
Software
development
handbook
Transforming for
the digital age

Software Development January 2016

Authored by:
Tobias Strålin
Chandra Gnanasambandam
Peter Andén
Santiago Comella-Dorda
Ondrej Burkacky

Software
development
handbook
Transforming for
the digital age

Software Development January 2016

Authored by:
Tobias Strålin
Chandra Gnanasambandam
Peter Andén
Santiago Comella-Dorda
Ondrej Burkacky

Preface

Software development is no longer the domain of Silicon Valley tech start-ups. It is increasingly essen-
tial to companies big and small, across all industries, and around the world. Organizations that once
dedicated nearly all of their resources to hardware are rebalancing their priorities. Producers of medical
technology products, semiconductors, and automobiles are all faced with the reality that quality soft-
ware—thus, superior software development—is as essential to their success as excellence in sales is.

Despite this, McKinsey research has revealed a sizable gap between top and bottom performers. This
gap in performance means that top companies can accelerate the flow of new products and applications
at much lower cost and with markedly fewer glitches than other companies. The articles in this software
development handbook offer a path forward for organizations looking to position themselves on the
winning end of that distribution.

Some of the articles have been commissioned specifically for this handbook, while others have already
been published. All of them offer leaders insights into the various elements of building and sustaining
successful software development organizations—including benchmarking, organizational design, and
development efficiency—and help leaders get the answers that will inform strategy development.

We hope that leaders will find this handbook valuable and that it will help them steer their organizations
into a new software future.

Finally, we would like to thank all who have contributed to this document and have shed light on the
shadowy elements of software development.

Tobias Strålin Chandra Gnanasambandam Peter Andén

Santiago Comella-Dorda Ondrej Burkacky

Digitization opens up a world of possibilities. Value chains and business processes are
being redrawn in every industry. Software lies at the heart of this disruption. Leaders need
to formulate clear software strategies in order to unlock its full potential and retain their
competitive advantage.

Software or nowhere:
The next big challenge for hardware OEMs 10

Getting agile development right and at scale requires new processes, governance models,
capabilities, and mindsets.

Teaching elephants to dance (part 1):
Empowering giants with agile development 20

Companies aspiring toward better software development end games must first understand
their starting points. Beginning any software development improvement initiative with a
comprehensive diagnosis gives companies the advantage of rooting their improvement
blueprints in a deep understanding of their current positions.

Software status:
Diagnosing development performance 14

Teaching elephants to dance (part 2):
Empowering giants with agile development 26

In big companies, lightweight development methodologies require heavyweight support
behind the scenes for maximum benefits and minimal cost.

As the world moves to cloud-based software, many software development executives
wrestle with transitioning from packaged to cloud products. Pointers from successful
software vendors can ease both the decision and ultimately the move.

From box to cloud:
An approach for software development executives 32

01

02

03

04

05

>>
Software can no longer be ignored. By assessing the external stakes and internal
capacities, CEOs can build a software organization that enhances their products and
differentiates them within the market.

Introduction:
The perils of ignoring software development 7

Contents

07

08

09

10

06
As software becomes more sophisticated, it gets increasingly expensive to customize,
maintain, and extend. A new modularity approach can turn the tide of rising costs and risks,
allowing companies to unleash the full potential of software in their businesses.

Complexity costs:
Next-generation software modularity 40

In-house software development is gaining the attention of hardware companies. Adopting
one of four basic organizational structures can help them reap the benefits.

Organized for success:
Restructuring hardware companies 46

The tradition of completely separate organizational functions is incompatible with effective
software development. Understanding the options for functional integration and embedding
knowledge across units can help deliver substantial value for software organizations.

Integrated expertise:
Models to break siloed software development 52

As software becomes ubiquitous, companies continue to struggle with development
quality issues. A comprehensive approach to development quality can rapidly produce
tangible improvements.

Quality code:
Driving successful software development 58

Continuous improvement:
Three elements of managing performance 66

Successful software development relies on the ability to continuously manage performance.
By optimizing their performance management systems, companies can move beyond one-
off performance improvements and look forward to sustainable bottom-line gains.

Authors and contributors .. 70 <<

7The perils of ignoring software development

As digital technologies relentlessly reshape
competition, products and services increasingly
depend on software for differentiation and
performance. Software is behind smartphones
and other interfaces that guide consumer
interactions; algorithms orchestrate productivity-
boosting process automation; wearable devices
loaded with software monitor the health and
performance of athletes and patients alike.
Despite the mission-critical nature of software,
it gets surprisingly little attention in the C-suite.
Most often, it is relegated to functional managers,
several levels down the organization, who manage
teams of programmers.

Research suggests, however, that companies
pay a price when they undervalue the strategic
importance of developing quality software.
During 2013, McKinsey examined three core
metrics for software development performance
at more than 1,300 companies of varying sizes
and across all regions of the world. We found
not only stunning differences between the
highest- and lowest-performing organizations
but also sizable differences between the top and
average performers. Top-quartile companies
developed software upwards of three times
more productively than companies in the bottom
quartile. They had 80 percent fewer residual
design defects in their software output. Our
research also showed that the companies
benefited from a 70 percent shorter time to market
for new software products and features. This
performance gap means that top companies
can speed up the flow of new products and
applications at much lower cost and with markedly
fewer glitches than other companies can.

The coming revolution

Such performance leverage will become even
more important as the transition from hardware- to
software-enabled products accelerates. Today’s
shift resembles what occurred in the 1970s, when
digital electronics began replacing the mechanical
and analog technologies that underlay products
from calculators to TV sets. The number of top 100
product and service companies that are software
dependent has doubled, to nearly 40 percent,
over the last 20 years. Value is shifting rapidly as
hardware features are increasingly commoditized
and software differentiates high- from low-end
products. And ever more miniaturized computing
power means that the value of embedded software
in products is expected to keep growing.

Already, software enables an estimated 80 percent
of automobile innovation, from entertainment to
crash-avoidance systems, according to automotive
software expert Manfred Broy (an electric vehicle
may have 10 million lines of code, and a typical
high-end car can have many times that).1 Interfaces
will become even more sophisticated—and
critical—as a growing variety of products, from
home appliances to mobile medical devices, are
designed around smart screens. As software-
enabled customer interactions become the rule,
revenues from digitized products and channels
are expected to exceed 40 percent in industries
such as insurance, retailing, and logistics. The
software-led automation of manufacturing
and services has generated rising output while
reducing costs. And companies with consistently
high-performing software experience less
operational downtime and develop products with

Software can no longer be ignored. By assessing the external stakes and internal capacities, CEOs can
build a software organization that enhances their products and differentiates them within the market.

The perils of ignoring
software development
Peter Andén, Chandra Gnanasambandam, Tobias Strålin

1 Robert N. Charette, “This car runs on code,” IEEE Spectrum, February 1, 2009, spectrum.ieee.org. See also Digits, “Chart: A car
has more lines of code than Vista,” blog entry by Brian R. Fitzgerald, Wall Street Journal, November 11, 2013, blogs.wsj.com.

8 Software development handbook Transforming for the digital age

fewer glitches that mar the consumer experience.
In a letter to shareholders, General Electric CEO
Jeffrey R. Immelt offered a view of where things are
headed: “We believe that every industrial company
will become a software company.”2

Raising the profile of software
development

CEOs need to determine whether they have the
right organization and capabilities to compete in an
environment where software continues to change
the game. Asking three questions can help start
the process:

What are the strategic stakes? CEOs and their
top teams should quickly get up to speed on how
software could be differentiating or disrupting
their current businesses and industries. Scania
creates a competitive edge for its trucks through
advanced software features that give drivers
real-time information on how to optimize fuel
use and maximize safety. Semiconductor maker
MediaTek invested in software-based reference
designs3 in the wireless chips it produces for
smartphone manufacturers. The new offerings
upended competition in the high-volume, low-end
smartphone industry, leading to a tenfold increase
in MediaTek’s sales of wireless chips within a
single year, as customers benefited from lower
development costs, faster times to market, and
increased design flexibility.

Where does our software power reside? Outside
the technology sector, senior software leaders
are rarely in the top-management hierarchy. Many
companies manage software strategy three to five
levels down in the organization, within scattered
departments often dedicated to designing and
building hardware platforms. Siloed software
expertise makes it difficult to assemble a strategic
core of software leaders who can think cross-
functionally about innovation or productivity.

One path forward is to give a software develop-
ment executive a seat at the top management
table. Companies can do so by establishing an
office—chief of software development—that
reports to the CEO, much as companies have
done in recent years with the role of chief digital
officer or chief information security officer. Such
an executive is well positioned to help high-
ranking executives understand how the software
development performance of their company
stacks up against that of its peers. This software
development leader can also communicate the
risks of substandard processes and the strategic
importance of improving software development
performance by overhauling organizational
structures, development methods, and metrics.4

How do we build the software development
muscle needed? In many industries (again,
apart from high tech), hardware and mechanical
engineers dominate the engineering leadership, so
it is difficult to attract the talent needed for cutting-
edge software R&D teams. Companies can
break through in two ways. The first is mounting
an effort to change the organization, developer
by developer: building a software powerhouse
organically, from existing internal organizations,
while targeting top software companies to get
strong contributors who will become software
champions and talent magnets. A second option
is acquiring a software company to break into
new technology areas and get a higher level
of software capability. Walmart followed this
approach, acquiring a number of smaller start-ups
to strengthen its position in e-commerce as well as
social and mobile retailing.

In either approach, companies need to follow
through with software-friendly operating models
that incorporate agile working methods, flexible
hours, and motivational tactics (such as internal
competitions) that spur developers to engage
with innovative and challenging projects.

2 Jeffrey R. Immelt, “Letter to shareowners,” 2013 GE Annual Report, ge.com.
3 A technical architecture for a system that can speed up customized software development.
4 Colocating diverse software design teams in the same facility and using analytics to predict quality levels are ways top companies

are getting more leverage from advanced design methods and setting ambitious but realistic goals for teams.

9The perils of ignoring software development

Unconventional hiring processes (coding contests
or testing online gaming skills, for example) may
be needed to screen candidates and identify
top talent—as some top digital players already
do. There’s no escaping the competitiveness
of today’s software talent marketplace, which
is particularly challenging for large companies
seeking to build their capabilities. As digital
technologies continue to reshape markets,
though, there’s little alternative. Embracing the
rising strategic importance of software, and
viewing its development as a crucial competitive
battlefield, are keys to success for an ever-growing
number of companies.

The authors wish to thank Karim Doulaki,
Simone Ferraresi, and Shannon Johnston for
their contributions to this introduction.

This piece was first published in
McKinsey Quarterly.

10 Software development handbook Transforming for the digital age

01

11Software or nowhere: The next big challenge for hardware OEMs

It’s hard to name an industry that isn’t feeling the
change resulting from the increasing importance
of software. It is having a major impact on product
development, customer service, and organizational
development across industries. Even in traditional
industries that haven’t seen productivity increases
in decades, software innovations hold the promise
of transformation and growth. Take the case of the
construction industry. Imagine every construction
site digitally designed and all plans checked using
virtual reality. Once construction begins, buildings
are built with automated laser precision using
preassembled objects that know where they
belong and how they should be connected.

For medical device manufacturers, software is
already a major innovation driver and regarded as
a critical functionality in more than 80 percent of
devices. Container terminals for ocean shipping
are becoming fully automated, with all physical
 operations being orchestrated by a central terminal
operating system. Service operations across indus-
tries are being transformed by the ability to monitor
and predict imminent failure. And in industries such
as media and telecom munications, software is
 having major impact on product development, cus-
tomer service, and organizational development.

The Internet of Things revolution, cheap connectiv-
ity, and advanced analytics are part of a growing
digital landscape predicted to have an $11 trillion
global impact. This revolution will ultimately change
all industries, and software lies at the heart of it.
For the leaders of many companies, however,
the approach to software in the digital landscape
may not be clear. The challenge for executives is
one of distilling the particular opportunity for their

 organizations from this large and amorphous value.
They will need an approach that addresses the
business potential along with an organization and
capabilities that unlock the value of that potential.

Business strategy:
Identifying software’s value

A company’s software business strategy will
outline the products and services it should offer.
Asking themselves the following questions will help
leaders determine how and where digital fits and
how software can support it: Where is the value?
Which fields beyond our core offering should we
seek to address? Do we need to self-disrupt?

McKinsey’s research suggests that three elements
are key for the success of companies in more
traditional industries transforming to the digital realm:

Go granular. Before an executive can set forth
an organization’s software strategy, he or she
must build an understanding of the value chain
and the customer. Knowing customer pain points
and sources of inefficiency sheds light on which
problems the company may be able to solve.
Analyzing the moves competitors have taken in
the recent past will provide clues as to how they
believe the future will look. Leaders will need
to consider all elements of the current delivery
system, including the opportunity to establish
new business models (see text box “Software’s
disruption gives rise to new business models,”
page 13). A granular exploration of the value chain
and customer needs is critical in understanding the
evolving opportunity and competition landscape,
particularly in the B2B realm.

Digitization opens up a world of possibilities. Value chains and business processes are being redrawn
in every industry. Software lies at the heart of this disruption. Leaders need to formulate clear software
strategies in order to unlock its full potential and retain their competitive advantage.

Software or nowhere:
The next big challenge for
hardware OEMs
Peter Andén, Ondrej Burkacky, Jörn Kupferschmidt, André Rocha

12 Software development handbook Transforming for the digital age

Build on strengths. Established companies
typically do not have a start-up’s agility, and
competing with start-ups on their turf will likely
increase the risk of failure. Instead, leaders in
established businesses should think about
how to use the assets they already have to their
advantage. Such assets may include a strong
customer base, customer trust, a broad hardware
portfolio, and domain knowledge. It can also be
long-standing and powerful partnerships with
suppliers, IT companies, connectivity providers,
and/or competitors. These strengths may give
established businesses the upper hand when it
comes to scaling quickly and efficiently as well as
controlling various value points—specifically the
customer-related ones.

Create structural advantage. Beyond customer-
centric value exists the opportunity for established
businesses to create structural advantages.
Executives need to evaluate which of today’s
strengths they can turn into structural advantages
tomorrow. Do they have assets that allow them
to be a driving force in an ecosystem, creating
a development and distribution platform?
Companies may offer access to their strengths
in return for shaping how others innovate in the
ecosystem to deliver a superior customer journey
from multiple, independent products. Similarly,
executives may be able to use their influence today
to contribute directly to setting industry standards.
Or they may be able to craft partnerships beyond
the reach of smaller start-ups, creating de facto
standards for their industry. Using assets unique
to established companies gives these businesses
an advantage in controlling the structures of
the new ecosystem. Leaders can assess their
organizations’ capacity to use these assets to
influence the development of the value chain and
the related software ecosystem.

Organization and capabilities:
Unlocking software’s potential

Organizations with a traditional hardware focus
are accustomed to product life cycles lasting
years. Software, however, enables lightning-

fast product development and retooling—and
the accompanying software strategy must
take the life cycle from years down to months
or even weeks. Once leaders have identified
the value potential and gained a perspective
on how their companies fit in (or can shape)
the new ecosystem, it is then time to create the
organization and capabilities that will allow them
to capture this value.

McKinsey’s work in this area reveals three
enablers to help established businesses
get where they need to be.

Think end to end. Leaders need to take a
holistic approach when setting up their software
businesses. It all starts with defining what
software solutions they need to deliver—in
particular, identifying the most appropriate
technology platforms for each case and
designing a modular architecture that ensures
scalability and consistency. It then moves into the
full set of capabilities—in terms of both customer
and development life cycles—and organizational
model required to run a high-performing software
business. Customers need to be understood
better, involved earlier, and engaged with in a
much more continuous dialogue. Organizations
must now—more than ever before—be willing
to engage with and learn from their customers.
The much faster prototyping for software—for
example, with mock-ups and digital design
labs—means that software should be developed
with customer input from early on in the process.
Given the faster evolution in the market, these
skills are paramount. Finally, companies need to
take a careful look at their software road maps
and evaluate whether they are planning for the
right level of investment.

Focus on talent. Software and design talent is a
defining, rare resource. Obtaining talent is hard,
particularly if your company is a nontraditional
software employer. Attracting talent for key
positions is key in order to use these leaders to
hire further digital talent, and as a sign that it is a
good decision to work for this company. Pulling

13Software or nowhere: The next big challenge for hardware OEMs

resources together in a consolidated software
unit, and elevating it in the organizational chart,
will help convey the message that software is
strategically important to the company. If the
company’s location, for example, is a barrier to
attracting talent, opening a second location may
be a worthwhile investment.

Embrace cultural differences. Software talent
may come from a different background than a
company’s traditional employees. Companies
may need to look beyond the sources to which
they have become accustomed to find software
talent. Traditional, hardware-focused organizations
may find that differences in work styles and/
or expectations exist between their traditional

employees and their growing software organization.
It is crucial that the leadership embraces the new
talent and understands that any tension that arises
is just a necessary growing pain.

The journey from a traditional, hardware-focused
company to one with successful software
offerings—either stand-alone or in products—is
long and arduous. It is important that companies
embark on this journey while software is still a
small share of their product portfolio. Companies
need to do the heavy lifting now. Otherwise, they
risk missing out or even becoming obsolete in
tomorrow’s digital landscape.

Software’s disruption gives rise to new business models

Software is shaking up businesses around the world and across industries. The opportunities
introduced aren’t limited to start-ups or the tech industry. New business models are being made
possible, and established companies from automotive to construction should consider how they can
take advantage of them.

As-a-service models charge customers by usage or on a subscription basis. These new payment
models turn the income that used to be generated by “one-off” sales into recurring revenues.

Software development and distribution platforms are digital spaces that enable third-party
developers to innovate, create, and sell software using some of the platform owner’s assets—for
example, their customer base or data.

Intellectual property rights (IPR) models deliver recurring revenues, for example, from licensing fees
for data standards. IPR models also create space for add-on services on top of the primary product,
such as best-usage consulting.

Data-driven models monetize crowd-sourced information as opposed to selling particular products or
services. Monetization may happen directly or indirectly through the pricing or customization that micro-
segmentation allows.

14 Software development handbook Transforming for the digital age

02

15Software status: Diagnosing development performance

Software is an increasingly important component
of organizational success across sectors. The suc-
cessful development and delivery of products and
services hinges more and more on a company’s
ability to effectively develop quality software. The
differences that successful approaches to software
development can make are clear. Just looking at
companies’ software development units alone, out-
comes between top and bottom performers vary
drastically. The top quartile of units is more than
three times as productive as the bottom quartile,
achieves five times the development throughput,
and has six times fewer design defects (Exhibit 1).

Behind the performance of the top companies is
their ability to thoughtfully address three questions
that underlie the fundamental drivers of software
development success:

What software is being developed? Companies
need to assess how they prioritize different
feature requirements and how they then scope
the work and manage requirements (including
late requirements). They should also assess
how they set up the software architecture and
system design to drive efficiency, for example,
maximizing code reuse and ensuring a modular
software architecture with clear interfaces and
few interdependencies.

How is the software developed? Process is the
name of the game here. At the outset, project
planning and efficient resource management need
to be evaluated. Companies must also assess their
current software methodology and process to see
if there are new and better processes available to

increase productivity, time to market, and quality—
for example, by moving away from traditional
waterfall methods to agile software teams and
development teams with integrated operations
expertise (DevOps).

Where is software developed? The actual location
of the development is also important. Companies
must look specifically at their decisions to
outsource versus develop internally and the inner
workings of the in-house parts of the organization
focused on software development. One additional
area to look into is how many sites are currently
working with the same code base. McKinsey
research shows that every site added to a software
project results in a productivity loss of 15 percent.

Climbing out of software development mediocrity
requires careful analysis. The path toward software
development improvement is a highly tailored
endeavor, as no two organizations require the
exact same approach. McKinsey has developed
a five-week diagnostic that helps organizations
understand their current performance. Diagnosis
of a company’s software development function
typically comprises three phases: benchmarking
output performance, assessing root causes, and
identifying key improvement initiatives.

Benchmarking output performance

Giving companies a clear sense of how they
stack up against their peers globally is the
first component of the software development
diagnostic. Key to meaningful benchmarking is
the ability to compare a company’s performance

Companies aspiring toward better software development end games must first understand their
starting points. Beginning any software development improvement initiative with a comprehensive
diagnosis gives companies the advantage of rooting their improvement blueprints in a deep
understanding of their current positions.

Software status:
Diagnosing development
performance
Peter Andén, Ondrej Burkacky, Tobias Strålin

16 Software development handbook Transforming for the digital age

to a large set of development projects that
not only spans the globe but also represents
significant diversity of company size and software
development methodology. The diagnostic phase
will clearly situate a company’s performance in the
areas of productivity, time to market, and quality
within the global context.

Benchmarking productivity relies on an analysis
of a company’s design complexity. That is,
how does the effort that a company spends
on software development compare with the
normalized effort required? An analytics
engine takes several data points across the
complexity dimensions of a company’s software
requirements, architecture, coding, testing, and
hardware and calibrates them against information
from other industry software projects.

These complexity calculations—measured in units
per man week—can then be graphed along the
industry average (Exhibit 2). The complexity rating
enables benchmarking across time, team, and
software releases.

Benchmarking time to market requires first
determining a company’s time overrun (i.e., delays
in project delivery). Then that overrun percentage
is normalized against industry averages. The
diagnostic takes delay benchmarking to another
level by determining the schedule risk of a
company’s ongoing projects. By looking internally
at where finished products land at the intersection
of development productivity and team size, a
schedule baseline can be created. New projects
get plotted on the curve, and outliers become
quickly identifiable as schedule risks.

Quality

Residual design defects

Development throughput

Output per week

Productivity

Output per man week

Bottom
quartile

Average Top
quartile

155

100

27

57
100

224

53
100

175

3x

5x

6x

Exhibit 01

Source: Numetrics-embedded software project (a McKinsey Solution), October 2013 (n > 1,300)

Top organizations significantly outperform in all aspects of software development

Average indexed to 100

17Software status: Diagnosing development performance

Benchmarking quality looks at the defect-to-
project size ratio and gives companies information
about how the quality of their software design
compares to the industry average. Instances
where a project of a particular size has significantly
more defects than the average project of that size
may require root cause analysis.

Assessing root causes
After establishing exactly how a company
compares to its peers—and, in some cases,
to itself—specific tools can be implemented to
discover what is behind the performance.

SD fingerprint. The software development
“fingerprint” gives an initial overview of a
company’s strengths in more than 20 activities

across the four major drivers of software
development (Exhibit 3): What software is being
developed? Where is the software developed?
How is software developed? How is development
enabled? Understanding a company’s capabilities
in these activities and then plotting them against
industry averages is the first insight into which
improvement initiatives will help the company
achieve greater software development success.

Site competence heat map. Another tool in the
diagnostic toolbox identifies the efficiency of
a company’s software development footprint,
i.e., the competence of each of the sites within
the organization that play a role in software
development. The site competence heat map
breaks down an organization’s business units by
software development competence and regional

Development productivity

Complexity units per man week, thousands

Team size

Number of FTEs in peak phase

20 40 60 800
0

0.8

1.6

2.4

3.2

4.0

Client project
Industry average
Industry band

Exhibit 02

Source: McKinsey analysis

Productivity is benchmarked by looking at project complexity versus team size

18 Software development handbook Transforming for the digital age

location. The heat map reveals fragmentation
and, thus, excessive complexity in projects. This
tool offers early insight into the potential for a
company to consolidate its software develop-
ment footprint.

Value stream mapping. Software development is
a process, and value stream mapping takes an
end-to-end perspective to uncover pain points
and bottlenecks along the chain. The various
software development activities are broken down
by organizational actor and then mapped along
the development process. Input is solicited from
cross-functional team members regarding what
works well and what does not. The result is a
concrete overview of the “where,” “what”, “when,”
and “who” of the challenges to be addressed and
initial thoughts on how to address them.

Overall process efficiency (OPE). OPE analysis
takes a team-by-team look at the time spent per
team member on software-development-related
activities. These activities include total processing
time, meetings, and even breaks. By comparing
how much time a company spends on a given
activity to industry averages, this analysis can
identify value-creating versus wasteful efforts.

Identifying key initiatives

The five-week diagnostic gives sufficient insight for
an early, initiative-based action plan. Companies
that have undergone the diagnostic have been
able to define and plan for quarter-by-quarter
software development improvement initiatives over
one to two years. These initiatives have included
immediate plans to pilot project management

StrengthCompanyAverage90th percentile Opportunity

HOW
is software develop-
ment enabled?

HOW
is software developed?

WHAT
software is being

developed?

WHERE
is software developed?

Prioritization, investment,
and budgeting

Scope definition and
requirements management

Architecture and
system design

Internal vs. outsourced
development

Organization

Footprint Integration, verification,
and quality assurance

Development and
maintenance processes

Project planning and
resource management

Forums, decision
making, and
performance
management

Development and IT
infrastructure tools

Organizational health,
mindsets, and capabilities

1

2

3

4

Exhibit 03

Source: MIT, McKinsey analysis

The embedded software development fingerprint maps a company’s capabilities against
industry averages, revealing strengths and opportunities

19Software status: Diagnosing development performance

processes and longer-term initiatives to blueprint
customer feedback processes. Regardless of
which organization-specific improvement levers
are selected in this phase of the diagnostic, the
chances are high that some sort of capability-
building initiative will be among them.

In addition to defining the initiatives, the diagnostic
also offers specific projections of the short-
and long-term impact of those initiatives. The
improvement potential of the various initiatives
in the areas of productivity, time to market,
and quality is quantified and also translated
into bottom-line impact. For one company, the
diagnostic led to the definition of an improvement
initiative with the potential to increase productivity
by 22 to 31 percent, reduce time to market by

10 to 25 percent, and improve software quality
by reducing defects by 20 to 45 percent. These
improvements translated into a possible revenue
increase of $100 million and potential cost reduc-
tion on the order of $50 million.

Software development aptitude is growing in
importance for companies seeking excellence in
customer service and a real competitive advantage.
Improvements begin with a diagnostic that bench-
marks a company’s performance against its peers
globally and continues with an assessment of the
success drivers and pain points. The diagnostic also
points a company in the direction it needs to go to
improve and highlight potential bottom-line impact.

20 Software development handbook Transforming for the digital age

03

21Teaching elephants to dance (part 1): Empowering giants with agile development

Good software is hard to build. The history of
software development is full of projects that took
too long, cost too much, or failed to perform as
expected. Agile software development methods
emphasize tight collaboration between developers
and their customers, rapid prototyping, and
continuous testing and review (see text box “Agile
development,” page 24) and have evolved as a
direct response to these issues.

Fans of the agile approach say that it improves
many aspects of their software development
processes, such as an increased ability to handle
changing customer priorities, better developer
productivity, higher quality, reduced risk, and
improved team morale. In an effort to quantify
these benefits, we made use of the McKinsey
Numetrics database.1 This proprietary benchmark
contains data on the approach, costs, and
outcomes of more than 1,300 software projects
of different sizes, from different industries and
using different programming languages. When
we compared the cost, schedule compliance,
and quality performance of the 500 or so projects
that used agile methods with those that applied
the “waterfall” methodology, the agile projects
demonstrated 27 percent higher productivity,
30 percent less schedule slip, and three times
fewer residual defects at launch (Exhibit 1).

Old habits die hard
For many companies, however, the move to agile
development is a significant cultural shift. Not all

organizations succeed in the transition. In one
survey of software development organizations,
almost a quarter of respondents said that the
majori ty of their agile projects had been unsuccess-
ful.2 Asked to pinpoint the root cause of their
problems, respondents most often cited a corporate
culture that was not compatible with agile methods
or a lack of experience in the use of those methods.

When we talk to senior executives about the
potential benefits and risks of adopting the agile
approach, three questions commonly arise: How
can we modify the agile approach to work in a
large, complex organization like ours? Can we
apply agile techniques across all layers of the
software stack or just in end-user applications?
How do we roll out the agile approach across our
organization? Let’s look at each in turn.

Making agile work in large projects and
large organizations
The agile approach is compelling in its simplicity:
one team reporting to one product owner
conducts one project. To maintain the key
benefits of flexibility, clear communication, and
close collaboration, the best agile teams are
small: usually five to ten members. Translating
that structure to large, enterprise-level software
projects with many tens or hundreds of developers
can be tricky. As development teams get bigger,
they quickly become unwieldy as progress slows,
communication gets difficult, and the benefits of
agility evaporate.

Getting agile development right and at scale requires new processes, governance models,
capabilities, and mindsets.

Teaching elephants to dance
(part 1): Empowering giants
with agile development
Peter Andén, Santiago Comella-Dorda, André Rocha, Tobias Strålin

1 See more at http://www.mckinsey.com/client_service/semiconductors/tools_and_solutions
2 Source: “State of Agile development” 2010 survey by VersionOne

22 Software development handbook Transforming for the digital age

A more effective approach is to maintain the small
size and working characteristics of the core agile
teams, and to adopt an architecture, organizational
approach, and coordination process that shield
those teams from additional complexity. The first
step in this approach is building robust modular
software architecture with clear interfaces and
dependencies between modules. To this end,
many organizations choose to have a team of
architects moving ahead of—and laying the
groundwork for—their development teams.
Often, however, organizations have to deal with
a large legacy code base, making modularizing
every technical component challenging. In these
situations, leading organizations are adopting
a two-speed architecture, so that certain
elements of the stack are modularized to enable
agile developments, while legacy elements are

encapsulated with a relatively stable application
programming interface layer.

With these foundations in place, individual teams
can then work on their own part of the product,
with multiple teams reporting to a common product
owner (PO). The PO is responsible for managing
the “backlog” of features, work packages, and
change requests and for coordinat ing the release
of product versions. A separate integration
team will help the PO make optimal short-term
planning decisions as customer requirements
and dependencies change. Development work
takes place in two- to four-week “sprints” during
which the agile teams operate with a high degree
of independence. Between sprints, a joint product
demo, sprint retrospective, and planning stage
ensure all teams maintain coordination.

Approach type

Waterfall

Agile

Pros and cons

Gather speci-
fications

Build/
configure

Design

Test

Produce

Flexible and adaptable changes+

Cheaper+

Dramatically faster
(time to completion)

+

Aligned with business+

Reduced risk+

Improved accountability+

Can be more complex to manage-

Clearly defined stages help
with planning and scheduling
management

+

Larger separation between busi-
ness and R&D in development

-

Requires users to know what they
need (vs. trying it and refining)

-

Longer time to market-

More risk of rework-

Prioritize

Prototype

Agile sprint

“Work cycle for
sub-deliverables” Configure

or develop

Test with users

2- to 4-week work cycles
depending on size and
pace of development

Exhibit 01

Source: McKinsey analysis

Agile software development has a number of advantages over conventional methods

23Teaching elephants to dance (part 1): Empowering giants with agile development

Regardless of the size of the organization or the
project, one tenet of agile development remains
true: it is good for all developers to work at a
single location. The benefits from improved
communication and ease of collaboration that arise
from close physical proximity are hard to overstate.
While some organizations do manage to run
effective distributed development teams, analysis
of our software project database reveals that
organizations pay an average productivity penalty
of 15 percent for each additional development
site they use. The change from one site to two
incurs the largest productivity drop: organizations
with two development sites in our database were
25 percent less productive on average than those
with just one. It is no coincidence that many of the
world’s best software development organizations
chose to concentrate more than 90 percent of their
software developers in a single location.

Tailoring agile across the software stack

Many of the biggest benefits of the agile
approach arise from close cooperation between
developers and the end customer. As a result,
the development of end-user applications has
been the principal focus of many agile efforts, and
organizations often find it easiest to implement
agile methods in the development of their own
application layers. Most software systems are built
as a stack, however, with a hardware integration
layer and one or several middleware layers below
the application layer. Companies sometimes
struggle to understand how they should best apply
agile techniques, if at all, to the development of
these lower-level layers.

In practice, the most successful organizations
take a selective approach. They pick and adapt
a specific subset of agile tools and techniques
for each layer in their stack, and they alter their
development approach to take account of the way
agile is applied in the layers above and below.

Middleware development, for example, with its
slower evolution of requirements and emphasis
on standardization, can lend itself to an approach

in which individual development cycles or sprints
are longer than in application development. While
doing this, companies should strive for a pace
that is synchronized with the sprints in the higher
layers. Middleware teams will also take extra
steps to ensure their test cases reflect the impact
of rapidly changing applications driven by faster-
moving agile teams.

At the level of hardware adaptation, however, freez-
ing requirements early remains a priority to allow
sufficient time for hardware development. Here,
an organization may still find it beneficial to pick
specific agile tools—like continuous integration,
test automation, and regular production of proto-
types—to capture the benefits in productivity, time
to market, and quality they provide.

Rolling out agile development

For many organizations, the shift to agile software
development represents a significant change
in approach and culture. Like all large-scale
organizational change, a successful transforma-
tion requires care in planning, execution, and
ongoing support.

Most organizations begin their change journey by
assessing their current practices and developing
a blueprint for improvement. This blueprint will
define all the extra capabilities, new management
processes, and additional tools the organization
will need. These may include extra training
for developers, investment in test automation
infrastructure, and a clear approach for the
management of release cycles, for example. The
adoption of agile methods will have implications
that go far beyond the software development
function. These must be taken into account during
the development of the blueprint. Companies can
engage the wider organization in a variety of ways,
from conversations with leaders in other functions
to crowdsourcing-style suggestion schemes.

The blueprint is validated and refined using a
targeted pilot in one or a few teams. This pilot
serves several functions. It helps the organization

24 Software development handbook Transforming for the digital age

identify and adapt the tools and techniques that
best suit its needs. It also helps developers,
product owners, and managers develop the skills
they will need to apply and teach—in the wider
rollout. Finally, the pilots serves as a demonstration
to the rest of the organization of the potential power
of the approach.

As an organization moves from its initial pilot
phase toward a wider rollout, the need for a long-
term perspective and strong top-management
support is particularly critical. This is because
most companies experience an initial drop in
productivity as their developers, product owners,
and managers get used to the new way of working.
Analysis of our benchmarking data suggests
that this drop is usually around 14 percent at its
deepest before productivity recovers and goes on
to surpass pre-agile levels by 27 percent or more.

Beyond preparing themselves for the inevitable
initial dip in productivity, the best organizations
take steps to preempt it. One key step is ensuring
that the right engineering practices, capabilities,
tools, and performance management mechanisms
are in place as the rollout commences—the subject
of “Teaching elephants to dance (part 2).”

Adopting the approach described here and in
the following article has delivered remarkable
software development performance improvements

to some large companies. One North American
development organization, for example, created a
modified version of the agile “scrum” approach to
improve the reliability of mission-critical software
delivery. The company rolled out the approach to
more than 3,000 developers using a large-scale
change management program including training,
coaching, communication, and role modeling.
The results of this effort exceeded the company’s
original expectations, with throughput increasing
by more than 20 percent, significant cycle time
reductions, and higher customer satisfaction.

Applying agile in larger and more complex
efforts requires modifications to standard agile
methodologies. Specifically, organizations need
to create structures and practices to facilitate
coordination across large programs, define
integration approaches, ensure appropriate
verification and validation, manage interfaces with
other enterprise processes (e.g., planning and
budgeting), and engage with other functions (e.g.,
security and infrastructure).

The authors wish to thank Florian Weig for his
contributions to this article.

The article was first published by McKinsey’s
Operations Extranet.

Agile development

The term “agile” describes a collection of rapid, iterative software development approaches. Agile
involves a wide variety of tools and techniques, with certain common elements at its heart. Tightly
integrated cross-functional teams that include end-customer representatives ensure the product reflects
real user needs. Those teams do their work in rapid iterations to refine requirements and weed out errors,
with continuous testing and integration of their code into one main branch. Techniques like colocation
of project teams, daily meetings, pair programming, and collective ownership of code promote
collaboration within the team.

25Teaching elephants to dance (part 1): Empowering giants with agile development

26 Software development handbook Transforming for the digital age

04

27Teaching elephants to dance (part 2): Empowering giants with agile development

In “Teaching elephants to dance (part 1),” we
showed how the agile development methodology
produces better, more reliable software faster
and at lower cost than traditional approaches.
Capturing such benefits in large organizations,
however, has a price: it requires companies
to establish additional governance structures
and accept a short-term loss of developer
productivity. In this article, we look at the key
practices that large companies must master
to lessen the challenges of managing agile
development and deliver the most value the
approach can provide.

All product development processes have the same
broad objectives: to deliver the right features to the
customer at the right time and in the right quality,
all at the lowest possible cost. For companies
implementing agile at scale, doing that requires the
right design choices, practices, and processes in
four broad categories: products and architecture,
methods, organization, and enablers.

Products and architecture

This category is focused on creating the
appropriate scope for each product—within the
context of the right overall product portfolio—as
well as building an architecture to support it.

Product requirements. Adherence to the agile
principle of simplicity helps ensure that individual
teams remain focused on objectives. Leading
companies use the idea that each agile team has
only one backlog and one product owner to avoid
duplication, conflicts, or “scope creep.” By doing
this, they make certain that product requirements

are clear and responsibility for the delivery of each
requirement is ultimately allocated to a single team.

The product owner plays a critical role in this
process. During early-stage testing, for example,
the PO will collect and filter feedback from end
users, decide which requests should be added
to the backlog of feature requests, and allocate
those requests to the appropriate teams. Typically,
the backlog is structured along several different
levels of granularity, starting from the original
requirement as formulated by the end users and
subsequently broken down into smaller and more
detailed requirements, often called user stories.
To enable coordination across multiple teams,
PO organizations often follow a similar structure
with a hierarchy of POs, senior POs, and chief
POs owning backlogs at the team level, program
release level, and portfolio or suite level.

Architecture. A robust modular architecture
is essential to the success of large-scale agile
projects. Modularity aids the division of work
between teams, minimizes conflicts, and
facilitates the continuous integration of new code
into the product for testing and evaluation. Under
the agile methodology, the rapid evolution of the
product during development sprints makes it
difficult to fully define such architecture up front.
Instead, leading companies reserve development
capacity specifically for modularization work.
This means developers can concentrate on the
delivery of features and refine the surrounding
architecture as they go.

In addition to agile teams’ work on the architecture
of their own modules, a dedicated cross-project

In big companies, lightweight development methodologies require heavyweight support behind
the scenes for maximum benefits and minimal cost.

Teaching elephants to dance
(part 2): Empowering giants
with agile development
Peter Andén, Santiago Comella-Dorda, André Rocha, Tobias Strålin

28 Software development handbook Transforming for the digital age

architecture team can help manage the major
interfaces and dependencies between modules.

To minimize dependencies and the resulting
waiting times, agile teams are usually formed
around the delivery of features (rather than
around modules or components). It is likely
then that individual teams will end up working
on multiple modules, with more than one team
potentially contributing to the development of
individual modules. While this approach creates
the possibility of code conflicts, which must be
managed, it also promotes close coordination
between teams and encourages the development
of simpler interfaces between modules. Leading
companies consider the trade-offs between
simplicity and the potential for conflicts when
allocating development resources, so some
particularly complex or critical modules may get
their own dedicated teams.

Methods

Software’s short life cycle means that testing
and integrating changes is an ongoing process.
This has implications for the approaches an
organization takes to software development.

Test-driven development. The rapid, iterative
nature of agile development makes maintaining
quality a challenge. Companies who do this well
are adopting test-driven development methods
that help them accelerate the development
process by increasing the chance that the
software is right the first time. Under the test-
driven development approach, agile teams begin
by writing test cases for the specific features they
are implementing. Then they write product code
to pass those tests. Through the development
process, the tests are updated alongside the
code, and every iteration must pass the test
prior to release.

Beyond accelerating the test process, test-driven
development has a number of other advantages.
It helps make requirements clearer and more
specific, since they must be built into the test

protocols. It enables real-time reporting of the
progress of the whole project, since managers
can check the number of tests passed at any
one time. It encourages teams to write simpler
and more rigorous code that focuses on meeting
user requirements. Finally, the availability of the
test protocols simplifies future updating and code
maintenance activities.

Continuous integration. Early and regular testing
requires access to the latest version of the product
under development. To avoid labor-intensive and
potentially error-prone manual recompiling and
rebuilding, best-practice companies support their
modular architecture with a continuous integration
infrastructure that makes regular (daily or every
few hours) builds of the product for testing and
use the latest version of code released by the
development teams.

Some very mature agile development
organizations will make these daily builds of their
product available directly to customers with the
confidence that their test-driven development
and continuous integration processes will ensure
sufficient quality and reliability. Such a rapid
release cycle is not always desirable, however. It is
more common for the PO to make a release only
when there is sufficient new functionality available
in the product. In addition, some organizations
have one or two “hardening” sprints before each
scheduled release, in which teams focus on
improving product quality and performance, rather
than adding new features.

The systematic use of agile practices like
continuous integration and test-driven
development leads to quantifiable benefits in the
quality of the software developed.

The organization

The key to large companies’ ability to be agile in
software development lies in the way they structure
their organizations, how they manage and support
the teams within the organization, and how the
organization interfaces with its partners.

29Teaching elephants to dance (part 2): Empowering giants with agile development

Team coordination. The need to keep multiple
teams coordinated is the most significant
difference between agile in large and small
projects. Getting this right requires mechanisms
for strong coordination and monitoring of code
conflicts. Strong coordination starts by holding
regular meetings within each agile team (typically
every day) and among the various teams in a
project (usually two to three times per week).
To monitor and minimize code conflicts, two
important steps can be taken. First, the product
architects can monitor system interfaces and the
impact of changes. Second, dedicated owners
can be assigned to each product module to
continuously monitor and assess the quality
of the code.

Protect the team. In order to effectively protect
their development teams, the best companies
manage the various essential interactions between
the teams and the rest of the organization. This
includes staffing teams appropriately from the
beginning, so they have all the capabilities they
need to complete their current sprints without
additional resources. It also involves procedures
to ensure teams complete all the testing and
documentation required to comply with corporate
standards and security requirements.

In large and complex projects, development
teams can easily be distracted by requests from
users, managers, and other teams. Taking steps
to minimize such distractions during development
sprints allows teams to focus on achieving the
objectives of the sprint. At the top of this shielding
infrastructure is usually the PO, who prioritizes
requests for new features or product changes.
The PO will be assisted by a dispatch team, which
is responsible for the incoming stream of bug
reports and minor change requests arriving from
users, field test teams, and other stakeholders.
The dispatch team will eliminate duplicate requests
and validate, categorize, and prioritize issues
before adding them to the backlog and allocating
them to the appropriate team. In many project
organizations, the project manager will collaborate
with the PO and support shielding the teams.

Finally, companies establish clear interfaces
with relevant parts of the wider organization, so
development team members know where to
go for advice on the company’s graphic design
standards, for example, or to check that products
and features will meet legal requirements in all
relevant markets. A useful construct is to appoint a
single point of contact (SPOC) from each relevant
organization. The SPOC is required to attend
the release and sprint planning meetings and
reviews to ensure appropriate coordination and
engagement while limiting the additional load
on central functions.

Managing distributed teams. Agile development
works best when all developers sit at a single
location. In many organizations, however, such
colocation is not possible. Their development
teams may be sited in different countries, for
example, or some parts of the development may
be outsourced to external organizations.

To make agile work well in distributed
environments, companies must make further
modifications to core agile practices. Keeping
multiple teams coordinated, for example, may
require additional up-front planning prior to the
start of development sprints. The sequence of
development activities requires extra care too.
Focusing early on aspects that will have significant
implications for many teams, like the architecture
of the product or its user interface, helps ensure
consistency later on.

The best companies also work hard to facilitate
communication between distributed teams. They
do this using virtual communication tools like
videoconferencing and Web-based document
management and sharing tools. They also facilitate
visits, exchanges, and face-to-face meetings
between teams where possible. Requiring more
detailed documentation as part of each agile
sprint also helps subsequent teams to understand
and build on work done by distant colleagues.
The dedicated effort required to document this
can be minimized with the use of automated
documentation generators.

30 Software development handbook Transforming for the digital age

Partnering with vendors. Even companies that run
successful internal agile processes frequently fail
to apply the same principles in their interactions
with other vendors. Rather than investing time
and effort negotiating traditional—and inflexible—
contracts that aim to capture all the requirements
of the project up front, some leading players
are now working with external suppliers in the
same way they do with their internal agile teams.
By encouraging collaboration and a focus on
output, this approach aligns internal and external
development efforts and promotes greater
efficiency for all parties involved.

Enablers

With organizational structures, product scope
and architecture, and methods in place, large
organizations will need to equip themselves with
the know-how required to expertly implement
agile software development. Building capabilities,
tools, and performance management systems will
enable teams to perform at their best.

Capabilities. As they scale up their agile
transformation, companies need to dedicate
special attention to developing the right
capabilities across their organization. Agile
places new demands on software developers,
who may have to learn to operate in a less
specialized, more flexible, more self-reliant, and
collaborative environment.

Leading companies promote multi-skilling in
their development teams. Typically, individual
developers will have one or two core areas of
expertise but will also acquire skills in related
areas. Multi-skilling helps the development teams
adjust to inevitable workload changes and other
skills required during the project. Combined with
collective code ownership, it also helps different
agile teams work independently. Multi-skilling also
works well for developers, giving them plenty of
opportunities to upgrade and extend their skills,
and it facilitates communication and collaboration
with colleagues working in different areas. Last

but not least, having top-notch developers usually
makes a big difference in team productivity.

Agile places new demands on managers too,
particularly product and R&D line managers,
whose role under agile may change radically.
Product managers need to operate much closer
to the development engineers, prioritizing and
explaining the work that needs to be done.
Similarly, the most effective line managers in agile
software development environments will focus on
enabling their engineers to do what they are best
at: developing new products. The role of the line
manager is to ensure that the development team
holds the required capabilities, a high motivation
level, and a strong “can-do” mindset. Importantly,
line managers also make certain there are no
impediments to development progress. It is vitally
important to support managers through this
transition, but it is frequently ignored.

Good capability-building efforts make use of
a range of methods, with classroom learning
supported by extensive on-the-job coaching,
mentoring, and support to reinforce the use of
new practices.

Tools. A common development tool chain
across all agile teams is an important element
of effective project execution and control. This
needs to be in place from the beginning of the
agile rollout. Examples include technical tools for
automated testing, quality analysis, configura-
tion management, continuous integration,
fault reporting, and product backlog manage-
ment systems.

With these tools, companies can mandate the
adoption of certain agile methods right at the
start of the transformation process. For example,
they can ensure that testing takes place from the
beginning of each development sprint to catch as
many issues as possible before code is released
into production. They also are able to ensure
code actually is released into production at the
end of each sprint to continue the rapid
identification of issues.

31Teaching elephants to dance (part 2): Empowering giants with agile development

Performance management. Good
management isn’t all about IT systems and
tools, however. Leading companies also
make extensive use of visual management
techniques—another core agile practice—with
teams using whiteboards that show the status
of and pending actions associated with their
current sprint. Not only do these boards serve
as the basis for their daily meetings, they also
allow product owners and members of other
teams to see what is going on at a glance.

Finally, companies need to balance the
independence and flexibility of agile teams with
the need to ensure the wider organization has
a clear understanding of their progress, and
can intervene to provide extra support when
problems occur. Best practice is to do this by
adopting standard systems and processes
for performance management while using
clear and closely tracked metrics, including
engineering productivity indicators.

The agile approach has proved greatly effective
in improving the speed, productivity, and
responsiveness of software development.
Applying a methodology that was developed
for small teams across a larger organization
requires companies to make some specific
changes and additions. Adopting tools and
practices described here allows even the most
complex development projects to capture the
benefits of agile.

The authors wish to thank Florian Weig for his
contributions to this article.

The article was first published by McKinsey’s
Operations Extranet.

32 Software development handbook Transforming for the digital age

05

33From box to cloud: An approach for software development executives

Recent growth in cloud-based software as
a service (SaaS) is expected to continue at
20 percent each year through 2018, when the
global market could reach nearly $85 billion.
Switching from packaged or “on-premise” soft-
ware to SaaS has a number of benefits that include
improved user experience and lower delivery
and support costs. It also enables companies to
access new markets and incorporate innovative
third-party cloud software.

At this point, however, SaaS remains something
of an afterthought in the portfolios of leading
software vendors. According to one report,
only 8 percent of the revenues generated by the
top 100 software vendors comes from SaaS
models—and seven of the ten biggest companies
draw less than 5 percent of their software
revenues from SaaS. Other research shows
that the SaaS penetration in most software app
categories remains low today, ranging from 1 to
36 percent. By 2018, however, its share should
increase materially, achieving up to 72 percent
penetration with some apps. While many vendors
have yet to jump onto the SaaS wagon, a few
that have been delivering SaaS experiences
for years are busy upgrading their technical
architectures to implement the latest generation
of cloud technologies. These include new
persistence and database models (in-memory or
NoSQL databases, for example), faster analytical
platforms, adaptive user interfaces, and elastic
computing, among many others.

As companies attempt to transition packaged
software to SaaS or upgrade existing SaaS
solutions to leverage new cloud architectures, they

often face a number of challenges. Conversations
with senior software development executives
surfaced a number of concerns and questions
regarding this transition.

What kind of cloud architecture should they target?
Should developers use public infrastructure-as-
a-service (IaaS) or platform-as-a-service (PaaS)
solutions or choose the private cloud? Do they
need to rewrite their entire code base?

How does the organization manage the transition
to its target state—from legacy architecture to
cloud-based services-oriented architecture? How
long should the transition take and what are the
key steps? Should the company wait until cloud
and on-premise products achieve parity?

What changes should be made to development
and operating models? Should development
methods be changed? How could this shift affect
software release cycles? Will the company have to
change the way it engages with customers?

What capability and cultural shifts does the
organization need? How should a company
build the necessary talent and capabilities, what
mindset and behavioral changes do they need,
and how do they select the right development, IT,
and infrastructure approaches?

A deliberative process begins with a careful
consideration of which code base type,
architecture modification, and cloud infrastructure
is most appropriate. Then—to ensure successful
execution on the choice made—software
executives will need to make several commitments

As the world moves to cloud-based software, many software development executives wrestle with
transitioning from packaged to cloud products. Pointers from successful software vendors can ease
both the decision and ultimately the move.

From box to cloud:
An approach for software
development executives
Santiago Comella-Dorda, Chandra Gnanasambandam, Bhavik Shah, Tobias Strålin

34 Software development handbook Transforming for the digital age

regarding the scope of the product, the approach
to development, and the allocation of resources.

Choosing the right approach

Software companies who are considering making
the switch to cloud software face three critical
decisions, and their optimal way forward will depend
on their main objectives and starting points.

The first decision concerns whether it makes
more sense over time to choose a unified code
base for both packaged and cloud software or
to have a separate one for each. Ultimately, this
decision comes down to a few key factors. First,
the organization’s long-term vision is important
when determining the ultimate purpose of the
application. Is the team trying to build an optimized
application for the cloud or is it attempting to
leverage specific benefits of the cloud while
providing additional options to customers? The
second issue concerns the maintenance costs for
two code bases. In this case, how long does the
company plan to continue with both packaged
and cloud software products, and is feature parity
required? For many software vendors, it seems
likely that packaged software suites won’t go away
anytime soon. The final factor involves talent and
culture. Does the team have the desire and attitude
required to learn new technologies and unlearn
past coding practices?

When a unified code base makes sense. A uni-
fied code base might be preferable if current
customers view the cloud as just another channel.
That is, the company does not expect all of its
customers to transition away from on-premise
software in the short to medium term (see text box
“When less is enough”). Or the company might
not need best-of-breed cloud architecture to take
advantage of the basic cloud benefits (including
elasticity, scalability, and low cost). A unified code
base works when the company has to maintain
and manage multiple versions of the product. From
a practical standpoint, another reason to choose
a unified solution is that a company has evidence
that its development teams are willing not only to

learn new technology but to unlearn past coding
practices as well.

When to choose separate code bases. Maintaining
separate code bases for packaged and cloud
software may be ideal when managers see the
cloud as the key channel for future growth and
expect to phase out the on-premise product. If
customers expect the cloud-based product to be
different in terms of look and feel compared with
the desktop version and also expect it to include
features provided by other cloud-based offerings
(weekly releases, better scalability, and support
for social tools, for instance), then separate code
bases may also be the right choice. Other reasons
to opt for separate code bases may be the fact
that the company doesn’t have to manage feature
parity between both cloud-based and on-premise
products, since it will soon phase out the latter or
the software team must completely rethink the user
experience and has the required skills to execute.

The second critical decision: companies can
choose to refactor and “re-architect” on the go or
build an entirely new architecture. When making
this decision, leaders should consider two factors:
the viability of the current architecture given the
projected road map of the company’s software
products and the time-to-market requirement.

When to refactor. Refactoring is typically much
faster and preferable if the current architecture
might not be ideal for the cloud architecture
but does have basic structural elements such
as identifiable layers. It also makes sense if
developers can port multi-tier applications to
cloud architecture without undertaking a complete
rewrite. Another scenario for which refactoring
may be the better choice is when the company
needs to release the first cloud-based version as
soon as possible. Fully refactored, services-based
architecture can help drive frequent and small
releases but is not a necessity to get started with
the cloud-based product.

When to design a new architecture. Developing
a new architecture makes sense if the current

35From box to cloud: An approach for software development executives

When less is enough: Software’s measured journey to the cloud

One software company released the first version of its application life cycle software suite nearly a decade
ago. As is typical of many packaged applications, the product had a two- to three-year release cycle.
Five years later, this company began to develop a cloud version to achieve some of the benefits the
technology provides, such as scalability, elasticity, ease of deployment, and minimal up-front investment
for customers. As the software team began its migration journey from packaged to cloud software, it made
two key decisions:

Use a single code base. The packaged version of its software will have a significant customer base going
forward. The team decided early on that it would use the same code base for both products and adopt a
plug-in-based architecture for cloud-specific components. This decision allowed them to utilize 90 percent
of the code base for both versions of the software.

Refactor as you go. The packaged version is a three-tier application with the server running on the
Windows platform. The product has a services-based architecture, but the services were not modular
enough for a good cloud-based application. Since the team had not created the product in the cloud, it
had difficulties making the transition. Team members chose refactoring in order to build a “minimum viable
product” for the cloud and then continued refactoring existing code base after releasing the product.

Team leaders highlighted several lessons they learned along the way. For instance, the use of advanced
engineering systems and the team’s “can-do” attitude were big transition enablers. They also learned that
cloud-based products require three to four times more diagnostics capability compared with packaged
software. Finally, they noted that the customer engagement model can be very different when product
releases take place every three weeks instead of every two years. Today, approximately two million
developers use this software company’s cloud version.

Refactoring to be done

Desktop Browser Plug-insClient tier

Main database Warehouse database

Data tier hosted on SQL server

Web services

Middle tier on Windows Azure

Data tier on Azure SQL Database and Azure Storage

Component 1 Component 2 Component 3

Web services

Component 1
service

Component 2
service

Component 3
service

Shared framework service

Cloud plug-in for authentication
Cloud plug-in for file
storage

Packaged software architecture Cloud-based software architecture

Middle tier on IIS server

Component 1 Component 2 Component N

Shared bulky
service libraries

Desktop Browser Plug-insClient tier

Main database New file storage for cloud

Same code base. Plug-in
architecture made it
possible to maintain 90% of
the code base for both
packaged and cloud-based
products. Cloud-specific
components are integrated
as plug-ins

Refuse to fully
re-architecture up front.
Original extensive service
library layer was refactored
over the course of two years
as customer and design
needs became clearer

Source: McKinsey analysis

36 Software development handbook Transforming for the digital age

design is just not suitable for the cloud. For
example, it might be a monolithic architec-
ture that demonstrates symptoms of
“spaghetti” code. Another consideration is
the architecture’s scalability. Sometimes an
architecture originally built for on-premise isn’t
really designed to scale up to a larger number
of users or it does not support multi-tenancy.
Companies often build up related “technical
debt” because of prior architecture decisions.
For example, a payroll processing company
decided to overhaul their current architecture to
be able to move to open stack since portability
is a key requirement for them. The company
built some of the new system from the ground
up while tactically leveraging stable calculations
engines and other components. Even while
re-architecting much of the stack, the company
didn’t update a few mature components,
including some on mainframe, since the risks
of updating those components outweighed the
potential benefits.

Another critical decision is the choice of
public versus private cloud infrastructure.
Companies can build their products on top of
either privately hosted platforms or public IaaS
or PaaS ones that rely on a service provider.
This decision primarily concerns economies
of scale, since the scale of infrastructure
deployment, the company’s tolerance for
risk (data security or performance issues,
for example), and regulatory requirements
will ultimately drive it. IaaS platforms provide
flexibility and control but entail the trade-off of
additional complexity and the up-front effort
required to build a user-ready service for them.
Conversely, PaaS platforms often offer many
capabilities that can help companies accelerate
the transition to the cloud, but these platforms
generally include proprietary or vendor-specific
capabilities. As such, they require software
created for a specific vendor’s platform and
stack, thus locking in those suppliers. While a
small degree of vendor lock-in does exist with
IaaS systems, it is relatively easy to plan around
those areas.

When to go for a private cloud. Private clouds
work when the developer has sufficient internal
scale to achieve a comparable total cost of
ownership to public choices. That typically
means it employs tens of thousands of virtual
machines (VMs). It is also the right choice if at
least one of the following four considerations is
critical for the specific system or application and
therefore precludes the use of the public cloud:
data security, performance issues, control in
the event of an outage, or technology lock-in.
A final factor involves regulatory requirements
that might restrict efforts to store customer data
outside of set geographic boundaries or prevent
the storage of data in multi-tenant environments.

When to choose the public cloud. Developers
should consider the public cloud approach if
the project lacks sufficient scale (will not involve
tens of thousands of VMs, for example) or a high
degree of uncertainty exists regarding likely
demand. Using a public cloud is a more capital-
efficient approach, since building a private
cloud requires significant resources that the
company could probably invest more effectively
in the mainstream business. Another reason to
go public: the system or application is latency
tolerant. Experience shows that the latency
levels on public clouds can vary by as much as
20 times depending on the time of the day. It also
makes sense—if there are no specific regulatory
requirements—that applications store the data in
a particular place beyond performance needs.
Even if companies decide to use a private cloud
for their most critical applications, many decide
to use public cloud for certain more basic use
cases (dev/test workloads, additional temporary
capacity, for instance).

Six cloud-hopping design principles

Once executives have made their code base,
architecture, and infrastructure decisions, they
begin developing their cloud-based software.
To better understand how software players
successfully make the transition, McKinsey
reviewed a number of external cases and

37From box to cloud: An approach for software development executives

conducted in-depth interviews with leading
software players. Those who succeed in the
journey from on-premise to cloud software
development share six commitments.

Shoot for the minimum viable product instead of
feature parity. Organizations moving products
to the cloud often discover that achieving full-
feature parity could take several years. Instead,
successful vendors often decide to release a
minimum viable product (MVP) to customers in
six to nine months. This strategy allows them to
test their architecture and functionality quickly.
The approach also forces them to think deeply
about which types of product functionality
deliver sought-after core customer experiences
and what they have to emphasize to get that
functionality right. By putting a workable MVP
with the most important features in user’s
hands as quickly as possible, the team is able
to both gather crucial initial customer feedback
and rapidly improve on their cloud-based
development skills.

Treat users as part of the day-to-day
development team. Developers need to engage
with their customers early and often—and
shifting to a cloud model opens new ways of
interacting with them. Teams can get feedback
from customers in near real-time as soon
as—or even before—they release a feature.
User engagement also allows developers and
product managers to ask customers to prioritize
their needs via blogs when the product is in the
concept phase and provide a basic product to
specific early adopters. They can then codesign
the full-featured version with them. Experience
shows that collecting early feedback can help
teams shape how they prioritize the features that
are still in development.

Running the application centrally for all custom-
ers also opens up new capabilities. Developers
can, for instance, employ logging and analytics
to understand customer actions, taking a highly
data-driven approach to tracking their usage
patterns. Likewise, performing “A/B” features

and functionality testing gives teams a data-
driven approach to decision making. The 2012
Obama presidential campaign in the United
States, for instance, used about 500 A/B tests
on its Web page interaction, copy, and images.
The approach increased donations by nearly
50 percent and sign-ups by over 160 percent.

The cloud also enables teams to roll out func-
tionality in a controlled manner (first 1 per cent of
customers, then 5 percent if all goes well, then
10 percent, etc.).

Expect and tolerate failures. Cloud
infrastructure brings many benefits including
the ability to grow or shrink resources for
an application in real time. However, the
shared nature of cloud infrastructure can
pose challenges because of factors beyond
the developer’s control, such as hardware or
network failures or slowdowns. And, as with
all customer data centralized in the cloud
environment, developers need to design an
architecture for the application that can accom-
modate these failures and work around them.

For success, companies will need to develop
a mindset that accepts failures. Without it,
developers will hesitate to make changes,
making release cycles grind to a halt. One
Internet content provider learned this lesson
the hard way after experiencing service
disruptions due to a third-party Web services
provider failure. In response, the company
made its applications more robust in the face
of such disruptions. Now, if similar problems
occur, their apps are designed to provide a
somewhat diminished customer experience
rather than a complete crash. On top of this,
to simulate random failures, the company
created a special tool in the form of a script that
will indiscriminately kill infrastructure services.
This approach enables it to test application
responses against failures that may eventually
happen. It also helps teams learn about
challenges specific to cloud-based develop-
ment and incorporate customer inputs early.

38 Software development handbook Transforming for the digital age

Adopt agile and DevOps approaches. Companies
should adopt agile thinking and DevOps, a
software development approach that focuses on
product delivery, quality assurance (QA), feature
development, and maintenance releases. DevOps
builds on many “agile” concepts, like working in
cross-functional teams and in short iterations
all the way to deployment. Software executives
also need to integrate their QA, operations, and
security organizations with their R&D teams
and schedule at least one release per month.
Continuous integration, including integration into
the main software branch, should be implemented
with at least daily frequency. Releases should be
scheduled as frequently as possible to ensure early
user feedback. The release cycle can range from
several releases per day to one per month. Once
code base is refactored into granular ser vices, it
is possible to achieve very short release cycles
without destabilizing the entire product base.

The need for this shift goes to the heart of the
differences between packaged and cloud
software. With packaged software, releases
are expensive because teams have only one
true chance to launch a product. Consequently,
releases occur once or a few times every
24 months. In a cloud environment, in contrast,
most vendors find that incremental releases
reduce the complexity of deployment and the
magnitude of potential failures at the time of
release. The incremental release approach leads
to dozens of small releases for an individual
product in its lifetime.

Give developers QA and testing responsibility.
Another hallmark of successfully moving from
packaged to cloud software is the choice of com-
panies to hold their software developers—not
the code testers—accountable for quality. These
companies seem to blur the boundaries between
development and QA roles. The idea is to allow
the software developers to resolve critical issues
immediately as they become apparent. This
approach requires them to deploy critical fixes
continuously in addition to running short release
cycles. It makes sense: despite the iterative nature

of agile software development, cloud users will not
accept or use apps with significant unaddressed
issues. And it’s also efficient: a developer can
fix a bug introduced just two weeks ago much
quicker than one that was introduced six months
or two years back.

Another very important factor is that developers
understand that fixing SaaS issues is fundamen-
tally different from fixing problems with packaged
software, which requires them to adopt new
practices. It is normal, for example, to expect
customers to take their servers offline to debug
a problem for on-premise software. This is not
an option for service-based software, since cus-
tomers across multiple time zones are using the
service. Building advanced diagnostics and tracing
capabilities in the software is much more imperative
for cloud-based software. Another similar example
is NoSQL database adoption, which requires a
significant unlearning of how developers worked
with traditional, relational databases.

Invest in cutting-edge capabilities and automated
test environments. McKinsey’s observations of
successful software developers suggest that hiring
top development talent who can inject new external
expertise into the organization at the operational
and management levels is critical to making the
switch to cloud software. Another crucial enabler
is investing in tools and infrastructure to power
the cloud-focused development model. The
organization should shift all build, integration, and
testing operations to a continuous and automated
model that supports rapid release cycles. Leading
cloud software providers—such as some of
the world’s largest search and social media
companies—regularly build and test the entire
code base several times a day. Companies can
reduce these intervals to as little as 15 minutes, but
doing so requires a very advanced IT environment.
Leading cloud players provide an environment
where developers can test code changes against
any of the portfolio products that could be
potentially affected. This enables designers to
conduct solid integration testing on their own before
submitting the code for real integration.

39From box to cloud: An approach for software development executives

Even if it generates significant buzz, cloud-based
SaaS remains a relatively small part of most
leading software developers’ product portfolios.
As the share of cloud-based software grows,
developers will need to increasingly focus on
transitioning away from packaged, on-premise
software. Reaching carefully considered
technology decisions and committing to several
organizational and operational approaches
to developing software as a service can help
developers successfully transition from packaged
to cloud software.

The authors wish to thank Buck Hodges,
Engineering Director for Microsoft Visual Studio
Cloud Services, and Roberto Masiero, VP ADP
Innovation Labs, for their contributions to the
article. The authors would also like to thank Akash
Shah for his contributions.

The article was first published by McKinsey’s
Telecom, Media, and High Tech Extranet.

40 Software development handbook Transforming for the digital age

06

41Complexity costs: Next-generation software modularity

Software has become a key differentiator for
the advanced and high-tech sectors, and it now
plays a central role in many aspects of business.
Companies rely on sophisticated software
applications behind the scenes to design their
products and execute their processes. Products,
from communications satellites to cars and
washing machines, use embedded software to
deliver the features customers want, and which
would be hard to implement in any other way.

But as its scope and the range of its application
are continually stretched, software is getting
increasingly complex. This creates new headaches
for manufacturers. First, complex software takes
ever more time and resources to develop. Second,
companies face the challenge of supporting
multiple variants of their software in use. Finally,
multiple layers of customer additions and
modifications create the need for lengthy tests
to prevent unforeseen and undesirable effects
on other parts of the system, making it harder
for companies to promptly respond to new user
requirements, to regulatory changes, or to the
opportunities presented by new technologies.

The first line of defense

For many companies that make application and
embedded software, modularity represents the
first line of defense against software complexity.
Modularity, both in hardware and software, is
a widely accepted engineering principle that
promises three major benefits. First, it reduces
the up-front effort of product customization to suit
different customer needs, limiting the required

changes to a small number of modules. Second,
it allows a richer product portfolio while limiting
the costs and drawbacks of added complexity.
Third, it makes products faster and easier to
maintain, as any change required to fix problems
or introduce new functionality should be limited to
a small part of the code.

Why modularity strategies still fail

Many software producers still struggle to
consistently capture and sustain the full benefits
of their modularity strategy. This happens for a few
common reasons. Sometimes, the original design
is flawed. Drafting a modular architecture without
fully considering future customer requirements can
mean companies have to implement simultaneous
changes to multiple modules in order to incorporate
customizations or new features. Or they may need
to repeatedly change and recertify the same few
modules to meet different customer requirements.

In other cases, a good design is weakened over
time, as additions and changes to the software
are made without ensuring their compatibility with
the existing modular architecture. Such “quick
fixes” may appear cheaper in the short term, but
they quickly damage flexibility and erode the self-
contained nature of modules, driving up costs
over the long run.

In still another common scenario, a company
may use a good modular architecture badly,
repeatedly creating entirely new versions of
the software for particular purposes or to meet
specific customer needs. The need to keep

As software becomes more sophisticated, it gets increasingly expensive to customize, maintain, and
extend. A new modularity approach can turn the tide of rising costs and risks, allowing companies to
unleash the full potential of software in their businesses.

Complexity costs:
Next-generation
software modularity
Peter Andén, Simone Ferraresi, Tobias Strålin

42 Software development handbook Transforming for the digital age

all those variants up to date results in high
maintenance certification and upgrade costs.

Any of these mistakes can have a major impact
on manufacturers’ ability to deliver products
profitably and within deadlines, and to the cost of
maintaining them in service. Compounding these
issues, companies may be nervous about making
the tough short-term changes that will deliver a
more robust and easier-to-support product in the
long run, preferring to stick with the “devil they
know” rather than embarking on the expensive and
potentially risky process of a major redesign.

Making modularity work

Some companies are changing their software
development methods to promote modularity
strategies that work the way they are supposed
to and that go on working through the life of
the software. While their precise choice of
soft ware development practices and tools
will vary depending on the size and culture of
the organization and the nature of the soft-
ware, McKinsey has observed that the best
organizations maintain a focus on three important
levers: a robust scalable architecture; a phased
implementation approach; and a well-governed
development organization to roll out and enforce
this “new generation” modularization strategy.

Robust, scalable architecture

Effective modularization means more than
just cutting a piece of software into chunks.
Modularization must simultaneously balance
multiple, sometimes conflicting, objectives:
for example, weighing the simplicity of smaller
individual modules against the need to manage
more interfaces between them. New generation
modularization strategies adhere to a number of
core principles.

Functional decoupling. Removing unnecessary
links and dependencies between functions
is a critical enabler for many of the benefits of
modularization. To do this, leading companies

break down the use case that defines their
software into a number of elementary functions.
They then design their modular architecture so
that each of these functions can be modified with
little—or ideally no—impact on other functions.

Rationalization. Strong architectures control
product proliferation before it starts, by agreeing
which parts of the software will be standardized for
all customers and where and how customization
will be allowed.

Adoption of standards. Standard solutions, from
data exchange to development methodologies,
help simplify many aspects of software design and
support. However, standards only work if they are
applied consistently across the product, and if the
product uses the same standards everywhere. The
best players, therefore, make considered choices
about which standards to adopt as a core part
of their software architecture. Then they stick to
them, limiting the ad hoc adoption or proliferation of
inconsistent standards that might otherwise occur.

Technology rationalization. As with standards,
strong product architectures require strategic
decisions about which technologies (for example,
program ming languages, databases, and develop-
ment tools) will be adopted. Limiting the number of
technologies they adopt helps companies control
the breadth of skills their development teams need
in order to support their products and makes it
easier to move developers between different parts
of the product according to demand.

Scalability. The need to serve customers of
widely different sizes is one cause of product
proliferation. By building scalability into their
product architecture (for example, ensuring that
their standard software can run on simpler low-
cost computing platforms, perhaps with a smaller
set of features) companies can reduce or eliminate
the need to produce different products just to meet
different scale requirements.

Upgrade flexibility. Software upgrades can be
time consuming and disruptive if the system has

43Complexity costs: Next-generation software modularity

to be shut down and replaced entirely at every
upgrade cycle. The ability to upgrade software
by changing only the affected parts of the code
makes the upgrade process faster and more
reliable, and it dramatically reduces recertification
costs. Strong product architectures facilitate this
by implementing the most commonly upgraded
elements in separate modules.

Alongside decisions about the platforms,
standards, technologies, and upgrade
strategies, the other key foundation of a robust
modular design is a thorough and detailed
understanding of requirements. Mapping the
individual requirements of their customers
against the software modules that will fulfill those
requirements can be eye-opening for companies
looking to improve the modularity of existing
products (see text box “Gaps and overlaps”).

Each module defined in a product architecture
also needs its own strictly enforced modularization
strategy. There are four basic strategies manufac-
turers can adopt to determine the degree to which
they will permit customization of individual modules
and the way that customization will be executed:

 � Identical modules are the same in all versions of
the product and are never customized.

 � Swappable modules exist in a number of
predesigned and pretested “flavors.” Products
can be customized by selecting and including
one or several of these modules.

 � Parametric modules allow customization to
be implemented by changing the value of
predefined software switches or variables,
either during the initial configuration or by the

Gaps and overlaps: Efficiency gains from making modularity work

Modularity alone doesn’t lead to product development efficiency. Understanding the interplay between
standardization and custom design is key. The companies described in the examples below needed to
shine a light on modification patterns and frequency to get the most out of modularization.

Modular imbalance. A major player in control software discovered that a single user interface module in
its current product was involved in more than 90 percent of the product’s requirements, making it almost
certain that the interface module would need to be altered whenever user requirements changed. The
issue was solved by breaking this interface module into a number of smaller modules—some of which
managed the data presentation to the user while other “service” modules handled data analysis and
communications with the underlying system. After the change, no single module accounted for more
than 10 percent of the requirements. Moreover, by making different services independent of one another,
the new approach made it easier for the software manufacturer to sell different versions of the product,
from basic to full-featured, by progressively adding different modules on a robust architecture designed
to integrate such add-ons.

Over-customization. When a large systems manufacturer analyzed the structure of its core product,
it found that more than 80 percent of modules required modification in every project, even though
requirements changed in just a few processes. A full redesign of the product architecture resulted in
a complete turnaround of the module taxonomy. More than 60 percent of modules became identical
in every project, and only 5 percent required custom code. For the rest it adopted a combination of
parametric and swappable designs to meet varying customer requirements with the minimum software
development and testing effort.

44 Software development handbook Transforming for the digital age

user during operation (for instance, to adjust the
software to local regulatory parameters).

 � Custom modules always require customer-
specific code to, for example, include the
customer’s branding or graphical standards.

As the cost of developing, supporting, and
upgrading a module steeply rises the farther one
goes down the list, a company should aim to
allocate the simplest strategy they can to each
module in the architecture.

Phased implementation

Once a company has designed the desired
architecture based on its modularization strategy,
the next step is to implement it in its products.
For completely new products, full modularization
doesn’t add significant extra cost of complexity
at development time. In many cases, however,
the product already exists in the market, and
modularization strategy rollout must take on a
different form. Planned changes to the software
must take into account the existing development
plan for the product and the need to update the
existing installed base, as well as dependencies
between modules. It is also important to consider
payback for the up-front costs and effort
required. By identifying and prioritizing the parts
of the product that stand to benefit most from
modularization—often those that currently require
a lot of custom coding and development resource
to meet user change requests—companies can
make modularization pay off quickly. And they
can use the resources they free up by doing so to
accelerate later phases of the plan.

Well-governed development organization

A successful modularization strategy extends
beyond the architecture of the software code.
The best manufacturers make changes to their
development organization and management
systems to support and enforce software
modularization. During the implementation
process, the organization should track the

progress of its modularization plans, looking at the
number of modules that have reached their target
state and the rate of deployment of modularized
software in the field, for example. Tracking the
savings achieved through modularization is also
important to ensure continued support from
the wider organization and the availability of
sufficient development resources to complete the
project. Such tracking must take an organization-
wide approach to balance the savings made in
maintenance, configuration, support, upgrades
and future developments against the up-front
costs of changing the product architecture.

Over the long term, the development organization
must also ensure that the modular architecture is
maintained. The best organizations hold specific
individuals in their development organizations
accountable for this as “module owners,”
responsible for minimizing code conflicts in
particular modules and ensuring that modules
can deliver what is required by the rest of the
organization while sticking to agreed standards.
At a higher level, a “project architecture owner”
will manage interactions between modules.
Periodic architecture reviews help ensure that
the architecture evolves in a systematic way
in response to emerging technologies or new
customer requirements.

Impact

For companies that successfully enforce new
generation modularity, the rewards can be
significant and wide-ranging. When one global
provider of safety-critical software systems
embarked on such a project, it had multiple
objectives in mind, including improvements
to product flexibility, easier adoption of
new technologies, and lower development,
deployment, and maintenance costs. At the
end of a three-month effort on its main product,
the provider moved from a situation in which
85 percent of the modules contained custom
code to a design that allowed the vast majority
of customization to be provided by swappable or
parametric modules, with only 5 percent of them

45Complexity costs: Next-generation software modularity

requiring full customization. Once this change was
implemented, the organization was able to reduce
product configuration costs by 10 to 15 percent
or use this improved development efficiency to
cut time to market by an even greater amount. In
addition, the reduced complexity of its products
led to savings of 15 to 20 percent in support
and code maintenance. The largest rewards,
however, came as the organization embarked on
the development of new software capabilities and
upgrades, where the stronger underlying product
architecture helped cut costs by 40 to 50 percent.
Overall, the modularization program cut software
development and support costs at the company
by a quarter.

Software complexity is valuable to customers, but
it comes at a price to producers. Modularization
allows developers to minimize the cost of
customization by creating multiple, standardized
product elements. Companies that adhere to
a set of modularization principles, implement
them mindfully, and create an organization that
accommodates them can significantly cut their
software configuration and maintenance costs.

46 Software development handbook Transforming for the digital age

07

47Organized for success: Restructuring hardware companies

Software isn’t just for purchasing or outsourcing
anymore. Increasingly, companies whose primary
focus has been hardware are exploring in-house
software development as a way to reduce costs,
improve time to market, and differentiate themselves
from competitors. Many of these organizations—
such as those in consumer electronics, medical
devices, automobiles, appliances, and heavy
equipment—are beginning to hire more software
engineers to support the development of the inte-
grated circuits that are at the heart of many of their
products. Chipmakers are a prime example of this
hardware-to-software shift. In the late 1990s, it was
common for chipmakers to invest in one software
engineer for every ten hardware engineers; today
the ratio is closer to 1:1.5 or, in some cases, 1:1.

Across the board, hardware companies are
pursuing software development primarily to
meet customers’ growing demands for more
sophistication in and more support for the
components they buy. Earmarking significant
portions of their R&D budgets for software
development is becoming routine, and some are
already providing end-to-end software-based
products for customers. But, while some market
leaders have been at this for a while, other players
are only just starting to take a closer look at how
they build, use, and manage software (see text
box “What are they building?” page 49). They
face a number of challenges: software resources
at hardware-oriented companies tend to be
limited, and engineering talent can be scarce and
hard to acquire and retain. Additionally, efforts to
divert scarce resources away from a company’s
traditional core business toward software
development may meet with internal resistance.

Hardware companies that choose to pursue a
rigorous software development program will need
to have the right organizational structure—one
that enables them to motivate talent, control the
R&D budget, launch products more quickly, and
meet customer expectations. Some hardware
companies have established a central software
organization to support all business units, while
others are struggling to keep up with “rogue”
development efforts happening within various
business units—each with its own software
team. McKinsey’s work points to four potential
organizational structures that software-minded,
hardware-based companies may want to consider
to get the most from their existing development
efforts and to make it easier to pursue new
software R&D initiatives: completely decentralized,
completely centralized, hybrid, and leveraged.
Advantages and potential pitfalls are associated
with each. The appropriate structure will differ
for every company depending on existing talent,
resources, and overall business objectives.

Four ways to organize

We have seen 1,000-person companies make the
transformation from one organizational structure
to another within 12 months, but an effort lasting
years is much more typical, particularly if the
company is starting from scratch or having to make
hard decisions about which groups to merge. In
either scenario, a change in metrics and mindset
will be required. Executives will need to develop
mechanisms for tracking the productivity gains
from their software R&D, and they will need to
foster engagement and commitment to software
development across the company.

In-house software development is gaining the attention of hardware companies. Adopting one of four
basic organizational structures can help them reap the benefits.

Organized for success:
Restructuring hardware
companies
Gang Liang, Christopher Thomas, Bill Wiseman

48 Software development handbook Transforming for the digital age

Completely decentralized. Hardware companies
with a number of different business units that
have little or no business or technical crossover
likely would find it easiest to pursue a completely
decentralized software organization. In this
structure, each of the business units funds
and manages its own software group, and the
unit’s general manager retains the autonomy to
deploy software resources where needed. In the
1990s, Intel’s architecture business unit boasted
a dedicated software organization that created
homegrown development tools to support its
x86 systems. Even today, the software group
works closely with a number of third-party
software vendors—Oracle and SAP among
them—to optimize those applications for every
generation of its central processing units. Intel also
had separate software groups dedicated to its
NOR Flash and i960 businesses. The NOR Flash
software team built up a strong capability in device
drivers, and the i960 software team focused on
enabling Intel silicon to work well with third-party
software and applications. There was almost no
overlap in customer bases or operations among
those business units.

The completely decentralized model works well
as long as the businesses units and technologies
remain independent. If, for instance, units are
combined or new businesses emerge and need
the same fundamental software and technologies
being developed and managed in other groups,
it makes less sense (operationally and financially)
to duplicate efforts. One large OEM, for instance,
created separate business units for two of its
consumer products designed for two different
market segments. There were separate software
development groups for each unit, but the
company eventually realized that development
teams in both used largely the same package with
only a few feature differences. The implication:
the company was wasting its resources and
needlessly creating conflict and competition
between two groups of engineers.

Completely centralized. For hardware companies
whose business units rely on all the same

technologies, a completely centralized software
organization will be most efficient and effective.
Under this organizational structure, software
development and technological expertise radiates
from a central group—one that reports to the
C-suite—removing potential redundancies and
significantly reducing resource and development
costs. Having one centralized software group
allows the company to better manage all of its
licensees and reduce development costs.

A completely centralized model also confers other
benefits upon hardware companies, including a
consistent approach to R&D planning, a standard
set of software development and management
tools, a common software development process
and methodology, and comprehensive rules and
standards for assuring quality and appropriately
managing source code. By establishing this level
of consistency across all business units, hardware
companies can reduce their R&D costs and
accelerate growth in new and critical businesses
that may not otherwise have the funding or technical
capabilities to pursue software development as a
complement to their existing work. This centralized
structure also may facilitate offshore expansion or
development outsourcing by making it easier for
them to manage global engineering resources or
maintain relationships with vendors.

There are a few drawbacks, however. For
instance, the funding model for this approach can
be complicated. In many companies that use a
completely centralized model, the business units
pay a “tax” based on their needs, financial strength,
and other criteria. This can be a headache for
the finance team, which has to calculate the dif-
ference between projected needs and actual
demand for each business unit—each of which
would obviously want to pay as little of this tax as
possible. Additionally, under the centralized model,
the business units would have less control over
software development as a resource. Often, the
objectives of the centralized software group and
the business unit will not be completely aligned; the
units may have unique requirements that a cen-
tralized organization simply may not be aware of.

49Organized for success: Restructuring hardware companies

It is critical for companies that adopt a centralized
model to pay attention to process, metrics, and
collaboration—for instance, convening a small team
that represents the interests of each of the business
units and the centralized software group. The team
would meet regularly to analyze software priorities
and rank them according to business unit needs
and the impact of certain projects on the company
overall. It is also good practice to establish service
level agreements between the centralized software
group and business units to help clarify roles and
responsibilities—and to preserve some level of
control for the general managers.

Hybrid structure. This organizational approach
combines the financial and technological
efficiencies provided by a centralized software
group with the greater flexibility and controls that
a decentralized structure may offer the business
units. At first glance, it seems to present the best of
both worlds. In reality, there are significant funding
and operational challenges to address. Under
the hybrid model, the technologies and software
capabilities that are common to all business units
become the property of a centralized group, while
the technologies and software that are unique
to a particular business unit are maintained and
developed separately.

Beyond just holding on to the common software,
the centralized group should also establish best

practices for its use and encourage sharing among
all the other software teams within the company. To
that end, a joint committee should be convened to
manage common software development priorities,
and service level agreements should be drawn
up. But as with the completely centralized model,
a charge-back process must be established; the
use of common technologies would be subject to
a tax based on revenues, profits, or other criteria,
and each business unit’s software organization
would be required to fund its unique development
initiatives separately.

Leveraged structure. Many hardware companies
have a core business and a number of units
that are derivative of the core. For instance, a
company’s core business may be manufacturing
components primarily for the automotive market,
but increasingly its technologies are also being
used in medical and consumer applications.
For such companies that are exploring market
expansion, a leveraged software organization may
make the most sense. Under this structure, the
software group would report to the core business
unit rather than to a centralized corporate team. As
with the hybrid model, the software organization
would own the completed software components
and resources but would deliver them to the rest
of the company. For instance, the software team in
the company’s consumer products business unit
could take technologies developed by the software

What are they building? The semiconductor software evolution

At the start of the shift toward in-house software development, many semiconductor companies were
focused primarily on developing their own firmware—software embedded in their integrated circuits
that would dictate how the chips would function. Over the past few years, some have started working
directly with operating system vendors to make sure their device drivers will work seamlessly and
their processors will perform optimally in those environments. Others began to release software tools
(compilers, debuggers, tuners, and the like), plus common libraries and middleware, so third parties
could create optimized applications for their company’s chips. Most recently, semiconductor companies
have started to create end-to-end, embedded software products for original equipment and original
device manufacturers.

50 Software development handbook Transforming for the digital age

team in the company’s automotive unit and modify
them to suit the business unit’s and the market’s
needs. As with the centralized model, the core
business’s software group would need to establish
best practices in software development and
encourage sharing across the organization, but the
other business units would have to fund their own
unique development initiatives.

Which model?

To determine which of these structures is best,
companies need to consider their existing software
capabilities—that is, the type of software R&D they
are currently undertaking (if any), their overarching
objectives relating to software, and the funding
and other resources at their disposal. They should
also consider competitor’s software capabilities.
Companies that already have, for example, lots
of software R&D experience, or that have a core
business unit with several businesses feeding off of
it, will want to explore hybrid or leveraged models.
The individual business units would immediately
benefit from software technologies that are already
in hand (managed by the centralized software
organization), but they would retain the flexibility to
create unit-specific products based on their unique
technical and business needs. Such companies
could see less duplication of effort and waste.

By contrast, companies that have limited software
R&D experience may want to set up a central-
ized software organization focused on just one
business or a few business units at first— starting
narrow to ensure that success is within reach, but
establishing best practices that can be rolled out
more broadly as software development initiatives
gain momentum.

Finally, some industrial companies have
completely different products in different
business groups that have very limited
technology leveraging among them. In this case,
a decentralized software organization structure
should be considered. If there is a resource

constraint, they could consider initially starting
with the software R&D for a few limited products.

These decisions won’t necessarily be permanent;
as hardware companies move from a single-
minded focus on manufacturing to a broader focus
on delivering end-to-end offerings, their software
organizations will need to change as well. In the
transition from one model to another, executives
may need to introduce key performance indicators
and other metrics to help the software organization
(however it is structured) quantify the impact
of its development efforts and to help project
leaders set and meet personal targets. Because
of the global scarcity of technical talent, leaders
of traditional, hardware-oriented companies may
need to adjust some of their human resources
practices—for instance, providing attractive, high-
profile assignments in which software experts
actively participate in product design and planning,
or letting software engineers lead higher-level
strategy discussions. Most important, executives
who are bringing software R&D in-house will need
to become steeped in basic software terminology
and concepts. They don’t have to be experts, but
gaining at least a rudimentary understanding of
what the software can and can’t do may help them
achieve their business objectives in the long run.

The software development function in many hard-
ware-focused companies flies under the radar—
until growth slows and executives with cost cutting
in mind notice the large cadres of engineers they’ve
acquired over the years or until a new business
opportunity emerges and executives notice how
few engineers they have on staff. Executives need
to be more proactive; they need to recognize the
complexity and collaboration associated with
software development and react accordingly.

The authors would like to thank Harald Bauer
and Ondrej Burkacky for their contributions to
this article.

51Organized for success: Restructuring hardware companies

52 Software development handbook Transforming for the digital age

08

53Integrated expertise: Models to break siloed software development

Software organizations have historically been
divided into functional groups with developers,
quality assurance (QA), user experience (UX),
security, analytics, and operations sitting in distinct
functions. With the exception of a growing number
of cases in which QA teams are more broadly
integrated, the software organization’s functions
are walled off from each other and operate
independently. As software makes the transition
from an on-premise model to the cloud, however,
this siloed way of working is being challenged.

Cloud’s software disruption

The shift to cloud is driving three distinct software
development changes. First, vendor operating
models are changing. Operational responsibility
now lies with vendors. This places greater impor-
tance on reliability, uptime, and the operational
effects of the software architecture and the
resulting application. Efficiency, scalability, and
performance of the application are also becoming
more impor tant because more resources are
required to support the application. Operational
responsibility means a greater security burden,
making vendors more active in safeguarding
customer data. The shift to cloud also gives
vendors access to new capabilities—including
advanced analytics, A/B testing, fine-grained
customer segmentation, and continuous
deployment—making it easier for them to handle
the demands of their new responsibilities.
The scalability and reliability requirements of
cloud applications have also forced vendors to
dramatically improve how they modularize, deploy,
and monitor the application. “Hot deployment,”
horizontal scalability, and transaction monitoring

are fundamental vendor capabilities, requiring a
diverse set of functions (development, release
management, performance engineering, UX,
security, for example) to collaborate effectively.

Second, cloud enables iterative and agile
development methodologies along with
continuous deployment. These methodologies
have shortened the development cycle and the
expected time to market.

Third is the fact that performance differences
have narrowed across emerging platforms.
This convergence has led to the increased
importance of design and UX as differentiators.
The focus on user experience can no longer be
just about placing the button at the right location
on the Web page or selecting an appropriate
icon. There has to be end-to-end consideration
that ensures the application experience is both
intuitive and innovative. Together, these cloud-
driven trends are making the case for sharing
expertise across functions and integrating it into
development teams.

The traditional siloed software development
approach not only slowed down the overall
development cycle, but it also produced low-
quality products. Integrating functional expertise
into development teams can facilitate major
improvements in the development of both cloud-
based and on-premise software. McKinsey’s
software productivity benchmarking data shows
that a collaborative, cross-functional approach
reduces schedule slip by 30 percent, cuts down
residual defects by 70 percent, and improves
overall productivity by 27 percent.

The tradition of completely separate organizational functions is incompatible with effective software
development. Understanding the options for functional integration and embedding knowledge across
units can help deliver substantial value for software organizations.

Integrated expertise:
Models to break siloed
software development
Santiago Comella-Dorda, Chandra Gnanasambandam, Bhavik Shah, Tobias Strålin

54 Software development handbook Transforming for the digital age

Archetypes of functional integration

The move to cloud is making old ways of working
obsolete, and software organizations are
responding. They are beginning to integrate the
knowledge of the QA, UX, security, analytics,
and operations groups into development
teams. Integrating these different skill sets and
perspectives is giving software organizations the
added power they need to perform in a rapidly
evolving software environment. In a survey of
software organizations, McKinsey identified
four, distinct organizational approaches to inte-
grated expertise.

Fully embedded resources. With this approach,
individuals with expertise in various functions
become wholly a part of the development team,
and those experts are part of the standard team
configuration. They report up through R&D,
and priorities are set entirely by the R&D teams.
This model is best suited for teams or business
units that operate mostly independently and
when consistency across teams is not required.
It has the potential to create the greatest agility
within a development team. It also gives the
experts the best opportunity to understand
the development team’s function and become
familiar with the application. UX and operations
tend to be the teams that most commonly
fully embed their resources into development
teams. The trade-off of this decentralized model
is that it creates quality inconsistencies and
design fragmentation across product groups.
To mitigate this, companies that adopt this
model create “communities of practice” across
embedded teams to share best practices and
align on approaches up front. Also, this model
tends to lack the structure to support the growth
of functional experts within their areas, limiting
their professional development opportunities.

Semi-embedded resources. In this model,
experts also work full-time within a development
team, but they report through a separate
organizational hierarchy. Experts across
teams collaborate and establish and drive new

standards for the organization. This model is
as applicable for the UX and operations teams
as the fully embedded model, and companies
actually find this one more scalable. The software
organizations that participated in the McKinsey
survey reported that this model was suited for the
security and data analytics roles too. The benefits
of knowledge absorption, in general, apply to this
model as well. The central governance aspect of
this model also promotes a level of consistency.
Development teams with integrated operations
expertise—known as DevOps—enable experts
to better optimize performance or respond more
effectively to an incident with the knowledge of
the application. Integrating UX expertise can
result in a consistent experience for users across
all product groups. This is especially important if
products across the organization need to work
together seamlessly and be integrated. This
approach also enables consistent training and
skills development across the organization. Some
R&D teams, however, have reported that some
applications present a rather steep learning curve
for those joining the product team. For UX and
security experts, for example, the idea of “just-in-
time” resource sharing may be impractical.

Centralized expertise. In this model, the
functional expertise for development teams
comes from a centralized external team that
provides core capabilities to all development
teams. Typically, the central team is comprised
of senior-level functional experts who create
guidelines and standards for all teams to follow.
This type of model works very well for complex
topics like security. The capacity for application
teams to develop products informed by experts
in other functions is built slowly. This model is
less radical than the first two in that it doesn’t
break down the siloes. It is, however, a suitable
option for integrating specific expertise not
required at scale. It is equally suitable for small
and large organizations.

Developer-owned/rotational expertise. This
model requires development teams to dig in
and take ownership of areas that lie outside

55Integrated expertise: Models to break siloed software development

of their expertise. Without expert guidance
from the embedded models or consultation
from the centralized model, engineers are
expected to fulfill the cross-functional duties
themselves. This model requires development
team members to take on various expert roles
for a predefined period of time, then rotate
responsibility. Given the scaling difficulty, this
model may be most appropriate for integrating
operations expertise into the development units
within start-up or start-up-like environments.
It encourages the dissemination of knowledge
across the organization, but it can create the most
fragmentation. Teams also lose the benefit of
having dedicated expertise, since developers are
regularly out of practice between their rotations.
Smaller companies reported that the pain and
benefit of this model was that developers quickly

understood the difficulties other functions faced
and worked with them to identify appropriate
solutions either by changing how they designed
and coded applications or collaborating better.

Implementation and impact

The degree to which individual engineers develop
deep functional knowledge varies by archetype.
Regardless of the model chosen, however,
there is a shift in the expectation of all software
engineers. It is important that all developers
possess security knowledge, for example,
and apply its principles when architecting and
designing products. Organizations report that
implementing one of these models to integrate
security expertise into the development unit has
promoted a “culture of security.”

Ease of use is the primary driver of
both satisfaction and dissatisfaction
among mobile banking users

Percent

Drivers of
dissatisfaction1

Ratings 1 to 2

Drivers of
satisfaction1

Ratings 4 to 5

Integrating user experience expertise
led to the development of a more
user-friendly log-in mechanism

Country A 42 58 44 56

Country B 39 61 49 51

Country C 16 84 0 100

Time
0

100

150

200

250

Country A Country BFeature availability Ease of use

x 2.25
Introduction of
“light log-in” module
in country A only

Exhibit 01

1 Based on sample of app reviews, respective rating and theme of the comment, i.e., a review rating the app with 1 star
 and commenting on the hassle of log-in counts as dissatisfaction and ease of use

 Source: McKinsey analysis

Embedding user experience expertise helped one bank dramatically improve customer satisfaction

Monthly log-ins per unique user (disguised example), indexed

Visits per
day

56 Software development handbook Transforming for the digital age

Software organizations looking to integrate
functional expertise into their development units
don’t have to select just one of the archetypes
described above. Integrating one type of
expertise into a development team may require
one approach, while another expertise may be
best suited to a different model. Each function
can operate in a different archetype, depending
on the function’s capabilities, scale, and role
within the broader organization’s priorities.
Organizations have the option of implementing
one or a combination of these archetypes (for
example, UX can be fully embedded, while
analytics is semi-embedded). While organizations
have implementation flexibility, McKinsey’s survey
found that the “fully embedded resources” and
“semi-embedded resources” models are the most
common for the integration of all four functional
roles—UX, security, operations, and QA.

Successfully integrating functional expertise into
development teams can deliver substantial value
to a company. Looking at UX as an example,
organizations have shown improvement in conver-
sion and customer engagement by doing this. One
bank, in particular, analyzed feedback on its mobile
banking application and noted ease of use was
frequently cited as an issue. In response, the bank
fully embedded UX resources. It then performed
a controlled rollout of the new functionality in
one country as an A/B test. After monitoring
performance in that country and seeing increased
frequency of usage after launch, the change was
rolled out to other countries. Fully integrating UX
expertise into teams led to improvements in the

mobile banking application and an increase in user
engagement of 2.25 times (Exhibit 1). The model
for integrating UX expertise was subsequently
adopted by all major product groups.

Evidence also exists showing the potential of
DevOps teams. Research reveals improvements in
asset utilization of over 25 percent and significant
decreases in provisioning time. According to a
recent study by DevOps software provider Puppet
Labs, teams that integrate operations and commit
to continuous release practices deploy code
30 times more frequently, have half the number
of production failures, and can restore services
12 times faster after a production issue.

Software’s rapid evolution from on-premise toward
cloud-based platforms is enabling, among other
advances, continuous deployment. With this
opportunity, however, comes the need for greater
agility within software organizations. The traditional
ways of working that isolate developers from the
functions of UX, security, operations, and QA
no longer suffice. Organizations must integrate
these elements of functional expertise into their
development teams. Their options for doing so
comprise varying degrees of resource dedication
and different organizational structures. They all,
however, require developers to understand and
apply functional principles in ways that haven’t
been required before. Those that successfully
integrate this expertise are seeing improvements in
productivity, quality, and user engagement.

57Integrated expertise: Models to break siloed software development

58 Software development handbook Transforming for the digital age

09

59Quality code: Driving successful software development

The world runs on software systems, which power
everything from cars to consumer electronics
and from smartphones to intelligent appliances.
Yet as more industries cede increasing amounts
of their products’ functionality to software, the
stakes are becoming increasingly higher. At one
time, problems associated with code development
meant little more than an error in a stand-alone
system resulting in customer frustration. Today,
the aviation, automotive, and financial services
industries among others, rely heavily on software
code, and poor quality can have disastrous
consequences, threatening public safety and
global economic stability. One aerospace
company, for example, ended up grounding an
entire aircraft fleet due to software issues, and a
global premium automaker had to recall nearly a
million cars due to a safety-related software glitch.
A personal computer manufacturer ended up
shipping PCs with a virus already resident in the
installed software, while a bug in trading software
cost a firm nearly $450 million in 45 minutes.

The problem will likely get worse before it gets
better, driven by the trend toward more complex
interconnected systems. For businesses that
increasingly rely on software systems, the quality
of the code itself can be a key differentiator for
customers, tracking closely with repurchase
intention and satisfaction levels.

McKinsey has conducted significant research
into software development, reviewing more
than 1,300 completed software projects across
industries and conducting a large number of
interviews with software managers, architects,
and test leaders. From this research, it is clear
that best-in-class software players are twice as

effective as average performers at producing high-
quality code, which has become a strategic skill in
the current environment.

Based on this experience, McKinsey has formulated
ten core beliefs regarding software quality that cover
strategy and governance, development and testing,
and capabilities and mindset (Exhibit 1). These core
beliefs can help companies create and maintain
an organizational culture that prioritizes and builds
high-quality software.

Once the organization has set the ambition to
improve its software development quality, the
management team needs to launch a number of
initiatives covering the full development cycle, from
requirements collection to customer acceptance.

Specifying scope, architecture,
and planning

When establishing the scope of the software
development project, high-performing companies
standardize the intake process for setting business
requirements. Less capable organizations often
rely on ad hoc processes, allowing multiple
stakeholders to write business requirements, while
development or business analysis teams refine
them. The quality assurance (QA) department
often does not actively participate in these
early stages of development, but experience
shows that their involvement is critical. In fact, a
cross-functional team—including key business
stakeholders such as marketing, development,
and QA—is ideal in prioritizing and managing the
software development requirements. In this model,
requirements are reviewed from the start from a
quality and testability perspective to determine if

As software becomes ubiquitous, companies continue to struggle with development quality issues.
A comprehensive approach to development quality can rapidly produce tangible improvements.

Quality code:
Driving successful
software development
Peter Andén, Tobias Strålin

60 Software development handbook Transforming for the digital age

the desired features are realistic to implement and
to establish the testing approach and initial test
cases early on.

To respond to customer requirements, it is still
important to be agile and flexible in the intake, but
this needs to happen within the context of a well-
conceived structure. It is important to have one
project-wide requirements list that is continuously
updated and shared, but still owned by one
responsible executive. Advanced requirements
are broken down into manageable, incremental
modules or work packages. There are many ways
to manage how to prioritize the work ahead, and
the ideal approach depends on the company’s
context. For a small mobile app designer, for
instance, it can be perfectly sufficient to just hold
frequent team prioritization meetings. For large and

more advanced software releases and projects,
an empowered and highly capable planning and
integration team might be advisable to maintain
an up-to-date feature list and integration plan.
The integration plan will inform the prioritization of
modules or work packages for development and
integration into the main branch. The integration
plan is continuously updated based on input from
the project-wide requirements list—for example,
new features and changes in priorities. It addresses
dependencies between different modules or
work packages so that elements needed by other
modules or work packages are developed first.

The software architecture team should work
in close collaboration with the integration team
and aim to establish a modular stack with as few
dependencies between the layers and modules as

Core beliefs

Strategy is based on a deep understanding of “voice of the customer” and “total
cost of quality”

1

Quality KPIs should follow the strategy and be clearly defined and cascaded across
the organization

2

Complexity is managed by striving toward a single high-quality main branch with
daily updates

3

Strategy and
governance

Quality assurance is integral to each step of the software development process4

Invest in writing good code from the start: for example, by implementing code guide-
lines and reviews and leveraging peer programming to build collective responsibility

5

Testing should be implemented as early as possible, leveraging test-driven develop-
ment and continuous integration

6

An interlined and automated tool chain drives efficient testing and issue resolution7

Managing software supplier quality across all parts of the life cycle and integrating
it into the software organization’s own quality assurance flow is critical

8

Development
and testing

A capable testing organization with leadership in senior management is essential9

A “first time right” attitude and culture that reflect the importance of software quality
must be cultivated

10

Capabilities
and mindset

Exhibit 01

Ten beliefs in three categories underlie successful software development

Source: McKinsey analysis

61Quality code: Driving successful software development

possible. It is also recommended to allocate time
for refactoring (architecture cleanup) during the
software project to keep the software architecture
as modular as possible. For projects with
fundamentally new hardware, software platform,
and/or architecture, it is critical to invest enough
time into software architecture and integration
planning up front—this, to develop an initial
overview of interfaces and dependencies between
different modules and work packages.

It is also critical to establish a robust process to
track and manage software supplier quality across
all phases of the vendor life cycle, and it begins
with supplier selection. Ensuring early alignment,
integrated test processes, and unambiguous
relationships between stakeholders enables
companies to minimize the risk of excessive change
management actions. It is advised that companies
only outsource certain specified software modules
with clear interfaces and limited dependency on
other modules and work packages.

Implementing quality-focused
development methods

Once the project has been scoped and
structured, a number of initiatives should be
launched to promote better quality during the
development phase.

Test-driven development is an approach in
which programmers write the tests to which the
code will be subject before starting to develop
the code. This approach helps foster a quality
mindset and promotes deep understanding of the
customer use cases, before beginning with the
actual code development.

Pair programming brings two developers together
to produce all code. One takes the primary code-
writing role, while the other reviews each line of
code and creates unit tests. The two typically
change roles frequently—after a few hours, for
example. In addition, superior software developers
often adopt coding standards that allow everyone
to read each other’s code, and establish collective

code ownership, where any team member can
work on any part of the code.

Continuous integration is another very effective
strategy, where teams integrate the latest version
of code as often as possible—for example, every
few hours or on a daily basis. This approach
significantly improves quality, since issues are
identified early and can be addressed immediately
by the responsible party. Companies using the
traditional waterfall methodology wait until the
end of the development phase and then do one
large-scale system integration. This approach,
however, makes identifying individual problems
difficult and requires much more time and effort to
fix them. Continuous integration also shortens the
development cycle—in one case, a company used
it to cut its development cycle in half.

Refactoring is a development method in which the
code is rewritten. By improving and modularizing
code, companies can continuously improve
software quality. Doing so promotes better
architecture, making it easier for developers to add
or change software functionality. Other benefits
include the ability to identify and fix bugs in less time,
as well as higher productivity, lower development
costs, and reduced time-to-market performance.

The interlinked tool chain integrates tools for
requirements tracking and project planning, coding,
and verification. For many companies, investments
in a modern tool and development environment
have significantly increased both quality and
productivity by, for example, reducing the time and
coordination needed to fix identified software bugs
and allowing significantly more bugs to be fixed.

Succeeding in software testing
and integration

After a development method or methods have
been established and development is under way,
companies will want to set themselves up for
success in testing and integration. Focusing on the
areas of testing talent, timeline, and technology
can help give companies the best outcome:

62 Software development handbook Transforming for the digital age

Clear tester roles. To establish effective testing
and integration, companies need to specify clear
roles and responsibilities for the different types of
testing required. This is important to ensure both
sufficient test coverage and eliminate duplicated
effort. It is also advisable to establish a capable
test organization with clear career paths for
testers—meaning opportunities to move on to
more advanced roles such as test architects, test
coordinators, or line management. Increasingly
common today is for companies to move their
top software development talent into testing
organizations and shift their roles toward helping
development teams write high-quality code—
significantly increasing the status and influence
of the testers.

Early initiation. It is also critical to initiate testing as
early as possible in the development cycle, when
the costs to fix problems are significantly lower than
they later become (see text box “From last place to
top-ranked”). Testing should be part of the software
development from the start and run continuously
throughout the entire development cycle.

Virtualization. Extensive use of virtualization
techniques during the earliest development
stages can accelerate testing and reduce costs
per defect. In fact, today’s technology can allow
companies to test the full hardware/software
stack virtually—before a hardware prototype is
available. In one situation, a company noticed the
increasing dependencies between software and
hardware. It saw that it could test many issues only
in a full system environment. Thus, it needed to
build virtual prototypes to simulate the software/
hardware interactions. Instead of adhering to the
traditional sequence of hardware development
followed by software and system-level integration
and validation, the company used virtualization to
do all three steps concurrently. This enabled it to
reduce time to market by about 40 percent.

Additional levers to optimize testing efficiency
include introducing automation, establishing
a clearly defined scope of test coverage, and
balancing the test-and-build cycle lengths.

Automation, for example, can help companies
reduce costs and enhance the replicability of tests,
while optimized test-and-build cycles can make
testing more effective and efficient.

Establishing documentation
and feedback

Adequately documenting test cases and results
and providing usable feedback to developers
is needed to reduce bugs in the software and
capture insights for continuous improvement. One
company found that up to 50 percent of its test
issue reports were invalid for a variety of reasons.
They were duplicates, for example, or testers had
already fixed the issue before publishing the report.
This situation can eat up significant development
resources, tends to frustrate development teams,
and results in poor issue tracking. To resolve the
issue, the company introduced lean process
design approaches, robust tracking and follow-up
techniques, and special tools that improved its
ability to identify and remove duplicate reports.

Publishing test reports regularly across all potential
project sites—covering both test progress and
error situations—can help companies improve
their test validity rates. Reporting should also
be automated to the greatest extent possible,
integrating the reporting system with automated
test protocols. Beyond this, implementing
feedback loops will help companies improve their
test coverage, secure results, and capture insights.
In general, each prioritized issue should not only
lead to a fix, but also to a discussion on how such
an issue can be prevented from reoccurring—
should design guidelines be updated, developers
trained, or additional test cases introduced in
earlier test phases?

Another quality-focused technique companies
can use involves storing all requirements and test
cases in a test repository. By logging detailed
information in the repository, the company
enables teams to backtrack errors effectively.
This approach cuts the cost and effort associated

63Quality code: Driving successful software development

with testing by making it possible for teams to
reuse test cases, promoting easier calculation
and generation of test metrics, and increasing
testing effectiveness.

Using quality metrics to manage
performance

Software development organizations and teams
should define their quality key performance

indicators based on four considerations. First,
they will need to develop a clear profile of the
external customer whose preferences they will
address and whose voice they will represent.
Next, the organization can specify functional
and nonfunctional requirements to capture
customer quality—performance and stability,
for example. Then they will select appropriate
quality sensors and determine the timing and
frequency of deployment. Finally, organizations

From last place to top-ranked: An electronics player’s path toward
software excellence

A leading global consumer electronics manufacturer with over 2,000 software developers had a history
of poor quality management. It suffered from a large number of known defects and lacked adequate
product development transparency and key performance indicators (KPIs). The company decided to
launch a transformation focused on software development quality. It started by diagnosing the maturity
of its quality system, which covered four specific areas: strategy and KPIs, assurance and testing,
capabilities and mindset, and quality organization and governance. The manufacturer also identified
significant improvement opportunities across the end-to-end quality system, including fostering the
capabilities of certain development teams and increasing the effectiveness of its testing organization.
The diagnostic was complemented by a quantitative benchmarking effort to identify an ambitious and
realistic improvement target. The manufacturer then designed a “future state” software development
organization and established a multiyear transformation program to deliver on its ambitious objectives.
It ultimately launched more than twenty cross-functional efforts covering the end-to-end value chain.

The company implemented the best practices described in this article and summarized the associated
core principles to improve software quality as the following:

Early issue identification. Teams resolve issues where they occur and work to reduce issue inflow.
They might, for example, use design review virtualization to detect and fix faults early.

Global and holistic approach. Taking advantage of the company’s global scope, teams identify and stan-
dardize best practices and seek strong cross-functional involvement by tying in all necessary stakeholders.

Learning organization. They create a better problem solving and issue correction process throughout
the product life cycle and that facilitates continuous improvement.

Because of the transformation, the company experienced tangible, verified improvements in software
quality—and they went from worst to best quality in the market. Many of the underlying software quality
drivers also showed fundamental improvements. The introduction of new software stability testing tools,
for example, helped it uncover 250 percent more stability defects, and the use of root-cause analysis
enabled it to boost its “fix rate” of identified issues from 20 to 80 percent while cutting the lead time it
required to resolve issues by 80 percent.

64 Software development handbook Transforming for the digital age

should establish a process to deal with both
upstream and downstream results and drive
continuous improvement—for example, by
ensuring that defects are found as early as
possible and not leaked into later development
stages or even into the market.

To aid in performance management,
organizations can cascade their external KPIs
into internal ones and bolster the process with
frequent performance reviews. With a cascaded
information gathering system, the organization
uses the same templates for all project
subteams and relies on project managers to
aggregate the subteam reports. The system
calls for clear ownership of the KPIs and their
targets and should provide clear processes for
problem escalation, for performance reporting,
and for setting targets and expectations. The
company should also assign specific threshold

values to each KPI and set project milestones to
track performance.

As software takes control of more of the world’s
functionality, achieving higher quality levels
has become a major competitive challenge in
everything from fighter planes to luxury cars.
A multistep approach to ensuring software
quality that begins with the initial project
scoping and ends with ongoing performance
management can help companies increase
platform stability, identify defects, reduce the
number of customer returns, and achieve a
more efficient time to market.

The article was first published by McKinsey’s
Telecom, Media, and High Tech Extranet.

65Quality code: Driving successful software development

66 Software development handbook Transforming for the digital age

10

67Continuous improvement: Three elements of managing performance

A performance improvement initiative can lead
a company to greater software development
productivity, increased development throughput,
and higher software quality. Sustaining these
improvements, however, requires something
more: a performance management system.
Unlike an improvement initiative, a performance
management system supports continuous
improvement to software development by closely
monitoring software development operations.
Specifically, the system focuses on flow efficiency,
enables full operations transparency, and
drives continuous learning. McKinsey research
shows that companies with good performance
management systems in place are 2.7 times more
likely to achieve above-average EBITA results.
Performance management is a comprehensive
system that addresses three distinct elements of
software development operations: metrics, targets,
and infrastructure.

Performance metrics

Key performance indicators (KPIs) are central to
successfully managing software development
performance because they help companies gauge
overall high-level performance. The huge number
of indicators across a range of performance
dimensions, however, can be unwieldy. Cost,
competence, speed, and productivity are just a
few of at least a dozen KPIs, so companies will
want to identify the five or so KPIs that most closely
align with their areas of greatest concern and are
relevant to all of the software development units.

The selected KPIs should be fully standardized,
lagging metrics that are indicative of long-term

performance. Some companies looking to
build performance management systems have
fallen into the trap of selecting suboptimal KPIs.
Using the number of lines of code, for example,
as a proxy for productivity can encourage the
development of more complex or duplicative code.
KPIs related to the number of features can also
drive the wrong behavior, incentivizing teams to
make features smaller and smaller to create the
illusion of productivity. The selected KPIs should be
measured either by release or by month.

The standardized KPIs should then be comple-
mented with more tailored performance indicators
to help companies understand why their KPIs
change and identify corrective actions. Software
development units have radically different working
models: agile versus waterfall, small versus large,
on-premise versus cloud-based. These additional
indicators address the unique needs and dynamics
of individual teams and the company’s various
locations, and software teams should have full
flexibility in selecting these indicators.

Finally, the KPIs are also complemented with
change initiative metrics to help companies track
the progress of their specific initiatives. Four to six
indicators and metrics per KPI—this time, a mix of
leading and lagging metrics—are typically sufficient
and should be measured as often as weekly.

Business targets

Aspiration is key to performance management,
and target setting is its building block. There is
more than one way to arrive at the targets that
guide performance management, and each

Continuous improvement:
Three elements of managing
performance

Successful software development relies on the ability to continuously manage performance.
By optimizing their performance management systems, companies can move beyond one-off
performance improvements and look forward to sustainable bottom-line gains.

Hannes Erntell, Tobias Härlin, Tobias Strålin

68 Software development handbook Transforming for the digital age

company will need to assess which approach is
the most appropriate.

Team-set targets. With this bottom-up approach,
teams set targets, and interventions from
management are not required. Team-set targets
may make sense when teams have a track record
of making solid improvements on their own
and within their focus areas. The transparent
communication of metrics is a prerequisite for
this approach. A root-cause analysis should be
conducted if problems occur.

Top-down targets. Another option for setting
targets starts with management. They define
targets and apply them across the organization.
Management introduces an incentive system
to further drive improvement in selected areas.
While the target is set at the top, successful
implementation of this approach requires wide-
scale buy-in throughout the organization.

No targets. It is also possible that not setting
targets at all is a company’s wisest move. This
choice can allow a company to focus on turning
around its organizational culture and concentrate
on metric-based performance improvement
without the potential confusion and added
pressure that targets can bring.

Improvement infrastructure

Companies certainly need clarity regarding
where they want to go and on how to gauge their
progress toward that goal. A third element—
the improvement infrastructure—ensures that
corrective action can and will be taken when the
first two elements reveal the need for redirection.
The improvement structure comprises the set
of institutional mechanisms that facilitate the
improvements that have been identified and enable
units to continuously learn and grow.

Culture. Many organizations are beset with a
culture that resists reflection and critique. Shifting
the organization from a culture of defensiveness
and a lack of accountability to one where

assessment and continuous improvement are
valued by everyone takes work. Organizations
characterized by a performance-oriented culture
have two things going for them. First, teams
understand and are committed to the process
because the process has been made transparent.
Second, they have examples of a successful
process because leadership models it.

Coaching. The role of coaching is to drive the
dialogue around improvement in general and
specific corrective actions in particular. It focuses
on performance opportunities and key capabilities
and creates transparency on performance-related
issues. The function of coaching is also to clearly
establish ownership for corrective actions and follow
up to ensure that those actions are being taken.

Forums. Constructive dialogue is crucial to per-
formance management. That dialogue is facilitated
when structured spaces, or forums, exist for those
conversations to take place. From lead time to
quality, there are many dimensions of software
development whose performance must be
managed, and each of these dimensions demands
its own dialogue forum. These forums adhere to
tight agendas that address the root causes of
performance issues and end with a consensus
on next steps. The structure of these forums
also includes the committed participation of the
most relevant staff, and they occur regularly and
frequently, typically monthly or every two weeks.

A company’s software development function is
a mix of several units and many moving parts.
Improvement programs get the optimization ball
rolling, but it takes a performance management
system to sustain those benefits. Companies
looking to implement performance management
should establish clear targets, determine which
metrics will gauge progress, and create an
infrastructure that encourages and enables
continuous improvement. Those that do so
successfully will most likely show above-average
EBITA performance.

69Continuous improvement: Three elements of managing performance

70 Software development handbook Transforming for the digital age

Contributors

Hannes Erntell
Principal, Stockholm

Simone Ferraresi
Associate principal, Rome

Tobias Härlin
Associate principal, Stockholm

Jörn Kupferschmidt
Consultant, Berlin

Gang Liang
Senior expert, Boston

André Rocha
Associate principal, Munich

Bhavik Shah
Expert, Silicon Valley

Christopher Thomas
Principal, Beijing

Dominik Wee
Principal, Munich

Bill Wiseman
Director, Taipei

71Authors and contributors

Authors

Tobias Strålin is a partner in McKinsey’s Stockholm office. He is the founder and a
leader of McKinsey’s Global Software Development Practice and primarily serves
leading software and high-tech players. He has helped many advanced software
development organizations fundamentally transform their software development
operations and make significant performance improvements.

Phone: +46 8 700 6476 • tobias_stralin@mckinsey.com

Chandra Gnanasambandam is a partner in McKinsey’s Silicon Valley office and
a leader in McKinsey’s Software Practice. Chandra serves many of the world’s
leading software and services companies and has extensive hands-on software
development experience.

Phone: +1 650 842 5662 • chandra_gnanasambandam@mckinsey.com

Peter Andén is a partner in McKinsey’s Stockholm office and the co-leader of
McKinsey’s European Software Development Practice. Peter has significant
experience helping high-tech and advanced industry clients address strategic
and operational software topics.

Phone: +46 8 700 5401 • peter_anden@mckinsey.com

Santiago Comella-Dorda is a partner in McKinsey’s Boston office and a leader in
McKinsey’s Agile and Scale Practice. Santiago has led a large number of software
development and agile-at-scale transformations.

Phone: +1 617 753 2293 • santiago_comella-dorda@mckinsey.com

Ondrej Burkacky is a partner in McKinsey’s Munich office and he co-leads
McKinsey’s European Software Development Practice. He has extensive
experience serving semiconductor and other advanced industry clients in
embedded software development.

Phone: +49 89 5594 9038 • ondrej_burkacky@mckinsey.com

Editing: Monika Orthey, Scott Reznik, KJ Ward

Design: Marc-Daniel Kress (metamorphosis7.com)

Base pictures for title and chapter illustrations: © fotosearch.de

Copyright © 2016 McKinsey & Company, Inc.

No part of this publication may be copied or redistributed in any form without the prior written consent
of McKinsey & Company.

Software Development Practice
January 2016
Copyright © McKinsey & Company, Inc.
www.mckinsey.com

	Blank Page

