibility of deadlock

Methods for Handling Deadlock

 Ensure that the system will never enter a deadlock state

 Allow the system to enter a deadlock state and then recover

 Ignore the problem and pretend that deadlocks never occur in the system; used

by most operating systems, including UNIX

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources; must hold for

nonsharable resources

 Hold and Wait – must guarantee that whenever a process requests a resource,

it does not hold any other resources

o Require process to request and be allocated all its resources before it

begins execution, or allow process to request resources only when the

process has none

o Low resource utilization; starvation possible

 No Preemption –

o If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being

held are released

o Preempted resources are added to the list of resources for which the

process is waiting

o Process will be restarted only when it can regain its old resources, as well

as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and require that

each process requests resources in an increasing order of enumeration

Deadlock Avoidance

 Requires that the system has some additional a priori information available

 Simplest and most useful model requires that each process declare the

maximum number of resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the resource-allocation

state to ensure that there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes

Safe state

 When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the

processes is the systems such that for each Pi, the resources that Pi can still

request can be satisfied by currently available resources + resources held by all

the Pj, with j < i

 That is:

o If Pi resource needs are not immediately available, then Pi can wait until all

Pj have finished

o When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate

o When Pi terminates, Pi +1 can obtain its needed resources, and so on

Facts

Deadlock Avoidance Algorithm

 Single instance of a resource type

o Use a resource-allocation graph

 Multiple instances of a resource type

o Use the banker’s algorithm

n If a system is in safe state no deadlocks

n If a system is in unsafe state possibility of deadlock

n Avoidance ensure that a system will never enter an unsafe

state.

RAG Scheme

 Claim edge Pi Rj indicated that process Pj may request resource Rj;

represented by a dashed line

 Claim edge converts to request edge when a process requests a resource

 Request edge converted to an assignment edge when the resource is allocated

to the process

 When a resource is released by a process, assignment edge reconverts to a

claim edge

 Resources must be claimed a priori in the system

Banker’s Algorithm

Assumptions

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

 When a process gets all its resources it must return them in a finite amount of

time

Data Structure for Bankers’ Algorithm

Let n = number of processes, and m = number of resources types.

 Available: Vector of length m. If available [j] = k, there are k instances of

resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k

instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k

instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to

complete its task

 Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource Request Algorithm

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k

instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition, since process

has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources

are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

 Available = Available – Request;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state is

restored

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

Recovery from Deadlock

 A. Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort?

o Priority of the process

o How long process has computed, and how much longer to completion

o Resources the process has used

o Resources process needs to complete

o How many processes will need to be terminated

B. Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process for that state

 Starvation – same process may always be picked as victim, include

number of rollback in cost factor

Memory Management

 Program must be brought (from disk) into memory and placed within a process

for it to be run

 Main memory and registers are only storage CPU can access directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

 A pair of base and limit registers define the logical address space

Logical vs Physical Address Space

 The concept of a logical address space that is bound to a separate physical

address space is central to proper memory management

o Logical address – generated by the CPU; also referred to as virtual

address

o Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme

Address Binding

 Address binding of instructions and data to memory addresses can happen at

three different stages

o Compile time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes

o Load time: Must generate relocatable code if memory location is not

known at compile time

o Execution time: Binding delayed until run time if the process can be

moved during its execution from one memory segment to another. Need

hardware support for address maps (e.g., base and limit registers)

Memory Management Unit

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to every address

generated by a user process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real physical

addresses

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle infrequently occurring

cases

 No special support from the operating system is required implemented through

program design

Dynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-resident library

routine

 Stub replaces itself with the address of the routine, and executes the routine

 Operating system needed to check if routine is in processes’ memory address

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

Swapping

 A process can be swapped temporarily out of memory to a backing store, and

then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images

 Roll out, roll in – swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority process can

be loaded and executed

 Major part of swap time is transfer time; total transfer time is directly proportional

to the amount of memory swapped

 Modified versions of swapping are found on many systems (i.e., UNIX, Linux,

and Windows)

 System maintains a ready queue of ready-to-run processes which have memory

images on disk

Contiguous Allocation

 Main memory usually into two partitions:

o Resident operating system, usually held in low memory with interrupt

vector

o User processes then held in high memory

 Relocation registers used to protect user processes from each other, and from

changing operating-system code and data

o Base register contains value of smallest physical address

o Limit register contains range of logical addresses – each logical address

must be less than the limit register

o MMU maps logical address dynamically

 Multiple-partition allocation

o Hole – block of available memory; holes of various size are scattered

throughout memory

o When a process arrives, it is allocated memory from a hole large enough

to accommodate it

o Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

Dynamic Storage Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must search entire list,

unless ordered by size

o Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

o Produces the largest leftover hole

Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it

is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is memory internal to a partition, but not

being used

 Reduce external fragmentation by compaction

o Shuffle memory contents to place all free memory together in one large

block

o Compaction is possible only if relocation is dynamic, and is done at

execution time

o I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

Paging

 Logical address space of a process can be noncontiguous; process is allocated

physical memory whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames (size is power of 2,

between 512 bytes and 8,192 bytes)

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size n pages, need to find n free frames and load program

 Set up a page table to translate logical to physical addresses

 Internal fragmentation

 Address generated by CPU is divided into:

o Page number (p) – used as an index into a page table which contains

base address of each page in physical memory

o Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

Implementation of Page table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses.

One for the page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative memory or translation look-aside

buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry –

uniquely identifies each process to provide address-space protection for that

process

Paging with TLB

Memory Protection

 Memory protection implemented by associating protection bit with each frame

 Valid-invalid bit attached to each entry in the page table:

o “valid” indicates that the associated page is in the process’ logical address
space, and is thus a legal page

o “invalid” indicates that the page is not in the process’ logical address
space

Shared Pages

 Shared code

o One copy of read-only (reentrant) code shared among processes (i.e., text

editors, compilers, window systems).

o Shared code must appear in same location in the logical address space of

all processes

 Private code and data

o Each process keeps a separate copy of the code and data

o The pages for the private code and data can appear anywhere in the

logical address space

Structure of Page table

Hierarchical Paging

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

Hashed Page Tables

 The virtual page number is hashed into a page table

o This page table contains a chain of elements hashing to the same location

 Virtual page numbers are compared in this chain searching for a match

o If a match is found, the corresponding physical frame is extracted

Inverted Page Tables

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed

to search the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table

entries

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

o A segment is a logical unit such as: main program, procedure, function,

method, object, local variables, global variables, common block, stack,

symbol table, arrays

 Logical address consists of a two tuple:

 <segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry

has:

o base – contains the starting physical address where the segments reside

in memory

o limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in
memory

 Segment-table length register (STLR) indicates number of segments used by a

program;

 segment number s is legal if s < STLR

 Protection

o With each entry in segment table associate:

 validation bit = 0 illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-

allocation problem

 A segmentation example is shown in the following diagram

Virtual Memory Management

 Virtual memory – separation of user logical memory from physical memory.

o Only part of the program needs to be in memory for execution

o Logical address space can therefore be much larger than physical

address space

o Allows address spaces to be shared by several processes

o Allows for more efficient process creation

 Virtual memory can be implemented via:

o Demand paging

o Demand segmentation

Demand Paging

 Bring a page into memory only when it is needed

o Less I/O needed

o Less memory needed

o Faster response

o More users

 Page is needed reference to it

o invalid reference abort

o not-in-memory bring to memory

 Lazy swapper – never swaps a page into memory unless page will be needed

o Swapper that deals with pages is a pager

 With each page table entry a valid–invalid bit is associated

(v in-memory, i not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 During address translation, if valid–invalid bit in page table entry is I page

fault

Page Fault

If there is a reference to a page, first reference to that page will trap to operating

system: page fault

1. Operating system looks at another table to decide:

l Invalid reference abort

l Just not in memory

2. Get empty frame

3. Swap page into frame

4. Reset tables

5. Set validation bit = v

6. Restart the instruction that caused the page fault

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine to

include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified pages

are written to disk

 Page replacement completes separation between logical memory and physical

memory – large virtual memory can be provided on a smaller physical memory

 Find the location of the desired page on disk

 Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement algorithm to select a victim

frame

 Bring the desired page into the (newly) free frame; update the page and frame

tables

 Restart the process

Page Replacement algorithm

FIFO (First-in-First-Out)

 A FIFO replacement algorithm associates with each page the time when that

page was brought into memory.

 When a page must be replaced, the oldest page is chosen.

 Belady’s Anomaly: more frames more page faults (for some page-

replacement algorithms, the page-fault rate may increase as the number of

allocated frames increases.)

 Ex-

OPTIMAL PAGE REPLACEMENT

 Replace page that will not be used for longest period of time

 Ex-

LRU (LEAST RECENTLY USED)

 LRU replacement associates with each page the time of that page’s last use.
 When a page must be replaced, LRU chooses the page that has not been used

for the longest period of time.

 Ex-

Allocation of Frames

 Each process needs minimum number of pages

 Two major allocation schemes

o fixed allocation

o priority allocation

 Equal allocation – For example, if there are 100 frames and 5 processes, give

each process 20 frames.

 Proportional allocation – Allocate according to the size of process

m
S

s
pa

m

sS

ps

i

ii

i

ii

for allocation

frames ofnumber total

 process of size

Global vs Local Allocation

 Global replacement – process selects a replacement frame from the set of all

frames; one process can take a frame from another

 Local replacement – each process selects from only its own set of allocated

frames

Thrashing

 If a process does not have “enough” pages, the page-fault rate is very high. This

leads to:

o low CPU utilization

o operating system thinks that it needs to increase the degree of

multiprogramming

o another process added to the system

 Thrashing a process is busy swapping pages in and out

MODULE-III

File System

File

 Contiguous logical address space

 Types:

o Data

 numeric

 character

 binary

o Program

File Structure

 None - sequence of words, bytes

 Simple record structure

o Lines

o Fixed length

o Variable length

 Complex Structures

o Formatted document

o Relocatable load file

 Can simulate last two with first method by inserting appropriate control

characters

 Who decides:

o Operating system

l Program

File Attribute

 Name – only information kept in human-readable form

 Identifier – unique tag (number) identifies file within file system

 Type – needed for systems that support different types

 Location – pointer to file location on device

 Size – current file size

 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security, and usage

monitoring

 Information about files are kept in the directory structure, which is maintained on

the disk

File Types

File Operations

 Create, Write, Read, Reposition within file, Delete, Truncate

 Open(Fi) – search the directory structure on disk for entry Fi, and move the

content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to directory structure on disk

File Access Methods

n Sequential Access

 read next

 write next

 reset

 no read after last write

 (rewrite)

n Direct Access

 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

Directory Structure

A. Single Level Directory

 A single directory for all users

 Naming problem

 Grouping problem

B. Two Level Directory

 Separate directory for each user

 Path name

 Can have the same file name for different user

 Efficient searching

 No grouping capability

C. Tree Structure Directory

 Efficient searching

 Grouping Capability

D. Acyclic Graph Directories

 Have shared subdirectories and files

File Sharing

 Sharing of files on multi-user systems is desirable

 Sharing may be done through a protection scheme

 On distributed systems, files may be shared across a network

 Network File System (NFS) is a common distributed file-sharing method

 User IDs identify users, allowing permissions and protections to be per-user

 Group IDs allow users to be in groups, permitting group access rights

 Uses networking to allow file system access between systems

o Manually via programs like FTP

o Automatically, seamlessly using distributed file systems

o Semi automatically via the world wide web

 Client-server model allows clients to mount remote file systems from servers

o Server can serve multiple clients

o Client and user-on-client identification is insecure or complicated

o NFS is standard UNIX client-server file sharing protocol

o CIFS is standard Windows protocol

o Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP,

DNS, NIS, Active Directory implement unified access to information needed for

remote computing

 Remote file systems add new failure modes, due to network failure, server failure

 Recovery from failure can involve state information about status of each remote

request

 Stateless protocols such as NFS include all information in each request, allowing

easy recovery but less security

 Consistency semantics specify how multiple users are to access a shared file

simultaneously

o Similar to Ch 7 process synchronization algorithms

 Tend to be less complex due to disk I/O and network latency (for

remote file systems

o Andrew File System (AFS) implemented complex remote file sharing

semantics

o Unix file system (UFS) implements:

 Writes to an open file visible immediately to other users of the same

open file

 Sharing file pointer to allow multiple users to read and write

concurrently

o AFS has session semantics

 Writes only visible to sessions starting after the file is closed

File System Structure

 File structure

o Logical storage unit

o Collection of related information

n File system resides on secondary storage (disks)

n File system organized into layers

n File control block – storage structure consisting of information about a file

Layered File System

File Control Block

File Allocation Methods

An allocation method refers to how disk blocks are allocated for files:

A. Contiguous Allocation

n Each file occupies a set of contiguous blocks on the disk

n Simple – only starting location (block #) and length (number of blocks) are

required

n Random access

n Wasteful of space (dynamic storage-allocation problem)

n Files cannot grow

B. Linked Allocation

n Each file is a linked list of disk blocks: blocks may be scattered anywhere on the

disk.

n Simple – need only starting address

n Free-space management system – no waste of space

n No random access

n Mapping

C. Indexed Allocation

n Brings all pointers together into the index block.

n Need index table

n Random access

n Dynamic access without external fragmentation, but have overhead of index

block.

Secondary Storage Structure

Magnetic Disk

 Magnetic disks provide bulk of secondary storage of modern computers

o Drives rotate at 60 to 200 times per second

o Transfer rate is rate at which data flow between drive and computer

o Positioning time (random-access time) is time to move disk arm to
desired cylinder (seek time) and time for desired sector to rotate under
the disk head (rotational latency)

o Head crash results from disk head making contact with the disk surface

 That’s bad

 Disks can be removable

 Drive attached to computer via I/O bus

o Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI

o Host controller in computer uses bus to talk to disk controller built into
drive or storage array

Magnetic Tap

 Was early secondary-storage medium

 Relatively permanent and holds large quantities of data

 Access time slow

 Random access ~1000 times slower than disk

 Mainly used for backup, storage of infrequently-used data, transfer medium

between systems

 Kept in spool and wound or rewound past read-write head

 Once data under head, transfer rates comparable to disk

 20-200GB typical storage

Disk Structure

 Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the

logical block is the smallest unit of transfer.

 The 1-dimensional array of logical blocks is mapped into the sectors of the disk

sequentially.

o Sector 0 is the first sector of the first track on the outermost cylinder.

o Mapping proceeds in order through that track, then the rest of the tracks in

that cylinder, and then through the rest of the cylinders from outermost to

innermost.

Disk Scheduling

 The operating system is responsible for using hardware efficiently — for the disk

drives, this means having a fast access time and disk bandwidth.

 Access time has two major components

o Seek time is the time for the disk are to move the heads to the cylinder

containing the desired sector.

o Rotational latency is the additional time waiting for the disk to rotate the

desired sector to the disk head.

 Minimize seek time

 Seek time seek distance

 Disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer.

Disk Scheduling Algorithms

FCFS

 This algorithm is intrinsically fair, but it generally does not provide the fastest

service.

SSTF (Shortest Seek Time First)

n Selects the request with the minimum seek time from the current head position.

n SSTF scheduling is a form of SJF scheduling; may cause starvation of some

requests.

SCAN

 The disk arm starts at one end of the disk, and moves toward the other end,

servicing requests until it gets to the other end of the disk, where the head

movement is reversed and servicing continues.

 Sometimes called the elevator algorithm.

C-SCAN

 Provides a more uniform wait time than SCAN.

 The head moves from one end of the disk to the other. servicing requests as it

goes. When it reaches the other end, however, it immediately returns to the

beginning of the disk, without servicing any requests on the return trip.

 Treats the cylinders as a circular list that wraps around from the last cylinder to

the first one

C-LOOK

 Version of C-SCAN

 Arm only goes as far as the last request in each direction, then reverses direction

immediately, without first going all the way to the end of the disk.

Disk Management

 Low-level formatting, or physical formatting — Dividing a disk into sectors that

the disk controller can read and write.

 To use a disk to hold files, the operating system still needs to record its own data

structures on the disk.

o Partition the disk into one or more groups of cylinders.

o Logical formatting or “making a file system”.

 Boot block initializes system.

o The bootstrap is stored in ROM.

o Bootstrap loader program.

 Methods such as sector sparing used to handle bad blocks.

 The controller can be told to replace each bad sector logically with one of the

spare sectors. This scheme is known as sector sparing or forwarding.

Swap Space Management

 Swap-space — Virtual memory uses disk space as an extension of main

memory.

 Swap-space can be carved out of the normal file system or, more commonly, it

can be in a separate disk partition.

 A swap space can reside in one of two places: it can be carved out of the normal

file system, or it can be in a separate disk partition.

 If the swap space is simply a large file within the file system, normal file-system

routines can be used to create it, name it, and allocate its space.

 Alternatively, swap space can be created in a separate raw partition. No file

system or directory structure is placed in this space.

 A separate swap-space storage manager is used to allocate and deallocate the

blocks from the raw partition.

I/O Systems

I/O Hardware

 A device communicates with a computer system by sending signals over a cable

or even through the air. The device communicates with the machine via a

connection point, or port—for example, a serial port.

 If devices share a common set of wires, the connection is called a bus.

 A bus is a set of wires and a rigidly defined protocol that specifies a set of

messages that can be sent on the wires.

 When device A has a cable that plugs into device B, and device B has a cable

that plugs into device C, and device C plugs into a port on the computer, this

arrangement is called a daisy chain. A daisy chain usually operates as a bus.

 A PCI bus (the common PC system bus) connects the processor–memory

subsystem to fast devices, and an expansion bus connects relatively slow

devices, such as the keyboard and serial and USB ports.

 Disks are connected together on a Small Computer System Interface (SCSI)

bus plugged into a SCSI controller.

 A controller is a collection of electronics that can operate a port, a bus, or a

device.

 A serial-port controller is a simple device controller. It is a single chip (or portion

of a chip) in the computer that controls the signals on the wires of a serial port.

 But the SCSI protocol is complex, the SCSI bus controller is often implemented

as a separate circuit board (or a host adapter) that plugs into the computer. It

typically contains a processor, microcode, and some private memory to enable it

to process the SCSI protocol messages.

Polling

 Determines state of device

o command-ready

o busy

o Error

 Busy-wait cycle to wait for I/O from device

Interrupt

 CPU Interrupt-request line triggered by I/O device

 Interrupt handler receives interrupts

 Maskable to ignore or delay some interrupts

 Interrupt vector to dispatch interrupt to correct handler

 Most CPUs have two interrupt request lines. One is the nonmaskable interrupt,

which is reserved for events such as unrecoverable memory errors.

 The second interrupt line is maskable: it can be turned off by the CPU before the

execution of critical instruction sequences that must not be interrupted.

 The maskable interrupt is used by device controllers to request service.

 Interrupt mechanism also used for exceptions

Direct Memory Access

 Used to avoid programmed I/O for large data movement

 Requires DMA controller

 Bypasses CPU to transfer data directly between I/O device and memory

Application I/O Interface

 I/O system calls encapsulate device behaviors in generic classes

 Device-driver layer hides differences among I/O controllers from kernel

 Devices vary in many dimensions

o Character-stream or block

o Sequential or random-access

o Sharable or dedicated

o Speed of operation

o read-write, read only, or write only

Kernel I/O Structure

Characteristics of I/O Devices

Block and Character Devices

 Block devices include disk drives

o Commands include read, write, seek

o Raw I/O or file-system access

o Memory-mapped file access possible

 Character devices include keyboards, mice, serial ports

o Commands include get, put

o Libraries layered on top allow line editing

Network Devices

 Varying enough from block and character to have own interface

 Unix and Windows NT/9x/2000 include socket interface

o Separates network protocol from network operation

o Includes select functionality

 Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

Clock and Timers

 Provide current time, elapsed time, timer

 Programmable interval timer used for timings, periodic interrupts

Blocking and Non-blocking I/O

 Blocking - process suspended until I/O completed

o Easy to use and understand

o Insufficient for some needs

 Nonblocking - I/O call returns as much as available

o User interface, data copy (buffered I/O)

o Implemented via multi-threading

o Returns quickly with count of bytes read or written

 Asynchronous - process runs while I/O executes

o Difficult to use

o I/O subsystem signals process when I/O completed

Kernel I/O Subsystem

 Scheduling

o Some I/O request ordering via per-device queue

o Some OSs try fairness

 Buffering - store data in memory while transferring between devices

o To cope with device speed mismatch

o To cope with device transfer size mismatch

o To maintain “copy semantics”

 Caching - fast memory holding copy of data

o Always just a copy

o Key to performance

 Spooling - hold output for a device

o If device can serve only one request at a time

o i.e., Printing

 Device reservation - provides exclusive access to a device

o System calls for allocation and deallocation

l Watch out for deadlock

Reference

Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin,

"Operating System Concepts, Ninth Edition ",

