WAEC Mathematics

Syllabus

SSCE & GCE (all countries)

STUDY TIP

Study only the topics in this syllabus *but ALSO* with **past questions** to know the *most common topic(s)*, number of questions asked *per* topic and how to *correctly* answer each question in any topic. <u>To download our free WAEC</u>

Mathematics past questions PDF now...

Click on the link below.

<u>www.examministry.com</u>

AIMS OF THE SYLLABUS

The aims of the syllabus are to test candidates':

- (1) mathematical competency and computational skills;
- understanding of mathematical concepts and their relationship to the acquisition of entrepreneurial skills for everyday living in the global world;
- (3) ability to translate problems into mathematical language and solve them using appropriate methods;
- (4) ability to be accurate to a degree relevant to the problem at hand;
- (5) logical, abstract and precise thinking.

This syllabus is not intended to be used as a teaching syllabus. Teachers are advised to use their own National teaching syllabuses or curricular for that purpose.

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.

PAPER 1: will consist of fifty multiple-choice objective questions, drawn from the common areas of the syllabus, to be answered in 1¹/₂ hours for 50 marks.

PAPER 2: will consist of thirteen essay questions in two sections – Sections A and B, to be answered in 2½ hours for 100 marks. Candidates will be required to answer ten questions in all.

- Section A Will consist of five compulsory questions, elementary in nature carrying a total of 40 marks. The questions will be drawn from the common areas of the syllabus.
- Section B Will consist of eight questions of greater length and difficulty. The questions shall include a maximum of two which shall be drawn from parts of the syllabuses which may not be peculiar to candidates' home countries. Candidates will be expected to answer five questions for 60marks.

DETAILED SYLLABUS

The topics, contents and notes are intended to indicate the scope of the questions which will be set. The notes are not to be considered as an exhaustive list of illustrations/limitations.

TOPICS	CONTENTS	NOTES
A. NUMBER AND NUMERATION		
(a) Number bases	 (i) conversion of numbers from one base to another (ii) Basic operations on number bases 	Conversion from one base to base 10 and vice versa. Conversion from one base to another base . Addition, subtraction and multiplication of number bases.

www.examministry.com

(b) Modular Arithmetic	(i) Concept of	Interpretation of
	Modulo Arithmetic.	modulo
		arithmetic e.g.
		6 + 4 =
	(ii) Addition,	
	subtraction and	
	multiplication	b(mod6),
	operations in	
	modulo	etc.
	arithmetic.	
	(iii) Application to	Polato to markat
	(iii) Application to	
	daily life	days, clock,shift
		duty, etc.
(c) Fractions Desimals and	(i) Pacia aparationa	
(c) Fractions, Decimals and		
Approximations	on fractions and	A
	decimals.	Approximations
	(ii) Approximations	
	_	realistic e.g. a
	figures.	road is not
		measured
		correct to the
		nearest cm.
(d) Indices	(i) Laws of indices	e.g. $a^x \ge a^y = a^x$
		$^{+ y}$, $a^{x} \div a^{y} = a^{x}$

	(ii) Numbers in standard form (scientific notation)	negative and
		Expressionoflargeandsmallnumbersinstandardforme.g. 375300000 = 3.753×10^8 0.00000035= 3.5×10^{-7} Useoftablesofsquares,squarerootsandreciprocalsisaccepted.
(e) Logarithms	(i) Relationship between indices	

	and logarithms	Calculations
	_	
		involving
	10 ^k implies	multiplication,
	$\log_{10} y = k.$	division, powers
	(ii) Basic rules of	and roots.
	logarithms e.g.	
	$\log_{10}(pq) =$	
	$\log_{10}p + \log_{10}q$	
	$\log_{10}(p/q) =$	
	$\log_{10}p - \log_{10}q$	
	$\log_{10}p^n =$	
	$n\log_{10}p.$	
	(iii) Use of tables of	
	logarithms and	
	antilogarithms.	
(f) Sequence and Series	(i) Patterns of	Determine any
	sequences.	term of a given
		sequence. The
		notation $U_n =$
		the nth termof a
		sequence may
	(ii) Arithmetic	be used.
	progression (A.P.)	
	Geometric	Simple cases
	Progression (G.P.)	only, including
		word problems.

		(Include sum for
		A.P. and exclude
		sum for G.P).
(g) Sets	(i) Idea of sets,	Notations: \mathcal{E} , \subset ,
	universal sets,	∪, ∩, { } , Ø , P′
	finite and infinite	(the compliment
	sets, subsets,	of P).
	empty sets and	
	disjoint sets.	♦● properties
	Idea of and	e.g.
	notation for union,	commutative,
	intersection and	associative and
	complement of	distributive
	sets.	
	(ii) Solution of	Use of Venn
	practical problems	diagrams
	involving	restricted to at
	classification using	most 3 sets.
	Venn diagrams.	
(h) Logical Reasoning	Simple statements.	Use of symbols:
	True and false	\Rightarrow , \Leftarrow , use of
	statements.	Venn diagrams.
	Negation of	
	statements,	
	implications.	

(i) Positive and negative	The four basic	Match rational
integers, rational	operations on	numbers with
numbers	rational numbers.	points on the
		number line.
		Notation:
		Natural numbers
		(N), Integers
		(Z), Rational
		numbers (Q).
(j) Surds (Radicals)	Simplification and	Surds of the
	rationalization of	form $\frac{a}{\sqrt{b}}$, $a\sqrt{b}$ and
	simple surds.	$a \pm \sqrt{b}$ where a is
		a rational
		number and b is
		a positive
		integer.
		Basic operations
		on surds
		(exclude surd of
		the form $\frac{a}{h+c\sqrt{d}}$).
		Dicva
•* (k) Matrices and	(i) Identification of	Not more than 3
Determinants		x 3 matrices.
	types of matrices.	Idea of columns
		and rows.

	(ii) Addition,	
	subtraction, scalar	
	multiplication and	Restrict to 2×2
	multiplication	matrices.
	of matrices.	
	(iii) Determinant of	
	a matrix	
		Application to
		solving
		simultaneous
		linear equations
		in two variables.
		Restrict to 2×2
		matrices.
(I) Ratio, Proportions and	Ratio between two	
Rates	similar quantities.	
	Proportion between	Relate to real life
	two or more similar	situations.
	quantities.	
	Financial	Include average
	partnerships, rates	_
		-
	of work, costs,	
	taxes, foreign	tax, etc
	exchange, density	

	(e.g. population),	
	mass, distance,	
	time and speed.	
(m) Percentages	Simple interest,	Limit compound
	commission,	interest to a
	discount,	maximum of 3
	depreciation, profit	years.
	and loss,	
	compound interest,	
	hire purchase and	
	percentage error.	
*(n) Financial Arithmetic	(i) Depreciation/	Definition/meani
	Amortization.	ng, calculation of
		depreciation on
		fixed assets,
		computation of
		amortization on
		capitalized
	(ii) Annuities	assets.
		Definition/meani
	(iii) Capital Market	ng, solve simple
	Instruments	problems on
		-
		annuities.

		Shares/stocks,
		debentures,
		bonds, simple
		problems on
		interest on
		bonds and
		debentures.
(o) Variation	Direct, inverse,	Expression of
	partial and joint	various types of
	variations.	variation in
		mathematical
		symbols e.g.
		direct (z ∝n),
		inverse $(z \propto \frac{1}{n}),$
		etc.
		Application to
		simple practical
		problems.
B. ALGEBRAIC		
PROCESSES		
	(i) Formulating	e.g. find an
(a) Algebraic expressions	algebraic	expression for
	expressions from	-
	given situations	of 4 pens at x
		Naira each and 3

		oranges at y
		naira each.
	(ii) Evaluation of	
	algebraic	+ 3 <i>y</i>
	expressions	
		e.g. If $x = 60$ and
		y = 20, find
		С.
		C = 4(60) +
		3(20) = 300
		naira.
(b) Simple operations on	(i) Expansion	e.g. (a +b)(c +
algebraic expressions		d), (a +
		3)(<i>c</i> - 4), etc.
	(ii) Factorization	
		factorization of
		expressions of
		the form ax +
		ay,
		a(b + c) + d(b + c)
		c), $a^2 - b^2$,
		$ax^2 + bx + c$
		where <i>a</i> , <i>b</i> , <i>c</i> are
		integers.
	♦•♣♠ (iii) Binary	Application of
	Operations	difference of two

WAEC Mathematics

		squares e.g. 49 ²
		$-47^2 =$
		(49 + 47)(49 -
		47) = 96 x 2 =
		192.
		Carry out binary
		operations on
		real numbers
		such as: a*b =
		2 <i>a</i> + <i>b</i> - <i>ab</i> , etc.
(c) Solution of Linear	(i) Linear equations	Solving/finding
Equations	in one variable	the truth set
		(solution set) for
		linear equations
	(ii) Simultaneous	in one variable.
	linear	
	equations in	Solving/finding
	two variables.	the truth set of
		simultaneous
		equations in two
		variables by
		elimination,
		substitution and
		graphical
		methods. Word

		problems involving one or two variables
(d) Change of Subject of a Formula/Relation	 (i) Change of subject of a formula/relatio n (ii) Substitution. 	e.g. $if_{\overline{f}}^1 = \frac{1}{u} + \frac{1}{v}$, find v. Finding the value of a variable e.g. evaluating v given the values of u and f .
(e) Quadratic Equations	(i) Solution of quadratic equations	Using factorization i.e. $ab = 0 \Rightarrow$ either a = 0 or $b = 0$. •** By completing the
	 (ii) Forming quadratic equation with given roots. (iii) Application of solution 	square and use of formula Simple rational roots only e.g. forming a quadratic equation whose

	of quadratic	roots are -3 and
	equation in	$\frac{5}{2} \Rightarrow (x+3)(x-\frac{5}{2})$
	practical problems.	= 0.
(f) Graphs of Linear and	(i) Interpretation of	Finding:
Quadratic functions.	graphs, coordinate	(i) the
	of points, table	coordinates of
	of values, drawing	maximum and
	quadratic graphs	minimum points
	and obtaining	on the graph.
	roots from graphs.	(ii) intercepts on
		the axes,
		identifying axis
		of symmetry,
	(ii) Graphical	recognizing
	solution of a pair of	sketched graphs.
	equations of the	
	form:	Use of quadratic
	$y = ax^2 + bx + c$	graphs to solve
	and $y = mx + k$	related
		equations e.g.
	* ♣♠(iii) Drawing	graph of $y =$
	tangents to curves	x^2 + 5x + 6 to
	to determine the	solve $x^2 + 5x +$
	gradient at a given	4 = 0.
	point.	Determining the
		gradient by

		drawing relevant triangle.
(g) Linear Inequalities	linear inequalities	Truth set is also required. Simple practical problems
	 *(ii) Graphical solution of linear inequalities in two variables. 	minimum values.
	*(iii) Graphical	Application to real life
		situations e.g.
	simultaneous	minimum cost,
	linear	maximum profit,
	inequalities in	linear
	two variables.	programming,
		etc.
(h) Algebraic Fractions	Operations on algebraic fractions	

			with:		Simple cases
			(i)	Monomial	only e.g. $\frac{1}{x} + \frac{1}{y} =$
			denomina	itors	$\frac{x+y}{xy} (x \neq 0, y \neq 0).$
			(ii) denomina	Binomial itors	Simple cases only e.g. $\frac{1}{x-a}$ + $\frac{1}{x-b} = \frac{2x-a-b}{(x-a)(x-b)}$
					where <i>a</i> and <i>b</i> are constants
					and $x \neq a$ or b . Values for which a fraction is
					undefined e.g.
					$\frac{1}{x+3}$ is not defined for $x = -3$.
♦• ♣ ♦ (i)	Functions	and	Types of	Functions	One-to-one,
Relations					one-to-many,
					many-to-one,
					many-to-many.
					Functions as a
					mapping,
					determination of
					the rule of a given
					mapping/functio

		n.
C. MENSURATION		
(a) Lengths and	(i) Use of	No formal proofs
Perimeters	Pythagoras	of the theorem
	theorem,	and rules are
	* ♣ ▲ sine and	required.
	cosine rules to	
	determine	
	lengths and	
	distances.	
	(ii) Lengths of arcs	Distances along
	of circles,	latitudes and
	perimeters of	Longitudes and
	sectors and	their
	segments.	corresponding
	♦ *♣ ♠ (iii)	angles.
	Longitudes and	
	Latitudes.	
(b) Areas	(i) Triangles and	
	special	Areas of similar
	quadrilaterals	figures. Include
	-rectangles,	area of triangle
	parallelograms and	$=$ $\frac{1}{2}$ base x
	trapeziums	height and
		½absinC.

	(ii) Circles sectors	Aroac
	(ii) Circles, sectors	
	and segments	compound
	of circles.	shapes.
		Relationship
		between the
	(iii) Surface areas	sector of a circle
	of cubes, cuboids,	and the surface
	cylinder, pyramids,	area of a cone.
	right triangular	
	prisms, cones and	
	spheres.	
(c) Volumos	(i) Volumes of	
(c) Volumes		
	cubes, cuboids,	
	cylinders, cones,	
	right pyramids	of compound
	and spheres.	shapes.
	(ii) Volumes of	
	similar solids	
D. PLANE GEOMETRY		
(a) Angles	(i) Angles at a	The degree as a
	point add up to	_
	360°.	Consider acute,
	(ii) Adjacent angles	
		obluse, renex

		angles sta
	on a straight line	angles, etc.
	are supplementary.	
	(iii) Vertically	
	opposite angles are	
	equal.	
(b) Angles and intercepts on	(i) Alternate angles	
parallel lines.	are equal.	
	(ii) Corresponding	
	angles are equal.	
	(iii) Interior	
	opposite angles are	Application to
	supplementary	proportional
	*♣♠(iv) Intercept	division of a line
	theorem.	segment.
(c) Triangles and Polygons.	(i) <u>The sum of the</u>	
	angles of a	*The formal
	triangle is 2 right	proofs of those
	angles.	underlined may
	(ii) <u>The exterior</u>	,
	angle of a triangle	
	equals the sum	
	<u>of the two interior</u>	
	<u>opposite</u> <u>angles.</u>	Conditions to be
		Conditions to be
	(iii) Congruent	known but

	trionales	nue of o not
1	triangles.	proofs not
		required e.g.
		SSS, SAS, etc.
	(iv) Properties of	Use symmetry
	special triangles	where
	- Isosceles,	applicable.
	equilateral, right-	
	angled, etc	
	5 ,	
	(v) Properties of	
	special	
	quadrilaterals –	
	parallelogram,	
1	rhombus, square,	Equiangular
	rectangle,	properties and
t	trapezium.	ratio of sides and
		areas.
	(vi) Properties of	
9	similar triangles.	Sum of interior
		angles = (n -
	(vii) The sum of	2)180° or (2n -
		4)right angles,
	a polygon	where n is the
	1 - 7 5	number of sides

		· · · · · · · · · · · · · · · · · · ·
	(viii) Property of	
	exterior angles of a	
	polygon.	
	(ix) Parallelograms	
	on the same base	
	and between the	
	same parallels	
	are equal in area.	
(d) Circles	(i) Chords.	Angles
		subtended by
		chords in a circle
		and at the
		centre.
	(ii) The angle which	Perpendicular
	an arc of a	bisectors of
	<u>circle subtends</u>	chords.
	at the centre of	
	the circle is twice	
	that which it	
	subtends at any	*the formal
	point on the	
	remaining part of	
	the circumference.	be required.
		serequired
	(iii) Any angle	

subtended at the	
circumference by a	
diameter is a	
right angle.	
(iv) Angles in the	
same segment are	
equal.	
(v) <u>Angles in</u>	
opposite segments	
are supplementary.	
(vi)	
Perpendicularity of	
tangent and radius.	
(vii) <u>If a tangent is</u>	
<u>drawn to a circle</u>	
and from the point	
<u>of</u> contact a chord	
<u>is drawn, each</u>	
angle which this	
chord makes with	
the tangent	
<u>is equal to the</u>	
angle in the	
alternate segment.	

♦*♣♠(e) Construction	(i) Bisectors of	
	angles and	
	line segments	
	(ii) Line parallel or	
	perpendicular to	Include
	a given line.	combination of
	(iii)Angles e.g. 90°,	these angles e.g.
	60°, 45°, 30°, and	75°, 105°,135°,
	an angle equal to	etc.
	a given angle.	
	(iv) Triangles and	
	quadrilaterals from	
	sufficient data.	
♦*♣♠(f) Loci	Knowledge of the	
	loci listed below	
	and their	
	intersections in 2	
	dimensions.	
	(i) Points at a given	
	distance from a	Consider parallel
	given point.	and intersecting
	(ii) Points	lines.
	equidistant from	Application to
	two given	real life
	points.	situations.

	(iii) Points	
	equidistant from	
	two given	
	straight lines.	
	(iv) Points at a	
	given distance from	
	a given straight	
	line.	
Ε.	(i) Concept of the	
COORDINATE GEOMETRY	x-y plane.	
OF STRAIGHT LINES		Midpoint of two
	(ii) Coordinates of	points, distance
	points on the x-y	between two
	plane.	points i.e. PQ
		=
		$\sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$
		$\sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$, where P(x ₁ ,y ₁)
		and $Q(x_2, y_2)$,
		gradient (slope)
		of a line m=
		$\frac{y_2 - y_1}{x_2 - x_1}$, equation of
		a line in the form
		y = mx + c and
		$y - y_1 = m(x -$
		x_1), where m is
		the gradient

		(slope) and c is a
		constant.
F. TRIGONOMETRY		
F. IRIGONOMETRY		
(a) Sine, Cosine and Tangent of an angle.	(i) Sine, Cosine and Tangent of acute angles.	_
	(ii) Use of tables of trigonometric ratios	
	(iii) Trigonometric ratios of 30°, 45° and 60°.	Without the use of tables.
	(iv) Sine, cosine and tangent of angles from 0° to 360°.	Relate to the unit circle. $0^{\circ} \le x \le 360^{\circ}$.
	(v) Graphs of sine and cosine.	e.g.y = asinx, y = bcosx
	(vi)Graphs of trigonometric	Graphs of simultaneous

www.examministry.com

	ratios.	linear and
		trigonometric
		equations.
		e.g. $y = asin x +$
		bcos x, etc.
(b) Angles of elevation and	(i) Calculating	Simple problems
depression	angles of elevation	only.
	and depression.	
	(ii) Application to	
	heights and	
	distances.	
♦*♣♠(c) Bearings	(i) Bearing of one	Notation e.g.
	point from another.	035°, N35°E
	(ii) Calculation of	
	distances and	Simple problems
	angles	only. Use of
		diagram is
		required. ∗ ♣♠Sin
		e and cosine
		rules may be
		used.
*G. INTRODUCTORY	(i) Differentiation	Concept/meanin

CALCULUS	of	g of
	algebraic functions.	differentiation/de
		rived function, $\frac{dy}{dx}$
		, relationship
		between
		gradient of a
		curve at a point
		and the
		differential
		coefficient of the
		equation of the
		curve at that
		point. Standard
		derivatives of
		some basic
		function e.g. if y
		$= x^2, \frac{dy}{dx} = 2x.$
	(ii) Integration of	If s = $2t^3 + 4$, $\frac{ds}{dt}$
	simple Algebraic	$= v = 6t^2$, where
	functions.	s = distance, t =
		time and v =
		velocity.
		Application to
		real life situation
		such as
		maximum and

		minimum values,
		rates of change
		etc.
		Meaning/
		concept of
		integration,
		evaluation of
		simple definite
		algebraic
		equations.
H. STATISTICS AND		
PROBABILITY.	(i) Frequency	Construction of
(A) Statistics	distribution	frequency
		distribution
		tables, concept
		of class
		intervals, class
	(ii) Pie charts, bar	
	charts, histograms	
	and frequency	
	polygons	Reading and
		drawing simple
		inferences from
	(iii) Mean, median	
	and mode for both	

discrete	and	data	in
grouped data.		histograms.	
		Exclude unequ	al
		class interval.	
		Use of a	an
		assumed mea	n
		is acceptable but	ut
		not required. Fo	or
		grouped data	a,
		the mode shou	ld
		be estimate	ed
(iv) Cumula	ative	from th	ne
frequency c	urve	histogram whi	le
(Ogive).		the media	n,
		quartiles ar	١d
		percentiles a	re
(v) Measures	of	estimated from	m
Dispersion: ra	nge,	the cumulativ	/e
semi ir	nter-	frequency curve	; .
quartile/inter-			
quartile ra	nge,		
variance, n	nean	Application	of
deviation	and	the cumulativ	/e
standard deviat	ion.	frequency curv	/e
		to every day life	э.
		Definition	of

			rango v	arianco
			range, v	anance,
			standard	
			deviation	, inter-
			quartile	range.
			Note tha	t mean
			deviation	is the
			mean o	of the
			absolute	
			deviation	s from
			the mea	an and
			variance	is the
			square	of the
			standard	
			deviation	
			Problems	on
			range, v	ariance,
			standard	
			deviation	etc.
			* ♣ ≜ Stanc	lard
			deviation	of
			grouped	data
			5	
(b) Probability	(i)	Experimental	Include	equally
	and	theoretical	likely eve	
	proba		probabilit	_
	P. 0.20		throwing	
			with a fa	

		a head when
	(ii) Addition of	tossing a fair
	probabilities for	coin.
	mutually	
	exclusive and	With
	independent	replacement.
	events.	* ♣ ▲ without
		replacement.
	(iii) Multiplication	
	of probabilities	
	for independent	
	events.	Simple practical
		problems only.
		Interpretation of
		"and" and "or" in
		probability.
♦ ♣▲I. VECTORS AND		
TRANSFORMATION		
(a) Vectors in a Plane	Vectors as a	(5, 060°)
	directed line	
	segment.	e.g. $\binom{5\sin 60^{o}}{5\cos 60^{o}}$.
	Cartesian	
	components of a	Knowledge of
	vector	graphical
		representation is

	Magnitude of a	necessary.
	vector, equal	
	vectors, addition	
(b) Transformation in	and subtraction of	
the Cartesian Plane	vectors, zero	Restrict Plane to
	vector, parallel	the x and y axes
	vectors,	and in the lines x
	multiplication of a	= k, y $=$ x and y
	vector by scalar.	= kx , where k is
		an integer.
	Reflection of points	Determination of
	and shapes in the	mirror lines
	Cartesian Plane.	(symmetry).
		Rotation about
		the origin and a
		point other than
	Rotation of points	the origin.
	and shapes in the	Determination of
	Cartesian Plane.	the angle of
	Cartesian Plane.	
	Cartesian Plane.	the angle of
	Cartesian Plane.	the angle of rotation (restrict
	Cartesian Plane.	the angle of rotation (restrict angles of
	Cartesian Plane. Translation of	the angle of rotation (restrict angles of rotation to -180°
		the angle of rotation (restrict angles of rotation to -180° to 180°).

Plane.	vector.
Enlargement	Draw the images of plane figures under enlargement with a given centre for a given scale factor.Use given scales to enlarge or reduce plane figures.

1. <u>UNITS</u>

Candidates should be familiar with the following units and their symbols.

(1) Length

1000 millimetres (mm) = 100 centimetres (cm) = 1 metre(m).

1000 metres = 1 kilometre (km)

(2) <u>Area</u>

10,000 square metres $(m^2) = 1$ hectare (ha)

(3) Capacity

1000 cubic centimeters $(cm^3) = 1$ litre (l)

(4) <u>Mass</u>

```
1000 milligrammes (mg) = 1 gramme (g)
```

1000 grammes (g) = 1 kilogramme (kg)

1000 ogrammes (kg) = 1 tonne.

(5) Currencies

The Gambia	-	100 bututs (b) = 1 Dalasi (D)
Ghana GH¢)	-	100 Ghana pesewas (Gp) = 1 Ghana Cedi (
Liberia	-	100 cents (c) = 1 Liberian Dollar (LD)
Nigeria	-	100 kobo (k) = 1 Naira (N)
Sierra Leone	-	100 cents (c) = 1 Leone (Le)
UK USA	-	- 100 pence (p) = 1 pound (£) 100 cents (c) = 1 dollar (\$)

French Speaking territories: 100 centimes (c) = 1 Franc (fr)

Any other units used will be defined.

2. OTHER IMPORTANT INFORMATION

(1) Use of Mathematical and Statistical Tables

Mathematics and Statistical tables, published or approved by WAEC may be used in the examination room. Where the degree of accuracy is not specified in a question, the degree of accuracy expected will be that obtainable from the mathematical tables.

(2) Use of calculators

The use of non-programmable, silent and cordless calculators is allowed. The calculators must, however not have the capability to print out **nor to receive or send any information. Phones with or without calculators are not allowed.**

(3) Other Materials Required for the examination

Candidates should bring rulers, pairs of compasses, protractors, set squares etc required for papers of the subject. They will **not** be allowed to borrow such instruments and any other material from other candidates in the examination hall.

Graph papers ruled in 2mm squares will be provided for any paper in which it is required.

(4) Disclaimer

In spite of the provisions made in paragraphs 4 (1) and (2) above, it should be noted that some questions may prohibit the use of tables and/or calculators.

DISCLAIMER

The above topics are where all your Mathematics questions for **WAEC** or **GCE** this year will be asked from.

But it does **NOT** say which *topic is most common* and how many questions are asked *per* topic.

So, study only the topics in this syllabus *but ALSO* with **past questions** to better prepare for your Mathematics exam in either *WAEC* **internal** (...as a school candidate) or **external** (...as a **GCE** candidate).

Speaking of which,

Would you like to download our *free* WAEC or GCE past questions on Mathematics *now*?

Click on the link below...

<u>www.examministry.com</u>