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UNIT-I SPACE CURVES AND 

SURFACES 
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1.3 Introductory remark about space curves 

1.4 Check your progress 

1.5 Summary 

1.6 Keywords 
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1.8 Further Readings 

 

1.1 INTRODUCTION 
In this chapter on space curves, first we shall specify a space curve as the 

intersection of two surfaces. Then we shall explain how we shall arrive at a 

unique parametric representation of a point on the space curve and also 

give a precise definition of a space curve in E3 as set of points associated 

with an equivalence class of regular parametric representations. With the 

help of this parametric representation, we shall define tangent, normal and 

binormal at a point leading to the moving triad(t,n,b) and their associated 

tangent, normal and rectifying planes.  Since the triad(t,n,b) at a point is 

moving continuously as P varies over the curve,we are interested to know 

the arc-ratae of rotation of t, n, b. This leads to the well-known formulae of 

Serret – Frenet. The we shall establish the conditions for the contact of 

curves and surfaces leading to the definitions of osculating circle and 

osculating sphere at a point on the space curve and also the evolute an 

involutes. Before concluding this unit, we shall explain what is meant by 

intrinsic equations of space curves and establish the fundamental theorem 

of space curves which states that if curvature and torsion are the given 

continuous functions of a real variable s, then they determine the space 

curve uniquely.  

1.2 Obectives 
After  going through this unit, you will be able to: 

Define a space curve 

Define a regular function 

Derive the unit tangent vector 

Find the arclength of the of a curve 

Find the solution of problems using arclength and tangent & normal. 

1.3 Introductory remark about space curves 
 

Definition: A curve is a locus of a point whose position vector r with 

respect to the fixed origin is a function of single variable U as a parameter.  

Definition: A curve in a plane can be given in the parametric form by the 

equations x = X(u) and y = Y(u) where u   [a,b].  
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Example:  

The circle x         with centre at origin and radius ‘a’ as a 

parametric form x = a cosu and y = a sinu.  

Definition: A surface is a locus of a point whose certisian coordinate 

(x,y,z) are the functions of two independent parameters u,v (say). 

Thus, x = f(u,v),y = g(u,v), z = h(u,v) 

A curve in a space is given by the equation x =X(u), y = Y(u) and z =Z(u) 

where u [a,b] can be represented in the parametric form   x = a sin  cos  , 

y = a sin sin , z = a cos    

Example: 

The sphere x            with centre at origin and radius â€˜aâ€™ 

can be represented in the parametric form                      x = a sin cos  , y 

= a sin sin , z = acos   

Note:  

r=xi+yj+zk = x(u )i+y(u)j+z(u)k = R(u)  

Definition: A space curve may be expressed as the intersection of two 

surface f(x,y,z) =0 ......(1) and g(x,y,z) =0 

......(2) 

The parametric representation of the space curve is 

x =X(u), y =Y(u), z =Z(u) .....(3) 

Equation (3) can be transformed into equation (1) and (2) by eliminating u 

from equation (3).  

Problem:1 

Find t he equation of the curve whose parametric equations are x=u, y=u  , 

y=   

Solution: 

xy = u.u   = u  , xy =z, xz = u. u  = u  =(u    , xz = y   

Definition:  Let i be a real interval and m be a positive integer. A real 

valued function f defined on I is said to be a class of m if 

(i) f has m    derivative at every point of i. 

(ii) Each derivative is continuous on i. 

Definition:  A function R is said to be regular if the derivative 
  

  
 =     0 

on the real interval i.  

Definition:  A regular vector valued function of the class m is called a path 

of class m.  

Definition:  Two paths of    and R   of same class m on the interval I   

and I   are said to be equivalent if there exists a strictly increasing function 

  of class m which map I   and I   such that    = R  .    

Theorem:    

Derive an expression for the arc length of the curve in space of the form s 

= s(u) =   
 

  
       du.  

Proof: 

 Let r = R(u) be a path and a,b are two real numbers where a     

Take any subdivision   of the closed interval a,b. 

Now a =                 =b 

The corresponding length 
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 Let s =s(u) denote the arc length from a point a to any point 

then the arc length 

 from    to u is s(u)-s(  )   
 

  
          ....(1) 

By the definition of arc length, 

               
 

  

          

                        ....(2) 

                          

                                   
 

  
          

  
          

    
   

          

    
 

 

    
  

 

  
          

       
 
          

    
           

          

    
 

                         

 

    
  

 

  

          

                           
                                

          
 

  
           

Problem.2  

Expression of arc in cartesian parametric representation is  

s =  
 

 
               

Solution 

Let                   

                      

                           

s =  
 

 
               

Problem.3  

Prove that s =       
Solution 

We know that    s =  
 

 
               

                =             

               s =       
Problem.4  

Prove that                 

Solution: 

We know that    s =       

                =             
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4. Prove that                 

Solution: 

                

 
  

  

 
  = 

  

  

 
   

  

  

 
   

  

  

 
  

                 

5. Prove that  

(i)   =(a cosu, a sinu, bu),       

(ii)      
    

    
 

   

    
         ) are equivalent representation for circular 

helix  

Solution: 

Given that   =(a cosu, a sinu, bu) ...(1),       

      
    

     
   

             ) ....(2),       

To prove (1) and (2) are equivalent it is enough to prove that  

(i) a (
    

    
) = a cosu 

(ii) 
   

     = a sinu 

(iii)          = bu 

For (i) 

Put v =    
 

 
 

a (
    

    )= a (
     

 

 

 

     
 

 

 ) = a cos 2.
 

 
 

  a (
    

    ) = acosu 

For (ii) 

   

     = 
     

 

 

     
 

 

  = a[ 
    

 

 

     
 

 

 ] = a sin 2.
 

 
 

   

     = asinu 

For(iii) 

         =           
 

 
 =2b

 

 
 

         = bu 

6. Obtain the equation of the circular helix r =(acosu, asinu, bu), 

       where a>0 referred to s as parameter and show that the 

length of one complete turn of the helix is 2 c where c=       

(or) 

Find the length of the helix                              ,    
    from  (0,0,0) to (a,0,2 c). Also obtain its equation interms of 

parameters. Then find the length of the one complete turn of the 

circular helix                           ,        

Solution: 
Given r =(acosu, asinu, bu)....(1) 

(or)                          

                         

                                 

                    =                       

                    =                       
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                          =       ......(2) 

w.k.t s =   
 

 
            du 

   s=  
 

 
       

   s =cu 

   
 

 
 or u =

 

      
 

(1)   r =      
 

 
       

 

 
    

 

 
   

       
 

      
       

 

      
    

 

      
    

which is required equation of the circular helix. 

The range of u corresponding to one complete turn of the helix is    
           
(ie) THe length of limits of one complete turn of the circular helix is o to 

2 . 

we have              

The length of circular helix from o to 2  is  

     
  

 
           

     
  

 
         

           
  

 
   

             
   

                

       
 Hence proved. 

7. Find the length of the curve given as the intersection of the surface 
  

   
  

  =1, x = cosh(
 

 
  from the point (a,0,0) to (x,y,z) 

Solution: 
Let the equation of the curve in the parametric form is x =acoshu, y 

=bsinhu and z =au 

w.k.t s =   
 

 
            du 

                           

                           

                                   

                    =                         

                    =                          

                          =               ......(2) 

s =   
 

 
            du 

 =   
 

 
            

 =   
 

 
                 

 =          
 

 
         

 =                 
 

 
 

 =              

 =         
 

 
  

s=         
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Tangent, normal and binomial 

Tangent line: 

The tangent line to the curve at the point p     of C is defined as the 

limiting position of a straight line L through a point p     and the 

neighbouring point Q(u) on C as Q tends to P along the curve. 

Theorem 1.1  

Find the unit tangent vector to the curve. 

Proof: 

Let   be any curve represented by          and also   be a class   1 

Let P and Q be the neighbouring points on the curve represented by the 

parameter    and u respectively. 

Let             and            then                

        =            , since   is of class   1 

By taylor’s theorem, 

                                   ....(1) 

as u tends to   . 

Now,      
            

              
  =      

            

    
              

     
 
  

                                       =
      

        
 [by (1)] 

This is called the unit tangent vector to   at the point P and it is denoted by 

t.  

  t = 
   

     
    = 

   

     
 

   =

  

  
  

  

 =
  

  
 

                    
 

Oscillating plane (or) plane of curvature: 

Let   be a class   2. Consider the two neighbouring points P and Q 

on the curve C then the oscillating plane at the point P is the limiting 

position of the plane which contains the tangent at P and at a point Q has Q 

tends to P. 

Theorem 1.2 

 Find the equation of the oscillating plane 

Proof: 

Let   be a class   2. 

Let P and Q be two neighbouring points on the curve C represented by the 

parameter O and S respectively. 

          

          

                

The unit tangent vector at the point p =        

Let    be the position vector at the current point P on the plane. 

PR = R-      

          

                lie on the same plane. 

The equation of the plane is 



 

7 

 

 
Space Curves And Surfaces 

 

 

 

NOTES 

Self-Instructional Material 

 

                             = 0 ......(1) 

Also by taylor’s expansion 

            
 

  
       

  

  
              ....(2) 

            
 

  
       

  

  
             .....(3) 

Sub  3) in (1) 

                
 

  
       

  

  
       ] = 0  

                 
 

  
      ] 

+                 
  

  
       ] = 0  

 s                        

 
  

  
                       ] = 0  

  0+
  

  
                         = 0  

                       ] = 0  

Theorem 1.3 

Show that if a curve is given interms of general parameter u then the 

equation of oscillating plane is                       ] = 0  

Proof: 
We know that, 

The equation of oscillating plane is  

                       ] = 0 ...(1) 

Now,     
  

  
 

  

  
  

  

 

      
   

   
 ......(2)  

       
 

  
         = 

 

  
 
   

   
   = 

 

  
 
  

  
  

  

  
  

      =
         

   
 
 

  
  =

         

   
 .....(3) 

Sub  2), (3) in (1) 

(1)            
   

   
 
         

   
] = 0  

           
   

   
 
    

   
           

   

   
 
    

   
] = 0  

  
   

       
                  

  

   
               ] = 0  

  
 

    
                 =0 

                  =0 

Theorem 1.4 

 Prove that the cartesian equation of the oscillating planr is  

 

         
      
      

  =0 

Proof: 
We know that, 

The equation of oscillating plane is  

                 =0 ....(1) 
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Sub in (1) 

                                                          

                                              =0 

                                                     

                                      =0 

 

         
      
      

  =0 

3. Find the equation of the oscillating plane at the general point on a 

cubic curve given by r =(       ) and show the oscillating planes at 

any 3 points of the cur e meet at a point lying in the plane determined 

by these 3 points 

Solution: 
(i) We know that 

The equation of the oscillating plane is 

 

         
      
      

  =0 

Given that r =(       )  

(ie) x=u, y=  , z=   

                  

                

 
           

      

    

  =0 

                                        =0 

                               =0 

               =0 

             =0 

which is the required equation of the oscillating plane. 

(ii) Let            be any 3 points on the given curve then the oscillating 

plane at these 3 points are 

   
            

    .....(2) 

   
            

    .....(3) 

   
            

    .....(4) 

Suppose that these 3 planes meet at the point         . we have, 

                   

                   ....(5) 

Suppose the equation of plane passes through the 3 points              

 =(1,2,3) be AX+BY+CZ=1 ....(6) 

           be the roots of the equation Au+B        =0 ...(7)  

Comparing the eqn  5) and (7) 
 

   
 

 

    
 

 

 
 

  

   
 

 
 

   
 

 

  
  

A=
   

  
, B=

    

  
, C=
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Sub in eqn(6) 
   

  
 

    

  
 

 

  
 =1 

               

              =0, 

which is the required equation of planes determined by the points 

             

4. Find the equation of the oscillating plane at the point on the helix x 

=acosu, y=bsinu and z=bu 

solution: 

Given that   =(acosu, bsinu, bu) 

We know that, 

The equation of the oscillating plane is 

 

         
      
      

  =0 ...(1) 

                  x=acosu, y=asinu, z=bu 

                        

                         

 
                  
            
             

  =0 

                                            
                   =0 

                                             
    =0 

                         =0 

                     =0, 

which is the required equation of oscillating plane. 

5. Show that when the curve is analytic obtain a definite oscillating 

plane at the point of inflection ’p’ unless the curve is the straight line 

Solution: 

We know that,       and               

         ....(1) 

Diff ėqn  1) w.r to s 

                             =0 ....(2) 

        =0 

Diff.ėqn  2) w.r to s 

                                 =0  

         =0....(3), since r”=0 

Case 1 

If         0 then     and         are linearly independent. 

The equation of the oscillating plane is                   =0 

Case 2 

If         =0 

Diff   3) w.r to s 

                         =0 

            =0,  

          =0 ....(4), since           
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In general          =0 ....(4) 

If     0 for k   

Then the equation of the oscillating plane becomes                 =0 

If     0 for k  , then           

(ie)               , t = constant 

The curve is a straight line. since it is analytic. 

Hence the point of inflection even a class infinity of the curve need not 

posses an oscillating plane. 

Normal plane: 
The plane through the point P which is normal to the tangent at P is called 

the normal plane on the curve. 

The equation of the normal plane is  

                

(ie)           =0 

Principle normal: 
The line of intersection of the normal plane and oscillating plane is called a 

principle normal at a point p. 

Binormal: 
The normal which is perpendicular to the oscillating plane at a point p is 

called binormal at p. 

Note: 

The unit vector along the principle normal and binormal are denoted by     

and    .  

The unit vectors are           ,           ,            

       =0,       =0,      =0 

(i) The oscillating plane containing    and    and its equation is           =0 

(ii) The normal plane containing    and    and its equation is           =0 

(iii) The principle plane containing    and    and its equation is           =0 

 

1.4 Check your progress 
1.Define arc length 

2. Define space curve 

3. Define regular vector valued function 

4. Define a function of class m 

5. Define tangent, normal and binormal 

1.5 Summary 
A curve is a locus of a point whose position vector r with respect to the 

fixed origin is a function of single variable U as a parameter.  

A curve in a plane can be given in the parametric form by the 

equations x = X(u) and y = Y(u) where u   [a,b].  

A space curve may be expressed as the intersection of two surface 

f(x,y,z) =0 and g(x,y,z) =0 ......(2) 

The arc length of the curve in space of the form s = s(u) =   
 

  
       du.  

The tangent line to the curve at the point p     of C is defined as 

the limiting position of a straight line L through a point p     and  the 

neighbouring point Q(u) on C as Q tends to P along the curve. 

The cartesian equation of the oscillating plane is  
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  =0 

The equation of the normal plane is                 

The unit vectors are           ,           ,            

       =0,       =0,      =0 

(i) The oscillating plane containing    and    and its equation is 

          =0 

(ii) The normal plane containing    and    and its equation is 

          =0 

(iii) The principle plane containing    and    and its equation is 

          =0 

 

1.6 Keywords 

Curve: A curve is a locus of a point whose position vector r with respect 

to the fixed origin is a function of single variable U as a parameter 

Arclength: The arc length of the curve in space of the form s = s(u) = 

  
 

  
       du 

Oscillating plane (or) plane of curvature: Let   be a class   2. Consider 

the two neighbouring points P and Q on the curve C then the oscillating 

plane at the point P is the limiting position of the plane which contains the 

tangent at P and at a point Q has Q tends to P. 

Regular function: A function R is said to be regular if the derivative 
  

  
 = 

    0 on the real interval i.  

1.7 Self Assessment Questions and Exercises 
1. Determine the function f(u) so that the curve given by r=(a 

cosu, a sinu, f(u)) shall be plane. 

2. Find the equation of the osculating plane at a point on the 

helix r= (a cos u, a sin u, au tan α) 

3. Find the equation of the osculating plane at a general point 

on the cubic curve r=(u,   ,   ) and show that the osculating planes at 

any three points of the curve meet at a point lying in the plane 

determined by these three points. 

 

4. Find the coordinates of the centre of spherical curvature of 

the curve given by 

r=(acosu, asinu, acos2u). 

 

5. Prove that the curve given by x=a    u,  y=asinu cosu, 

z=acosu lies on a sphere. 

 

6. Show that the principal normal to a curve is normal to the 

locus of centres of curvature at those points where the curvature is 

stationary. 

7.  Determine the form of the function ϕ(u) such that the principal normal 

of the curve r=(a cos u, a sin u, ϕ(u)) are parallel to the XOY plane. 

 

8. Show that the principal normal at two consecutive points of a curve do 

not intersect unless τ=0. 
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9. If there is a one-one correspondence between the points of two curves 

and tangents at the corresponding points are parallel, show that the 

principal normals are parallel and so also their binormals.  Also prove 

that
  

 
 =

  

   
 

  

 
 

10.  A pair of curves ϒ, ϒ  which have the same principal normals are 

called Bertrand curves. Prove that the tangents to ϒ and ϒ  are inclined at 

a constant angle, and show that, for each curve there is a linear relation 

with constant coefficients between the curvature and torsion. 

 

1.8Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing   Pvt.Ltd.(2010).
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2.6 Summary 

2.7 Keywords 

2.8 Self Assessment Questions and Exercises 
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2.1 Introduction 
At each point of the curve, we have defined an orthogonal triad t, n, b 

forming a right handed system and also we have noted that at each point 

this moving triad determines three fundamental planes which are mutually 

perpenticular. Hence we can study their variations from point  to point with 

respect to the arcual length as parameter. This leads to the notion of 

curvature and torsion of the space curve as defined below. Using the 

concept of curvature and torsion, it is easily to derive Serret-Frenet 

formulae.  

2.2 Objectives 
After going through this unit, you will be able to : 

 Define curvature and torsion of a curve 

 Solve the problems using curvature and torsion 

 Derive Serret-Frenet formulae 

 Derive the necessary and sufficient conditions for a curve to 

be a straight line or a curve. 

2.3 Curvature and torsion of a curve 
 

Curvature: 
The arc rate at which the tangent changed direction as p moves along the 

curve is called curvature of the curve and its denoted by   

By definition          
Torsion: 

As p moves along the curve the arc rate at which the oscillating 

plane turns about the tangent is called the torsion of a curve and its denoted 

by   

6. Derivation of serret-Frenet formula: 

(i) Prove that 
   

  
     

(ii) 
   

  
         

(iii)
   

  
       

Solution: 

(i) To prove :
   

  
     



 

14 

 

Self-Instructional Material 

 

 
Urvature And Torsion Of A 

Curve 

 

 

NOTES 

We know that, 

     
  

  
  =

  

  
 
  

  
 =       

       
 

  
         

 

  
          

 =    
   

  
 

    

  
    =        

    

  
 
  

  
    

                           =                  

               lies in the oscillating plane. 

We know that, 

   is a unit tangent vector at the point p and  

       .....(1)  

Diff  1) w.r to s, 

   
   

  
 

   

  
      

2   
   

  
=0 

   
   

  
=0 

         =0 ....(2) 

(ie)        is perpendicular to   . 

From eqn (1) and (2), we have        coincide with    

(ie) 
   

  
     

Hence (i) is proved. 

(ii) we know that          
Diff  .r to s,  

 
   

  
  

   

  
         

   

  
  

     =                   

     =                   

  =               =            
   

  
          

(iii) we know that,    is perpendicular to    

(ie)      =0 ....(3) 

Diff  .r.to s, 

 
   

  
         

   

  
 =0 

            
   

  
=0 

              
   

  
=0 

        
   

  
=0 

     
   

  
=0 

             is perpendicular to 
   

  
 ....(4)  

We know that, 

   is the unit binormal 

(ie)         

Diff  .r to s,  

   
   

  
 

   

  
     ,  
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2   
   

  
=0 

   
   

  
=0 

   is perpendicular to 
   

  
 ....(5) 

From (4) and (5) we have 
   

  
 coincide with    

(ie)  
   

  
      

Therefore, 
   

  
      

Theorem 1.5  

Show that the necessary and sufficient that a curve to be a straight line is 

that  =0 at all points.  

Proof: 
Necessary part: 

The equation of the straight line is          ....(1), where    and    are 

constant vector. 

Diff  1) w.r to s, 
   

  
                  ...(2) 

Diff  2) w.r to s 
   

  
=0       

But we know that  
   

  
=           

    at all points. 

Sufficient part: 

If     then 
   

  
   

(ie) t’ =0 

(ie)    =0 ....(3) 

Integrating (3) w.r to s 

   =a 

        ..(4) where a and b are constant vectoer. 

Here eqn(4) represents straight line. 

Theorem 1.6  

Prove that a necessary and sufficient condition that a curve   be a plane 

curve is that  =0 at all points. 

Proof: 
Necessary part: 

Assume that: A curve is a plane curve. 

To prove:  =0 at all points. 

Since the curve is a plane curve the tangent and normalat all points are also 

lie on the plane. 

The plane is an oscillating plane for all points. 

  The binormal vector is same at all points. 

The binormal vector is constant. 

        where    is a constant vector.  

  
   

  
=0 

   
  

  
 =0 
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  =0 at all points. 

Sufficient part: 

Assume that:  =0 at all points. 

To prove: The curve   is a plane curve. 

Now  =0   
  

  
 =0 

     =0       

Integrating w. r to s 

       where c is a constant vector. 

  The binormal vector is same at all points. 

The plane is an oscillating plane. 

The tangent plane and normal at all points are also lie on the plane. 

The curve is a plane curve.  

Theorem 1.7 

 Show that the necessary and sufficient condition for the curve to be the 

plane curve is                       =0 

Proof: 

We have       
   

  
 

    =t           

But 
  

  
     

(ie)          

      
 

  
       

                            =
 

  
      

                            =  
     

 

   

  
    

                            =                

                            =               

                            =                

                                 = 
   
   
       

  =0 

                 =           

                 =    ....(1) 

But given                  =0  

 (1) becomes    =0 

Either   =0 (or)  =0 

Now let     at some points of the curve there is the neighbouring of this 

points     

    is this neighbouring and hence the curve is a straight line. 

 =0 on this line which is    to our assumption. 

Thus     at all points and the curve is a plane curve. 

Sufficient part: 

Assume that:     

  The curve is a plane curve. 

From (1)                 =0 

This is a sufficient condition for that a plane.  
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 7. Show that               =0 is necessary and sufficient condition that a 

curve to ba a plane 

Solution: 

We have     
  

  
 

    
  

  
 
  

  
          

     
    

  
=

 

  
        =

    

  
        

   

  
 

     =
    

  
 
  

  
             =     

  

  
           

     =                

     
 

      

  
 =

 

  
                

       =
    

  
        

    

  
 

    

  
       

    

  
 

       =
    

  
 
  

  
                

    

  

  

  
            

       =                                    

       =                           
Now,  

                                                                  

=                                                               
                              

=                                                                        
                                                                        

=                      +0+0+0+0+0 

                                      

                                      

                           

Suppose                  

(ie)            =0 .....(1) 

    =0 

  =0 (or) =0 

Suppose     (ie)     

The curve is a straight line. 

The binormal vector is same at all points. 

   is constant 

 
   

  
  =0 

    , which is a    

    at all points. 

Sufficient part: 

Assume that:     

The curve is a plane curve. 

From(1), we have                  

This is the sufficient condition for the plane curve. 

8. Prove that             =
         

      
 

Solution: 

We know that       
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 = 

  

  
 =     

                =         =    

               ...(1) 

Now,     
  

  
  =

  

  
 
  

  
  =

   

  
 

    
 

   

  
 = 

 

  
 
   

  
  =

 

  
 
   

  
 

  

  
  = 

 

  
 
   

  
 

  
 =

           

   
 
 

  
 

     
           

   
 

         
   

  
 

             

   
  = 

   

  
 

     

   
 

   

  
 

     

   
  

 =
       

   
 

  

   
          

           
         

      
 ...(2) 

From (1) and (2) 

            =
         

      
 

9. Prove that   
                         

           
 

                 

          
 

Solution: 

We know that,       

     
    

  
 

 

  
    

      
     

  
 

 

  
      

                           = 
   

  
   

  

  
 

                           =               

                      

              
 
       

  
 = 

   
   
       

  =    

                =         

             

         
         =    =  

                
                         

           
 

   

  
    .....(1) 

Also,     
  

  
 =

  

  
 
  

  
 = 

   

  
 

     
   

  
  = 

 

  
 
   

  
  = 

 

  
 
   

  
 

  

  
  = 

 

  
 
   

  
 

  
  =

           

   
 
 

  
 

     
           

   
 

      
 

  
      =

 

  
 
           

   
                               

      =
 

  
 
           

   
  

  

  
  = 

 

  
 
           

   
 

  
 

      = 
                                                       

     
 

      =
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       =
                                                     

     
        

              
 
       

  
   

   

  
 
           

   
 
                                                     

     
  

 

             = 
   

  
 
           

   
 
       

   
  - 

   

  
 
           

   
 
        

   
  - 

   

  
 
           

   
 
         

   
  -

 
   

  
 
           

   
 
          

   
  

             = 
   

  
 
     

   
 
       

   
 -0-0-0-0-0-0-0 

             =
   

   
               

             =
              

   
 ...(1) 

         
   

  
 

             

   
  =

   

  
 

     

   
 

   

  
 

     

   
 

             =
       

   
 

  

   
          

           
         

   
 

            
         

   
 ...(2) 

From(1) 

                  
              

   
 

                                    
From (2) 

            
          

   
 

                          

 
              

          
 

                   

              
 

 
              

          
 

                

           
=0 

 

10. Determine the function f(u) so that the curve given by 

   =(acosu,asinu,f(u)) should be a plane.  

Solution: 

Given that   =(acosu,asinu,f(u)) and also a curve is a plane curve. 

(ie)  =0  
              

          
   

               =0 

  =(acosu, asinu, f(u))  

                         

    =(-acosu, -asinu, f”(u)) 

     =(asinu, -acosu, f”’(u)) 

               =0 

 

                

                  

                  

  =0 
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 =0 (        )  

                                 =0 

                    =0 

                =0 ....(1) 

Integrating w.r to u, 

f(u)+f”(u)=c where c is a constant 

      
  

       =c 

    
  

   
     =c 

              ....(2), where D = 
 

  
 

This is the second order D.E 

The solution is f(u)=C.F+P.I 

To find C.F: 

The A.E of (2) is     =0 

  m= i 

C.F =                 

P.I =
 

    
  =

 

    
  =

   

    
  = c 

The solution is f(u) = C.F+P.I 

(ie) f(u) = Acosu+Bsinu+c 

11. Calculate the curvature and torsion in the cubic curve is given by 

          

Solution: 
We know that 

 =
          

      
 (Curvature),  =

              

          
 (Torsion) 

Given,   =(u,         
               

                       =(0, 2, 6u) 

                       =(0, 0, 6) 

        = 
        

      

    

   

   =                            

     =                 

        =             

     =              

     =            

Also,                  

     =           
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              = 
      

    
   

   

     =                   

     =12 

                      

                        

  
  

            
 

  
 

         
 

12. Find the coordinates of a point interms of s.  

Solution: 
Let P be the point on the given curve. 

Take ’O’ as origin and the axes OX, OY, OZ be along            respectively. 

Let X, Y, Z be the coordinates of the neighbouring point Q with position 

vector    then,                                        .....(1) 

If the curve is of class  4 and if s denotes the small arc length PQ. 

By Taylor’s theorem 

            
 

  
      

  

  
          

  

  
           

  

  
              ...(2) as 

s   

We have,                      

     
    

  
 

 

  
    

  

  
       

      
     

  
 

 

  
      = 

   

  
   

  

  
 

      =               

                      

        
 

  
             =

 

  
                  

=
 

  
       

 

  
       

 

  
       

      =        
  

                                    

=                                                 

=                                                 

    =                                                

                                             

 (2) becomes 

r(s) =  
     

  
 

  

  
      

  

  
                  

  

  
          

                              

      
    

 
 

     

 
          

   

 
 

   

 
 

            

  

            
    

 
 

          

  
           

Hence X =  
    

 
 

     

 
       

Y =
   

 
 

   

 
 

            

  
       

Z =
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13. Prove that 

(i)      
  

  
   

(ii)      
  

  
   

(iii)               
    

  
   

Solution: 

(iii)               
    

 
 

     

 
          

   

 
 

   

 
 

            

  
          

    

 
 

          

  
         

 

  

=    
    

  
 

     

 
 

    

 
 

     

  
 

      

  
 

      

  
 
 

  

(omitting higher power) 

=    
     

 
 

    

 
 
 

  

=    
    

 
 

    

 
 
 

  

=    
    

  
 
 

  

=    
    

  
 
 

  

=   
 

 
 
    

  
  

 

 
 
    

  
        

              
 

 

    

  
  

                    =    
    

  
  

 

14. Show that the projection of the curve near ’p’ on the oscillating 

plane is approximately the curve z=0, y =
 

 
    its projection on the 

rectifying plane is approximately y=0, z=
 

 
     and its projection on 

the normal plane is approximately x=0,    
 

 
        

Solution: 
We know that, 

’p’ is any point on the curve and p(x,y,z) interms of s are 

X =  
    

 
 

     

 
       

Y =
   

 
 

   

 
 

            

  
       

Z =
    

 
 

          

  
       

Consider X=s, Y=
   

 
, Z= 

    

 
 

Suppose we project the curve on the oscillating plane. (ie) z=0 

Y= 
   

 
 =

   

 
 

Hence the curve is z=0 and y=
   

 
 

Now we project the curve on the normal plane. 

(ie) x=0 and z=
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Hence the curve is x= 0and z=
 

 
 
  

 
    

Finally, we project the curve on the rectifying plane. 

(ie) y=0 

z=
  

 
   

  

 
   

Hence the curve is y=0 and z=
  

 
   

  

 
   

Hence the curve is y=0 and z=
  

 
   

15. Show that the length of the common perpendicular ’d’ of the 

tangent at two near points distance ’s’ about is approximately given by 

d =
    

  
 

Solution: 

Let   be any curve. 

Let P,Q be any two points on the curve with parameters ’o’ and ’s’ 

respectively. 

          ,            

Let the unit tangent vectors at the point P and Q be         ,          

respectively. 

(ie)          and          is common perpendicular to both                   

(ie) The length of the common perpendicular is 

d= 
                                 

                     
 

If the curve is of class   3, then by taylor’s theorem, 

            
 

  
      

  

  
          

  

  
                  

We know that,             

     
    

  
 

 

  
    

  

  
       

      
     

  
 

 

  
      

                      

Now, r(s)-r(o) = st+
 

 
     

  

 
                         

Diff.   .r to s, we get 

        =t+
 

 
     

   

 
                        

 =t+    
   

 
                        

 =  
 

 
          

 

 
      

     

 
 

 =   
    

 
        

 

 
        

    

 
   

                                  

=   

  
    

 

   

 
 

   

 

    

 

   

  
    

 
   

 

 
    

    

 

    

=   
    

 
     

   

 
 

   

 
 
    

 
    

    

 
    

 

 
      

=
      

 
 

      

  
 

     

 
 

      

  
 

=      
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=       
 

 
 

 

 
  

                               = 
 

  
      

                 = 

        

   

  
    

 
   

 

 
    

    

 

   

          =          
    

 
           

 

 
      

          =    
    

 
          

 

 
     

|                 |=           

 
      

 

 
      

            =        

 
      

 

 
      

            =       (omitting higher power) 

            =   

d= 
  

 

     

  
 

     

  
 

d =
     

  
, since distance is positive. 

 

Curvature and torsion of a curve given as the intersection of two 

surfaces: 

  

Theorem 2.1 

 Find the curvature and torsion of a curve given as the intersection of two 

surfaces.  

Proof: 
Let the given two surfaces are f(x,y,z)=0 .....(1) 

and g(x,y,z)=0 .....(2) 

Also the intersection (1) and (2) is in the curve. 

Let t be the unit tangent vector at a given point p. 

(ie) t lies on the tangent of two surfaces at the point p. 

(ie) t is parallel to the common perpendicular of the normals. 

Now, we denote the normal of the finite surfaces as 

    
  

  
 
  

  
 
  

  
 and    

  

  
 
  

  
 
  

  
  

The common perpendicular to the surface is             , (ie)      =h 

(say) 

(ie) h is parallel to t. 

(ie) h =    .....(3) 

Now,     
  

  
 =  

 

  
    

            .r 

Put the operator   on both sides (3), 

       

 
 

  
        

              

              ....(4) 

Taking the cross product of eqn  3) and (4) 

                        



 

25 

 

Self-Instructional Material 

 

 
Urvature And Torsion Of A 

Curve 

 

 

NOTES 

                   

               

           

    b= m .....(5) where m=      

Taking modulus on both sides, we get 

|    b|= |m| 

        = |m| 

   = |m|,    
   

   .....(6) 

Put the operator   on both side (5),            

 
 

  
          

                          

                             

                             

                            ....(7) 

Taking scalar product on eqn  4) and (7) 

                                              

                      

             

   
    

  
        

            

  
     

    
  

 

16. Find the curvature and torsion of the curve of intersection of the 

two quadratic surfaces               .....(1),           
       .....(2)  

Solution: 
Given two surfaces are  

f(x,y,z)=
 

 
                

g(x,y,z)=
 

 
                   

Then   =(ax, by, cz) 

  =(a’x, b’y, c’z) 

      = 
        

      

         

   

 =                                            

=(Ayz, Bxz, Cxy), where A=bc’-b’c, B=a’c-c’a, C=ab’-a’b 

=xyz(
 

 
 
 

 
 
 

 
) 

Put       = (
 

 
 
 

 
 
 

 
) .....(3) 

Taking the scalar product (3) 

       
  

   
  

   
  

  ) 

    
  

   
  

   
  

  ) 

Taking operator   on both sides (3) 
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) 

 
 

  
       

 

 
 
 

 
 
 

 
) 

             
 

 
 
 

 
 
 

 
)  

             
 

  
 
 

 
 
 

 
 
 

 
) 

              
  

   
  

  
 
  

   
  

  
 
  

   
  

  
  .....(4) 

Now, eqn  3) becomes   
  

  
 
  

  
 
  

  
   

 

 
 
 

 
 
 

 
)  

  

  
 

 

 
  

  

  
 

 

  
 

 
  

  
 

 

 
  

  

  
 

 

  
 

 
  

  
 

 

 
 

  

  
 

 

  
 ......(5) 

Sub in (4) 

              
  

  
 
 

  
 
  

  
 
 

  
 
  

  
 
 

  
  

                  =   
   

   
 
   

   
 
   

   
  

                     
   

  
 
   

  
 
   

  
  .......(6) 

Taking the cross product of eqn  3) and (6) 

                
   

   
   

   
   

     
 

 
 
 

 
 
 

 
) 

     =  

   
 

 

 

 

 

 

  

  

  

  

  

  

    

   =  
   

   
 

   

       
   

   
 

   

        
   

   
 

   

      

  =  
           

        
           

        
           

      

     = 
  

  
 
       

      
  

  
 
       

      
  

  
 
       

       .....(7) 

Eqn  1)          

                                           
  =                                         

                                              
                  since B=a’c-ac’, C=a’b-ab’ 

               
              ....(8a) 

(1)          

                                           
  =                                         

                                  

                                

                                

              

              ....(8b) 

(1)          
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              ....(8c) 

Sub   a, 8b, 8c in(7), 

    = 
  

  
 
    

      
  

  
 
    

      
  

  
 

    

       

    =
   

       
        

 
 
        

 
 
        

 
  ....(9) 

Put    = 
        

 
 
        

 
 
        

 
  ....(10) 

Taking the scalar product of eqn  10) itself 

       = 
         

   
         

   
         

     

     
         

  
 

Taking the scalar product of eqn  9) itself 

         =
      

       
         

   
         

   
         

     

     
      

      
  

         

  
 .....(11) 

     
      

      
   .....(12) 

   
      

      
 
  

  
 

From eqn  12) 

             

        

     
      

   
 ....(13) 

Diff. ėqn  10) w.r to s, 

       =     
  

  

      

 
     

  

  

      

 
     

  

  

      

 
  

Sub in (5) in(10) 

         
 

 
                          .....(14) 

Taking scalar product of eqn (6) and (14) 

                        
   

  
   

 

 
        

        
   

  
   

 

 
        

  
           

      
 

                        =
   

  

        

    
         

   

 

                       =
      

  

        

       
      

         
  

          
 

  
         

  

        

     
  

         

 

2.4 Check your progress 
1. Define curvature 

2. Define torsion 
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3. Write Serret-Frenet formula 

 

2.6 Summary 
The arc rate at which the tangent changed direction as p moves along the 

curve is called curvature of the curve and its denoted by  . 

By definition          
As p moves along the curve the arc rate at which the oscillating plane turns 

about the tangent is called the torsion of a curve and its denoted by   

Serret-Frenet formula: 

(i) Prove that 
   

  
     

(ii) 
   

  
         

(iii)
   

  
       

The necessary and sufficient that a curve to be a straight line is that  =0 at 

all points. 

The necessary and sufficient condition that a curve   be a plane curve is 

that  =0 at all points. 

The necessary and sufficient condition for the curve to be the plane curve 

is                       =0 

The necessary and sufficient condition that a curve to ba a plane is 

              =0  

 

2.7 Keywords 

Curvature:  =
          

      
 (Curvature),             =

         

      
 

Torsion:  =
              

          
 (Torsion),   

                         

           
 

                 

          
 

Coordinates of a point interms of s: 

 X =  
    

 
 

     

 
        

Y =
   

 
 

   

 
 

            

  
       

Z =
    

 
 

          

  
       

 

2.8 Self Assessment Questions and Exercises 

1. Find the curvature and torsion of the curves 

i) r=(u, 
   

 
, 

    

 
)  ii) r=(3u, 3  , 2  ) 

iii) r=(cos 2u, sin 2u, 2 sin u)  iv) r=(4a     u, 4a     u, 3a cos 2u) 

 

2. Find the curvature and the torsion of the curves given by 

a) r=[a(3u-  ), 3a           ] 

b) r=[a(u-sinu), a(1-cosu), bu] 

c) r=[a(1+cosu), asinu, 2asin
 

 
 u] 

 

3. Prove the following relations  τ 

i) r'.r''=0  ii) r'.r'''=-   

iii) r'.r'''=-3  '  iv) r'.r'''=  ' 

v) r'.r'''= ( ''+  -   )  vii) r'.r'''= '  ''+2    '+  ττ'+  '   
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4. Prove that if the principal normals of a curve are binormal of another 

curve, then a(  +  )=b  where a and b are constants. 

5. Show that the angle between the principal normals at O and P is 

s           where s is the atcual distance between O and P. 

6. Show that the unit principal normal and unit binormal of the involutes of 

a curve C are 

  =
     

        
,   =

     

        
 . 

 

2.9 Further Readings 

 

1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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UNIT-III  CONTACT BETWEEN 

CURVES AND SURFACES 
 

 Structure 

3.1 Introduction 

3.2 Objectives 

3.3 Contact between curves and surfaces 

3.4 Check your progress 

3.5 Summary 

3.6 Keywords 

3.7 Self Assessment Questions and Exercises 

3.8 Further Readings 

 

3.1 Introduction 
In this unit we shall establish the conditions for the contact of 

curves and surfaces leading to the definitions of osculating circle and 

osculating sphere at a point on the space curve and also the evolutes and 

involutes. Before concluding this chapter, we can explain the radius of 

curvature, centre of curvature and tangent surfaces and their uses. 

 

3.2 Objectives 
After going through this unit, you will be able to: 

 Define osculating circle and osculating sphere 

 Derive the properties of osculating sphere and osculating  

         circle 

 Derive the equations of involutes and evolutes 

 Find the equations of radius of curvature, centre of  

                curvature  

 Solve the problems in contact between curves and  

              surfaces 

 Find the conditions of tangent surfaces 

 

3.3 Contact between curves and surfaces 
 

Let F(x,y,z) =0 ....(1) be any surfaces. 

Let   be any curve denoted by                    ....(2)  

The point (f(u),g(u),h(u)) lies on the surface F(x,y,z) =0 

(ie) x =f(u), y =g(u), z =h(u) 

The surface F(f(u),g(u),h(u)) =0 

(ie) F(u) =0 

If    is a zero of F(u)=0 then F(u) can be expressed by the Taylor’s 

theorem, 

F(u)=         
  

  
             

  

  
                , where     

   
Then the following cases arise 

(i) If F’(      then the curve has one point contact with the surface. 
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(ii) The curve and surface intersecting at one point. 

(iii) If F’(      and F”(      then the curve has 2 points contact with 

the surface. 

(Proceeding like this) In general, if F’(   =F”(   =....=F          =0 and 

F         then the curve has n-points contact with the surface. 

Osculating sphere: 
The osculating sphere at a point on a curve is the sphere which has four 

points contact with the curve at p.  

Theorem 2.2  

Find the oscillating sphere at p(s=0) to the given curve         . 

Proof: 

Let    be the position vector of the center ’c’ and radius R of the osculating 

sphere. 

Then the equation of the sphere is             

The point of intersecting with the curve is given by  

F(s) =           =0, since the sphere has four points contact, we have, 

F(0)=F’(0)=F”(0)=F”’(0)=0 

F(0)=0              ....(1) 

F’(0)=0                      

             ....(2)  

F”(0)=0                           

                     

                    

                  

               .....(3) 

             
 

 
 

F”(0)=0  

                                            

                                         

                                               

                 
 

 
   

We have, k =
 

 
,  k’ =

  

    ,   
 

 
,    

 

 
 

(4)         
 

 
 
 

 
    

   

  
  =0 

 
          

  
 

  

 
 

                .....(5) 

(2)                             
  lies on the normal plane. 

                   .....(6) 

Sub. ėqn (6) in (5) 

                          
Sub. ėqn (6) in (3) 

           =1 

               =1            
 

 
 

(ie)     
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(6)                      ....(7) 

The center of the osculating sphere is                   

Squaring on both sides, we have                                             

            

R=          is the radius of the osculating sphere.  

  

Corollary 2.3 If k is constant then R=  

Proof: 
Given k is constant 

 
 

 
 is constant. 

   is constant. 

   =0 

Let                   be the centre of the osculating plane.  

           and R=          

R =    

1. Find the locus of the centre of the spherical curvature. 

Solution: 

Let ’c’ be the original curve and c   be the locus center of the spherical 

curvature. 

The position vector    of the centre of spherical curvature is given by, 

                 ....(1) 

Diff.   .r to s,  
   
  

                                               

   
  

 
   
  

                                                  

      
 

 
                    ......(2), since    is an increasing function of s, 

so that     is non-negative. 

We write t   =eb, where e=   

          
 

 
                 

     
 

 
                 

     
 

 
             .....(3) since t   =eb .....(4)  

Diff  4) w.r to s, 
   

  
   

  

  
  

   
   

 
   

  
           

              

                 

Put          where       
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                      ....(5) 

The unit binormal vector    is parallel to   . 
Since,                          

                 

          

 Diff  .r to s, 
   

  
     

  

  
 

   

   
 

   

  
        

               

                 

         
     

  
 

         
     

   
       

            

    
  

   
 

    
  

 
 
             

 

    
 

 
 

 
            

 ....(6)  k=
 

 
 

Eqn (5) and (6) given the curvature and torsion of the curve    at a point p 

corresponding to the curve c. 

   

   
 

  

  
 

                 

 

 
 
             

 

= 
 

             
    

             

 
  

 
  

  
 

 

 
 

 
  

  
 

 

 
 

        

2. Prove that the radius of curvature of the locus of the centre of 

curvature of a curve is given 
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Solution: 

Let c be the given curvature and c   be the locus of the centre of curvature. 

The position vector of the centre of curvature is           ....(1) 

Diff (1) w.r to (3), 
   
  

 
  

  
   

  

  
         

   
  

 
   
  

                         

          
 

 
            

       
 

 
         

Multiplying both sides by 
 

 
 

 

 
           

 

 
    ....(2) 

Taking scalar product on both sides, 

  

  
    

    
     

  
 

  

  
    

  
        

  
 

       
           

    
  

  

  
 

    
 

 
 ....(3) 

Diff (2) w,r to s, 

 

 
    

   
  

     
 

  
 
 

 
             

 

 
           

 

  

   

 
 

 
 

 
    

   
   

 
   

  
     

 

  
 
 

 
           

 

 
              

 

  

   

 
 

 
 

 
    

           
 

  
 
 

 
       

 

  
 
   

 
       

 

 
       

 

 
       

 
 

 
    

           
 

  
 
 

 
       

 

  
 
   

 
       

  

 
    

 

  
      ....(4) 

Taking cross product (2) and (4)  

  

      
         

        

 
   

 
 

 
 

  
   

 

  
 
   

 
   

  

 

    

=   
 

       
 

  
 
   

 
         

 

           
  

         

Taking scalar product on both sides, 
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=
    

    
 

  
 
   

 
  

 

            
     

       

Since    ,            , 
 

 
 

 

 
,   

 

 
 

=
   

    
 

  
 
   

 
  

 

            
     

       

= 
   

  

 

  
 
   

 
  

   

   
 

       
 

 
    

     

      

= 
   

  

 

  
 
   

 
  

   

   
        

       
     

      

 

  
   

   

  

 

  
 
   

 
  

   

  

  

   
    

     

    
  

  
    

   

  

 

  
 
   

 
  

   

  

  

   
    

     

    
     

     
   

  

 

  
 
   

 
  

 

 
  

     

    
  

  
  

Hence      
   

  

 

  
 
   

 
  

 

 
  

     

    
  

  

  

3. Show that the osculating plane at p has 3 points contact with the 

curve. 

Solution: 
Let p be any point on the curve. 

We know that, 

The equation of the osculating plane is  

F(s)                              ....(1), where       is the position vector 

of the point p(s=0) and s is measured from p. 

Let the curve be of class    

Then by taylor’s theorem, 

            
 

  
      

  

  
          

  

  
                  

We know that,             

     
    

  
 

 

  
    

  

  
       

      
     

  
 

 

  
      

                      

Now, r(s)-r(o) = st+
 

 
     

  

 
                         

                                =  

 

  

  

  
 

    

  

    

  

   
      

   

=       
     

  
 

=
     

 
 

Osculating circle: 
Osculating circle at any point p on a curve is a circle which has three 

points contact with the curve at the point p. It is also known as circle of 

curvature.  

Theorem 2.4 Find the equation of the osculating circle at a point p to the 

curve   . 
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Proof: 

Let   be the radius and   be the position vector of the centre of the 

osculating circle at p. 

Clearly, the circle lies in the osculating plane at the point    . 
It is the section of the osculating plane with the sphere. 

            ....(1) 

Since the circle has 3 points contact, we have 

f(0)=0, f’(0)=0, f”(0)=0, where F(s)=                          
   

            

F’(0)=0                       

              =0 

           =0 

         is perpendicular to t. 

         lies in the normal plane. 

But         lies in the osculating plane. So         is along   . 

            ...(2) 

(ie) c=r+    

F”(0)=0                       

                  

                

              

           
 

 
 

        
 

 
 

   
 

 
 ....(3) 

eqn (2) and (3) are centre and radius of osculating plane.  

 

 4. Find the coordinate of centre of spherical curvature given by the 

curve                          

solution: 

Given                         

Let the centre of the osculating sphere be         

we know that, 

The curve has 4 point contact with the osculating sphere. 

F(o)=0,        ,        ,          

The equation of the osculating sphere is             

Take F(o)=            

Now, F(o)=0               

            .....(1) 

                         

                ....(2) 

                                   

                       ....(3) 

                                           

                         ...(4) 

Given                         
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                              ....(5) 

                                            
                                             
                           

                                         
                                   =0 

                                               

                                              

                                

                               ....(6) 

                                 

                                 
                                          

                        =0 

 
                                       
                                          
              =0 

                                     
                 
                                

From (5) and (6)      

 
 

                      
 

 

                          

 
 

                       
 

 

           
 

                         

                            

                         

5. The principle normal to the curve is normal to the locus of centre of 

curvature at those points then the curvature is stationary. 

Solution: 
Assume that: The curvature is stationary 

To prove: The principle normal is normal to the locus of centre of 

curvature. 

Since the curvature is stationary k=a where a is a constant. 
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.....(*) 

Diff w.r to s, 
  

  
   

(ie)   =0 ...(1) 

Since r is the position vector at any point on the curve   then we have 

        ...(2) 

Diff w.r tos, 
   

  
            

   
   

 
   

  
              

                  

    
 

 
   

 

 
  

                        =  
 

 
    

        
 

 
  

Taking scalar product by n on both sides, 

          
 

 
      

         
 

 
    

           

       
The principle normal is normal to the locus of centre of curvature. 

6. Find the equation of the osculating plane, osculating circle, 

osculating sphere at the point (1,2,3) on the curve x=2t+1, y=3    , 

z=   +3. 

Solution: 

(i) Given x=2t+1, y=3    , z=   +3 

(ie)                       

                

               

              
Clearly, t=0 at the point (1,2,3) 

At t=0 

           

            

            

              
We know that,  

The equation of the osculating plane is                   

                   
         
   
   

   

                               

              

           

       
z=3 .....(1),  
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which is the required equation of the osculating plane. 

(ii) Now, To find the equation of the osculating sphere. 

Let (     ) be the centre of the osculating sphere.  

We know that,  

The equation of the osculating sphere is           

Since the osculating sphere has 4 point contact, we have  

f(0)=0,        ,        ,          

Here, f(s) =          

                 

                      

              

                        

        =0 

     =0 

2    

    

                             =0 

               =0 

                                 

                   

                   

          
  

 
 

  
 

 
 

                                        =0 

                    =0 

                                         

                

         =0 

        

   
  

  
 

     
To find the radius of the osculating sphere is  

          

                  

     
 

 
            

   
   

 
        

 
 

 
     

  
 

 
 

The equation of the osculating sphere is           
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=0 

            
  

 
        

  

 
=0 

            
  

 
     

     

 
=0 

            
  

 
     

   

 
=0 

            
  

 
     

  

 
=0 

                         =0 .....(2) 

(iii) Osculating circle is the intersection of the osculating plane and the 

osculating sphere. 

Sub (1) in (2) 

                             =0  

                       =0 

                 =0 

which is the required equation of the osculating circle. 

7. Show that the radius of spherical curvature of the helix x=acosu. 

y=asinu, z=aucos  is equal to the radius of circular curvature of the 

helix. 

Solution: 

Given                         

                         

                      

         
      

                
             

  

=                                          
            

=                               

                                             

                               

                         

                     ....(1) 

                                   

                          

                       

                

                  
 
  

=                    ....(2) 

We know that, 

k =
         

      
  =

          

                   
  =

 

          
 =b(say)  

we know that, 

            .....(4) 

k =
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  =0 

(4)        

R=  

The radius of the spherical curvature of the helix is equal to the radius of 

the circular curvature of the helix. 

Tangent surface: 
A surface of a curve c is called a tangent surface if the surface generated bt 

tangent to the curve c. 

8. Find the equation of the tangent surface. 

Solution: 

Let          be the equation of the curve c. 

Let p(r) be any point on the curve c and Q(R) be the neighbouring point 

corresponding to p on the tangent surface. 

Now     is the tangent to c. 

         
             

          
          

(ie) R=          
This is the equation of the tangent surface. 

9. Find the equation of the tangent surface to the curve             . 

Solution: 
We know that, 

The equation of the tangent surface is R=          
R=           
=                      

=                    , which is the equation of the tangent 

surface.  

Let c and c   be the two curves. The curve c   is called involute of c if the 

tangent to c is normal to c  . 

If c   is the involute of c then c is called evolute of c  .  

 

Theorem 2.5 Find the equation of the involute of the curve c. 

Proof: 

Let the equation of the given curve c be          and the equation of the 

involute of    be           . 

Let p(r) and        be the corresponding points on c and c   respectively. 

Let ’o’ be the origin then               

         .....(1) 

Diff (1) w.r to   , 
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               .....(2) 

Now        

Taking scalar product on both sides by t 

(2)       
  

   
                 

0=
  

   
                           

0=
  

   
       

0=                    

           

    
  

  
     

         
Integrating  

   =a where a is a constant. 

      .....(3) 

Sub (3) in (1),  

         

             ....(4) 

Sub      value in (2) 

(2)                  
  

   
 

                   
  

   
 

               
  

   
 

=        
  

   
 

     
   

  
         

Now, taking modulus, we get  

     
   

  
            

  
   

  
             

 
   

  
         

The equation of the involute is             and s can be obtain in 

terms of    from the eqn (5).  

Theorem 2.6 Find the equation of the evolute of the curve c. 

Proof: 

Let the equation of the curve be          and    be its evolute. Then c is 

the involute of c’. 

Let p(r) be any point on c and Q(R) be the corresponding point on c’. 

Then PQ lies on the normal plane at p to c.  
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            are coplanar. 

              where   and   are scalars. 

                 

                 

                 .....(1) 

Diff (1) w.r to s, 

   

  
                       

=                            

=                             ....(2) 

Here R’ is parallel to             

                                      

Equating the co-efficient of          on both sides, 

        ....(3) 

         ...(4) 

         ....(5) 

(3)    
 

 
   

(4)  
     

 
   and 

(5)  
     

 
   

 
     

 
 

     

 
 

                   

                 
                   

                    

  
       

     
 

  
 

  
       

 

 
   

       
 

 
           

  
 

 
                

                  

                  

                  

Sub   and   in (1), we get 

                               
Theorem 2.7 Find the equation of the curvature and torsion of the involute 

of the curve c. 

Proof: 

Let    be the involute of c. 

The unit tangent vector along    is given          ....(1) 
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Diff (1) w.r to   , 
   

   
 

  

   
 

     
  

  
 

  

   
 =       

 

      
 

     
     

      
 

     
  

      
 

  

      
 .....(2) 

Taking scalar product on both sides, 

  
  

  

        
 

  

        
 

 
     

         ....(3) 

(2)  
   

   
 

     

      
 

 
 

   
 
   
   

  
     

      
 

  

   
      

 

   
 
     

      
  

 

  
 
     

      
  

  

   
 

=
                                              

         
 

      
 

=
                                                

         

=
                                                                   

         

        
                                           

        
 

  
     

   
   

 
    

   
  

    

   
   

        =    
       

      
 
                                           

          

        =  

   
  

      
 

 

      

   

        

             

        

                 

        

    

       =    
  

      
 
                 

            
 

      
 

   

           

       =
                       

         

  
    

       

        
 

   
       

        
 
 

  
  

                          =
       

         
        

      

    
       

             
  

10. Show that the torsion of the involute of a given curve is equal to 
          

            
 

Solution: 
The torsion of the involute of c is given by 

   
       

             
 .....(1) 
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Put k=
 

 
 and   

 

 
 

k’=
   

  
 and   

   

  
 

(1)     

 

 
 
   

     
   

    
 

 
 

      
 

 
  

 

   
 

   
  =

        

     
           

       
 

   
          

            
  

Theorem 2.8 Prove that the locus of the centre of curvature of a given 

curve is an evolute only when the curve is a plane curve. 

Proof: 
The position vector of a current point in the evolute is given by 

                         .....(1) 

The locus of centre of curvature is given by           ....(2) 

Eqn (1) and (2) represent the same curve. 

                  

                         

                         

 
              

              
   

                  

                

                  

                   
 

 
 

 
 

  
        

    
The curve is a plane curve.  

Theorem 2.9 Show that the involute of a circular helix are plane curves. 

Proof: 

The torsion of the involute of a curve          is given by 

   
       

             
 ....(1) 

Since the given curve is a circular helix, we have, 
 

 
=b where    is a circular helix. 

      

        

0    
         

             
 

      
The involute of a circular helix is a plane curves.  

Theorem 2.10 If the position vector    of a current point on a curve is a 

function of any parameter u and dots denote differentiate with respect to u 
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then prove that         ,                 ,                                

           and hence deduce that  

   
       

    
    

           

    
 

   
        

   
   

            

     
 

Proof: 

    
   

  
 

   

  
 
  

  
 

            
         .....(1) 

Diff (1) w.r to u,                   

                ......(2) 

Diff (2) w.r to u, 

                                           

=                                            

=                                       ......(3) 

Taking cross product (1) and (2) 

                             

              .....(4) 

    
       

    
 

(2)            
                    

    
           

    
 .....(5) 

Taking scalar product of (2) 

                

    
        

   
 

Taking scalar product of (3) and (4) 

                       

                     

  
            

     
  

 

3.4 Check your progress 
1.Define osculating sphere. 

2.Define centre of spherical curvature 

3. Define osculating circle 

4. Define involute and evolute of the curve. 

3.5 Summary 

The surface F(f(u),g(u),h(u)) =0. If    is a zero of F(u)=0 then F(u) can be 

expressed by the Taylor’s theorem, 

F(u) =         
  

  
             

  

  
                , where     

   

The center of the osculating sphere is                   

R=          is the radius of the osculating sphere.  
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The radius of curvature of the locus of the centre of curvature of a 

curve is given 

  
   

  

 

  
 
   

 
  

 

 
   

    

    
  

 
  

The equation of the osculating plane is                   

Osculating circle is the intersection of the osculating plane and the 

osculating sphere. 

3.6 Keywords 

Osculating sphere:The osculating sphere at a point on a curve is the 

sphere which has four points contact with the curve at p.  

 

Osculating circle: Osculating circle at any point p on a curve is a circle 

which has three points contact with the curve at the point p. It is also 

known as circle of curvature.  

Tangent surface: A surface of a curve c is called a tangent surface if the 

surface generated bt tangent to the curve c. 

The torsion of the involute :    
       

             
 

 

3.7 Self Assessment Questions and Exercises 

1.Find the equation of the osculating plane of the curve given by 
r=(asinu+bcosu, acosu+bsinu, csin2u). Find also the radius of 
spherical curvature at any point. 

2. Find the osculating sphere and osculating circles at the point (1,2,3) on 
the curve r=(2u+1, 3        +3). 
3. Find the osculating sphere at any point of a circular helix. 
4. Prove that r=(a     u, a cosu sinu, a sinu) is a spherical curve. 
5. Show that the tangent to the locus    of the centres of curvature lies in 
the normal plane of the given curve C. If   is the angle between the 

tangent to    and the principal normal of C, prove that tan  =
 

   
 

6. If   is the arc length of the locus of centres of curvature, show that 
   

  
=

         

   

7. If C is a curve of constant curvature κ, show that the locus    of centres 
of curvature is also a curve of constant curvature   such that   =κ and 

that its torsion is given by   =
  

 
. 

8. If R is the radius of spherical curvature for any point P(x,y,z) on the 

curve, prove that        +                
 

  
 

  

    
. 

9. Show that the torsion at corresponding points P and     of two 
Bertrand curves have the same sign and that their product is constant. If 
C,    are their centres of curvature, prove that the cross ratio (PC    ) is 
the same for all corresponding pairs of points. 
10. The locus of a point whose position vector is the binormal b of a curve 
ϒ is called the spherical indicatrix of the binormal to ϒ. Prove that its 

curvature    and torsion     are given by   
 =

     

  
,    

       

        
.  
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3.8 Further Readings 
 

1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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UNIT-IV INTRINSIC EQUATIONS 

Structure 

4.1 Introduction 

4.2 Objectives 

4.3 Intrinsic Equations 

4.4 Check your progress 

4.5 Summary 

4.6 Keywords 

4.7 Self Assessment Questions and Exercises 

4.8 Further Readings 

 

4.1 Introduction 
In this chapter we discuss about the intrinsic equations of space curves and 

establish the fundamental theorem of space curves which states that if 

curvature and torsion are the given continuous functions of a real variable 

s,then they determine the space curve uniquely. 

 

4.2 Objectives 
 

4.3 Intrinsic Equations 

The equation k=f(s),        are called intrinsic equation. 

 

Theorem 2.11 Fundamental existence theorem for space curve 

If k(s) and  (s) are continuous function of the real variable s 0 then there 

exists a space curve for which k is a curvature and   is a torsion and s is an 

arc length measured from suitable base point. 

Proof: 

Given k(s) and  (s) are continuous function of the real variable s 0. 

To Prove: There exists a space curve for which k is a curvature and   is a 

torsion and s is an arc length measured from suitable base point. 

Consider the differential equation. 
  

  
   , 

  

  
      , 

  

  
     .....(1) 

Then (1) have unique set of solution for given set of values       

at s=0. 

In particular there is a unique set (        ) which assume values (1,0,0) 

when s=0. 

Similarly, there is a unique set (        ) which assumes initial values 

(0,1,0) and unique set (        ) which assumes initial values (0,0,1) at 

s=0. 

Now, we prove that for all values of s,   
    

    
 =1. 

 

  
   

    
    

     

   

  
    

   

  
    

   

  
 

               =                                

                          =0 

Integrating we get, 

  
    

    
    (say) .....(A) 

(A)           
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(A)    
    

    
 =1. 

Similarly we get  

  
    

    
 =1 

  
    

    
 =1 .......(2) 

Consider the point 
 

  
                   

   

  
   

   

  
   

   

  
 

    =                                        
                  

     =0 

Integrating we get,  

                 (say) 

At s=0, (        )=(1,0,0) and 

(        )=(0,1,0)  

(ie)               =0 

              =0 

              =0 ......(3) 

Take A=  

      

      

      

   

     

      

      

      

  

      

      

      

   

= 
   
   
   

  =I 

A is a orthogonal matrix 

(ie)    =I 

       
Post multiply by A, 

   =I 

We have, 

  
    

    
    

  
    

    
    

  
    

    
    

And 

                                                    

                 

                 

There exists 3 mutually orthogonal unit vectors              ,    
                         defined for each value of s. 

Now define r=r(s)=  
 

 
    .....(4) 

Then     =       

    
   

  
 
   

  
 
   

  
  

                         =              

                        =            

        
k is a curvature of (4) 

Also,               
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                         =                 

                         =             

   
  

  
      

  is a torsion of eqn(4). 

Hence there exists a space curve given by (4) where          are unit vectors 

along tangent, normal and binormal respectively.  

Theorem 2.12    Uniqueness theorem 
If the curvature and torsion of c have the same values as the curvature and 

torsion at the corresponding point of    then   and c are congruent. 

Proof: 

Let c and    be two curves defined interms of respective arc length such 

that the points with the same values of s (arc length) corresponds.  

Also the curvature and torsion are same for the same value of s. 

Let    be moved so that the two points c and    corresponding to s=0 co-

incide. 

(ie) (        )=(           ) 

Then 
 

  
                   

=             
 

  
                         .....(1) 

Similarly 
 

  
                        

 

  
                                  ....(2) 

 

  
                        ....(3) 

(1)+(2)+(3)  
 

  
       

 

  
       

 

  
      =0 

 
 

  
                =0 

Integrating, 

              =a 

(ie)              =3 

Since the sum of the cosines is equal to 3 only, when each angle is 0 (s=0) 

              =0 

Now,             

            

     

Similarly         

We know that , 

               

 
  

  
 

   
  

 

 
  

  
 

   
  

   

 
 

  
         

           
Integrating, 

    =b 
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At s=0       

b=0 

    =0 

Hence      for corresponding points. 

Hence the two curves are identical and k and   of    and c are same.  

 

4.4 Check your progress 

 Define intrinsic equation 

 State fundamental theorem for space curves 

 State uniqueness theorem  on space curves 

 

4.5 Summary 

 Intrinsic equation 

               The equation k=f(s),        are called intrinsic 

equation. 

 Fundamental existence theorem for space curve 

              If k(s) and  (s) are continuous function of the real variable 

s 0 then there exists a space curve for which k is a curvature and   is a 

torsion and s is an arc length measured from suitable base point. 

 

 Uniqueness theorem 
             If the curvature and torsion of c have the same values as the 

curvature and torsion at the corresponding point of    then   and c 

are congruent. 

4.6 Keywords 

 Intrinsic equation 

               The equation k=f(s),        are called intrinsic 

equation. 

 Fundamental existence theorem for space curve 

              If k(s) and  (s) are continuous function of the real variable 

s 0 then there exists a space curve for which k is a curvature and   is a 

torsion and s is an arc length measured from suitable base point. 

 

 Uniqueness theorem 
             If the curvature and torsion of c have the same values as the 

curvature and torsion at the corresponding point of    then   and c 

are congruent. 

 

4.7 Self Assessment Questions and Exercises 
1. Prove that the corresponding points of the spherical indicatrix of the 

tangent to C and the indicatrix of the binormal to C have parallel tangent 

lines. 

 

2. Show that the spherical indicatrix of a curve is a circle if and only if the 

curve is a helix. 

3. Prove that for any curve lying on the surface of a sphere, 
 

  
      

 

 
=0. 

4. Prove that corresponding points on the spherical indicatrix of the tangent 

to ϒ and on the indicatrix of the binormal to ϒ have parallel tangent lines. 
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5. Find the equation of a tangent surface to the curve r=(u,      ).  

6. Find the Bertrand associate of a circle in a plane. 

7. Prove that the position vector of a current point r=r(s) on a curve 

satisfies the differential equation 
 

  
  

 

  
        

 

  
 
 

 
    

 

 
   =0. 

4.8 Further Readings 
 

1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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BLOCK II: HELICES, HELICOIDS 

AND FAMILIES OF CURVES  
 

UNIT-V HELICES 
Structure 

5.1 Introduction 

5.2 Objectives 

5.3 Helices 

5.4 Check your progress 

5.5 Summary 

5.6 Keywords 

5.7 Self Assessment Questions and Exercises 

5.8 Further Readings 

 

5.1 Introduction 
This chapter explains the brief discussion of the properties of a wide class 

of space curves known as helices. 

5.2 Objectives 
After going through this unit, you will be able to: 

 Define cylinderical helix and the axis of the helix 

 Derive the properties of helix 

 Define circular helix 

 Solve the problems in helices 

 

5.3 Helices 
 

Cylinderical helices: 
It is a space curve which lies on a cylinder and cuts a generator at a 

constant angle   with a fixed line is known as the generator (or) axis. 

Spherical helix: 

If a curve on a sphere is a helix, then the curve is a spherical helix. 

Theorem 2.13 A characteristic property of a helix is that a ratio of a 

curvature to the torsion is constant. 

Proof:  

Part-I 
Assume that: The curve is a helix. 

To prove: 
 

 
 is a constant. 

Let    denote a unit vector along the axis of the helix and    denote the unit 

vector along the tangent and   denote the angle between them. 

Now,            ....(1) 

         

          

            

         

(ie)    is perpendicular to   . 

  a lies in the rectifying plane.    makes an angle   with   , then it makes 

an angle (90- ) with   . 
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                 .....(2) 

Diff (2) w.r to s, 

0=              

             =0 

               =0 

            =0 

             

 
 

 
 

    

    
 

 

 
 constant 

Part-II 
5.3 Helices 

Assume that: 
 

 
 is a constant. 

To prove: The curve is a helix. 

Now, 
 

 
 constant (say p) 

 
 

 
 p 

    p 

           

            

          =0 

 
  

  
   

  

  
=0 

 
 

  
      =0 

Integrating, 

        (constant vector) 

Taking scalar product of t with (2), 

                    
         

                   

    makes a constant angle   with the direction ’a’. [where   
            ] 
The curve is a helix.  

Note: 
If the curvature and torsion are both constant then the curve is called a 

circular helix. 

 

Circular helix: 
A helix described on the surface of the cylindrical helix is called a circular 

helix.  

Theorem 2.14  

A helix of a constant curvature is neccessarily a circular helix. 

Proof: 

Let    be the unit vector along the axis of the helix. 

Let       be any point on the helix and         be the projection of       on 

the plane which is perpendicular to ’a’ and the projection of c on the plane. 

Let s and    be the arc length of the curve c and the projection of c on the 

plane. 

Let   be the angle at which the curve cuts the generator. 
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Diff w.r to s, 

         

Also, z=s     

The position vector of any current point p on the helix is            

               

     
  

  
 
  

  
       

(ie)     
  

   
 
   

  
 
  

   
 
   

  
       

Diff w. r. to s, then  

 
  

  
  

   

     
     

   

     
        

   
 

   
 
  

  
      

 

   
 
  

  
         

   
 

   
 

  

   
 
   

  
     

 

   
 
  

   
 
   

  
        

    
   

   
       

   

   
           

We know that,          

  
   

   
  

        
   

   
  

       

     
   

   
  

   
   

   
  

                  

Since                

    
   

   
  

   
   

   
  

  ....(1) 

We know that, if    is the curvature of projection curve, then  

  
   

   

   
  

   
   

   
  

  ....(2) 

Sub (2) in (1)  

     
       

        
   

    
 

     
          

    is a constant. 

Since k is constant. 

  Radius is constant. 

  Helix is the circular cylinder. 

  Helix is a circular helix.  

 

5.4 Check your progress 
1. Define cylinderical helix 

2. Define circular helix 

3.Define axis of helix 

4. Define spherical curvature 

5.5 Summary 
The axis is the space curve which lies on a cylinder and cuts a generator at 

a constant angle                   

 

A characteristic property of a helix is that a ratio of a curvature to the 

torsion is constant. 
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A helix described on the surface of the cylindrical helix is called a circular 

helix.  

 

A helix of a constant curvature is neccessarily a circular helix. 

5.6 Keywords 
Axis: It is a space curve which lies on a cylinder and cuts a generator at a 

constant angle   with a fixed line is known as the generator (or) axis. 

Spherical helix: 

If a curve on a sphere is a helix, then the curve is a spherical helix. 

Circular helix: A helix described on the surface of the cylindrical helix is 

called a circular helix.  

5.7 Self Assessment Questions and Exercises 

1. Prove that the curve r=(au, b  , c  ) is a helix if and only if 3ac=± 2  . 

2. Show that if the curve r=r(s) is a helix, then find the curvature and 

torsion of the curve   =ρt+     where ρ, t, n and s refer to the curve 

r=r(s). 

3. If the involutes of a twisted curve are pane curves, then show that the 

curve is a helix. 

4. Show that a necessary and sufficient condition that a curve be a helix is 

that 

[        ,    ]=-    

  
 
 

 
)=0. 

5. Show that the locus C of the centre of curvature of a circular helix of 

curvature   is a coaxial helix. Show that the locus of a centre of curvature 

of C is the original helix, and prove that the product of the torsion at 

corresponding points of the two helices is equal to   . 

6. Prove that all osculating planes to a circular helix which pass through a 

given point not lying on the helix have their points of contact in a plane. 

Show that the same property holds for any curve for which xdy-ydx=cdz, 

where c is a constant. 

7. Show that the helices on a cone of revolution project on a plane 

perpendicular to the axis of a cone as logarithmic spirals. 

8. Find the coordinate of the cylindrical helix whose intrinsic equation are 

 =τ=
 

 
. 

9. Show that the helix whose intrinsic equation are ρ=              

lies upon a cylinder whose cross-section is a catenary. 

10. Show that the locus of the center of curvature of a curve is an evolute 

only when the curve is plane. 

11. Find the involutes of a helix. 

12. Find the involutes and evolutes of the twisted cubic given by x=u, 

y=  , z=  . 

5.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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UNIT- VI  CURVES ON SURFACES 
Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Curves on surfaces 

6.4 Check your progress 

6.5 Summary 

6.6 Keywords 

6.7 Self Assessment Questions and Exercises 

6.8 Further Readings 

 

6.1 Introduction 
This chapter explains the concept of curves on surfaces. In this chapter we 

consider the entire surface as a collection of parts,each part being given a 

particular parameterisationanthe  adjacent parts are relate by a proper 

parametric transformation. Using these ideas,we shall define the 

representation of a surface and discuss the properties of curves on surfaces. 

 

6.2 Objectives 
After going through this unit, you will be able to: 

 Define a surface of a curve 

 Derive the parametric equation of a surface 

 Define the types of singularities  

 Derive the equation of a normal equation 

6.3 Curves on surfaces 
 

 Surface: 
A surface is defined as the locus of a point whose cartesian co-ordinates 

(x,y,z) are functions of two independent parameter uv say. Thus x=f(u,v), 

y=g(u,v), z=h(u,v) .......(1) are called parametric (or) freedom equation of a 

surface. 

 

The parameter u,v take real values and vary in some region D. The 

representation (1) of the surface is an explicit form. 

 

A surface is defined as the locus of a point whose position vector    can be 

expressed interms of two parameters. Thus an equation of the form 

           .......(2) represent a surface.  

Definition 2.15  

The represent of a surface            and x=f(u,v), y=g(u,v), z=h(u,v) are 

due to Guass and therefore they are named as Guassian form of the 

surface. 

The parameters u and v are called curvilinear co-ordinates (or) surface co-

ordinates of the current point on the surface.  

Monge’s form of the surface: 
If the equation F(x,y,z)=0 to the surface can be represented in the form 

z=f(x,y). Then this representation is called as monge’s form of the surface.  

Theorem 
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a) The parametric equation of the surface are not unique. 

b) The constraints equation of the surface represents more than the 

parametric equations some limes. 

Proof: 

a) Consider the two parametric equations x=u, y=v, z=      

................(1)  

and x=u+v, y=u-v, z=uv .............(2) 

From eqn (1), we get 

        ...........(3) which represents the whole of cartesian 

hyperboloid. 

b) Let x=ucoshv, y=usinhv, z=   ....(4) be the parametric equations of the 

surface where u,v take a part of surface as z 0, since u takes only the real 

values. 

But if we eliminate u and v from eqn (4) we get        , which is the 

constraints equation of the surface and represent the whole of the 

hyperboloid.  

Class of a surface: 
Let the parametric equation of a surface be x=f(u,v), y=g(u,v) and 

z=h(u,v). 

The surface is said to be of class r if the function f,g,h are single valued 

and continuous and also possess the partial derivatives of r    order. 

Note: 
If the partial differentiation with respect to the parameters u and v are 

denoted by the use suffixes 1 and 2 respectively. Then    
  

  
,    

  

  
, 

    
   

   ,     
   

    
    ,     

   

    

 

Regular (or) ordinary point and singularities on a surface: 

Let the position vector    of the point p on a surface be given by r=(x,y,z) 

(ie) r=                      

Then     
  

  
 
  

  
 
  

  
 ,     

  

  
 
  

  
 
  

  
  

The point p is called regular point (or) ordinary point if       0 ....(1) 

(ie) if rank of matrix is 2 

 

  

  

  

  

  

  
  

  

  

  

  

  

  .........(2) 

(ie) atleast one of the second order determinant does not vanish. 

But if      =0 at a point p we call the point p as a singularity of the 

surface. There are two types: 

Essential singularities: 

There are inherent singularities. (ie) These singularities are due to the 

nature [(or) geometrical features] of the surface and these are independent 

of the choice of parametric representation.  

Example: 
The vertex of the cone is essential singularity. 

Artificial singularities:  
These singularities aries from the choice of particular parametric 

representation. 

Example: 
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The pole ((or) origin) in the plane reffered to polar co-ordinates in an 

artificial singularities. 

Let    be the position vector of a point in a plane then reffered to polar co-

ordinates (r,  ), we have 

r=                 then                  

                    

       
   
         
            

  

                         =uk 

                         =0 when u=0 

(2) is not satisfied when u=0. 

Hence the pole in the plane is artificial singularities.  

Definition 2.17 

 A representation R of a surface s of class r in E   is a set of points 

in E   covered parts     , each part    being given by parametric equation 

of class r. Each point lying in the overlap of two points       is such that 

the change of parameters from those of one part to those of other part is 

proper and class of r.  

R-equivalent: 

Two representation R,    are said to be r-equivalent if the composite 

family of parts (      ) satisfies the condition that at each point p lying in 

the overlap of any two points, the change of parameters from those of one 

part to those os another is proper and class r. 

Definition 2.18  

A surface s of class r in    is an r-equivalent class of representation.  

Transformation of parameters: 
The set of parameters u,v expressing the co-ordinates of a point on a 

surface can be transformed to another set of parameter transformation of 

the form 

U=      , V=       

It is only for those transformed which transform regular points into regular 

points.  

We know that 

The condition for regular point in parameters u,v is       0 

Now,  

    
  

  
 

    
  

  
 
  

  
 

  

  
 
  

  
 

    
  

  
 
  

  
 

  

  
 
  

  
 

    
  

  
 
  

  
 

  

  
 
  

  
 

  

        
  

  
 
  

  
 

  

  
 
  

  
   

  

  
 
  

  
 

  

  
 
  

  
  

   
  

  
 
  

  
 

  

  
 
  

  
   

  

  
 
  

  
 

  

  
 
  

  
   

  

  
 
  

  
 

  

  
 
  

  
  

   
  

  
 
  

  
 

  

  
 
  

  
  

   
  

  
 

  

  
  

  

  
 
  

  
   

  

  
 

  

  
  

  

  
 
  

  
  



 

61 

 

Self-Instructional Material 

 

 
Curves On Surfaces 

 

 

NOTES 

  
  

  
 

  

  
 
  

  
 
  

  
 

  

  
 
  

  
  

        
  

  
 

  

  
 

      

      
           

 If       0 then the jacobian  
  

  
 

      

      
 0 ...(3) in some domain D. 

The transformation (1) under the condition (3) is called proper 

transformation. 

Curves on a surface  
Curvilinear equation of the curves on the surface: 

We know that, the curve is the locus of the point whose position vector    
can be expressed as a function of a single parameter. 

Let us consider a surface r=r(u,v) defined on a domain D and if u and v are 

functions at single parameter ’t’ then the position vector r becomes 

function of single parameter t and hence it is locus is a curve lying on a 

surface r=r(u,v). 

Let u=u(t), v=v(t) then r=r(u(t), v(t)) is a curve lying on a surface 

r=r(u,v)in D. The equation u=u(t) and v=v(t) are called the curvilinear of 

the curve on the surface. 

Parametric curves: 
Let r=r(u,v) be the equation of the surface defined on a domain D. 

Now by keeping u=constant (or) v=constant, we get the curves of special 

importance and are called the parametric curves. 

Thus if v=c(say) then as u varies then the point r=r(u,c) describe a 

parametric curves called u-curve. 

For u-curve, u is a parameter and determine a sense along the curve. The 

tangent to the curve in the sense of u increasing is along the vector   .  

Similarly, the tangent to v-curve in the sense v increasing is along the 

vector   . 

We have 2 system of parametric curves viz. u-curve and v-curve and since 

we know that       0 

The parametric curve of different systems can’t touch each other. 

If      =0 at a point p, then 2 parametric curves through the point p are 

orthogonal. 

If this condition is satisfied at every point. 

(ie) For all values of u and v in the domain D, the two system of parametric 

curves are orthogonal. 

Tangent plane: 
Let the equation of the curve be u=u(t), v=v(t) then the tangent is parallel 

to the vector    , where  

    
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

                          =  
  

  
   

  

  
 

             

But    and    are non-zero and independent vectors. 

 

The tangent to the curve through a point p on the surface lie in the plane. 

This plane is called the tangent plane at p. 

Tangent line to the surface: 
Tangent to the any curve drawn on a surface is called a tangent line to the 

surface.  

Theorem 2.19 
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The equation of a tangent plane at p on a surface with position vector 

r=r(u,v) is either R=             (or) (R-r).(      =0 where a and b 

are parameter. 

Proof: 

Let           be the position vector of a point p on the surface. 

The tangent plane at p passes through r and contains the vector    and   . 

So if R is the position vector of any point on the tangent plane at p, then 

         and     are coplanar. 

Hence we have R=             where a and b are arbitrary constant. 

Also,       is perpendicular to the tangent plane at p. 

Hence       is perpendicular to R-r lying in the tangent plane. 

(R-r).(      =0 is another form of the equation of the tangent plane at p.  

Definition 2.20  

The normal to the surface at p is a line through p and perpendicular to the 

tangent plane at p. 

 

Since   and    lie in the tangent plane at p and passes through    the 

normal is perpendicular to both    and    and it is parallel to      . The 

normal at p is fixed by the following convention.  

If N denotes the unit normal vector at p, then   ,    and N should form 

convention, a right handed system using this convention, we get 

N=
       

         
=

       

 
 where H=          

Since         0, we have H=          0 

           .  

Theorem 2.21  

The equation of the normal N at a point p on the surface r=r(u,v) is 

                . 

Proof: 
Let R be the position vector of any point on the normal to the surface at p 

whose position vector is           . 

Since         gives the direction of the normal and         lies along the 

normal         and       are parallel. 

We have R-r=a(        ) where a is a parameter. 

Hence                  is the equation of the normal at p.  

Theorem 2.22  

The proper parametric transformation either leaves every normal 

unchanged or reverses the direction of the normal. 

Proof: 

Let            ..........(1) be the given surface and let the parametric 

transformation be           and           ......(2) 

We know that,  
  

  
 

  

   
 
   

  
 

  

   
 
   

  
 ...(3) 

  

  
 

  

   
 
   

  
 

  

   
 
   

  
 ....(4) 

Now, 
  

  
 

  

  
  

   

  
 
   

  
 

   

  
 
   

  
   

  

   
 

  

   
  

    
        

      
     .....(5), where HN and      have usual meaning in 

the two systems of parameter u,v and       respectively. 

Since the parametric transform is proper, we have, 
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 0 

We know that, H and    are always positive. Now N and    are of same 

sign if     and are of opposite sign    . 

Since J is continuous function of u,v of u,v in the whole domain D and J 

does not vanish in D. 

J retains the same sign. 

Hence N and    have the same sign.  

1. Obtain the surface equation of sphere and find the singularities, 

parametric curves, tangent plane at a point and the surface normal. 

Solution:  
i) A sphere is the surface of revolution of a semicircle lying in xoz plane 

about the z-axis. 

The curve meets the revolution at 2 points if p is any point on the circle 

lying in the xoz-plane then its equation can be written as x=asinu, y=0. 

z=acosu where u is the angle made by op with the z-axis. 

Here u is called co-lattitude of the point p. 

After rotation through an angle v about z-axis. 

Let PM be the perpendicular on the xoy-plane. 

Then XOM is called longitude of the point p and it is denoted as v. 

Hence the position vector p on the sphere is 

x=OMcosv; y=OM sinv;  z=acosu 

=OPcos(90-u)cosv;=OP sinusinv; z=acosu 

x=asinucosv;  y=asinusinv 

The surface equation of the sphere is r=(asinucosv,asinusinv,acosu) where 

u and v are parameters,      ,        

ii) Singularities: 

We know that, r=(asinucosv,asinusinv,acosu) 

  =(acosucosv,acosusinv,-asinu) 

  =(-asinusinv,asinucosv,0) 

Hence the matrix 

M= 
                        
                    

  At u=0 and u=  all the 

determinant minors of M are zero. 

The rank of the matrix is 0. 

Here u=0 and u=  are singularity point. 

Since these singularities are due to choices of parameter. They are artificial 

singularities. 

By using       the result is same. 

iii) Parametric curves: 

First let us find the parametric curves of the system u=constant. When the 

co-latitude u is constant, acosu is constant. 

Let it be A. 

Z=a is a plane parallel to the XOY-plane. 

If p is the point of intersection of this plane and sphere, where u is the 

constant then the locus of p is a small circle. 

Hence the parametric curves of the system u=constant is a system of 

parallel small circles which are called parallels. 

When the longitude v=constant the plane ZOM is fixed and the point p 

where v is the constant is the intersection of the sphere and the plane 

passing through the centrew of sphere. 

Hence the locus of p is a great circle. 
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Thus the parametric curve of the system v=constant is a system of great 

circle which are called merdians. 

From subdivision (ii)      =0. 

Hence the parametric curves are orthogonal.  

iv) Tangent plane: 

     = 
   
                        
                    

   

                                                    
                  

                                         

                                            
 The equation of the tangent plane is                      (R-r).       =0 

X-x, Y-y, Z-z).(sinucosv, sinusinv, cosv)=0 

                                            =0 

Now, H=               

N=
     

 
=(sinucosv, sinusinv, cosv) 

=
 

 
  , where    is the position vector of a point on the surface. 

The surface normal is the outward drawn normal. 

2. Obtain the surface equation of a cone with semi-vertical angle   and 

find the singularities, the parametric curves, tangent plane at a point 

and a surface normal.  

Solution: 
Taking the axis of the cone as the z-axis. 

Let p(x,y,z) be any point on the cone. 

Draw on PN and PM perpendicular to the axis of the cone and XOY plane. 

Let NP=u and p be the angle of rotation of the plane. 

XOM=v 

Hence x=ucosv, y=usinv, z=ucot  

The parametric representation of the point on the surface of the cone is 

                       

                     

                     

Singularities: 

Here          
   
            
            

   

                                                   

                                     

        =0 when u=0 

The vertex of the cone is the only singularity. It is an essential singularity. 

Parametric curves: 
When u=constant the distance of p from z is also constant. p describe a 

circle. 

Hence when u=constant the system of parametric curves is a system of 

parallel circles with centre on the z-axis. 

When v=constant the plane of rotation through the z-axis makes the 

constant angle with the x-axis so the parametric curves are the intersection 

of this plane with the cone along a z-axis. 
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Hence when v=constant the parametric curves are the generates of the cone 

through the origin. 

When      =0 the parametric curves are orthogonal. 

Tangent plane: 

The equation of the tangent plane is (R-r).(     )=0 

(X-x, Y-y, Z-z).                         =0 

(X-x)                                     =0, which is the 

equation of the tangent plane. 

Surface normal: 

N=
     

       
 

                                      
 

                           

              

            

            

                 

Surface of revolution: 
A surface generated by the rotation of a plane curve about an axis in its 

plane is called surface of revolution.  

Theorem 2.23 

 The position vector of any point on a surface of revolution generated by 

the curve (g(u),0,f(u)) in the XOZ plane is   =(g(u)cosv,g(u)sinv,f(u)) where 

v is the angle of rotation about the axis. 

Proof: 
Take the z-axis as the axis of rotation. 

Let (g(u),0,f(u)) be the parametric representation of the generation curve in 

the XOZ-plane. 

Let A be any point on the curve. Then its x-coordinate g(u) gives the 

distance of A from the z-axis. 

When the curve revolves about z-axis. A traces out a circle with radius 

g(u).  

When the plane thro’ the z-axis has rotated through an angle v. Let p be the 

position of the point corresponding to A on the curve after rotation. 

Draw PM.PN perpendicular to XOY and XOZ planes. 

Then AN=PN=g(u) and OM=PN. If (x,y,z) are the coordinate of p. Then 

we have, 

   x=OMcosv=PNcosv=g(u)cosv 

   y=OMsinv=PNsinv=g(u)sinv 

   z=PM=f(u) 

Hence the position vector of a point p on the surface is 

                            

Where the domain of (u,v) is        with suitable range for u which 

depends on the surface. 

ii) Parametric curves: 
Let p be any point on the surface wit u=constant. 

  g(u) is also constant. 

The locus of p is a circle with radius g(u) for a complete rotation as v axis 

from 0 to   . 
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The parametric curves u=constant are circles parallel to XOY plane which 

are called parallel. 

Let v=constant. 

Since v gives the angle of the plane of rotation in this position, the 

parametric curves are the curves of intersection of this plane of rotation 

with the surface. 

These curves are called Meridians. 

iii) Also                       

                    

     =0 

Hence the parametric curves are orthogonal. 

 

iv) Normal: 

                                  

and                     

Hence N=
     

 
 

N=
                    

        
  

Definition 2.24 

 The anchor ring is a surface generated by rotating a circle of radius about 

a line in its plane at a distance b a from its centre.  

 Note: 
This does not meet the axis of rotation where as in the case of sphere, the 

curve is a semi-circle meeting the axis of rotation at two point. 

Theorem 2.25  

The position vector of a point on the anchor ring is        
                                where (b,0,0) is the centre of the 

circle and z-axis is the axis of rotation.  

Proof: 
Take the axis of revolution as the z-axis and the genrating circle in the 

XOZ plane with c(b,0,0) on the x-axis. 

Let CA makes an angle u with x-axis. The coordinate of A is b+a cosu and 

the z-coordinate of A is asinu. 

A has coordinate (b+acosu,0,asinu) 

Let p(x,y,z) be the position of the point A after the generating circle has 

revolved through an angle v. since the points. 

A describe the circle about the z-axis, the distance of p from the z-axis is 

the radius of the circle given by (b+acosu). 

Since it has been revolved through an angle v, its x and y coordinates are 

(b+acosu)cosv,(b+acosu)sinv. 

For the points: A and P its coordinates asinu is always constant. 

Hence the position vector of the point p on the anchor ring is 

  =((b+acosu)cosv,(b+acosu)sinv,asinu) where        and     
   when u=constant. 

CA is fixed and revolves about the z-axis. 

Hence it is a circle on the anchor ring and these curves are parallel. where 

v=constant, the rotating plane is fixed. 

Hence the parametric curve for        is the intersection of the cross 

section of this plane and the anchor ring. 

It is generating the circle. Thus the meridians are circle. 
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                                     , since        =0 

The parametric curves are orthogonal 

       =-(b+acosu)(-acosucosv, -acosusinv, asinu) 

Since     the above vector is negative for the range of values of u and v. 

The normal is directed inside the anchor ring. 

Since           is always positive.  

Great circle: 
When a plane cuts the sphere we get the radius of sphere = radius of circle. 

6.4 Check your progress 

 Define surface 

 Define class of R 

 Define monge’s form 

 Define tangent surface 

 Define surface of revolution 

6.5 Summary 
A surface is defined as the locus of a point whose position vector    can be 

expressed interms of two parameters. Thus an equation of the form 

           .......(2) represent a surface.  

 

Tangent to the any curve drawn on a surface is called a tangent line to the 

surface.  

 

If the equation F(x,y,z)=0 to the surface can be represented in the form 

z=f(x,y). Then this representation is called as monge’s form of the surface.  

6.6 Keywords 
Surface: A surface is defined as the locus of a point whose position vector 

   can be expressed interms of two parameters. Thus an equation of the 

form            .......(2) represent a surface.  

 

Class of R: A representation R of a surface s of class r in E   is a set of 

points in E   covered parts     , each part    being given by parametric 

equation of class r. Each point lying in the overlap of two points       is 

such that the change of parameters from those of one part to those of other 

part is proper and class of r.  

Tangent line to the surface: 
Tangent to the any curve drawn on a surface is called a tangent line to the 

surface.  

Monge’s form of the surface:  
If the equation F(x,y,z)=0 to the surface can be represented in the form 

z=f(x,y). Then this representation is called as monge’s form of the surface.  

 

Surface of revolution: 
A surface generated by the rotation of a plane curve about an axis in its 

plane is called surface of revolution 

6.7 Self Assessment Questions and Exercises 

1. The following surface are given in the parametric form 

i)Ellipsoid (a sinu cosv, b sinu sinv, c cosu) 

ii)Elliptic paraboloid (au cosv, bu sinv,   ) 

iii)Cone (a sinhu sinhv, b sinhu coshv, c sinhu) 
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iv)Cylinder (u cosv, u sinv, u) 

v)Plane (u+v, u-v, u). 

Obtain in each case the representation of the surface in the form 

f(x,y,z)=0. 

2. Discuss the nature of the points on the following surface. 

i)r=(u,v,0) 

ii)r=(u cosv, u sinv, 0) 

iii)r=(u, v,          ) 

3. Show that on the surface r=(a(u+v), b(u-v), uv), the parametric curves 

are straight lines. 

4. Find the parametric curves u=constant and v=constant on the surface of 

revolution r=(u cosv, u sinv, f(u)) 

5. Show that the parametric curves are orthogonal on the surface r=(u 

cosv, u sinv, alog [u+ (      
 

 ]) 

6. Establish the formule 

i)[N,      ]=H 

ii)      
 

 
          

iii)      
 

 
          

6.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Curves on surfaces 

7.4 Check your progress 

7.5 Summary 

7.6 Keywords 

7.7 Self Assessment Questions and Exercises 

7.8 Further Readings 

 

7.1 Introduction 
This chapter deals with screw motion of a surface and representation of 

helicoids in the surface. Also first fundamental form of a surface, direction 

ratios and direction cosines are derived. Parametric directions and angle 

between parametric directions are discussed.  

7.2 Objectives 
After  going through this unit, you will be able to: 

 Define screw motion 

 Derive the representation of generalized helicoid 

 Define direction ratios and direction coefficients 

 Derive first fundamental form of a surface. 

 Solve the problems related to helicoids. 

7.3 Curves on surfaces 
 

Screw motion: 
There are surfaces which are generated not only by rotation alone but by a 

rotation followed by a translation such a motion is called screw motion.  

Right helicoid: 
The surface generated by the screw motion of the x-axis about the z-axis is 

called a right helicoid. 

Representation of a right helicoid: 
This is the helicoid generated by a straight line which meets the axis at 

right angles. If we take the axis as the generating line it rotates about the z-

axis and moves upwards. 

Let OP be the translated position of x-axis after rotating through an angle 

v. 

Let (x,y,z) be the coordinates of p. Draw PM perpendicular to XOY plane 

and let OM=u. Then x=ucosv, y=usinv and z=PM. 

By our assumption, the distance PM=z translated by the x-axis is 

proportional to the angle v of rotation. 

(ie) Let 
 

 
=a (constant) 

The position vector of any point on the right helicoid is 

                    

Now,                   

                     

       =0 
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The parametric curves are orthogonal. when u=constant then the equation 

of the helicoid becomes 

                   , which are circular helices on the surface.  

The parametric curves v=constant are the generators at the constant 

distance from the XOY plane. 

Now        =(asinv, -acosv,u) and H=       

The unit normal N=
       

         
 

N=
                

      
 

Pitch of helicoid: 

If v=  , then     is the distance translated after one complete rotation. 

This is called the pitch of helicoid. 

Representation of general helicoid: 
The general helicoid is with z-axis as the axis generated by the curve of 

intersection of the surface with any plane containing z-axis. 

Since the section planes of the surfaces by such planes are congruent 

curves. We can take the plane to be XOZ plane and generate the helicoid. 

Thus the equation of the generating curves in the XOZ plane can be taken 

as x=g(u), y=0, z=f(u).  

Let the curve in the XOZ plane rotate about the z-axis through an angle v 

and let it have the translation proportional to the angle v of rotation which 

we can take it as av.  

Since any point on the curve traces a circle with centre on the z-axis and 

radius g(u) and z-coordinate is translated through av. The position vector 

of any point    on the general helicoid is 

  =(g(u)cosv, g(u)sinv, f(u)+av) 

                                

                           

Also                 

Hence when the parametric curves are orthogonal then either      =0 (or) 

a=0 

If      =0 then f(u)=constant. 

The surface if a right helicoid. 

If a=0 we don’t have screw motion and we have only the rotation about z-

axis. 

Hence the helicoid is a surface of revolution. 

When v=constant, the parametric curves are the various position of the 

generating curve on the plane rotation. 

When u=constant (It follows from the equation of the helicoid) the 

parametric curves are helices on the surface. 

         

Metric 

The first fundamental form: 

Let            be the given surface. Let the parameters u,v be the function 

of a single parameter ’t’. 

Then                 .Hence it represent a curve on the surface with t as 

parameter.  

The arc length interms of parameter t is given by 

 
  

  
   

   

  
 
   

  
  

   

  
   ...(1) 
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But 
   

  
 

  

  
 
  

  
 

  

  
 
  

  
  =   

  

  
    

  

  
 ....(2)  

Sub (2) in(1) 

 
  

  
       

  

  
    

  

  
    

=        
  

  
          

  

  
 
  

  
        

  

  
   ....(3) 

Let           
                         

  ....(4) 

Sub (4) in (3) 

                      
This is called the first fundamental form (or) metric on the surface. 

Note:1 
Let P and Q be the neighbouring points on the surface with the position 

vector r and r+dx corresponding to the parameter u,v and u+du, v+dv.  

If ds denote the length of the elementary arc joining (u,v) and (u+du, v+dv) 

lying on the surface, then                       

(ie)  
  

  
     

  

  
     

  

  

  

  
   

  

  
   

  

  
    

  

  
     

  

  

  

  
   

  

  
   

       
  

  
     

  

  

  

  
   

  

  
      

Integrating, we get 

S=  
 

  
   

  

  
     

  

  

  

  
   

  

  
      

Note:2 

Where v=constant, the metric it reduces to         . Where 

u=constant, the metric it reduces to         . 

Theorem 1.1 The first fundamental form of a surface is a positive definite 

quadratic form in du,dv. 

Proof: 

The quadratic form Q=     
                

  for the real values of 

      is called a positive definite if q 0 for every (       (0,0). 

The condition for q to be positive definite are        ,       and 

          
  0 ....(1) 

Now we shall verify that,  

I=                  ....(2) satisfies the above condition for a 

positive definite quadratic form. 

Since we are concered only with ordinary points       0 and    
       

    

          
  

                                                      
                                        

    
        

  

                            =       

Since      always we get         

Also, from the definition we have E=       
   , G=        

    

Hence the eqn (2) satisfies the condition eqn(1) for the positive definite 

quadratic form. 

We have                     for all values of                

Theorem 1.2 The metric is invarient under the parametric transformation. 
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Proof: 

Let the parametric representation be                     in 

parametric representation      . 
Let the equation of the surface be             

   
  

   
 

       
  

  
 
  

   
 

  

  
 
  

   
 ....(1) 

       
  

   
 

                             =
  

  
 
  

   
 

  

  
 
  

   
 ....(2) 

(1)         
  

   
    

  

   
 ....(3)  

(1)          
  

   
    

  

   
 ....(4) 

Also du=
  

   
    

  

   
    .....(5) 

dv=
  

   
    

  

   
    .....(6) 

If            are the first fundamental coefficient in the new parametric 

system then We have, 

                         

    
                        

      

=                 ....(7) 

Using the eqn (3) and (4) in (7) 

(7)      
  

   
    

  

   
         

  

   
    

  

   
      =    

  

   
    

  

   
        

  

   
     

  

   
       ....(8) 

Sub (5) and (6) in eqn (8) 

(8)                 
                  

    =     
             

                                           
The metric is invariant under parametric transformation.  

Theorem 1.3 If   is the angle between the parametric curves at the point 

of intersection then tan  
 

 
  

Proof: 
Let P be the point of intersection of the two parametric curves with the 

position vector ’r’. 

Then we have, 

   
  

  
;    

  

  
 are along the tangent to the parametric curves, u=constant 

and v=constant 

If   is the angle between the parametric curves then we have       
              and  

                       

Since F=      and H=       , E=   
  and G=  

 , we have 

     
 

   
 and      

 

   
 

     
    

    
  = 

 

   
 

   

 
 

     
 

 
  

Theorem 1.4 Prove that ds represent the elementary area PQRS on the 

surface ds=Hdudv. 
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Proof: 

Let the parametric co-ordinates of P,Q,R and S be (u,v), (u, u+v),(u+ u, 

v+ v),(u,v+ v) respectively. 

When  u,  v are small, the small position PQRS is a parallelogram. 

Now PQ = OQ-OP 

  =                    

Using approximate taylor’s expansion, we have 

PQ =         
  

  
           =      

Similarly, PS=     

By replacing       by du and dv, the vector area of the parallelogram is 

          

ds =              
  =              

ds =Hdudv 

This proves that Hdudv gives the elementary area ds on a surface.  

1. Find E,F,G and H for the paraboloid x=u, y=v, z=      

Solution: 

Any point on the paraboloid has position vector r=(u,v,     ) 

Hence   =(1,0,2u) and   =(0,1,-2v) 

E=       =1+4   

F=      =-4uv 

G=      =      

Also,        =(-2u,-2v,1) 

Hence H=                  , which is also equal to        

2. Calculate the first fundamental co-efficient and the area of the 

anchor ring corresponding to the domain 0      and 0     . 

Solution: 
The position vector of any point on the anchor ring is 

                                       
                                  

                                     
Now, 

E=   
       =                              

E =    ....(1) 

Also, F=     =0 ...(2) 

G=  
        =                                

G=           ....(3) 

(1), (2), (3) give the first fundamental co-efficient. 

To find: Area 

Let us find H 

We know that,          =             

 H =            ...(4) 

Also, we know that, 

The elementary area of the surface is Hdudv. 

Entire surface area is given by 

S =  
  

 
  

  

 
      

 =  
  

 
  

  

 
               

S =2    
  

 
            

S =4     
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Direction co-efficient on a surface: 

 Direction on the surface: 
The direction of any tangent line to the surface at a point ’p’ is called a 

direction on the surface at a point p. 

Note: 

The components of a tangential vector at a point p is of the form a=    
    if a=(   ) is the tangential vector at a point p on a surface then its 

magnitude is 

                  
 

  we have a=        

Hence          

          =                    

          =     
      

           

We know that E=  
 , F=    , G=  

  

We get                  

                   ....(1) 

Direction co-efficient: 
Let ’b’ be the unit vector along the tangential vector ’a’ at a point ’p’. Let 

the components of ’b’ be (l,m). 

Therefore b=        

The component (l,m) of the unit vector be at the point ’p’ along the 

tangential vector ’a’ is called the direction coefficient of ’a’. 

Since b=        and    =1 then by the definition(1), we have,  

               ...(2) 

Theorem 1.5 If (l,m) and (       are the direction coefficient of two 

directions at a point p on the surface and ’ ’ is the angle between the two 

directions at a point p then we have, 

i)                           
ii)                 

Proof: 

If (l,m) and (       are the direction coefficient of two directions at a same 

point p on the surface r=r(u,v) then the corresponding unit vectors along 

these directions at a point p are 

a=        

             ....(1) 

Let   be the angle between these two directions. 

Measuring   from the direction    to    through the smaller angle, we have 

                           

=      
                      

  

=                      ....(2) 

Also,           and           ....(3) 

Sub (3) in (2), we have 

                          
Now                           =                       

                      

            
                                =                  

                                =            

                  where H=      , when the two directions are 

orthogonal. 
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Note: 

     
    

    
 

     
          

                    
 

Direction ratio: 
If (l,m) are the direction coefficient of a directions at a point p on the 

surface then the scalars (   ) which are proportional to (l,m) are called 

direction ratios of that direction.  

 

Result:1 

Find the direction coefficient from the direction ratios (   ). 

Solution: 

Given the direction ratios        

Since (   ) are proportional to (l,m) 

Let 
 

 
 

 

 
  (say) 

           ...(1) 

We know that 

The direction coefficient satisfy the identity             =1 ...(2) 

Using (1) in (2), we have 

                        =1 

                  =1 

k                =1 

   
 

            
 

                       K = 
 

             
 

       
     

             
 

Result:2 
Prove that the direction cosine of parametric direction v=constant and 

u=constant are  
 

  
    and    

 

  
  respectively. 

Solution: 
The vector r at the point p is the tangential vector to the parametric curve 

v=constant passing through the point p. 

(ie)                      

We know that 

(l,m) = 
     

             
 

(l,m) = 
     

                  
    =

      

  
 

   = 
 

  
 

 

  
  

(l,m)= 
 

  
    

Similarly, u=constant 

             

         

(l,m) =
     

                    
  =
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(l,m)=   
 

  
  

Result:3 
Find the angle between two tangential directions at a point on the surface 

interms of direction ratio. 

Solution: 

Let       and         be the two direction ratios of the directions on the 

surface. 

If (l,m) and         be the direction cosines of the corresponding direction, 

then we have, 

(l,m) =
     

             
 .....(1) 

(l’,m’) =
       

                 
 

We know that,                           
and                 .....(2) 

Sub (1) in (2), we get 

     
                    

                              
 

     
          

                              
 

When   
 

 
        

                        
The two different at p cuts orthogonally iff the direction cosines of 

direction satisfy the condition.                        

Result:4 
If l and m are direction cosines of any direction at a point p on the surface. 

Find the angle between this direction and parametric directions. 

Solution: 
The direction cosines of parametric direction corresponding to the curve 

v=constant are  
 

  
    

We know that,                           
and                  

Here    
 

  
      

If    is the angle between l,m and the direction v=constant corresponding 

to  
 

  
    then we have, 

         
 

  
     

 

  
         

      
 

  
     

 

  
    

 

  
        

          
 

  
   

        
 

  
   

 

  
    

Similarly, if    is the angle between l,m and the direction (0, 
 

  
) 

corresponding to u=constant. 
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                     =  
 

  
     

 

  
 

      
 

  
        

          
 

  
    

                            =
 

  
    

      
    

  
  

 

Theorem 1.6 If         of the direction coefficient of the line which makes 

an angle 
 

 
 with the line whose direction coefficient are (l,m) then    

 
 

 
        and    

 

 
        

Proof: 

If (l,m) and         of the direction coefficient of two directions at a point 

p on the surface then we have, 

                          ....(1) 

                ....(2) 

when   
 

 
 

Eqn (1)                       
                      

The above equation is satisfied for                          

...(3) for some scalar  . 

To find:   

when   
 

 
 

1=H          ...(4) 

Sub (3) in (4) 

H                       =1 

H                     =1 

H                 =1 

                  =1 

                  =1 

  
 

               
 

Since l,m are the direction coefficient of two directions at a point p on the 

surface then we have, 

            =1,   
 

 
 

Sub in (3),    
  

 
       ,    

 

 
         

 1. Prove that if (l,m) are the direction coefficient of the tangential 

direction to the curve u=u(t), v=v(t) at a point p on the surface r=r(u,v) 

then   
  

  
 and m=

  

  
 

Solution: 

The unit tangent vector at any point p on the surface is t =
   

  
 

(ie)  t =
   

  
 
  

  
 

  

  
 
  

  
  =     
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Since t=
  

  
 represents the unit tangent vector at a point p along the 

tangential direction to the curve, its coordinate its components are (
  

  
 
  

  
) 

Then (
  

  
 
  

  
) give the direction coefficient of the tangent at a point p on 

the surface. 

(ie) l =
  

  
                

  

  
 

2. Find the parametric directions and the angel between the 

parametric curves. 

Solution: 
When the parametric curve v=constant the parametric direction has the 

direction ratio (du,0) by v. 

Its direction cosines are (l,m) =
      

     
 

     

  
 

Similarly, When the parametric curve u=constant , the direction ratios of 

the curve are (0,dv) 

Its direction cosines are         
      

     
 

     

  
 

Let   be the angle between the parametric curves. Then  

     
 

   
 and sin  

 

   
 

When   
 

 
        

So the condition of orthogonality of parametric curves is F=0. 

3. For the cone with vertex at the origin and semi-vertical angle  , 

show that the tangent plane is the same at all point on the generating 

line. 

 

Solution:  

The position vector of any point on the cone with semi-vertical angle   and 

the axis of the cone as z-axis is 

                        

                     

                     

E=               F=     =0,  G=         

                  , H=        

Now,                                   

Hence N=
       

 
                            

The surface normal N is independent. 

4. For a right helicoid given by (ucosv,usinv,av) determine           

at a point on the surface and the direction of the parametric curves. 

Find the direction making an angle 
 

 
 at a point on the surface with the 

parametric curve v-constant. 

Solution: 
Any point on the right helicoid is  

                    

                  

                     

E=         F=     =0,  G=            

               

                      H=        

Now,                          
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Hence N=
     

       
 

     

 
  =     

     

      
 
      

      
 

 

      
  

Let the component of N be           . Then the direction cosines of the 

parametric curves are  
 

  
   =(1,0) and    

 

  
     

 

      
  

If   is an angle made by N with the z-axis, then      
 

      
 

If         is the direction coefficient orthogonal to parametric direction 

v=constant, then we have    
  

 
       ,    

 

 
        

 

Sub for l,m,E,F,G and H in the above step we have,         
 

      
 , 

which is the direction of parametric system v=constant. 

 

7.4 Check your progress 

 Define screw motion 

 Define metric 

 Define direction ratio 

 Define direction coefficient 

 Define parametric direction 

7.5 Summary 

 Surfaces which are generated not only by rotation alone but by a 

rotation followed by a translation such a motion is called screw 

motion.  

 

 The surface generated by the screw motion of the x-axis about the 

z-axis is called a right helicoid. 

 If v=  , then     is the distance translated after one complete 

rotation. This is called the pitch of helicoid. 

 

 If (l,m) are the direction coefficient of a directions at a point p on 

the surface then the scalars (   ) which are proportional to (l,m) 

are called direction ratios of that direction.  

 

 The direction coefficient from the direction ratios (   ) was 

derived. 

 

 The angle between two tangential directions at a point on the 

surface interms of direction ratio is derived. 

 

 If l and m are direction cosines of any direction at a point p on the 

surface, then the angle between this direction and parametric 

directions is established. 

 

7.6 Keywords 
 

Screw motion: 
There are surfaces which are generated not only by rotation alone but by a 

rotation followed by a translation such a motion is called screw motion.  

Right helicoid: 
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The surface generated by the screw motion of the x-axis about the z-axis is 

called a right helicoid. 

Pitch of helicoid: 

If v=  , then     is the distance translated after one complete rotation. 

This is called the pitch of helicoid. 

 

7.7 Self Assessment Questions and Exercises 

1.Find        and also the tangent plane at an arbitrary point on the surface 

r=(a cosu, a sinu, v). 

2. Obtain the first fundamental form on the surface of revolution r=(u 

cosv, u sinv,f(u)). 

3. For the surface r=(a sinu cosv, a sinu sinv, a(cosu+log (tan 
 

 
 )). 

Compute the first fundamental coefficient and unit normal at any arbitrary 

point on the surface. 

4. Taking x,y as parameter, calculate the first fundamental coefficients 

and the unit normal to the surface, z=
 

 
(a           ). 

5. Show that the angle between the curve u-v=constant and u=constant on 

the right helicoid r=(u cosv, u sinv, cv) is 
 

 
. 

7.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010).
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UNIT- VIII  FAMILIES OF CURVES 
Structure 

8.1 Introduction 

8.2 Objectives 

8.3 Curves on surfaces 

8.4 Check your progress 

8.5 Summary 

8.6 Keywords 

8.7 Self Assessment Questions and Exercises 

8.8 Further Readings 

 

8.1 Introduction 
So far, we were concerned with a single curve lying on a surface and 

associated tangential direction.This chapter introduces the families of 

curves on a surface and explain some basic properties of such families. 

8.2 Objectives 
After  going through this unit, you will be able to: 

 Define family of curves. 

 Define orthogonal trajectories 

 Derive the properties of family of curves 

 Define isometric correspondence 

8.3 Curves on surfaces 

Definition: 

Let        be a single valued function of u,v possessing continuous 

partial derivative       which do not vanish. 

Then the implicit equation       =c where c is a real parameter gives a 

family of curves on the surface            

Properties: 
i) Through every point (u,v) on the surface there passes one and only 

member of the family. 

ii) Let             where         is any point on the surface. Then 

            is a member of the family passing through        . Hence 

through every point         on the surface, there passes one and only one 

member of the family. 

iii) The direction ratios of the tangent to the curve of the family at (u,v) is 

(       ). 

Theorem 

The curve of the family  (u,v)=constant are the solution of the differential 

equation   du+  dv=0 ......(1)  

and conversely a first order differential equation of the form 

P(u,v)du+Q(u,v)dv=0 .....(2) 

where P and q are differential functions which do not vanish 

simultaneously define a family of curves. 

Proof: 

Since    
  

  
 and    

  

  
, we get from (1), 

  

  
   

  

  
  =0 giving   =0 

Hence we conclude that  (u,v)=c. Thus as the constant c varies, the curves 

of the family are the different solutions of the differential equation. 
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Conversely let us consider the equation (2). Unless the equation is exact, it 

is not in general possible to find a single function  (u,v) such that   =P 

and   =Q. 

However we can find integrating factor  (u,v) such that       and 

     . 

Rewriting the equation (2) in the form          =0, we get      
  dv=0, so that the solution of the equation is  (u,v)=c. 

Further from (2), 
  

  
  

 

 
 so that the direction ratios of the tangent to the 

curves of the family at the point P is (-Q,P). 

Theorem 

For a variable direction at P,  
  

  
  is maximum in a direction orthogonal to 

the curve  (u,v)=constant through P and the angle between (-     ) and 

the orthogonal direction in which   is increasing is 
 

 
. 

Proof: 

Let P(u,v) be any point on the surface. We shall show that   increases 

most rapidly at P in a direction orthogonal to the curve of the family 

passing through P. For this, we prove that 
  

  
 has the greatest value in such 

a direction. 

Let (l,m) be any direction through P on the surface. Let   be the magnitude 

of the vector  =(-     ). Let   be the angle between (l,m) and the vector 

 . 

Let us take a=       , b=           

We shall find     expressing sin  in terms of H and   where        
From the definition      . 

We have                          ....(1) 

and                      so that 
                             ....(2) 

Equating (1) and (2), we obtain 

                            .....(3) 

Since (l,m) are the direction coefficient of any direction through P, we 

have 

l=
  

  
, m=

  

  
 .....(4) 

Using (4) in (3) and simplifying, we get        
  

  
 

Now   and H are always positive and do not depend on (l,m). 

Hence 
  

  
 has maximum value 

 

 
 when sin  has maximum value in which 

case   
 

 
. 

In a similar manner, 
  

  
 has minimum value -

 

 
, when    

 

 
. 

Since H 0 and    , the orthogonal direction for which 
  

  
 0 is such 

that   
 

 
. 

Hence  
  

  
  has maximum in a direction orthogonal to       =constant. 

 

Isometric Correspondence: 

Theorem 
To each direction of the tangent to a curve C at P in S, there corresponds a 

direction of the tangent to    at    in    and vice-versa. 
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Proof: 

Let C be a curve of a class  1 passing through P ang lying on S. Let it be 

parametrically represented bu u=u(t) and v=v(t). If    is the portion 

corresponding to S under the relation (1) in the preceding paragraph, then 

C on S will be mapped onto    on    passing through    with the 

parametric equations 

               ,                 

The direction ratios of the tangent at P to C are         where    
  

  
, 

   
  

  
  

Now the direction ratios of the tangents at    to    are           where 

    
   

  
 

  

  
   

  

  
   

    
   

  
 

  

  
   

  

  
   

Solving the above equation for    and   , we get 

   
 

 
    

  

  
    

  

  
 , 

   
 

 
    

  

  
    

  

  
 , where J 0 

which shows that a given direction to a curve    at    corresponds to a 

definite direction at P to C and vice-versa. 

Definition: 

Two surfaces S and    are said to be isometric or applicable if there exists a 

correspondence     (u,v),     (u,v) between their parameters where 

    and   are single valued and 
      

      
 0 such that the metric of S is 

transformed into metric of   . The correspondence itself is called an 

isometry. 

Example: 
Find the surface of revolution which is isometric with the region of the 

right helicoid. 

Proof: 
Let S be r=(g(u) cosv, g(u) sinv, f(u)) the surface isometric with the right 

helicoid    given by                          

Using the fact that the isometry preserves the metrics, we determine g(u) 

and f(u) and then indicate the region of correspondence. 

   
  

  
                             

   
  

  
                        

Now E=        
       

    , F=     =0, G=         

Hence the metric on S is    
       

               .......(1) 

For the surface   , we have 

                    

                         

Hence           =1,           =0, 

                    

Hence the metric on    is                  .......(2) 

The problem is to find the transformation from S to    such that (1) and (2) 

are identical. Without loss of generality let us take        , v   . 

Then we have            ,        ......(3) 
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Using (3) in (2), we get   
                .....(2) 

(4) is the metric after transformation. Hence (1) and (4) are identical so that 

we have 

          ,   
    

    
  ....(5) 

From the equation (5), we have to obtain f and g eliminating  . 

However, we can guess the solution of (5) as follows.  

Let us take  (u)=a sinh u and g(u)=a cosh u .....(6) 

(6) satisfies         . 

Using (6) in the second equation of (5), we get 

           
              so that   

       . 

Thus          
Integrating and choosing the constant of integration to be zero, we get 

f(u)=au. 

Hence the surface of revolution is generated by x=a cosh u, y=0, z=au 

where the generating curve lies in the XOZ plane and the curve in the XOZ 

plane is a catenary with parameter a and the direction as Z-axis. Such a 

surface of revolution is known as catenoid. 

Intrinsic properties: 

Example: 
A helicoid is generated by the screw motion of a straight line skew to the 

axis. Find the curve coplanar with the axis which generates the same 

helicoid. 

Solution: 
The helicoid is generated by a straight line which does not meet the axis of 

rotation, since the z-axis of rotation and the straight line generating the 

helicoid are skew lines.  

Let a be the shortest distance between them and   be the angle between z-

axis and the skew line. 

We shall find the coordinates of any point P on the generating skew line. 

Let OP  be parallel to CP in the YOZ plane where C is the point (a,0,0) at 

which the skew line meets the x-axis. Hence the coordinates of    are (u 

sin       ) where u=   . Since CP and     are parallel, the coordinates 

of P are    (a, u sin       ) ......(1) 

Let us rotate the axis about the z-axis through angle v and translate it 

through a distance av parallel to the axis. Using the relation between 

coordinates in (1) and after rotation, we get 

X=a cos v- u sin  sinv, Y=a sinv + u sin   cosv 

Since the z-coordinates is subjected to only translation, we obtain 

z=ucos +cv 

Hence the position vector of any point on the helicoid is  

(a cosv-u sin  sinv, a sinv+ u sin  cosv, u cos   +cv)........(2) 

The required plane curve is the section of the helicoid with the XOZ plane. 

Since the equation to the XOZ plane is y=0, we get 

a sinv+u sin   cosv=0 which gives u= 
     

    
 .......(3) 

Substituting the value of u in (2), we get the equation of the generating 

curves as 

r=(a cosv+a tanv sinv, 0, cv-a cot   tanv) 

=(a secv, 0, cv-a cot   tanv) where vis the parameter of the curve. 
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Example: 

The metric on the surface is            . Find the family of curves 

orthogonal to the curve uv=constant and find the metric referred to new 

parameters so that these two families are parametric curves. 

Solution: 

From the given metric, the fundamental coefficients are E=  , F=0 and 

G=   ......(1) 

Using the given family of curves uv=constant, 

 
  

  
  

  

  
=0 so that 

  

  
  

 

 
 

Hence the tangential direction at any point in the curve has the direction 

ratios (-u,v). 

Let (du,dv) be the direction ratios of the orthogonal direction. 

Applying the orthogonality condition by taking     ,  =v,   =du,   =dv 

and substituting for E,F,G from (1), we obtain             =0 giving 

the differential equation of the orthogonal trajectory as vdu-udv=0. 

Integrating this equation, we have 
 

 
    

Hence uv=   and 
 

 
    are the orthogonal curves on the surface with the 

given metric. To find the metric on the surface with respect to these two 

families of curves as parametric curves, let us define the parametric 

transformations as 

          
 

 
,          =uv .......(2) 

Now J=
      

      
 

  

 
 0, the parametric transformation is proper. Since the 

parametric transformation is proper, it transforms the given family of 

curves and the orthogonal family into two families of pareametric curves.  

Using (2), let us express u and v in terms of    and    

            
   

   or         ..........(3) 

   
   

   
   

    
 

  

  
 or    

  

  
 ..........(4) 

Further using the parameters      , let the position vector r be   . Using the 

relations (3) and (4), we have  

     
  

   
 

 

  
  

  
 

  

   
 

  

  
 

  

   
 

     
  

   
     

  

     
  

     
  

   
 

  

  
 
  

   
 

  

  
 
  

   
 

     
  

   
     

 

    
  

 Let us find the metric with respect to the new parametres. Since 

F=     =0, we have,  
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 Hence the metric referred to the new parametric coordinates is     
 

 

   

   
     

 

 
     for which         and 

  

  
    are the parametric 

curves on the surface. 

8.4 Check your progress 

 Define family of curves 

 Define isometric correspondence 

 Derive the surface of revolution which is isometric with the 

region of thr right helicoid. 

8.5 Summary 

 Let        be a single valued function of u,v possessing 

continuous partial derivative       which do not vanish. 

 

 Then the implicit equation       =c where c is a real parameter 

gives a family of curves on the surface            

 

 Through every point (u,v) on the surface there passes one and only 

member of the family. 

 

 Two surfaces S and    are said to be isometric or applicable if there 

exists a correspondence     (u,v),     (u,v) between their 

parameters where     and   are single valued and 
      

      
 0 such 

that the metric of S is transformed into metric of   . The 

correspondence itself is called an isometry. 

 

 The surface of revolution which is isometric with the region of the 

right helicoid. 

 

 A helicoid is generated by the screw motion of a straight line skew 

to the axis. Find the curve coplanar with the axis which generates 

the same helicoid. 

 

8.5 Keywords 

Definition: 

Let        be a single valued function of u,v possessing continuous 

partial derivative       which do not vanish.Then the implicit 

equation       =c where c is a real parameter gives a family of curves 

on the surface            

Definition: 

Two surfaces S and    are said to be isometric or applicable if there 

exists a correspondence     (u,v),     (u,v) between their 
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parameters where     and   are single valued and 
      

      
 0 such that 

the metric of S is transformed into metric of   . The correspondence 

itself is called an isometry. 

8.6 Self Assessment Questions and Exercises 

1. If the parametric curves are orthogonal, show that the differential 
equation of lines on the surface cutting the curves u=constant at a 

constant angle β is 
  

  
    β  

 

 
  

2. Find the orthogonal trajectories of the parametric curves 
u=constant on the surface. R=(u+v, 1-uv, u-v). 

3.  If the curves        +       form an orthogonal system on the 
surface r=(u cosv, u sinv, ϕ(v)), determine ϕ. 

4.  If             is the metric on a surface, find the family of 

curves orthogonal to the curve 
 

 
 = constant and fid the metric 

referred to the new parameter so that these two families are 
parametric curves. 

 

8.7 Further Readings 
 

1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010)
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BLOCK III:GEODESIC PARALLELS 

AND GEODESIC CURVATURES 
 

UNIT IX GEODESICS 
Structure 

9.1 Introduction 

9.2 Objectives 

9.3 Geodesics 

9.4 Check your progress 

9.5 Summary 

9.6 Keywords 

9.7 Self Assessment Questions and Exercises 

9.8 Further Readings 

 

9.1 Introduction 
Defining a geodesic on a surface, we shall obtain canonical geodesic 

equation and its normal property. Also the Christoffel symbol of first and 

second kinds are developed. Some properties of geodesics and existance 

theorem are also  derived. 

9.2 Objectives 
After  going through this unit, you will be able to: 

 Define geodesic  

 Derive the differential equation of geodesic 

 Define stationary point 

 Derive the normal property of geodesic. 

 Understand the existance theorem of geodesics 

9.3 Geodesics 
Geodesic on a surface 

Geodesic: 
Let A and B be two given points on a surfaces. Let these points be joined 

by curves lyping on S. Then any curve possessing stationary length for 

small variation over S is called Geodesic. 

    : 

Let   be an arc and S( ) be the length of the arc   joining A and B on the 

surface then, 

S( ) =   
 

 
       

 

 
                   where          

            

                     
 

          : 

If   is such that variation s( ) is atmost at order    for all some variation 

in   for different      and     . Then      is said to be stationary and   is 

geodesic.  

                                                     
(OR) A necessary and sufficient condition for a curve u = u(t) and 

v = v(t) on a surface r = r(u,v) to be a geodesic is that, 
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           , where   

 

  

  

   
 

  

  
 

 

  
 
  

  
 
  

   
, 

  
 

  

  

   
 

  

  
 

 

  
 
  

  
 
  

   
          

 

     : 

               
This theorem, we have to prove that following lemma. 

        

If g(t) is continuous function for       and if   
 

 
           

            for all admissible function v(t) as defined above, then g(t) = 0. 

              

Suppose   
 

 
           for all admissible function v(t) and g(t)  , then 

there exists a    between 0 and 1 such that         

Take         Since g(t) is continuous on (0,1) and          

There exists a neighborhood (a,b) such that         is (a,b),  where 

          
Now define a function v(t) as follows,  

       
                        
                                        

  

Then V(t) is an admissible function in (0,1) so that (3) can be rewritten as 

  
 

 
             

 

 
             

 

 
             

 

 
           

    
 

 
                               [since by (*)] 

Since                in (a,b) and g(t)    for       from (4), 

we get,  

  
 

 
          , which is a                

  
 

 
         = 0 for all admissible v(t) 

Hence our assumption then there exists    such that         is false.  

Therefore, g(t) = 0 for all t   (0,1) 

Hence proved for lemma. 

                   
To prove: (2) 

Let                 , where                                   

The arc length        
 

 
       

 

 
        

 

 
               

The arc length is         
 

 
                            

Hence the variation in S    is 

             
 

 

                          

                          

                                                 

                          

                
  

  
   

  

  
    

  

   
    

  

   
                     

Using (6) in (5), we get, 

              
 

 
  

  

  
  

  

  
   

  

   
   

  

   
                        

Using integrating by parts in (7) 
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Since    , we have   
  

   
  
    at t=0 and t=1 

  
 

 

  
  

   
      

 

 

 
 

  
 
  

   
            

Similarly ,   
 

 
  

  

   
      

 

 
 

 

  
 
  

   
            

Sub. (8) and (9) in (7) 

              
 

 
  

  

  
  

  

  
  

 

  
 

  

   
   

 

  
 
  

   
     

         
 

 
                           where  

L = 
  

  
 

 

  
 
  

   
 , M = 

  

  
 

 

  
 
  

   
   for the arc to be geodesic on S.  

     should be stationary, it is stationary iff the variation            is 

atmost of order    for all small variations. 

Since     and            is at   . 

Equation (10)    
 

 
                    , for all admissible 

function     class 2 in       such that       at t=0 and t=1 

Since E, F, G are of class 1, and           are of class 2, function L,M are 

continuous function satisfying the condition as that of g(t) lemma. 

Apply lemma to (11), choosing     and g as follows, 

i).                        

Then   
 

 
            

 

 
       which implies L=0 by the lemma. 

ii).                        

Then   
 

 
            

 

 
       which implies M=0 by lemma. 

Hence L=0,M=0 are the differential equations for u(t), v(t) 

Since two equation L=0, M=0 are same for all geodesic on the surface. 

Since two equation don’t involve this two points A, B explicitly. 

Let us rewrite L=0, M=0 interms of T. 

Since         
  

  
 

 

  
 
  

   
  becomes  

L= 
 

   

  

  
 

 

  
 

 

   

  

   
  

 

   

  

  
  

 

   

 

  
 
  

   
            

  

  
 
  

   
   = 

 

   
 
  

  
 

 

  
 
  

   
    

 

       

  

  

  

   
  

Since T    canceling 
 

   
 throughout L=0 becomes, 

 

  
 
  

   
  

  

  
 

 

  

  

  
 
  

   
            

Similarly , we get 

M= 
 

   
 
  

  
 

 

  
 
  

   
   

 

       

  

  
 
  

   

 

  
 
  

   
  

  

  
 

 

  
 
  

  
 
  

   
           

Equation (12), (13) give differential equation of geodesic. 

They can be usually written as 

  
 

  
 
  

   
  

  

  
 

 

  

  

  
 
  

   
           

  
 

  
 
  

   
  

  

  
 

 

  

  

  
 
  

   
           

where t            
 

 
                  

This complete the proof of (2) 
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               : 

1.As necessary and sufficient condition for   to be a geodesic on 

surface. 

                              
Let   be a geodesic on the surface then u(t),v(t) satisfy the differential 

equation (2) from second expression of U and V in equation (14,15), 
 

 
 

  

   
 

  

   
, so that  

  

   
  

  

   
  , which proves the necessary condition. 

         The sufficient condition we have to prove the following lemma 

is true for any curve whether it is geodesic or not. 

       

If u and v are in (1), then         
  

  
           

Since each of u and v have two equal expression for it. we prove thus in 

two cases. 

       
Consider the first expression for u and v. 

Since T is homogeneous function of degree two in    and    
By Euler’s Theorem, 

  
  

   
   

  

   
             

Since T is a function of          , we get 
  

  
 

  

  
   

  

  
   

  

   
   

  

   
             

Now, 

            
 

  
 
  

   
  

  

   
     

 

  
 
  

   
  

  

  
             

Also consider, 
 

  
   

  

   
    

 

  
 
  

   
    

  

   
 

   
 

  
 
  

   
  

 

  
   

  

   
    

  

   
           

Similarly,   
 

  
 
  

   
  

 

  
   

  

   
    

  

   
          

Substitute (20, 21) in (19), 

        
 

  
   

  

   
    

  

   
   

  

  
 

 

  
   

  

   
    

  

   
   

  

  
 

= 
 

  
   

  

   
   

  

   
   

  

  
   

  

  
   

  

   
   

  

   
    

=
 

  
     

  

  
 = 

  

  
 [by (17,18)] 

Case:2 

Consider the second expression for u and v 

Now, 

           
 

  

  

  

  

   
     

 

  

  

  

  

   
  

 

  

  

  
   

  

   
   

  

   
  

 

  

  

  
    

  

  
 [by (17) 

We have         
  

  
 

To prove: The sufficient it is enough to prove that condition (11) implies 

that U and V satisfy. 

The geodesic equation (2) 

Let u and v satisfy the condition (11). 

Assume that:       are not zero for some value of t for if         

simultaneously, then 
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   simultaneously. 

Therefore, condition is trivially satisfied from the given condition. 
 
  

   

 
 
  

   

   (say) 

    
  

   
           

  

   
         

We know that         
  

  
 [lemma] 

Therefore, 
  

  
   

  

   
   

  

   
       

   
 

  
 
  

  
 [by (22 and 17)] 

Substitute   in (22),   
 

  
 
  

  
 
  

   
  

 

  
 
  

  
 
  

   
,  

which are geodesic equation. 

Hence [u(t),v(t)] is a point on the geodesic of a surface which proves the 

theorem.  

         
i). When v = constant c from all values of u a necessary and sufficient 

condition that the curve v=c is a geodesic is               

(i.e)               

ii). When u = constant   values of v on a surface, a necessary and 

sufficient condition that the curve u= c is a geodesic is         
       

     : 

On the curve v=c , u can be taken as a parameters. 

The equation of the curve are u=t of v=constant. 

We know that, 

A curve on a surface is a geodesic iff,  

 
  

   
  

  

   
           

To get the condition for the parametric curve v=constant to be a geodesic, 

we have to find u,v, 
  

   
 
  

   
 from the definition,  we have 

  
 

 
                  , where E, F and G are function of u,v. 

Now, 

 
  

  
 

 

 
     

              
       

  

  
 

 

 
     

              
   

  

   
        ;   

  

  
                

According to choice of parameters           

Hence, 
  

  
 

 

 
       

  

  
 

 

 
  , 

  

   
   

  

   
           

Using (3) , we get, 

  
 

  
 
  

   
  

  

   
 

  

  
 

 

 
   

Using the function of derivatives of E, as a function of u,v , we obtain 

  
  

  
 
  

  
 

  

  
 
  

  
 

 

 
   

                      =            
 

 
   

Since             we have, 
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        (4),   

V=
 

  
 
  

  
  

  

  
 = 

  

  
 

 

 
   

 = 
  

  
 
  

  
 

  

  
 
  

  
 

 

 
   

 =    
 

 
           

Substitute (4) (5) in (1) 
 

 
        

 

 
       which gives                

ii). When u=constant 

Let V can be taken as a parameter ie. v=t. 

Hence           using these two, (2) becomes, 
  

  
 

 

 
   

  

  
 

 

 
   

  

   
   

  

   
            

T= 
 

 
                    where E, F and u are function of E as a function 

of u,v . we obtain 

  
  

  
 
  

  
 

  

  
 
  

  
 

 

 
   

Using (6) we get, 

  
 

  
 
  

   
 

  

  
 

  

  
 

 

 
   

By the formula for derivatives of F as a function of u, v. we obtain 

U= 
  

  
 
  

  
 

  

  
 
  

  
 

 

 
   

U=           
 

 
   

Using           

     
 

 
          

Also, we have   
 

  
 
  

   
  

  

  
  =

  

  
 

 

 
   

            = 
  

  
 
  

  
 

  

  
 
  

  
 

 

 
   

          V = 
 

 
          

Using (7),(8) in eqn (1) 

    
 

 
     

 

 
      

                
Converse follows by retracing the steps in both (i) and (ii). 

           
When the parametric curves are orthogonal. 

1. v= constant is a geodesic iff    =0 

2. u=constant is a geodesic iff   =0 

Since the parametric curves are orthogonal F=0. 

Taking F=0 in above theorem we get the above particular cases. 

Theorem:  

If      in the neighborhood of a point on geodesic, then taking u(t)=t, the 

curve v=v(u) is a geodesic iff v satisfies the second order O.D.E    
                  where P,Q, R,S are functions of u, v determined 

by E, F, and G. 

Proof: 
We know that, 
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To find: U 
  

   
         =             

 

  
 
  

   
  

  

  
 

  

  
       

= 
  

  
 
  

  
 

  

  
 
  

  
  

  

  
 
  

  
 

  

  
 
  

  
        

As      
 

  
 
  

   
                   

      

  

  
 

 

 
              

        

Hence,   
 

  
 
  

   
 

  

  
   

Therefore, 

          
 

 
     

       
 

 
           

To find : V 
  

   
                       

Hence 
 

  
 
  

   
   

  

  
    

  

  
     

  

  
    

  

  
          

Since     , we get 
 

  
 
  

   
                   

      

So,   
 

  
 
  

   
  

  

  
 

    =                 
      

 

 
              

   

    =     
 

 
    

          
 

 
           

Changing the sign we use the condition of a geodesic in the form 

 
  

   
  

  

   
           

Substitute (1),(2),(3) and (4) 

            
 

 
    

          
 

 
                   

 
 

 
     

       
 

 
      

           
 

 
                

  
 

 
              

          
 

 
                       

 

 
     

            

This can be written as, 

 
  

   
  

  

   
   

                        , where  

P = 
 

   
 

 
                

Q= 
 

   
 

 
                     

R= 
 

  
 
 

 
                     

S= 
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Hence the equation of the geodesic is given by                  
     

1. Prove that the curves of the family 
  

   = constant are geodesic on 

surface with the metric                              

Solution: 

  

 

 

   is geodesic iff  
  

   
  

  

   
   

Choosing a parametric ’t’ a parametric representation of the curve u,v as 

                     

                      

for a given metric,   
 

 
                       

  

  
 

 

 
                

     = 
 

 
                                  

                       = 
 

 
                        

                       =
 

 
                 

                       =
 

 
        

  

  
       

  

   
 

 

 
               

 =
 

 
                                    

=
 

 
                                  

= 
 

 
              = 

 

 
        

Therefore, 
  

   
      

  

   
 

 

 
                

     

=
 

 
                                      =

 

 
               

2  32  3  2= 12(18 3 6 12 3 6)= 12(6 3 6) 

Therefore, 
  

   
       

  

   
 

 

 
                = 

 

 
                                   

= 
 

 
                                  

 = 
 

 
               =

 

 
        

  

   
      

By theorem :1 

  
 

  
 
  

   
   

  

  
  

 

  
                                    

  
 

  
 
  

   
   

  

  
  

 

  
                                    

  
  

   
   

  

  
                                         

Hence 
  

     is geodesic. 
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 2. Prove that the parametric curves on a surface are orthogonal, the 

curve v = constant in geodesic provided E is a function of U only and 

the curve u = constant is geodesic provided G is a function of v only. 

Proof: 

By theorem (2) (i) 

V= constant then the curve. 

V= c is a geodesic if                

By corollary: 

(If parametric curves are orthogonal then F=0.) 

Since F=0, consequently      

Therefore, E is a function of u. 

E=0. 

Since E, F and    are zero, then                

Therefore, v=constant is a geodesic . 

By theorem: (2) ,(ii) 

u=constant then the curve u=c is a geodesic if               . 

Since parametric curves are orthogonal, then F=0. 

     
Therefore, G is a function of v. 

G=0. 

Since F,   and G are zero. 

Therefore,               . 

Hence, u=constant is a geodesic. 

                                    

If the arc length ’S’ is the parameters of the curve then the geodesic 

equation are, 

  
 

  
 
  

   
  

  

  
     

    
 

  
 
  

   
  

  

  
          

These are called canonical geodesic equation. 

 

Proof: 
Since as t is a parametric which is geodesic for S is a parametric which is 

also called geodesic. 

  
 

  
 
  

   
  

  

  
 

 

  

  

  
 

  

   
         

  
 

  
 
  

   
  

  

  
 

 

  

  

  
 

  

   
        

where   
 

 
                   

Since    
  

  
      

  

  
   

Here we know that l,m are direction coefficient.              

    
 

 
    

  

  
           

Apply (4) in (2) and (3) we get,         

Theorem:  
i). If the curves on a surface are not parametric curves, then the sufficient 

condition for a curve to be a geodesic is either U=0, or V=0. 

ii). For a parametric curve u=constant to be a geodesic a sufficient 

condition is U=0 and V=constant to be a geodesic, the sufficient condition 

in v=0. 
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Proof: 
For (i): 

Let S is used as a parameter. 

By Previous lemma, 

        
  

  
, 

     
  

  
  , t                             

If the curves are not parameters curves,             [by (1)] 

Then U and V are not independent. 

Hence U is a scalar multiplication of v and v is a scalar multiple of U. 

So that either U=0 or V=0 is a sufficient condition for a curve to be 

geodesic. 

For (ii): 

For a curve to be a geodesic on a surface. 

Then the canonical equation 

  
 

  
 
  

   
  

  

  
   

  
 

  
 
  

   
  

  

  
          

If we take parametric curve u=constant , so that           

By using (i), V=0 and conversely 

Hence the condition for u=constant to be geodesic is U=0. 

Similarly, v=0 is a sufficient condition for the parametric curve v=constant 

to be a geodesic. 

                                            
Three types of geodesic on a surface of revolution. 

                              

                                  

ii). Every meridian v=constant. 

iii). A parallel u=constant is geodesic iff its radius is stationary. 

Proof: 
For (i): 

Given                                     

Then                               

                          
So, 

  

      =                                                         

    
                            

                    
    

   
       

              

                                                        

               

                                                      

                      

                

Let us consider               

By above theorem, 

The canonical geodesic equation are given either by U=0 or V=0. 

Without loss of generality, 

Let us find v=0, 
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Now   
 

 
                   

 

 
    

    
             

Since g and f are function of u only, we get, 
  

  
       

  

   
      

Hence   
 

  
 

  

   
   

  

  
  

 

  
       

Then, the canonical geodesic equation     

Then, 
 

  
                 

Integrating on both sides, 

               where   be arbitrary constant. 

Now if the curves is in the direction v increasing. 

v is position and       
So that   can be taken to be a positive constant. 

Hence 
 

  
         is the differential equation of the geodesic on the 

surface of revolution. 

Let us take        

Now, equation (4), squaring on both sides 

                                 
       

    
               

       
    

               

                    
    

       
                  

    
            

Then, we have     
  

  

  
    

 

         

    
 

 
 

  
    

 

     
   

where we have taken both signs, since the curve can be change direction as 

u,v moves on the curves. 

Equation (4),       on both sides, 

       
 

 
 

  
    

 

     
   

Then we can write              where     are constant. 

For(ii): 

Let  = 0 

Since    0,      [by (4)] 

Hence v=constant, which is the equation of meridian. 

Then we prove , every meridian is a geodesic on the surface of revolution. 

For(iii): 

If       . Then du=0 [by (5)] 

Obviously u=constant. 

 

By above theorem, 

The parametric curve u=constant is a geodesic iff U=0. 

Hence let us find U. 

Since       we have   
 

 
      

Hence, 
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So,   
 

  
 

  

     
  

  
,                   

Since               , so that,  
  

  
   

 

  
 

Using equation (7) in equation (6) we get, 

         
 

  
   

   

 
 

Hence, U=0 iff      

But g is the radius of the parameter u=constant on a surface of revolution. 

A parallel is a geodesic on the surface of revolution if its radius is 

stationary.  

         
Any curve u=u(t), v=v(t) on a surface r=r(u,v) is a geodesic iff the 

principal normal at every point on the curve is normal to the surface. 

Proof: 
To prove the theorem, we will establish that for a curve on a surface 

         to be a geodesic at a point P on the surface        
                showing that the principal normal         of the curve 

is orthogonal to the tangential direction           at P so that the principal 

normal of the curve coincides with the surface normal. 

Since we use canonical geodesic equation in establishing the above result, 

we derive the canonical geodesic equation with the help of the following 

identities. 
  

   
         

  

   
       

                        
To Prove above identities, 

Let us consider 

   
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

                 

                  
  

                              
                  

     

                                                     

We can take   
 

 
           

Differentiate (3) partially, we get 
  

  
   

   

  
          

  

  
   

   

  
,  

  

   
   

   

   
  

  

   
   

   

   
 ....(4) 

Using,(2) and differential partially we have, 
   

   
         

   

   
    

   

  
                         

   

  
                     

where     
   

            
   

    
,     

   

    
     

   

    

Using (5) in (4), we get 
  

  
                 

  

  
                 

  

   
       

  

   
               

Let us find U(t) and V(t) as follows, we have,  
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Using (6), 

     
 

  
                              

   
  

                     

                                               

Using         we get, 

           

          
 

  
 
  

   
  

  

  
 

 

  
                        

                                       

Hence, we have                    

From (7) and (8) we get the required identities(1). 

Instead of taking the parameters t, we can use as well the parameters S. 

Therefore, replace t by s , we have, 

                           
Hence the canonical geodesic U(s) and V(s) = 0. 

This implies                                  

Therefore, (9) shows that     is perpendicular to 

                                  
Hence     is the surface normal of the geodesic at P. 

But     
   

    
 

  
 
  

  
  

  

  
        

Therefore     is along the principle normal at every point of the geodesic is 

normal to the surface at P. 

Since all steps are reversible, the converse is also true. 

Hence the proof. 

Corollary: 
A curve on a surface is a geodesic iff the rectifying plane is tangent to the 

surface. 

Proof: 
Since the principle normal to the geodesic at any point P is the normal to 

the surface the binormal lies in the tangent plane at P. 

So the rectifying plane at a point of the geodesic is the tangent plane to the 

surface. 

Conversely, if the rectifying plane at a point of a curve on a surface is the 

tangent plane to the surface at the point then the principle normal to the 

curve is normal to the surface.  

1. Prove that every helix on a cylinder is a geodesic and conversely.  

Solution: 
By normal property, we shall Prove that: the surface normal to the cylinder 

coincide with the principle normal to the helix on the cylinder. 

The helix is a geodesic on the cylinder. 

Let the generators of the cylinder be parallel to a constant vector ’a’. 

Let   be the helix on the cylinder and let P be any point on  . 

Let t, n be tangent and principal normal at P to  . 

Since te helix cuts the generator at a constant angle we have, t.a = 

constant ....(1) 

Diff. (1), we have, 
   

  
      

   

  
  .....(2) 

Since a is constant vector 

(2)     = 0      = 0 

(As t.n = 0) The condition n.a = 0 and t.n = 0 
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  that n is perpendicular to a and t. 

Therefore, n is parallel to a t. 

But a and t are tangential to surface of cylinder. 

Therefore, a t is parallel to surface normal. 

Thus a t gives the direction of both the principal normal to   and surface 

normal.  

So   is f=geodesic. 

Conversely, 

Let us take a geodesic   on a cylinder. 

At every point P on  , we have n.a = N.a 

Since ’a’ is parallel to the generator of the cylinder N.a = 0 

Therefore, n.a = 0 

Since k         .         

 
  

  
     ....(3) 

As ’a’ is aconstant vector   
  

  
   ....(4) 

From (3) and(4) , 
  

  
     

  

  
 

 

  
        

Integrating we get, 

t.a = constant 

Hence the geodesic   cuts the generator at a constant angle. 

Therefore, it is a helix. 

Normal Property 

Let i,j,k = 1,2, then      is defined as ,      
 

 
                   

          where          and other two similar symbols stand for partial 

differential with respect to u,v according as i=1,2.  

Note: V             
 

 
       

Now,      
 

 
                             

 
 

 
 
 

  
        

 

  
        

 

  
         

 
 

  
        

 

 

 

  
        

         =                      =        

In general,             

 Theorem: 

If                are the christoffel symbol of the first kind, then the 

geodesic equation are, 

                                     ... (1) 

                                               

Proof: 
We know that, 

          
 

 
                 

 

 
         .... (3) 

              
 

 
              

 

 
               

Then the christoffel symbol of first kind is             

            = 
 

 

 

  
   

   
 

 
          

            = 
 

 

 

  
   

   
 

 
           

Since         we have, 
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      121=        = 
 

 
           

Now,                 
   

 

  
 

To find:    
  

  

  
 

Let us consider 
 

  
   

       
   

  
         

From above equation we get, 

        
 

  
        

 

 

 

  
   

      
 

 
   

                
 

 
          

Also,              
 

 

 

  
   

   
 

 
          

            
 

 

 

  
   

   
 

 
   

Since         we have, 

                 
 

 
              

Now,                
   

  
 

 

  
                      

                 
 

  
               

          
 

 
   

From (7),         
 

 
            

Substitute (5),(6),and (8) in (3) we get(1) 

Substitute (9),(10),and (11) we get(2) 

Hence the proof. 

          

a)     
 

                      where  

                                 
                  

b)      
 

   
                            

                                 
                 

Proof: 

Solve for            from the geodesic equation (I) and (II) 

          
 

 
   

      
        

 

 
              

              
 

 
              

 

 
               

Now, (1). G - (2).F gives, 

           
 

 
                                

 

 
     

                      

Replacing the coefficient of                      by l, m, n respectively. 

We obtain      
 

   
                   

Similarly solve for     
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Now, (2).E - (1).F gives, 

      
 

 
                                

 

 
         

           

Using           for coefficient of              

We obtain,      
 

                      

Differential equation of geodesic using Normal Property: 

The normal property of geodesic is given by the identities        
              
Using the equation of a surface r=r(u,v). 

We shall express the normal property interms of r and its partial derivatives 

and establish how the new equation derives from the normals property is 

equivalent to the canonical geodesic equation derived earlier. 

We also the christoffel symbols to express the new equations elegantly. 

Theorem: 

The geodesic equations are           
 

 
   

      
    

    
 

 
         

              
 

 
              

 

 
        

Proof: 
Let the equation of the surface be r=r(u,v), where u=u(s) and V=v(s) 

Now,    
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

                     
Differentiate (1) w.r.t S, 

    
   

  
 

   

  
 
  

  
 

   

  
 
  

  
 

                                                  
                                                     

From the normal property, 

                              

Taking the scalar product of (2) with         respectively and using (3) 

we obtain, 

      
          

          
           

          
          

                                                           
We shall rewrite (4) and(5) using the first fundamental coefficient and their 

partial derivatives for the coefficients of                          as 

follows, 

Now,                         
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Further 
 

  
                                   

            
 

 
          

 

  
                                      

          
 

 
            

Using (6),(7) and (11) in (4), we have, 

          
 

 
   

      
        

 

 
              

                                           

              
 

 
          

    
 

 
   

            

         
The equation (I) and (II) of above theorem are the same as the canonical 

geodesic equations.  

  
 

  
 
  

   
   

  

  
          

  
 

  
 
  

   
   

  

  
           

Proof: 

Let   
 

 
                  , t                

 
  

    
                

 

  
 
  

   
   

  

  
    

  

  
             

  

  
    

  

  
           

    
      

            
       

             
  

  
 

 

 
                          

Further 
  

   
                 

 

  
 
  

   
     

      
            

       
              

  

  
 

 

 
                              

Hence, using equation (4) and(5) we have, 
 

  
 
  

   
   

  

  

                         
 

 
                

 
 

 
       

So that equation (1) becomes 

                 
 

 
          

 

 
         

Similarly, using equation (7) and (8) we get, 
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Here equation (2) becomes, 

              
 

 
              

 

 
        

This prove that equation (I) and (II) are equivalent to (1) and (2). 

            
The christoffel’s symbols of the second kind denoted by             
        are defined as 

                      

                      

Theorem: 

If                 are christoffel symbol of the second kind, the geodesic 

equations are        
         

         
            

       
         

         
              

Proof: 
We know that, the geodesic equation are, 

      
 

 
               

             
   

 
 

 
               

          

          
 

 
                                

 

 
    

                       

Using christoffel symbol of    kind we find the coefficient of different 

derivatives of the above geodesic equation, 

                     =    
 

 
         

 

 
     

         
 

 
        

 

 
           , (since      

 

 
        

   
 

 
  ) 
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             , Since       

substitute (5),(6) and(7) in (3) we get the equation (1) also substitute (8) (9) 

(10) in (4), we get equation (2). 

         
A geodesic can be found to pass through any given point and have any 

given direction on a surface. the geodesic is uniquely determined by the 

initial condition. 

Proof: 
To prove this theorem, we have to derive the second order differential 

equation and deduce the existence of geodesic at a point from the 

uniqueness of solution of initial value problem of such as differential 

equation. 

Now, we have 
  

  
 

  

  
 
  

  
   

   

    
 

  
 
  

  
 
  

  
  

 
 

  
  

  

  
 
  

  
 

  

  
  

   

   
 
  

  
   

  

  
 
 

  
  

  

  
   

 
   

   
 
  

  
   

  

  
 
 

  
  

 

 
  

   

   
 
  

  
   

 

   
     

  

  
 
  

  
 

   

   
 

   

   
 
  

  
   

 

   
  

  

  
   

  

  
        

We know that, 

                                      

                               

Now (3)   
  

  
       

  

  
  

  

  
   

      
  

  
       

  

  
   

  

  
  

       
  

  
   

  

  
      

  

  
    

  

  
     

  

  
     

Substitute (1) in (4) 

   

   
      

  

  
   

  

  
     

  

  
     

  

  
     

  

  
    

   
  

  
           

  

  
         

  

  
           

From the existence and uniqueness of solution of the initial value problem 

of an ODE of second order there exists a unique solution of   of (5) with 

initial condition         
  

   
             

Thus any solution u,v of (5) gives the direction coefficient of the tangent at 

P. 

Hence a geodesic is uniquely determined by the initial point P and 

condition.  

Hence the Proof. 

9.4 Check your progress 

 Define geodesic parallel 

 Define geodesic curvature 

 Define geodesic parameters 

 Derive the orthogonal family of geodesic  
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9.5 Summary 

 A geodesic can be found to pass through any given point and have 

any given direction on a surface. the geodesic is uniquely 

determined by the initial condition. 

 

 If   is such that variation s( ) is atmost at order    for all some 

variation in   for different      and     . Then      is said to be 

stationary and   is geodesic.  

 

 A necessary and sufficient condition for a curve u = u(t) and v = 

v(t) on a surface r = r(u,v) to be a geodesic is that, 

o  
  

   
  

  

   
           , where   

 

  

  

   
 

  

  
 

 

  
 
  

  
 
  

   
,   

 

  

  

   
 

  

  
 

 

  
 
  

  
 
  

   
          

 

 When the parametric curves are orthogonal. 

       v= constant is a geodesic iff    =0 

            u=constant is a geodesic iff   =0 

 

9.6 Keywords 
Geodesic: 
Let A and B be two given points on a surfaces. Let these points be joined 

by curves lyping on S. Then any curve possessing stationary length for 

small variation over S is called Geodesic. 

Stationary: 

If   is such that variation s( ) is atmost at order    for all some variation 

in   for different      and     . Then      is said to be stationary and   is 

geodesic.  

 

9.7 Self Assessment Questions and Exercises 
1. Show that the curve u+v= constant are geodesic on the surface with 

the metric (1+  )                         
2. Show that the curves of the family u=c  , v=c   are geodesic on the 

surface with the metric 2                    u>0, 

v>0. 

3. Show that if E,F,G are functions of u only and 
  

 
 is constant, then 

the parametric curves v= constant are all geodesics. 

4. Show that the geodesics on the surface of revolution x=u cos     

             are given by     

  
 = constant. 

5. For the anchor ring r=((b+acosu)cosv, (b+acosu)sinv,z=a) 

i) Verify the relation U         

  
 

ii) Obtain the two differential equations of a geodesic other than the 

merdians and parallels. 

iii) Express 
  

  
 as a function of u for geodesic other than parametric 

curves. 
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9.8 Further Readings 
 

1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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UNIT-X GEODESIC PARALLELS 

Structure 

10.1 Introduction 

10.2 Objectives 

10.3 Geodesic Parallels 

10.4 Check your progress 

10.5 Summary 

10.6 Keywords 

10.7 Self Assessment Questions and Exercises 

10.8 Further Readings 

 

10.1 Introduction 
Since geodesics on surfaces behave like straight lines in planes, we 

formulate a coordinate system on a surface with the help of geodesics. As a 

prelude to this, we introduce geodesic parallels and geodesic curvature in 

this chapter. 

10.2 Objectives 
After  going through this unit, you will be able to: 

 Define geodesic curve 

 Derive the parametric system of geodesic parallel 

 Derive the equation of orthogonal families of geodesic 

parallel. 

 Define orthogonal trajecotories of the given family of 

geodesics 

10.3 Geodesic Parallels. 

Theorem: 

For any gives family of geodesic on a surface, a parametric system can be 

chosen so that metric takes the form                  . the given 

geodesic are the parametric curves v=constant and their orthogonal 

trajectories are given by u=constant, u being the distance measured along a 

geodesic from a fixed parallel. 

Proof: 
For a given family of geodesic curves.  

Let us take a system of parameters such that the geodesic of the family are 

given by v=constat and their trajectories are given by u=constant. 

Since v=constant and u=constantform an orthogonal parametric system 

F=0. 

We know that, 

v=constant is geodesic iff                

Since     and F=0 the above condition reduce to      

E is independently of v and its a function of u only. 

The metric becomes,  

                              

Now consider, the orthogonal trajector’s           and find the 

distance between them along the geodesic v=constant. 

Since v=c, dv=0 
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Since S is independent of v=constant the distance between orthogonal 

trajectories, is some along any geodesic v=constant. 

Therefore, orthogonal trajectories are parallel. 

Let the distance from some fixed point parallel to the neighboring parallel 

be du. 

Then ds=du and dv=0 

                

       

                       
Hence the proof. 

                    :  

Definition: 
The orthogonal trajectories of the given v=constant on a surface called 

Geodesic Parallels family of geodesic, u and v are called geodesic 

parameters. 

Definition: 

The geodesic form               is called the geodesic form of    . 

Example: 

In the plane, we know that the straight lines  are geodesics. Now consider a 

family of straight lines enveloping the given curve C. This family of 

straight lines envelopes C so that C becomes the evolute and these family 

of straight lines are normal to the involute. Hence the geodesic parallels are 

the involutes of C. 

Example: 

Let the family of geodesics be  the straight lines concurrent at a point O. 

Then the geodesic parallels are the concentric circles with centre O. Since 

the concentric crcles cut the family of straight line through O orthogonally, 

the concentric circles form a family of orthogonal trajectories which are the 

geodesic parallels. 

Theorem: 
If a surface admits two orthogonal families of geodesic then it is isometric 

with the plane. 

Proof: 
Let U=constant be a family of geodesic. 

Then the family of orthogonal trajectories is u=constant. 

Suppose if we take u=constant is a family of orthogonal trajectories. 

Therefore, the surface admits the two orthogonal family of geodesic 

v=constant. 

Let the distance from some fixed parallel to the neighboring parallel to du. 

Hence ds=du and dv=0 

                               
Similarly, measuring the distance along the geodesic u=constant. Let the 

distance along the geodesic u=constant. 

Let the distance from some fixed parallel to the neighboring parallel to dv. 
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Thus the metric becomes,             which is the metric of the 

plane. 

10.4 Check your progress 

 Define geodesic parallel 

 Define geodesic parametric 

 Write the geodesic form 

10.5 Summary 

 For any gives family of geodesic on a surface, a parametric system 

can be chosen so that metric takes the form         
         . 

 If a surface admits two orthogonal families of geodesic then it is 

isometric with the plane. 

 The orthogonal trajectories of the given v=constant on a surface 

called Geodesic Parallels family of geodesic 

10.6 Keywords 
Definition: 
The orthogonal trajectories of the given v=constant on a surface called 

Geodesic Parallels family of geodesic, u and v are called geodesic 

parameters. 

Definition: 

The geodesic form               is called the geodesic form of    . 

10.7 Self Assessment Questions and Exercises 
1. Find the fundamental coefficients E, F, G and L, M, N for the 

helicoid. R(u,v)= ((u) cosv, (u) sinv, f(u)+cv). Also find the unit 

normal to the surface. 

2. Find the position vector of a point on the surface generated by the 

normals of a twisted curve. Find the fundamental coefficients and 

the unit normal to the surface. 

3. Prove that the family of geodesics on the paraboloid of revolution 

r=(u,                   has the form u -    u(1+4  )     {v-2c 

log k[2           ]}, where c and k are constant. 

4. Show that any curve is a geodesic o the surface generated by its 

binormals. 

5. A particle is constrained to move on a smooth surface under no 

force except the normal reaction. Show that its path is geodesic. 

6. Using Christoffel symbols, obtain the geodesics equation on the 

helicoid 

r=(u cosv, u sinv, cv). 

10.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, 

Narosa Publishing Pvt.Ltd.(2010)
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UNIT- XI GEODESIC URVATURE 
Structure 

11.1 Introduction 

11.2 Objectives 

11.3 Geodesic curvature 

11.4 Check your progress 

11.5 Summary 

11.6 Keywords 

11.7 Self Assessment Questions and Exercises 

11.8 Further Readings 

 

11.1 Introduction 
This chapter deals with the  concept of geodesic curvature. The normal 

curvature, geodesic curvature are also  defined and some theorems are also 

derived. 

11.2 Objectives 
After  going through this unit, you will be able to: 

 Define geodesic curvature 

 Understand the concept of geodesic curvature vector and normal 

curvature 

 Solve the problems in geodesic curvature 

11.3 Geodesic curvature 
Normal curvature: 

The normal component             is called the normal curvature at P where 

               .  

Geodesic curvature vector: 

The vector         with component       is tangential to the surface. 

The vector with components       of the tangential vector         to the 

surface is called the geodesic curvature vector at P. It is denoted by   . 

Theorem: 
A curve on a surface is a geodesic iff if the geodesic curvature vector is 

zero. 

Proof: 

Let        be any curve on the surface with the principal normal n and 

surface normal N at P. 

If (   ) is the geodesic curvature vector at P, then 

                
or 

                         

Let the curve be geodesic. then by the normal property of a geodesic 

           

Using (2) in (1), we get                

Equating the coefficient of         on both sides, we get, 

      so that      

Conversely, 

Let              

Hence from (1) we get        

Thus, the principal normal to the curve is parallel to the surface normal. 
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Therefore, the curve is geodesic by the normal property. 

 

Theorem: 
The geodesic curvature vector of any curve is orthogonal to the curve. 

Proof: 

If       is the curvature vector of the curve r=r(s) at P, then by previous 

theorem, 

                         

Since, t is tangent vector to the curve as well as to the surface       

                  
Taking dot product with t on both side of (1) and using (2). 

We obtain ,               which proves that       is orthogonal to the 

curve. 

Theorem: 
For any curve on a surface the geodesic curvature vector is intrinsic.  

Proof: 

To Prove: vector       is intrinsic.  

We have to show that       can be found out from the metric of the 

surface. 

         
 

  
 
  

   
   

  

  
  

         
 

  
 
  

   
   

  

  
           

If       is the geodesic curvature, vector at a point on the surface, then 

                       

Taking scalar product with         on the both sides of (2) respectively, 

                            

                                    

Using                 and the first fundamental coefficient, we 

have from (1), 

               

                      

Solving for       interms of U and V from (4) we obtain, 

  
 

  
            

     

  
            

which shows that the vector       is intrinsic. 

Theorem: 

The condition of orthogonality of the geodesic curvature vector       with 

any vector (u,v) on a surface is                       

Proof: 

The tangential direction at a point (u,v) on a surface is        . 

Since       and         are orthogonal 

Using l=                   in the condition of orthogonality. 

                       

We obtain ,                           
which can be written as, 

                      

Since                  , we rewrite the above condition as 
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Theorem: 
In the notation of the christoffel symbols, the components of the geodesic 

curvature vector are, 

         
         

         
     

         
         

         
     

Proof: 

Taking                 
     

      

                                                     

Taking dot product with    on both sides, 

       
  

                                                    , since 

               
Using the fundamental coefficient in (2) we obtain,  

                                                      

In a similar manner, 

Taking scalar product with                 and using             
  , we have 

         
                                              

                                                     

Solving for   from (3) and (4). 

                                      
   

                                              

Using definition on christoffel of second kind, 

         
         

         
     

In a similar manner, 

Solving for   from (3) and (4) 

                                      
   

                                             
Using the definition of the christoffel symbol of the second kind we get, 

         
         

         
     

Theorem: 
With S as parameter, the components of the geodesic curvature vector are 

given by, 

  
 

  

 

  

  

   
 

  

  

 

  

  

   
 

  
 

  

 

  

  

   
 

  

  

 

  

  

   
 

Proof: 
From theorem (3), we have 

  
 

  
          

  

  
                

From theorem:(4), we have           which gives   
    

  
   

 

  
 

  

  
         

Using the value V in   in (1), we get 

  
 

  
     

    

  
  

 

    
                  

To complete the proof, it is enough if show that:          
  

   
 

Now,   
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Using (3) in (4) we have, 

  
 

  

 

  

  

   
 

  

  

 

  

  

   
 [since by (2)]  

Substitute (2) in (1), for   we get, 

  
  

  
  

   

  
     

  

  

 

  
                  

Using (4) in (5), we get, 

  
  

  

 

  

  

   
 

 

    
 

  

   
 [since by (2)] 

 

 1. Obtain the geodesic curvature vector of a curve on a right helicoid 

                   using different formula for it. 

Solution: 
We have derived three different formulae for the geodesic curvature vector 

. we obtain the geodesic curvature vector using these three different 

formulae. 

Now,                  

                    

Hence,                 

                   

(i)   
 

  
               

  

          

Let us find U and V in the above formulae. 

  
 

 
                 

  

   
       

  

   
           

  

  
          

  

  
           

Hence,   
 

  
 

  

     
  

  
               

  
 

  
 
  

   
  

  

  
                           

Hence   
 

                                  

  
 

     
                    

ii).          
         

         
     

         
         

         
     

First let us calculate the christoffel symbols in the above formula for a 

curve on the right helicoid. 

     
 

 
                 

 

 
     

        
 

 
                     

 

 
     

     
 

 
                  

 

 
     

Hence,      
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TO find:   

Let us find other christoffel symbol of the second kind. 

     
 

  
                

     
 

  
              

 

     
 

     
 

  
                

                
      

     
 

 

     
                    

 

iii).   
 

  

 

  

  

   
 

  

  

 

  

  

   
 

 

  
 

  

 

  

  

   
 

  

  

 

  

  

   
 

Using (1), (2) and (3), 

  
 

     
 
        

  
                     

The other expansion gives the formula for                         

  
  

     
                    

  

  
        

  
  

  
                    

Further using (1), (2) and (2) in the formula for   , we have, 

  
 

     
                    

and the alternate expression for  , is 

  
  

     
 
        

  
     

Now we are in a position to define the geodesic curvature and derive the 

formula for it interms of the parameter S and t. 

Definition: 

The geodesic curvature at any point of a curve denoted by    is defined as 

the magnitude of its geodesic curvature vector with proper sign.    is 

considered to be positive or negative according as the angle between the 

tangent to the curve and the geodesic curvature vector is 
 

 
  

  

 
, so we 

have            

Theorem: 

If        is the position vector of a point P of a curve on a surface then, 

                        i).               

                     

Proof: 
From theorem :2, 

The geodesic curvature vector is orthogonal to the unit tangent vector 

   
  

  
 at P. 
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Since the geodesic curvature vector         lies in the tangent plane at P. 

it is orthogonal to this surface normal N at P. Thus the geodesic curvature 

vector is orthogonal to both N and    and therefore it is parallel to the unit 

vector     . 
Since    is the magnitude of the geodesic curvature vector, 

We can take the geodesic curvature vector                    

            

We know that,                        

Using (1) and (2) we obtain                          

Taking scalar product with unit vector        on both side of (3) we 

obtain, 

                                 

Since                              we get from (4), 

              which proves (i) 

ii). we shall rewrite the formula (i) by using any parameter t. 

Now,    
  

  
 

  

  
 
  

  
     

 

   
 

  
       

 

  
       

  

  
             

Since            we have, 

                                  
 

      
 

   
        

Hence from the formula (i), we have 

              

   
 

   
          

Corollary: 

                                         

Proof: 

Since          we have              using this value of N in 

the above lemma, 

                             

                                                        

Using (2) in (1) we obtain, 

                                          

As an application of the above corollary. we derive the formula for    in 

the most simplest form interms of the instrinsic quantities of a surface U 

and V. 

Theorem: 
If the U and V are the intrinsic quantities of a surface at a point (u,v) then, 

      
 

 

    

  
    

       
  

 

    

  
 

Proof: 

  
 

 
    

 

 
                   

Hence 
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But 
  

  
 

  

  
    

  

  
              

        
   

   
        

   

   
          

Thus, from (1) and (2), 
  

   
          

  

   
               

We know that,                                

From theorem 1 of 3.5 

Using (3) and (4) in the corollary, 

   
 

    
      

  

   
      

  

   
  

If we take S as parameter in place of t in the above equation, 

   
 

 
      

  

   
      

  

   
                    

Since                  we have       
  

  
              

Using (6) in (5) 

   
    

   
    

  

   
    

  

   
  

From Euler’s theorem on homogeneous function, 

   
  

   
    

  

   
    so that the above equation becomes    

    

   
                

Since s is the parameter      , so that   
 

 
    

 

 
 

Using this value of T in (7) 

   
    

   
 

Similarly eliminating V(S) in (5), we obtain 

    
 

 
 
    

  
 

which completes the proof of theorem. 

Corollary: 

If       is the geodesic curvature vector of a curve then, 

   
   

       
 

  

       
 

Proof: 
From theorem; 3 we have, 

  
 

  
             

 

  
                

Since we take S as the parameter           

So that   
   

  
       

    

  
         

Using   
 

  

 

  
             

 

  

 

  
                  

Using the theorem in (3), 

   
  

 
             

  

 
          

So that , we have 

   
   

       
 

  

       
 

 

1. Prove that all straight lines on a surface are geodesic. 

Solution 
Let r=r(S) be a point on a straight line on a straight. 
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Then      

    
  

  
     

Since r=r(S) is a straight line     so that       

The geodesic curvature of a curve on a surface is              , 

                    
Thus the geodesic curvature of a straight line on a surface is zero which 

implies by property (ii) after the definition of geodesic curvature all 

straight lines on a surface are geodesics. 

Theorem: 

If         denotes the geodesic curvature of the parameter curve 

u=constant and v=constant respectively. Then, 

   
 

  
 

  
                

   
 

  
 

  
                

Proof: 
For the parametric curve v=constant. 

Let us take u itself as the parameter. so that             

Now,   
 

 
                   

  

   
 

 

 
     

 

 
             

  

   
 

 

 
     

 

 
              

  

  
 

 

 
     

              
   

  

  
 

 

 
     

              
   

From our choice of parameter we have from the above equation, 
  

   
      

  

    
   

  

  
 

 

 
       

  

  
 

 

 
         

 [                  ] 

Further   
 

  
 

  

   
   

  

  
  

  
 

  
 
  

   
   

  

  
          

Substitute (1) in (2), we have, 
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                     becomes       so that              

We know that, 

   
 

    
      

  

   
      

  

   
         [ since by above theorem 

equation (5)] 

Substitute (1), (3),(4) and (5) in (6), 

   
 

      
      

 

 
      

 

 
     

 
 

    
 
 

     
 

 
     

 

 
     

 
 

    
 
 

 
 

 
               

   
 

  
    

 

                  

ii). Let us take v itself as the parameter, so that                

Using these we have, 
  

   
       

  

   
   

  

  
 

 

 
             

  

  
 

 

 
            

Substitute (7) in (2) 

  
 

  
    

 

 
    

  

  
   

  

  
   

 

 
   

           
 

 
   

           
 

 
                     

     
 

 
           

  
 

  
    

 

 
   

 
  

  
   

  

  
   

 

 
   

      
  

  
   

 

 
   

           
 

 
                     

  
 

 
            

                           becomes        

So that               

Substitute (7), (8),(9) and (10) in (6), 
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Corollary: 
When the parametric are orthogonal then, 

      
  

   
 

 

  
             

 

   
 

 

  
   

Proof: 
Since the parametric curves are orthogonal, F=0, 

i). From above theorem, 

                    
 

  
    

 

                  

                          = 
    

      
 
 

                       

                           = 
    

      
 
 
  

 

                           = 
   

      
 

 
  

   
 

  

   
 

    
 

   
 
 

  
   

ii). From above theorem, 

   
 

  
    

  
                 

                   = 
 

  
 
   

 
 
 

  = 
 

  
 

  

 
 
 
  

  = 
 

  
 
  

  
  

                   = 
 

    
 
  

  
  = 

 

   
 
 

 
 
  

  
  

   
 

   
 
 

  
   

 

1. Find the geodesic curvature of the curve U=constant on the surface 

given by                
 

 
     

Solution: 

Now,                  ,                     

Hence               , F=0, G=          and H=          

                       

Using the above values in the formula for   , we have, 

   
 

   
 
   

  
,     

 

        
 

 

Theorem:  Liouvillie’s Theorem 

If   is the angle which the curve C makes with the parametric curve 

v=constatn . then              , where   
 

   
          

     

  
 

   
          

Proof:  

We makes use of the formula    
     

   
 in the proof. 

The direction coefficient of the curve at (u,v) and the curve v=constant are 

respectively.         and  
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So if   is the angle between the two direction         and  
 

  
   , we have 

from the formula,                          ,            
     

     
 

  
                 ,      

   

  
 

Now,   
 

 
                  , 

  

   
         

  

  
 

 

 
                              

Using (2) in (1), we obtain, 

     
 

  
 
  

   
         

Differential equation (3) w.r.t S, 

         
 

  
 
 

  
 
  

   
  

 

 
 

  
  

  

  
 
  

   
          

But,
  

  
 

  

  
 
  

  
  

  

  
 
  

  
                   

Using (5) in (4) , rewritting it as, 

            
 

  
 
  

   
  

 

 
 
 

 
             

  

   
           

Let us substitute for, 
 

  
 
  

   
           

 

  
 
  

   
  

  

  
 

Then –             
  

  
 

 

 
 
 

 
    

     
    

  

     

                                        

         
  

  
 

 

 
 
 

 
             

  

   
  

Using (2) in the above equation , we have, 

         
 

 
                   

 

 
 
 

 
                

     

   
 

  
                           

              

Taking   
              

   
   

 

   
           

We have from (7),     
  

                  

        
  

   
 (8) becomes, 

                

So that, we have               which completes the proof of 

liouville’s theorem. 

Example: 
If the orthogonal trajectories of the curve v=constant are geodesic prove 

that  
  

 
  is independent of v. 

Proof: 
If c is the orthogonal trajectories of the parametric curve v=constatn , we 

can take   
 

 
 in the theorem. 

Since c is the given to a geodesic       

Using these the liouville’s formula becomes,                   
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Now, we shall find P and Q in the new situation. 

If         and  
 

  
    are the direction coefficient of the curve c and 

v=constant and   
 

 
 , we have from the formula,  

                                              

Eliminating        between (1) and (2), 

                

Substitute for P and Q in (3) 

                             
Solving for G from the above equation , 

   
         

  
 

 

  
  

  

 
  

So that we have    
 

  
  

  

 
    

    
 

  
     

  

 
     

Nothing     
  

 
  

  

 
 

We find 
 

  
 
  

 
    which implies that 

 

 
 is independent of u. 

 

Simply connected: 
A region R of surface is said to be simply connected if every closed curve 

lying in the region R can be contracted or shrunk continuously into a point 

without learning R. 

Described in a a positive sense: 
A closed curve on a surface is said to described in a positive sense, if the 

sense of description of the curve is always left. this is nothing, but the 

positive rotation of 
 

 
 from the tangent to get the normal which point 

towards the interior of the region.  

Definition: 
Let R(u,v) be the given surface of class, and k be a simply connected 

region whose boundary is a closed curve of a class 2. Let c contains of n 

arcs                        whose n is finite. 

 

Theorem: Gauss Bonet theorem:  
For any curve c which encloses a simply connected region R on a surface 

    is equal to the total curvature of the R. 

Proof: 

We shall use liouville’s formula for the   and find         with the help 

of Green’s theorem in the for a simply connected region R bounded by C. 

Lemma: 
If R is a simply connected region bounded by a closed curve C. then 

  
 
            

 
 
  

  
 

  

  
      where P and Q are differential 

function of u and v in R. 

Proof: 
From the liouville’s formula, 

              
Integrating along the curve c, we have 
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where   is angle between the curve c and the parametric curve v=constant 

and P and Q are differential function of u,v. Hence when we describe the 

curve C, the tangent at various members of the family v=constant 

described in the positive sense returns to the starting point after increasing 

the angle of rotation by   . 

This increase    after complete rotation in the positive sense also includes 

the angle between the tangent at the finite number of vertices. 

Hence we have ,   
 
       

       

From the definition, 

           
    

 

              

Using (1) and (2) in (3), obtain 

             
 

       
 

            

Thus,        
 
                 

Since R is simply connected region and p and Q are different function of 

u,v, 

We have by Green’s theorem, 

  
 
              

 
 
  

  
 

  

  
              

Since the surface element ds= H dudv, we rewrite (5) as, 

  
 

          
 

 
    

 

 
  

  
 

  

  
           

Using (6) in (4), we get, 

    
  

 
    

 

 
  

  
 

  

  
          

If we take   
  

 
 
  

  
 

  

  
  

We can rewrite (r) as , 

        
 

            

where K is the function of u and v and it is independent of c and defined 

over the region R of the surface. 

Next we shall show that the     is uniquely determined by k. If k is not 

unique. 

Let   be such that         
 

           

Using (8) and (9), we have 

    
 

                  for every region R. 

Now, let     at some point A of R. Then we must have            

at A. 

Let us first consider    . since the given surface is of class 3. 
  

  
   

  

  
 

are continuous in R. 

So that these exists a small region    of R containing the point A such that 

      at every point of   . 

For this region R containing        
 

          which contradicts 

(10), we get similar contradiction     
 

          at A where    . 

These contradiction prove that     at every point of R. (ie)K is uniquely 

determined as a function of u and v. 
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Defining   
 

    as the total curvature of R we have proved that the total 

curvature is exactly     in any region R enclosed by c. 

This completes the proof of Gauss Bonnet theorem. 

Gaussian Curvature: 
The invariant k as defined above is called the Gaussian curvature of the 

surface and   
 

    is called the total curvature of integral curvature of R 

where R is any region whether simply connected or not. 

1. Find the curvature of a geodesic triangle ABC enclosing a region R 

on the surface.  

Solution: 

Since     gives the total curvature of a region bounded by c. 

It is enough , if we found     in the example where c is known ABC is 

geodesic triangle enclosing a region R on the surface with interior angles 

A, B,C so in the case the curve is the geodesic triangle     
  

  

 

  
 
    

 
  

    

 
 

Hence, the gaussian curvature   
    

 
 

In other words, K satisfies the differential equation        which proves 

the theorem. 

The origin of a geodesic polar coordinates system is artificial singularity. 

since the singularity is artificial the Gaussian curvature is exists there so 

we shall find the gaussian curvature    at the origin. 

Theorem: 
If P is a given point on a surface and A is the area of geodesic triangle 

ABC containing P, then Gaussian curvature k at P is   
       

 
 where 

the limit is taken as the vertices         

Proof: 
From example 1: 

For a geodesic triangle ABC with interior angle A, B,C on a surface the 

total curvature is        .  

Hence we have      
 

         where k is a constant. 

  
 

               

   
       

 
 

Hence the Gaussian curvature at the point P is      
       

 
 where the 

limit is taken as the vertices tend to P. 

2. Find the Gaussian curvature of every point of a sphere of radius a. 

Solution: 
On a sphere of radius a, the geodesic triangle is spherical triangle formed 

by great circle the area A of a spherical triangle is               

. Hence using theorem 1. 

The Gaussian curvature at a point P on a the sphere is 

     
       

         
 

 

  
 

Thus the gaussian curvature of every point of the sphere is constant and it 

is equal to 
 

  . 

The total curvature of the sphere is 
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Theorem: 
If E, F and G are the fundamental coefficient of a surface then,  

  
 

 
 
 

  
 
       

   
  

 

 
 
 

  
 
            

   
  

Proof: 

From the definition of  , we have 

  
  

 
 
  

  
 

  

  
  

where P and Q are given by the liouville’s formula               
Substitute for P and Q in   

  
  

 
 
 

  
 
       

   
  

 

 
 
 

  
 
            

   
  

or we have 

  
 

 
 
 

  
 
       

   
  

 

 
 
 

  
 
            

   
  

where the parametric curves are orthogonal. 

Hence the formula for   assumes the formula, 

  
 

  

 

  
  

  

 
  

 

  
 
  

 
 . 

3. Find the Gaussian at any point of a curve sphere with 

representation                                         
              . 

Solution: 

We know that for the sphere                      
           

                     . 

Using this formula in the above theorem when       , 

  
  

        
 

 

  
 
             

       
  = 

  

        
 

 

  
         

  
 

  
 

4. Find the Gaussian curvature at a point (u,v) of the anchor ring 

                                                   

     

Solution: 

For the anchor ring, we have                            
       . 

Since the parametric curve are orthogonal . we make use of the second 

formula for  . 

  
 

  
 

 

  
  

  

 
  

 

  
 
  

 
 ] 

Now,                          

Hence   
 

           
 

 

  
 
                

          
  

    

          
 

which gives the gaussian curvature at any point P on the surface. 

Hence the total curvature is, 
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        =  (sinu  

   = 0 

Hence the total curvature of the whole surface is zero. 

Using the geodesic polar coordinates the metric of a surface reduce to the 

form                               

 

Theorem: 

In the geodesic polar form, the gaussian curvature    
   

 
           

   of the surface. 

Proof: 

Using geodesic polar co-ordinate the metric is               

Hence                                   

Since F=0 for formula for the gaussian curvature is 

  
 

  
 

 

  
  

  

 
  

 

  
 
  

 
   = 

 

  

 

  
 
    

 
  

    

 
. 

Hence the gaussian curvature    
   

 
 in other words   satisfies the 

differential equation          

(The origin of a geodesic polar coordinates system is an artificial 

singularity.) 

Theorem: 

If    is the Gaussian curvature at the origin of a geodesic polar coordinates 

system then          
     

 
       

Proof: 
Since the metric in the geodesic polar coordinates approximates to the 

polar form in the plane. 

We can take                        
  

 
           

Using theorem (3) we have                       

Integrating (2) 

         
  

 
 

Since          so that      as    . 

Thus we have      
    

 
        

Integrating (3), once again we have, 

     
   

 

 
    

Since     which is zero at the origin     . 

Hence we have      
    

 
 

Theorem: 
If r is the radius of the geodesic circle with center at P then, 

i).             
     
 

 
    

 where c is the circumference of the geodesic 

circle. 

ii).             
     

      
 where A is the area of the geodesic disc. 

Proof: 

If P is the centre and r is the radius. then     is the geodesic circle in 

geodesic polar coordinates. 
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dv is the infinittesimal directed angle at P when we use the geodesic polar 

coordinates. 

The metric of the surface becomes              . 

Since                                              . 

If c is the circumference of the geodesic circle then, 

    
  

 

     
  

 

           
  

 

   
   

 

 
    

Hence        
    

 
        [by theorem 1] 

From the above formula, 

       
 

 
    

         

where    is the Gaussian curvature at the origin at P. 

From (2), we have             
     
 

 
    

 

ii). The elementary area              where u varies from 0 to r and 

v varies from 0 to     

Hence the area of the geodesic disc     
 

 
  

  

 
       [by theorem 1] 

     
   

 

 
    

 

 

  
  

 

  
   

 

 
       

 

 

     
 

 
    

    

     
 

  
   

  

So solving   , we have 

            
     

      
 

 

11.4 Check your progress 

 Define geodesic curvature 

 Derive the equation of geodesic curvature vector and normal 

             curvature 

 Define gaussian curvature 

 State gauss bonnet theorem 

11.5 Summary 

 The geodesic curvature vector of any curve is orthogonal to the curve. 

 For any curve on a surface the geodesic curvature vector is intrinsic. 

 The condition of orthogonality of the geodesic curvature vector       

with any vector (u,v) on a surface is           
            

 If   is the angle which the curve C makes with the parametric curve 

v=constatn . then              where   
 

   
               

  
 

   
          

 For any curve c which encloses a simply connected region R on a 

surface     is equal to the total curvature of the R. 
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11.6 Keywords 
Normal curvature: 

The normal component             is called the normal curvature at P where 

               . 

Geodesic curvature vector: 

The vector         with component       is tangential to the surface. 

The vector with components       of the tangential vector         to the 

surface is called the geodesic curvature vector at P. It is denoted by   . 

Definition: 

The geodesic curvature at any point of a curve denoted by    is defined as 

the magnitude of its geodesic curvature vector with proper sign.    is 

considered to be positive or negative according as the angle between the 

tangent to the curve and the geodesic curvature vector is 
 

 
  

  

 
, so we 

have            

Liouvillie’s Theorem: 

If   is the angle which the curve C makes with the 

parametric curve v=constatn . then               

where   
 

   
               

  
 

   
          

Gauss Bonet theorem:  
For any curve c which encloses a simply connected 

region R on a surface     is equal to the total curvature 

of the R. 

 

11.7 Self Assessment Questions and Exercises 

1. Prove that on a surface with the metric       
           the 

geodesic curvature of the curve u=constant is          

  
. 

2. If the parametric curves u=constant and v=constant are orthogonal, 

show that the geodesic curvature are - 
 

     
 
 

  
 (log   ), 

 

     
 
 

  
 (log 

  ). 

3. On the surface with                 where e and g are 

functions of u, v, show that the geodesic curvature of a curve which 

cuts the curve  v=constant at an angle         =
  

  
 

 

  
(   sin  

      ). 

4. Find the total curvature of a pentagon enclosing a simply connected 

region R on a surface. 

5. Find the Gaussian curvature K of a geodesic equilateral triangle on 

a surface. 

6. Find the Gaussian curvature at a point on a cone and on a cylinder. 

7. Show that the two surfaces r=(u cosv, u sinv, log u) and r=(u cosv, 

u sinv, v) have the same Gaussian curvture - 
 

       
 at a 

corresponding points. 

8. Find the isothermic system corrsponding to the analytic function 

          f(u,v)=  (cos v+i sin v). 
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11.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010) 
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BLOCK IV: LINES OF CURVATURE 

AND DEVELOPABLES 

 

UNT XII THE SECOND 

FUNDAMENTAL FORM 
Structure 

12.1 Introduction 

12.2 Objectives 

12.3 Second fundamental form 

12.4 Check your progress 

12.5 Summary 

12.6 Keywords 

12.7 Self Assessment Questions and Exercises 

12.8 Further Readings 

 

12.1 Introduction 
In this chapter, we studied the properties of surface in terms of the 

associated metrics involving E,F and G. What we did was to introduce     

and to study the properties in relation to the metric which is embedded in 

the surface. All our study at each stage reflected the properties of the first 

fundamental form which are called the intrinsic properties of the surface. 

In this chapter we shall study the second derivative     of a point on a 

surface giving quantities pertaining to the Euclidean space in which the 

surface is located leading to non-intrinsic properties of a surface. The 

properties of surface involving normal component of vectors associated 

with the surface are called non-intrinsic properties. 

After finding a formula for normal curvature    in terms of a 

quadratic form called the second fundamental form, we classify different 

points on a surface and find maximum and minimum curvature along a 

given direction leading to the definition of Gaussian curvature, mean 

curvature and principal directions. With the help of principal directions, we 

introduce special class of curves on a surface called lines of curvature 

which are characterised by Rodrique’s formula. Using principal direction 

and normal at a point on a surface, we define Dupin’s indicatrix giving rise 

to the definitions of conjugate and asymptotic directions on a surface. Then 

the envelope of the single parameter family of planes results in many 

developable surface whose properties we study with help of lines of 

curvature and Gaussian curvature. We conclude this chapter, with a study 

of minimal surfaces, ruled surfaces and third fundamental form. 

12.2 Objectives 
After  going through this unit, you will be able to: 

 Define envelope  

 Derive the second fundamental form 

 Derive Dupin’s theorem 

 Define lines of curvature 

 Solve the problems in second fundamental form 
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12.3 The second fundamental form: 
Just as the moving triad (t,n,b) serves as the coordinate system at any point 

on a space curve, the three linearly independent vectors (       ) at any 

point P on a surface form a coordinate system at P so that any vector 

through P can be represented as a linear combination of (       ).  

Theorem : If    is the normal curvature of a curve at a point on a surface, 

then 

   
                

                 where L=N.r   , M=N.r   , N=N.r    and 

E,F,G are the first fundamental coefficients. 

Proof: 

Let r be the position vector of any point on the curve. If    is the normal 

curvature of the curve at P on a surface, we know that 

                .....(1) 

Since              , taking dot product with N on both sides of (1), 

we obtain 

         ....(2) 

Since r is a function of u and v, we have 

   
  

  

  

  
 

  

  

  

  
           ....(3) 

Diff w.r to s, 

                                ....(4) 

But       
   

  
   

   

  
               ...(5) 

      
   

  
   

   

  
               ...(6) 

Using (5) and (6) in (4), we get 

                     
       

           ....(7) 

Taking dot product with N on both sides of (7) and using             
  and (2), we have 

                  
                         ....(8) 

If L=N.r   , M=N.r   , N=N.r   , we have 

                   =
                

    

Since                      

   
                

                 which gives the formula for the normal 

curvature of a curve at a point P on a surface.  

 

Definition: 

The quadratic form                  is called the second 

fundamental form of the surface and L,M,N which are functions of u,v are 

called second fundamental coefficients. 

Theorem  i)                                    

ii)   
           

 
   

           

 
 

           

 
   

           

 
 

Proof: 

At any point P on the surface         are tangential to the surface so that 

we have        ....(1)  

and in a similar manner        ....(2) 

Diff.(1) w.r to u, 

              giving             , since L=       we get 

L=       
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Diff.(1) w.r to v, 

              giving             , since M=       we get 

M=       

Diff.(2) w.r to u, 

              giving              

So that we have M=       

Diff.(2) w.r to v, 

              giving             , since N=       we get 

N=       

 

ii) To prove these formulae we use          in theorem:1 for 

L,M,N. Now                                            

Thus,                so that L=
 

 
             

Further                                            

Hence we have M=
 

 
            

 

 
            

Now                                            which 

gives N=
 

 
             

Example: 
Find L,M,N for the sphere r=(acosucosv, acosusinv, asinu) where u is the 

latitude and v is the longitude. 

  =(-asinu cosv, -asinu sinv, acosu) 

E=   

  =(-acosusinv , -acosu cosv, 0) 

G=        

F=     =0,  

H=              

HN=                                              

Hence N=
 

 
     =(-cosu cosv, -cosu sinv, -sinu) which shows that the 

normal is directed inside the sphere. 

  =(sinu cosv, sinu sinv, -cosu) 

  =(cosusinv , -cosu cosv, 0) 

Thus L=        , M=0 and N=              

 

Example: 
Find the second fundamental form for the general surface of revolution. 

r=(g(u)cosv, g(u)sinv,f(u)) ....(1) 

From (1)                                

E=  
    

  

                          

G=   

F=     =0,  

H=    
    

    

                              

                                   

                            

                             

HL=                                       

HM=              
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HN=                       

Hence II=
 

    
    

  

                                           , 

where II denotes second fundamental form. 

 

Example: 
Find the normal curvature of the right helicoid r(u,v)=(ucosv, usinv, cv) at 

a point on it. 

Now   =(cosv, sinv,0) 

  =(-u sinv, u cosv,c) 

E=     =1, F=     =0, G=            

   =(0,0,0),    =(-sinv, cosv,0),    =(-ucosv, -usinv,0) 

H=              

N=
     

 
 

 

 
                 

L=       , M=       
 

 
and N=        

Thus we have 

   
                

                  =
       

                 
, where          

 

Example: 
Prove that if L,M,N vanish at all points of a surface, then the surface is the 

plane.  

Let us suppose the surface be a plane surface. Then the surface normal N is 

a constant vector so that         .....(1) 

Now L=      , M==      =      , N=       ...(2) 

Using (1) in (2), we have L=M=N=0 

Conversely, let us assume that L=M=N=0 and show that the surface is a 

plane. For this it is enough if we show that the surface normal N is a 

constant vector. 

From hypothesis, we have            =0 ...(3) 

We know that          =0 ...(4) 

Eqn (3) and (4) together imply    and    are parallel to N. So let them 

      and       where       are constants. since N.N=1, we have 

from the above, 

N.     and N.     ....(5) 

Further from N.N=1, we get N.   =0 and N.  =0 ...(6) 

Using (6) in (5), we find  =0,  =0. 

This proves that    =   =0. Thus N is a constant vector which proves the 

result.  

 

Theorem: Meusnier theorem 

If   is the angle between the principal normal n to a curve on a surface and 

the surface normal N then          

Proof: 

We know that at any point on a curve on a surface                

....(1) 

Taking dot product with N on both sides of (1), we obtain 

         ....(2) 

But we know that     
  

  
    ....(3) 
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Using (3) in (2) we get, 

             

Thus the normal curvature    is the projection on the surface normal N of 

a vector of length k along the principal normal to the curve.  

 Example: 
Show that the curvature k at a point of the curve of intersection of two 

surface is given by           
    

            where    and    are 

the normal curvature of the surface in the direction of the curve at P and   

is the angle between their normals at the point. 

Let P be a point on the curve of intersection C of two surfaces    and    

with unit surface normal    and    at P respectively. 

By hypothesis            

Since       and n are perpendicular to the same tangent vector at P, they 

are coplanar and lie in the normal plane. If   is the angle between    and 

n, then              is the angle between    and n. If         are 

normal curvature at P on        , we have by meusnier’s theorem 

         and              ...(1) 

Since         ,      
      

 

 
    ...(2) 

We shall eliminate   between equation (1) and (2) 

                        ....(3)  

Using (2) in (3), we get 

                
      which gives (            

      
        which gives on simplification. 

          
    

            which proves the result. 

The result is true if       is the angle between    and n. 

Classification of points on a surface: 
Depending upon the sign of the normal curvature, we shall classify the 

points on the surface. To this end let us consider 

   
                

                 ...(1) 

Now                                     

                          =               ...(2) 

which is not necessarily positive at a point P on a surface. Thus       

is not always of the same sign, whereas       is always positive. 

Therefore we note that the denominator of    is always positive, whereas 

numerator of    is not necessarily positive. Sp the sign    depends upon 

the second fundamental form in the numerator of (1). 

The second fundamental form                  ...(3) is a 

quadratic form in du and dv. The discriminant of the quadratic form is 

     . 

Using the discriminant, we can rewrite the second fundamental form as  

                 
 

 
                        

The above quadratic form is positive definite, a perfect square or indefinite 

according as LN-    , LN-     or LN-    . So we shall 

consider the following three particular case. 
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Case:1 

Let LN-    . since the discriminant is positive, the quadratic form is 

positive at any point P on the surface. Hence    has the same sign for all 

direction at P. In this case the point P is called an elliptic point. 

Case:2 

Let LN-    . since L 0, the quadratic form becomes(Ldu+Mdv)  . 

Hence    has the same sign for all direction through P except when      

which implies 
  

  
  

 

 
. In this case the point P is called a parabolic point. 

The critical directions are called asymptotic directions. 

Case:3 

Let LN-    . The quadratic form is indefinite and    does not retain 

the same sign for all direction at P. It may happen that    is zero, positive 

or negative. If k  =0, the two direction corresponding to   =0 form an 

angle with respect to the two roots (     ) and         of the quadratic 

form.    is positive for certain direction lying inside the angular region and 

negative for directions outside this angular region. The point P is called a 

hyperbolic point. The two critical directions bounding the angle are called 

asymptotic directions. 

Example: 

Show that the point of the paraboloid r=(ucosv, usinv,   ) are elliptic but 

the points of the helicoid r=(ucosv, usinv, av) are hyperbolic. 

We find L,M,N 

For the paraboloid, r=(ucosv, usinv,   ) 

Then                   

                     

                                                    

Now HL=[         ]=  
   
          
            

   

                                   =2u 

In a similar manner HN=[              and HM=[         ]=0 

Hence LN-M   
   

   which is always positive so that every point on the 

paraboloid is elliptic. 

For the helicoid r=(ucosv, usinv, av) 

                 

                     

                                                     

Using the same formula as in above, 

HL=[         ]=0, HN=[             and HM=[         ]=-a 

Hence LN-M   
   

  
 which is negative so that every point of the helicoid 

is hyperbolic. 

Example: 
Show that the anchor ring contains all three types of points namely elliptic, 

parabolic and hyperbolic on the surface. 

Any point on the surface of the anchor ring is 

r=[b+acosu)cos v, (b+acosu)sinv, asinu] 

where        and        

Using the sign LN-M  , we shall find the nature of points on the anchor 

ring. 



 

137 

 

Self-Instructional Material 

 

 
Second Fundamental Form 

 

 

NOTES 

  =(-asinu cosv, -asinu sinv, acosu) 

  =(-(b+acosu)sinv,(b+acosu)cosv, 0) 

     =(b+acosu)[-acosu cosv, -asinv cosv, -asinu] 

E=  
    , F=     =0, G=  

             

and H=a(b+acosu) 

   =(-acosu cosv, -acosu sinv, -asinu) 

   =(-asinu sinv, -asinu cosv, 0) 

  =[-(b+acosu) cosv, -(b+acosu) sinv, 0) 

L=
     

 
 

               

          
 

             =(b+acosu)cosu 

Using the above values of L,M,N, we get 

LN-M  =a(b+acos u)cosu 

Since    , (b+acosu) is positive for all values of u in its domain. So, the 

sign of LN-M   is determined only by cosu alone. This leads to the 

following three cases of u. 

Case:1 

Let     
 

 
 or 

  

 
     . Then cosu is positive and so LN-M   is 

positive. So all those points corresponding to these values of u are elliptic. 

The points on the torus corresponding to these values of u are at a distance 

greater than b from the axis of rotation. Hence the points on the torus 

whose distance from the axis of rotation are greater than b are elliptic 

points. These are outside points which can be obtained by rotating BCA. 

Case:2 

Let u=
 

 
  

  

 
. Then cosu=0 which implies LN-M  =0. Hence all points for 

which u=
 

 
  

  

 
 are parabolic. As v varies, the point lie on circles of radii 

b at the top and bottom of the surface obtained by rotating B and A. 

Case:3 

Let 
 

 
   

  

 
. Since cos u is negative in this range, LN-M   is negative. 

So all points in the redgion are hyperbolic. The points on the torus 

corresponding to these values of u are at a distance less than b from the 

axis of rotation. Hence the points on the torus whose distance are less than 

b are hyperbolic points and these are inside points which are obtained by 

rotating BDA.  

Theorem 2.29 

 If    is the perpendicular distance of a point Q on the surface near the 

given point P on the surface to the tangent plane at P, then  

   
 

 
                   

The second fundamental form at any point P(u,v) on the surface is equal to 

twice the length of the perpendicular from the neighbouring point Q on the 

tangent plane at P. 

Proof: 
Let r(u,v) be the given point P on the surface and let its neighbouring point 

Q be r(u+du,v+dv) on the surface. 

Let d be the perpendicular distance of Q from the tangent plane at P. 

Then d=QM=Projection of       QM 

                     =      =[r(u+du,v+dv)-r(u,v)].N 

Using Taylor’s theorem and omitting higher order infinitesimals, 
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d=             
 

 
                            

Since N.           , we have 

d=
 

 
                               

d=
 

 
                   

which proves the geometrical interpretation of the second fundamental 

form.  

 Principal curvature: 

As the normal curvature    at P is a function of l=
  

  
 and m=

  

  
 at P, the 

normal curvature at P varies as (l,m) changes at P. Hence we seek to find 

the direction at P along which the normal curvature at P has maximum or 

minimum values. This leads to the notion of principal curvatures and 

principal directions at P. Hereafterwards, let us denote    by k. 

Definition: 

If    and    are the principal curvature at a point P on the surface, then the 

mean curvature denoted by   is defined as   
 

 
        

From the sum of the roots of the equation, we have 

  
 

 
        

         

        
 

Definition: 

If    and    are the principal curvature, the Gaussian curvature denoted by 

K is defined as K=     

From the product of the roots of the equation, we have K=    
     

      

Note:1 
We shall prove later the definition of Gaussian curvature defined by exC 

and the above definition are equivalent. 

Note:2 
The value of the Gaussian curvature is independent of the parametric 

system chosen. 

Let us consider the parametric transformation u=         and v=         

We have 

                  ,                    

where J is the jacobian of the transformation. 

Hence    
        

        
 

         

         
 

      

      
     

Thus we have       showing that the Gaussian curvature is independent 

of the parametric system chosen. 

Note:3 
Using the definition of Gaussian curvature, we can characterise different 

points on a surface as follows. 

From the definition of Gaussian curvature, we have K=    
     

     
 

We know that          is always positive. 

If K is positive at a point P on a surface, than         which means 

that P is an elliptic point. Hence a point on a surface is an elliptic point if 

and only if two principal curvature at a point P are of the same sign. 

If K is negative at a point P on a surface, than         which means 

that P is an hyperbolic point. Hence a point on a surface is an hyperbolic 

point if and only if two principal curvature at a point P are of the opposite 

sign. 
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If K=0 at a point P on a surface, than         which means that P is 

an parabolic point. Hence a point on a surface is an parabolic point if and 

only if atleast one of the principal curvature is zero. 

Example: 
Find the principal direction and principal curvature at a point on the 

surface x=a(u+v), y=b(u-v), z=uv. 

The position vector of any point P on the surface is 

r=[a(u+v),b(u-v), uv] 

Then                        

     =[b(u+v),a(v-u),-2ab] 

                                        

E=        , F=        , G=         

L=     =0, M=
     

 
 

    

 
, N=0 

Now       
      

  
 which is always negative. 

Hence every point on the surface is a hyperbolic point. 

The principal direction are given by  

 
            

   
   

  which gives            , since 

M 0 

Substituting the value of E and G in above equation, 

we get                               

or 
  

         
  

  

         
 giving the principal directions. 

The principal curvature are given by the equation 

                                 
Substituting the value of E,F,G and L,M,N and simplifying 

                            

The principal curvature    and    are the roots of the above equation. 

Hence the mean curvature   
 

 

             

   

The Gaussian curvature K=
      

   

Example: 
Show that all points on a sphere are umbilics. 

The representation of a point on a sphere with colatitude u and longitude v 

as parameter is r=(asinu cosv, asinu sinv, acosu) 

For this parametric representation of a point on a sphere we shall find first 

and second fundamental forms at a point and shoe that 
 

 
 

 

 
 

 

 
 so that 

every point on a sphere is an umbilic. 

  =(acosu cosv, acosu sinv, -asinu) 

  =(-asinu sinv, asinu cosv, 0) 

E=        , F=     =0, G=              

                                              

and            

We shall use the scalar triple product formula to find L,M,N 

LH=               
                          
                        
                    

   

Hence   
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In a similar manner, M=
           

 
=0 

and N=
           

 
 

        

      
         

Now, 
 

 
 

 

 
 

 

 
 gives 

  

   
 

 
 

       

       
  

 

 
  

Thus all points on a sphere are umbilics and the principal directions are 

indeterminate at any point on the sphere. 

Lines of curvature: 
At each point on the surface, we have two mutually perpendicular 

directions along which the normal curvature has extreme values. So the 

question aries whether there exists curves on the surface such that the 

tangent at each point on the curve on the surface coincide with one of the 

principal directions. This leads to the notion of lines of curvature. 

Definition: 
A curve on a given surface whose tangent at each point is along a principal 

direction is called a line of curvature. 

From the above definition, first we note the following properties of the 

lines of curvature. 

i) Differential equation of lines of curvature. Taking l=
  

  
 and m=

  

  
 

in equations, the principal directions are given by 

(Ldu+Mdv)- (Edu+Fdv) =0 ...(1) 

(Mdu+Ndv)- (Fdu+Gdv) =0 ....(2) 

when   is one of the principal curvatures, we get the equations of the lines 

of curvature as 

                    

                    

ii) Eliminating   between (1) and (2), the combined equation of the 

two families of lines of curvature is  

                                    ...(3) 

Since (3) also gives the orthogonal principal directions, the two lines of 

curvature at any point on the surface are orthogonal. Thus the lines of 

curvature at any point on the surface form two sets of curves intersecting at 

right angles. 

From the existence of solution of the ordinary differential equation (3), we 

conclude that these curves cover the surface without gaps in the 

neighbourhood of every point except umbilics. Since the curves cover the 

surface simply without gaps, we can take them to be orthogonal parametric 

curves in our future discussion.  

Theorem:  Rodrique’s formula 

A necessary and sufficient condition for a curve on a surface to be a line of 

curvature is       =0 at each point of the lines of curvature, where   is 

the normal curvature in the direction dr of the line of curvature. 

Proof: 
To prove the necessity of the condition, let the given curve on the surface 

be a line of curvature. Then the direction (du,dv) at any point P on the 

curve is a principal direction at (u,v) on the surface given by 

                    ..(1) 

                    ...(2) 

when   is one of the principal curvatures at (u,v) Let us write (1) 

and (2) by grouping the fundamental coefficient of the same kind 

(Ldu+Mdv)- (Edu+Fdv) =0  



 

141 

 

Self-Instructional Material 

 

 
Second Fundamental Form 

 

 

NOTES 

(Mdu+Ndv)- (Fdu+Gdv) =0 ....(3) 

Using the values 

L=                                in the first equation 

of (3) we obtain 

                                 ....(4) 

Now dr=
  

  
   

  

  
             ....(5) 

dN=
  

  
   

  

  
             ....(6) 

Using (5) and (6) in (4), we get             ....(7) 

Similarly using the values 

M=                                in the second equation of 

(3) and simplifying using (5) and (6) 

We obtain              ....(8) 

We claim that             

Since N is a vector of constant modulus1,   =1 so that N.dN=0 so that dN 

is perpendicular to N. That is dN is tangential to the surface. Since dN and 

dr are tangential to the surface at P,          is also tangential to the 

surface. Hence it lies in the plane of vectors    and   . 

From (7) and (8), we conclude that          is perpendicular to    and 

  . Therefore          is parallel to       which is the direction of the 

surface normal. Hence          is parallel to the surface normal 

contradicting the fact that          is tangential to the surface. This 

contradiction proves that         =0. 

To prove the sufficiency of the condition, let us assume that there is a 

curve on the surface for which         =0 for some function   at a 

point P on the surface. On this assumption, we must show that this curve is 

a line of curvature on the surface having   for its normal curvature at P. To 

prove this, it is enough if we show that at each point of the curve, its 

direction coincides with the principal direction. 

Since         =0, we have             ,              

....(9) 

Hence if (du,dv) is the direction of the curve at a point (u,v), then by 

retracing the steps, (9) gives the equation 

                    

                     
so that the direction at (u,v) coincides with the principal direction. 

Further since       =0, we have         

Substituting for dr and dN from (5) and (6), we get 

                          ....(10) 

Taking dot product with           on both sides of (10), we have 

                                            
      ....(11) 

Using the fundamental coefficients E,F, G and L,M,N 

(11) gives                                  
      

So that   
                

                , which proves that   is the normal curvature 

of the curve at P in the direction (du,dv). Since (du,dv) gives the principal 

direction at P,   is the principal curvature at P. Therefore the direction at 

each point of the curve is the principal direction having   for its normal 

curvature in the principal direction. Hence the curve must be a line of 
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curvature on the surface and this complete the proof of Rodrique’s 

formula.  

Theorem 

A necessary and sufficient condition that the line of curvature be the 

parametric curves is that F=0, M=0. 

Proof: 
Let the lines of curvature be taken as parametric curves. Since they are 

orthogonal ,F=0. .....(1) 

Since F=0,       0 implies E 0 and G 0 ....(2) 

The differential equation of the line of curvature is 

                                    ....(3) 

The differential equation of the parametric curve is 

dudv=0 ...(4) 

Since (3) and (4) are identical, we must have 

EM-FL=0 and FN-GM=0 .....(5) 

Since F=0,     and G   we get M=0 from (5) 

Thus F=0, M=0, the differential equation of the lines of curvature to be 

parametric curves. 

Conversely, if F=0, M=0, the differential equation of the line of curvature 

(3) reduce to (EN-GL)dudv=0 

Since EN-GL 0, dudv=0 so that the lines of curvature become parametric 

curves.  

Theorem: Euler theorem 

If   is the normal curvature in a direction making an angle   with the 

principal direction v=constant, then                
   where    

and    are principal curvature at the point P on the surface. 

Proof: 

Since             =1, the normal curvature at any point P in the 

direction (l,m) is 

               ....(1) 

Let us choose the lines of curvature at P as parametric curves. 

Then by the theorem, M=0,F=0 so that (1) becomes 

          ,......(2) 

The direction coefficient of the parametric curves v=constant and 

u=constant are  
 

  
    and    

 

  
 . 

If    and    are the normal curvature along these principal directions, then 

from (2), we obtain 

     
 

  
   

 

 
,      

 

  
   

 

 
 

If   is the angle between the given direction (l,m) and the principal 

direction  
 

  
   , then using the cosine formula cos              

          

We obtain        
 

  
     so that l=

    

  
 ....(4) 

Since the parametric curves are orthogonal, the angle between the direction 

(l,m) and (  
 

  
) is        

Hence cos               
 

  
     so that m=

    

  
 ....(5) 

Using the values of (l,m) in (4) and (5) in (2), we get 
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Since    
 

 
,    

 

 
 

We obtain                
  , which completes the proof of Euler’s 

theorem.  

Corollary: Dupin’s theorem 
The sum of the normal curvature at any point on the surface in two 

directions at right angles is constant and equal to the sum of the principal 

curvature at that point. 

Proof: 

Let    and    be the principal curvature at any point P on the surface. Let 

   and    be the normal curvature along the directions making angles   , 

   with the principal direction such that    
 

 
    

Hence by Euler’s theorem, we have 

                 
    ....(1) 

                 
    ....(2) 

Since    
 

 
   , we get from (2) 

                 
    ....(3) 

Adding (1) and (3), we get 

                              
            

Hence              

 Example: 
Show that the meridians and parallels of a surface of revolution are its lines 

of curvature. 

The position vector of any point on the surface of revolution is 

 r=(u cosv, u sinv, f(u)) .....(1) 

We know that the meridian v=constant and the parallel u=constant are 

parametric curves. By theorem, the parametric curves are lines of curvature 

if an only if F=0 and M=0. So it is enough if we prove F=0, M=0. 

From (1), we have                   and 

  =(-usinv, ucosv,0) 

Hence      =F=0. 

Further                             

and    =(-sinv, cosv,0), since    is a function of u only. 

Now M=
           

 
 

             =
 

 
                           

Since H 0, M=0 

12.4 Check your progress 

 State second fundamental form 

 Define principal curvature  

 State Rodrigue’s formula 

 State Euler’s formula 

12.5 Summary 

If    is the normal curvature of a curve at a point on a surface, then 

   
                

                 where L=N.r   , M=N.r   , N=N.r    and 

E,F,G are the first fundamental coefficients. 

 

If   is the angle between the principal normal n to a curve on a surface and 

the surface normal N then          
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The second fundamental form at any point P(u,v) on the surface is 

equal to twice the length of the perpendicular from the neighbouring point 

Q on the tangent plane at P. 

all points on a sphere are umbilics. 

12.6 Keywords 

Second fundamental form:The quadratic form                  

is called the second fundamental form of the surface and L,M,N which are 

functions of u,v are called second fundamental coefficients. 

Principal curvature: As the normal curvature    at P is a function of l=
  

  
 

and m=
  

  
 at P, the normal curvature at P varies as (l,m) changes at P. 

Hence we seek to find the direction at P along which the normal curvature 

at P has maximum or minimum values. This leads to the notion of principal 

curvatures and principal directions at P. Hereafterwards, let us denote    

by k. 

Mean Curvature: If    and    are the principal curvature at a point P on 

the surface, then the mean curvature denoted by   is defined as   
 

 
       . From the sum of the roots of the equation, we have 

  
 

 
        

         

        
 

Lines of curvature: At each point on the surface, we have two mutually 

perpendicular directions along which the normal curvature has extreme 

values. So the question aries whether there exists curves on the surface 

such that the tangent at each point on the curve on the surface coincide 

with one of the principal directions. This leads to the notion of lines of 

curvature. 

12.7 Self Assessment Questions and Exercises 
1. For the surface r=(u cosv, u sinv, f(u)), find 

i) The principal direction and principal curvature at any point on the 

surface. 

ii) The normal curvature along a direction making an angle  
 

 
 with the 

merdian of the surface. 

2. Find the position vector of any point on a surface generated by 

tangents to a twisted curve. Obtain the principal direction and 

principal curvature at any point on the suface. 

3. Find the Gaussian curvature of the conoid r(u,v)= (u cosv, u sinv, cos 

2v). 

4. Find the Gaussian curvature and mean curvature of the helicoid 

r(u,v)=(u cosv, u sinv, f(u)+cv). Show that the Gaussian curvature is 

a constant along a helx. Find also the mean curvature along the helix. 

5. Show that the Gaussian curvatur and mean curvature on the surface 

x=u+v, y=u-v, z=uv at the point x=2, y=0, z=1 are K=- 
 

  
  and µ=

 

   
. 

6. Find the nature of the points on the following surface. 

 i) r(u,v)=(u,v,  -  )        ii) r(u,v)=(u,v,  +  ) 

7. Show that all points on a tangent surface of a curve C are parabolic. 

8. Show that the points of the paraboloid r(u,v) = (u cosv, v sinv,    ) 

are elliptic but the points of the helicoid r(u,v) =(u cosv, u sinv, v) are 

hyperbolic. 

9. Find the differential equation of the lines of curvature of the surface 
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generated by i) binormals and ii) principal normals of a twisted 

curve. 

10. Find the line of curvature on a plane.  

11. Show that any curve on a sphere is a line of curvature. 

12. If a plane or a sphere cuts a surface everywhere at a constant angle, 

prove that a curve of intersection is a line of curvature on the surface. 

12.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010). 
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UNIT XIII DEVELOPABLES 
Structure 

13.1 Introduction 

13.2 Objectives 

13.3 Developables 

13.4 Check your progress 

13.5 Summary 

13.6 Keywords 

13.7 Self Assessment Questions and Exercises 

13.8 Further Readings 

 

13.1 Introduction 
This chapter deals with the concept of developable surfaces. In the 

plane,we find the envelope of straight lines. The extension of the notion of 

envelope of straight lines to envelope of planes in space leads to what are 

called developable surfaces. When we specialise to different planes such as 

osculating plane at a point on a space curve, we different developable 

surfaces. 

13.2 Objectives 
After  going through this unit, you will be able to: 

 Define developable surface. 

 Define characteristic line 

 Derive the properties of developable surface 

 Define osculating plane of surface 

13.3 Developables 

Developable surfaces: 
In a plane, we find envelope of straight lines. For example the envelope of 

the normals to a curve leads to the evolute in the plane. The extension of 

the notion of envelope of straight lines to envelope of planes in space leads 

to what are called developable surfaces. When we specialise to different 

planes such as osculating plane at a point on a space curve, we get different 

developable surface. 

Definition: 
The envelope of one parameter family of planes is called a developable 

surface or a developable. 

Definition: 
The line of intersection of the two consecutive planes is called the 

characteristic line. 

Definition: 
When the planes f(u)=0, f(v) and f(w)=0 intersect at a point, the limiting 

position of the point of intersecting of the three planes as v u and     

is called the characteristic point corresponding to the plane u. 

When v u and    , it gives rise to two characteristic lines. So when 

v,w u, these two characteristic line will pass through the characteristic 

point so that the characteristic point can be defined as the ultimate point of 

intersection at the two consecutive characteristic lines. 
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Theorem  

The characteristic point of the plane u is determined by the equations 

r.a=p,         and r.      ...(1) 

Proof: 
Let u,v,w be three neighbouring points such that f(u)=0, f(v)=0, f(w)=0. 

Hence by Rolle’s theorem there exist points       such that      

         foe which          and          

Using Rolle’s theorem again, there is a point    such that          

for which       =0. 

Hence when          all tends to u, we get 

 f(u)=0,         and         

or equivalently we get 

 r.a=p,         and r.       
Example: 
Let us consider a cylinder with its generators parallel to a. Then it has a 

constant tangent plane along a generator. Since the tangent plane along the 

generator depends upon only one parameter a, a cylinder can be considered 

as a developable surfaces as the envelope of the single parameter tangent 

planes along the generators. Since a is a constant vector          =0 so that 

the equation (1) does not have a solution. Therefore the characteristic point 

does not exist in this case.  

Example: 
A cone is a developable surface enveloped by the constant tangent planes 

along the generators of the cone. The generators of the cone are the 

characteristic lines. Since all the planes through the generator pass through 

the vertex of the cone, the vertex is the characteristic point of the surface. 

Example: 
Let us consider a family of planes forming a pencil. Then since the 

envelope of the planes is the axis, the developable is the axis of the pencil. 

Hence the point of intersection of the characteristic lines are indeterminate. 

Definition: 
The locus of the characteristic points is called the edge of regression of the 

developable.  

Theorem 

The tangent to the edge of regression are the characteristic lines of the 

developable. 

Proof: 
Let the developable be the envelope of the one parameter family of planes 

r.a=p. 

Let r=r(s) be the position vector of any point P on the edge of regression. 

Since P is on the edge of regression it is a characteristic point. 

Hence by the above theorem, it is given by the equation 

r.a=p....(1) 

       ....(2) 

r.      ....(3) 

where the solution r is a function of u. 

Diff. (1) w.r to u 
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Since 
  

  
 gives the tangent t to the edge of regression, using (2) in the above 

equation        =0. Since    0, we get t.a=0 .....(4) 

Diff (2) w r tou 

                 
Using (3) in the above equation, we have         =0 

Since    =0, we have        ....(5) 

(4) and (5) show that the tangent t to the edge of regression is parallel to 

      
Since the characteristic line lies in both the planes (1) and (2),it is 

perpendicular to both a and    and hence it is parallel to       
Since the tangent to the edge of regression and the characteristic line are 

parallel to the same vector to      and pass through r(u), the tangent to 

the edge of regression is the characteristic line of the developable.  

Theorem 

The osculating plane at any point on the edge of regression is the tangent 

plane to the developable at that point. 

Proof: 
First note that the edge of regression is a curve on the developable surface. 

From the equation (4) of the previous theorem, t.a=0 .....(1) 

Diff (1) w.r to u,  

 
  

  

  

  
        =0 

Using (5) of the previous theorem, we have (       =0 

Since     0, we get from the above step, n.a=0 ....(2) 

From (1) and (2) we see that a is perpendicular to both t and n. Hence a is 

parallel to t  n=b, the binormal at P on the edge of regression. 

Thus the osculating plane at P is identical with the corresponding plane of 

the parameter family. But each plane of the family is a tangent plane to the 

developable surface so that the osculating plane at any point on the edge of 

regression is the tangent plane to the developable surface at P.  

Theorem 

A developable consists of two sheets which are tangent to the edge 

regression along the sharp edge. 

Proof: 
Let O be the point s=0 on the edge of regression curve C and choose the 

orthogonal triad at O as the rectangular coordinate axes O(x,y,z). If R is the 

position vector of the point P(x,y,z) on the developable with respect to O, 

then we have 

R=xt+yn+zb .....(1) 

The position vector of any point on the developable surface is 

R(s,v)=r(s)+vt(s) .....(2) 

Let us expand r(s) and t(s) of (2) in power series of s by taylor series at the 

origin O. Then we get 

R= 
  

  
 

  

 

   

   
 

  

  

   

   
            

  

  
 

 

 
     

   
        ....(3) 

Using Frenet-serret formulae we simplify r(s) and t(s) as follows 

r(s)=   
  

 
   

  

 
                

=   
  

 
   

  

 
                    ....(4) 

vt=v       
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Using (4) and (5) in (3), we obtain, R(s,v)=   
  

 
   

  

 
         

                   
 

 
                       .....(6) 

Now equating the coefficient of t in (1) and (6), we have 

x=s-
 

 
               

  

 
          .....(7) 

Let us find the point of intersection of the developable with the normal 

plane x=0 at O. The value of the parameter of the point of intersection of 

the normal plane with the surface is obtained from x=0 in (7). Hence when 

x=0, we have from (7) 

v=-   
 

 
            

  

 
          

=-   
 

 
            

  

 
        

=  
 

 
          

Substituting the above values of v in (3), we get the position vector of the 

point of intersection of the surface and the normal plane at O. 

Then we have 

R(s,v)=   
  

 
   

  

 
                       

 

 
                 

 

 
                 .....(8) 

Equating the coefficients of t,n,b in (1) and (8), we get 

x=0, y=
 

 
         , z= 

 

 
           ....(9) 

which is a curve in the normal plane. 

Eliminating s between the equation (9), we get 

    
 

 

  

 
   .....(10),upto first approximation. 

Equating (10) shows that the intersection of the developable with the 

normal plane of the edge of regression has a cusp whose tangent is along 

y=0 and z=0 which is the principal normal. Thus two sheets of the 

developable surface are thus tangent to the edge of regression along a sharp 

edge. 

Example: 
Find the equation of the developable surface which has helix r=(acosu, 

asinu, cu) for its edge of regression. 

Since the developable surface is generated by the tangent to the edge of 

regression, let us find the tangent vector to the edge of regression. 

Now, 
  

  
 

  

  

  

  
                  

Since 
  

  
=t, we have  

  

  
           so that 

  

  
        

Hence t=
 

      
                 

If R is the position vector of a point on the surface, then 

R=r+vt=r+
 

      
                 

Substituting for r, we get the developable surface as 

R(u,v)=a        
 

      
             

     

      
          

 

      
   

Developables associated with space curves: 
At each point of a space curve, we have three planes viz. osculating plane, 

normal plane and rectifying plane. All the three planes contain only the 

arc-length s as parameter so that they are one parameter family of planes. 

So as in the previous section, we can find the envelopes of these single 
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parameter family of planes. These lead to the three kinds of developable 

surface viz. (i) the osculating developable (ii) the polar developable (iii) 

the rectifying developable. In each case we find the edge of regression of 

developable and finally, we obtain a criterian for a surface to be a 

developable surface.  

Definition: 
The envelope of the family of osculating planes of a space curve is called 

an osculating developables. Its characteristic lines are tangents to the curve 

and hence this developable is also called the tangential developable.  

Theorem 

The space curve is itself the edge of regression of the osculating 

developable. 

Proof: 
Let r=r(s) be the equation of the space curve and R be the position vector 

of any point on the osculating plane. Then the equation of the osculating 

plane is f(s)=(R-r).b=0 .....(1) 

Since r and b are functions of s, (1) is a single parameter family of planes. 

To find the equation of the osculating developable, let us differentiate (1) 

with respect to s, then 

                      
Using Serret-Frenet formula, we get 

                  

Since t.b=0 and   0, we get (R-r).n=0 ....(2),  

which is the rectifying plane at r=r(s) of the curve. 

Since the characteristic line is the intersection of (1) and (2), it is the 

tangent to C at r=r(s). Thus the characteristic lines to the osculating 

developable are tangent to C. 

To find the edge of regression, let us differentiate (2) with resprct to s, 

                giving                  =0  

Since   0 and t.n=0, using (1) in the last equation, we get 

(R-r).t=0 ....(3) 

which is the normal plane at r=r(s) to C. 

The point of intersection of (1), (2) and (3) is the characteristic point and 

its locus is the edge of regression. Since (1), (2) and (3) intersect at r=r(s) 

on the curve, every point r=r(s) of the curve is the characteristic point so 

that the characteristic points coincide with every point on the curve. 

Hence the edge of regression is the given curve.  

Definition: 
The envelope of the normal planes to the space curve is called the polar 

developables.  

Theorem 

The edge of regression of the polar developable of a space curve is the 

locus of the centre of spherical curvature. 

Proof: 
Let r=r(s) be the given space curve and R be any point on the normal plane. 

Then the equation of the normal plane is (R-r).t=0 .....(1) 

Since r and t are function of single parameter s, (1) is a single parameter 

family of planes whose envelope is the polar developable. To find the edge 

of regression, we shall find the characteristic point from the following 

equations. 

Differentiate (1) with respect to s, we have 
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Since            and t.t=1, we have 

             so that (R-r).n=
 

 
   ....(2) 

Differentiate (2) with respect to s, 

(R-r).           
Since              =t, we have 

                     
Using (1) and t.n=0, we obtain  

        
  

 
     ....(3) 

The point of intersection (1), (2) and (3) is the characteristic point and its 

locus is the edge of regression of the polar developable. 

Since (R-r) is orthogonal to t, (R-r) lies in the plane of n and b so that we 

can take  

          or           .....(4) 

where we determine the scalars      . 

Taking dot product with n on both sides of (4), we get 

(R-r).n=  ....(5) 

Comparing (2) and (5), we obtain     

Taking dot product with b on both sides of (4), we get 

                  

Since b.b=1, n.b=0, using eqn (3), we have      

Substituting the values of       in (4), we get 

            ....(6) 

which gives the position vector of the characteristic point but we know that 

R gives the position vector of the centre of spherical curvature. Thus the 

characteristic point of the polar developable coincide with the centre of 

spherical curvature.  

Hence the edge of regression of the polar developable is the locus of the 

centre of spherical curvature.  

Definition: 
The envelope of the family of the rectifying planes of a space curve is 

called rectifying developable.  

Theorem 

The edge of regression of the rectifying developable has the equation 

R=  
        

       
 

Proof: 
Let r=r(s) be the given space curve and R be any point on the rectifying 

plane. The equation of the rectifying plane is (R-r).n=0 ...(1) 

Since r and n are functions of s, (1) is a single parameter family of planes 

whose envelope is the rectifying developable.  

We shall find the edge of regression from the following equation. 

Differentiate (1), we obtain 

                

Since               and t.n=0, we get 

(R-r).       =0 ....(2) 

Differentiate (2) with respect to s, we get 

(R-r).                               

Since              and       we get 

(R-r).                               
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Since t.b=0, t.t=1, using (1), we get from the above equation, 

(R-r).           =0 ....(3) 

The edge of regression is the point intersection of (1), (2) and (3). From (1) 

and (2), (R-r) is perpendicular to n and        
So (R-r) is parallel to                 

Hence we can take (R-r)=         .......(4) 

where   is a scalar to be determined. 

Since t.t=1, b.b=1, t.b=1, using (3) in the above equation, 

               so that   
 

       
 

Using this value of   in (4) 

      
 

       
        which gives the edge of regression.  

Theorem 

Every space curve is a geodesic on its rectifying developable. 

Proof: 
The position vector R on the rectifying developable of the given curve 

r=r(s) is R=r(s)+u        ......(1) 

where u and s are parameter of the surface. 

Let us find the surface normal N to the surface. 

From (1),    
  

  
       and                         

=                     
=                

Hence                               
=               

u=0 on the curve r=r(s) so that          ....(2) 

Since      =HN, we get from (2), HN=  . 

Hence at each point of the curve, the vector N and n are parallel so that (1) 

is a geodesic on the surface which is the rectifying developable in this case.  

Theorem 

A necessary and sufficient condition for a surface to be a developable is 

that is Gaussian curvature shall be zero. 

Proof: 
To prove the necessity of the condition, let us assume that the surface is a 

developable and show that its Gaussian curvature is zero. 

If the developable is a cylinder or a cone, the Gaussan curvature is zero, 

since at each point on the cone or cylinder one of the principal directions is 

the gernerating straight line whose curvature is zero. 

Hence excluding these two cases of developables, we are left with 

developable in general. Since a developable can be considered as the 

osculating developable of its edge of regression, it is generated by the 

tangent to the edge of regression. 

Let r=r(s) be the equation of the edge of regression on the developable. If P 

is any point on this curve, then the tangent at P is the characteristic line of 

the developable. 

R can be taken as R(s,v)=r(s)+vt(s) ....(1) 

For this surface, let us find E,F,G,L,M and N and show that its Gaussian 

curvature   
     

     =0 

Using the suffixes 1 and 2 for differentiate with respect to s and v 

respectively. 
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          ,    =0 

E=      , F=       .t=1, 

G=t.t=1,               

N=
     

 
 

    

  
    

L=N.                                

M=N.           =0, 

N=N.   =-b.0=0 

Hence using the above values, the Gaussian curvature, 

  
     

     =0 

and this proves the necessity of the condition. 

To prove the converse, let us assume that K=0 for a surface r=r(u,v) and 

show that it is a developable surface. 

To this end, we have to show that r=r(u,v) is generated by a single 

parameter family of planes. 

Since L=                                  
                                    

=                

Since      =HN, we have                             
As    ,     implies       0 so that          =0 

Since N.N=1, we have N   =0 and        

So N is perpendicular to both    and   . Hence N is parallel to      . 

Thus                     cannot be zero unless   =0 0r   =0 or 

   is parallel to   . So          =0 under the given condition implies the 

following two cases. 

(i)   =0 0r   =0 (ii)        

Case:1 

Let us consider      only, since a similar argument is true for   =0. 

The equation of the tangent plane at r=r(u,v) on the surface is  

(R-r).N=0 .....(2) 

where R is the position vector of any point on the tangent plane and R is 

independent of u,v. 

Differentiate (2) partially with respect to v, we have 
 

  
                         ....(2) 

Now     ,       . 

Hence equation (3) gives 
 

  
         =0 so that (R-r).N is independent 

of v. 

Thus the surface is the envelope of a single parameter family of planes and 

hence it is a developable. 

Case:2 

In this case, when       , let us consider a suitable change of parameter 

from u,v to       so that we can use the previous case. 

Let the transformation be         and          
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This is a proper parametric transformation which preserves surface normal 

N. 

Now     
  

   
 

  

  
 
  

   
 

  

  
 
  

   
       0 

    
  

   
 

  

  
 
  

   
 

  

  
 
  

   
        

After the transformation     and     are not parallel as seen from the 

above equations. Since        as in the previous case, the tangent plane 

at P is a single parameter family of planes so that the given surface is a 

developable surface.  

Example 
Find the osculating developable of the circular helix r=(acosu, asinu, cu) 

Since the edge of regression of the osculating developable is the curve 

itself, the given helix itself is the edge of regression. Hence we have to find 

the developable surface having (1) as the edge of regression which is the 

same as example :4 in the previous section. 

Example 
Find the radii of principal curvature at a point of a tangential developable 

surface. 

Let the equation of the tangential developable be  

R(s,v)=r(s)+vt(s) ......(1) 

By previous theorem, we can find 

E=      , G=1, F=1, L=    , M=0, N=0, and H=v  ....(2) 

where     belong to the edge of regression. 

The equation giving the principal curvature is  

    
                        ....(3) 

Using (2) in (3), we get 

      
          or                

Hence the principal curvature are           
 

  
 

13.4 Check your progress 

 Define developable surface 

 Define edge of regression 

 State the properties ofdevelopable surface 

 Define osculating developable surface 

13.5 Summary 

 The envelope of one parameter family of planes is called a 

developable surface or a developable. 

 The characteristic point of the plane u is determined by the 

equations r.a=p,         and r.      
 The osculating plane at any point on the edge of regression is the 

tangent plane to the developable at that point. 

 A developable consists of two sheets which are tangent to the edge 

regression along the sharp edge. 

13.6 Keywords 
Developable: The envelope of one parameter family of planes is called a 

developable surface or a developable. 

Characteristic line: The line of intersection of the two consecutive planes 

is called the characteristic line. 

Characteristic Point: When the planes f(u)=0, f(v) and f(w)=0 intersect at 

a point, the limiting position of the point of intersecting of the three planes 
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as v u and     is called the characteristic point corresponding to the 

plane u. 

Osculating Developable: The envelope of the family of osculating planes 

of a space curve is called an osculating developables. 

Tangential Developable: The characteristic lines of osculating 

developable are tangents to the curve and hence this developable is also 

called the tangential developable.  

13.7 Self Assessment Questions and Exercises 

1. Find the direction conjugate to u=constant on a surface  

        r(u,v)= (u cosv, u sinv,f(u)) 

2. Obtain the differential equation of the asymptotic lines on the  

              surface of revolution r(u,v)= (u cosv, u sinv, f(u)) 

3. Find  the asymptotic lines on the paraboloid of revolution  

              z=  +  . 

4. Prove that the generators of a ruled surface are asymptotic lines. 

5. Find the condition for the asymptotic lines to be orthogonal. 

6. Prove that the normal curvature in a direction perpendicular to 

              an asymptotic line is twice the mean normal curvature. 

13.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010).
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UNIT XIV 

DEVELOPABLES ASSOCIATED WITH 

CURVES ON SURFACES 
Structure 

14.1 Introduction 

14.2 Objectives 

14.3 Developables associated with curves on surfaces. 

14.4 Check your progress 

14.5 Summary 

14.6 Keywords 

14.7 Self Assessment Questions and Exercises 

14.8 Further Readings 

 

13.1 Introduction 
In this chapter, the concept of developables associated with curves on 

surfaces are explained. Also the theorem of Monge formed by surface 

normals along the curve and Rodrique’s formula are also derived. Some 

properties of developable associated with curves are established and some 

problems are given. 

13.2 Objectives 
After  going through this unit, you will be able to: 

 Derive the Monge’s form of surface. 

 Derive the Rodrique’s formula  

 Solve the problems in developables associated with curves on 

surfaces. 

13.3 Developables associated with curves on surfaces. 
Theorem: Monge’s theorem 

A necessary and sufficient condition that a curve on a surface be a line of 

curvature is that the surface normals along the curve form a developable. 

Proof: 
Let r=r(s) be a curve on the surface r=r(u,v). Let N be the unit surface 

normal at a point r=r(s) on the curve so that N can be considered as a 

function of s only. We shall prove the theorem in the following two steps. 

Step:1 

In this step, we prove that the normals to the surface r=r(u,v) along the 

curve r=r(s) form a developable if and only if         =0. 

If R is the position vector of any point Q on the surface normal along the 

curve, then R is a point on the developable generated by the normals and it 

can be taken as R(s,v)=r(s)+vN(s), where v is the distance PQ along the 

surface normal at P.  

The surface generated by the surface normals is a developable if and only 

if its Gaussian curvature is zero at every point. This implies that    
  =0 at every point of the surface. Hence let us find L,M,N for the 

surface. 
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Now L=                  0 

HM=                         
So we have HM=                    ....(1) 

Since N  is equal to                .....(2) 

As   0, using (2) in (1), 

M=
 

 
         

 

 
         

Since    =0 and   0, HN=[         ]=0 so that N=0 

As   0, and N=0,      =0 if and only if M=0 which gives 

        =0. 

Step:2 

To prove the theorem, it is enough if we show that         =0 is the 

necessary and sufficient condition for r=r(s) to be a line of curvature on the 

surface r=r(u,v). 

To prove the necessity of the condition, let us assume that r=r(s) is a line of 

curvature on r=r(u,v). Then we have by Rodrique’s formula 

 
  

  
 

  

  
   which gives       .....(3)  

Using (3), we have                   =0 

Hence the surface normal along the curve r=r(s) form a developable 

surface. 

Conversely, assuming         =0, we show that r=r(s) is a line of 

curvature on the surface. 

Now         =0 implies         =0 which is the same as          
 . 

Further   0 and      so that     =0 showing    is perpendicular to 

N. That is    is in the tangent plane at P. 

Hence      is parallel to N. So if      0.          cannot be zero 

because two non zero parallel vectors      and N will have scalar 

product different from zeros. So we conclude that         =0 implies 

    =0 which is true if and only if one vector is a scalar multiple of the 

other. 

So we can take        for some constant  . 

Now        gives 
  

  
   

  

  
 or dN+   =0 which is the Rodrique’s 

formula characterising the line of curvature. Thus r=r(s) is a line of 

curvature on the surface. 

This completes the proof.  

Theorem 

Let C be a curve r=r(s) lying on the surface r=r(u,v) and P be any point on 

C. Then the characteristic line at P of the tangential developable of C is in 

the direction conjugate to the tangent to C at P. 

Proof: 
If N is the surface normal at P, then the equation of the tangent at P is (R-

r).N=0 .....(1) 

Diff w.r to s and using t.N=0, we get 

      
  

  
=0 ....(2) 

Since N is a function of (u,v), we have  
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           ....(3) 

where         gives the direction of the tangent at P. 

Using (3) in (2), we get 

                 =0 ....(4) 

The characteristic line is the intersection of the plane (1) and (4). If (l,m) 

are the direction coefficient of the characteristic line at r=r(s), then  (R-

r)=        ....(5) 

where    and    are the tangential components of (R-r) at P. 

Using (5) in (4), we have                      =0 

Expanding the above equation 

                                              

Hence                     =0 which is precisely the condition 

for the direction (l,m) to be conjugate to the direction         which is the 

direction of the tangent at P.  

14.4 Check your progress 

 Define Monge’s form. 

 Derive the necessary and sufficient condition that a curve on  a 

surface be a line of curvature is that the  surface normals along the 

curve form a developable 

14.5 Summary           

 A necessary and sufficient condition that a curve on a surface be a 

line of curvature is that the surface normals along the curve form a 

developable. 

 Let C be a curve r=r(s) lying on the surface r=r(u,v) and P be any 

point on C. Then the characteristic line at P of the tangential 

developable of C is in the direction conjugate to the tangent to C at 

P. 

14.6Keywords 

Monge’s form: The necessary and sufficient condition that a curve on  a 

surface be a line of curvature is that the  surface normals along the curve 

form a developable. 

14.7 Self Assessment Questions and Exercises 
1. Prove that the surface generated by the tangents to a twisted curve is a 

developable surface. 

2. Obtain the tangential developable of the curve r=(u,      ), 

3. Show that the edge of regression of the polar developables of a curve 

of constant curvature is the locus of its centre of curvature. 

4. Find the curvature and torsion of the edge of regression of the 

osculating developables. 

5. Show that the surfce sin z= sinhx. sinhy is minimal. 

6. Find the ruled surface formed by the principal normals of a curve. 

7. Obtain the distribution of parameter and the striction line of the 

surface r=(u cosv, u sinv, av). 

14.8 Further Readings 
1. D.G. Willmore – An Introduction to Differential Geometry, Oxford 

University Press(1983). 

2. D.Somasundaram – Differential Geometry A First Course, Narosa 

Publishing Pvt.Ltd.(2010). 


